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The wind blew southward, through knotted forests,
over shimmering plains and towards lands unexplored.

This wind, it was not the ending. There are no endings,
and never will be endings, to the turning of the Wheel of Time.

But it was an ending.

Brandon Sanderson and Robert Jordan,
A Memory of Light,
The Wheel of Time Series

Als que ja no hi són,
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Abstract

Somatic cells accumulate mutations in their genome resulting from a set of ex-
ogenous and endogenous processes. The interplay of DNA lesions and the DNA
repair mechanisms in each cell shape the genetic mosaicism that composes an
adult tissue. Although many of these alterations have a neutral effect, some can
eventually impede the correct physiological function of the tissue, causing can-
cer, and other diseases such as clonal hematopoiesis and repeat expansion disor-
ders. Understanding the molecular mechanisms of how these somatic mutations
are generated can thus help in the prevention and treatment of such diseases, and
can help understand DNA replication and repair mechanisms operative in human
cells.

In this thesis, we explore somaticmutation distributions from several perspectives,
focusing on the genomic features that modulate the local rate at which mutations
accumulate. First, we systematically study themechanisms that generate APOBEC
mutations in tumor samples; we describe a new mechanism of diffuse mutation
clusters that are enriched in gene-rich domains of the human genome, consistent
with a DNA repair-mediated mutagenesis. Next, we study various somatic muta-
tion signatures across a wide range of human healthy tissues and compare them
with their corresponding cancer types, reporting broad similarities. We also study
the sub-gene resolution heterogeneity in mutation rates, revealing a gradient of
mutation rate along the gene body and its interaction with other functional ele-
ments like promoters, enhancers, and loop anchors. Lastly, we detect and charac-
terize distal mutation clusters in trans-interacting chromatin loci, which suggests
a three-dimensional-acting mutagenesis mechanisms in human cells.

Overall, studies in this thesis highlight the variable activity of the endogenous
sources of DNAmutations along the loci in the human genome, elucidate mecha-
nisms and impact on accruing mutations in functional elements.
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Resum

Les cèl·lules somàtiques acumulen mutacions en el seu genoma a partir d’un con-
junt de processos exògens i endògens. La interacció de les lesions d’ADN i els
mecanismes de reparació de l’ADNde cada cèl·lula configuren elmosaicisme genètic
que compon un teixit adult. Tot i que moltes d’aquestes alteracions tenen un
efecte neutre, algunes poden eventualment impedir la correcta funció fisiològica
del teixit, provocant càncer i altres malalties com l’hematopoiesi clonal i les malal-
ties d’expansió de seqüències repetida. Comprendre els mecanismes moleculars
de com es generen aquestes mutacions somàtiques pot ajudar a la prevenció i el
tractament d’aquestesmalalties, i pot ajudar a comprendre la replicació i reparació
de l’ADN a les cèl·lules humanes.

En aquesta tesi, explorem les distribucions de mutacions somàtiques des de di-
verses perspectives, centrant-nos en les característiques genòmiques quemodulen
la taxa local a la qual s’acumulen. En primer lloc, estudiem sistemàticament els
mecanismes que generen mutacions derivades de l’activitat dels enzims APOBEC
en mostres tumorals; descrivim un nou mecanisme de cúmuls de mutació difusa
que s’enriqueixen en dominis genòmics rics en gens, aquest sistema es compatible
amb una mutagènesi mediada per la reparació de l’ADN. A continuació, estudiem
els patrons de mutació somàtica en una àmplia gamma de teixits humans sans i
les comparem amb els seus tipus de càncer corresponents, detectant grans simil-
ituds. També estudiem l’heterogeneïtat de la resolució de subgens en les taxes de
mutació, revelant un gradient a la taxa de mutació al llarg del cos del gen i la seva
interacció amb altres elements funcionals com promotors, potenciadors i llaços
d’ancoratge de la cromatina. Finalment, detectem i caracteritzem cúmuls de mu-
tacions distals en loci de cromatina que interaccionen trans, cosa que suggereix
mecanismes de mutagènesi d’acció tridimensional actius a les cèl·lules humanes.

En conjunt, els estudis d’aquesta tesi posen de manifest l’acumulació variable de
les fonts endògenes de mutacions de l’ADN al llarg del genoma humà, dilucida els
mecanismes de com s’originen i remarca l’impacte en l’acumulació de mutacions
en els elements funcionals.
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Chapter 1

Introduction

Coined by Hugo de Vries in 19031 , the term mutation implies a sudden change
in the inherited material of a species. He first used the term to explain the unex-
pected new varieties that arise in his experimental gardens of evening primrose
flowers ( Oenothera lamarckiana ). However, this experiment was later attributed to
a recombination event in a balanced chromosome, which does not align with our
current definition of a mutation. The first characterization of a DNA mutation,
as we understand it today, was introduced 27 years later by Hermann Muller, an
American scientist who increased the mutation rate in fruit flies by X-rays irradi-
ation2 . His experiments were crucial to prove that a chemical molecule encoded
the inherited information of the cell.

1.1 Somatic mutagenesis

For humans and other higher eukaryotes and according to the Weisman’s germ
plasm theory3 , we divide the mutations in the human genome in somatic and
germline. Somatic mutations are defined as DNA variants that occur outside the
germ cell lineage and thus are not inherited by the next generation. Contrary to
these, germline variants occur prior to the zygote formation, are present in all cells
of the organism and can be transmitted to the offspring.

At the somatic level, mutations are generated both from endogenous sources, such
as DNA replication errors or cytosine deamination and exogenous sources, such
as UV radiation or harmful chemicals. These lesions accumulate in our tissues
through the lifespan of the organism. After the damage arises, DNA repair pro-
teins act to revert to the ancestral state before replication occurs, but if these lesions

1



2 CHAPTER 1. INTRODUCTION

are not corrected, mutations get fixed in further daughter cells. By definition, so-
matic mutations occur after the zygote formation, thus limiting the cell lineage
that will inherit them. In practical terms, to detect mutations in a somatic tissue
a clonal expansion of the mutation harboring cell is usually required so enough
DNA material can be extracted and analyzed a. Thus, within this methodologi-
cal framework, only mutations which are neutral or have a positive effect on the
clonal growth, e.g. in cancer, will be detected by sequencing 1.1.

Exogenous
DNA damage

Endogenous
DNA damage

DNA
repair

DNA
replication
and clonal
expansion

Loss of
unfit

clones

Somatic
variants

with neutral
or positive
effects

Figure 1.1: Schematic showing how mutations accumulate in the genome of so-
matic cells. Either exogenous or endogenous mutagens generate lesions, which
are later repaired by DNA repair. If the cell suffers from a clonal expansion (i.e.
cancer) these mutations get amplified to the level that can be detected by sequenc-
ing.

1.1.1 Pre-genomic studies

The role of mutagenesis in the theory of evolution has always been of interest in
the field of genetics and molecular biology4 . In the pre-genomic era, mutation
accumulation experiments were used to uncover and characterize the mutagenic
processes of model organisms such as yeast, fruit fly and C. elegans, yielding an
important understanding of how mutations occur5,6 .

aWe do note the recent developments that allow detection of somatic mutations with no clonal ex-
pansion, see section 1.1.3.1 for more detail.
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1.1.1.1 Early definition of somatic mutagenesis

A substantial advancement in the study of mutagenesis was made after the dis-
covery that human cancer was caused directly by DNA and its containing muta-
tions7,8 . After that discovery, the sequencing of cancer extracts started to lead to
the identification of the first cancer causing somatic mutation9,10 . Interestingly,
the sequencing of cancer genes such as HRAS or TP53 yielded a large accumula-
tion of DNA sequences and the characterization of the molecular mechanisms of
mutagenesis11 . One of this processes was the spontaneous deamination of CpG is-
lands which has been recently characterized and detected in almost every human
tissue both for healthy and tumor samples12,13 (see section 1.2 ) .

Later studies in DNA repair were based in simple model systems, like bacteria or
yeast, where scientists reconstructed the main DNA repair pathways using recom-
binant strains14,15 to study epistasis between constituent genes. From these ex-
periments, three main DNA repair pathways emerged as the main guardians of
the genome from point mutations: base excision repair (BER)16 , mismatch repair
(MMR)17 and nucleotide excision repair (NER)18 . Additional pathways mend DNA
breaks and so protect against rearrangements.

The publication of the human genome sequence and the development of mod-
ern sequencing technologies allowed the field of cancer genomics to shift from a
more targeted approached to now being able to sequence many genes for a lim-
ited number of patients11 . These revelations, lead to the coordination and set up
of a number of international consortia that lead to the sequencing and analysis of
tumors form large sets of patients11,19–23 . In parallel, significant efforts have also
focused in the sequencing of germline variation, both in the population level and
from trios, leading to the study of mutagenesis and selection in germline, which
has differences compared with somatic mutagenesis24–28 .

Only 13 years ago11 the number of available somatic mutations was in the range of
hundreds of thousands, while today, themultiple sequencing projects have yielded
hundreds of millions of mutations, increasing the potential for novel discoveries
in both cancer evolution, and the biology of mutagenesis in human.

1.1.2 Cancer as a model organism

Cancer is a somatic diseasewhere cells grow and reproduce uncontrollably, outside
the normal homeostasis of a given tissue. Cancer, however, can also be studied as
an in vivomutation accumulation experiment.
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1.1.2.1 Cancer as a human disease

Cancer is the second most common disease in humans, with 18 million[new cases
and 10 million deaths per year world wide (IARC29 ); 2 million new cases and 600
thousands deaths per year in the US (NIH-SEER30 ) and 280 thousand new cases in
Spain (REDCAN31 ). At these rates, at least 40% of the population will be diagnosed
with cancer during their life30 .

Nowadays, cancer is treated with a specific set of treatments depending on the
type of cancer, the tissue where it originates and the stage at which it is detected.
Traditional therapies such as surgery, radiotherapy, and chemotherapy now co-
exist with a variety of novel, biological techniques. Examples of such are immune
checkpoint blockade therapy, engineered cell therapy (CAR-T) and hormone ther-
apy. Together with all of these techniques, the DNA and, sometimes, RNA se-
quencing of tumors is helping in prioritizing a given therapy to the molecular
conditions of the tumor32 (see section 1.2).

Together with these new therapies, much effort is directed at the early detection of
the cancer, which has been demonstrated as a key predictor for better prognosis.
An important genomic advance in this field is the development of the liquid biopsy,
a technique that consists in the sequencing and characterization of blood circulat-
ing tumor cells, or tumoral DNA fragments. The genomic material that is leaked
from the cancer cells to the bloodstream can be extracted and analyzed to ob-
tain molecular information about multiple molecular and genomic features33–37

. Newer reports are now starting to recapitulate mutational signatures from this
data38 . These data cannot only reveal, with surprising accuracy, the presence of a
tumor but also lead to the prediction of the primary site39 .

1.1.2.2 Evolutionary conservation of somatic mutagenesis

Cancer is not exclusive to humans, neoplasia has been identified in a wide variety of
metazoans40–42 and only some selected species such as the naked mole rat seems
to be to some extent protected40 from it. A recent report studying up to 191 of
mammal species from zoos has highlighted the high prevalence of the disease,
mirroring in some cases the ones in humans43 .

This striking conservation of this disease across evolution also raises challenges in
our understanding of the evolutionary dynamics of somatic tissues. Early models,
for example, suggested that the higher body size of larger mammals would put
them at a higher risk of cancer. However, early reports suggested that neither the
developmental status or the size of the organism was relevant to the development
of cancer44,45 . This observation, known as Peto’s paradox, has motivated research
in the novel protective mechanisms that might exist in these species. A recent
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report sequenced the somatic tissues b of a total of 16 mammal species to quan-
tify their somatic mutation rate46 (see section 1.1.3.1 ) which manifested a overall
highly conserved mutation processes but in a wide range of rates. Interestingly,
mutation rate inversely correlated with lifespan but not sizec hinting at a possible
evolutionary mechanism to control cancer progression.

1.1.2.3 Role of somatic mutagenesis in cancer

The causal role of somatic mutations in carcinogenesis is widely studied due to
twomain reasons. First, strong evidence accumulated in pre-genomic reports (see
section 1.1.1 ) about the correlation and likely causality of somatic mutations with
the disease. Secondly, the cellular characteristics of the disease, mainly a clonal
expansion from a single cell, represents a natural in vivo experiment for the effi-
cient detection and study of mutations accumulated in the somatic tissues (figure
1.2 ).
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Figure 1.2: Schematic of identification of de novo mutations (left) and somatic
mutation calling (center). For both techniques the reference variants (parents or
blood) are compared against the target variants (offspring or tumor).

The first early studies of cancer genomes lead to the identification of specific cod-
ing somaticmutations that significantly re-occurred inmultiple independent sam-
ples19,47,48 . The detectable positive selection of these particular sites suggested
their active role in the tumor progression and were termed consequentially, driver
mutations . Although these mutations contain important information to under-
stand the biology of a particular cancer, quantitatively, they represent a minority
of all the somaticmutations that can be identified in a tumor. Recent studies quan-
tifying the amount of positive selection in tumors report that the average sample
will contain between 2-10 driver mutations49 (see figure 1.3 ). The rest of the mu-
tations termed by analogy passenger mutations are thought to carry either a neu-

bintestinal crypts extracted from microdissections
cAlthough the mutation rate also inversely correlated with adult mass (or size), when controlling for

the correlation with lifespan, the variability in size was not informative.
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2-10 driver
mutations

~30 passenger
coding mutations

~1.200 passenger
non-coding genic

mutations

~1.800 passenger
intergenic mutations

Figure 1.3: Schematic of the volume of passenger and driver mutations in an av-
erage cancer sample.

tral49 or small deleterious50,51 functional effect to the tumor fitness (see figure 1.3
).

More interestingly, these passengermutations are highly abundant inmost cancer
types, with the exception of pediatric and some blood cancers52 , and because they
are unaffected by selection, they accurately reflect the molecular characteristics of
the mutagenic process that had caused them (see section 1.2 ) .

Overall, the molecular and cellular characteristics of tumors make them a great
resource for the study of somatic mutagenic agents directly in humans bypassing
the use of other common model organisms and in vitro cell lines.
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1.1.3 Somatic mutagenesis in healthy tissues

Somatic mutagenesis is however not specific to cancer tissues. Normal cells d get
mutations frommost of the mutagens that can also be identified in cancer tissues,
especially the ones associated with common exposures such as UV light in skin.
Recent reports have shown the prevalence of somatic mutations of different types
in multiple non-disease tissues. Brain is one of the particular organs with more
reports where CNVs53,54 , structural variants55,56 and pointmutations57,58 have been
identified and characterized. Other tissues like Skin59,60 , Esophagus61–63 , muscle
cells64 , kidney65 , and colon crypts46,66 are also other examples of the wide range
of human tissues where these phenomena have been described.

Mutations in cancer genes e such as NOTCH1 and TP5359,61,63 were also detected
with striking frequencies in healthy tissues. This finding represents a challenge
of the general hypothesis about how a small set of selected mutations could be
sufficient to cause the tumor growth67 . These studies have reported a surpris-
ing accumulation of genetically diverse clonal subpopulations of cells which are
detectable by directly sequencing a tissue sample61,62 . A proposed physiological
benefit for the existence of these healthy clones is the control of other carcinogenic
clones arising in the same tissue68 .

1.1.3.1 Detecting mutations in non-cancerous tissues

Contrary to germline variants, somaticmutagenesis in the adult tissues of complex
organisms only occurs during and after the development of the tissues. This fact
leads to a characteristic genetic mosaicism of mutations in every cell lineage69 .
Without the natural clonal expansion occurring in tumors (see section 1.1.2.3 ), the
low allelic frequency of most somatic mutations makes the detection of genetic
variants extremely complex compared to their germ line counterparts. Theoret-
ically, the private DNA sequence of a single cell needs to be amplified in order to
obtain sensible readings and sufficient coverage to identify a somatic variant70 .

In recent years, a set of techniques and methodologies based on complementary
cellular and molecular techniques have been developed to overcome this limita-
tion. A first approach, Duplex sequencing, relies on the in vitro capture of frag-
mented somatic DNA and its amplification with traditional PCR machinery. The
use of a randomized tag in each of the amplification primers can be used to detect
if the sequenced mutations come from the original sample, thus being present in
both amplified strands, or are artifacts of the PCR amplification, which are present
in only one strand71,72 . Various improvements to this technique have also been

dhere defined as non-carcinogenic
edefined as genes harboring detected positive selection in cancer tissues
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proposed and used to detect somatic mutation rates in humans and other organ-
isms73,74 . A second approach to detect somatic mutagenesis is to generate small
microdissections from the tissue to obtain a small set of cells where relative al-
lele frequencies can be sufficiently high and mutations can be reliably identified.
These microdissections are generally performed with specialized equipment and
power to call mutations is limited by the sequencing depth (i.e. cost) of the exper-
iment. This technique has been used extensively in the recent years particularly
in tissues with a natural clonal expansion such as colon crypts46,66,75,76 but also in
a wider range of tissues59,61,63,77,78 . Finally, a more conventional, widely used ap-
proach is to sequence an ex vivo cell line culture that is derived from a primary
tissue. Cells from the tissue are grown in a dish, isolated in single clones and ex-
panded sufficiently to obtain enough DNA material. Then, each expanded clone
culture is sequenced, and germline variants removed by comparing across clones
or by comparing with the blood of the patient to extract somatic mutations, simi-
larly as it done for tumors (see figure 1.2 )57,64,65,79 .

Each methodology has its own caveats and advantages. While the in vitro ampli-
fication of duplex sequencing is able to capture subclonal mutations at a extreme
high resolution f , the amount of genomic DNA that can be covered is generally
small, usually not surpassing 1 Mb in size72 . Some of the variations of the mod-
ified techniques also seemed to introduce some false positives around the frag-
ment ends from the digestion of the fragmented DNA. More recent variations of
this technology, named Nanoseq, seem to have solved this issue74 . Microdissec-
tions cannot reach such levels of detection of low allele frequency mutations, but
represent an improvement because of its spatial information and the ability to pre-
cisely analyze a relevant section of a given tissue of interest, i.e. the colon crypts.
A caveat of this process is the costly equipment that is required, however each mi-
crodissection can be relatively labor- and cost-effective. Thus, these experiments
normally contain a large number of clones. A caveat of this technology is that the
clonality of the mutations is normally lower than what it can be detected, thus,
a deep sequencing process needs to be used with coverages higher than 500X80

. This sequencing need means that some of the early experiments which do not
rely on natural expanding clones needed to focused on sequencing a limited set
of genes59 . Finally, the ex vivo approach also represents a simple, yet laborious
and time consuming solution in order to accurately amplify the genetic material
prior to sequencing. The limitations however come from the biology of the tis-
sue that is lost to a certain degree when cultured in a dish, where only the stem
cells subpopulations would get expanded more easily than differentiated cells in-
troducing a biological bias. Other mutagenic processes related with the oxygen in
the cell culture conditions can also contribute a significant amount of mutations

f a mutation present only once in a sample of 107 cells
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to the sample81 .

Overall, although mutation detection in healthy tissues remains a challenge, sig-
nificant technological developments will result in a deeper understanding of the
role of mutagenesis in other non-cancerous processes like aging and neurodegen-
erative disease.

1.1.3.2 Role of somatic mutations in aging and disease

The process of aging can be defined as the changes at the molecular and physi-
ological level that our tissues suffer over time. The role of somatic mutations in
the aging process was initially proposed82,83 in the 60s during the initial develop-
ments in the nascent field ofmolecular genetics. Its proponents,mostly prominent
physicists who had begun to study of DNA, were focused on the effects of radiation
such as X-rays on the DNA molecule.

However, despite its early start, little is still known on the functional effect of so-
maticmutagenesis in determining the pace of aging. Most of the relevant advances
in the field have focused on the role of cellular senescence84 and in the study of epi-
genetic and chromosomal alterations69,85,86 . Evidence from inherited accelerated
aging syndromes like progeria or Cockayne syndrome are significantly enriched
in DNA repair deficient genotypes79,87 . It is still unclear though whether the ac-
tual mutations that accumulate in these samples are the causal effectors of aging
or if another effect of these deficiencies, such as the induced apoptosis by DNA
damage, might be more directly involved in aging. Other germline deficiencies in
DNA repair genes, for instance genes in both the MMR and the BER pathway, do
not cause premature aging even with a large amount of accumulated point muta-
tions75,76,88 (somatic rearrangements have been less studied in this property) . Of
note, however, these inherited variants in MMR and BER do increase cancer rate
significantly (reviewed in89 ), and increased cancer risk might be understood as a
facet of aging. Overall, the lack of a good experimental model to measure normal
aging limits our ability to determine the role of different molecular factors that
may act as modulators of this process79 .

Mutations however do accumulate with increased age. Data from the first cancer
genomic studies revealed some mutagenic processes, signature 1 and 5 (see sec-
tion 1.2 ), which strongly correlated with the age of the patients90,91 suggestinga
biological association. Interestingly, the study of the non-cancer tissues (men-
tioned above57,64,66,77 ) have also highlighted the pervasive nature of these same
mutagenic processes and their association with the age of the individuals79 even in
healthy tissues. Due to this reported correlation with age79,91 , the genomic insta-
bility of normal tissues is also considered one of the primary hallmarks of aging92

.
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Considering this evidence, the specific causal role of somatic mutagenesis in the
aging process remains elusive and seems to be highly dependent on the definition
of aging as a phenotype. Aging causes somatic mutations but it is less clear that
somatic mutations cause aging.

Apart from cancer, genomic instability at the somatic level has also been proposed
as a causal of other human diseases like Alzheimer disease or Parkinson. The fact
that these conditions normally appear with age and have been linked to specific
protein coding mutations seem to indicate that the accumulation of somatic mu-
tations might plausible play a role. The most promising evidence is related with
brain neurodegeneration and Alzheimer disease (AD) where recent reports have
suggested not only the steady accumulation of somatic mutations in neurons but
an increasedmutation rate and the existence of a disease specificmutation process
for AD57,58 . Further evidence is required to establish a causal link between these
increased mutagenesis and the pathology.

In this thesis, I have systematically analyzed the mutational processes that accu-
mulate in a diverse set of human healthy samples amplified by the ex vivomethod-
ology, compared to mutational processes in tumors of same tissues, and studied
their genomic characteristics (see chapter 4 ).

1.2 Molecular mechanisms of somatic mutagene-
sis

A key feature of the observational study of genome sequences of tumoral sam-
ples is the ability to obtain insights into the biology of the mutagenic process.
An importantmethodological advance was the development of DNA trinucleotide
“mutational signatures” which can isolate biological relevant mutagenic processes
(hereaftermutational signatures ) and quantify their activity across individuals (“ex-
posures”)90 .

1.2.1 Mathematical representations of mutational process

A mutational process can be defined as the distribution of specific DNA lesions
generated by a mutagen which is either acted upon with a specific DNA repair
pathway(s) or fixed into the genome through DNA replication across the lesion
(see 1.1 and 1.5)93 .

Mutations can accumulate from a wide variety of sources, including both exoge-
nous and endogenous sources, lesion driven causes or DNA replication errors.
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Thus, in general terms, amutational process can be defined as a fixed combination
of biological factors that influence the chemical and thus genomic features of the
generated mutations.

1.2.1.1 Feature extraction from genomic features

Two clear examples of mutagenic processes with clearly defined genomic features
are the deamination of themethylated cytosine at CpG sites (currently represented
by the signature 1 or SBS1, where “SBS” stands for single base substitution)12,13 and
the accumulation of pyrimidine dimers inUV exposed cells (currently represented
by the set of signature 7 or SBS7)94 both generating C>T changes but in different
contexts . These early studies were already able to determine a significant DNA
sequence predisposition of these agents to the mutation risk, indicating that the
lesion occurence and/or the subsequent repair had a particular chemical predis-
position towards a given oligonucleotide context.

After these early analyses, the first genome sequences of human cancers (see sec-
tion 1.1.1 ) yielded a set of clearly non-randomly mutated sequences95 . In partic-
ular, these first reports90,95 focused on the determination of mutagenic SNV (or
single base substitutions, SBS). These processes could be characterized by consid-
ering the 5’ and 3’ of the mutated base together with the alternative (mutant) so-
matic allele. Because the genomic strand can only be measured relative to a local
biological feature (such as replication or transcription) and so is by default unde-
fined, mutations were collapsed strand-symmetrically and assigned to the pyrim-
idine base. Thus, from the 16 possible (A, C, G and T at each side) combinations
of each mutation class (C>T, C>A, C>G, T>A, T>C and T>G) a total of 96 features
were extracted and tallied in a set of human tumors (see 1.5).

Further studies have extended this initial classification of SNVs either by extending
the sequence motif two extra bases (from trinucleotides to pentanucleotides96 )
and by introducing external genomic features (i.e. the direction of transcription,
DNA replication strand, or the clustered nature of the mutations)96–99 .

Althoughmost of the research in this field is focused on SNVs due to its abundance
in somatic tissues and the relative ease of their detection, other classes ofmutations
represent interesting sources of mutations in the soma, with a higher functional
impact in the coding sequences. Small insertion and deletions (indels) represent
the second most studied class in this field. The optimal feature classification for
indels is not as clear as for SNVs but the features that are usually used comprise in-
formation about the size of the indel (howmany base pairs are deleted or inserted)
and the sequence context where they occur (i.e. occurring in a homopolymer or
sequence repeat, and presenting microhomology at borders)100 .
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Othermutation types that have been identified to contain non-random accumula-
tion, and thus potentially driven by a biologically relevant mutational process, are
(i) clusteredmutagenesis96,97,99,101,102 (see section 1.4 ); (ii) double-base substitutions
(DBS)96,103 ; structural variants (i.e. rearrangements and fusions)104,105 and related
copy-number alterations106–110 . Like in the indels, the feature characterization of
these othermutational classes is still less standardized andmultiple techniques are
being developed and applied to genomes at the time of writing.

1.2.1.2 Detection, extraction, and fitting of mutational signatures

After the feature extraction and tally of the mutations, a factorization step is ap-
plied to deconvolute the set of mutagenic features into independent factors rep-
resenting independent mutational processes.

The first reports90,95,111 used the non-negative matrix factorization (NMF). NMF is
used in a wide range of scientific fields like Astronomy, Image analysis, and gene
expression112 and it was also applied to detect factors coming from the mutational
data. The methodology consists of a bootstrapped resampling set, a factorization
step, and finally a clustering of the resulting solutions to generate a set of robust
NMF factors; the clustering quality score (typically, the “silhouette index”) can be
used to determine the optimal number of signatures. In some implementations, a
separate fitting step is applied to determine the exposures of the resultingmutation
signatures to each sample (see figure 1.5 ).
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Nature 2013

SupekCell 2017

507 pan-cancer WGS and
~6,000 pan-cancer WES
~21 SBS signatures

Degasperi
Science 2022
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NatureGenetics 2018
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Figure 1.4: A timeline of the major advancements in mutational signatures, the
number of samples used in each study and the number of signatures and type.

Simplified, the original mutational spectra (M ), which contains the tallied muta-
tion classes for each sample (genome) in a set of samples, is decomposed into 2
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matrices that whenmultiplied, recover the original mutational spectra with an er-
ror component111 . The decomposed matrices represent, for each mutagenic pro-
cess (hereafter referred as signature) the feature (trinucleotide) weights or muta-
tion spectrum (S) and the sample exposure or signature activity (E). Themutation
profiles capture the sequence predisposition of a givenmutational signature, help-
ing in the identification of its source (see 1.1.1 ). The exposure matrix works as an
estimate of the influence or weight of each mutagenic process in a particular sam-
ple, in a way, representing how much a particular sample has been ‘exposed’ to a
particular mutagen (see figure 1.5 ). A multinomial resampling of mutation counts
in every row in the original matrix is also performed. This incorporates a repre-
sentation of the uncertainty present in the mutation spectra of samples with low
mutation counts for which there is less numerical evidence for a specific profile.

The NMF algorithm used in the factorization step does require a priori knowledge
of the number of factors (which will eventually represent the mutational signa-
tures), but this information is normally not known for a generic somatic sequenc-
ing analysis. In order to infer this parameter, the (i) stability and (ii) the error
minimization of a solution in multiple repeated factorizations is used to deter-
mine the optimal number of clusters (k), (see figure 1.5) . The minimization of
the error component is normally performed by establishing a threshold (in the
number of factors) where the error component (residual) is no longer notably re-
duced(manual inspection of an ‘elbow’ in the curve). The maximization of the
stability is measured using the cosine similarity of the clusters obtained after the
clustering of themultiple solutions obtained in each iteration. At higher silhouette
index (lower distance between the clusters) the resulting solutions are identified re-
currently and with similar profiles in multiple NMF runs, suggesting that they are
robustly found in the input sample. Because each cluster of solutions represents a
mutational signature the cosine similarity can be used in downstream analysis to
measure the quality of each derived factor111,113 .

Once the spectra of the mutation signatures are identified, the subsequent step
consists in the estimation (or assignment) of exposures of these signatures for every
sample. A commonmethodused in the standard tools113 consists in fitting, through
a regression model, to each sample based on the extracted NMF profiles and the
original mutational spectrum of the sample. This is normally performed using a
Non-negative least squares (nnls) optimization.

Since the initial description of this methodology90,111 multiple alternatives have
been published modifying multiple individual steps of the process. In brief, ap-
proaches using Bayesian NMF114 , Hidden Markov models101 independent prob-
abilistic modeling115 , tensor tucker decomposition99 topic models116 or indepen-
dent component analysis and unsuperviser neural networks (a variational autoen-
coder)117 are some examples.
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Figure 1.5: A diagram of the main steps in the mutation signature extraction.
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1.2.1.3 Caveats of mutational signatures

Although nowadaysmutational signature extraction is used pervasively in the field
of cancer genomics and in the study of somatic non-cancerous mutagenesis, sev-
eral variations and caveats have been identified and are worth mentioning to aid
interpretation of these factors93 .

The most common source of mutational signatures mis-quantification is called
mutational bleeding. The similarity between some signature profiles (sometimes
overlapping by many trinucleotide contexts) can generate inaccuracies in deter-
mining which signature better explains the observed profile of a sample93,118,119 .
This problem is particularly important in the hypermutated tumor samples, where
a small error in the fitting can lead to a significant accumulation of the wrong mu-
tational signature93 . The use of sparse fitting solutions, like lasso regression, can
help in diminishing the negative effects of this caveat120 during the step of es-
timating exposures. Another popular solution is to only fit relevant mutational
signatures for the tissue of interest, which ensures that only biologically pertinent
signatures are allowed75,93 .

Another common handicap in the extraction ofmutational signatures is the bias in
quantification between more and less sparse signatures93,119 . Signature 1, 2 and 17
for instance, have sparse profiles making them easy to identify by a mathematical
model. On the other hand, signatures like 3, 5 and 8 have more ‘flat’ (less sparse)
profiles that impede their reproducible extraction across even the repeated NMF
runs for the same datasets93 . It’s important to note, that these ‘flatter’ (less sparse)
signatures are normally less strongly associated with a known etiology, potentially
due to the technical caveats in inferring the signatures.

Mutational processes with a highly concentrated localization pattern across the
genome are also problematic for the correct extraction of its signature. An ex-
ample of this is the activation-induced deaminase (AID) related mutagenesis in
B-cells (see section 1.4.2.1 ) where the mutation spectra is defined mostly around
the targeted immunoglobulin sites and, thus, when relying on the whole genome,
the signature might get ‘diluted’ within the other less sparse mutational processes.
A way to address such cases is normally by separating the targeted loci from the
rest of the genome and perform inference97,119,121 .

Finally, an important caveat of the mutational signature extraction method is the
detectionpower in small sample sets. An example of this problemare rare chemother-
apeutic treatments, for which not enough tumor samples are normally sequenced
in the current datasets. When treated globally96 or in a pan-cancer setting, these
processes are sometimes less evident due to the reduced number of samples that
carry them93 . In order to solve this problem, a local extraction sacrifices the sta-
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bility of a larger matrix to obtain a higher representation of the rarer processes.
For this approach, samples are normally classified according to a meaningful bi-
ological feature, i.e. tissue of origin, and signatures are extracted independently
of each set, to be later combined. This mode of action significantly increases the
power to detect a larger and more diverse set of signatures some of which may
be rare23 , but may also split unique biological mutagenic processes into multiple
signatures and increase the noise derived from the factorization of smaller sample
sets. A related technique of “hierarchical extraction” repeats NMF iteratively while
downweighting or removing samples that were already adequately described by
existing signatures113 .

1.2.1.4 Known etiologies of mutational signatures

The discovery and characterization of the mutational signature etiologies is an
important field of research that helps elucidate the underlying molecular mech-
anisms and to predict and control the mutagenic processes, as well as its roles in
cancer risk and evolution.

For some of the first mutational processes described90 the mutation profiles ob-
tained provided an indication to which element was responsible for the mutage-
nesis. Extensive research prior to the large genomic datasets (see 1.1.1 ) already
highlighted sequence preferences for some of the most mutagenic agents in na-
ture, i.e. UV damage focused at YY sites. A second line of evidence in the discovery
of causality in a signature is the statistical association between the presence, or the
rate, of the mutations, and the clinical metadata of the samples with a high ‘expo-
sure’ to that signature. A clear example of this is the detection of the signature 31
which is only present in tumors of patients with122,123 prior platinum drug treat-
ment.

A more definitive line of evidence is to recapitulate the accumulation of a given
signature in an experimental setting. Amutational accumulation assay can be used
in combination with either an administration of a mutagen or the disruption of a
relevant DNA repair gene. The resulting mutations are measured and compared
with a signature catalog and linked to their experimental condition.

One remarkable example of this type of associations was the confirmation of the
mutagenic mechanism of signature 2 and 13 (associated to APOBEC mutagenesis,
see 1.4.1.2 ) where the gene encoding for the human protein was introduced in the
yeast genome and selected via a mutation reporter124 . The sequences of the se-
lected yeast clones revealed a defined trinucleotide pattern for both APOBEC3A
and APOBEC3B proteins which are considered to be the main mutagens in hu-
man cancers. Another example is the characterization of signature 14 which as-
sociates to a co-deficiency in the MMR pathway and the correction mechanism
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of POLE125,126 in a genomic analysis. POLE deficient cell lines were edited us-
ing CRISPR to generate MMR deficient clones, yielding a significant shift in their
mutational profile to confirm the interaction of the two processes generating the
signature125,126 .

The experimental validation of a signature can also be done more systematically
by applying a set of genetic alteration or chemical exposures to the same biolog-
ical system81,103,127–129 . These types of validations were introduced first in worms
( C. elegans ) by sequencing the descendants of a self-fertilized multi-generation
line128,129 . These studies yielded experimental evidence for mutational patterns
arising from the MMR deficiencies128 such as signature 6, 15, 21 among others.
In similar experiments, authors knocked out key repair genes and administered
exogenous mutagenic chemicals to the worms129 . The resulting mutations rep-
resented the interaction of both the damage caused by the chemical particularly
present in the KO of the gene responsible for its repair129 .

Further large scale experiments have also been conducted in human cell lines.
In these examples, cell lines are either edited with specific KO81,127,130,131 in a set
of DNA repair genes or alternatively grown in a plate with a given administered
genotoxin103,132,133 . After a given time accumulating mutations, these cultures
are seeded to extract single cell clones which are expanded to a sufficient DNA
amount to be sequenced. The sequences of the daughter cells are then compared
to the progenitor population, yielding the mutations accumulated during the as-
say. Although these systematic experiments yield valuable one-to-one associa-
tions of a given mutational pattern with its causal agent, they are also costly and
time-consuming. The published datasets at the time of writing are expected to
grow considerably in the coming years with the development of better tools for
the gene editing of human cells, the better detection of somatic mutations, and
automation in the cell culture techniques.

The experimental validation represents the empirical approach to the character-
ization of a mutational signature, however, it does have limitations. If used in a
model organism, the genomic and molecular characteristics of the chosen model
organism might modify the pattern at which specific trinucleotides are mutated.
Human cell lines have also reported artefacts, such as the increased mutation rate
in C>A mutations caused by the high oxygen percentage of the culture condi-
tions127,134 similar to the signatures 18 and 36.

Another methodology that can be used in order to elucidate the molecular etiol-
ogy of a mutational signature is to detect and characterize causal germline associ-
ations with their rate. A classical example is the association of a polymorphic loci
linked to the fusion of the APOBEC3B and APOBEC3A transcripts which yields a
substantial increase in the signature 2 burden135,136 , expanded in section 1.4.1.2 .
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In some cases, mutations do not directly occur by the external environmental
agent acting upon DNA, but from an intermediate chemical species generated
by the mutagenic agent. This has been termed secondary exposure93 and explains
how two distinct etiologies might converge onto the same mutation signature.
An exemplary case is Signature 17 which originally was attributed to the expo-
sure to gastric acid137,138 in esophagus cancers. Further studies also identified the
chemotherapeutic agent, fluorouracil (5-FU) as a potential cause of these muta-
tions with exactly the same signature139 . Although more research is needed, both
mechanisms seem to be compatible with an intermediate enrichment of the ox-
idized form of the free guanine nucleoside (8-oxo-dGTP) which is then wrongly
incorporated into the nascent DNAmolecule, pairing with T or A instead of C and
resulting in a mismatch93 .

Another complex etiology is time. Two mutational signatures in particular, signa-
ture 1 and 5, have a positive correlation with the age of the cancer patient91 . These
two signatures seem to also be pervasive in every tissue, including non-cancerous
samples66,77 and even other mammals46 . For signature 1, the molecular mecha-
nism that generates the mutation is likely deamination of the methylated cyto-
sine12,13 generating a thymine that creates a mismatch that eventually gets fixed
through replication. Although the deamination of the cytosine should occur at a
constant rate, themutation fixation step depends on the division of the cell. There-
fore, signature 1 is associated with age at different rates, with high dividing tissues,
such as colon stem cells, exhibiting a faster accumulation compared to other tis-
sues that divide more slowly, such as kidney or breast epithelium77,140 . Signature
5, on the other hand, seems to be mechanistically more elusive. Its characteristic
‘flat’ trinucleotide profile represents a challenge in the determination of its source.
Reports have suggested a variety of potential mechanisms127,141,142 with a likely in-
volvement of error-prone DNA polymerases via the REV1 scaffolding protein143 .
Thus, despite the numerical correlation with age, the lack of a plausible molecu-
lar mechanism represents a challenge in determining the true etiology of the very
widespread and abundant mutational signature 5.

1.2.2 Clinical relevance of the identificationofmutational pro-
cesses

The use of (exclusively) genomic factors for the approval of a cancer treatment was
first granted by the US Food and Drug Administration (FDA) in 2017 for the use
of pembrolizumab in MSI-Hg tumors and later in 2020 in high tumor mutational
burden tumors (TMB-H)144,145 . resulting from the deficiency inMMR and evident

gResulting from the deficiency in the MMR pathway, see section 1.3.1.1
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in the microsatellite instability (MSI) phenotype . The high mutagenic potential
of POLE and POLDmutants can be used in order to select immunotherapies that
rely on the increased generation of cancerous epitopes146 .

Like the TMB of a sample, which broadly captures all mutation processes in a can-
cer, mutational signatures have the potential to provide a finer-grained classifica-
tion of cancer patients with the potential to improve the classification of patients
and provide more targeted treatments11,147 .

A direct example of this approach is the use ofmutational signatures to predict, sta-
tistically, if a given tumor sample is Homologous recombination (HR) deficiency
and thus can benefit from PARP inhibitor treatment93,148 . A more recent report
has also used the information of mutational signatures extracted from cell line
panels to systematically associate them with their response to an array of drugs
highlighting hundreds of novel associations149 .

Another interesting use of the genomic technologies for the detection and treat-
ment of the cancer is the sequencing of circulating tumor DNA (ctDNA), that es-
capes from the tumor mass and that still carries information about the source tis-
sue33–39 (see also section 1.1.2.1 ). The use of somatic mutations in this ctDNA set-
ting is still in its infancy38 but prior work on the tissue of origin classification based
on these and other features150,151 has already provided conceptual frameworks for
when more data sets become available.

1.3 Somatic modulators of mutation rate

In mutation accumulation experiments6 in cell culture, the mutation rate is nor-
mally determined as the number of mutations over the covered genome and time
(expressed in days or in generations). Other experimental settings, like trio (mother-
father-offspring) sequencing, can also be used to obtain similar information as they
yield the number and spectra of mutations accumulated in one generation.

In intact somatic tissues however, the determination of the mutation rate is more
problematic as there is no clear factor which can determine when or for how long
amutational process has been activeh. For tumor samples and healthy somatic tis-
sues, the relative mutation frequency is normally used as a proxy for the mutation
rate, assuming that various processes were active for similar fractions of the time
elapsed.

hThe main exceptions to this limitation of somatic mutations are the mutational signatures linked
with age, such as signature 1 and 5
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1.3.1 Global modulators of mutation rate

In human somatic tissues, the mutation rate varies within multiple orders of mag-
nitude across tissues and individuals, whichhighlights the importance of biological
modulators of mutation rate. These are particularly important in the accumula-
tion of spontaneous replication errors, but also in the repair of DNA lesions caused
by exogenous and endogenous factors.

1.3.1.1 The mismatch repair pathway and its role in the control of muta-
tion rate

DNAmismatch repair (MMR) is one of the key regulators ofmutation rate in awide
range of organisms6 . Its main function is to detect and repair replication errors,
both DNAmismatches and small DNA loops (replication DNA slippage products).
However, it also corrects failed recombination events and can trigger DNAdamage
response signals eventually triggering apoptosis152–154. The MMR pathway can be
divided into twomain components,MutS andMutL. TheMutS component detects
themismatches, while theMutL component is necessary for actual repair by stim-
ulating excision. In humans, mismatches and small loops are detected by MutSα,
a heterodimer formed byMSH2 andMSH6. Loops of a wider range of sizes, how-
ever, are detected by the MutSβ , an alternative heterodimer formed by MSH2
and MSH3. Thus, it is important to note that depletion of MSH3 or MSH6 would
then have different genomic effects downstream. Indeed, in MSH3 deficient tu-
mors more indels accumulate but not SNVs, compared to MSH6 deficient sam-
ples where more SNVs are detected127,155 . The second component (MutL) is also
divided into 3 different heterodimers, MutLα (MLH1 and PMS2) , MutLβ (MLH1
and PMS1) and MutLγ (MLH1 and MLH3). At the time of writing, only MutLα is
known to have a significant effect in the control of mutations. Finally other ex-
ternal components participate in the MMR pathway like EXO1156 an exonuclease
performing the excision of the mismatched strand; and PCNA, a DNA replication
protein which was reported to modulate different steps in the MMR pathway157,158

At the germline level, the deficiency ofMMRcauses several disorders that are char-
acterized by an increase in overallmutation rate and an increase in cancer risk, par-
ticularly in colon but also other cancer types such as uterus (endometrial), stomach
or ovarian. Lynch syndrome or hereditary non-polyposis colorectal cancer syn-
drome (HNPCC) is the most common and studied MMR deficiency documented
in humans159,160 . The deficiency affects mostly the core genes of the MMR path-
way ([ITMSH2] ,MLH1 , and less commonlyMSH6 and PMS2 ) but a considerable
percentage of cases though remain orphan suggesting that other variants still need
to be characterized161–165 . Interestingly, the inactivating variants are heterozygous,
requiring a somatic loss of heterozygosity (LOH) event166 to increase themutation
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rate and increase cancer risk. This second-hit inactivation can take different forms,
but the most common seem to be somatic mutations167 and promoter hyperme-
thylation of MLH1168 . Interestingly, these secondary alterations are also causal of
the deficiency of MMR at the somatic level (see below ). Another type of germline
inherited MMR deficiency is constitutional MMR deficiency (CMMRD), which is
responsible for an increased risk of early onset brain and blood cancers88 . These
patients have homozygous inactivating variants in the core MMR genes155 thus
causing an increased mutation rate earlier in life. Contrary to Lynch syndrome,
however, the more commonly associated genes are PMS2 and MSH688 . Some
of these patients also generate a particular hypermutator phenotype which arises
from the combination ofMMR loss and the somatic deficiency of theDNA replica-
tive polymerases (either Polϵ andPolδ)88,169 . In tumors, the somatic inactivation of
MMR causes a characteristic mutational phenotype known as microsatellite insta-
bility (MSI) because of the accumulation of indel mutations inMicro Satellite (MS)
loci due to replication DNA strand slippage. AlthoughMS are hotspots of mutage-
nesis within populations, in a typical somatic sample they remain relatively stable
(although still withmutation rates higher than non repetitive DNA). IfMMR cedes,
the indels occurring at those sites cannot be repaired and the number of copies of
the repeat units in each MS becomes unstable. This characterization of the sam-
ples through computational analysis represents a powerful tool for the detection
of MSI cancers in research, but still represents a costly endeavor in the clinic as
the whole genome needs to be sequenced to reach significant accuracy. More re-
cent publications use machine learning to classify if a sample is MSI or not based
on mutational features like the type of mutations accumulated or the number of
indels (see 1.2 )170–172 . Deficiencies in the MMR pathway are characteristic in cer-
tain tissues like colon, stomach, uterus, and therapy resistant gliomas173 . However,
the detection of MSI-H samples in a pan-cancer model indicates that other tissues
might also contain a lower but significant percentage of MSI cases. A particularly
relevant finding regarding this tissue specificity is the enrichment of mutations at
certainMS loci depending on the tissue of interest172 . This finding fits well with the
observation that SNV mutation rate also correlates with tissues due to the differ-
ential regional activity of MMR in different tissues150,174,175 . In addition to indels at
MS sites, MSI samples also accumulate a substantial excess of SNVs. The study of
mutational signatures (see section 1.2 ) has revealed several that present a signifi-
cant associationwith the phenotype (signatures 6, 15, 21, 26 and 44; and 14 and 20 in
association with DNA polymerase deficiencies ). However, it is still not clear what
molecular characteristics generate the distinction between them. The most direct
evidence available comes from MMR deficiencies for specific components of the
pathway. Cancer genomes which are deficient in the MutSα component accumu-
late more mutations in the C>T side of the spectrum with a particular enrichment
at the CpG sites (similar to signature 1 and 6) while mutants in the MutLα have
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a more classical signature with also C>A and T>C mutations128,155,176 (the role of
MMR in CpGmutations is expanded in section 1.3.2.3 ). The analysis of MMRKOs
in human cell lines, however, seems to reproduce these findings partially, while
mutations in MSH6, MSH2 and MLH1 each generate a complete signature with
C>A, C>T and T>Cmutations (similar to signature 44), the PMS2 KO preferentially
accumulates T>C mutations127 . At the moment, more evidence is needed to con-
firm the distinctive mechanisms of the different signatures associated with MSI
and which technical conditions, such as the use of only whole genome sequences,
allow a better estimation of the mechanisms underlying various MMR-associated
mutational signatures.

