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 1	

SUMMARY	
	
INTRODUCTION:	 Parkinson’s	 disease	 (PD)	 and	 Dementia	 with	 Lewy	 bodies	 (DLB)	

appear	 as	 neurodegenerative	 disorders	 with	 a	 wide	 range	 of	 symptomatology	 that	

differs	among	patients,	among	which	are	different	 levels	of	cognitive	impairment.	For	

instance,	mild	cognitive	impairment	(MCI)	in	PD	contributes	to	a	specific	clinical	profile	

with	a	higher	 risk	of	developing	dementia.	Looking	at	PD	and	DLB	 together	provides	

evidence	of	 the	 existence	of	 different	 subtypes	within	both	diseases.	 In	 recent	 years,	

complex	imaging	techniques,	such	as	magnetic	resonance	imaging	(MRI),	have	been	used	

to	study	pathologies	of	the	brain.	MRI	measures	can	be	used	to	better	characterize	the	

brain	 basis	 of	 PD	 and	 DLB	 symptomatology,	 such	 as	MCI.	 The	 reconstruction	 of	 the	

whole-brain	 connectome	 is	 a	 complex	 approach	 that	 can	 help	 to	 describe	 the	

heterogeneous	 symptomatology	 in	 neurodegenerative	 disorders.	 In	 addition,	 MRI	 in	

combination	with	new	data-driven	methods,	such	as	cluster	analysis,	has	been	used	to	

group	patients	according	 to	 their	 similarities,	which	allows	subtypes	 to	be	 identified.	

Until	 now,	 most	 studies	 in	 PD	 have	 described	 subtypes	 based	 on	 clinical	 and	

neuropsychological	data,	and	just	a	few	have	used	MRI	measures	to	identify	subtypes	

with	different	brain	patterns.	As	DLB	research	is	still	in	a	relatively	early	stage,	no	cluster	

analyses	have	been	yet	performed	based	on	MRI	data.	

	

OBJECTIVES	AND	HYPOTHESES:	Given	this	context,	the	current	Doctoral	Thesis	focuses	

on	the	heterogeneity	that	characterizes	PD	and	DLB.	The	main	objectives	were	to	identify	

subtypes	based	on	structural	MRI	measures	in	PD	and	DLB,	as	well	as	to	characterize	the	

structural	 brain	 connectivity	 of	 PD	 associated	with	MCI.	We	 hypothesized	 that	 there	

would	be	PD	subtypes	with	different	patterns	of	grey	and	white	matter	alterations	that	

would	be	associated	with	particular	clinical	and	cognitive	profiles.	We	also	hypothesized	

that	there	would	be	DLB	subtypes	characterized	by	different	grey	matter	(GM)	patterns,	

and	that	these	patterns	would	explain	specific	symptomatology	of	the	disease	and	would	

be	differentially	associated	to	concomitant	brain	changes	seen	in	cerebrovascular	and	

Alzheimer’s	diseases.	Finally,	we	expected	that	PD-MCI	would	present	a	characteristic	
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pattern	of	impaired	structural	connectivity.	In	order	to	examine	and	clarify	these	issues,	

the	current	Doctoral	Thesis	is	presented	as	a	compendium	of	three	studies.	

	

METHODS:	In	Study	1,	to	identify	subtypes	in	PD,	we	performed	a	hierarchical	cluster	

analysis	based	on	multimodal	imaging	using	the	Ward’s	linkage	method.	We	performed	

the	analysis	in	a	sample	of	62	PD	patients.	GM	volumes	of	cortical	and	subcortical	brain	

regions	 as	 well	 as	 fractional	 anisotropy	 (FA)	 white	 matter	 (WM)	 measures	 were	

combined.	 Once	 the	 subtypes	 were	 identified,	 voxel-based	morphometry	 (VBM)	 and	

tract-based	spatial	statistics	(TBSS)	analyses	were	carried	out	in	order	to	compare	the	

pattern	 of	 GM	 and	 WM	 of	 the	 PD	 subtypes	 to	 the	 33	 healthy	 control	 group.	

Demographical,	 clinical	 and	 neuropsychological	 data	 were	 used	 to	 characterize	 the	

subtypes.	

	

In	Study	2,	 the	sample	consisted	of	27	PD-MCI	and	35	PD	without	MCI,	as	well	as	51	

healthy	 controls.	 In	 this	 study	 we	 applied	 threshold-free	 network-based	 statistics	

(TFNBS),	a	novel	technique	based	on	whole-brain	probabilistic	tractography	data	useful	

to	study	structural	connectivity.	We	complemented	the	analysis	with	TBSS	and	graph	

theory	analyses	(global	and	local	measures).			

	

Study	3	included	165	DLB	subjects	from	the	Mayo	Clinic	and	3	centres	from	the	European	

DLB	consortium	(E-DLB).	We	performed	a	cluster	analysis	based	on	GM	volumes	using	a	

random	forest	method,	and	characterized	the	subtypes	based	on	GM	volumes,	clinical,	

demographical	 data	 as	 well	 as	 tau,	 β-amyloid	 and	 cerebrovascular	 biomarkers.	

Additionally,	we	characterized	cognitive	trajectories	of	the	subtypes	in	a	3-year	follow-

up. 

	

RESULTS:	In	Study	1,	we	identified	3	PD	subtypes	which	mainly	differed	in	GM	patterns,	

while	WM	involvement	appeared	to	be	more	limited.	PD1	(24%)	was	characterized	by	

temporo-parieto-occipital	GM	atrophy	and	subcortical	atrophy,	as	well	as	FA	reductions	

mainly	 affecting	 fronto-occipital	WM	 tracts.	This	 subtype	was	 the	oldest	 and	had	 the	

worse	neuropsychological	profile.	The	second	subtype,	PD2	(34%),	was	characterized	
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by	GM	atrophy	limited	to	frontal	and	temporal	cortical	regions,	and	a	third	subtype,	PD3	

(42%),	with	non-detectable	GM	atrophy	or	WM	 impairment,	 and	preserved	cognitive	

profile.		

	

In	 Study	 2,	 we	 found	 that	 PD	 patients	 had	 fewer	 streamlines	 (NOS)	 compared	 with	

healthy	 controls.	 Structural	 connectivity	 impairments	 were	 present	 in	 PD	 with	 and	

without	 MCI.	 However,	 the	 pattern	 and	 degree	 of	 connectivity	 impairment	 were	

different.	PD-MCI	showed	a	higher	number	of	abnormal	connections,	primarily	involving	

those	between	deep	GM	structures	and	cortical	 regions	and	posterior	cortico-cortical	

connections,	mainly	in	the	temporal	and	occipital	regions.	PD	without	MCI	showed	fewer	

altered	 connections,	 and	 unlike	 PD-MCI,	 they	 were	 mainly	 located	 in	 the	 bilateral	

prefrontal	cortex.	What	is	more,	the	logistic	regression	and	ROC	curve	analysis	showed	

that	the	decreased	NOS	in	the	impaired	connections	characteristic	of	PD-MCI,	were	able	

to	discriminate	between	both	PD	groups	with	high	accuracy.	The	TBSS	analysis	revealed	

that	only	PD-MCI	had	reduced	FA	values	compared	to	controls.	The	graph	theory	analysis	

showed	PD	groups	differed	in	local	graph	measures.	

	

In	Study	3,	three	DLB	subtypes	with	the	same	disease	evolution	were	identified	based	on	

their	 GM	 volumes.	 The	 cortical	 predominant	 subtype	 (30%)	 was	 characterized	 by	

widespread	 reduced	 cortical	 GM,	 older	 age,	 worse	 cognition	 at	 baseline	 and	 faster	

cognitive	decline	over	3	years.	The	second	subtype,	the	fronto-occipital	subtype	(46%),	

had	 lower	 GM	 volumes	 in	 frontal	 and	 occipital	 regions.	 Finally,	 the	 subcortical	

predominant	 subtype	 (24%)	 was	 characterized	 by	 the	 greatest	 GM	 volumes,	 and	

relatively	low	GM	volumes	in	the	basal	ganglia,	as	they	were	the	only	brain	regions	where	

the	3	subtypes	had	equivalent	GM	volumes.	The	subcortical	predominant	subtype	was	

also	characterized	by	the	highest	frequency	of	cognitive	fluctuations.	

	

CONCLUSIONS:	 Our	 overall	 findings	 support	 the	 existence	 of	 different	 PD	 and	 DLB	

subtypes	that	can	be	identified	by	means	of	cluster	analyses	based	on	MRI	data,	which	

are	in	turn	associated	with	specific	cognitive	profiles,	and	that	cognitive	impairment	in	

PD	is	also	associated	to	a	specific	pattern	of	structural	connectivity	impairment.	These	
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results	contribute	to	clarifying	the	basis	of	heterogeneity	in	DLB	and	PD	and	give	further	

information	 about	 which	 characteristics	 could	 be	 considered	 biomarkers	 of	 worse	

prognosis,	with	the	final	aim	of	approaching	a	more	personalized	medicine.	
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RESUM	EN	CATALÀ	
	

Subtipus	dins	de	la	malaltia	de	Parkinson	i	de	la	Demència	amb	cossos	de	Lewy:	

IRM	i	perfils	neuropsicològics	

	
INTRODUCCIÓ:	 La	 malaltia	 de	 Parkinson	 i	 la	 Demència	 amb	 cossos	 de	 Lewy	 són	

malalties	neurodegeneratives	que	es	presenten	amb	una	àmplia	varietat	de	símptomes,	

els	quals	difereixen	entre	pacients.	El	deteriorament	cognitiu	 lleu,	per	exemple,	és	un	

possible	símptoma	de	la	malaltia	de	Parkinson	que	contribueix	en	un	perfil	clínic	concret	

amb	un	elevat	risc	de	desenvolupar	demència.	Tot	plegat	aporta	evidència	de	l’existència	

de	diferents	subtipus	(grups)	dins	d’ambdues	malalties.	En	els	últims	anys,	s’han	utilitzat	

tècniques	 d’imatge	 complexes,	 com	 la	 imatge	 per	 ressonància	 magnètica	 (IRM),	 per	

estudiar	les	malalties	que	afecten	al	cervell.	Les	diferents	mesures	obtingudes	de	la	IRM,	

es	poden	utilitzar	per	 caracteritzar	 les	bases	de	 la	 simptomatologia	de	 la	malaltia	de	

Parkinson	 i	 de	 la	Demència	 amb	 cossos	de	 Lewy,	 com	per	 exemple	 el	 deteriorament	

cognitiu	 lleu.	 La	 reconstrucció	 del	 connectoma	 de	 tot	 el	 cervell	 és	 una	 aproximació	

complexa	que	pot	ajudar	a	descriure	 la	 simptomatologia	heterogènia	de	 les	malalties	

neurodegeneratives,	a	més,	la	IRM	en	combinació	amb	noves	tècniques	guiades	per	les	

dades,	com	els	anàlisis	de	clúster,	s’han	utilitzat	per	agrupar	els	pacient	d’acord	a	 les	

seves	 similituds,	 el	 que	permet	 trobar	 subtipus	 de	 pacients.	 Fins	 ara,	 la	majoria	 dels	

estudis	 en	 la	malaltia	 de	 Parkinson	 han	 trobat	 subtipus	 basant	 les	 anàlisis	 en	 dades	

clíniques	i	neuropsicològiques,	i	només	escassos	treballs	s’han	basat	en	dades	derivades	

d’IRM.	En	la	Demència	amb	cossos	de	Lewy,	degut	a	que	la	recerca	es	troba	en	fases	més	

primerenques	que	no	pas	la	recerca	en	la	malaltia	Parkinson,	encara	no	s’ha	realitzat	cap	

anàlisis	de	clúster	basat	en	dades	d’IRM.	

	

OBJECTIUS	I	HIPÒTESIS:	Donat	aquest	context,	la	Tesi	Doctoral	que	aquí	es	presenta	es	

centra	en	l’heterogeneïtat	que	caracteritza	la	malaltia	de	Parkinson	i	a	la	Demència	amb	

cossos	de	Lewy.	Els	objectius	principals	han	estat	identificar	subtipus	basats	en	dades	

d’IRM	 en	 Parkinson	 i	 Demència	 amb	 cossos	 de	 Lewy,	 així	 com	 caracteritzar	 la	

connectivitat	cerebral	a	nivell	estructural	del	deteriorament	cognitiu	lleu	en	la	malaltia	
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de	Parkinson.	Hem	hipotetitzat	que	hi	haurien	subtipus	en	la	malaltia	de	Parkinson	que	

presentarien	diferents	patrons	d’alteració	de	la	substància	grisa	i	la	substància	blanca	

que	s’associarien	amb	un	perfil	clínic	 i	cognitiu	específic.	En	aquesta	 línia	també	hem	

hipotetitzat	que	hi	haurien	subtipus	dins	de	 la	Demència	amb	cossos	de	Lewy	que	es	

caracteritzarien	per	diferents	patrons	d’alteració	de	 la	substància	grisa,	 i	que	aquests	

patrons,	podran	explicar	diferències	en	la	simptomatologia	de	la	malaltia	i	es	trobaran	

diferencialment	 associats	 a	 marcadors	 biològics	 d’altres	 processos	 degeneratius		

associats	a	l’envelliment,	com	els	canvis	que	es	troben	en	processos	cerebrovasculars	i	

en	la	malaltia	d’Alzheimer.	Finalment,	esperaríem	que	el	deteriorament	cognitiu	lleu	en	

la	malaltia	de	Parkinson	presentés	un	patró	 característic	de	 connectivitat	 estructural	

alterada.	Amb	la	intenció	de	donar	resposta	a	aquestes	qüestions,	l’actual	Tesi	Doctoral	

es	presenta	com	un	compendi	de	3	estudis.	

	

MÈTODES:	En	l’estudi	1,	per	tal	d’identificar	subtipus	en	la	malaltia	de	Parkinson,	es	va	

dur	a	terme	un	anàlisis	de	clúster	jeràrquic	aglomeratiu,	utilitzant	dades	multimodals	

d’IRM.	L’anàlisi	es	va	dur	a	terme	en	una	mostra	de	62	pacients	i	es	van	combinar	volums	

de	 substància	 grisa	 de	 regions	 corticals	 i	 subcorticals	 amb	 mesures	 d’anisotropia	

fraccional	de	la	substància	blanca.	Un	cop	identificats	els	subtipus,	es	va	dur	a	terme	una	

morfometria	 basada	 en	 vòxels	 (voxel-based	 morphometry	 (VBM),	 en	 anglès)	 i	 una	

estadística	espacial	basada	en	tractes	(Tract-based	spatial	statistics	(TBSS),	en	anglès)	

per	tal	de	comparar	els	patrons	de	substància	grisa	i	blanca	amb	un	grup	de	33	controls	

sans.	 A	 més,	 vam	 utilitzar	 dades	 demogràfiques,	 clíniques	 i	 neuropsicològiques	 per	

caracteritzar	els	subtipus.	

	

A	l’estudi	2,	la	mostra	consistia	en	27	pacients	amb	malaltia	de	Parkinson	i	deteriorament	

cognitiu	lleu	i	35	pacients	sense	deteriorament	cognitiu,	així	com	de	51	controls	sans.	En	

aquest	estudi	vam	aplicar	una	tècnica	nova	que	en	anglès	rep	el	nom	de	threshold-free	

network-based	 statistics	 (TFNBS),	 aquesta	 tècnica	 resulta	 útil	 per	 estudiar	 la	

connectivitat	estructural	i	la	vam	utilitzar	amb	dades	de	tractografia	probabilística	de	tot	

el	cervell.	A	més,	vam	complementar	l’anàlisi	amb	TBSS	i	mesures	globals	i	locals	de	graf.	
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A	 l’estudi	 3,	 vam	 incloure	 165	 pacients	 amb	 Demència	 amb	 cossos	 de	 Lewy	 que	

procedien	de	 la	Clínica	Mayo	 i	de	3	centres	que	 formen	part	del	consorci	europeu	de	

Demència	amb	cossos	de	Lewy,	abreviat	com	a	E-DLB.	Vam	realitzar	un	anàlisi	de	clúster	

basat	en	random	forest	en	el	que	hi	vam	introduir	volums	de	substància	grisa	de	regions	

corticals	 i	 subcorticals	 de	 tot	 el	 cervell.	 En	 conseqüència,	 els	 subtipus	 els	 vam	

caracteritzar	 en	 base	 als	 volums	 de	 substància	 grisa,	 però	 també	 en	 base	 a	 dades	

clíniques,	 demogràfiques	 i	 de	 biomarcadors	 de	 tau,	 β-amiloide	 i	 malaltia	

cerebrovascular.	A	més,	vam	caracteritzar	les	trajectòries	cognitives	dels	subtipus	amb	

un	seguiment	de	3	anys.	

	

RESULTATS:	 A	 l’estudi	 1,	 vam	 definir	 3	 subtipus	 en	 la	 malaltia	 de	 Parkinson	 que	

principalment	diferien	en	 substància	 grisa,	mentre	que	 la	 implicació	de	 la	 substància	

blanca	era	molt	baixa.	El	primer	subtipus	(PD1,	24%)	es	caracteritzava	per	presentar	

atròfia	de	la	substància	grisa	a	nivell	de	còrtex	temporal,	parietal	i	occipital	així	com	en	

regions	 subcorticals.	 A	 més,	 presentava	 reduccions	 de	 l’anisotropia	 fraccional	

principalment	en	tractes	fronto-occipitals	de	substància	blanca.	Aquest	subtipus,	el	PD1,	

incloïa	als	pacients	de	més	edat	amb	el	pitjor	perfil	neuropsicològic.	El	segon	subtipus	

(PD2,	 34%)	 es	 caracteritzava	 per	 atròfia	 de	 la	 substància	 grisa	 en	 regions	 frontals	 i	

temporals.	 El	 tercer	 subtipus	 (PD3,	 42%),	 no	 presentava	 alteracions	 detectables	 ni	 a	

nivell	de	substància	grisa	ni	de	blanca,	i	presentava	un	perfil	cognitiu	preservat.		

	

En	l’estudi	2,	vam	trobar	que	els	pacients	amb	malaltia	de	Parkinson	presentaven	menor	

número	de	fibres	en	nombroses	connexions	cerebrals	en	comparació	amb	controls	sans.	

Es	 van	 trobar	 alteracions	 en	 la	 connectivitat	 estructural	 tant	 en	 pacients	 amb	

deteriorament	cognitiu	lleu	com	sense	deteriorament	cognitiu,	tot	i	així,	el	patró	i	grau	

de	les	alteracions	en	connectivitat	estructural	eren	diferents	entre	grups	de	pacients.	Els	

pacients	 amb	 deteriorament	 cognitiu	 lleu	 presentaven	major	 número	 de	 connexions	

alterades,	 les	 quals	 principalment	 involucraven	 connexions	 corticals	 en	 regions	

temporals	i	occipitals	així	com	connexions	entre	l’escorça	cerebral	i	els	nuclis	grisos	de	

la	 base.	 Els	 pacients	 amb	 malaltia	 de	 Parkinson	 però	 sense	 deteriorament	 cognitiu,	

presentaven	 menys	 connexions	 alterades	 que,	 a	 diferència	 dels	 pacients	 amb	
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deteriorament	 cognitiu	 lleu,	 es	 localitzaven	 principalment	 en	 regions	 bilaterals	 del	

còrtex	prefrontal.	A	més,	la	regressió	logística	i	la	corba	ROC	van	mostrar	que	el	número	

reduït	de	fibres	en	les	connexions	alterades	que	caracteritzaven	el	grup	de	pacients	amb	

deteriorament	cognitiu	lleu,	permetien	la	discriminació	entre	els	dos	grups	de	pacients	

amb	 una	 precisió	 elevada.	 L’anàlisi	 de	 TBSS	 va	mostrar	 que	 només	 el	 pacients	 amb	

deteriorament	 cognitiu	 lleu	 presentaven	 reduccions	 en	 l’anisotropia	 fraccional	 en	

comparació	al	grup	de	controls	 sans,	 i	 l’anàlisi	de	graf	va	mostrar	que	els	2	grups	de	

pacients	diferien	en	mesures	locals.	

	

En	l’estudi	3,	es	van	identificar	3	subtipus	dins	de	la	Demència	amb	cossos	de	Lewy	en	

base	als	volums	de	substància	grisa.	El	subtipus	amb	predominança	cortical	(30%)	es	

caracteritzava	per	una	reducció	generalitzada	dels	volums	corticals	de	substància	grisa,	

incloïa	els	pacients	de	més	edat,	pitjor	cognició	global	i	deteriorament	cognitiu	més	ràpid	

en	 el	 transcurs	 de	 3	 anys.	 El	 segon	 subtipus,	 el	 fronto-occipital	 (46%),	 presentava	

menors	volums	de	substància	grisa	en	regions	frontals	i	occipitals.	Finalment,	el	subtipus	

amb	 predominança	 subcortical	 (24%),	 es	 caracteritzava	 per	 majors	 volums	 de	

substància	 grisa	 en	 regions	 corticals	 i	 volums	 relativament	 baixos	 en	 estructures		

subcorticals,	donat	que	eren	les	úniques	estructures	en	les	que	no	hi	havia	diferències	

entre	 els	 3	 subtipus.	Aquest	 últim	 subtipus	 amb	predominança	 subcortical,	 també	 es	

caracteritzava	per	una	major	freqüència	de	pacients	amb	fluctuacions	cognitives.	

	

CONCLUSIONS:	En	conjunt,	 les	 troballes	presentades	en	aquesta	Tesi	Doctoral	donen	

suport	a	 l’existència	de	diferents	subtipus,	 tant	en	 la	malaltia	de	Parkinson	com	en	 la	

Demència	amb	cossos	de	Lewy,	que	poden	ser	identificats	mitjançant	anàlisis	de	clúster	

basats	en	dades	d’IMR.	A	més,	aquests	subtipus	reflecteixen	perfils	cognitius	específics.	

El	deteriorament	cognitiu	en	la	malaltia	de	Parkinson	també	es	troba	associat	a	un	patró	

concret	d’alteracions	en	connectivitat	estructural.	Així,	aquests	resultats	contribueixen	a	

aclarir	les	bases	de	l’heterogeneïtat	descrita	en	la	malaltia	de	Parkinson	i	en	la	Demència	

amb	 cossos	 de	 Lewy,	 i	 aporten	 informació	 rellevant	 sobre	 quines	 característiques	

podrien	 ser	 considerades	 com	 biomarcadors	 de	 pitjor	 pronòstic,	 amb	 l’objectiu	 final	

d’apropar-nos	a	una	medicina	més	personalitzada.		
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".".	A	BIT	OF	HISTORY		

In	1817	the	doctor	James	Parkinson	published	“An	Essay	on	the	Shaking	Palsy”,	in	which,	

based	on	the	observation	of	6	patients,	he	described	a	nervous	disorder	characterized	by	

a	 trembling	 of	 the	 limbs	 at	 rest,	 decreased	 muscular	 power	 and	 a	 stooped	 posture	

associated	with	a	festinating	gait	(Goetz	et	al.,	2011	for	a	review).	

	

Six	decades	after	Parkinson’s	essay,	Jean-Martin	Charcot	(Goetz	et	al.,	2011	for	a	review)	

named	the	disease	and	disentangled	certain	important	aspects,	such	as	the	fact	that	it	

did	not	necessarily	course	with	tremor	and	that	the	slowness	of	movement,	known	as	

bradykinesia,	was	a	cardinal	feature.	Interestingly,	he	and	his	students	also	described	

two	 variants	 of	 the	 disease	 -	 tremorous	 and	 rigid/akinetic.	 Nowadays	 Parkinson’s	

disease	 is	defined	as	bradykinesia	 in	combination	with	either	rest	 tremor,	rigidity,	or	

both	(Postuma	et	al.,	2015	for	a	review).		

	

In	1912,	Fritz	Heinrich	Lewy	described	the	depositions	of	protein	that	characterize	PD	

in	brain	regions	outside	 the	substantia	nigra.	About	7	years	 later,	another	researcher	

found	similar	aggregates	in	the	substantia	nigra,	which	he	called	Lewy	bodies.	However,	

it	was	not	until	 the	mid-1980s,	when	 immunocytochemical	methods	were	developed,	

that	α-synuclein	was	 identified	as	 the	protein	 forming	 the	Lewy	bodies	 (Obeso	et	al.,	

2017	for	a	review).	The	clinical	progression	of	PD	was	described	later	by	Hoehn	and	Yahr	

(H&Y)	in	what	became	a	well-known	international	scale.	The	five-stage	scale	consisted	

of	 unilateral	 (stage	 I)	 and	 bilateral	 disease	 (stages	 II	 to	 V)	 and	 the	 development	 of	

postural	 reflex	 impairment	 (stage	 III)	 as	 a	 key	 turning	point	 in	 PD	 (Hoehn	 and	Yahr	

1967).			

