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Abstract 

The rising of cardiometabolic risk factors like obesity, higher blood pressure, and 
alteration in the metabolism of lipids and glucose during adolescence increase the 
risk of type 2 diabetes mellitus, cardiovascular diseases, and all-cause mortality in 
adulthood. Several observational studies and clinical trials conducted in adults have 
shown the role of (poly)phenols improving cardiometabolic health parameters, even 
in individuals with high risk of cardiovascular disease. To date, there are very few 
studies about (poly)phenols and cardiometabolic health in adolescents, one of them 
is the HELENA study. Additionally, the diversity and the complexity of 
(poly)phenols lead to difficulties in their dietary estimation in epidemiological 
studies. Most of the studies evaluated dietary (poly)phenols in adolescents based on 
dietary tools and rarely used biomarkers in biological samples.  

This thesis aimed to study the role of dietary (poly)phenols, estimated using 
different approaches, on cardiometabolic health parameters in a cohort of 1326 
adolescents aged 11 to 14 years old enrolled at baseline in the SI! Program for 
secondary schools in Spain. Overall, our findings suggested that among adolescents: 
i) dietary (poly)phenols estimated by food frequency questionnaire are related to 
improved cardiometabolic and adiposity parameters, ii) Total (poly)phenols in urine 
analyzed by the Folin-Ciocalteu spectrophotometric method and used as a marker 
of (poly)phenol intake, was inversely associated with blood pressure and lipid 
profile, and with healthier cardiovascular health., iii) A novel and accurate analytical 
method to identify and quantify 54 urinary phenolic metabolites (mainly microbial 
phenolic metabolites) even aglycones and phase II metabolites through liquid 
chromatography coupled to mass spectrometer was developed enterolignans 
(enterodiol, enterolactone, and their derivatives) and urolithins (A and B and their 
derivatives) were identified as candidate markers of whole grains and nuts intake, 
respectively, iv) some phenolic metabolites (gallic acid, urolithin A and B) were 
associated with better cardiometabolic health and with lower probability of having 
metabolic syndrome.  

The results of this thesis suggest that higher dietary (poly)phenols measure through 
food frequency questionaries or in urine were associated with better 
cardiometabolic health, specifically body weight/composition, blood pressure, 
blood glucose, and lipid profile; in adolescents from a Spanish cohort.





 
 

 

 

INTRODUCTION 
 

  



 



INTRODUCTION 
 

 21 

1. INTRODUCTION 

1.1. Cardiometabolic health in adolescents 

Cardiovascular diseases (CVDs), particularly ischemic heart disease and stroke, are 
the leading cause of global death, contributing to disability and increasing health 
care costs (1). The number of CVDs deaths is rising alarmingly up from 12.1 million 
in 1990 to 18.6 million in 2019 (1). In Europe, CVDs are still a major cause of 
morbidity and mortality, reaching 4 million deaths each year, accounting for 45% of 
all deaths in adults (2). The main causes of CVD can be classified into non-
modifiable risk factors such as age, sex, family history of CVD risk, and modifiable 
risk factors. According to European Heart Association, the main causal and 
modifiable CVD risk factors included dyslipidemia, high blood pressure (BP), 
cigarette smoking, diabetes mellitus, and adiposity (3).  

It is documented that metabolic syndrome (MetS) in adults is a predictor of CVD 
(2- to 4-fold higher), type 2 diabetes mellitus (T2DM), and all-cause mortality (4–7). 
MetS consists of a combination of cardiovascular risk factors including impaired 
glucose metabolism, abdominal obesity, dyslipidemia (increased triglycerides (TG) 
and decreased high-density lipoprotein cholesterol (HDL-c)), and/or elevated BP  
(8,9). The pathogenesis of MetS is complex and many aspects are still not fully 
understood, but the most accepted hypothesis to describe pathology of MetS is 
insulin resistance. The molecular pathways of insulin resistance are explained by 
defects between the union of insulin with its receptor, where obesity and sedentary 
lifestyles combined with an unhealthy diet and still unknown genetic factors interact 
to produce this metabolic condition (10) (Figure 1).  

 
Figure 1. Factors contributing to MetS. Adapted from Kahn et al. (11) 
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Because of the increasing rates of overweight and obesity, unhealthy eating 
behavior, and sedentary lifestyle worldwide, the MetS is raising in adults but also in 
young populations as adolescents (12,13). According to a recent study published in 
the Lancet, around 35.5 million (5%) adolescents aged 13 to 18 years old from 44 
countries in 13 regions worldwide had MetS in 2020 (12). Although the prevalence 
of MetS in adolescents is low compared to adults (up to 31%), having MetS at early 
life stage has serious metabolic consequences in adulthood. Thus, youth with MetS 
and some combination of MetS components could have 2-3 times higher risk of 
developing T2DM and subclinical atherosclerosis in adulthood (14–16). The lack of 
a consensus about the MetS definition is the main problem of MetS in the pediatric 
population (17). Thus, at this time, more than thirty definitions are described in the 
literature with substantial different MetS diagnostic criteria (18), and the most 
reported are described in Table 1. Depending on each definition used, the 
prevalence of MetS in children and adolescents has a large variation, from 0.3 to 
26.4% (19).  

Table 1. MetS diagnostic criteria in children and adolescents. Adapted from 
Reisinger et al. (19) 

Ref. Definition Abdominal 
obesity 

(WC, cm) 

High BP 
(mm 
Hg) 

Dyslipidemia 
(mg/dL) 

High BG 
(mg/dL) 

Zimme
t et al. 
(20) 

Abdominal 
obesity plus 
2 of 4 criteria 

10–15 years of age  
WC ≥ 90th 
percentile             
 
>15 years of age  
WC ≥94 (♂) 
WC ≥ 80 (♀) 

SBP ≥ 130 
or 
DBP ≥ 85  

TG ≥150   
HDL-c <40  
 
10–15 years of age  
HDL < 40  (♂)  
<50  (♀)  

≥100 or 
diagnosis 
of T2DM 

Cook 
et al. 
(21) 

3 or more of 
5 criteria 

WC ≥ 90th 
percentile 

≥90th 
percentile 

TG ≥ 110  ≥110 
HDL-c ≤ 40  

Ford et 
al. (22) 

3 or more of 
5 criteria 

WC ≥ 90th 
percentile 

≥90th 
percentile 

TG ≥ 110  ≥110  
HDL-c ≤ 40  

de 
Ferrant
i et al. 
(23) 

3 or more of 
5 criteria 

WC ≥ 75th 
percentile 

≥90th 
percentile 

TG ≥ 100  ≥110  
HDL-c ≤ 50   

♂ boys, ♀ girls, BG blood glucose, BP blood pressure, DBP diastolic blood 
pressure, HDL-c high-density lipoprotein cholesterol, SBP systolic blood pressure, 
T2DM type 2 diabetes mellitus, TG triglycerides, WC waist circumference.  
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Due to the increase and the large variation in the prevalence of MetS in children 
and adolescents, some epidemiological researchers have proposed evaluating 
continuous MetS score (cMetS) as an index for modeling MetS in pediatric 
population (24). Several statistical approaches have been applied to calculate cMetS, 
like principal components analysis, centiles rankings, and so on (25–27). Hesmant et 
al. validated a cMetS, like the sum of standardized residuals of cardiometabolic risk 
variables: WC, mean arterial blood pressure (MAP), HDL-c, TG, and blood glucose 
(BG), resulting in an accurate predictor of MetS in 3843 Iranian children and 
adolescents aged 7-18 years old (24).  

1.1.1. Obesity and cardiometabolic complications 

As mentioned before, obesity in adolescence, especially abdominal obesity, is the 
main contributor to the severity of MetS, T2DM, and CVD (14). Obesity is 
characterized by an excess of adipose mass. The excess of visceral adipose mass 
increases the growth and the number of adipocytes, disrupting the normal lipid 
accumulation in tissues such as muscle and liver, and elevating free fatty acids 
(FFAs). Higher FAAs levels in plasma reduce insulin sensitivity in muscle by 
inhibiting insulin-mediated glucose uptake. The high circulating glucose and FFAs 
increase pancreatic insulin secretion resulting in hyperinsulinemia. Thus, when 
insulin resistance develops, it facilitates the flow of FFAs from adipose tissue to the 
liver, there is a reduction in glucose transformation to glycogen, and elevation of 
synthesis of TG, very low-density lipoprotein (VLDL), and apolipoproteins (C-II, 
C-III, and B-100). The higher and abnormal production of TG increases lipid 
accumulation in the liver and muscle, but also elevates circulating TG levels. 
Hypertriglyceridemia modifies the composition of lipoproteins, decreases HDL-c, 
and increases low-density lipoproteins cholesterol (LDL-c) levels. LDL-c is 
transformed into a smaller particle, with a higher atherogenic capacity. The 
adipocyte is also an endocrine cell, that releases many molecules like cytokines and 
hormones. In obesity, adipose tissue exhibits abnormalities in the production of 
these molecules affecting insulin resistance. For example, there is a high production 
of inflammatory cytokines such as tumor necrosis factor alfa (TNF α), interleukin 6 
(IL-6), C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI1), and 
lower production of protective hormones like adiponectin, which regulates glucose 
levels and fatty acid metabolism. Additionally, obesity is associated with changes in 
adipocyte gen expression spanning, for example, it promotes the overexpression of 
angiotensinogen gen increasing angiotensin II, and probably contributing to the 
appearance of hypertension (28) (Figure 2). 
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Figure 2. Physiopathology of obesity and MetS. The excess adipose tissue elevates free 
fatty acids (FFAs), inflammatory cytokines such as tumor necrosis factor alfa (TNF α), 
interleukin 6 (IL-6), C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI1), 
and decreases adiponectin. In the muscle, a higher circulating FAAs reduces insulin 
sensitivity. Elevated FFAs increase pancreatic insulin secretion resulting in 
hyperinsulinemia. Thus, when insulin resistance develops, there is a high flow of FFAs 
from adipose tissue to the liver, reducing glucose transformation into glycogen, and 
increasing the synthesis of triglycerides, very-low-density lipoprotein (VLDL), 
apolipoproteins (C-II, C-III, and B-100), reducing high-density lipoprotein cholesterol 
(HDL-c) and elevating low-density lipoprotein cholesterol (LDL-c). Adapted from Eckel et 
al. (28). 

From 1975 to 2016, obesity in children and adolescents, measured by body mass 
index (BMI), has increased worldwide, from 5 to 50 million in girls and from 6 to 
74 million in boys (29). In Spain, a recent study showed that the prevalence of 
overweight and obesity trends in 2.5 million children and adolescents decreased 
from 2005 to 2017 (30). However, this trend varies depending on sex, age, and 
region. In general, boys have a higher prevalence of obesity than girls. However, 
regarding change prevalence, in adolescents aged from 12 to 17 years, the 
prevalence of obesity increased in girls (mainly in Aragon, Cantabria, Catalonia, and 
Navarra) and decreased in boys, as observed in Figure 3.  



INTRODUCTION 
 

 25 

 
Figure 3. Percent change in the prevalence of obesity in Spain from 2005 to 2017 
according to age, sex, and region. Bont et al. (30). 