1.3.1.2 Other germline alterations that modulate mutation rate

Germline deficiencies in the members of the Nucleotide excision repair (NER)
pathway can also yield a substantial increase in mutation rate and cancer inci-
dence177 . Patients with these deficiencies often suffer from Xeroderma pigmento-
sum (XP) and Cockayne syndrome (CS) which are characteristic for its increased
rate of skin cancer and neurologic abnormalities. Interestingly, deficiencies in the
transcription associated subpathway NER are more prone to generate neurode-
generation in CS while deficiencies in the genome-wide subpathway are more
likely to generate skin cancers177 . These tissue specificities might be attributed to
the role of NER as amain repair pathway responsible for exogenousmutagens like
Ultraviolet radiation (UV)129 . The study of XP deficient patients178 has also been
pivotal for the study of mutation accumulation in NER deficient conditions (see
section 1.3.2.2 ). More recent studies that aim to sequence healthy tissues (see 1.1.3 )
have also focused on patients with DNA repair deficiencies. In particular, patients
with MUTYH-Associated Polyposis (MAP), deficient in the MUTYH protein, part
of the Base excision repair (BER)75 and patients deficient in the DNA replicative
polymerases ( POLE and POLD1 ) responsible for proofreading-associated poly-
posis (PPAP)76,179,180 . Both these cases yield a significant increase in mutation rate
in healthy somatic cells that is comparable with human cancers. Other rare genetic
diseases are also caused by deficiencies in DNA repair proteins or replication en-
zymes and affect the rate of structural and complex mutations. As with SNV rate
associated genes, these deficiencies increase the genomic instability of the tissues
and increase the rate of carcinogenesis. Examples of such conditions include

1.3.1.3 Other Somatic factors that increase mutation rate

Similar to the germline associatedhypermutators, somatically-altered globalmod-
ifiers of mutation rate also involve the core DNA repair pathways and the replica-
tive DNA polymerases. The threemore prevalent categories of hypermutators are
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the MSI (see section 1.3.1.1 ) cancers which have lost proficiency of MMR, the Polϵ
proofreading domain deficient tumors, and the third group consists in a combi-
nation of these two deficiencies.173 . In addition, extreme exposures to exogenous
mutagens can result in very high mutation rates even with apparently proficient
DNA repair. In tumor samples, the Pol ϵ deficient patients contain a clear enrich-
ment for signature 10 (divided in 10a and 10b for POLE and 10c and 10d for POLD1
)96 . Signature 10a, the most abundant of the four, is characterized by C>A muta-
tions at TCT trinucleotides. Signature 10b is characterized by numerous C>Tmu-
tations specifically at the TCG context. As withMMR, some reports have suggested
an association with the DNAmethylation status of the nucleotides181,182 that will be
expanded in the section 1.3.2.3 . POLD1 deficient tumors represent a smaller per-
centage of the cancers and are thus less prevalent in the global mutation signature
extractions. These signatures (10c and 10d) are mostly enriched in C>Amutations,
primarily in the TCW (where W is A or T) context96 . The close relationship be-
tween MMR activity and replication makes the interaction of POLE mutants and
MSI common and synergistic. In samples with germline MMR deficiency, in par-
ticular (CMMRD), some samples additionally acquire a somatic deficiency in the
exonuclease domain of the POLE gene which further increases the mutation rate
and increases its risk of cancer88 . Some reports using conditional expression of
MMR in human POLE deficient cell lines have also suggested that a fully functional
MMR can compensate for the depletion of DNA polymerase proofreading abil-
ity125,128,155 suggesting that even microsatellite-stable but hypermutating tumors
may have some degree of MMR deficiency . However, more evidence is needed
to assess this hypothesis directly in human tissues. Other, more rare, endogenous
modulators of mutation rate are deficiencies in the BER pathway such asMUTYH
and NTHL1mutants. Patients deficient in these genes have also been observed to
have a higher risk of colorectal tumors183,184 and are generally characterized with
a C>A (signature 36) and a C>T (signature 30) predominant mutational signatures.
Modulation of the mutation rate can also occur, not just by the lack of repair, but
also through an excess of endogenous mutagenesis. DNA and RNA base editors
like the APOBEC family of cytidine deaminases (see 1.4.1.1 ) has been characterized
as a prevalent and common DNA mutator in multiple cancer types90,95,185 . The
AID protein, a member of this family, is also a known hypermutator which acts
somatically within the physiological mutagenesis occurring during maturation of
B-cells (see section 1.4.2.1 ). These mutations are characterized by a C>T spectrum
inTCWcontexts for APOBEC (signatures 2 and 3)124 andWRCYN contexts for AID
(signature 85)186 . Although the global mutation rate of these processes seems to
be lower than POLE or MMR deficiencies, their localized nature predicts a strong
functional impact.
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Figure 1.6: Schematic of the scale and relative enrichment of several genomic fea-
ture that can modulate the mutation rate locally. Adapted from187

1.3.2 Regional determinants of mutation rate

The variation of mutation rates is not only present between samples but has been
also detected across the genome175,187,188 . Thus, the genomic characteristics of a
given genomic locus also play a role as a modulator of its mutation rate. These
regional modulators can be divided into four main categories depending on their
size and mechanism, (i) large megabase-sized domains, like replication time do-
mains; (ii) short functional elements, like the binding sites of CTCF and cohesin;
(iii) epigenetically modified loci, like the hypomethylation of the cytosine at CpG
islands

1.3.2.1 Regional modulators of mutation rate at larger scales

The mutation rate variability at large megabase-sized domains was first explored
after the first cancer genomes were sequenced. Mutations accumulated prefer-
entially in heterochromatic regions (measured by levels of H3K9me3) while de-
pleted in open and active chromatin189 . Mutation rate also showed a correlation
with other global genomic features like replication time, GC content and germline
mutation rates190,191 .
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Initial reports suggested that one plausible mechanismwas through the combined
effect of multiple open chromatini regions174,192,193 where repair is normally more
efficient. While these factors may be relevant at local scales, , replication time was
suggested as themore probable causal factor in the determination of thismutation
rate variability at the megabase-scale. The genomic resolution at which replica-
tion time fluctuates matches closely with the variation in mutation rates and the
robust assessment of the correlation with RT, even when controlling for the afore-
mentioned confounders, highlighted it as a more predictive factor97,175,191,194 . The
structure of the genome and the predictability of replication time from other epi-
genetic factors, like DHS195 complicates the characterization of the proximal cause
molecular mechanism of mutation rate variation.

Later reports, however, showed that the association between mutation rate and
replication timewas caused through the differential activity ofMMRwhich prefer-
entially targets the early-replicating section of the genome, thus reducing themu-
tation rates in these regions175 . Samples withMMRdeficiency (MSI) showed a flat-
ter regional density profile and a reduced variability, directly linking the activity of
this pathway to the phenotype. This preference ofMMR towards early-replicating
sections of the genome is conserved across multiple model organisms6,196 ; the
molecular mechanism underlying this process is, however, less understood. A po-
tential explanation is the recruitment of MMR complexes directly toward euchro-
matic regions during S-phase through the binding of theH3K36me3 histonemark
by theMSH6 protein197 . Othermechanisms like the depletion of a required repair
factor in the late stage of the replication or increased use of TLS polymerases or
reduced accessibilty of heterchromatin to repair factors, or, more parsimoniously,
the reduced time available for repair prior to mitosis have also been suggested as
causes of increased mutation rates in late replicating domains187 .

Thismodel, however, does not explain how tissues associated with exogenousmu-
tagens that generate bulky adducts, like UV and tobacco smoking in skin and lung
cancers, also presents a strong mutation rate variance that also correlates strongly
with replication time. Reports have also proposed that global activity of NER
(the NER branch not associated with transcription), also shows a significant tar-
geting for the early genomic regions178 and when switched off, mutation densities
tend to become flatter, thus different DNA repair pathways are enriched in early-
replicating DNA.

Another regional modulator of mutation rate is transcription. Transcription Cou-
pled Repair (TCR) is a branch of NER that gets coupled with the transcriptional
activity of the RNA polymerase and quickly clears the lesions along the template
strand that block the elongation of the RNA polymerase, disrupting transcription

iOpen chromatin was defined as regions which are generally accessible to DNA repair genes and was
measured with techniques such as DHS, ATAC-seq and ChIP-seq of the H3K4me3 mark
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and increasing the rate of DSBs . This strand preference generates a strong im-
balance in howmanymutations occur in each strand and can be detected through
measuring the mutational strand bias. Higher values of transcriptional strand bias
are observed formultiple mutational processes where NER participates like signa-
ture 7 (UV damage) and 4 (tobacco smoking)96,98 .

More generally though, highly transcribed genes are generally less mutated on ei-
ther strand198,199 but it is currently unclear the overall contribution of the several
possible mechanisms. Transcription appears heavily confounded with multiple
other mutation modulators such as replication. For instance, while transcription
and replication timing are independent processes, more highly expressed genes
are located in early replicating regions200 . Another potential mechanism is the
participation of the H3K36me3, an epigenetic mark that recruits MMR and is en-
riched within the gene body of genes (see section 1.3.2.4 )97,197 .

1.3.2.2 Local modulators of mutation rate

Another type of regional modulation ofmutation rate is the binding of proteins to
their sequence-determined target loci. Although the mutations in a single site of
an individual tumor sample are still too sparse, an analysis pooling across sites and
across samples can reveal a strong change in the mutation rate. In simple terms„
the probability of a mutation occurring in that binding site is higher.

One of the most studied of these phenomena is the high accumulation of muta-
tions at CCCTC-binding factor (CTCF) sites. Reports show a sharp peak in muta-
tion rate when pooling various CTCF loci, and centering around its binding do-
main201–204 . This pattern is only clear in the functional sites which are defined as
bothCTCF and cohesin bound203 . TheCTCF and cohesin protein alone, however,
cannot be the effector mechanism as their role in the loop extrusion mechanisms
is required for the chromosome folding of the nucleus205 , while the mutation en-
richment shows a high tissue specificity and/or mutational signature specificity.
It seems to be more common in certain cancer types like colon, stomach, liver
cancer201,202 and melanoma203 but less obvious or marginal in others.

The suggestedmechanism is based on regional impairment ofMMR for colon can-
cers201 and NER for Skin cancers203 . The binding of CTCF and cohesin impedes
the accessibility of DNA repair proteins and thus mutations accumulated. This
model fits with the mutational signatures that occur at these sites, with mostly
C>T mutations in the Melanoma, associated with signature 7, samples and T>G
mutations in the colon and stomach, associated with signature 17. Other possible
mechanisms that have also been highlighted in recent reports is the differential
damage which can occur at the CTCF sites, particularly for cyclobutane pyrimi-
dine dimer (CPD) UV lesions206 .
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Similarly to the CTCF loci, a sharp enrichment at Transcription Factor Binding
Site (TFBS) was also detected in melanomas207,208 and to a lesser extent in other
cancer types like ovarian andLung adenocarcinoma208 . Within these cancer types,
tumor genome samples with a high proportion of signature 7 and signature 4
showed a higher enrichment at these sites, suggesting a transcriptionally NER im-
pairment mechanism. The required binding of the TF, the lack of enrichment in
XPC -/- samples seem to support this hypothesis208 . Other reports also suggest
an enrichment of the UV damage formation, mainly CPD lesions, in a TTCCG
motif which is highly conserved in the binding sites ETS family of TFs209,210 .
This enrichment, however, seems uncorrelated with themutation rate observed in
Melanoma209 . The heterogeneity of the TFBS (including CTCF) sequences com-
plicates elucidating the associated molecular mechanisms211 .

Another interesting localmodulator ofmutation rates are chromatin loops or loop
anchor point (LAP) which can be defined as two independent loci that interact
within each other in trans. These loci are normally detected throughhigh-throughput
conformation capture (Hi-C) experiments212,213 and are associated to the activity
of CTCF sites and the loop extrusion mechanism. However, other sources of loop
anchors include other protein insulators like YY1 or the activation of transcription
through the interaction of enhancers and promoters214 . Interestingly, both Co-
hesin bound CTCF loci and TFs normally occur at regulation clusters with high
interactivity scores and which may correlate with LAPs202,215 .

Contrary to the SNV hypermutation seen in the CTCF motif, the structural vari-
ant (rearrangement) mutation rates are instead increased at LAPs216,217 potentially
through the increased topological stress that the loop extrusion mechanism gen-
erates at these sites218 . However, SNV ratesmay in fact be decreased at the regions.
The difference in resolution, one at the motif level (11bp for CTCF) and the other
spanning multiple kilobases (LAP), suggests that a distinct mechanism might be
responsible for these patterns. The activity of AID (see 1.4.2.1 ) and in particu-
lar the off-target cancer related mutagenesis has also been linked to these trans-
interacting loci where mutagenesis is targeted to both enhancer and promoter in-
teracting loci219 which mimic the on-target immunoglobulin sites. Overall, these
chromatin loop associated mutation patterns are still underexplored mechanisti-
cally and will require further research to elucidate specific mechanisms.

1.3.2.3 Role of DNAmethylation as a modulator of mutation rate

The methylation of the cytosine was first observed in the DNA of several animals
and plants in 1950220,221. In humans, methylated cytosines occur normally in the
CpG dinucleotide although in some tissues like the brain, alternatively the CpH
dinucleotides can also bemethylated222 (whereH is A, C or T) . The CpG sequences
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are found in the genome at a lower frequency compared to other dinucleotides,
but are locally enriched near transcription start sites. These local accumulations of
CpG sites are known as CpG islands and their main role is gene regulation; when
the CpG island is methylated, transcription factors can usually bind less well to the
promoter, and the gene is normally switched off. This strong silencing capacity
makes this system commonly employed by mammals to regulate transcriptional
programs related to development223–225 .

Although in adult somatic tissues themajority of theCpG sites aremethylated, cer-
tain large sections of the genome appear under constant hypomethylation during
aging and cancer220,226,227 . The current mechanistic hypothesis226 is that while
active and regulatory sites are epigenetically maintained with active methylation,
late replicating and peripherally-located (nuclear lamina adjacent) regions seem to
passively lose their methylation status over many cell divisions; these are named
partially-methylated domains. Of note, this does not imply active removal: the
lack ofmethylationmaintenance byDNMT1passively leads to a depletion ofmethy-
lation through replication as the newly synthesized DNA strand is not correctly
methylated228,229 .

The first observations that both animal and plant genomes were relatively AT rich
and particularly depleted in the CpG dinucleotide were already indicative of the
possibility that the 5-Methylcytosine (5mC) may be more mutagenic than the un-
modified cytosine, and thus rapidly lost in evolution. Later experimental evi-
dence from hotspotmutation sites in reporter genes E. coli confirmed this hypoth-
esis12,220,230,231 . The methylated cytosine is 15-fold232 more likely to deaminate
directly to thymine, causing a T-G mismatch (see figure 1.3.2.3 ) .

The DNA repair enzymes responsible for the correction of these methylation re-
latedmismatches areMBD4 and TDG, both glycosylases andmembers of the BER
pathway233,234 . Both enzymes, when deficient, also caused an increase in C>Tmu-
tations and an increase in colon cancer risk in mice234,235 .

While the transition from Cytosine to 5mC seems well understood and represents
a straightforward enzymatic reaction through DNA methyltransferases such as
DNMT1, DNMT3A or DNMT3B, the mechanism performing the reverse reaction
is less obvious. The potential mechanisms are classified into (i) passive through the
lack of maintenance (see above), and active, which is more targeted to specific sites
and requires the direct involvement of enzymatic activity224 . A mechanism of ac-
tion seems to be through the activity of the TET enzymes, which oxydate the 5mC
base to 5-hydroxymethylcytosine (5-hmC)236 for a posterior repair through TDG
. Recent reports also highlight the activity of the AID protein (see section 1.4.1.2
) which is required for the removal of DNA methylation during mouse develop-
ment224,237 and iPS reprogramming224,238,239 . Considered together, this evidence
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suggests that the DNA repair machinery might be crucial also for the unmethy-
lated genes. However, it remains unclear whether the involvement of base modi-
fiers, like AID or TET genes, and DNA repair proteins, like TDG, leave a relevant
mutational footprint in the somatic tissues where they participate.

In the more recent analysis of tumor genomes, signature 1 represents this process,
with a sparse profile consisting of nearly exclusively NCG>T mutations (see sec-
tion 1.2 )90,91. Apart from the known role of BER enzymes, MMR has also been
proposed to have a significant role in the repair of the T-G mismatches gener-
ated at methylated sites. The mutations in signature 1 have a strong correlation
with replication time100,182,240 being relatively more abundant in late replicating
regionsj. MSI tumor samples, deficient in MMR, lose this replication time gradi-
ent which represents direct evidence of the involvement ofMMR (in particular the
MutS α branch) in the detection or repair of the intermediate mismatches175,176,181 .
In experiments in worms, where there is no CpGmethylation, themain difference
in themutational signature of MSI samples in humans was also the lack of NCG>T
mutations128 .

Apart from signature 1, othermutational signatures withmutagenic preference for
anyNCGcontextwill likely bemodulated by themethylation status of its substrate.
A clear example seems to be signature 10, caused by the deficiency in the replica-
tive DNA polymerase ϵ181,182 . For this signature, the mechanism seems to rely on
the incorrect incorporation of an adenine opposite to the 5mC by the defective
polymerase, generating a 5mC : Amismatch resulting in a C>Tmutation232,241,242 .

Another example of this is the formation of UV di-pyrimidine dimers (CPD). In
early studies of skin cancer cells, the mutation rate of CpG sites in sun-exposed
cells was reported to increase significantly upon methylation243 . The proposed
mechanism for this observation is still debated and it is not clear whether more
lesions are formed in methylated DNA or if the lesions deaminate faster244,245 .

Finally, APOBEC and AIDmutagenesis are other examples of mutation rate mod-
ulation by DNAmethylation. AID seems to be less likely to mutate themethylated
cytosine but seems able tomutate its alkylated form, 5hmC, generating a U-Gmis-
match which is then repaired to a unmethylated CpG site (see figure 1.3.2.3 )236,241

. These reports suggest that AIDmight play a role in the global genome demethy-
lation which occurs in reprogrammed iPS cells and during embryogenesis237–239

. The evidence for other members of the APOBEC family seems less consistent,
with reports suggesting either a reduced241,246–248 or equal249,250 deamination ac-
tivity on cytosines upon their methylation.

In this thesis, I have focused on the mutation rate changes in under-methylated

jAlthough the mutations show no correlation in absolute values, the early replicating parts of the
genome contain the majority of CpGs.
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regions (UMRs) and aimed to systematically quantify how each mutational sig-
nature is influenced by this mechanism. We explore which are the downstream
effects of this local variability focusing on functional elements of the genome that
overlap with UMRs like promoters, enhancers, or LAPs (see chapter 5 ). We further
investigate gradients in DNA methylation along gene bodies and association with
mutation rates for various mutagenic processes.

1.3.2.4 Other epigenetic associations with mutation rate

In addition to DNA methylation, there are other mutation rate modulating fac-
tors at the epigenetic level. Histone marks are traditionally used to determine the
function of DNA regions, i.e. active transcription, enhancers, and others251 . Cur-
rently, large amounts of Chromatin Immunoprecipitation Sequencing (ChIP-seq)
data from the ROADMAP consortia and the ENCODE datasets are available252,253

making the integration and joint analysis of somaticmutations and epigenetic data
accessible.

The first studies in mutation rate variability across the genome yielded many as-
sociationswithmutation rates and histonemodifications188–190 (see section 1.3.2.1 ) .
In brief, SNV rates in cancer are positively correlatedwithH3K9me3 andH4K20me3,
both markers of heterochromatin189 while negatively correlated with all other ex-
amined marks. These associations are also consistent with the correlation of mu-
tation rates with a broader, domain scale feature, replication time175 which it-
self correlates with various histone modifications (e.g. the heterochromatin mark
H3K9me3 is highly enriched in later replicating DNA) .

One histone mark that is likely directly causal to mutation rates is H3K36 methy-
lation. In particular, the H3K36me3 accumulates a few hundreds base pairs after
the TSS and incrementally increases along the gene body254 . The interaction with
DNMT3B220,255 protein seems to highlight its function by regulating the deposi-
tion of methylated groups in CpG dinucleotides in the gene body224 .

Its described role inmutation rate ismainlymediated through the interactionwith
theMSH6, a core of MMR protein, during S-phase replication197 . Analysis of mu-
tation rate along those sites have reported a substantial reduction ofmutation rates
(up to 2-fold) even when controlling for alternative confounders97 . This effect in
mutation rates is likely caused by the ability of themark to recruitMMRas this pat-
tern disappears with MSI samples where the pathway is not functional97,256 . On a
related note, active transcriptionmay also increase oxidative damage to gene body
DNA, and the enrichment of H3K36me3 may also help counteract that effect256 .

The interaction of this mark with MMR and DNA methylation, together with the
unraveled evidence of the involvement of MMR in signature 1 converges to a
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model where an increased mutation rate in the gene bodies is molecularly coun-
teracted by the increased recruitment of DNA repair machinery to these sites.

1.3.3 Mutation rate of other mutation types

Signatures of other types of mutational events such as structural variants, includ-
ing Copy Number Alteration (CNA) and neutral SV, are generally less studied in
cancer genomics due to the difficulties in their identification from genome se-
quencing and challenges in categorizing. Numerically, their frequencies are lower
than SNVs reducing the power of most statistical genomic methods. However,
these variants hold a strong potential for functional impact, as they can disrupt
gene coding sequences and additionally act by changing gene dosage, or juxta-
posing genes to functional elements. Gene fusions, for instance, represent one of
the prototypical carcinogenic mechanisms of driver gene activation257 and CNA
driver mutations have also been observed in a large range of cancer types258–261.

New bioinformatics analysis and themore abundant datasets are establishing vari-
ant classifications for structural variants. This classification allowed, for instance,
the detection of Copy Number Variant (CNV) signatures showing evidence for
multiple biologically regulated processes106 . Currently, around 17 signatures107–110

have been identified, and they seem to associate to orthogonal molecular traits
such as the deficiency of HR through the inactivation of BRCA1 and BRCA2.

Along the genome, the association between local rates of structural variants and
epigenomic regions remains unexplored, some reports have shown evidence for
an enrichment of SVs in loop anchors216,218 and promoters262 . However, the im-
possibility to generate a sufficient baseline model for these types of mutations
makes it difficult to statistically validate these associations.

It remains to be explored, then, if the observed complex structural mutagenic pro-
cess will contain enough information to depict their molecular mechanisms and
how they interact with other somatic processes that generate SNVs (see chapter
1.4.1.3 ).

1.4 Mutation clusters

We define a mutation cluster, or a local hypermutation event, as a group of 2 or
moremutations which occur in close proximity to each other, suggesting that they
were generated by the same event. The discovery and study of mutation clusters
has been a small part of the discoveries from human tumor sequencing studies,
however, due to its close association to themechanism that generates them it holds
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a potential to provide substantial insights in the understanding of the molecular
mechanisms of mutagenesis.

1.4.1 APOBEC mutation clusters

Discovered in early sequencing efforts95 and showing a pervasive activity in mul-
tiple cancer types, APOBEC mutagenesis is one of the most studied processes in
tumor cancers. The full understanding of its biology however remains elusive. In
this section we review Its tight association with the generation of mutation clus-
ters and its overall genomic characteristics, trying to understand a bit better the
multiple factors that regulate its activity in human somatic tissues.

1.4.1.1 APOBEC/AID family of cytosine deaminases

The APOBEC/AID family of cytosine deaminases represent a diverse set of en-
zymes responsible for the deamination of a cytosine to a uracil (C-to-U edits in
RNA and DNA). They are the most studied proteins in mammals that are capable
of performing this reaction263 , relevant in a surprisingly diverse array of phys-
iological functions and some pathological ones. The Apolipoprotein B mRNA
Editing enzyme Catalytic subunit 1 ( APOBEC1, first named REPR from RNA Edit-
ing PRotein) was the first member to be characterized in rat and later in human
intestine cells264,265 . The protein is responsible for the editing of a single base
of the Apolipoprotein-B, APOB, transcript, which is physiologically expressed in
two isoforms depending on the tissue. The APOBEC1 editing introduces a C-to-U
change in a glutamine codon (CAA) to a stop codon (UAA) which reduces the trans-
lated protein size from 100 amino acids to 48263,266. Due to its sequence similarity,
most of the later-identified members of the family share the same nomenclature,
although they do not participate in any way in the edition of the APOBmRNA.

After the detection of APOBEC1, other members of the family sharing a strong se-
quence similarity, particularly in the enzymatic domain, were identified and clas-
sified in different human tissues . APOBEC2 was first identified in the skeletal and
cardiac muscle267 and the AID protein in B lymphocytes268 (see section 1.4.2.1 ) .
The subfamily of APOBEC3 was later genomically characterized as a recent am-
plified gene cluster in chromosome 22. Initially, no physiological function could
be assigned to these genes, and theywere hypothesized to act as pseudogenes269,270

.

In humans, the whole family is thus formed by AID and APOBEC2 which are
the most evolutionary ancient forms shared among vertebrates, APOBEC1 which
is shared among tetrapods and finally the APOBEC3 gene cluster which appear
more recently in placental mammals. Later in evolution the APOBEC3 gene has



34 CHAPTER 1. INTRODUCTION

expanded independently in several branches such as bats and primates263,271. All
members of the family share the ability to interact either with only DNA (special-
ists, comprised by AID and APOBEC2) or RNA and DNA (generalists, comprised
by A3A, A3G and A1)263,271.

The physiological function of the APOBEC3 subfamily is the defense against a
wide range of viruses via the restriction of viral genomes263 . In brief, they partic-
ipate in the defense against retrovirus like the human immunodeficiency virus
(HIV)271–275, against DNA viruses like the Herpes B virus (HBV) or the Human
Papillomavirus (HPV)263,276,277 and there is also some evidence about their role
in restricting single stranded RNA (ssRNA) virus like Rubella virus or Sars-Cov-
2263,278,279.

Notwithstanding all the functional diversity of this family, the focus of interest of
this thesis, the most relevant role of the APOBEC/AID family in humans it is its
capacity to edit or mutate DNA (and potentially RNA280) in human somatic cells
including tumors.

1.4.1.2 Evidence of APOBEC and cluster mutagenesis in human tumors

The first evidence of a TCN-trinucleotide context mutational signature was ob-
served in a systematic analysis targeted of human kinases in breast cancers and cell
lines281 although at the time no mechanism was proposed for this pattern. Seven
years later, the first systematic analysis of breast cancer whole genomes, a total of
21 tumors95,282, reported the factorization of the mutational spectra observed in
these sequences in 5 mutational patterns or signatures (see section 1.2 ). Even with
so few samples, two mutation patterns contained clearly defined and sparse pro-
files. The first was associated with the NCG dinucleotide (see section 1.3.2.3 ) and
the second was a mutation process enriched in the TCW (where W is A or T) both
generating C>T and C>G mutations. The same study95 , also reported numerous
similar mutations at TCW contexts located in close proximity and in DNA strand-
coordinated groups. These mutations matched the previously reported sequence
predisposition283 of the APOBEC family of cytosine deaminases. The groups of
mutations or mutation clusters were termed kataegis from the Greek word thun-
derstorm due to its similarity to the “rainfall plot” k and from the terminology used
in the first report284 on cluster mutations (see section 1.4.1.3 ).

In an independent study published at the same time, Roberts et al185 used a double
reporter mutant yeast strain to detect the presence of mutation clusters. Briefly,

kThe rainfall plot represents the mutations in a somatic tissue with the mutation index or the chro-
mosomal position in the X axis and the distance between mutation pairs in the Y index. Mutation
clusters appear as sharp vertical lines while unclustered mutations occur as a cloud in the upper part
of the plot
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two reporter genes CAN1 and URA3 were moved to adjacent positions within the
same chromosome. The observed mutation frequency was much larger than the
one expected if events in each gene occurred independently. Sequencing the genome
of the mutated clones revealed that while the genome-wide mutation rate was not
highly increased, a cluster of strand coordinatedmutations could be detected at the
reporter genes. In the same report, the authors also observedmutations that accu-
mulated in clusters in human tumor genomes. Following the observations from95

these accumulations contained coordinated Cmutations and were enriched in the
TCWcontext. Although none of these studies contained direct empirical evidence
of the role of the APOBEC family of deaminases, soon later, reports showed that
A3G incorporated in recombinant yeast it was possible to obtainmutation clusters
from the activity of the APOBEC protein285 .

The first reports from the analysis of gene expression in breast cancer cell lines
showed a positive correlation of the accumulation of APOBECmutations with the
expression of A3B286–288. Later studies in recombinant yeast285,289 showed that
based on the mutational signatures that could be extracted from A3A, A3B, A3C,
A3G and AID, only A3A and A3B generated mutations enriched in a TCW con-
text. Further extensions of the yeast experiments also focused on the extended
mutational predisposition of the mutational signature. In particular, they found a
significant change in the frequency of the first nucleotide of the pentanucleotide
mutation context. They showed that while human A3A expressed in yeast had
a particular preference for YTCAN contexts, the A3B enzyme preferred RTCAN
contexts124 . They also classified the available tumor samples according to this
ratio suggesting that most samples had a A3A-like profile. Other evidence in fa-
vor of the A3A protein as the mutagenic element came from association studies
of population polymorphisms135,136. A germline SNP (in linkage with the fusion
polymorphism of the A3A gene body with the 3’ UTR of the A3B gene135 ) was
associated with a strong enrichment in TCWmutations in their somatic tissues. It
is thus unlikely that the protein activity of A3B, which is deleted in these samples,
might be the cause of the tumor mutational signature.

A consensus model seems to be an A3A protein with high mutagenic potential
but sporadic expression and a A3B protein with less mutagenic potential but with
more constant and/or frequent expression. In a recent report using whole genome
sequences of a large panel of cancer cell lines134 mutations at YTCAN contexts ap-
peared sporadically in some clones while not in others. Overall, APOBEC muta-
tions were uncorrelated with expression of the A3A or A3B genes134 . The final
confirmation of the role of A3A in this mechanism comes from the sequencing
of KOs in human cells. While the A3A KO did not show TCW>K mutations or
clusters, they were still present in the A3B KO143.

As othermembers of the family, themutations generated either by A3A or A3B are



36 CHAPTER 1. INTRODUCTION

characterized by the deamination of the cytosine into uracil. This lesion is then
either excised and repaired by the BER pathway or bypassed during replication. If
directly replicated, the base pairing of uracil with an adenine in the complemen-
tary strand creates a C>T mutation. Due to the efficiency of the UNG1 glycosylase
another mutagenic mechanism results from when the uracil nucleobase gets ex-
cised. Because themutation occurs in a ssDNA stretch, the cell requires the use of a
Translesion synthesis polymerases (TLS) polymerase to bypass the error. As there
is no guide to copy from, the lesion is normally substituted by a random nucleo-
side. The TLS enzymes such as Pol ζ may incorporate preferentially an Adenine
(also generating a C>T mutation) but can also incorporate a Cytosine (generating
a C>G mutations)290–293. These mechanisms were first confirmed by using yeast
strains and APOBEC transgenes289 but have later been also confirmed partially in
human cancer cell lines134,143 (see figure 1.4.1.2 ).
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Figure 1.8: Summary of themolecular mechanism associated to the APOBECmu-
tational signatures (Signature 2 and 13). The initial deamination of a cytosine in
a ssDNA fragment by A3A or A3B is then either fixed during replication (left) or
excised byUNG1. The incorporation of either an adenine or a cytosine in the com-
plementary strand is mediated by either the TLS polymerases Pol ζ and δ or by
REV1.

1.4.1.3 Molecular mechanism of kataegis clusters

The first direct evidence for local hypermutation reported for higher organisms
comes from the cluster of mutations observed in Big Blue mice, a mutational re-
porter assay, where they estimated that up to 1% of the mutations observed in this
system were coming from chronocoordinatedl events. They termed these mu-
tations as mutation showers284,292 . With the detection of APOBEC mutagenesis in
human cancers95,185,288 and generally due to the accessibility of extensive datasets
from human tumors, and to some extent trio sequencing294 , the increased num-

lAt an equivalent time
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ber of available mutations was sufficient to significantly expand the knowledge in
mutation clusters.

The mutations associated with kataegis were quickly characterized for their ten-
dency to co-localize within rearrangement breakpoint sites95 . Due to the speci-
ficity of APOBEC to ssDNA as a substrate, the associationwith double-strand break
(DSB) repair seems highly plausible. The repair pathways that participate in it,
mainly HR, and related processes such as Break Induced Repair (BIR), generate
large sections of ssDNA which could potentially be attacked by the protein. Only
BIR has shown direct experimental evidence for the association with kataegis al-
though it was tested in a yeast system with MMS chemical treatment, therefore,
potentially different to to human APOBEC295.

In cancer, structural variants (SV) are often used as a proxy for activity of these
DSB repair pathways, which may occasionally result in erroneous rejoining and
thus a SV. Consequently, mutational signatures extracted from SV have shown
also significant correlations with kataegis104,107 . Other reports in experimental sys-
tems also show a high activity of A3B mutational signature within chromothrip-
sis, a large cluster of rearrangements that span multiple chromosomes in a single
genome296,297. However, data from multiple cancer types revealed that while A3
kataegis can co-occur with chromotripsis, it does not seem common, with only
9.3% of the samples with chromotripsis displaying significant kataegis activity298 .
Thus, although the link with SV and DSB repair is clear, further direct experimen-
tal evidence would be needed to confirm that the ssDNA intermediate in the DSB
repair is used as a substrate for APOBEC in human tumor cells.

In this section and throughout the literature, the term kataegis is mostly used as
synonymous for clustered APOBEC mutagenesis . However, it can also be used for
othermutational processes that generate large focal mutation clusters. One exam-
ple are the MMS chemical exposures described above. A further example of this
is Somatic Hypermutation (SHM), which will be expanded further in section 1.4.2
.

1.4.1.4 Genomic characteristics of somatic A3 mutations

Since its detection in human cancers, the study of A3 mutagenic properties has
been of interest for many researchers in the field. The large number of muta-
tions generated and their potential to drive tumor evolution makes the APOBEC
mutagenesis an interesting druggable pathway.

A limiting factor in determining the APOBEC mutational processes is the avail-
ability of its substrate, ssDNA263 . The interaction of other biochemical features
like its different efficiency at methylated sites are reviewed in section 1.3.2.3 .
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Early in the detection of APOBEC mutagenesis and their clustered pattern, the
twomain hypotheses for potential sources of ssDNA, apart from DSB repair, were
proposed: transcription and DNA replication. During transcription, while the
RNA polymerase copies fromthe template strand, the coding strand remains in
ssDNA form. Highly transcribed genes would then expose significant portions
of ssDNA that could in principle be mutated by APOBEC. Some evidence of this
exists for AID, closely related to APOBEC, who targets transcriptionally related ss-
DNA generated at the immunoglobulin loci292,299. This hypothesis was, however,
early discarded due to the lack of transcriptional strand bias in the analyzed tumor
genomes and recombinant yeast100,246,300–302.

Replication strand bias was, however, detected in early reports about the genomic
properties of APOBEC mutations246,301 and has been widely confirmed in other
more systematic studies99,100,104,240 . The replication strandbias suggests that APOBEC
deaminates preferentially cytosines in the lagging strand compared to the ones in
the leading strand. This effect generates a bias in the mutations observed in tu-
mors when adjusting the reference base with respect to the replication direction98

. This strong bias for the lagging strand suggested a hypothesis that APOBEC tar-
geted preferentially the ssDNA sections in the Okazaki fragments during replica-
tion. Other evidence from yeast, also suggested that chemically and genetically
induced replication stalling also increased the capacity of APOBEC to generate
mutations301.

Another feature that was early associated with APOBECmutagenesis is its relative
enrichment in early replication time and gene-rich regions of the genome100,302.
APOBEC mutations presented either a flatter profile100 or a direct enrichment in
the early replication sections246,302 . This slope was evenmore pronounced within
genomes of tumor samples that were individually more enriched with APOBEC
mutations andmutation clusters246,302 proposing a direct link with APOBEC activ-
ity. Although this correlation with replication time strengthened the association
with replication, it is not clear that it supports the causal link to Okazaki fragment
mechanism.

A report from Chen et al303 introduced an alternative source of ssDNA fragments
for the activity of APOBEC: the intermediate DNA state of both MMR and BER
pathways. Theyobserved thatwhen introducing an artificially inducedmismatched
sequence into mammalian cells, the flanking sites accumulated unexpectedmuta-
tions in the strand where the mismatch was introduced. These flanking mutations
were strongly enriched in theTCNcontext, suggesting the implication of either the
A3A or A3B genes. Further genetic knock-down (using siRNA) confirmed that the
activity of various A3 genes was responsible for this increment in mutation rate.
Other knock-down experiments at BER and MMR genes also yielded a reduction
in the mutagenesis in the flanking sites, confirming how the activity of both MMR
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and BER could induce mutagenesis in vivo . The reduction of mutations was con-
sistent with the type of the introduced mismatch, higher for MMR genes in T/G
mismatches and BER genes for U/Gmismatches. This report introduced substan-
tial evidence for the possibility ofMMR to associate with APOBECmutagenesis304.
Interestingly, the genomic characteristics of MMR activity 1.3.2.1 , mainly enrich-
ment in early replicating regions175 and bias towards lagging strand305 , fit well into
a model where the intermediate ssDNA fragment during the repair of a mismatch
could work as a source of ssDNA for the overall mutagenic event caused by A3
proteins in human tumors.

In this thesis, I have systematically quantified clustered mutations in somatic tu-
mor datasets with improved statistical methodology to control for false discover-
ies. Focusing on APOBEC mutation clusters, I have described and characterized
genomic footprints of a novel molecular mechanism that causes diffuse mutation
clusters. The same mechanism may also be responsible for a substantial portion
of the unclustered APOBEC mutations (see chapter 3 ), and generates mutations
with unusually high functional impact.

1.4.2 Other sources of local clustered mutations

Since its discovery in APOBECmutagenesis, other mutation processes generating
clusters, like somatic hypermutation via AID, or usage of TLS (error-prone) DNA
polymerases, have been extensively characterized now in human tumors. Most of
these processes were already known to generatemutation clusters inmodel organ-
isms or cell line models by prior research, but they still missed the observational
evidence suggesting that they also occur in human tissues in vivo .

1.4.2.1 Mutations by AID and Somatic Hypermutation

Human antibody proteins are built from a heavy (encoded in the IGH gene) and a
light chain (encoded by IGK gene for the κ type and IGL gene for the λ type). Each
chain is formed by a constant and variable region. Within this variable region 3
types of gene segments (variable, diversity, and joining), are encoded sequentially
in the genome sequence. After differentiation of the B or T cells, only one segment
from each type will be included in the final transcript. This process is called V(D)J
recombination and is mediated via the RAG proteins. Recent integration analysis
of this pathway with chromosome folding studies seem to suggest that the loop
extrusion mechanism, and thus CTCF and cohesin binding, seems to play an im-
portant role in this step306 ( see section 1.4.3.2 and 1.3.2.2 ).

In addition to this diversification process which randomizes the somatic genomic
sequence of the antibody genes, an extra layer of diversity is included through
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the process of Somatic Hypermutation (or SHM). This process consists in the ini-
tial activity of the AID protein (see section 1.4.1.2 ) that targets the promoter of
the immunoglobulin genes and deaminates a cytosine, with some preference to
the WRCY tetranucleotide motif186. The lesion leads to its repair through BER
and/or MMR307,308 . Either the direct fixation of the uracil or the repair by short-
patch BER seem to generate C>T mutations, which are characteristic in the AID
signature, signature 84 in the Cosmic catalog. Alternatively, the lesion will be de-
tected byMMRmachinery, particularly by the MutSα complex309, which then re-
cruits a strandless and error-prone version of the rest of the pathway310. Although
how MMR switches between these two modes is not fully understood, evidence
suggests that PTMs in the PCNA protein, required during the re-synthesis of the
gap, lead to the recruitment of TLS polymerases, mainly Pol η311 . Thus, the DNA
synthesis is extended by generating clustered mutations in A:T pairs around the
immunoglobulin genes97,307,308,310 . The study of blood tumors has revealed a sig-
nificant amount of non-APOBEC kataegis events, both due to the activity of AID
and pol η in proximity to the IGG loci or near known AID off-targets99,119,312 .
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Figure 1.9: Summary of themolecular mechanism of the Somatic Hypermutaiton
process happening in B and T cells during its differentiation. Initially, AID deam-
inates a cytosine to a Uracil (left), triggers its repair either through BER creating
WRCYN>Nmutations or through MMR which recruits the TLS polymerase Pol η
that causes A>G cluster mutations. Adapted from ref307

1.4.2.2 Mutation clusters by TLS polymerases

The complete process of SHMseems, at the timeofwriting, limited to the lympho-
cyte differentiation. However, the use of an error-prone version of MMR seems
to be more widespread in other tissues. For instance, treatment of cells with cer-
tain genomic stress chemicals such as alkylating or oxidative damage310,313 seems
to trigger this mutagenic MMR branch.

Some analysis of localized hypermutation in breast cancers revealed a small per-
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centage of kataegis events with a significant enrichment of signature 9, possibly
related to pol η104 .

A systematic analysis of the clustered processes occurring in human tumors97,314

led to the identification of a strongly clustered pol η mutational signature at A:T
pairs, enriched in WAN>G (equivalent to NTW>C) motifs. Although this signa-
ture was mostly present in lymphomas, there was a significant contribution in a
wide range of tissues, specifically, liver, melanoma, bladder, lung, stomach and
esophageal tumors. In these solid tissues, these A>G mutations were not associ-
ated with promoter features as in blood tumors, but presented a strong association
with H3K36me3 and other characteristics of MMR. The switch to this error-prone
mode was associated with an increased exposure to carcinogenic elements such
as alcohol for the liver and UV exposure for the skin97 . One of the more impor-
tant takes from this analysis was that not only this process was generating muta-
tion clusters, but was also responsible for the introduction of significant numbers
unclustered A>G changes in the rest of the genome in a single mutation clustered
events.

Other mutational processes that generate clusters might still be identified as the
amount of available data grows; recent efforts have reported tens of clustered sig-
natures (9 from ref97 and 9 from ref99 with 5 overlapping) which contain plausibly
new sources of non-classical mutation clusters. A set of plausible candidatesmight
be associated to the activity of a wide variety of TLS enzymes with significant prior
evidence in the germline315,316 .

1.4.2.3 Cluster mutations in structural variants

Due to their complexity, mutations clusters of structural variants are less charac-
terized; moreover they are significantly more scarce. In terms of mutation clus-
ters, the best characterized example is the SNVcluster co-occurrencewithAPOBEC
kataegis events (see section 1.4.1.3 ) and AID activity, where the SVs mark regions
where presumably therewas availability of ssDNA.Recentwhole genome sequenc-
ing reports however have also suggested that the structural somatic variants can
also occur in proximity to other structural variants; bioinformatics methods to
identify and resolve such “complex SVs” (clusters of SVs) are rapidly evolving317

. In Hadi et al318 , the authors used a genome graph to redefine the topology of
structural variants and detected 3 novel types of clustered structural variants. The
first component is characteristic for small clustered insertions named pyros from
the Greek word tower, a second component called rigma from the Greek word
chasm which is characterized by large clustered deletions and finally a third pro-
cess named tyfonas from the Greek word typhoons which represents large sections
of the genome with a high number of copies.



44 CHAPTER 1. INTRODUCTION

Another processwhichmight be considered as clustered structural variants is chro-
moplexy, first reported in prostate tumors319 it describes multiple distant regions
which are all disrupted at once, multiple DSB which are then re-joined outside
their original source. Further experimentation is needed to determine if the pro-
cess generating the breaks acts in a coordinated manner or just at a higher rate.

These clustered rearrangements are a good example that mutation clusters go be-
yond APOBEC mutagenesis. In the next section, we argue that the concept of
localized hypermutation can be more generally defined in order to include other
types of mutagens and mechanisms.

1.4.3 Generalization of mutation clusters

In the previously surveyed literature and generally through this thesis, mutation
clusters are defined as a group of somatic mutations in proximity of each other in
the one-dimensional DNA sequence, the reference genome. Amore broad defini-
tion, however, might encompass other types ofmutation clusters such as clustered
mutations in the germline, or mutation clusters in trans-interacting genome loci
i.e. those which are close in three-dimensional space due to chromatin folding.

1.4.3.1 Mutation clusters in the germline

In cancer and somatic tissues, the detection and classification of local hypermu-
tation or mutation clusters represents a relatively easy task because of three main
reasons. (i) The lack of recombination makes the InterMutational Distance (IMD)
a direct proxy for the proximity of mutational events; (ii) the known mutational
processes allows generating a robust baseline of somatic mutagenesis to compare
against while this baseline is less clear for the germline, and (iii) the diverse set
of mutational processes allow for extraction of informative mutational signatures.
These 3 main conditions, however, are generally not met in the study of germline
mutagenesis, heavily convoluting the study of clusters. The first studies on popu-
lation genetics data315 looking for germline clusters described a mutational signa-
ture associated with the activity of Polymerase ζ which was detected upon clusters
spanning tens of nucletides between mutations. This signature is characterized
by GA>TT and GC>AAmutations, which were previously identified to come from
pol ζ in yeast experiments320 . Because the detection of clusters in this analysis re-
quires that the groups of mutations occur at perfect Linkage Disequilibrium (LD),
the limited sample size used here represents a difficulty for the analysis. More re-
cently, in the analysis of the TOPMed program dataset25 , authors selected only
singletons from unrelated individuals to reduce the effect of recombination and
selection in their samples. After this strict filtering, they extracted multiple com-
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ponents from the IMD distribution using an exponential mixture model analysis.
The first component is short ( 10bp) and its suggested mechanisms involve the ac-
tivity of the TLS enzymes. They were also able to classify a second, longer ( 500–
5,000 bp) process which is characterized by the enrichment of C>G mutations
which is consistent with prior studies of de novo variants321,322 . The last 2 com-
ponents occupy large spans and their trinucleotide mutational profile is more flat.
Thus, the possiblemolecularmechanism still remains unclear. Another report an-
alyzing the same TOPMed data also verified this observation when extractingmu-
tation signatures from rare population variants. In two out of the nine mutational
processes, with the same characteristic C>G mutations, where mutation clusters
could also be detected323 . Another type of germline mutations which more di-
rectly represent the directmutation predisposition of the germline are de novomu-
tations obtained by sequencing trios (see figure 1.2 ). In the way they are obtained,
they are thought to contain a negligible selection component, they accurately rep-
resent only a single generation rather than a composite of many generations (as a
population does). A handicap of this mutation class is potentially the sparseness,
with orders of magnitude smaller sets than cancer genomes. The first studies321,324

in local hypermutation for de novo mutation (DNM) detected a clear enrichment
of C>G variants at shorter IMDs suggesting a novel mechanism of mutation ac-
cumulation. Further studies in a larger cohort322 showed that these clusters were
coming preferentially from the mother and that they correlated strongly with the
mother’s age at birth. Interestingly, certain regions of the chr2, 8 and 16 contained
hotspots for these mutations. Finally, it was proposed294 that the mutational pro-
cess might be related to a DSB-induced mutation mechanism in dormant oocytes
that is active during aging. The clustered C>G mutations were co-localized with
meiotic gene conversion loci and de novo copy-number. Both the meiotic gene
conversion loci and the copy number alterations are associated to the occurrence
of DSB, hinting at a potential mechanism.

Early reports that focused in phylogenetic data325 where they detected template
switching events, a type of rearrangement, in highly homologous sequences. This
mechanismwas responsible for sets of clustermutations thatwere previously thought
to occur independently of each other but at a low distance.

Overall, the numerous prior evidence presented here shows thatmutation clusters
are also presentwithin human germlinemutations andhighlight the role that these
can have in shaping human population genome.
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1.4.3.2 Mutation clusters in trans interacting sites of the genome

The approximately 2 meter longm unidimensional string of DNA is folded inside
the nucleus, resulting in proximity interaction also in the three-dimensional space.
Becausemutational processes result fromchemical reactions, the capacity of amu-
tational process to generatemultiplemutations in proximity is not restricted to the
one dimensional sequence, but may be able to occur in trans too. For instance, ox-
idative damage to DNA was reported to occur in clusters in human cells, possibly
in relation with deficient DNA repair327 , and ionizing radiation is widely appre-
ciated to generate clustered DNA damage (reviewed in ref328 ). If DNA damages
are clustered, plausibly, the resulting mutations sometimes can be so. We call the
hypothesized mutation clusters which occur in proximity but far away from each
other in the one dimensional sequence trans-clusters.

