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Abbreviations. 
 

ACTH: Adrenocorticotrophin Factor. 

AIC: Akaike’s Information Criterion. 

BDe: Bayesian Dirichlet equivalent. 

BIC: Bayesian Information Criterion. 

BN: Bayesian Networks. 

C-POD: Cancer Prevention and Outcomes Data. 

CORT: Corticosterone. 

CRH: Corticotrophin Releasing Factor. 

DAG: Direct Acyclic Graph. 

DAVID: Database for Annotation, Visualization, and Integrated Discovery. 

DEG: Differentially Expressed Genes. 

DMR: Differentially Methylated Region. 

DNA: Deoxyribonucleic Acid. 

ENA: European Nucleotide Archive. 

GABA: Gamma-Aminobutyric Acid. 

GEO: Gene Expression Omnibus. 

HPA: Hypothalamic-Pituitary-Adrenal. 

HSP: Heat Shock Proteins. 

LUCADA: English Lung Cancer Database. 

MDA: Malondialdehyde. 

MDL: Minimum Description Length. 

MI: Mutual Information. 

NCBI: National Center for Biotechnology Information. 
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QTL: Quantitative Trait Loci. 

RNA: Ribonucleic Acid. 

SANS: Sympathetic-Adrenergic Nervous Systems. 

SNP: Single Nucleotide Polymorphisms. 

TBARS: Thiobarbituric acid reactive substances. 
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Genes. 
 

ACC: Acetyl-Coenzyme A Carboxylase. 

AMPK: Adenosine Monophosphate-activated Protein Kinase. 

ANN: Artificial Neural Networks. 

Apo-B: Apolipoprotein B. 

APTX: Aprataxin. 

BAG3: BAG cochaperone 3. 

BRAT1: BRCA1 associated ATM activator 1. 

BRCA1: BRCA1 DNA repair associated. 

C20orf96: Chromosome 20 open reading frame 96. 

CANX: Calnexin. 

CARD19: Caspase Recruitment Domain family member 19. 

CH25h: Cholesterol 25-hydroxylase. 

CPT-1: Carnitine Palmitoyltransferase 1. 

CRELD2: Cysteine Rich with EGF Like Domains 2. 

CYGB: Cytoglobin. 

DNAJA4: DnaJ Heat Shock Protein family (Hsp40) member A4. 

EPN3: Epsin-3. 

FAS: Fatty Acid Synthase. 

FBN1: Fibrillin 1. 

GHR: Growth Hormone Receptor. 

H-FABP: Heart-type Fatty Acid-Binding Protein. 

HSP90B1: Heat Shock Protein 90 Beta family member 1. 

HSPA4L: Heat Shock Protein family A (Hsp70) member 4 like. 
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HSPH1: Heat Shock Protein family H (Hsp110) member 1. 

IGF: Insulin-like Growth Factor. 

LEP-R: Leptin Receptor. 

L-FABP: Liver-type Fatty Acid-Binding Protein. 

OCLN: Occludin. 

PDE1C: Phosphodiesterase 1C. 

PK: Pyruvate Kinase. 

POMC: Proopiomelanocortin. 

PSLG-1: P-Selectin Glycoprotein Ligand-1. 

RNPC3: RNA Binding Region (RNP1, RRM) containing 3. 

SERPINA10: Serpin family A member 10.  

SPV: Support Vector Machine. 

StAR: Steroidogenic Acute Regulatory protein. 

THRSP-/ THRSP-: Thyroid Hormone responsive spot 14. 

TNNT3: Troponin T3, Fast Skeletal type. 

TPST: Tyrosyl Protein Sulfotransferase. 

UCP: Uncoupling protein. 

XPO1: Exportin 1. 
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Figure Index. 
Figure 1. Direct acyclic graph. Graphical representation of a Bayesian network with 5 

variables. Note the direction of the arrows do not represent causation, but instead a statistical 

relationship. (adapted from (Felipe, Silva, Valente, & Rosa, 2014)). 

 

Figure 2. Bayesian network and the Markov Blanket property. The BN is composed by 9 

variables and 8 arcs between them. The Markov Blanket property was applied to the Variable 

of interest (VoI; nodes belonging to the Markov Blanket of VoI are highlighted in blue). This 

property uses the set of parents (Variable 1 and Variable 2), children (Variable 3), and spouses 

(Variable 4) to make the VoI completely independent from the rest of the network. Note the 

direction of the arrows do not represent causation, but instead a statistical relationship. Yellow 

node = Variable of Interest, blue nodes = Markov Blanket of the VoI, grey nodes = nodes that 

do not have any possible interaction with the VoI. 

  

Figure 3. Visual representation of two of the most common discretisation methods. Panel A 

shows the equal interval method, which divides the data into bins of the same range of values: 

in this example, data was divided into 3 bins of same length, 5 data points were assigned to the 

0-2 bin, 3 data points were assigned to the 3-5 bin, and 4 data points were assigned to the 6-8 

bin. Panel B shows the equal quantile method, which divides the data into bins containing the 

same number of observations: 4 data points were assigned to each one of the three bins (0-1, 

2-5, and 6-8). 

 

Figure 4. Graphical representations of the three types of connections in Bayesian networks. 

Panel A: the graph displays the convergent connection, where variable 3 has two incoming 

arcs. Panel B: the graph displays the serial connection, where variable 3 has one incoming and 

one outgoing arc. Panel C: the graph displays the divergent connection, where variable 3 has 

two outgoing arcs. 

 

Figure 5. Number of genes as a function of their adjusted P-values. A total of 1397 probes with 

showing differential expression patterns according to the condition (control vs stress) had P-

values equal to or lower than 0.05. The red line shows the threshold (threshold = 0.02) used to 

select the 31 probes for further analyses. 

 

Figure 6. Visualisation of presence or absence of arcs of 50 consensus Bayesian networks learnt 

in Banjo. The heatmap shows the arcs found by Simulated Annealing while searching the 

space, visiting a total of 250 million networks. Each column represents a consensus Bayesian 

network built by combining the top 100 highest scoring networks. Rows represent arcs found 

by the algorithm. Those arcs present in at least 50% of the networks (threshold = 25 out of 50 

networks) were selected to build the weighted network.  

 

Figure 7. Steps taken and decisions made to build the weighted Bayesian network (BN). The 

starting point was a dataset consisting of 3 chickens under control and 3 chickens under heat 

stress conditions. Bioinformatic analyses were performed to normalize, to correct the 

background noise, and to identify differentially expressed genes (DEG). A total of 31 probes 

showing differential expression patterns were searched in four other datasets sharing the same 

animal model (chicken), the same tissue (brain), and the same high-throughput technology 

(microarray). Each dataset was individually discretized into three-state variables and then 

merged into a larger dataset consisting of 46 observations and 25 DEGs (12 probes coded for 
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6 genes (2 “duplicated” probes x 6 genes = 12 probes; 31 probes – 12 “duplicated” probes = 

25 DEGs); the corresponding expression values of each one of these “duplicated” probes were 

averaged into one single value by duplicated probe). The software Banjo was utilised to learn 

discrete BNs, exploring the search space with a simulated annealing and the BDe score, visiting 

a total of 250 million networks. An initial consensus BN was built by combining the top 100 

highest scoring networks. Heatmaps were used to visualize the results different consensus BNs 

and due to variation in the final sets of arcs, 50 consensus BN were further combined into a 

weighted network, by selecting those arcs present in at least 50% of the consensus BNs 

(threshold: 25 out of 50 networks). 

 

Figure 8. Bayesian network corresponding to highly significant genes related to stress. Nodes 

correspond to genes, while edges represent the relationship between genes. The network was 

built considering the edges present in at least 25 out of 50 consensus networks. Note the 

direction of the arrows do not represent causation, but instead a statistical relationship. 

 

Figure 9. Visualization of P-values per dataset. Number of probes (A) and genes (B) according 

to their P-values per dataset. Top: GSE119387, bottom: GSE85434; n represents the number 

of probes showing differential expression patterns (A). Shared genes by the two datasets and 

their corresponding P-values. Blue bars: GSE119383, grey bars: GSE85434. Genes are 

represented by their ENSEMBL GENE ID coded as the first three letters and the last five 

numbers (e.g., ENSGALG00000001573 is coded as ENS01573) (B). 

 

Figure 10. Visualisation of presence or absence of arcs of 100 consensus Bayesian networks 

learnt in Banjo. The heatmap shows the arcs found by Simulated Annealing while searching 

the space, visiting a total of 250 million networks. Each column represents a consensus 

Bayesian network built by combining the top 100 highest scoring networks. Rows represent 

arcs found by the algorithm. Those arcs present in at least 50% of the networks (threshold = 50 

out of 100 networks) were selected to build the weighted network.  

 

Figure 11. Steps taken and decisions made to build the weighted Bayesian network (BN). The 

starting point was a set of two studies evaluating stress in the spleen of chickens. Bioinformatic 

analyses were performed to normalize, to correct the background noise, and to identify genes 

with differential expression patterns in each dataset. A common “stress signal” was identified 

between the two datasets: 19 shared genes. The augmented dataset consisted of 50 

observations, 19 genes, and as both datasets evaluated stress, the stress condition was included 

as a binary variable (control = 0; stress = 1). The software Banjo was utilised to learn discrete 

BN, exploring the search space with a simulated annealing and the Bde score, visiting a total 

of 250 million networks. An initial consensus BN was built by combining the top 100 highest 

scoring networks. Heatmaps were used to visualize the results different consensus BNs and 

due to variation in the final sets of arcs, 100 consensus BN were further combined into a 

weighted network, by selecting those arcs present in at least 50% of the consensus BNs 

(threshold: 50 out of 100 networks). Considering that the stress was included as the variable of 

interest, the Markov Blanket property of BN was applied to identify key genes related to stress. 

Additionally, communities of densely connected nodes were identified to increase the number 

of genes closely related to the stress condition.  

 

Figure 12. Bayesian network and community analysis of a set of genes. 19 genes showing 

differences in expression pattern were initially included at the time of learning the structure of 

the network in addition to the stressful condition; however, only 16 out of those 19 were linked 

in a network structure. Nodes represent each one of the genes and the stressful condition (circle-
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shaped node, thick outline), the edges represent probabilistic dependencies between the nodes. 

Note the direction of the arrows do not represent causation, but instead a statistical relationship. 

The Markov Blanket of the stress condition (rectangle-shaped nodes) consisted of two genes, 

CARD19 (child) and CYGB (spouse). Five communities of densely connected nodes were 

identified (different colours represent different communities). The community of the condition 

consisted of 4 genes (CARD19, EPN3, CYGB, and BRAT1, highlighted in pink). 

 

Figure 13. Steps taken and decisions made to build a consensus Bayesian network. The starting 

point was a dataset consisting of 46 chickens, 22 raised under control conditions and 24 raised 

under stress conditions. Bioinformatic analysis were performed as described in (Pértille et al., 

2017, 2020). Thereafter, a set of 60 differentially methylated regions (DMRs) were selected 

based on a p-value equal to 0.005. The corresponding methylation values of each DMR were 

counts (values ranged between 0 and 39). A binary discretization method was implemented, 

considering that the most frequent value was 0.  The software R (and Rstudio) was utilised to 

learn discrete BN. Specifically, the bnlearn package was used, exploring the search space with 

a score-and-search algorithm and the Bde score. A contingency test (chi-square test) was 

applied to all possible pairs of variables to create a list of links to avoid, considering that the 

data had imbalances between the binary states that could lead to the discovery of artefactual 

links that should not be part of the consensus network. By using the software BayesPiles, it 

was possible to decide that the search space was complex and building the consensus Bayesian 

network required a strategic and accurate approach: the combination of a model averaging and 

the selection of arcs common to all searches into the weighted BN.   

 

Figure 14. Distribution of four of the differentially methylated regions (DMRs) once a binary 

discretization method was applied. The state 0 represents values with absence of methylation, 

the state 1 represents values with presence of methylation. These four DMRs are representative 

of imbalances between the two states, as zero was the most popular state among different 

DMRs. 

 

Figure 15. BayesPiles investigation of search space. Top networks found from four separate 

collections of searches, representing peaks of many different hills in the search space. 

BayesPiles visualises a summary of network structure as a shaded stack representing out-

degree of each node (darker=higher) above a bar representing network score (longer=higher), 

with networks along the x-axis and nodes along the y-axis. (A) shows the highest 25 networks 

for four collections of searches (different colours), with highest-scoring network to the left. 

The strong variation in network structure (different patterns in the shaded bars) indicates that 

these networks are tops of different peaks in the search space, not the final climb of a single 

hill. (B) shows the final 25 networks from all four searches combined, sorted by their score. 

The mixing of colours throughout shows the high variation in search peaks: each collection of 

searches explored different areas of the search space, finding different high-scoring structures. 

 

Figure 16. Consensus networks of DMRs. Networks were built with common arcs to 50 

searches, each one of these searches consisted of a starting point of 100 random graphs.  

Features representing the differentially methylated regions (named by related gene or region, 

see Methods) and the stress conditions are nodes; lines between nodes represent the identified 

relationships. Note the direction of the arrows do not represent causation, but instead a 

statistical relationship. Arc labels represent the average probability of belonging to the 

consensus network, the higher the values, the higher the probability of belonging to a high 

scoring network. Different colours represent different ranges of probabilities: black: 0.90-

1.00, blue: 0.89-0.80; grey: 0.79-0.70; orange: 0.69-0.60.    
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Table Index. 
 

Table 1 Functional Annotation Table provided by the Database for Annotation, Visualization, 

and Integrated Discovery (DAVID) corresponding to the Heat Shock Proteins interacting with 

other four genes. Terms particularly relevant to the stress condition are highlighted in bold. 

The gene symbol is underlined in parenthesis. 

 
Table 2. Functional Annotation Table provided by the Database for Annotation, Visualization, 

and Integrated Discovery (DAVID) corresponding to the four genes found to be in close 

relationship with the stressful condition. Terms particularly relevant to the stress condition are 

highlighted in bold. The gene symbol is underlined in parenthesis. 

 

Table 3. Differentially methylated regions and their annotations. List of differentially 

methylated regions (DMR) with their corresponding genetic annotation terms. The first column 

(“SYMBOL”) represents the abbreviated gene name of the methylated region; those which say 

“annotated” plus a number means that the symbol for that particular DMR was not available; 

the second column (“Gene ID”) represents the ENSEMBL gene ID; the third column 

(“Description”) represents the description of the DMR (NA for those not available); the fourth 

column (“Type of DMR”) represents the type of DMR (e.g., Promoter, Intron, etc.); and finally, 

the fifth column (“SYMBOL network”) represents the name used in the consensus Bayesian 

network. 

 

Table 4. Arcs and their corresponding probabilities of being part of a high scoring network. 

List of arcs identified between differentially methylated regions and with the stress condition, 

with their corresponding probabilities of being part of a high scoring network. The first column 

(“arc”) is an arbitrary numbering for the arc; the second column (“from”) represents the parent 

node for each arc (arcs from); the third column (“to”) represents the child node for each arc 

(arcs to); the third column (“Average.Probablity”) represents the average probability value for 

each arc of being part of a high scoring network.   
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Abstract 
Understanding biological systems can be a very difficult and challenging task. Stress can be 

considered as one of these biological systems: it is a complex phenomenon which perception 

and integration starts in the brain, triggering the stress response with many implications on 

performance, health status, and welfare of poultry species. In the field of genetics and 

epigenetics, hundreds of thousands of genetic/epigenetic markers can be measured per 

individual between non-stressed and stressed birds. The genetics of stress can be further 

explored by the application of Bayesian network (BN) algorithms with the aim of identifying 

hallmark genetic features associated with stress as well as unravelling hidden interactions 

between them. BNs are directed acyclic graphs that represent the joint probability distributions 

of a given set of variables; they consist of a set of nodes, which represent the variables, and a 

set of arcs or edges, representing the relationships between nodes. In this context, the aims of 

the current thesis were to collect data from different studies and to identify a reduced number 

of genetic features associated with stress in chickens (Gallus gallus), unravelling informative 

relationships and interactions by the implementation of BN algorithms. Two genetic and one 

epigenetic datasets evaluating the effects of stress in chickens were explored. The biology 

behind our findings showed that genes and epigenetic variables pointed towards chaperon-

related activity of Heat Shock Proteins, apoptotic and DNA damage pathways together with 

wound healing mechanisms, and adherent and tight junction functionality. These genes could 

be crucial under the exposure to stress, especially those playing a role in keeping the correct 

functioning of other proteins or structures. To consider these genes as key biomarkers of stress 

would require further research with short- and long-term goals, working towards improving 

the health and welfare of poultry species in terms of management and breeding programs.   
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Resumen 
Comprender sistemas biológicos puede ser una tarea difícil y desafiante. El estrés puede ser 

considerado como uno de estos sistemas biológicos: es un fenómeno complejo cuya percepción 

e integración comienza en el cerebro, gatillando la respuesta de estrés con muchas implicancias 

en la productividad, el estado de salud, y el bienestar de aves de corral. En el campo de la 

genética y epigenética, cientos de miles de marcadores genéticos/epigenéticos pueden ser 

cuantificados por individuo entre aves no estresadas y estresadas. La genética del estrés puede 

ser explorada en profundidad mediante la aplicación de algoritmos de redes Bayesianas (BN) 

con el fin de identificar variables genéticas claves asociadas con el estrés como así también 

para descubrir interacciones ocultas entre ellas. Las BNs son gráficos acíclicos dirigidos que 

representan las distribuciones de probabilidades conjuntas de un conjunto definido de 

variables; consisten en un conjunto de nodos, que representan las variables, y un conjunto de 

flechas, que representan las relaciones entre nodos. En este contexto, los objetivos de esta tesis 

fueron recolectar datos provenientes de otros estudios e identificar un conjunto reducido de 

variables genéticas asociadas al estrés en pollos (Gallus gallus), descubriendo relaciones e 

interacciones informativas mediante la aplicación de algoritmos de BNs. Dos conjuntos de 

datos genéticos y uno epigenético que evaluaron los efectos del estrés en pollos fueron 

explorados. La biología detrás de los datos demostró que los genes y variables epigenéticas 

están relacionadas a la actividad de Proteínas de Estrés Térmico, vías apoptóticas y de daño 

del ADN en conjunto con mecanismos de reparación de tejidos, y la funcionalidad de uniones 

adherentes. Estas variables genéticas podrían resultar cruciales bajo condiciones de estrés, 

especialmente aquellas con un rol de protección del correcto funcionamiento de otras proteínas 

o estructuras. Considerar a estos genes como marcadores clave del estrés requeriría estudios 

futuros a corto y largo plazo, con el fin de mejorar la salud y el bienestar de aves de corral en 

cuestión de manejo y programas de cría. 
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Resum 
Comprendre sistemes biològics pot ser una tasca difícil i desafiadora. L'estrès pot ser considerat 

com un d'aquests sistemes biològics: és un fenomen complex la percepció i la integració del 

qual comença al cervell, gatillant la resposta d'estrès amb moltes implicacions en la 

productivitat, l'estat de salut, i el benestar d'aus de corral. En el camp de la genètica i 

epigenètica, centenars de milers de marcadors genètics/epigenètics poden ser quantificats per 

individu entre aus no estressades i estressades. La genètica de l'estrès pot ser explorada en 

profunditat mitjançant l'aplicació d'algorismes de xarxes Bayesianes (BN) per tal d'identificar 

variables genètiques claus associades amb l'estrès i descobrir interaccions ocultes entre elles. 

Les BN són gràfics acíclics dirigits que representen les distribucions de probabilitats conjuntes 

d'un conjunt definit de variables; consisteixen en un conjunt de nodes, que representen les 

variables, i un conjunt de fletxes, que representen les relacions entre nodes. En aquest context, 

els objectius d‟aquesta tesi van ser recol·lectar dades provinents d‟altres estudis i identificar 

un conjunt reduït de variables genètiques associades al‟estrès en pollastres (Gallus gallus), 

descobrint relacions i interaccions informatives mitjançant l‟aplicació d‟algorismes de BNs. 

Dos conjunts de dades genètiques i un d'epigenètic que van avaluar els efectes de l'estrès en 

pollastres van ser explorats. La biologia darrere de les dades va demostrar que els gens i les 

variables epigenètiques estan relacionades a l'activitat de Proteïnes d'Estrès Tèrmic, vies 

apoptòtiques i de dany de l'ADN en conjunt amb mecanismes de reparació de teixits, i la 

funcionalitat d'unions adherents. Aquestes variables genètiques podrien resultar crucials sota 

condicions d'estrès, especialment aquelles amb un rol de protecció del funcionament correcte 

d'altres proteïnes o estructures. Considerar aquests gens com a marcadors clau de l'estrès 

requeriria estudis futurs a curt i llarg termini, per tal de millorar la salut i el benestar d'ocells 

de corral en qüestió de maneig i programes de cria. 
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1. Introduction.   
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1.1. Poultry industry and animal welfare. 

 

Animal production, including poultry industry, has increased during the last few 

decades, as a consequence of the population growth, the higher demand for animal-derived 

products, such as meat, milk, or eggs, as well as socio-economic interests (Moekti, 2020; 

Windhorst, 2006). The extensive domestication process that production animals have 

undergone together with the availability of better technologies oriented towards improving 

animal welfare have had an impact not only on production parameters but also on the quality 

of life of production animals (Dixon, 2020; Ericsson & Jensen, 2016; Løtvedt, Fallahshahroudi, 

Bektic, Altimiras, & Jensen, 2017; Moekti, 2020; Windhorst, 2006). In particular, the poultry 

industry breeds different species such as chickens (Gallus gallus), turkey (Meleagris 

gallopavo), and quail (Coturnix coturnix). The domestication process of these poultry species 

might have started 8000 years ago, in Eastern Asia (Løtvedt et al., 2017; Tixier-Boichard, 

Bed’Hom, & Rognon, 2011). During the beginning of this domestication process, birds adapted 

to live in close relationship with humans, reducing the fear response against them and, 

therefore, increasing tameness. These groups of less fearful and more tame birds started to 

reproduce in the new environment close to humans, favouring the selection of domesticated 

phenotypes (Bélteky, Agnvall, Johnsson, Wright, & Jensen, 2016; Price, 1999; Tixier-

Boichard et al., 2011). It is not yet clear whether the appearance of the domesticated phenotypes 

is a consequence of the highly driven artificial selection of these traits, or it is a secondary 

effect of the domestication process itself (Bélteky et. Al, 2016; Price, 1999; Tixier-Boichard et 

al., 2011). Despite this fact, the domesticated phenotype of poultry species such as chickens or 

turkeys can be distinguished from its ancestor by considering some traits, such as weight, 

plumage colour, and some other more complex traits related to reproduction and/or behaviour 

(Bélteky et al., 2016; Tixier-Boichard et al., 2011). The artificial selection of poultry species 

for productive traits has led to the appearance of commercial breeds as they are known 
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nowadays, e.g., broiler chickens are reared for their meat, while laying hens chicken are reared 

for their eggs. 

Initially chickens, in particular hens, were mostly raised in plain battery cages, where 

food and water were provided ad libitum but with no access to a nest where they can lay eggs 

or a perch where they can perform natural behaviours. However, the consumers of animal-

derived products in general, started to demand for improvements of the breeding conditions 

where animals were raised with the aim of improving the welfare of production animal. As a 

consequence, plain battery cages were banned in the European Union, leading to the 

appearance of new housing systems such as enriched battery cages, or aviaries with or without 

access to an outdoor garden (Lay et al., 2011; Moekti, 2020; Philippe et al., 2020; Sosnówka-

Czajka, Herbut, & Skomorucha, 2010). Birds gained access to an environment where they 

could perform a wider range of behaviours, due to the presence of perches, ramps, nests, tiers, 

and in some cases (such as free-range breeding systems), an outdoor space. In the context of 

animal welfare, animals must be raised under the premisses of two main paradigms, 

contemplating a series of aspects that need to be satisfied, such as nutrition, absence of thermal 

or physical discomfort, disease, injury, pain, fear, distress, the possibility to express natural 

behaviours, and the mental or psychological state of animals (Mellor, 2016; Webster, 2016). 

These two paradigms are known as the Five Freedoms or the Five Domains of animal welfare 

(Mellor, 2016; Webster, 2016). On the one hand, the Five Freedoms paradigm, proposed by 

Webster (2001) considers the following premisses: 

• Freedom from thirst, hunger, and malnutrition: By providing access to fresh water and 

a diet appropriate to maintaining optimal health and vigour. 

• Freedom from discomfort and exposure: By providing an appropriate environment 

including shelter and a comfortable resting area. 
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• Freedom from pain, injury, and disease: By prevention or rapid diagnosis and treatment 

of potential diseases. 

• Freedom from fear and distress: By ensuring conditions and treatment which avoid 

mental suffering. 

• Freedom to express normal behaviour: By providing sufficient space, proper facilities, 

and company of the animal’s own kind. 

On the other hand, the Five Domains paradigm, proposed by Mellor (Mellor, 2016; 

Mellor & Beausoleil, 2015), includes two main domains, a physical/functional domain and an 

affective experience domain, that can be further divided into five new domains, nutrition, 

environment, health, behaviour and mental state, (Mellor, 2016; Mellor & Beausoleil, 2015). 

In addition, each one of the five domains is divided into positive or negative aspects: 

• Nutrition:  

o Negative: restricted water and food; poor food quality. 

o Positive: enough water and food; balanced and varied diet. 

• Environment:  

o Negative: uncomfortable or unpleasant physical features of                                                                              

environment. 

o Positive: physical environment comfortable or pleasant. 

• Health:  

o Negative: disease, injury, and/or functional impairment. 

o Positive: healthy, fit, and/or uninjured. 

• Behaviour: 

o Negative: behavioural expression restricted. 

o Positive: able to express rewarding behaviours. 
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• Mental state: 

o Negative experiences: thirst, breathlessness, anger, frustration, hunger, pain, 

boredom, helplessness, malnutrition malaise debility, weakness, loneliness, 

depression, chilling, overheating, nausea, sickness, anxiety, fearfulness, 

hearing discomfort, dizziness, panic, exhaustion. 

o Positive: pleasure of drinking, calmness, health, fitness, reward, maternally 

rewarded, satiety, goal-directed, exited playfulness, physical comforts, social 

interactions, sexually gratified. 