In	1990,	in	the	context	of	the	Lewy	body	diseases,	the	researcher	Kenji	Kosaka	pointed	

out	 the	 difference	 between	 autopsied	 cases	 with	 younger	 onset	 and	 presence	 of	

parkinsonism	 before	 dementia,	 and	 cases	with	 dementia	 preceding	 parkinsonism.	 In	

1995,	in	the	first	international	workshop	to	approach	this	disease,	the	term	Dementia	
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with	Lewy	bodies	(DLB)	was	established	as	well	as	its	pathological	guidelines,	making	

possible,	from	that	moment,	the	diagnosis	of	DLB	(Kosaka,	2014	for	a	review).		

Figure	1:	Timeline	of	the	main	events	in	the	history	of	Parkinson’s	disease		

(Lewy	bodies	image	extracted	from	Levin	et	al.,	2016		

and	⍺-synuclein	drawing	extracted	from	Mehra	et	al.,	2019.)	
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"...	DIAGNOSIS	AND	TREATMENT	OF	PARKINSON’S	DISEASE		&				
																													DEMENTIA	WITH	LEWY	BODIES	

	
	

1.2.1.	Diagnosis	and	symptomatology		

Clinical	 diagnosis	 of	 PD	 is	 based	 on	 the	 presence	 of	 parkinsonism,	 specifically,	 the	

presence	of	bradykinesia	in	combination	with	rest	tremor,	rigidity,	or	both	(Table	1).	The	

UK	Parkinson’s	Disease	Society	Brain	Bank	(Gibb	and	Lees,	1988)	and	the	International	

Parkinson	and	Movement	Disorder	Society	have	established	the	criteria	for	clinical	and	

research	 diagnosis	 (Postuma	 et	 al.,	 2015).	 The	 motor	 manifestations	 of	 PD	 can	 be	

evaluated	with	section	III	of	the	Unified	Parkinson’s	disease	rating	scale	(UPDRS)	(Fahn	

and	Elton,	1987),	as	well	as	its	revised	version	by	the	Movement	Disorders	Society	(MDS-

UPDRS)	(Goetz	et	al.,	2008).	

	

	
Table	1:	Motor	and	non-motor	symptomatology	of	Parkinson’s	disease	

	
	
Symptom	
	

	
Definition	or	main	features	

	
CORE	MOTOR	SYMPTOMATOLOGY	
	
	
Bradykinesia	

	
Slowness	of	movement	and	reduction	in	speed	or	amplitude	
as	 the	 voluntary	 movement	 is	 continued.	 It	 can	 involve	
reduced	 facial	 expression	 (hypomimia),	 low	 voice	
(hypophonia),	and	slowness	in	everyday	activities.	
	

	
Rigidity	

	
Increase	 in	 muscle	 tone	 when	 the	 patient	 is	 in	 a	 relaxed	
position.	It	specifically	refers	to	“lead-pipe”	resistance	which	
implies	consistent	resistance	to	passive	movement.	
	

	
Rest	tremor	

	
Tremor	that	takes	place	in	a	frequency	between	4	to	6	Hz	in	
the	limbs	at	rest.	
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NON-MOTOR	SYMPTOMATOLOGY		
	
	
Hyposmia/Anosmia	

	
Decreased/absent	sense	of	smell	
	

	
Sleep	dysfunction	

	
REM	sleep	behaviour	disorder	(RBD)	
Daytime	sleepiness	
Sleep-maintenance	insomnia	
	

	
Autonomic	
dysfunction	

	
Constipation	
Delayed	gastric	emptying	
Urinary	urgency	and	frequency	
Orthostatic	hypotension	
Blood	pressure	variability	
	

	
Psychiatric	
disturbances		

	
Depression	
Anxiety	
Apathy	
Psychosis	
	

	
Cognitive	
impairment		

	
Mild	cognitive	impairment	(MCI)	or	dementia	
often	initially	affecting	attention,	executive	and	visuospatial	
functions.	
	

	
Others	

	
Hypophonia	(softening	of	the	voice)	
Fatigue	
Sialorrhea	(drooling	or	excessive	salivation)	
Trouble	swallowing	
	

	
It	is	well-known	that	PD	is	also	accompanied	by	a	wide	range	of	non-motor	features	that	

can	appear	decades	before	the	motor	symptomatology	(Figure	2).		
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Figure	2:	Clinical	symptoms	associated	with	Parkinson’s	disease	progression	
	

		
	
	
	

	(Extracted	from	Poewe	et	al.,	2017)	
	
	

Additional	non-motor	symptoms	can	appear	after	 the	diagnosis	and	develop	with	the	

disease	 progression.	 The	 non-motor	 symptomatology	 includes	 olfactory	 impairment,	

REM	 sleep	 behaviour	 disorder	 (RBD),	 gastrointestinal	 dysfunction,	 depression,	 and	

cognitive	impairment	that	can	lead	to	dementia,	among	others	(Pfeiffer	et	al.,	2016).	

	
When	 well-established	 PD	 patients	 develop	 dementia,	 we	 use	 the	 term	 Parkinson’s	

disease	 dementia	 (PDD),	 which	 shares	many	 characteristics	with	 DLB.	 However,	 the	

temporality	 of	 the	 events	 is	 the	main	 key	 in	 differentiating	 them,	 as	 DLB	 should	 be	

diagnosed	when	dementia	occurs	before	or	concurrently	with	parkinsonism	(McKeith	et	

al.,	2017)	(Panel	1).	
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Panel	1:	Criteria	for	the	clinical	diagnosis	of	probable	and	possible	DLB	

(McKeith	et	al.,	2017)	
	

Essential	 for	 a	 diagnosis	 of	 DLB	 is	 dementia,	 defined	 as	 a	 progressive	 cognitive	 decline	 of	 sufficient	
magnitude	to	interfere	with	normal	social	or	occupational	functions,	or	with	usual	daily	activities.	Prominent	
or	persistent	memory	impairment	may	not	necessarily	occur	in	the	early	stages	but	is	usually	evident	with	
progression.	Deficits	on	tests	of	attention,	executive	function,	and	visuoperceptual	ability	may	be	especially	
prominent	and	occur	early.	
	
Core	clinical	features	(The	first	3	typically	occur	early	and	may	persist	throughout	the	course.)	

§ Fluctuating	cognition	with	pronounced	variations	in	attention	and	alertness.	
§ Recurrent	visual	hallucinations	that	are	typically	well	formed	and	detailed.	
§ RBD,	which	may	precede	cognitive	decline.	
§ One	or	more	spontaneous	cardinal	features	of	parkinsonism:	bradykinesia,	rest	tremor,	or	rigidity.	

	
Supportive	clinical	features	

Severe	 sensitivity	 to	 antipsychotic	 agents;	postural	 instability;	 repeated	 falls;	 syncope	or	other	 transient	
episodes	 of	 unresponsiveness;	 severe	 autonomic	 dysfunction,	 e.g.,	 constipation,	 orthostatic	 hypotension,	
urinary	incontinence;	hypersomnia;	hyposmia;	hallucinations	in	other	modalities;	systematized	delusions;	
apathy,	anxiety,	and	depression.	
	
Indicative	biomarkers	

§ Reduced	dopamine	transporter	uptake	in	basal	ganglia	demonstrated	by	SPECT	or	PET.	
§ Abnormal	(low	uptake)	123iodine-MIBG	myocardial	scintigraphy.	
§ Polysomnographic	confirmation	of	REM	sleep	without	atonia.	

	

Supportive	biomarkers	

§ Relative	preservation	of	medial	temporal	lobe	structures	on	CT/MRI	scan.	
§ Generalized	low	uptake	on	SPECT/PET	perfusion/metabolism	scan	with	reduced	occipital	activity	

±	the	cingulate	island	sign	on	FDG-PET	imaging.	
§ Prominent	posterior	slow-wave	activity	on	EEG	with	periodic	fluctuations	in	the	pre-alpha/	theta	

range.	
	

Probable	DLB	can	be	diagnosed	if:	
a.	 Two	 or	 more	 core	 clinical	 features	 of	 DLB	 are	 present,	 with	 or	 without	 the	 presence	 of	 indicative	
biomarkers,	or	b.	Only	one	core	clinical	feature	is	present,	but	with	one	or	more	indicative	biomarkers.	
	

Probable	DLB	should	not	be	diagnosed	on	the	basis	of	biomarkers	alone.	
	
Possible	DLB	can	be	diagnosed	if:	

a. Only	one	core	clinical	feature	of	DLB	is	present,	with	no	indicative	biomarker	evidence,	or	b.	One	
or	more	indicative	biomarkers	is	present	but	there	are	no	core	clinical	features.	
	

DLB	is	less	likely:	

a.	In	the	presence	of	any	other	physical	illness	or	brain	disorder	including	cerebrovascular	disease,	sufficient	
to	account	in	part	or	in	total	for	the	clinical	picture,	although	these	do	not	exclude	a	DLB	diagnosis	and	may	
serve	to	indicate	mixed	or	multiple	pathologies	contributing	to	the	clinical	presentation,	or	b.	If	parkinsonian	
features	are	the	only	core	clinical	feature	and	appear	for	the	first	time	at	a	stage	of	severe	dementia.	
	
In	research	studies	in	which	distinction	needs	to	be	made	between	DLB	and	PDD,	the	existing	1-year	rule	
between	the	onset	of	dementia	and	parkinsonism	continues	to	be	recommended.	
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1.2.2.	Imaging	biomarkers	

The	 heterogeneous	 symptomatology	 of	 PD	 and	 DLB	 overlaps	 with	 other	

neurodegenerative	disorders,	sometimes	making	an	accurate	diagnosis	difficult	(Abdo	

et	al.,	2010	for	a	review).	In	this	context,	imaging	techniques,	such	as	positron	emission	

tomography	(PET)	and	single-photon	emission	computed	tomography	(SPECT),	which	

use	 ionising	 radioactive	 ligands	 to	 quantify	 receptors,	 transporters,	 or	 enzymes;	 and	

magnetic	 resonance	 imaging	 (MRI),	 which	 uses	 different	 sequences	 and	 contrasts	 to	

study	the	structure	of	the	brain	and	its	function,	are	proposed	as	complementary	tools	

for	differential	diagnosis	(Blamire,	2018	for	a	review).	

	

Imaging	with	PET	and	SPECT	focused	on	the	dopaminergic	 function,	uses	as	common	

targets	 the	vesicular	monoamine	transporter	 type	2	(VMAT2);	L-aromatic	amino	acid	

decarboxylase	 (L-AAAD),	 an	 enzyme	 that	 converts	 L-DOPA	 to	 dopamine;	 and	 the	

dopamine	transporter	(DAT)	(Pagano	et	al.,	2016	for	a	review).	Specifically,	DAT	SPECT	

imaging,	which	employs	the	123I-FP-CIT	ligand	and	is	commercially	known	as	DaTSCAN,	

is	commonly	used	in	clinics	to	diagnose	PD.	Molecular	imaging	in	PD	can	detect	a	marked	

signal	loss	in	the	posterior	putamen,	being	frequently	asymmetric	and	contralateral	to	

the	most	clinically	affected	side	of	the	body	(Pagano	et	al.,	2016	for	a	review;	Poewe	et	

al.,	2017	for	a	review).	

	

In	DLB,	as	well	as	in	PD,	the	DaTSCAN	is	also	used	for	differential	diagnosis	as	it	presents	

with	reduced	uptake	in	basal	ganglia,	which	allows	differentiating	between	DLB	and	AD	

(McKeith	 et	 al.,	 2017	 for	 a	 review).	 Moreover,	 18F-fluorodeoxyglucose	 (FDG),	 a	

radiotracer	used	in	PET	that	reflects	the	uptake	of	glucose,	which	in	turn	correlates	with	

the	metabolism	 of	 the	 tissue,	 has	 provided	 supportive	 biomarkers	 for	DLB.	 Occipital	

hypometabolism	of	FDG-PET	has	been	correlated	to	neuropathology	of	the	visual	cortex	

and,	additionally,	the	relative	preservation	of	the	posterior	cingulate,	called	the	cingulate	

island,	has	been	described	as	a	useful	radiological	sign	of	DLB	(McKeith	et	al.,	2017	for	a	

review).	
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PET	 imaging	 is	 also	 used	 to	 quantify	 other	 relevant	 biomarkers.	 The	 radiotracer	

Pittsburgh	 compound	 B	 (PiB),	 which	 quantifies	 β-amyloid,	 is	 appropriate	 for	 AD	

diagnosis	as	well	as	PDD	diagnosis.	Tau	deposits	can	also	be	captured	with	fluorine	18-

labeled	AV-1451	([18F]AV-1451)	(Saeed	et	al.,	2017	for	a	review).	

	

MRI	 appears	 to	 be	 useful	 in	 identifying	 cerebrovascular	 lesions,	 which	 allows	

differentiating	between	idiopathic	PD	and	vascular	parkinsonism.	In	addition,	accurate	

methods	 for	 measuring	 the	 thickness	 of	 human	 cerebral	 cortex,	 the	 volume	 of	 grey	

matter	 (GM)	 in	 cortical	 and	 subcortical	 structures,	white	matter	 (WM)	 integrity	 and	

brain	activity	appear	as	powerful	tools	to	study	neurodegenerative	disorders	(Panel	2).	

MRI	has	been	described	as	a	suitable	technique	to	discern	between	PD,	Multiple	System	

Atrophy	(MSA)	and	Progressive	Supranuclear	Palsy	(PSP)	as	they	course	with	different	

patterns	 of	 reduced	 fractional	 anisotropy	 (FA)	 (Cochrane	 and	 Ebmeier,	 2013	 for	 a	

review;	Ota	et	al.,	2013)	as	well	as	different	patterns	of	atrophy	(Ota	et	al.,	2013).	 In	

addition,	the	preservation	of	the	medial	temporal	lobe	can	help	to	differentiate	DLB	from	

AD	(McKeith	et	al.,	2017	for	a	review).	

	

Although	nuclear	 imaging	 as	well	 as	MRI	has	been	an	 invaluable	 tool	 in	 research	 for	

decades	and	has	showed	their	potential	in	elucidating	the	mechanisms	underlying	PD,	

there	 are	 only	 a	 few	 biomarkers	 supported	 in	 clinics.	 Further	 research,	 as	 well	 as	

longitudinal	analyses,	are	still	required	to	extrapolate	all	the	evidence	found	in	research	

to	the	clinical	setting	(Strafella	et	al.,	2018	for	a	review).	
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Panel	2:	MRI	techniques	

	

STRUCTURAL	MRI		
	

Cortical	thickness	(CTh):		Measurement	of	the	distance	between	the	boundary	
that	separates	the	WM	from	the	pial	surface.	The	distance	between	these	two	
surfaces	gives	the	thickness	of	the	cortical	GM.		
	
Voxel-based	morphometry	(VBM):	Technique	that	estimates	the	amount	of	GM	
in	 a	 voxel	 through	 its	 signal	 intensity	 (Whitwell,	 2009).	 Unlike	 cortical	
thickness,	 it	also	allows	to	study	subcortical	structures,	as	their	volumes	can	
also	be	estimated.	
	
Diffusion	 tensor	 imaging	 (DTI):	 Technique	 sensitive	 to	 the	microdiffusion	 of	
water	molecules,	that	allows	to	characterize	WM	integrity	and	architecture.		
	

(Please	see	sections	“DTI	metrics,	fibre	tracking	and	structural	connectivity”,	page	70).	

	
Detailed	explanation	of	the	structural	MRI	techniques	can	be	found	in	the	Methods	
Chapter.	
	

FUNCTIONAL	MRI	
	

The	 fMRI	 allows	measurement	 of	 brain	 activity	 by	 detecting	 low	 frequency	
fluctuations	 in	 the	 blood	 oxygen	 level-dependent	 (BOLD)	 signal	 (Lee	 et	 al.,	
2013).	There	are	two	modalities:	resting-state	and	task-based	fMRI.	In	resting-
state	fMRI	the	participants	must	remain	awake	without	thinking	in	anything	in	
particular	 (keeping	 the	 mind	 blank);	 while	 task-based	 fMRI	 requires	 the	
participants	to	perform	a	specific	task,	such	as	a	visual	perception	assignment.	
Functional	 connectivity	 is	 defined	 as	 the	 temporal	 dependency	 of	 neuronal	
activation	patterns	of	anatomically	 separated	brain	regions	 (van	den	Heuvel	
and	Hulshoff	Pol,	2010).	
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1.2.3.	Pharmacological	treatment		
	

PD	treatment	consists	mainly	of	managing	the	motor	symptomatology	with	drugs	that	

increase	dopamine	concentrations	or	that	stimulate	the	dopamine	receptors.	The	most	

common	 drugs	 are	 levodopa	 (or	 L-DOPA),	 which	 is	 the	 precursor	 of	 dopamine;	

dopamine	 agonists,	 as	 well	 as	 monoamine	 oxidase	 type	 B	 inhibitors	 (MAO-B),	 and	

catechol-O-methyltransferase	(COMT)	 inhibitors,	which	block	 the	enzyme	that	breaks	

down	dopamine,	and	the	one	that	methylates	it,	respectively	(Jankovic	and	Tan,	2020	for	

a	review).	

	

Levodopa	is	the	most	efficient	treatment	to	manage	the	motor	symptomatology	of	PD;	

however,	 its	 long-term	 use	 is	 related	 to	 motor	 complications	 including	 dyskinesia	

(involuntary	muscle	movements	resembling	tics),	‘wearing-off’	phenomenon	(the	effects	

of	levodopa	disappear	or	reduce	before	it	is	time	for	the	following	levodopa	dose)	and	

unpredictable	 ‘on–off’	 fluctuations	 (motor	 fluctuations).	To	minimize	 the	motor	 long-

term	side	effects,	the	levodopa-sparing	initial	therapy	may	be	recommended.	It	consists	

of	 starting	 the	 treatment	 with	 dopamine	 agonists	 or	 monoamine	 oxidase	 type	 B	

inhibitors.	 Other	 common	 side	 effects	 of	 PD	 treatments	 can	 be	 nausea,	 somnolence,	

oedema,	 orthostatic	 hypotension,	 sedation,	 confusion,	 sleep	 disturbance	 and	

hallucinations	 (Jankovic	 and	 Tan,	 2020	 for	 a	 review).	 Specially	 related	 to	 dopamine	

agonists	are	impulsive	control	disorders	such	as	gambling	and	binge	eating	(Kalia	and	

Lang,	 2015	 for	 a	 review;	 Strafella	 et	 al.,	 2018	 for	 a	 review).	 Due	 to	 its	 side	 effects,	

levodopa	is	almost	always	combined	with	carbidopa	or	benserazide,	which	are	aromatic	

acid	 decarboxylase	 inhibitors	 that	 significantly	 reduce	 nausea	 by	 avoiding	 dopamine	

peripheral	metabolism	(Jankovic	and	Tan,	2020	for	a	review).	

	

The	 heterogeneity	 of	 symptomatology	 causes	 different	 patients	 to	 require	 different	

doses	of	levodopa	combined	with	different	types	of	drugs.	To	address	this	problem,	the	

levodopa	equivalent	daily	dose	(LEDD)	can	be	calculated	by	considering	the	quantity	of	

levodopa	that	has	a	comparable	effect	to	the	other	drugs	taken	(Tomlinson	et	al.,	2010	
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for	 a	 review).	 Apart	 from	 the	 clinical	 advantages,	 LEDD	 also	 allows	 the	 comparison	

between	patients	in	the	research	field.	

	
DLB	 treatment,	 unlike	 PD,	 is	 focused	 on	 non-motor	 symptomatology.	 The	 use	 of	

medication	targeting	movement	impairment,	such	as	levodopa,	is	often	restricted	in	DLB	

patients	as	 they	are	 less	 responsive	 than	PD	 to	 this	medication,	 and	prone	 to	mental	

deterioration	involving	cognition	and	behaviour	that	can	lead	to	confusion,	psychosis,	

and	exacerbation	of	hallucinations	(Boot,	2015	for	a	review).	The	use	of	cholinesterase	

inhibitors	has	been	 supported	 to	 improve	 cognition	 in	DLB	 (Sezgin	 et	 al.,	 2019	 for	 a	

review)	 as	 well	 as	 in	 PDD	 (Sasikumar	 and	 Strafella,	 2020	 for	 a	 review).	 The	 use	 of	

antipsychotics	to	treat	symptomatology	like	visual	hallucinations	should	be	avoided	as,	

in	dementias,	 they	are	associated	with	mortality	risk;	while	novel	drugs	targeting	the	

serotoninergic	system	look	promising	to	treat	the	neuropsychiatric	symptoms	(McKeith	

et	al.,	2017	for	a	review).	

 
A	comprehensive	treatment	plan	can	significantly	improve	the	quality	of	life	of	PD	and	

DLB	 patients;	 however,	 there	 is	 still	 no	 medication	 available	 that	 can	 alter	 the	

progression	of	the	disease.	
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".N.	NEUROPATHOLOGY	OF	PARKINSON’S	DISEASE	&		
																DEMENTIA	WITH	LEWY	BODIES	

	

Neurodegenerative	disorders	are	 the	product	of	a	 complex	 interaction	of	genetic	and	

environmental	 factors	that	ultimately	compromise	the	proper	 functioning	of	neurons.	

The	 aggregation	 of	 misfolded	 proteins	 has	 been	 found	 to	 be	 a	 hallmark	 of	

neurodegenerative	 disorders,	 and	 potentially	 the	 main	 cause	 of	 neuronal	 death.	 An	

example	of	protein	 inclusions	are	 the	ones	made	of	α-synuclein,	which	are	known	as	

Lewy	bodies	and	are	the	main	characteristic	of	α-synucleinopathies,	such	as	PD	and	DLB.		

1.3.1.	Braak	staging	

	

	

	

Figure	3:	
Propagation	of	α-synculein	
in	the	human	brain	
following	the	Braak	staging	
(Extracted	from	Goedert	et	al.,	2015).	
 

Stages I-II 

Stages III-IV 

Stages V-VI 

Braak	 staging	 views	 the	 progression	 of	 the	

disease	according	to	α-synuclein	deposits	in	the	

brain.	It	consists	of	6	stages	(Braak	et	al.,	2003;	

Braak	et	al.,	2006a;	Braak	and	Del	Tredici,	2008);	

the	beginning	can	be	either	in	the	olfactory	bulb	

or	the	medulla	oblongata	(stages	I	and	II),	which	

could	 explain	 the	 non-motor	 symptomatology	

such	 as	 olfactory,	 and	 autonomic	 disfunctions	

that	 precede	 motor	 symptoms.	 Then,	 it	 would	

ascend	 to	 the	 pons	 and	 basal	 forebrain,	 which	

includes	the	ventral	pallidum	(stages	III	and	IV).	

These	 intermediate	 stages	 are	 associated	 with	

sleep	 disturbances	 and	 the	 core	 motor	

symptomatology	of	parkinsonism.	Consequently,	

it	is	usually	in	these	stages	when	the	diagnosis	of	

PD	 is	 done.	 Lastly,	 it	 spreads	 to	 the	 neocortex	

(stages	V	and	VI),	from	the	prefrontal	cortex	and	

associative	 sensory	 regions,	 extending	 to	 the	

premotor	and	primary	sensory	cortex	(Figure	3).		
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The	last	stages	are	related	to	severe	motor	

symptoms	 as	 well	 as	 mood	 fluctuations,	

cognitive	 impairment,	 and	 dementia	

(Braak	et	al.,	2006b).	

Braak	 staging	 has	 not	 been	 without	

controversy,	as	some	studies	supported	it	

while	others	rejected	it	(Jellinger,	2009	for	

a	 review).	 This	 hypothesis	 has	 appeared	

useful	 to	 describe	 the	 neuropathological	

evolution	of	PD	(Jellinger,	2004;	Halliday	

et	 al.,	 2008)	 but	 insufficient	 in	 most	

advanced	 stages	 (Jellinger,	 2009),	

particularly	 in	dementia	 (Jellinger,	2008)	

were	 β-amyloid	 and	 tau-containing	

neurofibrillary	tangles	coexist	(Irwin	et	al.,	

2013).	 It	has	also	 failed	 to	describe	a	PD	

phenotype	characterized	by	late	onset	and	

fast	progression	of	the	disease	(Halliday	et	

al.,	2008).		

	

The	validity	of	Braak	staging	according	to	α-synuclein	deposits,	is	still	to	be	established	

in	 DLB,	 and	 it	 will	 require	 the	 study	 of	 patients	 with	 different	 levels	 of	 severity	 in	

cognition	and	extrapyramidal	 symptoms	 (McKeith	 et	 al.,	 2005).	DLB	 can	 course	with	
Alzheimer’s	disease	(AD)	pathology	(β-amyloid	plaques	and	tau	inclusions),	leading	to	a	

PD/AD	mixed	 pathology	 (Zhang	 et	 al.,	 2017)	 (Figure	 4).	 In	 consequence,	 the	 current	

pathological	assessment	of	DLB	combines	the	Lewy	Bodies	related	pathology	categories	

(diffuse	cortical,	limbic,	brainstem-predominant,	amygdala-predominant,	and	olfactory	

bulb	only)	(McKeith	et	al.,	2017	for	a	review)	with	AD	categories	related	to	the	Braak	

staging	of	β-amyloid	plaques	and	 tau	 inclusions	 (Montine	et	 al.,	 2012;	McKeith	et	 al.,	

2017	for	a	review).	

