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1
Introduction

Nanophotonics can be defined as the science and technology studying the control optical
fields at the nanoscale and their interaction with matter.

Let me start by reflecting on some of the words of the last sentence. The field studies
optical fields. The characteristic wavelengths of these electromagnetic fields lie in the visible
to near-infrared spectrum. This implies wavelengths in the 310 nm to 1100 nm range. In order
to spatially control such fields we need structures with characteristic dimensions of the order
of the wavelength. Structures must then be nanometric in size.

A way to control optical fields at this scale is the use of nanoantennas. Nanoantennas
are the optical equivalent of radio-antennas, interfacing far- with near-fields down to the
nanometer scale 1. Acting as funnels, they concentrate radiation into the near-field, where
the increased field intensities enhance the excitation rate of optical emitters 2. Following the
radio-frequency analogy, optical emitters act in this situation as current sinks 3. Due to the in-
creased local fields, optical antennas are also used for spectroscopic studies4. From zero-mode
waveguides 5 to Raman spectroscopy6,7.

Nanoantennas alternatively provide efficient interfaces between near-fields generated by
light sources and radiative channels. Typical emitters include molecules 8, semiconductor
quantum dots9 and NV centers 10. Nanoantennas increase radiation rates 11, improve radia-
tion efficiencies 12, and affect the directionality of the radiation 13. For this reason nanoanten-
nas offer great promises for novel light sources, from LEDs to single photon emitters. In
Chapter 2 I describe these interactions between optical antennas and single photon emitters.

A complementary way to control optical field in the nanoscale is using dielectric confine-
ment. This is a concept analogous to transmission lines for radio-waves. Waveguides and
photonic crystals provide a way to control the flow of light at the nanoscale 14. In Chapter 3
I explore the combination of dielectric waveguides with optical antennas creating an optical
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circuit for energy transfer at distances comparable to the wavelength of light.
Nanoantennas increase near-field by orders of magnitude??. In these conditions, nonlin-

ear optical effects start to play a role. Metals offer superior nonlinear electric susceptibility,
which potentially increases nonlinear effects. However they are opaque, which hampers their
use in favorable phase matching conditions. Nanoantennas have subwavelenght characteris-
tic dimensions allowing radiation to scape, and can then steer clear of this constraint. Chapter
4 is devoted to these nonlinear interactions mediated by nanoantennas.

Optical fields are functions of space, but also of time. The development of broadband fem-
tosecond lasers and pulse shaping techniques allows control of optical field down to the fem-
tosecond timescale. By combining shaped laser fields with microscopy techniques we have
the opportunity to control the interaction between laser fields and single photon emitters.
Chapter 5 explores techniques that can be applied to ultrafast laser fields and their interac-
tions with nanometric sources of light.

Based on their success to effectively control all kinds of optical fields, plasmon supporting
nanoantennas are being actively researched in the field of quantum optics. In Chapter 6 I
we describe a quantum eraser experiment mediated by structures suporting surface plasmon
resonances.

This thesis contains both numerical simulations and experimental contributions to the
field of nanophotonics. Numerical simulations are based on the finite-differences in the time
domain (FDTD) method. The method provides solutions to Maxwell’s equations in arbi-
trary configurations. By monitoring the electromagnetic fields within the simulations, phys-
ical magnitudes can be extracted that allow us to develop an intuition for our experiments.

Experimentally, the use of microscopy techniques is imperative in all the experiments de-
scribed in this thesis. High numerical aperture microscope objectives provide the maximum
achievable spatial resolution using far-field optical techniques. They also provide high collec-
tion efficiencies needed to detect signals at the few-photon level. Signals are typically detected
avalanche photo diodes operating inGeiger mode. The experimental framework is related to
the field of single molecule detection in the solid state 15,16.

Due to the varied nature of the chapters of this manuscript, each chapter provides its own
specific scientific context. The rest of this manuscript is divided as follows:
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Linear interactions

Chapter 2: Subwavelength lifetime imaging using near-field microscopy

In this chapter I study the interaction between single photon emitters and optical antennas.
We start the chapter introducing a method to numerically simulate the interaction. A key
concept to solving Maxwell equations is that of the Green function. We will show how this
function relates to the emission rate of optical emitters in a nanophotonic environment. We
thendescribe anour efforts to build a lifetime-imagingnear-field scanning opticalmicroscope.
Using this rig we are able to measure changes changes in the emission rate of single emitters
that interact with resonant optical antennas.

Chapter 3: Long range energy transfer in nanophotonic environments

This is a theoretical chapter related to energy transfer between twodipole emitters innanopho-
tonic environmets. I generalize the one point Green function formalism introduced in Chap-
ter 2, and showhow this is related to the energy transfer rate between a donor and an acceptor.
I thenpropose a simplehybrid structure, combiningnanoantennas and adielectricwaveguide
that increases substantially the energy transfer rate at distances of the order of thewavelengths
of the transferred photons. The chapter finishes by discussing the role that the local density
of optical states has on the energy transfer efficiency.

Nonlinear interactions

Chapter 4: Nonlinear effect in nanoantennas with deeply subwavelength
features

I explore nonlinear interactions in resonant nanoantennas, in particular SHG. First I intro-
duce a method to numerically compute the contributions to SHG generated by the metal in
nanoantennas. Both surface and bulk contributions to SHG are considered. We use the nu-
merical method to show that narrowings within the antenna shape are sources of increased
SHG. The increase in SHG is attributed to increase of the local field gradients, that increase
to the bulk contribution to SHG. We numerically validate our results by performing SHG
measurements at the single resonant antenna level.
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Chapter 5: Closed loop coherent control of single quantum dots

In this chapter I explore the control of optical fields in time. Using phase shapingmethodswe
optimize the two-photon absorption process in single QDs. I introduce a new optimization
algorithm, that allows us to perform the optimization using as feedback signal the luminesce
from single QDs. We then compare our results with standard phase shaping techniques.

Quantum interactions

Chapter 6: A plasmonic quantum eraser experiment

The last chapter details our efforts to perform a quantum eraser experiment in a Young’s
double-slit configuration. I first explain the details and subtleties of a quantum eraser experi-
ment. I thendetail our efforts to reproduce previously reported results about how to fabricate
elliptical bullseye antennas behaving as quarterwaveplates. Quarterwaveplates are a required
part for the quantum eraser effect to take place. We then perform a quantum eraser experi-
mentmediated by plasmons. A key component of our experiment is a bright, state-of-the-art
entangle polarization entangle photon source that is described at length.
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2
Subwavelength lifetime imagaging using

near-field microscopy

What goes up must come down. After excitation, single photon emitters such as molecules
or quantum dots experience spontaneous emission. The ‘speed’ or rate at which they decay
can be calculated using Fermi’s Golden Rule. Assuming we can approximate the emitter to
be a dipole, the decay rate can be expressed within a homogeneous environment as 3:

Γ =
1
τ =

πω
3ℏε0
|p|2ρp(r0, ω0) (2.1)

where Γ is the rate at which an emitter radiates light of frequency ω0 (the inverse of the
excited state lifetime τ). This rate Γ is proportional (up to a multiplicative constant) to the
product of themagnitude of the emitters dipolemoment p and ρp. The function ρp is referred
to as the local density of optical states (LDOS) at the point r0 and frequency ω. What this
equation tells us is that emission rate is not intrinsic to the emitter in question and given by
its dipole moment |p|2, but that is can be modulated by the LDOS 17. In other words, if we
can engineer the environment in the electromagnetic sense, we can change the way emitters
radiate. This effect was first described by Purcell 18. Before his seminal theoretical description,
the excited state lifetime was thought to be an intrinsic property of a particular emitter. Now
we know that this effect applies broadly to any oscillator interacting with an inhomogeneous
medium: from Chinese gongs close to a sound reflecting surface 19, to the beta-decay mecha-
nisms of Be inside C60 20.

Pioneering experimental results on themodification of spontaneous decay of optical emit-
ters in the presence of inhomogeneities was demonstrated by Drexhage21,22. In these studies,
an ensemble average of Eu+ ions are placed at increasing distance away from an interface. The
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values of the emission rates were found to oscillate as a function of distance to the interface.
Intuitively, light emitted form the ions is reflected at the surface and interacts back on the
same ions. Depending on the distance (normalized to the frequency or wavelength of the
light emitted by the ions) there is a constructive or destructive interference with the original
ion emission, which makes it radiate faster or slower. An interface is the simplest inhomo-
geneity. More advanced structures such as photonic crystal cavities were later introduced to
enhance or inhibit the emission properties of optical emitters.

A complementary method to control electromagnetic fields at optical frequencies is the
use of nano-antennas 1. For radiowaves, an antenna is an interface between propagating ra-
diation and currents. Its optical analogue interfaces optical radiation with the analogue of
current generators: photon emitters. In other to study these interactions, we need to both be
able to fabricate structures with feature sizes in the nanometer scale as well as control relative
distances between the nanoantennas and the emitterswith nanometer precision. In this chap-
ter wewill experimentally investigate how optical antennasmodify the emission properties of
single photon emitters.

Optical emitters have an additional property when compared to their classical analogs: sin-
gle emitters cannot emit two photons at once from their excited state. Their emitted light
presents photon antibunching, characterized by a second-order intensity correlation function
at zero delay g(2)(0) smaller than one 23. Such single-photon light fields can only be described
within a quantum optical formalism and are central to a number of quantum information
protocols. For generating a single photon, the emitter needs to undergo a full excitation/de-
excitation cycle, introducing a time overhead and ultimately posing an upper bound on the
brilliance of suchphoton sources. Theuse of nanoantennas tomodify the excite state lifetime
via the Purcell effect is a potential way to achieve brighter single photon sources. Additional
potential increases in brightness come from an increase:

• in the emitter excitation rate. Nanoantennas funnel far-field excitation into the near-
field, increasing substantially the local fields at the position of the emitters.

• in the emitter radiative efficiencies. Optical emitters always have two competing de-
cay mechanisms: radiative, and non-radiative. By increasing the radiative rates we can
improve the external quantum efficiency (emitter photon per excitation).
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Figure 2.1: (a) Schematic illustration of the FDTD numerical method. The space containing the nanophotonic struc‐
ture of choice is discretized into a numerical grid of points where fields generated by a dipole source are evaluated
and propagated in time following Maxwell’s equations. (b) Specific dipole‐antenna arrangement for quantities shown
in Figs.2.2 and Fig.2.3. The rod nanoantenna is tuned to show a dipolar resonance at 800nm. Dipole is oriented along
the longitudinal resonance mode.

2.1 Optical antennas modify the excited state decay rates of single pho-
ton emitters

I will first describe a numerical method to compute the effect of arbitrary photonic environ-
ments on the radiative rates of single photon emitters. Having such a method allows us to
reduce the experimental effort to study relevant structures as well as helping us interpret our
experimental results.

2.1.1 Maxwell equations and numerical simulations

We are interested a method to compute the partial local density of optical states in Eq.2.1
which can be expressed as 3:

ρp(r0, ω) =
6ω
πc2

[
np · Im{

←→G (r0, r0, ω)}np

]
(2.2)

which tells us that the LDOS ρp at the position r0 of a dipole emitting at a frequency ω is
proportional to the projection of the imaginary part of the Green’s function over the dipole
orientation np. To calculate the Green’s function, we make use of its definition as the propa-
gator that relates the generated electric field E(r) by point dipole source p at r′:
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E(r) = ωμμ0
←→G (r, r′)p (2.3)

where μ0 and μ are magnetic permeability constants.
Throughout this thesiswe solveEq.2.3 applying thefinite-differences in time-domainmethod

(FDTD).TheFDTDmethod is a computational electrodynamicsmethodwhichnumerically
discretizes spatial and temporal coordinates of an inhomogeneous environment of choice.
Fields are evaluated in time steps at points within the numerical material grid 24. The typical
situation is depicted in Fig.2.1: an electric dipole source p(r0, t) excites the computational grid.
The resulting fields are calculated according to Maxwell equations at the different points of
the grid. By monitoring those fields at relevant positions, suitable quantities ( such as the
Green function in Eq.2.3) can be numerically computed. In our case, we are interested in the
intermediate computation of the Green function. Once the Green function is determined
we can extract experimentally measurable magnitudes such as themodification of the excited
state lifetime in the presence of a nanophotonic environments. To illustrate the procedure,
let us consider the emission of an electric dipole emitter in the presence of a nanorod antenna.
In detail, I proceed as follows:

1. We record the amplitude of the electrical dipole p(r0, t), along with the electric field
generatedby it E(r0, t). Since the radiative ratemodification is proportional to

←→G (r0, r0)

we record these two quantities at the same position(Fig. 2.2-left).

2. Nextwe perform aFourier transformof the dipole and field amplitudes to obtain func-
tions in the frequency (ω) domain (Fig. 2.2-right).

3. Based on the frequency domain quantities, we can express theGreen function (Fig.2.3-
left) as:

←→G (r0, r0, ω) = εε0
E(r0, ω)
ω2p(r0, ω)

(2.4)

Once we determine the quantity Im{←→G (r0, r0, ω)} (Fig.2.3) we can calculate observable
magnitudes such as the change in the radiative rate as:

Γinh =
ω3|μ2|
2c2ε0ε

[
np · Im{

←→G (r0, r0)}np

]
(2.5)

For thedescribed emitter close to a rodnanoantenna showing adipolar resonance at 800nm
presented in Fig. 2.1-right the radiative rate enhancement has a Purcell factorP ∼ 280 (Fig.2.3.
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So far we performed a one-point calculation, but the procedure can be extended to make ra-
diative rate changemaps in the surrounding of a nanophotonic structure (cf. section 2.3). We
should point out that performing one and only time-domain simulation gives us access to the
extracted magnitudes over a wide rage of frequencies (wavelength). This is specially advanta-
geous in the study of nano-antennas, since they typically present strong dispersive properties
due to the presence of a resonance.

From Eq.2.5 we note that the decay rate in inhomogeneous environments depends vectori-
ally on the Green function via its projection along the directions of the emitter orientation 17.
In order to measure the effect that this vectorial quantity has on the decay rate of emitters we
cannot afford to measure ensembles, but to study them at the single emitter level. I will next
describe how to build a set-up able to measure such quantities.

2.2 Experimental apparatus

2.2.1 Single molecule microscopy

Let me give some orders of magnitude numbers regarding the physical phenomena we are
trying to measure, and how it relates to the field of single molecule microscopy.

In Drexhage’s series experiments mentioned above, the Eu+ ions form part of a molecu-
lar complex with typical lifetimes reported to be between 80 − 533μs 25, depending on the
crystalline arrangements of the molecular films. Transition rates in the μs range are consid-
ered slow for emitters at optical frequencies. Remember also that in the original experiments
there was an ensemble average of emitters, which imply higher signal levels than the those of
single photon emitters. Under these circumstance of relatively slow transition rates and high
signal levels, conventional detection techniques are sufficient to measure the transition rates.
These conventional techniques combine a chopper (or an equivalent electro-optical modula-
tor) and a detectorwith sufficient gain, such as an avalanche photodiode or a photomultiplier
tube.

In this configuration, the power of the emitted signal impinging on the photodetector will
be proportional to both the excitation intensity, the number of emitters in the focal spotN
and their excitation cross section σabs, and weighted by the collection and detector efficiencies
the ηcollection. P = ηcollectionNσabsI. Assuming numbers similar to those in Eq.2.9, ηcollection ∼ 1
andN ∼ 106, we get that the power impinging on the photodetector would be of the order
of∼ 4.4nW. Typical photodiodes offer a responsivity∼ 0.5A/W, so there is a macroscopic
current output on the order of∼ 2.2nA. A simple transimpedance amplifier suffices then to
convert these currents into voltage signals with sufficiently low noise levels that can be traced
in an oscilloscope. Note that lifetimes ≥ 10μs imply signals with frequencies ≤ 100kHz.
Since we are only considering signals featuring two time-dependent exponential functions,
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a typical 50MHz bandwidth oscilloscope (widely available) is thus sufficient to sample the
signals correctly.