It is important to mention that both paradigms can be used in different but 

complementary approaches to assess the welfare of animals raised in productive environments 

(Webster, 2016). According to Webster (2016), the Five Domain approach might be more 

orientated to evaluate the psychological and mental state of the animals considering the 

physical, nutritional, and social environment, while the Five Freedoms approach can be used 

to assess the impacts of environmental changes that promote a better animal welfare (Webster, 

2016). 

1.2. Stress response and its effects on the physiology.  

 

Independently of the paradigm of animal welfare, several aspects of animal welfare are 

being considered by the poultry industry when birds are raised with production aims. However, 

the environmental conditions where poultry species are bred might still be potentially stressful, 

threatening the freedom or domain related to distress or environment, respectively. Stress can 

be defined as a non-specific response of the organism to either external or internal stimulus, 

and a stressor can be defined as an external or internal factor that triggers the stress response 

(Lara & Rostagno, 2013; Selye, 1950; Siegel, 1971). From the moment poultry species hatch, 

they are exposed to a series of potentially stressful conditions, such as transportation from the 
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hatchery to the rearing farm where they will be raised, food regimens, social hierarchies and 

social interactions with con-specifics, aggressive behaviours, temperatures above or below 

those optimal for development, among many others (Bowling, Forder, Hughes, Weaver, & 

Hynd, 2018; Calefi, Quinteiro-Filho, Ferreira, & Palermo-Neto, 2017; Cantet, Yu, & Ríus, 

2021; Fernandez, Labaque, Orso, Marin, & Kembro, 2021; Gasparino et al., 2013; Lay et al., 

2011; Miller & Mench, 2006; Quinteiro-Filho et al., 2010; Wickramasuriya et al., 2022). The 

potentially stressful environmental conditions are perceived and integrated at the interplay of 

two main systems, the nervous and the endocrine system, also known as the neuroendocrine 

interplay. This interplay is composed of four main axis: the Sympathetic-Adrenergic Nervous 

Systems (SANS), the Hypothalamic-Pituitary-Adrenal (HPA) axis, the vagal-cholinergic axis 

and the Gut-Brain axis (Adelman & Martin, 2009; Ashley & Demas, 2017; Davison, 2014; 

Kuenzel & Jurkevich, 2010; Webster, Marketon & Glaser, 2008). Once the stressful stimulus 

is integrated, the stress response is triggered and involves two different responses: i) a general, 

non-specific response that is independent of the nature of the stressor; and ii) a specific 

response according to the nature of the stressor. The general, non-specific stress response 

involves mostly the SANS and the HPA axis, releasing a different set of stress mediators such 

as catecholamines and glucocorticoids, with the aim of dealing or coping with the stressful 

condition (Calefi et al., 2017; Selye, 1950; Siegel, 1995). Within seconds, epinephrine and 

norepinephrine, released by the SANS, promote the “fight or flight” response, increasing blood 

pressure, muscular tone, heart rate as well as the availability of metabolic resources such as 

glucose in the short term (Kuenzel & Jurkevich, 2010; Siegel, 1995). Within minutes, 

glucocorticoids, mostly corticosterone (CORT) in birds, are released as a consequence of the 

activation of the HPA axis. Initially, the corticotrophin releasing factor (CRH), is segregated 

by the hypothalamus, reaching its target gland, the anterior pituitary, stimulating the release of 

adrenocorticotrophin factor (ACTH). The ACTH is released into the bloodstream, reaching its 
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target gland, the adrenal glands, stimulating the release of CORT (Calefi et al., 2017; Scanes, 

2016; Siegel, 1995). CORT promotes a relatively longer response, involving several 

physiological, metabolic, and behavioural adjustments with the aim of dealing with the 

influence of the stressor in the long term (Adelman & Martin, 2009; Calefi et al., 2017; Siegel, 

1980, 1995).  On the other hand, the specific stress response depends on the nature of the 

stressor. For example, the exposure of birds to high environmental temperatures demands an 

increased breathing rate and panting, as well as spreading the wings as a behavioural adaptation 

to dissipate excess heat (Siegel, 1971, 1995). As another example, when birds are in close 

proximity to a potential predator, they can either display an escaping behaviour, running as fast 

as possible from the predator, or they can display a tonic immobility response, also referred as 

freezing behaviour, staying immobile until the threat is no longer in sight (Gallup, 1977; Jones, 

Satterlee, & Ryder, 1992).  

The stress response has been exhaustively studied in birds, evidencing the impacts on 

several aspects of  physiology, metabolism, and behaviour (Cantet et al., 2021; Dhabhar, 2009; 

Elfwing et al., 2015; Fernandez et al., 2021; Hedlund, Palazon, & Jensen, 2021; Kembro, 

Satterlee, Schmidt, Perillo, & Marin, 2008; Quinteiro-Filho et al., 2010; Shini, Kaiser, Shini, 

& Bryden, 2008; Siegel, 1995; Wickramasuriya et al., 2022). The exposure of birds to different 

types of stressful conditions, such as thermal stress, food stress, and immune stress, among 

many others, has proven to alter development and growth, the plasmatic concentrations of 

metabolites, the innate and acquired immune responses, the gastrointestinal function, the 

microbiota, and many others (Burkholder, Thompson, Einstein, Applegate, & Patterson, 2008; 

Cantet et al., 2021; Dong et al., 2007; Fernandez et al., 2021; Lin, Sui, Jiao, Buyse, & 

Decuypere, 2006; Malheiros, Moraes, Collin, Decuypere, & Buyse, 2003; Mashaly et al., 2004; 

Mumma, Thaxton, Vizzier-Thaxton, & Dodson, 2006; Nazar, Videla, & Marin, 2018; 

Quinteiro-Filho et al., 2010; Shi et al., 2019; Wickramasuriya et al., 2022). Genetic and 
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epigenetic changes associated with a stressful condition have also been evaluated, considering 

the domestication process that poultry species have undergone (Elfwing et al., 2015; 

Fallahshahroudi, Løtvedt, Bélteky, Altimiras, & Jensen, 2019; Fallahsharoudi et al., 2017; 

Long, Gianola, Rosa, Weigel, & Avendaño, 2009). For example, White Leghorns chickens, a 

particular breed that lays white eggs, and the closest wild species to the putative chicken 

ancestor, the Red Junglefowls, exposed to the same physical restraint stressor for 15 minutes 

showed differences between the expression patterns of some genes, including StAR, CH25h, 

and POMC (Fallahsharoudi et al., 2015). StAR and CH25h are involved in the metabolism of 

Cholesterol, and therefore it is directly connected with the first steps of the stress response 

cascade; POMC is involved in several aspects of the adrenal functioning, including the 

production of hormones (Fallahsharoudi et al., 2015). Another study related to stress and 

domestication suggested that two genes, SERPINA10 and PDE1C, might be candidates genes 

associated with differences between the stress responses of the ancestral and the domesticated 

chicken (Fallahsharoudi et al., 2017).  

In spite of the detrimental effects of stress, it is important to consider that within a group 

of birds there might be different responses to the same environmental conditions, where some 

birds might be more susceptible to the stress condition than others. Stress resilience is the 

capability of the organism to deal effectively, physiologically and behaviourally, with a 

particular stressful condition, and the capability to recover the baseline state, independently of 

the nature of the stressor (Pfau & Russo, 2015; Ross, Rausch, Vandenberg, & Mason, 2020). 

Stress resilience is a complex phenomenon, involving several brain circuits, transcriptional and 

epigenetic mechanisms, as well as external environmental factors and stimuli that play an 

important role in the resilience to stress (Pfau & Russo, 2015; Ross et al., 2020). From an 

individual point of view, birds (and animals in general) can be divided into two main categories 

based on the responses to a stressful stimulus based on their coping style. Proactive birds will 
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show a lower activation of the HPA axis, leading to low levels of CORT, and consequently, 

these birds will be more active and less fearful to take risks. On the other hand, birds with a 

reactive coping style will have a strong activation of the HPA, leading to high levels of CORT, 

and as a result, these birds will be more passive and more fearful, avoiding risks (Campbella, 

Hincha, Downing, & Lee, 2016; Cockrem, 2007; de Haas, Kops, Bolhuis, Groothuis, Ellen, & 

Rodenburg 2012; Pusch, Bentz, Becker, & Navara 2018). When it comes to coping styles and 

stress resilience in groups of birds, Nazar et al (2015), for example, showed that quail display 

two different types of responses based on the plasmatic CORT levels, where quail with high 

levels of CORT had higher frequency of leukocyte distribution and levels of Interleucine-13, 

and low percentage of inflammation against a mitogen, titres of antibodies against a non-

pathogenic antigen, gamma interferon, and Interleucine-1. On the other hand, quail with low 

levels of CORT had low frequency of leukocytes and levels of Interleucine-13, but high 

percentage of inflammation against a mitogen, titres of antibodies against a non-pathogenic 

antigen, gamma interferon, and Interleucine-1 (Nazar, Barrios, Kaiser, Marin, & Correa, 2015). 

Differential susceptibilities to stress have also been shown between breeds. For example, the 

exposure to heat stress of two genetically different breeds (White Leghorns and Fayoumi) used 

for egg production showed that the stressor differentially affected physiological blood 

parameters, such as sodium, carbon dioxide partial pressure, bicarbonate, glucose, among 

others (Wang et al., 2018). Additionally, the differences were seen not only between breeds 

but also within birds (independently from the breed), and according to the authors, the Fayoumi 

birds showed stronger and more elastic physiological responses to heat stress (Wang et al., 

2018). It is important to mention that Fayoumi birds have undergone a selection programme 

for heat tolerance, being more resistant to heat stress, while White Leghorns are more 

susceptible to stress due to the artificial selection (Wang et al., 2018). Another study 

considering three different breeds, Red Junglefowl, Village fowl, and broiler breeders (reared 
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for their meat), also showed different susceptibilities to heat stress, the broiler breeders being 

more susceptible to heat stress as evidenced by an increase in body temperature, the heterophil 

to lymphocyte ratio, and the corticosterone concentrations (Soleimani, Zulkifli, Omar, & Raha, 

2011).  

1.3. A bioinformatic approach to stress. 

 

The stress response as well as stress resilience can be evaluated on several aspects of 

the physiology of the organism, genetics being one of them. The recent advances in technology 

have allowed the possibility to measure genetic features, such as gene expression, or epigenetic 

modifications with microarrays or RNA-sequencing, as well as the accurate identification of 

changes in the patterns of genetic features according to the environmental conditions by the 

development of powerful statistical tools. Microarrays and RNA-sequencing are also known 

as high-throughput technologies because they measure hundreds of thousands of genes within 

a biological sample. Both types of technologies work with cDNA transcripts, obtained from 

the initial RNA samples, but with different approaches. Microarray technologies combine 

hundreds of thousands of DNA probes that have been attached to a glass surface. Then, the 

target sequences hybridize with the probes, and by the fluorescence of a signal bound to the 

target sequences plus the implementation of scanning and processing software, the expression 

of thousands of individual genes is measured (Mantione et al., 2014; Rao et al., 2019). RNA-

sequencing, on the other hand, needs the RNA to be initially fragmented into short sequences 

before obtaining the cDNA transcripts. Then, an adapter is added at the end of the fragments 

before amplifying the sequences. These steps that transform the RNA into cDNA are known 

as library preparation. Thereafter, the cDNA segments are sequenced by labelled nucleotides, 

and finally, the resulting sequences are counted (Mantione et al., 2014; Rao et al., 2019). Even 

though these two technologies have different approaches, they both are used to measure gene 
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expression Epigenetic modifications of the DNA sequence can also be measured as indicators 

of the activation of the stress response. However, changes in this field of research, epigenetics, 

are not in terms of the DNA sequence itself but considering external modifications of the DNA. 

Epigenetic modifications of the DNA sequence include the addition of molecules to nucleotides 

sequences, such as methyl groups, or the way the DNA is structured and compacted by 

histones, that might have an impact on the levels of expression a gene can have (Pértille et al., 

2017, 2020; Skinner, Manikkam, & Guerrero-Bosagna, 2010).  

Despite the genetic or epigenetic features, in general, working with high-throughput 

technologies involves working with hundreds of thousands genes (Greene, Tan, Ung, Moore, 

& Cheng, 2014; Shendure & Ji, 2008). These types of technologies allow the evaluation of a 

large set of genetic features with only one sample per individual, usually comparing the 

differences between one or more conditions such as stress (control vs stress), sex (male vs 

female), domesticated phenotypes (non-domestic vs domestic), among many others (Elfwing 

et al., 2015; Ericsson et al., 2016; Fallahsharoudi et al., 2017). However, dealing with hundreds 

of thousands of genes, as variables or features of interest, might be challenging, not only 

because of the amount of data collected but also of the way data should be analysed (Greene et 

al., 2014). As a consequence, the appearance of biological big data demanded new ways of 

analysing complex biological systems and informatic approaches (termed ‘bioinformatics’), 

applied statistics, and machine learning techniques started to be implemented on biological 

data (Fallahshahroudi et al., 2019; Greene et al., 2014; Løtvedt et al., 2017; Pértille et al., 2017; 

Tarca, Carey, Chen, Romero, & Drǎghici, 2007; Zahoor, De Koning & Hocking, 2017). In 

general, the starting point consists of removing background noise and normalising the raw data 

originated by the high-throughput technologies (Bélteky et al., 2016; Greene et al., 2014; Guo 

et al., 2020; Pértille et al., 2020; Xia et al., 2019; Zilliox & Irizarry, 2007). The next step is to 

identify highly significant genetic or epigenetic features by the application of statistical tools, 
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such as t-tests, that compare the values from two conditions, such as control vs stress, and 

determine differences in the expression or epigenetic patterns (Goerlich, Nätt, Elfwing, 

Macdonald, & Jensen, 2012; Pértille et al., 2017; Saelao et al., 2018). After these series of 

steps, the outcome is a list of genes than can be further annotated with the aim of exploring 

their biological functionality with tools such as KEGG pathways, GO terms, or other databases 

such as those provided by the National Center for Biotechnology Information. It is then 

possible to understand whether the genes are involved in metabolic pathways, transduction 

cascades, immune responses, or several other physiological processes. However, one of the 

main drawbacks of this approach is that the list of highly significant genes or epigenetic 

features could be quite extensive, and they could be related to numerous aspects of the 

physiology of the organism, such as immunity, cell signalling, neurogenesis, among many 

others. Fallahsharoudi et al. (2015) found a total of 1291 transcripts that were differentially 

expressed between the domestic and the ancestral chickens. Some of the genes were related to 

receptors, such as GABA, channels, as well as steroidogenesis. Guo et al. (2020) found around 

300 differentially expressed genes in the spleen of chicken exposed either to control or to stress 

conditions. These genes were mostly related to the responses of the immune system, involving 

processes associated with biological processes, cellular components, and molecular function. 

Kuchipudi et al (2014) exposed chicken and duck cells to an immune challenge, the influenza 

virus, identifying thousands of differentially expressed genes. These genes were divided 

depending on whether they were related to general biological processes or specifically related 

to the immune system. Genes were related to pathways such as signal transduction, enzymatic 

processes, transcription activities, immune signalling (Kuchipudi et al., 2014). In terms of 

epigenetic features, differences in the methylation patterns of the DNA sequence have been 

identified between two conditions, such as control vs social isolation stress, or two poultry 

housing systems, such as cages and aviaries (Pértille et al., 2017, 2020). The identified 
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epigenetic features were related to processes related to cell signalling pathways, the immune 

system, cardiac conduction, among others (Pértille et al., 2017, 2020). 

In this context where an extensive list of genes or epigenetic features are proved to have 

different patterns depending on a particular condition of interest, a further step can be taken 

with the aim of mining the biological data. Mathematical and computational tools can be 

implemented to classify, predict, or unravel patterns within biological big data (Greene et al., 

2014; Tarca et al., 2007). The tools are also known as machine learning algorithms, and they 

can be divided into two main categories, supervised or unsupervised, with the main difference 

between them being the type of data available (Greene et al., 2014; Tarca et al., 2007). In order 

to work with supervised algorithms, the data must have at least one variable with labels or 

classes (e.g., control vs stress, male vs female, domestic vs ancestral), and these techniques are 

used to build models which aim to either classify or predict the behaviour of a new set of 

observations but with unknown classes. Examples of supervised algorithms are linear 

regression, linear discriminant analysis, support vector machines (SPV), artificial neural 

networks (ANN), Bayesian networks (BN), among others (Greene et al., 2014; Tarca et al., 

2007). The unsupervised algorithms do not require the data to have a variable with labels or 

classes associated to the individuals; these algorithms are used to unravel or discover hidden 

patters within the data, as well as to identify groups of variables or individuals that can be part 

of a cluster. Examples of unsupervised algorithms are correspondence analysis, principal 

component analysis, and clustering analysis (Greene et al., 2014; Tarca et al., 2007). This 

particular thesis will be especially focused on the application of BNs, as an exploratory method 

to discover relationships and interactions within a set of genetic and epigenetic features 

considering chickens reared either under a control or a stressful condition.  

1.4. Bayesian networks. 
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BNs have been defined as graphical models that allow a concise representation of the 

probabilistic dependencies between a given set of random variables as a directed acyclic graph 

(DAG). In other words, BNs display the joint probability distribution of a given set of variables 

(Heckerman, Geiger, & Chickering, 1995; Nagarajan, Scutari, & Lèbre, 2013a, 2013b; 

Needham, Bradford, Bulpitt, & Westhead, 2007). The DAG consists of a set of nodes, 

representing each one of the variables measured to a specific experimental unit (chickens in 

the case of this thesis), and a set of arcs, edges, or links, representing the connections between 

the nodes (Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b; Needham et al., 2007). 

Considering the definition of BNs, the structure of the network is acyclic because the 

mathematical properties of a joint probability distribution cannot loop back on itself 

(Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b; Needham et al., 2007). Figure 1 

represents a simplified graphical representation of a BN, with five variables. This simple BN 

can also be seen as a family tree, where, for example, a particular node of interest can have 

parents, children, and/or spouses. Bearing this in mind, the following information can be 

extracted from the network, focusing on the “variable of interest” (Felipe et al., 2014; 

Nagarajan et al., 2013a, 2013b; Needham et al., 2007): 

- The variable of interest (VoI) has two parents, Variable 1 and Variable 2, evidenced 

by the incoming arcs from Variable 1 and Variable 2 to the VoI. 

- The VoI has one child, Variable 3, evidenced by the outgoing arc from the VoI to 

Variable 3. It is important to mention that the VoI can also have two or more 

children.  

- The VoI has one spouse, Variable 4, evidenced by the common child (Variable 3) 

shared between the VoI and Variable 4. 
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Figure 1. Direct acyclic graph. Graphical representation of a Bayesian network with 5 variables. Note 

the direction of the arrows do not represent causation, but instead a statistical relationship. (adapted 

from (Felipe et al., 2014)). 

 

BNs are based on probability theory, therefore, considering a set of variables, 

(𝑋1, 𝑋2, … , 𝑋𝑛), and the previously described DAG, the following formula can used to describe 

the network (Heckerman et al., 1995; Pearl, 1988): 

Pr(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏Pr⁡(𝑋𝑖|𝑃𝑎𝑖

𝑛

𝑖=1

) 

where n represents the number of variables, P𝑎𝑖 represents the set of parents of X𝑖 in 

the direct acyclic graph (Felipe et al., 2014; Nagarajan et al., 2013a, 2013b). A variable without 

parent/s will have a probability of its value given the null set (e.g. Pr(Xi)). Focusing on Figure 

1, the previous formula could be applied as follows (Pr stands for probability; V1, V2, V3, V4, 

and VoI represents Variable 1, Variable 2, Variable 3, Variable 4, and Variable of Interest 

respectively): 

 

Pr(V1, V2, VoI, V3, V4) = Pr(V1) Pr(V2) Pr(VoI| V1,V2) Pr(V3 | VoI, V4) Pr(V4)  

 

Variable 1 Variable 2

Variable of 
interest

Variable 3

Variable 4
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Considering the formula as well as Figure 1, V1, V2, and V4 are conditionally 

independent, while, on the other hand, VoI is conditionally dependent given the values of V1 

and V2, and V3 is conditionally dependent given the values of VoI and V4 (Felipe et al., 2014). 

Considering that BNs can be seen as a family analogy, one of their main properties is known 

as the Markov Blanket, and it allows the possibility to put the focus on a variable of interest 

(Figure 2) (Aliferis, Statnikov, Tsamardinos, Mani, & Koutsoukos, 2010; Felipe et al., 2014; 

Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b; Needham et al., 2007). This property 

uses the set of parents, children, and spouses to make the VoI completely independent from the 

rest of the variables that do not belong to the Markov Blanket (Aliferis et al., 2010). Figure 2 

shows a BN composed by 9 variables (including the VoI) and 8 arcs between the given set of 

variables. Applying the Markov Blanket property to the VoI allows the possibility to reduce 

the number of nodes related to a particular variable (the VoI in this case): 4 out of 8 variables 

are closely associated to the VoI, while Variables 5, 6, 7, and 8 (grey nodes) do not have any 

possible interaction with VoI. In this thesis, working with the Markov Blanket property 

represents the possibility to further reduce the number of genetic features associated with the 

stress condition. 
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Figure 2. Bayesian network and the Markov Blanket property. The BN is composed by 9 

variables and 8 arcs between them. The Markov Blanket property was applied to the Variable of 

interest (VoI; nodes belonging to the Markov Blanket of VoI are highlighted in blue). This property 

uses the set of parents (Variable 1 and Variable 2), children (Variable 3), and spouses (Variable 4) to 

make the VoI completely independent from the rest of the network. Note the direction of the arrows 

do not represent causation, but instead a statistical relationship. Yellow node = Variable of Interest, 

blue nodes = Markov Blanket of the VoI, grey nodes = nodes that do not have any possible interaction 

with the VoI.  

 

In terms of the applications of BNs, they can be used with three different goals: i) 

structure learning, ii) parameter inference, and iii) variable inference. The first application of 

BNs is related to learning the structure of the network itself. The structure of the network can 

be learnt using previous knowledge and expert opinions, it could be learnt from the data 

themselves, or a combination of both approaches (Heckerman et al., 1995; Milns, Beale, & 

Smith, 2010; Needham et al., 2007; Parsons et al., 2005).  This application of BNs allows the 

possibility to extract crucial information from the overall structure of the network, initially 

identifying relationships and interactions between variables (Balov, 2013; Hidano et al., 2015; 

Li, Wu, Zhang, & Yang, 2010). In the field of genetics and epigenetics, relationships between 

variables can be useful to reveal or understand gene pathways, as they could bring light into 

Variable 1 Variable 2

Variable of 
interest

Variable 3

Variable 4

Variable 5Variable 7

Variable 6 Variable 8
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new associations between genes related to particular metabolic processes (Balov, 2013; Li et 

al., 2010). Another useful application of structure learning is the implementation of the Markov 

Blanket property as an approach to identify highly connected nodes or to focus on a particular 

node of interest, potentially considering these highly connected nodes as relevant for a 

particular condition (Li et al., 2010; Xia et al., 2019). The next application is parameter 

inference, that refers to the process of learning the conditional probabilities of a BN given the 

data and/or prior information. Bearing in mind the formula previously described, the 

probability of each node is calculated based only on the probabilities of its parent nodes. When 

all the parameters (probabilities) are learnt, Conditional Probability Tables can be built for 

local nodes and for the global structure of the BN (Heckerman et al., 1995; Kyrimi et al., 2021). 

This application is also referred to as parametrization of the network, and once it is done, the 

last application can be used: variable inference. This particular application is based on a 

particular piece of evidence, and it allows the possibility to query the BN according to the given 

evidence. For example, and as a hypothetical case, the structure of the BN involves variables 

related to heart attacks, such as hypertension, smoking, obesity, physical exercise, among 

others, and a particular piece of evidence corresponding to a patient indicates that they suffer 

from hypertension. Providing the network with this piece of evidence (hypertension = yes), the 

rest of the BN will display the conditional probabilities for each node, with special emphasis 

on heart attack, potentially increasing the probabilities of suffering a heart attack (Kyrimi et 

al., 2021; Nagarajan et al., 2013a, 2013b).  

1.5. Bayesian networks and their application in poultry science. 

 

BNs analyses have been applied in different aspects of poultry industry. Previous 

studies can be divided into two main categories, whether the aim of the study was focused on 

the individual (e.g., chickens or quail), or whether the focus was on the poultry industry itself 
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(e.g., overall structure of the poultry industry or the food chain management). This section will 

try to give an overall view of how BNs have been implemented in different aspects related to 

poultry science. 

Considering the three types of applications of BNs, most the studies focused on learning 

the structure of the BNs. Researchers were looking to get insights into the relationships and 

interactions between a wide variety of variables. Variables involved were related to egg 

production (Felipe et al., 2014), gene expression (Hidano et al., 2015; Li et al., 2010), 

antimicrobial resistance (Hartnack et al., 2019), housing systems and management (Comin, 

Jeremiasson, Kratzer, & Keeling, 2019; Hartnack et al., 2019). The other application of BNs 

in poultry studies was to build an expert system, learning the structure of a BN with a given set 

of variables and data points, and then using it with new entries (combining structure learning, 

parameter inference, and variable inference). These expert systems were built to make 

decisions such as classifying the egg freshness (Soltani & Omid, 2015), predicting the apparent 

metabolizable energy of the food (Alvarenga et al., 2021), or predicting the condemnation risk 

of a flock (Lupo et al., 2013). Among the studies, there were those evaluating the performance 

of BNs and comparing it to other machine learning tools utilised, based on some performance 

parameters (Felipe et al., 2014; Long et al., 2009; Parsons et al., 2005; Soltani & Omid, 2015). 

The BNs were compared to some commonly used models, such as linear regression, SPV, 

ANN, Naïve Bayes, and decision trees (Felipe et al., 2014; Long et al., 2009; Soltani & Omid, 

2015). Additionally, one study compared BNs with other two complex models implementing 

Markov chain Monte Carlo and simulations (Parsons et al., 2005). Regarding the aims of the 

studies, they were varied in nature: some studies evaluated the performance of BNs as machine 

leaning tools, testing BNs as models to predict the outcome of new entries  and compare its 

performance with other methods (Felipe et al., 2014; Long et al., 2009; Parsons et al., 2005; 

Soltani & Omid, 2015). Other studies had the aim of getting insights into a particular field of 
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research, mostly focusing on the structure of the BN and the unravelled informative interactions 

and relationships between the variables (Comin et al., 2019; Hartnack et al., 2019; Hidano et 

al., 2015; Li et al., 2010).  