Lifestyles are acquired in early life stages, and they persist from childhood to 
adulthood (31). For this reason, childhood and adolescence are critical periods for 
the adoption of food preferences and other key behaviors associated with a healthy 
diet and physical activity, to promote better cardiovascular health in adulthood 
(31,32). Preliminary evidence reports an inadequate dietary pattern amongst 
adolescents in Spain, characterized by lower intake of fruits and vegetables resulting 
in lower Mediterranean diet adherence, higher intake of high-fat meals, sugar, in 
addition to unhealthy choices such as breakfast skipping, eating at fast-food 
restaurants, intake of processed foods and sweets (32,33).  

1.1.2. Strategies to improve cardiometabolic health in adolescents 

It is well documented that interventions based on healthy dietary behaviors and 
active physical activity are the best way to reduce the prevalence of obesity and 
improve cardiometabolic health in a young population (34). Adolescence is a key 
period of biological, social, and behavioral changes that will be essential for 
adopting a healthy lifestyle and eating habits in adulthood (35). However, dietary 
behaviors depend on multiple complex factors which need to be considered, like 
food preferences, parental education, family income, and nutritional knowledge 
(36). Lifestyle habits, such as watching television for more than two hours, also 
influence food consumption patterns. Each of these individual, environmental, and 
sociocultural factors represent a potential barrier, but also an opportunity to 
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promote healthy habits to improve cardiometabolic health (36). Therefore, 
identifying each of these determinants will be important in the implementation of 
programs to improve eating habits and lifestyle in the community (36). 

In this context, during the last years, Spanish public schools have promoted the 
implementation of health education systems to increase physical activity and 
improve eating patterns in children and adolescents, as well as their families and 
school environment, through the SI! (Salud Integral) Program (31,37). The 
interventions in schools are probably the best way to promote healthy lifestyles at a 
low cost and with greater effectiveness (31,35,37). The SI! Program is an 
educational intervention that aims to establish healthy lifestyles at an early age stage, 
intervening in four basic interrelated components: the human body, physical 
activity, diet, and the management of emotions, the latter aimed at preventing the 
use of drugs like tobacco and alcohol (31,37). Based on scientific evidence, the SI 
Program! seeks to promote physical activity, healthy eating, reducing sedentary 
leisure time, and avoiding drug or alcohol consumption, through increased 
knowledge and changing attitudes and habits together with the control of emotions, 
with the aim of reducing body weight and visceral adiposity parameters, as well as 
improving metabolic profiles and cardiovascular health (31,37) (Figure 4). This 
intervention is aimed at secondary school students and is based on the adolescent's 
potential to have a positive impact on their health, which will be reinforced by the 
family and school environment (37). The design of this intervention is based on the 
success of this strategy implemented in preschool children aged 3 to 5 years in 
Spain, proving to be effective in adopting healthy habits (31). 

 
Figure 4. Design of the Si! Program for secondary schools in Spain. Adapted 
from Fernández-Jiménez et al. (37) 
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The implementation of the SI! Program in adolescents from secondary schools in 
Madrid and Barcelona ended in 2021, and currently, the effect of the intervention is 
ongoing publish. Details of the data recruitment are described by Fernandez-
Jimenez, R. et al (37), and in the method section of the present thesis.  

1.2. Dietary (poly)phenols 

(Poly)phenols constitute a group of bioactive compounds or phytochemicals of very 
great structural diversity and are largely widespread in the plant kingdom. 
(Poly)phenols are secondary metabolites produced by plants, through complex 
shikimic acid and malonic acid pathways, as a response to environmental and 
ecological challenges (38).  

1.2.1. Structure and classification of dietary (poly)phenols 

(Poly)phenols represent the largest group of phytochemicals, with several thousand 
different phenolic structures identified in plants to date. (Poly)phenols are 
characterized by having at least one phenyl aromatic hydrocarbon ring carrying one 
or more hydroxyl groups. According to aglycone chemical structure, (poly)phenols 
can be classified into five main groups: flavonoids, phenolic acids, stilbenes, lignans, 
and “others” such as coumarins, tyrosols, etc. (38). The basic chemical structure of 
(poly)phenol is an aglycone, and it is rarely found in foods. Generally, (poly)phenols 
in foods are linked to glycosides (glucose, rhamnose, rutin), esters or in their 
polymeric form. 

 
Figure 5. Classification of dietary (poly)phenols. Adapted from Hano et al. (39) 

Flavonoids are the main group of (poly)phenols, with more than 4000 different 
compounds identified in plants (38). The basic chemical structure of flavonoids 
consists of two six-carbon phenyl aromatic hydrocarbon rings (ring A and ring B) 
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that are bound by one heterocyclic ring of three-carbon (ring C) (Figure 5). 
According to the hydroxylation pattern and variation in the heterocyclic ring, 
flavonoids can be divided into six subclasses: anthocyanins, flavanols or flavan-3-
ols, flavonols, flavones, flavanones, and isoflavonoids. In plants, generally, 
flavonoids are found in their glycosylated form which are formed by an aglycone 
linked to glycosidic sugars (glucose, galactose, or rhamnose) (38,40). Anthocyanins 
are compounds responsible for the red, blue, and purple pigments in fruit (berries, 
pomes, and red wine) and vegetables (onion, leaf vegetables, purple sweet potato), 
and cyanidin, delphinidin, and pelargonidin are the most identified in foods. 
Flavanols or flavan-3-ols are a very complex group of (poly)phenols, which include 
monomers of flavanols (catechin, epicatechin, and their gallates) or polymers of 
flavanols (proanthocyanidins). Flavones, such as luteolin, apigenin, and baicalein 
have similar chemical structures to flavonols, except for the lack of oxygenation at 
ring C. In general, flavones are present in leaf vegetables like celery and parsley. 
Flavanols are mainly present in tea, berries, red wine, and cocoa-based products. 
Among flavonols, quercetin, myricetin, isorhamnetin, and kaempferol are the most 
found in citrus fruits, grapes, onions, and lettuce. Hesperidin and naringenin are the 
most representative of flavanones, and they are present in citrus fruits. 
Isoflavonoids such as genistein and daidzein are present in soy and soy products 
and are classified as phytoestrogens due to their similar chemical structure to 
estrogen (Table 2) (41). 

Phenolic acids are the most abundant non-flavonoids in plants and are divided into 
hydroxybenzoic acids (e.g., gallic acid, vanillic, and syringic acids) and 
hydroxycinnamic acids (e.g., m-coumaric, o-coumaric, p-coumaric, ferulic, 
chlorogenic acids), both characterized by having at least one phenyl aromatic 
hydrocarbon ring and organic carboxylic acid in their chemical structure, as can be 
seen in Figure 5 (38,39). Depending on their soluble or bound form, phenolic acids 
can be found in the endoplasmic reticulum and preserved in the vacuoles of cell 
plants or found in the cell wall conjugated with glycosides and ester bonds (38,39). 
These phenolic compounds are widely distributed in fruits (apples, cherries, berries, 
wine), vegetables (broccoli, lettuce, and tomatoes), grains, seeds, legumes, coffee, 
etc. (Table 2).  

There are other non-flavonoids relevant to human health that can be found in 
plants, although they are not widespread in plant foods. Among these, stilbenes and 
lignans are the most representative. Stilbenes, being resveratrol the main 
contributor, are found in grapes and red wine but in low quantities. Lignans are 
recognized as phytoestrogens and are found in the bound forms in flax, sesame, and 
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many grains and tyrosols are mainly present in olive and extra virgin olive oil (Table 
2). 

Table 2. (Poly)phenol food sources. 

(Poly)phenol subclasses  Food sources  
Flavonoids    
• Anthocyanins  Berries, drupes, pomes, fig, fruit juices, nuts, pulses, 

olives, leaf vegetables, onion, red wine, purple sweet 
potato. 

• Flavanols or Flavan-3-ols   
• Catechins  Cocoa and cocoa products, pomes, cereals, berries, 

gourds, fruit juices, nuts, pulses, wine, beer, 
ciders, tea. 

• Proanthocyanidins  Cocoa and cocoa products, cereals, berries, cherries, 
pomes, drupes, tropical fruits, nuts, red wine. 

• Theaflavin  Tea   
• Flavanones  Citrus fruit 
• Flavones  Herbs, spices, whole-grain cereals, citrus fruit 

(orange), olive. 
• Flavonols  Spices, herbs, nuts, berries, olive, leaf vegetables, 

pulses, cabbages, onion, whole-grain cereals, tea 
(black). 

• Isoflavonoids  Soy and soy products. 
Phenolic acids    
• Hydroxybenzoic acids  Nuts, berries, tropical fruit, leaf vegetables, cocoa, 

soy products, herbs, tea. 
• Hydroxycinnamic acids  Herbs, berries, cereals, dried fruits, coffee beverage, 

drupes, pomes, berries, tropical fruits, drupes, tuber 
(potato). 

• Hydroxyphenylacetic acids  Olives, olive oil 
• Hydroxyphenylpropanoic 

acids  
Olives  

Stilbenes  Red wine, berries, nuts 
Lignans  Seeds oils, cabbages (kale, broccoli), nuts, drupes 
Other (poly)phenols    
• Alkylmethoxyphenols  Seed oils (rape seed), beer, coffee beverages  
• Alkylphenols  Cereals and cereals products, coffee beverages, and 

cocoa 
• Furanocoumarins  Stalk vegetables (Celery), herbs (parsley), citrus 

juice  
• Hydroxybenzaldehydes  Nuts, red wine, cocoa powder, olives.  
• Naphtoquinones  Nuts   
• Tyrosols  Olives, olive oil  
• Curcuminoids  Spices 

Data obtained from Phenol Explorer version 3.6 
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1.2.2. Factors that could influence (poly)phenol content in foods 

Agricultural and technological factors have shown to influence the content of 
(poly)phenols in plants. The main agricultural factors include genetic diversity, 
environment (seasonal variability, water availability, sunlight, and temperature), soil 
fertilization, irrigation system, pest/microbial stress, and ripening stage (42). 
Although most of these factors are controlled by the grower, climate change has an 
impact on the phenolic content. For example, studies show that sun exposure can 
increase anthocyanins and flavonols (like quercetin) in some plants (40,42).  
Technological factors include all post-harvesting treatments, such as cleaning, 
storage, antimicrobial treatments, and food processing. During the storage, there is 
a gas generation that can modulate the synthesis of some (poly)phenol subclasses. 
Food processing, mainly mechanical, thermal, and non-thermal treatments, affects 
the content and profile of dietary (poly)phenols (42,43). Drying, grinding, and heat 
treatments cause (poly)phenol losses in foods. Meanwhile, encapsulation enhances 
(poly)phenol bioavailability. (Poly)phenols are susceptible to changes during 
cooking techniques (boiling, frying, steaming, baking, stewing, roasting, and 
microwave), mainly by the degradation by heat, oxidation, isomerization, and release 
of (poly)phenols by rupture of cell walls (44).  

 
1.2.3. Bioavailability of dietary (poly)phenols and the role of the gut microbiota 

The human biological health effect of dietary (poly)phenols depends on the quantity 
consumed and their absorption, distribution, metabolism, and elimination (45). 
Briefly, (poly)phenol bioavailability involved the following processes (Figure 6): 1) 
release of (poly)phenols from the food matrix; 2) changes in (poly)phenols during 
gastric/small intestinal digestion; 3) cellular uptake of aglycons and some 
conjugated (poly)phenols by enterocytes; 4) microbial phenolic metabolism of non-
absorbed (poly)phenols; 5) phase I/II enzyme modification in the small intestine or 
colon; 6) transport of (poly)phenols in the bloodstream and tissue redistribution; 7) 
(poly)phenol excretion via the kidney, mammalian glands, or re-excretion into the 
gut via bile (46,47). 