The situation is completely different at the single emitter level. The need for microscopy
techniques is imperative to study isolated emitters: high numerical aperture microscope ob-
jectives provide both the maximum achievable spatial resolution using far-field optical tech-
niques and the high collection efficiency needed to detect signals at the few-photon level.
This experimental framework derives from the field of single molecule detection in the solid
state, first developed in the late 80s by W.E. Moerner and Lothar Kador 15 and in the early
90s by Michelle Orrit and Jacky Bernard 16. These two pioneering works employed narrow-
linewidth frequency-locked lasers much in the spirit of classical atomic and molecular spec-
troscopy to achieve single molecule detection of sufficiently diluted samples, despite the in-
trinsic noise of detectors configurations at the time. Early experiments, which in effect em-
ploy resonant spectroscopy techniques, needed to be performed at low temperatures, typi-
cally at the temperature of liquid He.

More specifically, single molecules in the solid state and under the right conditions at low
temperature behave almost as ideal two-level system (TLS). The scattering cross-section of
an ideal TLS under weak resonant excitation can be calculated to be 26:

σ = σ0 =
3λ2

2π (2.6)

meaning that the scattering cross-section of a point-like two-level system is of the order of
the area of a diffraction-limited spot π(1.22λ/2NA)2 ∼ 3πλ2/8NA2. Hence, we should be
able to detect single molecules bymonitoring the transmitted light of an incident laser tuned
to the relevant resonance of this molecule impinging on a sample containing a sufficiently
diluted amount of molecules. The visibility, or difference between the background and the
relevant signal, can be roughly estimated:

T = 1− σ
Adiff

= 1− 4
π2NA2 ∼ 0.4 (2.7)

That is, the transmitted signal is only∼ 40% of the incident light. Effectively, experimen-
tal visibilities tend to be smaller, since for sufficiently high numerical apertures light fields
present a vectorial character 27,28,29. Although we restricted ourselves so far to molecular sys-
tems, other emitters in the solid state behave as well as ideal TLS. Among them epitaxially-
growth quantum dots 30,31,32, ion-vacancy centres in diamond 10,33,34 and rare-earth ions 35 have
been investigated both as single photon sources and within in the context of cavity-QED
due to the single photon non-linearities associated with their coherent properties 36. Single-
photon nonlinear properties can be used to make devices generating arbitrary number 37,38 or
squeezed 39 states; used for entanglement swapping for quantum networks40,41; or employed
to achieve quantum memories able to synchronise nodes of a network42.
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Further corrections can be made for more realistic systems. In particular, the scattering
cross section of a molecule in a solid state environment can be expressed as:

σ = σ0
Γ1

2Γ2
αFCαDWcos2θ (2.8)

where αFC,αDW are the Frack-Condon and Debye-Wheeler factors that account for the
branching ratio between the zero-phonon line and vibrational and phonon side-bands re-
spectively; Γ1 is the excited state decay rate, and Γ2 is the coherence time of the excited state.
Typical values of these factors are on the order of∼ 0.5, and cos2θ is a geometrical factor that
accounts for the alignment of the excitation field with the optical dipole associated with the
molecule43. The ratio Γ1/2Γ2 further accounts for the presence of dephasing, and is impor-
tant at room temperature since it takes values of the order of 10−5 − 10−6. For the sake of
comparison, an ideal TLS at a wavelength of 600nmpresents a cross-section of 1.7× 10−9cm2

whereas aRhodamine-6Gmolecule presents a cross section of 4.4×10−16cm2 at room temper-
ature (andwe are interested in room-temperature since we need to couple operate anNSOM
on top of our molecules). This reduction on the scattering cross sections makes direct detec-
tion nearly impossible due to intrinsic detector noise. Although interferometric techniques
can be applied to the detection of such emitters at room temperature44,45, and are actively
investigated since they could lead to novel label-free detection techniques46, the more com-
mon approach is to resort to fluorescence excitation spectroscopy. Experimentally, a set of
color filters of sufficient quality, typically made of dielectric multilayers, removes the back-
ground excitation laser to levels below the expected fluorescence signal. After the first room-
temperature experiment performed by Betzig and Chichester47, the technique has become
widely employed in physics, chemistry, biology and materials science and has been awarded
the Nobel Prize in Chemistry in the year 2014.

Let’s give some numbers about order of magnitude in a typical room-temperature exper-
iment. Let’s assume we have a laser tuned to the absorption band of a molecule at room
temperature, and our microscope objective allows to focus it down to a spot with a radius
of 1/
√πμm ∼ 0.564μm. Let’s assume we use a laser power of 1μW. We can calculate the

power absorbed by a typical Rhodamine-6G molecule at room temperature to be:

Pabs = σabs · I = 4.4× 10−16cm2 1μW
π
(

1√πμm

)2 = 4.4× 10−14W (2.9)

We can translate the calculated power in Eq. 2.9 into photons · s−1 using the Plank-Einstein
relation P = nhν, to arrive to a number of∼ 130 kphotons · s−1 at a wavelength of 600 nm.

Improvements made to detector technology, in particular photomultiplier tubes (PMT)
and silicon avalanche photo-diodes (APD) allow the detection of very low signals. In par-
ticular, when these devices are operated in so-called Geiger mode they are able to detect one
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single photo-electron. This type of operationmode is achieved by setting a sufficient detector
gain, and using electric current discriminators in order to discern dark counts from photon-
generated current spikes after careful calibration. In effect, Geiger mode allows to detect
”single photons”. Assuming these molecules have a quantum efficiency 1 - that is, they emit
1 photon per absorption event - and a perfect collection efficiency, the above number is the
expected count rate in our detectors. Realistic collection configurations decrease this num-
ber to typically 10%, after taking into account finite numerical aperture of microscope objec-
tives and below unitary detector efficiency. We keep in mind that to be able to detect this
signal we need to suppress the background excitation signal by a factor Pexcitation/Psignal =
1 × 10−6/4.4 × 10−14W ∼ 2.3 × 10−7, i.e., colour filters need to achieve a suppression of
over 7 orders of magnitude. Further, taking into account that Geiger counters have typical
dark-count rates≲ 1000counts · s−1, we expect typical SNR∼ 10 or better for the mentioned
excitation powers. We should mention that direct luminescence from metallic nanoanten-
nas can also be detected using this experimental procedure. Although the luminescence effi-
ciency of these systems is orders of magnitude smaller than molecular systems, they present
much larger absorption cross-sections, effectively emitting signals comparable to those of sin-
gle molecules.

In the rest of this chapter, we will describe first how to make a machine able to measure
interactions between optical antennas and single quantum emitters interacting at subwave-
length distances. This is one of the two main contributions I made to related NSOM (near-
field optical microscopy) work within the Molecular Nanophotonics Group at ICFO. Then
wewill showpreliminary results showing the capabilities the rig and compare them to FDTD
numerical results. Methodologies related on how to simulate decay rates of emitters close
to nanoantennas using the FDTD method the my second contribution related to this chap-
ter. We will finalize with an outlook and point to the reader to other works within Niek van
Hulst’s group that expand on these findings48.

2.2.2 Single emitter lifetime imaging using TCSPC

Before diving into how to how to make images, let me first discuss the capability of record-
ing time-resolved signals coming from single emitters. Since we are detecting single-photon
events, we need to resort to a probabilistic approach to determine study the dynamics accord-
ing to the rules of quantum mechanics. Given an emitter in its excited state lifetime, it will
spontaneously decay at any time with a given probability. To experimentally measure the av-
eraged single emitter lifetimes, we need to repeat the same experiment over a probabilistically
relevant sample. Only as the number of such measurements approaches infinity it will cor-
respond to the expected value of the decay rate we are trying to measure. This approach is
known as time correlated single photon counting (TCSPC).
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Figure 2.4: Lifetime imaging (see main text for further details). (a) Differences in signal between ensemble and single
emitter: signals in ensemble measurements can be readily measured using high gain photodetectors and an oscillo‐
scope; conversely, single emitter detection needs to make use of TCSPC tehniques. (b) 32‐bit DWORD string con‐
taining the information of a single phtoon detection event using the Picoquant PH300 TCSPC card in time‐tagging
mode. (c) Scheme of histogram extraction from an ensemble of time‐tagged records and lifetime extraction. (d) Life‐
time imaging using external markets coupled to an NSOM tip. Lifetime maps can be obtained with a spatial accuracy
of∼ 10 nm and a time accuracy of∼ 100 ps.
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Single emitters radiate a single photon at a time, then we need to use APDs operating in
Geiger mode (aka SPADs) to detect such low signal levels. These devices generate a macro-
scopic electrical currents pulses of the so-calledNuclear InstrumentationModule (NIM) stan-
dard. They can be seen as negative Vpp = -0.8 to -1.0 V, and between 15 ns - 25 ns pulses when
connected to a 50Ω load oscilloscope. These signals are fed into a constant fraction discrimi-
nator (CFD).

This is ‘an electrical circuit designed to mimic the mathematical operation of finding a
maximum of a pulse by finding the zero of its slope’. Its purpose is to provide much better
temporal resolution thanwhatwould be possible if a discriminator is set to an arbitrary signal
level since different single pulses have slightly different peak heights. Subsequently, outputs
of the CFD are fed into a time-to-digital converter (TDC): a high-frequency counter which
operates on asynchronous signals. By measuring the number of periods of an internal refer-
ence clock between a start signal and the CFD output we get a timestamp. In effect the period
of the clock determines the maximum temporal resolution we can achieve. To synchronise
together all the single pulses over themany repetitions of the experiment, weuse a pulsed laser
with temporal pulse width typically of the order of (or smaller than) the temporal resolution
of the electronics. In our experiment, a diode laser with pulse width ∼ 10ps. An electronic
signal synchronous with the laser pulses acts as the start events of the TDC.

We use of a commercial device (PicoQuant PH300) acting both as CFD and TDC. It pro-
vides a 32-bit DWORD for each timestamp record (Fig. 2.4-b). We post-process all these
timestamps to get a histogram of events (Fig. 2.4-c). As mentioned, this being a probabilis-
tic measurement the more records we obtain, the closer the measurement will be to the true
value. For simplicity the histograms are fit to single exponential functions to determine the
lifetime, although this assumption may need further refinement as it could depend on the
number of decay channels through which the emission can take place49, where multiple de-
cay channels lead to an average over multiple exponential functions.

2.2.3 Near-field optical microscope

Second part of the machine is a near-field scanning optical microscope (NSOM). Implemen-
tations of an NSOM are multiple, with the main categories divided by whether the illumina-
tion/detection is performed in the near/far-field.

In our implementation (Fig.2.5), both illumination and collection are performed in the
far field, using an oil-immersion objective with high numerical aperture (NA = 1.3 - 1.4). An
optical probe is then placed in close proximity to a fluorescent molecule, and the distance be-
tween the probe and the sample ismaintained using closed-loop feedback electronics over the
reading of the shear-force experienced by the tip 3. In short, the optical tip is made to oscillate
by a dither piezoelectric device, recording both amplitude and phase of the oscillation. Home
developed dedicated circuits act on these signals to maintain them constant using a feedback
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Figure 2.5: (a) Optical set‐up for optical microscopy. (b) Depiction of a rod‐antenna interacting with fluorescent
molecules. To fabricate the optical probe we thin down an optical fiber using a puller(c), flatten this one out (d) and
coat it with aluminium. FIB milling (h) allows us to carve nanostructures at the tip of the probe, like a resonant rod‐
like antenna (f) and (g).

loop, typically actively locking the phase of the readout 50. The vibrating tip is then scanned
around the sample using three piezo-electric aligned along the three cartesian coordinates.
These piezo-electric modules (MadCityLabs Nano-LP) are in the same manner controlled
by dedicated closed-loop feedback electronics (MadCityLabs Nano-Drive). Readouts from
the dedicated piezo-drivers are externally driven by three 16-bit DAC outputs of an ADWin
Gold II (Jäger computergesteuerteMesstechnik GmbH)while monitoring the output of the
closed-loop driver by another set of three 16 bit-ADC inputs. We can drive the nanoposition-
ers with a spatial resolution of ∼ 0.75nm over the 50μm movement range; whereas we can
only record a nominal precision of ∼ 1.5nm due to the characteristics of the voltage levels
of our electronics. In this way we can correlate spatial coordinates with detected photons to
generate images. We generate 50ns-high TTL signals using pulse-width modulation within
the ADWin, at the beginning of each pixel. Thesemarkers are feed to the PH300module, al-
lowing us to separate between different pixels by postprocesing 32-bit DWORD strings, thus
generating lifetime images (Fig.2.4-d). The rig is operated using software I wrote in LabView.

In this NSOM configuration, the fluorescencemolecule can be thought of as a probe itself
of the local field generated by the nanoantenna (Fig.2.5-b). This allows us to we gather infor-
mation about the electric field projected along the dipole moment of the molecule. We need
then to fabricate optical probes which act as antennas at optical frequencies. The following
procedure was performed by Dr. Anshuman Singh and is listed here for completeness 51. We
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proceed as follows:

• We thin down an optical fiber using a fiber-puller (Fig.2.5-c).

• The tip of the pulled optical fiber is made flat 2.5-d using an Auriga focused ion beam
(FIB) milling machine (Carl Zeiss AG) (Fig.2.5-h).

• The flattened tip is coatedby a filmofmetal, typically aluminium, using thermal and/or
electron beam evaporation (Fig.2.5-d).

• Weuse FIBmilling again to carve a dipolar antenna at the tip of the coated fiber (Fig.2.5-
f and Fig.2.5-g).

By making use of molecules oriented along different directions, we can extract vectorial
characteristics of the near-field of the antenna. Further details can be found in the works of
Neumann et al 52 and Singh et al.48.

2.2.4 Capabilities of the rig

Let us make some remarks about of our machine in terms of typical temporal resolution.
The experimental maximum achievable temporal resolution of our TDC is 4ps, limited by its
internal clock. In effect, due to our laser pulse and electronic signals temporal width, the in-
strument response function is∼ 50ps. A goodmolecule in the solid state at room temperature
will give at most 107 − 108 photons before photobleaching. We typically take 100x100 pixels
maps. That means we are left with less than 104 photons per histogram in each pixel, which
are distributed along 4096 time-boxes (aka channels). One typically needs a 2 to 3 decades
decay of an experimentally determined exponential function to make a good fit. Due to the
limited availability of photons, we are forced to bin together adjacent channels, sacrificing on
the maximum device resolution but gaining on the quality of the fit. In this manner exper-
imental error is typically of the order of 100ps. Better temporal resolution can be obtained
sacrificing spatial resolution.

Given a pixel dwell time in the ∼ 100 ms, sufficient for good time resolution, the typical
image is collected and processed in about 15min. Assuming a molecule emitting 105 photons
· s−1, the total pure binary information of the image amounts to∼ 400 MB of data.

2.3 Results

We use spin coating to prepare 50nm-thin PMMA films on cover-slip substrates. Terrylene-
diimide (TDI) molecules, a stable molecule widely used in single molecule experiments are
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a cb

Figure 2.6: (a) Simulated electric field magnitude along the out of plane z‐direction (top), y‐direction (middle), and
x‐direction(bottom) after plane wave excitation along the longitudinal axis of the antenna. [b] Recorded photon in‐
tensities of three different TDI molecules oriented along the three different cartesian axis. [c] Lifetime images of the
three molecules in [b].
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diluted in the PMMA solution. Concentration is brought sufficiently down to be able to see
individual fluorescent spots, typically 1 molecule ·μm−2. Thesemolecules present an absorp-
tion band centered at 650nm and a Stokes shifted emission at 680nm. Quantum efficiency of
these molecules is around 90% 53,8 when embedded in a PMMA matrix. We design our dipo-
lar optical antennas tuned to themolecules’ Stokes shifted emission occuring at 680nm. Due
to the broad characteristics of the dipolar resonance (Q factor∼ 5− 10 is typical, translating
in 150nm FWHM at the operating frequencies), the resonance overlaps the excitation band
of the antenna, also providing excitation enhancement.

We present now the main result of this chapter: vectorially resolved lifetime maps of the
dipolar resonance of a rod antenna. Fig.2.6-(a) shows simulated field enhancements of a
rod-antenna tuned to show a dipolar resonance at 680nm. Excitation of the molecule is per-
formed for all three molecule orientations along the long axis of the antenna. Field enhance-
ments are presented along the out of plane direction (top), in plane and long axis (centre)
and in plane short axis (bottom). Experimental measurements are presented in Fig.2.6-(b).
Measured intensities correspond to a single molecule oriented out of plane (top), in-plane
long-axis (centre) and in plane short axis (bottom). Experimental results are in accordance
with numerical predictions. Fig.2.6-(c) shows lifetime maps for the same molecules as in (b),
demonstrating the capability to vectorially map excited state decay rates. Intensity and decay
rates are correlated, which implies a radiative Purcell effect, a necessary condition to generate
efficient single photon sources. We refer the reader to Anshuman Singh’s thesis for further
details 51.