Before learning the structure of the BNs, some of the studies required pre-processing 

of the data using discretization methods, dimensionality reduction, and the creating of lists of 

arcs to be blocked. For example, Hidano et al. (2015) when studying antimicrobial resistance, 

the phenotypes associated to antimicrobial resistance were coded as a binary variable (high-

resistance or low-resistance) (Hidano et al., 2015). Long et al. (2009), when evaluating the 

performance of BNs, Naïve Bayes, and ANN, discretized the class, mortality of chicks, into 2, 

3, 4, 5, and 10 categories based on a k-means algorithm. Similarly, Lupo et al. (2013) 

discretized some continuous variables into two-state categories (low or high), while others 

were discretized following either a decision tree or a k-means algorithm (Long et al., 2009; 

Lupo et al., 2013). Due to the dimensionality of the initial datasets, some of the studies utilised 

feature selection algorithms to select highly important variables to the class (Long et al., 2009; 

Soltani & Omid, 2015). These algorithms implemented either a correlation-based (Soltani & 

Omid, 2015) or an information gain-based feature selection algorithm (Long et al., 2009). 

When working with correlation, researchers were looking for variables highly correlated with 

the variable of interest (but low correlation values between variables); while the information 

gain algorithm was based on the difference in entropy before and after removing a particular 

variable associated with the class (Long et al., 2009; Soltani & Omid, 2015). Some researchers 

in their studies created a list of arcs to be blocked based on prior knowledge before learning 

the structure of the BNs. The aims were i) to block arcs between variables that did not have a 

biological meaning or could not be possible from a biological point of view, and ii) to simplify 

the network (Faverial, Cornet, Paul, & Sierra, 2016; Hidano et al., 2015). Finally, in terms of 

the software used to learn the BNs, some studies used programming languages such as 
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MATLAB or R (with R packages “bnlearn” and “abn” commonly used) (Alvarenga et al., 

2021; Felipe et al., 2014; Hartnack et al., 2019; Hidano et al., 2015; Long et al., 2009), while 

others implemented software such as WEKA  or Norsys Software of Vancouver (Parsons et 

al., 2005).  

The following two section will describe more in depth the previously mentioned 

studies. 

1.5.1 Individual animal level studies. 

 To start with those studies focused on individuals, Felipe and colleagues (2014) were 

interested in comparing the efficiency of different machine learning techniques, such as BNs, 

a regression model, and artificial neural networks, to predict the total egg production of 

European quail (Felipe et al., 2014). A set of variables, available on two different lines of 

female quail, combining productive and egg quality traits were used as a dataset. Productive 

variables included body weight per week from birth to 35 days of age, weight gain from birth 

to 21 days of age and from 21 to 35 days of age, age at first egg and number of eggs produced 

from 35 to 80 days of age. The variables related to the egg quality, measured in four different 

age points, included egg weight, yolk weight, egg white weight, eggshell weight, and egg 

specific gravity (Felipe et al., 2014). Additionally, they included the total egg production, 

considering the number of eggs produced from 35 to 260 days of age as the variable of interest 

for the model. The authors built two independent networks for each one of the lines using 31 

variables in total. Even though the overall structure of the networks corresponding to each line 

were different, total egg production was, on the one hand, only conditionally dependent on the 

number of eggs produced from 35 days old to 80 days old, and on the other hand, it was 

independent from the rest of variables considered for the model (Felipe et al., 2014). The 

authors were able to discover the variable that can be used to predict the total egg production 
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of European quail together with the fact that the other productive variables are not of 

importance for predicting the number of eggs a quail will be producing.  According to the 

authors, BNs could be a useful tool to establish associations between variables in a more 

comprehensive approach (Felipe et al., 2014).   

Two studies were carried out in a field similar to the one being explored in this thesis: 

genetics. Long and colleagues (2009) studied SNPs and their relationships with mortality 

(Long et al., 2009). In this study, BNs, together with Naïve Bayes and Artificial Neural 

Networks, were utilised to select a set of SNPs associated with mortality. Initially, mortality (a 

continuous variable) was categorized into a multiclass variable by the application of a k-means 

algorithm, setting the numbers of categories or classes to 2, 3, 4, 5, and 10. Thereafter, the 

selection of the SNPs was done by a two-step approach, initially filtering a total of 5000 SNPs 

to a set of 50 informative SNPs considering the multiclass mortality variable. This set of 50 

informative SNPs were further used to identify SNPs in close relationship with mortality by 

applying BNs, Naïve Bayes, and Artificial Neural Networks algorithms. Naïve Bayes can be 

considered as part of BNs, as it is also based on probability theory. The main difference 

between these two techniques is that Naïve Bayes assumes that all variables are independent 

from each other, and even though this assumption is not always true in real data, the algorithm 

is often used with good performance (Domingos & Pazzani, 1996; Kelemen, Zhou, Lawhead, 

& Liang, 2003; Long et al., 2009).  Among the three algorithms, Naïve Bayes, with 2 or 3 

mortality classes had the best performance in identifying SNPs in close relationship with 

mortality. While the study was focused on comparing the overall performance of different 

machine learning algorithms to select a set of relevant SNPs, the identified SNPs could be 

further used in genomic studies, especially those focused on quantitative traits associated to a 

single modification of the DNA sequence.  
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The other study related to the poultry genetics was aimed at unravelling relationships 

and interactions between genes previously known to be part of fatty acid metabolism, in 

addition to identifying the main genes with relevant effects on the metabolic path (Li et al., 

2010).  Li and colleagues (2010) measured the expression levels of a set of genes associated 

with the metabolism of fatty acids. The selected genes were divided into 4 major categories 

considering the role in the metabolism of fatty acids (Li et al., 2010): 

- Genes related to fatty acid anabolism: Thyroid hormone responsive spot 14 

(THRSP)  and ,fatty acid synthase (FAS), glutathione S-transferases, pyruvate 

kinase (PK). 

- Genes involved in fatty acid catabolism: adenosine monophosphate-activated 

protein kinase (AMPK) subunits 2 and 3, acetyl-coenzyme A carboxylase (ACC), 

leptin, leptin receptor (LEP-R), lipoprotein lipase (LPL), and carnitine 

palmitoyltransferase 1 (CPT-1). 

- Genes related to fatty acid transportation: liver-type fatty acid-binding protein (L-

FABP), heart-type fatty acid-binding protein (H-FABP), uncoupling protein (UCP), 

apolipoprotein B (Apo-B). 

- Genes related to fatty acid growth axis: growth hormone (GH), growth hormone 

receptor (GHR), and insulin-like growth factor (IGF) 1 and 2. 

Once the structure of the BN was learnt, the authors focused on the overall structure of 

the network, identifying two genes at the top of the cascade, THRSP  and , as well as a major 

node of interest, H-FABP, being connected to seven other genes (two parents, PK and L-FABP; 

five children, UCP, AMPK2, LPL, ACC, and AMPK3). The approach implemented by the 

authors allowed them to focus on the paths or the topological ordering of the nodes, considering 

the direction of the arcs, as well as the identification of a relevant gene in the metabolism of 
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fatty acids  (Nagarajan et al., 2013a, 2013b). The authors gained insights into the interaction 

among the selected genes as well as a global overview of the metabolism of fatty acids (Li et 

al., 2010). 

As a bridge between the two types of studies (individual-oriented vs poultry industry-

oriented), Soltani and Omid (2015) focused their study on eggs, with the aim of building a 

useful system to inspect the freshness of eggs at different storage periods. The authors were 

looking for a system that combines the following characteristics: cheap, simple, rapid, non-

destructive, and non-harmful (Soltani & Omid, 2015). As a first step, a set of variables were 

selected, identifying those that were contributing the most to the class while removing the 

irrelevant ones. A correlation-based feature selection algorithm was applied in order to select 

those variables that were highly correlated with the class, but with low correlation between the 

variables. The final set of variables consisted of dielectric measurements as a way to assess the 

quality of eggs, some traits related to egg dimensionality (e.g., volume and diameters) and 24 

variables related to the air cell height (Soltani & Omid, 2015). The dataset was then divided 

into a training set and a test set, and several machine learning algorithms were tested, including 

BNs. Independently of the used searching algorithm (6 in total), BNs achieved a 100% 

accuracy in predicting the class. Together with two other machine learning methods, artificial 

neural networks and support vector machines, BNs had the highest performance. The authors 

concluded that BNs, as well as artificial neural networks and support vector machines, can be 

used as decision-making systems to predict egg freshness in a non-destructive approach 

(Soltani & Omid, 2015).  

1.5.2 Industrial level studies. 

In terms of BNs and their application in poultry-related studies, findings have been 

reported in a broad spectrum of fields. Among the studied, four main topics can be identified: 
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i) potentially harmful microorganisms and their association with risk assessments and 

antimicrobial resistance (Hartnack et al., 2019; Hidano et al., 2015; Parsons et al., 2005); ii) 

nutrition and the food chain processes related to meat products (Alvarenga et al., 2021; Lupo 

et al., 2013); iii) management of poultry industry (Comin et al., 2019); and iv) poultry green 

wastes and their impact on soil (Faverial et al., 2016).  

To begin with, it is important to mention that harmful microorganisms are a source of 

concern in the poultry industry as they represent a threat to animal and human health as well 

as to the world-wide economy. A study carried out by Parsons and colleagues (2005) was 

focused on quantitative risk assessment, looking for probabilistic approaches to deal with 

uncertainty in order to make decisions. Even though the authors were interested in 

implementing three different methods, BNs being one of them, their approach to BNs is worth 

mentioning. Initially, they built a network considering prior knowledge provided by experts in 

the field of poultry industry and microbiology. Thereafter, the quantification of the parameters 

corresponding to each node was not feasible due to the lack of data sets with the required 

information. However, the authors combined data to individually learn the parameters for each 

node; data were collected from publicly available data sets, industry surveys, unpublished 

sources as well as expert opinions. Once the network was learnt, it was used as an expert system 

to infer the output of according to different pieces of evidence. For example, the network 

revealed that a lack of hygiene in multiple steps would lead to contamination and cross-

contamination, with a higher probability of transporting contaminated animals. The 

contamination of the surface of eggs can be controlled by the disinfection with formaldehyde 

(Parsons et al., 2005).   

Another main issue faced by the poultry industry with harmful impacts on the health of 

animals and human beings is antimicrobial resistance (Hartnack et al., 2019; Hidano et al., 

2015). In this field, BNs approaches have been applied in both farms and poultry meat, so as 
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to gain further insights into antimicrobial resistance from two different but complementary 

perspectives. Hartnack and colleagues (2019) focused on a larger scale, as they worked with 

poultry farms and two different categories of variables, risk factors and antimicrobial 

resistance. Risk factors included variables such as the gender of the manager, the 

presence/absence of pets, the size of the farm, the housing system, whether the egg trays were 

re-used, the vaccinator in charge of the vaccination protocols, and the way dead birds were 

discarded. The antimicrobial resistance was measured in faeces against 7 antibiotics. Hidano 

and colleagues (2015), on the other hand, focused on domestic poultry products, such as meat 

and offal samples, and their antimicrobial susceptibility to antibiotics. Once defined the 

antimicrobial phenotypes, the expression of particular antimicrobial genes was measured. Even 

though the relationships and interactions between variables were complex, further insights into 

risk factors, antibiotic phenotypes, and antibiotic resistance genes were discovered and 

unravelled. Focusing on farms, the probabilities of ampicillin resistance were higher when the 

vaccines were not administered by a private service (Hartnack et al., 2019). When talking about 

antimicrobial resistance genes in poultry products, the BNs revealed interactions between the 

genes associated to antimicrobial resistance. This fact led the authors to consider the increase 

of antimicrobial resistance as systematic, by combining the effects of multiple genes given the 

discovered informative interactions and relationships, instead of at random (Hidano et al., 

2015). Even though both studies highlighted the exploratory nature of the research, authors 

mentioned the importance of further research in fields such as bacteriology, ecology, and 

epidemiology, as a key aspect to have a better understanding of antimicrobial resistance 

(Hidano et al., 2015).  

Following up with the next poultry science topic, even though the studies are not strictly 

related, they are contributing to understanding the food chain process of poultry meat, from the 

moment birds are fed until they are slaughtered. Nutrition of poultry species is one of the main 
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factors influencing the productive performance of broilers (Luna et al., 2019). The quality of 

the feed provided to broilers is crucial to properly gain weight, and it mostly depends on the 

apparent metabolizable energy associated with the availability of nitrogen (Alvarenga et al., 

2011; Alvarenga et al., 2021). Alvarenga and colleagues (2021) mention that there are two 

possible ways to evaluate the energy content of the feedstuffs, either by chemical and biological 

testing (as well as the composition of nutritional tables when available), or by the application 

of statistical tools to predict the energy content depending on the chemical composition of the 

feedstuffs (Alvarenga et al., 2021).  As an alternative to other methods, the authors applied 

BNs with the aim of predicting the values of metabolizable energy. To learn the structure of 

the network they included the content of crude proteins, ether extract, ash, crude fiber, the 

source of energy and protein (e.g., corn or soybean, respectively), the poultry species, and the 

values of apparent metabolizable energy. The overall structure of the network unravelled that 

all variables were in close relationship with the apparent metabolizable energy, leading the 

authors to the conclusion that the model is appropriate to calculate the energy content of 

feedstuffs. As a next step in the poultry food chain, before and after chickens are slaughtered, 

they go along an inspection in the search of abnormalities, dirtiness, or unhealthy birds, and 

the health status of the whole flock. All the information collected is also known as Food Chain 

Information. Lupo and colleagues (2012) were looking for an expert system that would allow 

them to classify the flocks into risk categories, based on the Food Chain Information. 

According to the authors, developing a decision-making tool would help the inspectors to adapt 

the sanitary inspection to a particular type of flocks (Lupo et al., 2013). The variables were 

divided into technical characteristics, such as the genetic strain, the density of the flock, the 

average weight of birds, among others; and into diseases and losses characteristics, such as 

digestive, respiratory or locomotory disorders, mortality, stress, among others. A variable 

extracted from previous records in relation to the condemnation proportion of previous flocks 
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was also included when learning the structure of the network (Lupo et al., 2013). In regards to 

the insights, the condemnation risk class was in close relationships with all the variables 

included in the network. However, the authors identified that three main variables contributed 

the most to condemnation of the flocks: mortality during the last seven days of rearing, health 

disorders during the last week of rearing, and the average weight at slaughter. Even though the 

authors highlighted that the tool did not have an overall good performance, it could be initially 

utilised to have a better interpretation of the whole process of Food Chain Information (Lupo 

et al., 2013).  

Following with poultry industry, Comin and colleagues (2019) applied a BN approach 

so as to have a broad overview of the poultry production practices, management, and welfare 

status of poultry industry, focusing on some of the aspects of poultry industry, such as the 

housing system, the facilities, the management, and the welfare of commercial laying hens 

(Comin et al., 2019). The variables included in the analysis were: outer and inner biosecurity; 

the condition of the room where the packaging takes place; the lighting conditions and the 

quality of the air where animals are bred; the management of water; the quality and condition 

of the furnishing and litter; whether the barn was in compliance with the law and had an alarm 

system; whether the owner had a logbook with a summary of the number of eggs collected, the 

number of culled birds and the vaccination routine; the condition of feathers; and the 

occurrence of mites. The authors also included other variables such as whether the flock 

belonged to organic production, the size (number of birds) and age (in weeks) of the flock, the 

average monthly mortality, and the type of housing, whether the flock was raised in enriched 

cages, single or multi-tier systems (Comin et al., 2019). It is important to mention that a single-

tier system only has one level above the ground floor, while the multi-tier system has up to five 

different levels above the ground, where birds can find nests, food, drinkers, perches to rest 
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during the night, among others. The authors came to the following conclusion after 

understanding and interpreting the network (Comin et al., 2019): 

- Outer biosecurity and keeping records of collected eggs, culled birds and 

vaccination protocols would probably be classified as unsatisfactory for organic 

production. Organic production was associated with smaller flock sizes as well as 

unsatisfactory furnishing and litter conditions.  

- Enriched cages were associated with a high presence of external parasites, better 

water management and air quality, and negatively associated with the mortality of 

the flock. 

- Single-tier housing systems were associated with a smaller flock size as well as with 

a satisfactory lighting condition, when compared with multi-tier systems. 

The authors gain valuable information from the network, not only for managerial and 

welfare aspects, but also for the consequences of the welfare program as well as the specific 

requirements for each particular housing system. According to the authors, better air quality 

associated with enriched cages might be related to the absence of deep litter and bacteria 

contributing to the production of ammonia. The reduced number of dead individuals in 

enriched cages might be related to the lower pressure of bacteria as well as parasites in this 

type of housing system. Age was only associated with feather condition, which relates to the 

fact that as birds get older, the feathers become worn. Even though some connections might be 

hard to unravel, such as the ones between environmental-based welfare conditions (lighting 

and air quality) and the managerial and housing variables, the authors suggested that improving 

the lighting system and taking extra care of the management of litter would have a positive 

impact on the environmental-based welfare indicators. The results obtained from this particular 

study can be used to understand the relationships among several aspects of poultry industries, 
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considering not only the health and welfare implications but also the insights into management 

and infrastructure of breeding laying hens with commercial goals (Comin et al., 2019).   

One last BN approach to poultry industry was the one reported by Faverial and 

colleagues (2016). This particular study is focused on the manures and green wastes of some 

industries, poultry industry being one of them. The aim of the study was to identify factors and 

processes affecting the quality of composts, specially under tropical weather conditions. 

Faverial and colleagues divided their variables of interest into 3 main categories: 1) the type of 

manure, whether it came from cattle, goat, horse, or poultry litter; 2) the value of co-composting 

with a bulking agent, whether the manure includes green wastes or not; and 3) whether 

earthworms are included or not during the stabilization phase (phase that takes place after the 

thermophilic phase). Additionally, explanatory variables were included, such as the length of 

the thermophilic phase, the stabilization method, the pH, the content of total carbon, nitrogen, 

lignin, phosphorus, and potassium (measured at the initial blend, at the end of the thermophilic 

phase and at the end of the stabilization phase), and the mass losses of the same nutrients 

(carbon, nitrogen, lignin, phosphorus and potassium) measured at the end of the thermophilic 

and the stabilization phase (Faverial et al., 2016). A total of four BNs were built, divided into 

two groups: the first group of 2 BNs were related to organic material, including total carbon, 

lignin, and nitrogen content as variables. The second group of 2 BNs were related to the nutrient 

content, including nitrogen, phosphorus, and potassium content as variables. These two groups 

of 2 BNs were further divided into two individual networks, one for the thermophilic phase 

and another for the stabilization phase. As for the insights, the authors could extract crucial 

information: for both phases (thermophilic and stabilization) the final properties depended on 

the initial status and the effects of mass losses on the concentrations; the losses of contents 

were associated with each other, except for nitrogen, which content was not actually related to 

the loss of nitrogen itself but it was affected by the initial content of total carbon (during the 
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thermophilic phase); vermicomposting did not affect the losses of the final levels of the 

analysed properties. The length of the thermophilic phase was linked to the initial total carbon 

and the pH; co-composting was positively related to the length of the thermophilic phase (via 

the initial total carbon and the pH); co-composting also positively affected the mass, total 

carbon, and the losses of potassium via the pH, but negatively affected the initial phosphorus 

content. Even though the interrelationships might be complex, Faverial and colleagues could 

identify that the concentration effects and the quality of the raw material were the principal 

factors affecting the organic material and the nutrient content in addition to the stability of the 

final compost. Additionally, co-composting of manures and green wastes attenuated the effects 

of tropical climate on the losses of organic material by enhancing the content concentrations 

(Faverial et al., 2016).  

The previous subsections gave an overall view of the current state of the applications 

of BNs in poultry science. The studies are varied in nature, using different types of variables 

to learn the structure of BNs, having different aims and scopes, and showing different findings. 

Researchers gained insights into their corresponding field within poultry science. Of particular 

interest for this thesis, the study developed by Li et al. (2010) is in a similar field of research 

as the one presented here, using a structure learning approach to BNs to learn informative 

relationship and interaction between a given set of genetic features.  

1.6. Final considerations. 

 

As previously described, BN approaches have been applied to gain further insights into 

several and varied aspects of poultry science. Researchers explored a variety of contexts, with 

different aims, and, in terms of the data, different types of variables. The applications involved 

both types of machine learning techniques: i) supervised, to classify or predict the outcome of 

a model, and ii) unsupervised, to understand complex relationships and interactions between a 
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given set of variables. Although BNs have many advantages and implications, they also have 

limitations and drawbacks. Some of the studies mentioned in the previous section highlighted 

that the quality and the quantity of the data have been identified as a one major issue when 

working with BNs (Hartnack et al., 2019; Hidano et al., 2015; Lupo et al., 2013; Parsons et al., 

2005). In this regard, using relatively small number of data points will find some links but 

unfortunately will not find all possible links between the given set of variables. Even though 

this is one of the limitations of BNs, those links that are found while searching the space are 

actually true accurate links (Yu, Smith, Wang, Hartemink, & Jarvis, 2004). Researchers also 

raised some concerns about dealing with missing data as well as the size of the datasets, 

especially when learning the structure of the BNs. (Hartnack et al., 2019; Lupo et al., 2013). 

Additionally, the discretization of the data into categories was also mentioned as one of the 

drawbacks of BNs, and according to the authors, it is one important factor to bear in mind when 

applying this method (Comin et al., 2019; Hartnack et al., 2019; Hidano et al., 2015; Parsons 

et al., 2005).  

In regard to this particular thesis, BNs will be applied in the field of genetics and 

epigenetics to unravel potential relationships and interactions between genetic features and a 

stressful condition in a poultry animal model: chickens. Identifying hallmark genetic features, 

such as genes, or particular DNA regions with epigenetic modifications, in close association 

with a stressful condition will contribute to a better understanding of the stress phenomenon, 

highlighting genetic/epigenetic elements that might be involved in stress resilience or stress 

resistance. It is important to mention that the nature of this thesis is mostly exploratory; 

however, the knowledge could be the used as the starting point of future poultry science 

research. The knowledge discovered throughout this thesis could have several implications in 

the short-term as well as in the long-term working towards improving the welfare and the health 

of chickens under commercial conditions. The identified genes can be used as genetic 
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indicators of stress, including a new perspective to the already existing set of nervous, 

hormonal, immunological, digestive, behavioural indicators, evaluating a bigger picture of the 

stress phenomenon.  In the long term, genes can be part of artificial selection and breeding 

programs, potentially working towards stress resistance or stress resilience breeds of chickens 

that would be physiological better prepared to deal with challenging events related to the 

poultry breeding condition, and consequently, improving the welfare of chickens under those 

conditions.    
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2. Objectives and Hypothesis. 
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2.1. Hypothesis. 

The exposure of chickens to stress has an impact on several systems within the biology 

of the organism. Different high-throughput technologies quantify genetic/epigenetic features 

between non-stressed and stressed chickens, identifying hundreds of thousands of these 

features. Dealing with large amount of data demands accurate tools to reduce the 

dimensionality, a required step prior learning the structure of BNs. 

Bioinformatic techniques allow the possibility of identifying a set of genetic features 

with different patterns between non-stressed and stressed chickens. Thereafter, the search space 

is ready to implement BN algorithms that can unravel hidden relationships and interactions 

between genetic/epigenetic features and a stressful condition. Furthermore, the implementation 

of the Markov Blanket property of BNs can identify a small set of genetic/epigenetic features 

closely related to the stress condition. 

The starting point of this journey is a list of hundreds of thousands of genetic/epigenetic 

features and the idea of narrowing it down to a smaller set makes it difficult to hypothesise and 

to predict the possible outcomes when it comes to the biology behind the findings. Due to the 

complexity of the stress phenomenon, the genetic features can be related to different biological 

systems, pathways, and/or processes in different cell types, tissues, and/or organs. Learning the 

structure of BNs will identify small groups of genetic/epigenetic features for further 

investigation. 
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2.2. General objective. 

Further exploration of the genetics and epigenetics behind the stress response, and 

consequently, the stress phenomenon in a poultry animal model such as the chicken can be 

crucial from different perspectives, considering the biology, the health, and consequently, the 

productivity behind it. This thesis has the overall objective of discovering and unravelling 

informative relationships and interactions among genetic features and a stressful condition in 

a poultry science context, by the application of BN approaches. The thesis will contribute to a 

better understanding of poultry genetics and its relationship with the stress phenomenon, 

disentangling hidden patterns associated with stress resilience and stress resistance in chickens. 

Additionally, the thesis will contribute to the body of biological knowledge, especially related 

to computational biology.  

2.3. Specific Objectives. 

The specific objectives are:  

i) To outline strategies to collect, reuse, and combine publicly available genetic 

datasets from online repositories, such as Gene Expression Omnibus or 

ArrayExpress, into larger datasets. The aim is to build datasets sharing the same 

animal model, the same tissue, and the same high-throughput technology to get 

further insights into the stress phenomenon by complementing previously published 

studies. 

ii) To identify stress signals, in the form of differentially expressed genes or 

differentially methylated regions, across the previously collected datasets, by using 

bioinformatic tools. 

iii) To unravel hidden relationships and interactions between the genetic/epigenetic 

features (stress signals) and a stressful condition (when possible) by building 

probabilistic networks using a BN approach. 
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3. Methods.
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In this following chapter, a general overview of the methods implemented throughout 

the experimental chapters will be depicted. Initially, the way the data were collected will be 

described, followed by the pre-processing techniques and the combination of smaller datasets 

into larger datasets. Thereafter, the BN algorithms will be explained, concluding the chapter 

with the search for the biological interpretation of the results. 

3.1. Data collection.  

Data were collected from publicly available online repositories such as ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/) or Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/). The main goals of these repositories are, on the one hand, 

for researchers to upload their high-throughput technology experiments and make them 

available to the scientific community, and on the other hand, for other researchers to download 

and reuse them with the aim of gaining a better understanding of a particular field of interest. 