As expected, general chromosome folding features of the genome have been de-
scribed tomodulate significantly the local mutation rates in cancers. One example
is the position of the chromosomal ‘territory’ in the nuclear space. Chromosome
18 which is relatively closer to the periphery of the nucleus accumulates up to 2
timesmoremutations than chromosome 19, of similar size but with amore central
location329 . Similar phenomena is observed with regards to Topologically asso-
ciating domains (TAD). The boundaries between an active and an inactive TAD
seem to be markers of the switch in mutation rate for a wide range of signatures217

although the correspondence between TADs and replication time domains makes
it difficult to ascertain a causal role of one or the other. For instance, Lamina as-
sociated domain (LAD) are domains that are located at the nuclear periphery and
contain heterochromatic regions of the chromosomes, while genic and early repli-
cation sections seems to be located centrally212,329,330 . These various overlapping
genomic features are potentially the actual causal elements in the modulation of
mutation rate, however because they are so strongly correlated it is difficult to pin-
point the causal ones. Other spatial features have also been reported to participate
in the modulation of the damage accumulation in the nucleus. The periphery of
the nucleus and LADs in particular tend to accumulate a greater amount of UV
damage compared to the central sections331 suggesting a potential role of these
structures also in the modulation of mutation rates. Interestingly, the AID pro-
tein, in its physiological mutagenic role, known to target some of the highly active
promoters and enhancers, appears to be targeting those that are also high inter-
acting sites in 3D space. These interactions sometimes lead to the AID mutagenic
mechanism to cause off-target hits in other expressed parts of the genome219 .

From the existing literature and to our knowledge, though, there is no actual evi-
dence supporting the existence of mutation trans-clusters as defined in this thesis.

mestimate based on 3.3Å per bp326
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A potential reason for this is that genome-wider spatial genomics data e.g. Hi-C
andMicro-C has been available only recently. Moreover, there is an issue with res-
olutions of current Hi-C studies, which focus at the 5kbp resolution212–214 , which
is relatively coarse compared to mutational data, which is normally obtained in
a specific single base resolution. This disparity generates a significant amount of
noise that make it challenging to capture robust signal in mutation enrichment
and/or clustering.

Another limitation of such studies is the high variability of the interaction of two
specific points within the cell population. Although the folding of the genome
follows an active mechanism at loop anchors (extrusion by cohesin) , there is still
a large amount of coverage which varies from cell to cell within pre-defined do-
mains. Loop anchors, because of its active mechanism, are a good candidate for
the detection of trans mutation pairs. A large set of recent studies of 3D genome
conformation, using diversemethodologies are available for the study of how spa-
tial organization of the chromosomemay result inmutation clustering212,213,332–334.

In this thesis, we explore the novel concept of mutational trans-clusters by sys-
tematically quantifying mutation pair occurrences in loop anchors, and describ-
ing potential mechanisms that may generate them. Some of them were antici-
pated, such as AID mutagenesis, while other mutational signature-like patterns in
3D space were additionally discovered (see chapter 6 ).
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Chapter 2

Objectives

The recent studies in tumor and healthy somatic cell genomes highlight the power
of the mutational data available to study the molecular mechanisms of mutagen-
esis and repair in human cells.

In this thesis, we aim to systematically characterize the patterns of local muta-
tion rate variation, including mutation clusters (as an important example of local
hypermutation) and coldspots (local hypomutation), and to apply systematic sta-
tistical analyses to uncover their underlying mechanisms.

The specific objectives of this thesis are:

1. The development of newmethodology to explore, identify and quantify the
local increase in mutation rate in human tumors.

2. The analysis and characterization ofmolecularmechanisms generating both
an increased and decreased local mutation rates.

(a) The study of various mechanisms of local hypermutation and clustered
mutagenesis, focusing on APOBEC mutation patterns.

(b) The study of mutagenic mechanisms contrasting healthy somatic tis-
sues and tumors.

(c) The study of local hypomutation across the human genome, mediated
by hypomethylated DNA regions.

3. To measure the impact of such locally variable mutagenic mechanisms on
the fitness and integrity of the genome.

(a) To measure the effect of before-mentioned local mutagenesis mecha-
nisms on functional elements, e.g., genic regions and chromatin loop

49
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anchors.

(b) To study the influence of the newly characterized variability into exist-
ing methods to infer selection.



Chapter 3

DNAmismatch repair
promotes APOBEC3-mediated
diffuse hypermutation in
human cancers

The following chapter has been selected from the paper:

Mas-Ponte, David, and Fran Supek. ”DNA mismatch repair promotes APOBEC3-
mediated diffuse hypermutation in human cancers.” Nature genetics 52.9 (2020):
958-968.

The published document can be accessed at:

https://doi.org/10.1038/s41588-020-0674-6
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Abstract 10 

Certain mutagens, including the APOBEC3 (A3) cytosine deaminase enzymes, can create 11 

multiple genetic changes in a single event. Activity of A3s results in striking ‘mutation showers’ 12 

occurring near DNA breakpoints, however less is known about mechanisms underlying the 13 

majority of A3 mutations. We classified the diverse patterns of clustered mutagenesis in tumor 14 

genomes, which identified a novel A3 pattern: nonrecurrent, diffuse hypermutation (omikli). 15 

This mechanism occurs independently of the known focal hypermutation (kataegis), and is 16 

associated with activity of the DNA mismatch repair (MMR) pathway, which can provide the 17 

single-stranded DNA substrate needed by A3 and contributes to a significant portion of A3 18 

mutations genome-wide. Because MMR is directed towards early-replicating, gene-rich 19 

domains, A3 mutagenesis has a high propensity to generate impactful mutations, which exceeds 20 

other common carcinogens such as tobacco smoke and UV exposure. Cells direct their DNA 21 

repair capacity towards more important genomic regions, thus carcinogens that subvert DNA 22 

repair can be remarkably potent. 23 

 24 

  25 
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Introduction 26 

 27 

Many types of mutation patterns in somatic cells are linked either with exposure to DNA 28 

damaging agents, or with genome instability resulting from failures of DNA repair. Both are 29 

causal factors for carcinogenesis due to increases in mutation rates. In addition, dysregulated 30 

activity of certain enzymes may be mutagenic. For example, many tumors as well as the human 31 

germline bear signatures of error-prone DNA polymerases1–4. However, the most striking 32 

example of endogenous mutagens is the APOBEC family of cytosine deaminases. They defend 33 

against viruses and retrotransposons by damaging their genetic material; additionally, 34 

APOBEC1 is an mRNA editing enzyme (reviewed in ref. 5). 35 

 36 

The protein products of APOBEC3 (A3) paralogs were implicated as mutagens in many human 37 

cancer types6–10. This is consistent with their ability to deaminate DNA11,12 when it is single-38 

stranded (ss)13,14. Tumors have a highly variable burden of the A3 mutational spectrum, which is 39 

associated with differential A3 activity: an activating germline polymorphism in APOBEC3A 40 

and APOBEC3B genes results in a higher mutation burden15, and there is some correlation 41 

thereof with tumoral mRNA expression level of APOBEC3A and APOBEC3B4,7,16,17. In addition 42 

to the A3 activity, the availability of its ssDNA substrate is a requirement for mutagenesis. One 43 

known source of such ssDNA are intermediates of DNA repair of double-stranded breaks10,18,19, 44 

where A3 results in ‘mutation showers’ or kataegis (greek for thunderstorm), local 45 

hypermutation events that may consist of tens of mutations8,10. While kataegis is striking, it is 46 

not common: very few of the A3-signature mutations are accounted by the mutation 47 

showers10,20. Additionally,  DNA secondary structures can generate A3 mutational hotspots 21, 48 

however, the processes that generate global, abundant ssDNA substrate for A3 mutagenesis 49 

need to be further explored.  50 

 51 
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Clues are provided by the peculiarities of the A3 mutation patterns. Most mutation types are 52 

enriched in late-replicating domains, because DNA mismatch repair (MMR) and possibly 53 

nucleotide excision repair are more active in early-replicating domains22,23. A3 signature 54 

mutations run counter to this trend20. Additionally the A3 mutations have a curiously strong 55 

DNA replication strand bias24–26. These biases, considered together with experimental evidence 56 

27–29, suggest that A3 mutagenic activity is coupled to DNA replication. Expressing A3 enzymes 57 

in E. coli and yeast produced a mutational bias at replication origins 30,31, suggesting that ssDNA 58 

exposed during discontinuous DNA synthesis may be vulnerable to A3. In addition, another 59 

source of A3 substrate ssDNA was suggested by experiments in which the repair of a lesion-60 

bearing DNA by base excision repair (BER) and MMR promoted A3 signature mutagenesis in 61 

flanking segments32. Identifying the mechanisms that allow access of A3s to nuclear DNA is 62 

important because A3 enzymes generate cancer driver mutations21,33–35 and promote tumor 63 

heterogeneity36–38. 64 

 65 

Kataegis illustrates how mutation clustering patterns can be used to detect ssDNA generating 66 

mechanisms10,18. We introduce a sensitive statistical method to detect non-random mutation 67 

distribution that results from localized mutagenic events. Applying this to human cancer 68 

genomes uncovered a ubiquitous pattern of diffuse A3 mutation clusters, which we named 69 

omikli (greek: ομίχλη, meaning “fog”). This ‘mutation fog’, omikli, is more common than 70 

kataegis, however it occurs via a distinct mechanism. We present evidence that the activity of 71 

DNA mismatch repair (MMR) promotes A3 mutagenic activity, evident in the omikli pattern, 72 

and that the same process is responsible for the majority of unclustered A3 mutations. They are 73 

surprisingly likely to impact cancer genes – more so than the changes resulting from common 74 

external mutagens – because DNA repair directs A3 mutagenesis towards early-replicating, 75 

gene rich domains. 76 

 77 
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Results 78 

 79 

Detection of two distinct types of local hypermutation 80 

Our aim was to systematically characterize the different types of mutation clustering in human 81 

cancer cells. To this end, we developed a statistical approach (HyperClust) that has two 82 

distinguishing features (Fig. 1a; Extended Data Fig. 1a, b). Firstly, it accounts for the 83 

heterogeneity of mutation rates and of trinucleotide composition across chromosomal domains, 84 

which is an extension of our recent approach4 with additional support for local false discovery 85 

rate (lfdr) statistics. Secondly, it draws on the signal present in allelic frequencies of mutations – 86 

serving as a proxy for mutation timing – to enforce that mutations constituting one clustered 87 

event must occur simultaneously (Methods). We tested these improvements in HyperClust using 88 

simulated data with spiked-in mutation clusters, generating precision-recall curves (Extended 89 

Data Fig. 1c-e), comparing HyperClust to two previous approaches for detecting clustered 90 

mutations 8,10,29. Our simulation studies suggest that HyperClust compares favorably in calling 91 

shorter clusters consisting of two mutations (at various intermutational distance (IMD) 92 

distributions, Extended Data Fig. 1e). Therefore our method supports systematic studies of 93 

diverse types of clustered mutagenesis. 94 

We used HyperClust to identify clustered somatic single-nucleotide variants in whole-genome 95 

sequences of 22 tumor types, detecting a total of 108,401 clustered mutations in 699 tumors (at 96 

a lfdr≤20%). Henceforth, we defined the A3 spectrum as C>T and C>G changes in a TCW 97 

context (W is A or T). Overall 45% of all clustered mutations are in A3 contexts, consistent 98 

with A3 enzymes being an important cause of local hypermutation, however 55% of mutation 99 

clusters are not in the canonical A3 context, supporting that additional processive agents 100 

including error-prone DNA polymerases commonly mutagenize human cells1–4,39 (we note that 101 

A3 may also rarely generate C>A changes40). In contrast to prior heuristic rules 29,41,42 that 102 

required e.g. at least 5 mutations with an IMD ≤1kb, importantly, the majority of A3 clusters do 103 
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not meet this definition and instead consist of pairs and triplets (Fig. 1b, c). The distribution of 104 

A3 mutation cluster lengths (number of consecutive mutations) was significantly better 105 

described by a mixture of two distributions than by a single distribution (Fig. 1d; Extended Data 106 

Fig. 1f, g). This suggests that there are at least two types of mutagenesis generating tracts of A3-107 

context changes, which we estimate to have a mean length of 2.2 mutations and 7.1 mutations.  108 

 109 

While the latter distribution neatly fits current notions of kataegis, the former one does not. We 110 

named this type of diffuse mutation clustering omikli (fog), by analogy to the focused kataegis 111 

(thunderstorm) events. Henceforth, we classify mutation clusters with 2, 3 or 4 variants as 112 

omikli (the short-tract Poisson mixture component predominates; Fig. 1d), and clusters with 5 or 113 

more single-nucleotide variants as kataegis (with ≥95% contribution of the component with 114 

long tracts; Fig. 1d). Omikli is ubiquitous, occuring in more tumors (76% tumors contain at least 115 

three A3 omikli mutations; by random expectation approx. 14% would do so; Fig. 1e) than A3 116 

kataegis (48% samples with at least three A3 kataegis mutations). In tumors in which they 117 

occur, A3 omikli are similarly abundant per genome (Q1-Q3: 4-36 mutations) as A3 kataegis (6-118 

36 mutations; Fig. 1f, Extended Data Fig. 1h).  119 

Distinct mechanisms for kataegis and omikli A3 mutagenesis 120 

Multiple lines of genomic evidence suggest that A3 omikli clusters are generated by a 121 

mechanism distinct from kataegis. First, kataegis is, expectedly 8,10, enriched near 122 

rearrangement breakpoints, a proxy for locations of chromosome breaks 43, but not so for omikli 123 

(Fig. 1g). Second, the burden of A3 omikli clusters appears uncoupled from kataegis across 124 

individual tumors and is weakly correlated (R2=0.11) with long kataegis events (≥8 mutations; 125 

Fig. 1h), suggesting that short clusters derive from a different mechanism than the intermediate 126 

and long ones, which share a common mechanism (R2=0.52; Fig. 1h). Third, correlation of A3 127 

mutation burden with APOBEC3A and APOBEC3B mRNA levels is stronger for omikli 128 

(Spearman rho=0.31 and 0.45, respectively) than for kataegis (rho=0.04 and 0.14). This 129 
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suggests that for omikli the A3 expression is commonly limiting, while for kataegis another 130 

factor becomes limiting, plausibly the source of ssDNA that is available only rarely, e.g. during 131 

repair of ds breaks 10,18,44. Fourth, the 5’ mutational context of A3 omikli mutations had a 132 

significant enrichment of the A3A-like context over the A3B-like context 45 in five cancer types, 133 

compared to kataegis (Extended Data Fig. 2a-c; the converse was not the case in any cancer 134 

type), thus A3A and A3B may have preferential roles in causing omikli and kataegis, 135 

respectively. We also note overall tissue-specific differences A3A-like versus A3B-like 136 

contexts, as reported 4,45 (Extended Data Fig. 2c). Fifth, the unclustered A3 mutation burden is 137 

highly correlated with omikli (rho=0.66) but less with kataegis (rho=0.27). The numerous 138 

unclustered A3 mutations can be seen as a mixture of three components: singletons created by 139 

the omikli process (henceforth, A3-O), singletons created by the kataegis process (A3-K), and 140 

the remainder (A3-X) would encompass mutations caused by A3s independently of kataegis 141 

and omikli mechanisms plus the TCW>K mutations not caused by A3s. Consistently, the 142 

distribution of the numbers of mutations per cluster in omikli (Fig. 1d; >98% are pairs or 143 

triplets) suggests that A3-O generates many A3 singletons while A3-K generates few.  144 

 145 

Regional distribution of A3 clusters suggests a link to MMR 146 

To gain insight into the process generating omikli, we studied its distribution across the genome. 147 

A3-context omikli mutations were strongly enriched in early-replicating regions (2.0-fold and 148 

2.5-fold for C>T and C>G respectively, Fig. 2a, b), in contrast to unclustered TCW (0.54 and 149 

0.72-fold) and to the control, non-A3 context (VCN, where V is not T; 0.56 and 0.47-fold). 150 

These latter enrichments are similar to various other unclustered mutation types (Extended Data 151 

Fig. 3a), which are known to be depleted from early-replicating domains46–48. Protection of 152 

early-replicating domains from mutations stems from the differential activity of DNA mismatch 153 

repair (MMR) 4,22,49. The enrichment of diffuse clustered A3 mutations (omikli), uniquely, 154 

matches the genomic gradient of increasing MMR activity, rather than that of decreasing MMR 155 
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activity, as for most other mutation types (this is not explained by the genomic distribution of 156 

the TCW trinucleotide; Extended Data Fig. 3b).  157 

MMR is directed towards the regions bearing the H3K36me3 histone mark 50, which is enriched 158 

at gene bodies of expressed genes 51,52, lowering their mutation rates 4,53. Consistently with 159 

higher MMR activity, we find a significant enrichment of A3 omikli clusters at H3K36me3 160 

regions, after conditioning on replication time and gene expression levels (Fig. 2c; Methods). 161 

However, the mRNA level, after conditioning on H3K36me3 and replication time, was not 162 

associated with higher A3 omikli burden (Fig. 2c). This agrees with prior data 20,31  suggesting 163 

that transcription is not a common source of ssDNA substrate for A3 enzymes, even though 164 

ssDNA generated during transcription can be prone to mutagenic spontaneous deamination 54. 165 

Regarding A3 kataegis, the enrichment in H3K36me3 regions (Extended Data Fig. 3c, d) might 166 

stem from recruitment of the homologous recombination machinery (that can generate ssDNA 167 

tracts) by this histone mark55. 168 

 169 

We further examined a set of regions proximal to CpG dinucleotides, proposed to be linked with 170 

differential MMR activity 56. There were more A3 omikli clusters in the top genomic tertile by 171 

CpG density (Extended Data Fig. 3e). Consistently with MMR activity causing the mutations, 172 

this difference was more pronounced within early-replicating regions. The mutation rate of the 173 

control VCH context in CpG-dense regions was, in contrast, lowered (Extended Data Fig. 3e) 56. 174 

 175 

Next, we examined the replication strand bias 24,25 of A3 clusters. The ratio of A3 omikli in the 176 

leading versus the lagging DNA strand closely matched that observed in MMR-deficient 177 

(microsatellite instable, MSI) tumors (1.006-fold difference, Fig. 2d), but was less compatible 178 

with strand bias associated with mutated proofreading domain of the leading strand-specific 179 

DNA polymerase epsilon (POLE, 0.81-fold difference). This suggests that the strand asymmetry 180 
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of postreplicative MMR activity 57 rather than the asymmetry of DNA replication itself 58 181 

underlies omikli; see Supplementary Note. 182 

 183 

APOBEC mutagenesis hotspots can occur in DNA sequences that form hairpin secondary 184 

structures 21. Our data do not reflect this: omikli after excluding hairpin loci maintained the early 185 

replication time enrichment at 2.16-fold.  186 

 187 

 188 

Coupling of A3 mutagenic mechanisms with DNA replication. 189 

We hypothesized a mechanism by which MMR promotes A3 mutagenesis. MMR generates a 190 

single-stranded (ss) DNA intermediate during excision of a mutated DNA segment 59,60. This 191 

provides an opportunity for A3 enzymes to cause DNA damage that converts into clustered 192 

mutations, wherein such mutation tracts are short (omikli) because the ssDNA segments are 193 

short. The widespread occurrence of A3 omikli clusters is consistent with most tumors being 194 

largely MMR-proficient 61–63. This is in contrast to kataegis, which is known to also stem from 195 

DNA repair intermediates, however, these longer segments result from processing of double-196 

strand breaks 10,18,19,40. The MMR mechanism would explain the enrichment of A3 diffuse 197 

clustered mutations in early-replicating domains, and also enrichment in the lagging DNA 198 

strand, both associated with higher MMR activity 22,57. Because MMR is largely replication-199 

coupled 64,65, the MMR-associated A3 mutagenesis is consistent with the greater vulnerability to 200 

A3 damage in dividing cells 27. 201 

 202 

An additional hypothesis was proposed to explain the associations of A3 mutations with DNA 203 

replication-related genomic features 20,47: ssDNA exposed during discontinuous synthesis of the 204 

lagging strand would be mutagenized by A3. This was proposed based on strand-biased 205 
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mutations that result from expressing human A3s in Escherichia coli 30 and in yeast 31. Because 206 

length of eukaryotic Okazaki fragments is known, and length of MMR intermediates has been 207 

characterized in eukaryotic systems reconstituted in vitro66,67, we next examined the length 208 

distribution of inter-mutational distances (IMD) in the A3 clustered mutations. 209 

 210 

The IMD distribution for A3 omikli has a global peak at 355 nt, closely matching the peak (378 211 

nt) of a simulated IMD distribution resulting from 800 nt long ssDNA segments (Fig. 2e, 212 

Methods). The length of MMR excision tracts was estimated at 800 nt using in vitro studies of 213 

human and yeast MMR 66,68. Additionally, we approximated the length of MMR tracts by an 214 

analysis of somatic hypermutation events in lymphomid genomes (Methods); this suggested an 215 

approx. 400-1000 nt length range (Extended Data Fig. 4a, b). In contrast, the global peak in 216 

omikli IMD was not compatible with the approx. 200 nt long Okazaki fragments 67, which 217 

would generate a peak at 96 nt (Fig. 2e). (Of note, in kataegis events, IMD are devoid of the 218 

peak corresponding to ~800 nt length tracts (Fig. 2e), thus kataegis would result independently 219 

of MMR). These data suggest that discontinuous lagging strand synthesis is not the main 220 

mechanism supplying ssDNA that yields A3 clustered mutations because the observed IMDs 221 

are too long. However the IMDs are compatible with MMR-supplied ssDNA. Moreover, the 222 

proposed mechanism agrees with the early replication time enrichment of A3 omikli, which is 223 

consistent with higher MMR activity. 224 

 225 

We do not exclude however that the discontinuous synthesis of the lagging strand contributes to 226 

A3 mutagenesis because the omikli IMD distribution has a secondary peak corresponding to 200 227 

nt segment lengths (Fig. 2e). Modelling the IMD as a mixture of gamma distributions (Fig. 2f) 228 

suggests that up to one-quarter of A3 clusters might be generated by a process corresponding to 229 

~200 nt long segments (Extended Data Fig. 4c, d). Notably, the mixture modelling also suggests 230 

a minor component in omikli IMD at very short peak lengths (~25 nt, Fig. 2f). It is tempting to 231 
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speculate that this reflects the binding of the ssDNA protective protein RPA, which has a 24-30 232 

nt footprint 69,70. A secondary IMD peak of this length is observed also in kataegis (Fig. 2e; see 233 

Methods for limitations of use of IMD measure for kataegis analyses). 234 

 235 

MMR deficiencies are associated with lower A3 mutagenesis 236 

We next examined the tumors exhibiting microsatellite instability (MSI), which are MMR 237 

deficient; we took care to adjust for different statistical power to detect clusters in these high 238 

mutation burden tumors (Extended Data Fig. 4e, f) making the following analyses conservative.  239 

 240 

We compared the fraction of A3 omikli mutations in MSI and microsatellite stable (MSS, 241 

MMR-proficient) tumors of the matched cancer types (Fig. 3a). Supporting our hypothesis, the 242 

fraction of A3 omikli clusters in the MSI samples was significantly lower than in the MSS 243 

tumors (p<0.001 by Mann-Whitney test; 5.52-fold difference between the median of samples), 244 

but there was no significant difference in the non-A3-context (VCN>K) clusters (p=0.34, 1.2-245 

fold difference; Fig. 3a). Of note, comparing absolute, i.e. not normalized to overall number of 246 

mutations, omikli A3 burdens were also lower in MSI (p<0.01, Extended Data Fig. 4g). 247 

Therefore, the depletion of A3 clusters is in contrast with the overall increase of mutation load 248 

in MSI tumors: MMR normally protects against many types of mutations but provides an 249 

opportunity for A3. The MSI-MSS difference is consistently observed across three cancer types 250 

(4.0, 3.7 and 12.1-fold enrichment of A3 omikli in MMR proficient MSS tumors, Fig. 3a) and 251 

the overall difference is significant after stratifying by cancer type (Fig. 3b, pooled p<0.001, 252 

Fisher’s method for combining p-values). 253 

 254 

The early replication enrichment of omikli is not observed in MSI (Fig. 3c), but instead a profile 255 

more similar to unclustered mutations is seen, further supporting that MMR directs the A3 256 

mutagenesis. Consistently, A3 omikli burden associates with expression levels and copy number 257 
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status of MMR genes MSH6, MSH2 and EXO1 (Fig. 3d, e; Extended Data Fig. 3f, g; discussed 258 

in Supplementary Note).  259 

 260 

We have further validated findings on an independent set of 2,304 tumor whole genome 261 

sequences (WGS, Methods). This supported the dichotomy between A3 kataegis and omikli 262 

clustering in tract lengths (Extended Data Fig. 5a-c). The key evidence that links A3 263 

mutagenesis to MMR activity validates: there is a strongly increased A3 omikli fraction in MSS 264 

versus MSI cancers, in a data set stratified by cancer type, here also including additional tissues 265 

such as prostate and breast; this difference is however modest in the control, non-A3 context 266 

(Extended Data Fig. 5d, e). Moreover, additional supporting evidence of MMR involvement 267 

validates in these data: significantly increased A3 omikli burdens in tumors with copy number 268 

gains in MSH6 and MSH2 and EXO1 genes (Extended Data Fig. 5f), and the altered regional 269 

distribution of A3 omikli between MSS (enriched in early-replicating) and MSI cancers (less 270 

enriched) (Extended Data Fig. 5g). The IMD distributions of A3 omikli similarly have a peak 271 

corresponding to approx. 800 nt long vulnerable DNA segments (Fig. 2e; Extended Data Fig. 272 

5h). Finally, an analysis of >3,000 whole-exome sequences showed a 3.02-fold excess of nearby 273 

TCW mutation pairs (within 1 kb), compared to more distant TCW pairs, in MSS over MSI 274 

samples; we also note the overall differences in TCW mutation burden in MSS versus MSI 275 

(Extended Data Fig. 5i, j). This further supports the association between A3 local hypermutation 276 

and MMR activity, which – as suggested by our IMD analysis – may stem from the ssDNA 277 

excision tracts generated during MMR. However other molecular mechanisms may similarly be 278 

able to explain the MMR-associated A3 mutagenesis, such as changes in replication fork 279 

dynamics. 280 

 281 

Contribution towards the global A3 mutation burden 282 

While kataegis and omikli clusters are informative markers of certain mutational processes, their 283 

numbers are low. We quantified the contribution of the two clustered A3 processes to the (much 284 
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more abundant) unclustered mutational burden using a regression analysis, similar to ref. 4; see 285 

Methods. Informally, a correlation between clustered burden of tumor samples and unclustered 286 

burden in the same mutational context suggests that the same process underlies the clustered 287 

and unclustered component (Fig. 4a shows A3 omikli and kataegis fits for lung 288 

adenocarcinoma; the former is a good fit, while the latter a poor one).  289 

 290 

In the pan-cancer data, we estimated that the omikli process contributes approximately two-291 

thirds of all A3 context mutations (A3-O, 66.4%, Fig. 4b), while the kataegis contribution is 292 

negligible (A3-K, ~0%) and an unknown process (or a mix thereof) contributes the remaining 293 

nearly one-third of A3 context mutations (A3-X, 32.4%; Fig. 4b). The lack of kataegis 294 

contribution is not unexpected, given that this process generates long tracts but almost never 295 

pairs or triplets (Fig. 1d) and thus by extension singletons would not be generated.  The 296 

presence of mutations originating from the A3-X process, which is not associated with omikli 297 

and thus likely independent of MMR, suggests that the MMR hypothesis is one of the possible 298 

explanations for the mechanisms that generate the global pool of ssDNA vulnerable to A3. 299 

  300 

We also considered cancer types individually (Extended Data Fig. 6), showing that the relative 301 

contribution of A3-O was strongly correlated with the absolute A3 mutation burden across 302 

cancer types (Fig. 4c). This further supported that a MMR-dependant, likely A3A-driven 303 

process which can be diagnosed via omikli is the major source of APOBEC mutagenesis in 304 

human cancer. This creates very high A3 mutation burdens in lung, breast, bladder and head-305 

and-neck cancers (Fig. 4c), while other cancer types such as prostate – even though kataegis is 306 

known to occur therein – exhibit less omikli and lower overall A3 mutation burdens. 307 

 308 
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A3 mutagenesis has a high functional impact per mutation  309 

Certain mutational processes – including A3 activity, MMR failures and use of translesion DNA 310 

polymerases – were reported to, atypically, produce many mutations in early-replicating, gene-311 

rich chromosomal domains 4,26. Such ‘mutation redistribution’ 71 means that at an equal global 312 

mutation burden, different mutagens may have different potential for affecting genes, thus 313 

having varied functional consequences. To quantify this, we introduce a concept of ‘functional 314 

impact density’ (FID) of a mutational process: the fraction of putatively impactful mutations 315 

among all mutations observed.  316 

In case of cancer, a simple estimate of the oncogenic FID is the fraction of changes affecting 317 

coding regions of known cancer genes (‘oncogenic mutations per thousand’, henceforth OMPK; 318 

Methods). This is based on the reasonable assumption that many mutations occurring in a 319 

typical cancer gene are oncogenic and also that the set of 299 frequently mutated cancer genes 72 320 

contains many of the driver mutations found in a tumor. 321 

We examined the oncogenic FID of A3-O and A3-K mutations, as estimated from total A3 322 

burden in tumors that harbor predominantly omikli or predominantly kataegis clusters 323 

(Methods). This was compared to common mutagenic processes6 associated with tobacco 324 

smoking (C>A in lung), UV exposure (C>T in skin), exposure to gastric acid (A>C in stomach) 325 

and finally with aging (C>T changes at CpG dinucleotides). A3 mutations derived either from 326 

omikli or from kataegis processes have very high oncogenic FID: 0.47 and 0.46 OMPK, 327 

respectively (Fig. 5a, Methods), approximately twice that of common external mutagens: 328 

tobacco smoking and stomach acid-associated mutations, both at 0.24 OMPK, and of UV at 329 

0.19 OMPK.  330 

In addition to A3, another endogenous mutagenic process – the aging-associated C>T changes 331 

at CpG dinucleotides – also had high oncogenic FID per mutation (Fig. 5a). This is in line with 332 

a high frequency of CpG dinucleotides in coding regions in the human genome (Extended Data 333 

Fig. 7a); consistently, aging-related mutagenesis was suggested to have a higher risk of 334 
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generating coding mutations than cancer chemotherapeutics did73.  Of note, the A3 TCW 335 

context is not markedly enriched in coding regions so the high FID of A3 mutations is 336 

irrespective of trinucleotide composition therein.  337 

We asked if the high FID of A3 mutagenesis stems from increased positive selection on 338 

oncogenic changes introduced by A3. Using intronic mutation rates as a baseline74 (Methods), 339 

we find that selection on A3 mutations is not stronger than on external mutagen-induced 340 

changes (Extended Data Fig. 7b), which agrees with recent reports 33.  341 

Instead, we hypothesized the higher FID of A3 results from the increased susceptibility of the 342 

affected genes to DNA repair as they are more often located in early-replicating euchromatic 343 

domains 22,23,25,75 than intergenic regions are. The high intronic/intergenic ratio shows that A3 344 

mutagenesis is strongly redistributed towards genic DNA, compared to the various external 345 

mutagens (Extended Data Fig. 7b). The difference of FID of A3 processes versus external 346 

mutagens is exaggerated in cancer genes that reside in early-replicating regions (Extended Data 347 

Fig. 7c). This suggests that the omikli-driven A3 mutations are impactful due to an enrichment 348 

in gene-dense, early replicating domains, which are protected from many other mutation types. 349 

In addition to cancer genes, because somatic mutations might play a role in aging and 350 

neurodegeneration 76,77, we also examined a set of known essential genes, and a set of genes 351 

linked with neurodegeneration (Methods). Overall, we observed very similar results, with FID 352 

increases of A3 over the external mutagens ranging from 2 to 11-fold (Extended Data Fig. 7d, 353 

e). 354 

 355 

A3 mutagenesis affects genes encoding chromatin modifiers 356 

FID is a measure of the relative impact of a mutational process (expressed per mutation), 357 

however the absolute mutational burden of a process also needs to be considered. While tobacco 358 

smoking and UV mutations are less impactful, they are abundant. Aging-associated mutations 359 

are impactful per mutation but lowly abundant. The two A3 processes are however both 360 
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impactful and abundant (Fig. 5a; error bars show variation across those tumors that were 361 

affected by a mutagenic process).  362 

 363 

The absolute mutation burden strongly differentiates the omikli from the kataegis mutagenesis 364 

(A3-O and A3-K, respectively) even though their FID is similar. We estimate that the MMR-365 

associated omikli process can generate, in tumors where it is highly active, approximately twice 366 

as many mutations with oncogenic potential (2.72 per tumor) than the DNA break repair-367 

mediated kataegis process (1.32 per tumor) on average. Moreover, omikli generates twice as 368 

many oncogenic mutations as the aging-associated CpG mutagenesis. Notably, the A3 omikli 369 

process generates a comparable number of putatively oncogenic mutations per sample as the 370 

tobacco smoking (2.14 per tumor, in smokers’ lung adenocarcinoma) and UV light (3.54 per 371 

tumor, in melanoma). This suggests that A3–considering jointly the (major) omikli and the 372 

(minor) kataegis components – may be an important carcinogen because, in exposed cells, it is 373 

able to create larger numbers of mutations in cancer genes than common external mutagens.  374 

 375 

We observed a significant association between omikli burden and mutation occurrence 376 

(Methods) in 22 cancer genes at FDR<5%, and in 30 at FDR<10% (of 61 testable genes with ≥3 377 

TCW>K coding mutations in our data; Fig. 5b; Supplementary Table 1). However, no genes 378 

were significantly associated with kataegis burden (Extended Data Fig. 8a), supporting that 379 

omikli is more oncogenic than kataegis. The genes linked with omikli are enriched in tumor 380 

suppressors (n=14, versus 5 oncogenes; Fig. 5c) and are commonly chromatin modifiers (e.g. 381 

KMT2A/C/D, NCOR1, SETD2, MECOM) or chromatin remodelers (e.g. PBRM1, ARID2) (Fig. 382 

5c) which have a higher count of TCW motifs in the coding sequence (Extended Data Fig. 8b). 383 

These associations do not however show the direction of the effect. We thus examined the 384 

control VCN mutations, which were significantly associated in only 3 genes (Fig. 5b; Extended 385 

Data Fig. 8c). This suggests that the MMR-mediated A3 mutagenic pathway is an important 386 
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source of cancer driver events. Consistently, cancer gene mutations in early-replicating regions 387 

are more strongly associated with overall omikli burden than those in late replicating regions 388 

(Extended Data Fig. 8d). 389 

 390 

Discussion 391 

Clustered mutations, even though rare, can occur in different types of clustering patterns, which 392 

serve as markers of different mutagenic processes. Kataegis originates from repair of double-393 

stranded DNA breaks by the homologous recombination or break-induced replication pathways, 394 

which expose long tracts of ssDNA 18,40,78. Here we propose that another DNA repair pathway – 395 

MMR –promotes A3 mutagenesis, generating omikli clusters and the bulk of A3 unclustered 396 

context mutations in human tumors. A different link of A3 with DNA repair was proposed 397 

recently, resulting from DNA lesions processed by the base excision repair (BER) pathway 398 

(abasic sites, uracils, or T:G mismatches), which generated A3-context mutations flanking the 399 

repaired site 32. MMR was suggested to be able to ‘hijack’ the BER intermediates to provide 400 

additional ssDNA substrate for A3 32. Our data suggest that MMR may generate A3 substrate 401 

ssDNA more generally, which could occur by processing mismatches occurring during DNA 402 

replication. We do not exclude that BER-processed lesions result in A3 mutagenesis in cancer; 403 

indeed this may help explain the approximately one-third of the unclustered A3 mutations (A3-404 

X) that we do not account for via omikli. Another likely contributor to this MMR-independent 405 

A3 mutation fraction is A3 activity at ssDNA occurring discontinuous synthesis of the lagging 406 

strand in DNA replication24,25,30,31, which finds some support in our IMD distribution analyses.  407 

MMR activity preferentially protects early-replicating, euchromatic regions from mutations 408 

22,79,80  and additionally transcribed gene bodies therein, because it is recruited by the 409 

H3K36me3 histone mark 4,53. Therefore, mutagenic processes that subvert MMR would be 410 

particularly dangerous because they are directed to active genes. One example of this is non-411 

canonical MMR that recruits the error-prone DNA polymerase η (POLH protein) 81,82, whose  412 
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mutational signatures are seen across human tumors 2,4. Here we provide another example of 413 

MMR activity leading to mutagenesis, in this case by promoting APOBEC activity. Based on 414 

the enrichment of MMR-associated A3-context mutations in early-replicating gene-rich 415 

chromosome domains, we propose that the MMR-A3A coupling has particularly high potential 416 

for generating impactful mutations, exceeding common exogenous mutagens. In addition to 417 

oncogenes and tumor suppressor genes, A3-context mutations were directed towards essential 418 

genes and neurological disease-associated genes, suggesting possible roles for APOBEC 419 

mutagenesis not only in cancer, but also more generally in aging-related pathologies.  420 
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Figure 1. Two types of local hypermutation in human tumors. a, The HyperClust framework 614 
detects mutation clustering by accounting for heterogeneous mutation rates at the megabase 615 
scale, further stratifying mutations by type, and additionally by their approximate timing (clonal 616 
fraction). b, Kataegis (thunderstorm) and omikli (fog) mutation clusters in an example tumor 617 
genome segment (chromosome 8 of TCGA-DK-A1A6). Vertical lines are rearrangement loci. c, 618 
Distribution of the number of A3-context TCW>K mutations in omikli (bottom) and kataegis 619 
(top) of different sizes (number of mutations per cluster; callouts). d, Poisson mixture modelling 620 
of number of A3 context mutations per cluster. Solution with two distributions is shown 621 
(kataegis, teal and omikli, orange). Stacked bars show component proportions and curves are 622 
density estimates. Grey curve is the baseline solution with one component; p-values are from a 623 
two-sided bootstrap test; LL, log likelihood. e, Cumulative percentage of tumor samples that 624 
contain at least the given number of clustered mutations, either observed, or expected at 625 
random. f, Distribution of the burden of A3 context somatic mutations per tumor, across tumors; 626 
samples with no omikli or no kataegis mutations were not considered. g, Cumulative fraction of 627 
A3 mutations within the neighborhood (width on X-axis) of a rearrangement breakpoint. Error 628 
bars are 95% binomial C.I.; number of mutations listed in parenthesis. h, Pearson correlation 629 
between the burden of two-mutation omikli and of long kataegis events (left) and the correlation 630 
between burden of kataegis of different lengths (right). Significant difference by a two-tailed t-631 
test on the Fisher-transformed correlation coefficients. 632 

 633 

Figure 2. Association of A3 clustered mutation density with genomic features. a, Mutation 634 
rates in replication time (RT) quartiles, relative to the latest RT, for A3 mutation contexts (top) 635 
and control contexts (bottom). b, Mutation enrichment in the earliest versus latest RT quartile 636 
for A3 context clusters (top) and non-A3 context clusters (bottom). Cancer types are ordered by 637 
total A3 burden across all tumors (shading in top bar). Moderate/low-A3 burden cancer types 638 
are pooled into the group “other”. c, Relative density of A3 and non-A3 mutation types across 639 
genomic regions. All enrichments are relative to the lowest bin (the latest-replicating quartile for 640 
RT), which is not shown on figure. Points are coefficients from negative binomial regression, 641 
and error bars are 95% C.I. d, Replication strand bias (ratio of mutation count on the leading 642 
versus lagging DNA strand) of clustered TCW mutations. Error bars are binomial 95% C.I. As a 643 
control, the reciprocal of the strand bias for MSI-H (orange; 24 samples) and POLE-mutant 644 
(purple; 9 samples) tumors is shown as a dashed line. Values in parentheses are mutation counts 645 
used to estimate the ratios. e, Distributions of intermutation distances (IMD) in A3 context 646 
kataegis and omikli clusters (left). Expected IMD distributions from simulations using three 647 
different segment lengths (right). f, Gamma mixture modeling of the omikli IMD distribution 648 
using three components. Bar shows proportions of the three components, while curves show 649 
their densities at various IMDs. 650 

 651 

Figure 3. MMR activity in tumors is associated with APOBEC mutagenesis. a, Proportion 652 
of omikli clusters in A3 (left) and control non-A3 contexts (right), comparing MMR deficient 653 
(MSI-H) samples with MMR-proficient (MSS) samples, in matched tissues (“MSI tissues”, 654 
COAD, STAD and UCEC, green) or in non-matched tissues (red). Significance by Mann-655 
Whitney test, two-tailed; p < 0.001 (***); number of tumor samples listed in parenthesis. b, 656 
Same as (a) but broken down by tissue. UCEC, uterus; STAD, stomach; COAD, colon. Pooled 657 
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p-value (p < 0.001 for A3; p = 0.433 for control) from two-tailed Mann Whitney tests on 658 
stratified data. c, Enrichment of A3 omikli clusters and unclustered A3 mutations in various 659 
genome regions in MMR-deficient samples (MSI-H). Related to Fig. 2c. Coefficients of 660 
negative binomial regression are shown (as log2), indicating enrichments of mutation frequency 661 
in a genomic bin versus the lowest bin (in case of RT, latest-replicating), where enrichment 662 
would equal unity and is thus not shown. Error bars are 95% C.I. d, Correlation of the burden of 663 
A3-context (TCW>K) kataegis, omikli, and unclustered mutations with mRNA levels of MMR 664 
genes and of APOBEC3A and APOBEC3B genes. Error bars are 95% C.I. e, Association of 665 
copy number alterations (CNA) in selected MMR genes with burden of A3 omikli. CNAs are 666 
represented as integer copy number differences (Methods); positive values are gains and 667 
negative losses. See also Extended Data Fig. 3g. Significance by Mann-Whitney test (two-668 
tailed) comparing the neutral (0) versus the gain (+1 and +2) states considered jointly. 669 

 670 

Figure 4. The omikli process generates the majority of unclustered A3 mutations across 671 
tissues. a, A regression analysis estimates the contributions of omikli and kataegis processes 672 
towards the unclustered A3 mutation burden, shown for lung adenocarcinoma (LUAD, other 673 
cancers in Extended Data Fig. 6) tumor samples (points). For clarity, data panels show 674 
combinations of two variables (omikli versus unclustered, center; kataegis versus unclustered, 675 
right), whereas the regression is performed on the three variables simultaneously (schematic in 676 
leftmost panel; Methods). Red line is the intersection of the fitted plane with the shown two-677 
dimensional coordinate system. Error bars are 95% prediction intervals of the fit. Dotted line is 678 
the average of omikli (center) and kataegis (right) mutation burden across tumors. Bottom 679 
panels have same data as top panels, but zoomed in on the X-axis for clarity. b, Pan-cancer 680 
regression analysis provides estimates of the fraction of unclustered TCW>K mutations 681 
contributed by processes that generate omikli (A3-O), that generate kataegis (A3-K) and a 682 
remainder (“intercept”) not explained by either process (A3-X). Error bars are standard errors 683 
(S.E.) of regression coefficients; n = 646 tumors. c, Relative contribution of the omikli-process 684 
to the unclustered A3 burden (Y-axis) of cancer types correlates with the overall burden of A3 685 
mutations in that cancer type (X-axis) suggesting that differential activity of the omikli 686 
mechanism drives differences of A3 burden between tissues. Error bars are S.E. of regression 687 
coefficients. Shaded band is 95% C.I. of the linear fit. 688 

 689 

Figure 5. APOBEC mutagenesis generates many impactful mutations. a, Functional impact 690 
density of mutational processes (slope of line), estimated as the number of mutations in coding 691 
regions of 299 cancer genes (Y-axis) normalized to the total mutation tally contributed by a 692 
process (X-axis). Bottom panel shows the number of mutations estimated to result from each 693 
process across tumor samples. Points in boxplots (lower panel) and on lines (upper panel) are 694 
the average mutation burden of that process in the affected samples (definition in Methods); 695 
error bars are S.E.M. b, Occurrence of A3 context mutations in many cancer genes is associated 696 
with the genomic burden of A3 omikli mutation clusters, suggesting that the omikli process 697 
generates driver mutations. FDRs are Benjamini-Hochberg adjusted p-values from a logistic 698 
regression to predict presence of a TCW>K (A3 context, X-axis) or a VCN>K (control non-A3 699 
context, Y-axis) mutation in each driver gene. Red and gold, hits at stringent (5%) and 700 
permissive (10%) FDR thresholds in the A3 context; blue, hits in the control context (FDR < 701 
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5%) suggesting an indirect association with A3 omikli burden. Diagonal line denotes equal FDR 702 
between the A3 and the control contexts. FDRs were capped at 0.1%. c, Burden of A3 omikli 703 
mutations in tumors which are wild-type (teal) or which are mutated (orange) in the driver genes 704 
that were significantly associated in the logistic regression in panel b. 705 

 706 

 707 

Online methods 708 

Data sources 709 

Mutation calls for TCGA-WGS were obtained as in ref. 22. In brief, BAM files were 710 

downloaded from the cgHub repository (now superseded by the NCI Genomic Data Commons) 711 

for normal and tumor samples, and somatic single-nucleotide variants were called with Strelka 712 

1.0.6 83. Also as previously 4,22 we excluded mutations in blacklisted regions by UCSC (Duke 713 

and DAC) and in difficult-to-align genomic regions by the ‘CRG Alignability 36’ criterion, 714 

meaning we required genomic 36-mers to be unique in the hg19 genome assembly (even after 715 

allowing up to two mismatches). 716 

SNP6 Affymerix microarray data were downloaded from the GDC legacy portal 717 

(portal.gdc.cancer.gov/legacy-archive) for matched donors, with both normal and tumor data 718 

available. The final dataset contained 699 TCGA samples with WGS mutations and SNP6 array 719 

data available. One of the donors (TCGA-CZ-5454) was excluded from those analyses that 720 

required external metadata as two different aliquots were available and metadata could not be 721 

unambiguously matched. This change makes the number of total samples equal to 697 in some 722 

analyses. 723 

MSI status and other metadata for hypermutated tumors (i.e. POLE status) was obtained as 724 

described in ref. 22. In total, our TCGA-WGS dataset contained 24 MSI samples (Supplementary 725 

Table 2).  726 

An additional dataset, comprising WGS single nucleotide variants, purity estimates, and copy 727 

number alterations was obtained from the Hartwig Medical Foundation84, was used for 728 
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validation analyses in Extended Data Fig. 5a-h. This dataset has been processed similarly to our 729 

TCGA WGS (Strelka version 1.0.14 was used to call single-nucleotide variants) and 730 

additionally the Purple tool was used to infer purity and obtain CNA estimates84 731 

(Supplementary Table 3). 732 

Inferred MSI/MSS labels85  were obtained from the supplementary data of the corresponding 733 

publication84. We additionally discarded samples (n = 53) that were treated with temozolomide 734 

(TMZ), which is known to positively select for MMR deficient cells in brain tumors86.  735 

For the functional impact of UV mutations we additionally obtained WGS variant calls of 70 736 

melanomas tumors from the MELA-AU study 87 within PCAWG. For the somatic 737 

hypermutation analyses, we additionally obtained WGS variant calls of blood tumors CLLE-ES 738 

and MALY-DE from the PCAWG dataset88 available as controlled files in the ICGC data portal 739 

(https://dcc.icgc.org/pcawg). We selected the SANGER pipeline calls (Supplementary Table 4). 740 

We obtained exonic mutations from the TCGA mc3 dataset, available at 741 

(https://gdc.cancer.gov/about-data/publications/mc3-2017)89. This dataset contains unified 742 

somatic mutation calls for approximately 10,000 whole-exome sequences (WES). We selected 743 

cancer types that had at least one sample classified as MSI (see below), therefore the subset 744 

used in this analysis comprised 5,831 tumors from 16 cancer types. Only 6% of the WES 745 

samples overlap with the WGS cohort. We obtained the MSI status from ref. 61, which contains 746 

experimentally determined MSI labels (for ESCA, UCEC, COAD, READ and STAD) and 747 

additionally inferred MSI status labels at 80% confidence level that covered additionally 11 748 

cancer types (Supplementary Table 5). 749 

The acronyms used for cancer types in this analysis are as listed in the ICGC Project portal page 750 

(https://docs.icgc.org/submission/projects/). 751 

 752 
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HyperClust, a randomization-based FDR estimation for local 753 

hypermutation detection. 754 

The process of detecting local hypermutation (or mutation clusters) aims to distinguish those 755 

pairs of mutations that occurred in the same event from those that occurred independently. The 756 

classification is based primarily on intermutational distances (IMD) on the genomic sequence 757 

but other sources of information can be used such as the allelic fraction of the mutations. 758 