Before concluding, we should mention that previous experiments have been performed
along the same ideas of measuring lifetime changes of emitters as a function of position 54,55.
However, due to the limited availability of photons emitted by molecules at room temper-
ature, studies have been so far limited to one-dimensional scans, and never studied the full
vectorial character of the LDOS. The twist in our work is that instead of starting a new mea-
surement for every pixel, we acquire them continuously. This provides us with much better
spatial resolution and higher collection efficiency.

2.4 Conclusions

Apart form the intrinsic interest of studying the vectorial interaction between single photon
emitters and nanoantennas, I have motivated the potential for enhancing the brightness of
single photon sources: brighter single photon sources have applications in quantum cryp-
tography. In order to study these interactions I have first presented a numerical method to
simulate the interaction and extract measurable changes. The numerical method presented
here has benefits on itself, compared to the more widely used method in which the power
radiated by dipolar emitters is monitored and compared to vacuum. Our method does not
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require large field monitors in our computation grid. If the environment is arbitrarily com-
plex, it might be difficult to set up such far-field monitors without overlapping withmaterial
interfaces, whichwould in turn introduce artifacts on the computedquantities. Furthermore,
as we will see in Chapter 2 an extension of themethod presented here can be used to calculate
energy transfer between two dipoles in arbitrary environments. Secondly, I introduced an
experimental device capable of measuring the near-field interaction between nanoantennas
and single photon emitters. Our set-up presents higher collection efficiencies due to electron-
ical triggering of pixel markers. This enables raster scanning the nanoantenna instead of the
previously reported point-wisemeasurements. This allowed us to study the near-fields of the
antennas vectorially. Our set-up is capable of experimentally determining LDOS-dependent
radiative rates with∼ 100 ps temporal resolution and 1.5nmnominal spatial resolutionwhich
is also considerably better than previously reported values.
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3
Long-range energy transfer in
nanophotonic environments

Place photons where they matters most. Energy transfer between an excited two level quan-
tum emitter (donor) and an equivalent one in its ground state (acceptor) is a key process in
many physical systems. It is found in naturally occurring living organisms which perform
photosynthesis 56, and is widely exploited in man-made devices for lighting 57,58. Due to its
sharp inverse sixth-power distance dependence as predicted by Förster theory 59, it is also often
used for bioimaging as an optical ruler to assess the co-presence of biomolecular probes60,61.
Despite the wide range of applications profiting from it, energy transfer between two emit-
ters is often an inefficient process, as it relies on both the spatial and spectral overlap of their
radiation patterns, as well as mutual orientations. Efficient long range energy transfer could
revolutionize thewaywe harvest solar energy62,63, open new avenues for superresolution tech-
niques64, and provide new sensing65 or lightning platforms ? . Furthermore, it could allow
efficient wireless energy transfer66,67 and the implementation of quantum information pro-
tocols in realistic platforms68.

In the previous chapter we have introduced an experimental TCSPC/NSOM rig which
allowed us to demonstrate that by carefully placing (vectorially) single photon emitters with
respect to dipole nanoantennas we could enhance the emission rates of those emitters. We
could extend this vision to imagine optical circuits in which multiple single photon emitters
interact within an optical circuit. This would remove the need to couple their signals by
collecting and refocusing their signals in the far field. What would be the effect of complex
nanophotonics environments in the energy transfer between emitters?

In this chapter I introduce a numerical method based on FDTD that allows us to quan-
tify energy transfer in arbitrarily complex inhomogeneous environments. I then introduce
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a hybrid optical circuit combining a waveguide and two dipolar antennas. This allows us
to propose a novel scheme for long-range energy transfer based on near-field (via plasmonic
antennas) and far-field (via dielectric waveguides) engineering. By long-range we mean dis-
tances of the order of the wavelength of the photons emitted by the donor, or equivalently
k · R ∼ 1. This engineered environment can boost the energy transfer between two emitters
at a distance of several wavelengths, far beyond the few-nmFörster radius, by 8 orders ofmag-
nitude. We will end the chapter by motivating why the increase is not due to an increase in
emission rate from the donor, but an enhancement per donor emitted photon.

3.1 Relation between energy transfer and LDOS

Engineerednanophotonicmaterials largelymodify the local density of opticalmodes (LDOS)
available to an emitter and hence its spontaneous emission rate 18, as seen in the previous chap-
ter. The LDOS varies with the emitter position in an inhomogeneous environment, and can
be obtained from the dyadic Green’s function, via its imaginary part Im[G(r, r)], at the emit-
ter location r. Energy transfer, instead, is related to G(rD, rA), function of both the donor
(rD) and acceptor position (rA).

Beyond Förster theory, an equivalent of the Purcell effect for energy transfer in nanostruc-
tured media, i.e. a dependence of the energy transfer rate on the LDOS, has theoretically
been expected to follow either a linear dependence69, a quadratic dependence70 or even to
be independent of the LDOS71. This has fueled an ongoing experimental debate on the role
of LDOS on energy transfer: energy transfer experiments in dielectrics andmoderately small
emission rate enhancements have shown energy transfer efficiencies which do not depend
on the LDOS72,73. On the contrary, for the case of plasmonic nano-apertures or films, with
larger donor-acceptor distances and stronger LDOS enhancements, energy-transfer efficien-
cies which depend on the LDOS of the photonic environment have been reported74,75. The
role of large LDOS gradients on energy transfer in nanostructured materials is still unclear
and a flexible and practical theoretical method embracing them has so far been lacking.

Here, using finite-difference time-domain (FDTD) modeling, a 3D vectorial numerical
method including retardation effects and the full metal losses 24, we compute energy transfer
in the presence of arbitrary inhomogeneous environments by calculating both the Green’s
function and induced polarizability of the acceptor.

3.2 Numerical method to calculate energy transfer using the FDTD

I employ a commercially available FDTD software (Lumerical FDTD solutions) to numeri-
cally solve Maxwell equations in arbitrarily complex nanophotonic environments. The tech-
nique described here after can be easily extended to other FDTD software such as MEEP76.

25



In order to perform energy transfer calculations using the FDTDmethodwe need to calcu-
late two quantities in Eq.3.3: (1) The Green dyad function G(rA, rD, ω) and (2) The induced
acceptor polarizability αA(ω). We calculate theses two quantities as follows:

1. G(rA, rD, ω): a dipole at thepositionof thedonorμD(t) excites an electromagnetic field
in the computational grid. We record the evolution of the electromagnetic field E(r, t)
as a function of time at the positions rA forwhichwe are interested in evaluating energy
transfer. Fourier transforming the previous quantities to μD(ω) and E(rA, ω) allow us
to calculate the sought quantity for a range of frequencies ω in just one simulation:

G(rA, rD, ω) =
E(rA, ω)c2ε
ω2pD(ω)

(3.1)

2. αA(ω): we perform a second simulation in which a dipole muA(t) at rA is recorded as
a function of time. Simultaneously, we record the electric field generated E(rA, t) at its
same position. After Fourier transforming both quantities, the induced polarisability
is computed as:

α(ω) = pA(ω)
E(rA, ω)

(3.2)

The last step, meant to calculate the induced polarizabilities, should be performed at all
the positions rA at which we want to evaluate energy transfer. We note here that in the case
in which donor and acceptor are placed at equivalent position (the system is invariant under
particle exchange), only one simulation has to be performed, since the induced polarizability
of donor is the same as the acceptor. For such cases both quantities can be computed in one
simulation run. Furthermore, in the case inwhich all the positions are equivalentwith respect
to the inhomogeneous structure only one simulation would be required.

These two quantities, together with the LDOS-related G(rD, rD, ω) function introduced
in Chapter 1, allow us to calculate the energy transfer rate between a donor (pD) and an accep-
tor (pA) as described in Fig. 1a, when normalized by the donor decay rate as:

f = ΓDA

ΓD
=

ε0Im[αA(ω)]|pD · G(rD, rA, ω)pA|2
Im[pD · GD(rD, rD, ω)pD]

, (3.3)

where ε0 is the vacuum permittivity, G(rD, rA, ω) is the dyadic Green’s function describ-
ing the photonic environment, and αA(ω) is the polarizability of the donor electric field at a
frequency ω 3.
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Figure 3.1: Lifetime. (a) Schematic illustration of energy transfer between two equivalent molecules. (b) Agreement
between our numerical (symbols) and Förster theory (dashed line for parallel dipoles and dotted line for collinear
dipoles) calculation of energy transfer for dipole pairs in vacuum separated by a distance R (λ = 800 nm). The orien‐
tational factor T(ω) between a donor and an acceptor oriented along each of the three cartesian axis, labelled as in
the inset, is shown. [c] Distance dependence of the relative error between the numerical approximations and the
exact analytical values expressed as percent error. The relative error increases with the donor‐acceptor distance. All
presented simulations were performed in an euclidean space. We use a simulation region meshed using cubes with
a side of 8 nm. The three different donor‐acceptor orientations presented (YD‐YA (□), ZD‐ZA (□) and XD‐XA (□)
squares) present slight differences of the error values. This is a result of the different efficiencies of energy injection
into the simulation mesh from the differently oriented dipoles, as well as the evaluation of vectorial quantities at posi‐
tions where these quantities are interpolated.

While the energy emitted by a dipole depends on the dipole’s own scattered-field emitted
at a former time, energy transferred from the donor to the acceptor instead depends on both
the donor field E(rA) that reaches the acceptor and the acceptor dipole moment that this
field induces, which is μA = αA(ω)E(rA). In homogenous optical media77,78, simple inho-
mogeneous environments like multilayers69 or spherical particles79, radiative corrections to
the electrostatic polarizability have been introduced analytically and the energy transfer can
be calculated. Solutions to Eq.3.3 for lossy and more complex structures require more care
and are often tackled by defining quasi-normal modes 80, or treated using the quasi-static ap-
proximation81. Instead the technique described in this chapter can be applied vectorially to
arbitrarily complex inhomogeneous media while taking into account any retardation effects.

Eq.3.3 shows that energy transfer per emittedphoton (normalizedbyΓD) canbeboostedby
either: increasing the polarizability at the acceptor position α(ω) via near-field enhancement,
or by engineering how the field emitted by the donor reaches the acceptor via G(rD, rA, ω).
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3.3 Validation of the numerical method

In vacuum (or homogenousmedia), Förster theory analytically computes the energy transfer
by defining the orientational T factor as:

T(ω) = 16π2k4R6|μD · G(rD, rA, ω)μA|
2 (3.4)

where k is the wavenumber at the frequency ω and R = |rD − rA| 3.
In Fig. 3.1(a) we compare the analytical values of Eq.3.4 with our numerical results for

dipole pairs oriented along the three cartesian axis. There are three regimes characterizing the
interaction:

1. Near field (k ·R ≤ 0.5): Evaluation ofT(ω) for values of k ·R ≤ 1 shows an almost flat
line. Since ΓDA ∝ T(ω)/R6, we recover the well known R−6 Förster analytical result.

2. Mid-to-far field (0.5 < k · R < 1): energy transfer depends on the relative orientation
between the two dipoles:

• Non-collinear parallel dipoles (y-y and z-z) show a transfer rate that drops at in-
termediate distances decaying asR−4, characteristic of an inductive intermediate
field.

• Collinear dipoles (x-x) show an energy transfer rate that decaysmonotonically as
R−4

3. Far field (k ·R > 1): energy transfer depends again on the relative orientation between
the two dipoles:

• Non-collinear parallel dipoles (y-y and z-z) show the usual R−2 energy transfer
rate dependency characteristic of interactions mediated by transversal photons.

• Collinear dipoles (x-x) still show an energy transfer rate that decays monotoni-
cally as R−4 in the far-field

28



Despite the usage of a numerical software, always prone to numerical approximation er-
rors, the agreement between analytical and numerical values is remarkable. As any numerical
technique, it is prone to shownumerical errors due to thediscrete representationofquantities
in a binary computer. Besides, FDTD present a specific artifact, namely different positions
in the grid store different field components for the method to be accurate to second-order.
A particular structure is discretized into a grid of points, in our case we use a cubic mesh, at
which the electromagnetic field is computed. Our sources of electromagnetic field (donors)
are dipoles placed at different positions in the grid. The same applies to the positions atwhich
we evaluate fields (acceptors). In order to extract the field components at these particular
positions the software performs a linear interpolation between points in the discretization.
In Fig.3.1[c] we show the relative error between the analytical solution and our numerical
method for dipole-dipole energy transfer in vacuum. We note that different components
present different behavior due to the different interpolation on the grid.

In the case of Fig.3.1[c], the relative error is always smaller than 100%, corresponding to a
factor 2 deviation for distances as large as 5 μm. This distance interval represents over 6 wave-
lengths at the central wavelength (800 nm) of the present simulations. The distances over
which ourmethod is fairly accurate account for the near-field, intermediate-field and far-field
regimes of energy transfer between donor and acceptor. This numerical error is responsible
for the departure against the analytical result in the XD-XA (□ values in Fig.3.1[b] as we ap-
proach k · R ∼ 10. We note however that the error of the numerical approximations can be
reduced using finer meshes at the cost of increased computational resources.

In the following figures on this chapter we will show error bars representing 100% rela-
tive error for all distances. The error bars should be then interpreted as an upper boundary
overestimating the approximation errors.

3.4 Energy transfer in nanostructured media

Nanostructured media modifies the emission rate of an emitter by changing its coupling to
the electromagnetic field modes as shown in Chapter 2. Using the method previously de-
scribed we will show how a hybrid waveguide-antenna system can modify long-range energy
transfer from one dipolar emitter to another.

We consider as awaveguide a free standing siliconnitridemembrane, 200nmthick and400
nm wide, with refractive index n = 2. The electric field intensity generated by a y-oriented
dipole placed 10nm above the surface couples well to the TE waveguide mode as shown in
Fig.3.2[a]). Due to its dimensions, the waveguide only support one single TE mode 82. This
should help us remove complexity to the analysis that follows. To allow for fair comparison,
we will consider three configurations for the energy transfer between two donor-acceptor
dipoles oriented along the y direction: (1) in vacuum, (2) over the bare dielectric waveguide,
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Figure 3.2: [a] Optical antennas increase donor emission rate as compared to vacuum. Donor orientation along the
longitudinal direction of the antenna (blue diamonds) shows larger enhancement than dipolar orientations transver‐
sal to the optical antenna (orange and green diamonds) as a result of larger near‐field coupling between the dipole
emitter and the optical antenna. [b] An acceptor in vacuum (left) has same induced polarisabilities for all three per‐
pendicular orientations, this comes as a consequence of the homogeneity of vacuum space. Induced polarisabilities
increase when the emitter is close to a dielectric waveguide (middle) and it depends on the orientation of the dipole.
Maximum induced polarisability occurs for acceptors coupled to the antenna tunned to its dipolar resonance (right),
in particular for orientations matching the near field profile of the dipolar mode of the rod antenna.

and (3) over the dielectric waveguide and coupled to metallic antennas.
Fig.3.2[b] shows the frequently used parameter f = ΓDA/ΓD, which compares the energy

transfer channel to other decay mechanisms. In the vacuum(1) and bare waveguide(2) config-
urations, energy transfer for distances shorter than 100nm (vertical dotted line) decays asR−4,
characteristic of coupling mediated by the intermediate-field. For larger distances, the differ-
ences between vacuum and the waveguide become more evident. At a distance of roughly 1
μm from the donor position, a lossless waveguide mode has developed, which efficiently de-
livers the light to the acceptor withminimal propagation loss. As a consequence, the transfer
rate stops decaying for increasing donor-acceptor distances and instead saturates at a value
of∼ 2.5 · 10−12 transferred photons per donor-emitted photon. This corresponds to an en-
ergy transfer enhancement of around 25 times when compared to vacuum at a distance of 1
μm. The dip in Fig. 3.2[a](purple symbols), at roughly 400 nm distance, is due to the way
the radiation of the dipole is fed into the waveguide modes, as the dipole emission peaks at
the critical angle of the air-silicon nitride interface 3. We note here that for a dipole oriented
along the y-direction, only∼ 20% of the total radiation is coupled into the waveguide mode
(at a wavelength of 800 nm), and only half of this (∼ 10%) is coupled into the direction of
the acceptor, similar to previous predictions 83. Although the dielectric waveguide shows an
increased long range energy transfer as compared to the vacuum case, the total rate is still lim-
ited to≤ 10−11 transfer events per donor emission event (at distances≥ 1μm)which is far too
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low for any potential application with real single photon emitters.
Efficient long-range energy transfer pathwaysmust connect donor and acceptor near-fields.