In this thesis, we used key words such as microarray, RNA-sequencing, stress, chicken, Gallus 

gallus to explore the availability of resources. Before combining data into larger datasets, the 

experimental designs as well as the tissues evaluated were taken into consideration. The 

outcomes of these searches were divided into two different databases that were explored in the 

first two experimental chapters of this thesis: the first dataset involved brain, stress, and 

microarrays, while the second dataset involved spleen, stress, and RNA-sequencing. 

Considering these two datasets, the overall aim was to focus on the stress response, and 

consequently, the stress phenomenon as it is one of the main problems that poultry industry is 

facing nowadays. When it comes to the genetic field, poultry animal models are, at a certain 

point, difficult to work with, especially considering the number of individuals that are being 

tested for differences in the gene expression patterns. Previous studies evaluated a small sample 
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of individuals together with multiple factors, such as stress and domestication or stress and an 

immune challenge (Ericsson et al., 2016; Guo et al., 2020; Pértille et al., 2020). In terms of 

data, these two facts (small number of samples and multiple experimental factors) further 

reduce the amount of data available, bearing in mind all the possible combinations of levels 

belonging to different factors. Comparing stress with cancer, for example, there are more 

studies and more data available to collect and combine into larger datasets, but unfortunately, 

it is not the case for chickens. Even though BN algorithms can be applied in datasets with few 

data points, the aim of building larger datasets was to augment the number of observations as 

long as they share the same animal model (the chicken), the same tissue, and the same high-

throughput technology. This will allow the possibility of increasing the robustness of the 

outcomes as well as identifying strong signals across studies, complementing the findings of 

previous studies. The dataset explored in the third experimental chapter was provided by one 

of the academic partners of the ChickenStress European Training Network, the Linköping 

University, Sweden. The data can be accessed through from the European Nucleotide Archive 

(ENA, www.ebi.ac.uk), under the accession number PRJEB34868. The dataset involved brain, 

stress, and epigenetic changes measured as the addition of methyl groups to particular regions 

of the genome.  

Regarding the software, R and Rstudio were used to perform the pre-processing of the 

files, the bioinformatic analysis, and the visualization of the results. R packages forming part 

of Bioconductor – The Open-Source Software For Bioinformatics – were used with the aim of 

importing, pre-processing, and extracting the differentially expressed genes or the expression 

values of the corresponding genes. R packages related to network visualisation, such as 

“bnlearn”, “Rgraphviz”, “igraph”, or “ggraph” were used with the aim of plotting the outcome 

of the BN algorithms (see section 3.3 below). The details and specificities of the arguments 

used for each case will be mentioned in the corresponding experimental chapters. R and 
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RStudio were also used to import and pre-process the files corresponding to the BN algorithms 

outcomes. R packages such as “tidyverse” and “stringr” were used to pre-process the files.  

3.2. Data discretisation and the creation of a list of arcs to be 

blocked. 

Once the data are in place and before learning the structure of the BNs, variables are 

usually discretised into a reduced number of discrete states. Discretising the data into a reduced 

number of states can be considered as an appropriate strategy when dealing with complexity, 

uncertainty, and non-linear relationships (Milns et al., 2010; Mitchell, Wallace, Smith, 

Wiesenthal, & Brierley, 2021; Nojavan, Qian, & Stow, 2017; Yu, Smith, Wang, Hartemink, & 

Jarvis, 2004). Different types of discretisation methods as well as different number of discrete 

states have been explored. The two most common types of discretisation methods are interval 

(or equal interval) and quantile (or equal quantile) (Figure 3). The main difference between 

them is the way data are distributed into the new states: while equal interval divides the data 

into bins of the same range of values (Figure 3, panel A), equal quantile divides the data into 

bins containing the same number of observations (Figure 3, panel B) (Nojavan et al., 2017).  

 

Figure 3. Visual representation of two of the most common discretisation methods. Panel A shows the 

equal interval method, which divides the data into bins of the same range of values: in this example, 

data was divided into 3 bins of same length, 5 data points were assigned to the 0-2 bin, 3 data points 

were assigned to the 3-5 bin, and 4 data points were assigned to the 6-8 bin. Panel B shows the equal 

quantile method, which divides the data into bins containing the same number of observations: 4 data 

points were assigned to each one of the three bins (0-1, 2-5, and 6-8). 
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Alternative methods have also been developed, and some other methods combine 

expert knowledge with a discretisation method (Chen, Wheeler, & Kochenderfer, 2017; 

Mitchell et al., 2021). For example, when dealing with ecological data, Mitchell et al. (2021) 

used an alternative discretisation method combining expert knowledge and a discretisation 

method based on the median. Among the variables, there were different species of zooplankton 

taking values that ranged from 0 to over 100. Initially, the data were divided into two 

categories, where values equal to zero implied the absence of the species, while any other value 

represented the presence of the species. This strategy could be considered as a binary 

discretisation method, where data are divided into two possible categories depending on their 

values. The next step was to further divide the data assigned to the presence category into two 

new categories: low counts and high counts depending on the value of the median (Mitchell et 

al., 2021).  

Despite the discretisation method implemented, discretising continuous data into 

discrete states has advantages and disadvantages. One of the main drawbacks is losing 

information as a consequence of reducing the range of values to a relatively small number of 

states present in the data. However, the advantages of reducing the number of states lies on the 

possibility of increasing the statistical power, reducing noise, and making the process 

computationally less expensive (in terms of time needed to perform the analysis) (Heckerman 

et al., 1995; Milns et al., 2010, Apendix A and B; Yu et al., 2004). It is important to highlight 

that, when possible and if the data and/or previous knowledge allow it, it would be preferable 

to implement a discretisation method that divides the data into evenly distributed categories, 

such as the one implemented by equal quantiles. Previous studies suggest that statistical power 

would be increased at the point of finding the probabilistic relationships between a given set 

of variables when data are equally distributed among the categories, in addition to the 

previously mentioned reduction of noise (Heckerman et al., 1995; Milns et al., 2010, Apendix 
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A and B; Yu et al., 2004). Additionally, dividing the data points using equal quantiles is a better 

way to deal with the presence of outliers, considering that they will be included in either of one 

of the two extremes (for example, “low” or “high”). On the other hand, using an interval 

discretization method might consider an outlier as one of the extreme categories (for example, 

“low” or “high” with one single observation in it, the outlier), while the remaining values will 

be distributed between the other categories. However, and as previously mentioned in this 

section and in the introduction, discretizing the data is one of the main drawbacks of working 

with BNs (Comin et al., 2019; Hartnack et al., 2019; Hidano et al., 2015; Parsons et al., 2005). 

Bearing this in mind, in this thesis, the first choice was to implement a quantile discretisation 

method with three states, however, this method was not feasible to apply when working with 

the epigenetic dataset due to the distribution of the data. Therefore, a binary discretisation 

method was utilised. The details regarding the discretisation methods will be described in each 

one of the experimental chapters. 

One of the main properties of BNs is that they allow the possibility to include prior 

information in the form of either a list of arcs required to be present or a list of arcs to be 

blocked when learning the structure of the network. The former consists of a set of arcs that 

should be present in the overall structure of the network, and the information could come from 

previous studies and/or from expert knowledge. On the contrary, the latter consists of a set of 

arcs that must not be included in the overall structure of the network. In this particular case, 

the information could either come from previous studies, expert knowledge, and/or from the 

implementation of a statistical tests that can identify the lack of dependencies between two 

given variables (Lupo et al., 2013; Milns et al., 2010; Mitchell et al., 2021). When a 

discretisation method is used and data are not evenly distributed into the discrete states, the 

creation and inclusion of a list of arcs to blocked when learning the structure of the BN must 

be considered, because the imbalances between the states can represent a challenge for the 
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algorithms, resulting in the discovery of relationships that should not be there as a result of an 

artefact of the algorithm itself (Milns et al., 2010, Apendix A). A previously implemented 

statistical test to create this list for discrete variables is a contingency test based on a chi-square 

test (Milns et al., 2010; Mitchell et al., 2021). The contingency test consisted on the application 

of a chi-square test to all possible pair of variables in order to obtain a measurable criteria to 

select those arcs to be banned from the network (Milns et al., 2010; Mitchell et al., 2021). A p-

value equal to or higher than 0.25 was used as a threshold to create the blacklist: the pair of 

variables showed no possible dependence between them (Milns et al., 2010; Mitchell et al., 

2021). 

3.3. Bayesian network structure learning. 

As mentioned in the introduction section, BNs can have three different types of 

applications: structure learning, parameter inference, and prediction based on a particular piece 

of evidence. In this particular thesis, among the three different applications of BNs previously 

mentioned, the main focus is on structure learning as a first approximation to the field of poultry 

genetics. Briefly, throughout the introduction section it was noted that a BN is a directed acyclic 

graph (DAG); it is acyclic because no back loops are allowed between two given variables 

(Heckerman et al., 1995; Pearl, 1988). It consists of a set of nodes, which represent each one 

of the variables, and arcs or edges establishing the relationships and interactions between them 

(Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b; Pearl, 1988). The DAG is the 

representation of the joint probability distribution of a given set of variables; in other words, 

the probabilistic dependencies between the variables (Heckerman et al., 1995; Nagarajan et al., 

2013a, 2013b; Pearl, 1988). It is possible to add some pieces of information in regards to the 

structure of BNs and the arcs between nodes: if we focus on three random variables, Variable 

1, Variable 2, and Variable 3, there are three possible but fundamental types of connections 

(Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b): 
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- Convergent connection: Variable 3 has incoming arcs from Variable 1 and 

Variable 2; Variable 3 conditionally depends on the joint distribution of Variable 

1 and Variable 2 (Figure 4, Panel A). 

- Serial connection: node Variable 3 has an incoming arc from Variable 1 and 

outgoing arcs to Variable 2, therefore the probability of Variable 3 is conditionally 

dependent given Variable 1, and the probability of Variable 2 is conditionally 

dependent given Variable 3, while Variable 1 is conditionally independent (Figure 

4, Panel B). 

- Divergent connection: node Variable 3 has outgoing arcs to Variable 1 and 

Variable 2, therefore the probabilities of Variable 1 and Variable 2 are 

conditionally dependent given Variable 3, while Variable 3 is conditionally 

independent (Figure 4, Panel C).  

 

 

Figure 4. Graphical representations of the three types of connections in Bayesian networks. Panel A: 

the graph displays the convergent connection, where variable 3 has two incoming arcs. Panel B: the 

graph displays the serial connection, where variable 3 has one incoming and one outgoing arc. Panel 

C: the graph displays the divergent connection, where variable 3 has two outgoing arcs. 

 

In terms of BN algorithms, their overall aim when learning the structure of the network 

is to identify the network that best fits the data. The algorithms implemented by BNs can be 

divided into two major categories: constraint-based or score-based (Nagarajan et al., 2013a, 

2013b). In this particular thesis, the focus was on the latter ones, the score-based algorithms. 

These algorithms are also known as search-and-score algorithms, as they use heuristic searches 

to explore the space defined by the given set of variables with the aim of identifying the highest 
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scoring network (Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b; Needham et al., 

2007). The starting point is usually a random graph that the algorithm uses to initiate the 

exploration of the search space. The score of this first network is calculated and it is then 

compared with the following network the algorithm will encounter. The algorithm will try to 

improve the score by adding, removing, or reversing an arc in the search of the highest scoring 

network. Every new network is scored, and the score is then compared to the previous best 

scoring network, with two possible outcomes: i) if the score of the new network is lower than 

the previous one, the new network is discarded, and ii) if the score of the new network is better 

than the previous network, the new network is kept. Thereafter, the process is iterated until no 

further improvement on the score is made and a global maximum is reached, representing the 

network with the highest score (Heckerman et al., 1995; Nagarajan et al., 2013a, 2013b). Some 

stopping criteria could also be used such as time spent on exploring the search space or number 

of networks visited.  

When comparing two different networks at the point of learning the structure of the 

network that best fits the data, BNs are based on the mathematics behind Bayes’ theorem, and 

the probability of a graph given the data is possible to be calculated as follows: 

Pr(G | D) = 
Pr(D⁡|G)⁡Pr(G)

Pr(D)
 

where Pr (G | D) is the probability of a graph given the data, Pr (D | G) is the probability 

of the data having been produced the graph, Pr (G) is the prior probability of the graph structure, 

and Pr(D) is the probability of the data. Comparing two networks to choose between the one 

that best fits the data, would mean: 

Pr(G1⁡|D)⁡

Pr(G2⁡|D)
 = Pr(D⁡|G1)⁡Pr(G1)

Pr(D)
Pr(D⁡|G2)⁡Pr(G2)

Pr(D)
⁄  

 where G1 or G2 represent a particular graph. 
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In order to calculate this, some assumptions can be made in order to compare the two 

graphs as follows: 

I. Both networks are learnt from the same data; therefore, the term Pr (D) 

is the same for both equations, and they can be simplified from the 

equation. 

II. All graph structures have equal probabilities; the prior probability term 

represented by Pr (G) is the same for both equations, and therefore they 

can be simplified from the equation.  

The only term that can be calculated then is the probability of the data having been 

produced by the particular graph or Pr (D | G). As previously mentioned, the algorithms 

implemented in this thesis are known as search-and-score algorithms as they use a particular 

score to measure the improvements of the BNs. For example, some scoring metrics are the 

Bayesian Information Criterion or BIC, the Akaike’s Information Criterion or AIC, the 

Bayesian Dirichlet equivalent score or BDe, the Minimum Description Length or MDL, among 

others (Lam & Bacchus, 1994; Matthäus, Smith, & Gebicke-Haerter, 2010; Yu et al., 2004). 

The differences between scores are based on the way they estimate the Pr (D | G), and therefore 

the way they define the network that best fits the data. In this particular thesis, we learnt the 

structure of BNs using the BDe score. The decision to use this score was made based on the 

work of Yu and collaborators (2004). In their study, two datasets with different number of 

observations (2000 data points vs 100 data points) were compared in terms of the arcs that the 

algorithm discovered based on two scores: the BIC score and the BDe score. When working 

with a small number of data points, the BDe score was able to identify some of the arcs (not 

the totality of them), while the BIC score did not find any of them (Yu et al., 2004). One of the 

limitations that the authors found was that the presence of false positives increased with low 

amounts of data points. However, these arcs were mostly found between nodes that did not 
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have a direct family relationship (e.g., parent nodes), meaning that the number of uninformative 

links increases. The authors discussed that the BDe score might be less conservative when 

dealing with a small number of data points, and this would be of importance for this thesis, as 

the number of observations involved in each dataset is relatively small.  

To learn the structure of BNs, two open-source software applications were used: Banjo, 

which is available for free for academic purposes 

(http://www.cs.duke.edu/~amink/software/banjo/), and the R package “bnlearn”. Banjo can be 

accessed via the terminal, and some simple command lines can be used to run the algorithms. 

The dataset is required to be a tab-delimited file, with rows representing the individuals and 

columns representing variables. On the other hand, the “bnlearn” package can be accessed by 

the software application RStudio. In general, BN algorithms apply heuristic searches with two 

possible algorithms: Greedy or Simulated Annealing, exploring the search space from empty 

or random graphs, scoring each network with different scores depending on whether the data 

are discrete or continuous. The Greedy algorithm only focuses on those arcs that increase the 

score, therefore, if an arc does not improve the score, it is fully discarded. On the other hand, 

and the main difference between the two algorithms, Simulated Annealing involves an extra 

parameter besides the score. Although the algorithm is searching for changes that increase the 

score, this extra parameter, known as temperature, represents the probability of accepting a 

particular change in the network that negatively affects the score, in other words, decreases the 

score. The higher the temperature, the higher the probability of accepting a particular arc 

(Matthäus et al, 2010). However, as the algorithm explores the search space, the value of the 

temperature tends to decrease, and as a consequence, the probability of accepting a lower 

scoring network decreases (de Campos & Huete, 2000; Liu & Bo, 2011).  
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3.4. Approaches to the consensus Bayesian network. 

Considering that BN algorithms are found using heuristic searches, that add, remove, 

or reverse arcs modifying the structure of the current network in the search of the best scoring 

network, in addition to the fact that the complexity of the search space can be influenced by 

the type and size of the data available, it is possible that different searches can have slightly 

different sets of arcs (Vogogias et al., 2018). Depending on the outcome of the search, different 

strategies can be used in order to represent the consensus BN (Vogogias et al., 2018). In some 

cases, it could be possible that the algorithm is always climbing the same hill of the search 

space, and then, the top scoring network can be used to represent the BN that best fits the data. 

In other cases, it could be possible that the algorithm is not finding the same top scoring 

network, and then in this case, the consensus BN can be represented as the n best top scoring 

networks, n being a positive number such as 10 or 100. Other search spaces can be more 

complex and therefore they might require creative strategies to overcome this problem with the 

aim of representing the consensus BN. One of the approach can be to combine different 

consensus networks (either considered as the top scoring network or the n top scoring 

networks) into weighted networks (McNally, Heeren, & Robinaugh, 2017; Vogogias et al., 

2018). Building weighted networks would mean working with a set of networks, count the 

number of times an arc was found across networks, and define a threshold to select those arcs 

forming part of the final consensus networks (McNally, Heeren, & Robinaugh, 2017; Vogogias 

et al., 2018). As another approach to complex search spaces, Milns et al (2010) implemented 

an average method taking into consideration the presence or absence of arcs coming from 

different searches and their scores. The model averaging implemented to deal with the complex 

search space compares the similarity of different networks and their scores to finally select the 

arcs belonging to the consensus BN  (Milns et al., 2010). 
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In this thesis, different approaches and strategies were used in order to deal with the 

complexity of the search space corresponding to each one of the datasets. The details and 

specificities of each one of the approaches will be mentioned in the corresponding experimental 

chapters. 

3.5. Biological interpretation of the results.  

 

In order to provide further insights into the biological meaning of the set of identified 

genes, two publicly available resources were explored: the database for annotation, 

visualization, and integrated discovery (DAVID) (Huang, Sherman, & Lempicki, 2009), and 

the National Center for Biotechnology Information (NCBI). DAVID is a bioinformatic 

resource, publicly available, that combines different sources of information, such as protein-

protein interactions, bio-pathways, GO terms, homology, literature, among many others, with 

the aim of closing the gap between a list of statistically significant genes and their functionality 

together with the biological meaning (Huang et al., 2009). A list of up to a few thousand (e.g. 

2000) genetic attributes corresponding to the genes of interest is used as the starting point. 

DAVID will then implement some algorithms to classify the genes into groups of genes that 

have similar annotation terms, determine which of these genes have overrepresented biological 

terms, and identify related annotations and terms to a particular gene (Huang et al., 2009). 

DAVID provides a useful bioinformatic resource to further explore and visualize a list of genes, 

focusing not only on individual genes, but also on groups of genes that might be functionally 

related to each other based on their annotations. The outputs of DAVID are three Functional 

Annotation Tools; in this thesis we used the Functional Annotation Chart and the Functional 

Annotation Table. The former provides a list of overrepresented annotation terms considering 

the list of genes as a whole, including the corresponding p-value and an adjusted Benjamini p-

value. The latter is focused on each individual gene, and provides their corresponding 
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annotation terms, which come from different sources of information, such as KEGG pathways 

or GO terms. 

The NCBI’s mission is “…to develop new information technologies to aid in the 

understanding of fundamental molecular and genetic processes that control health and disease 

…coordinating efforts to gather biotechnology information…” 

(https://www.ncbi.nlm.nih.gov/home/about/mission/). When looking for specific genes, it 

might provide (depending on how much research has been carried out) information such as the 

Gene Symbol and annotation, the Gene ID, the location (chromosome and specific location), 

nucleotide sequence (FASTA files), tissue where the gene is expressed, literature, possible 

interactions with other genes, among many other pieces of information. 

The biology behind the data corresponding to both genetic datasets (brain, stress, and 

microarray and spleen, stress, and RNA-sequencing) were explored initially with the DAVID 

bioinformatic tool, and then with the NCBI resource. The genetic attributes of each one of the 

genetic features were uploaded to the DAVID tool and the Functional Annotation Chart and 

Table provided by this tool were used to understand the biological functionality of the genetic 

features. Thereafter, the NCBI database was explored with the aim of getting further insights 

into the functionality of the genes, especially previously published studies that would guide the 

discussion of the findings. In regard to the epigenetic dataset, the genetic features of the 

topmost important DMRs were looked for in the NCBI database. 

  



 68 

 

4. Microarray, brain, and stress. 
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4.1. Introduction. 

 The first approximation to the genetics of the stress phenomenon in this thesis is 

explored in the brain of chickens. As a starting point, the brain is where the stress response is 

perceived, integrated, and then triggered (De Kloet, 2003; McEwen et al., 1997; Siegel, 1971, 

1995). Additionally, the central nervous system is the main point that controls, regulates, and 

modulates several processes such as memory, behaviour, processing, integration, and it plays 

a crucial role in coping or dealing with the influence of stressors (Ashley & Demas, 2017; 

Calefi et al., 2017; Giayetto et al., 2020; Kuenzel & Jurkevich, 2010; Nazar, Videla, Fernandez, 

Labaque, & Marin, 2018). Therefore, exploring the genetics of the brain under stress conditions 

might bring new knowledge, with future implications on the health and welfare of poultry 

species. 

In general, genetic studies in poultry species involved a relatively small number of 

individuals, considering that bioinformatic analysis can be implemented in a small set of 

samples with the aim of identifying differentially expressed genes between non-stressed and 

stressed birds. Although analysing the expression patterns of genes in each one of the 

experiments provides with these independent sets of differentially expressed genes, there exists 

a wealth of information that can be extracted by combining experiments that have also collected 

gene expression from the same organism and tissue. This data can augment that collected in a 

particular designed experiment, providing further information on how genes interact. In this 

context, the aims of this first approximation to the stress phenomenon were to use such an 

augmented dataset to identify a reduced number of genes associated with a stress condition in 

the brain of chickens (Gallus gallus) that interact with each other, unravelling their 

relationships and interactions by the implementation of a BN approach.  



 70 

4.2. Dataset. 

Initially, differentially expressed genes were identified in a publicly available gene 

expression dataset, consisting of data from six samples, three of them coming from chickens 

reared under control conditions, while the other three were exposed to heat stress (GEO 

accession number GSE23592). According to the experimental design, chickens were assigned 

either to a control treatment (temperature 28±1°C) or to a heat stress treatment (temperature 

40±1°C, for 3 hours), and gene expression was measured by microarray technology on brain 

samples. The R package “affy” (Gautier, Cope, Bolstad, & Irizarry, 2004) was used to pre-

process the files, to normalise, and to correct the background noise. The R package “limma” 

(Ritchie et al., 2015) was used to extract the expression values, as well as to fit a linear model 

to identify and then select probes corresponding to a set of differentially expressed genes 

(DEG). A total of 1397 probes were initially identified as differentially expressed by applying 

the function topTable, considering the adjusted P-value (false discovery rate) provided by the 

same function to be less than or equal to 0.05. However, considering that the number of DEGs 

was relatively high to implement BNs, an adjusted P-value less than or equal to 0.02 was used 

as a threshold to select the topmost highly significant DEGs (Figure 5). This cut-off constrained 

the number of significant probes to 31 for further analysis.  
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Figure 5. Number of genes as a function of their adjusted P-values. A total of 1397 probes 

with showing differential expression patterns according to the condition (control vs stress) had P-

values equal to or lower than 0.05. The red line shows the threshold (threshold = 0.02) used to select 

the 31 probes for further analyses. 

 

The initial number of individuals was enough to identify DEGs, but it was not enough 

to implement BN algorithms. Considering that bioinformatic studies in chickens are not as 

popular as other models (e.g., rodents or humans), in addition to the complexity of the 

experimental designs, the following strategy was used to increase the number of observations.  

The previously identified DEGs were traced to another four datasets that shared the same 

animal model (chickens), the same tissue (brain - thalamus/hypothalamus), and used the same 

high-throughput technology to measure the expression of genes (microarrays). Although not 

all the experiments evaluated the effects of stress (ArrayExpress accession numbers: E-MTAB-

924, E-MTAB-3319, E-MTAB-644, and E-MTAB-645), the initial set of 31 probes was used 
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as the “stress signal”. Consequently, a stress condition could not be included as a variable. The 

expression values for each gene were extracted after normalizing and correcting the 

background noise, using the R package “affy”. Thereafter, the 31 probes were annotated, and 

among the probes, there were 6 sets of 2 probes coding for the same gene (12 probes coding 

for 6 different genes; 2 “duplicated” probes x 6 genes = 12; 31 probes – 6 “duplicated” probes 

= 25 genes). The expression values coding for the same gene were averaged into one single 

value, representing the mean between the two expression values for each pair of observations. 

Before merging the five datasets into one larger dataset, and considering that each dataset 

evaluated different experimental designs, each individual dataset was discretized into three 

categories based on the gene expression values, using a quantile discretization method, to 

remove potential noise (Balov, 2013). The three categories were low, medium, or high (ordinal; 

low < medium < high), depending on the gene expression values. The final dataset consisted 

of 25 genes and 46 individuals, and it was used for further analysis. 

4.3. The Bayesian network approach. 

BNs were learnt in Banjo, available for free for academic purposes from 

http://www.cs.duke.edu/~amink/software/banjo/. The algorithm implemented in this study was 

Simulated Annealing, exploring the search space from an empty graph, and scoring each 

network with the Bayesian Dirichlet (BDe) score. Banjo allows the possibility to adjust the 

search parameters; in this particular study, the search space was explored with a total of 250 

million networks with local random moves as the proposer. An initial consensus network was 

built combining the top 100 high-scoring networks provided by Banjo. BN algorithms search 

the space based on a given set of variables, adding, removing, or reversing edges. After each 

one of these changes, the new network is scored, and its score is compared to the score 

corresponding to the previous network: if the score of the new network is higher than the 

previous network, the latter is discarded, and the process is iterated until no further 
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improvements in the score metric are made (Heckerman et al., 1995). It is important to bear in 

mind that the simulated annealing algorithm can accept networks with lower scores as it uses 

the temperature parameter (Matthäeus et al., 2010).  Considering that the process is based on 

heuristic random searches, different searches had slight differences in the final set of edges 

(Figure 6).  