We developed HyperClust building upon our recent approach4 which employs a trinucleotide 759 

context-preserving randomization of mutations within megabase-sized chromosomal domains, 760 

obtaining a baseline frequency of mutation cluster occurrence at a certain IMD (Extended Data 761 

Fig. 1a). While the original approach applied a single IMD threshold at which every genome 762 

was evaluated, in HyperClust we compute significance estimates at the level of each mutation, 763 

meaning that many more samples could be analyzed while retaining acceptable false discovery 764 

rates.  765 

HyperClust provides a rigorous estimate of the local FDR (lfdr) for each clustered mutation 766 

event, given its IMD and the baseline distribution of IMDs in that genome. It is also possible to 767 

stratify mutations pairs in each tumor sample into smaller sets according to different features. 768 

Because A3 mutagenesis occurs primarily in coordinated cytosines within ssDNA fragments8,10, 769 

we stratified of mutation pairs according to base types (C:G and A:T) and to strand-coordinated 770 

bases. We additionally stratified by mutation clonal fraction, as it should be shared by the 771 

mutations occuring contemporaneously in a cluster (Supplementary Note).  772 

We evaluated the different stratification features of HyperClust together with other local 773 

hypermutation detection approaches from the literature using 48 randomized tumor samples 774 

with simulated spiked-in mutation clusters. The stratification with both the strand-coordinated 775 

base types and clonal fraction of the mutations outperforms the other tested set ups and was 776 

therefore used to obtain mutations for the rest of the analysis (Supplementary Note). 777 
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Our method is designed to test pairs of mutations, instead of on larger groups, which leads to 778 

balanced power of detection for shorter clusters and longer clusters (kataegis-like), while 779 

previous methods tend to be better adapted to calling the latter. 780 

 781 

Poisson mixture modelling of number of mutations per tract. 782 

The aim of this analysis is to examine whether there exist multiple mechanisms generating 783 

clustered mutations, resulting in tracts of different lengths. The number of mutations per cluster 784 

can be modeled with a Poisson distribution. We considered only clustered events consisting of 785 

two or more mutations at TCW>K, which are likely to be a highly pure set of the A3 mutations. 786 

Then, we modeled the probability that x mutations occur in a fragment of ssDNA when two 787 

mutations are already present P(x| x = 2) = Pois(λ), meaning that 0 represents a cluster pair, 1 788 

represents a triplet etc. If more than one biological mechanism generates clustered mutations at 789 

different tract lengths (number of mutations), the observed distribution would be better modeled 790 

as a mixture of two or more Poisson distributions, than by a single Poisson distribution.  791 

We used the R package flexmix90 to fit a mixture model, testing the range of components from 1 792 

to 5. We transformed the Akaike Information Criterion (AIC) values extracted from the models 793 

to relative likelihoods by calculating the exponential of the difference between each AIC value 794 

and the minimum AIC (Extended Data Fig. 1f).  795 

We performed a bootstrap likelihood test (LR_test function in flexmix) with 500 iterations. This 796 

test yields a p-value for the difference of the log-likelihood distributions between the selected 797 

model and one more or one less component. 798 

The λ of each Poisson component is the exponential of the fitted intercept in the regression. The 799 

confidence intervals of the λ values were obtained by transforming the standard error of that 800 

value at C.I. = 95%. We used the λ values to compute density distributions of each component.  801 
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We then used the posterior probabilities to obtain the proportion of events with a given track 802 

length that can be attributed to each Poisson component (relevant for Fig. 1d, bars). We also 803 

obtained a random Poisson distribution for each component based on the λ (relevant for Fig. 1d, 804 

lines). 805 

Samples from skin cancer (SKCM) and B-cell lymphoma (DLBC) were excluded from this 806 

analysis as they contain particular mutation properties that may confound our analysis. Skin 807 

cancer has a high percentage UV signature mutations which overlap with the APOBEC TCW>T 808 

context. Somatic hypermutation (SHM) is common in lymphomas and some mutations therein 809 

may present a similar profile to the APOBEC mutagenesis. 810 

 811 

Association of increased A3 clustered burden with various genomic 812 

regions. 813 

Genomic segments and bins extracted from chromatin marks were computed as in ref. 4. In 814 

brief, data for epigenetic marks (H3K36me3) were downloaded from the Roadmap Epigenomics 815 

repository, stratified according to the fold-enrichment (FE) of that mark over the input, into 816 

three equal-sized bins where the FE>1, and additionally the bin 0, which correspond to regions 817 

with FE<1. Expression values were obtained from Roadmap Epigenomics for genic and 818 

intergenic regions and processed in a similar manner to the ChipSeq data. Replication time bins 819 

were computed from wavelet-smoothed RepliSeq signal tracks from the ENCODE dataset. 820 

Again, we binned the genome into equal-frequency bins where bin 1 is the latest-replicating 821 

quartile, and bin 4 is earliest-replicating quartile. These data were averaged over the 8 cell lines, 822 

as in ref. 4. 823 

To detect significant associations of mutations in specific regions of the genome we used a 824 

negative binomial regression4 (glm.nb from the MASS R package). In brief, combinatorial 825 

intersections between the genomic region sets were computed, 4 bins for each feature. In each 826 

set, the number of TCW>K mutations were stratified by the four A3 mutation types (TCA>T, 827 
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TCA>G, TCT>T and TCT>G). These values (mutation counts stratified by mutation type) are 828 

used as the dependent variable in the regression and has a total length of 256, corresponding to 829 

64 x 4 mutation types. The number of susceptible genomic sites in 64 bins was also computed 830 

and multiplied by the number of samples, thus representing the exposure variable. The three 831 

independent variables were the genomic bins of each feature, encoded as factors. This same 832 

approach was used for the control contexts (VCN>T). The 95% confidence intervals of the 833 

regression coefficient were computed with the confint function in R.  834 

For this analysis, we excluded the DLBC (lymphoma) dataset and we discarded mutations in the 835 

somatic hypermutation (SHM) off-targets extracted from ref. 91 which might derive from tumor-836 

infiltrated lymphocytes. . 837 

 838 

Determining IMD distributions of mutation tracts by simulation. 839 

The IMD distribution of a clustered mutational process will be dependent on the length of the 840 

vulnerable DNA segment (for A3, the length of the ssDNA). To determine the expected IMD 841 

distribution we randomly sampled with replacement 1,000 times from a set of possible positions 842 

and computed the distance between random pairs. We used three sets representing three lengths 843 

of ssDNA fragments: short (25 bp), mid-length (200 bp) meant to represent the approximate 844 

length of ssDNA between Okazaki fragments in eukaryotes 67 and a long ssDNA (800 bp) meant 845 

to represent the ssDNA segments generated during the MMR process 66. We note that, in order 846 

to draw conclusions about ssDNA tract lengths underlying kataegis, the cluster span (distance 847 

from the first to the last mutation) would be a more appropriate measure. However in case of 848 

omikli, which consists predominantly of two-mutation clusters, the IMD measure can for 849 

practical purposes be considered equivalent to the cluster span measure. For this analysis we 850 

considered samples in the APOBEC-prone cancer types in our TCGA dataset: bladder, breast, 851 

lung (LUAD and LUSC), cervical, head-and-neck and mismatch repair proficient uterus 852 

cancers. 853 
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 854 

Gamma mixture modelling of IMD distributions. 855 

It is expected the distance between 2 mutations occuring in a single hypermutation event will 856 

follow a gamma distribution. Thus, to quantify different mechanisms generating clustered 857 

mutations we modelled the observed IMD distributions as a gamma mixture.  858 

We selected only the TCW>K mutations with IMD lower than 1 kb. We also required TCW 859 

coordination, meaning that at least 70% of the mutations in that clustered event must have 860 

occurred at TCW sites.  861 

We used the R package mixtools (gammamixEM) that implements an Expectation Maximization 862 

(EM) based algorithm for the detection of different components. We obtained estimates for 863 

mixtures that ranged from 1 up to 8 components. As initial parameters, we used alpha = 0.2, 100 864 

maximum iterations and an epsilon (convergence difference) of 0.01. We re-simulated the 865 

original IMD distributions (see above) for 10,000 iterations and re-computed the parameters. 866 

Based on the log-likelihood and the matching shape parameters of the distributions we extracted 867 

a total of three components, because the log-likelihood value suggests a strong increase from 1 868 

to 2, and from 2 to 3 components, while the increase from 3 to 4 is more modest; we cannot 869 

however rule out a four-component model based on these data. Next, we computed the density 870 

of the components using the extracted parameters and the proportions of each component. 871 

Same as the IMD distribution analysis we used samples in the APOBEC prone cancer types, 872 

bladder, breast, lung (LUAD and LUSC), cervical, head and neck and mismatch repair 873 

proficient uterus cancers.  874 

 875 
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Contribution of A3 clustered mutagenic process to the unclustered mutation 876 

burden. 877 

In order to estimate how much the clustered processes contributed to the unclustered burden, 878 

which is the main contributor to the overall tumor mutation burden (TMB), we adapted a 879 

method that we recently introduced4. In brief, we used a robust linear regression (rlm function in 880 

the R MASS package) to predict the overall unclustered burden in the TCW>K context 881 

(dependent variable) from the counts of each clustered process (TCW>K kataegis and omikli 882 

burden, as separate independent variables (predictors), and additionally an interaction term.  883 

From the fitted model, the intercept is the number of unclustered mutation that cannot be 884 

explained by the presence of either omikli or kataegis clusters, thus, these mutations likely occur 885 

independently from the mechanisms that generate either omikli or kataegis. We named this 886 

mutational process A3-X. Similarly, we obtained estimates of the average unclustered mutation 887 

burden when one of the two types of clusters (either omikli or kataegis) is not present but the 888 

other type is. These estimates represent the contribution of the omikli (A3-O) and kataegis (A3-889 

K) processes to the unclustered A3 mutation burden. By adjusting for the total predicted 890 

unclustered mutations we can obtain estimates of the contribution of kataegis and omikli to 891 

unclustered burden. Note that because the A3 trinucleotide context (here defined as TCW>K) 892 

overlaps with signatures of certain other mutagens, presence of these non-A3-derived 893 

unclustered mutations may inflate the estimate of the intercept in the fits (Fig. 4a), causing a 894 

downward bias in the estimated omikli contribution to global A3 burden (A3-O). For further 895 

details, see Supplementary Note. 896 

Parsimony suggests that unclustered (singleton) mutations are generated by the clustered 897 

processes of the same mutational context (TCW>K). However, we cannot rule out the 898 

possibility that the two processes (omikli and unclustered) are mechanistically distinct but 899 

tightly co-regulated thus co-occuring in the same tumor samples.  900 
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We extracted the 95% prediction intervals of the unclustered values (representing the number of 901 

mutations at the average value of each variable) by the R function predict. We then used the 902 

upper and lower ends of the interval to compute upper and lower bounds of the contribution in 903 

percentage. Error bars (Fig. 4 a-c) represent the SEM extracted from this interval.  904 

 905 

Functional impact density of mutational processes. 906 

We define the functional impact density (FID) as the putative functionally relevant mutations 907 

that occur in a certain set of genes which are associated with a selected mutational process. For 908 

a set of genes G and a mutational process S, the FID is computed as the number of mutations 909 

falling in the coding sequences (CDS) of G divided by the total number of mutations from S. 910 

For sake of clarity, this value can be represented as the number of mutations that fall in a gene 911 

coding sequence per thousand mutations. 912 

This measure reports the joint effect of the mutational spectrum, the trinucleotide composition 913 

of the gene coding sequence (CDS) and, importantly for the A3 example, the regional 914 

preferences of the mutational process. For instance, if the trinucleotide composition of G 915 

matches with the trinucleotide propensity of S it will increase the FID. Also, if S is enriched in 916 

certain parts of the genome where G is also enriched, it will also yield a higher FID. 917 

We selected three disease associated gene sets from the literature, (i) a set of 299 cancer genes, 918 

including tumor suppressor genes and oncogenes, which were recurrently mutated in TCGA 919 

cancer genomes 72, (ii) a set of genes associated with neurodegenerative disease (n = 39) 92, and 920 

finally (iii) a set of cell essential genes extracted from CRISPR/Cas9 genetic screens (n = 683) 921 

93. 922 

In order to obtain mutations that are putatively generated by a given mutational process, we 923 

selected those mutations matching the susceptible trinucleotides in a set of tumor samples where 924 

the mutational process was reported to occur. In total, we defined four mutational processes: (i) 925 

the aging associated process, (ii) “smoking”, (iii) “UV” and (iv) Signature 17. For the ageing 926 
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process the trinucleotide set was NCG>T and the sample set was comprised by all samples (n = 927 

697). For the “smoking” process the trinucleotide subset was NCN>A and the sample set was 928 

comprised by lung (LUAD and LUSC) tumor patients with at least three years of tobacco 929 

smoking94 (self-reported data; sub 21). For the “UV” process the trinucleotide subset was 930 

TCC>T (thus minimizing overlap with other mutational processes) and the sample sets were the 931 

skin cancer patients from the TCGA (n = 13) and a set of melanomas PCAWG dataset (MELA-932 

AU, n = 70) that were included to increase the number of mutations. For the Signature 17 933 

process the trinucleotide subset was defined as AAN>C and the sample set was the stomach 934 

cancers available in our TCGA-WGS data (n = 20). 935 

Note that estimates from this analysis are likely conservative because we use a stringent A3 936 

trinucleotide context of TCW>K, and moreover because we examined only unclustered A3 937 

mutations but did not explicitly consider the A3 clustered omikli and kataegis events in this 938 

analysis, on the basis of their lower abundance (Fig. 1f) relative to the unclustered A3 939 

mutations. 940 

 941 

Logistic regression approach to determine susceptibility in cancer genes. 942 

We used a logistic regression to determine if the occurrence of a mutation in a cancer gene was 943 

associated with a higher burden of either omikli or kataegis. We examined the set of 299 cancer 944 

genes72 and selected mutations in their coding sequence (CDS) matching the A3 context 945 

TCW>K (W is A or T; K is T or G). If a gene contained at least one of these mutations in the 946 

CDS it was classified as mutated by an A3 process. We tested only the 61 cancer genes 947 

(Supplementary Table 1) that bore A3 context mutations in at least 3 samples from the TCGA-948 

WGS dataset.  As negative control we also counted mutations in the cancer genes at the non-A3 949 

context VCN>K (V is not T). 950 

Next, we performed a multiple logistic regression using the square-rooted burdens of omikli and 951 

kataegis as independent variables to predict the mutation status of the gene (dependent 952 
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variable). The independent variables were always restricted to the A3 (TCW>K) context to 953 

represent the A3 activity of either omikli or kataegis. The mutation status was tested both with 954 

genes harboring A3 mutations and the control context (VCN>K). The p-values for each gene 955 

were FDR adjusted using the Benjamini-Hochberg correction. 956 

We also divided the CDS fragments from the cancer genes according to their replication time 957 

and then used logistic regression to predict if any of the CDS located in that specific replication 958 

time bin was mutated. We used the number of omikli mutations (square-rooted) as predictor. 959 

 960 

Statistics 961 

If not stated otherwise, the comparison of two distributions of continuous values was tested with 962 

a two-tailed Mann-Whitney U test. Pooling p-values obtained from stratified data groups was 963 

performed with the Fisher’s method for combining P-values. P values are shown as exact values 964 

or otherwise referenced as symbol according to this scale: *** < 0.001, ** < 0.01, * < 0.05, “.” 965 

< 0.1.  966 

All boxplots used in the current analysis are represented according to the standard boxplot 967 

notation in the R statistical environment (ggplot2 package): the central box represents the inter 968 

quartile range (IQR), the central line is the median value of the distribution, the outlier points 969 

are instances higher or lower than 1.5 times the IQR from the median value and the whiskers are 970 

the lowest and highest points of the distribution after removing the outliers. If the boxplot has 971 

notches, the notch width is 1.58 times the IQR divided by the square root of the sample size, 972 

which is an estimate of the 95% C.I. of the median. 973 

 974 

Data availability statement 975 

For the current study we used publicly available data described in the Methods. In brief, we 976 

used a set of whole genome sequences from TCGA available through cgHub repository 977 
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(superseded by the NCI Genomic Data Commons, https://gdc.cancer.gov/). SNP arrays for the 978 

same data set were downloaded from the GDC legacy portal (portal.gdc.cancer.gov/legacy-979 

archive). We used two validation sets: (i) the whole genome tumor cohort from the Hartwig 980 

Medical Foundation available at hartwigmedicalfoundation.nl (DR-069) upon request and (ii) 981 

the whole exome TCGA cohort through the MC3 dataset available at 982 

https://gdc.cancer.gov/about-data/publications/mc3-2017. Data generated by the analyses in this 983 

study are available in the Supplementary Tables. 984 

Code availability 985 

Code to generate clustered mutation calls was implemented in Python (version 3.6) and R 986 

environments (version 3.6). Relevant packages are biopython (version 1.73) and numpy 987 

(version 1.15.4) for Python, and Biostrings (2.52.0), VariantAnnotation (1.30.1) and 988 

GenomicRanges (1.36.0) for R. Code is available at https://github.com/davidmasp/hyperclust.  989 

Statistical analysis of the data was performed using custom scripts in R (version 3.6); relevant 990 

packages are mclust (version 5.4.4), mixtools (version 1.1.0), MASS (version 7.3-51.4) and 991 

flexmix (version 2.3-15). 992 

Reporting Summary 993 

Further information on research design is available in the Life Sciences Reporting Summary 994 

linked to this article. 995 
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Figure 1: Two types of local hypermutation in human tumors. 

a, The HyperClust framework detects mutation clustering by accounting for 
heterogeneous mutation rates at the megabase scale, further stratifying mutations by 
type, and additionally by their approximate timing (clonal fraction). b, Kataegis 
(thunderstorm) and omikli (fog) mutation clusters in an example tumor genome 
segment (chromosome 8 of TCGA-DK-A1A6). Vertical lines are rearrangement loci. c, 
Distribution of the number of A3-context TCW>K mutations in omikli (bottom) and 
kataegis (top) of different sizes (number of mutations per cluster; callouts). d, Poisson 
mixture modeling of the number of A3-context mutations per cluster. A solution with 
two distributions is shown (teal: kataegis; orange: omikli). The stacked bars show 
component proportions and the curves are density estimates. The gray curve is the 
baseline solution with one component. The P values are from a two-sided bootstrap 
test. LL, log likelihood. e, Cumulative percentage of tumor samples that contained at 
least the given number of clustered mutations, either observed or expected at random. 
f, Distribution of the burden of A3-context somatic mutations per tumor, across tumors. 
Samples with no omikli mutations or no kataegis mutations were not considered. g, 
Cumulative fraction of A3 mutations within the neighborhood (width on x axis) of a 
rearrangement breakpoint. Error bars are 95% binomial CIs. Numbers of mutations are 
listed in parentheses. h, Pearson’s correlations between the burden of two-mutation 
omikli and of long kataegis events (left) and between the burden of kataegis of 
different lengths (right). Statistical significance was determined by two-tailed t-test on 
the Fisher-transformed correlation coefficients. 

 

  





Figure 2: Association of A3 clustered mutation density with genomic features. 

a, Mutation rates in replication time (RT) quartiles, relative to the latest RT quartile, for 
A3 mutation trinucleotide contexts (top) and control contexts (bottom). b, Mutation 
enrichment in the earliest versus latest RT quartile for A3-context clusters (top) and 
non-A3-context clusters (bottom). Cancer types are ordered by total A3 burden across 
all tumors (shading in top bar). Moderate/low A3 burden cancer types are pooled into 
the group ‘other’. c, Relative density of A3 and non-A3 mutation types across genomic 
regions. All enrichments are relative to the lowest bin (the latest RT quartile for 
replication time), which is not shown. Points are coefficients from negative binomial 
regression. Error bars are 95% CIs. d, Replication strand bias (ratio of the mutation 
count on the leading versus the lagging DNA strand) of clustered TCW mutations. Error 
bars are binomial 95% CIs. As a control, the reciprocal of the strand bias for MSI-H 
(orange; 24 samples) and POLE mutant (purple; nine samples) tumors is shown as a 
dashed line. Values in parentheses are mutation counts used to estimate the ratios. 
MSI-H, microsatellite instability-high. e, Left: distributions of IMD in A3-context kataegis 
and omikli clusters. Right: expected IMD distributions from simulations using three 
different segment lengths. f, Gamma mixture modeling of the omikli IMD distribution 
using three components. The bar shows the proportions of the components. The 
curves show their densities at various IMDs. BLCA, bladder urothelial carcinoma; BRCA, 
breast invasive carcinoma; CESC, cervical squamous cell carcinoma; HNSC, head and 
neck squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; SARC, 
sarcoma; UCEC, uterine corpus endometrial carcinoma. 

 

  





Figure 3: MMR activity in tumors is associated with APOBEC mutagenesis. 

a, Proportion of omikli clusters in A3 (left) and control non-A3 contexts (right), 
comparing MMR-deficient (MSI-H) samples with MMR-proficient (MSS) samples in 
either matched tissues (that is, colon adenocarcinoma (COAD), stomach 
adenocarcinoma (STAD) and UCEC) or non-matched tissues. Significance was 
determined by two-tailed Mann–Whitney U-test. Numbers of tumor samples are listed 
in parentheses. b, Same as a, but broken down by tissue. Pooled P values: P < 0.001 for 
A3; P = 0.433 for the control. Statistical significance was determined by two-tailed 
Mann–Whitney U-test on stratified data. Black horizontal lines are medians of the 
distributions. c, Enrichment of A3 omikli clusters and unclustered A3 mutations in 
various genome regions in MMR-deficient samples (MSI-H). This panel is related to Fig. 
2c. Coefficients of negative binomial regression are shown (as log2), indicating 
enrichments of mutation frequency in a genomic bin versus the lowest bin (in the case 
of replication time, latest replicating), where enrichment would equal unity and is thus 
not shown. Error bars are 95% CIs. d, Correlation of the burden of A3-context (TCW>K) 
kataegis, omikli and unclustered mutations with mRNA levels of MMR genes and of 
APOBEC3A and APOBEC3B genes. Error bars are 95% CIs. e, Association of CNAs in 
selected MMR genes with burden of A3 omikli. CNAs are represented as integer copy 
number differences (Methods). Positive values are gains and negative values are 
losses. See also Extended Data Fig. 3g. Significance was determined by two-tailed 
Mann–Whitney U-test comparing the neutral (0) versus the gain (+1 and +2) states 
considered jointly. **P < 0.01; ***P < 0.001. See the ‘Statistics’ section of the Methods 
for interpretation of the box plots. 

  





Figure 4: The omikli process generates the majority of unclustered A3 mutations 
across tissues. 

a, A regression analysis estimates the contributions of omikli and kataegis processes 
towards the unclustered A3 mutation burden. The results for LUAD tumor samples 
(points) are shown (other cancers are shown in Extended Data Fig. 6). For clarity, 
combinations of two variables are shown (center: omikli versus unclustered; right: 
kataegis versus unclustered), even though the regression was performed on the three 
variables simultaneously (schematic in leftmost panel; Methods). The red line is the 
intersection of the fitted plane with the shown two-dimensional coordinate system. 
Error bars are 95% prediction intervals of the fit. The dotted line is the average omikli 
(center) and kataegis (right) mutation burden across tumors. Dashed lines are the 
estimated contributions for each process (also shown as bars on the right part of the 
plot). The bottom panels show the same data as the top panels, but zoomed in on the 
x axis for clarity. b, Pan-cancer regression analysis provides estimates of the fraction 
of unclustered TCW>K mutations contributed by processes that generate omikli, 
kataegis and a remainder (intercept of regression fit) not explained by either process. 
Error bars show s.e. of regression coefficients (n = 646 tumors). c, The relative 
contribution of the omikli process to the unclustered A3 burden (y axis) of cancer types 
correlates with the overall burden of A3 mutations in that cancer type (x axis), 
suggesting that differential activity of the omikli mechanism drives differences in A3 
burden between tissues. Error bars show s.e. of regression coefficients. The shaded 
band is the 95% CI of the linear fit. GBM, glioblastoma multiforme; KICH, kidney 
chromophobe cancer; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal 
papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular 
carcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; THCA, 
thyroid carcinoma. 
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Figure 5: APOBEC mutagenesis generates many impactful mutations. 

a, Top: the functional impact density (FID) of mutational processes (slope of line), 
estimated as the number of mutations in coding regions of 299 cancer genes (y axis) 
normalized to the total mutation tally contributed by a process (x axis). Bottom: 
number of mutations estimated to result from each process across tumor samples. 
Hollow circles in box plots (bottom panel) and on lines (top panel) are the average 
mutation burden of that process in the affected tumor samples (definition in Methods). 
APOBEC-O4, A3 mutagenesis in omikli-rich tumors; APOBEC-K2, A3 mutagenesis in 
kataegis-rich tumors; S17_stad, Signature 17 mutagenesis in stomach 
adenocarcinomas; SKIN, UV mutagenesis in melanoma; age, aging-associated 
mutagenesis (details in Methods). Error bars are s.e.m. b, The occurrence of A3-
context mutations in many cancer genes is associated with the genomic burden of A3 
omikli mutation clusters, suggesting that the omikli process generates driver 
mutations. FDRs are Benjamini–Hochberg adjusted P values from a logistic regression 
to predict the presence of a TCW>K (A3-context; x axis) or VCN>K (control non-A3-
context; y axis) mutation in each driver gene. The red and gold dashed lines, 
respectively, represent stringent (5%) and permissive (10%) FDR thresholds for the A3 
context. The blue dashed line represents the (5%) FDR threshold in the control context, 
suggesting an indirect association with A3 omikli burden. The diagonal line denotes 
equal FDR between the A3 and control contexts. FDRs were capped at 0.1%. c, Burden 
of A3 omikli mutations, in wild-type and mutated tumors, in the driver genes that were 
significantly associated in the logistic regression in b. See the ‘Statistics’ section of the 
Methods for interpretation of the box plots. TSG, tumor suppressor gene. 
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Extended Data Fig. 1: Detecting clustered mutations and simulating processes that 
generate clustered mutations. 

a, Method to determine significant mutation clustering using HyperClust. A baseline 
distribution is generated by shuffling mutations within 1 Mbp windows multiple times 
(R1, R2, …, Rn) to loci with matching trinucleotide contexts. For every mutation, the 
observed intermutational distance to its nearest neighbour (nIMD) is compared with 
distributions of expected IMDs (from randomized data) to determine a local FDR (lfdr). 
Thresholding by lfdr yields clustered mutation calls (blue). b, Overview of study. c, 
Precision-recall curves for models in Fig. 1a, derived from simulated data with spiked-in 
mutation clusters: kataegis (top; with five mutations per cluster at an average 600 bp 
pairwise distance) or omikli_M (bottom; two mutations at 101 bp). Two examples of 
high mutation burden tumors (TCGA-AP-A0LD, TCGA-AP-A0LE) were used to generate 
the background mutation distributions. d, e, Testing accuracy of mutation cluster 
calling methods using simulated data. Points represent randomized tumor samples 
into which spiked-in mutation clusters were introduced. Samples are ordered according 
to total mutation burden (panel d). Columns show different performance metrics: F1 
score, precision, and recall, all at lfdr=20%. Rows represent different types of spiked-in 
mutation clusters (IMD distributions plotted in panel e, where kataegis have five 
mutations and omikli_K/M/O two mutations. Boxplots compare cluster calling 
methods, including implementations of some previous methodologies (details in 
Methods). The “strand-clonality-lfdr” (blue) is the HyperClust method used throughout 
our work. f, g, Poisson mixture modelling (related with Fig. 1d) of the number of 
mutations per cluster, showing relative likelihood (panel f) of models with increasing 
number of components and the density functions (panel g) of a model with two 
Poisson components. solid line represents mean and dashed lines the 95% C.I. h, 
Number of mutation events per tumor sample (x axis, n) per local hypermutation type 
(rows), either the A3 context TCW>K mutations, or the remaining mutations (columns). 
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Extended Data Fig. 2: Tetranucleotide context suggests a role for the A3A enzyme in 
generating omikli and A3B in kataegis mutations. 

a, c, Ratios of the YTCA (A3A-like) and RTCA (A3B-like) mutation frequencies suggest 
differential mutagenic activity of A3A versus A3B enzymes in cancer samples. The C>T 
and the C>G changes in the two A3 contexts are shown in a pan-cancer analysis (panel 
a) and broken down by cancer type (panel c). At least 100 TCW mutations of a certain 
type across all tumor samples in a tissue were required to perform analyses on that 
tissue (number of mutations in brackets). Error bars are the bootstrap 95% C.I. of the 
ratio. KICH and THCA cancer types are not shown due to low overall number of A3-
context mutations. b, Across multiple cancer types, omikli shows a tendency towards 
A3A-like, lower RTCA/YTCA-ratios than does kataegis. Difference tested by Fisher’s 
exact test (per tumor type), two-tailed; p-values were adjusted for multiple testing. 
Dashed line is FDR=20%. Lower odds ratios (<1) denote relative enrichment of YTCA 
(A3A-like) mutations in omikli compared to kataegis; see schematic above plot. 
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Extended Data Fig. 3: Association of clustered mutation rates with replication time 
(RT). 

a, RT association per cancer type. Number of mutations per RT bin: A3 context (top 
row) and the non-A3 control context at C:G nucleotide pairs (bottom row). RT bins are 
ordered from the latest-replicating quartile to the earliest-replicating quartile; mutation 
rates are shown relative to the latest RT bin. Enrichments are not shown when the 
mutation count was lower than 10. b, Trinucleotide composition of the human 
reference genome in four RT bins, normalized to the latest RT quartile (leftmost point). 
The A3 trinucleotide contexts (TCW, green) are similarly abundant in the late and in the 
early-replicating regions of the genome. c, d, Enrichment of A3-context kataegis 
clusters, considering only RT (c), or jointly considering RT, mRNA levels and the 
H3K36me3 histone mark levels (d); points are coefficients from negative binomial 
regression, and error bars are 95% C.I. e, Mutation rates in genomic bins with different 
CpG density (determined per 10 kb segment), stratified by RT quartiles. y axis shows 
mutation densities relative to the first bin (‘t1’, lowest tertile by CpG content). f, 
Spearman correlation between mRNA expression of A3A, A3B and MMR genes, and the 
TCW context enrichment of clustered mutations in a tumor. Error bars are 95% C.I. 
from the Fisher transformation of the correlation coefficient. g, Association of A3 
mutation burden (clustered and unclustered) with copy number alterations of MMR 
genes. Significance by a two-tailed Mann-Whitney test, comparing tumor samples with 
neutral (0) versus gain/amplification (+1 and +2) states (blue stars, showing p-values 
according to legend), and independently, comparing samples with neutral (0) versus 
loss (−1 and −2) states (purple stars). P-values were not adjusted. 

  





Extended Data Fig. 4: Simulations estimate power to detect mutation clusters and 
deconvolute their IMD distributions. 

a, b, An analysis of somatic hypermutation (SHM) events in lymphoid cancers suggests 
length of MMR excision tracts in human cells. The distance from the initiating AID 
mutation (here, WNCYN>N context) to the flanking mutation introduced by error-prone 
MMR (here, any mutation at a A:T pair) is plotted, in known SHM off-target regions 
(blue) and, as a control, in intergenic regions (red) (panel a). A statistically significant 
enrichment is seen in the bins of the distance to central AID mutation (x axis) between 
400–1000 nt (panel b). Numbers above/below bars are p-values by Chi-square test on 
the standardized residuals. c, Gamma mixture modelling of the IMD distributions. Log-
likelihood values for different number of components when modelling IMD of the A3 
kataegis and omikli mutations. d, The alpha and beta parameters of the three fitted 
gamma distributions (‘comp.1’, ‘comp.2’ and ‘comp. 3’) approximately match the alpha 
and beta parameters expected from simulated distributions with IMD at 30 bp, 800 bp 
and 200 bp, respectively. e, f, Simulations using spiked-in clustered mutations into 
genomes obtained by randomizing and subsampling mutations from MSI-H 
hypermutated tumors (panel e) and other hypermutators (panel f), with the goal of 
determining the recall (or sensitivity; y axis) of recovering mutation clusters at various 
global mutation burdens (x axis). Dashed line is a loess fit and shaded area is its 95% 
C.I. Vertical lines are residuals of the fit. g, Difference between MSI and MSS tumor 
samples in the absolute burden of clustered A3 omikli mutations; significance by 
Mann-Whitney test (two-tailed). 

  





Extended Data Fig. 5: Validation analyses using independent genomic data sets. 

a–c, Fitting a Poisson distribution mixture to the number of mutations per cluster in the 
Hartwig Medical Foundation (HMF) dataset. The near-maximum log likelihood (LL) is 
obtained with two components (panel c) and the increase to three components is not 
statistically supported; p-values are from a two-sided bootstrap test. d, e, The relative 
density of A3 context (left) clustered mutations is higher in MSS (MMR-proficient) than 
in MSI (MMR-deficient) samples of the same tumor type (left column) in the HMF data. 
The difference is smaller for the non-A3, control context (right). Significance by Mann-
Whitney (two-tailed), n is the number of samples, *** is p < 0.001. Numbers show fold-
difference between MSS and MSI samples. The ‘other A3 tissues’ are lung, head-and-
neck, skin, pancreas and bladder cancer. f, In HMF data, the A3-context omikli clustered 
mutations are enriched in tumors with amplified MMR genes; significance by Mann-
Whitney test (two-tailed) comparing the neutral (0) versus the gain states (+1 and +2, 
considered jointly); n is the number of samples. g, In HMF data, A3-context omikli are 
enriched in early replicating, H3K36me3-marked genomic regions; error bars are 95% 
C.I. h, Intermutational distance distributions for kataegis (top) and omikli (bottom) A3 
context mutations in the HMF data. Dashed lines show peaks of the simulated 
distributions (Fig. 2) with segment lengths of 25 bp (green), 200 bp (purple) and 800 bp 
(orange). i, j, Whole-exome sequences in the TCGA data show an excess of A3 context 
(TCW) mutation fraction in MSS compared to MSI cancers (panel i), and an excess of 
TCW mutations at distances <1000 bp, normalized to longer distances, in MSS over 
MSI samples (panel j). ‘MSI-exp’ (n = 152) denotes the experimentally established MSI-
H status while ‘MSI-pred’ (n = 18) is the MSI status predicted using machine learning 
(ref. 61), ‘nonMSI’ (n = 5,661) is neither of these cases. 

 

  





Extended Data Fig. 6: Contribution of the omikli and the kataegis mechanisms to the 
unclustered A3 mutation burden in various tissues. 

a, The omikli mechanism generates many unclustered mutations (‘A3-O’) in various 
cancer types. b, The kataegis mechanism generates comparatively few unclustered 
mutations (‘A3-K’). Panels show the fit (red line) of the unclustered A3 burden (y axis) 
to the clustered A3 burden (x axis), (see Methods). Error bars are 95% prediction 
intervals at x=0, and at x = mean burden of A3 clustered mutations for that cancer type. 
Horizontal dashed lines are the predicted numbers of unclustered A3 mutations at 
those two points (for clarity also shown in blue/green bars next to each plot). Fits use 
robust regression (rlm function in R). For visual clarity, only the part of the plot up to the 
mean of unclustered mutation burden plus a margin is shown, however the fit uses all 
data points (that is tumor samples) including ones not visualized. 
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Extended Data Fig. 7: Mechanisms underlying A3 clustered mutations generate many 
impactful changes, affecting disease genes. 

a, Coding regions in the human genome are enriched for CpG dinucleotides (NCG), but 
not with the A3-context TCW trinucleotides, compared to random expectation. b, 
Enrichment of mutations in exons versus introns (estimate of selection strength, x 
axis) and the enrichment in intergenic regions versus introns (estimate of redistribution 
of mutations towards regions containing genic DNA, y axis; flipped). The comparison of 
mutagenic agents against APOBEC was performed for selected tissues, matching the 
relevant tissue with the particular mutagen (tumor samples listed in Supplementary 
Table 7). Error bars are 95% C.I. from negative binomial regression; numbers in 
parenthesis are the tally of mutations. c, The differential functional impact of the tested 
mutagens across replication time (RT) bins. Left: total length of coding sequences 
(CDS) in the late and early RT bins, shaded by the RT sextiles that were merged to 
create the two bins (where 1 is the latest and 6 is the earliest RT). Middle: expected 
number of cancer gene CDS-affecting mutations in an average tumor sample (same 
sets of samples, genes and mutations as in Fig. 5a; y axis) for the late versus early RT 
bin (x axis), for various mutagens (colors); error bars are s.e.m. Right: fold-difference 
between the functional impact at the late versus early bin, for various mutagen types. d, 
e, The functional impact density (FID) of various mutational processes in a set of cell-
essential genes (panel d) and neurodegenerative disease-associated genes (panel e). 
Slope shows the fraction of impactful genetic changes i.e. those affecting the CDS of 
at least one gene in the set. Points show the expected number of impactful changes 
resulting from a mutational process, on average, in a tumor genome affected by that 
mutational process. Error bars are s.e.m. ‘APOBEC-O4’ is A3 mutagenesis in omikli-rich 
tumors. ‘APOBEC-K2’ is A3 mutagenesis in kataegis-rich tumors. 

 

  





Extended Data Fig. 8: Associations between genic mutations and global burden of 
clustered mutations. 

a, Associations between A3-context TCW>K mutations in coding regions of each 
cancer gene, and the global burden of A3 kataegis (top left) or omikli (middle left) and 
their interaction term (bottom left). Right panel is same as middle-left panel, but 
showing only the significant genes, with labels. Volcano plots show logistic regression 
coefficients (transformed to odds ratio) on the x axis and the log FDR on the y axis. 
Genes that bore coding mutations in at least three tumor samples were tested. b, 
Number of TCW sites in a gene coding sequence (CDS; x axis) predicts the association 
of cancer gene mutations (y axis) with A3 omikli burden (bottom) but not with A3 
kataegis burden (top). Error bands are 95% C.I. of the linear fit. c, Same association 
analysis as panel a but for the control, non-A3 context VCN>K mutations in the gene 
CDS. d, Early RT cancer genes are more affected by A3 mutagenesis. Cancer genes 
were stratified into RT quartiles (x axis) and logistic regression coefficient (log odds 
ratio, y axis) linking A3 omikli burden with the presence of a mutation in the CDS of any 
cancer gene in that RT bin was determined. Error bars are 95% C.I. from logistic 
regression (on n=593 tumor samples). 
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Whole genome DNA sequencing provides
an atlas of somatic mutagenesis in healthy
human cells and identifies a tumor-prone
cell type
Irene Franco1*†, Hafdis T. Helgadottir1†, Aldo Moggio2, Malin Larsson3, Peter Vrtačnik1, Anna Johansson4,
Nina Norgren5, Pär Lundin1,6, David Mas-Ponte7, Johan Nordström8, Torbjörn Lundgren8, Peter Stenvinkel9,
Lars Wennberg8, Fran Supek7,10 and Maria Eriksson1*

Abstract

Background: The lifelong accumulation of somatic mutations underlies age-related phenotypes and cancer.
Mutagenic forces are thought to shape the genome of aging cells in a tissue-specific way. Whole genome analyses
of somatic mutation patterns, based on both types and genomic distribution of variants, can shed light on specific
processes active in different human tissues and their effect on the transition to cancer.

Results: To analyze somatic mutation patterns, we compile a comprehensive genetic atlas of somatic mutations in
healthy human cells. High-confidence variants are obtained from newly generated and publicly available whole
genome DNA sequencing data from single non-cancer cells, clonally expanded in vitro. To enable a well-controlled
comparison of different cell types, we obtain single genome data (92% mean coverage) from multi-organ biopsies
from the same donors. These data show multiple cell types that are protected from mutagens and display a
stereotyped mutation profile, despite their origin from different tissues. Conversely, the same tissue harbors cells
with distinct mutation profiles associated to different differentiation states. Analyses of mutation rate in the coding
and non-coding portions of the genome identify a cell type bearing a unique mutation pattern characterized by
mutation enrichment in active chromatin, regulatory, and transcribed regions.

Conclusions: Our analysis of normal cells from healthy donors identifies a somatic mutation landscape that
enhances the risk of tumor transformation in a specific cell population from the kidney proximal tubule. This unique
pattern is characterized by high rate of mutation accumulation during adult life and specific targeting of expressed
genes and regulatory regions.

Keywords: Somatic mutations, Aging, Kidney cancer, Proximal tubule, kidney progenitors

Background
Over a lifetime, the human body is vulnerable to a vast
number of mutagenic forces that collectively lead to loss
of genome integrity and subsequently cellular aging and
cancer initiation [1]. Sequencing studies have revealed
genetic variations among cells within an individual,

referred to as “somatic variance.” This information can
be used to study the genome evolution during the life-
span of an individual [2] and outline specific mutagenic
processes that promote the transition from a normal to
a cancer cell [3]. Variants that are exclusively detected in
the clonal-cell population of a tumor are believed to rep-
resent the mutations that occurred in the cell prior to
the initiation of cancer [4] and are widely used to study
mutational processes in normal tissues. However, inher-
ent within cancer clones are characteristics (increased
genomic instability and selective advantage), which can
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present a conundrum in understanding the etiology of
somatic mutations in normal tissues. The elimination of
confounding factors can be achieved by studying muta-
tions in non-cancerous cells, thus allowing a direct as-
sessment of genomic changes occurring with typical
aging of organ systems. Whole genome sequencing
(WGS) of a high number of single cells would be the
most informative method. However, there are technical
challenges associated with single-cell WGS and these
have impeded massive analysis of somatic variance in
normal cells [5, 6]. An alternative strategy is the bulk se-
quencing of non-cancer human tissues [7–10]. This ap-
proach provides only selected variants, i.e., variants
contained in the genome of cells that clonally expanded
in the normal tissues and contributed a detectable num-
ber of copies. But, similar to what observed for cancer,
detectable variants may not be fully representative of the
common mutational processes. In addition, bulk data
are not ideal for analyses that compare the frequency of
mutations in specific genomic regions or for exploring
the non-coding portion of the genome [7–10]. It is pos-
sible to obtain WGS data relative to a single genome
while avoiding single cell sequencing. This method re-
quires in vitro clonal expansion of a single cell prior to
sequencing, and a specific processing of data, in order to
select the somatic variants that were present in vivo and
eliminate those that occurred during culture [2, 6]. This
strategy has some limitations. For example, it is neces-
sarily restricted to cells that are able to proliferate
in vitro (e.g., stem/progenitor cells or reprogrammed
cells), and the culturing procedure is demanding and not
suitable for the analysis of a large number of cells. Des-
pite these limitations, the strategy has been successfully
applied to the analysis of skeletal muscle progenitors
[11]; intestine, colon, and liver stem cells [12]; blood
stem and progenitor cells [13, 14]; and reprogrammed
skin fibroblasts [15].
Results generated from clonally expanded, normal cells

demonstrate that aging is correlated with a linear in-
crease of somatic mutations and specific mutation pat-
terns and distributions. These features appear very
consistent among different cells of the same tissue, even
when obtained from different individuals. Therefore,
despite the low number of genomes analyzed per tissue,
important general conclusions regarding the rate of oc-
currence and the main features of somatic mutations
have been drawn for skeletal muscle, liver and intestinal
stem cells, and blood cells during aging [11, 12, 14]. Im-
portantly, information can be gleaned from these data
and used to build an understanding of cellular and gen-
omic activities prior to the appearance of mutations. A
catalogue of somatic mutations can be deconstructed
into distinct components or mutational signatures,
through non-negative matrix factorization (NMF) [16].

In multiple cases, mutational signatures obtained
through the analysis of thousands of cancer genomes
have efficiently been attributed to a specific etiology [17]
(http://cancer.sanger.ac.uk/cosmic/signatures). This is
the case of signature 7, which is found predominantly in
cancers derived from the skin and is consistent with the
chemical modifications of DNA expected after sunlight
UV exposure [17]. Unfortunately, the mechanisms
underlying other signatures remain unknown. For ex-
ample, the single base substitution signature (SBS)40
was recently separated from signature 5 and shown to
induce a large number of mutations in cancer samples,
especially those derived from the kidney [18]. While the
etiology of signature 5 seems to be related to uncor-
rected errors [19, 20], the etiology of SBS40 is unex-
plored. Another strategy to identify the mutagens that
shape a given genome is to study regional differences in
the distribution of somatic mutations [21]. Genomic fea-
tures that determine the non-random localization of mu-
tations are (1) DNA replication timing [22], (2)
chromatin organization [11, 23, 24], and (3) the levels of
active transcription [25]. Consequently, these features
influence DNA exposure to both extrinsic (genotoxic
compounds and radiations) and intrinsic (DNA synthesis
and repair mechanisms) mutagens [21–23, 25] and are
thought to be dependent on the organ or tissue. Taken
together, it is the current belief that the development of
somatic mutations in healthy tissues occurs as tissue-
specific somatic mutagenesis [12, 14, 17, 26].
The findings derived from our atlas of somatic muta-

tions in healthy tissues do not support a simple associ-
ation of each tissue to a specific somatic mutation
pattern. In contrast, we identify a stereotypical, muta-
tional pattern across progenitor cells from a variety of
tissues and two distinct mutation profiles in the same
tissue portion, indicating that mutagen exposure is mod-
ulated by multiple factors in addition to tissue type. In
particular, we identify cell differentiation state and cell-
type-specific activities as critical determinants of muta-
genesis. Importantly, our high coverage WGS data
allowed us to define that the landscape of somatic muta-
tions in different cell types is different in terms of muta-
tional signatures, but also genomic distribution of
mutations. Our analyses, based on single genome data
from the kidney, skin, subcutaneous, and visceral fat
cells from healthy donors, and complemented with a
meta-analysis of somatic mutations from healthy (N =
161) and tissue-matched cancer genomes (N = 192),
identify a unique mutation pattern in a population of
proximal tubule (PT) cells. This population expresses
the distinguishing markers of a PT cell type previously
identified as the cell of origin of the most common kid-
ney cancer subtypes [27]. Its unique mutation pattern is
characterized by high rate of mutation acquisition

Franco et al. Genome Biology          (2019) 20:285 Page 2 of 22



during adult life and mutation enrichment in regulatory
regions and expressed genes, ultimately resulting in a
higher risk of a transition to cancer. Overall, our work
constitutes the proof of principle for exploiting somatic
mutation data from healthy cells to tailor cell-type-
specific approaches of cancer prevention.

Results
Detection of mutations in different tissues from the same
individual
To explore differences in mutagenic processes occur-
ring in adult human tissues, we analyzed the somatic
variation in human kidney tubules (KT), epidermis
(EP), and subcutaneous and visceral adipose tissue
(SAT and VAT, respectively) from healthy individuals
of different ages. These tissues are subjected to exten-
sive morphological changes during aging, including
loss of regenerative potential and atrophy in the case
of kidney tubules, epidermis, and subcutaneous fat
and progressive hypertrophy in the case of visceral fat
[28, 29]. Genomic alterations, for example those con-
nected with premature-aging syndromes, have been
associated to kidney, skin, and fat changes [30–32],
and our analysis aims to better establish a link be-
tween loss of genome integrity and specific morpho-
logical modifications in these tissues.

Genomic data were obtained by WGS of single
cells freshly isolated from tissue biopsies and clonally
expanded in vitro (Fig. 1a). This strategy allowed the
survey of ~ 92% of the genome at a minimum cover-
age of 15x and the discovery of somatic mutations
present in the single cell at the moment of isolation
from the tissue. A stringent filtering on the allele
frequency (AF), allowing only variants with AF com-
prised between 0.4 and 0.6, efficiently discarded
somatic variants acquired during in vitro culture (see
the “Methods” section). A well-controlled compari-
son of tissue-specific differences was achieved
through the analysis of cells derived from multiple
tissues from the same individual (Fig. 1a, b). Multi-
tissue biopsies were obtained from three living, kid-
ney donors of younger age (30, 31, 38 years) and
three donors of older age (63, 66, 69 years). Charac-
teristics of the donor pool were as follows: (1) pro-
vided an extensive, clinical evaluation before surgery;
(2) no history of cancer, only two donors reported
forms of benign hyperplasia that are very common
in the population; (3) a body mass index ranging
from 20 to 30 kg/m2; and (4) normal kidney function
(Additional file 1: Table S1A). None of the donors
carried a genetic predisposition to cancer, according
to our analysis of germline mutations in 47 known
cancer genes (Additional file 1: Table S1B).