Figure	4:	Biomarkers	of	Parkinson’s	

disease	 (PD),	 Parkinson’s	 disease	

dementia	 (PDD),	 Dementia	 with	

Lewy	Bodies	(DLB)	and	Alzheimer’s	

disease	 (AD).	 Synucleinopathies	 are	

shown	in	blue,	tauopathies	in	yellow	and	β-

amyloid	 pathology	 is	 shown	 in	 green	
(Adapted	from	Zhang	et	al.,	2017).	
	
 

β-amyloid

PDD

PD

DLB AD
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1.3.2.	Genetics		

Genetic	 forms	 represent	 a	 low	 percentage	 of	 PD	 cases.	 However,	 they	 contribute	 to	

understand	 the	 neuropathological	 mechanisms	 underlying	 the	 disease.	 Autosomal	

dominant	forms	of	PD	had	been	linked	to	missense	mutations	as	well	as	duplications	and	

triplications	of	the	SNCA	gene	(Kalia	and	Lang,	2015	for	a	review),	which	encodes	for	α-

synuclein.	 The	 abnormalities	 in	 this	 protein	 can	 lead	 to	 aberrant	 soluble	 oligomeric	

conformations	of	the	protein,	causing	the	death	of	dopaminergic	neurons	by	targeting	

different	 intracellular	processes,	 including	synaptic	 function.	Additionally,	secreted	α-

synuclein	may	be	able	to	spread	through	prion-like	transmission,	contributing	to	disease	

propagation	(Figure	5).		

	

Mutations	in	the	LRRK2,	the	gene	encoding	the	leucine-rich	repeat	kinase-2,	also	known	

as	 PARK8	 and	 Dardarin,	 have	 been	 associated	 with	 a	 higher	 risk	 of	 suffering	 from	

autosomal	 dominant,	 late-onset	 PD,	 clinically	 indistinguishable	 from	 idiopathic	 PD	

(Gandhi	et	al.,	2009).		

	

On	the	other	hand,	early-onset	PD	has	been	associated	to	mutations	in	Parkin	(Lücking	

et	al.,	2000)	and	glucocerebrosidase	(GBA)	(Goker-Alpan	et	al.,	2004).	Parkin	is	a	gene	

that	encodes	for	E3	ubiquitin	ligase,	a	widely	expressed	enzyme	that	links	ubiquitins	to	

a	substrate	protein	which	ultimately	leads	to	its	degradation	in	the	proteosome,	while	

GBA	encodes	a	lysosomal	protein	that	degrades	glucocerebroside.	Mutations	in	this	gene	

may	be	contributing	to	PD	pathogenesis	by	altering	lysosomal	homeostasis,	endoplasmic	

reticulum	stress,	or	mitochondrial	damage	(Do	et	al.,	2019)	(Figure	5).	

	

Mutations	in	the	microtubule-associated	protein	tau	(MAPT),	the	protein	responsible	for	

the	 cell	 cytoskeleton	 stability,	 have	 been	 associated	 with	 several	 neurodegenerative	

disorders	 including	 PD.	 Interestingly,	 genome-wide	 association	 studies	 (GWAS)	 have	

shown	that	variability	in	SNCA,	LRRK2,	and	MAPT	are	risk	factors	for	sporadic	PD,	as	

well	as	the	locus	PARK16	(Simón-Sánchez	et	al.,	2009).	
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DLB,	as	well	as	PD,	is	mostly	sporadic,	although	rare	autosomal	dominant	forms	have	

also	been	associated	with	the	most	prevalent	mutations	in	PD:	SNCA,	LRRK2	and	GBA.	

Carrying	the	H1	haplotype	of	the	MAPT	is	also	a	risk	factor	for	DLB	(Labbé	et	al.,	2016).		

Additionally,	APOE	ε4	allele,	a	strong	risk	factor	for	AD,	appears	to	be	over-represented	

in	DLB	(Walker	et	al.,	2015).		

	

	

	

Figure	5:	Cellular	processes	involved	in	the	pathogenesis		

of	Parkinson’s	disease		
	

		(Extracted	from	Kalia	and	Lang,	2015).	
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substantia nigra or striatum of wild-type mice or macaque 
monkeys gave similar fi ndings and caused progressive 
nigrostriatal neurodegeneration.114

Neuroinfl ammation is a characteristic feature of 
Parkinson’s disease pathology, but whether neuro-
infl ammation promotes or protects from neuro degen-
eration has yet to be established. Findings from 
meta-analysis of genome-wide association data40 have 
identifi ed a single-nucleotide polymorphism within the 
human leucocyte antigen region that aff ects the risk 
of developing Parkinson’s disease, suggesting an 

immune-related genetic susceptibility to Parkinson’s 
disease (fi gure 2). Furthermore, results of epidemiological 
studies14 showing reduced risk of Parkinson’s disease 
with the use of anti-infl ammatory medications, 
specifi cally non-steroidal anti-infl ammatory drugs, 
support the hypothesis that infl ammation might promote 
an underlying disease process. Use of calcium channel 
blockers and elevated concentrations of serum urate are 
also associated with reduced risk of Parkinson’s disease.14 
The ability of calcium channel blockers and urate to 
reduce oxidative stress in neurons that are susceptible to 

Figure 3: Cellular processes involved in the pathogenesis of Parkinson’s disease
Multiple genes have been implicated in Parkinson’s disease based on mutations identifi ed as causes of familial Parkinson’s disease or polymorphisms found to be risk 
factors for sporadic Parkinson’s disease. The gene products drive key cellular processes, the disruption of which might underlie the pathogenesis of Parkinson’s disease.
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".Q.	HETEROGENEITY	IN	PARKINSON’S	DISEASE	
	

PD	is	a	complex	neurodegenerative	disorder	characterized	by	a	broad	spectrum	of	motor	

and	non-motor	symptoms	(Figure	2)	that	can	differ	in	temporality	and	intensity	among	

patients.	In	this	context,	many	studies	have	focused	on	subtyping	PD.	The	first	subtyping	

approaches	 were	 based	 on	 a	 priori	 hypothesis	 using	 a	 single	 classification	 feature,	

moving	 to	 data-driven	 hypothesis-free	 approaches,	 such	 as	 clustering,	 to	 divide	 PD	

samples	into	subtypes.	

1.4.1.	Motor	symptoms		

In	1990,	 in	a	moment	where	researchers	had	started	 to	study	subsamples	within	PD,	

Jankovic	 et	 al.,	 (1990)	 classified	 a	 PD	 sample	 of	 800	 patients	 from	 the	 DATATOP	

database,	according	to	demographic	and	clinical	characteristics,	to	study	the	potential	

subgroups	that	could	be	gathered	in	PD.	They	supported	the	clinical	subtypes	by	giving	

evidence	of	at	least	2	different	PD	trajectories	according	to	the	motor	symptomatology:	

the	 tremor	 dominant	 subtype	 and	 the	 postural	 instability	 and	 gait	 difficulty	

predominant	(PIGD)	subtype.	The	 tremor-dominant	group	 is	 characterized	by	 tremor	

that	 can	 be	 postural,	 akinetic	 or	 present	 at	 rest,	 the	 tremor	 at	 rest	 being	 the	 most	

common	feature	in	PD	that	helps	to	distinguish	it	from	essential	tremor	(Moustafa	et	al.,	

2016).	 On	 the	 other	 hand,	 the	 PIGD	 or	 akinetic/rigid	 subtype	 is	 characterized	 by	

significant	axial	rigidity	and	absence	of	tremor	and	can	be	accompanied	by	bradykinesia	

and	rigidity	(Nutt,	2016	for	a	review).	PIGD	has	been	related	to	a	worse	course	of	the	

disease	compared	to	tremor	predominant	(Jankovic	et	al.,	1990;	Jankovic	and	Kapadia,	

2001),	as	well	as	to	more	depression	and	difficulties	in	everyday	activities	(Jankovic	et	

al.,	1990;	Burn	et	al.,	2012)	and	dementia	(Alves	et	al.,	2006).	

	

MRI	has	been	used	 to	 study	structural	differences	between	 the	2	motor	profiles.	The	

PIGD	subtype	has	been	seen	to	have	reduced	widespread	GM	volumes	(Rosenberg-Katz	

et	 al.,	 2013),	 as	 well	 as	 altered	 structural	 connectivity	 in	 cortico-basal	 ganglia	

connections	(Barbagallo	et	al.,	2017)	when	compared	to	the	tremor	subtype.		
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Conversely,	analyses	based	on	WM	found	the	tremor	subtype	to	have	increased	mean	

diffusivity	(MD)	in	motor	areas	(Vervoort	et	al.,	2016).	

	
It	is	worth	noting	that	the	stability	of	the	motor	subtypes	has	been	questioned	as	higher	

percentages	of	subjects	with	tremor-dominant	subtype	have	been	seen	to	switch	from	

tremor	subtype	to	PIGD	subtype	over	the	years	(Alves	et	al.,	2006).	

1.4.2.	Age	of	onset		

PD	patients	can	be	classified	according	to	their	age	at	disease	onset	in	young-onset	PD	

and	late-onset	PD.	Young-onset	PD	comprises	those	patients	diagnosed	before	the	age	of	

40,	although	some	studies	established	the	onset	at	age	50	(Schrag	and	Schott,	2006	for	a	

review).	However,	patients	with	an	onset	earlier	than	age	21	are	considered	juvenile	PD	

and	are	commonly	linked	to	gene	mutations	(Schrag	and	Schott,	2006	for	a	review).	On	

the	other	hand,	patients	with	an	age	at	onset	over	60	are	considered	late-onset	PD.	Early	

age	at	onset	has	been	recurrently	associated	with	slower	disease	progression	(Jankovic	

and	Kapadia,	2001;	Ferguson	et	al.,	2015)	of	motor	symptoms	(Jankovic	and	Kapadia,	

2001),	as	well	as	non-motor	symptoms,	such	as	less	sleep	disturbances	(Mahale	et	al.,	
2015),	 and	 slower	 progression	 of	 cognitive	 impairment	 (Kim	 et	 al.,	 2020).	 However,	

young-onset	PD	patients	have	higher	depression	and	anxiety	scores	(Burn	et	al.,	2012),	

and	they	rate	their	quality	of	life	worse	than	do	patients	with	older	onset	and	comparable	

disease	severity	(Fereshtehnejad	et	al.,	2014).		

1.4.3.	Non-motor	symptoms	

Different	 studies	have	 focused	on	 the	 additional	 prognosis	 implications	 linked	 to	 the	

presence	or	absence	of	specific	non-motor	features,	beyond	the	motor	classification.	For	

example,	PD	with	probable	RBD	is	associated	with	a	higher	risk	of	developing	dementia	

(Postuma	et	al.,	2012;	Anang	et	al.,	2014),	and	the	PIGD	subtype	(Kumru	et	al.,	2007).		

Along	this	line,	orthostatic	hypotension	has	also	been	associated	with	dementia	(Anang	

et	al.,	2014).	While	the	presence	of	cognitive	impairment	has	been	related	to	more	severe	

motor	symptoms	as	well	as	higher	H&Y	scores	(Baiano	et	al.,	2019	for	a	review),	and	
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visual	hallucinations	have	been	related	to	greater	cognitive	decline	(Swann	and	O’Brien,	

2019	for	a	review).		

1.4.3.1.	Visual	hallucinations		

Visual	hallucinations	(VH)	are	the	most	common	psychotic	symptomatology	in	PD,	and	

in	consequence,	are	included	as	part	of	its	diagnosis	(Ravina	et	al.,	2007).	A	retrospective	

study	of	445	PD	patients,	showed	that	50%	of	the	patients	presented	VH	(Williams	and	

Lees,	2005),	and	as	the	disease	progress	it	occurs	up	to	60%	of	the	patients	(Forsaa	et	

al.,	2010).	

	

VH	consist	of	complex	visual	images	of	people,	animals,	buildings,	or	scenery,	that	take	

place	when	the	patient	is	completely	awake,	and	last	for	seconds	or	minutes	(Barnes	and	

David,	2001	for	a	review).	Fully	formed	VH	are	usually	seen	at	later	stages	of	the	disease;	

while,	minor	hallucinations,	which	have	been	defined	as	the	presence	of	somebody	in	the	

room	or	a	person/animal	passing	sideways	(Fénelon	et	al.,	2000)	have	been	reported	in	

42%	of	early	PD	patients	(Pagonabarraga	et	al.,	2016).	

	
The	mechanisms	underlying	VH	in	PD	are	still	unclear.	Classically,	one	potential	trigger	

for	VH	has	been	PD	medication	(Armstrong,	2007	for	a	review;	Connolly	and	Lang,	2014	

for	a	review).	VH	have	a	noticeable	effect	on	the	quality	of	life	of	patients	(McKinlay	et	

al.,	 2008);	 in	 consequence,	 numerous	 studies	have	 evaluated	 the	 clinical	 associations	

that	differentiate	PD	with	and	without	VH,	finding	neuropsychological	impairment	as	a	

major	risk	factor	for	VH	(Barnes	and	David,	2001	for	a	review).	To	disentangle	which	

changes	 the	 brain	 undergoes	 that	 might	 explain	 this	 symptomatology,	 studies	 have	

focused	on	structural	and	functional	MRI	(fMRI).	Research	based	on	structural	MRI	has	

reported	reduced	GM	in	the	superior	parietal	lobe	and	the	lingual	gyrus	(Ramírez-Ruiz	

et	al.,	2007)	as	well	as	in	frontal	regions	(Gama	et	al.,	2014).	Reduced	GM	volume	of	the	

hippocampus	has	also	been	described	in	PD	with	VH	(Ibarretxe-Bilbao	et	al.,	2008)	and	

PD	with	 psychosis	 (Lenka	 et	 al.,	 2018).	 Specifically,	 patients	 with	 psychosis	 showed	

higher	volume	of	the	hippocampal	fissure	compared	to	PD	without	psychosis	(Lenka	et	
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al.,	 2018),	 which	 could	 be	 explained	 by	 a	 reduction	 of	 the	 hippocampal	 volume.	

Interestingly,	a	2.5-year	longitudinal	study	reported	generalized	GM	loss	of	limbic	and	

associative	 cortical	 regions	 in	 patients	 with	 VH	 while,	 PD	 without	 VH	 only	 had	 GM	

reductions	in	motor	and	cerebellar	regions	(Ibarretxe-Bilbao	et	al.,	2010).	A	recent	study	

has	also	found	evidence	of	a	potential	contribution	of	the	cerebellum	in	VH,	as	reduced	

GM	volume	of	this	region	was	found	in	PD	with	VH	compared	to	PD	without	VH	(Lawn	

and	ffytche,	2021).	

	

Brain	 activity	 alterations	 in	PD	with	VH	have	been	approached	using	 task-based	and	

resting-state	 functional	MRI.	Task-based	studies	have	produced	contradictory	results.	

While	Stebbins	et	al.,	(2004)	described	greater	frontal	and	subcortical	activation	as	well	

as	less	activation	in	the	visual	cortex	in	PD	with	VH	compared	to	PD	without	VH,	Ramírez-

Ruiz	et	al.,	(2008)	described	reduced	activation	of	frontal	regions	in	PD	with	VH.	Reduced	

functional	connectivity	in	the	dorsal	attention	network	(DAN)	has	been	described	in	PD	

with	 VH	 compared	 to	 PD	 without	 VH	 (Shine	 et	 al.,	 2015).	 Interestingly,	 visual	

misperceptions	have	been	related	to	abnormal	coupling	of	patterns	involving	the	DAN,	

default	 mode	 network	 (DMN)	 and	 visual	 network	 (Shine	 et	 al.,	 2015).	 Resting-state	

functional	MRI,	on	the	other	hand,	has	found	higher	functional	connectivity	in	the	DMN,	

including	 the	 right	 middle	 frontal	 gyrus,	 bilateral	 precuneus	 and	 bilateral	 posterior	

cingulate,	in	PD	with	VH	compared	to	PD	without	VH	(Yao	et	al.,	2014).	

	

Therefore,	there	are	several	structural	and	functional	brain	alterations	associated	with	

VH	that	explain	this	symptomatology	beyond	the	levodopa	side	effects.		

1.4.3.2.	Cognition		

Mild	Cognitive	Impairment	
Cognitive	impairment	is	a	common	non-motor	symptom	of	PD	that	can	even	be	present	

in	newly	diagnosed	patients	(Muslimović	et	al.,	2005;	Williams-Gray	et	al.,	2007).	The	

decline	in	cognitive	functions	starts	with	minimal	impairment	and	can	progress	to	mild	

cognitive	 impairment	 (MCI)	 which	 can	 end	 up	 in	 dementia.	 MCI	 is	 a	 condition	
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characterized	 by	 a	more	 pronounced	 cognitive	 decline	 than	 that	 expected	 in	 normal	

ageing,	but	unlike	PDD,	it	does	not	compromise	the	activities	of	daily	living.	MCI	occurs	

in	approximately	27%	of	PD	patients	(Litvan	et	al.,	2011	for	a	review)	and	appears	as	a	

risk	 factor	 for	 the	 development	 of	 dementia	 (Pedersen	 et	 al.,	 2013).	 Non-tremor	

phenotype	as	well	as	impaired	performance	in	neuropsychological	tests	with	a	posterior	

cortical	basis,	such	as	semantic	fluency	and	pentagons	copying	presentations,	have	been	

defined	as	clinical	predictors	of	global	cognitive	decline	and	dementia	(Williams-Gray	et	

al.,	2007;	Williams-Gray	et	al.,	2013).	

	

The	description	of	the	mechanisms	underlying	PD-MCI	remains	a	challenge,	as	there	is	

no	 uniform	 consensus	 about	 its	 diagnostic	 criteria.	 The	 Movement	 Disorder	 Society	

(MDS)	task	force	proposed	2	levels	of	diagnostic	criteria	based	on	neuropsychological	

assessment	(Litvan	et	al.,	2012).	Level	I	consists	of	an	abbreviated	cognitive	assessment	

which	 makes	 it	 feasible	 for	 those	 cases	 in	 which	 it	 is	 not	 possible	 to	 use	 a	 long	

neuropsychological	 battery;	 however,	 it	 affords	 less	 certainty	 than	 level	 II.	 Level	 II	

consists	of	a	more	detailed	assessment	that	requires,	at	least,	the	use	of	2	tests	for	each	

of	the	5	cognitive	domains	described	in	Litvan	et	al.,	(2012)	(Panel	3).	

	

Contrary	to	the	original	hypothesis	that	the	degeneration	of	the	nigro-striatal	pathway	

led	 to	 the	 cognitive	 dysfunction	 described	 in	 PD,	 reduced	 GM	 in	 PD-MCI	 has	 been	

described	in	bilateral	precentral	and	postcentral	gyri,	precuneus,	superior	and	frontal	

gyri,	superior	lateral	occipital	cortex,	superior	and	inferior	temporal	regions	as	well	as	

subcortical	regions	(bilateral	amygdala,	hippocampus,	and	right	putamen)	(Melzer	et	al.,	

2012).	When	comparing	PD-MCI	with	PD	without	MCI,	GM	reductions	have	been	found	

in	PD-MCI	 in	 the	 left	 insular,	 superior	 frontal	 and	middle	 temporal	 areas	 (Mak	et	 al.,	

2014a)	as	well	as	in	subcortical	structures:	the	thalamus	and	nucleus	accumbens	(Mak	

et	al.,	2014b).	

	

Cortical	 thinning	 in	 PD-MCI	 has	 also	 been	 reported,	 mainly	 affecting	 the	 precentral	

cortex,	and	parietal	regions	including	the	bilateral	supramarginal	gyrus,	left	superior	and	

inferior	 parietal	 (Segura	 et	 al.,	 2014;	 Baggio	 et	 al.,	 2015;	 Gasca-Salas	 et	 al.,	 2019),	
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precuneus	as	well	as	temporal	(Segura	et	al.,	2014;	Gasca-Salas	et	al.,	2019)	and	occipital	

cortices	 (Segura	 et	 al.,	 2014;	 Baggio	 et	 al.,	 2015;	 Gasca-Salas	 et	 al.,	 2019).	 When	

compared	 to	 healthy	 controls	 (HC),	 cortical	 thinning	 in	 early	 PD-MCI	 has	 also	 been	

described	 in	 the	 right	 inferior	 temporal,	 and	 left	 hemisphere	 including	 precentral,	

superior	parietal	and	lingual	gyrus	(Pereira	et	al.,	2014).	Interestingly,	in	both	early	and	

advanced	PD	with	MCI	the	thinning	of	the	precuneus	has	been	described	when	compared	

with	PD	without	MCI	(Segura	et	al.,	2014;	Pereira	et	al.,	2014).	

In	 a	 meta-analysis	 including	 both	 analyses	 based	 on	 GM	 volumes	 and	 on	 cortical	

thickness	Mihaescu	et	al.,	(2019)	reported	that	the	regions	that	persistently	appeared	to	

have	reduced	GM	in	PD-MCI	compared	to	PD	without	MCI,	across	the	studies,	were	the	

right	supramarginal	gyrus,	left	posterior	insula	and	the	mid-cingulate	cortex.	

Impairment	in	the	attentional	performance	of	PD-MCI	has	been	associated	with	atrophy	

of	the	putamen,	nucleus	accumbens	(Mak	et	al.,	2014b),	 left	 insular	gyrus,	 left	middle	

temporal	gyrus	and	left	superior	frontal	gyrus	(Mak	et	al.,	2014a).	The	language	domain	

has	been	correlated	with	 reduced	GM	volumes	 in	 the	nucleus	accumbens	 (Mak	et	al.,	

2014b),	while	the	executive	function	has	been	related	to	the	left	insular	and	left	middle	

temporal	gyri	(Mak	et	al.,	2014a).	Cortical	thinning	in	PD-MCI	has	also	been	associated	
with	impairment	in	the	different	cognitive	domains	(Segura	et	al.,	2014).	

	

Functional	 MRI	 has	 showed	 PD-MCI	 to	 have	 reduced	 functional	 connectivity	 (FC)	

between	DAN	and	 right	 fronto-insular	 regions	which	 correlated	with	 lower	 scores	 in	

attention/executive	 tests,	 whereas	 the	 DMN	 displayed	 increased	 connectivity	 with	

medial	and	lateral	occipito-parietal	regions	(Baggio	et	al.,	2015).	Along	the	same	lines,	

PD-MCI	showed	reduced	within-DAN,	within-DMN	and	DAN-frontoparietal	connectivity,	

as	well	as	loss	of	normal	DAN-DMN	anticorrelation	in	MCI	patients	(Baggio	et	al.,	2015).	

Graph	theory	based	on	functional	data	has	described	altered	graph	measures	in	PD-MCI	

(Baggio	et	al.,	2014;	Díez-Cirarda	et	al.,	2018).	Going	one	step	further,	new	studies	have	

applied	dynamic	FC,	which	adds	new	information	by	capturing	variations	over	a	short	

time,	and	found	impairment	in	temporal	properties	in	PD-MCI	(Díez-Cirarda	et	al.,	2018;	

Fiorenzato	 et	 al.,	 2019)	 and	 more	 pronounced	 dysfunction	 as	 cognitive	 impairment	

increases	towards	the	development	of	PDD	(Fiorenzato	et	al.,	2019).		
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Panel	3:	Criteria	for	the	diagnosis	of	PD-MCI	(Litvan	et	al.,	2012)	

	
		I.	Inclusion	criteria	

§ Diagnosis	of	Parkinson’s	disease	as	based	on	the	UK	PD	Brain	Bank	Criteria.	
§ Gradual	decline,	 in	the	context	of	established	PD,	in	cognitive	ability	reported	by	either	the	

patient	or	informant	or	observed	by	the	clinician.	
§ Cognitive	deficits	on	either	 formal	neuropsychological	 testing	or	 a	 scale	of	global	 cognitive	

abilities.	
§ Cognitive	 deficits	 are	 not	 sufficient	 to	 interfere	 significantly	with	 functional	 independence,	

although	subtle	difficulties	on	complex	functional	tasks	may	be	present.	

		II.	Exclusion	criteria	

§ Diagnosis	of	PD	dementia	based	on	MDS	Task	Force	proposed	criteria.	
§ Other	primary	explanations	for	cognitive	impairment	(e.g.,	delirium,	stroke,	major	depression,	

metabolic	abnormalities,	adverse	effects	of	medication,	or	head	trauma).	
§ Other	 PD-associated	 comorbid	 conditions	 (e.g.,	 motor	 impairment	 or	 severe	 anxiety,	

depression,	excessive	daytime	sleepiness,	or	psychosis)	that,	 in	the	opinion	of	 the	clinician,	
significantly	influence	cognitive	testing.	