 

Figure 6. Visualisation of presence or absence of arcs of 50 consensus Bayesian networks 

learnt in Banjo. The heatmap shows the arcs found by Simulated Annealing while searching the 

space, visiting a total of 250 million networks. Each column represents a consensus Bayesian network 

built by combining the top 100 highest scoring networks. Rows represent arcs found by the algorithm. 

Those arcs present in at least 50% of the networks (threshold = 25 out of 50 networks) were selected 

to build the weighted network.  

 

Therefore, a weighted network was built by combining the results of 50 consensus 

networks (each one of them built by combining 100 highest scoring networks) into a matrix 

of presence/absence: for each individual network, if an edge was present a value of one was 

assigned, while if the edge was absent, a value of zero was assigned. The values for each 

edge were added across the 50 networks; the resulting values ranged from 1 to 50. The 

weighted consensus networks were built using edges present in at least 50% of the networks 
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(25 times or more). To evaluate the consistency of this approach, it was repeated four times, 

and there were no differences in the structure of the resulting weighted networks (each 

weighted network consisted of the same set of edges). In addition to DAVID and the 

resources accessible in NCBI, the STRING database, a database of known and predicted 

protein-protein interactions (https://string-db.org), was explored to get further insight into one 

of the discovered informative relationships. Figure 7 gives the overall view of the steps taken 

and the decisions made throughout the experimental chapter. 

  

https://string-db.org/
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Figure 7. Steps taken and decisions made to build the weighted Bayesian network (BN). The starting 

point was a dataset consisting of 3 chickens under control and 3 chickens under heat stress conditions. 

Bioinformatic analyses were performed to normalize, to correct the background noise, and to identify 

differentially expressed genes (DEG). A total of 31 probes showing differential expression patterns 

were searched in four other datasets sharing the same animal model (chicken), the same tissue (brain), 

and the same high-throughput technology (microarray). Each dataset was individually discretized into 

three-state variables and then merged into a larger dataset consisting of 46 observations and 25 DEGs 

(12 probes coded for 6 genes (2 “duplicated” probes x 6 genes = 12 probes; 31 probes – 12 

“duplicated” probes = 25 DEGs); the corresponding expression values of each one of these 

“duplicated” probes were averaged into one single value by duplicated probe). The software Banjo 

was utilised to learn discrete BNs, exploring the search space with a simulated annealing and the BDe 

score, visiting a total of 250 million networks. An initial consensus BN was built by combining the 

top 100 highest scoring networks. Heatmaps were used to visualize the results different consensus 

BNs and due to variation in the final sets of arcs, 50 consensus BN were further combined into a 

weighted network, by selecting those arcs present in at least 50% of the consensus BNs (threshold: 25 

out of 50 networks). 
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4.4. Results and partial discussion. 

The overall structure of the weighted network is shown in Figure 8. The consensus 

network consisted of only 10 genes out of the initial set of 25 genes with differential expression 

patterns. Among these genes, 4 heat shock proteins (HSP; HSPH1, HSPA4L, DNAJA4, and 

HSP90B1) were identified as part of the network, interacting not only with each other but also 

with four other genes. The interaction of these other four genes, BAG3, RNPC3, CRELD2, and 

XPO1, with the HSPs might be closely related to the biological function of these proteins. HSPs 

are involved in stress tolerance and resistance, playing an important role in protecting the 

structure of other proteins such as enzymes or receptors, maintaining their functionality (Goel 

et al., 2021; Perini et al., 2021). During a stress event, especially under the influence of high 

environmental temperatures, the gene expression levels of these proteins are increased in 

several tissues such as brain, liver, lungs, heart, and breast (Goel et al., 2021; Perini et al., 

2021). It is then plausible that the unravelled interactions discovered by BNs are in agreement 

with previous studies, with the main difference that, in this study, the relationships were learnt 

from the data by using a mathematical tool represented by BN algorithms. Two genes, 

C20orf96 and TNNT3, displayed an interaction between them but did not interact with the 

HSPs. C20orf96 is an open reading frame conserved in human, mouse, chicken, and other 

animal models, that encodes a protein whose function is as yet unknown. As an additional 

pieces of evidence, the STRING database revealed a protein-protein interaction with Aprataxin 

(APTX). According to STRING, this protein plays a role in repairing single-strand and double-

strand DNA break as well as base excision, sometimes induced by reactive oxygen species. On 

the other hand, TNNT3 is a tropomyosin, a member of the tropomyosin family, and it has been 

reported to play an important role in regulating the growth of dendritic cells in the nervous 

system of Drosophila, in close association with another gene, “flamingo” (Li & Gao, 2003). 

Based on the exploratory nature of learning the structure of BNs from the data, it is important 
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to highlight the value of this identified relationship between C20orf96 and TNNT3, as it 

represents a subject for the development of further research aimed at studying the genetic 

implications of the functional interactions with APTX and flamingo. 

 

Figure 8. Bayesian network corresponding to highly significant genes related to stress. Nodes 

correspond to genes, while edges represent the relationship between genes. The network was built 

considering the edges present in at least 25 out of 50 consensus networks. Note the direction of the 

arrows do not represent causation, but instead a statistical relationship. 

 

Considering the ten genes included in the network and based on the outcomes of the 

DAVID bioinformatic tool, two terms were overrepresented within the set of genes: protein 

processing in endoplasmic reticulum (P = 0.003, Benjamini adjusted P = 0.013) and cytosol (P 

= 0.006, Benjamini adjusted P = 0.12).  Even though HSPs can be found outside the cell, 

potentially as stress signals, their biological functions are mostly developed inside the cells 

(Goel et al., 2021; Perini et al., 2021). The interactions discovered by the implementations of 

a BN approach between HSPs and the other four genes can be closely associated with the role 

of these proteins protecting the structures, and therefore, maintaining the correct functioning 

of other cytosolic proteins (Goel et al., 2021; Perini et al., 2021). Considering the individual 

annotation terms, the four genes in close association with the HSPs had terms such as protein 

folding and refolding, protein processing in endoplasmic reticulum, endoplasmic reticulum 

DNAJA4 RNPC3 HSPH1 XPO1 C20orf96

BAG3 HSPA4L CRELD2 HSP90B1 TNNT3
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chaperone complex, among others (Table 1). Taking into consideration the biological functions 

of HSPs, the unravelled informative relationships and interactions between these four genes 

and the HSPs might be relevant to the physiology of birds, especially during stress conditions, 

when maintaining the optimum functioning of the cell machinery would be crucial to deal with 

the stressor (Goel et al., 2021; Perini et al., 2021).  

Initially, and considering that the data came from experiments measuring gene 

expression in the brain, the functionality and activity of these proteins can be understood as 

brain specific. However, previous studies suggest that HSP are expressed, either down-

regulated or up-regulated, in different tissues in response to stress. Guo et al. (2020) reported 

that the exposure to stress (addition of CORT to the diet) differentially affected the gene 

expression of HSP such as HSPA2, HSPA8, HSP90AA1, and HSPH1 (the latter one also 

discovered in this experimental chapter) (Guo et al., 2020). Xie et al. (2014) also found 

differences in the expression patterns of two of the most common HSP, HSP70 and HSP90, in 

the muscle, heart, and liver when laying hens were exposed to acute and chronic heat stress 

(Xie et al., 2014). Therefore, although the findings are brain specific, it is plausible to think 

that HSP are playing a role during stress, with particular emphasis on processes such as protein 

processing in endoplasmic reticulum and maintaining the correct functioning of other proteins 

under a stress event (Goel et al., 2021; Y. Guo et al., 2020; Perini et al., 2021; Xie et al., 2014). 

 

Table 1 Functional Annotation Table provided by the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) corresponding to the Heat Shock Proteins interacting with other four 

genes. Terms particularly relevant to the stress condition are highlighted in bold. The gene symbol is 

underlined in parenthesis. 

DnaJ (Hsp40) homolog, subfamily A, member 4 (DNAJA4). 

GO TERMS Response to heat, protein refolding, negative regulation of 

inclusion body assembly, cytosol, membrane, ATP binding.  

Heat shock 105kDa/110kDa protein 1 (HSPH1) 

KEGG PATHWAY Protein processing in endoplasmic reticulum. 

Heat shock 70kDa protein 4-like (HSPA4L) 

GO TERMS Cytosol, ATP binding. 

KEGG PATHWAY Protein processing in endoplasmic reticulum. 
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Heat shock protein 90kDa beta (Grp94), member 1 (HSP90B1) 

GO TERMS response to hypoxia, protein folding, intracellular sequestering of 

iron ion, response to stress, ER-associated ubiquitin-dependent 

protein catabolic process, retrograde protein transport, ER to 

cytosol, actin rod assembly, negative regulation of apoptotic 

process, regulation of phosphoprotein phosphatase activity, 

cellular response to ATP, nucleus, endoplasmic reticulum, 

endoplasmic reticulum lumen, endoplasmic reticulum membrane, 

cytosol, plasma membrane, focal adhesion, midbody, extracellular 

matrix, endoplasmic reticulum chaperone complex, perinuclear 

region of cytoplasm, extracellular exosome. 

KEGG PATHWAY Protein processing in endoplasmic reticulum. 
In bold are highlighted particularly relevant terms to the stress condition. 

 

This study highlights the importance of interdisciplinary approaches to solve complex 

biological problems, combining genetics, bioinformatics, and mathematics. Initially, 

bioinformatics was used to identify a set of genes with differential expression patterns, 

followed by the application of BNs as a machine learning tool to unravel the relationships 

between a small set of genes, and finally, the implementation of a publicly available online 

resource for integrated discovery to understand the biological meaning of the unravelled 

interactions. It is important to emphasize the power of BNs in discovering and unravelling the 

relationships among a given set of genes from the data themselves (Heckerman et al., 1995). 

The initial step of learning the structure of the network involved a set of 25 genes, but only 10 

of them were part of the overall structure of the network. Interestingly, even though the 

remaining 15 DEGs showed differential expression patterns driven by the stress condition, they 

did not show any possible interaction between them. Additionally, within the set of interacting 

10 genes, C20orf96 is a gene whose function is not known, and the application of a BNs 

approach identified a potential interaction with a protein belonging to the tropomyosin family 

(Li & Gao, 2003). This fact also highlights that an exploratory approach with BNs can be 

implemented in knowledge discovery.  
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Even though the initial dataset used for identifying genes associated with stress had 

enough individuals to perform bioinformatic analysis with the aim of identifying genes with 

differential expression patterns driven by the exposure to the stress condition, it represented a 

small number for learning BNs. However, in our study, we overcame this challenge with a two-

step strategy: firstly, the topmost highly significant DEGs were tracked to other datasets, 

despite of the complexity of their experimental design, with the aim of increasing the number 

of observations; and secondly, each dataset was discretized into three-state variables before 

building the final dataset, with the aim of dealing with the potential noise introduced by each 

particular experimental design (Balov, 2013).  

To conclude, a multidisciplinary approach was implemented to reduce the initial 

number of genes obtained from high-throughput technologies to a small number of DEGs, 

followed by the discovery of relationships and interactions between the DEGs. The approach 

involved the combination of bioinformatics, BNs, and the DAVID bioinformatic resource as a 

database for biological knowledge discovery. The overall results showed that four HSPs have 

informative relationships unravelled by the BN, not only between themselves but also with 

four other genes, potentially highlighting their biological functions to protect the structure and 

to maintain the correct functioning of proteins within the cell. Considering the exploratory 

nature of our study, future research can be oriented to determine the discovered protein-protein 

interactions, evaluating the differences between chickens raised under control conditions and 

chickens raised under stress conditions.  
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5. RNA-sequencing, spleen, and 

stress. 
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5.1. Introduction. 

Exploring the brain as the starting point of the stress response resulted in the discovery 

of Heat Shock Protein as genes potentially crucial to deal with the influence of a stressor, 

particularly heat stress, when keeping the correct functioning of the cell machinery would be a 

key factor in this fundamental structure. Once the stressor is perceived and integrated in the 

brain, the stress response is triggered, involving a cascade of neuroendocrine responses. The 

end product of the activation of this cascade of responses is the release of glucocorticoids from 

the adrenal glands, in particular, corticosterone (Dickens & Romero, 2013; Henriksen, 

Rettenbacher, & Groothuis, 2011; Nazar, Videla, Fernandez, Labaque, & Marin, 2018; 

Romero, Dickens, & Cyr, 2009; Scanes, 2016; Zulkifli, Al-Aqil, Omar, Sazili, & Rajion, 2009). 

Corticosterone itself has a major impact on the immune system, and based on this fact, the 

immune-neuroendocrine interplay is defined as the interactions between three main systems: 

the nervous, the endocrine, and the immune system.  

Considering that corticosterone plays a role in modulating the immune responses such 

as the recruitment and mobilization of leukocyte populations, modifications of the microbial 

communities living in the gut, morphological modifications of the structure of the gastro-

intestinal tract, and the gene expression patterns, it was worth studying the genetics behind the 

stress response, and consequently, the stress phenomenon in one of the major immune organs 

in avian species: the spleen (Calefi et al., 2016; Cantet et al., 2021; Dhabhar, 2009; Elfwing et 

al., 2015; Løtvedt et al., 2017; Noguera, Aira, Pérez-Losada, Domínguez, & Velando, 2018; 

Quinteiro-Filho et al., 2010; Vandana et al., 2021; Wickramasuriya et al., 2022). The exposure 

of chickens to stress causes major changes in the spleen, as a consequence of the effects of 

glucocorticoids and also by the side effects of the activation of stress response, such as the 

imbalance between oxidant and antioxidant molecules (Hirakawa et al., 2020; Shini et al., 

2008; Van Goor et al., 2017).  
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Three studies evaluated the effects of stress on the spleen of chickens, measuring the 

expression patters between the two conditions, in addition to extra factors such as an immune 

challenge or different breeds (Guo et al., 2020; Park et al., 2019; Van Goor et al., 2017). These 

studies discovered that there were differences in several biological pathways between non-

stress vs stress chickens, such as immune pathways related to proteasome, epithelial adherent 

junctions and  focal adhesion, influenza A, lipid and glycerophospholipid metabolism 

pathways, protein processing in endoplasmic reticulum, or the regulation of CORT-induced 

stress effects on immune function (Guo et al., 2020; Park et al., 2019; Van Goor et al., 2017).  

These three studies were carried out individually, providing insights into the stress 

phenomenon in the spleen of chickens. Considering that combining data that have in common 

the same animal model and the same tissue can provide a more general overview of the same 

phenomenon as well as further insights into it, a similar approach as the one implemented in 

the previous chapter was applied. Data coming from two separate experiments were reused and 

analyzed by BNs in a multi-step interdisciplinary approach, combining the measurements of 

genetic variables in addition to bioinformatics and mathematics to understand the biology 

behind a complex biological system. Publicly available repositories were explored to collect 

data coming from two experiments where the expression values of genes were measured in the 

spleen of chickens exposed to heat stress by RNA-sequencing. Bioinformatic analyses were 

implemented to identify a set of genes driven by the exposure to the stressor, followed by 

learning the structure of a BN to display the relationships and interactions between the genes 

and the stressful condition. The structure of the network was divided into communities of 

densely connected nodes, with a special focus on the community of nodes related to the stress 

condition. Finally, the biological meaning of the discovered interactions and relationships was 

explored. 
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5.2. Dataset. 

From the previously mentioned studies (Guo et al., 2020; Park et al., 2019; Van Goor 

et al., 2017), only two datasets were available from a publicly available data repository (Gene 

Expression Omnibus – GEO), under the following accession numbers: GSE119387 and 

GSE85434. Briefly, chickens studied in the GSE119387 dataset came from two different 

regions of Ethiopia: low altitude regions are hot and humid, with chickens adapted to heat 

conditions, and high-altitude regions, on the other hand, are cooler, with chickens susceptible 

to heat conditions. The effects of heat stress conditions were evaluated in chickens coming 

from both regions, but they were raised in low altitude regions (hot and humid). Chickens 

studied in GSE85434 were exposed either to thermoneutral condition (25°C - control) or to 

thermal treatment (35°C - heat stress) for 3.5 hours. Therefore, both datasets evaluated the 

effects of heat stress on gene expression in the spleen of chickens, measured by RNA-

sequencing technologies. Each dataset was individually analyzed with the aim of identifying 

genes relevant for stress, determined by differential expression patterns between non-stress and 

stress conditions. The .txt files were downloaded, imported into R (R Core Team, 2021), and 

pre-processed using the R package “edgeR” (Robinson, McCarthy, & Smyth, 2009), 

normalizing and removing any possible background noise associated with the data. Thereafter, 

the lmfit function, from the R package “limma” (Ritchie et al., 2015), was implemented to fit a 

linear model according to the experimental design of each dataset. The eBayes function was 

applied to calculate the statistics that would identify the set of genes. Finally, the top highly 

significant genes were selected using the topTable function. A list of 677 and 483 relevant 

genes were independently identified for each dataset (Figure 9). The possibility that both 

datasets shared a common signal was examined by looking for genes in common between the 

two datasets, giving a total of 19 genes shared by the two studies, and representing a 

manageable number of variables to learn the structure of BNs.  
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Figure 9. Visualization of P-values per dataset. Number of probes (A) and genes (B) according to 

their P-values per dataset. Top: GSE119387, bottom: GSE85434; n represents the number of probes 

showing differential expression patterns (A). Shared genes by the two datasets and their 

corresponding P-values. Blue bars: GSE119383, grey bars: GSE85434. Genes are represented by their 

ENSEMBL GENE ID coded as the first three letters and the last five numbers (e.g., 

ENSGALG00000001573 is coded as ENS01573) (B). 

 

The expression values for each gene were extracted from the datasets and were used to 

create the final dataset, which consisted of 19 genes and 50 individuals. This dataset was 

discretized based on the gene expression values into three categories, low, medium or high 

(ordinal, low < medium < high), applying the function discretizeDF, within the “arules” 

package (Hahsler, Grün, & Hornik, 2005), following a quantile discretization distribution. The 

discretization of the data was implemented to reduce noise possibly related to differences 

between experimental designs as well as to increase the statistical power (Heckerman et al., 

1995; Milns et al., 2010). Once the data had been discretized, the stress condition was included 

as a binary variable, taking a value of 0 for chickens raised under non-stress conditions and a 

value of 1 for chickens exposed to the stress condition. 

5.3. The Bayesian network approach. 

To learn the structure of BNs, the software Banjo was used (available for free for 

academic purposes from http://www.cs.duke.edu/~amink/software/banjo/) (Milns et al., 2010; 
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Mitchell et al., 2021). Banjo implements heuristic searches with two possible algorithms, 

Greedy or Simulated Annealing and scoring each network with a BDe score. Banjo allows the 

possibility of selecting the top highest scoring network or combining the n top highest-scoring 

networks into one consensus network as the output. In this study, the search space was explored 

with a total of 250 million networks, using a Simulated Annealing algorithm with local random 

moves as the proposer. A consensus network was built combining the top 100 high-scoring 

networks. Considering that BNs implement heuristic searches, adding, removing, or reversing 

edges with the aim of finding the highest scoring network, the final set of edges was slightly 

different after running the algorithm several times (Figure 10).  

 

Figure 10. Visualisation of presence or absence of arcs of 100 consensus Bayesian networks 

learnt in Banjo. The heatmap shows the arcs found by Simulated Annealing while searching the 

space, visiting a total of 250 million networks. Each column represents a consensus Bayesian network 

built by combining the top 100 highest scoring networks. Rows represent arcs found by the algorithm. 

Those arcs present in at least 50% of the networks (threshold = 50 out of 100 networks) were selected 

to build the weighted network.  

 

Therefore, with the aim of finding the BN that best fitted the data, the following 

strategy was implemented to solve this challenge. The search space was explored a total of 

1000 times, resulting in 1000 consensus networks. These 1000 networks were randomly 
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divided into 10 groups of a hundred networks (10 x 100 = 1000). Within each set of a 

hundred networks, all the arcs identified among these 100 networks were used to create a 

matrix of presence/absence. Thereafter, for each individual network, if an arc was present in 

the set of arcs, a value of one was assigned; while, if the arcs was absent, a value of zero was 

assigned. Ten absence/presence matrices were further used for calculating the weight of the 

arcs: the presence/absence values of each of the arcs (either one or zero) were added across 

networks; the weight of an arc could take values between 1 and 100. Those arcs whose 

weight values were equal to or higher than 50 were selected to build the network that best 

fitted the data. To evaluate the consistency of this approach, the rest of the matrices were 

used, and there were no differences in the structure of the resulting weighted networks (each 

weighted network consisted of the same set of edges). Once the consensus BNs were built, a 

further step was taken using the structure of the networks to implement a community 

analysis. The aim of this community analysis is to identify clusters of nodes densely 

connected amongst themselves but scarcely connected with nodes between clusters (Newman 

& Girvan, 2004). The approach utilised is similar to the one used when performing cluster 

analysis, with the difference that the input is a network. Initially, the algorithm uses the “edge 

betweenness” score of the arcs, which is the number of shortest paths that it takes from one or 

more top vertices (the top node/s of the network structure) to other reachable nodes. 

Thereafter, it uses a hierarchical divisive clustering, identifying the highest connected nodes 

between two given variables (arc with the highest “edge betweenness” score) and then, 

removing this arc for the next step (Newman & Girvan, 2004). The process is repeated 

several times, until the whole network is divided into smaller communities of densely 

connected nodes (Newman & Girvan, 2004). The R package “igraph” (Csardi & Nepusz, 

2006) was used to identify the communities within the consensus BNs. Initially, the function 

cluster_edge_betweenness was applied to group nodes densely connected, and then the 
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function dendPlot was used to visualize the results. Figure 11 gives the overall view of the 

steps taken and the decisions made throughout the experimental chapter. 
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Figure 11. Steps taken and decisions made to build the weighted Bayesian network (BN). The 

starting point was a set of two studies evaluating stress in the spleen of chickens. Bioinformatic 

analyses were performed to normalize, to correct the background noise, and to identify genes with 

differential expression patterns in each dataset. A common “stress signal” was identified between the 

two datasets: 19 shared genes. The augmented dataset consisted of 50 observations, 19 genes, and as 

both datasets evaluated stress, the stress condition was included as a binary variable (control = 0; 

stress = 1). The software Banjo was utilised to learn discrete BN, exploring the search space with a 

simulated annealing and the BDe score, visiting a total of 250 million networks. An initial consensus 

BN was built by combining the top 100 highest scoring networks. Heatmaps were used to visualize 

the results different consensus BNs and due to variation in the final sets of arcs, 100 consensus BN 

were further combined into a weighted network, by selecting those arcs present in at least 50% of the 

consensus BNs (threshold: 50 out of 100 networks). Considering that the stress was included as the 

variable of interest, the Markov Blanket property of BN was applied to identify key genes related to 

stress. Additionally, communities of densely connected nodes were identified to increase the number 

of genes closely related to the stress condition.  
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5.4. Results. 

A total of 19 genes having differences in the expression patterns between non-stress 

and stress chickens were common to two datasets evaluating the effects of stress in the spleen 

of chickens. The overall structure of the network revealed that 16 out of 19 genes were part of 

the network in addition to the stress condition (Figure 12). The stress condition was directly 

connected in the network with only one gene, CARD19. The Markov Blanket property of the 

condition revealed that in addition to CARD19, CYGB was also related to the stress condition 

(Figure 5, rectangle-shaped nodes).  

The structure of the BN was further explored by dividing the overall structure into 

smaller communities of densely connected nodes within the community but scarcely connected 

with nodes in other communities (Newman & Girvan, 2004). The application of a divisive 

cluster algorithm that uses the structure of the Bayesian networks as the input revealed five 

communities of densely connected nodes. The community of the stress condition consisted of 

four genes: in addition to the genes belonging to the Markov Blanket, BRAT1 and EPN3 

displayed a possible interaction with the stress condition, representing a group of genes densely 

connected amongst themselves, but scarcely connected with the rest of the genes (Figure 5, 

nodes highlighted in pink). 
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Figure 12. Bayesian network and community analysis of a set of genes. 19 genes showing differences 

in expression pattern were initially included at the time of learning the structure of the network in 

addition to the stressful condition; however, only 16 out of those 19 were linked in a network 

structure. Nodes represent each one of the genes and the stressful condition (circle-shaped node, thick 

outline), the edges represent probabilistic dependencies between the nodes. Note the direction of the 

arrows do not represent causation, but instead a statistical relationship. The Markov Blanket of the 

stress condition (rectangle-shaped nodes) consisted of two genes, CARD19 (child) and CYGB 

(spouse). Five communities of densely connected nodes were identified (different colours represent 

different communities). The community of the condition consisted of 4 genes (CARD19, EPN3, 

CYGB, and BRAT1, highlighted in pink). 

 

DAVID was applied to explore the biological functionality of these four genes. DAVID 

overrepresentation analysis identified three terms, although all were not significant after 

adjustments for multiple tests: Calcium signaling pathway (KEGG Pathway, P-value = 0.026, 

Benjamini adjusted P-value = 0.28), sarcolemma (GO term, P-value = 0.045, Benjamini 

adjusted P-value = 1), and membrane (keyword, P-value = 0.06, Benjamini adjusted P-value = 

1). The DAVID Functional Annotation Table (Table 2) shows the KEGG pathways (Kanehisa, 

Goto, Sato, Furumichi, & Tanabe, 2012) and GO TERMS (Ashburner et al., 2000) for each 

one of the genes being part of the community analysis of the stress condition. Terms 
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particularly relevant to the stress condition are related to regulation of apoptotic process and 

caspase recruitment (CARD19), oxygen transporter activity and oxygen binding (CYGB), 

apoptosis process and cellular response to DNA damage stimulus (BRAT1), and endocytosis 

(EPN3). 

 
Table 2. Functional Annotation Table provided by the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) corresponding to the four genes found to be in close relationship with 

the stressful condition. Terms particularly relevant to the stress condition are highlighted in bold. The 

gene symbol is underlined in parenthesis. 

Caspase recruitment domain family member 19 (CARD19) 

GO TERMS 

 

Regulation of apoptotic process.  

Integral component of membrane. 

Cytoglobin (CYGB) 

GO TERMS 

  

Neuron projection, neuronal cell body. 

Oxygen transporter activity, iron ion binding, oxygen 

binding, heme binding. 