In foods, most of the (poly)phenols are present as glycosides, esters, and polymers, 
the latest characterized by their high molecular weight and poor bioavailability 
(48,49). Digestion begins in the oral cavity with the reduction of particle size and 
the enzymatic action of amylase, enhancing the process during the following stages 
of digestion. Due to the short interaction time, the impact of enzymatic digestion 
on (poly)phenol release is low (46,47).  
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Figure 6. (Poly)phenol bioavailability. Adapted from Bohn and Del Rio et al. 
(41,47) 
CBG, cytosolic β-glucosidase; COMT, catechol-O-methyl transferase; LPH, lactase-
phlorizin hydrolase; MRP, multidrug resistance proteins; SGLT-1, sodium-glucose linked 
transporter 1.  
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In the stomach, pepsin reaction, peristaltic movement, and the low pH decrease 
particle size, promoting the release of (poly)phenols (47). According to some 
authors, anthocyanins, isoflavonoids aglycones, and some phenolic acids (caffeic 
acid, gallic acid, and chlorogenic acid) can be absorbed in this gastric phase, due to 
the rapid postprandial appearance in plasma (47,50–52). 

In the small intestine, aglycones can be absorbed. However, more than 80% of 
dietary (poly)phenols (mainly in their glycoside form) are poorly absorbed in the 
small intestine and pass to the large intestine, which are metabolized by gut 
microbiota through enzymatic reactions (deglycosylation, dehydroxylation, 
demethylation, deconjugation, epimerization, ring fission, hydrolysis, and chain-
shortening reaction) and transformed into lower molecular weight compounds, 
namely microbial phenolic metabolites. During the absorption, (poly)phenols are 
conjugated in the small intestine and later in the liver, following phase I (e.g. 
reduction/oxidation, methylation, hydroxylation, hydrolysis, e.g. via cytochrome 
P450-dependent mixed-function oxidases and catechol-O-methyl-transferase) and 
phase II metabolism (e.g. glucuronidation by uridine-5’-diphosphate 
glucuronosyltransferase, and sulfation via sulfotransferases). This process depends 
on the nature of the substrate and dose of each phenolic. When (poly)phenols reach 
the systematic circulation, they are rapidly eliminated from plasma, distributed to 
different target tissues, or excreted through biological fluids, like urine, bile, and 
breast milk. Excretion of phenolic compounds varies according to molecular 
weight; thus, heavy compounds are usually eliminated through bile, meanwhile, 
molecules with lower weight are eliminated frequently through urine (53). Since 
dietary (poly)phenols are extensively modified, and the forms (mainly glucuronide 
and sulfate) that appear in human samples are usually different from the precursor 
(poly)phenol found in foods, greater attention should be focused on exploring the 
potential biological activity of (poly)phenol metabolites, especially metabolites 
derived from gut microbiota. Some microbial phenolic metabolites could have more 
bioactive effects than their native or parental (poly)phenols, as is the case of lignans, 
which are metabolized to enterolactone and enterodiol, or ellagitannins metabolized 
in urolithins, which act as stronger phytoestrogens than their parental compound 
(45,49,54,55). Given the above, details of the bioavailability of (poly)phenols and 
the role of gut microbiota on human health are available in Article 1. 

The bioavailability of dietary (poly)phenols differs among individuals. This 
interindividual variation could be explained by different factors: the composition of 
gut microbiota, genetic polymorphisms in the expression of enzymes implicated in 
phase I/II metabolism, intake of alcohol, smoking, age, sex, and the synergistic 
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effects of the mixture of (poly)phenols and other nutrients present in the diet, as 
well as the food matrix (56,57). A positive effect of sugars on (poly)phenol 
glucoside uptake has been suggested (46). Thus, a green tea formulation with 
sucrose, ascorbic acid, or citrus juices protected catechins degradation and 
improved their bioavailability (58). Similarly, chocolate products with sucrose 
increased plasmatic levels of catechins and epicatechins (59). On another hand, 
dietary lipids enhance apolar (poly)phenol absorption by the formation of mixed 
micelles, thus, enhancing its transepithelial transport (46,47). Tuck et al. showed that 
absorption of tyrosol and hydroxytyrosol increased after the administration of olive 
oil (lipid-rich matrix) (60). By contrast, proteins can negative effect on (poly)phenols 
bioavailability. However, is difficult to judge due to some contradictions in the 
studies. Studies with blueberries showed that milk addition reduces the recovery of 
anthocyanins having a negative effect on the antioxidant activity of blueberries (61). 
However, studies with cacao powder and milk showed an increase of urinary 
phenolic acids such as vanillic and phenylacetic acid; and a reduction of 
protocatechuic, hydroxybenzoic, hydroxyhippuric, hippuric, caffeic, and ferulic 
acids after the consumption of cacao powder dissolved in milk (62). It is probable 
that this protein effect depends on type of protein and (poly)phenols (46,47). 
Dietary fiber increases the intestinal bulk (soluble fiber) and reduces transit time 
(insoluble fiber), both action that reduces (poly)phenol bioavailability. However, 
positive effect on (poly)phenol bioavailability has been observed with fermentable 
fiber such as fructo-oligosaccharides, inulin, and resistant starches, increasing the 
microbial phenolic metabolism (e.g. quercetin and isoflavones) (63–65). Although, 
the effect of mineral intake on (poly)phenol bioavailability has not ever been 
described, (poly)phenols reduce the absorption of iron, zinc, copper, and sodium, 
due to chelation (47,66).  

Health status also has implications on the bioavailability of (poly)phenols. Some 
(poly)phenols as epigallocatechin-3-O-gallate have a high affinity to plasma proteins 
extending their half-life in the blood (67). 

1.2.4. Methods of estimation and quantification of (poly)phenol intake 

In epidemiological studies, different methods to assess phenolic intake are used to 
evaluate the relationship between these compounds and human health, and they can 
be divided into two groups: dietary tools and biomarker analysis using analytical 
approaches (68,69).  
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1.2.4.1. Dietary tools to estimate (poly)phenol intake 

The diversity and the complexity of (poly)phenols lead to difficulties to estimate 
dietary intakes. The most reliable tools for (poly)phenol intake are 24-h or 48-h diet 
recall, food records/diaries, diet history questionnaires, weight food records, or 
food frequency questionnaires (FFQ). Each one, including its strengths and 
limitations, is described in Table 3. Among them, FFQ is the most widely dietary 
assessment tool used to measure food sources of (poly)phenol intake, because of its 
ability to measure long-term exposure to dietary factors (68,70). These methods are 
then cross-referenced using available (poly)phenol food composition databases (68). 
In this thesis, we used the Phenol-Explorer database because it is the most 
comprehensive database that includes flavonoid and non-flavonoids subclasses of 
(poly)phenols from more than 400 foods (71). However, in the literature, other 
databases are also used such as the USDA database for flavonoids, the UK food 
standards Agency Food composition database on phytoestrogens, etc. (68).  

Table 3. Strengths and limitations of (poly)phenol intake commonly used in 
epidemiological studies. Adapted from Xu et al. (70) 

Characteristics Strengths Limitations 
Ability to capture 
food sources of 
(poly)phenols 

FFQs 

A list with specific food 
items (10–200+), able to 
assess long-term intake 
exposure. 

Easy to conduct or 
self-reported, 
capture past-long-
term intake 
exposure. 

Less able to capture 
day-to-day variability in 
diet; lack of specificity 
foods; prone to 
misreporting and 
memory bias. 

Able to capture 
long-term 
(poly)phenol intake. 

24-h/48-h Recall 
Recall food intake in the 
previous 24 h or 48 h. 
To evaluate habitual 
diet, two or more recalls 
are needed to apply 
during a long period of 
time. 

Easy to conduct; 
not restricted to a 
predefined food list. 

High participant burden 
if conducted multiple 
times; prone to 
misreport and memory 
bias. 

More specificity 
(poly)phenol 
content; repeat 
recalls are needed to 
capture habitual 
dietary 
(poly)phenol. 

Food records or diaries 

Record of intake for 3, 7 
days, etc.; usually 
assisted with pictures of 
portion sizes.  

Able to identify 
day-to-day 
variability after 2 or 
more records, not 
restricted to a 
predefined food list. 

Quality of data may 
decline with the 
increasing number of 
days reported. Hand-
written food records are 
inexpensive to collect 

More specificity 
(poly)phenol 
content; able to 
capture intake of 
less common foods.  
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It can capture 
infrequently 
consumed foods. 

but expensive to code. 

Diet history questionnaire 

Structured 
questionnaire/interview 
on food intake during a 
specific period with 
open-ended questions. 

Not restricted to a 
predefined list of 
foods; capture past 
long-term intake 
exposure. 

Standard protocol and 
training are needed for 
the interview and 
coding; prone to 
misreporting and 
memory bias.  

Able to capture 
(poly)phenol intake 
from less common 
food or infrequently 
consumed foods.  

Weighed food records 

Weigh and record the 
portion of every food 
intake for a consecutive 
period of time.  

Accurate in portion 
size and less 
memory bias; not 
restricted to a 
predefined food list. 

High participant burden 
(need weighing tools 
and instructions); 
standard protocol and 
training are needed for 
coding. 

Able to capture 
(poly)phenol intake 
from less common 
foods; repeat 
measurement will 
increase the ability 
to capture 
infrequently 
consumed foods.  

 
1.2.4.2. Analytical method to analyse (poly)phenols in biological samples 

Dietary (poly)phenol intake can also be determined by quantifying biomarkers using 
analytical approaches, which include individual (poly)phenol and their derivatives 
found in human biological samples (68). Due to the lack of general and standard 
methods to determine (poly)phenol biomarkers in biological samples, researchers 
must develop and validate their own method (68). Spectrophotometry, 
chromatography, and mass spectrometry are the approaches widely used to quantify 
(poly)phenols in human samples. In this thesis, analytical methods to identify and 
quantify (poly)phenol in urine were used and therefore explained in this section.  

1.2.4.2.1. Spectrophotometric method to quantify of total (poly)phenols in urine 

The spectrophotometric Folin-Ciocalteu method adapted to urine is the most rapid 
and simple method widely used to estimate total (poly)phenol content, which can be 
used as a biomarker of (poly)phenol intake in large epidemiological studies (72). 
However, the lack the specificity for individual phenolic compounds is a limitation 
of this method (38). The Folin-Ciocalteu method is based on the reduction in 
alkaline medium of a mixture of phosphomolybdic and phosphotungstic acid 
(Folin-Ciocalteu reagent) by (poly)phenols. In this redox reaction, a series of 
tungsten and molybdenum oxides are formed giving a blue color that is 
proportional to the concentration of (poly)phenols. The Folin-Ciocalteu reagent 
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does not react specifically with (poly)phenols but also with sugars, aromatic amines, 
sulfur dioxide, ascorbic acid, organic acids, Fe (II), and other non-phenolic but 
oxidizable organic substances. Therefore, previous urine treatment is needed to 
remove interference to avoid false readings and thus lead to erroneous results. 