Specific cell types were cultured from all tissues tested:
kidney tubule cells from the kidney, pre-adipocytes from
fat, and keratinocytes from the skin (Additional file 1:
Figure S1). Cells were sequenced only if they were able
to attach and proliferate as a colony for 17–20 divisions
(Additional file 1: Table S1C). Based on these unique
properties of colony formation and long-term prolifera-
tion, we named our samples as progenitors from KT, EP,
SAT, and VAT.
Our newly generated data comprises a total of 69

single genomes (Fig. 1b, Additional file 1: Table
S1D). From one donor (a 69-year-old woman), we
obtained multiple, progenitor clones from four tis-
sues. From the other individuals, we sequenced mul-
tiple KT clones and, in most cases, also multiple
SAT and VAT clones (Fig. 1b). The sequencing data
yielded information on single nucleotide variants
(SNVs) and small insertion/deletions (InDels) (Add-
itional file 1: Table S1D and Additional file 2) that
were validated using a technical replicate. The valid-
ation rate was 99 and 97% for SNVs and InDels, re-
spectively (Additional file 1: Table S1E). This
validation confirmed that our pipeline could recover
a set of high-confidence somatic variants and ex-
clude variants that occurred during cell culture, as
demonstrated in our previous publication [11]. The
false-negative rate is also expected to be the same
(0.41) [11].
The data have been used in either tissue- or age-

focused analyses in order to explore both the tissue-
specific differences of somatic mutation accumulation
and the age-related genome modifications common
among tissues (Fig. 1b).

The tissue of origin of a cell is not the only determinant
of the somatic mutation profile
To understand somatic mutagenesis in different tis-
sues, we compared the spectrum of somatic mutations
recovered in each sample. Somatic SNVs were orga-
nized in 96 classes based on the type of base substi-
tution and its trinucleotide context. This classification
yielded a somatic mutation profile that was used to
cluster samples (Fig. 2a). As expected, EP samples,
rich with UV-induced C > T transitions, separated
from all the others (first cluster to the left). Unex-
pectedly, the other samples did not cluster according
to the tissue of origin, but created two main sub-
groups. The largest group (right) included all SAT
and VAT clones and some of the KT samples (KT1).
The other cluster (center) consisted of the remaining
KT samples (KT2; 54% of KT clones). All but one bi-
opsy showed the concomitant presence of KT1 and
KT2 cells (Fig. 2b). The KT2-mutation profile charac-
terized all the clones with the highest numbers of
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variants, both SNVs and InDels (Fig. 2c, d, respect-
ively). In agreement, KT2 clones showed higher, yearly in-
crease of mutations (56.6 SNVs and 8.0 InDels per
genome per year), compared to the other cell types (KT1

clones 11.7 SNVs and 1.4 InDels; SAT 17.5 SNVs and 0.9
InDels; VAT 27.2 SNVs and 1.4 InDels) (Fig. 2e, f).
In summary, we identify a stereotyped mutation

spectrum in multiple, different tissues (KT, SAT, VAT)

Fig. 1 Somatic mutation detection in single genomes from different tissues of the same individual. a Experimental strategy for single genome
analysis of progenitor cells from multiple tissues from the same healthy individual. Blood, kidney, subcutaneous fat (SAT), visceral fat (VAT), and
skin biopsies were obtained from living kidney donors undergoing surgery. The blood tissue was whole genome sequenced (WGS) as a bulk to
obtain the individual’s reference sequence. The kidney tubule (KT) and epidermis (EP) portions were separated from the kidney and skin biopsies,
respectively. Single progenitor cells were isolated from KT, SAT, VAT, and EP and clonally expanded in culture to obtain WGS data. These data
were filtered using the individual’s reference sequence to obtain the catalogue of somatic variants for every clone. b Schematic summary of
sequenced samples and analysis strategy. Two to five single genomes per biopsy were sequenced (white numbers in the round plot) from six
individuals of either younger (30–38) or older (63–69) age. KT progenitors were sequenced for all six individuals, while SAT, VAT, and EP
progenitors were sequenced in a subset of the donors. Somatic mutation data were used to study either the tissue or the age effect on mutation
accumulation. An example of tissue-related differences found in the study is provided (top right): somatic SNVs found in 4 clones from different
tissues of the same individual were plotted according to their genomic position and in different colors according to the type of base substitution.
An example of age-related changes is provided (bottom right): total amount of SNVs in the genome of each sequenced clone from two selected
individuals of either younger (30 years) or older (69 years) age
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and two distinct spectra in the same tissue (KT1 and
KT2), suggesting that the tissue of origin is not the main
determinant of somatic mutation accumulation in this
sample set.

An atlas of somatic mutagenesis in healthy tissues
distinguishes basal and mutagen-driven processes
In order to build a more comprehensive atlas of somatic
mutation landscapes in human tissues, we extended our
analysis to public datasets of somatic mutations from
WGS of clonally expanded non-cancer cells. The cell
types in this meta-analysis include skin fibroblasts
(SkinFB) [15]; stem cells from the liver, intestine, and
colon [12]; and progenitor cells from skeletal muscle
(SkM) [11] and blood [13] (Additional file 1: Table S2).
A total of 92 genomes were analyzed, in addition to our
69 genomes, and the samples subjected to unsupervised
clustering on the base of their trinucleotide spectra

(Fig. 3a). The groups defined in our initial clustering
(Fig. 2a) were mostly maintained. Interestingly, the clus-
ter including cells from multiple tissues (KT1, SAT,
VAT) was confirmed and two more cell types, the SkM
and blood progenitors, overlapped with it in the center
of the plot. This cluster was called the “common progen-
itors” (Fig. 3a).
To understand the main factors driving the sample

clustering (Fig. 3a), mutational signatures were analyzed
(Fig. 3b–d and Additional file 1: Figure S2–S5). To in-
crease the power, the WGS of 192 tissue-matched tumor
samples were analyzed along with the 161 healthy sam-
ples (Additional file 1: Table S2). Eight signatures were
obtained by NMF and named after the most similar, sin-
gle base substitution (SBS) signature from the catalogue
of signatures observed in cancer [18] (Additional file 1:
Figure S2). The relative exposure of each signature in
different normal and cancer types was analyzed in order

Fig. 2 Clustering of samples on the base of mutation types defines similarities between different tissues and two subsets of KT cells. a Mutation
pattern of 69 single genomes obtained from different human tissues of six healthy individuals of either younger (30–38) or older (63–69) age
(horizontal). SNVs were subdivided in 96 classes based on the single base substitution types and their trinucleotide context (vertical) and the
relative amount of mutations for each class were plotted as a heatmap. Hierarchical clustering of the samples based on the mutation pattern is
shown on top of the heatmap. b Percentage of kidney-tubule-derived cells clustering in the KT1 or KT2 subset per biopsy. Each biopsy is defined
by the age of the donor (30 years N = 4; 31 years N = 5; 38 years N = 3; 63 years N = 4; 66 years N = 5; 69 years N = 4 clones). c, d Number of
somatic single nucleotide variants (SNVs, c) and small insertions/deletions (InDels, d) found in single genomes of multiple progenitors from 6
individuals of different ages. (x axis) The numbers of somatic variants per clone were normalized to the percentage of autosomes covered by the
sequencing. Linear regression curves and P values calculated with the linear mixed models are shown for each tissue. e, f Average yearly increase
of somatic SNVs (e) and InDels (f) per tissue. * P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA and multiple comparisons tests. EP epidermis,
KT1 kidney tubule 1, KT2 kidney tubule 2, SAT subcutaneous fat, VAT visceral fat
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Fig. 3 Meta-analysis of somatic mutation data from healthy donors defines basal and mutagen-driven mutagenesis in adult tissues. Sixty-nine
single genomes from epidermis (EP), kidney tubule 1 (KT1), kidney tubule 2 (KT2), subcutaneous fat (SAT), and visceral fat (VAT) were analyzed
together with public datasets of somatic mutations from WGS of clonally expanded non-cancer cells, including skin fibroblasts (SkinFB) [15]; liver,
intestine, and colon stem cells [12]; skeletal muscle progenitors (SkM) [11]; and blood progenitors [13]. a tSNE plot of the trinucleotide profile of
somatic SNVs. Multiple tissues displaying a common mutation profile (SkM, SAT, VAT, KT1, and blood) were named “common progenitors.” b
Relative contribution of the eight mutational signatures identified in healthy cells via non-negative matrix factorization. Each signature was
named after the most similar single base substitution (SBS) signature from [18]. c Average yearly increase of somatic SNVs obtained by linear fit of
mutations with age in the common progenitors, KT2, liver stem cells, and intestinal stem cell (intestine and colon) groups. P values from linear
mixed models are shown in Additional file 1: Table S3a. d. e Linear increase of mutations with age and signature profile of SBS5 (d) and SBS40 (e)
in KT2 (red), liver (yellow), and common progenitors and intestine-derived (colon and intestine stem cells) samples (gray). SBS5 and SBS40
showed similar profiles (bottom), but different tissue distribution
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to identify cell types with significantly higher exposure
to specific signatures (Additional file 1: Figure S3 and
Table S3). Two signatures, SBS2 (APOBEC) and SBS17b,
appeared largely tumor-specific in the sample set exam-
ined here and were found at high levels in sparse cancer
genomes and at negligible levels in healthy samples
(Additional file 1: Figure S3). Apart from these signa-
tures, the somatic mutation profiles found in cancer
samples broadly supported the results found in the cor-
responding healthy samples (Additional file 1: Figure S3
and S4a).
Overall, our analysis shows that signatures SBS1, 3/8,

and 5 were found ubiquitously (Additional file 1: Figure
S3) and linearly increased with age (Additional file 1:
Table S4). The common progenitors (SAT, VAT, KT1,
SkM, and blood) presented the lowest yearly increase of
mutations among the cell types analyzed, and the major-
ity of these mutations could be attributed to SBS1,
SBS3/8, and SBS5 (Fig. 3c). These evidences suggest that
the signature combination comprised of SBS1, SBS3/8,
and SBS5 is the unavoidable product of core cellular
processes. Therefore, we define it as “basal mutagenesis.”
Consistent with this concept, cell types that were not
common progenitors had higher exposure to additional
signatures that are associated with specific, mutagen ex-
posure. Examples are (1) EP samples showing high levels
of SBS7a, a signature induced by UV light exposure, and
(2) the SkM cells used as a control for culture-induced
mutagenesis in our previous study [11] (SkM-long),
which showed SBS18, a signature linked to in vitro cul-
ture stress [20, 33] and consequent production of intra-
cellular reactive oxygen species [34] (Fig. 3b). These
samples were used as positive controls for prolonged ex-
posure to a mutagen.
KT2 and liver stem cells generated two specific clus-

ters, adjacent to each other (Fig. 3a). This similarity
matched the higher rate of age-related accumulation of
SBS5 seen in KT2 and liver samples (Fig. 3d). However,
this increase did not seem to be the consequence of a
major defect of nucleotide excision repair (NER) [19] be-
cause SBS5 was 15-fold lower in liver and KT2 cells
compared to our positive controls for NER deficiency,
the ERCC2-null tumors (Additional file 1: Figure S4b-c).
In contrast to SBS5, SBS40 increased with aging mainly
in KT2 cells (Fig. 3c, e). Among analyzed samples,
SBS40 was stronger in KT2 and two types of kidney can-
cer, clear cell and papillary renal cell carcinomas (KIRC
and KIRP, respectively) (Additional file 1: Figure S3).
Like KT2, these tumor types demonstrated a rise in
SBS40 with aging (Additional file 1: Figure S4d-e), sug-
gesting that signature SBS40 is the result of a mutagen
active in the kidney. Interestingly, the chromophobe
subset of kidney carcinoma (KICH) and KT1 showed
low SBS40 contribution (Additional file 1: Figure S3 and

S4d-e), indicating that only specific subsets of kidney
cells are exposed to the mutagenic process eliciting this
signature. To obtain insight into possible mutagens ac-
tive in these cells, the mutation profiles of 161 normal
and 192 tissue-matched tumor samples were compared
to the spectrum induced by 53 genotoxic compounds in
a clonal population of iPSCs [33]. The spectrum of mu-
tations found in KT2 and kidney tumors KIRC and KIRP
(Additional file 1: Figure S5b) was similar to that gener-
ated by exposure to formaldehyde and alkylating agents,
suggesting that these specific cell types in the kidney
might be exposed to these mutagens, more likely derived
by endogenous chemical reactions [35].
Taken together, results indicate that a group of cells

from different tissues (common progenitors) provide a
model of minimal mutagenesis, which we named “basal
mutagenesis.” Relative to these cells, all other cell types
show signs of exposure to additional extrinsic (UV light
in EP, in vitro culture stress in SkM-long), intrinsic (high
SBS1, probably caused by higher proliferation rate in in-
testinal stem cells [12]), or endogenously produced
(KT2) mutagens.

KT2 are damaged cells from the proximal tubule
To better understand mutagen exposure in KT cells,
the similarities between normal kidney cells and dif-
ferent subsets of kidney cancer were further explored.
A comparison of somatic mutation profiles showed
that KT1 cells did not overlap with any kidney cancer
type, but were intermixed with the common progeni-
tor group (Fig. 4b). Conversely, the KT2 mutational
profile was similar to KIRPs and KIRCs and very dis-
tant from the distal-tubule-derived KICH (Fig. 4b).
The different subsets of kidney tumors show specific
genetic, epigenetic, and transcriptional profiles [27,
36, 37], due to their origin from distinct cell types
within the kidney (Fig. 4a). KIRCs and KIRPs origin-
ate from the proximal tubule (PT) [27, 36], where the
epithelial layer is exposed to a continuous flow of po-
tentially mutagenic compounds either reabsorbed
from or excreted into the urine (Fig. 4a). A specific
population of epithelial cells from the convoluted PT
(named PT1) was recently identified as the more
likely precursor of ccRCC and pRCC tumors on the
base of scRNA seq data [27]. Given the similarities
between KT2 and ccRCC/pRCC at the somatic muta-
tion level, we hypothesized that KT2 clones may over-
lap with the PT1 population and tested the
expression of a number of markers by FACS and
qPCR (see the “Methods” section and Table 1). Se-
lected KT1 and KT2 clones were tested and found
positive for markers of kidney progenitors, while most
markers of differentiated cells were not expressed,
suggesting that both populations are in an
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undifferentiated state. Despite this, KT2 also
expressed VCAM1/CD106 and SLC17A3, the markers
that define the PT1 population found by Young et al.
In addition, KT2 expressed AQP1 and PDZK1, two
PT markers, and KIM1, a marker of tubule damage.
The same markers were absent or expressed at lower
levels in KT1 clones, except for a clone that showed
a mutation spectrum very close to KT2 and alkylating
agent exposure (marked with an arrow in Fig. 4a, d;

Additional file 1: Figure S5b). Overall, these data sug-
gest that KT2 cells can originate from the PT1 popu-
lation, but are found in a less differentiated state.
Indeed, our cell culture procedure selects for proliferating
cells and KT epithelial cells are known to reacquire prolifer-
ative capacities after de-differentiation in response to tubule
damage [38]. Conversely, the KT1 population expression
profile is overall consistent with a previously characterized
population of scattered kidney tubule progenitors [39].

Fig. 4 KT2 cells are proximal tubule cells exposed to mutagens. a Cartoon representing a kidney nephron and the location of the different tumor
samples included in the analyses (according to [27, 36]). A section of proximal tubule (PT) is enlarged to show the trafficking of water, solutes,
and other compounds across the PT epithelium. b tSNE plot of the trinucleotide profile of somatic SNVs in healthy (n = 161) and tumor (n = 192)
samples. The common progenitors (SAT, VAT, SkM, and blood) and kidney-derived healthy and tumor genomes are highlighted with specific
colors, while all other samples are shown in gray. c FACS analysis of the kidney progenitor markers CD133 and CD24 in selected KT1 and KT2
clones (n = 4). The average percentage of double- or single (CD24)-positive cells per clone is shown. d Heatmap showing the relative expression
of markers of undifferentiated and differentiated kidney cells in single clones (subdivided in 11 categories described in the legend on the right)
from either the KT1 (n = 4) or the KT2 (n = 2) group, tested by qPCR. Human embryonic stem cells (ESC bulk) and skin fibroblasts (SkFB bulk) were
included as negative controls, together with a VAT clone. RNA extracted from a fresh kidney biopsy was included as positive control. The same
KT1 clone is marked with an arrow in b and d, to highlight its intermediate KT1/KT2 phenotype at both somatic mutation (b) and gene
expression (d) levels. KT1 and KT2, healthy kidney-tubule-derived cells; KIRC, clear cell renal cell carcinoma; KIRP, papillary renal cell carcinoma;
KICH, chromophobe renal cell carcinoma; PT, proximal tubule; DT, distal tubule; S1, first segment of PT, convoluted; S3, last segment of
PT, straight
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Somatic mutagenesis in the kidney proximal tubule
predisposes to the acquisition of driver mutations
Tumors derived from the PT (KIRC and KIRP) consti-
tute the vast majority of tumors diagnosed in the kidney
(Fig. 5a) [40], supporting the hypothesis that somatic
mutagenesis in the PT favors tumorigenic transform-
ation. Since KT2 are non-cancer clones from the PT of
healthy kidneys, we studied these cells as a model of mu-
tagenesis in the PT, prior to cancer initiation.
First, we confirmed that KT2 were not cancer clones

at the moment of isolation from the tissue by analyzing
the possible presence of the genetic lesions that com-
monly drive cancer initiation in KIRC and KIRP [41].
KT2 showed lower mutation burden compared to KIRC
and KIRP (Fig. 5b) and did not display the typical kidney
cancer genetic lesions, nor mutations in TP53, a tumor
suppressor often mutated in pre-cancer clones in human
tissues [7, 8, 10] (Additional file 1: Table S5). Yet, the
mutation burden in cells from 63- to 69-year-old donors
was higher in KT2 compared to other kidney cells (KT1;
Fig. 5b) and the specific mode of somatic mutation accu-
mulation in the PT could facilitate the acquisition of
driver mutations and ultimately promote tumor
initiation.
Kidney tumors are very rare at 30 years of age, but

the incidence increases constantly and peaks in the
8th decade of life [40]. To model driver mutations,
we selected the somatic mutations predicted to have
a functional effect on a gene that is actually
expressed in the tissue of origin. We defined these
variants as potentially pathogenic mutations and de-
termined their age-related increase (Fig. 5e, f). KT2
cells acquired higher numbers of potentially patho-
genic mutations compared to other cell types from
the same donors (KT1-SAT-VAT, Fig. 5e, f). The
yearly increase was 5.7-fold higher in KT2 compared
to KT1-SAT-VAT (Fig. 5f). From these data, we esti-
mate that each PT cell accumulates an average of
86.5 potentially pathogenic mutations by the age of
70. A higher rate of accumulation of potentially
pathogenic mutations makes the acquisition of can-
cer driver mutations in PT cells a more likely event
compared to other cell types. These data are in
agreement with the overall higher somatic mutation
burden in KT2 (Fig. 2c-f). However, we also noticed
that the mutation load in introns and exons of tran-
scribed genes was higher than expected by random
distribution and higher compared to non-expressed
introns and exons (Fig. 5d). Conversely, the other
cell types from the same donors (KT1-SAT-VAT,
Fig. 5 d and Additional file 1: Figure S6) showed
mutation depletion in these regions, in agreement
with previous reports [11, 12]. Similarly, conserved
regions were protected from mutations in KT1-SAT-

VAT and enriched in KT2 (Fig. 5e). Finally, KT2
showed a particularly strong enrichment of muta-
tions in regulatory regions (Fig. 5d). Overall, our
somatic mutation analysis of non-cancer cells points
to substantial differences in the genomic distribution
of mutations depending on the cell of origin. These
differences make specific cell types more vulnerable to the
acquisition of mutations that affect the function of im-
portant genes, and this feature correlates with increased
chances of a transition to cancer.

Different efficiency of DNA repair in cells exposed to
basal mutagenesis or additional mutagens
The regional pattern of distribution of mutations across
the genome is shaped not only by mutagen exposure,
but also by DNA repair. In fact, transcribed DNA is gen-
erally depleted of mutations due to the activity of the
transcription-coupled NER (TC-NER) [25, 42]. In
addition, mismatch repair (MMR) more efficiently pro-
tects from mutations the early-replicating and
H3K36me3-rich DNA [21, 43]. Transcribed genes are
usually located in early-replicating and H3K36me3-rich
chromatin and benefit of both high TC-NER and MMR
activities. Specific alterations in the pattern of regional
differences of mutation accumulation are signs of TC-
NER and MMR defects [21, 25, 42–44]. Therefore, we
analyzed these patterns in our catalogue of healthy
genomes.
Figure 6a shows the specific contribution of early/late

DNA replication timing (RT), abundance of H3K36me3
marks, and transcription levels to the enrichment/deple-
tion of mutations in different cell types. The group of
common progenitors, including SAT, VAT, SkM, and
blood, but not KT1, showed the expected depletion of
mutations with earlier RT, higher H3K36me3 abundance
and higher transcription levels (Fig. 6a and Add-
itional file 1: Figure S7a-b). This pattern indicates that
the basal mutagenesis is actively counteracted by MMR
and/or TC-NER. However, EP, KT2, KT1, liver, SkM-
long, and SkinFB deviated from the pattern seen for
common progenitors and showed a loss of association of
mutation rates with RT and H3K36me3 (Fig. 6a and
Additional file 1: Figure S7c).
KT2 showed a severely affected RT and H3K36me3

pattern (Fig. 6a), thus suggesting that many mutations
escaped MMR activity. While an increased proportion of
InDels compared to SNVs in KT2 genomes was consist-
ent with MMR defects (Fig. 6b), no evidence of a clas-
sical form of microsatellite instability (MSI) was
detectable (Fig. 6c). These data suggest that some form
of MMR is likely operative in these cells. Interestingly,
KT2 were the only cell types displaying higher amounts
of mutations in highly transcribed regions, while in all
other cell types transcription protected from mutations
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Fig. 5 (See legend on next page.)
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(Fig. 6a, right). This suggests that a transcription-
coupled mutagenic process [45] may be active in KT2
cells, supported by a striking, altered pattern of
transcription-strand asymmetry of the different substitu-
tion types (Fig. 6d).
Overall, these results indicate a mechanism in cells

that are exposed only to basal mutagenesis for sparing
early-replicating-, H3K36me3-rich and highly tran-
scribed regions from mutations. This occurs in diverse
tissue types and is consistent with previous evidence of a
more efficient activity of MMR and NER pathways
directed towards active chromatin [22, 42]. In cells puta-
tively exposed to a mutagen (EP, KT2, KT1, liver, SkM-
long, and SkinFB), the altered, mutation-depletion
pattern suggests that NER- and/or MMR-mediated pro-
tection is not as effective. KT2 cells show a unique pat-
tern of mutation distribution that explains the higher
mutation rate in transcribed genes (Fig. 5e).

Aging affects the efficiency of MMR and NER
Finally, we focused on non-tissue-specific effects of
aging. Chromosomal instability is known to increase
with age in normal tissues [2, 46]. Sequencing data from
the 69 genomes from KT, SAT, VAT, and EP samples
from 6 healthy kidney donors and 29 SkM progenitor
genomes from 7 healthy donors from [11] were used to
detect large chromosomal aberrations (Additional file 1:
Table S6). These aberrations were recovered in three dif-
ferent tissues, i.e., skeletal muscle, VAT, and kidney tu-
bules (both KT1 and KT2 cell types), but only in
association with aging (Fig. 7a, b), supporting a general
age-related increase of chromosomal instability.
The number of SNVs and InDels per genome also in-

creased in all surveyed tissues with aging (Fig. 2c, d). To
explore whether an age-related decline in DNA repair
could contribute to somatic mutation accumulation, we
selected cell types showing the more effective MMR and
NER activities (Fig. 6a and Additional file 1: Figure S7a-
c) and analyzed differences in mutation distribution and

spectra in different age groups. Older genomes showed a
weakened association of mutations with RT compared to
younger ones, indicating a partial loss of MMR activity
(Fig. 7c and Additional file 1: Figure S8a). The effect size
of this defect was approximately one third of that ob-
served in tumors with known MMR loss (MSI-H) (Add-
itional file 1: Figure S8b), suggesting that aged, healthy
cells acquire an early-stage mutator phenotype. MSI tu-
mors were also found to lack mutations in binding sites
for CTCF and Cohesin, in agreement with the require-
ment of a functional MMR to produce mutations at
these sites [47]. Relative amount of mutations at CTCF/
Cohesin peaks was lower in old vs young genomes. This
result constitutes a further proof in support of a partial
defect of MMR activity in old cells.
To investigate if defects extend to other pathways, we

analyzed the age-related increase of SBS5, known to be
associated with NER inactivation [19]. Results show that
the fraction of SBS5 mutations per genome increases
with age progression (Fig. 7d). This age-related expan-
sion was specific for SBS5 and not detectable for the
other ubiquitous signatures SBS1 and SBS3/8 (Add-
itional file 1: Table S3b); this supports the hypothesis
that NER weakens with advancing age. In summary, evi-
dence demonstrates the decline of both MMR and NER
in the genome of healthy cells as they age. This
phenomenon is conserved across different tissues and
occurs in cells that did not show genomic evidence of
exposure to extrinsic mutagens.

Discussion
We present here the basis of a somatic mutation atlas
that can systematically guide the identification of
cancer-prone cell types and high-risk somatic mutation
processes. This collection exclusively includes whole
genome data and high-confidence somatic variants ob-
tained from single human cells, clonally expanded
in vitro. Our newly generated data from the kidney, epi-
dermis, subcutaneous fat, and visceral fat are based on

(See figure on previous page.)
Fig. 5 Kidney PT shows a unique somatic mutation pattern that confers high risk for tumor transformation. a Epidemiologic data showing the
percentage of kidney tumors either derived from the proximal tubule, such as KIRC (clear cell renal cell carcinoma) and KIRP (papillary cell renal
cell carcinoma), or from other kidney structures (other subtypes). b Somatic mutation burden in KT1, KT2, KIRP, and KIRC of either a younger (30–
40) or older (60–70) age range. Significance among older groups was measured by one-way ANOVA. c, d Linear fit with age (c) and yearly
increase (d) of potentially pathogenic variants in KT2 vs KT1-SAT-VAT clones. Potentially pathogenic variants are defined as follows: all variants
were annotated with CADD (Combined Annotation Dependent Depletion; https://cadd.gs.washington.edu/). SNVs and InDels predicted to affect
the coding sequence (presenting CADD score > 15) were selected and subsequently filtered on expression data in order to select only variants
affecting a gene actually expressed in the tissue of origin of the clone. Tissue-specific and non-tissue-specific genes correspond to the expressed
and non-expressed genes in the corresponding tissue according to the Human Protein Atlas (http://proteinatlas.com). Adjusted P values of the
linear fit are calculated with the linear mixed model (c) or two-sided t test (d). e Enrichment (upward bars) or depletion (downward bars) of
somatic mutations in indicated genomic features. The log2 ratio of the number of observed and expected point mutations indicates the effect
size of the enrichment or depletion in each region. Log2 = 0 corresponds to a number of observed mutations equal to the number expected by
random distribution. f Enrichment (upward bars) or depletion (downward bars) of somatic mutations in conserved and non-conserved regions of
the genome. #P < 0.05, one-sided binomial test. ***P < 0.001, ****P < 0.0001 two-sided t test of log2 ratios for either KT2 or KT1-SAT-VAT in
specified genomic regions. EP epidermis, KT1 kidney tubule 1, KT2 kidney tubule 2, SAT subcutaneous fat, VAT visceral fat
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samples derived from multiple tissues from the same in-
dividual. This strategy provides the advantage of a reli-
able comparison of tissue-specific differences, excluding

the variability derived from different genetic back-
grounds and environmental exposure. Newly generated
data are complemented and compared with publicly

Fig. 6 Mutation enrichment in specific genomic regions provides information on DNA repair efficiency and mutagen exposure in different cell
types. a Enrichment/depletion of mutations in specific genomic regions. The genomes were divided in multiple sectors (bins) according to
decreasing DNA replication time (RT, bins 0 to 5. For clarity, only bins 1, 3, and 5 are shown), increasing abundance of the histone mark
H3K36me3 (bins 0–3), and increasing transcriptional levels (RNA-seq, bins 0–3). The relative abundance of mutations in each bin vs bin 0 for every
tissue (EP, liver, KT1, KT2) or tissue group (common progenitors: SAT, VAT, SkM, blood; intestine-colon) is estimated as the coefficient in negative
binomial regression (expressed as log2), where error bars show its 95% C.I. b Linear regression of SNVs and InDels per genome in the KT2 vs KT1-
SAT-VAT group. c Percentage of sites subjected to microsatellite instability (MSI) in each genome of either the KT2 or the KT1-SAT-VAT group. d
Enrichment of the six classes of substitution types in either transcribed or non-transcribed strand of genes. The log2 ratio of the number of
observed and expected point mutations indicates the effect size of the enrichment in the transcribed (upper) or non-transcribed (lower) strand.
#P < 0.05, one-sided binomial test
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available data sets from either healthy donors [11–13,
15] or tissue-matched cancer samples from TCGA and
ICGC, for a final catalogue of 353 genomes and 12 dif-
ferent healthy cell types.
The comparison of somatic mutation landscapes in

different cell types enables the identification of cells
more susceptible to somatic mutagenesis and conse-
quent cancer initiation [3]. This knowledge is expected
to promote significant therapeutic advantages, including
more targeted and efficient means of cancer prevention

[3]. A major result of our analysis is recognizing that
mutagen exposure can be very different even within the
same tissue, and this correlates with different suscepti-
bility to cancer initiation. It is possible that analysis of
great numbers of genomes will uncover the concomitant
presence of multiple cell subsets showing distinct muta-
tion spectra in most tissues. We provide here the proof
of principle by characterizing two populations of prolif-
erating cells residing in the kidney tubule, one likely de-
rived from de-differentiated epithelial cells of the

Fig. 7 Genomic instability and weakening of DNA repair with aging. a Number of clones showing large chromosomal aberrations per tissue and
age group. Young 21–38, old 63–78. b Fraction of genomes showing large chromosomal aberrations in the samples analyzed in a, but divided in
tighter age groups (10 year-span). c Enrichment/depletion of mutations according to DNA replication timing (RT) while controlling for CTCF
binding sites in either younger (< 50 years old, N = 52) or older (> 50 years, N = 54) genomes from the tissues not showing signs of exposure to
external mutagens (SkM, SAT, VAT, intestine, and colon, according to the analyses in Figs. 3 and 6). Enrichments are coefficients from negative
binomial regression (as log2), and error bars are their 95% C.I. Significance of young-vs-old differences was tested via a Z-test on the interaction
term between age and replication time bin d. Fraction of SBS5 mutations per genome in different age groups of SkM, SAT, VAT, blood, intestine,
and colon cells. *P < 0.05, one-way ANOVA and multiple comparison tests
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proximal tubule (PT) and the other presenting features
of undifferentiated kidney tubule progenitors. The som-
atic mutation spectrum of PT-derived cells presents
unique characteristics that could not be identified in any
other kidney or non-kidney cell. PT-derived cells showed
the highest yearly increase of mutations among the cell
types analyzed and a high incidence of the signature
SBS40. The only samples that showed similar levels of
SBS40 were kidney cancers derived from the PT, namely
the clear cell and papillary cell RCCs (KIRC and KIRP,
respectively). This analogy suggests that there is a spe-
cific process ongoing in the kidney PT and this process
underlies the signature SBS40. Unfortunately, the eti-
ology of this signature has not yet been determined.
However, the extensive screening of cancer samples that
identified SBS40 highlighted its predominance in kidney
cancer [18]. Nonetheless, high levels of this signature
have also been found in sporadic cases of tumors derived
from multiple tissues, including the lung, skin, esopha-
gus, bladder, head, intestine, stomach, liver, and ovary
carcinoma, thus supporting the hypothesis that the
mutagen causing SBS40 is more common, but not exclu-
sively present in the kidney [18]. PT cells also displayed
a unique distribution of mutations across the genome.
The regions that are commonly spared from mutations
as a consequence of more intense MMR and NER activ-
ity [21, 25, 42, 43] presented equal or higher mutation
load compared to the rest of the genome. In particular,
highly transcribed genes were enriched of mutations and
the distribution of the different substitution types on the
transcribed and non-transcribed strand was altered.
These data indicate not only inefficient DNA repair, but
also the presence of a mutagenic process that is more
active on transcribed DNA. An important consequence
of this unique mutation pattern was a mutation enrich-
ment in functional genes and an age-related accumula-
tion of high-risk mutations that was 5.7-fold faster in PT
cells, compared to other cells from the same individuals.
We estimated the presence of 86 mutations altering the
protein sequence of expressed genes in every PT cell of
70-year-old individuals. Absolute numbers and other es-
timates of age-related increase of mutations presented in
this work will be more accurate when a larger number
of cells, distributed along the whole spectrum of ages,
are analyzed. In addition, our numbers are certainly an
underestimation, since our somatic mutation detection
has a false-negative rate of 0.41 and does not allow the
detection of all the variants present in a clone. However,
our estimates support a strong acceleration in the ap-
pearance of pathogenic mutations in the genome of PT-
derived cells. Mutations in the non-coding portion of
the genome are also expected to affect the function of
the cell, and we detected an enrichment of mutations in
regulatory regions which is expected to significantly

impact on overall gene expression. The high-risk som-
atic mutation landscape that we describe in PT cells pre-
dicts an elevated rate of tumorigenic transformation in
this portion of the nephron. In agreement, somatic muta-
genesis is recognized as a major tumorigenic mechanism
in the kidney [41, 48, 49] and the PT-derived tumors
KIRC and KIRP constitute up to 95% of all cancers diag-
nosed in this organ [36, 40]. Therefore, our analysis points
to PT cells as a cell type at particularly high risk of tumor
transformation. A clear understanding of the underlying
mutational mechanisms can be exploited to slow down
mutation accumulation and kidney cancer incidence.
The comparison of mutational profiles observed in

healthy cells with the landscape of mutations observed
after in vitro exposure to common mutagens [33] pro-
vides interesting hypotheses about the mutagens active
in the kidney PT. The genomic modifications observed
in healthy PT cells or tumors derived from the PT were
similar to those induced by formaldehyde and alkylating
agents [33]. Alkylating agents used in [33] are chemo-
therapeutic drugs, such as 1,2-dimethylhydrazine and di-
ethyl sulfate. The healthy kidney donors from which
cells were isolated were never treated with those agents
nor exposed to formaldehyde. Therefore, we hypothesize
that the mutation spectrum might be due to the action
of endogenously produced compounds that interact with
the DNA in a similar way as the synthetic drugs [35]. In-
deed, the epithelial layer of the kidney PT presents a
complex chemical environment that is the consequence
of ongoing physiological activities, such as ammonia
production and excretion, amino acid reabsorption and
modification, and transformation and excretion of xeno-
biotics [50]. Further analyses might support a link be-
tween the presence of these compounds in the kidney
PT and enhanced mutagenesis in this specialized
epithelium.
The kidney PT is an example of particularly high and

specific mutagen exposure. However, our analysis also
found cell types that are broadly protected from muta-
gens and constitute a model of minimal or “basal” muta-
genesis. These cells are progenitors from multiple,
unrelated tissues, namely skeletal muscle, kidney tubules,
blood, and both subcutaneous and visceral fat. Unex-
pectedly, these different cell types present a somatic mu-
tation profile that is strikingly similar. This finding is in
contrast to the hypothesis of a tissue-specific mutation
profile consequent to different activities and mutagen
exposure in each tissue [2, 17]. The absence of tissue-
specific mutagen exposure constitutes a simple way to
explain how different cell types can share the same mu-
tation profile. In this perspective, mutations observed in
skeletal muscle, kidney tubules, blood, and fat progeni-
tors are necessarily the consequence of common cellular
activities, such as “house-keeping” activities. In support
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of this hypothesis, this group of cells, which we named
“common progenitors,” displays the lowest age-related
increase of mutations among the cells analyzed. In
addition, the signatures characterizing the common pro-
file are found ubiquitously, but most cell types accumu-
late other tissue-specific mutations in addition to the
common profile.
The lack of exposure to tissue-specific mutagens in

the common progenitors is not surprising since tissues,
like the skeletal muscle and blood, have stem/progenitor
cells that reside in a protected microenvironment and
are shielded from damage [51]. Somatic mutation pro-
files are a record of the cell lineage and activities during
an individual’s lifetime. Therefore, somatic mutation
data can be used to address unsolved questions about
stem cell hierarchy and tissue architecture [13, 52]. In
the kidney, the existence of resident stem cells is contro-
versial and the presence of a potential, protective niche
is debatable [53]. Presently, the regeneration of damaged
KTs appears to be mediated by (1) resident progenitors
[39] and (2) tubule-epithelial cells that lose their differ-
entiation and reacquire proliferative capacities [38]. Our
analysis of the somatic mutation landscape supports
both types of progenitors. Cells with in vitro proliferative
capacities derived from human KTs showed either a mu-
tation profile similar to the resident progenitors of fat
and SkM (consistent with a resident KT stem cell) or a
profile similar to PT-derived tumors and signs of cellular
damage at both DNA and RNA level (consistent with a
de-differentiated cell). The two populations do not seem
completely separated. In agreement, we found a genome
from a 38-year-old individual that showed an intermedi-
ate mutational and expression profile. The population of
uncommitted KT progenitors also showed signs of
mutagen exposure when we explored the distribution of
mutations. This is consistent with their location in an
environment that is not completely protected. We
hypothesize that they reside in the PT, but are not part
of the epithelial layer. Finally, our analyses also explored
potential differences between adipose tissue progenitors
residing either in the subcutaneous or visceral fat. SAT
and VAT are considered two different tissues and show
important differences, especially concerning the mor-
phological changes occurring with aging [29]. However,
our somatic mutation data do not support specific differ-
ences in mutagen exposure in progenitor cells from the
two different types of fat during aging.
The finding and characterization of an age-related

process that most likely occurs in every cell throughout
the human body is a major finding of this study. This
phenomenon has been termed here as “basal mutagen-
esis.” Somatic mutation analysis in cancer genomes has
identified two signatures that present clock-like features,
i.e., inevitable increase in all cells as the human body

ages [54]. These signatures are considered to be the
products of core cellular processes, such as spontaneous
deamination of methyl-cytosines (signature 1) and poly-
merase errors that escape the DNA repair system (signa-
ture 5) [17, 19, 20]. Results from our study expand the
clock-like concept and define basal mutagenesis directly
in non-cancer genomes from healthy, human tissues. Be-
sides signatures SBS1 and 5, basal mutagenesis includes
a signature that is similar but does not completely over-
lap with SBS3 and SBS8. In addition, we propose that
SBS5 increases in a clock-like way in most cell types, but
can also be enhanced by specific mutagenic processes, as
observed in liver stem and kidney PT cells.
Our characterization of basal mutagenesis also includes

the distribution of mutations in relation to specific,
genomic features and the impact on DNA repair over
time. Thanks to the comparison of older vs younger sam-
ples from multiple tissues, we are able to determine a loss
of efficiency of MMR coupled with aging. In particular,
the MMR-mediated protection of early-replicating DNA
deteriorates with aging. We estimate that the effect size of
this defect is one third of that observed in tumors with a
complete MMR deficiency. These results show that the
rate of somatic mutagenesis increases with aging especially
in the gene-rich, early-replicating DNA, overall increasing
the chances of acquiring cancer driver mutations. In
addition, we found that samples from aged individuals
were subjected to a relative expansion of mutations attrib-
uted to SBS5, a signature that is enhanced by another
DNA repair pathway, NER. Overall, these findings suggest
that the efficiency of DNA repair, in particular the MMR
and NER pathways, is decreased in aged cells. These evi-
dences point to the loss of DNA repair as an accelerating
factor in cellular aging and open the door to innovations
in pharmacology.

Conclusions
We provide a comprehensive genome-wide analysis of
somatic mutagenesis in human cells. Our model of basal
mutagenesis offers an enhanced understanding of the
unavoidable loss of genome integrity and the protective
forces that counteract this process, including the stem-
cell niche and DNA repair. The finding of cell-type-
specific mutagen exposures and consequences on cell
fate in the kidney are a proof of principle supporting the
importance of understanding mutational processes active
in healthy human cells to understand cancer. WGS data
from single genomes constitute a precious tool for
achieving the goal because they allow the analysis of the
non-coding portion of the genome. Overall, our compre-
hensive classification of mutagenic processes introduces
a novel perspective for clinical advancements in prevent-
ing cancer- and age-related diseases.
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Methods
Clonal cultures from multi-organ biopsies from kidney
donors
Human biopsies were obtained intra-operatively from
healthy living kidney donors, according to Ethical Permit
Dnr 2015/1115-31. From the explanted kidney of each
donor, a needle biopsy from the kidney cortex and a
piece of suprarenal fat were obtained. In addition, a
piece of skin with annexed subcutaneous fat was ob-
tained. Tissues were preserved in cold PBS and immedi-
ately processed for cell isolation.

Isolation and clonal expansion of tubular progenitors
from human kidney biopsies
Using a needle biopsy (1 mm diameter/10 mm height),
7–8 mg of tissue from the kidney cortex of the explanted
kidney were obtained intra-operatively. The protocol for
cell isolation and culturing was adapted from [55, 56].
Tissue was minced in tiny pieces with a scalpel. Around
1/5 of the biopsy was used for direct DNA/RNA extrac-
tion from whole kidney tissue. The rest was resuspended
in medium and passed through tissue strainers with
mesh sizes of 100 and 70 μm, thereby excluding glom-
eruli from the preparation. The tubular portion, which
had passed through the cell strainers, was pelleted, then
treated with 1× trypsin–EDTA for 5 min at 37 °C and
gentle agitation, then mixed with medium and passed
through a 40-μm strainer to obtain a single cell suspen-
sion. FACS sorting of CD133+ cells and single cell clonal
expansion in 96-well plates was attempted (n = 4 biop-
sies) using the clone AC133 antibody (Milteny biotec,
Bergisch Gladbach, Germany), but was unsuccessful. To
obtain clone growth, single cell suspensions were dir-
ectly plated in 6–8 wells of 6-well microtiters at 37 °C
and 5% CO2. Culture dishes were fibronectin coated
(Sigma-Aldrich) and culture medium was EBM + EGM-
2 MV BulletKit (Lonza, Basel, Switzerland). Twenty-four
hours after plating, the medium was changed. First, the
plating medium was collected and re-plated in a new 6-
well microtiter to allow further attachment of kidney
progenitors. One week after plating, 1–20 colonies per/
well were distinguishable. Colonies with round shape
and tight cell-cell contacts were considered for further
culture, while scattered cells were discarded (Add-
itional file 1: Figure S1b). When reaching ≈ 1000 cells, col-
onies were detached with trypsin, manually picked, and
moved to new fibronectin coated 6-well microtiters, one
colony per well. The whole procedure was performed
under stereomicroscope inspection. Colonies were grown
until confluence and used for DNA extraction. Clones that
reached confluence within 1 week were moved to 10-cm-
diameter petri dishes. Mean time in culture was 27.9 ± 0.8
days (n = 26 clones from 6 biopsies).

To assess the effectiveness of the culturing strategy, a
selection of clones was subjected to FACS analysis of
tubular progenitor markers [39] and qPCR analysis for
markers of different kidney cell types. One hundred
thousand cells per clone were stained for the kidney tu-
bule progenitor markers CD133 (clone AC133) and
CD24 (clone 32D12, both from Milteny biotec, Bergisch
Gladbach, Germany) and analyzed with FACS (FACSCa-
libur™ - BD Biosciences). The percent of double positive
cells was calculated by comparison with cells from the
same clone stained with matching control IgGs (Milteny
biotec) (see also Additional file 1: Figure S1c). A subset
of sequenced and non-sequenced clones was also tested
for the expression of transcripts considered markers of
different cell types present in the kidney (see Add-
itional file 1: Figure S1e and the section “RNA extraction
and qPCR” in the “Methods” section). FACS and qPCR
analyses of expression of kidney cell markers in KT
clones were performed after 3–5 weeks in culture. To
avoid loss of cells from clones meant for sequencing,
only selected sequenced clones were inspected for the
expression of kidney markers: P4903_104; P4903_117,
P4903_118, P4903_119, P4903_131, P4903_132, tested
by FACS; P4206_106; P4206_107; P4206_122; P4903_
102, tested by qPCR; and P4903_128 and P4903_131,
tested by both FACS and qPCR. The analyses were ex-
tended to clones not used for the sequencing (non-se-
quenced clones). These clones either came from a test
biopsy (n = 7, female individual, age 57) or were selected
among non-sequenced clones from individuals KD10
(n = 3), KD11 (n = 4), and KD12 (n = 11).

Clonal expansion of fat progenitors from human biopsies
One to ten grams of abdominal subcutaneous (external
to the fascia superficialis) and visceral (peri-renal) fat
were obtained from kidney donors undergoing surgery
according to Ethical Permit Dnr 2015/1115-31. Part of
the tissue was frozen for direct DNA/RNA extraction.
The rest was accurately rinsed, cleaned of visible vessels,
and minced with a scalpel. Tissue was placed in 30–50
ml of Hank’s balanced salt solution (HBSS) containing 1
mg/ml collagenase (Collagenase A, Roche, Basel,
Switzerland) in a 37 °C shaking incubator until complete
digestion (30–40 min). To separate the stromal vascular
fraction (SVF) from mature adipocytes, the digested tis-
sue was centrifuged at 500g for 10 min and the super-
natant discarded. The SVF pellet was resuspended in 1
ml of erythrocyte lysis buffer (RBC lysis solution, Qia-
gen) at room temperature for 5 min. To stop the lysis,
cells were pelleted by centrifugation at 500g for 5 min
and supernatant discarded. SVF was resuspended in
medium and filtered through a 40-μm strainer, then
plated in a 10-cm-diameter culture dish with low-serum
plating medium (Dulbecco’s modified Eagle’s medium
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(DMEM)/Ham’s F-12, Life Technologies that contained
0.5% bovine serum). After 12 h in a 37 °C and 5% CO2

incubator, non-adherent cells were carefully washed
away and adherent pre-adipocytes were detached by 3–
5 min of trypsinization. Cells were rinsed and stained for
the hematopoietic marker CD45-APC (clone HI30, BD
Biosciences, USA) and the endothelial marker CD31-PE
(clone L133.1, BD Biosciences). CD45neg CD31neg fat
progenitors were FACS sorted using a BD FACSAria™
Mu cell sorter (BD Biosciences) (see Additional file 1:
Figure S1f) and single cell plated in uncoated 96-well
culture plates, one plate/biopsy. Additional cells were
sorted in 6-well plates as a population of 10,000–30,000
pre-adipocytes, 1 well/biopsy, and grown for 1 week before
freezing. The plating medium (DMEM F12 10% FBS) of
single cell cultures was changed every 2 days. The number
of colonies was scored at 2 weeks after plating. At conflu-
ence (around 3 weeks), cells were trypsinized and moved
to 24-well plates. Depending on the cell confluency, the
colonies were then moved to 6-multiwell plates. After an
average of 46.2 ± 1.3 and 48.0 ± 1.5 days in culture for sub-
cutaneous and visceral fat, respectively, the colonies were
confluent and used for DNA extraction.