		III.	Specific	guidelines	for	PD-MCI	level	I	and	level	II	categories	
	
A. Level	I	(abbreviated	assessment)	

§ 	Impairment	on	a	scale	of	global	cognitive	abilities	validated	for	use	in	PD		
																																																																							Or	

§ Impairment	on	at	least	two	tests,	when	a	limited	battery	of	neuropsychological	tests	is	performed	
(i.e.,	the	battery	includes	less	than	two	tests	within	each	of	the	five	cognitive	domains,	or	less	than	
five	cognitive	domains	are	assessed).	

	
B. Level	II	(comprehensive	assessment)	

§ Neuropsychological	testing	that	includes	two	tests	within	each	of	the	five	cognitive	domains	(i.e.,	
attention	and	working	memory,	executive,	language,	memory,	and	visuospatial).	

§ Impairment	on	at	least	two	neuropsychological	tests,	represented	by	either	two	impaired	tests	in	
one	cognitive	domain	or	one	impaired	test	in	two	different	cognitive	domains.	

Impairment	on	neuropsychological	tests	may	be	demonstrated	by:	

§ Performance	approximately	1	to	2	SDs	below	appropriate	norms		
																																																				Or	

§ Significant	decline	demonstrated	on	serial	cognitive	testing	
																																																																						Or	

§ Significant	decline	from	estimated	premorbid	levels.	

			IV.	Subtype	classification	for	PD-MCI	(optional,	requires	two	tests	for	each	of	the	five	cognitive										
								domains	assessed	and	is	strongly	suggested	for	research	purposes).	

§ PD-MCI	 single-domain—abnormalities	 on	 two	 tests	 within	 a	 single	 cognitive	 domain																																				
(specify	the	domain),	with	other	domains	unimpaired	
																																																				Or	

§ PD-MCI	multiple-domain—abnormalities	on	at	 least	one	 test	 in	 two	or	more	 cognitive	domains																	
(specify	the	domains).	
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Parkinson’s	Disease	Dementia	

PDD	 is	 a	 common	 non-motor	 manifestation	 of	 PD	 associated	 with	 age	 and	 disease	

evolution	(Williams-Gray	et	al.,	2013)	that	occurs	 in	80%	of	PD	patients	(Christopher	

and	Strafella,	2013	for	a	review).	PDD	appears	in	advanced	stages	of	PD	and	is	preceded	

by	MCI,	although	MCI	does	not	necessarily	progress	to	dementia.	It	has	been	reported	

that	89%	of	PDD	suffer	from,	at	least,	one	neuropsychiatric	symptom,	depression	being	

the	most	 common	 followed	by	 apathy	 and	 anxiety	 (Aarsland	 et	 al.,	 2007)	 (Figure	2).	

Interestingly,	it	has	been	described	that	PDD	perform	better	than	AD	in	memory	tasks	

but	worse	in	attentional	(Noe	et	al.,	2004)	and	visual	perception	tests	(Mosimann	et	al.,	

2004).	In	terms	of	brain	atrophy,	PD-MCI	converting	to	PDD	showed	reduced	GM	in	the	

hippocampus	when	 compared	 to	 PD-MCI	 non-converters	 (Kandiah	 et	 al.,	 2014),	 and	

reduced	GM	volume	in	the	nucleus	basalis	of	Meynert	when	compared	to	HC	(Pereira	et	

al.,	2020).	Cortical	thinning	in	PD-MCI	has	been	seen	to	predict	the	risk	of	developing	

dementia	(Sasikumar	and	Strafella,	2020	for	a	review).	Interestingly,	Gasca-Salas	et	al.,	

(2019)	found	PD-MCI	converters	to	have	thinner	cortex	in	bilateral	frontal	regions,	the	

insula,	 and	 the	 left	 middle	 cortex;	 however,	 the	 results	 did	 not	 survive	 multiple	

comparisons.	In	the	meta-analysis	of	Mihaescu	et	al.,	(2019)	the	involvement	of	the	left	

insula	in	PD-MCI,	which	expanded	to	the	bilateral	insula	in	PDD,	was	also	described.	

	

As	 expected,	 PDD	 has	 increased	 signs	 of	 brain	 atrophy,	 such	 as	 larger	 ventricles	

compared	 to	 HC	 and	 PD	 without	 cognitive	 impairment	 (Apostolova	 et	 al.,	 2010).	

Regionally,	PDD	seems	to	present	cortical	thinning	in	frontal,	temporal	and	parietal	areas	

when	compared	with	HC,	 and	 to	non-demented	PD	 in	 the	premotor	 cortex,	posterior	

cingulate,	supplementary	motor,	superior	frontal	and	temporal	areas	(Zarei	et	al.,	2013).	

Reductions	in	GM	volumes	have	been	described	compared	to	non-demented	PD	and	HC	

in	the	amygdala	and	the	hippocampus	(Zarei	et	al.,	2013)	as	well	as	in	the	right	caudate	

when	compared	to	HC	(Apostolova	et	al.,	2010).	In	addition,	reduced	volume	of	the	left	

caudate	and	the	right	putamen	has	been	negatively	correlated	with	the	UPDRS-III	score	

and	the	H&Y	stages,	respectively	(Zarei	et	al.,	2013).		
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".U.	HETEROGENEITY	IN	DEMENTIA	WITH	LEWY	BODIES	

DLB	 has	 been	 described	 as	 the	 second	 most	 common	 neurodegenerative	 form	 of	

dementia	after	AD	(Lopez	and	Kuller,	2019	for	a	review),	also	accompanied	by	motor	

impairment,	 similar	 to	 PDD.	 DLB	 diagnosis	 appears	 as	 a	 challenge	 due	 to	 its	 clinical	

overlap	with	the	aforementioned	dementias.		

	

The	neuropsychological	profile	of	prodromal	DLB	has	been	characterized	by	impaired	

memory,	 and	 impaired	 executive	 and	 visuoconstructive	 functions	 compared	 to	 HC	

(Kemp	et	al.,	2017).	Classically,	the	majority	of	studies	have	tried	to	differentiate	DLB	

from	AD,	concluding	that	in	early	stages,	DLB	performs	worse	than	AD	in	attentional	and	

visuoperceptual/viusocontructive	 tasks,	while	 coursing	with	 better	memory	 than	AD	

(Oda	et	al.,	2009	for	a	review).	Additionally,	other	studies	have	compared	DLB	with	PDD.	

Petrova	et	al.,	(2015)	described	DLB	to	perform	worse	than	PDD	in	attentional/executive	

as	well	as	visual	tasks,	while	Smirnov	et	al.,	(2020)	described	PDD	as	the	one	with	worse	

executive	performance.	When	comparing	PDD,	DLB	and	AD,	DLB	and	PDD	have	been	

observed	to	yield	lower	scores	in	visuospatial	tasks	compared	to	AD,	but	better	scores	

than	AD	in	the	memory	domain.	In	addition,	over	time,	DLB	has	been	described	to	decline	

faster	 than	AD	 in	 the	 executive	 domain,	 but	 slower	 than	 PDD,	while	 in	 the	 language	

domain	DLB	progression	has	been	seen	to	be	faster	than	in	PDD	(Smirnov	et	al.,	2020).		

1.5.1.	Pattern	of	atrophy	in	Dementia	with	Lewy	bodies	

MRI	analyses	based	on	cortical	thickness	and	GM	volumetry	have	compared	DLB	patients	

with	HC	to	define	its	pattern	of	atrophy	(Table	2).	A	voxel-wise	meta-analysis	of	GM	that	

considered	studies	between	2000	and	2014,	concluded	that	DLB	showed	reduced	GM	

compared	to	HC	in	the	lateral	temporal	lobe,	the	insula,	and	the	putamen	(Zhong	et	al.,	

2014).	 Additionally,	 other	 studies	 have	 described	 reductions	 in	 the	 parietal	 lobe	

(Ballmaier	et	al.,	2004;	Watson	et	al.,	2015;	van	der	Zande	et	al.,	2018;	Ye	et	al.,	2020;	

Colloby	et	al.,	2020),	 cingulate	 (Watson	et	al.,	2015),	 the	basal	ganglia	 (Watson	et	al.,	

2016;	van	der	Zande	et	al.,	2018),	 the	hippocampus	(Watson	et	al.,	2016;	Elder	et	al.,	
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2017),	the	amygdala,	and	the	thalamus	(Watson	et	al.,	2016),	as	well	as	in	frontal	regions	

(van	der	Zande	et	al.,	2018;	Ye	et	al.,	2020)	including	the	orbitofrontal	and	precentral	

gyrus	 (Colloby	 et	 al.,	 2020)	 and	 primary	motor	 areas	 and	 fusiform	 (Ye	 et	 al.,	 2020).	

Interestingly,	 Blanc	 et	 al.,	 (2016)	 studied	 prodromal	 DLB	 and	 described	 atrophy	 in	

specific	clusters	of	the	frontal	cortex	as	well	as	the	insula,	the	precuneus	and	the	anterior	

cingulate	compared	to	HC.		

	

Studies	based	on	 structural	MRI	have	also	 compared	DLB	with	PD	and	AD	due	 to	 its	

neuropathological	 overlap.	 DLB	 appears	 to	 be	 frequently	misdiagnosed	 as	 AD	 in	 the	

clinics	(Schneider	et	al.,	2007);	thus,	finding	differences	in	structural	MRI	between	DLB	

and	AD	would	help	to	its	differential	diagnosis.		

	

DLB	had	been	found	to	have	greater	GM	volumes	than	AD	in	orbitofrontal,	frontodorsal	

and	temporal	areas	(Ballmaier	et	al.,	2004)	including	the	temporal	giry,	as	well	as	the	

parietal	 cortex	 (Whitwell	 et	 al.,	 2007).	 The	 most	 recurrent	 finding	 has	 been	 DLB	

presenting	greater	GM	volumes	than	AD	in	the	medial	 temporal	 lobe	(Whitwell	et	al.,	

2007,	Watson	et	al.,	2015,	Chabran	et	al.,	2020)	including	the	hippocampus	(Watson	et	

al.,	2012;	Watson	et	al.,	2016;	Elder	et	al.,	2017;	van	der	Zande	et	al.,	2018;	Chabran	et	

al.,	2020),	parahippocampal	gyrus	(Watson	et	al.,	2012;	Watson	et	al.,	2015;	Elder	et	al.,	

2017;	Chabran	et	al.,	2020)	and	the	entorhinal	cortex	(Watson	et	al.,	2015;	Elder	et	al.,	

2017;	Colloby	et	al.,	2020)	(Table	2).	Interestingly,	lower	hippocampal	volumes	in	DLB	

have	been	related	to	a	more	aggressive	course	of	the	disease	(Graff-Radford	et	al.,	2016).	

	

When	comparing	DLB	with	PD,	DLB	has	been	 found	 to	have	 reduced	GM	 in	 the	 right	

hippocampus	and	parahippocampal	gyrus	(De	Schipper	et	al.,	2019),	as	well	as	cortical	

thinning	 in	 the	primary	motor	areas	and	 fusiform	gyri	 (Ye	et	 al.,	 2020);	however,	no	

significant	differences	have	been	found	when	comparing	DLB	to	cognitively	impaired	PD	

(Ye	et	al.,	2020),	including	PDD	(Ye	at	al.,	2020;	Colloby	et	al.,	2020)	(Table	2).



 

 	

Table	2:	Structural	MRI	studies	in	Dementia	with	Lewy	bodies	

Reference	 Sample	 Demographics		
(Age,	Disease	duration)	

MRI	analysis	 Contrast	
(vs	DLB)	

Brain	regions	

Ballmaier	
2004	

16	DLB	
29	AD	
38	HC	

76.4±6.7;	30±16.5	months																			
77.9(5.5);32.1±18	months																					
75.3±6.8;	NA	
	
Mean	(SD)	

Cortical	
pattern	
matching		

DLB	<	HC	
	

L	orbitofrontal	
Bilateral	parietal	
Bilateral	temporal	

DLB	>	AD	 Bilateral	orbitofrontal	
Bilateral	frontodorsal										
Bilateral	temporal	

Whitwell		
2007	

72	DLB	
72	AD	
72	HC	

73	(51-87);	-																															
76	(52-88);	-																											74	
(51-87);	-	
	
Median	(range)	

VBM	
and	
VBM-based	ROI	
analysis:		
Substantia	
innominata	
Dorsal	midbrain	
Temporo-
parietal	cortex	
Sensori-motor	
cortex	
	

DLB	<	HC	 Small	loss	involving:	
Dorsal	midbrain			
Substantia	innominata		
Bilateral	posterior	
Hippocampus	
Bilateral	Insula		
Bilateral	parietal	lobe	

DLB	>	AD	 Bilateral	medial	temporal	
lobe																																															
L	inferior	temporal	gyri																				
L	middle	temporal	gyri																																							
L	superior	temporal	gyri																	
L	parietal	lobe	

Sanchez-
Castaneda	
2009	

12	DLB	
16	PDD	
16	HC	

71.1(10.8);32.6(16.1)	months	
71.1(7.2);52.8(27.8)	months	
71.8(7.6);	NA	
	
Mean	(SD)	
(Parkinsonism	duration)	
	

VBM	 DLB	<	HC	 R	inferior	frontal																					
L	posterior	cingulate																	
L	superior	temporal																							
L	inferior	parietal	

DLB	<	PDD	 R	superior	frontal																						
R	premotor	area																												
R	inferior	frontal	



 

 	

Reference	 Sample	 Demographics		
(Age,	Disease	duration)	
	

MRI	analysis	 Contrast	
(vs	DLB)	

Brain	regions	

Watson		
2012	

35	DLB	
36	AD	
35	HC	

78.4±6.9;	41±21	months	
78.3±5.8;	53±27	months	
76.7±5.2;	NA	
	
Mean	(SD)	

VBM	 DLB	<	HC	 Parahippocampal	gyrus									
Amygadala								
Superior	temporal	gyrus																					
Uncus																															
R	Caudate	tail	
Parietal	lobe	

DLB	>	AD	 Parahippocampal	gyrus																																
L	Hippocampus	

Watson		
2015	

31	DLB	
30	AD	
33	HC	

77.8±7.1;	-	
77.9±5.7;	-	
76.8±	5.3;	NA	
	
Mean	(SD)	

CTh	 DLB	<	HC	 L	inferior	parietal	
L	superior	temporal	
L	anterior	cingulate	
L	posterior	cingulate	

DLB	>	AD	 L	medial	temporal	lobe	
(entorhinal	cortex	and	
parahippocampal	gyrus)	

Watson		
2016	
	

33	DLB	
32	AD	
35	HC	

77.9±6.9;	40.9±21.0	months	
77.6±5.7;53.0±27.3	months	
76.7±5.7;	NA	
	
Mean	(SD)	
	
	
	
	

GM	subcortical	
volumetry	

DLB	<	HC	 Thalamus	
Putamen	
Pallidum	
Hippocampus	
Amygdala	
L	Caudate	
Brainstem	

DLB	>	AD	 Hippocampus	
	
	
	
	
	



 

 	

Reference	 Sample	 Demographics		
(Age,	Disease	duration)	
	

MRI	analysis	 Contrast	
(vs	DLB)	

Brain	regions	

Blanc	
2016	

28	DLB	
27	AD	
33	HC	
	
(Prodromal	DLB	and	
prodromal	AD)	

67.5±9.2;	-	
69.3±7.8;	-	
72.4±10.4;	NA	
	
Mean	(SD)	

VBM	 DLB	<	HC	 Insula	
Precuneus	
Medial	Frontal	
L	anterior	cingulate	
L	middle	frontal	
R	superior	frontal	
R	inferior	frontal	

DLB	>	AD	 R	superior	parietal	
Elder		
2017	

65	DLB	
76	AD	
63	HC	

78.4±40;	35.96	±	27.74	months	
77.99±7.51;32.61±21.83	
76.81±6.05;	NA	
	
Mean	(SD)	

CTh		&	GM	
subcortical	
volumetry		
	
ROIs:		
Hippocampal	
volume,	and	
parahippocampal,	
entorhinal	and	
temporal	pole	
cortical	
thickness.	
	
	
	
	
	
	
	
	

DLB	<	HC	 Hippocampus	
Parahippocampal	gyrus		
Entorhinal	cortex	
Temporal	pole	

DLB	>	AD	 Hippocampus	
Parahippocampal	gyrus		
Entorhinal	cortex	



 

 	

Reference	 Sample	 Demographics		
(Age,	Disease	duration)	
	

MRI	analysis	 Contrast	
(vs	DLB)	

Brain	regions	

van	der	
Zande	
2018	
	

62	DLB/AD-	
36	DLB/AD+	
84	AD	
75	HC	

67±8;	3.4±2.3	years	
72±6.4;	2.7±1.8	years	
69±7.8;	3.3±2.3	years	
66±6.6;	NA	
	
Mean	(SD)	

CTh	
	
Subcortical	
volumes		
(FSL-FIRST)	

DLB/AD-		
<	HC	

Small	cortical	loss	in:	
Vertexwise	analysis:	
Parietal	lobe	
Temporal	lobe	
Cingulate	gyrus	
	
Subcortical	volumes:	
Caudate	
Nucleus	Accumbens	

DLB/AD+		
<	HC	

(Vertexwise	analysis):	
Parietal	lobe	
Temporal	lobe		
Cingulate	gyrus	

DLB/AD-		
>	AD	

Hippocampus		

DLB/AD+		
>	AD	

n.s		

DLB/AD+	vs	
DLB/AD-	

n.s	

De	
Schipper		
2019		
	
	
	
	
	
	

14	DLB	
62	PD	

73.1±6.0;	5.5±3.4	years	
71.9±4.1;	8.7±4.2	years	

VBM	
	

DLB	<PD		 Small	loss	involving:	
R	Hippocampus	
R	Parahippocampal	



 

 	

Reference	 Sample	 Demographics		
(Age,	Disease	duration)	
	

MRI	analysis	 Contrast	
(vs	DLB)	

Brain	regions	

Ye		
2020		
	

21	DLB	
24	PD	
16	PD	
cognitively	
impaired	
115	HC	

71.6±7.1;	4.8±2.3	years	
69.0±6.9;	9.3±5.4	years	
73.1±7.2;9.4±4.7	years	
	
	
69.4±7.4;	9.31±5.4	years	
	
	
Mean	(SD)	

CTh	vertex	
based	
CTh	ROI	based:	
Medial	temporal	
Inf.	temporal	
gyrus	
Temporal	pole	
Angular	gyrus	
Superior	frontal	
gyrus	
Supramarginal	
gyrus	
Precuneus	
Superior	parietal	
lobe	
Inferior	frontal	
sulcus	
Precentral	
Paracentral	
Fusiform	

DLB<	HC	 Frontal	
Parietal	
Medial	temporal	
	
	

DLB	
<	HC,	PD	
(ROIs)	

Primary	motor	
(precentral+paracentral)	
Fusiform	

DLB	vs	PD	
impaired	
(ROIs)	

n.s	

DLB/AD-		
<	HC	

Dorsolateral	prefrontal	
Precentral	
Temporal	
Lateral,	medial	parietal	
More	restricted	atrophy	than	in	
amyloid	positive	groups	

DLB/AD+			
<	HC	

Dorsolateral	prefrontal	
Precentral	
Temporal	
Lateral,	medial	parietal	

Colloby		
2020		

65	DLB	
75	AD	
29	PDD	
76	HC	

78.2	±	6.4;	-	
77.9	±	7.5;	-	
74.5	±	5.6;	8.9	±	5.1	years	
76.1	±	5.8;	NA	
	
Mean	(SD)	
	
	

CTh		
	
	

DLB	<	HC	 L	middle	temporal	
Medial	orbitofrontal	
R	inferior	parietal	
R	Precentral	

DLB	vs	PDD	 n.s	

DLB	>	AD	 Entorhinal	cortex	



 

 	

Reference	 Sample	 Demographics		
(Age,	Disease	duration)	
	

MRI	analysis	 Contrast	
(vs	DLB)	

Brain	regions	

Chabran		
2020	

92	DLB	
70	AD	
22	HC	

70.1±9.4;	-	
74.4±8.3;	-	
66.5±7.8;	-	
	
Mean	(SD)	

VBM	 DLB	<	HC	 Temporal	lobes	
Insulae	
Frontal	lobes	

DLB	>	AD	 Medial	temporal	lobe	
(parahippocampal	gyrus,	
hippocampus,	amygdala)	
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1.5.2.	Alzheimer’s	disease	like	pathology	

The	 hypothesis	 that	 concomitant	 AD-type	 pathology	 could	 play	 a	 role	 in	 the	

heterogeneity	described	in	DLB,	has	led	several	studies	to	classify	DLB	according	to	the	

presence	 or	 absence	 of	 β-amyloid	 and	 tau	 in	 order	 to	 study	 the	 influence	 of	 this	

neuropathological	 trait	 in	 the	pattern	 of	 atrophy	 in	DLB.	Accordingly,	Kantarci	 et	 al.,	

(2012)	investigated	DLB	based	on	the	presence	of	concomitant	AD	pathology	combined	

with	 the	 spatial	 location	 of	 Lewy	body	 pathology	 (brainstem,	 limbic,	 or	 diffuse),	 and	

found	 that	 an	 increasing	 likelihood	 of	 neuropathologically	 confirmed	 DLB	 was	

associated	with	high	GM	volumes	in	the	amygdala	and	the	hippocampus.	Along	the	same	

lines,	a	stepwise	thinning	from	DLB/AD-	to	DLB/AD+	to	AD	when	compared	to	HC	has	

been	described	in	parietal,	temporal,	and	cingulate	cortex	(van	der	Zande	et	al.,	2018).	

Ye	et	al.,	(2020)	found	cortical	thinning	in	the	DLB/AD-	and	DLB/AD+	groups	compared	

to	HC	in	dorsolateral	prefrontal,	precentral,	temporal,	and	parietal	cortex,	the	DLB/AD+	

showing	 more	 widespread	 atrophy	 in	 the	 lateral	 and	 medial	 parietal	 cortex.	

Interestingly,	 while	 DLB/AD-	 showed	 higher	 volumes	 than	 AD	 in	 the	 hippocampus,	

DLB/AD+	did	not	 show	significant	differences	 compared	 to	AD	 (van	der	Zande	et	 al.,	

2018)	(Table	2).	However,	no	significant	differences	between	the	two	DLB	subgroups	

have	been	described	(van	der	Zande	et	al.,	2018).	A	follow-up	of	approximately	2	years	

with	autopsy	confirmed	DLB,	described	greater	atrophy	rates	in	DLB/AD+	compared	to	

DLB/AD-	and	HC	in	temporo-parietal	cortices,	the	hippocampus,	and	the	amygdala,	as	

well	as	larger	ventricular	volumes	(Nedelska	et	al.,	2015).		

1.5.3.	Non-motor	symptoms	

DLB,	as	well	as	PD,	is	characterized	by	a	wide	range	of	motor	and	non-motor	symptoms	

(Panel	1)	that	make	it	a	very	heterogeneous	disease.	Unsurprisingly,	many	studies	have	

approached	the	disease	by	focusing	on	its	clinical	presentation,	 the	majority	of	which	

aim	to	understand	the	mechanisms	underlying	one	symptom.	
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1.5.3.1.	Visual	hallucinations	

VH	in	DLB	have	been	described	as	similar	to	the	ones	described	in	PDD	(Mosimann	et	al.,	

2006)	(See	section	1.4.3.1.	Visual	hallucinations,	page	28).	Studies	focused	on	studying	the	

differences	in	GM	volumes	between	DLB	with	and	without	VH	have	described	reduced	

GM	volume	in	DLB	with	VH	in	the	inferior	frontal	gyrus	(Sanchez-Castaneda	et	al.,	2010),	

left	 cuneus	 (Blanc	 et	 al.,	 2016),	medial	 and	 superior	 frontal	 gyrus,	 as	 well	 as	 in	 the	

putamen,	 caudate	 and	 insula	 (Pezzoli	 et	 al.,	 2019).	 Furthermore,	 GM	 loss	 in	 the	

precuneus	 has	 been	 correlated	 to	 the	 severity	 of	 visual	 hallucinations	 (Sanchez-

Castaneda	et	al.,	2010)	and	the	score	of	visuospatial	tests	with	GM	volumes	of	the	right	

inferior	temporal	gyrus	(Pezzoli	et	al.,	2019).	In	a	study	based	on	FDG-PET,	metabolic	

impairment	in	the	prefrontal,	parietal,	and	posterior	cingulate	cortex	was	described	to	

be	associated	with	VH	in	DLB	(Morbelli	et	al.,	2019).	