1.2.4.2.2. Chromatographic methods to quantify individual (poly)phenol 

The development and application of new technologies to determine phenolic 
compounds and their metabolites in biological samples are increasing. Thus reverse-
phase liquid chromatography (LC) coupled with mass spectrometry (LC-MS/MS) 
with differences in the separation modes have been scarcely applied for the rapid 
and accurate targeted identification and quantification of individual (poly)phenols in 
urine, blood, and feces (38,45,73). However, some flavonoids like isoflavones are 
derivatized to methyl esters and analyzed by gas chromatography (GC), or a normal 
phase column is applied for the separation and quantification of procyanidins (38). 
Triple Quadrupole (QqQ) or Triple-Quadrupole Ion Trap (QTrap) with reverse 
phase chromatography is the most frequently mass spectrometer detectors used in 
these targeted analyses, due to their high sensitivity and selectivity (73). Otherwise, 
it has been well-shown that high-resolution mass spectrometry (HRMS), like liquid 
chromatography coupled with - linear ion trap quadrupole-Orbitrap HRMS (LC-
LTQ-Orbitrap HRMS), is extended used for identification of (poly)phenols in 
nutrimetabolomics studies due to provide exact mass information, two-stage mass 
analysis (MS/MS), and multi-stage mass analysis (MSn), facilitates the elucidation of 
the structures of known and unknown compounds (73–75). In addition to this, with 
the information obtained in full-scan mode from HRMS, researchers can identify 
interferences coming from the matrix and prevent false results (76). According to 
the results of different publications, HRMS is a fully appropriate approach for 
quantitative LC-MS analysis due to its versatility, speed of data processing, and 
robustness characteristics (77,78). In this thesis, LC-LTQ-Orbitrap-HRMS 
approach was used to detect and quantify (poly)phenols in urine, and details of the 
chromatographic method will be explained in the Method and result section. 

1.3. Dietary (poly)phenols and microbial phenolic metabolites and their implication in 
cardiometabolic health 

As mentioned before, dietary intervention is an important strategy to improve 
cardiometabolic health. In this context, evidence suggests that the consumption of 
plant-derived foods, characterized by a high content of bioactive compounds like 
(poly)phenols, is associated with the prevention of CVDs in adults (79–81). 
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Although (poly)phenol concentration is different in each food, it does not mean 
that their activity in the body is proportional once ingested (54,55). (Poly)phenols 
have favorable effects in different ways, including the reduction of adiposity and 
BP, inhibition of platelet activation, improvement of the lipid profile, and anti-
inflammatory effects (inhibition of cytokines production and reducing of adhesion 
molecule expression), all of them contribute to the reduction of CVD risk and 
mortality (41,80–85). In a recent meta-analysis based on thirty-nine studies, Micek et 
al. showed that a higher intake of anthocyanins and flavanols was associated with a 
lower risk of CVD, and flavonols and flavones were associated with a lower risk of 
coronary heart disease (85). Moreover, a panel of experts in (poly)phenols has 
developed for the first time a guideline recommendation for dietary flavanols, 
highlighting the importance of these phenolic compounds in the prevention of 
cardiometabolic diseases (86). Mechanisms of action of dietary (poly)phenol are 
related to its capacity to modulate lipid metabolism, stimulating “browning”, which 
is the development of beige adipocytes. Moreover, (poly)phenol could inhibit 
gluconeogenesis and stimulate the release of insulin by pancreatic β-cells. All the 
above could explain the link between total dietary (poly)phenol and cardiometabolic 
parameters found in the literature (41,85,87,88). Additionally, phenolic compounds 
produced by gut microbiota (like urolithins, enterolignans, phenolic acids 
(hydroxycinnamic acids, hydroxybenzoic acids, hydroxy-phenylpropionic acids, 
hydroxyphenylacetic acids), and stilbenes (dihydroresveratrol)) have implications on 
human health (45,89–95). It is the case of urolithins, molecules closely related to 
endothelial function, blood pressure, inflammation, insulin resistance, platelet 
aggregation, and oxidative stress (92,96–99). Enterolactone, an enterolignan, is 
related to low odds of presenting obesity, high C-reactive protein, high triglycerides, 
low HDL-c, and MetS (95).  

Nevertheless, up to date, only a few studies have explored the relationship between 
(poly)phenol intake and cardiometabolic health in adolescents (100,101). Moreover, 
there are no studies that explore microbial phenolic metabolites and 
cardiometabolic conditions in this target population. Since adolescence is a critical 
period for later cardiometabolic complications, and dietary (poly)phenols protect 
cardiometabolic and cardiovascular health in adults, studying this relationship in 
adolescents is needed to promote early healthy eating behavior interventions.  
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Key messages: 

• Adolescence is an important stage characterized by physiological, 
behavioral, and emotional changes, all of them implicated in their 
cardiometabolic health. 

• Obesity is one the most important modifiable factor associated with the 
increase of MetS, and the higher prevalence of obesity in adolescents 
compromise their cardiometabolic health in adulthood. 

• Dietary (poly)phenols improve cardiometabolic health and prevent CVD 
risk and mortality in adults, but up to date, scare studies have been 
conducted in adolescents.  

• The diversity and the complexity of (poly)phenol plant-foods lead to 
difficulties in their dietary evaluation. FFQ and total (poly)phenol content in 
urine are used to estimate dietary (poly)phenols. Considering that several 
factors are implicated in the availability of phenolic compounds, the 
quantification of phenolic metabolites is also necessary to evaluate which 
specific compounds may have a health effect. 

• Microbial phenolic metabolites have an implication for human health, and 
some of them could have more biological effects than their phenolic 
precursor found in plant foods. However, most of the evidence is based on 
adults, but not on young populations like adolescents. 

• Evidence about the cardiometabolic health implication of dietary 
(poly)phenols and their metabolites needed to be investigated in adolescents 
to promote early healthy eating intervention and establish dietary 
recommendations of (poly)phenol intake. 
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2. HYPOTHESIS AND OBJECTIVES 

 
2.1. Hypothesis  

Dietary (poly)phenols are related to better cardiometabolic health at baseline in 
adolescents enrolled from the SI! Program for secondary schools in Spain. 

 

2.2. Objectives  

2.2.1. General  

To study the relationship between dietary (poly)phenols, using different approaches, 
and cardiometabolic health parameters at baseline in adolescents enrolled from the 
SI! Program for a secondary school in Spain. 

 

2.2.2. Specific  

1. To study the relationship between dietary (poly)phenols, estimated by food 
frequency questionnaire, and cardiometabolic health parameters. (Article 2 
and 3) 

2. To study the relationship between total (poly)phenols excreted in urine, as a 
biomarker of (poly)phenol intake, and cardiometabolic health parameters. 
(Article 4 and 5) 

3. To validate an analytical method to identify and quantify urinary phenolic 
metabolites (Article 6) 

4. To study the relationship between urinary phenolic metabolites and 
cardiometabolic health parameters (Article 7)  
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3. METHODOLOGY 

3.1. Study design 

This thesis has been carried out as a baseline cross-sectional analysis within the SI! 
Program for Secondary Schools study, a cluster-randomized controlled intervention 
trial (NCT03504059) aiming to evaluate the effect of a short-term (2-year) or a long-
term (4-year) lifestyle educational program on cardiometabolic health in adolescents 
aged from 12 to 16 years from 24 secondary public schools in Spain (17 in 
Barcelona and 7 in Madrid). Clusters were schools with the following inclusion 
criteria: public schools located in Barcelona or Madrid providing education from 1st 
through 4th grade of Secondary School, with 3 to 5 classes in 1st grade. The local 
government education agencies from both municipalities invited all the eligible 
schools to a presentation of the study. The schools that agreed to participate were 
randomly allocated 1:1:1 to receive the educational intervention through a short-
term (2-year) or a long-term (4-year) intervention or to receive the standard 
curriculum (control). The trial was initiated in 2017 and finalized in 2021. A total of 
1326 participants aged between 11 to 14 years old were recruited at baseline 
(Figure 8). Details of the study design and data collection have been previously 
described by Jiménez-Rodríguez et al. (37). The study protocol was approved by the 
Joint Commission on Ethics of the Instituto de Salud Carlos III in Madrid (CEI PI 
35_2016), the Fundació Unió Catalana d'Hospitals (CEI 16/41), and the University 
of Barcelona (IRB00003099) and conducted in compliance with the Declaration of 
Helsinki. Parents or caregivers provided assent and written informed consent at the 
beginning of the study. 

3.1. Methods 

3.1.1. Evaluation of anthropometric and biochemistry markers  

Body weight was measured with an electronic scale (OMRON BF511), and height 
with a portable stadiometer (SECA 213), with adolescents wearing light clothes and 
without shoes. Body fat percentage was obtained by bioelectric impedance. Waist 
circumference (WC) was measured in triplicate using a flexible and non-elastic 
Holtain tape (HOLTAIN of 0.1cm precision). From the data of these 
anthropometric variables, diverse indexes were calculated and described in the 
articles (from 2 to 7) presented in this thesis in the Result section. 
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BP was measured with an OMRON M6. Two measurements were taken at two- or 
three-minutes intervals after the children relaxed and became familiar with the 
device. In case there was a difference of more than 10 mmHg in the systolic blood 
pressure (SBP) and/or more than 5mmHg in the diastolic blood pressure (DBP) a 
third measurement was taken. BG and lipid profile levels (TG, total cholesterol 
(TC), HDL-c, LDL-c) were analyzed using a portable analyzer CardioCheck Plus 
device in capillary blood samples, in the morning and fasting.  

 

 

Figure 8. SI! Program for Secondary Schools flow-chart.  Jiménez-Rodríguez et 
al. (37). 
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3.1.2. Evaluation of dietary (poly)phenols 

The estimated intake of (poly)phenols and their subclasses (flavonoids, phenolic 
acids, lignans, stilbenes, and others) are obtained by a validated FFQ. Data on the 
(poly)phenol content in foods are obtained from the Phenol-Explorer 3.6 database 
(www.phenol-explorer.eu) (71) following a standardized procedure described by 
Tresserra-Rimbau et al. and Castro-Barquero et al. (79,80). Details of the estimation 
of dietary (poly)phenols are described in Article 2. 

3.1.3. Evaluation of (poly)phenols in urine 

3.1.3.1. Total (poly)phenols by the Folin-Ciocalteu method 

Spot urine samples were collected in the morning and stored at −80°C until 
analyses. For all the urine samples, total (poly)phenols and creatinine were analyzed 
as described by Medina-Remón A. et al (72,102). The validated Folin-Ciocalteu (F-
C) spectrophotometric method was applied to determine the content of total 
(poly)phenol excretion (TPE), previously a solid phase extraction to avoid 
interferences with other plausible component presence in urine was carried out. 
TPE was expressed by mg gallic acid equivalent (GAE)/g creatinine (Figure 9). 
Articles 4 and 5 described the methodology used. 

 

Figure 9. Method to estimate total (poly)phenols in urine by Folin-Ciocalteu.  

3.1.3.2. Urinary phenolic metabolites by LC-LTQ-Orbitrap-HRMS 

Identification and quantification of phenolic compounds from phenolic 
metabolites, especially gut microbiota phenolic metabolites, were performed by 
using liquid chromatography coupled to a linear trap quadrupole high resolution 
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mass spectrometer (LC-LTQ-Orbitrap-HRMS). This analytical method was 
validated, developed, and explained in Articles 6 (74).  