BRCA1 associated ATM activator 1 (BRAT1) 

GO TERMS 

 

Positive regulation of protein phosphorylation, glucose metabolic 

process, apoptotic process, cellular response to DNA damage 

stimulus, cell proliferation, response to ionizing radiation, cell 

growth, cell migration, mitochondrion localization. 

Nucleus, cytoplasm, membrane. 

Epsin 3 (EPN3) 

KEGG 

PATHWAY 

Endocytosis. 

In bold are highlighted particularly relevant terms to the stress condition. 

5.5. Partial discussions. 

This study was aimed at identifying a reduced number of genes closely associated with 

a stressful condition in the chicken as a poultry animal model. To have a more accurate 

approximation to the stress phenomenon, two publicly available datasets involving the 

measurement of gene expression in the spleen of chicken exposed to heat stress were combined 

into a larger dataset. After bioinformatic pre-processing and analysis, a set of 19 genes common 

to both datasets with differential expression patterns was identified; these genes were used for 

learning the structure of the BNs. With the BN in place, its structure was divided into smaller 

communities of densely connected nodes. By the implementation of this approach, two genes 



 93 

were identified as part of the Markov Blanket property of the stress condition. In addition to 

these two genes, two other genes were part of the community of the condition, giving a total 

of 4 out of the 19 initial genes displaying a close relationship with the stress condition. The 

results showed a small set of relevant genes related to stress that can be used to extract 

meaningful information regarding the genetics of this complex phenomenon. 

Stress involves the perception of the stimulus in the immune-neuroendocrine interplay, 

triggering the stress response, and displaying physiological and behavioral adaptations with the 

aim of dealing with the stressful stimulus (Ashley & Demas, 2017; Calefi et al., 2017; 

Sapolsky, Romero, & Munck, 2000; Selye, 1950). Heat stress has been widely studied and its 

effects on immune organs and immune responses have been reported (Calefi et al., 2017; 

Honda et al., 2015; Mashaly et al., 2004; Quinteiro-Filho et al., 2012). In particular, Hirakawa 

et al. (2020) found that the mass of the spleen was severely affected by the exposure to heat 

stress (Hirakawa et al., 2020). Additionally, heat stress altered the structure of the spleen, 

having an impact on the humoral immune responses that modulate the lymphocyte populations 

(Hirakawa et al., 2020). Chickens under high environmental temperatures have also shown 

imbalances in the oxidant/anti-oxidant status as a consequence of the alteration of some by-

products or end products of lipid peroxidation such as malondialdehyde (MDA) and 

thiobarbituric acid reacting substances (TBARS) (Altan, Pabuçcuoğlu, Altan, Konyalioğlu, & 

Bayraktar, 2003; Lin, Decuypere, & Buyse, 2006). The imbalance is created by the excess of 

oxidant molecules, such as reactive species containing oxygen, nitrogen, and/or chlorine, 

potentially affecting the structure of proteins, lipids, and DNA and RNA. Consequently, the 

functioning of the cell might be affected in terms of energy availability, calcium homeostasis, 

and mitochondrial functionality, leading to cell damage, and therefore to the survival of the 

cell being threatened by apoptosis or necrosis (Akbarian et al., 2016; Chen, Ning, Zhang, Tang, 

& Teng, 2020).  
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The Markov Blanket property together with the community analysis revealed a total of 

four genes in close association with the stress condition. One of the genes, CARD19, showed 

a direct interaction with the stress condition, while the other three genes were part of the 

Markov Blanket and/or the community of the stress condition. CARD proteins belong to the 

family of caspase recruitment domains and they are proteins that mediate apoptosis as well as 

the activation of the NF- κβ⁡signaling pathways (Bertin et al., 2000, 2001; Hofmann, 1999; 

Wang et al., 2001). Cytoglobin (CYGB) belongs to the globin family, whose major role is 

related to the provision of oxygen in different tissues and organs, in addition to a potential 

protective activity against reactive oxygen species (Burmester, Ebner, Weich, & Hankeln, 

2002; Kugelstadt, Haberkamp, Hankeln, & Burmester, 2004; Schmidt et al., 2004). 

Considering that heat stress leads to oxidative stress, cell damage, apoptosis, and immune 

dysfunction, CARD19 and CYGB could be identified as key genes associated with these 

mechanisms that chickens trigger as a consequence of the influence of the stressor. Under  

exposure to other stressors, such as an immune challenge with mycotoxin or hypoxic 

conditions, apoptotic signaling pathways were also activated in splenic cell (Chen et al., 2020; 

Ren et al., 2015). Specially under hypoxic conditions, Chen et al. (2020) identified that splenic 

cells initiated apoptotic signaling pathways as a result of oxidative stress involving 

inflammatory mechanisms and the NF- κβ pathway (Chen et al., 2020).  

Considering the learnt structure of the BN, the further analysis of smaller communities 

of densely connected nodes showed that the stress condition potentially interacted with two 

other genes: BRAT1 and EPN3. BRCA1-associated ATM activator 1 (BRAT1) was previously 

identified by Qui et al. (2018) in the spleen of layer chickens undergoing an infection with 

avian leukosis virus (subgroup J) (Qiu et al., 2018). In humans, this gene interacts with two 

other genes, BRCA1 and ATM, mediating cell pathways associated with DNA damage as well 

as apoptosis (Aglipay et al., 2003; Aglipay, Martin, Tawara, Lee, & Ouchi, 2006; Okada & 
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Ouchi, 2003; Scully et al., 1997). Epsin-3 (EPN3) is a member of the endocytosis protein 

adapter gene family, and its main function is related to endocytosis (Xie, Cho, & Fischer, 

2012). Additionally, EPN3 has been identified in pathological or damaged tissues requiring 

wound healing (Spradling, McDaniel, Lohi, & Pilcher, 2001). All in all, it seems that both the 

Markov Blanket and the community of densely connected nodes of the stress condition are 

pointing towards key genes related to apoptosis and tissue damage. It is then plausible to 

highlight that when chickens are exposed to a complex phenomenon such as heat stress, one of 

the main immune organs, the spleen, reflects some morphological and physiological alterations 

as a consequence of undergoing apoptotic-related mechanisms, potentially translating into the 

reported suppression and dysfunction of the immune responses (Guo et al., 2020; Hirakawa et 

al., 2020).  

Regarding the network approach implemented in this study, the combination of two 

strategies was applied with the aim of identifying genes in close relationship with the stress 

condition: the Markov Blanket property of Bayesian networks and the community of highly 

connected nodes (Aliferis et al., 2010; Newman & Girvan, 2004). Initially, the overall structure 

of the network, the relationships, and the interactions between the given set of variables (the 

genes and the stressful condition) were learnt from the data. As a following step, the already 

learnt structure of the Bayesian network was divided into smaller groups of densely connected 

nodes (Newman & Girvan, 2004). By combining these two strategies, an initial set of 19 genes 

were further reduced to a small set of genes that showed a close association with the stress and 

that can be further studied. Among this small set of genes, the structure of the BN revealed that 

CARD19 showed a close interaction with the stressful condition, suggesting this gene could be 

explored as a potential biomarker of stress. Therefore, further research can be developed with 

short-term goals, such as using these genes to identify chickens raised under non-stress or stress 

conditions, and consequently, using them as indicators of stress, raising the alarm to monitor 
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and manage the breeding conditions to mitigate the detrimental effects of stress on poultry 

production (Lara & Rostagno, 2013; Renaudeau et al., 2012). On the other hand, further 

research can have long-term goals, such as artificial selection and breeding programs in order 

to enhance the resilience or resistance of chicken breeds to stress, such as the Fayoumi chickens 

that have been used in studies as a heat stress and disease resistant breed (Redmond, 

Chuammitri, Andreasen, Palić, & Lamont, 2009; Renaudeau et al., 2012; Van Goor et al., 

2017).  

In conclusion, this study implemented a series of steps aimed at reducing an initial 

number of genes obtained from high-throughput technologies to a small number of genes and 

unravelling their informative (functional) relationships and interactions. Two previous studies 

that evaluated the effects of stress on the spleen of chickens were combined to get a more 

accurate approximation to the stress phenomenon. The series of steps involved the combination 

of: i) bioinformatic tools to identify differentially expressed genes, ii) BNs to learn the overall 

structure of the network, iii) the Markov Blanket together with the community analysis to 

identify a small set of genes in close association with the stress condition, and iv) the database 

for biological knowledge discovery DAVID. Such a sequence of computational approaches 

could be applicable to many studies of gene expression, across many measurement platforms, 

enabling combination of power from multiple experiments to identify of small sets of genes 

for further study. Previous studies showed that heat stress has an impact on gene expression in 

the spleen (Guo et al., 2020; Park et al., 2019; Van Goor et al., 2017). Park and collaborators 

(2019) found that chickens susceptible to high environmental temperatures might also be 

susceptible to immune challenges, considering that immune pathways such as focal adhesion, 

influenza A, or the signalling pathway associated with the family of receptor tyrosine kinases 

(ErbB signalling pathway) were enriched when birds were exposed to heat stress (Park et al., 

2019). Van Goor and collaborators (2017) found that gene expression was upregulated when 
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chickens were exposed to heat stress, and genes were related to intestinal permeability, leading 

to an alteration of the intestinal mucosa and its functionality (Van Goor et al., 2017). Guo and 

collaborators (2020) found pathways related to immunity and endoplasmic protein processing. 

Among the genes with differential expression patterns, some Heat Shock Proteins, such as 

HSPA2 and HSPH1, as well as some cytokines were found (Gou et al., 2020). The work 

presented in this experimental chapter is complementary to the original studies, in that the 

identified genes are not an overall picture (this would be found in those studies), but instead 

provide information about a small set of genes with a strong signal, across multiple studies, 

suggesting relation to the condition of interest. Here, the outcome of this series of steps 

identified two genes as being part of the Markov Blanket and two additional genes as being 

part of the community analysis for the stress condition in poultry. The biological processes of 

these four genes were related to damage and apoptosis, and they could potentially be further 

used as biomarkers of heat stress. The exploratory nature of this study requires future research 

to determine whether the genes can potentially be used as hallmark genes when comparing 

chickens raised under non-stress conditions and chickens raised under stress conditions. 

Additionally, as the BN unravelled some informative interactions between genes that belonged 

to the community of the stress condition, such as BRAT1-EPN3, BRAT1 - CYGB, and CYCG-

CARD19, it could also be possible to study more in-depth these protein-protein interactions in 

biological samples, and consequently, evaluate possible epistatic interactions.   



 98 

6. Epigenetics, brain, and stress. 
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6.1. Introduction. 

In previous experimental chapters, the expression values of genes were measured by 

two high-throughput technologies: microarray and RNA-sequencing. Measuring expression 

values involves the mRNA as the starting point, that is the sequence of RNA that will code for 

a particular protein, once the fragment is properly pre-processed and transformed into the 

corresponding protein by cell machinery. Considering the stress phenomenon, throughout the 

introduction and the previous experimental chapters, bioinformatic tools have been 

implemented to identify differences in the expression patterns between non-stressed and 

stressed birds (Fallahsharoudi et al., 2017; Guo et al., 2020; Luo, Song, Ji, Zhang, & Zhang, 

2014). However, previous results demonstrate that there are two main drawbacks of 

implementing only bioinformatic tools with that particular aim: i) the list of genes can be quite 

extensive, which can difficult the search of the biological meaning of the genes; and ii) being 

part of the list of genes with differential expression patterns does not mean that they will display 

informative relationships and interactions with other genes. Additionally, some of the genes 

that were part of the consensus BNs did not have a biological function yet discovered, 

representing the possibility to further exploring these genes in future studies. 

When working in the genetic field, measuring the expression values of genes is not the 

only mechanism and/or process that can be evaluated under two experimental conditions. There 

are several genetic changes that can be measured, ranging from single nucleotide 

polymorphisms (SNP) to epigenetic modifications of the DNA sequence, such as the addition 

of methyl groups or chromatin folding (Perini et al., 2021; Pértille et al., 2017, 2020; Skinner 

et al., 2010). In the case of methylation, the addition of methyl groups to the DNA sequence as 

an epigenetic modification, can have an impact on gene expression (Pértille et al., 2017, 2020; 

Skinner et al., 2010). Taking this into consideration, it was worth exploring this field of 

research, on the one hand, to tackle the stress phenomenon from another point of view, that can 



 100 

be seen as a broader view of the same phenomenon, considering that it implies an external 

modification of the DNA, and on the other hand, to gain a better understanding and further 

insights into the stress phenomenon itself. 

In this chapter, the aim of the study was two-fold: first, and in line with the previous 

two chapters, to apply a BNs approach in order to provide further insights into the relationships 

between epigenetics and induced stress in a poultry animal model, the chicken (Gallus gallus). 

Second, working with the corresponding dataset was complex, especially when learning the 

consensus network. It required a series of steps that started from 100 random graphs, applying 

a BN algorithm to each individual random graph, creating presence/absence matrices including 

the individual scores of the networks, the application of an ecological average method, and 

ended with the selection of arcs present in at least 50% of several searches. Therefore, the 

second aim was to clearly lay out the decision-making process in order to provide a roadmap 

to enable others to make principled choices when undertaking BNs analysis. 

6.2. Dataset. 

The data was accessed and downloaded from the European Nucleotide Archive (ENA, 

www.ebi.ac.uk), under the accession number PRJEB34868 (Pértille et al., 2020). The dataset 

consisted of 46 male White Leghorn chickens (Gallus gallus). The experiment involved 0-26 

days aged chickens, 22 raised under control conditions, while the other 24 were exposed to a 

social isolation protocol. This isolation protocol was applied from the day 4 of age until the 

day 26 of age (period of 21 continuous days), as described by Pértille et al. (2020). Briefly, 

birds under the stressful condition were daily exposed to social isolation for one hour during 

the first week, two hours during the second week, and three hours during the third and final 

week. During the exposure to the isolation stress, birds were individually placed in a box with 

vocal but no visual or physical contact with other birds. Thus, during the stress treatment, birds 

were exposed to a combination of stressors: social isolation and deprivation of food and water 
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(Goerlich et al., 2012; Pértille et al., 2020). The control animals were not exposed to the social 

isolation protocol, but they were raised under the same environmental conditions as the stressed 

birds. The identification of differentially methylated regions (DMRs) between these 

experimental groups included a series of steps such as blood collection at day 26 of age (2 

hours after the last day of isolation was ended) in order to extract the DNA from red blood 

cells, the preparation of the libraries using the GBS-MeDIP method (Rezaei et al., 2022) to 

sequence the DNA fragments and finally the bioinformatic pre-processing and analysis to 

identify the DMRs (Pértille et al., 2017, 2020). The DMRs identified in this study were selected 

by first defining ‘Regions of Interest’ (ROI) showing differences in sequencing coverage 

between the treatment and control groups. This was done with MACS2, which is a 

recommended tool to identify sample-wise ‘peak specific’ methylated regions of variable sizes 

in experiments using paired controls to determine enrichment against background (Cavalcante, 

Qin, & Sartor, 2018; Feng, Liu, Qin, Zhang, & Liu, 2012; Niazi, Geyer, Vickers, Hoffmann, 

& Swain, 2016). Then, we applied the weighted trimmed mean of M-values (TMM) method 

within “edgeR” on these ROI obtained with MACS2. TMM is used to calculate scale factors 

between libraries. One of the standard outputs of this “edgeR” test is a p-value (edgeR.p.value). 

Based on this, 60 DMRs were selected with p ≤ 0.005. DMRs were annotated and divided into 

4 different categories based on the features of the genome in the region: promoter, distal 

intergenic, intron, or exon following the methods described by Pértille et al. (2020). Briefly, 

the categorization is based on the position of the DMR on the chromosome and the distance 

between the DMR and its nearest transcription starting site (Pértille et al., 2020). DMRs 

categorised as promoters, introns, and exons were annotated with the corresponding gene 

name. Promoters, introns, and exons without a gene symbol were assigned their corresponding 

ENSEMBL gene name using the first three letters and the numbers after the zeros (e.g. 

ENS50641 represents ENSGALG00000050641.1). DMRs annotated as DMR1 up to DRM7 
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correspond to distal intergenic regions without a gene symbol. A list of the 60 DMRs used and 

their annotations is provided in Table 3. 
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Table 3. Differentially methylated regions and their annotations. List of differentially methylated 

regions (DMR) with their corresponding genetic annotation terms. The first column ("SYMBOL") 

represents the abbreviated gene name of the methylated region; those which say "annotated" plus a 

number means that the symbol for that particular DMR was not available; the second column ("Gene 

ID") represents the ENSEMBL gene ID; the third column ("Description") represents the description 

of the DMR (NA for those not available); the fourth column ("Type of DMR") represents the type of 

DMR (e.g., Promoter, Intron, etc.); and finally, the fifth column ("SYMBOL network") represents the 

name used in the consensus Bayesian network. 

DMR SYMBOL geneId Description Type of DMR SYMBOL 

network 

DMR

1 
annotated 1 ENSGALG000000506

41.1 
NA Promoter (<=1kb) ENS50641 

DMR

2 
annotated 2 ENSGALG000000359

70.3 
NA Promoter (9-10kb) ENS35970 

DMR

3 
annotated 3 ENSGALG000000524

84.1 
NA Distal Intergenic DMR1 

DMR

4 
annotated 4 ENSGALG000000533

01.1 
NA Distal Intergenic DMR2 

DMR

5 
SHISA2 ENSGALG000000430

35.3 
shisa family member 2 Promoter  SHISA2 

DMR

6 
FBN1 ENSGALG000000049

60.6 
fibrillin 1 Distal Intergenic FBN1 

DMR

7 
GNAO1 ENSGALG000000031

63.6 
G protein subunit alpha o1 Intron 

(ENSGALT00000005006.5/ENSGALG000000

03163.6) 

GNAO1 

DMR

8 
annotated 5 ENSGALG000000531

23.1 
NA Distal Intergenic DMR3 

DMR

9 
annotated 6 ENSGALG000000512

36.1 
NA Intron 

(ENSGALT00000092657.1/ENSGALG000000

51236.1) 

ENS051236 

DMR

10 
annotated 7 ENSGALG000000487

08.1 
NA Distal Intergenic DMR4 

DMR

11 
VGLL4 ENSGALG000000049

37.6 
vestigial like family member 4 Promoter  VGLL4 

DMR

12 
annotated 8 ENSGALG000000414

05.3 
NA Promoter ENS41405 

DMR

13 
annotated 9 ENSGALG000000475

23.1 
NA Distal Intergenic DMR5 

DMR

14 
CANX ENSGALG000000321

48.2 
calnexin Promoter  CANX 

DMR

15 
ARHGAP26 ENSGALG000000339

38.3 
Rho GTPase activating protein 

26 
Intron 

(ENSGALT00000070058.3/ENSGALG000000

33938.3) 

ARHGAP26 

DMR

16 
annotated 10 ENSGALG000000447

94.2 
NA Distal Intergenic DMR6 

DMR

17 
MYH11 ENSGALG000000065

20.7 
myosin, heavy chain 11, smooth 

muscle 
Promoter  MYH11 

DMR

18 
TPST2 ENSGALG000000056

26.6 
tyrosylprotein sulfotransferase 2 Promoter  TPST2 

DMR

19 
POP5 ENSGALG000000071

24.7 
POP5 homolog, ribonuclease 

P/MRP subunit 
Promoter  POP5 
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DMR

20 
annotated 11 ENSGALG000000272

31.4 
NA Promoter  ENS27231 

DMR

21 
GPR141 ENSGALG000000323

63.2 
G protein-coupled receptor 141 Promoter  GPR141 

DMR

22 
EEPD1 ENSGALG000000399

83.2 
endonuclease/exonuclease/phosp

hatase family domain containing 

1 

Promoter  EEPD1 

DMR

23 
BOP 1.00 ENSGALG000000533

53.1 
block of proliferation 1 Exon 

(ENSGALT00000105884.1/ENSGALG000000

53353.1) 

BOP 1.00 

DMR

24 
annotated 12 ENSGALG000000464

25.2 
NA Promoter  ENS46425 

DMR

25 
TTLL9 ENSGALG000000064

60.6 
tubulin tyrosine ligase like 9 Promoter  TTLL9 

DMR

26 
ZBTB48 ENSGALG000000006

37.4 
zinc finger and BTB domain 

containing 48 
Promoter  ZBTB48 

DMR

27 
DOCK5 ENSGALG000000003

11.6 
dedicator of cytokinesis 5 Intron 

(ENSGALT00000000413.5/ENSGALG000000

00311.6) 

DOCK5 

DMR

28 
ZDHHC18 ENSGALG000000349

10.2 
zinc finger, DHHC-type 

containing 18 
Promoter  ZDHHC18 

DMR

29 
AGO1 ENSGALG000000022

49.6 
argonaute 1, RISC catalytic 

component 
Promoter  AGO1 

DMR

30 
RP1-27O5.3 ENSGALG000000034

08.3 
zinc finger and BTB domain 

containing 8B 
Promoter  RP1-27O5.3 

DMR

31 
CDK18 ENSGALG000000006

92.6 
cyclin dependent kinase 18 Promoter  CDK18 

DMR

32 
MFSD4A ENSGALG000000006

95.6 
major facilitator superfamily 

domain containing 4A 
Promoter  MFSD4A 

DMR

33 
PLXNA2 ENSGALG000000012

64.6 
plexin A2 Intron 

(ENSGALT00000001931.6/ENSGALG000000

01264.6) 

PLXNA2 

DMR

34 
LOC770074 ENSGALG000000506

00.1 
uncharacterized LOC770074 Promoter  LOC770074 

DMR

35 
annotated 13 ENSGALG000000537

25.1 
NA Exon 

(ENSGALT00000100075.1/ENSGALG000000

53725.1) 

ENS53725 

DMR

36 
CWC25 ENSGALG000000016

24.7 
CWC25 spliceosome associated 

protein homolog 
Promoter  CWC25 

DMR

37 
STAT3 ENSGALG000000032

67.7 
signal transducer and activator 

of transcription 3 
Promoter  STAT3 

DMR

38 
OCLN ENSGALG000000373

16.2 
occludin Promoter  OCLN 

DMR

39 
NRXN1 ENSGALG000000091

07.6 
neurexin 1 Intron 

(ENSGALT00000057931.2/ENSGALG000000

09107.6) 

NRXN1 

DMR

40 
PCSK2 ENSGALG000000087

34.6 
proprotein convertase 

subtilisin/kexin type 2 
Promoter  PCSK2 

DMR

41 
PARK2 ENSGALG000000115

62.6 
parkin RBR E3 ubiquitin protein 

ligase 
Intron 

(ENSGALT00000101286.1/ENSGALG000000

11562.6) 

PARK2 

DMR

42 
SELENOI ENSGALG000000165

60.6 
selenoprotein I Intron 

(ENSGALT00000026723.6/ENSGALG000000

16560.6) 

SELENOI 
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DMR

43 
EFR3B ENSGALG000000166

05.6 
EFR3 homolog B Promoter  EFR3B 

DMR

44 
MIP ENSGALG000000421

19.2 
major intrinsic protein of lens 

fiber 
Promoter  MIP 

DMR

45 
DOCK11 ENSGALG000000060

17.6 
dedicator of cytokinesis 11 Intron 

(ENSGALT00000074876.2/ENSGALG000000

06017.6) 

DOCK11 

DMR

46 
TRMT10A ENSGALG000000122

64.6 
tRNA methyltransferase 10A Promoter  TRMT10A 

DMR

47 
LRP5 ENSGALG000000295

33.2 
LDL receptor related protein 5 Distal Intergenic LRP5 

DMR

48 
annotated 14 ENSGALG000000477

46.1 
NA Intron 

(ENSGALT00000107381.1/ENSGALG000000

47746.1) 

ENS47746 

DMR

49 
annotated 15 ENSGALG000000541

93.1 
NA Promoter  ENS54193 

DMR

50 
LOC101750

642 
ENSGALG000000492

21.1 
uncharacterized LOC101750642 Distal Intergenic LOC101750

642 

DMR

51 
LOC107054

063 
ENSGALG000000466

79.1 
uncharacterized LOC107054063 Promoter  LOC107054

063 

DMR

52 
DGKD ENSGALG000000017

30.6 
diacylglycerol kinase delta Intron 

(ENSGALT00000002654.6/ENSGALG000000

01730.6) 

DGKD 

DMR

53 
SCHIP1 ENSGALG000000394

68.2 
schwannomin interacting 

protein 1 
Promoter  SCHIP1 

DMR

54 
annotated 16 ENSGALG000000440

85.2 
NA Promoter  ENS44085 

DMR

55 
annotated 17 ENSGALG000000102

18.6 
NA Promoter  ENS10218 

DMR

56 
SKOR2 ENSGALG000000518

44.1 
SKI family transcriptional 

corepressor 2 
Promoter  SKOR2 

DMR

57 
ARHGEF28 ENSGALG000000149

23.6 
Rho guanine nucleotide 

exchange factor 28 
Intron 

(ENSGALT00000024069.6/ENSGALG000000

14923.6) 

ARHGEF28 

DMR

58 
annotated 18 ENSGALG000000500

12.1 
NA Intron 

(ENSGALT00000107859.1/ENSGALG000000

50012.1) 

ENS50012 

DMR

59 
XRCC4 ENSGALG000000156

20.6 
X-ray repair cross 

complementing 4 
Intron 

(ENSGALT00000025179.6/ENSGALG000000

15620.6) 

XRCC4 

DMR

60 
annotated 19 ENSGALG000000467

15.1 
NA Distal Intergenic DMR7 
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6.3. The Bayesian network approach. 