1.5.3.2.	Cognitive	fluctuations	

Cognitive	 fluctuations	 consist	of	 spontaneous	variations	 in	 cognition	 that	 can	 include	

short	 interruptions	 of	 consciousness,	 episodes	 of	 increased	 confusion	 and	 cognitive	

deficits,	periods	of	reduced	arousal,	and	periods	of	prolonged	sleep.	Although	cognitive	

fluctuations	are	a	core	symptom	of	DLB,	these	are	perhaps	the	most	difficult	symptom	to	

characterize	(McKeith	et	al.,	2005).	In	DLB	loss	of	GM	in	the	substantia	innominata	has	

been	 associated	with	 cognitive	 impairment	 and	 the	 severity	 of	 cognitive	 fluctuations	

(Colloby	 et	 al.,	 2016),	 while	 atrophy	 in	 the	 thalamus	 has	 been	 correlated	 with	

compromised	attentional	 function	 (Watson	et	 al.,	 2017)	which,	 at	 the	 same	 time,	has	

been	associated	with	the	clinical	evaluation	of	cognitive	fluctuations	(Matar	et	al.,	2020	

for	a	review),	thus	showing	convergence	between	neuropsychological	tests	and	clinical	

scales	in	assessing	this	symptomatology.	Interestingly,	Peraza	et	al.,	(2014)	did	not	find	

significant	results	for	most	of	the	cortex	when	comparing	DLB	with	cognitive	fluctuations	

to	HC,	as	they	described	DLB	to	have	reduced	GM	in	only	2	voxels.	Although	some	studies	

have	provided	some	evidence	of	the	involvement	of	GM	loss	in	cognitive	fluctuations,	it	

seems	that	its	dynamic	nature	appears	to	be	better	explained	in	terms	of	functional	MRI	
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and	nuclear	imaging.	Studies	focused	on	DLB	with	cognitive	fluctuations,	have	described	

reduced	interhemispheric	connectivity	in	frontal	and	parietal	regions	as	well	as	reduced	

connectivity	between	frontal	and	parietal	areas	in	the	right	hemisphere	(Franciotti	et	al.,	

2013),	and	reduced	within-network	 functional	connectivity	 in	 the	 left	 fronto-parietal,	

temporal,	 and	 sensory-motor	 networks	 (Peraza	 et	 al.,	 2014)	 compared	 to	 HC.	

Correlations	have	been	described	between	the	severity	of	cognitive	fluctuations	and	the	

right	middle	frontal	gyrus	and	right	lateral	parietal	cortex	(Franciotti	et	al.,	2013)	as	well	

as	clusters	 from	the	 fronto-parietal	network	 involving	 frontal	regions	(Lowther	et	al.,	

2014;	Peraza	et	al.,	2014),	the	lingual	gyrus,	the	putamen,	and	pallidum	(Peraza	et	al.,	

2014).	Nuclear	imaging	studies	have	offered	evidence	of	the	involvement	of	the	occipital	

cortex,	basal	ganglia,	and	thalamus	in	cognitive	fluctuations	in	DLB	(Matar	et	al.,	2020	

for	a	review).	

	

Atrophy	in	fronto-occipital	cortices	and	basal	ganglia	seem	to	be	involved	in	VH	in	DLB,	

while	the	dynamic	nature	of	cognitive	fluctuations	may	be	better	explained	by	functional	

and	nuclear	imaging.	
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<.=.	DATA-DRIVEN	SUBTYPING	

The	heterogeneity	of	PD	symptomatology,	together	with	the	limitations	that	come	with	

single-factor	subtypes,	has	led	to	more	advanced	statistical	methods	for	subtyping.	The	

main	idea	is	to	let	the	data	describe	the	different	PD	profiles	within	the	sample	without	

a	priori	hypothesis.	In	this	context,	the	most	common	methodology	is	cluster	analysis,	

which	consists	of	grouping	the	input	data	(e.g.,	patients)	into	subsets	or	“clusters”	in	such	

a	way	 that	 those	within	 each	 cluster	 are	more	 similar	 to	 one	 another	 than	 the	 ones	

allocated	to	other	clusters	(Hastie	et	al.,	2008).	Cluster	analysis	does	not	use	labels	to	tag	

the	input	data	(e.g.,	class),	but	explores	it	and	makes	inferences	to	disentangle	hidden	

arrangements.	This	 fact	differentiates	 the	 clustering	analysis	 (unsupervised	 learning)	

from	classification	or	discriminant	analysis	(supervised	learning).		

	

Supervised,	as	opposed	to	unsupervised	models,	learn	from	a	training	set,	which	consists	

of	using	labeled	observations	to	predict	the	new	as	yet	un-labelled	ones.	There	are	2	main	

types	 of	 supervised	 approaches:	 regression	 and	 classification	 (Alpaydin,	 2010),	

depending	on	the	target	variable.	In	regressions	the	output	is	a	numerical	value	such	as	

the	score	of	a	neuropsychological	test,	whereas	the	output	of	a	classification	represents	

a	category	such	as	presenting	(1)	or	not	(0)	MCI.	In	this	regard,	Random	Forest	(RF)	is	a	

flexible	example	of	a	supervised	learning	method	that	can	be	used	for	both,	classification,	

and	regression	problems	(Breiman,	2001).	In	brief,	RF	builds	multiple	decision	trees	and	

merges	 them	 together	 to	 get	 a	more	 accurate	 and	 stable	 prediction.	 The	RF	 training	

algorithm	applies	the	bootstrap	aggregating	technique	(or	bagging)	to	train	an	ensemble	

of	decision	trees.	The	RF	searches	for	the	best	feature	among	a	random	subset	of	features	

while	it	creates	the	trees.	This	strategy	provides	wide	diversity	to	attempt	to	improve	

the	 model.	 However,	 many	 supervised	 methods	 can	 be	 turned	 into	 unsupervised	

methods.	 In	 RF	 this	 can	 be	 done	 by	 constructing	 a	 joint	 distribution	 based	 on	 the	

independent	 variables	 that	 describe	 the	 data.	 From	 this	 point	 forth,	 a	 number	 of	

observations	 are	 simulated	 using	 this	 distribution.	 Then,	 the	 RF	 classifier	 tries	 to	

distinguish	 the	 real	 from	 the	 simulated	 observations	 (Shi	 and	 Horvath,	 2006).	 The	

quantification	of	the	proximity	between	observations	based	on	what	RF	estimates	when	
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trying	to	assign	the	labels	is	the	relevant	information.	This	provides	a	description	of	how	

close/similar	the	observations	are	from	each	other,	and	these	can	be	clustered	based	on	

many	techniques	(Poulakis	et	al.,	2018).	

	

Distance-based	 clustering	 uses	 a	 measure	 of	 distance	 to	 define	 how	 similar	 are	 the	

observations	between	them.	Classically,	k-means	has	been	the	most	used	method.	This	

algorithm	uses	the	squared	Euclidean	distance	as	the	dissimilarity	measure	and	requires	

setting	the	number	of	clusters	(K)	a	priori;	in	consequence,	the	data	is	forced	into	the	

number	of	clusters	previously	chosen	(Figure	6).		

	

Another	 method	 is	 hierarchical	 clustering	 which,	 as	 opposed	 to	 k-means,	 does	 not	

require	specifying	the	number	of	cluster	but	 tells,	pairwise,	which	2	observations	are	

most	similar.	This	last	method	produces	a	hierarchy	in	which	the	clusters	of	each	new	

level	 are	 the	 result	 of	 merging	 clusters	 from	 a	 lower	 level.	 It	 can	 be	 divided	 into	 2	
strategies:	 agglomerative	 (bottom-up)	 and	 divisive	 (top-down).	 The	 agglomerative	

model	starts	at	 the	bottom,	where	each	observation	represents	a	cluster,	and	at	each	

level	a	selected	pair	of	clusters	-	the	groups	with	the	smallest	intergroup	dissimilarity	-	

are	merged	into	a	new	cluster.	An	example	of	this	strategy	is	the	Ward’s	method.	On	the	

other	hand,	divisive	methods	start	at	the	top,	with	all	the	observations	part	of	the	same	

cluster,	and	at	each	level	one	of	the	existing	clusters	splits	into	two	new	ones,	which	are	

the	ones	with	the	largest	dissimilarity	(Figure	6).	

	

Figure	6:	Representation	of	Hierarchical	and	K-means	clustering	methods	

HIERARCHICAL	CLUSTERING

K-MEANS	CLUSTERING

Cluster	1 Cluster	2 Cluster	3
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1.6.1.	Data-driven	subtyping	in	Parkinson’s	disease	

Defining	different	subtypes	is	key	to	understanding	the	underlying	mechanisms	of	PD	

which	 would	 lead	 to	 a	 personalized	medicine.	 To	 that	 end,	 the	 National	 Institute	 of	

Health	 established	 identification	 of	 PD	 subtypes	 as	 one	 of	 the	 3	 main	 clinical	 goals	

(Sieber	et	al.,	2014).	

	

In	 the	 first	 decade	 of	 the	 2000s,	 several	 studies	 focused	 on	 applying	 subtyping.	 In	

particular,	the	k-means	method	has	been	the	clustering	algorithm	most	commonly	used.	

Those	 first	 cluster	 analyses	 looked	 for	 clinical	 subtypes	and,	used	variables	of	motor	

severity,	non-motor	 features,	and	age	at	onset	 (van	Rooden	et	al.,	2010	 for	a	review)	

(Table	3).	

	

In	the	second	decade,	cluster	analyses	incorporated	a	wider	range	of	input	data.	Dujardin	

et	al.,	(2013),	undertook	an	extensive	standardized	cognitive	assessment	of	a	large	group	

of	 patients,	 performing	 a	 cluster	 analysis	 based	 on	 data	 from	 13	 neuropsychological	

tests.	 They	 described	 5	 cognitive	 subtypes:	 2	 of	 them	 with	 preserved	 cognitive	

performance	and	the	other	3	characterized	by	different	levels	of	cognitive	impairment.	

Fereshtehnejad	et	al.,	(2015)	went	a	step	forward	by	undertaking	a	follow-up	of	their	

subtypes.	 In	 this	 analysis	 3	 subtypes	 were	 described.	 A	 first	 subtype	 named	mainly	

motor/slow	 because	 of	 its	 higher	 frequency	 of	 tremor	 dominant,	 combined	with	 low	

frequency	of	non-motor	symptoms	and	a	slow	progression	of	the	disease.	At	the	other	

extreme	was	the	diffuse/malignant,	in	which	all	the	patients	had	MCI,	with	a	high	number	

of	them	also	suffering	from	RBD	and	other	non-motor	symptomatology.	Moreover,	it	was	

characterized	by	gait	disturbances	and	higher	percentage	of	falls.	This	subtype	had	the	

most	rapid	and	severe	progression	with	67%	of	patients	presenting	PDD	in	the	follow-

up.	Interestingly,	only	12%	of	the	initial	PD	sample	was	classified	in	this	group.	The	last	

subtype,	the	intermediate,	was	in	between	the	other	2	clusters	having	an	intermediate	

frequency	of	RBD,	as	well	as	intermediate	scores	in	depression	and	anxiety.	In	a	posterior	

study	carried	out	in	unmedicated	early	PD,	Fereshtehnejad	et	al.,	(2017)	identified	the	

same	3	aforementioned	subtypes	(Fereshtehnejad	et	al.,	2015)	and	complemented	the	
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previous	 study	 by	 analysing	 β-amyloid	 and	 tau	 biomarkers	 post-hoc,	 facilitating	 the	

finding	that	the	diffuse/malignant	subtype	presented	an	AD-like	profile.	This	work	also	

identified	a	greater	decline	in	dopamine	functional	imaging	in	this	subtype.	In	addition,	

the	subtypes	were	also	characterized	in	terms	of	brain	atrophy,	the	diffuse/malignant	

subtype	being	the	one	with	greater	atrophy.	In	a	recent	study,	the	3	subtypes	previously	

established	were	 associated	with	distinct	patterns	of	 diffusion	 tension	 imaging	 (DTI)	

properties	(Abbasi	et	al.,	2020).	The	diffuse/malignant	subtype	showed	increased	mean	

diffusivity	(MD)	in	the	basal	ganglia.	What	is	more,	it	had	reduced	efficiency	in	2	small	

subnetworks	 compared	 to	 the	mainly	motor	 subtype:	 a	 first	 subnetwork	 connecting	

subcortical	structures	with	the	inferior	frontal	gyrus,	and	a	second	one	connecting	the	

insula	with	 the	 superior	 temporal	 gyrus.	 The	 longitudinal	 approach	 showed	 that	 the	

differences	became	more	accentuated	over	time	(Abbasi	et	al.,	2020).	This	study	brought	

out	the	need	to	study	PD	subtypes	also	in	terms	of	WM	integrity	and	architecture.	

	

Only	a	few	key	studies	have	performed	unsupervised	cluster	analysis	based	on	MRI	data.	

Uribe	et	al.,	(2016)	performed	a	hierarchical	cluster	analysis	applying	the	Ward’s	linkage	

method	in	a	sample	of	non-demented	PD	patients	and	found	3	subtypes:	a	first	subtype	

with	 parieto-temporal	 atrophy	 with	 the	 worse	 cognitive	 performance;	 a	 second	 one	

characterized	by	frontal	and	occipital	cortical	atrophy	and	the	younger	age	at	disease	

onset;	and	a	third	subtype	without	detectable	cortical	atrophy.	In	a	4-year	follow-up	of	

these	3	subtypes,	temporo-parietal	thinning	occurred	in	subtypes	2	and	3	over	time,	with	

subtype	 3	 showing	 a	 more	 pronounced	 thinning	 in	 occipital	 regions	 compared	 to	

subtype	2.	Both	subtypes	experienced	a	decline	in	semantic	fluency	as	well	as	in	their	

attentional/working	 memory	 performance.	 Subtype	 1	 had	 a	 higher	 rate	 of	 attrition	

making	the	longitudinal	analysis	impossible	(Uribe	et	al.,	2019)	(Figure	7).	In	a	recent	

study,	Guo	et	al.,	(2020)	performed	another	hierarchical	clustering	applying	the	Ward’s	

linkage	method,	 in	which	 the	 input	data	were	2	 structural	 connectivity	patterns:	one	

related	to	limbic	nodes,	which	explained	depressive	symptomatology,	and	a	second	one,	

the	 motor	 pattern,	 related	 to	 nodes	 close	 to	 the	 midline	 and	 accounted	 for	 motor	

symptomatology.	This	study	led	to	the	description	of	3	PD	subtypes:	severe	depression-

dominant,	severe	motor-dominant	and	mild	subtypes.	The	depression-dominant	subtype	
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showed	widespread	dysfunction	of	functional	connectivity	and	WM	microstructure;	the	

motor-dominant	subtype	showed	moderate	impairment	of	the	2	connectivity	patterns;	

and	the	mild	subtype	was	characterized	by	limited	disconnection	in	the	motor-related	

pattern.	

	

Hierarchical	 clustering	 based	 on	 structural	 MRI	 has	 also	 been	 carried	 out	 in	 early	

unmedicated	PD.	Uribe	et	al.,	(2018)	described	2	subtypes	based	on	cortical	thickness	

patterns:	 subtype	 1	 with	 cortical	 thinning	 in	 the	 bilateral	 orbitofrontal,	 the	 anterior	

cingulate,	 and	 the	 lateral	 and	 medial	 anterior	 temporal	 gyri,	 and	 subtype	 2,	 which	

showed	cortical	thinning	in	the	bilateral	occipital	gyrus,	the	cuneus,	the	superior	parietal	

gyrus,	and	the	left	postcentral	gyrus.	In	addition,	subtype	2	appeared	to	perform	worse	

than	HC	in	neuropsychological	tests	evaluating	memory	and	attention/working	memory.	

Wang	 et	 al.,	 (2020)	 estimated	 voxel-level	 neuroanatomic	 features	with	 deformation-

based	morphometry	(DBM)	of	T1-weighted	MRI	to	perform	a	cluster	analysis	in	early	

PD,	and	as	had	Uribe	et	al.,	(2018)	they	found	2	subtypes.	However,	while	the	first	one	

had	widespread	smaller	GM	volumes	compared	to	HC,	the	second	one	appeared	to	have	

larger	 volumes	 than	 HC.	 In	 addition,	 subtype	 1	 presented	 with	 worse	 motor	

symptomatology,	higher	frequency	of	RBD	and	faster	disease	progression	compared	to	

subtype	2	(Wang	et	al.,	2020).	
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Figure	7:	Cortical	patterns	of	the	3	subtypes	described	in	Uribe	et	al.,	2016,	

	and	the	longitudinal	changes	that	took	place	after	the	4-year	follow-up		

(Uribe	et	al.,	2019).	

	

Altogether,	 these	 previous	 studies	 provide	 encouraging	 initial	 results	 favoring	 the	

existence	 of	 subtypes	 in	 PD,	 which	 are	 characterized	 by	 different	 clinical	 and	

neuropsychological	 profiles,	 as	 well	 as	 specific	 patterns	 of	 brain	 atrophy	 and	

progression.	 In	 this	Thesis,	we	present,	 in	Study	1,	a	multi-modal	hierarchical	cluster	

analysis	 that	 combines	 GM	 volumes	 and	 WM	 FA	 in	 order	 to	 better	 understand	 the	

heterogeneity	found	in	PD. 

 

SUBTYPE	1 SUBTYPE	3SUBTYPE	2

BASELINE

Subtype	1	<	healthy	controls

4-YEAR	FOLLOW-UP

Regions	with	cortical	thinning	over	time

Subtype	2	<	healthy	controls Subtype	3	<	healthy	controls
n	=	30

Not	enough	sample	to	
perform	the	analysis

n	=	29 n	=	29

n	=	16 n	=	22n	=	7	

and LEDD or disease duration between groups at the
3-cluster level. Patients in pattern 1 had lower MMSE
scores than HC and were less educated than both HC
and pattern 2 patients. Patients in pattern 2 were
younger at PD onset than patients in patterns 1 and 3.
Regarding psychiatric symptoms, patients in pattern 1
were more depressed than both HC and pattern 2
patients and more apathetic than HC. Patients in pat-
terns 1 and 3 had more severe global neuropsychiatric
symptoms than HC (see Table 1).

Cognitive Profiles of PD Subtypes

Figure 3 summarizes the cognitive profiles of
patients in the 3 patterns. When compared with HC,
patients in pattern 1 displayed significantly worse per-
formance in Visual Form Discrimination Test, Judg-
ment of Line Orientation Test (JLO), semantic
fluency, Rey Auditory Verbal Learning Test total
learning and delayed recall, Stroop (Word and Color),
Symbol Digits Modalities Test (SDMT), Trail Making
Test Part A (TMTA); Trail Making Test Part B
(TMTB), and Trail Making Test A minus B (TMTA
minus B). Performance in the semantic fluency test
was significantly worse in pattern 1 patients than in
the 3 other groups (HC and patients in patterns 2 and
3). Pattern 2 patients differed from HC in the JLO,
Stroop Word test, SDMT, and TMTB and TMTA
minus TMTB tests. Patients in pattern 3 scored signifi-
cantly lower than HC in the Stroop Word test. The
means (SD) of the z scores are shown in Supplemen-
tary Table 5. There were no significant differences in

the proportion of patients with MCI between groups
(Table 1).

Emotion Recognition

There were no significant intergroup differences in
overall facial emotion recognition. Analyzing individ-
ual emotion recognition, post hoc testing showed that
the accuracy in identifying sadness in pattern 2
patients was significantly lower than in the HC group
(Bonferroni corrected P 5 .044) (Table 2).

PCA Validation

The patterns identified through PCA were similar to
those obtained with cluster analysis. Details and repre-
sentation of the PCA results are shown in Supplemen-
tary Results 2 and Supplementary Figure 1.

Discussion

The main finding of this study is that data-driven
analysis can classify PD according to patterns of corti-
cal degeneration. We identified a 3-cluster solution
including (1) mainly parietal-temporal atrophy, (2)
frontal and occipital atrophy, and (3) nonatrophic PD
subtypes. To our knowledge, this is the first study
to obtain cortical thinning patterns through cluster
analysis in nondemented PD, showing different
PD subtypes.

Previous neuroimaging studies assessed cortical atro-
phy at different clinical stages of PD and showed
inconsistent results. Cortical thinning has been identi-
fied in de novo,23 nondemented,24 MCI,25-28 and

FIG. 2. Cortical atrophy patterns at 3-cluster level. a: Color maps indicate significant thinning when compared with healthy controls. b: Color maps
indicate significant differences in thickness between the 3 patterns. Results were corrected by Monte Carlo simulation. HC, healthy controls. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Patients from pattern 1 characterized by an extensive parieto-tem-
poral atrophy [15] showed a higher attrition rate and for that reason
they were not included in the quantitative MRI analyses. This group
showed higher severity of motor symptoms measured by the H&Y scale
at baseline, more IADL, and more cognitive impairment assessed by
telephone interview at follow-up. Previous longitudinal studies also

reported that patients who were lost to follow-up were older, had
higher age at disease onset, more axial impairment, scored higher on H
&Y and showed higher percentage of PD dementia [5]. Considering the
initial sample, we estimated that 15% of PD patients converted to de-
mentia during the follow-up period. This percentage was similar to
other population-based studies [5,8,19,20].