Figure 10. Schematic representation of the experimental analysis of urinary 
phenolic metabolites by LC-LTQ-Orbitrap-HRMS. 

3.1.3.3. Evaluation of physical activity 

Physical activity was estimated by accelerometry (Actigraph wGT3X-BT). Chandler’ 
cut-off points were applied for the calculation of time spent in different physical 
activity intensities (103). Additionally, a validated physical activity questionnaire was 
applied and described in the protocol design of the original study (37). 

3.1.3.4. Evaluation of sociodemographic variables and other covariates 

Information about parental education and household income was obtained from a 
questionnaire answered by the parents of the participants (37). Educational parents’ 
educational levels were categorized following the cut-off described by UNESCO 
(104). Household incomes were categorized as low, medium, and high based on 
salary in Spain (105). Sexual maturation status was determined according to Tanner 
& Whitehouse method, using pictograms (106). 

3.1.3.5. Statistical analyses 

Data analyses were carried out using Stata statistical software package version 16.0 
(StataCorp., College Station, TX, USA) and R software (R Foundation for Statistical 
Computing, Vienna, Austria) in most of the articles presented in this thesis. To 
estimate (poly)phenol intake, SPSS version 27.0 (Chicago, IL, USA) was applied. A 
descriptive analysis of the population is presented as means ± SD and frequency 
distribution, for continuous and categorical variables, respectively. Association 
between dietary (poly)phenols even urinary (poly)phenols and cardiometabolic 
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health parameters in adolescents were evaluated using mixed-effect multiple 
regression models. No imputation was applied in case of missing data in some 
variables. These statistical analyses have been extensively explained in all the articles 
presented in this thesis. 
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4. RESULTS 

This section presents the results obtained during the doctoral thesis. These results 
have been classified into four sections, according to the specific objectives 
mentioned before, as it is shown: 

1. Dietary (poly)phenol intake and cardiometabolic health in adolescents 
(Articles 2 and 3) 

2. Total urinary (poly)phenols and cardiometabolic health in adolescents 
(Articles 4 and 5) 

3. Validation of an analytical method to identify and quantified urinary 
microbial phenolic metabolites (Article 6)  

4. Urinary phenolic metabolites and cardiometabolic health parameters in 
adolescents (Article 7) 
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4.1. Dietary (poly)phenol intake and cardiometabolic health in adolescents 

4.1.1. Article 2: Dietary (poly)phenol intake is associated with some 
cardiometabolic health parameters in adolescents. 

Emily P. Laveriano-Santos, Sara Castro-Barquero, Camila Arancibia-Riveros, 
Anna Tresserra-Rimbau, Ana María Ruiz-León, Rosa Casas, Ramón Estruch, 
Patricia Bodega, Mercedes de Miguel, Amaya de Cos-Gandoy, Jesús Martínez-
Gómez, Gloria Santos-Beneit, Juan M. Fernández-Alvira, Rodrigo Fernández-
Jiménez, and Rosa M. Lamuela-Raventós  

Prepared to submission to Food Science and Human Wellness  
Impact factor: 8.022 
Ranking in Food Science & Technology: 11/143 (Q1) 
Ranking in Nutrition & Dietetics: 12/90 (Q1) 

Abstract 

Introduction 
Adolescence is a critical period for later cardiometabolic complications. Several 
studies about the protective role of (poly)phenol on metabolic disorders in adults 
are reported, but little explored in adolescents.  

Objective 
To explorer associations between intake of (poly)phenol and its subclasses with 
cardiometabolic health parameters in adolescents  

Methods 
A cross-sectional study was conducted on 944 individuals aged 11 to 14 years from 
the Si! Program for secondary school trial, with available semi-quantitative food 
frequency questionnaires. (Poly)phenol intake was assessed using Phenol-Explorer 
database. Cardiometabolic parameters included waist circumference (WC), blood 
pressure (BP), blood glucose (BG), triglycerides (TG), and high-density lipoprotein 
cholesterol (HDL-c). Multilevel mixed effect linear regression analysis was used to 
assess quintiles of (poly)phenol intake and cardiometabolic parameters.  

Results 
The mean intake of total (poly)phenol in this population was 683.2 ± 379.4 mg/day. 
Compared to the lowest quintile, adolescents in the highest quintile of total 
(poly)phenol intake had lower WC z-score (β=-0.09, 95%CI= -0.09; -0.08, P-for 
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trend=0.002), mean arterial pressure (MAP) z-score (β =-0.11, 95% CI=-0.14; -0.08, 
P-for trend=0.247) and HDL-c (β=-1.44, 95% CI=-2.59; -0.29, P-for trend=0.086), 
after multivariable adjustment. WC z- score (β=-0.11, 95%CI= -0.18; -0.04, P-for 
trend=0.007), diastolic BP z-score (β=-0.12, 95% CI= -0.22; -0.01, P-for 
trend=0.001), and HDL-c (β=-2.11, 95% CI= -3.61; -0.60, P-for trend=0.038) were 
lower in the highest quintile of flavonoids intake as compared to lowest quintile. 
The highest quintile of phenolic acids intake was associated with lower WC z-score 
(β=-0.15, 95% CI= -0.28; -0.01, P-for trend=0.016), BG (β=-0.37, 95% CI= -0.73; -
0.01, P-for trend=0.793), TG (β=-9.91, 95% CI= -14.82; -5.00, P-for trend <0.001), 
and highest quintile of stilbenes intake had associated with lower BG (β=-1.82, 95% 
CI= -3.11; -0.52, P-for trend <0.001), TG (β=-3.55, 95% CI= -6.60: -0.51, P-for 
trend=0.108) and higher HDL-c (β=2.33, 95% CI= 1.31; 3.35, P-for trend=0.446) 
compared to the lowest quintile.  

Conclusion 
In summary, a higher intake of (poly)phenol is associated with better 
cardiometabolic parameters. Clinical studies are needed to confirm this effect and 
establish dietary recommendations. 
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4.1.2. Article 3: Flavonoid Intake from Cocoa-Based Products and Adiposity 
Parameters in Adolescents in Spain. 

Emily P. Laveriano-Santos, Camila Arancibia-Riveros, Anna Tresserra-Rimbau, 
Sara Castro-Barquero, Ana María Ruiz-León, Ramón Estruch, Rosa Casas, 
Patricia Bodega, Mercedes de Miguel, Amaya de Cos-Gandoy, 
Jesús Martínez-Gómez, Carla Rodríguez, Gloria Santos-Beneit, 
Juan M. Fernández-Alvira, Rodrigo Fernández-Jiménez, and 
Rosa M. Lamuela-Raventós 

Frontiers in Nutrition, 2022 Jul 6;9:931171. Doi: 10.3389/fnut.2022.931171 
Impact factor (2022): 6.590 
Ranking in Nutrition & Dietetics: 19/90 (Q1) 

Abstract 

Introduction 
Cocoa-based products are a good source of flavonoids, which may have beneficial 
effects on metabolic health.  

Objective 
To assess the relationship between flavonoids from cocoa-based products and 
adiposity parameters in adolescents.  

Methods 
A cross-sectional study was conducted involving 944 adolescents aged 11-14 years 
enrolled in the SI! Program for Secondary Schools trial in Spain with available 
baseline data from food frequency questionnaires and anthropometric 
measurements [weight, height, waist circumference (WC), and fat mass percentage 
(% FM) by bioimpedance analysis]. Fat mass index (FMI) and waist-to-height ratio 
(WHtR) were obtained by dividing fat mass by height and WC by height, 
respectively. Body mass index (BMI), WC, and FMI for age and gender z-score 
were calculated. Overweight/obesity was defined as BMI ≥ 85th percentile and 
excess adiposity as %FM or FMI ≥ 75th percentile. WC ≥ 90th percentile and 
WHtR with a 0.5 threshold were considered as criteria of abdominal obesity. 
Multilevel mixed-effect regressions were used to evaluate the association between 
flavonoids from cocoa-based products and adiposity parameters. Municipalities and 
schools were considered random effects.  
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Results 
Participants with a higher flavonoid intake from cocoa-based products had lower 
WC z-score [B = -0.04, 95% CI (-0.07; -0.01), P-for trend = 0.045] and WHtR [B = -
0.01, 95% CI (-0.02; -0.01), P- for trend < 0.001]. They also had lower probability of 
having abdominal obesity [OR 0.66, 95% CI (0.52; 0.85), P- for trend = 0.001]. 
Inverse associations were observed between flavonoids from cocoa powder and 
BMI z-score [B = -0.08, 95% CI (-0.12; -0.05), P < 0.001], WC z-score [B = -0.06, 
95% CI (-0.11; -0.02), P = 0.003], WHtR [B = -0.01, 95% CI (-0.01; -0.00), P < 
0.001], %FM [B = -1.11, 95% CI (-1.48; -0.75), P < 0.001], and FMI z-score [B = -
0.18, 95% CI (-0.20; -0.17), P < 0.001]. Regarding dark chocolate, an inverse 
association only with WC z-score [B = -0.06, 95% CI (-0.08; -0.05), P < 0.001] was 
found. However, no association was observed between flavonoids from milk 
chocolate intake and anthropometric parameters.  

Conclusion 
In summary, a higher intake of flavonoids from cocoa-based products was 
associated with lower adiposity parameters and a lower probability of presenting 
abdominal obesity.  
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4.2. Total urinary (poly)phenols and cardiometabolic health in adolescents 

4.2.1. Article 4: (Poly)phenols in Urine and Cardiovascular Risk Factors: A Cross-
Sectional Analysis Reveals Gender Differences in Spanish Adolescents from the 
SI! Program 

Emily P Laveriano-Santos, Isabella Parilli-Moser, Sonia L Ramírez-Garza, Anna 
Tresserra-Rimbau, Carolina E Storniolo, Ana María Ruiz-León, Ramón Estruch, 
Patricia Bodega, Mercedes de Miguel, Amaya de Cos-Gandoy, Vanesa Carral, Gloria 
Santos-Beneit, Juan M Fernández-Alvira, Rodrigo Fernández-Jiménez, Valentín 
Fuster, Rosa M Lamuela-Raventós. 

Antioxidants (Basel). 2020 Sep 24;9(10):910. Doi: 10.3390/antiox9100910. 
Impact factor (2022): 7.675 (Q1) 
Ranking in Biochemistry & Molecular biology: 50/296 (Q1) 
Ranking in Chemistry, Medicinal: 4/63 (Q1) 
Ranking in Food Science & Technology: 12/146 (Q1) 

Abstract 

Introduction 
Epidemiological studies have shown an inverse association between (poly)phenol 
intake and cardiovascular risk factors (CVRFs) in adults, but few have provided 
information about adolescents.  

Objective 
To evaluate the relationship between urinary total (poly)phenol excretion (TPE) and 
CVRFs in adolescents. 

Methods 
A cross-sectional study was performed in 1194 Spanish adolescents from the SI! 
(Salud Integral) program. TPE in urine samples was determined by the Folin-
Ciocalteu method, after solid-phase extraction, and categorized into quartiles. The 
association between TPE and CVRFs was estimated using mixed-effect linear 
regression and a structural equation model (SEM).  