Clonal expansion of epithelial progenitors from human
biopsies
Skin biopsies from the lower abdomen were obtained
from kidney donors undergoing surgery. The tissue was
placed in cold HBSS without Ca2+and Mg2+(Life Tech-
nologies) containing antibiotics and antimycotics (Anti-
anti, Gibco, Life Technologies) and kept at 4 °C for 4–6
h. Subcutaneous fat and loose connective tissues (hypo-
dermis) were carefully removed. The tissue was flattened
and cut into strips about 3–4 mm wide. The pieces were
placed with the dermal side down in a dish containing
HBSS with antibiotics and dispase (Corning, USA) and
kept at 4 °C overnight. The digested epidermis was
peeled from the dermal side, minced, and trypsinized
with TrypLE Select (Gibco, Life Technologies) at 37 °C
for 30–40 min. The digested tissue was passed through a
70-μm mesh filter, collected in a new tube containing
medium and centrifuged. Pellet was resuspended in Epi-
Life medium, filtered through a 40-μm strainer and
plated in 4 wells of a 6-well multiwell coated with colla-
gen (5 μg/cm2 of Collagen I bovine protein, Gibco, fol-
lowing the “thin coating procedure”). Growth medium
was EpiLife medium (Gibco, Life Technologies), no
serum. The procedure did not produce any colonies for
individuals KD05, KD09, KD10, KD11, and KD12. The
culture of the epidermis from individual KD06 produced
2 colonies. Colonies of small, tight, and fast proliferating
cells were visible on the extremities of the dish starting
from 2 weeks after plating. When reaching ≈ 1000 cells,
colonies were detached with trypsin, manually picked,

and moved to new collagen-coated 6-well microtiters,
one colony per well. The whole procedure was per-
formed under stereomicroscope inspection. The cells
tended to differentiate into mature large keratinocytes
(see the picture in Additional file 1: Figure S1a), but a
portion of cells kept small size and very high prolifera-
tive capacity for multiple passages. DNA was extracted
34 days after initial plating.

DNA extraction
DNA was extracted from the confluent wells of the 6-
multiwell plate using the Gentra Puregen Kit, Qiagen.
DNA was extracted from tissue biopsies using the Gen-
tra Puregen Kit, supplemented with a lysis buffer con-
taining Proteinase K as recommended by the supplier.
DNA was extracted from 3ml of total blood that was
collected in EDTA as recommended by the instructions
of the Gentra Puregen Blood Kit.

Sequencing
The library preparation and sequencing were carried out
at NGI Sweden, Science for Life Laboratories,
Stockholm, following standard methods. For cell clones,
the library preparation was performed by a semiauto-
matic NeoPrep station using the Illumina TruSeq Nano
Kit (350 bp average insert size) and 25 ng of DNA as
starting material. The libraries of the bulk blood samples
were prepared with Illumina TruSeq PCR-free library
preparations (350 bp average insert size). Sequencing
was performed on Illumina HiSeq X, PE 2 × 150 bp.

Somatic variant calling
Raw reads were aligned to the human reference genome
(GRCh37/hg19 assembly version), using bwa mem 0.7.12
[57]. Alignments were sorted and indexed using sam-
tools 0.1.19 [58]. Alignment quality control statistics
were gathered using qualimap v2.2 [59]. The raw align-
ments were then processed following the GATK best
practice [60] with version 3.3 of the GATK software
suite. Alignments were realigned around InDels using
GATK RealignerTargetCreator and IndelRealigner, du-
plicates were marked using Picard MarkDuplicates
1.120, and base quality scores were recalibrated using
GATK BaseRecalibrator. Finally, genomic VCF files were
created using the GATK HaplotypeCaller 3.3. Reference
files from the GATK 2.8 resource bundle were used. All
above steps were coordinated using Piper v1.4.0 (www.
github.com/NationalGenomicsInfrastructure/piper).
Somatic variants were defined as heterozygous in the

single cell clone and either absent or very rare in an un-
related tissue (blood), sequenced as a bulk. To identify
somatic variants, a specific pipeline was developed. For
each clone, variants were initially called with Haplotype-
Caller (GATK) [61], MuTect2 (GATK 3.5.0), and
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FermiKit version r178 [62]. The union of these three sets
of variants was subjected to further filtering steps in
order to exclude (1) sequencing artifacts, (2) germline
variants (detected both in the clone and blood bulk), and
(3) variants that occurred during the in vitro culture of
the clone (found only in a subset of cells of the clone,
therefore showing low AF). To this aim, the AF of each
variant was derived from the .bam files and matched to
the relative blood bulk sequencing. Somatic variants
were defined as follows: the read fraction supporting the
alternative allele was comprised between 0.4 and 0.6 in
the clone sequence, a minimum of 3 reads supported the
variant, the read fraction in the blood was low (alterna-
tive < 0.1), and the coverage in both the clone and blood
was at least 15X. Chromosomes X and Y were excluded
from the analyses (however, variants recovered on the X
chromosomes of female donors can be found in Add-
itional file 3). Additional quality filters were applied as
follows: the reads supporting the variants were on both
strands, the maximum coverage was 1000X, and the var-
iants that were located in problematic regions [63, 64]
were removed. Variants common to more than one sam-
ple were considered artifacts and removed. Variant valid-
ation was performed to ensure that our lists of somatic
mutations only contained somatic variants that were
present in the cell before in vitro culturing (see the sec-
tion “Variant validation” in the “Methods” section).
Comparison of variants recovered in DNA from a clone
derived from the same ancestor cell, but cultured in 2
different wells and independently sequenced, shows high
validation rate (99 and 97% for SNVs and InDels, re-
spectively, Additional file 1: Table S1e) and supports low
levels of culture-induced variants in our lists. However,
we cannot exclude the presence of non-neutral, posi-
tively selected variants that might have occurred in vitro.
Variants were annotated using the Ensembl Variant Ef-
fector Predictor from [65]. Frequency of detected som-
atic SNVs in the Swedish population (germline variants)
was annotated in Additional file 2 and Additional file 3
using SweGen [66] version 20180409.

Variant validation
The variant validation was performed on a technical rep-
licate of WGS. Two clones derived from the same ances-
tor cell (P4206_128 and P4206_130) were independently
grown in culture. The DNA was extracted and se-
quenced independently, but clone P4206_130 was not
included in the study. Variants were called in clones
P4206_128 (discovery set) according to our somatic vari-
ant calling pipeline. Called variants that had a minimum
coverage of 10x in both the discovery and the validation
sets were used for the validation. In total, 870 SNVs and
71 InDels were tested. Variants were considered vali-
dated when at least 3 reads supporting the alternative

alleles were present in the validation set. As a control
for the background signal, we validated the variants in
unrelated clones, e.g., clones derived from a different
founder cell obtained from the same or a different bi-
opsy. Additional validation and discussion of our som-
atic mutation calling strategy are available at [11].

Microsatellite instability
Microsatellite instability was assessed using MSIsensor
v.0.5 [67] where every cell clone and representative
blood bulk were analyzed and the msi score calculated.

Copy number variation
Copy number variation was detected in clonally ex-
panded cells using Ascat [68]. Ascat detects allele-
specific copy number variation in a tumor sample using
Log R and B allele frequency (BAF) information at
specific SNP loci in the tumor sample and a matched
germline sample from the same individual. We used
the loci of all bi-allelic SNPs in 1000 Genomes phase
3, release date 20130502 [69] with minor allele fre-
quency > 0.3 to calculate Log R and BAF data in the
clonally expanded cells and the matched blood sam-
ples. The software AlleleCount (https://github.com/
cancerit/alleleCount) was used to generate the num-
ber of reads in the bam files supporting the two al-
leles of the SNPs. BAF and LogR was then calculated
at all SNP loci according to:

BAFci ¼
CountsBc

i

CountsAc
i þ CountsBc

i

BAFbi ¼
CountsBb

i

CountsAb
i þ CountsBb

i

LogRc
i ¼ log2

CountsAc
i þ CountsBc

i

CountsAb
i þ CountsBb

i

−median log2
CountsAc þ CountsBc

CountsAb þ CountsBb

� �

LogRb
i ¼ 0

where i is a specific SNP locus, c is the clonally ex-
panded sample, b is the blood sample, CountsA is the
number of reads supporting one of the alleles of the
SNP, and CountsB is the number of reads supporting
the other allele of the SNPs.
Ascat was run with parameter gamma set to 1. We re-

port only large copy number aberrations that were de-
tectable by visual inspection of the ASPCF.png and
ASCATprofile.png images generated by Ascat for each
sample. Execution of Ascat and the generation of Log R
and BAF was coordinated using Sarek release v2.1.0 [70].
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Meta-analysis
Newly generated and publicly available somatic SNVs
from normal and cancer samples underwent a common
filtering step to exclude variants from the repeat-masked
hg19 genome assembly. In particular, we excluded re-
gions with CRG Alignability-75 score [71] below the
maximum (< 1.0) and additionally the UCSC Browser
blacklisted regions (DAC and Duke) were excluded; this
step retained 2393.43Mb of the genome. Furthermore,
we excluded from all analyses the regions with low gen-
omic coverage in our data (< 15 reads in WGS of > 5%
of the samples), retaining 2094.95Mb of the hg19 gen-
ome for the final analysis.

Mutational signature inference
Analysis of mutational signatures was performed as
described in [21]. Briefly, the SNVs from the healthy
samples and the tumor samples were analyzed jointly,
where a NMF (non-negative matrix factorization) ana-
lysis was applied to matrices of mutation counts
across the 96 mutational contexts, as customary (see,
e.g., [16]). Upon repeated runs (n = 200) of the NMF
procedure (function nmf in the R package NMF, using
the default “Brunet” algorithm) on the bootstrap-
resampled mutation count data, the 200 NMF results
were clustered using k-medoids algorithm (function
pam in R package cluster) to obtain the final set of
mutational signatures and their contributions (expo-
sures) in every sample. The signature profiles ob-
tained from this NMF analysis were compared using
cosine similarity to the known mutational signatures
(http://cancer.sanger.ac.uk/cosmic/signatures and [18]).

Genomic distribution of mutations
Analysis of enrichment or depletion of mutations in
exons, introns, regulatory, and conserved regions was
carried on using the R package MutationalPatterns [72].
Tissue-specific genes were obtained from the Human
Protein Atlas (http://proteinatlas.com). The genes that
had the annotation “elevated in …,” “expressed in all,”
and “mixed expression pattern” were considered tissue-
specific gene for that tissue. To define the conserved re-
gions, PhastConsElements46way data was used and
downloaded from http://hgdownload.cse.ucsc.edu/gold-
enpath/hg19/phastCons46way/.
The association of mutation enrichment/depletion

with specific genomic features was performed as de-
scribed in [21, 44]. In brief, regression analysis was
performed to examine the relationship between the mu-
tations and the covariates (replication timing,
H3K36me3, transcriptional levels, CTCF motif) individu-
ally while controlled for others. The replication timing
(RT) data was obtained from the ENCODE project
(RepliSeq) and divided into six bins ranging from latest

replicating (bin 0) to earliest replicating (bin 5); values
are averages over eight diverse cell types (source file
names in the form “wgEncodeUwRepliSeq_____Wave-
SignalRep1.bigWig” where the gap contains cell line
names: Helas3, Hepg2, Huvec, Nhek, Bj, Imr90, Mcf7,
Sknsh). The RNA-seq levels and H3K36me3 histone
mark were collected from Roadmap Epigenomics project
and averaged over eight diverse cell types (for
H3K36me3: E017 LNG.IMR90, E114 A549, E117
CRVX.HELAS3.CNCR, E118 LIV.HEPG2.CNCR, E119
BRST.HMEC, E127 SKIN.NHEK, E125 BRN.NHA, E122
VAS.HUVEC; for RNA-seq, these same cell types except
that we substituted E096 and E071 for E017 and E125
because of data availability). The RNA-seq was divided
into four bins where non-expressed regions were in bin
0 and expressed regions were in bins 1 (low expression)
to 3 (high expression). The H3K36me3 was divided into
four bins, with bin 0 as absent from H3K36me3 (fold-
enrichment versus ChIP-seq “input” ≤1.0) and ranging
up to bin 3 with the highest abundance.

Predicted pathogenic variants
To obtain the number of potentially pathogenic muta-
tions in each clone, SNVs and InDels were annotated
with CADD (Combined Annotation Dependent Deple-
tion) [73]. Mutations that obtained a PHRED score
higher than 15 were selected and filtered on gene ex-
pression (obtained from Human Protein Atlas, as de-
scribed in the section “Genomic distribution of
mutations”). Variants with CADD score higher than 15,
but no gene annotation were excluded, as well as vari-
ants affecting the sequence of a gene not expressed in
the tissue of origin of the clone.

RNA extraction and qPCR
RNA from KT clones was extracted from plated cells,
previously snap-frozen in their tissue culture plates,
using the RNeasy Mini kit (Qiagen), according to the
manufacturer’s instructions. RNA from total kidney was
obtained from a needle biopsy from a healthy kidney not
included in the study (female, age 38) undergoing ex-
plant for kidney donation. The fresh biopsy was minced
in tiny pieces, and around 1/5 of the material was snap-
frozen for RNA extraction. The rest of the biopsy was
used for KT progenitor culture. RNA from the biopsy
was extracted using the RNeasy Mini kit (Qiagen) and
homogenized with a syringe. RNA from all samples used
in the qPCR analyses were extracted at the same time.
cDNA synthesis was performed using random hexamers
and SuperScript Reverse Transcriptase (Invitrogen).
Quantitative RT-PCR was performed using either a Taq-
Man gene expression assay from Applied Biosystems
(Podocalyxin, PDX, Hs00193638-m1) or SYBRgreen
using the set of primers specified (Table 1).
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Statistical analyses
Unless otherwise indicated, the P values were calculated
using either two-tailed distribution, two-sample unequal
variance Student’s t tests (when comparing two groups),
or one-way ANOVA with multiple comparison post hoc
test. Significance was defined as P < 0.05 (*P < 0.05,
**P < 0.005, ***P < 0.0005). The results are presented as
the mean ± standard error of the mean (SEM). All calcu-
lations were performed using GraphPad Prism software.
The linear fits between mutation numbers and age were
obtained using a linear mixed-effects model where the
dependent variable is the number of mutations or a
given mutational signature, the fixed effect is age, and
the random effect is the individual. Bonferroni correc-
tion was used to adjust for multiple testing. Analyses
were performed in R. T-SNE analysis was performed
using tsne package in R, and clustering showed in Fig. 2a
was performed using heatmap3 package in R.
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Fig.	 S1.	 Characterization	 of	 clonally	 expanded	 progenitors	 from	 human	 kidney	

tubules,	fat	and	epidermis		

	

			 	
																			

	

CD133-APC

KT clone
(non sequenced)

KT clone
P4903_128

Fat 
clone

CD
24

-P
E

ISO-APC

IS
O

-P
E

all
 K

T cl
on

es
 (n

=20
)

se
qu

en
ce

d K
T cl

on
es

 (n
=8)

fat
 cl

on
es

 (n
=3)

0

50

100

150

%
 p

os
itiv

e 
ce

lls
 

CD24+

CD24+/CD33+

0 0.2 0.6 1
relative expression

arbitrary value

a

c

e

d
 3

0.2 0.6 1
Value

ESC bulk
SkinFB bulk
VAT clone P4903_111
KT1 P4903_128
KT1 P4903_131
KT clone 3
KT1 P4206_106
KT1 P4206_107
KT2 P4206_122
KT2 P4903_102
KT clone 8
KT clone 4
Total kidney

FA
CS

CD
13

3+
CD

24
+

PA
X2

N
EP

H
PO

D
O

PE
CA

M

CO
L1

A1

AC
TA

2

f

b
KT EP

SAT VAT

distinct colony scattered cells



	 4	

Representative micrographs of single cell clones from human biopsies used in the 
study. Kidney tubule (KT, top left), epidermis (EP, top right), sub-cutaneous adipose 
tissue (SAT, bottom left) and visceral adipose tissue (VAT, bottom right) progenitors 
were expanded in culture for 3 to 6 weeks, then used for DNA extraction and 
sequencing. The presented pictures correspond to the final stages of the cell culture. 
The cell morphology was checked and used for selecting suitable clones for 
sequencing. b. Representative images and 5x magnifications (bottom) of colonies 
from KT cultures and criteria for selection of KT progenitor colonies on the base of 
morphology. Cultures from KT cell suspensions were inspected daily to follow the 
growth of distinct colonies. Ten to 15 days after plating, one colony per well was 
selected, detached and moved to a new plate. Only colonies with round shape and 
tight cell-cell contacts (left panels) were considered for further culture, while colonies 
composed of scattered cells (right panels) were discarded. Bars=50 μm c.-e. FACS 
and qPCR assessment of expression of kidney cell markers in KT clones after 3-5 
weeks in culture. Due to the reduced amount of material obtained from the clonal 
culture, only a portion of the KT clones included in the somatic mutation analysis 
could also be tested for the expression of kidney markers. To extend the 
characterization, FACS and qPCR analyses were performed on clones not used for the 
sequencing (non sequenced clones), but cultured at the same time as the ones chosen 
for DNA extraction. Overall, all tested KT clones (n=20) expressed the markers of 
kidney progenitors CD24 and CD133, while fat clones used as negative controls were 
completely negative (c.-d.). In KT clones, CD24 was expressed by nearly all the cells 
within the clonal population, while the levels of CD133 were more variable (c.). 
Expression of the kidney progenitor marker PAX2 was detectable in most KT clones 
at the RNA level (e). Conversely, KT clones were always negative for markers of 
non-tubular cells, like NEPH and PODO (glomeruli), PECAM (endothelium), ACTA2 
(smooth muscle cells) and COL1A1 (fibroblasts) (e). A portion of a healthy kidney 
biopsy (Total kidney), a VAT clone and non-clonal populations of either embryonic 
stem cells (ESC bulk) or skin fibroblasts (SkinFb bulk) were included in the qPCR 
analysis as positive and negative controls (e). Three clones from biopsy KD12 were 
tested by both FACS and qPCR (c and e): the non-sequenced KT clone 3 (a 
representative clone that was excluded from sequencing on the base of morphological 
appearance of the cells, as described in (a)) and two sequenced clones, P4903_128 
and P4903_130. f. Representative dot-plots of FACS analyses and single cell sorting 
of fat samples. For every fat biopsy, the stromal vascular fraction was plated for 12 h 
in low serum conditions. Adherent cells were detached by quick trypsinization to 
obtain a cell preparation enriched for adipocyte progenitors. Dot plot of a 
representative DAPI staining to assess the numbers of living cells in the preparation is 
shown (top left). The treatment ensured a very high viability. An ISO-IgG control 
staining was performed to assess antibodies reactivity (top right). Pre-adipocytes 
isolated from SAT and VAT were stained with the hematopoietic-cell marker CD45 
and the endothelial cell marker CD31 and selected from the double negative 
population as indicated in the gate P4. The double negative population was 
predominant in all biopsies (n= 9). However, the percentage of CD45 and CD31 
positive cells was variable across samples, as can be appreciated in the SAT and VAT 
samples from the same donor that are shown in panel f, bottom left and right, 
respectively.	
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Fig.	S2.	Non-negative	matrix	factorization	and	comparison	of	extracted	
signatures	to	COSMIC	cancer	signatures	and	PCAWG	single	base	signatures	(SBS)	
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	 6	

(a) Eight mutational signatures obtained from NMF of somatic mutation catalogues 
from healthy (n=161) and tumors (n=192) samples. For each combination of k 
(number of possible clusters, rows) and nFact (rank from NMF, columns) the general 
silhouette index (SI representing high reproducibility, values within the heatmap) was 
obtained. The chosen parameters were at nFact=8 and k=8 with SI=0.92. b) The 8 de 
novo signature profiles obtained from the NMF analysis were compared to already 
characterized signatures from COSMIC (30 signatures; 
http://cancer.sanger.ac.uk/cosmic/signatures) and PCAWG (60 signatures;[1]). Cosine 
measurements, indicating what COSMIC/PCAWG signature fits best with the de 
novo signatures, are provided. c) The mutational profiles of the 8 de novo signatures 
named after the most similar single base signature (SBS) from PCAWG  	
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Fig.	S3.	Relative	contribution	of	extracted	signatures	to	healthy	tissues	and	
tissue-matched	tumors	
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Relative contribution of the 8 mutational signatures to the somatic mutation 
catalogues of healthy (n=161) and tissue-matched tumor samples (n=192). Results of 
a statistical test (Mann-Whitney U test; *** FDR<1%,) testing enrichment of the 
exposure of the signature in one tissue compared to the same signature in all other 
tissues are shown in Table S3. Overall, our analysis shows that signatures SBS1, 3/8 
and 5 were found ubiquitously and we defined this combination of signatures as 
“basal mutagenesis”. Consistent with this concept, cell types that were not common 
progenitors, had additional signatures that are associated with specific, mutagen 
exposure. Examples are 1) EP samples showing high levels of SBS7a, a signature 
induced by UV-light exposure, 2) the SkM cells used as a control for culture-induced 
mutagenesis in our previous study [2] (SkM-long), which showed SBS18, a signature 
linked to in vitro-culture stress [3, 4] and consequent production of intracellular 
reactive-oxygen species [5]. These samples were used as positive controls for 
prolonged exposure to a mutagen. All groups of cells were compared to these controls 
for either basal or mutagen-driven mutagenesis. SkinFB clustered in close proximity 
to the SkM-long samples (Figure 3a) and showed high levels of SBS18, consistent 
with the long in vitro culture required for the reprogramming protocol [6]. The 
SkinFB also showed the second highest SBS7a contribution after EP (Figure 3b). 
Intestine and colon stem cells formed a distinct cluster and were characterized by very 
high SBS1 contribution, previously explained with a high replication rate of these 
cells [7]. 
BLCA-ercc2del: bladder urothelial carcinoma with ERCC2 knock out, BLCA: 
bladder urothelial carcinoma, EP: epidermis, Fb: skin fibroblasts, MELA-AU: 
melanoma, CLL-ES: chronic lymphocytic leukemia, SAT: subcutaneous fat, VAT: 
visceral fat, SkM: skeletal muscle, SkM_long: long-culture SkM cells, SARC: 
sarcoma, KT1: kidney tubule 1, KT2: kidney tubule 2, KICH: kidney chromophobe, 
KIRC: kidney renal clear cell carcinoma, KIRP: kidney renal papillary cell 
carcinoma, LHC: liver hepatocellular carcinoma, COAD: colon adenocarcinoma.  
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Fig.	S4.	Comparisons	of	cancer	and	normal	samples	
a	
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a. Comparison of somatic mutation profiles in tissue-matched healthy and cancer 
samples. The clustering (tSNE) based on the trinucleotide profile of somatic SNVs in 
the genome of healthy (n=161) and tumor (n=192) samples is shown. For each panel, 
different healthy and cancer samples are highlighted with specific colors (see legend), 
while all other samples are shown in grey. Cancer samples usually cluster in 
proximity of the tissue-matched healthy samples, but cancer and normal do not 
overlap. Bottom right panel shows the matching of two groups of healthy samples that 
shared a long culturing protocol: reprogrammed skin fibroblasts (SkinFB) and long-
culture skeletal muscle progenitors (SkM-long). b.-e. Number of SNVs per genome, 
plotted according to age. Mutation burden (b.) and number of SBS5 mutations (c.) in 
normal kidney (KT2) and liver samples compared to cancer samples (bladder 
urothelial cell carcinoma) either NER proficient (BLCCs) or deficient (BLCC-
ERCCdel). The ERCCdel tumors were used as a control for SBS5 mutations induced 
by NER deficiency. Mutation burden (d.) and number of SBS40 mutations (e.) in 
normal kidney (KT1 and KT2) compared to kidney cancer samples of different 
subtypes: KICH (kidney chromophobe adenocarcinoma) KIRC (kidney clear cell 
renal cell carcinoma) KIRP (kidney renal papillary cell carcinoma). 
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Fig.	 S5.	 Comparison	with	mutation	 spectra	 determined	 by	 in	vitro	 exposure	 to	
environmental	agents	
	
	

 
	
tSNE plot of the trinucleotide profile of somatic SNVs recovered in the genome of 
healthy cells (n=161), tumors (n=192) or an iPSC clone exposed to different 
environmental agents in vitro [3] (n=54). a. Environmental agents are highlighted 
with colors representing the different compound classes, while all other samples are 
shown in grey (normal: full dots, tumor: empty squares). A dashed line roughly 
describes the area occupied by common progenitors. The mutation spectrum of 
common progenitors does not show similarities with any spectra caused by 
environmental agent exposure, supporting the concept of basal mutagenesis.  b. Same 
plot as in a., but environmental agents are shown in grey, while normal (squares) and 
tumor (asterisks) genomes are shown in different colors according to the tissue of 
origin. The vast majority of spectra from treated cells located at the periphery of the 
plot and did not overlap with any normal or cancer genome (Figure S5a). Exceptions 
were 1) simulated solar radiation that perfectly overlapped with EP samples and one 
melanoma sample, 2) formaldehyde and alkylating agents, which located in proximity 
of KT2 and kidney tumors KIRC and KIRP (Figure S5b). Formaldehyde and multiple 
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compounds with alkylating activity can be produced endogenously by human cells 
[8]. Therefore, the spectra of KT2, KIRP and KIRC might reflect the exposure of 
some kidney cells to endogenous formaldehyde and alkylating agents.	  
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Fig.	S6.	Mutation	enrichment	in	specific	genomic	regions	in	KT1,	KT2,	SAT,	VAT	

samples	and	age-related	differences	

	
Enrichment (upward bars) or depletion (downward bars) of somatic mutations in 
indicated VEP genomic features or conserved regions in different tissue and age-
groups. Kidney-1 (KT-1). kidney-2 (KT-2). subcutaneous fat (SAT) and visceral fat 
(VAT) 
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Fig.	 S7.	 Analysis	 of	 regional	 enrichment/depletion	 of	 mutations	 in	 different	

tissues	

	

	
	
	
a.-c. Enrichment/depletion of mutations in specific genomic regions, as shown in 
figure 5a, but providing values either calculated separately for each tissue (a. common 
progenitors: SAT (N=22), VAT (N=20), SkM (N=29), blood (1 catalogue of 
mutations derived from randomly selected SNVs from multiple cell clones from the 
same individual)-b. intestinal stem cells: colon (N=21) intestine (N=14)) or from 
sample groups not shown in figure 5a (c. SkM-long (N=4), SkinFB (N=13)).The 
genomes were divided in multiple sectors (bins) according to decreasing DNA 
replication time (RT, bins 0 to 5, only bins 1, 3 and 5 are shown for clarity), 
increasing abundance of the histone mark H3K36me3 (bins 0-3), and increasing 
transcriptional levels (RNAseq, bins 0-3). The relative abundance of mutations in 
each bin vs bin 0 is estimated as the coefficient in negative binomial regression 
(expressed as log2), where error bars show its 95% C.I.  
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Common progenitors, including SAT, VAT, SkM and blood, but not KT1, showed the 
expected depletion of mutations with earlier RT, higher H3K36me3 abundance and 
higher transcription levels. This pattern indicates that the basal mutagenesis is 
actively counteracted by MMR and/or TC-NER. However, EP, KT2, KT1, liver, 
SkM-long and SkinFB deviated from the pattern seen for common progenitors and 
showed a loss of association of mutation rates with RT and H3K36me3. Therefore, in 
samples that appear to be exposed to a putative mutagen in addition to basal 
mutagenesis (Figure 3a and b), the early-replicating, active chromatin is less 
protected. These samples included the KT1 group, which showed a mutation profile 
similar to the common progenitors (Figure 4a), but also signs of cell damage (Figure 
4f). Conversely, the intestinal stem cells (intestine and colon) showed regular 
association of mutations with RT and even stronger protection of H3K36me3-rich 
regions compared to common progenitors, suggesting that mutations in the active 
chromatin that are due to high proliferation are recognized by MMR. 
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Fig.	S8.	Association	of	mutations	with	replication	timing	in	young	and	old	
genomes	of	healthy	samples	and	MMR-proficient	(MSS)	or	deficient		(MSI)	
tumors	
	

	
	
a. Enrichment/depletion of mutations according to DNA replication timing (RT) 
while controlling for CTCF ChipSeq peaks in either younger or older genomes as 
shown in figure 6c, but providing values calculated separately for each tissue. 
Enrichments are coefficients from negative binomial regression (as log2) and error 
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bars are their 95% C.I b. Enrichment/depletions as in a. for 3 different groups of 
tumors (derived from colon, uterus, stomach) according to microsatellite stability. 
MSS= micro satellite stable, normal MMR function; MSI= micro satellite instability 
due to mutations in MMR genes which occurred with either early or late onset in the 
life of the patient. Fold-difference in depletion of mutations according to RT were 
1.73 for MSS vs MSI-late and 2.13 for MSS vs MSI-early, showing that inactivation 
of MMR induces accumulation of mutations in early-replicating DNA that increases 
with time. These tumors were used as a control of the effect size of MMR-loss in 
causing mutations in early-replicating DNA. The fold-difference in young vs old 
healthy genomes (pulling together all tissues as in figure 6c) was 1.21, lower than that 
observed in MSI tumors, in agreement with only partial loss of MMR function with 
aging.   
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Variable DNA methylation underlies mutation 1 

rate variability at the mesoscale in human 2 

somatic cells 3 
 4 
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 6 
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 9 
The cytosine methylation in CpG dinucleotides is pervasive in mammalian genomes and its variability across regions 10 
can regulate gene expression and define cell differentiation. Although the role of DNA methylation in gene regulation 11 
is well understood, how the local variation in DNA methylation shapes somatic mutation rates is less well explored. 12 
Here, we show that hypomethylated (UMR) regions are also generally hypomutated in a wide range of human tumors 13 
and healthy somatic tissues. Remarkably, the exposure of the tissue to various mutational processes shapes its 14 
predisposition to this effect: while there is depletion in the mutation rates resulting from signatures of deamination 15 
of methylated cytosines, UV light, POLE and MMR deficiency, there is an increase in mutation rates from signatures of 16 
AID/APOBEC cytosine deaminase enzymes in the UMRs. Therefore, hypomethylated DNA loci can be either mutational 17 
coldspots or hotspots, depending on the mutagen exposure history of a particular cell. In addition to these genome-18 
wide distributed UMRs we also identify several kilobases at the 5’ ends of gene bodies as commonly hypomethylated 19 
and thus hypomutated. Clustering genes by methylation profiles also yielded variability in their mutation rate 20 
gradients along the gene body. Interestingly, lowly expressed genes have a less steep gradient due to a higher relative 21 
methylation of their 5’ end, and polycomb repressed genes also show no relative hypomutation due to the lack of 22 
methylation at their gene body. Overall, we suggest DNA methylation is an important determinant of mesoscale, sub-23 
genic, resolution mutation rate variability in human somatic tissues. 24 
 25 

Introduction 26 
 27 

ln humans, CpG dinucleotides in DNA are usually methylated at the cytosine nucleobase and have, 28 

globally, a low frequency in the genome. However, they are particularly enriched near transcription 29 

start site (TSS) and other functional elements. The accumulations of these CpG loci are known as 30 

CpG islands (CpGi), and they play an important role in the regulation of the adjacent gene where 31 

they are located. When the CpG island is methylated, transcription factors binding to the promoter is 32 

altered, and often reduced, effectively switching off the gene’s expression. This mechanism has a 33 

strong silencing capacity and is commonly used in mammals to regulate the expression of 34 

developmental genes1–3.  35 

 36 

The genome can be segmented according to the methylation level of the CpG dinucleotides in 37 

multiple ways. A parsimonious segmentation, such as by the Methylseeker algorithm, classifies the 38 

genomes in unmethylated (UMR), low-methylated (LMR) and fully methylated regions, or the rest of 39 

the genome4. The UMRs are high density CpG loci which are completely unmethylated while LMRs 40 

maintain a medium level methylation (~30%) and present a lower concentration of CpGs in their 41 

sequence. While the UMRs are specifically associated to the promoter regions of genes, LMRs are 42 
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more intergenic and enriched in enhancer marks such as H3K4me14,5. Other definitions of the 43 

undermethylation in the genome offer different classifications in how methylation is regulated. For 44 

instance, strong DNA hypomethylation can also be detected in large sections (bigger than > 3.5Kbp), 45 

termed canyon UMRs (cUMRs) are associated with developmental genes like the Homeobox 46 

family6. Other reports suggest that in both ageing tissues and cancer cells large domains (in the 47 

megabase scale) also lose their normal methylation. These domains are named partially methylated 48 

domains (PMDs), overlap late-replicating DNA domains, and they are thought to lose their 49 

methylation passively due to the imperfect methylation maintenance7. 50 

 51 

The interaction between mutations and DNA methylation was identified early with the first 52 

sequenced human genomes8. Cosmic signature 1, or SBS1, was the first identified mutational 53 

signature, proposed to result from deamination of the methylated cytosine at CpG sites9,10 primarily 54 

due to its sharp profile at NCG>T contexts. Signature 1 also accumulates with age, is present in 55 

most healthy tissues9,11 and is also commonly observed in de novo germline mutations12, 56 

highlighting its pervasive implication in the genomic integrity of the human genome. Other 57 

mutational processes have also been associated previously with DNA methylation in cancer. In 58 

particular, the mutations resulting from deficiency of DNA polymerase ε and the deficiency of 59 

mismatch repair (MMR) activity have both shown associations with the methylation status of the 60 

mutated regions13,14. Contrary to the mechanism of signature 1, these mutagenic processes upon 61 

DNA repair failures are thought to be associated with the misincorporation of nucleotide bases in 62 

methylated sites during DNA replication15. A clear evidence of this role is the characteristic 63 

replication strand bias of signatures 10b and 15, which are associated with pol ε and MMR 64 

deficiencies respectively. Other epigenetic modifications in the CpG dinucleotides also modify the 65 

mutation rate in different ways, for instance, stable hydroxymethylated (5hmC) loci show an strong 66 

depletion in C>T mutation accumulation particularly for somatic tissues and increase C>G rates 16,17. 67 

5hmC is considered an intermediate in the process of demethylation of the CpG, which transforms a 68 

5mC base to multiple oxydised modifications mediated by the TET enzymes. 69 

 70 

Thus, combining the DNA methylation-aware genome segmentation and the known modulation of 71 

the mutation rate in tumors we hypothesize that there may be a yet uncharacterized variability in 72 

somatic mutation rates at the kilobase scale with a strong overlap with genes and regulatory 73 

elements. Here, we perform a systematic analysis of the mutation rate variation along UMRs, LMRs 74 

and gene bodies in order to quantify the role of DNA methylation in generating genome-wide 75 

mutational gradients, which differ across mutational signatures. We also quantify the role of DNA 76 

methylation in other functional elements, such as enhancers and chromatin loop anchors, that while 77 
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not associated with genes, also exhibit hypomethylation and consequently lower mutation rates 78 

from selected mutational processes. 79 

 80 

Results 81 
 82 

Sub-genic mutation rate gradients originated mostly from DNA methylation associated 83 
signatures 84 
 85 

In order to systematically analyze the sub-gene resolution variability of mutation rate in genes, we 86 

calculated the mutation rate for each mutational signatures across segments of genes covering 87 

both gene ends and an extended region flanking them. Each signature was divided by the tissue of 88 

origin and genes where further stratified into three bins by their average expression levels (see 89 

supplementary methods)., We estimated the mutation rate, controlling for trinucleotide composition 90 

of different regions using a negative binomial regression (see methods) and extracted the dominant 91 

patterns using a principal component analysis (Fig. 1A,B. The first principal component accounted 92 

for 38% of the systematic variability (Supp.Fig. 1A) and its profile along the gene body presented a 93 

sharp increase at the TSS (Fig. 1C). The second component explains substantially less variability 94 

(6%) and is less enriched at the TSS, but more so consistently enrichmed along the gene body and 95 

until the transcription end site (TES) (Fig. 1C).  96 

 97 

The first component is characterized by a lower mutation burden from from signatures SBS1, 98 

SBS15 and SBS10b (Fig. 1B). Each of these signatures contains a significant NCG>T component in 99 

its trinucleotide profile, and each has been previously associated to the role of DNA methylation, 100 

either genome-wide for signature 1, or along the gene promoters form the dMMR-associated SBS15 101 

mutations13 (Fig. 1B, Supp. Fig. 1B). An association with DNA methylation would also fit with the 102 

difference observed between gene expression bins, higher expressed genes showing higher values 103 

and positive correlation (Fig. 1B and Supp. Fig. 1B,C). If the observed gene gradient of mutation 104 

rates summarized in PC1 was generated via the hypomethylation of the promoter in the promoter 105 

region, expressed genes which show a more evident hypomethylation would effectively also show a 106 

stronger mutation depletion. This is also consistent with highly expressed genes being more 107 

enriched in CpG island type promoters18, which are more commonly unmethylated.  108 

 109 

Overall, the result of this systematic analysis suggests that DNA methylation associates with the 110 

mutation rate gradient along gene bodies, specifically for mutational signatures with clear 111 

components of CpG dinucleotide mutagenesis. 112 

 113 
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Unmethylated regions show consistent hypomutation in multiple tissues 114 
 115 
To characterize the role DNA methylation in the modulation of mutation rates in various genomic 116 

loci we focused on the genomic segments that are consistent hypomethylation. Consistent DNA 117 

hypomethylation can be detected in the unmethylated regions (UMR)s, with a complete lack of DNA 118 

methylation, and low methylatd regions (LMR), with lowly methylated regions4,5 (Fig. 1D). 119 

 120 

We curated a set of hypomethylated regions in the human genome from previous publications5,6 121 

(see Supplementary Table 1). Additionally, we collected genome-wide methylation data from WGBS 122 

experiments available in public repositories (Roadmap and Encode). From the downloaded WGBS 123 

experiments, we called UMR and LMR loci using the same methodology as in ref5 (see methods and 124 

Supplementary Table 1). While the published datasets5 contained 18 tissues and represented 125 

mostly stem cells and blood cell lines, here we focused on 34 diverse solid tissues, 6 blood and 4 126 

brain tissues that will represent better the methylation patterns in most sequenced tumors (see 127 

methods; the solid, blood and brain tissue groups are treated separately) . In total, the union of all 128 

obtained sets of hypomethylated regions covered 40Mbp (Supp. Fig. 1D). 129 

 130 

We measured the mutation rate in these regions across different tissue types for a set of tumor and 131 

healthy samples (see mehtods) from the PCAWG dataset19 and other sources from the literature20–132 
22. The majority of surveyed tissues, except the urinary tract and the lymphatic blood, showed a 133 

significant reduction of the mutation rate at UMRs and LMRs, with an average depletion across 134 

tissues of 25% (Fig. 1E). This reduction was substantial for tissues with a high proportion of SBS1 135 

mutations, like colon and brain10. Skin cancers also showed a significant reduction in mutation rate, 136 

consistent with a previously proposed role of DNA methylation in the predisposition of UV damage 137 

mutations (Fig. 1E )23. These associations were highly correlated when tested on different sets of 138 

UMRs, both the ones obtained from the literature and the ones computed in this study (Supp.Fig. 139 

1E,F). 140 

 141 

Considering the signature-classified mutations, in a pan-cancer setting, mutational signatures SBS1, 142 

10b and 15 decreased the most, mirroring previous analyses13,14. UMRs contained on average 75%, 143 

65% and 55% less mutations than expected by trinuclotide composition, for SBS10b, 1 and 15, 144 

respectively. Other mutational signatures like SBS6, related to MMR deficiency, and SBS7a also 145 

showed a high reduction of mutations (Fig. 1F). 146 

 147 

Surprisingly, certain signatures showed an increased mutation rate at UMRs. The most anticipated 148 

case from these was SBS84, associated with the activity of the Activation-Induced cytidine 149 
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Deaminase (AID) in the somatic hypermutation process at immunoglobulin sites24. AID mutations 150 

showed an increase equivalent to 4x times over the expected values. Three other signatures, SBS9 151 

(also associated to SHM in lymphoid tissues, possibly in part reflecting the activity of polymerase 152 

η), and SBS2 and SBS13 (associated to APOBEC3 mutagenesis) also showed a moderate 153 

enrichment in the UMRs (~19%) (Fig. 1F ).  154 

 155 

In order to verify that the mutation reduction was directly caused by the drop in the methylation 156 

level, we used a set of UMRs, which contained specific sites enriched only in a given set of tissues, 157 

comparing with tissue-specific hypomutation at these sites. Although the separation of tissue 158 

specific UMRs was not very specific (Supp.Fig. 1G), potentially due to the heterogeneity of the 159 

selected tissue groups, our samples showed a significant depletion of methylation for the 160 

corresponding tissue set where the cancer sample was originally coming from (Fig. 1G) . For 161 

instance, the depletion of mutations in UMRs specifically extracted from solid tissues was of 30% 162 

for colon cancers and blood while it was reduced to no change for brain. Similarly, the reduction of 163 

mutation rates in the brain specific UMRs was 18% in brain tumors but only 12% and 6% for colon 164 

and blood myeloid.  165 

 166 

Overall, the reduced methylation level at UMRs seems to be responsible for a reduction of 167 

mutations in a wide range of signatures but can be also associated with an increase for others. The 168 

observed variability at the tissue level, thus, might be explained by to what signatures the tissue is 169 

normally exposed.  170 

 171 

Interaction of mutation rate at functional elements 172 
 173 

Due to the characteristic hypomethylation of multiple regulatory elements like promoters, enhancers 174 

and loop anchors, we used these annotations to classify the extracted UMR sets to ask whether the 175 

methylation effect on mutation rate is different across functional elements (Fig. 2A). As expected 176 

from prior work, UMRs were enriched in promoters while LMRs showed a bigger predisposition to 177 

enhancers, measured as the odds ratio (Fig. 2B). Additionally, we find that chromatin loop anchors 178 

are also often hypomethylated, and that this effect is independent of them containing a known 179 

promoter or enhancer. Prior UMR sets showed very similar associations to these functional 180 

elements as the ones called in this study, being consistent between tissues and methodologies. 181 

 182 

The highest number of UMRs was explained by promoters and 5' gene body ends. However, a total 183 

of 1,925 UMRs (or 10% of the total set) did not overlap with any of the functional element tested 184 

(Fig. 2C). For LMRs, this value was higher and up to 52% of the instances did not overlap with any 185 
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functional element (Supp. Fig. 2A). These values are overall consistent with previous estimates for 186 

each class of segment4. 187 

 188 

We then asked if the reduction in mutation rate seen above analysis was, in part, due to these 189 

associated functional elements, rather than hypomethylation itself. For every tissue, we selected the 190 

UMRs that overlapped with either loop anchors or by the region around the TSS (defined as 2kb 191 

upstream and 1kb upstream) and removed them from the UMR set of interest. Although the 192 

reduction of mutations was less pronounced in UMRs not overlapping promoter/enhancer/LAP, the 193 

overall trend of hypomutation was still evident both across tissues and signatures, suggesting that 194 

the mutational effect of DNA methylation is independent of its overlap with promoters or LAPs (Fig. 195 

2D,E). 196 

 197 

In the converse analysis, measuring mutation rates in promoters with and without an associated 198 

UMR, however, the relative mutation rate showed a clear dependence on DNA hypomethylation. Only 199 

the promoters that overlapped significantly with an UMR showed a substantial mutation rate 200 

depletion. In brief, mutations were reduced up to 40% when considering all promoters in colon and 201 

skin cancers (Supp. Fig. 2C). Of note, this reduction was not as striking as when measuring the UMR 202 

alone, potentially due to only a partial matching of the actual unmethylated loci with the annotated 203 

promoters. When considering mutation rates in promoters that did not overlap with UMRs the 204 

mutation rate was not reduced (Fig. 2C). This observation highlights the direct role of DNA 205 

methylation in the determination of mutation rate at these sites. To explore if the effect of the UMR 206 

on mutation rates was indirect and resulted from the increased expression of genes with a UMR, we 207 

repeated this analysis after stratifying genes by expression tertiles (Supp. Fig. 2D). However, for 208 

colorectal and skin tissues, which contained sufficient mutation counts, the mutation rate in genes 209 

with high expression values but without overlapping UMR was (not reduced), suggesting 210 

transcription is not responsible for the mutation rate decrease. The relative mutation rate in the two 211 

highest expressed bins (Eq2 and Eq3) was equivalent and significantly reduced compared to their 212 

UMR-less counterparts of same expression level (Supp. Fig. 2D)., supporting the known effects of 213 

transcription on reduced mutation rates independently of DNA methylation. Also of note, some 214 

tissues like liver (Supp. Fig. 2D) did show reduction of mutation rate in higher expression bins, 215 

suggesting a role of transcription-coupled mutational processes, in this instance probably 216 

transcription-coupled mutagenesis as reported for liver25. Even with this strong role of transcription 217 

in the liver, mutations were still reduced in UMR overlapping promoters (Supp. Fig. 2D). In summary, 218 

DNA hypomethylation affects mutation rates in a manner independent of other features that may be 219 

present at regulatory elements and independent of transcription levels. 220 

 221 
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Epigenetic types of UMRs highlight different mechanisms of mutation rate control 222 
 223 

In order to examine the role of other molecular factors that are known to associate with mutation 224 

rate we classified the pooled UMR dataset according to the accumulation of certain histone 225 

modifications, henceforth epigenetic profiles. This classification of UMRs represents an annotation-226 

free classification and can clarify the mechanisms related to the mutation rate depletion. 227 

 228 

The histone mark classification of the UMRs yielded two groups (Fig. 3A and Supp. Fig. 3A, one 229 

associated with increased H3K4me3 and reduced H3K36me3, consistent with a active promoter 230 

marks and one associated with H3K27me3 consistent with polycomb repression. A 33% of the 231 

UMRs was classified in the active group while the rest was classified as repressed (H3K27me3-232 

enriched). The methylation levels in the active promoter-like UMRs contained a stronger 233 

hypomethylation while the H3K27me3-enriched showed more moderate hypomethylation (Fig. 3B). 234 

This difference in methylation between the 2 groups could be explained either by the overall 235 

increase of the methylation level across samples. Mutation reduction followed the same trend as 236 

the methylation levels, with a stronger depletion for the active promoter-like UMRs (Fig. 3C and 237 

(Supp. Fig. 3B). 238 

 239 

Gene stratification according to methylation levels reveal differential mutational gradients 240 
 241 
In order to systematically test if the hypomethylation, and the consequent hypomutation, would be 242 

relevant for the estimation of the mutation burden in genes  243 

 244 

Because of the overlap of the hypomethylated segments genome-wide with the promoter regions 245 

and the 5’ ends of genes, we hypothesized that different groups of genes might show distinct 246 

patterns in their methylation levels and thus contain different mutation burdens across their gene 247 

body. To test this, we used the same DNA methylation data averaged along multiple solid tissues 248 

(see methods and Supp. Table 1) to profile the methylation levels along each gene body, and then 249 

cluster genes by the shape of DNA methylation profiles. In brief, gene bodies were segmented in 250 

50bp bins extending the TSS and TES within-gene for 5kb and outside-gene extending for 2kb. For 251 

each gene, methylation level was averaged across every bin. The resulting profiles were then 252 

analyzed using a PCA (see methods, (Supp. Fig. 4A). Expectedly, the resulting principal components 253 

correlated to some extent with the average expression (Fig. 4A and (Supp. Fig. 4B). We used the 254 

three first components of the PCA (together accounting for 27% of the variability) to cluster genes 255 

into five groups. These three principal components represented the methylation levels globally in 256 
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the gene body (Dim.1) the TSS methylation status (Dim.2) and the upstream and downstream 257 

methylation levels outside the gene (Dim.3) (Fig. 4B,C). 258 

 259 

The obtained gene clusters were characterized by distinct genomic characteristics (Fig. 4E and 260 

(Supp. Fig. 4C,D). Cluster 1 (c1) and to some extent cluster 2 (c2) contained genes with a 261 

methylated promoter and were overall repressed. The main difference between these two clusters 262 

of genes was their average expression, with a lower median expression for c1. Cluster 5 (c5) 263 

contained generally short genes with and overall unmethylated gene body, they were enriched in 264 

polycomb marks like H3K27me3 (Supp.Fig. 4E,F). The homeobox genes, which have been 265 

previously described as a set of unmethylated developmental genes with roles in cancer6 were 266 

included in this cluster (Supp.Fig. 4G). 267 

 268 

Cluster 3 and 4 represent each a set of highly expressed genes with strong hypomethylation in the 269 

promoter region, as expected, however we here note also that hypomethylation extends into the 5’ 270 

end of the gene body, approximately 1.5kb (Fig. 4D). The main differences between these groups 271 

are the extent and the position of the unmethylated region. C2 has a narrow unmethylated segment 272 