Fig. 1. Neuropsychological and cortical thinning effect times. A) Neuropsychological performance of pattern 2 and 3 PD patients and controls at both times.
Time 1 in blue and time 2 in orange. Data are presented as adjusted z-scores. z-scores were calculated based on the control group's means and standard deviations at
time 1. Expected z-scores adjusted for age, sex, and education for each test and each subject were calculated based on a multiple regression analysis performed in the
HC group. Lower z-scores indicate worse performance. Abbreviations: BNT = Boston Naming Test; JLO= Judgment of Line Orientation Test; RAVLT=Rey's
Auditory Verbal Learning Test; SDMT = Symbol Digits Modalities Test; TMT=Trail Making Test; VFD = Visual Form Discrimination Test. B) symmetrized percent
of change of cortical thickness. Color maps indicate significant time effect in each group. Results were corrected by Monte Carlo simulation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Symmetrized percent of change of cortical thickness from the group per time interaction Results were corrected by Monte Carlo simulation.
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Table	3:	Parkinson’s	disease	subtypes	identified	using	cluster	analyses	based	on	clinical	data	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Dujardin		
2004	

44	PD	
	
(There	was	a	
follow-up)	

K-means	
	

2	 UPDRS-III	
Neuropsychological	tests	
(7	variables)	
	
	
	

C1(n=	26)	
Without	cognitive	impairment	
Less	severe	motor	symptoms	
C2	(n=	16)	
Worse	cognition	
More	severe	motor	dysfunction	
	
(A	cluster	with	2	outliers	with	dementia	
was	discarded)	

Lewis	
2005	

120	early	PD	 K-means	 4	 Age	of	onset	
Disease	progression	
L-DOPA	dose	
UPDRS-III	
Depression	(BDI)	
Global	cognition	(MMSE)	
Premorbid	IQ	
Neuropsychological	tests		
(2	variables)	

C1	(n=49):	Young	disease	onset	
Slow	progression	
Mild	motor	symptoms	
No	cognitive	impairment	
↓	Depression	levels	
C2	(n=20):	Tremor	dominant	
Slow	progression	
Modest	motor	symptoms	
No	cognitive	impairment	
Absence	of	depression	
C3(n=31):	Non-tremor	dominant	
Executive	dysfunction	
Faster	progression	than	C1	and	C2	
C4	(n=20):	Rapid	disease	progression	
Aggressive	course	of	the	disease	
No	cognitive	impairment	
No	severe	motor	disability	
	
	
	
	
	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Schrag		
2006	

124	PD	 K-means	 2	
&	
3	

Age	
Age	of	onset	
Disease	progression	
Fluctuations		
Dyskinesia	
Dementia	

2-cluster	solution:	
C1:	Young-onset	
	C2:	Late-onset	
3-cluster	solution:	
C1:	Young-onset	
↓	Age	
↑	Depression	score	
↑L-DOPA	dose	
C2:	Late-onset	(I)	
↑	Age,	↑	Age	of	onset	
↑	Motor	fluctuations,	↑	hallucinations	
No	cognitive	impairment	
Rapid	progression	but	slower	than	C3	
C3:	Late-onset	(II)	
↑↑	Age,	↑↑	Age	of	onset	
↓	Cognition,	↓	L-DOPA	dose	
The	most	rapid	disease	progression	
(“n”	not	available)	

Post		
2008	

131	early	PD	 K-means	 2		
&		
3	

Age	
Age	of	onset	
Disease	progression	
L-DOPA	responsive	symptoms	
L-DOPA	non-responsive	
symptoms	
Global	cognition	(MMSE)	
Affective	disturbances		

2-cluster	solution:	
C1	(n=73):	Young-onset		
C2	(n=58):	Late-onset		
3-cluster	solution:	
C1	(n=44):	Young-onset		
↓	H&Y	stages,	less	motor	severity	
C2	(n=35):	Intermediate		
↑	Anxiety	and	depression	
Intermediate	H&Y	stages	
In-between	motor	severity	
C3	(n=52):	Late-onset		
↑	H&Y	stages,	Severe	motor	symptoms	
↑	Rate	of	disease	progression	
	
	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Reijnders		
2009	

2	PD	samples	
(N=346):	n=173	
for	clustering		
n=	173	for	
validation	

K-means	
followed	by	a	
validation	
through	a	
classification	
model	

4	 Age	at	onset	
Disease	progression		
Tremor	
Hypokinesia/rigidity	
Postural	instability	gait	
difficulty	
L-DOPA	complications	
Global	cognition	(MMSE)	
Depression	
Apathy	
Hallucinations	
	

	

C1	(n=11):	Rapid	disease	progression	
Non-tremor	dominant	
↓	Psychopathology,	↓	Cognition	
C2	(n=51):	Young-onset	
↑	L-DOPA	complications	
C3(n=29):	Non-	tremor-dominant	&	
psychopathology	
↑	Hypokinetic	rigid	and	PIGD	symptoms	
↑	H&Y	average	
Worse	activities	of	daily	living	(ADL)	
↑	Psychopathology,	↓↓	Cognition	
C4	(n=82):	Tremor-dominant	
↓	H&Y	average	
↓	Psychopathology	

Van	Rooden	2011	 2	PD	samples:	
sample	with	
follow-up	
(n=344)	
and	validation	
sample	(n=357)		

Model-based	
clustering	

4	 Motor	phenotypes		
Motor	fluctuations	
Global	cognition	
Autonomic	dysfunction	
Psychotic	symptoms	
RBD	
Daytime	sleepiness	
Depression	
Anxiety	

C1	(n=169)	
↓	Age,	↓	Age	of	onset	
Mild	severity	in	cognition	
↓	L-DOPA	intake,	↓	Exposure	to	L-DOPA	
C2	(n=45)	
↑	%	Women	
↑	Motor	complications	
Moderate	sleep	problems	&	depression		
↑	Disease	duration	
↑	Exposure	to	L-DOPA	
C3	(n=104)	
↑	Age,	↑	Age	of	onset	
Most	domains	severely	affected	
Mild	motor	complications,	less	frequent		
C4	(n=26)	
↑	Age,	↑	Age	of	onset,	↑	%	Woman	
Mild	tremor	
↑Motor	complications	(but	less	than	C2)	
↑	Exposure	to	L-DOPA	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Dujardin		
2013	

557	PD	 K-means	 5	 Neuropsychological	tests	
(13	variables)	including:	
Global	cognition	(MMSE)	
And	the	following	domains:		
Attention/working		
Verbal	episodic	memory	
Executive	functions		
Speed	of	processing	
Visuospatial	abilities	

C1	(n=108)	
↓	Age,	↑	Educated,	Cognitively	intact	
C2	(n=230)	
Cognitively	impaired	but	compared	to	
C1:	↓	Working	memory,	↓	Episodic	
memory	↓	Executive	funcions		
C3	(n=72)	
Overall	cognition	slightly	impaired	
except	for	recognition	memory	
↑	Performed	slower	
Severe	motor	symptoms	
↑	Disease	duration	
↑	Axial	signs	
C4	(n=133)	
↑	Age,	↑	Disease	duration	
Impaired	Cognition	
↑	↑	Performed	slower	
Severe	motor	symptoms	
↑	Axial	signs	
↑	Hallucinations,	↑	Blood	pressure	
↑	Apathy,	↑	Depression		
C5	(n=14)	
↑	Age,	↑	Disease	duration	
Severe	impaired	cognition	
↑	↑	↑	Performed	slower	
Severe	motor	symptoms	
↑	Axial	signs	
↑	Hallucinations,	↑	Blood	pressure	
↑	Apathy,	↑	Depression		
↑	%	Demented	
	
	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Erro		
2013	

100		
unmedicated	
early	PD	
	
	
	
	
	
(There	was	a	
follow-up)	

K-means	 4	 UPDRS-III	(motor)	
Non-motor	domains	
Global	cognition	(MMSE)	
Frontal	assessment		
Anxiety	
Depression	
	
	

C1	(n=21):	Benign	Pure	
↓	Age	
Intermediate	UPDRS-III	
Intermediate	progression	rate	
No	depression,	no	anxiety	
No	frontal	cognitive	impairment	
↓↓	Non-motor	score	
C2	(n=32):	Benign	mixed	motor-non-
motor	
↓	UPDRS-III	
↓	Progression	rate	
Mild	depression	and	anxiety	
Mild	frontal	cognitive	impairment	
Intermediate	non-motor	score	
C3	(n=27):	Non-motor	dominant	
Intermediate	UPDRS-III	
Intermediate	progression	rate	
Intermediate	depression	and	anxiety	
Intermediate	frontal	cognitive	
impairment	
↑	Non-motor	score		
C4	(n=20):	Motor	dominant	
↑	UPDRS-III	
↑	Progression	rate	
↑	Depression	and	anxiety	
↑	Frontal	cognitive	impairment	
Intermediate	non-motor	score	
	
	
	
	
	
	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Fereshtehnejad	
2015	

113	PD	
	
	
(There	was	a	
follow-up)	

2-step	cluster	
analysis	

3	 Motor	severity	
Motor	complications	
Motor	subtypes	
Autonomic	manifestations	
Psychiatric	manifestations	
Olfaction	
Color	vision	
Sleep	parameters	
Neurocognitive	testing	
	
The	7	most	informative	were:	
UPDRS-II	(activities	of	the	
daily	living)	
UPDRS-III	(motor)	
RBD	
MCI	
Systolic	blood	pressure	
Depression	
Anxiety	
	

C1	(n=43):	Mainly	motor/slow	
progression	
Intermediate	motor	severity	
Tremor	subtype	
Slow	progression	rate	
↓	RBD,	Absence	of	orthostatic	
hypotension	
44%	MCI,	↓↓	Hallucinations	
Mild	depression	and	anxiety	
Mild	autonomic	symptoms	
C2	(n=30):	Intermediate	
↓	Motor	severity	
Intermediate	progression	rate	
60%	RBD	
Absence	of	MCI	
All	PD	with	drop	of	systolic	blood	
pressure	
Intermediate	depression	and	anxiety	
C3	(n=40):	Diffuse/malignant	
Rapid	progression	rate	(follow-up)	
All	PD	with	MCI	
All	PD	with	orthostatic	hypotension	
↑↑	RBD,	↑	Depression	and	anxiety	
Severe	motor	symptoms	
Most	severe	gait	disturbance	
More	likely	to	develop	dementia	(at	
follow-up)	
	
	
	
	
	
	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Szeto		
2015	

209	early	PD	 K-means	 4	 Age	of	onset	
Disease	progression	
Motor	phenotype	
Global	cognition	(MMSE)	
Neurocognition	(2	tests)	
Depression	
L-DOPA	dose	
Premorbid	IQ	

C1	(n=93):	Young	onset	
↑	L-DOPA	
↓	MCI	
C2	(n=24):	Tremor	dominant	
↓	L-DOPA	
Intermediate	%	of	MCI	
C3	(n=23):	Non-tremor	dominant	
↑	L-DOPA	
↑	↑	MCI	
↑	Freezing	gait	
↑	Hallucinations	
↑	Daytime	somnolence	
↑	RBD	
C4	(n=44):	Rapid	disease	progression	
↓	L-DOPA	
↓	MCI	
No	severe	cognitive	impairment	

Erro		
2016	

398		
unmedicated	
early		
PD	

K-means	 3	 Global	cognition	(MoCA)	
Depression	
Anxiety	
Olfaction	(UPSIT)	
RBD	
Autonomic	symptomatology	
Motor	phenotype	
Apathy	
Hallucinations	
Fatigue	
Pain	

C1	(n=179)	
↓	Motor	symptomatology	
↓	Neuropsychiatric	symptomatology		
↓	RBD,	↓	Pain	
Less	nigral-striatal	denervation	
(123[I]-FP-CIT	binding	SPECT	scan)	
C2	(n=67)	
↑	Motor	symptomatology	
↑	Neuropsychiatric	symptomatology	
↑	RBD,	↑	Pain,↑↑	Hallucinations	
↑↑	Apathy,	↑↑	Fatigue	
C3	(n=152)	
↑	Motor	symptomatology	
↑	Neuropsychiatric	symptomatology	
↑	RBD,	↑	Pain,	↑	Hallucinations	
↑Apathy,	↑	Fatigue	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Lopes		
2017	

An	initial	sample	
(N=156)	to	
perform	the	
cluster	analysis,	
but	only	subjects	
with	functional	
data	available	
were	used	for	
the	
characterization	
(n=119)	

K-means	 5	 Neuropsychological	tests	(18	
variables)	including:	
	
Global	cognition	(MMSE	and	
Mattis	DRS)	
	
And	the	following	domains:	
	
Attention/working	Memory	
Executive	functions		
Language	
Visuospatial	abilities	
	

C1	(n=31):	Cognitive	intact	
↓	Age,	↑	Education	
C2	(n=31):	Slight	Mental	Slowness	
↑	Education	
C3	(n=43):	Mild	to	moderate	cognitive	
deficits	
C4+C5	(n=14):	Severe	cognitive	
deficits	
Severe	deficits	in	all	domains	
↑	Age,	↓	Educatio	
	
Graph	theory	topological	measures	and	
connectivity,	both	derived	from	fMRI,	
showed	to	be	progressively	impaired	as	
the	cognitive	deficits	increased.	

Fereshtehnejad	
2017	

421		
unmedicated	
early	PD	
	
	
	
(There	was	a	
follow-up)	

Agglomerative	
hierarchical	
clustering	with	
Euclidean	
distance	

	
	
	
	
3	

Age	
Genetic	risk	score	
Orthostatic	systolic	
Blood	pressure	drop	
Motor	phenotype	
Olfaction	(UPSIT)	
Neurophysiological	tests	
(domains)	
RBD	
Depression	
Anxiety	
Impulse	disorders	
Sleepiness		
Autonomic	dysfunction	
Hallucinations	
Fatigue,	Apathy	
Pain	
	

C1	(n=223):	Mild	motor	predominant	
↓	Age	
↓	Motor	scores	
↓	Non-motor	scores	
Slow	disease	progression	
C2	(n=	146):	Intermediate	
Intermediate	motor	scores	
Intermediate	non-motor	scores	
Intermediate	disease	progression	
C3	(n=52):	Diffuse	malignant	
↑	Motor	scores	
↑	Non-motor	scores	
Rapid	disease	progression	
Greater	atrophy	
↓	β-Amyloid	and	tau	(CSF)	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

LaBelle		
2017	

424	unmedicated	
early	PD	

Latent	class	
analysis	

6	 Neuropsychological	tests		
(6	variables):	
Semantic	fluency	
SDMT	
JLO	
Working	memory	
Verbal	memory	(x2)	

C1(n=20):	Weak-Overall	
↑	Age	
Poor	cognitive	performance	
↑	Depression,	anxiety	
↑	Autonomic	dysfunction	
↑	Anosmia,	↑	RBD	
C2	(n=149):	Typical-Overall	
Average	cognitive	performance	
C3	(n=134):	Strong-Overall	
↓	Age,	↑	%	Women	
↑	Performance	in	all	tests	(verbal	memory)	
↓	Dysautonomia,	↓	Anosmia	
C4	(n=23):	Strong-Memory	
↓	Visuospatial	score	
↑	Learning	&	recall	verbal	memory	
scores	
C5	(n=47):	Weak-Visuospatial	
↑	Memory	scores,	↓	Visuospatial	scores	
C6	(n=51):	Amnestic	
↑	Tremor	severity,	↑	Anosmia	
↓↓	Verbal	memory	learning	and	
recall	scores,	↓	Verbal	fluency	score	

Lawton		
2018	

2PD	samples:	
	

n=1601	
	

n=944	
(validation)	
	
	

K-means	 4	 Psychological	well-being	
(apathy,	fatigue,	pain,	
neuroticism,	anxiety,	
depression,	QUIP	(impulsive	
compulsive	disorders))	
Non-tremor	motor	(speech,	
rigidity,	bradykinesia,	
postural)	

C1(n=307):	Fast	motor	progression	
↑	Age	at	onset	
C2(n=167):	Mild	motor	and	non-
motor	
↓	Age	at	onset,	↑	%	Women	
C3(n=223):	Severe	motor	disease,	
poor	psychological	well-being	and	
poor	sleep	
↑	PIGD,	↑	LEDD	
C4(n=247):	Slow	motor	progression	
↑	Tremor	dominant	



 

 	

Reference	 Sample		 Cluster	method	 K	
	

Cluster	input	 Description	of	the	clusters	(C)	

Belvisi		
2021	

100	unmedicated	
early	PD		

2	cluster	
analyses:	
Agglomerative	
hierarchical	
clustering	with	
Euclidean	
distance	and		
k-means	
	

2	 Age	
Disease	duration	
Motor	domain	
Cognitive	performance	
RBD	
Dysautonomia	
	

C1	(n=76):	Mild	motor	predominant	
↓	Age	
↓	UPDRS	part	II+	part	III	
↓	H&Y	
↓	non-motor	symptoms	
↑	Cognition	
C2	(n=24):	Diffuse	malignant	
↑	Age	
↑	UPDRS	part	II+	part	III	
↑	H&Y	
↑	non-motor	symptoms	
↓	Cognition	
	
Transcranial	magnetic	stimulation:	
↑	Cortical	excitability		
↓	Plasticity		
	
Kinematic	analysis	of	motor	performance:	
Slower	performance	
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1.6.2.	Data-driven	subtyping	in	Dementia	with	Lewy	bodies	

The	heterogeneity	described	in	DLB,	as	regards	both	clinical	and	neuroimaging	features,	

leads	to	belief	in	the	existence	of	different	subtypes	underlying	the	disease.	Along	this	

line,	Morenas-Rodríguez	et	al.,	 (2018)	conducted	a	k-means	cluster	analysis	based	on	

longitudinal	 clinical	 data	 from	 the	 prodromal	 phase	 of	 the	 disease.	 Specifically,	 they	

calculated	the	time	from	the	first	symptom	to	 fulfilment	of	DLB	criteria,	and	the	time	

from	 the	 presentation	 of	 hallucinations,	 as	 well	 as	 time	 from	 the	 presentation	 of	

parkinsonism	to	DLB	diagnosis.	This	led	to	the	description	of	the	following	3	subtypes:	

the	cognitive-predominant	(57%),	characterized	by	cognitive	impairment	as	the	earliest	

symptom;	the	neuropsychiatric-predominant	(27%),	which	had	the	oldest	age	at	disease	

onset	and	psychosis	as	the	most	common	first	symptom	accompanied	by	an	early	onset	

of	 hallucinations;	 finally,	 the	 parkinsonism-predominant	 (16%),	 characterized	 by	 the	

presence	of	parkinsonism	in	all	the	patients	and	younger	age	at	onset.	

	

In	a	multicentre	study,	Oppedal	et	al.,	(2019)	included	333	DLB	patients	as	well	as	352	

AD	patients	and	233	HC	and	used	visual	rating	scales	to	classify	the	DLB	patients	in	4	

groups	previously	described	in	AD	(Ferreira	et	al.,	2017)	(Figure	8).	In	the	DLB	group,	

the	 most	 common	 pattern	 of	 atrophy	 was	 the	 hippocampal-sparing,	 which	 is	

characterized	 by	 frontal	 and/or	 posterior	 atrophy,	 followed	 by	 the	minimal-atrophy	

pattern	(Figure	8).	Interestingly,	Caminiti	et	al.,	(2019),	undertook	a	hierarchical	cluster	

analysis	 based	 on	 FDG-PET	 of	 14	 ROIs	 known	 to	 be	 involved	 in	 DLB,	 and	 found	 2	

subtypes	 that	 slightly	 differed	 in	 occipital	 hypometabolism.	 The	 group	 with	 worse	

occipital	involvement	presented	with	worse	global	cognitive	performance	as	well	as	a	

higher	risk	of	developing	VH.	

	

In	this	Thesis,	in	Study	3,	we	present	the	first	study	using	an	unsupervised	data-driven	

approach	based	on	MRI	data	to	find	DLB	subtypes.	
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Figure	8:	AD	subtypes	based	on	atrophy	patterns	

	obtained	from	visual	rating	scales	

	

(Extracted	from	Ferreira	et	al.,	2017)	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Typical	AD	

	
Limbic-predominant	 Minimal	atrophy	Hippocampal-sparing	
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;.<.	THE	BRAIN	AS	A	NETWORK		

In	our	day	to	day	 lives,	we	are	 involved	in	multiple	networks,	such	as	the	Internet	or	

social	 relationships,	 but	 among	 all	 these	 networks,	 the	 brain	 is	 probably	 the	 most	

complex	one	we	deal	with	every	day.	A	network	is	a	system	composed	of	a	set	of	elements	

and	 the	 links	connecting	 them.	 In	 the	context	of	 the	brain,	 the	elements	could	be	 the	

neurons,	 the	connections	 the	synapses.	The	human	brain	contains	around	100	billion	

neurons,	 each	 linked	by	up	 to	15,000	 connections,	making	 the	microscopic	 approach	

impossible.	 In	 this	 framework,	 MRI	 has	made	 it	 feasible	 to	 approach	 the	 brain	 as	 a	

network	with	methods	of	acquisition	and	analysis,	which	allows	the	study	of	the	different	

connections	 between	 brain	 regions	 by	 means	 of	 anatomical	 tracts	 and	 functional	

associations,	 as	well	 as	 network	 properties	 using	 graph	 theory.	 Taken	 as	 a	whole,	 it	

seems	 to	 be	 a	 promising	 way	 to	 better	 understand	 the	 mechanisms	 involved	 in	

neurodegenerative	diseases.	

1.7.1.	Graph	theory	

	

Figure	9:	Different	types	of	graphs	according	to	the	directionality	and	weight	of	their	

edges.	
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The	first	publications	applying	graph	theory	to	network	science	appear	at	the	end	of	the	

20th	 century	 (Felleman	 and	 van	Essen,	 1991).	However,	 the	 scene	 to	 understand	 the	

brain	 as	 a	 graph	was	 previously	 set	 by	 Santiago	 Ramón	 y	 Cajal,	when	 he	 undertook	

microscopic	studies	applying	Golgi’s	staining	technique,	which	allowed	him	to	visualize	

the	neurons.	Ramón	y	Cajal	 then	realized	that	neurons	do	not	work	alone,	but	rather	

make	connections	from	one	to	another	in	order	to	form	circuits.		

	

In	this	context,	we	may	wonder	what	a	graph	is	exactly.	A	graph	(G	=	(N,	E))	consists	of	

an	adjacency	matrix	made	of	nodes	(N)	and	the	connections	between	them,	which	are	

called	edges	(E).	Graphs	can	be	defined	as	directed	or	undirected,	depending	on	whether	

the	 edges	 have	 directionality	 or	 not.	 For	 instance,	 a	 directed	 graph	would	 be	 a	 gene	

regulation	network.	They	can	also	be	described	as	binary,	when	the	edges	are	defined	as	

“0”	(absence	of	connection)	or	“1”	(presence	of	connection),	or	as	weighted	if	the	edges	

are	linked	to	a	value	that	reflects	the	strength	of	the	connection	(Figure	9).		

	
Graph	 theory	 relies	 on	 several	 topological	 measures	 to	 describe	 the	 efficiency	 of	 a	

network	and	its	nodes	(Figure	10,	Panel	4).			
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Figure	10:	Measures	of	network	topology	

	

Illustration	of	key	complex	network	measures	(in	italics).	These	measures	are	typically	based	on	

basic	properties	of	network	connectivity	(in	bold).	Measures	of	integration	are	based	on	shortest	

path	lengths	(green),	while	measures	of	segregation	are	often	based	on	triangle	counts	(blue)	but	

also	include	more	sophisticated	decomposition	into	modules	(ovals).	Measures	of	centrality	may	

be	based	on	node	degree	(red)	or	on	the	length	and	number	of	shortest	paths	between	nodes.	Hub	

nodes	 (black)	 often	 lie	 on	 a	 high	 number	 of	 shortest	 paths	 and	 consequently	 often	 have	 high	

betweenness	centrality.	Patterns	of	local	connectivity	are	quantified	by	network	motifs	(yellow).	

(Figure	and	text	extracted	from	Rubinov	and	Sporns,	2010).	

	

	

	

	

	

	

	

	

	

measures of motif occurrence, known as the motif intensity, and
the motif intensity z-score (Onnela et al., 2005). Motif intensity
takes into account weights of all motif-comprising links and may
therefore be more sensitive in detecting consistently strong
functional configurations.

There is a source of possible confusion inmotif terminology. Motifs
(“structural” and “functional”) were initially considered only in the
context of anatomical brain networks (Sporns and Kotter, 2004).
However, motif measures may also be meaningfully applied to some
effective connectivity networks. On the other hand, motifs are
generally not used in the analysis of undirected networks, due to
the paucity of local undirected connectivity patterns.

Measures of centrality

Important brain regions (hubs) often interact with many other
regions, facilitate functional integration, and play a key role in
network resilience to insult. Measures of node centrality variously
assess importance of individual nodes on the above criteria. There are
manymeasures of centrality, and in this section, we describe themore
commonly used measures. We also note that motif and resilience
measures, discussed in other sections, are likewise sometimes used to
detect central brain regions.

The degree, as discussed above, is one of the most common
measures of centrality. The degree has a straightforward
neurobiological interpretation: nodes with a high degree are
interacting, structurally or functionally, with many other nodes
in the network. The degree may be a sensitive measure of
centrality in anatomical networks with nonhomogeneous degree
distributions.

In modular anatomical networks, degree-based measures of
within-module and between-module connectivity may be useful
for heuristically classifying nodes into distinct functional groups
(Guimera and Amaral, 2005). The within-module degree z-score is
a localized, within-module version of degree centrality (Table A1).
The complementary participation coefficient assesses the diversity
of intermodular interconnections of individual nodes. Nodes with
a high within-module degree but with a low participation
coefficient (known as provincial hubs) are hence likely to play

an important part in the facilitation of modular segregation. On
the other hand, nodes with a high participation coefficient (known
as connector hubs) are likely to facilitate global intermodular
integration.

Many measures of centrality are based on the idea that
central nodes participate in many short paths within a network,
and consequently act as important controls of information flow
(Freeman, 1978). For instance, closeness centrality is defined as
the inverse of the average shortest path length from one node to
all other nodes in the network. A related and often more
sensitive measure is betweenness centrality, defined as the
fraction of all shortest paths in the network that pass through
a given node. Bridging nodes that connect disparate parts of the
network often have a high betweenness centrality (Fig. 3). The
notion of betweenness centrality is naturally extended to links
and could therefore also be used to detect important anatomical
or functional connections. The calculation of betweenness
centrality has been made significantly more efficient with the
recent development of faster algorithms (Brandes, 2001; Kintali,
2008).

Weighted and directed variants of centrality measures are in most
cases based on weighted and directed variants of degree and path
length (Table A1).

Measures of centrality may have different interpretations in
anatomical and functional networks. For instance, anatomically
central nodes often facilitate integration, and consequently enable
functional links between anatomically unconnected regions. Such
links in turn make central nodes less prominent and so reduce the
sensitivity of centrality measures in functional networks. In addition,
path-based measures of centrality in functional networks are subject
to the same interpretational caveats as path-based measures of
integration (see above).

Measures of network resilience

Anatomical brain connectivity influences the capacity of neuro-
pathological lesions to affect functional brain activity. For instance, the
extent of functional deterioration is heavily determined by the
affected anatomical region in a stroke, or by the capacity of anatomical

Fig. 3.Measures of network topology. An illustration of key complex network measures (in italics) described in this article. These measures are typically based on basic properties of
network connectivity (in bold type). Thus, measures of integration are based on shortest path lengths (green), while measures of segregation are often based on triangle counts
(blue) but also include more sophisticated decomposition into modules (ovals). Measures of centrality may be based on node degree (red) or on the length and number of shortest
paths between nodes. Hub nodes (black) often lie on a high number of shortest paths and consequently often have high betweenness centrality. Patterns of local connectivity are
quantified by network motifs (yellow). An example three-node and four-link anatomical motif contains six possible functional motifs, of which two are shown—onemotif containing
dashed links, and one motif containing crossed links.

1064 M. Rubinov, O. Sporns / NeuroImage 52 (2010) 1059–1069
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1.7.1.1.	Small	world	property	

Most	 complex	networks	 in	 the	 real	world	are	 small-world	networks.	The	 theory	of	6	

degrees	of	separation,	which	contends	that	we	are	just	6	introductions	away	from	any	

person	 in	 the	world,	 is	 a	 good	 example	 of	 the	 small-world	 property,	 as	 the	 network	

presents	short	paths	between	pairs	of	nodes	(people)	that	can	be	far	away,	and	the	nodes	

allowing	these	connections	are	usually	hubs	(people	with	a	lot	of	social	relationships).	