Results 
Linear regression showed negative associations among the highest quartile of TPE 
and body fat percentage (B = -1.75, p-value = <0.001), triglycerides (TG) (B = -
17.68, p-value = <0.001), total cholesterol (TC) (B = -8.66, p-value = 0.002), and 
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low-density lipoprotein (LDL)-cholesterol (LDL-C) (B = -4.09, p-value = 0.008) in 
boys, after adjusting for all confounder variables. Negative associations between 
TPE quartiles and systolic blood pressure (SBP), diastolic blood pressure (DBP), 
and TC were also found in girls. Moreover, a structural equation model revealed 
that TPE was directly associated with body composition and blood glucose and 
indirectly associated with blood pressure, TG, LDL-C, and high-density lipoprotein-
cholesterol (HDL-C) in boys.  

Conclusion 
In summary, higher concentrations of TPE were associated with a better profile of 
cardiovascular health, especially in boys, while in girls, the association was not as 
strong. 
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4.2.2. Article 5: Total urinary (poly)phenols and ideal cardiovascular health metrics in 
Spanish adolescents enrolled in the SI Program: a cross-sectional study 

Emily P. Laveriano-Santos, Camila Arancibia-Riveros, Isabella Parilli-Moser, Sonia 
L. Ramírez-Garza, Anna Tresserra-Rimbau, Ana María Ruiz-León, Ramón Estruch, 
Patricia Bodega, Mercedes de Miguel, Amaya de Cos-Gandoy, Vanesa Carral, Gloria 
Santos-Beneit, Juan M. Fernández-Alvira, Rodrigo Fernández-Jiménez, and Rosa M. 
Lamuela-Raventós 

Scientific Report. 2022 Sep 14;12(1):15468. doi:10.1038/s41598-022-19684-6 

Impact factor (2022): 4.996  

Ranking in Multidisciplinary Science:19/73(Q2) 

Abstract 

Introduction 
Cardiovascular risk factor during the adolescence increases the risk of develop a 
cardiovascular event in adulthood. (Poly)phenols are associated with better 
cardiovascular health in adults, but it is still study in adolescents.  

Objective 
To study the relationship between urinary total (poly)phenol excretion (TPE) in 
adolescents and ideal cardiovascular (CVH) metrics.  

Methods 
1151 adolescents aged 12.04 (0.46) years participating in the SI! Program for 
Secondary Schools were selected based on the availability of urine samples and 
information required to assess CVH metrics. Data on health behaviours (smoking 
status, body mass index, physical activity, and healthy diet) and health factors (blood 
pressure, total cholesterol, and blood glucose) were used to calculate the CVH 
metrics. TPE in urine was analysed by a Folin-Ciocalteu method after solid-phase 
extraction. Associations between TPE (categorized into tertiles) and CVH metrics 
(total and separate scores) were assessed using multilevel mixed-effect regression 
models.  

Results 
Higher TPE levels were associated with higher (healthier) CVH scores and ideal 
smoking status (OR: 1.54, 95% CI:1.10; 1.87, p-value=0.007), physical activity (OR: 
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1.12, 95% CI:1.02; 1.23, p-value=0.022) and total cholesterol (OR: 1.78, 95% CI: 
1.16; 2.73, p-value=0.009) after multivariate adjustment. An association between 
TPE and total CVH scores was observed only in boys. Girls with higher TPE had 
higher rates of ideal total cholesterol and blood pressure.  

Conclusion  
In summary, according to our findings, higher urinary TPE is related to better CVH 
scores, with relevant differences in this association by gender.  
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4.3. Validation of an analytical method to identify and quantify urinary phenolic metabolites  

4.3.1. Article 6: Identification and quantification of urinary microbial phenolic 
metabolites by HPLC-ESI-LTQ-Orbitrap-HRMS and their relationship with 
dietary (poly)phenols in adolescents 

Emily P Laveriano-Santos, María Marhuenda-Muñoz, Anna Vallverdú-Queralt, 
Miriam Martínez-Huélamo, Anna Tresserra-Rimbau, Elefterios Miliarakis, Camila 
Arancibia-Riveros, Olga Jáuregui, Ana María Ruiz-León, Sara Castro-Baquero, 
Ramón Estruch, Patricia Bodega, Mercedes de Miguel, Amaya de Cos-Gandoy, 
Jesús Martínez-Gómez, Gloria Santos-Beneit, Juan M Fernández-Alvira, Rodrigo 
Fernández-Jiménez, Rosa M Lamuela-Raventós. 

Antioxidants (Basel). 2022 Jun 14;11(6):1167. doi: 10.3390/antiox11061167 
Impact factor (2022): 7.675  
Ranking in Biochemistry & Molecular biology: 50/296 (Q1) 
Ranking in Chemistry, Medicinal: 4/63 (Q1) 
Ranking in Food Science & Technology: 12/146 (Q1) 

Abstract 

Introduction 
High resolution mass spectrometry using an Orbitrap mass analyzer has been used 
to identification of phenolic metabolites, however, there are scare studies that used 
this approach to quantified microbial phenolic metabolites in urine in a large cohort 
in young population. 

Objective 
To develop and validate a liquid chromatography/electrospray ionization-linear ion 
trap quadrupole-Orbitrap-high-resolution mass spectrometry (HPLC/ESI-LTQ-
Orbitrap-HRMS) method to identify and quantify urinary microbial phenolic 
metabolites (MPM), as well as to explore the relationship between MPM and dietary 
(poly)phenols in Spanish adolescents.  

Methods 
A total of 601 spot urine samples of adolescents aged 12.02 ± 0.41 years were 
analyzed. The quantitative method was validated for linearity, limit of detection, 
limit of quantification, recovery, intra- and inter-day accuracy and precision, as well 
as postpreparative stability according to the criteria established by the Association 
of Official Agricultural Chemists International. 
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Results 
 A total of 17 aglycones and 37 phase II MPM were identified and quantified in 601 
spot urine samples. Phenolic acids were the most abundant urinary MPM, whereas 
stilbenes, hydroxytyrosol, and enterodiol were the least abundant. Urinary 
hydroxycoumarin acids (urolithins) were positively correlated with flavonoid and 
total (poly)phenol intake.  

Conclusion 
In summary, an HPLC-ESI-LTQ-Orbitrap-HRMS method was developed and fully 
validated to quantify MPM. The new method was performed accurately and is 
suitable for MPM quantification in large epidemiological studies. Urinary lignans 
and urolithins are proposed as potential biomarkers of grain and nut intake in an 
adolescent population.  
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4.4. Urinary phenolic metabolites and cardiometabolic health parameters in adolescents 

4.4.1. Article 7: Microbial Phenolic Metabolites in Urine Are Inversely Linked to 
Certain Features of Metabolic Syndrome in Spanish Adolescents 

Emily P. Laveriano-Santos, Paola Quifer-Rada, María Marhuenda-Muñoz, Camila 
Arancibia-Riveros, Anna Vallverdú-Queralt, Anna Tresserra-Rimbau, Ana María 
Ruiz-León, Rosa Casas, Ramón Estruch, Patricia Bodega, Mercedes de Miguel, 
Amaya de Cos-Gandoy, Jesús Martínez-Gómez, Gloria Santos-Beneit, Juan M. 
Fernández-Alvira, Rodrigo Fernández-Jiménez, and Rosa M. Lamuela-Raventós. 

Antioxidants. 2022; Nov 5; 11(11):2191. https://doi.org/10.3390/antiox11112191 
Impact factor (2022): 7.675  
Ranking in Biochemistry & Molecular biology: 50/296 (Q1) 
Ranking in Chemistry, Medicinal: 4/63 (Q1) 
Ranking in Food Science & Technology: 12/146 (Q1) 
Abstract 

Introduction 
Several studies have documented the effect of phenolic metabolites on cardiometabolic 
outcomes, especially those derived from gut microbiota. However, scare evidence is 
available in young population such as adolescents. 

Objective 
To explore the relationship between urinary phenolics and metabolic syndrome (MetS) and 
its components in adolescents.  

Methods 
A cross-sectional study was conducted on 560 adolescents aged 12.02 ± 0.41 years, enrolled 
at baseline in the SI! Program for Secondary Schools trial. The following MPM, 
hydroxycinnamic acids (m-, o-, p- coumaric acids), dihydroxy-phenylpropionic acid, 
dihydroresveratrol, enterolignans, gallic acid, hydroxybenzoic acids, hydroxyphenylacetic 
acids, hydroxytyrosol, protocatechuic acid, syringic acid, urolithins (A, B), and vanillic acid, 
were analyzed by HPLC-LTQ-Orbitrap-HRMS. MetS and its clinical features were defined 
in accordance with the International Diabetes Federation. 

Results 
Out of all MPM, urolithin A was inversely associated with the diastolic blood pressure z-
score. Urolithin B was inversely associated with the MetS score and waist circumference z-
score. Additionally, higher levels of gallic acid were associated with lower odds of 
presenting MetS (OR=0.85, 95% CI: 0.77; 0.93) and abdominal obesity (OR=0.93, 95% CI: 
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(0.89; 0.98). Higher urolithin B levels were inversely associated with abdominal obesity 
(OR= 0.94, 95% CI: 0.89; 0.98) and high blood glucose (OR= 0.92, 95% CI:0.88; 0.96) 

Conclusion  
Gallic acid, urolithins A and B were associated with lower odds of developing MetS and/or 
some of its clinical features. These findings are relevant to formulating new hypotheses and 
elucidating the effect of these compounds on metabolic syndrome in adolescents. 
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5. GLOBAL DISCUSSION 

The prevalence of obesity and metabolic syndrome in adolescents is increasing the 
risk of a wide range of metabolic disorders like CDVs and T2DM in adulthood, and 
all-cause mortality (4,7,14–16). The high number of adolescents living with MetS 
highlights the need for multisectoral interventions to decrease the global burden of 
MetS and its components, including obesity. Therefore, strategies based on healthy 
dietary habits and active lifestyles are needed to enhance cardiometabolic health in 
adolescents, for instance by creating health programs especially designed for them.  

Obesity, the main contributor to cardiometabolic complications, is an energy 
imbalance between calories consumed and calories expended. According to this 
definition, we could imagine that the main dietetic intervention is based on energy 
restriction, and of course, the control of food portion size at mealtime. However, 
more strategies are necessary to avoid obesity (107). Dietary diversity including 
different plant-based food groups is a great dietary option, like the Mediterranean 
diet, because of its high content of fiber, vitamins, minerals, and phytochemicals 
(108,109). In the world of phytochemicals, (poly)phenols are one of the most 
important because they are widely distributed in most plant foods. Several 
observational studies and clinical trials conducted in adults have shown the role of 
(poly)phenols on cardiometabolic health parameters, even with the low risk of 
CVDs mortality (79,81–84). Nevertheless, the lack of evidence in adolescents 
generates the question whether (poly)phenols could have an implication on 
cardiometabolic health in this target population.  

Additionally, the diversity and the complexity of (poly)phenols lead to difficulties in 
their dietary estimation in epidemiological studies. Therefore, diverse approaches 
have been developed to estimate dietary (poly)phenols, using dietary tools like 
FFQs, or more recently, identifying biomarkers using analytical methods 
(45,68,70,72–74,102,110).  