A waveguide mode is an excellent solution for large distances, but it is not effective in the
near-field where its TE mode overlaps weakly with the dipolar emission pattern of emitters.
Resonant plasmonic antennas can boost the emitter dipole moment and enhance both emis-
sion and absorption of light 1. Moreover, they can redirect the radiation of the emitter into
specific optical modes 13, leading to controlled scattering of the waveguidemode tomatch the
dipole field. Our strategy is to place a plasmonic nano-antenna on the surface of the waveg-
uide near the emitter, which we referred above as configuration (3). This hybrid system can
out-perform the pure waveguide by (i) increasing near-field coupling of the donor with the
waveguide, (ii) enhancing the donor decay rate by Purcell enhancement and (iii) boosting
acceptor polarizability by local field engineering. We consider a configuration in which the
donor and acceptors are placed 10 nm above the substrate and 10 nm away from the end of
a 100 nm long 40 nm wide gold antenna (inset to Fig. 3b). In this antenna-mediated con-
figuration, the absolute energy transfer rate reaches a value of ∼ 2.5 · 10−6 transfer events
per donor emission event for distances longer than 1 μm (Fig. 2b). This is an increase of 6
orders of magnitude when compared to the waveguide alone and over 8 orders of magnitude
when compared to vacuum. We additionally explore the distance dependence of energy trans-
fer, and show that its increase in the presence of our nanophotonic environments is due to
both an increase in the donor emission rate as well as an increased number of optical modes
connecting efficiently donor and acceptor.

In a realistic experiments, for example with two stable molecules or quantum dots which
can emit up to 1-10 Mphoton s−1, the rate of transferred photons in the presence of our
waveguide-antenna structure would then be∼100-1000 photon s−1 (assuming 100% donor-
acceptor spectral overlap).

3.5 Purcell effect and induced polizabilities

I will now discuss the terms in Eq.3.3 not related to G(rD, rA, ω).
For the waveguide geometry shown in Fig.3.2[a] we obtain Purcell factors Px ∼ 2, Py ∼ 2

and Pz ∼ 3, for dipoles oriented along the three cartesian axis. The waveguide is mildly dis-
persive, yielding Purcell enhancement values that do not change considerably as a function
of the wavelength. On the contrary, the radiative enhancement of the donor emission rate
around the optical antenna, shown in Fig.3.3[a], is remarkably high and dispersive 1: an emit-
ter with transversal orientation along the antenna experiences a considerable emission rate
modification (Py ∼ 330), since it couples efficiently to the near-field dipolar mode of the an-
tenna. Transversally oriented emitters couple to the transversal modes of the antenna, which
are not efficiently excited when the dipole is located at the end of the rod antenna, making
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a b

Figure 3.3: [a] Optical antennas increase donor emission rate as compared to vacuum. Donor orientation along the
longitudinal direction of the antenna (blue diamonds) shows larger enhancement than dipolar orientations transver‐
sal to the optical antenna (orange and green diamonds) as a result of larger near‐field coupling between the dipole
emitter and the optical antenna. [b] An acceptor in vacuum (left) has same induced polarisabilities for all three per‐
pendicular orientations, this comes as a consequence of the homogeneity of vacuum space. Induced polarisabilities
increase when the emitter is close to a dielectric waveguide (middle) and it depends on the orientation of the dipole.
Maximum induced polarisability occurs for acceptors coupled to the antenna tunned to its dipolar resonance (right),
in particular for orientations matching the near field profile of the dipolar mode of the rod antenna.

their associated Purcell factors smaller than in the longitudinal case (Px ∼ 6, Pz ∼ 7). We
will use these values later when discussing the dependency of the energy transfer rate on the
LDOS.

Fig.3.3 shows the induced polarizabilities in the three configurations. For the base waveg-
uide case we achieve moderate increases, with the values by a factor 2-3 depending on the
dipole orientations, with respect to the vacuum case. Amore substantial increase is obtained
when the nanoantennas is present, with values exceeding 2 orders of magnitude in the most
favorable dipole orientation. Thismost favorable orientation corresponds to the energy trans-
fer enhancement presented in Fig.3.2-b, were we reported an increase of the energy transfer
rate per emitter photon of over 8 orders of magnitude against the vacuum case. Since this
increase is the product of the induced polarizability times the GD(rD, rD, ω) part, we can con-
clude that the Green function mediated transfer is boosted by 6 orders of magnitude in the
hybrid-structure case.

3.6 Energy transfer between perpendicular dipoles

In homogeneous environments, long-range energy transfer is mediated by transversal pho-
tons parallel to the orientation of the emitters. Perpendicular donor-acceptor pairs have far-
field radiation patterns with orthogonal polarization to the dipole moments, so long-range
energy transfer is forbidden in those configurations. Fig.3.4-left shows the energy transfer be-
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Figure 3.4: Energy transfer rate for donor and acceptor separated by 1μm. Different relative dipole‐dipole orienta‐
tions along the cartesian axis for dipoles in vacuum [a] and mediated by the hybrid photonic structure described in
the text [b].

tween two dipoles oriented along the three cartesian axis. Collinear dipoles (XD-XA) show
reduced energy transfer than the parallel configurations. This a result of the smaller overlap
of their radiation patterns.

The case of our waveguide+antenna hybrid structure is shown in Fig.3.4-right. Not only
the absolute values for the parallel dipoles are increased by several orders of magnitude, but
we see energy transfer for perpendicular dipoles that are orders of magnitude higher than
the most favorable configurations in the vacuum case. This result has practical implications:
hybrid optical circuits remove the need to perfectly orient emitters.

3.7 Dependence of energy transfer on LDOS

In order to highlight the energy transfer spatial dependence, we define a new figure of merit
ξ(rD, rA), which represents the enhancement of the normalized-to-donor-emission energy
transfer rate in the presence of inhomogeneous environments compared to vacuum:

ξ(rD, rA) ≡
finh
fvac =

Γinh
DA/Γinh

D
Γvac
DA/Γvac

D
=

Γinh
DA

Γvac
DA

1
PD

, (3.5)

where the term PD = Γinh
D /Γvac

D , accounts for the Purcell enhancement at the donor location.
Let me describe the distance dependence of ξ(rD, rA):

• Interaction between donor and acceptor on a dielectric waveguide (Fig.3.5[a]):

– Short range: at short donor-acceptordistances below∼ 10nm(dotted lineFig.3.5[a])
ξ(rD, rA) is close tounitywithinournumerical errors for thewaveguide-only case
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Figure 3.5: Distance dependence of ξ(rD, rA) for dipole orientations alongXD −XA (orange), YD − YA (violet) and
ZD − ZA (green). The graph plots ξ(rD, rA) for the case of energy transfer mediated by a dielectric waveguide (a)
and by optical antennas on a dielectric waveguide (b). The efficiency of energy transfer is maximised for y‐oriented
dipoles in a hybrid antenna‐waveguide geometry. A deviation from unity is clear in both cases, starting from around
10 nm for the waveguide only case.

for all different dipole orientations, with only an offset related to their different
Purcell factors. We checked that when normalised by the Purcell factor the three
curves are identically equal to unity for very short distances (flat dashed line in
Fig.3.5a).

– Deviations are instead visible for larger donor-acceptor separations, of the order
of R ≳ 10 nm. As already pointed out by Blum et al.72, energy transfer would
not depend on the LDOS if one can assume that Im[G(rD, rA, ω)] can be approx-
imated by the zero-order Taylor term Im[G(rD, rD, ω)], with both donor and ac-
ceptor experiencing the same Purcell effect. For inhomogeneous environments
with LDOS values rapidly changing over the donor-acceptor distances, further
terms of this Taylor expansion would be needed to accurately describe the prob-
lem, leading to terms depending on spatial derivatives (gradients) of the LDOS.
These higher order terms become more important with increasing distance be-
tweendonor and acceptor. In our particular case of awaveguidemediated energy
transfer, deviations from ξ = P start occurring for donor-acceptor distances of
∼ 10 nm. Deviation for similar distances have been found in recent experimen-
tal studies of plasmonic nano-apertures74. As shown in Fig.3.5, at even longer
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distances (R > 100 nm) ξ(rD, rA) presents an even larger increase. The waveg-
uide in our calculations sustains a propagatingmode, therefore the enhancement
parameter ξ(rD, rA) is expected to increase quadratically with distance as the en-
ergy transfer saturates, because the transfer rate in vacuumdecreases asR−2. The
modulations of ξ(rD, rA) are due to interference of the light coupled into the
waveguide, similar to what was described in Fig.3.2[a].

• Interaction between donor and acceptor for the hybrid photonic structure (Fig.3.5[a]):

– In this case, the energy transfer enhancement at a donor-acceptor distance of 1
μm is increased by 6 orders of magnitude for dipoles orientated along the long
axis of the antennas (blue diamonds)when compared to thewaveguide-only case.
For dipole orientations transversal to the long antenna axis, there is a∼ 10-fold
decrease of the energy transfer at the same distance (1 μm), as compared to the
waveguide-only case. This decrease is due to the near-fieldmismatchbetween the
longitudinal dipolar field of the optical antenna and that of the emitter, which is
oriented perpendicular to the antenna; this mismatch can be easily compensated
by changing the position of the dipoles.

3.8 Conclusions

Energy transfer between two optical emitters is a physical phenomenon with broad applica-
tions: from fluorescence microscopy techniques to quantum information protocols. In this
chapter I have introduced a numerical method to quantify energy transfer rates in arbitrar-
ily complex nanophotonic environments. Numerical errors of the method were quantified
against analytical results and can be reduced by increasing computational resources. Based on
the numerical method, we proposed a hybrid optical circuit for long-range energy transfer, in
which donor and acceptor are coupled to metallic antennas linked by a dielectric waveguide.
We report 2 · 10−6 absolute energy transfer to donor decay rate at distances comparable to the
wavelength of transmitted photons, an increase of 6 orders ofmagnitude per emitted photon
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(and over 8 orders of magnitude overall when accounting Purcell enhancements at the donor
position) against the vacuum case at a distance of 1μm. I concluded the chapter contribut-
ing to the ongoing debate on the role the LDOS on the description of energy transfer and
generalizing the interpretation to distances comparable to the wavelength of the transferred
photons.
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4
Non-linear effects in nanoantennas with

deeply subwavelength features

Previous chapters dealt with linear interactions between nanoantennas and optical emitters.
We have discussed that when the shape of these nanoantennas is tuned to their localized sur-
face plasmon resonance (LSPR) their linear response to optical fields is enhanced. As the
intensity of optical fields increase, interactions cease to be properly described in a linearly,
and nonlinear effects become more important.

Noblemetals present nonlinear susceptibilities comparable or larger than commonly used
dielectrics and semiconductor crystals employed in nonlinear optical applications 84. How-
ever, the use of metals as materials for non-linear optics is limited for several reasons. Firstly,
metals are opaque at optical frequencies, which hampers the use of phase matching tech-
niques to achieve highly efficient frequency-conversion of optical fields. Secondly, metals are
centrosymmetricmaterials, which suppresses non-linear effects of even-order in theTaylor ex-
pansion, when in the common dipole-approximation only transversal fields are considered 85.

These limitations are overcome when tailoring the shape of metals in the form of small
particles of the order of the wavelength of the electromagnetic fields interacting with them.
Firstly, light generated in the nanoantennas can be radiated without being absorbed. Sec-
ondly, discontinuity between the metallic and its surrounding relaxes the centrosymmetric
condition by allowing certain dipole-allowed contributions 86. Additionally, nanoantennas
presenting a LSPR enhance the intensity of near-fields in their surroundings. Since nonlin-
ear effects, such as second harmonic generation (SHG), are described by products of electric
fields (E) (e.g. E · E) 87 the total nonlinear signals benefit from this increase of the near-fields.

For these reasons, nonlinear effects mediated by nanoantennas have been explored in a
number variety of shape variations. Fromcolloids 88,89,90,91,92 tonanofabricated structures93,94,95,96,97.
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Even particles with non-centrosymmetric shapes had been studied, which allow sources of
nonlinear polarizability to radiate more efficiently into the far-field98,99,100,101.

In this chapter I explore thenonlinear responseofnanoantennaspresentingdeep-subwavelength
features. I start by presenting a model to numerically calculate second harmonic generation
(SHG) response of nanoantennas of different shapes using the FDTDmethod. I then experi-
mentallymeasure the SHG response of rod shape antennas of varying length. Their SHG sig-
nals are compared to equivalent nanoantennas presenting deep-subwavelength features. As
the local-fields are focused to smaller volumes we can expect the local fields to be further in-
creasedwhen compared to rod shape antennas, thus enhancing the nonlinear response. Their
increased response is found to be in line with the model introduced at the beginning of the
chapter.

4.1 Model of SHG: volume and surface contributions

SHG is a process in which two-photons of an incident field at a frequency ω interact with
a nonlinear medium and combine to generate one photon at twice the original frequency.
When considering macroscopic proceses it can be describe by the equation:

E(2ω) = χ(2)E(ω)E(ω) (4.1)
where χ(2) nonlinear susceptibility tensor and acts as proportionality factor. To extract a

measurable signal, critical phase matching needs to be present such that the signal build up
in the macroscopic media.

The description of SHG in the presence of nanoantennas is slightly more feature-rich. We
follow the theory described byReichenbach et al. 102. I start considering SHG from single rod-
shaped particles excited by a laser field. The incident electric field induces a dipolemoment in
the metallic particles both at the fundamental, as well as at twice the frequency of the incom-
ing light field acting as the source of SHG. Although we are dealing with centrosymmetric
materials, a dipole-allowed contribution to SHG will radiate: electrons located at the metal
surface experience broken symmetry due to the different electric fields at the interface. These
local field contributions to SHG can be divided between surface and volume (or bulk). The
surface contributions can be further divided in parallel and perpendicular to the interface:

Π⊥ = χ(2)
⊥⊥⊥E⊥E⊥e⊥

Π∥ = χ(2)
∥⊥∥E⊥E∥e∥

(4.2)

where, for a fixed frequency, χijk represents components of the effective second order sus-
ceptibility tensor of a particular material andEi the local electromagnetic field at the particles
surface.
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At the same time, a plane wave traveling through an isotropic centrosymmetric medium
induces a longitudinal source of polarization in the bulk of the material. This non-local
source of polarization is due to strongly varying fields within the material and can be shown
to be analogous to higher-multipole contributions to the SHG polarizability 103,104,105,106. We
express the bulk contribution as:

Πbulk =
1

2ikχ
(2)
bulk∇[E · E] (4.3)

with k representing the wave vector of an incoming field E with angular frequency ω, and
χ(2)

bulk is bulk component of the second order susceptibility tensor. In perspective with pre-
vious reports on SHG response from metallic objects, we note that our bulk contribution
contains both the so-called pure-bulk contributions, as well as contributions which can be
mapped into surface contributions 107.

We also assume χ(2)
bulk to be two order of magnitude smaller than χ(2)

⊥⊥⊥ and χ(2)
∥⊥∥ in line

with previous reports 108. This gradient is typically negligibly small for spherical particles with
l≪ λ but can increase significantly for larger elongated objects such as NRs and more com-
plex structures 109.

4.2 Numerical simulations of SHG mediated by nanorod antennas

In our numerical analysis I evaluate the local electric fields using a finite-difference method
in time domain (FDTD) electromagnetic solver. A plane wave at a wavelength λ = 800 nm,
and polarized along the long axis of the nanorod (NR) antenna, excites a surface plasmon
oscillation (Fig.4.1-a) and generates a SHG response. The particle’s total nonlinear response
is then given by the integral over all surface and volume contributions. As discussed before,
both surface and bulk contributions have the same units, since the inverse wavevector depen-
dence of the bulk contribution cancels the inverse distance dependence introduced by the
gradient operation. In this way, all units in the text are arbitrary, but mutually equivalent.