6.3.1 Data discretization and contingency test 

The DMR dataset (46 samples and 60 variables) consisted of individual counts obtained 

within the experimentally obtained DMRs described above, corresponding to the number of 

segments aligned to a particular DNA region, values ranging from 0 to 39.  This count data 

was furthered discretised with the aim of filtering noise as well as increasing the statistical 

power (Yu et al., 2004).  The most statistical power is provided by all discrete states having 

roughly equivalent numbers of data points (Heckerman et al., 1995; Milns et al., 2010); here, 

zero counts was the most abundant observation, and thus the closest to this idea was a binary 

dataset with two categories: zero and one. All original values equal to zero were assigned a 

new value of zero (no methylation), while the rest of the values were assigned a new value of 

one (methylation). In addition to the DMRs, the stressful condition was included in the dataset 

as a binary variable, considering the control condition as 0 and the stress condition as 1 (22 

individuals = 0, 24 individuals = 1). The DMRs plus the stressful condition are the features 

included as nodes in the network. An overabundance of the discrete state of zero remained, 

thus pair-wise contingency-test filtering was applied as in Milns et al (2020): a chi-square test 

was applied to all possible pairs of variables, and those with p-values equal or greater than 0.25 

were identified as showing no possible dependence between them (Milns et al., 2010). These 

were included in the BN analysis as a list of arcs to be blocked, representing prior information 

that these links should be excluded from the network (Nagarajan et al., 2013a, 2013b).  

6.3.2 Bayesian network analysis  

To explore other publicly available software to learn BNs, in this experimental chapter 

the R and RStudio were applied. The R package “bnlearn” (Scutari, 2010) was used to learn 

the structure of the network. Initial tests were done by starting groups of 100 searches from 
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random graphs generated by the random.graph function, using tabu search function, with the 

BDe score and the list of arcs to be blocked included (Nagarajan et al., 2013a, 2013b). 

Summary networks of arcs found across these groups of searches were analysed for arc 

correspondence and showed high variability. Variability in search results, e.g., the difficulty in 

finding the same consensus network after several runs of the algorithm, was confirmed using 

BayesPiles, a visual analytical system (Vogogias et al., 2018). Complex search spaces, as 

mentioned in the methods section, require further visual exploration when it comes to the 

identification of the consensus network. BayesPiles, a visualisation support for BN structure 

learning, requires the implementation of the Banjo software (Smith, Yu, Smulders, Hartemink 

& Jarvis, 2006): equivalent settings using the BDe score and a greedy search (closest available 

to the tabu function) were set in Banjo, and the list of arcs to be blocked included. BayesPiles 

uses the outcomes of Banjo to explore and compare the top scoring networks discovered by 

Banjo in terms of arcs, scores, and structures (Vogogias et al., 2018). Additionally, arcs can be 

filtered according to the number of times they are present across the set of top scoring networks 

(Vogogias et al., 2018). For this particular search space, four sets of searches including multiple 

starts from random networks were visualised (Figure 7), revealing again high variability. 

Thus, a method previously applied in an ecological system with a similarly high 

variability in search results was used (Milns et al., 2010). This method collects top networks 

from multiple searches (100 searches both in (Milns et al., 2010) and here), then applies a 

model averaging approach considering the score of the network to develop probabilities of arcs 

being in a high-scoring network. These probabilities are clustered into higher and lower 

probability clusters and are provided uncertainty values for cluster membership. Those arcs in 

the higher probability cluster (with a probability and uncertainty cut-off) are presented as the 

final network. To perform this analysis, 100 searches were started from random graphs 

generated by the random.graph function, using tabu search function, with the BDe score and 
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the list of blocked arcs included, as above, identifying 100 top networks. The arcs present in 

the 100 top networks, along with the network scores, were input into the function 

relationshipProb developed by Milns and collaborators (Milns et al., 2010), which provides an 

average probability for each arc. These probabilities were then input into their 

makeclustersIDhigh function, which estimates the probability of each arc being part of one out 

of two categories: low probability or high probability. Each arc was assigned to either a low 

probability or high probability category in addition to a value corresponding to the uncertainty 

associated with the classification process (Milns et al., 2010). The high probability category 

represents those arcs found consistently among the highest scoring networks, while the low 

probability category represents those arcs found rarely. The uncertainty value is an estimation 

of the uncertainty associated with the classification of the arcs into either one of the two 

categories (Milns et al., 2010). The arcs considered as highly probable functional relationships 

were selected with probability values greater than or equal to 0.5 and an uncertainty value equal 

or lower than 0.01.  

This process still resulted in more variation than desired, thus in order to build a 

consensus network, the arcs common to 50 repetitions of the above process (starting point of 

each search, 100 random graphs, then application of the Milns et al. (2010) method to 

identify highly probable functional relationships) were combined. For each arc common to 

the 50 repetitions, an average value of the probabilities was calculated and used for building a 

weighted network. The Markov Blanket of the treatment was identified by applying the mb 

function within the “bnlearn” package. Figure 13 gives the overall view of the steps taken 

and the decisions made throughout the experimental chapter. 
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Figure 13. Steps taken and decisions made to build a consensus Bayesian network. The starting point 

was a dataset consisting of 46 chickens, 22 raised under control conditions and 24 raised under stress 

conditions. Bioinformatic analysis were performed as described in (Pértille et al., 2017, 2020). 

Thereafter, a set of 60 differentially methylated regions (DMRs) were selected based on a p-value 

equal to 0.005. The corresponding methylation values of each DMR were counts (values ranged 

between 0 and 39). A binary discretization method was implemented, considering that the most 

frequent value was 0.  The software R (and RStudio) was utilised to learn discrete BN. Specifically, 

the bnlearn package was used, exploring the search space with a score-and-search algorithm and the 

BDe score. A contingency test (chi-square test) was applied to all possible pairs of variables to create 

a list of links to avoid, considering that the data had imbalances between the binary states that could 

lead to the discovery of artefactual links that should not be part of the consensus network. By using 

the software BayesPiles, it was possible to decide that the search space was complex and building the 

consensus Bayesian network required a strategic and accurate approach: the combination of a model 

averaging and the selection of arcs common to all searches into the weighted BN.  
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6.4. Results. 

6.4.1 Bayesian network decisions 

A first major choice in BN analysis is whether to use discrete versus continuous models: 

continuous BNs make use of the numeric value of measured variables but are restricted to 

additive interactions; discrete BNs use discrete categories for variable values, meaning that 

numeric data must be “discretised” into ordinal states, but allow for combinatoric interactions 

(Heckerman et al., 1995). The data consisted of 60 differentially methylated regions (DMRs) 

measured from 46 male White Leghorn chickens (Gallus gallus) plus the experimental 

condition for each chicken (22 control, 24 stressful condition): these represent the features in 

the dataset. The experimental condition was a discrete variable. The DMRs were integer values 

representing the number of sequenced reads for each individual, which represents the 

methylation level of that specific region per individual; however, the value of 0 (no 

methylation) was by far the most common, therefore, meaningful discretisation into no-

methylation and methylation was a sensible choice. This discrete data combined with the ability 

of discrete BNs to represent combinatoric interactions, which may be expected in genetic 

systems (Matthäus et al., 2010), led us to choose discrete BN models. 

A BN algorithm works by performing a heuristic search through network structures and 

selecting structures with high scores under a specific scoring metric. Given discrete BNs, there 

are a number of scoring metrics to choose among. With the aim of maximising the possibilities 

of finding novel connections, the Bayesian Dirichlet equivalent (BDe) score was chosen 

(Heckerman et al., 1995; Yu et al., 2004), which has been shown to be less conservative than 

others (Bayesian Information Criterion BIC and Mutual Information MI (Yu et al., 2004)). 

Another choice to make is what software to use to perform the BN analysis, with options 

ranging from coding it oneself (Affara et al., 2013; Guo et al., 2016) to a variety of free and 

proprietary platforms (Ciaccio, Wagner, Chuu, Lauffenburger, & Jones, 2010; Kumuthini, 
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Bessant, Wilson, & Crowther, 2007; Ricard et al., 2019; Shinde et al., 2019; Vasilescu et al., 

2017). This choice can be somewhat arbitrary, as the underlying theory remains the same, but 

will be constrained by one's analysis choices, implementing discrete networks using a BDe 

score. The R package “bnlearn” was chosen (Scutari, 2011), as free, open-source software 

which had the desired functionality. 

Finally, choices regarding the search process must be made. In order to make informed 

decisions, iterative exploration of the data and initial search results is required. First, the 

discrete data was examined, and found that there was an imbalance in discrete states for many 

of the DMRs (more no-methylation, Figure 14). Because such imbalanced states can create 

artefactual connections by overrepresented states appearing to be good predictors of each other, 

regardless of the presence of the rarer states (Milns et al., 2010), the method of contingency 

test filtering from Milns et al (2010) was applied: a pair-wise chi-square tests was applied, 

identifying those pairs of variables with chi-square p-values equal to or greater than 0.25 as 

showing no potential dependence. These were provided to the BN as a list of arcs that must not 

be considered in the process of building the network (Milns et al., 2010). In total, contingency 

test filtering identified a total of 960 arcs (of the 3,660 possible arcs) to avoid. 



 112 

 

Figure 14. Distribution of four of the differentially methylated regions (DMRs) once a binary 

discretization method was applied. The state 0 represents values with absence of methylation, the state 

1 represents values with presence of methylation. These four DMRs are representative of imbalances 

between the two states, as zero was the most popular state among different DMRs. 

 

Heuristic searches were initially performed using “bnlearn” R package, finding a large 

variety in network structure, suggesting that extensive search and model averaging would be 

the best approach. This was confirmed by the software BayesPiles (Vogogias et al., 2018), 

which showed highly variable top networks across different searches (Figure 15). Networks 

similar in score varied strongly in structure. This variation indicates that the top networks found 

are in different areas of the search space, and not simply fine variations of one general area. 

Thus, the modelling averaging approach from Milns et al. (2010) was applied, which has been 
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shown to produce similar sets of highly probability arcs from different collections of top 

networks (Milns et al., 2010): 100 greedy hill climbs were performed from 100 random starting 

networks, and applied the Milns model averaging approach to identify highly probable arcs 

(Milns et al., 2010). As there was still some variation even in these highly probable arcs, this 

process was repeated 50 times, those arcs common to all searches were selected, and the 

average probability of the common highly probable arcs across all repetitions was calculated, 

to produce a final consensus network. Repetition of this analysis showed repeatable results, 

identifying the same top relationships between DMRs and the same Markov Blanket of the 

stress condition, thus this was sufficient exploration of the search space. 

 

Figure 15. BayesPiles investigation of search space. Top networks found from four separate 

collections of searches, representing peaks of many different hills in the search space. BayesPiles 

visualises a summary of network structure as a shaded stack representing out-degree of each node 

(darker=higher) above a bar representing network score (longer=higher), with networks along the x-

axis and nodes along the y-axis. (A) shows the highest 25 networks for four collections of searches 

(different colours), with highest-scoring network to the left. The strong variation in network structure 

(different patterns in the shaded bars) indicates that these networks are tops of different peaks in the 

search space, not the final climb of a single hill. (B) shows the final 25 networks from all four 

searches combined, sorted by their score. The mixing of colours throughout shows the high variation 

in search peaks: each collection of searches explored different areas of the search space, finding 

different high-scoring structures. 
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6.4.2 Discovered Bayesian network structure 

A total of 43 arcs were common to all 50 searches. These arcs and their average 

probability values of being part of the top 100 networks are shown in Table 4, and the 

consensus network built with these arcs is shown in Figure 16. The consensus network included 

47 out of the 61 features (60 DMRs plus experimental condition). Among these arcs, 

relationships between DMRs OCLN—DMR7 (distal intergenic region), CANX—TPST2, and 

FBN1—ENS27231 (unannotated region) had the highest values of probabilities of being part 

of the consensus network (0.96, 0.86 and 0.83, respectively). 

Figure 16. Consensus networks of DMRs. Networks were built with common arcs to 50 searches, 

each one of these searches consisted of a starting point of 100 random graphs.  Features representing 

the differentially methylated regions (named by related gene or region, see Methods) and the stress 

conditions are nodes; lines between nodes represent the identified relationships. Note the direction of 

the arrows do not represent causation, but instead a statistical relationship. Arc labels represent the 

average probability of belonging to the consensus network, the higher the values, the higher the 

probability of belonging to a high scoring network. Different colours represent different ranges of 

probabilities: black: 0.90-1.00, blue: 0.89-0.80; grey: 0.79-0.70; orange: 0.69-0.60. 
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The application of the Markov Blanket property in order to get the set of parents, 

children, and spouses in close relationship with the treatment identified only two DMRs, 

OCLN and ENS51236 (unannotated region), of which the arc between stress and OCLN had 

the highest average probability value (0.81).  
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Table 4. Arcs and their corresponding probabilities of being part of a high scoring network. List of 

arcs identified between differentially methylated regions and with the stress condition, with their 

corresponding probabilities of being part of a high scoring network. The first column ("arc") is an 

arbitrary numbering for the arc; the second column ("from") represents the parent node for each arc 

(arcs from); the third column ("to") represents the child node for each arc (arcs to); the third column 

("Average.Probablity") represents the average probability value for each arc of being part of a high 

scoring network.  
 

from to Average.Probability 

1 ARHGAP26 DMR6 0.69 

2 BOP1 EEPD1 0.80 

3 BOP1 ZBTB48 0.81 

4 CANX ENS27231 0.80 

5 CANX TPST2 0.86 

6 DMR2 PLXNA2 0.81 

7 DMR2 POP5 0.81 

8 DMR5 SELENOI 0.62 

9 DMR5 STAT3 0.66 

10 DMR6 ENS46425 0.72 

11 EFR3B ENS47746.1 0.67 

12 ENS10218 LRP5 0.66 

13 ENS27231 RP1_27O5_3 0.63 

14 ENS50012 EEPD1 0.74 

15 ENS50641 CWC25 0.80 

16 ENS50641 FBN1 0.63 

17 ENS50641 TRMT10A 0.64 

18 ENS50641 ZBTB48 0.66 

19 FBN1 ENS27231 0.83 

20 FBN1 SHISA2 0.72 

21 GRP141 ENS46425 0.76 

22 LOC101750642 DMR1 0.77 

23 LOC101750642 XRCC4 0.61 

24 LOC770074 DMR6 0.67 

25 MFSD4A LRP5 0.63 

26 MFSD4A TPST2 0.80 

27 OCLN DMR7 0.95 
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28 PAPK2 DMR1 0.63 

29 PAPK2 SELENOI 0.60 

30 PLXNA2 RP1_27O5_3 0.80 

31 SCHIP1 TTLL9 0.63 

32 SHISA2 DOCK5 0.68 

33 SHISA2 PAPK2 0.76 

34 SHISA2 SELENOI 0.61 

35 Treatment ENS51236 0.71 

36 Treatment OCLN 0.81 

37 TRMT10A DGKD 0.64 

38 TRMT10A ENS53725 0.67 

39 VGLL4 BOP1 0.69 

40 XRCC4 ZBTB48 0.65 

41 ZDHHC18 GNAO1 0.80 

42 ZDHHC18 MIP 0.67 

43 ZDHHC18 SKOR2 0.82 
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6.5. Partial discussions. 

Behind biological systems lies a series of complex and intricate relationships among 

features (Guzmán et al., 2017; Milns et al., 2010). The application of BNs can be a useful 

approach to discover, identify, and unravel hidden patterns within the data, and gain insights 

into a biological area of knowledge (Felipe et al., 2014; Needham et al., 2007). However, there 

is little practical guidance for how to make choices among the array of possibilities within a 

BN analysis. A practical application of BNs was undertaken to answer a particular question in 

poultry epigenetics, while clearly stating the analysis choices. The reasoning behind using a 

discrete, rather than a continuous, BN due to the distribution of the data, how the BDe score 

was chosen, and the software applied were explained. The analysis of the dataset's discrete 

states and the choice to use chi-square contingency-test filtering to avoid artefacts from 

imbalanced discrete states were also explained. The exploration of the search space structure 

for the question was shown, including using the specialised software BayesPiles (Milns et al., 

2010), which revealed the space to be highly varied and thus to require complex model 

averaging techniques developed in a similarly varied search space were applied (Milns et al., 

2010), and added further refinements of combining multiple searches. The clarity surrounding 

the current choices might be helpful for others beginning a BN analysis as a sort of roadmap. 

The Markov Blanket of the stress condition together with those DMRs showing the 

highest probability values of being part of the consensus network appear related to the 

functional structure of the brain and a possible link with the immune system. Starting with 

OCLN, Occludin, this gene showed the highest probability value and it belonged to the Markov 

Blanket of the stress condition. OCLN is a gene whose major functionality is associated with 

intracellular tight junctions and adhesion, defining a selective barrier and limiting the exchange 

of substances and/or cells in different tissues such as the chicken ovary, the chicken intestinal 

mucosa, or the human brain (Du et al., 2017; Furuse & Tsukita, 2006; Schuster, Schmierer, 
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Shkumatava, & Kuchler, 2004; Stephens & Johnson, 2017; Zhang et al., 2012). In the chicken 

ovarian follicles, OCLN plays a role in allowing or preventing the exchange of yolk material, 

especially during the first stages of the formation of the follicles, considering that the 

expression values were increased (Schuster et al., 2004; Stephens & Johnson, 2017). In case of 

the brain, OCLN and other genes are involved in the permeability of the blood brain barrier, as 

its integrity is crucial for the correct functioning of the central nervous system (Du et al., 2017; 

Furuse & Tsukita, 2006). In human patients suffering from a fatal heat stroke, increased 

expression values of OCLN were found, and authors suggested that it could be aimed at 

restoring junctional complexes and the barrier function as a compensatory mechanism (Du et 

al., 2017). Considering that the stress response is initially triggered in the central nervous 

system, it is possible that OCLN is playing a key role protecting the integrity of the blood brain 

barrier to prevent any nervous disfunction, that would be crucial when dealing with the 

influence of a stressor.  

 The arc between CANX and TPST 2 was among the arcs with the highest probability 

values. The biological functionality of CANX, Calnexin, can be divided into two major 

categories as it is linked to the immune system as well as to the blood brain barrier (Jung et al., 

2018; Lai, Teodoro, & Volchuk, 2007; Sekelova et al., 2017; Sperandio, Gleissner, & Ley, 

2009). Chickens inoculated with Salmonella Enteritidis as an immune challenge increased the 

abundance of CANX in heterophils (a subpopulation of leukocytes) (Sekelova et al., 2017). 

Together with other proteins, CANX belongs to the endoplasmic reticulum proteins and their 

functionality comes into play when the unfolded or misfolded proteins exceed the capacity of 

chaperones or when the luminal conditions are not optimal for the correct processing of new 

proteins (Lai et al., 2007). Regarding CANX functionality in the brain, Jung et al (2018) found 

that this gene plays a major role in multiple sclerosis and its equivalent in mice, as the loss of 

CANX increased the resistance of the blood brain barrier, avoiding the infiltration of cells 
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belonging to the immune system and the induction of inflammation markers (Jung et al., 2018). 

The other DMR interacting with CANX was TPST 2, a tyrosyl protein sulfotransferase that, 

and together with TPST 1, are in charge of the correct functioning of P-selectin glycoprotein 

ligand-1 (PSLG-1) by transferring tyrosine residues (Ouyang & Moore, 1998; Sperandio et al., 

2009; Yu, Hoffhines, Moore, & Leary, 2007). PSLG-1 is expressed on leukocytes and 

promotes binding and adhesive interaction with other selectins that may lead to inflammatory 

disorders as a consequence of a potential pathological recruitment of leukocytes (McEver & 

Cummings, 1997). 

It is important to consider that the DMRs were evaluated in the red blood cells of 

chickens raised under either control or stress conditions. Throughout the previous experimental 

chapter, it was mentioned that the exposure of chickens to stress can affect the expression 

pattern of genes in different tissues. For example, some HSP were identified by BN in the brain 

(chapter 4) whereas in the literature they were found in other tissues such as the spleen, heart, 

or muscle (Guo et al., 2020; Xie et al., 2014). Particularly, HSPH1 was found in the brain 

(experimental chapter 4) and in the spleen of chickens (Guo et al., 2020). Considering that 

blood is systemically circulating through the organism, it is difficult to tell whether the 

differential methylation patterns start occurring in the red blood cells themselves or whether 

these changes are reflecting those occurring in specific tissues (Pértille et al., 2017, 2020). This 

is another example of an application of BNs in knowledge discovery, allowing the possibility 

to define new hypothesis to be tested in future experiments.  

Among the Markov Blanket as well as the arcs with the highest weight values there 

were 3 DRMs whose function and/or annotation is still yet unknown (DMR7, ENS51236, and 

ENS27231). Finding highlights two different advantages of implementing BNs: on the one 

hand, studies focusing only on bioinformatic analysis would generally ignore these DMRs or 

genes, because the functionality of them will not be found in sources such as KEGG pathways 
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or GO terms. On the other hand, the power of BN algorithm discovered novel markers that 

might be worth exploring. Learning the structure of a BN with a set of highly significant genetic 

features can be the starting point of future research. Instead of focusing on the bigger picture 

that bioinformatic studies provide, analysis of only a reduced number of features would be 

more accurate to gain a further insight into the stress phenomenon. 

The stressful condition, in this particular study, was directly connected to only one 

epigenetic feature, OCLN, while the Markov Blanket consisted of two epigenetic features. It 

is then plausible to ask whether these two DMRs can be explored as biomarkers of stress in 

chickens. Considering these finding as the starting point, future studies can be aimed at 

evaluating the expression and/or methylation patterns of only these two genetic features under 

two experimental conditions, non-stress and stress. Thereafter, knowledge can be transferred 

into other fields such as animal welfare and poultry production. For example, one of the main 

principles of animal welfare is the absence of distress in association with a comfortable 

environment (Ducatelle et al., 2018; Fallahsharoudi et al., 2017; Webster, 2016). Stress can be 

highlighted as one of the major problems faced by the poultry industry nowadays, and the 

knowledge discovered by BNs can be further used to develop breeding protocols and genetic 

lines (Lara & Rostagno, 2013; Renaudeau et al., 2012).  Even though in this particular study 

the condition was stress, it is important to mention that the condition could be of any other 

nature, such as gender, male vs female; phenotypes, ancestral vs domesticated chickens; or 

even different stages in life, juvenile vs adult (Bélteky et al., 2018, 2016; Elfwing et al., 2015). 

In this context, the approach implemented in this study can be applied in genetics and 

epigenetics as a first approximation to gain basic knowledge in regard to a particular condition, 

with potential implications in applied science.  
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7. Discussion. 
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Throughout this thesis, a general overview of poultry and genetics has been explored. 

Two main genetic features and their relationship with the stress phenomenon have been 

studied: differential expression patterns and differentially methylated regions. Genes and 

methylated regions of the DNA have been identified as key factors relevant to the stress 

phenomenon, revealing hidden relationships among them as well as with between them and 

the stress condition. From a general and broad perspective, throughout the thesis there have 

been several challenges to be faced, considering the complexity of the stress phenomenon as 

well as the fact of working with biological big data. These challenges came from the collection 

of data, the pre-processing, and the process of learning the structure of the BNs. In the 

following sections, these challenges such as data collection, discretization of the data, strategies 

and approaches to BNs will be addressed, followed by the genetic and biological implications 

of the findings, and finally, the possible limitations and future research will be discussed to 

close this chapter as well as this thesis. 

7.1. Chicken vs human-related studies. 

BNs are mathematical tools that can be applied in a variety of research fields, from 

molecular biology, cancer research, psychology and psychopathology, to ecology and 

environmental sciences (Agrahari et al., 2018; Balov, 2013; Blanchard, Roskam, Mikolajczak, 

& Heeren, 2021; Faverial et al., 2016; Hartnack et al., 2019; Meier et al., 2020; Milns et al., 

2010; Mitchell et al., 2021; Peters et al., 2021). In genetics and epigenetics, independently of 

the animal model (chickens, rodents, humans), BNs have also been applied with the aim of 

associating phenotypes (healthy vs unhealthy, or control vs stress) and a given set of genes 

(Agrahari et al., 2018; Balov, 2013; Djebbari & Quackenbush, 2008; Li et al., 2010). In this 

particular field of research, latest advances in technology have allowed the possibility to 

measure hundreds of thousands genetic features as well as reducing the economic costs of such 

measurements, increasing the availability of these technologies to measure the effects of 
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several conditions or treatments. In the era of big data, massive amounts of biological data are 

being collected and deposited in publicly available repositories, such as Gene Expression 

Omnibus (GEO), Array Express, The Cancer Prevention and Outcomes Data (C-POD) Shared 

Resource, the English Lung Cancer Database (LUCADA), among many others. These online 

repositories are there, on the one hand, so that researchers can submit their data coming from 

different studies; and on the other hand, so as other researchers can reuse and re-analyse the 

data, and, as a consequence, they can contribute with new findings in regards to a particular 

research topic. Even though studies in a particular field (e.g., cancer or stress) share common 

characteristics, such as the technologies used to measure genetic/epigenetic features (e.g., 

microarray or RNA-sequencing), there are some clear differences between poultry species and 

other models, such as rodents or humans.  

One of the main differences between animal models is related to experimental designs. 

Studies carried out in cancer research have simple experimental designs, generally focusing on 

one particular type of cancer and the identification of differences in the patterns of patients 

classified according to their health status (with or without cancer) (Balov, 2013; Koussounadis, 

Langdon, Harrison, & Smith, 2014; Xia et al., 2019). Even though some studies carried out in 

chickens might focus on one experimental factor, such as stress (Pértille et al., 2020), other 

studies might have complex experimental designs, evaluating more than one factor with two 

possible levels, stress and domestication, or stress and life stages (Bélteky, Agnvall, & Jensen, 

2017; Ericsson et al., 2016; Løtvedt et al., 2017). In addition to the complexity of the 

experimental designs, researchers have focused on the impacts of different environmental 

conditions on different tissues, such as spleen, liver, brain, among others (Bélteky et al., 2016; 

Li et al., 2010; Saelao et al., 2018; Van Goor et al., 2017). As a consequence, and as another 

main difference between chicken and human studies, the number of individuals is clearly 

affected by the experimental designs, as a small number of chickens can be associated with a 
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particular combination of environmental conditions. In this sense, it is possible to identify a set 

of genetic features when looking for differences in the expression patterns between two 

conditions using a reduced number of individuals, especially in poultry science. However, in 

this particular thesis, the first step was to collect data, and using a small number of individuals 

associated to a specific condition coming from only one study might have an impact on the 

search space when leaning the overall structure of the BN. Therefore, collecting and reusing 

publicly available databases was the strategy implemented to overcome this challenge, 

combining datasets coming from different studies and experimental designs. However, and due 

to the previously mentioned differences between animal models, the number of individuals can 

be considered relatively small compared to studies evaluating, for example, cancer in humans 

(Balov, 2013; Berkan Sesen, Nicholson, Banares-Alcantara, Kadir, & Brady, 2013; Cruz-

Ramírez, Acosta-Mesa, Carrillo-Calvet, Nava-Fernández, & Barrientos-Martínez, 2007).  This 

fact did not prevent us from learning the structure of the BNs, but it did have an impact on the 

search space, requiring extra steps to build the consensus network.  