This thesis aimed to study the role of dietary (poly)phenol, estimated by different 
approaches, on cardiometabolic health parameters in a cohort of adolescents aged 
11 to 14 years old enrolled in the SI! Program for secondary schools in Spain. 
Overall, our findings suggested that among adolescents: i) dietary (poly)phenols 
estimated by FFQs are related to some cardiometabolic and adiposity parameters, ii) 
Total (poly)phenol in urine as a biomarker of (poly)phenol intake is related to a 
better cardiovascular profile, iii) LC-LTQ-Orbitrap-HRMS is an accurate analytical 
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method to evaluate phenolic metabolites in urine samples, iv) some phenolic 
metabolites are related with better cardiometabolic health.  

5.1. Dietary (poly)phenols estimated by FFQs are related to some cardiometabolic and 
adiposity parameters 

Dietary (poly)phenol intake and their main food sources were estimated in 944 
adolescents, using Phenol-Explorer database and baseline FFQ, using a 
standardized method previously described by Tresserra-Rimbau et al. and Castro-
Barquero et al. (79,80). The mean intake of total (poly)phenol intake was 683.2 ± 
379.4 mg/day and the median of 598.6 mg/day. This value differed from the 
median of 326 mg/day reported in a cohort of 2428 European adolescents aged 
12.5 to 17.5 years old in 9 European countries within the HELENA study (111). In 
another study, the mean intake of total (poly)phenols was 455 ± 263.2 mg/day in a 
cohort of 2045 adolescents aged 11 to 18 years old in the UK (112). The higher 
values of total (poly)phenols showed in our study compared to the two cohorts, 
could be due to the difference in flavonoid intake: approx. 206 mg/day in the 
HELENA cohort, 355.4 ± 230.9 mg/day in the UK cohort, and in our study 530.1 
± 331.3 mg/day. Flavonoids and phenolic acid were the main (poly)phenol 
subclasses intake in our study, representing 77.6% and 14.3% of total (poly)phenol 
intake, with similar results found in the two cohorts previously mentioned. Lignans 
and stilbenes had a lower contribution to total (poly)phenol intake, below 0.6%, 
likewise to a previous study in a European adolescents’ cohort (111). The main food 
sources of (poly)phenols were fruits or fruit juices, vegetables, cocoa-based 
products, and nuts. Similar results were shown in the HELENA and UK studies. 

The intake of total (poly)phenol flavonoids and phenolic acids was higher in girls. 
Similar results from HELENA study, girls had more (poly)phenol and flavonoid 
intake than boys, and no significant differences between sex were found in the 
other subclasses of (poly)phenols (111). Participants with parents with 
primary/secondary school education levels had a higher intake of phenolic acids. 
Contrarily, in the HELENA cohort, higher (poly)phenol intake and flavonoids were 
reported in adolescents with parents with higher education, but no association was 
found with phenolic acid intake (111). 

One of the important points of estimating habitual (poly)phenol intake through 
FFQs is to understand the protective effect of long-term dietary (poly)phenol 
exposure on health (68,70). In article 2, higher total (poly)phenol intake and some 
subclasses of (poly)phenols, especially flavonoids, phenolic acids, stilbenes, and 
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“other (poly)phenols” were associated with lower values of WC z-score, MAP z-
score, DBP z-score, BG, TG, and HDL-c (except for stilbenes, which a direct 
association was observed), after the adjustment of anthropometric, lifestyle, 
sociodemographic and dietary covariates. Some of these findings agree or are 
contradictory with other observational studies. In the HELENA study, no 
association was observed between quartiles of total energy-adjusted (poly)phenol 
intake with WC z-score, SBP z-score, DBP z-score, BG, and TG in 657 European 
adolescents (100). Although both studies are conducted in adolescents, there are 
some differences in polyphenol intake (the median (poly)phenol intake in the 
HELENA study was 347.2 mg/day, lower than in our study: 683.2 ± 379.4 
mg/day), probably by differences in dietary patterns. In the HELENA study, about 
70% of the adolescents were from non-Mediterranean countries (100). Other 
studies conducted in adult populations with higher MetS risk and higher dietary 
(poly)phenol intake support some of our findings. In a cohort of Poland and Italian 
adults, higher total (poly)phenol intake was associated with lower values of WC, BP, 
and better lipid profile (lower TG and higher HDL), although some results varied 
according to sex (113,114). In the PREDIMED-Plus cohort, higher total 
(poly)phenol intake (mean of 846 ± 318 mg/day) was related to higher values of 
HLD-c in 6,633 adults aged 65.0 ± 4.9 years old with MetS in Spain (79). By 
contrast, we found an inverse association with HDL-c, probably because our 
sample population is young and mostly healthy while the PREDIMED-plus 
population has MetS.  

Flavonoid, phenolic acid, lignan, stilbene, and “others (poly)phenol” intake; were 
analyzed separately due to the heterogeneity in their chemical structures and their 
different bioavailability. We found that a higher intake of flavonoids was associated 
with a lower WC z-score, DBP z-score, and HDL-c compared to the lowest intake. 
Similar findings were shown in adults with metabolic complications within the 
TOSCA.IT and PREDIMED-Plus cohort (79,114). By contrast, in the HELENA 
study, higher flavonoid intake was only associated with BMI z-score. Although in 
our study, BMI z-score was considered as a covariate in all cardiometabolic health 
parameters evaluated, except in WC, in a separate analysis, we showed that the high 
flavonoid intake was associated with a lower BMI z-score (β=-0.09, P= <0.001), 
likely to HELENA study (100). One plausible mechanism to explain the 
relationship between dietary (poly)phenols and BP is that flavonoids regulate NO 
levels by increasing the activation of NO synthase and endothelial NO synthase, 
influencing BP (115). Regarding obesity, flavonoids could inhibit the differentiation 
of adipocytes, promote fatty acid oxidation, increase thermogenesis and energy 
expenditure, and decrease the synthesis of fatty acids, all of them implicated in 
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weight maintenance and lipid profile (116). Prebiotic properties of flavonoids also 
might affect microbiota metabolism. We found that high phenolic acid intake was 
associated with lower values of WC z-score, BG, and TG. These results agree with 
observational studies conducted on adults (114,117). In the HELENA study, two 
phenolic acids (ferulic acid and hydroxycinnamic acid) were inversely associated 
with WC (100). Phenolic acids are implicated in several pathways related to obesity, 
lipid, and glucose metabolism. They suppress lipid accumulation in 3T3-L1 
adipocytes and regulate insulin, leptin, adiponectin, and proinflammatory cytokines 
(118,119). Higher stilbene intake was associated with a better lipid profile (lower 
TG and higher HDL-c levels). In contrast, in HELENA study, no association was 
found between stilbenes and cardiometabolic health parameters in European 
adolescents (111). We also found some contradictions with flavonoid intake because 
its consumption was inversely associated with HDL-c levels, maybe because our 
sample population is young and healthy. Further longitudinal studies are needed to 
clarify the true direction of these associations. Contrary to other studies in adults, 
we did not find significant associations between lignans and cardiometabolic health 
parameters. 

In article 3 we analyzed the relationship between flavonoids from cocoa-based 
products and adiposity parameters in adolescents. The rationale of this paper was 
the large set of evidence about cocoa and obesity in adults shown in several 
systematic reviews, but the lack of studies conducted in adolescents (120–124). As 
mentioned, cocoa-based products are one of the main contributors to dietary 
(poly)phenol and flavonoid intake in adolescents. The main findings showed that 
participants with a higher intake of flavonoids from cocoa-based products had 
lower values of BMI z-score, and WHtR, and a lower probability of abdominal 
obesity. In the case of flavonoids from cocoa powder, an inverse association was 
found with BMI z-score, WC z-score, WHtR, fat mass percentage (%FM), and fat 
mass index (FMI) z-score. Concerning dark chocolate, an inverse association was 
observed only with WC z-score. Additionally, no association was found between 
flavonoids from milk chocolate intake and any adiposity parameters, probably 
because of its very low flavonoid content. 

As observed, not all phenolic compounds have the same associations with all 
cardiometabolic health parameters evaluated. Therefore, promoting a healthy and 
diverse dietary pattern in adolescents based on a higher intake of (poly)phenol-rich 
foods (fruits, vegetables, nuts, cocoa-based products, etc.), could be the way to 
improve cardiometabolic health in this population.  
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5.2. Total (poly)phenol in urine as a biomarker of (poly)phenol intake is related to a 
better cardiovascular profile 

In article 4, we showed that the highest excretion of TPE, measured by Folin-
Ciocalteu spectrophotometric method, was associated with lower body fat 
percentage, TG, TC, and LDL-c cholesterol in boys, after adjusting for all 
confounder variables. In girls, higher TPE was associated with less values of SBP 
and SBP, and TC. The present finding is consistent with a previous study conducted 
by our research group in adults with high CVDs risk, where TPE was inversely 
associated with BP, possibly by stimulating the formation of vasoprotective factors 
such as NO in plasma (125). Due to the previous association observed between 
TPE and individual cardiometabolic health parameters, in article 5, we described 
the association between TPE and cardiovascular health (CVH) score for the first 
time. In this study, the CVH score was calculated using the cut-offs established by 
the American Heart Association based on health behaviours (smoking status, BMI, 
physical activity, and healthy diet) and health factors (BP, total cholesterol, and 
blood glucose) data. Our main findings were that higher TPE was associated with 
higher (healthier) CVH scores, ideal TC, but also with other aspects of a healthy 
lifestyle, such as ideal smoking status and physical activity. The association between 
TPE and CVH score was observed only in boys, after a separate analysis by sex. 
The beneficial role of dietary (poly)phenols, measured by TPE, on cardiovascular 
health has been described in several observational and clinical trials and reported 
throughout this discussion section (55,79,81,82,88,100,114,117,125–129). 

5.3. LC-LTQ-Orbitrap-HRMS is an accurate analytical method to evaluate phenolic 
metabolites in urine samples 

The development and application of new technologies to determine phenolic 
compounds and their metabolites in biological samples is increasing. We developed 
an analytical method to identify and quantify 54 urinary phenolic metabolic (mainly 
microbial phenolic metabolites) even aglycones and phase II metabolites by LC-
LTQ-Orbitrap HRMS in a large epidemiological study (601 urine samples from 
adolescents at baseline of the SI! Program for secondary school) (Article 6). 

As mentioned, LC-LTQ-Orbitrap HRMS is extensively used for accurate 
identification of (poly)phenols in nutrimetabolomic studies. According to the results 
of different publications, HRMS is a fully-appropriate approach for quantitative LC-
MS analysis due to its versatility and robustness characteristics (74–77). Kaufmann 
et al. reported similar performance in terms of sensitivity, selectivity, linearity, 



GLOBAL DISCUSSION     

 242 

accuracy, and precision, between HRMS and MS/MS methods in the analysis of 
240 pesticide residues in different matrices (78). Grund et al., compared HRMS and 
QqQ systems for the determination of protease inhibitors, tyrosine kinase 
inhibitors, metanephrines, and steroids (compounds routinely measured in hospital 
laboratories), reporting similar values with both techniques in terms of limit of 
detection (LOD), precision, accuracy, and curve calibration (77). Bruce et al. 
compared the LC-HRMS and LC-MS/MS systems for the quantification of vitamin 
D metabolites in human serum, obtaining excellent correlations between both 
methods (130). Herrero et al. also compared the capabilities of HRMS with an 
Orbitrap analyzer with respect to the MS/MS with QqQ analyzer to quantify 
organic contaminants in sewage, obtaining for both methods similar limit of 
quantification (LOQ), LOD, linear range, and repeatability for glucocorticoids, and 
better LOD and LOQ for polyether ionophores with the HRMS method (131).   