Numerical results of the SHG responses as a function of the NRs length for the different
SHG contributions given by Eq.4.2 and Eq.4.3 are shown in Fig.4.1-b. Solid lines represent
50nm-wide NRs whereas dashed-lines correspond to 75nm-wide NRs. We can see that the
nonlinear responses increase for the λ/2 and 3λ/2 resonance conditions. At resonance, the
field at the fundamental wavelength is increased as shown in Fig. 4.1c-d. The figure displays
both the electric fields and electric field gradients of two NRs with 75 nm and 50 nm widths
matching the λ/2 and 3λ/2 resonances. Different geometries of the NRs affect the nonlinear
response of both surface and bulk contributions. Narrower NRs present larger field gradi-
ents within its volumewhich increases the bulk contribution to SHG, andmakes them show
higher SHG response despite consisting of less material.
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Figure 4.1: SHG dependence on cross section: numerical evaluation of the SHG response of NRs made of gold on
a glass substrate. (a) cartoon sketch of gold NR as used for modelling. (b)Π⊥,Π∥ andΠbulk contributions of NR
with different lengths illuminated by λ = 800 nm. Continuous line represent values for narrower rods of 50 nm,
and dashed lines represent values of a 75 nm‐wide NRs. Surface and bulk contributions have arbitrary but equivalent
units (see main text). The bulk contribution is increased for narrower NRs, especially at the λ/2 and 3λ/2 resonant
conditions (black dashed lines). (c‐d): Local field enhancements and field gradients of resonant NRs: 75 nm‐width (c)
and 50 nm‐width (d). The smaller cross section of the NRs in panel (d) causes enhanced fields and gradients inside
the NR which results in stronger nonlinear response for the λ/2‐mode.

4.3 Bottlenecks in NR increase SHG response

Bulk contributions can be increased in more complex geometries, for instance by adding a
bottleneck along the NR. We achieve this by locally reducing the NR’s geometrical cross as
depicted in Fig. 4.2-a for a 75-nm-wide NR having a length fulfilling the 3λ/2 resonance
condition at 800 nm. Figure 4.2b-c show the volume and surface contributions to the SH
response for different bottleneck positions.

NRs presenting a 3λ/2 resonance have a maximum of the longitudinal electric field at its
central position as shown in Fig.4.1-c. At this central point, the field gradient is minimal
within the metal. We increase the field gradient by introducing a bottleneck in the NR. As
shown in in Fig.4.2-c. This central position is the most favorable position for placing the
bottleneck since it generates the largest bulk contribution, while also increasing the surface
contributions; with both contributions rapidly decreasing for bottlenecks placed off-center.
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Figure 4.2: Calculated SHG response of NR made of gold presenting a bottleneck. Panel a: cartoon sketch of gold
NRs with a bottleneck. Panel (b): Local field enhancements and field gradients of NRs at 3λ/2 resonant condition
with a bottleneck at its central position (top) and displaced 120 nm from the centre (bottom). Panel (c): Surface and
bulk contributions to the SHG as a function of the bottleneck position for NR at 3λ/2 resonant condition. Units are
the same as the ones used in Fig.4.1

Two remarks canbemade at this point. First, besides thewell known surface contributions
to the SH signal generated by nanoparticles, bulk contributions are important and have to
be taken into account in nanoparticles due to their antenna-like behavior. Second, the bulk
contribution can be maximally exploited by enhancing field gradients inside nano structures.

4.4 Dispersion of the SHG contributions

Our numerical simulations allow not only to understand a particular geometry, but they can
be employed to predict the dependence on the fundamental wavelength. The dispersion of
the surface and bulk contributions shows distinctly different behavior (Fig.4.3).

The surface contributions are still present for longerNRshavingLSPRs in thenear-infrared
spectral range,whereas thebulk contributiondiminishes for resonances at longerwavelengths.
This behavior is caused by the dielectric properties of the metal. Since the resonant wave-
lengths are further away from the Au plasma frequency, they inhibit strong field gradients
inside the particle. This effectively screens the inner part from the incident field. As a conse-
quence, bulk contributions can not be neglected for shorter incident field wavelengths. At
longer wavelengths the surface contributions will dominate the nonlinear response.
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cba

Figure 4.3: Dispersive character of the SHG components in NRs antennas. The surface contributions (a, b) follow the
mode dispersion with the NR length resulting in strong contribution at NIR‐wavelengths. (c) The bulk contribution
originating from the intensity gradient inside the NR is strongest in the visible spectral range.

4.5 Experimental SHG signal of NR antennas

To verify our theoretical findings, wemeasured the SHG response of NR antennas similar to
those described in Fig.4.1. We fabricatedmatrices ofNRantennasmade ofAuusing standard
electron beam lithography techniques. A typical NR antenna is shown in the inset to Fig.4.4.

Experiments were performed using an Octavius Ti:Saph laser, which was sent through a
microscope objective (NA=1.4). The excitation laser was filtered by a 10-nm-wide dielectric
bandpass filter centered at 800 nm. It delivers≤ 250 fs pulses at 85MHz repetition rate with
an average power of 125μW at the focal volume. We collect the SHG signals generated by
the nanoantennas through the same objective. The SHG signal is filtered from reflected and
scattered light at the excitationwavelength by set of dielectric short pass filters. The generated
SHG signal is sent to an avalanche photodiode in single photon countingmode (PerkinElmer
APQR16). A piezoelectric stage was used to move single particles in the confocal detection
volume allowing us to map the nonlinear response from particle sweeps with lengths l =
80 · · · 550 nm as shown in the insets to Fig.4.4.

Fig.4.4 displays the SHG signals for two sets of NRs having a width of 50 nm and 75 nm,
respectively. The recorded intensities for each antenna length are summed up from the im-
age and are normalized by the number contributing antennas to average small differences in
fabrication. The SHG signal in Fig.4.4 increases for lengths which allow for resonant exci-
tation of the LSPR mode at the fundamental wavelength. These resonance conditions are
met for the λ/2 and the 3λ/2 for antennas of length ∼ 120 nm and ∼ 430 nm. We see as
well an increase in the signal present for antennas having a length matching the λ resonance
condition. We attribute this to the inhomogeneous illumination of the NR with our tightly
focused excitation beam, which can excite even-modes. This even-mode excitation situation
is in contrast to our numerical calculations performed assuming a plane wave excitation that
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Figure 4.4: SHG signal generated by NR antennas of width 50 nm and 75 nm and varying length. Top inset shows
single antenna NLO responses on an array of antennas with increasing length using the scanning confocal microscope
described in the text. Signals are integrated over several equivalent antennas to produce the main figure, smoothing
signal differences due to fabrication.

cannot excite even-modes due to symmetry considerations. Furthermore, we see that NR an-
tennas of smaller width (50 nm black lines) generate more nonlinear signal than wider ones
(75 nm blue lines). This increase, up to a factor 4 in the SHG signal for the λ/2 resonant case,
coincides with the predictions of the model presented in this chapter.

To finalize with the NR results, we note that NR oriented perpendicularly to the laser
polarization were also present in the NR sweeps. No appreciable change of SHG/TPPLwas
observed for the different lengths, indicative of absence of resonance along that particular
direction.

4.6 Experimental validation of the bottleneck effect

In this section I will present experimental validation of the previously introduced concept of
engineering the intensity gradients of ournanostructures. This is donebyplacingbottlenecks
at locations of high current density.

Before, let us remark that fabricating indentations along NR is a challenging task, since
one would need to use nanofabrication techniques with position accuracy and feature size
precision of better than 10 nm. Trials to mill our nanostructures using a focused beam of
Ga+ ions were unsatisfactory. First, the feature size of the machine is∼ 20 nm, not sufficient
for our purposes. Second, fabricating a full array of particles is a time consuming task (more
than 8 hours for matrices studied in this paper).

We then opted for electron beam lithography (EBL) and fabricated two separated NRs
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terminated by spheres as sketched in the inset of Fig.??. In this nano bottlenecked antenna
(NBA) configuration, we can vary the separation between two dumbbells until they just
touch. Hence, we are only limited by position accuracy of the EBL machine and the resist’s
minimal resolution (typically 5 nm).

Wemust ensure that theseNBAstructures donotpresent significantly different resonances
from that of the NR ones, so a direct comparison can be made. We measured the linear
extinction of the structures using white light from a halogen lamp and a low NA objective
(NA≤ 0.05) onto amatrix of equally fabricated nanoparticles. Thematrices are made of rep-
etitions of particles separated 1x1 μm2 for particles shorter than l ≤ 640 nm, and separated
2×0.5μm2 for longer particles. This ensures there is no coupling between the nanoantennas.

Figure 4.5: Far‐field extinction measured at matrices of nanostructures reveals the odd‐mode resonances only. The
length of the nanostructures is varied between consecutive measurements in steps of 10 nm (NDB) or 20 nm (NBA),
respectively. (a) Extinction of NDB arrays for light polarized along the short axis of the nano structures. (b) Extinction
coefficients for light polarized along the long axis of the nanostructures. Lengths between 100 nm and 300 nm show
the result for NDB structures, while lengths between 300 nm and 1400 nm correspond to the NBA structures.

Fig.4.5a shows extinction values of single nano-dumbbells (NDBs) for transversally polar-
ized light (along the short axis ofNDB) formatrices ofNDBs having a length between 120 nm
and 300 nm, varying in steps of 10 nm. In the transversal case, we see no spectral shift of
the LSPR, and only a monotonic increase with length. From this results, we do not expect
our structures to present transversal resonances at either the fundamental laser wavelength
(λ = 800 nm) or at the SHG wavelength (λ = 400 nm). The longitudinal case displayed
in Fig.4.5b, corresponds to an incident electric field aligned along the long particle axis and
the extinction shows pronounced resonances which are very similar to the case of NRs. The
impossibility to further reduce the overall structure length while maintaining the dumbbell
shape at the ends sets limits to the lower range of NBA’s length.

Nonlinear measurements of NRs, NDBs and NBAs were performed using the same ex-
perimental conditions used for measuring NRs (Fig.4.6). The nonlinear response of NDBs
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Figure 4.6: Comparison of the SHG signal generated by matrices of nanoantennas of different shapes (NR, NDB and
NBA) and varying length. NBA antennas presenting bottlenecks tuned to their 3λ/2 resonance show enhanced SHG
response when compared to equivalent nanoantennas tunned to an equivalent resonance.

(green curve) is analogous to the one of NRs (grey curve), apart from a shift in length due to
the extra spherical termination at the end of the NDBs. This equivalent behavior takes place
both, for the SHG and the TPPL responses. Contrary, NBAs presenting 3λ/2 resonances in
the range l = 400 . . . 450 nm show enhanced nonlinear response. The red and blue lines
in Fig.4.6 show NBAs structures of different width and with different bottleneck diameter
sections. Asmentioned before, changing the fabrication parameters allows us to fine tune the
width as well as the separation between antenna parts in NBAs, and thus the bottleneck di-
ameters. Due to the different width and bottleneck diameter of the NBAs shown in red and
blue, the lengths satisfying the 3λ/2 resonance condition are slightly shifted. We attribute this
to different length indexing and to the different effective refractive indices of the NRsmodes
for different diameters. The nonlinear signals in NBAs are enhanced by a factor 2-3, reaching
counting rates comparable to the case of NRs tuned to its dipolar resonance. We also note
that, although small, there is a statistically significant increase in the nonlinear response from
NBAs with narrower bottlenecks, consistent with the model presented in this paper.

4.7 Conclusions

Ipresentedhowtomodel the SHGnonlinear responseofnanoantennasusingFDTDmethod,
with both surface and volume (or bulk) contributions taken into account. Using thismethod
we are able to show how introducing bottlenecks in resonant nanoantennas increases their
SHG response. These bottle necks need to be present at points of maximum near-fields.
I then experimentally validated our numerical results in Au nanoantennas tunned to their
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3λ/2 resonance. The bottleneck increases the SHG response by a factor 2. This increase is
partially attributed an enhanced SHGbulk contribution,which is generally overlooked. This
concept of increasing nonlinear optical bulk contribution by tailoring intensity gradients in
nanostructures can readily be applied and opens up new flexibility in tailoring the nonlinear
response.
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5
Closed-loop coherent control of single

quantum dots

Time and spectral phase. Previous chapters deal with the control of optical fields in space
and their interaction with matter, both linearly (Chapters 2 and 3) and nonlinearly (Chapter
4). In this chapter we turn our attention to the control of optical fields in time, and how the
interference of the different spectral phases of an excitation laser can maximize the excitation
probability of optical emitters.

Coherent control actively manipulates the transition probability between two states in
quantum systems driven by laser fields with customized spectral phases. This technique pro-
vides spectroscopic information about the dynamics of quantum systems unreachable using
conventional techniques 110,111. Boosted by the progress in broadband femtosecond laser tech-
nology and pulse shaping (the technique to control the time and spectral phase properties
of the pulse), coherent control has been demonstrated over a wide range of experimental
applications: from the study of coherences in atoms, molecules, quantum dots (QDs) and
plasmonic systems 112,113,114,115,116,117,118, to the manipulation of chemical reactions 119,120, and the
maximization and control of non-linear light-matter interactions 121,122,123.

For complex systems like emitters in the solid state at room temperature, a priori calcula-
tions of the optimal solution, i.e. the best laser pulse for inducing a certain desired effect, can-
not be calculated from the systemsHamiltonian using quantum optimal control theory 124,125.
Instead, following the seminal paper by Judson and Rabitz 126, the preferred approach for co-
herent control experiments in complex environments has been to adapt the spectral phase of
a broadband laser pulse to the systems under study, by using an adaptive closed-loop feed-
back optimization. In this latter case, a specific experimental observable (e.g. one-photon or
multi-photon induced fluorescence in molecules or SHG in crystals) guides a learning algo-
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rithm that varies the spectral phase and time profile of the laser pulses. This approach was
successfully applied to many different systems 112,115,119,122,127,128,129, yet its fundamental limits of
signal to noise and stability so far remained unexplored.

As one moves from ensemble measurements to the investigation of single systems, the ob-
servable signal reduces dramatically to the single photon level. To overcome this difficulty
one needs to increase the integration time for every step in the optimization process, even
when using avalanche detectors. This practically extends the experimental time prohibitively.
Furthermore, the signal from faint emitters is intrinsically unstable over time, since the shot-
noise can be of the order of few percents for ideal single quantum emitters 130. Additionally,
quantum emitters like molecules andQDs at room temperature are known to undergo pho-
toinducedprocesses such as blinking andphotobleaching 131. These constraintsmake practical
implementation of closed loop control schemes burdensome.

I this chapter I show that it is possible to use the two-photon induced photoluminescence
(TPPL) from single QDs at room temperature as a feedback variable for a closed loop phase
control experiment. The chapter starts by describing theQDsused in the experiment. It then
continues by briefly describing the phase-shaping experimental set-up. Maximization of the
TPPL is achieved by optimizing the two-photon absorption (TPA) process and monitoring
the TPPL from the excited state on singleQDs. The algorithm performing the optimization
is then described. Our MODS algorithm converges faster than brute force approaches with-
out prior knowledge of the optimization landscape. We then compare the found solutions
to the standard MIPS algorithm which typically used in phase shaping experiments.

5.1 Rod-in-rod quantum dots

The first ingredient for our experiment are robust emitters that allow us to push the sensitiv-
ity of our optimization algorithm to the single QD level. For this reason we chose colloidal
CdSe/CdS core/shell (QDs). They are characterized by a 4.8x15 nmCdSe core rod embedded
in a CdS shell that yields an overall QD size of 9.8 nm by 44 nm.

Due to the large volume of the CdS shell, they are known to be very efficient two-photon
absorbers 132,133,134, a condition ideal for our efforts. In these systems, the total volume deter-
mines the cross section for TPA and is mostly given by the CdS shell volume. The exciton
confinement determining their emission spectrum, can be tuned independently by changing
the dimensions of the CdSe core. Our QDs have an absorption spectrum that is dominated
by the CdS shell absorption with a cutoff at 515 nm, and a Stokes shifted luminescence emis-
sion centered at 670nm.
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Figure 5.1: Schematic of the experiment. Laser pulses from a broadband femtosecond laser induce TPA in rod‐
shaped CdSe/CdS QDs, after passing through a phase‐only pulse shaper. TPPL signal collected using an oil‐
immersion objective is spectrally filtered and sent to an APD. Light emitted by QDs shows non‐classical character,
demonstrated by photon antibunching. For each optimization step, the MODS optimization algorithm searches for
the spectral phase on the SLM pixels that maximizes the TPPL signal using it as feedback variable.