(~1kb) while c3 extends it downstream towards the gene body (up to a total of ~3kb), c4 has an 273 

extended hypomethylated region directed at both upstream and downstream sections of the TSS 274 

marking an overall wider promoter region (Fig. 4D and (Supp. Fig. 4E,F). 275 

 276 

To further characterize these genes, we measured their overlap with chromatin states (according to 277 

ChromHMM, see methods), the existence of CpGi18 and the normalized CpG content in their 278 

promoters26, similar to the definition of CpGi (Supp.Fig. 4C). C1 was the only group 279 

underrepresented in the active transcription segments and showed a clear enrichment in polycomb 280 

repressed genes and in H3K9me3 heterochromatin (Fig. 4E). While c2, c3 and c4 did not show 281 

strong enrichment for any chromatin states, c2 was characterized for a depletion of genes with CpG 282 

islands (nor genes with a strong enrichment of CpG dinucleotides in their promoter region) while c3 283 

and c4 were enriched in these CpG island categories. C5 showed a strong enrichment in the bivalent 284 

transcription chromatin (Supp.Fig. 4E).  285 

 286 

We also measured the averaged histone profiles of each gene category (Supp. Fig. 4F) observing a 287 

strong increase of promoter marks (H3K4me3 and H3K27ac) for c3, c4 and c5 and to a lesser 288 

extend c2. H3K27me3 was particularly enriched in c5, consistent with the bivalent transcription 289 

enrichment in the chromatin states analysis. Based on this histone profiling data analysis and the 290 

overlap with nascent transcription (suggesting enhancer activity), we infer that the main 291 

distinguishing feature of the c3, c4 and to some extent c5 gene body methylation clusters is the 292 
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overlap with enhancer features. This suggests that gene body hypomethylation profiles are 293 

commonly shaped by the existence of genic enhancers. 294 

 295 

 While gene cluster C4 contained a significant enrichment of enhancer nascent-transcription signal 296 

both upstream and downstream the TSS, in c3 only covered the downstream enrichment (within the 297 

gene body) (Supp. Fig. 4E). The accumulation of these genic enhancers might thus, as in the c3 298 

group, cause the unmethylated region to extend uniquely in a single direction towards the gene 299 

body. The local accumulation of H3K4me1 (Supp. Fig. 4F) in these groups was also consistent with 300 

this classification.  301 

 302 

Overall, the methylation profiling of genes yielded 5 distinct groups with specific epigenomic 303 

characteristics. C1 cluster contains the ‘classical’ repressed genes with a methylated promoter; c2 304 

genes contain a short unmethylated region in the TSS and are generally less enriched in CpG 305 

islands; c3 genes contain a wider unmethyalted region that extends downstream of the TSS 306 

potentially due to genic enhancers; c4 genes contain that and also a wider unmethylated region at 307 

the TSS, which extends both downstream and upstream of the TSS potentially due to the overlap 308 

with a broader enhancer region and a partial bidirectional transcription; c5 genes represent the least 309 

numerous group and contain generally unmethylated short genes with enrichment in polycomb 310 

marks. 311 

 312 

Subgenic mutation rate gradients in methylation based subgroups 313 
 314 

It is interesting to jointly consider the association between DNA methylation and mutation rates of 315 

selected signatures shown above, and the stratification of gene populations according to their 316 

methylation profiles. Based on this, we hypothesized that the mutational gradients along the gene 317 

body and the TSS would not just depend on the mutational signature, but also the shape of the DNA 318 

methylation profile in the gene. We therefore repeated the mutation rate analysis along the gene 319 

bodies, asking if this differs for genes in the different methylation profile clusters. The genes with 320 

active demethylation at or nearby their promoters -those in clusters c2, c3 and c4- showed a 321 

stronger depletion of those signatures associated to mutation rate depletion at UMRs, mostly SBS1, 322 

SBS10b, and SBS15. Conversely, also mutation signatures that favor hypomethylation at UMRs, 323 

SBS2, SBS13 and SBS9, also showed an increase rate around promoters. This was, however, more 324 

moderate (Fig. 5B and Supp. Fig. 5A). Mutation rate was constant across gene bodies for the c1 325 

group, consistent with the constant methylation levels across the promoter section of c1 genes 326 

(Fig. 5A). 327 

  328 
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Overall, differential enrichment of the mutational signature along the gene body considering 329 

grouped genes by methylation clusters was similar to the initial, unsupervised gene profile analysis 330 

(Fig. 1A) . This suggests that the main determinant of the variability in mutation rate along the gene 331 

bodies is DNA methylation but that it does not uniformly affect genes or mutations. More highly 332 

expressed genes, and genes with intragenic enhancers, will have more prominent and wider 333 

mutational coldspots at their 5’ ends, respectively, when considering common mutational processes 334 

such as aging-associated SBS1. These trends are reversed for AID/APOBEC mutagenic signatures, 335 

which are enriched at hypomethylated promoters and adjacent intragenic enhancers. 336 

 337 

Methylation based gene stratification can prune baseline mutation rates 338 
 339 

Methods to detect signatures of selection on somatic mutations rely on an accurate baseline of 340 

regional mutation rates, to be able to establish whether there is an excess or dearth of mutations 341 

over that baseline, signifying positive or negative selection, respectively. 342 

 343 

Gene methylation profiles and mutation signatures could be considered in order to establish better 344 

and more accurate baselines for mutation rates that account for the sub-gene-resolution variation in 345 

mutation rates. In order to test effects of methylation-aware baselines for mutation rates, we built a 346 

model to predict the mutation burden of a gene from the TCGA exome data. Because mutation rates 347 

at genes are known to be heavily influenced by the epigenetic state and the replication domain 348 

where they are located27, we predicted mutation rates from the epigenomic covariates from dNdScv 349 

method28 as a base model. We then compared this base model with one containing the methylation 350 

gene clusters defined above, and as negative control on where these gene clusters were 351 

randomized (Fig. 5C, Supp. Fig. 5B and methods). Calculating the goodness of fit of the model by 352 

the average root mean square error (RMSE) of 5 k-fold cross validation runs showed a decrease in 353 

the error measure for the methylation-aware model compared to both the base (covariate-only) 354 

model and the shuffled feature (Fig. 5D). Using the predicted number of mutations from this model, 355 

we can calculate the excess of mutation burden of every gene, (Supp. Fig. 5D) which is a measure 356 

of positive selection. As expected, the mutation excess in the cancer driver genes, labeled as 357 

positive, was significantly higher than in the non-cancer genes, when measured in the testing set. 358 

Reassuringly, there was no significant change in mutation rates however between the different 359 

models (Fig. 5E) when considering non-cancer related genes (most of which are not selected). 360 

 361 

The expected mutation burden however differed significantly when considering the methylation 362 

gene clusters as different groups (Fig. 5F). The mutational burdens were corrected towards lower 363 

values for genes in the c3 group while they were corrected towards higher values for genes in 364 
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cluster c1 and c2. Our model is able to capture this information and consequently correct the 365 

estimated expected burdens. Overall, we suggest that shapes of DNA methylation profile should be 366 

formally included in models for testing selection on somatic mutations. 367 

 368 

Discussion 369 
 370 

This study highlights the role of locally variable DNA methylation in the modulation of mutation 371 

rates, particularly, around hypomethylated regions, such as UMRs and LMRs. For many mutagenic 372 

processes, such as the ubiquitous cell division-associated (and thus aging-associated) C>T process 373 

dependent on spontaneous cytosine deamination, these generate mutation coldspots. However for 374 

AID/APOBEC mutagenesis, the local hypomethylation instead generates mutation hotspots. 375 

 376 

Due to their overlap with the TSS and, often, the 5’ end of the gene, this local hypomethylation can 377 

also represent an important determinant of the overall mutation burden of a gene, as well as of 378 

other functional genomic elements such as enhancers and loop anchors. Due to this effect, 379 

incorporating information on differential methylation profiles of genes (here, implemented via 380 

clustering), or explicilty considering the methylation status of a genomic region-of-interest may 381 

provide a better estimation of their baseline mutation rates. We suggest DNA methylation can 382 

complement existing covariates used to predict mutation rates, mainly based on coarse-resolution 383 

features such as replication time, or heterochromatin status, or expression level of the gene. 384 

 385 

Generally in UMRs and to a lesser extent in LMRs, we find strong associations of the methylation 386 

status of the CpG dinucleotides with the mutation burdens of signatures, SBS1, SBS15 and SBS10b, 387 

as anticipated13,14, and to a certain extent also associates with other signatures like UV-induced 388 

SBS7 (negatively), and AID/APOBEC associated SBS2, SBS13, SBS9 and SBS84 (positively). 389 

Mechanistically, the mutation rate association in polymerase ε and MMR-deficient tumors was 390 

suggested to derive from an incorrect incorporation of the corresponding nucleotide when 391 

methylated13,15. On the other hand, the SBS1 signature mechanism, widespread in most healthy 392 

and cancerous tissues, is associated with the increased spontaneous deamination rate2,29,30 when 393 

methylated and/or by the more difficult repair of the deaminated cytosines if they are methylated. 394 

 395 
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The mechanism underlying SBS7, UV-mediated damage formation, has been reported to interact 396 

with DNA methylation in a diverse set of mechanisms, from the increased lesion formation in 397 

methylated DNA23,31 to the faster deamination of the dipyrimidine lesion. Mutations in melanoma 398 

skin cancer, usually predominantly from SBS7, associated non-linearly in genome-wide 399 

correlations13 with DNA methylation and are known to be modulated by other factors confounded 400 

with promoter hypomethlyation, such as transcription coupled repair, and also chromatin 401 

accessibility promoting repair13,32,33. Our approach, focusing on regions with significant methylation 402 

depletion, shows a depletion of UV-associated mutagenesis in UMRs of 45% over the expected rate. 403 

Importantly, we find this UV hypomutation is likely due to hypomethylation rather than other 404 

genomic features associated with it, for instance higher mRNA levels (and presumably higher 405 

transcription rates of the promoter and gene body). Because of known ability of TC-NER in clearing 406 

UV damage, we checked the hypomutation in promoters and 5’ gene ends with UMRs, stratifying 407 

by different expression levels (Fig. 1). In skin, this revealed a similar pattern as the one seen in 408 

colorectal cancers (enriched in SBS1 but no UV damamge), where both promoters of both the lowly 409 

and the highly expressed genes showed similar levels of hypomutation, suggesting that the 410 

hypomethylation rather than transcription underlies the reduced UV mutagenesis at promoters. 411 

(We note that in certain, narrow loci within some promoters, which binding the AP-1 family 412 

transcription factors, there is increased UV mutagenesis due to increased damage 413 

accumulation34,35).  414 

 415 

Contrary to cell cycling-associated SBS1 signature, and UV-associated SBS7, certain other 416 

mutational processes showed increased mutation burdens in hypomethylated regions. The APOBEC 417 

mutational signatures SBS2 and SBS13 showed an increased mutagenesis of ~19%.Its interaction 418 

with DNA methylation was proposed36 consistent with our observation. The SBS9 association may 419 

be mechanistically linked to the somatic hypermutation process, which involves AID followed by 420 

error-prone repair, and predominantly targets promoters of immunoglobulins and, as off targets, a 421 

subset of other high expressed genes, and would be thus associated -- directly or indirectly -- with 422 

demethylated sites as well. A further explanation is suggested by the enrichment of SBS84 423 

signature, which is characteristic for the AID mutagenesis37. The AID protein participates as the first 424 

step in the SHM process in B cells. Interestingly, however, AID was also suggested to participate in 425 

an active DNA demethylation mechanism38, where AID damage can trigger eventual repair back to 426 
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an unmethylated C39. This mechanism would be consistent with the strong correlation between AID 427 

and UMRs reported in this study.  428 

 429 

In conclusion, different mutation signatures have unique interactions with local methylcytosine , 430 

causing either an increase or a decrease of mutation rate at unmethylated sites, depending on the 431 

signature. The variability of effects in DNA methylation observed across tissues (Fig. 1E) may 432 

therefore be generated in part both by tissue-specific DNA methylation patterns, and also by the 433 

differential exposure to mutational signatures in different tissues (Fig. 1F). 434 

 435 

Because of the high enrichment of UMRs in active gene promoters and in 5’ ends of active genes 436 

(FIG), the reduction of mutation rates at these sites can affect the estimation of the baseline 437 

mutation rate in genes. Current approaches to the detection of selection in genes are based on the 438 

estimation of a mutation baseline from various covariates (replication time, gene expression and 439 

others) which is then compared against either the distribution of the observed mutation density40, 440 

the mutation spectra41 or the type of aminoacid substitution28. In either case, baselines are typically 441 

established at the gene level and do not consider variation within the gene body. Here, we show 442 

that mutation rates change within the gene body, in function of the methylation level particularly in 443 

the TSS and the downstream region (FIG 1). Importantly, this gradient of mutations occurs 444 

differentially according to every gene category, with higher expressed genes showing a stronger 445 

depletion (FIG). Based on our findings of the role of local hypomethylation in mutation rates, we 446 

classified genes according to their gene-body methylation profiles into 5 clusters. The first two 447 

groups, c1 and c2 contained lowly expressed genes with a shorter (or absent) unmethylated section 448 

around the TSS, and consistently we also observed no mutation rate depletion in TSS and adjacent 449 

5’ gene regions. In contrast, the highly expressed gene clusters c3 and c4, with wider unmethylated 450 

5’ end regions showed an enrichment in active chromatin marks and stronger CpGi. For both c3 and 451 

c4 genes, the mutation rate reduction was more pronounced. A fifth group, c5, was composed by 452 

shorter genes that showed, interestingly, relative reduced methylation levels along the gene body 453 

(FIG). These genes were enriched in H3K27me3, a polycomb mark, which has also been reported to 454 

interact with DNA methylation through the H3K27me3 mark being mutually exclusive with the 455 

DNA-methyltransferase recruiting, active transcription mark H3K36me342. The majority of 456 

Homeobox genes, a class of developmental associated genes were classified as c5 (FIG); 457 
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interestingly these genes are also reported to participate in cancer progression through the 458 

hypermethylation of its gene body6. 459 

 460 

An important practical use of the sub-gene mutation rate gradient prediction is in methods that 461 

test selection. Overall, when predicting the mutation burden of neutral genes from exonic data, a 462 

model that included the methylation aware clusters had higher accuracy than the base model. The 463 

increase in accuracy is modest, probably due to the fact that the histone mark information present 464 

in the base model (covariates used in dNdScv) can to some extent predict our methylation gene 465 

clusters. For instance, highly expressed genes share a both specific DNA methylation profile, and 466 

also a specific histone mark profile, where the latter may serve as a proxy to the former. However 467 

predicted mutation rates suggest that the mutation rate can be estimated with more detail if using 468 

the clusters. We propose that DNA methylation profiles should be incorporated into methods for 469 

detection of somatic selection. Particularly the methods that rely on the accumulation of positively 470 

selected hotspots in certain gene regions would benefit from more careful modeling of mutation 471 

rates on a sub-gene level, due to different DNA methylation and potentially also other factors. 472 

 473 
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Figures 579 
 580 

Figure 1 581 
 582 

Mutation gradients in genes and role of DNA methylation in mutation rates: (a) Diagram of the 583 

analysis of mutation rate gradients process. The genes are divided in 250bp long bins for which the 584 

mutation rate is calculated. The mutation rates at each bin is measured with a negative binomial 585 

regression and the output is factorized using a PCA. (b) PCA coordinates of the instances included in 586 

the regression, here 512 points representing each combination of expression bin, signature and 587 

tissue of origin. (c) Profile weights of Dimension 1 and 2 along the gene body. (d) Methylation 588 

profiles, measured as the median methylation level in each bin, for both UMRs and LMRs. Shadow 589 

area represents the 95% confidence interval of the median value across all regions. (e) Coefficients 590 

representing the relative mutation rate change for the UMR or LMR regions versus flanks. Each 591 

regression includes all mutations for a given tissue. (f) Same as in e but for the assigned mutational 592 

signatures. (g) Coefficients measuring the relative mutation rate change in tissue specific UMRs and 593 

LMRs versus flanks. 594 

 595 
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 597 

Figure 2 598 
 599 

Functional elements associated to UMRs and LMRs: (a) Diagram of the set of the relevant 600 

functional elements represented in this figure. (b) Odds ratio enrichment of the overlap of a given 601 

functional element either with the UMR or the LMR. (c) Upset plot showing all possible 602 

intersections of UMRs with the functional elements depicted in a. In this panel, the 5’ end of the 603 

gene body and the promoter is mixed in a single group. (d) Mutation rate enrichment for UMRs that 604 

do not present an overlap with functional promoters or loop anchors. (lapless -> no LAP overlap; 605 

proless -> no promoter overlap; lapproless -> either a promoter or a LAP overlap). (e) Same as in e 606 

but for the stratified mutational signatures. 607 

 608 
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Figure 3 610 
 611 
Epigenetic characterization of UMRs: (a) Histone accumulation profiles along UMRs clustered in 612 
two distinct groups, histones marks used are H3K27me, H3K36me3, H3K4me3 (depicted in the 613 
figure) and H3K27ac, H3K9me3 and H3K4me1 (depicted in Supp. Fig. 3). (b) Methylation median as 614 
in (Fig. 1D) for the two UMR methylation clusters. (c) Mutation rate estimates for SBS1, SBS15 and 615 
SBS7a for the appropriate tissues in both epigenetic UMR classes.  616 
 617 

 618 
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Figure 4 620 
 621 

Clustering of genes according to their methylation profile: (a) PCA coordinates of each gene from 622 

the factorization of methylation profiles. (b) PCA weights for the three first components used in the 623 

clustering of the methylation profiles. (c) PCA coordinate distribution of each gene cluster for the 624 

first three principal components. (d) Median methylation level for all genes in a given cluster. Area 625 

represent the 95% confidence interval of the median across all genes in each group. (e) Overlap 626 

enrichment measured with a chi.sq test. Significant values are shown as numbers. Colors represent 627 

the logarithm in base 10 of the O/E score. Numeric values represent the raw O/E value. 628 
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Figure 5 631 
 632 
Mutation enrichment in gene bodies of methylation aware gene classes:  (a) Mutation enrichment 633 
in 250bp long bins (similar from Fig.1A) for every gene in the c1 and c3 clusters defined in Fig. 4. (b) 634 
Mutation rate enrichment for a set of relevant signatures for cluster c1 and c2 as defined in Fig. 4.. 635 
(c) Diagram depicting a model to predict the mutation rate of genes according to dNdScv 636 
covariates, the context composition of the gene and the length as a offset. To this base model, the 637 
methylation-aware gene classes are added together with a randomized version of the gene clusters. 638 
(d) Root mean square error for the prediction of mutation rates by each model. (e) Percentatge 639 
change of predicted mutations in the positive set (cancer genes with positive selection) and the 640 
testing set (genes that are used to evaluate the performance of each CV round). (f) Changes in the 641 
predicted mutations of genes for each gene cluster as defined in Fig. 4. 642 
 643 
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Supplementary Figures 645 
 646 
Supp. Figure 1 647 
 648 
(Extended) Mutation gradients in genes and role of DNA methylation in mutation rates: (a) Scree 649 
plot from the gene gradient mutation rate factorization. (b) Correlation of the percentage of CG 650 
trinucleotides in each signature compared to the total contribution to the first principal 651 
component. (c) Same as in (b) but instances are stratified by gene expression and signatures are 652 
classified in CG-like or rest according to the CG percentage in their profiles. (d) Genomic coverage 653 
of the selected UMRs. (e-f) Correlation of the mutation rate estimations in different UMR sets. (g) 654 
Methylation levels in tissue specific UMRs. 655 
 656 
 657 
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 659 
Supp. Figure 2 660 
 661 
(Extended) Functional elements associated to UMRs and LMRs: (a) Upset plot representing the 662 
overlap with functional elements in LMRs. (b) Mutation estimates in functional element free UMRs 663 
for DNA repair deficient tissues. (c) Mutation rate estimates in promoters that significantly overlap 664 
with a UMR (> 200bp) and all promoters. (d) Same as in c but for selected tissues and stratifying the 665 
promoters according to the expression bins. 666 
 667 
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 669 
Supp. Figure 3 670 
 671 

(Extends) Epigenetic characterization of UMRs: (a) Histone profile of H3K27ac, H3K4me1 and 672 

H3K9me3 around epigenetic defined clustering of UMRs. (b) Mutation rate estimation in each UMR 673 

class according to the mutational signature. 674 

 675 

 676 
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Supp. Figure 4 678 
 679 
(Extends) Clustering of genes according to their methylation profile: (a) Scree plot of the 680 
methylation profile PCA used to cluster genes. (b) PCA coordinates of each gene (represented as a 681 
2D density plot) with the expression and size distribution for each principal component represented 682 
in boxplots. (c) Definition of the HCG genes according to their normalized CG values. A mixture 683 
modeling is used to define the threshold. (d) Expression and Size bins of each gene methylation 684 
class. (e) Enrichment of FANTOM nascent transcription associated to promoters (middle and 685 
bottom) and enhancers. Promoters and genes are divided in sense and antisense. (g) Proportion of 686 
Homeobox genes, as defined in ref43 , for each methylation aware cluster. 687 
 688 
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Supp. Figure 5 690 
 691 

(Extends) Mutation enrichment in different gene bodies: Mutation enrichment of each mutation 692 

signature (in rows) for each gene bin (in columns) of 250bp. Mutation rate estimates are 693 

represented as coefficients in natural logarithm. 694 

 695 
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Supplementary Tables 697 
 698 

Supplementary Table 1: List of methylation datasets used to define the UMRs and LMRs in this 699 

study. 700 

 701 

code group tissue source inclusion FDRper Coverage 

E058 solid skin ROADMAP excluded 6.10% 108,290,849 

E054 brain brain_ganglion ROADMAP included 1.20% 78,967,948 

E053 brain brain_cortex ROADMAP included 1.60% 85,146,106 

E071 brain brain_hippocampus ROADMAP included 0.70% 79,545,018 

E070 brain brain_matrix ROADMAP included 1.90% 98,948,007 

E100 solid muscle ROADMAP included 3.00% 114,119,567 

E095 solid heart ROADMAP included 1.00% 71,085,329 

E109 solid intestine ROADMAP included 1.20% 72,889,249 

E079 solid esophagusgut ROADMAP included 1.20% 78,609,887 

E094 solid stomach ROADMAP included 1.90% 103,815,766 

E066 solid liver ROADMAP included 0.80% 65,726,414 

E096 solid lung ROADMAP included 1.00% 73,087,658 

E113 blood spleen ROADMAP included 1.20% 72,300,133 

E085 solid intestine ROADMAP included 0.70% 69,148,189 

E084 solid intestine ROADMAP included 0.80% 80,254,187 

E106 solid colon ROADMAP included 0.90% 77,950,142 

E112 blood thymus ROADMAP included 0.30% 61,539,099 

E050 blood hsc ROADMAP included 0.60% 72,292,167 

E008 stemcells esc ROADMAP included 0.20% 27,273,886 

E016 stemcells esc ROADMAP included 0.10% 29,248,304 

E024 stemcells esc ROADMAP manually_excluded 0.30% 54,758,498 

E021 stemcells ips ROADMAP included 0.20% 47,685,111 

E022 stemcells ips ROADMAP included 0.20% 51,095,932 

E007 stemcells escd ROADMAP included 0.10% 39,496,379 

ENCFF491ZQM blood natural killer cell ENCODE excluded 0.90% 50,057,397 

ENCFF867JRG blood K562 ENCODE manually_excluded 1.00% 1,554,341,638 

ENCFF279HCL blood GM12878 ENCODE excluded 115.90% 843,330,637 

ENCFF355UVU blood T-cell ENCODE included 1.10% 51,246,932 

ENCFF774VLD blood B cell ENCODE included 0.90% 64,729,153 

ENCFF451WIY blood CD14-positive monocyte ENCODE included 1.50% 79,341,328 

ENCFF489CEV solid stomach ENCODE included 2.00% 84,591,859 

ENCFF577TCU solid 
gastroesophageal 
sphincter ENCODE excluded 4.80% 75,896,721 

ENCFF844EFX solid stomach ENCODE included 2.70% 75,548,982 

ENCFF923CZC solid large intestine ENCODE included 0.90% 75,162,056 
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ENCFF521DHD solid small intestine ENCODE excluded 0.90% 66,285,068 

ENCFF424XKF solid transverse colon ENCODE excluded 3.40% 54,917,634 

ENCFF811QOG solid stomach ENCODE included 2.90% 81,640,221 

ENCFF241AQC solid small intestine ENCODE included 0.90% 52,559,972 

ENCFF266NGW solid small intestine ENCODE included 1.20% 63,595,672 

ENCFF534RNT solid stomach ENCODE included 1.20% 70,856,980 

ENCFF455TQO solid sigmoid colon ENCODE included 2.00% 86,007,640 

ENCFF435SPL solid stomach ENCODE included 2.10% 92,539,941 

ENCFF122LEF solid small intestine ENCODE included 2.40% 89,505,578 

ENCFF497YOO solid stomach ENCODE included 1.90% 94,022,932 

ENCFF157POM solid sigmoid colon ENCODE included 0.60% 49,059,946 

ENCFF366UWF solid hepatocyte ENCODE manually_excluded 1.00% 70,746,855 

ENCFF847OWL solid HepG2 ENCODE excluded 254.50% 1,398,562,294 

ENCFF390OZB solid HepG2 ENCODE excluded 219.80% 1,486,267,948 

ENCFF487XOB solid hepatocyte ENCODE manually_excluded 1.00% 68,617,010 

ENCFF577VGR solid right lobe of liver ENCODE included 1.60% 65,336,025 

ENCFF064GJQ solid HepG2 ENCODE excluded 250.40% 1,401,851,624 

ENCFF369YQW solid HepG2 ENCODE excluded 249.50% 1,416,591,817 

ENCFF005TID solid A549 ENCODE excluded 169.40% 615,993,233 

ENCFF842MHJ solid upper lobe of left lung ENCODE included 1.20% 63,160,587 

ENCFF937OSM solid IMR-90 ENCODE included 3.10% 78,849,792 

ENCFF003JVR solid A549 ENCODE excluded 175.40% 647,542,688 

ENCFF477AUC solid lung ENCODE included 0.60% 65,516,632 

ENCFF733EFJ solid upper lobe of left lung ENCODE included 1.50% 62,959,700 

ENCFF039JFT solid lung ENCODE included 0.90% 62,843,505 

ENCFF288YTY solid IMR-90 ENCODE excluded 64.30% 85,950,357 

ENCFF254DBF solid IMR-90 ENCODE excluded 78.20% 176,853,985 

ENCFF714SUO solid GM23248 ENCODE excluded 7.30% 107,515,043 

ENCFF959WCA solid GM23248 ENCODE excluded 7.20% 111,843,192 

ENCFF116DGM solid GM23248 ENCODE excluded 7.30% 125,812,390 

ENCFF219GCQ solid lower leg skin ENCODE included 1.60% 74,565,673 

ENCFF752NXS solid GM23248 ENCODE excluded 7.40% 127,301,933 

ENCFF121VIX solid lower leg skin ENCODE included 1.70% 73,448,503 

ENCFF517AOL solid iPS DF 19.11 ENCODE excluded 0.90% 14,104,156 

ENCFF545MIY solid iPS DF 6.9 ENCODE excluded 0.10% 35,906,952 

ENCFF186EKM solid iPS DF 19.11 ENCODE excluded 0.10% 39,896,920 

ENCFF774GXJ solid skeletal muscle myoblast ENCODE manually_excluded 4.50% 94,999,394 

ENCFF588ETU solid muscle of leg ENCODE included 2.70% 78,409,570 

ENCFF837SXM solid skeletal muscle myoblast ENCODE manually_excluded 4.40% 96,476,185 

ENCFF645AZF solid muscle of trunk ENCODE included 2.90% 83,324,773 

ENCFF672QKY solid smooth muscle cell ENCODE manually_excluded 1.10% 77,304,925 

ENCFF297CJG solid smooth muscle cell ENCODE manually_excluded 1.10% 76,185,773 
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ENCFF588IUK solid smooth muscle cell ENCODE manually_excluded 1.10% 79,993,937 

ENCFF315ZJB solid smooth muscle cell ENCODE manually_excluded 1.10% 81,827,708 

ENCFF913UZU solid psoas muscle ENCODE included 2.60% 94,696,041 

ENCFF121ZES solid psoas muscle ENCODE included 1.20% 65,736,441 

ENCFF940XWW brain SK-N-SH ENCODE excluded 75.90% 484,288,986 

ENCFF179VKR brain SK-N-SH ENCODE excluded 96.70% 582,834,973 
 702 

 703 

  704 
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Online Methods 705 
 706 

Reference region sets 707 
 708 

ChromHMM states were downloaded as a bed file from the Roadmap data portal at 709 

egg2.wustl.eduroadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core_K27ac/joi710 

ntModel. The core_K27ac model was selected for sample E017 (IMR90) and used throughout all the 711 

analysis. 712 

 713 

Gene models for assembly GRCh37 were downloaded from the GENCODE release website 714 

(https://www.gencodegenes.org/human/) for the version 19. For each gene, a single transcript was 715 

used, if not stated otherwise. TSS, TES and gene length were derived from this annotation if not 716 

stated otherwise. These transcripts were selected according to he TREGT gene list that uses a 717 

combination of CDS gene length and expression level to select the most appropriate isoform. The 718 

list is available in (tregt.ibms.sinica.edu.tw) and in ref44. Transcription levels for all genes were 719 

downloaded from GTEX website (version V8) in TPMs and averaged globally for all samples yielding 720 

an average value for each gene. 721 

 722 

SomaticHypermutation (SHM) on target and off target regions were defined similarly as in ref45. In 723 

brief, on-target regions were defined as genomic regions for the immunoglobulin genes: IGH, IGL 724 

and IGK were retrieved and extended 10Kbp upstream, downstream and reduced. Mutations in 725 

those regions were filtered out when appropriate. Off-target regions were extracted from AID 726 

activity in mouse B-lymphocytes which was then translated ( liftOver ) to hg19. 727 

 728 

Somatic mutations 729 
 730 

In order to detect samples with deficient mutations in DNA methylation related genes we 731 

annotated both SNVs and indel somatic variants with annovar46 using the ensGene database. 732 

We considered as deficient mutation any mutation in a coding sequence which was not classified as 733 

synonymous. For each selected genes, we stratified samples by their tissue of origin and by their 734 

MSI status. From each category, we selected a random set of samples to match the ones with 735 

deficient mutations. This set of random samples was used as a control in further analysis. 736 
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 737 

Mutational signature assignment 738 
 739 

Mutation calls for SNVs were tallied and classified according to their trinucleotide context and their 740 

alternative base. COSMIC signature profiles and tissue exposures (V3.3) we downloaded directly 741 

from the cosmic website at (cancer.sanger.ac.uk/signatures/sbs/) . A mutational signature was 742 

assigned to a tissue if at least 1 sample in the cosmic dataset contained that signature. Of note, 743 

some of the samples in the cosmic signatures dataset are also included in our set, but their direct 744 

exposures were not taken. Signature 1 and 5 were assigned to all tissues. MSI and POLE deficient 745 

samples were treated independently within their tissues of origins and signatures associated with 746 

their phenotype were included, in brief, for MSI samples we included signatures 6, 15, 21, 26, 44, 747 

14, and 20; and for POLE deficient samples we included 10 (a, b, c and d), 14 and 20. For each 748 

tissue, the matrix with the mutational profile of each sample was computed and fitted to the 749 

assigned cosmic signatures via SigLasso47 which implements a lasso regression fitting that forces 750 

sparsity in the signature assignment. Results from the lasso fitting were then used as exposures for 751 

the rest of the analysis. 752 

 753 

For every sample in our dataset, we used the signature exposures obtained from SigLasso fitting in 754 

order to obtain the probability of a given mutation to be caused by a given mutational signature. In 755 

brief, the exposure in a given sample was split to the 96 mutation categories according to the 756 

original mutational profile (weight of every mutation category) and afterwards each feature was 757 

normalized within every sample so that every mutation class had a given probability to be 758 

associated to any of the used mutational signatures. Thus, using this approach, we could estimate 759 

the probability of a mutation of class i to be associated with a given signature. If the signature was 760 

not present in a sample the probability was then zero. 761 

 762 

Then, to classify the raw mutation calls, we used these probabilities to sample a single signature 763 

and assign it to a given mutation. This process allows us to classify raw mutation calls to distinct 764 

mutational signatures and allows us to pool mutations generated by the same process across 765 

different samples and different tissues. 766 

 767 



          42 

DNA methylation data and analysis 768 
 769 

Tissue specific data for the selected tissue groups (solid, blood and brain) were downloaded from 770 

the ENCODE main data portal (https://www.encodeproject.org/). From each of the selected groups 771 

of tissues we obtained 3 reference experiments (reference epigenomes). If available, data from 772 

primary tissues was obtained. If not available, data from cell lines and primary cell cultures was 773 

used. 774 

 775 

We obtained a total of six histone mark signal for every experiment: (i) H3K4me3 for TSS and 776 

promoters; (ii) H3K4me1 for enhancers; (iii) H3K27ac for active promoters and enhancers; (iv) 777 

H3K9me3 for heterochromatin; (v) H3K36me3 for gene bodies of expressed genes and (vi) 778 

H3K27me3 for bivalent transcription and polycomb marked genes. The signal obtained measured 779 

fold change over control which is equivalent to the chip-seq signal value over the input in the 780 

experiment. 781 

 782 

For the 3 samples included in each group, we averaged the signal using ucsc tools ( bigWigMerge ). 783 

We then combined the averaged signals with the different UMR types and run computeMatrix in 784 

scale-region mode from the deeptools toolset in order to obtain a meta profile scaled to the 785 

corresponding UMR region. 786 

 787 

The metaprofiles of every selected histone mark for every selected UMR were clustered together 788 

using k-means for k 2 to 10. The resulting clusters were selected based on the total sum of squares 789 

within each cluster and after inspection of the resulting profiles for biological coherence. Two 790 

clusters were finally selected. 791 

 792 

Functional element enrichment in UMRs 793 
 794 

Enhancer data based on CAGE data was obtained from the FANTOM dataset 48, version V5 795 

(https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers). They were posteriorly divided into 796 

terciles using the predefined categories in the downloaded data, with t3 indicating a higher 797 

expression level (in TPMs) and t1 indicating the lowest. As in ref6, superenhancers were 798 

downloaded from the supplementary material in ref49. From the available sets we used primarily 799 
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the superenhancer track marked in red. The UCSC gene model, available in the bioconductor 800 

package TxDb.Hsapiens.UCSC.hg19.knownGene , was used to define promoters and the 5’ genic 801 

sections. Promoters were defined as the 2kbp upstream of the TSS with no upstream section, and 802 

the 5’ genic sections were defined as the 2kbp downstream of the TSS.  803 

 804 

These functional elements were compared against different sets of UMRs for three different 805 

sources of methylation data: from ref5,6 and the set gathered in this study. The enrichment 806 

measurement is based on a fisher exact test of the overlapping bp between 2 types of regions. 807 

Thus, if a feature is less specifically overlapped against another, the odds' ratio will decrease even if 808 

many of the sparser one are covered. 809 

 810 

Methylation data sources 811 
 812 

To maximize the genomic coverage of the DNA methylation data, we gathered whole genome 813 

bisulphite sequencing (WGBS) from publicly available datasets, in brief, the Roadmap epigenome 814 

project (see https://egg2.wustl.edu/roadmap/web_portal/ ) and the ENCODE data portal (see 815 

https://www.encodeproject.org/).  816 

 817 

Data from the Roadmap project consisted in all sets with available WGBS data. They can be 818 

accessed in Supp. Table 1. Downloaded data consisted in fractional methylation data ( 819 

FractionalMethylation ) which contains information about the methylation of each sufficiently 820 

covered CpG in a percentage value. We also downloaded files containing genomic coverage of each 821 

CpG. 822 

 823 

Similarly, all WGBS available data from ENCODE was downloaded. All files were in the bedMethyl 824 

format derived from the output of Bismark50 in the ENCODE main processing pipeline. This format 825 

also contains the methylation levels of all sufficiently covered CpG in a percentage. In addition, the 826 

same format also contains information about the coverage of each CpG dinucleotide. Accession 827 

codes from these files are available in table. The ENCODE datasets were only available in the hg38 828 

assembly and were translated to hg19 (using liftOver) to match the rest of the analysis. LiftOver 829 

statistics can also be found in Supp. Table 1. 830 

 831 
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Methylation data processing 832 
 833 

In order to call significant unmethylated regions (UMR) we used MethylSeekR from bioconducor5 834 

implementing the default processing workflow suggested by the authors in the vignette. In brief, 835 

SNP positions are first removed from the set (see Supp. Table 1). PMDs were detected by using the 836 

shortest chromosome with at least 150 probes as a training set. CpG islands were downloaded from 837 

UCSC table query. These datasets were then used to calculate the FDRs for the detected UMR 838 

segments. A threshold of 4 CpG positions in each segment and at least a smaller than 50% 839 

methylation value was required. If the FDR value at these conditions was lower than 5%, the 840 

samples were automatically discarded. If the total number of CpG islands considered was smaller 841 

than 25M the samples were also discarded. Non-autosomal chromosomes were removed (Supp. 842 

Table 1). 843 

 844 

This process was run for every sample in our dataset individually. UMRs extracted from each set 845 

were then translated in a matrix format, containing a binary encoding (1 or 0) if a specific locus was 846 

included or not in that sample. This matrix was factorized using tSNE (from the Rtsne package) with 847 

25 perplexity. The resulting grouping was inspected for biological coherence, samples that were not 848 

grouped with its tissue group were manually excluded for further analysis (see Supp. Table 1). 849 

 850 

For each tissue group (solid, brain, and blood), individually detected UMRs were pooled into a 851 

union set which contained all UMR loci from every experiment and then reduced to avoid overlaps. 852 

If not stated otherwise, these are the sets used for all analysis when compared to mutation calls. A 853 

full union set was also generated from the union of all sets together. Each union set for every tissue 854 

was then used to compare with the other tissue groups and the UMRs which were specific to that 855 

tissue group, not present in others, were selected as tissue-specific. 856 

 857 

UMRs from other studies were also downloaded to be used as reference sets in this analysis. UMR 858 

calls from ref5 were downloaded from the supplementary material and were pooled for both UMR 859 

and LMR classes. These experiments included mostly cell lines from blood tissues or reprogrammed 860 

cells. Other samples included adipose tissue and fibroblasts. This dataset was originally downloaded 861 

in hg18 and then translated into hg19 with liftOver. Of note, software used to call UMRs in these 862 

datasets was the same as the one used for the downloaded WGBS data. Data from ref6 was also 863 
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downloaded from the supplementary material and pooled across different available datasets. The 864 

UMRs were divided into Canyons, cUMR (conserved UMRs) and either healthy or tumor specific 865 

UMRs. If not stated otherwise, the conserved UMR dataset was used for all the analysis in this 866 

study. 867 

 868 

Clustering of methylation profiles in gene bodies 869 
 870 

From the downloaded WGBS datasets the average methylation value for every available CpG 871 

dinucleotide was computed within tissue groups (brain, blood and solid). The solid average values 872 

were used for this analysis. 873 

 874 

Gene bodies were extracted from TSS to TES , thus including 3’ UTRs, coding sequences, introns and 875 

5’ UTRs. For each gene body, the analyzed regions were located around either the ends. These ends 876 

were expanded 3kb outward, upstream for the TSS and downstream for the TES, and 5kb inward, in 877 

reverse order. These sections were divided in 50bp sections. If genes were shorter than 5kb (X%), 878 

the bins were further expanded from each direction. For the scaled genes analysis, each gene body 879 

was scaled to match an average sized gene (20kb) and extended unscaled with 3kb. Methylation 880 

averages were then extracted from each bin using the calculateMatrix tool in deeptools generating 881 

a matrix with TSS and TES concatenated bins as columns and genes as rows. The scaled analysis also 882 

followers a similar approach with bins in columns and genes as rows. 883 

 884 

The resulting matrix was factorized using a PCA (from FactoMineR package) with no scaling. The NA 885 

values in the matrix, representing bins with no methylation signal, were imputed automatically 886 

using the mean value of the column. Per gene, the average number of NA values was . Significance 887 

for the number of principal components was extracted comparing to a broken stick model (from 888 

the vegan package), which simulates a non-signal scenario. The resulting coordinates of each gene 889 

for the top three principal components were grouped using medoids clustering (function 890 

cluster::pam in R). The number of clusters selected (k = 5) was chosen from a range (2 to 7) after 891 

visual inspection of the resulting methylation profiles and genomic characterization. Although a 892 

selection process based on silhouette index and sum squared of the residuals was also performed, 893 

the continuous characteristics of the clustering and the lack of defined numerical limits made this 894 

approach too conservative. The reader might interpret these clusters as data driven blocks. 895 
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 896 

To extract the methylation profile of every gene cluster, genes were grouped according to their 897 

assigned cluster and the average value was computed for each bin. This profile is indicative of the 898 

different methylation profiles in each group. Meta profiles of the methylation along the gene body 899 

were computed using the computeMatrix utility from deeptools in reference point mode. Plotting 900 

profiles were performed using in house scripts which also included the measure of a confidence 901 

interval. The confidence interval of the median is measured using the indices of a binomial 902 

distribution with the given sample size equal to the amount of rows tested, here, the number of 903 

genes in a specific cluster. Confidence interval levels are always 95% two-tailed if not stated 904 

otherwise. 905 

 906 

For the genomic characterization of the profiles, genes were tested for local enrichment of histone 907 

marks, promoters, and enhancers and chromatin states. Histone marks used to characterize the 908 

gene clusters were obtained. Promoters and enhancers were downloaded from the FANTOM 909 

dataset but pooled across all expression levels. Chromatin states were downloaded as above. The 910 

division of genes categories according to the CpG content in their promoters was extracted from 911 

the supplementary material of ref18 for CpGi genes and was calculated as in ref26 for the HCG genes. 912 

In brief, CpG instances were tallied in each promoter and normalized against its CG content. This 913 

measure was then modeled by a Gaussian mixture model (using mclust package) with two 914 

components. 915 

 916 

While the test for promoters and histone marks followed a similar methodology that the 917 

methylation meta profiles of the clusters, the overlap with chromatin states was computed using a 918 

co-occurence test. The enrichment of each cluster with the intersected classes was measured by 919 

dividing the observed and expected values in the matrices used by the chi square test. The 920 

individual p value of every cell was calculated using pair-wise fisher exact test. 921 

 922 

Mutation rates estimation using Negative Binomial regression 923 
 924 

The estimation of the mutation rate was performed using a Negative Binomial regression. 925 

 926 
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For the mutation rate at UMR or LMRs we compared the mutation accumulation at the region of 927 

interest (ROI) against their flanks. We defined flanks as the regions separated from the ROI by 1 928 

width. Each flank had half of the width of the original ROI. This essentially translates to splitting the 929 

UMR/LMR in two halves and moving each section one width in the corresponding direction. 930 

Mutation rates are always represented as the ROI over flanks. Using this design, both the null and 931 

the ROI regions are likely in the same replication time domain minimizing the need to control for 932 

this co-factor. At the same time, separating these regions by one width allows us to detect clean 933 

signals which can not be underestimated due to loose ends when detecting the undermethylated 934 

region.  935 

 936 

Mutations were stratified according to their trinucleotide content and according to their overlap 937 

with a ROI or a flank. After, mutations were tallied over those feature effectively pooling across 938 

types of regions. Likewise trinucleotides of the reference sequence were also tallied in the ROIs and 939 

flanks to determine the nucleotides at risk for each context. These values were used as an offset in 940 

the regression allowing us to control for the sequence context both at the ROI and the null regions.  941 

 942 

The function MASS::nb.glm is then used to perform the negative binomial regression over the data 943 

table. The total number of rows is equal to the number of contexts used (96) multiplied by the 944 

region channels (2). This step leads to a formula such as: 945 

 946 

Mutations ~ ROI + offset(ln(ntp_at_risk)) 947 

 948 

Throughout the analysis of this study other features can also be controlled for by removing the ROI 949 

which overlap with a given external feature. While this reduces the number of available mutations 950 

the same methodology is used. If not stated otherwise, mutation rate estimates measured with 951 

external confounded features use this approach. 952 

 953 

Alternatively and when explicitly stated in the results or figures, control for other features can also 954 

be performed within the same regression. The process is similar but includes an intersection step 955 

before the mutations are tallied over the region types. Different regional channels (essentially types 956 

of ROI) are intersected together to generate all possible combinations. Mutations occurring outside 957 

the intersection of two channels will be discarded. Mutations are then tallied according to the 958 
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trinucleotide mutation type and each categorical interactions of the sites and the regression will be 959 

performed as above by adding the second channel in the regression formula such as: 960 

 961 

Mutations ~ ROI1 + ROI2 + offset(ln(ntp_at_risk)) 962 

 963 

The resulting estimates are the coefficients of each ROI feature and they represent its mutation 964 

rate of each channel against its null or reference section. For the UMR basic mutation rate 965 

estimates, the reference value are the flanking regions. The estimate is given as the natural 966 

logarithm of the odds ratio which can then be later transformed to logarithm in base 2 or as a 967 

percentage change. If not stated otherwise, mutation rate enrichments on figures are displayed as 968 

a natural logarithm. 969 

 970 

Tissue specific analysis of the mutation rate 971 
 972 

To differentiate mutation rates in different classes of UMRs we stratified them according to the 973 

overal with several functional features. UMRs for specific tissues were extracted as above and then 974 

used for estimation of mutation rates against all tissues, both matching and non-matching. Thus, all 975 

tissue specific UMRs were tested against all cancer types. 976 

 977 
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The three-dimensional chromatin conformation of the genome has been associated with the variability of mutation 
rate at the coarse, megabase scale, where lamina-associated domains, and the TADs associated with late replication 
time present higher mutation rates. This suggests the spatial organization of chromatin can affect domain-scale 
mutation processes, and we asked if there exist finer-scale hypomutated or hypermutated chromatin spatial regions 
in human cells. Here, we present a systematic analysis of the mutational processes in the three-dimensional 
chromatin organization, by considering local mutation rate variability at chromatin loop anchors, loci that are in spatial 
contact with another distal locus. Loop anchors are protected from mutations from a diverse set of mutational 
signatures, most prominently the widespread signature of  cytosine deamination, signature 1 and the UV DNA 
damage, signature 7a, which show a clear depletion at these loci. In contrast, some mutational signatures, like the 
AID-associated mutagenic activity, which shows an enrichment, possibly stemming from AID targeting in the somatic 
hypermutation in B-cell lymphocytes. In order to elucidate mechanisms of the mutation depletion in chromatin loop 
anchors seen in SBS1 and SBS7, we analyzed the role of multiple overlapping epigenetic features. DNA methylation 
for signature 1 and the chromatin states and DHS regions for SBS7a were able to explain a large proportion of the 
mutation rate variability, suggesting causal roles of the epigenetic features rather than chromatin folding per se. 
Finally, we implemented a methodology to detect clusters of mutations in trans, i.e. those distal in the one-
dimensional DNA sequence but proximal in three-dimensional space. This method rigorously accounted for the 
particular mutation rate constraints that we observed across these chromatin looping sites. This analysis reveals a 
significant enrichment of spatially clustered mutation pairs in lymphoid tumors, bearing a characteristic mutational 
spectrum of AID activity, suggesting that AID forms spatial mutagenic foci in chromatin. Together, these analyses 
highlight the variability of mutation rate at a medium scale in three-dimensional chromatin organization. This is in 
large part explained by a set of epigenetic features that associate with loop anchors, converging onto a mutation 
protective chromatin environment. We also show the existence of a localized hypermutation in the three-dimensional 
nuclear space in human cells. 
 