The	same	happens	with	the	brain,	which	is	characterized	by	short	average	path	length	

as	well	as	high	average	clustering	(Watts	and	Strogatz	1998),	allowing	a	fast	spread	of	

the	information	through	the	network.		

	

	

	

	

	
			
 

Panel	4:	Brain	network	metrics	
	

Triangle:	Number	of	neighbours	of	a	node	that	are	also	neighbours	of	
each	other.		
	
Module:	Subset	of	nodes.	

	
Path	Length:	 	Number	of	edges	in	a	path,	a	path	being	a	 sequence	of	
nodes	connected	by	edges.		
	

Clustering	Coefficient:	Measure	of	the	density	of	connections	between	
nearest	neighbours	of	an	index	node.	
	
Motif:	Pattern	found	in	a	network	(subgraph)	repeatedly.	
	
Hub	Node:	A	node	with	more	connections	than	the	average.	
	
Degree:	Total	number	of	edges	connected	to	a	node.	
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Figure	11:	Types	of	networks	according	to	path	length	and		

clustering	coefficient	measures	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
(Adapted	from	Watts	and	Strogatz,	1998)	

	

The	 small-world	 property	 stands	 between	 regular	 and	 random	 networks.	 Regular	

networks	have	high	 average	 clustering,	 and	high	 average	path	 length;	while,	 random	

networks	 show	 low	average	path	 length	with	 low	average	clustering	 coefficient,	 thus	

implying	that	all	nodes	have	a	comparable	number	of	edges,	which	does	not	adjust	to	

what	we	see	in	real-world	networks	where	hub	nodes	are	commonly	found	(Figure	11).	

Networks	can	also	be	characterized	according	 to	 the	degree	distribution	 -	how	many	

connections	each	node	has	-	in	decentralized	or	centralized	networks.	In	decentralized	

networks	 there	 is	 a	 low	 level	 of	 diversity	between	 the	degree	of	 the	different	nodes.	

However,	what	predominates	in	nature	are	the	centralized	networks,	in	particular	the	

free	 scale	networks,	 in	which	 the	degree	distribution	 is	very	high,	 as	 there	are	many	

nodes	with	a	low	number	of	connections,	while	others	have	an	exceptional	number	of	

edges	 (hubs).	 In	 this	 type	 of	 network	 there	 is	 an	 exponential	 relation	 between	 the	

number	of	connections	of	a	node	and	the	probability	of	having	more	connections.	Free	

scale	networks	can	be	very	robust	and	very	weak	at	the	same	time,	depending	on	the	

kind	of	node	affected.	 If	 there	are	problems	in	random	nodes	the	network	would	still	

work;	however,	 if	 there	 is	a	problem	 in	only	one	hub,	 it	 can	have	 important	negative	

effects	in	the	whole	network.	Specifically,	the	brain	network	presents	not	only	a	small-

world	behaviour,	but	also	the	characteristics	of	a	free	scale	network.	

REGULAR	 SMALL-WORLD	 RANDOM	

	Path	length	
	Clustering	
coefficient		

	¯			Path	length	
				Clustering	
coefficient		

	¯			Path	length	
	¯			Clustering	
coefficient		
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1.7.2.	The	Connectome	

The	comprehensive	map	of	the	structural	connections	that	constitute	the	brain	network	

is	known	as	the	connectome	(Sporns	et	al.,	2013).	Along	with	the	connectome	comes	a	

new	 field	 of	 science	 called	 connectomics,	 responsible	 for	 the	 study	 of	 the	 nodes	 and	

edges	that	constitute	the	brain	connectivity,	as	well	as	the	tools	to	analyse	it	(Hagmann	

et	 al.,	 2010).	 Brain	 connections	 can	 be	 captured	 by	 means	 of	 anatomical	 and	

physiological	 interactions	 using	 different	 neuroimaging	 techniques,	 leading	 to	

structural,	functional	and	effective	connectivity:							

																																																																																															

Structural	 connectivity	 defines	 anatomical	 connections	 associating	 different	 brain	

regions,	and	usually	refers	to	WM	projections	connecting	cortical	and	subcortical	regions	

(Sporns,	2013).	

	

Functional	 connectivity	describes	how	different	parts	of	 the	brain	work	 together	by	

looking	at	the	statistical	dependence	of	the	BOLD	signal	between	them.	It	arises	from	

timeseries	 observations	 that	 can	 be	 obtained	 through	 techniques	 such	 as	

electroencephalography	(EEG)	or	fMRI	(Sporns,	2013).	

	

Effective	 connectivity	 is	 based	 on	 causation	 and	 explains	 how	activity	 in	 one	 region	

targets	the	physiological	activity	of	another	region	(directed	graph)	(Sporns,	2013).		
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Figure	12:	Structural	and	functional	networks	and	

	the	steps	required	before	network	analysis	

	

	(Extracted	from	Medaglia	and	Bassett,	2017)	

	

	

1.7.2.1.	Structural	MR	connectomics	

Diffusion	weighted	imaging	(DWI)	has	allowed	the	mapping	of	the	whole	brain	structural	

connectivity	 in	vivo.	Diffusion	data	provides	 indirect	 information	about	 the	 structure	

surrounding	water	molecules	by	providing	contrast	associated	to	the	degree	of	water	

diffusion	in	each	voxel	of	the	brain	and,	as	WM	presents	anisotropic	properties	(Basser	

et	al.,	1994),	it	makes	it	possible	to	build	connectivity	matrices	by	inferring	fibre	tract	

trajectories	based	on	FA	and	MD	as	well	as	the	number	of	fibres.	

	
	
	
	
	

Figure 1: Types of Networks. The two most common categories of networks are functional and
structural. Each category requires a different set of processing steps prior to the application of
network analysis. Left: Structural networks can be constructed by choosing a parcellation of the
brain into regions of interest, applying that parcellation to anatomical imaging data, and esti-
mating the structural relationships between regions of interest. Right: Functional networks can
be constructed by extracting signals from brain regions (which can also be parcels) and estimat-
ing the functional relationships between those regions using measures of statistical similarity or
causality among pairs of time series. Figure reproduced with permission from [13].

In some cases, we might be interested in functional, morphometric, or structural networks
that change over time [14]: for example, on the order of milliseconds in the case of ECoG,
seconds or minutes in the case of fMRI, and months or years in the case of diffusion imaging
data. Efforts to address questions about how brain network architecture may change in a given
time scale (or over multiple time scales) have led to the development of dynamic network anal-
ysis techniques [15, 16]. One of the more common techniques for temporal networks that still
derives from graph theory and network science is that of so-called multilayer networks. A mul-
tilayer network is a network that is composed not just of a single adjacency matrix, but of mul-

6
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DTI	metrics	

Diffusion	Tensor	Imaging	(DTI)	is	a	mathematical	model	that	describes	the	diffusion	at	

each	voxel.	Therefore,	it	provides	information	about	microscopic	changes	in	WM	tissue.	

The	principle	of	this	imaging	technique	resides	in	the	diffusion	of	water	molecules	in	the	

brain	 and	 how	 its	 movement	 is	 restricted	 by	 membranes,	 fibres,	 and	 the	

macromolecules.	

	

There	are	different	metrics	derived	from	DTI	that	are	used	to	characterize	WM	integrity	

(Panel	 5),	 by	 giving	 information	 about	 the	 shape	 and	 dimensions	 of	 the	 diffusion	

ellipsoid	related	to	a	particular	voxel.	These	metrics	are	FA,	MD,	axial	diffusivity	(AxD)	

and	radial	diffusivity	(RD),	FA	being	the	most	broadly	used	metric	to	characterize	WM	

(Mukherjee	et	al.,	2008).	

	

The	eigenvectors	are	the	three	main	axes	that	give	information	about	the	direction	and	

magnitude	 of	 the	 diffusion	 ellipsoid.	 The	 primary	 eigenvector	 (l1)	 describes	 the	

direction	of	axonal	fibre	bundles,	while	the	second	and	the	third	(l2,	l3)	give	information	

about	diffusion	transversally	to	axonal	bundles	(Mukherjee	et	al.,	2008).	One	of	the	most	

used	methods	to	assess	FA	and	the	other	metrics	is	the	FSL	tract-based	spatial	statistics	

(TBSS)	tool	(Smith	et	al.,	2006),	part	of	the	FSL	software	(https:	//	fsl.fmrib.ox.ac.uk/	fsl/	

fslwiki/TBSS).	

	

DTI	fibre	tracking	

Tractography	 is	a	method	based	on	DTI	data	that	allows	us	to	 infer	the	 fibre	bundles	

trajectories.	It	can	be	either	deterministic,	when	it	takes	a	unique	orientation	per	voxel	

and,	 consequentially,	 generates	 one	 streamline	 for	 each	 seed	 voxel,	 or	 probabilistic,	

when	 it	 considers	 a	 distribution	 of	 fibre	 orientations	 creating	 multiple	 streamline	

samples	 per	 seed	 voxel	 based	 on	 a	 probability	 distribution	 of	 diffusion	 orientations	

within	each	voxel	(Muller	et	al.,	2018)	(Figure	13).		
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			 Panel	5:	White	matter	metrics	derived	from	DTI	
	
Fractional	Anisotropy	(FA):	Degree	of	anisotropy	with	a	value	ranging	between	0,	

in	the	case	of	isotropic	(unrestricted	diffusion),	and	up	to	1	for	anisotropic	diffusion	

(preferential	diffusion	in	one	of	the	directions)	(Mukherjee	et	al.,	2008).		
	

Mean	 Diffusivity	 (MD):	 Total	 diffusion	 within	 a	 voxel	 (mean	 of	 the	 three	

eigenvectors).	Provides	information	about	how	the	diffusion	tensor	is	changing.		
	

Axial	Diffusivity	 (AxD):	 	Direction	of	 the	 long	axis	 (l1).	 It	 is	 sensitive	 to	axonal	

changes	(Bennett	et	al.,	2014).		
	

Radial	Diffusivity	(RD):	Amount	of	diffusion	perpendicular	to	the	long	axis	(mean	

of	l2	and		l3).	It	is	sensitive	to	myelin	changes	(Bennett	et	al.,	2014).	
	

(Adapted	from	Mukherjee	et	al.,	2008) 
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Figure	13:	Pathway	across	voxels	generated	through	deterministic	and	

probabilistic	tractography 

 

 

 

 

	

	

	

	

		

	

(Adapted	from	Muller	et	al.,	2018)	

	

Structural	connectivity	

Structural	 connectivity	 is	 frequently	 measured	

using	tractography.	The	regions	of	interest	(ROI)	

are	 defined	 as	 nodes	 and	 the	 reconstructed	

fibres	that	cross	a	pair	of	ROIs	are	considered	the	

connections	(Behrens	et	al.,	2003).	The	strength	

of	the	connections	(edges)	can	be	established	by	

the	number	of	streamlines	(NOS)	between	pairs	

of	ROIs	(Hagmann	et	al.,	2007;	Li	et	al.,	2009).	As	

has	been	previously	described	(See	section	1.7.1.	

Graph	Theory,	page	63),	this	group	of	nodes	and	

edges	 are	 going	 to	 constitute	 a	 weighted	

adjacency	 matrix	 that	 will	 be	 classified	 as	

symmetric,	if	its	edges	do	not	have	directionality,	

or	 as	 asymmetric	 if	 the	 edges	 do	 have	

directionality	(Figure	14).	

	

D E T E R M I N I S T I C  P R O B A B I L I S T I C  

Figure	14:	

Structural	 connectivity	 of	

the	human	brain	

	

Gold	 dots	 represent	 the	 nodes,	

while	the	turquois	lines	represent	

the	 edges.	 Surf	 Ice	 tool	

(www.nitrc.org)	 was	 used	 in	

combination	with	the	Automated	

anatomical	labelling	atlas	to	draw	

the	figure.	
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1.7.3.	Structural	findings	in	Parkinson’s	disease	
	
In	 order	 to	 understand	 the	 role	 of	 WM	 in	 PD,	 DWI	 techniques	 have	 been	 used.	

Specifically,	TBSS	appears	as	a	recurrently	used	method	for	this	purpose;	however,	the	

results	have	not	been	conclusive.	Whole-brain	studies	have	found	decreased	FA	in	PD	

compared	 to	HC	 in	several	 tracts	 including	 the	olfactory	 tract,	hippocampal	cingulate	

tract	(Chen	et	al.,	2018),	the	corpus	callosum	(Guimarães	et	al.,	2018;	Garcia-Diaz	et	al.,	

2018),	 internal	and	external	capsule	(Guimarães	et	al.,	2018;	Li	et	al.,	2017),	superior	

longitudinal	 fasciculus	 (Chen	 et	 al.,	 2018;	 Guimãraes	 et	 al.,	 2018),	 corona	 radiata,	

thalamic	radiation,	sagittal	stratum	(Guimarães	et	al.,	2018),	cingulum	(Theilmann	et	al.,	

2013;	Guimarães	et	al.,	2018),	forceps	major	and	minor	(Theilmann	et	al.,	2013),	and	the	

uncinate	 fasciculus	 (Díez-Cirarda	 et	 al.,	 2015).	 Other	 studies	 did	 not	 find	 significant	

differences	between	PD	and	HC	(Worker	et	al.,	2014;	Koshimori	et	al.,	2015;	Duncan	et	

al.,	2016),	or	even	showed	increased	FA	in	PD	in	comparison	to	HC	(Chen	et	al.,	2018).	

On	the	other	hand,	ROI-based	analyses	have	been	mainly	focused	on	the	substantia	nigra,	

reporting	 a	 reduction	 in	 FA	 in	 specific	 subregions	 (Schuff	 et	 al.,	 2015;	 Langley	 et	 al.,	

2016).	There	are	studies	that	have	specifically	focused	on	PD-MCI.	When	comparing	PD-

MCI	with	HC	they	have	found	decreased	FA	in	major	associative	tracts,	the	corona	radiata	

and	the	corpus	callosum	(Hattori	et	al.,	2012;	Melzer	et	al.,	2013;	Agosta	et	al.,	2014).		

However,	studies	looking	for	differences	between	PD	with	and	without	MCI	did	not	find	

differences	in	FA	(Galantucci	et	al.,	2017)	or	found	only	a	very	small	cluster	with	reduced	

FA	(Melzer	et	al.,	2013).	

	

The	 reconstruction	 of	 the	 whole-brain	 structural	 connectome	 has	 been	 used	 to	 find	

abnormalities	 in	 PD	 connectivity	 compared	 to	 that	 of	 the	 HC.	 Reduced	 structural	

connectivity	has	been	described	in	PD	using	deterministic	(Nigro	et	al.,	2016;	Li	et	al.,	

2016)	and	probabilistic	 (Shah	et	al.,	2017)	approaches.	Anomalies	 in	PD	connectivity	

have	been	found	to	involve	frontal,	temporal,	parietal	and	occipital	regions	(Nigro	et	al.,	

2016;	Li	et	al.,	2016;	Shah	et	al.,	2017)	as	well	as	the	basal	ganglia	(Nigro	et	al.,	2016;	Li	

et	al.,	2016).	Global	graph	theory	topological	measures,	such	as	cluster	coefficient	(Nigro	

et	al.,	2016;	Shah	et	al.,	2017),	as	well	as	nodal	measures	(Nigro	et	al.,	2016;	Li	et	al.,	2016;	
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Shah	et	al.,	2017)	have	been	found	to	be	reduced	in	PD.	Controversially,	Mishra	et	al.,	

(2020)	described	greater	 connectivity	 in	PD	as	well	 as	 greater	values	of	nodal	 graph	

measures,	 while	 in	 line	 with	 previous	 studies,	 they	 also	 found	 reduced	 clustering	

coefficient.	

	

Other	 studies	 based	 on	 ROIs	 have	 described	 reduced	 connectivity	 in	 connections	

involving	the	bilateral	claustra	(Arrigo	et	al.,	2019)	and	subcortico-cortical	connections	

of	 the	 sensorimotor	 circuitry	 (Sharman	 et	 al.,	 2012).	 While	 some	 have	 focused	 on	

describing	abnormalities	 in	PD	subtypes,	such	as	Abbasi	et	al.,	(2020),	who	described	

reduced	connectivity	in	the	diffuse	malignant	PD	subtype	compared	to	the	mild	motor	

predominant	 PD	 subtype	 (Fereshtehnejad	 et	 al.,	 2017)	 as	 well	 as	 reduced	 global	

efficiency	and	increased	path	length,	others	have	focused	on	describing	the	structural	

connectivity	 of	 PD	 with	 different	 clinical	 characteristics.	 Galantucci	 et	 al.,	 (2017)	

compared	 PD-MCI	with	 HC	 and	 PD	without	MCI	 and	 found	 PD-MCI	 to	 have	 reduced	

structural	connectivity	in	a	bilateral	principal	connected	component	involving	the	basal	

ganglia	and	fronto-parietal	regions.	Wang	et	al.,	(2019)	compared	PD-MCI	to	PD	without	

MCI	 and	 found	 reduced	 connectivity	 in	 several	 networks	 as	 well	 as	 reduced	 nodal	

efficiency,	principally	in	orbitofrontal	regions.	

	

With	the	aim	of	finding	particular	patterns	of	connectivity	alterations	in	PD,	the	previous	

studies	used	 the	network-based	 statistics	 (NBS),	 a	 statistical	method	 that	 applies	 the	

FWE	correction	when	analysing	all	the	connections	comprising	the	brain	graph	(Zalesky	

et	al.,	2010).	 In	particular,	 the	studies	 focused	on	PD-MCI	based	 the	NBS	analyses	on	

deterministic	tractography.	In	Study	2	of	this	Thesis,	structural	networks	of	PD	with	and	

without	 MCI	 were	 reconstructed	 using	 probabilistic	 tractography	 and	 analysed	 by	

means	of	a	novel	 technique,	 implemented	by	Baggio	et	al.,	 (2018),	 the	 threshold-free	

network-based	statistics	(TFNBS),	which	combines	threshold-free	cluster	enhancement	

(TFCE)	and	NBS,	allowing	us	to	obtain	edge-wise	p-values	instead	of	thresholded	cluster	

components.	Moreover,	the	structural	connectivity	analysis	presented	in	this	Thesis	was	

complemented	with	 global	 and	 local	 graph	 topological	measures,	 as	well	 as	with	 the	

analysis	of	FA	and	MD	by	means	of	TBSS.	
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Hypotheses	and	Objectives	
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The	 present	 Doctoral	 Thesis	 is	 centered	 on	 the	 study	 of	 Parkinson’s	 disease	 and	

Dementia	with	Lewy	bodies	heterogeneity.	We	aimed	to	identify	subtypes	in	Parkinson’s	

disease	and	Dementia	with	Lewy	bodies	based	on	structural	MRI	measures,	as	well	as	to	

characterize	 their	 clinical	 and	cognitive	profile.	To	 this	 end,	we	performed	subtyping	

analyses	and	structural	connectivity	analyses.		

	

The	 general	 hypothesis	 is	 that	 there	 are	 different	 patterns	 of	 brain	 atrophy	 in	

Parkinson’s	disease	as	well	as	in	Dementia	with	Lewy	bodies,	and	that	the	heterogenous	

brain	patterns	could	explain	differences	in	cognitive	impairment.			

	
2.1.	HYPOTHESES	

1. Different	 Parkinson’s	 disease	 subtypes	 are	 characterized	 by	 distinct	 patterns	 of	

brain	atrophy.	Grey	matter	atrophy	is	expected	to	be	identified	to	a	greater	extent	

than	white	matter	abnormalities	in	Parkinson’s	disease	subtypes.	
	

2. Brain	 atrophy	 patterns	 would	 be	 associated	 to	 different	 clinical	 and	 cognitive	

profiles.	The	Parkinson’s	disease	subtype	with	later	age	at	onset	will	display	more	

atrophy	than	the	other	subtypes,	as	well	as	worse	neuropsychological	profile.		
	

3. Parkinson’s	disease	patients	with	mild	cognitive	impairment	would	be	characterized	

by	 more	 prominent	 structural	 connectivity	 reduction	 than	 Parkinson’s	 disease	

patients	without	mild	cognitive	impairment.		
	

4. Structural	connectivity	abnormalities	in	Parkinson’s	disease	patients	are	expected	

to	 be	 mild	 with	 major	 involvement	 of	 fronto-striatal	 connections,	 as	 well	 as	 in	

connections	involving	the	posterior	cortex	that	has	been	previously	associated	with	

cognitive	impairment	in	nondemented	PD	patients.		
	

5. We	 would	 detect	 different	 subtypes	 in	 Dementia	 with	 Lewy	 bodies	 that	 can	 be	

identified	through	data-driven	subtyping	based	on	MRI	measures.	
	

6. Different	 patterns	 of	 GM	 volume	 would	 be	 associated	 to	 different	 clinical	 and	

cognitive	profiles	in	DLB,	showing	distinct	neurodegeneration	subtypes.	
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2.2.	OBJECTIVES	

1. To	identify	anatomical	patterns	involving	grey	and	white	matter	variables	of	brain	

atrophy	in	Parkinson’s	disease	through	a	multimodal	MRI	cluster	analysis.	
	

2. To	identify	the	extent	of	white	matter	contribution	to	brain	changes	considering	grey	

matter	changes	in	the	same	sample.	
	

3. To	characterize	the	Parkinson’s	disease	subtypes	based	on	clinical	and	demographic	

data,	as	well	as	to	their	neuropsychological	profile.		
	

4. To	describe	whole-brain	structural	connectivity	of	Parkinson’s	disease	patients	with	

mild	cognitive	impairment.	
	

5. To	investigate	complex	structural	brain	networks	in	Parkinson’s	disease	with	mild	

cognitive	impairment	through	complex	structural	brain	networks	in	PD	by	means	of	

global	and	regional	graph-theory	metrics.	
	

6. To	 identify	 subtypes	within	Dementia	with	 Lewy	 bodies	 based	 on	 different	 grey	

matter	volumetric	patterns	by	using	a	data-driven	cluster	analysis	approach.	
	

7. To	 characterize	 the	 Dementia	 with	 Lewy	 bodies	 subtypes	 based	 on	 clinical	 and	

demographic	data	as	well	as	tau	and	β-amyloid	biomarkers.	
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The	present	Doctoral	Thesis	consists	of	three	studies,	listed	below,	comprising	samples	

of	patients	with	Parkinson’s	disease	and	Dementia	with	Lewy	bodies,	as	well	as	healthy	

controls.	

 
Study	1		

Inguanzo	A,	Sala-Llonch	R,	Segura	B,	Erostarbe	H,	Abos	A,	Campabadal	A,	Uribe	C,	Baggio	

HC,	Compta	Y,	Marti	MJ,	Valldeoriola	F,	Bargallo	N,	Junque	C.		

Hierarchical	cluster	analysis	of	multimodal	imaging	data	identifies	brain	atrophy	

and	 cognitive	patterns	 in	Parkinson's	disease.	Parkinsonism	&	Related	Disorders.	

2021;	82:	16-23.		

	

Study	2	

Inguanzo	A,	Segura	B,	Sala-Llonch	R,	Monte-Rubio	G,	Abos	A,	Campabadal	A,	Uribe	C,	

Baggio	HC,	Marti	MJ,	Valldeoriola	F,	Compta	Y,	Bargallo	N,	Junque	C.		

Impaired	 Structural	 Connectivity	 in	 Parkinson's	 Disease	 Patients	 with	 Mild	

Cognitive	 Impairment:	 A	 Study	 Based	 on	 Probabilistic	 Tractography.	 Brain	

Connectivity.	2021;	11(5):	380-392.		

	

Study	3	

Inguanzo	A,	Poulakis	K,	Mohanty	R,	Schwarz	CG,	Przybelski	SA,	Diaz-Galvan	P,	Lowe	VJ,	

Boeve	BF,	Lemstra	AW,	van	de	Beek	M,	van	der	Flier	W,	Barkhof	F,	Blanc	F,	de	Sousa	PL,	

Philippi	 N,	 Cretin	 B,	 Demuynck	 C,	 Nedelska	 Z,	 Hort	 J,	 Segura	S,	 Junque	C,	 Oppedal	K,	

Aarsland	D,	Westman	E,	Kantarci	K,	Ferreira	D.	

MRI	 data-driven	 clustering	 reveals	 different	 subtypes	 of	 Dementia	 with	 Lewy	

bodies. Under	review. 
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							3.1.	STUDY	SAMPLE	

Below,	a	brief	description	of	the	principal	methodological	procedures	for	each	study	is	

provided.	 Further	 details	 are	 specified	 along	 this	 chapter	 and	 in	 the	 corresponding	

manuscripts	attached	in	Chapter	4.	