5.2 Experimental set-up

Aschematic of the experimental procedure is shown inFig.5.1. In short, a femtosecondbroadband-
laser pulse enters a phase-only (no spectral intensity modulation) pulse shaper. Inside the
pulse shaper, a spatial light modulator (SLM) controls the spectral phase components of the
laser pulse. The laser beam is then sent through an oil-immersionmicroscope objectivewhere
it gets focused on the sample plane inducing TPA in the QDs. Propagation through lenses
introduces chromatic dispersion, which limits the temporal duration of our laser pulses if not
compensated. Our laser pulses are 20 fs-long when transform-limited.

After excitation, the QDs emit TPPL which is collected through the same microscope ob-
jective. We detected this signal with avalanche photodiodes (APD) after spectrally filtering
the signal form the excitation laser. The MODS algorithm changes the spectral phase on the
SLM pixels. Each pixel in the SLM corresponds to different wavelength components. The
algorithm searches for the phase mask that maximizes the TPPL signal used as the feedback
variable.
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Essentially, the algorithm searches for the best-suited spectral phase, and hence the time
profile of the laser pulse, that maximizes the TPPL.

5.3 Optimization of the TPPL signal of single QDs

In this section I present our main result, shows the realization of a phase-only-controlled
closed loop optimization of the TPPL emitted by single QDs at room temperature (Fig.5.2-
c)

To perform such optimization, wemake first a confocal image by raster scanning a PMMA
film with embedded QDs while recording the TTPL signal (Fig.5.2-a). The concentration
of QDs is brought to a sufficiently low concentration in a PMMA film, so we can spatially
resolve isolated bright spots. These spots correspond to either single QDs or clusters with a
few QDs.

We perform second order intensity correlation measurements on the bright spots of the
confocal image. A beam splitter splits the signal equally between two APDs. We record the
arrival time of each photon and use this information to construct an intensity correlation
measurement. We ensure that we are dealing with single quantum emitters by looking at the
dip at zero time delay. The dip at zero time-delay in Fig.5.2-b is known as photon antibunch-
ing and is characteristic of quantum emitters that (on average) emit at most only one photon
per excitation pulse.

We note that second order photon autocorrelation traces were not corrected for accidental
coincidences arising fromdetector dark counts, neither for the presence of biexcitons inQDs.
Thick-shell QDs, like the ones we used, present high biexciton photoluminescence quantum
yields. This has the effect of increasing the normalized coincidences at zero-time delay up to
1/2 for high excitation powers, as the ones used in these experiments 135,136.

After selecting suitable QDs behaving as single emitters, the MODS optimization algo-
rithm (explained below) performs TPPL optimization on the chosen QDs. Optimization
routines are presented in Fig.5.2-c. We can see the TPPL optimization runs for three differ-
entQDs. The figure contains the signals obtained at each step of the optimization algorithm.
As the phase on the SLM is varied in a deterministic way, the TPPL increases until reaching
a maximum. For all the investigated QDs, and after two cycles of the optimization routine,
the TPPL increased by a factor between 4 and 6.

This demonstrates that it is possible to perform closed loop coherent control optimization
experiments even on single QDs at room temperature, pushing this technique to its limits of
sensitivity.

The success of the experiment is due to three important factors. First, the microscopy
setup is maximized for detection of single molecules radiating at the single photon level 116,
therefore allowing to easily detect light from single quantum emitters. Second, we usedQDs
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Figure 5.2: (a) TPPL confocal image of the sample the QDs sample. Isolated bright spots corresponding to TPPL
emitted by individual QDs is clearly resolved. (b) Second order intensity correlation function showing photon anti‐
bunching. The non‐classical characteristics of the photon statistics confirms that the experiment is carried out on
single quantum emitters. (c) Closed‐loop optimization of the TPPL signal emitted from designated single QDs.

characterized by very high quantum yields and considerable stability even at room tempera-
ture. Blinking and bleaching events are almost absent, even after hours of continuous excita-
tion, with the only the downside of a decrease of the total amount of detected signal over time
under continuous excitation of the QDs. This can be explained by minor photo-damage of
the QDs together with the fact that it is almost impossible to maintain a single QD precisely
in the focus of the microscope objective for a very long time, due to slight drift of the sam-
ple. Third, given these difficulties, we need a fast-acting algorithm for the maximization to
be effective.

5.4 MODS Optimization Algorithm

In general, the objective of experimental closed-loop coherent control experiments is to find
the optimal set of control ‘knob’ variables that maximize the signal of a particular observable
of the system under study. In our particular case, our control variables are the spectral phases
of a broadband femtosecond laser pulse, and the observable is the TPPL signal of the QDs.

Non-resonant multiphoton transitions involve many routes through a continuum of vir-
tual levels. The interference conditions of themultiple frequency components of the control
pulse can enhance or diminish the total transition probability. Therefore, the interference
effect depends on the spectral phase distribution of the laser pulse.

We remark that we are dealing with QDs that emit discrete number of photons. Their
intrinsic signal to noise ratio is of the order of 1% (SNR∼ N/

√
N). Additional noise comes

from the drift of laser power over time, also of the order of fewper cents. For our algorithm to
optimize, different trials of control variable sets need to generate output observables whose
difference is bigger than the intrinsic measurement noise of the quantum system under study.

Our femtosecond-laser pulse shaper incorporates a SLM with 640 pixels (control dimen-
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Figure 5.3: Schematic of the optimization algorithm. (a) Trace of TPPL signal (observable) evolution in a typical deter‐
ministic closed‐loop optimization run on a single quantum emitter. Full symbols represent optima for each individual
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sion), with 4096 (12 bit) different phase delay values at each pixel. It is obvious that perform-
ing a brute-force global search over such a vast solution landscape is unrealistic, due to the
long time required to perform such an experiment and the constraints of our particularQDs
sample. We thus proceed by reducing the control variable dimensionality and by using an
efficient search algorithm.

In order to reduce the total amount of control variables, we group together several SLM
pixels into control nodes (40 nodes in the experiment presented in Fig.5.3). We then apply in-
terpolation in the complex plane adjacent nodes to obtain a phasemask trial. Despite this big
reduction of the control variable domain the optimization is still non trivial. The traditional
way to perform the optimization is to employ evolutionary strategies or genetic algorithms.
Even though these approaches are robust to noise, they are based on stochastic methods and
typically need thousands of trials to find a global optimum. Instead, the MODS algorithm
exploits the properties of quantum control landscapes, capitalizing on the absence of local
traps in the control landscapes and the existence of multiple global optima, to implement a
fast deterministic search 111,137,138.

Furthermore, since we are shaping the temporal profile of the laser pulse in the frequency
domain, MODS exploits the fact that individual frequency components affect the overall
laser pulse, allowing thedecompositionof theoptimizationprocess inone-dimensional searches.
For each node we search the phase in the 0-2π domain that maximizes the TPPL signal while
keeping the rest of the nodes fixed. This exploits the equivalence of phasemasks under phase
wrapping transfomations. On each node search, we perform a progressive segmentation of
the phase space. We start with an equally spaced trisection of the phase space for each partic-
ular node. Based on the TPPL observable signal for the three applied phase masks, we can
select the phase interval that produces highest signal. We further bisect this phase segment
comparing the outcomes of the observable (Fig.5.3-c). This refinement procedure can be iter-
atively applied at discretion in each node.

In practice wemake two refinementmeasurements at each node, since the intrinsic observ-
able noise prevents us from finding arbitrarily refined solutions (Fig.5.3-a). Once the opti-
mum phase value for a node has been found, we fix its phase value in the mask and repeat
the same procedure in the next node (Fig.5.3-d). Fig.5.3-a shows a particular full optimization
experiment, with solid symbols in the normalized count representing maximum values for
a particular node optimization. A zoom-in into the optimization trace (Fig.3-b) shows con-
secutive interrogated nodes and signal values within them, corresponding to the particular
phase mask configuration (Fig.5.3-bottom-right).
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5.5 Characterization of optimal solutions

We have shown that our optimization algorithm is capable of finding the spectral phase, i.e.
the time profile of the laser pulse that optimizes TPA in single QDs. The algorithm starts
with an initial phase mask on the SLM and produces a final phase mask that optimizes the
TPA. Looking at the difference between initial and final phases we can get more insight both
on the way the algorithm operates and the way the TPA process works in QDs. Such phase
difference, in the case of the experiments illustrated in Fig.5.2-c, is plotted as a blue curve
(called the Algorithm Phase) in Fig.5.4-a.

400 500 600 700 800
0

1

Laser

TPPLTPA

Wavelength (nm)

In
te

n
s
it
y
 (

a
.u

.)

x 100

700 750 800 850
-10

0

10

0

0.5

1

Laser

MIIPS Phase

Algorithm

Phase

P
h

a
s
e

 (
ra

d
)

Wavelength (nm)

0

4

8

In
te

n
s
it
y
 (

a
.u

.)

-60 -30 0 30 60

Time (fs)

a b c

Figure 5.4: (a) Laser spectrum (shaded grey curve), initial spectral phase measured with MIIPS (red curve) and the
inverse phase mask obtained with the closed loop optimization on QDs (blue curve). The light blue shaded region
represents the uncertainty on the determination of the phase mask, corresponding to the standard deviation calcu‐
lated repeating the maximization process several times. (b) Autocorrelation of the final laser pulse, corresponding to
a pulse duration of 20fs. (c) Laser spectrum (shaded grey curve), absorption (blue solid curve) and TPPL (red curve)
spectrum of the QDs. The red coloured region is the portion of the TPPL we detected in the experiment using a
680nm short pass filter to block the laser. The blue dashed curve is the magnified (100x) absorption spectrum in the
700nm range.

The light blue colored region represents the standard deviation obtained over several rep-
etitions of the same experiment on different QDs. It is evident that the obtained Algorithm
Phase has a well-defined shape. Understanding this shape is at the basis of every coherent
control experiment. In order to do that we separately measured the initial spectral phase of
the laser pulse with the multiphoton intrapulse interference phase scan (MIIPS) using SHG
from small nano-particles 139, shown as a red curve in Fig.5.4-b. This curve represents the spec-
tral phase of the laser pulse when the phase mask on the SLM is applied. The red and the
blue curves present a clear similarity, which tells us that the algorithm is mainly trying to cor-
rect for the initial phase distortions of the laser pulse. As previously described 140, a non flat
spectral phase, as the red curve of Fig.5.4-b, corresponds to a distorted pulse, which is not
the shortest possible for the laser spectrum plotted as a grey coloured region, i.e. it is not a
transform-limited (TL) pulse.

The optimization can therefore be thought as follows: the starting phasemask on the SLM
produces a distorted pulse characterized by the spectral phase plotted as a red curve in Fig.5.4-
a. After two cycles of the closed loop optimization, the TPPL from single QDs is increased
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by a factor of 6 and a final phasemask is applied onto the SLM. Since the difference between
the final and the starting phase masks applied to the SLM looks similar to the initial spectral
phase measured with MIIPS, we can conclude that the main effect of the optimization is to
compensate for the phase distortions and hence to compress the laser pulse in time at the
diffraction limited spot at which theQDs sit. This is confirmed by the pulse autocorrelation
reported in Fig.5.4-b, measured with the final phase mask applied on the SLM, which cor-
responds to a pulse as short as 20fs, close to the TL pulse for the laser spectrum reported in
Fig.5.4-c.

5.6 Discussion

Tounderstandwhy the closed-loopoptimization inQDs leads toTLpulses, oneneeds to con-
sider the absorption spectrum of the QDs at the fundamental laser (around 800nm) as well
as at the SHG wavelength (around 400nm). Such absorption spectrum is plotted in Fig.4c
(solid blue curve) together with the laser spectrum (grey coloured region) and the TPPL spec-
trum (red curve). The blue arrow at 400nm indicates the spectral region where the TPA
takes place, whereas the coloured red region in the TPPL spectrum represents the amount
of TPPL that we effectively detected (a short pulse spectral filter at 680nm was used to cut
the laser light). The absorption spectrum is dominated by the CdS absorption, having an
onset around 515nm and growing bigger for smaller wavelengths. The blue dashed line shows
a zoom (100x) of the absorption spectrum near 700nm. As one can see there is no overlap be-
tween the laser spectrum and the tail of the QDs absorption, meaning that the fundamental
laser cannot induce any single photon transition in these systems. Therefore, only pure two-
photon transitions at 400nm, not mediated by any real state are possible. Moreover, at the
SHG wavelength, the absorption spectrum of the QDs is very broad, and no discrete state is
expected to be resolved at room temperature even in a single QD. In other words, the QDs
absorb all the wavelengths within the SHG spectrum of the laser with a similar efficiency. For
such systems, namely very broad absorbers at the SHGwavelength with no real intermediate
state, it can be demonstrated that the TL pulse is the unique solution that maximizes the
TPA 141,142.

We can therefore conclude that the performed closed loop phase optimization, even when
acting on single quantum emitters producing limited amount of signal and subject to insta-
bility, is able to find the right solution that theory predicts for these systems, i.e. the TL
pulse. In this way, we can also look at this experiment as a new pulse compression method
on a deeply subwavelength spatial scale. In the last few years, there has been a lot of interest
in characterizing, controlling and compressing laser pulses with high spatial resolution for
microscopy applications 143,144,145,146.

Pulse compression as presented in this chapter has two main advantages compared to the
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previous work. First, it does not rely on SHGmeasurements. Laser wavelengths shorter than
700nmproduce SHG shorter than 350 nm. Refractive components, speciallymicroscope ob-
jectives, present considerable absorption at these wavelengths, introducing artifacts. Second,
we use excitation powers 20 to 300 times smaller than the ones used for pulse compresssion
using single SHG nanoparticles. This laser power is comparable to those reported for previ-
ous single molecule experiments 147. This is favorable for bio-labelling and in vivo imaging
experiments 148,149 since the same QDs present in the sample can be used to perform pulse
compression.

5.7 Conclusions

In this chapter I presented an optimization algorithm that maximizes the TPPL from single
QDs at room temperature. The optimization performs pulse compression at the focal vol-
ume of a focused laser beam. In effect, we are controlling the time profile of laser pulses at
the focal spot of tighly focused laser beams.

Our findings demonstrate that closed loop phase control experiments are not only limited
to ensembles, but may be applied under the appropriate experimental conditions, to single
quantum emitters.
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6
A plasmonic quantum eraser experiment

Photons playing the quantum version of hide and seek. The control of optical quantum
states by nanometre-sized structures, in particular plasmon-supporting metallic structures,
is a current active field of research. As shown in the previous chapters, metallic particles of
carefully tuned dimensions can act as antenna equivalents at optical frequencies, controlling
both near and far-fields. I in the present chapter extend this ability to control quantum bi-
partite photon states entangled in polarization. Correlations between the two parties in these
kind of states cannot be explained by using any kind of classical state belonging to a whole
class of locally-realistic theories 150,151. In particular I will present a nanophotonic version of
the quantum eraser experiment in the Young’s double slit configuration.

Perhaps the most fundamental quantum state is that of a single-mode Fock state with oc-
cupation of one photon |nk⟩ = |1k⟩. This state describes the state of the electromagnetic field
after emission of a photon by an ideal excited two-level system (TLS), and produces the char-
acteristic antibunching behavior introduced in chapter 2. Spatial control of the propagation
of these non-classical photon states on the nanoscale was demonstrated by Akimov et al. 152.
In their paper, the light emitted by a single artificial atom (quantum dot) was coupled to a
metallic nanowire. Single photons polarize the free electron cloud of the metal, generating a
coherent oscillation (plasmon). Thepaper demonstrated that the single photon characterwas
maintained after coupling with the intermediate plasmonic state by measuring the second-
order autocorrelation function of the light uncoupled at the ends of the nanowire. Further
studies by Kolesov et al. 153 showed that light out-coupled at two ends of a nanowire coming
from single photon excitations of the electron wave (a.k.a. single plasmons) presented inter-
ference. This property is analogous to the wave-particle duality of single quantum mechan-
ical entities, the subtlety being that single photon excitations are encoded in collective elec-
tron oscillations for some time, then subject to dephasing, while yet maintaining quantum
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mechanical character. Direct electrical detection of single plasmons has as well been reported.
First, using traditional semiconductor germanium detectors by Falk et al 154, and shortly after
using superconducting detectors by Heeres et al. 155, the alternative would be direct electrical
detection of plasmon-plasmon interference.