Although several publications have evaluated the comparison between HRMS and 
MS/MS quantitative methods, most of them are related to drugs, hormones, or 
contaminants. There are few studies that evaluated this comparison in 
(poly)phenols. Cavaliere et al. reported the comparison between HRMS and QqQ 
systems in the quantification of (poly)phenols in wine, showing better performance 
of HRMS approach in terms of sensitivity, linearity range, matrix effect, and 
precision (132). Vallverdú-Queralt et al. also reported that a linear ion trap Orbitrap 
mass spectrometer (LC-LTQ-Orbitrap-HRMS) was the technique that presented 
more sensitivity and better resolution of mass spectra compared to QqQ (LC-
MS/MS) to identify phenolic compounds in tomato samples (76). In addition to 
this, LC/HRMS has been extensively applied to the quantification of phenolic 
compounds in leafy vegetables, foods, and beverages (76,132–136), but fewer in 
biological samples.  

Apart from our study (article 6), only two studies validated a quantitative method 
using HRMS in biological samples, and our study is the only method applied in 
large human samples. Ordónez et al. validated an HPLC-HRMS method to 
determine microbiota-derived phenolic acids and aromatic compounds in urine, 
reporting that HPLC-HRMS was suitable for the analysis of phase II metabolites, 
providing complete information on MPM-mediated by degradation of orange juice 
(poly)phenols (137). Pereira-Caro et al. also developed a method UHPLC-HRMS to 
identify and quantify flavanol metabolites and microbial-derived catabolites in urine, 
plasma, and feces samples of rats (138).  
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We also investigated the correlation between microbial phenolic metabolites and 
dietary (poly)phenols, finding that whole grain intake was correlated with lignans 
(enterodiol, enterolactone, and their derivatives), and nut intake with urolithins (A 
and B and their derivatives), in agreement with previous studies (139,140). Thus, 
suggesting these microbial phenolic metabolites are candidate biomarkers for intake 
of these food groups in adolescents.   

5.4. Some urinary phenolic metabolites are related to better cardiometabolic health 

In article 7, we explained the cross-sectional results of a sub-study conducted in 
560 adolescents within the SI! Program cohort and we observed that higher urinary 
phenolic metabolites (UPM), namely gallic acid, urolithin A and B and their 
derivatives, were associated with lower values of WC z-score, DBP z-score, MetS 
score, and lower probability of having MetS, as well as some of its clinical 
components (abdominal obesity and high BG), after adjustment for sex, age, 
Tanner maturation stage, physical activity, household income, and energy intake. 

We found that higher gallic acid (aglycone, glucuronide, and sulfate form) was 
associated with lower odds of having MetS and abdominal obesity. Gallic acid in its 
aglycone form, is easily absorbed in the stomach and small intestine. This phenolic 
compound is widely distributed in fruits and vegetables as aglycone or esterified, but 
it is also a final UPM derived from the metabolism of flavonoids, the most 
abundant class of (poly)phenol, as tannins (141,142), likely by the action of gut 
microbiota. Plausible mechanisms explain the action of gallic acid on 
cardiometabolic disorders, especially with body weight maintenance, lipid, and 
glucose metabolism (142,143). Gallic acid is one of the final products of gut 
microbiota metabolism of galloylated catechins (epigallocatechin gallate, epicatechin 
gallate, and epicatechin) (141), which modulate gut dysbiosis influencing obesity 
(144). In animal models, gallic acid and epicatechin gallate induce thermogenesis 
and browning in adipocytes (145), through the activation of enzymes involved in 
energy homeostasis (142,143). In the Caco2-cell line, gallic acid inhibits glucose 
absorption through the inhibition of sodium-dependent SGLT1 transporters (146).  

Additionally, higher levels of urinary urolithin A and B (aglycone plus glucuronide 
and sulfate form) were associated with lower MetS score, WC z-score, and/or DBP 
z -score, and with lower probability of having abdominal obesity and high BG (only 
for urolithin B). Urolithins are the final product of ellagitannins metabolism 
(45,141,147). Ellagitannins are widely distributed in nuts and red fruits. 
Ellagitannins are broken down into ellagic acids, which are further metabolized into 
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urolithins by gut microbiota action (98,141,147). In vitro, animal, and some human 
clinical studies have shown the protective effect of urolithins on cardiometabolic 
diseases, even obesity (147–149). Istas G. et al. suggested the beneficial effect of 
plasma urolithins on vascular function in healthy individuals, after the consumption 
of raspberries (150). The inverse association between urolithin B and abdominal 
obesity found in our study could be explained because urolithins enhance 
thermogenesis, lipolysis, and fatty oxidation (147). We observed an inverse 
association between urolithin B and the probability of having high BG. In contrast 
with this, Selma et al. showed that only urinary urolithin A was inversely correlated 
with fasting glucose in MetS patients (149). Likely, because urolithins could act by 
inhibiting inflammatory signaling pathways, activating autophagy, and maintaining 
mitochondrial function in pancreatic cells (98).   

In our cross-sectional study, hydroxycinnamic acids (p-, o-, and m-coumaric acids), 
dihydroxyphenylacetic acid, dihydroresveratrol, enterodiol, enterolactone, 
hydroxybenzoic acids (3- and 4-hydroxybenzoic acids), hydroxyphenylacetic acid, 
hydroxytyrosol, protocatechuic acid, syringic acid, and vanillic acid; were not 
associated with MetS and its clinical features in adolescents after the full-adjustment 
for confounder variables. These results are in contrast with the literature reported in 
previous studies (45,89,95,151,152).  

5.5. Limitations and strengths 

There are some limitations to be considered in the present thesis. One of them is its 
cross-sectional design, which precludes causal assumptions about dietary 
(poly)phenol and differences in cardiometabolic health parameters.  

Regarding (poly)phenol intake measurement by FFQs, some biases are prone 
because misreporting is common in dietary self-assessment in adolescents. 
Although we exclude FFQ with extremely low and high energy intake (less than 803 
or above 4013 kcal/day for boys, and less than 502 or above 3511 kcal/day for 
girls) (153,154), adolescents with high values of BMI tend to report lower energy 
intake, and this is more likely in adolescents with self-image dissatisfaction (155). 
Additionally, although (poly)phenol intake was estimated using a comprehensive 
database (Phenol-explorer) and a standardized technique, information about some 
foods widely consumed in Spain or specific areas in Spain is still scared because they 
have not been characterized or are poorly characterized in the Phenol-Explorer 
database, and in consequence, there is some variation in the estimation of phenolic 
content. In addition to this, environmental and food processing conditions can alter 
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the (poly)phenol content in a way that we cannot estimate (68). Finally, as we 
pointed out in the introduction section, the bioavailability of dietary (poly)phenol is 
influenced by several biological factors which included interaction with food matrix, 
nutrients, gut microbiota, genetics (polymorphisms), plasma proteins, age, sex, etc. 
Although age and sex, and some foods and or nutrients have been considered in 
our regression models as covariates, the interindividual variation associated with all 
these relevant factors cannot be estimated. Therefore, the association between 
dietary (poly)phenol intake and cardiometabolic health parameters might be 
distorted by dietary data bias.  

Regarding urinary (poly)phenols, although Folin-Ciocalteu is a rapid and easy 
method to estimate total (poly)phenols content in urine and in consequence total 
dietary (poly)phenol intake; it is not possible to calculate the weight of individual 
phenolic compounds in the relationship with cardiometabolic parameters. 
Therefore, the metabolomic technique used in this thesis is relevant to find these 
individual associations. However, some limitations are needed to be acknowledged 
in this topic. Our study did not aim to elucidate the underlying molecular 
mechanisms to understand these associations. Additionally, several factors affect the 
direct bioavailability of phenolic metabolites, being one of them the gut microbiota 
profile, which was not contemplated in our study.  

Strengths of the present study include the large sample size and the standardization 
of measures performed in the SI! Program for Secondary Schools trial to reduce 
bias. Up to this date, this is one of the few studies about dietary (poly)phenol intake 
and cardiometabolic health parameters in adolescents, and this is the first study 
evaluating the several phenolic metabolites associated with cardiometabolic 
parameters in this target population, highlighting the importance to generate more 
evidence. Another strength is the precise identification and quantification of urinary 
phenolic metabolites through a validated analytical method. Finally, all the analyses 
were conducted in the same cohort, therefore, we could generate a global 
conclusion about this Spanish study. 
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6. CONCLUSION 

According to the stated objectives and the results described in the articles presented 
in this thesis, the main conclusions were as follow: 

General conclusion: 

Higher dietary (poly)phenol intake and its metabolites were associated with better 
cardiometabolic health and its parameters like body weight/composition, blood 
pressure, fasting glucose, and lipid profile; in adolescents aged 11 to 14 years old 
from a Spanish cohort. 

Specifics conclusions: 

- Higher total (poly)phenol intake and some subclasses of (poly)phenols, 
especially flavonoids, phenolic acids, stilbenes, and “other (poly)phenols” 
were associated with lower values of WC, BP, BG, TG, and HDL-c (except 
for stilbenes, which directly association was observed). 

- Higher flavonoids from cocoa-based products, especially cocoa powder and 
dark chocolate, were associated with adiposity parameters and with lower 
probability of having abdominal obesity. However, these associations were 
not observed in case of flavonoids from milk chocolate. 

-  Total (poly)phenols in urine analyzed by the Folin-Ciocalteu 
spectrophotometric method and used as a marker of (poly)phenol intake, 
was inversely associated with BP, TC, and with better or healthier 
cardiovascular health.  

- We developed an analytical method to identify and quantify 54 urinary 
phenolic metabolites (mainly microbial phenolic metabolites) including 
aglycones and phase II metabolites through LC-LTQ-Orbitrap-HRMS 
approach in a large epidemiological study. We identified lignans (enterodiol, 
enterolactone) and urolithins (A and B) as candidate marker of whole grains 
and nuts intake, respectively.  

- Higher urinary excretion of phenolic metabolites (gallic acid, urolithin A and 
B) was associated with lower values of WC, DBP, MetS score, and lower 
probability of having MetS, abdominal obesity and high BG. 
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Future perspectives 

This thesis helps to collect dietary data which supports the development of 
nutritional guidelines including safe doses of (poly)phenol, and the development of 
educational and health policies targeting dietary habits based on a high intake of 
(poly)phenol-rich food groups to protect cardiometabolic health in adolescents. 

In a future perspective, further studies (longitudinal and clinical trials) are needed to 
expand knowledge on dietary (poly)phenol intake and its metabolites with 
cardiometabolic health in adolescents. In particular: 

- Longitudinal studies are needed to observe the direction of the relationship 
between dietary (poly)phenols and cardiometabolic health continuing over 
time, having a relevant clinical change in the same cohort.  

- Clinical trials for a long time and at a large scale are needed to elucidate the 
effect on cardiometabolic parameters of safe dose-response of a dietary 
(poly)phenol intervention during adolescence and its consequence in 
adulthood. 

- Interindividual variation studies considering gut microbiota profile and 
polymorphisms evaluated in adolescents are needed to understand if this 
variable affects the relationship between dietary (poly)phenols and 
cardiometabolic health parameters.  
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