7.2. Dealing with a challenging field of research. 

Once the datasets were place, two main challenges were faced depending on the type 

of data (gene expression or methylated regions). The first challenge encountered was the need 

for variables with discrete states, reducing the number of states before learning the structure of 

the networks. BN algorithms can handle continuous data, nonetheless, this possibility is limited 

to additive interactions, which are not necessarily what is always expected in genetic systems. 

Additionally, the process of dealing with complex non-linear relationships together with the 

statistical and computational power might be difficult to achieve as well as it could be a time-

consuming process (Heckerman et al., 1995; Milns et al., 2010; Yu et al., 2004). Even though 

working with continuous data might result in further details into the relationships of a given 

set of variables as well as keeping the data with their original values, discretizing the data has 
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the advantage of reducing the number of states, consequently increasing the statistical and 

computational power as well as reducing and filtering noise (Balov, 2013; Heckerman et al., 

1995; Milns et al., 2010; Yu et al., 2004). This last advantage was useful, considering that the 

data came from different experiments, thus the noise associated to each particular study could 

be filtered and reduced. In terms of the discretization method, when working with BNs it is 

desirable to work with variables which categories are evenly distributed, especially due to the 

statistical power and to avoid imbalances between the categories (Heckerman et al., 1995; 

Milns et al., 2010; Smith, 2010; Yu et al., 2004). Having imbalances between categories will 

lead to the discovery of links due to an artefact of the algorithm instead of representing a true 

link. In this thesis, both gene expression datasets were discretized into evenly distributed 

categories with a quantile discretization method. However, when working with the epigenetic 

dataset, it was not possible to work with this type of method due to the distribution of the data. 

This dataset consisted of counts, representing the number of differentially methylated regions 

that a chicken had driven by the social isolation stressor. Values ranged from 0 to 39, but the 

most frequent value was zero among the DMRs, having an initial imbalance between the 

discrete states. Consequently, dividing the data into evenly distributed categories was not 

feasible. The strategy used in this dataset was a binary approach: considering that a value of 

zero meant the absence of methylation, while the rest of the values meant the presence of 

methylation. The implementation of the binary discretization method partially overcame the 

initial challenge with unevenly distributed variables.  

The epigenetic dataset also represented a further challenge, especially due to the 

distribution of the original values. Dealing with unevenly distributed variables might affect the 

overall process of learning the structure of the network, requiring an extra step to filter arcs 

between nodes that showed no possible dependence. Previous studies in ecology and 

psychology have implemented filtering methods to remove arcs that should not be considered 
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when learning the structure of the network (Meier et al., 2020; Milns et al., 2010; Mitchell et 

al., 2021). This is because a relationship might be identified between two variables based on 

their most popular state, resulting in an artefact of the algorithm rather than a true interaction. 

In order to overcome this challenge, a previously published contingency test was applied so as 

to identify a set of arcs that must not be included in the network as there is no evidence of 

dependence between two given nodes (Milns et al., 2010; Mitchell et al., 2021). Considering 

that the variables had discrete states, a chi-square test was applied to all possible combinations 

of the given 60 DMRs and the stressful condition. As previously implemented by Milns et al. 

(2010) and Mitchell et al. (2021) a set of arcs was identified considering a threshold of 0.25, 

banning these connections when learning the network. The epigenetic dataset was the only one 

requiring the inclusion of prior information in the form of a set of arcs to be blocked.  

As discussed in the previous section, the number of observations played an important 

role when learning the structure of the genetic and epigenetic BNs. Experimental designs of 

previously published studies had a major impact on the amount of data available to build the 

datasets used in this thesis. Additionally, the number of variables also had an impact on the 

search space, considering that the higher the number of variables, the more complex and 

computationally expensive is the search for the network that best fits the data (Chickering, 

1996; Cooper, 1990; Vogogias et al., 2018). Solving this challenge required not only exploring 

fields outside genetics, bioinformatics, and machine learning, but also creativity together with 

scientific accuracy. Throughout this thesis, different strategies have been implemented with 

the aim of finding the consensus network. In terms of BNs, the simplest of these strategies is 

to consider the consensus network as the top highest scoring network, if the algorithm finds 

the same structure every time the space is searched (Vogogias et al., 2018). In terms of 

complexity, the next strategy would be to combine the results of the n highest scoring networks 

from n different searches; n being a discrete number such as 10 or 100. This can be considered 
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as the consensus BN, as it involves the combination of multiple searches into one network 

(Vogogias et al., 2018). If the structure of the network is slightly different between searches, 

the following strategy would be to combine n top highest scoring networks or consensus 

networks into weighted networks. This approach requires the identification of arcs present (or 

absent) across different searches and then setting a threshold to filter arcs found in few 

searches, implemented as a strategy to get rid of arcs that might have been discovered as an 

artefact of the heuristic random search (Peters et al., 2021; Rodgers et al., 2019; Vogogias et 

al., 2018).  In this thesis, weighted networks were used in the genetic datasets, combining 50 

consensus BNs in the case of the brain, stress, and microarray dataset, and 100 consensus BNs 

in the case of the spleen, stress, and RNA-sequencing dataset. In both cases, the threshold was 

set to consider those arcs present in at least 50% of the searches.  

The most complex search space was the one corresponding to the epigenetic dataset, 

that required the combination of several strategies. The starting point was 100 BNs. Thereafter, 

a matrix was created considering the presence or the absence of a particular arc across the 

different networks. The score of each particular network was also included as part of this 

matrix, as it was needed to implement an average method previously published by Milns and 

colleagues (2010). This method calculated the average probability of each arc of being part of 

the top 100 networks by using the matrix of presence/absence of arcs as well as the score based 

on a phylogenetic tree approach. This approach treats the presence of arcs in a network as 

features to compare the similarities between networks as in phylogenetic trees, followed by a 

regression on the scores of the networks controlled by the correlation patterns of the 

phylogenetic tree (Milns et al., 2010). The aim of this approach is to identify an average 

probability of each arc being in a high-scoring network. These probabilities are clustered using 

a Gaussian mixed model to identify highly probable arcs (Milns et al., 2010). Finally, and in 

order to identify highly probable functional relationships, the probability of each arc being part 
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of one out of two categories was calculated: each arc was assigned to either a lowly or a highly 

probable category in addition to a value corresponding to the uncertainty associated with the 

classification process (Milns et al., 2010). As challenging as this particular search space was, 

a further and final step was needed: building the consensus network by combining the results 

of 50 searches and using those arcs present in at least 50% of the searches.  

Based on the strategies and approaches implemented throughout this thesis, not only 

the number of observations play an important role in regards to the complexity of the search 

space, but also the number of variables included when learning the overall structure of the 

network (Chickering, 1996; Cooper, 1990; Vogogias et al., 2018). Therefore, it is important to 

consider these two factors prior to learning the structure of the network, as they would be 

influencing the complexity of the search space. A complex search space shaped by the number 

of observations and variables would require a series of concatenated steps in order to build the 

consensus network.  

7.3. A bigger picture of the biology behind the results. 

Throughout the thesis, different genetic and epigenetic features have been identified to 

be associated with stress. Even though the nature of this thesis is mostly exploratory, our results 

might be understood in the context of poultry management as well as in domestication and 

artificial selection.  

When evaluating the effect of stress on the physiology of avian species, there are several 

indicators of stress. The most common is the measurement of corticosterone, a glucocorticoid 

which plasmatic concentration increases as a consequence of the activation of Hypothalamus-

Pituitary-Adrenal axis of the neuroendocrine interplay (Cantet et al., 2021, De Kloet, 2003; 

Dhabhar & McEwen, 1997; Dohms & Metz, 1991; McEwen et al., 1997; Selye, 1950, 

Wickramasuriya et al., 2022). Considering that the activation of the neuroendocrine system has 

a direct impact on the immune system, an alternative indicator of stress has been explored: the 
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Heterophil to Lymphocyte ratio (Mashaly et al., 2004; Nazar, Estevez, Correa, & Marin, 2017; 

Scanes, 2016). The correlation of these two indicators is based on the fact that glucocorticoids 

promote the migration and mobilisation of immune cells from tissues and organs to the blood 

stream and vice versa. As a consequence, a bird exposed to stress will show increased counts 

of heterophil while decreased counts lymphocyte in blood smears, with an overall increase in 

the ratio between Heterophil/Lymphocyte (Huff, Huff, & Balog, 2005; Scanes, 2016). Even 

though these two indicators are mostly used as biomarkers of stress, several other side effects 

of stress have been reported involving changes in the gut microbiota, the health of the intestine, 

alteration of immune variables, among others (Burkholder et al., 2008; Nazar et al., 2015; 

Nazar et al., 2017; Quinteiro-Filho et al., 2012, 2010; Shi et al., 2019).  

Exploring genetic or epigenetic biomarkers in poultry species as indicators of the stress 

phenomenon is not as advanced as in other animal models, especially rodents or humans. So 

far, studies have focused on the identification of differentially expressed genes or differentially 

methylated regions driven by a particular condition (Fallahsharoudi et al., 2017; Goerlich et 

al., 2012; Guo et al., 2020; Pértille et al., 2017, 2020). However, the set of genetic or epigenetic 

features can be quite extensive and trying to identify their corresponding biological pathways 

or gene ontology terms can be a complex task. This is because of the volume of genes having 

differential expression or methylation patterns, including those that might not have a gene 

symbol or other genetic attribute that can help tracing the genes in other databases. 

Additionally, understanding the biology behind such an extensive list of genes or DNA regions 

can be challenging, as the pathways could be either general responses related to the immune 

system, metabolism, neurogenesis, or specific responses such as cell signalling and cascades 

or particular mechanisms of the immune system (Guo et al., 2020; Pértille et al., 2017).  

Although there are some differences between animal models, such as experimental 

designs and the number of animals tested previously discussed, some other differences can be 
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related to the current scientific community, potentially influencing this gap between models. 

Even though ethical approvals must be in place before carrying out experiments in any research 

involving animals or humans, medical research can often take advantage of samples taken in 

the course of medical treatment, e.g., cancer biopsies, with generic permission given for storage 

in tissue banks and thus providing a base of samples when a new study is designed. 

Additionally, more data repositories are publicly available, such as the Cancer Prevention and 

Outcomes Data (Wisconsin database) or the English Lung Cancer Database (LUCADA), and 

they are daily updated with new entries. On the other hand, experiments carried out in poultry 

species are quite specific compared to the ones in humans, as a small number of chickens are 

being studied under specific stressful conditions, such as heat stress or social isolation stress, 

on specific tissues, such as brain, breast, or spleen, and often including extra experimental 

conditions such as domestication or different generations. Moreover, evaluating the same 

condition and/or experimental designs cannot be considered by researchers, as the overall idea 

has already been published and the findings will not be original. The lack of originality 

represents a problem, especially when dealing with funding applications or when 

communicating the results to the scientific community, considering that experimental designs 

already evaluated do not contribute to knowledge discovery. Poultry scientists, unlike medical 

researchers, usually need to think and develop new experimental designs as well as novel ways 

to evaluate the same phenomenon, stress in the case of this particular thesis. 

If we were to compare medical research with poultry science, medical research has 

identified some useful genetic biomarkers associated with specific types of cancer as a way to 

diagnose and/or prevent patients from suffering advanced stages of the disease. Some examples 

can be the mutation of the BRCA1 gene, that has been used a biomarker of hereditary breast 

cancer as well as breast-ovarian cancer, while the prostate-specific antigen, an enzyme 

produced by the prostate, has been used as a biomarker of prostate cancer (Carser et al., 2011; 
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Hernández & Thompson, 2004; Rosen, Fan, Pestell, & Goldberg, 2003; Tkac et al., 2019). In 

this sense, it is plausible to think that stress, as cancer, is a broad and general phenomenon with 

common mechanisms to different types of stressors. In this thesis, genes and epigenetic features 

related to oxidative stress, apoptosis, and tight junctions have been identified and they could 

be used as hallmarks of stress. However, more studies with an in-depth approach to each 

specific type of stressor and its impacts on specific tissues are required.  

On a bigger scale, both in terms of implications and time, it is worth reflecting on 

domestication, breeding programmes, and artificial selection. Poultry species have undergone 

an extensive domestication process for more than 8000 years, and they are currently 

undergoing artificial selection programmes. In ancient societies, domesticated birds were 

initially “selected” based on two interrelated characters: their tameness and their ability to 

survive in this new environment close to humans (Agnvall, Jöngren, Strandberg, & Jensen, 

2012; Ericsson et al., 2016; Mignon-Grasteau et al., 2005). Thereafter, and especially during 

the last decades, poultry species are undergoing breeding programs and artificial selection with 

the aim of increasing production and performance, with underlying economic purposes. 

Focusing on chickens, current breeds can, for example, produce 5 to 7 eggs a week or achieve 

slaughter weight at around 42 days of age (Cheng, 2010; Jackson & Diamond, 1996; Ma et al., 

2018). However, selecting those birds towards economic-productivity goals might have led 

poultry species to become more susceptible to certain conditions that do not meet the conditions 

outside those required for optimal productivity. It is in this scenario that stress comes into play 

in several forms such as transportation from the hatching facilities to the farms, temperatures 

above or below thermoneutral, social interactions with conspecifics, exposure to pathogens 

among many others (Burkholder et al., 2008; Guzmán et al., 2017; Kuenzel & Jurkevich, 2010; 

Lay et al., 2011; Nazar, Magnoli, Dalcero, & Marin, 2012; Rosales, 1994). 
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Studies have been done in the recent years with the aim of solving the current problems 

that the poultry sector is facing. Some examples of breeds selected based on specific 

characteristics could be the slower growing broilers, chickens with low fear of humans, and 

the stress and/or disease resistant chicken breeds (Bélteky et al., 2018; Dixon, 2020; Katajamaa 

& Jensen, 2020; Park et al., 2019; Van Goor et al., 2017). Dixon (2020) carried out a set of 

experiments to evaluate the performance as well as some welfare indicators in two types of 

breeds: commercial faster growing vs slower growing breeds (Dixon, 2020). Results showed 

that the slower growing breed required two extra weeks to reach slaughter weight; however, 

they showed an improved overall welfare status considering some behavioural and health 

indicators. For instance, the slower growing breed performed a wider range of behaviours, 

rarely seen on the faster growing breeds, such as perching (Dixon, 2020). Additionally, the 

slower growing breed had better scores on the feather coverage, breast feather cleanliness, and 

hock lesions indicators (Dixon, 2020). Selecting birds based on their low or high fear to humans 

could be considered as the first step of the domestication of poultry species (Bélteky et al., 

2018; Katajamaa & Jensen, 2020). Studies on the relative brain size in comparison to the body 

weight and an epigenetic features showed differences between chickens with low fear and high 

fear to humans (Bélteky et al., 2018; Katajamaa & Jensen, 2020). Katajamaa and Jensen (2020) 

also reported that chickens with low fear to humans coped better with a fear habituation test, 

showing lower scores than their high fear to human counterpart. As one final example, the 

Fayoumi chickens can be mentioned: this breed is indigenous to Egypt and it has undergone a 

natural selection process due to the harsh environmental conditions (Lamon et al., 2014). The 

Fayoumi chickens have been used as a stress-resistant and disease-resistant breed in studies 

that compared this breed with Leghorns chickens (Deist et al., 2017; Wang, Lupiani, Reddy, 

Lamont, & Zhou, 2014).  Both breeds were exposed to high environmental temperatures (Van 

Goor et al., 2017; Wang et al., 2018) or to an immune challenge such as Avian Influenza virus 
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or Newcastle disease virus (Deist et al., 2017; Wang et al., 2014). These studies showed that 

these two breeds have physiological differences as well as differential expression patterns 

depending on the challenging condition.  

Even though these specific characters have been selected based on the phenotype of 

poultry species, it is also possible to artificially select characters based on the genotype. In 

addition to microarray technologies and RNA-sequencing, the study of single nucleotide 

polymorphisms (SNP) and quantitative trait loci (QTL) could be of interest to identify regions 

within the genome that can increase the resistance or resilience of chickens to stress 

(Fallahsharoudi et al., 2017; Ma et al., 2018; Renaudeau et al., 2012). The complexity of this 

approach is higher compared to the artificial selection based on a phenotypic trait, as it would 

initially require a deep understanding of the stress phenomenon and the genetics behind it. 

Additionally, the crossing between individuals should be focused on increasing the 

overrepresentation of the genetic features of interest. However, it is target-specific considering 

that the artificial selection is oriented towards a particular genetic trait (Cheng, 2010; 

Renaudeau et al., 2012).  

7.4. Future directions in the genomic field. 

Working with genetics involves complexity and accuracy, different approaches, and 

possibilities, as well as a variety of genetic features to work with. Genetic research can be based 

on single nucleotide polymorphisms (SNPs), differentially expressed genes, quantitate trait loci 

(QTL), differentially methylation patterns, among others (Aslam et al., 2012; Ericsson et al., 

2016; Fallahsharoudi et al., 2017; Li et al., 2013). Some of these genetic traits can be studied 

as individual effects such as the single modification of the base of a gene in the case of SNPs 

or the expression values of a particular gene. The exploration of these individual genetic 

features associated to a particular condition of interest can be done with bioinformatic analysis 

such as t-tests or genome-wide association analysis. The study of these individual genetic 
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features has identified key SNPs or genes that can be utilised in estimating the effects of these 

features on a particular phenotype or predict the outcome based on individual values (Goddard, 

Kemper, MacLeod, Chamberlain, & Hayes, 2016). Considering some of the outcomes of this 

thesis, some of the identified genes or DNA regions can be used with this aim, classifying 

chickens under control or stress condition when the breeding conditions are unknown or using 

these genes or DNA regions as biomarkers of stress, with the possibility of implementing them 

in the management of decision-making.  

However, genetics is more complicated than the effects of individual genetic features, 

and SNPs, genes, or DNA regions can potentially interact with each other, requiring further 

exploration, considering epistatic effects or haplotype-based genome-wide associations (Aslam 

et al., 2012; Goddard et al., 2016; Li et al., 2013; Zhang et al., 2017, 2020). Epistasis is the 

branch of genetics in charge of studying the interactions between SNPs, genes, or QTLs and it 

is based on the fact that the individual contribution of genetic features might not have the same 

outcome as their interactions (Cordell, 2002; Howard et al., 2017; Li et al., 2013). In this 

scenario, Fangge et al (2013) found that SNP-SNP interactions were contributing to the 

abdominal fat weight of chickens, where individual SNPs might interact with up to 7 other 

SNPs (Li et al., 2013). 50 pathways were related to these SNPs, some of them associated with 

obesity, fat droplet formation, insulin-signalling pathways, among others. Zhang et al. (2017) 

studied the effects of the interactions between SNPs on testis growth and reproduction (Zhang 

et al., 2017). The findings revealed that over 400 interactions between SNPs were occurring, 

and one SNPs can interact with up to 8 other SNPs. The biological functionality of these genes 

pointed towards testis development, motility and viability of sperm, sperm maturation and 

fertilization, spermatogenesis, among others (Zhang et al., 2017).  

Genetic features might be displaying interactions and therefore contributing to a 

phenotype as a whole rather than as an individual feature, highlighting the importance and the 
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power of the application of BN approaches to genetics and bioinformatics. On the one hand, 

BNs can identify individual genetic features associated with a particular condition, in the case 

of this thesis, stress. On the other hand, BNs can also display relationships and interactions 

between genetic features that can be related to epistatic effects. Applying BN approaches allow 

the possibility not only to discover genes that can be utilised to classify or predict outcomes 

depending on the condition of interest but also define the starting point for future studies with 

the aim of exploring the actual effects of the discovered interactions on the phenotype.  

7.5. Limitations and applications outside genetics. 

Even though BNs have many advantages as expert systems that can be used to predict 

and/or classify the outcome of new data based on previous knowledge and/or data available, or 

to discover interesting and informative interactions and patterns within a given set of variables, 

they do have limitations and drawbacks. To start with, the quality and the quantity of the data 

have been identified as a one major issue when working with BNs. Lupo et al (2013) and 

Hartnack et al (2019) highlighted the importance of having accurate measures, avoid missing 

values, and the size of the dataset, as they could introduce noise or potential artefacts when 

learning the structure of the network (Hartnack et al., 2019; Lupo et al., 2013). Another 

drawback highlighted by several authors (Comin et al., 2019; Hartnack et al., 2019; Hidano et 

al., 2015) is related to the importance of the discretization of the data and the way they are 

encoded. There are several discretization methods that have different strategies, dividing the 

data into categories with different or equal number of observations per category, depending on 

whether there is a numeric threshold or not (interval vs quantile method, respectively). 

Additionally, multiclass variables can also be encoded as binary variables, creating dummy 

variables for each class of the original variable. With this particular strategy, the number of 

variables will consequently increase, requiring not only computer power but also statistical 

power, requiring a relatively large amount of data (Comin et al., 2019). Even though the 
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discretization of the data is generally implemented to deal with such complex non-linear 

relationships between a given set of variables, Parsons et al (2005) highlighted that BNs 

outcomes might be affected, leading to inconsistency and a diminished capability of explaining 

complexity (Parsons et al., 2005).  

Application of BNs in future studies can be developed in a wide range of poultry topics 

considering studies implemented in fields such as psychology, ecology, molecular biology, or 

the combination of multidisciplinary approaches (Balov, 2013; Blanchard et al., 2021; Milns 

et al., 2010; Mitchell et al., 2021; Peters et al., 2021). All in all, a multitude of possibilities can 

arise to apply a BN approach in poultry research. Some of them have been mentioned 

throughout the thesis, such as bacteriology and epidemiology, with the aim of understanding 

the complex relationships between microorganisms, genes, and antimicrobial resistance 

(Hartnack et al., 2019; Hidano et al., 2015). A field not yet explored regarding poultry research 

and BNs is behaviour. In humans, several aspects of psychology and psychopathology have 

been explored such as eating disorders, sports and emotions, or parental burnout (Blanchard et 

al., 2021; Meier et al., 2020; Peters et al., 2021). Poultry species are currently being studied in 

different aspects of their behaviour, such as their cognition, locomotion, or their fear response 

(Guzmán et al., 2017; Hedlund et al., 2021; Jones et al., 1992; Lábaque, Kembro, Luna, & 

Marin, 2013; Zidar et al., 2017). Application of BN approaches in this field might unravel 

behavioural patterns varied in nature, displaying relationships and interactions between the 

outcomes of particular behavioural tests, but all in all, they will provide further insights into 

how poultry species behave in commercial settings, possibly recognising strategies to improve 

animal welfare.  

Another possible field of interest would be related to productive phenotypes and an 

overall view of the physiology of different systems within the organism. A holistic approach 

can be explored with the aim of studying how several systems interact and relate with each 
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other, considering for example the immune-neuroendocrine interplay. Indicators coming from 

different systems, such as expression values of genes, plasmatic concentrations of hormones, 

leukocyte counts, microbial communities of the gut, immune responses, among many others, 

can be used to learn the structure of BNs. Additionally, poultry species are being studied under 

a variety of environmental conditions, such as heat/cold stress, different housing systems, or 

dietary regimens and/or supplements (Calefi et al., 2017; Lay et al., 2011; Luna et al., 2019; 

Pértille et al., 2020; Song et al., 2013; Sosnówka-Czajka et al., 2010), defining phenotypes 

associated with each particular condition (e.g., non-stressed vs stressed, non-supplemented vs 

supplemented). The possibilities are limitless and worth exploring.  
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8. Conclusions. 
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1. The genetics of stress of chickens represents a complex and challenging biological 

system, considering that experimental designs evaluated the combination of multiple 

factors, such as stress, domestication, and immune challenges.  

 

2. Bioinformatic tools identified highly significant statistical genetic/epigenetic features, 

however, the lists of these genetic/epigenetic features are extensive, calling for 

additional tools to understand more in-depth the findings.  

 

3. Bayesian networks represent a powerful mathematical tool that allowed the possibility 

to further explore the genetics/epigenetics of stress in chickens by learning functional 

and informative relationships between a given set of genes or methylated regions.  

 

4. Dealing with a complex biological system required the exploration of the search space 

defined by the given set of variables to learn the structure of networks, the 

visualization of variability across searches, and the delineation of strategies and 

approaches to find the network that best fitted the data.   

 

5. One gene, CARD19, and two differentially methylated regions, OCLN and 

ENS51236 displayed a direct link with the stress condition. These genetic/epigenetic 

features could be further explored as biomarkers of stress in chickens. Interestingly, 

ENS51236 is a DNA region whose function is still yet unknown, setting the stones for 

future studies.  
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6. The biology behind CARD19 and OCLN pointed towards the regulation of apoptotic 

process and the activation of the NF- κβ⁡signaling pathways, and intracellular tight 

junctions and adhesion, respectively.  

 

7. As stress signals, four Heat Shock Proteins were found to interact amongst themselves 

and with other four genes. This finding is relevant as the stress signals were initially 

identified in a small set of chickens and then searched for in other datasets, even 

though not all the datasets evaluated the effects of stress on the gene expression.  

 

8. Our study highlights the power of Bayesian networks in knowledge discovery, not 

only in terms of the informative and functional interactions that were learnt, but also 

in the possibility to include genetic/epigenetic features whose functions are still yet 

unknown.  

 

9. Interdisciplinary studies are needed to get further insights into complex biological 

systems. In this study, genetics, bioinformatics, statistics, and Bayesian networks 

were used in a series of steps to narrow the number of genetic/epigenetic features 

down, from hundreds of thousands to a small set. This way, it was possible to unravel 

key biological mechanisms and pathways as potential targets of future studies. 

 

10. Considering that applying Bayesian network approaches involves a series of steps and 

making decisions, road maps were displayed so that other researchers can apply 

Bayesian network strategies on their own datasets. Consequently, they would be able 

to collect and combine different sources of data, properly discretize their data, explore 

the search space defined by the given set of variables, visualize the variability across 

searches, and finally, and build the network that best fits their data.  
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