Interference between two indistinguishable photons at the nanophotonic equivalent of a
50:50 beam splitter has as well been reported. In a different paper by Heeres et al. 156, Hong-
Ou-Mandel interference of two plasmons excited using the output of an heralded photon
source based on spontaneous parametric down-conversion (SPDC) was demonstrated. Re-
markably, the ‘clicks’ (plasmon/photons) at the two outputs of the plasmonic-circuit equiv-
alent of a beam splitter were detected using superconducting detectors attached to metallic
transmission lines, before correlations between themwere calculatedusing external electronic
circuitry. Later on, the same effect was independently confirmed by Fakonas et al. 157, achiev-
ing higher visibility values of the two photon interference. This was done at the expense of
shortening the length of the plasmon-supporting transmission line. In other words, single
photons were coupled to integrated polymer waveguides, and later interfered at integrated
50:50 splitters composed of both polymer and metals. Arguably, only at the beam splitters
the plasmonic character of the single photon excitations was present, thus presenting less
overall losses and increasing the visibility of the interference.

Both polarization and time-bin entangled bipartite photon states have also been coupled
to plasmonic structures. Altewischer et al. 158 studied the entanglement properties of maxi-
mally entangled Bell states after one of the arms passed through an array of holes made in
an optically opaque metallic surface. This kind of hole arrays manifest a phenomenon called
extraordinary optical transmission. In essence it means that the transmission of light through
the structure is higher than what would be expected from the geometrical size of the holes.
The reason for this increment in the transmission is attributed to surface plasmons excited
by the scattering of incident photons at the holes. The excited plasmon can then tunnel to
the other face of themetallic film and out-couple, hence increasing the overall observed trans-
mission. In the paper, the entanglement was shown to persist after coupling to plasmonic
modes, although the visibility was observed to decrease, especially for certain chosen mea-
surement bases. This decrease in the expected correlations for specific basis sets was later
theoretically attributed to the presence of modes coupling the holes, which were acting as
polarization projectors, by Moreno et al. 159. Using energy-time entanglement, Fasel et al. 160

showed that entanglement is robust after passing through similar hole-structures in metals,
as well as studying correlation after propagation through long metallic ribbons. This is due
to the absence of projector-like modes for energy-time entanglement in the structures, con-
firming the theory above described. Later on, the same group extended the study to cm-long
metallic stripes and to single plasmons in temporal superposition states 161. Further theoret-
ical studies predict that entanglement might be present between coupled plasmonic modes
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sustained by adjacent nanoparticles if the coupling strength between them surpasses the in-
dividual ohmic and radiative losses 162. The authors claim that an entanglement witness, a
metric that can tell apart entangled states from separable ones, can be experimentally deter-
mined making far-field measurements of the field quadratures.

All the references cited above studied passive properties of the entanglement between parti-
cles supportedbyplasmonic structures, i.e., whether entanglement survives coupling tomeso-
scopic coherent free-electron oscillations in metals. In this chapter I show that plasmonic
based metamaterials, i.e., materials whose properties are based on structural rather than in-
trinsic properties, perform phase operations overmaximally entangled Bell pairs. To this end
we perform a Young’s double-slit type quantum eraser experiment as first shown byWalborn
et al. 163, which is an optical analog of the experiment first proposed by Scully, Englert, and
Walther 164 in the context of atoms. In this context, the which-path markers (WPM) are im-
plemented using elliptical bullseye apertures tuned to act as quarter-waveplates.

I start this chapter introducing the quantum eraser effect and its relation to the concepts of
complementarity inquantummechanics. Next, I provide explicit calculations of the expected
results both for single photon as well as coincidences detection, showing the need for the
presence of quarter waveplates as a key component in the Young interferometer to observe
the effect. I then present our efforts to reproduce a previously reported elliptical bullseye
plasmonic structure that behaves as a quarter waveplate. Since the total transmission rates of
our structures is less than 10−3, we need a bright state-of-the-art entangled photon source. I
finish the chapter by characterizing such a source and demonstrating the the quantum eraser
effect mediated by plasmons.

6.1 Complementarity, which-path markers and quantum eraser

A quantum eraser experiment is an interferometry experiment that demonstrates several key
aspects of quantum mechanics, including quantum superposition, entanglement and com-
plementarity.

In the optical form, the first component of the experiment is a single photon double-slit
experiment, first demonstrated by Taylor using a faint light beam 165. In the modern version
(Fig. 6.1), a stream of single photons can be obtained using a heralded photon source based
on spontaneous parametric downconversion (SPDC). We can use photon post-selection to
only consider photons (‘clicks’ in the single photon detector after the double-slit 166) match-
ing those of the heralding arm. By lowering the rate at which photons are generated, we can
ensure that on average - it is an asynchronous source - we only have one photon in the path
between the SPDC crystal and the detector after the double-slit. After passing the double-
slit a solid state detector records an interference pattern, indicating that the photon existed
as a superposition, going through both slits 167. If the measurement is performed scanning a
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single-photon detector the result is equivalent: single photons interfere as waves, despite be-
ing detected by ‘click’ detectors. This experimental fact reveals other quantum mechanical
concepts, that of wave-particle duality, associated with the concept of complementarity.

Figure 6.1: Schematic of the single photon Young’s double‐slit experiment using an heralded photon source. The
detector in the idler arm heralds photon detection events in the signal source. It provides a convenient way of per‐
forming post‐selection, discarding all photon detections (counts) that are not preceded by heralding photons.

Wave-particle duality is one of the ways in which the complementarity principle manifests.
That is, measuring (or preparing) two conjugatedmagnitudes of a quantummechanical state
cannot be performedwith arbitrary accuracy. This property of quantummechanical systems
can be thought of as an analog of Heinsenberg’s uncertainty principle* 169.

In our single-photon double-slit experiment, we could try to figure out a way in which we
could measure through which slit a photon passed †. Imagine we were allowed to determine
with full accuracy through which slit the photon passed, perhaps by looking with a clever
instrument into the slits when a photon passed through it. Since ‘particles’ have a definite
location, and we would know the particular slit the photon has passed through, we could say
the photon has behaved as a particle. In this case the distinguishability between the different
paths the photon has taken would beD = 1. The consequence of this complete knowledge

*Performingweakmeasurements, one can gather information on the complementarity principle and its link
to the position-momentum Heisenberg uncertainty principle 168. However, weak measurement followed by
post-selection do not allow simultaneous position and momentum measurements for each individual particle,
but rather allow measurement of the average trajectory of the particles that arrive at different positions.

†This kind of Gedanken experiment to determine through which slit the photon has passed dates back to
the Bohr-Einstein debates on the foundations of quantum mechanics.
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on the particle position is complete ignorance of the ‘wave’ phase (momentum), in order to
satisfyHeisenberg’s uncertainty principle. As a consequence, the visibility of the interference
pattern would be negligible (V = 0). For intermediate values on the information between
the conjugatedmagnitudes, the distinguishabilityD andvisibilityV are relatedby theEnglert-
Greenberger-Yasin duality relation 170,171,172:

D2 + V 2 ≤ 1 (6.1)

The quantum eraser experiment is a clever way to obtain information about which path a
photon has taken. Combining a source of polarization-entangled photons‡ - instead of only
heralded photons - with two orthogonal quarter-waveplates at the slits, we can implement
an efficient which-path marker (WPM). As a consequence of the gathered knowledge, the
interference pattern would disappear. The WPM information can be erased at will, hence
the name of the experiment.

6.1.1 Single photon interference after the slits

Let me introduce the topic by considering single photon detection after the slits. We assume
our entangled photon source produces Bell states |Φ+⟩ of the form expressed in Eq. 6.7. We
put the signal arm through the double slit. Since photons can take any of the two path the
total state needs to be represented as the coherent superposition of photons in this arm going
through both slits. Mathematically, this is expressed as:

|ψ⟩ = 1√
2
[∣∣Φ+

1
〉
+
∣∣Φ+

2
〉]

(6.2)

1. In the case in which nowhich path marker (WPM) is present, each of the paths can be
casted as:

∣∣Φ+
1
〉
=

1√
2

[
|H⟩s1 |H⟩p + |V⟩s1 |V⟩p

]
∣∣Φ+

2
〉
=

1√
2

[
|H⟩s2 |H⟩p + |V⟩s2 |V⟩p

] (6.3)

where the indices s1, s2 indicate the slits 1, 2 in the signal arm, and p indicates photons in
the idler arm. That is, the ‘signal’ part of the total state can take any of both paths through
the different slits. A density matrix representation (̂ρ = |Ψ⟩ ⟨Ψ|) of such state in the {H,V}

‡Polarization is a discrete degree of freedom, which makes algebra considerably simpler.
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a b c

Figure 6.2: Detected light intensity corresponding to the single photon detection probability. (a) Numerical result
based on Eq.6.4 for the case in which no WPM is present. (b) Experimental result, in accordance which numerical
estimations. (c) Numerical result in the case in which a WPM is present.

basis is shown Fig.6.3-a . Since we are interested in single photon detection after the slits, we
need to take the partial trace with respect with the redundant degrees of freedom. We start
by taking the partial trace with respect to the polarization degrees of freedom in the idler arm.
That is, detection after the slits is not conditional to a particular degree of freedom in the idler
arm. After this operation we are left with a density matrix (Fig.6.3-b) in which no phases are
present. Since we are only interested in intensity after the slits, the last step is to trace out over
the polarization degrees of freedom in the signal arm. We are left with the density matrix in
Fig.6.3-c. Thismatrix representation correspond to a coherent superposition of both slit states,
meaning that single photons in the signal arm go through both slits.

In the typical quantum eraser experiments, the experimenter normally looks at the far-
field after the slits. We opt for a different approach in which wemake use of a high numerical
aperture microscope objective to collect the transmitted photons. Furthermore, we image
the collected photons in the k-vector space by imaging the back focal plane of themicroscope
objective into a EMCCD camera. Under these conditions the intensity collected can be ex-
pressed as:

I(θ) = cos2
[
πdsin(θ)

λ

]
sinc2

[
πlsin(θ)

λ

]
(6.4)

Where I represents the transmitted intensity along an angle θ, d is the distance between the
slits, l is the width of the holes and λ is the wavelength of the light illuminating the structure.

Numerical results based on Eq.6.4 are presented in Fig.6.2-a, for whichwe have considered
a hole diameter l = 300nm and a distance between the slits d = 12μm to match the char-
acteristics of the structures used in our experiment. We see that the numerically calculated
image coincides to a high degree with the experimental results for our structure, presented
in Fig.6.2-b. We note that marginal differences appear as the angle increases due to the fact
that we have not made a correct projection of the collection in the calculated image. Eq.6.4
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provides a function of angles θ, whereas detection in the back focal plane makes a projection
of the sphere over a plane.

2. Let me now consider the case in which a WPM is present.

We consider the first quarter waveplate to have a rotation angle of 0 degrees with respect
to the angle defined by the |H⟩ polarization, and the second waveplate to have an angle of 90
degrees which respect to to it (i.e. aligned with the |V⟩ polarization). The transformations
can be expressed as:

ˆQWP1(0) |H⟩ = exp(iπ/4) |H⟩ ; ˆQWP1(90) |H⟩ = exp(−iπ/4) |H⟩
ˆQWP2(0) |V⟩ = exp(−iπ/4) |V⟩ ; ˆQWP2(90) |V⟩ = exp(iπ/4) |V⟩

(6.5)

These operations act globally on the total state. A matrix representation of the total state
is shown in Fig.6.3-d, which differs from the case in which no WPMs are present in terms of
phase. These phases are however important. We follow the sameprocedure as in the casewith
noWPM. First we take the partial trace over polarization degrees of freedom in the idler arm
(Fig.6.3-e). Next, we project over the polarization degrees of freedom over the signal arm. We
are left with the statistical mixture state in Fig.6.3-f, in which the single photon either passes
through one or the other slit with 50% probability. In this situation, there is no interference
pattern, since the quarter waveplates introduce a perfect WPM.

Given the presence of perfect WPM, the intensity collected can be expressed as:

I(θ) = sinc2
[
πlsin(θ)

λ

]
(6.6)

The equation does not depend this time on the separation between slits. A numerically
generated image based on Eq.6.6 is provided in Fig.6.2-c.

6.1.2 Coincidence detection and quantum eraser

I now discuss the case of coincidence detection. In this case, we ask ourselves for the probabil-
ity of detecting a photon in the signal arm (after the slits) conditional to detecting a photon
in the idler arm of a certain polarization. In the previous section we have seen how the intro-
duction of the quarter waveplates allows to introduceWPMswhich removes the interference
pattern. We will now show how we can erase this information, in other words we perform
the quantum eraser effect.

We start considering the total state, represented in Fig.6.3-d. We are interested in detec-
tion coincidences after projection with a polarizer in the idler arm. Projection over different
polarization basis produce distinct results:
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Figure 6.3: Density matrix representation for a Bell state Φ+ passing through a double slit, without QWP at the slits
(a), and with QWP (d). Corresponding reduced density matrix, after tracing out the polarization degree of freedom in
the idler arm (b) and (e). Single photon density matrix after the slit (c)‐(e). Note that (f) corresponds to a superposition
state leading to interference, whereas (c) is a statistical mixture that does not lead to interference. When detecting
coincidences, the QWP is necessary to observe interference.

a c e

fdb

Figure 6.4: Reduced density matrix representation for a Bell stateΦ+ passing through a double slit, after performing
different projections over

∣∣Hp
〉
(a),

∣∣Vp
〉
(b),

∣∣Dp
〉
(c) and

∣∣Ap
〉
(d) over the idler arm. (e)‐(f) show the same projec‐

tions as in (c)‐(d) expressed in a different basis.
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a. Reduced density matrix after projection over
∣∣Hp

〉
in the {H,V} basis.

Since we started with a maximally entangled Bell state, knowledge of the polarization of
one of the photons in one arm determines properties of the polarization in the other arm.
In this case we see that we are left with a state that is a coherent superposition of photons
with horizontal and vertical polarizations, both passing through slit 1. We are not further pro-
jecting over any polarization after the double slit, and horizontal and vertical polarizations
are orthogonal, so these two degrees of freedom cannot interfere in our detection, simply
adding up when photodetection is performed. Hence in this case there is no interference in
the coincidence detection.

b. Reduced density matrix after projection over
∣∣Vp

〉
in the {H,V} basis.

We are here in the same situation as in the previous point, but now the superposition state
passes through the second slit. Again, no interference.

These previous two projections indicate that a non-local operation on the state allows us
to determine through which slit the photon passes, i.e. we are able to introduce a non-local
WPM.Wewell seenowhowprojectionoverdifferentbases erases the knowledge about through
which slit the photon transmitted:

c. Reduced density matrix after projection over
∣∣Dp

〉
∝

∣∣Hp
〉
+
∣∣Vp

〉
(
∣∣Dp

〉
∝

∣∣Hp
〉
−

∣∣Vp
〉
) in the {H,V} basis.

In this case we project with a polarizer set at 45/-45 degrees over the idler arm. A priori, we
cannot see whether we can tell something about through which slit the photon in the idler
arm might go. We solve this by performing a change of basis into the diagonal/antidiagonal
vectors.

e. Reduced density matrix after projection over
∣∣Ap

〉
∝

∣∣Hp
〉
+
∣∣Vp

〉
(
∣∣Ap

〉
∝

∣∣Hp
〉
−

∣∣Vp
〉
) in the {D,V} basis.