Introduction 
 
The sequencing of human tumors and healthy somatic tissues has revealed a large set of 1 

mutagenic processes acting in somatic human cells. Distinct genomic and epigenomic features can 2 

influence the mutation rate at different scales, from the trinucleotide content1,2 to large replication 3 

time domains3,4. Chromatin folding, or more generally the three-dimensional organization of the 4 

genome can also influence the mutation processes that are active locally, with DNA located at the 5 

nuclear periphery and in lamina associated domains harboring more mutations due to both 6 

increased DNA damage5 and reduced repair6. Active and inactive topological associated domains 7 

(TAD)s accumulate less and more mutations, respectively7, which may stem from their 8 

correspondence with early-replicating and late-replicating domains8. 9 

 10 



 2 

In addition to chromatin organization, somatic mutation rates are also heterogeneous at the 11 

sequence level, for instance, generating mutation groups or clusters of closely spaced mutations 12 

that share the same molecular event-of-origin. Mutation clusters were previously identified as a 13 

result of the activity of the APOBEC family of cytosine deaminase enzymes and also of methylating 14 

DNA agents2,9 in ssDNA, generating DNA strand coordinated mutations. Here, we hypothesized that 15 

there are certain mutagenesis mechanisms particularly relevant for distal DNA loci that are in 16 

contact in 3D space.  In particular, to test this hypothesis we consider chromatin LAPs and 17 

generalize the methodologies for detection of mutation clusters towards the 3D chromatin 18 

interaction map of the genome. Firstly, we report a characteristic hypomutation around 10Kb 19 

adjacent to LAPs, for specific mutational signatures like that resulting from spontaneous 20 

deamination of methylated CpG sites (SBS1), plausibly due to the reduced DNA methylation levels in 21 

LAPs. Secondly, taking this local hypomutation of LAPs into account, we devise a method to 22 

quantify the excess of mutations co-occuring in the trans-interacting loci, and mutational signatures 23 

thereof . We detect a significant enrichment of the AID mutagenic process only in SHM-positive 24 

lymphoid cells. This enrichment, thus, suggests that the activity of AID can cause 3D clusters of 25 

mutations situated in distal regions of DNA. Our analyses also suggest the possibility of additional 26 

3D clustered mutational signatures. 27 

 28 

Results 29 
 30 

We first compiled a large set of chromatin loop anchors from the literature and additionally by 31 

identifying them with specialized software from published 3D genomic datasets (Supplementary 32 

Table 1)10–13. In brief, our final dataset comprised loop anchors from: (i) ChIA-PET experiments, 33 

targeting cohesin, CTCF and RNA polymerase II,10,12 (ii) HiC in situ experiments11 and (iii) micro-C 34 

experiments13 in human cells, in total 20 datasets. The ChIA-PET loops were all obtained from the 35 

literature while the micro-C and HiC loops were called de novo or extracted from the literature. We 36 

explored genomic characteristics of each set of loop anchors to determine if sets were comparable 37 

and were representative of the sample (Fig. 1A). The chromosomal loops extracted from ChIA-PET 38 

experiments, similar to the low resolution in situ HiC loops, exhibited a strong association with 39 

canonical insulator motifs with cohesin binding and enriched CTCF motif directionality (Fig. 1B,D). 40 

Loops extracted from the micro-C experiments showed less canonical loops but the ones that were 41 

detected still showed a substantial enrichment in CTCF directionality ( Fig. 1C). 42 

 43 

The other sets of loop anchors were more heterogeneous and varied in size and in the association 44 

with epigenetic factors (Supp. Fig. 1,2). We then performed a filtering step to retain only loops 45 
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observed in multiple experiments, after applying this requirement, the homogeneity of the sets was 46 

significant and the enrichment of canonical CTCF motifs was similar to previously published 47 

individual high-quality datasets11 (Supp. Fig. 3). We also divided the extracted loops in sets 48 

according to multiple characteristics, like the chromatin states or the chromosomal compartments 49 

(see Methods). 50 

 51 

For this global set of chromatin loop anchors, we next explored the mutation rate profiles in the loci 52 

they span. Loop anchors defined from HiC or micro-C were arbitrarily generated from the bins of the 53 

interaction map, while ChIA-PET loops are more precisely located around the DNA bound to cohesin 54 

(or protein of interest). Mutations were significantly reduced at these sites for a window around 55 

~10kbp for signature 1 and 7a (Fig. 2A,B). To systematically characterize the mutation rate change 56 

in the anchors, we stratified the mutations according to the mutational signatures (Methods) and 57 

calculated the odds ratio of every mutational signature comparing the observed and expected 58 

accumulation in the anchors and flanks Fig. 2C). By comparing the resulting odds ratio from all loop 59 

sets and all mutational signatures we can see a general trend of relative reduction of mutation rate 60 

at the anchors Fig. 2D). In particular mutations assigned to SBS1 and SBS7 showed the greatest 61 

reduction Fig. 2E). In contrast, SBS9 showed a positive enrichment in the anchors Fig. 2E). We 62 

analyzed the odds ratio of every signature in a PCA, which yielded two principal components 63 

associated with the mutation rate depletion at chromatin loop anchors Fig. 2F). Although most  64 

signatures contained a slight depletion (Fig. 2D), the SBS1 and SBS7 mutational signatures showed 65 

a stronger effect. The mutation rate profiles for SBS1 (Fig. 2A) showed that while the mutation rate 66 

appeared approximately flat (uniform), the mutations in the functional portion were expected to 67 

increase based on a trinucleotide aware randomization suggesting that the mutation risk is in fact 68 

overall reduced at LAPs.  69 

 70 

In order to elucidate molecular mechanisms relevant to the reduction of mutations as LAPs we next 71 

fit a negative binomial regression model to compare the variability of the LAPs with other 72 

overlapping genomic or epigenomic features. We segmented the loop anchor into upstream and 73 

downstream sections and compared them with the central region, and the flanking regions in their 74 

vicinity (Fig. 3A). In this analysis we also included the rest of the genome so we can intersect these 75 

regions with other genomic features. The introduction of other known regions that correlate with the 76 

local mutation rate in a joint model will account for the local influence in their overlapped in 77 

measuring the mutation depletion seen in anchors. Then, if the reduction of mutation rate is 78 

explained by another factor, the difference of the anchor and flanking regions would be diminished. 79 

The set of features tested are DNA methylation level, chromatin states (ChromHMM), DHS levels 80 

and DNA replication time domains. 81 
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 82 

For the mutation depletion in anchors associated with SBS1 we saw that DNA methylation levels 83 

were almost completely responsible for the local mutation rate depletion of loop anchors (Fig. 3B). 84 

Our model predicted a 50% mutation depletion associated with the  loop anchor sites for SBS1 85 

when not controlling for DNA methylation, while this value was reduced to only 16% when including 86 

the DNA methylation bins into the joint model. In other words, reduced DNA methylation levels can 87 

explain most of the mutation rate depletion at loop anchors (Supp. Fig. 4). Other local factors were 88 

also relevant to explain the hypomutation at anchors, with chromatin states reducing the depletion 89 

to 34% and DHS reducing it even lower to 30%. We expect the hypomethylated DNA fragments to 90 

overlap both with DHS and active promoters, limiting our ability to fully disentangle the mechanism 91 

of mutation reduction (Fig. 3B). Expectedly, controlling for replication time was not sufficient to 92 

remove the association of LAPs with mutation rates, because RT is variable only at much coarser 93 

genomic scales (hundreds of kilobases) than the width of loop anchors. We note that RT was 94 

however important to explain for the change in mutation rates between the anchors and their 95 

flanking regions, comparing against the rest of the genome (Fig. 3B). This observation was evident 96 

for multiple signatures and potentially reflects the enrichment of loop anchors in early replicating 97 

time regions. 98 

 99 

We also tested the depletion of mutations in SBS7a (UV mutagenesis), which showed a similar 100 

reduction when incorporating the local covariates as SBS1. In the case of SBS7a, however, the 101 

factor which reduced the mutation rate more strongly were the chromatin states (Fig. 3C), which 102 

incorporates information on the transcriptional status of the region. The effect of DHS and DNA 103 

methylation also reduced significantly the observed depletion in anchors (Fig. 3C), suggesting that 104 

chromatin marks, DHS (chromatin accessibility) and DNA methylation can jointly determine the UV 105 

mutagenesis at chromatin loop anchors. However, while DHS had an important effect on mutation 106 

rates14 (Supp. Fig. 5), DNA methylation only had a moderate effect (Supp. Fig. 5), suggesting that 107 

the hypomethylation of the anchor plays a lesser role in the reduction of mutations derived from UV, 108 

in contrast with the aging-associated SBS1. 109 

 110 

Together, the different chromatin features accumulated in loop anchors, particularly DNA 111 

methylation and DHS, might be the cause of the observed protection of LAPs from mutation, rather 112 

than some intrinsic 3D folding property of the LAP. 113 

 114 

With a better understanding of how the different mutational processes generate mutations at loop 115 

anchors, we used this as a baseline expectation to derive a methodology to detect enrichment of 116 

pairs of mutations bridging the LAP. Essentially, these pairs of mutations are far on the 1D 117 
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sequence, but close in 3D space, constituting mutation trans-clusters. We calculate the number of 118 

3D clustered mutation pairs i.e. loop anchors with mutations in both ends, and compared this with 119 

the expected number obtained from randomly paired anchors. The upstream part of an anchor was 120 

paired with the downstream part of another anchor within the same replication domain, at most up 121 

to 100kbp distance from the original one. The resulting mutation pairs in both sets were tallied 122 

across samples (Fig. 4A). We obtained observed versus expected ratios (O/E) for our set of 123 

samples (see Methods). Overall, there was no clear deviation from the expected values and the 124 

majority of samples showed values close to 1, thus similar values for observed and expected pairs 125 

(Fig. 4B). This result suggests that either mutational trans-clusters are rare in cancer genomes or 126 

that the analysis is heavily under-powered, due to the low genomic coverage of these anchor sites 127 

and/or low number of tumor samples. More WGS sequenced tumors or more sensitive loop 128 

detection algorithms or higher-resolution Hi-C datasets might improve these results and highlight 129 

other mutational processes with 3D activity.  130 

 131 

When considering specific tissues, however, the set of blood tumors did contain a consistent 132 

positive enrichment in the OE ratio (Fig. 4C), implying 3D mutation clustering. This subset of blood 133 

samples showed up to a 5x enrichment compared with the neutral values. Interestingly, the 134 

mutational spectra of this enrichment shows a high cosine similarity with SBS84, a mutational 135 

signature resulting from AID mutagenesis (Fig. 4D). Consistently with our previous result, we saw 136 

that when other leukemia samples contained mutations at the immunoglobulin loci, considered then 137 

as mature B-cells, they also showed an enrichment in mutation pairs (Supp. Fig. 6). This association 138 

strongly points toward the SHM process (which includes the activity of AID) as a strong candidate 139 

for the observed 3D mutational clusters. Mutations coming from this process are known to cause 140 

hypermutation (large groups of mutations) in the one-dimensional DNA sequence15 and these 141 

groups were reported to be unusually common in promoters/enhancers that make many 3D 142 

chromatin contacts16–18. Here, we show that the SHM process in lymphocytes also likely generates 143 

DNA damage in spatial hotspots in the nucleus; these 3D mutation clusters arise in a coordinated 144 

manner on both ends of the interacting DNA in three-dimensional space. 145 

 146 

 147 

 148 

Discussion 149 
 150 

In summary, we systematically quantified the mutagenesis at loop anchor points (LAPs) and 151 

showed a consistent depletion for most mutational signatures, while  some like the SHM-associated 152 
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SBS9 show an enrichment in LAP loci. This is consistent with recent reports, which proposed an 153 

enrichment of structural variants but also a depletion of point mutations both in anchors and in TAD 154 

borders in a pan-cancer analysis7,19. Building upon  those reports, however, we suggest that this 155 

depletion cannot only be explained by the replication time of these sites alone, but that they are 156 

protected due to a spectrum of distinct (epi)genomic features that co-exist in loop anchors (Fig. 3). 157 

For SBS1 mutations, generated from the deamination of the methylated cytosine at CpG 158 

dinucleotides, we show that the mutation reduction is probably caused exclusively by a 159 

hypomethylation of DNA at these sites. A Our report of widespread DNA hypomethylation at 160 

chromatin loop  anchors, is consistent with prior reports that demethylation of the DNA might be 161 

required for some CTCF-mediated insulator loci20–24 and that large demethylation domains can 162 

contribute to long-range 3D contact interactions25 (Fig. 3B). Specifically for the special case SBS7 163 

mutations, resulting from UV DNA damage, however, other features like DHS (accessible chromatin, 164 

promoting nucleotide excision repair14, or active transcription seem to be more likely cause for the 165 

hypomutation. We suggest that a combination of features that occur at LAPs26 influences different 166 

mutational signatures in different ways, converging onto hypomutation gradients at a similar 167 

genomic kilobase scale (Fig. 2A,B). 168 

 169 

Specifically the AID/APOBEC cytosine deaminase mutational signatures like SBS9 and the related 170 

SBS84 show, contrary to other signatures, an enrichment in LAPs (Fig. 2F, 4D). This enrichment is 171 

likely linked with their role in SHM, a process of antibody diversification in B-cells, which has also 172 

shown significant off-target activity meaning it affects many other loci in addition to antibody genes 173 

themselves27. Prior reports already showed that AID targeted preferentially 3D interacting 174 

regions16,17. Consistent with this targeting of sites with high propensity to interact, we find evidence 175 

for an excess of 3D mutation clusters in loop anchors precisely for AID mutations in blood cancers 176 

(Fig. 4C). Importantly, this process was more pronounced in DLBCL and in the SHM-positive subset 177 

of lymphocytic leukemias providing a strong causal link to AID (Supp. Fig. 6). Other mutational 178 

signatures also present an excess of paired trans-clusters of mutations, but the size of our current 179 

dataset seems to limit the statistical power to identify these signatures, limiting to those with the 180 

highest burdens (Fig. 4C,E). 181 

 182 

Overall, this study highlights the heterogeneous rates of mutational accumulation in trans-183 

interacting loci such as chromatin loop anchors, providing a better baseline mutation rate profile for 184 

these sites that often overlap with functional elements, and allowing identification of 3D mutation 185 

clustering in the human genome. 186 

 187 
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Figures 243 
 244 

Figure 1 245 
 246 

Characterization of the loop anchor sets obtained for this study. (a) In the left number of loops in 247 

each reference union, meaning mutations contained in any of the called sets of that category; in the 248 

right, distribution of loop sizes in each category. (b-c) show proportion of loop anchors that overlaps 249 

with a CTCF motif with binding evidence for CTCF and cohesin, hence “selected”. (b) shows non-250 

tissue specific cohesin loops. (c) shows micro-C loops from H1. (d) shows HiC loops extracted 251 

from ref11 for the GM12878 cell line. 252 
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Figure 2 257 
 258 

Mutation rate depletion around loop anchors. (a-b) Mutation rate profiles measured at loop anchors 259 

comparing the observed mutations (in a solid line) against a randomized baseline (in a dashed line) 260 

for signature stratified mutation calls. (c) Diagram representing the methodology to compute odds 261 

ratio of at the anchor sites. (d) Odds ratio analysis showing mutation rate depletion when 262 

comparing the observed loops against a shuffled set. (e) Odds ratio values for signatures 1, 7a, 7b, 263 

5, 2 and 9 (colors) in 4 types of loop anchors (size bins 2, medium and 3, large) and transcription 264 

and enhancer overlapping anchors. (f) PCA from the Odds ratio analysis of all mutational 265 

signatures. In the plot, the correlation with PC1 and PC2 is shown as an arrow. Point represent each 266 

instance in the PCA and is equivalent with the sets in e. 267 

 268 

 269 
 270 

  271 
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Figure 3 272 
 273 

Modeling of mutation rates and overlapping covariates through a negative binomial regression: (a) 274 

 Diagram of the negative binomial regression model used to determine the relative mutation 275 

enrichments in each segment of the loop anchor. Each extra column represent the base model with 276 

the addition of an extra feature (b-c) Coefficient for each regression focusing in the segments 277 

around the loop anchor. Y axis represents the enrichment of mutations in base 2 logarithm. Each 278 

color represents one regression with the base model depicted in (a) and the addition of the extra 279 

feature, color coded. 280 
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Figure 4 285 
 286 
Mutation trans-cluster detection in human tumors: (a) Diagram of the method used for the 287 
detection of mutation cluster pair enrichment. In brief, the loop anchor pairing is randomized within 288 
100kb of the original pair creating an expected set of loop anchors. Mutations are then tallied in 289 
both sets and the enrichment is calculated as the ratio of both figures. (b) O/E ratios for all samples 290 
showing no overall mutation enrichment in the cohesion union loop set. In orange samples which 291 
show a significance lower than 1% in a poisson ratio test. (c) same as in b but only for Blood 292 
samples. (d-e) Mutation profiles (trinucleotide counts) of the mutations in expected and observed 293 
loop sets for Blood samples in cohesin union loops (d) and Skin hypermutated samples for CTCF 294 
union loops (e). 295 
 296 
 297 
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Supplementary Figures 302 
 303 
Supplementary Figure 1 304 
 305 
Properties of the different set of loop anchors detected in this study. Colors represent the dataset 306 
source and type. Left panel shows total number of loops extracted in each category. Right panel 307 
shows the distribution of lengths of each loop class.  308 
 309 
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Supplementary Figure 2 312 
 313 
Genomic characteristics and chromatin enrichment of a representative set of loops for each 314 
experiment type. 315 
 316 
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Supplementary Figure 3 320 
 321 
CTCF motif directionality scores after filtering for the motifs only co-occuring in multiple datasets. 322 
 323 
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Supplementary Figure 4 328 
 329 
Relative to Fig. 3b. Coefficients of the negative binomial regression to measure mutation rate 330 
estimates along the loop anchors. Each box includes the set of coefficients in each segmentation. 331 
For DHS, methylation and replication time, bins represent equally covered sections of the genome 332 
with equivalent signal. Lower bins contain less signal, thus, 1ofX represents the lowest value while 333 
XofX the highest, for replication time, higher values represent earlier replication times. The 334 
reference bin for the DHS and for the methylation segmentation is the rest of the genome. The 335 
reference bin for the replication time is the latest bin. The reference bin for the chromatin states 336 
segmentation is the promoter region. 337 
 338 
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Supplementary Figure 5 343 
 344 
Relative to Fig. 3c and equivalent to Supp.Fig. 4. 345 
 346 
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Supplementary Figure 6 351 
 352 
Average mutations found in observed versus expected loops for the CLLE-ES dataset. Samples are 353 
stratified according to their SHM status. SHM+ (SHM), which indicates that IGG loci contained A>G 354 
mutations, and SHM- (non-SHM), which indicates that no mutations were found in the IGG loci. 355 
 356 

 357 
 358 
  359 



 18 

Supplementary Tables 360 
 361 

Supplementary Table 1 362 
 363 
List of interaction maps used in this analysis, datasets marked as raw were processed with an in 364 
house to obtain loop anchors. 365 
 366 

Cell line Type File type Code Source 
microcH1 micro-C raw 4DNFI2TK7L2F 4DN 
microcHFF micro-C raw 4DNFIPC7P27B 4DN 
hicIMR90 in situ HiC raw 4DNFIH7TH4MF 4DN 

hicGM12878 in situ HiC raw 4DNFI1UEG1HD 4DN 
hicNHEK in situ HiC raw 4DNFIL9M97T2 4DN 

hicHepG2 in situ HiC raw 4DNFICSTCJQZ 4DN 
K562 in situ HiC raw 4DNFITUOMFUQ 4DN 

HelaUnS in situ HiC raw 4DNFIE7V3DN9 4DN 
HelaSync in situ HiC raw 4DNFI7OMRYXC 4DN 

KBM7 in situ HiC raw 4DNFIT96Z365 4DN 
GM23248 in situ HiC loops ENCFF432KUX ENCODE 

HAP-1 in situ HiC loops ENCFF817TXQ ENCODE 
GM12878 in situ HiC loops GSE63525 Rao Cell 2014 

IMR90 in situ HiC loops GSE63525 Rao Cell 2014 
NHEK in situ HiC loops GSE63525 Rao Cell 2014 

GM12878 ChIA-PET (CTCF) loops GSM1872886 Tang Cell 2015 

GM12878 ChIA-PET (RNApol 
II) loops GSM1872887 Tang Cell 2015 

HeLa ChIA-PET (CTCF) loops GSM1872888 Tang Cell 2015 

HeLa ChIA-PET (RNApol 
II) loops GSM1872889 Tang Cell 2015 

Multiple tissues ChIA-PET (Cohesin) loops Supplementary Grubert Nature 
2020 

 367 

 368 

 369 



Chapter 7

Results Summary

The first Results chapter of this thesis, chapter 3 , summarizes the development
of new statistical tools to identify local hypermutation events from somatic mu-
tation data and the application of this new methodology to identify a common
mechanism generating diffuse, short mutation clusters associated with APOBEC
and mediated by the activity of MMR.

First, we aimed to further characterize the landscape of themutation spectra of the
clusteredmutational processes and to overcome the limitations of previousmeth-
ods. We built upon previous work97 to improve the systematic detection of muta-
tion clusters. Although we focused in mutational clusters generated by APOBEC
enzymes (see section 1.4.1.2 ), our methodology does work more generally and is
able to detect various types of clustered processes.

We combined a trinucleotide-aware genomic randomization algorithm with an
improved statistical significance assessment based on the local-fdr335 that allowed
us to estimate a threshold for significant clustering, even in hypermutated tumor
genomes.

We used the inter-mutational distance of the adjacent mutation and compared
themwith the randomized set. We also included other additional features in order
to maximize the power of our methodology. In brief, we classified the mutation
calls according to their clonal fraction, derived from the estimated cancer cell frac-
tion, and we enforced strand-coordination between the clusters. Once extracted,
we were able to recover the APOBEC mutation clusters in 76% of our available
samples.

From the identified events, we fitted a Poissonmixturemodel to the distribution of
event counts and obtained a solution with 2 significant components. These com-
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ponents consisted in long-runs of 5 or more mutations, the previously reported
kataegis90,95,185 and short pairs or triplets which we termed omikli from the Greek
word for fog.

We characterized the processes by measuring the components’ genomic charac-
teristics like the distribution around the genome and pentanucleotide predispo-
sition. We find that while APOBEC kataegis is enriched around break-points and
for A3B-like pentanucleotides (see section 1.4.1.2 ), the APOBEC omikli mutations
show an enrichment in early replicating sections of the genome and for A3A-like
sequences. Overall, omiklimutations correlated strongly with the unclustered por-
tion of A3 mutations, while kataegis presented a weaker association. These charac-
teristics suggested that omikli and kataegis occurred by independent mechanisms
and that omikli clusters and the bulk unclustered mutagenesis partially shared the
same mechanism.

A further characterization of the genomic properties of omiklimutations suggested
DNA replication time associations and the distribution of intermutational distances,
we gathered evidence that suggest the main source of this newmechanism are the
ssDNA intermediates occurring in the DNA mismatch repair pathway. Our data
suggest that this mechanism also plays a role in the generation of the majority of
APOBEC mutations, mostly unclustered, thus contributing to a substantial pro-
portion of the mutational accumulation in various cancers genome wide.

Because the MMR pathway targets the early replicating and gene rich portions
of the genome175 , A3 omikli mutagenesis is also directed towards those regions.
Therefore, the overall A3mutation burden has a high power to generate impactful
mutations as it is partially directed to active regions.

Using a simple model for the prediction of mutations in driver genes, the muta-
genic potential of A3s exceeds some common carcinogens like tobacco smoking or
UV light, and is commonly directed towards certain cancer genes, e.g. chromatin
modifiers.

Together, in this chapter ( 3 ) we developed a rigorous, sensitive statistical method-
ology for identifying mutation clustering, and applied it to cancer genomes to
identify a new and prevalent type of mutation clustering (omikli), and onemecha-
nism that can generate these mutation clusters by combining activity of APOBEC
and the DNA mismatch repair.

Chapter 4 summarizes our contribution in the detection and characterization of
mutationmechanisms present in a range of clonally expanded single cells derived
from healthy, noncancerous tissues.

In this study, we interrogated both data obtained by our collaborators from in vitro
single cell primary tissue expansions from muscle, kidney, fat and skin, as well as
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other previously published datasets. In the analysis of the somatic mutation pro-
files, a clear baseline process arises, which is present in any tissue (cancerous or
healthy) and accumulates with age. Multiple tissues share a common main muta-
genic mechanism that can be derived from the combination of CpG deamination,
signature 1, and signature 5 of still unknown etiology. We performed a system-
atic comparison of activity of various mutational processes between healthy cell
genomes, and the tissue type-matched cancer genomes. This analysis revealed
that the activity of various mutational processes are overall similar in normal and
cancer cell genomes. Notably, the APOBEC mutational processes were less com-
monly found in healthy cells.

Interestingly, we uncovered a subset of clones in the kidney samples which har-
bored an excess mutagenesis, with a profile similar to the previously identified
Signature 40. This accumulation was also heavily dependent on the age of the
donors. Cell clones with high exposure to this signature also expressed molecular
markers from the proximal tubule section of the kidney, suggesting that a phys-
iological characteristic of this set of cells might be responsible for the signature.
Mutations in these cells targeted promoters and transcription binding sites, sug-
gesting a high mutagenic potential. By comparing the mutation exposures in the
healthy tissues with available tumor samples, we propose that the newly identified
cell population in the kidney might give rise to the clear cell and papillary renal
cell carcinomas subtypes, but not the chromophobe cell subtype.

Finally, we also focused on the differences between young and old donors. In older
patients, we detected a modest loss of association with known markers of func-
tional MMR, such as the steep gradient across replication time domains32, and its
role in the accumulation of mutation peaks at CTCF/Cohesin binding sites.

Together, these results suggested a partial depletion of the repair capacity of healthy
cells with age, a basal age-associated source of mutagenesis across tissues, but also
the existence of a cell-type specific accumulation of impactful aging mutations in
the kidney.

Chapter 5 summarizes our studies in the characterization of the role of local DNA
methylation variability as amolecularmechanism thatmodifies themutation den-
sity in human tumors. Although the role of DNA methylation in gene regulation
is well understood, how the local variation in DNA methylation shapes somatic
mutation rates is less well explored.

In this study, we show that unmethylated (UMR) regions are also generally hy-
pomutated in a wide range of human tumors and healthy somatic tissues. The
exposure of the tissue to various mutational processes shapes its predisposition to
this effect: while there is depletion in the mutation rates resulting from signatures
of deamination ofmethylated cytosines, UV light, POLE deficiency, andMMRde-
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ficiency, there is an increase in mutation rates from signatures of AID or APOBEC
cytosine deaminase enzymes in the UMRs. Therefore, hypomethylated DNA loci
can be either mutational coldspots or hotspots, depending on the mutagen expo-
sure history of a particular cell.

We also characterized the UMRs by the overlap withmultiple functional elements,
such as promoters, enhancers and chromatin loop anchors, and observed simi-
lar characteristics within the different classes and even at UMRs outside any of
these elements. This highlights the universal role of DNA methylation in the di-
rect determination of mutation occurrence. In addition to these genome-wide
distributed UMRs, we also identified DNA methylation gradients in gene bodies.
Several kilobases at the 5’ ends of gene bodies were commonly hypomethylated
and thus hypomutated. Clustering genes byDNAmethylation profiles also yielded
variability in theirmutation rate gradients: lowly expressed genes have a less steep
gradient due to a higher relative methylation of their 5’ end, and polycomb re-
pressed genes show no relative hypomutation due to the lack of DNAmethylation
at their gene body.

Overall, we suggest DNA methylation is an important determinant of mesoscale,
sub-genic, resolution mutation rate variability in human somatic tissues.

Chapter 6 summarizes our efforts in expanding the definition of 3D spatial lo-
cal hypermutation using genomic folding estimated via the interaction frequency
derived from HiC contact maps.

In this study, we curated an extensive set of CTCF/Cohesin bound set of loop
anchors that were derived from a large set of developmentally independent tis-
sues. Additionally, the compiled set of 3D maps also includes a diverse set of both
molecular (Hi-C, Micro-C, Chia-PET) and bioinformatic techniques available to
date (same data was characterized using multiple tools).

We then, characterized the mutation patterns enriched around the loop anchors,
and designed amethodology to systematically detect significant 3Dmutation clus-
ters. We detected a general reduction of mutations in large domains ( 2kb) within
loop anchors. This was opposite to the previously reported hypermutation in the
specific binding site of the CTCF protein. We applied a systematic analysis of the
mutational signatures that participated in this process, revealing heterogeneity in
the effect of different signatures. The main signal focused on the mutations as-
sociated with deamination of CpG sites, Signature 1, and the mutations resulting
from UV light damage, Signature 7. Consistent with this heterogeneity in the mu-
tational processes involved, we report that the lower DNAmethylation of the loop
anchor sites, as well as its co-localization with DHS (DNAse hypersensitive sites)
can explain the observed decreased mutation rate.
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Rigorously accounting for these locally lowered mutation rates, we developed a
statisticalmethod to detect a significant enrichment of 3D-proximal (but 1D-distal)
mutation pairs, “trans-clusters”. Our method uses a randomization of the loop
anchor pairings to measure an expected baseline. We could identify a positive
enrichment of trans-clusters in a subset of B-cell lymphoma cancers, where the
subtype suggested a mature stage of B-cell differentiation. Thus, in addition to
clusters at the 1D sequence level, the AID enzyme mutagenesis seems to gener-
ate 3D mutation clusters in spatially interacting DNA strands, providing data to
support prior hypotheses.

Together, these results show how the chromatin folding components may modu-
late the accumulation of certainmutationmechanisms, and demonstrate the exis-
tence of a previously uncharacterized type of local hypermutation in the 3D space.

Collectively, our results have focused mainly on the local variation in mutagenic
potential of endogenous mutagenic processes, such as the methylated CpG deam-
ination and the APOBEC mutagenesis, which contribute to substantial mutation
burdens to both healthy and cancerous tissues. Although extensive work has been
performed in the characterization of local variability inDNArepair pathways175,178,192,256

, results presented in this thesis highlight that the local DNA damage distribution,
either byAPOBECdeamination or through the damage-promotingDNAmethyla-
tion can also represent important determinants of the variability in local mutation
rates.

We also highlight the disruptive potential of the studied processes by assessing
the burden of (predicted) functional effects on genic sequences. In the case of
APOBEC mutagenesis and in the aging-associated mutation processes in human
tissues ([CREF chap:ng,chap:franco] ), we report how the redistribution of muta-
tions towards the early-replicating, gene-rich parts of the genome can increase the
mutation rate in coding regions and generate pathogenicmutations such as cancer
drivers. In our results, we further focus on the interaction of themethylation levels
and local hypomutation, as observed in promoters and in loop anchors, chapters
5 and 6 we noted that there exists a sub-gene resolution mutation rate variabil-
ity along gene bodies. This may be caused by for instance presence of intragenic
promoters, or by silencing by facultative heterochromatin, which associate with
hypomethylation of some parts in gene bodies. Some mutational signatures, like
the common SBS1 and the ultramutating SBS10b, will be depleted at these sub-
regions. Interestingly, however, mutations from APOBEC and AID signatures are
enriched at these regions. This modulation of mutation rates due to DNAmethy-
lation gradients within-genes represents an important characteristic that might
need to be taken into account when estimating selection.

These additional insights into mutation risk heterogeneity described in this thesis



236 CHAPTER 7. RESULTS SUMMARY

highlight how understanding of processes that shape themutation burdens at vari-
ous genomic loci can provide a complete picture of genome (in)stability in human
tissues. We believe that the studies contained within this thesis contribute to the
understanding of the mutational processes in the human somatic genome.



Chapter 8

Discussion

In this thesis, we present a systematic analysis of the patterns of mutagenesis from
endogenous processes and their local variability, either through hypermutation
or hypomutation. Further, we identify the plausible mutational mechanisms that
causes the local hotspots or coldspots, and considered the functional impact that
these mutation processes can have on genes. In particular, we report the role of
DNAmismatch repair activity in the generation of APOBECmutation clusters and
also unclusteredmutations, detectmutational signatures that occur in bothhealthy
and also tumor somatic cells, quantify the role of DNA methylation in the local
modulation of mutation rates and detect the 3D clustered mutagenesis resulting
fromAIDactivity upon trans-interacting chromatin regions. Furthermore, we also
aim to characterize the role of how these process might contribute to functional
mutations, highlighting the role of APOBEC3A mutagenesis as a strong generator
of impactful mutations in various cancer genes, and revealing a sub-genic mu-
tational gradient linked to the methylation levels across genes, which can affect
differential mutation supply to various gene regions.

An important focus of this thesis was on determining molecular mechanisms as-
sociated with the detectedmutational processes of local hypermutation and hypo-
mutation. In particular, we have made contributions in describing a novel muta-
genic mechanism for APOBEC clustered mutagenesis as a byproduct of the MMR
pathway activity, and on the mutation rate gradients around hypomethylated re-
gions likely to be directly caused by the lack of methylation itself.

The mutation patterns associated with APOBEC activity were detected early, dur-
ing the analysis of the first sequenced cancer genomes95 : mutation showers (groups
of clustered and strand coordinatedmutations) were observed in these tumors95,185

. These clustered mutations were termed kataegis and were suggested to originate
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in long stretches of single-strandedDNApresent in the intermediate states of DNA
repair pathways likeHR or BIR295 . Because the activity of APOBECneeds to target
ssDNA, these are indeed prime opportunities for the generation of the APOBEC
mutation showers. This association was clear from the enriched mutation burden
around structural variants104 . However, themajority of mutations in the APOBEC
enriched contexts were not in kataegis events, which are very rare. Contrary to
kataegis , the mutational mechanism presented in this thesis, omikli , generates
short diffuse clusters of APOBEC mutations, which are not enriched around re-
arrangement points, which are common and observed independently of kataegis ,
and which probably also contribute to global unclustered APOBEC burden . Fur-
thermore, we showed that while mutations in kataegis events were likely caused
by the activity of APOBEC3B, the APOBEC3A was the source of both omikli and
unclustered mutations. This particular observation has been recently confirmed
in human cell lines with knock-outs in APOBEC3A, 3B and related genes143 .

The originally suggested mechanism of action for unclustered APOBEC mutage-
nesis was based on the relative strand bias associated with APOBECmutations and
proposed the ssDNA at the lagging strand during DNA replication as a substrate301

, which was supported in experiment expressing human APOBEC inE. coli300 . For
omiklimutations however, the data in human cancer genomes was not consistent
with this mechanism: i.e. focused on the genomic distribution of the mutations
and showed a strong enrichment in early replication time, which suggested a role
of MMR as their mechanism; note that the replicative strand bias of APOBECmu-
tations is consistent with the replicative strand bias of the MMR activity. Previous
reports had already reported a similar enrichment of APOBECmutations in early
replication time246,302 but with an unclear mechanism. The intermutational dis-
tance of the omikli clusters was also compatible with the ssDNA intermediate gen-
erated in the MMR activity336,337 however not with the Okazaki fragment length
in lagging strand synthesis. The depletion of these mutations in MSI tumors, de-
ficient in MMR, further represented evidence to link the generation of APOBEC
mutations to the activity ofMMR. Although the current data presented in this the-
sis is purely observational, a previous report in human cells detected the interac-
tion of bothBER andMMR in the generation of APOBECmutation clusters against
an artificially incorporated mismatch303,304 . In brief, when a mismatch contain-
ing plasmid was introduced in a mammalian cell, APOBEC-like mutations arose
in the vicinity of the mutation, likely caused by the activity of the cell APOBEC
in the ssDNA flanks; knocking down MMR reduced the APOBEC mutagenesis in
that study303 .

The role ofDNAmethylation in the somaticmutation rate of tumorswas proposed
in the first reports on landscapes ofmutational signatures90,91,95 . C>Tmutations at
the NCG trinucleotide, so-called Signature 1 or SBS1, were strongly suggestive of a
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previously described mutational mechanism12 , the spontaneous deamination of
the methylated cytosine. Later reports that specifically studied these mutations in
DNA polymerase ϵ deficient and MMR-deficient tumor genomes detected a DNA
replication strand bias, suggesting that methylated cytosines may promote errors
in DNA copying, and also apparently lower mutation rates at gene promoters in
colon cancers (a tumor type with high levels of Signature 1) consistent with the
known low methylation at promoters181,338 . In this thesis, we generalize these
findings by systematically analyzing mutation rate gradients across gene bodies,
separately for all cancer types and mutation signatures. A main statistical trend in
mutation risk gradients was evident in several signatures including most promi-
nently Signature 1, and tracks the typical gradient in DNA methylation across ex-
pressed genes. We build upon this finding by analyzing the patterns of mutations
genome-wide (i.e. in gene bodies or elsewhere) specifically at UMRs and LMRs,
segments of the genome that present a complete or partial hypomethylation, re-
spectively. Consistent with previous reports90,181,338 , the previously identified sig-
natures with strand biases and depletion at promoters in colon cacncer have in
our work presented a depletion genome-wide at the hypomethylated sites, and
in many cancer types (see chapter 5 Fig. 1A). This effect is maintained across
all kinds of hypomethylated functional elements such as promoters, enhancers
(whichmay be intragenic) and loop anchors (see chapter 5 Fig. 2B). Also, some ad-
ditional sites, without a known functional element, are hypomethylated and con-
sistently hypomutated; some of these might be explained by polycomb silencing
in facultative heterochromatin genes, which also seem to have hypomutated gene
bodies. Our results are, therefore, consistent with the methylation of the cytosine
being the causal determinant of the local, sub-gene-resolution mutation rate vari-
ation in multiple genomic contexts. In our model, a shared mechanism of both
replication-associated mutagenesis (through the misincorporation of an adenine
opposite to the 5mC) and through the spontaneous mutagenesis (thus replication
independent, deamination of the 5mC to thymine)seem to coexist and both vary
across loci.

Another highlighted signature in our analysis is signature 7, resulting from UV
DNA damage. The role of DNA methylation at these UV damaged sites is more
complex, as previous in vitro approaches are not clear about their potentialmecha-
nism; it is possible that theUVdamage accelerates the cytosine deaminationwithin
the lesion, and also that the methylation facilitates forming of the damage244,245 .

Perhaps more interestingly, we find that some mutational signatures show an en-
richment in UMRs, thus DNA methylation can both lower and increase mutation
risk depending on the exposure of each particular cell. These enriched signatures
seem to be related to AIDmutagenesis, signature 84, andAPOBEC signatures 2 and
13. In the case of AID mutations, it is likely that their accumulation might be as-
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sociated with the known, physiological AID targeting toward promoter regions in
the somatic hypermutation process of B-lymphocytes307 . The scarcity of this sig-
nature, unfortunately, prevents us to further characterize the fine-scale genomic
distribution characteristics. In the same vein, signature 9 is a SHM-associated pro-
cess, which occurs downstreamof AID and also presents a positive associationwith
UMRs and consistently is explained by the interaction of with known promoters
(see chapter 5 Supp. Fig. 2C). The global association of APOBECmutation risk and
DNA methylation was previously reported246 at the genome-wide level, showed
an increased mutation rate for unmethylated cytosines. In vitro reports and other
experimental data seem to corroborate a possible positive correlation246 however
others reported no correlation250 . Our data considers local effects of methylation
variation onmutation risk, and strongly supports that in the hypomethylated sites,
the APOBEC-induced mutations show an enrichment.

In this thesis, we also discuss the impact the above-mentioned mutational mech-
anisms (such as the ubiquitous, abundant Signature 1) can have on gene coding
regions, which are the functional elements in the genome most likely to get dis-
rupted by causal somatic mutations.

Themechanism thatwedescribe forAPOBECmutagenesis (see above and in chap-
ter 3 ) shows an interesting association between a mutagenic process and a DNA
repair pathway. Because the activity of MMR is focussed on more actively pro-
tecting the early-replicating regions175,197 . which are generally enriched in genes,
our analysis yields a remarkably strong functional impact potential (considered
per mutation) for APOBEC (see chapter 3 Fig. 5a). Only mutations from aging-
associated signature 1, with a genomic context highly enriched within genes (these
have a higher frequency of the CpG dinucleotide) have a higher relative potential
however their total burden is lower compared with APOBEC mutations. There-
fore, in absolute terms of cumulative functional impact, the mutations from this
mechanism represent a very strong genic region-targeting mutators in human tu-
mors, with values similar to those from the UV damage (and in relative terms per
mutation far exceeding UV damage). Although UV generates substantially more
mutations than APOBEC in skin cancers, the UVmutations are preferentially cor-
rected in the gene-rich chromosomal domains and thus represent a lower func-
tional impact risk for the cell function. In addition toMMR likely driving APOBEC
mutagenesis towards early-replicating DNA, other mechanisms might addition-
ally explain this increased mutation potential in genes, possibly related with the
role of hypomethylation of some segments in active genes (e.g. intragenic en-
hancers) in promoting APOBEC mutagenesis (see below, and chapter 5 ).

The role of local DNA methylation in mechanisms regulating activity of promot-
ers and enhancers is widely known220 , however, the extent of how this variabil-
ity bears on local mutation rates remained less explored. Prior reports generally
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assessed this question181 finding a strong correlation of the methylation and hy-
pomutation at gene promoters, focussing colon cancer genomes with DNA repair
deficiencies (we also note that promoters in e.g. skin cancers are actually hyper-
mutated rather than hypomutated, due to increased UV damage and/or reduced
NER activity209,210 ). In our chapter 5 , we extend this by systematically classifying
DNA methylation profiles along gene bodies across all human genes, and report
categories of genes that exhibit a distinct DNA methylation profile and also dif-
fer in their epigenomic characteristics. Interestingly, when measuring mutation
burden in the different groups, the resulting hypomutation gradients are only de-
tected in the gene categories with an extensive hypomutation at TSS,meaning that
the main gradient in somatic mutation rates along gene bodies likely stems from
variable DNA methylation. Consistently, repressed genes, which show an overall
methylated promoter, show no discernable gradient of mutation rate along the
gene body. We believe that these findings represent contribution in the character-
ization ofmutation variability in the gene-level and sub-gene level and that can be
useful, as suggested by our selection analysis, in the better estimation of a muta-
tion rate estimate for genes and other functional elements affected by differential
DNA methylation such as promoters and enhancers.

A general limitation of the presented work, also common in other cancer genomic
studies, is the use of mostly observational mutation data from human tumors,
meaning that the causes of mutagenesis were not strictly controlled. While this
provides the advantage of working directly with genomes of relevant human cell
types, the lack of empirical evidence for causal effects (which can be modelled
in model organisms or cancer cell lines127 ) represents a limitation of any cancer
genomics study. In the same vein as the previous limitation, the power of any ob-
servational study relies on the sample size, which is an important limiting factor
in finding modest effect size associations. We believe that for most analyses pre-
sented in this study, the amount of mutational data has been sufficient to sustain
our claims, however, some analysis might improve substantially with an increased
sample size. The analysis related to the detection of mutational clusters, which
relies on a rare event (clustering) and in particular analysis of three-dimensional
trans-clusters, which draws on narrowly sized loci (loop anchors) would benefit
from an increase in the amount of tumor WGS data available. The scarcity of
these mutational events represents a challenge in the dissection and detection of
global trends evident in rare events or only in particular loci. Also, more generally,
mutational signature deconvolution benefits from increased samples sizes when
detecting less common mutagenic processes23 . New tumor sequencing projects
have recently increased the amount of sequenced tumor samples at a rapid pace,
allowing future studies related to this work to overcome the aforementioned sta-
tistical power limitations.
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Another important methodological challenge for any analysis in cancer genomics
is the integration of multiple sources of epigenetic data, and matching the cell
type to the cell type that generated the tumor (which may, in many cases, not
be known). Because of their role in modulating mutagenesis and interacting with
DNA repair pathways97,189,192,197 , the integration of histone marks, DNA replica-
tion time measurements and DNA methylation to model local mutation rates is a
significant feature of this work. While mutations are extracted from tumor biop-
sies, the epigenetic information is normally obtained in bulk from cell line exper-
iments (either cancerous cells but also primary cells, or ESC/IPSC) experiments;
intact tissue epigenome data exists but is very rarely from cancerous tissues and
almost always contains a mix of cell types, which is suboptimal. This complex-
ity generates an inconsistency where the epigenomic data is not necessarily well
matched to the corresponding tumor cell type of origin. In the future, however,
the fast-paced development of single-cell epigenetic techniques, i.e. scATAC-seq,
together with the improvement in accuracy for whole genome/exome sequencing
(339 ) to determinemutation patterns at the single cell level will represent a solution
to this issue of matching mutational and epigenomic data to establish correlations
better.

Globally, the work presented in this thesis deepens our understanding of the local
mutation rate variation in the somatic human genome and highlights the func-
tional impact potential of the presented mutational mechanisms.



Chapter 9

Conclusions

• A methodology for trinucleotide-aware mutation randomization, combined
with a definition of the local False Discovery Rate, was developed and applied
to human tumor genomes to robustly detect mutation clusters.

• The accumulation of diffuse and short mutation clusters, which we named
omikli or mutation fog , is the result of a previously poorly characterized clus-
tered mutagenic process, associated with APOBEC3A mutagenesis.

• The activity of the DNA mismatch repair pathway is a source of the omikli
mutations. This mechanism is responsible for approximately two-thirds of
the unclustered APOBEC mutation burden in human tumors.

• The association withMMRdrives the generated APOBECmutations towards
early replicating domains of the genome, where the majority of active genes
reside. The expected functional impact potential of this mechanism exceeds
that of mutagenesis by UV damage and tobacco smoking in an average af-
fected tumor.

• Mutations in healthy tissues can be reliably extracted from single clone in
vitro expansion and can be used to model mutagenic processes using non-
negative matrix factorization.

• The extraction of mutational processes in healthy clones reveal a basal mu-
tational spectrum common in multiple human tissues and additionally a set
of tissue-specific processes, some of which correlate with known exposures.

• The extraction of mutational signatures in a combined analysis of healthy
and tumor samples of the same tissues suggests a remarkable consistency.
Thus the tumor mutation spectrum can reveal the cell type of origin of a
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given cancer subtype.

• A subtype of the kidney tubule cells with distinct mutational patterns ob-
served in healthy kidney cell clones, tentatively labelled “KT2”, may be the
cell-of-origin for the commonly occurring kidney cancers: clear cell and
papillary renal cell carcinomas.

• A diverse set of mutational processes show a strongly reduced activity in un-
methylated short segments in DNA (UMRs), which are commonly observed
in promoters, some enhancers, chromatin loop anchors, and elsewhere. In
particular, aging-associated signature 1, DNA repair deficiency signatures 10
and 15 and to a lesser extent, UV DNA damage associated signature 7 show
significant hypomutation at UMRs.

• Unmethylated DNA segments also show an increase of mutagenic processes
that derive from the activity of APOBEC and AID cytosine deaminases. The
enrichment associates with the methylation status and/or the co-occurence
with other functional elements.

• DNAmethylation profiles provide an informative clustering of human genes,
revealing epigenomically relevant groups. These gene groups present differ-
ential gradients in the mutation rates along their gene body, plausibly due to
hypomethylation associated with intragenic enhancers and with polycomb
histone marks.

• Taking into account these gene groupswith variable intra-genemutation rate
gradients can better estimate the baseline mutation rate, aiding in the iden-
tification and detection of selection in genic regions and potentially promot-
ers.

• Chromatin loop anchors (sites with high density of contacts in 3D genomic
experiments) represent another coldspot of mutagenesis, and are protected
frommultiple but not all processes, in particular, from aging-associated sig-
nature 1 and UV damage signature 7.

• The genomic characterization of anchor sites reveals that multiple overlap-
ping molecular features modulate this reduction of mutation rate. For sig-
nature 1, the DNA hypomethylation is the most plausible mechanism, while
for signature 7 the combination of chromatin accessibility (DHS) and tran-
scription may be the causal factor.

• The correct expectation baseline models of mutation rates at anchors can be
used to identify three-dimensional mutation clusters (trans-clusters), con-
sisting of pairs of mutations occurring in distal but interacting regions.

• The AID signature is enriched in three-dimensional mutation clusters for B
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lymphocytes, suggesting that the AID may act at foci in 3D space, targeting
interacting loci generating groups of mutation in a single event.
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