Now we clearly see that the state is a coherent superposition of photons passing though
|+1⟩ + |−2⟩(|−1⟩ + |+2⟩). Again, |+⟩ and |−⟩ are orthogonal and they do not interfere
in this basis, however when decomposed back into the {H,V} basis we see that the horizon-
tal(vertical) component survive, whereas the vertical(horizontal) does not. We have success-
fully erased the which path marker information by performing a non-local projection, recov-
ering interference proportional to the horizontal(vertical) component.
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6.2 Elliptical bullseye antennas. Optical antennas as micron-sized wave-
plates

I have previously shown that the quarter waveplate (QWP) is a key component of the quan-
tum eraser experiment. In this section I show how elliptical plasmonic bullseye antennas
(BEA) act as quarter-wavelength polarization retarders.

BEAare a range of plasmonic nanostructures inwhich ahole of subwavelengthdimensions
is combinedwith a concentric periodical grating 173. Incident light scatters on the grooves and
couples to surface plasmons (SPP), which propagate and tunnel through the whole. The
period of the grating determines the conditions for constructive interference between the
scattered surface wave and the incident light 174. As explained previously, this constructive
interference creates the so-called extraordinary optical transmission (EOT) effect, in which
the transmission of the structure is higher than the expected from the physical size of the
hole.

Drezet et al. first demonstrated how elliptical BEA induce linear birefringence on incident
light 175. By stretching the long axis of the ellipse by one quarter of the period with respect to
the short axis, SPP along the long and short axes are shifted byπ/2. Their results were further
improved to achieve a perfect waveplate by both tuning the relation of distances between the
last groove and the hole, and the length of the holes along both axis 176.

I now detail our efforts to reproduce these results. We used electron beam lithography
(EBL) to pattern the elliptical grooves of the BEAs on 300nm-thick Au thin films. These
films are optically thick, ensuring no light is transmitted through them. We next use focused
ion beam (FIB) milling to make the central holes. A typical sample is shown in Fig.6.5-a.

Next, we measured light transmission over a set of samples with varying nominal groove
pitch. Fig.6.5-b shows theEOTeffect onourBEA,with thepeakof optical transmissionbeing
a functionof the grooveperiod in linewithprevious results 174. By tuning the groovepitch,we
ensure the maximum transmission wavelength of the BEA to overlap the wavelength of one
of the arms of our entangled photon source. We fine tune the wavelength of the entangled
photon source by carefully controlling the temperature of the crystal tomatch thewavelength
at which maximum transmission is achieved in our samples.

Once the period of the grating has been chosen, we focus on the polarization properties of
our elliptical BEA. We use a linearly polarized light beam incident at 45 degrees with respect
to our elliptical BEA. Transmitted light is collected and passed through a linear polarization
analyzer. When the BEA acts as a QWP, it produces circularly polarized light, which has con-
stant transmission for all the angles in the analyzer. Fig.6.5-inset shows such a measurement.
Perfectly polarized light would have exactly 50% transmission for all angles. Our best result,
shown in the figure, show some variability with respect to the benchmark. This implies our
elliptical BEA deviate slightly from a perfect QWP, affecting the expected interference visibil-
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Figure 6.5: (a) Scanning electron microscope image of BEA. (b) Transmission of BEA of different nominal pitch. The in‐
set shows the transmission after a linear analyzer at different angles. Incident light is linearly polarized at 45 degrees
respect the fast axis of the BEA.

ity in the quantum eraser experiment we will present at the end of this chapter.

6.3 Source of photon pairs maximally entangled in polarization

Elliptical BEA aperture are ideal candidates to reproduce the quantum eraser experiment
mediated by plasmons. However, the transmission of one such nanoaperture is typically
10−3−10−4 (cf. section6.2). Thismeansonlyonephoton in several thousandswill go through
the aperture. It is obvious then that we need a bright entangled photon source to perform
such an experiment.

Such a bright source was built by Fabian Steinlechner and co-workers from the Optoelec-
tronicsGroup at ICFO lead by Prof. Valerio Pruneri 177. After somemodifications§ the source
provided a detected pair rate over 1 million pairs s−1 per nm per mW of pump power, com-
bined with high quantum entanglement quality (fidelity with the ideal Bell state of 98.3%±
0.4% and violation of CHSH’s inequality by more than 85 standard deviations in only 10
seconds for 10 μW of pump power). A full characterization of the source was performed by
Carlos Abellan for his master thesis ? , we refer the reader to this reference for further details
on the entanglement properties of the photon pairs emitted by the source. Here, I reproduce
some of their previous reports describing the source for completeness.

§The ppKTP crystal was swapped for a longer one, and the pump laser beam waist was modified to match
the crystal
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6.3.1 Principle of operation of the entangled photon sources

The source is sketched in Figure 6.7 (Box S). A grating-stabilizedUVdiode laser deliversmore
than 20 mW of continuous-wave radiation at 405.9 nm within a typical bandwidth of ∼
0.1 nm. Such a large bandwidth is not sufficient for interfacing with atomic transitions, but
is good enough for our applications. The laser is attenuated by a neutral density filter and
coupled into a single mode fibre for mode filtering. After outcoupling, a set of lenses is used
to focus the pump laser along the length of the crystal, matching the Rayleigh range of the
quasi-TEM00 mode to the length of the crystal. A variable retarder matches the polarization
of the mode to the one in which the most efficient parametric down-conversion (SPDC) is
generated in the periodically-poled KTP (Potassium titanyl phosphate or KTiOPO4) crystal.
The crystal is grown such that, for each UV photon, two nearly degenerated photons with
the same polarization are created at 785 nm and 840 nm. The two infrared photons have the
same polarization as the incoming UV one, a process often called Type-0 SPDC.

In a probabilistic manner, two IR photons are generated in the crystal with a typical effi-
ciency of 10−6 − 10−7. They pass through a QWP, designed for 800nm and oriented at 45
deg, and are reflected back by a parabolic mirror matching focal length of the focusing lenses.
In this way, the IR photons undergo a total phase retardation of 2 × π/2 = π before pass-
ing again through the KTP crystal. Since the pump laser has roughly twice the frequency as
the SPDC photons, it will see the QWP as a HWP, and undergoes a total polarization flip of
2×π = 2π, leaving it in the same polarization state. This pump beam passes again through
the crystal generating again two SPDC photons. The variable retarder at the entrance of the
source is used to compensate for the non-perfect behavior of the rest of the retarders due to
wavelength mismatch. The generated SPDC photons are color filtered by a dichroic mirror
to remove the pump beam, and coupled into a single mode fibre with NA = 0.13 for spatial-
mode filtering.

Assuming the pump laser has horizontal polarization, the two photons generated in the
first pass through the crystal will have vertical polarization (after double pass through the
QWP), while the photons generated in the second pass will remain horizontally polarized. If
we decrease sufficiently the pump power, we can only probabilistically say the photon pairs
where generated in the first or the second pass, since the probability of generating photons in
both passes through the crystal is quadratically smaller. Hence the state should be described
as a superposition according to the rules of quantum mechanics. However, one could make
a time-tagged measurement, and know whether photons where generated in the first or the
second pass. We note here that due to the phase matching condition, UV and IR photons
travel at the same speed along the crystal. However, photons generated in the first path will
travel in their way back along a different crystal axis, which has different refractive index. We
remove this information using a YVO (yttrium orthovanadate or YVO4) crystal oriented per-
pendicularly, which has the same refractive indexes along the propagation axis of the crystal
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as the KTP (see Ref. ? for full details). In this manner we remove the which path information
and photons exiting the source can described as:∣∣Φ+

〉
=

1√
2
[∣∣HsHp

〉
+ eiφ

∣∣VsVp
〉]

(6.7)

Two (or more) particles (or degrees of freedom) are entangled when the state describing
them cannot be factorized (separated) into independent states for each particle. A necessary
condition for particles to be entangled is that they are in a superposition state. The simplest
example of a bipartite entangled state is a Bell state, which for polarization degrees of freedom
is described by Eq.6.7, and where |H⟩ , |V⟩ represent single photon states in the horizontal
and vertical polarization, in the two arms signal and idler.

The nonlinear crystals are temperature stabilized, to within 0.1 C, using crystal ovens con-
trolled using closed-loop feedback based on temperature readings given by thermo-couples.
The ppKTP is typically set to 46 C; varying the temperature of the crystal 10 C allows tuning
the wavelength over the 790− 770 nm range in the signal armwith corresponding idler pho-
tons. The phase φ of the source is fixed for a fixed temperature of the YVO crystal, typically
set to 28C.

6.3.2 Properties of the entangled photon source

After out-coupling from the single mode fiber, a set of waveplates fixes the polarization basis,
and compensates for polarization rotations generated by the fiber. One of the arms is further
filtered using a 3 nm-broad dielectric filter centered at 825 nm, to remove unwanted single-
photon detection events and any remaining light from the pump.

We perform the coincidencemeasurements in the different polarization bases combining a
QWP and a polarizer (see Figure 6.7 Box 1). The counts detected by single photon avalanche
diodes (SPAD) are fed to a correlator (coincidence detector) with a 1.2 ns detection window,
which performs an electronic AND operation on the TTL (or NIM) pulses generated by the
detectors.

At low pump powers (tens of μW before the ppKTP crystal), the heralding efficiency, de-
fined as the ratio to two-fold coincidence counts divided by the individual counts is roughly
20%. This value is fairly large, although significantly smaller that the one recently reported 178.
Without any projectivemeasurement, the brightness of the source is found to be 1Mpairs s−1

mW−1 nm−1. Equivalent to the maximum sustainable count rate if measurements were per-
formed with four detectors in the set of maximally correlated bases. In other words, after
setting the phase of our state to φ = 0 (Φ+), and considering a measurement set in both the
horizontal and diagonal basis, the obtained coincidences per second (within the 3nm band-
width) would be:
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C = CHH + CVV = CDD + CAA = CRR + CLL = 106s−1 (6.8)

per mW of pump power; where H, V, D, A, R, L, stand for projectors in the horizontal,
vertical, diagonal (+45 deg), anti-diagonal (-45 deg), right circular and left circular projector
orientations. We note that this conditions are mutually exclusive, i.e., no simultaneous de-
tection of two-horizontal and two vertical coincidences are present: on average half of the
coincidences will be of one kind or the other, with a total coincidence detection of 1Mpairs
per mWof pump power within the source bandwidth of 3nm. This values is one of the high-
est ever reported for such an entangled photon source ? .
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Figure 6.6: (a) Normalized coincidences detected for different settings of the signal and idler projectors (polarizers).
The average visibility over the idler angle settings is< V >= 0.984 ± 0.006. Pump power was set to 20 μW
for these emasurements. The dashed line represents the limit of the Bell‐CHSH inequality for classical states. (b) The
reconstructed density matrix of the source using a maximum‐likelihood reconstruction algorithm. Pump power was
set to 10 Î¼W.

Approximating our state as the Bell state described above, we can estimate the visibility of
our source as a fit to the detected coincidences ? :

Cαβ = N(1− V sin(α(inserthere)β)) (6.9)

whereN is a normalization constant indicated the total number of photons and realted to
the pump power of the source and α, β are the angle setting of our projectors (Figure 6.6a).
We found < V >= 0.984 ± 0.006, without substraction of any dark coincidences. From
these measurements we obtained a CHSH parameter†† S ∼ 2.81, with over 85 standard devi-
ations above the classical limit S(C) = 2 at 10 μW pumping power. The parameter decreases
to S ∼ 2.74 at a pumping power of 100 μW, with an increased confidence margin of over

††A version of the Bell inequality given by Clauser, Horne, Shimony, and Holt, for sets of angles that result
in normalized coincidences differing the most from any classical state
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500 standard deviations above any classical correlation. This clearly indicates that the source
provides bi-partite states of light incompatible with any classical field. Further information
about the entangled state generated by the source was gathered by performing a maximum-
likelihood estimation of the (physical) densitymatrix (Figure 6.6b). The fidelity, based on the
trace distance, between the reconstructed density matrix and the ideal Φ+ state was found to
be F(ρMLE, |Φ

+⟩ ⟨Φ+|) = 0.9830 ± 0.004. This means, from a probabilistic perspective,
that the entangled pairs generated by our source behave as the ideal Φ+ state 96.6%± 0.7%
of the time. We encourage the reader to consult the references ? and ? for a more detailed
description of the source as well as the details of its characterization.
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Figure 6.7: Sketch of the quantum eraser experiment. (S) Source of polarization entangled photon pairs based on a
double‐pass sandwich configuration (see text for details). (1) Bell test measurements. (2) Quantum eraser measure‐
ments.

6.4 Quantum eraser effect mediated by plasmons

In this section I show the main result of this chapter, the measurement of the coincidence
counts demonstrating the quantum eraser effect mediated by a plasmonic double-slit with
integrated micron-sized QWP.

A sketch of the experimental set-up is shown in Fig.6.7. We perform single photon de-
tection in the idler arm after projecting on a linear polarizer using single photon avalanche
diodes (SPAD). A similar SPAD is mounted on a linear translation stage actuated by a DC
servomotor. This SPAD is placed at a conjugated plane to the back focal plane aperture of the
collection microscope objective after the slits. Electronic signals, either in the form of NIM
are fed into an electronic circuit performs the AND operation ??, equivalent to perform a
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coincidence detection. The discriminator’s is set such that a coincidence is registered if both
electronic signal arrive at the coincidence card within 1.2ns time difference or less.

Despite the high brightness of our entangled photon source, the typical transmission of
a single BEA is of the order of 10−3. We focus our excitation beam to cover a 20μmx20μm
area, in which two elliptical bullseye aperture exist (Fig.6.8-inset). Under this experimental
conditions, single photon detection rate in the idler arm is 5Mphotons · s−1, whereas detected
photons in the signal arm after the slits are only 50photons · s−1. This low count rate is due to
the spread in space of the transmittedphotons, whichwe are only collectingwith a ”point-like
detector”.

It is worth noting that due to the low detected photons we had tomake use of SPADwith
typical dark-count rates of 5−7Counts · s−1 (Tau-SPAD, Picoquant). Under these conditions,
accidental coincidences amount to less than 0.3s−1 and are show as error bars in Fig.6.8, where
we demonstrate the quantum eraser effect, which is the main result of this chapter.

The figure shows coincidences over an integration time of 120 s per spatial point. Inspec-
tion of the figure shows a coincidence detection rate 1Coincidence · s−1. This constitutes a
SNR > 2 even for the projection basis providing the lowest coincidence rate, good enough
(but just enough) to be able to perform the experiment. We detect almost no interference,
as expected from the algebraic calculations provided in the previous section 6.1. In essence,
a which path marker is present allowing us to determine through which slit the photon has
passed. Since our elliptical BEA deviate slightly from perfect waveplates, the interference is
not completely suppressed, and some residual fringes are present within the accidental count
error bars.

The WPM information is erased after projecting with a polarizer set at an angle of 45 de-
grees over the idler arm. In this case the interference pattern is recovered (purple dots). As
previously discussed, we need the presence of the QWPs at each slit to be able to measure in-
terferences in the coincidence count. In this case we cannot tell through which slit the single
photon has passed and the state needs to be described as a coherent superposition of states
passing through both holes.

Two subtleties are present in this experiment. First, the presence of EOT in our BEA en-
sures the presence of surface plasmons. Bell states, in which at most 2 photons are present in
the arms at once, couple to these surface plasmons oscillationswhich are typically represented
using many-body quantum formalisms. The manybody oscillations maintain the quantum
character of the original entangled state for the experiment to work, but still there is at mosts
a single such oscillation at once in the structure, while maintaining the quantum character of
the state. Second, our elliptical BEA acts as QWP as shown by the presence of interference
in the coincidence detection. This action is performed via the single SPP oscillations.
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Figure 6.8: Detected coincidences after the Young’s double‐slit and projecting over |H⟩ (orange) and |D⟩ (purple).
Vertical grey lines represent the accidental coincidences expected given the single photon detection rates and the
time window used in the experiment.

6.5 Conclusions

I performed a Young’s double-slit type quantum eraser experiment using plasmonic struc-
tures that present subwavelength features. Our structures, elliptical BEA suporting SPP, act
as controlled gates for Bell states, rather than behaving as projectors. The action of the gates
depends crucially on a transfer between single propagating photon and bound plasmon de-
grees of freedom. Apart from its basic research interests, the quantum eraser experiment has
practical applications. A quantum key cryptography protocol with inherent security against
detector attacks can be implemented using the effect 179. The present work is an addition to
the reports in which SPP successfully mediate quantum interactions 180, and strengthens the
potential role of SPP-supporting structures as candidates for practical applications in both
quantum computation and quantum cryptography.
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