	

Inclusion	and	exclusion	criteria	for	Studies	1	&	2	

Inclusion	 criteria	 for	 patients	were	 (i)	 fulfilling	UK	PD	Society	Brain	Bank	diagnostic	

criteria	 for	 PD	 and	 (ii)	 no	 surgical	 treatment	with	 deep-brain	 stimulation.	 Exclusion	

criteria	were	(i)	dementia	according	to	Movement	Disorders	Society	criteria,	(ii)	H&Y	

scale	 score	 >	 3,	 (iii)	 severe	 psychiatric	 or	 neurological	 comorbidity,	 (iv)	 low	 global	

intelligence	 quotient	 estimated	 by	 the	 Vocabulary	 subtest	 of	 the	 Wechsler	 Adult	

Intelligence	 Scale	 3rd	 edition	 (scalar	 score	 ≤	 7),	 (v)	 Mini	 Mental	 State	 Examination	

(MMSE)	score	below	25,	(vi)	claustrophobia,	(vii)	pathological	MRI	findings	other	than	

mild	WM	hyperintensities	in	the	FLAIR	sequence,	and	(viii)	MRI	artifacts.		

	
Parkinson’s	disease	patient	sample	-	Studies	1	&	2	

The	 sample	 included	 69	 PD	 patients	 recruited	 from	 the	 Parkinson’s	 Disease	 and	

Movement	Disorders	Unit,	Hospital	Clínic	(Barcelona,	Spain).	The	following	participants	

were	excluded:	5	patients	with	MRI	artifacts	and	2	with	claustrophobia.	The	final	sample	

included	participants	with	and	without	MCI.	Motor	symptoms	were	assessed	with	the	

UPDRS-III.		

	

Healthy	control	sample	–	Study	1	

The	 sample	 of	 HC	 in	 Study	 1	 included	 36	 volunteers	 from	 the	 Aging	 Institute	 in	

Barcelona.	A	total	of	33	HC	were	selected,	while	3	were	excluded	from	the	study:	2	with	

MRI	artifacts	and	1	with	a	cyst.	The	final	sample	included	participants	with	and	without	

MCI.		
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Healthy	control	sample	–	Study	2	

The	initial	sample	of	HC	in	Study	2	included	54	volunteers	from	the	Aging	Institute	in	

Barcelona.	 A	 total	 51	 HC	 were	 finally	 selected	 for	 the	 study.	 Three	 subjects	 were	

excluded:	2	HC	with	MRI	artifacts,	and	one	HC	with	a	cyst.	The	inclusion	criteria	required	

absence	of	cognitive	impairment.	

	

Dementia	with	Lewy	bodies	patient	sample	–	Study	3	

A	 total	 of	 165	 subjects	 participated	 in	 this	 multicentre	 study.	 The	 data	 were	 a	

combination	of	the	European	DLB	consortium	(E-DLB)	(n=	97)	(Oppedal	et	al.,	2019),	

including	29	subjects	 from	 the	Motol	University	Hospital	 (Prague,	Txec	Republic),	34	

from	the	Day	Hospital	of	Geriatrics	(Strasbourg,	France),	34	from	VU	University	Medical	

Centre	 (Amsterdam,	 the	 Netherlands)	 and	 68	 from	 the	 Mayo	 Clinic	 (Rochester,	 MN,	

United	States).	The	diagnosis	was	made	according	to	the	2005	International	Consensus	

Criteria	 for	probable	DLB,	based	on	history	and	clinical	examinations	performed	by	a	

licensed	neurologist.	Exclusion	criteria	were:	(i)	presence	of	acute	delirium,	(ii)	terminal	

illness,	 (iii)	 previous	 stroke,	 (iv)	 psychotic	 or	 bipolar	 disorder,	 (v)	 craniocerebral	

trauma,	 and	 (vi)	 recent	 diagnosis	 of	 a	major	 somatic	 illness.	 Presence	 or	 absence	 of	

clinical	features	was	based	on	the	2005	International	Consensus	Criteria	for	probable	

DLB	to	allow	harmonized	diagnosis	across	all	centers	(McKeith	et	al.,	2005).		

	

Ethical	statement	of	Studies	1	&	2	

Written	informed	consent	was	obtained	from	all	the	participants	of	both	studies	after	a	

full	explanation	of	the	procedures.	The	study	was	approved	by	the	Institutional	Ethics	

Committee	from	the	University	of	Barcelona	(IRB00003099).		

	
Ethical	statement	of	Study	3	

Local	ethics	committee	at	each	E-DLB	centre	and	the	Mayo	Clinic	Institutional	Review	

Board	approved	the	study.	Informed	consent	on	participation	was	obtained	from	all	of	

the	patients	or	an	appropriate	surrogate	according	to	the	Declaration	of	Helsinki.	
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							3.2.	CLINICAL	AND	NEUROPSYCHOLOGICAL	ASSESSMENT	

In	Studies	1	and	2,	neuropsychiatric	and	motor	symptomatology	was	assessed,	and	a	

comprehensive	battery	of	neuropsychological	 tests	was	administered.	Further	details	

are	specified	along	the	subsequent	subsections.	

	
																3.2.1.	Clinical	assessment		

Studies	1	&	2	

Motor	disease	severity	was	evaluated	using	H&Y	staging	and	UPDRS-III	(Fahn	and	Elton,	

1987).	To	study	the	presence	of	RBD-like	symptomatology	in	both	patients	and	controls	

the	Innsbruck	REM	Sleep	Behavior	Disorder	Inventory	(RBD-I)	was	used	(Frauscher	et	

al.,	 2012).	 All	 PD	 patients	 were	 taking	 antiparkinsonian	 medication	 consisting	 of	

different	combinations	of	L-DOPA,	COMT	inhibitors,	MAO	inhibitors,	dopamine	agonists,	

and	amantadine.	In	order	to	standardize	doses,	LEDD	was	calculated	(Tomlinson	et	al.,	

2010).	All	assessments	were	done	 in	on	state.	Neuropsychiatric	 symptomatology	was	

measured	 by	 means	 of	 Beck	 Depression	 Inventory	 II	 (BDI)	 (Beck	 et	 al.,	 1996),	

Starkstein’s	Apathy	Scale	(Starkstein	et	al.,	1992),	and	the	Neuropsychiatric	Inventory	

(NPI)	(Cummings	et	al.,	1994).	Additionally,	in	Study	1,	olfaction	was	also	assessed	with	

the	University	of	Pennsylvania	Smell	 identification	test	(UPSIT)	(Doty,	1995),	and	the	

Sniffin	identification	test	(Hummel	et	al.,	2007).		

	

Study	3	

All	 cardinal	 clinical	 features	 were	 assessed	 including	 presence	 of	 parkinsonism,	 VH,	

cognitive	 fluctuations,	 and	 a	 clinical	 history	 of	 probable	 RBD.	 MMSE	 was	 used	 as	 a	

measure	of	global	cognitive	performance.	
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															3.2.2.	Neuropsychological	Assessment		

Study	1	&	2	

All	participants	underwent	a	comprehensive	neuropsychological	assessment	addressing	

cognitive	domains	frequently	impaired	in	PD	(Table	4).	Attention	and	working	memory	

were	assessed	with	the	Trail	Making	Test	(parts	A	and	B),	Digit	Span	Forward	and	Back-

ward,	Stroop	Color	and	Word	Test,	Symbol	Digit	Modalities	Test	(SDMT)-Oral	version.	

Executive	 functions	were	evaluated	with	phonemic	 and	 semantic	 fluencies.	 Language	

was	assessed	using	the	Boston	Naming	Test	(BNT).	Memory	was	assessed	using	Rey’s	

Auditory	 Verbal	 Learning	 Test	 total	 learning	 recall,	 delayed	 recall	 and	 recognition	

abilities	(RAVLT	total,	RAVLT	recall,	and	RAVLT	recognition,	respectively).	Visuospatial	

and	 visuoperceptual	 functions	 were	 assessed	 with	 Benton’s	 Judgement	 of	 Line	

Orientation	(JLO),	Visual	Form	Discrimination	(VFD),	and	Facial	Recognition	(FRT)	tests.		

	

Assessment	of	Mild	Cognitive	Impairment	(MCI)	

In	Studies	1	and	2,	the	presence	of	MCI	was	defined	using	PD-MCI	diagnostic	criteria	level	

II	(Litvan	et	al.,	2012).	The	z-scores	for	each	test	and	for	each	subject	were	calculated	

based	on	the	control	group’s	means	and	standard	deviations.	Expected	z	scores	adjusted	

for	 age,	 sex,	 and	 education	 were	 calculated	 based	 on	 a	 multiple	 regression	 analysis	

performed	in	the	healthy	control	group	(Aarsland	et	al.,	2009).	The	presence	of	MCI	was	

established	if	the	z	score	for	a	minimum	of	2	tests	of	the	same	domain,	or	one	test	of	2	

different	domains,	were	at	least	1.5	below	than	the	expected	score	(neuropsychological	

domains	and	tests	are	described	in	Table	4).		
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Table	4:	Summary	of	neuropsychological	tests	

																	

DOMAIN	 TEST	

	
Global	cognition	

	
Mini	Mental	State	Examination	(MMSE)		
(Folstein	et	al.,	1975)	
	

	
	
Attention	&		
Working	memory	

	
Digit	Span	Forward	and	Backward	(Wechsler,	1999)	
	
Symbol	Digit	Modalities	Test	(SDMT)	(Smith,	2000)	
	
Trail	Making	Test	(TMT,	in	seconds)	part	A	and	part	B	
(Lezak	et	al.,	2012)	
	
Stroop	Color	and	Word	Test	(Stroop,	1935)	
	

	
	
Executive	

functions	

	
Phonetic	Fluency	(words	beginning	with	“p”	in	1	minute)	
(Lezak	et	al.,	2012)	
	
Semantic	fluency	(animals	in	1	minute)		
(Lezak	et	al.,	2012)	
	

	
	
	
Memory	

	
Rey’s	Auditory	Verbal	Learning	Test	(RAVLT)		
(Lezak	et	al.,	2012):	
·	Total	learning	recall		
			(sum	of	correct	responses	from	trial	I	to	trial	V)	

·	Delayed	recall	(total	recall	after	20min)	

·	Recognition	

	

	
	
	
Visuospatial	&	

Visuoperceptual		

	
Visual	Form	Discrimination	(VFD)	(Benton	et	al.,	1994)	
	
Benton’s	Judgement	of	Line	Orientation	(JLO)		
(Benton	et	al.,	1978)	
	
Short	form	of	the	Facial	Recognition	Test	(FRT)		
(Benton	et	al.,	1994)	
	

	
Language	

	
Short	version	of	the	Boston	Naming	Test	(BNT)		
(Kaplan	et	al.,	1983)	
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																3.2.3.	Statistical	analyses	for	clinical	and	neuropsychological				
																																		variables	
	
Study	1	&	2	

Demographic,	neuropsychological,	and	clinical	statistical	analyses	were	conducted	using	

IBM	 SPSS	 Statistics	 25.0	 (IBM	 Corp.,	 Armonk,	 New	 York).	 To	 assess	 differences	 in	

demographic,	clinical	and	neuropsychological	quantitative	variables,	Kruskal-Wallis	or	

Mann-Whitney	 U	 tests	 were	 used,	 while	 Pearson’s	 chi-squared	 test	 was	 used	 for	

categorical	 variables.	 Additionally,	 in	 Study	 2,	 correlations	 between	 the	

neuropsychological	and	clinical	data	with	global	FA	measures	and	NOS	were	evaluated	

using	Pearson	correlation.	

	

Study	3	

Differences	in	demographic	and	clinical	measures	were	assessed	with	one-way	ANOVA	

for	continuous	variables	and	the	Pearson’s	chi-square	test	for	categorical	variables.	The	

analyses	were	performed	using	IBM	SPSS	Statistics	27.0	(IBM	Corp.,	Armonk,	New	York).	
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							3.3.	MRI	ACQUISITION		

	
Figure	15:	Summary	of	the	MRI	techniques	used	in	each	study	

	

	

	

Studies	1	&	2	
	
MRI	 data	 were	 acquired	 on	 a	 3-Tesla	 SIEMENS	 MAGNETOM	 Trio	 Tim	 scanner.	 The	

scanning	protocols	included	the	following	MRI	sequences:	

• Structural	 T1	 images:	 high-resolution	 3-dimensional	 T1-weighted	 images	

acquired	in	the	sagittal	plane	(TR=2300	ms,	TE=2.98	ms,	TI=900	ms,	240	slices,	

FOV=256	mm,	resolution=	(1,1,1)	mm).	

	

• Diffusion-weighted	images:	two	sets	of	single	band	spin-echo	diffusion	weighted	

images	 in	 the	 axial	 plane	 with	 opposite	 (anterior-posterior	 and	 posterior-

anterior)	phase	encoding	directions	 (TR=7700	ms,	TE=89	ms,	FOV=244	mm;	

resolution	=	(2,2,2)	mm;	number	of	directions=30,	b-value=1000	s/mm2,	b0=0	

s/mm2).	

	

• FLAIR:	axial	FLAIR	sequence	(TR	=	9000	ms,	TE	=	96	ms).	

T1-w:	Parcellation

diffusion	MRI

65	GM	ROIs

96	GM	ROIs

FSL	
(Oxford	Harvard	atlas)

SPM	
(MCALT	atlas)

T1-w:	VBM

JHU	Atlas 20	FA	ROIs
STUDY	1

Hierarchical	cluster	
analysis	in	PD

STUDY	3
Cluster	analysis	based	on	
Random	Forest	in	DLB

STUDY	2
Structural	connectivity

PD-MCI	and	PD	without	MCI

TFNBS
Graph	
theory

Probabilistic	
tractography	

TBSS

TBSS
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Study	3	
	

Structural	T1	images	were	provided	from	4	different	centres:	

• Images	 from	 Strasbourg	 were	 acquired	 on	 a	 3-Tesla	 SIEMENS	 VERIO	

(TR=1900ms,	TE=2.53ms,	TI=	900ms,	FA=9,	resolution=	(1,1,1)	mm).	

• Images	 from	 Prague	 were	 acquired	 on	 a	 1.5-Tesla	 SIEMENS	 AVANTO	

(TR=2000ms,	TE=3.08ms,	TI=1100ms,	FA=15,	resolution=	(0.98,0.98,1)	mm).	

• Images	from	Amsterdam	were	acquired	on	a	3-Tesla	SIGNA	(TR=8ms,	TE=3ms,	

TI=450ms,	FA=	12,	resolution	(0.98,0.98,1)	mm).	

• Images	from	Mayo	Clinic	were	acquired	on	a	3-Tesla	3T	General	Electric	(GE)	

Discovery	SIGNA	(TR=2300ms,	TE=	3ms,	TI=	900ms,	resolution	=	(1,1,1.2)	mm).	

	

Table	5:	Summary	of	the	main	MRI	characteristics	of	the	studies	

	
Study	

	
Study		
Description	
	

	
Sample	
size	

	
Age;	disease	
duration	

	
MRI	data	
(images)	

	
Analysis	
technique	

	
Study	1	

	
Data-driven	
analysis	in	PD	

	
62	PD	 	
33	HC	

	
64.5	(15);	7(7)	
66	(15);	NA	
	

	
T1-weighted	
DWI		

	
VBM	
TBSS	
Hierarchical	
cluster	analysis	
	

	
Study	2	

	
Structural	
connectivity		
in	PD-MCI	
	

	
62	PD		
51	HC	

	
64.5(15);	7(7)	
66	(17);	NA	
	

	
T1-weighted	
DWI		

	
TBSS	
TFNBS	
Graph	theory	

	
Study	3	

	
Data-driven	
analysis	in	
DLB	

	
165	DLB	

	
69	(8.57);	
5.16	(4.62)	

	
T1-weighted		

	
Hierarchical	
cluster	analysis	
based	on	
Random	Forest		
(VBM	pipeline)	
	

For	Study	1	&	2	age	and	disease	duration	are	shown	as	median	(IQ),	while	in	Study	3	are	shown	as	

mean	(SD).	
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							3.4.	NEUROIMAGING	TECHNIQUES	

																3.4.1.	Structural	MRI	

																														3.4.1.1.	Voxel-based	morphometry		

In	Studies	1	and	3,	voxel-based	morphometry	(VBM)	was	used	to	estimate	the	amount	of	

GM	in	a	voxel	through	its	signal	intensity	(Good	et	al.,	2001),	which	was	then	used	for	

cluster	analysis.	Additionally,	 in	Study	1,	VBM	was	used	for	voxel-wise	comparison	of	

local	GM	volumes.			

	

Data	preprocessing		

FSL-VBM	 pipeline	 (Douaud	 et	 al.,	 2007)	 was	 used	 in	 Study	 1;	 while	 SPM12	

(https://www.fil.ion.ucl.ac.uk/spm/)	was	used	in	Study	3	for	the	same	purpose.		

	

In	Study	1,	structural	images	were	first	brain-extracted	and	segmented	into	GM,	WM	and	

cerebrospinal	fluid	(CSF),	then	registered	to	the	Montreal	Neurological	Institute	(MNI)	

152	standard	space	using	non-linear	registration.	The	resulting	images	were	averaged	

to	 create	 a	 study-specific	 template,	 to	 which	 native	 GM	 images	 were	 nonlinearly	

registered.	Second,	native	GM	images	were	registered	to	this	study	specific	template	and	

modulated	to	correct	for	local	expansion	or	contraction	due	to	the	nonlinear	component	

of	the	spatial	transformation.	The	modulated	GM	images	were	then	smoothed	with	an	

isotropic	Gaussian	kernel	with	a	sigma	of	3	mm	following	the	FSL	guidelines	(Douaud	et	

al.,	2007).	GM	volumes	from	48	cortical	regions	and	17	subcortical	regions	of	interest	

defined	by	 the	Harvard-Oxford	atlases	 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases	 )	

were	obtained.	

	

In	Study	3,	using	ANTs	(Avants	et	al.,	2008),	the	Mayo	Clinic	Adult	Lifespan	Template	

(MCALT)	atlas	(https://www.nitrc.org/projects/mcalt/	)	was	propagated	to	individuals’	

native	MPRAGE	space	and	regional	estimations	of	volume	across	cortical	and	subcortical	

GM	structures	were	calculated.	Tissue	probabilities	were	determined	for	each	MPRAGE	

using	 the	 unified	 segmentation	 algorithm	 in	 SPM12	 (Wellcome	 Trust	 Centre	 for	
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Neuroimaging,	 London,	 UK),	 with	 MCALT	 tissue	 priors	 and	 settings	 (Schwarz	 et	 al.,	

2017).	The	total	intracranial	volume	(TIV)	was	calculated	from	the	tissue	probabilities.	

GM	volume	from	82	cortical,	12	subcortical	and	2	brainstem	ROIs	were	obtained.	

	

																														3.4.1.2.	Cortical	segmentation	
	
In	Study	2,	structural	images	were	used	to	parcellate	the	cerebral	cortex	into	gyral	and	

sulcal	structures	based	on	the	Desikan-Killiany	atlas	(Desikan	et	al.,	2006),	as	well	as	for	

registration	and	normalization	purposes.		

	

Data	preprocessing	

Structural	MRI	preprocessing	was	performed	using	FreeSurfer	(version	5.1;	available	at:	

https://surfer.nmr.mgh.harvard.edu/),	 an	 open-source	 software	 specialized	 in	

processing	and	analysing	brain	MRI	images.	FreeSurfer	provides	a	full	processing	stream	

for	 structural	 MRI	 data:	 removal	 of	 non-brain	 tissue,	 automated	 Talairach	

transformation,	 intensity	normalization	(Sled	et	al.,	1998),	tessellation	of	the	GM/WM	

boundary,	automated	topology	correction	(Ségonne	et	al.,	2007),	and	accurate	surface	

deformation	to	optimally	place	the	GM/WM	and	GM/CSF	boundaries	(Fischl	and	Dale,	

2000).	The	output	of	each	step	(registration,	skull	stripping,	segmentation,	and	cortical	

surface	 reconstruction)	 was	 visually	 inspected	 to	 guarantee	 correct	 and	 accurate	

preprocessing.		

	

																3.4.2.	Diffusion	MRI	

Diffusion	MRI	was	employed	in	Study	1	and	2	to	characterize	WM	abnormalities	with	

diffusion	 tensor-derived	 measures	 and,	 additionally	 in	 Study	 2,	 to	 reconstruct	 fibre	

tracts	through	probabilistic	tractography.	

	
Data	preprocessing	

Diffusion-weighted	 images	 were	 preprocessed	 with	 FSL	 version	 5.08	 using	 FDT	

(FMRIB’s	 Diffusion	 Toolbox),	 a	 toolbox	 that	 includes	 data	 processing,	 local	 diffusion	
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modeling	 and	 tractography	 tools	 (Jbabdi	 et	 al.,	 2012).	 First,	 visual	 inspection	 of	 the	

images	was	done	to	identify	motion	and	intensity	artifacts.	Followed	by	brain	extraction	

using	BET,	susceptibility-induced	distortion	correction	using	top-up,	and	eddy-current	

distortion	and	subject	motion	correction	with	the	eddy	tool.	

	

Diffusion	analyses	

TBSS:	 In	Study	1	and	2,	a	voxel-wise	statistical	analysis	of	FA	images	was	carried	out	

using	TBSS	(Smith	et	al.,	2006).		

First,	the	preprocessed	diffusion	MRI	images	were	analysed	with	FDT	software	from	FSL.	

Then,	 individual	FA	maps	were	obtained	using	a	Diffusion	Tensor	Model	 fit	 (DTIFIT).		

Voxel-wise	statistical	analysis	of	FA	was	carried	through	with	TBSS	(Smith	et	al.,	2006),	

which	 performs	 nonlinear	 registration	 (using	 Nonlinear	 Image	 Registration	 Tool	

[FMRIB])	of	FA	images	from	DTIFIT	to	the	MNI	standard	space	and	generates	a	mean	FA	

skeleton	that	represents	the	centre	of	all	WM	tracts	common	to	the	whole	group.	Each	

subject’s	FA	image	was	projected	onto	the	skeleton	and	the	resulting	FA	skeleton	images	

were	fed	into	a	general	linear	model	(GLM)	to	find	vertex-wise	differences	in	FA	skeleton	

maps	between	groups.	In	addition,	in	Study	2,	the	same	steps	were	used	to	obtain	the	
MD	maps.	

	

Tractography:	 In	 Study	 2,	 probabilistic	 tractography	 was	 used.	 First,	 the	 86	 ROIs	

previously	 obtained	 with	 FreeSurfer	 were	 linearly	 registered	 from	 native	 structural	

space	to	native	diffusion	space	with	FMRIB’s	Linear	Image	Registration	Tool	(Jenkinson	

et	al.,	2002)	to	be	used	as	seeds.	Next,	Bedpostx	was	applied	to	calculate	the	probability	

distribution	 of	 fibre	 directions	 in	 each	 voxel	 (Behrens	 et	 al.,	 2007).	 Finally,	 the	

tractography	was	 run	with	 the	Probrtarckx2	 tool	 (Behrens	 et	 al.,	 2007)	obtaining	 an	

86x86	connectivity	matrix	per	subject.	
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																3.4.3.	Graph	Theory	Connectivity	

In	Study	2,	individual	86x86	connectivity	matrices	(68	cortical	and	18	deep	gray	matter	

ROIs)	were	used	for	the	connectome	and	graph	theory	analyses.	The	NOS	between	each	

pair	of	ROIs,	was	taken	as	a	measure	of	the	strength	of	structural	connectivity	between	

regions.	To	minimize	false-positive	connections,	streamlines	intersecting	fewer	than	two	

regions	 were	 ignored,	 and	 those	 detected	 in	 at	 least	 50%	 of	 the	 individuals	 were	

considered	(Abos	et	al.,	2019;	Zalesky	et	al.,	2010).	

	
Connectome	analysis:	TFNBS	was	used	to	perform	statistic	 inference	 in	brain	graph	

analyses.	

 

Graph	theory	analysis:	Graph	theory	topological	parameters	derived	from	the	NOS	

matrices	were	obtained	using	the	Brain	Connectivity	Toolbox	from	MATLAB.	The	graph	

metrics	included	global	and	local	normalized	clustering	coefficient,	global	and	local	node	
degree,	 small	 worldness,	 normalized	 path	 length,	 modularity,	 local	 efficiency,	 and	

betweenness	 centrality.	 (See	 Rubinov	 and	 Sporns,	 2010	 for	 detailed	 definitions	 and	

calculations	of	the	graph	metrics).	
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							3.5.	DATA-DRIVEN	SUBTYPING	
	
In	Studies	1	and	3,	unsupervised	data-driven	approaches	were	used	to	find	clusters	

within	the	PD	and	DLB	sample,	respectively.	Calinski-Harabasz	criterion	was	used	in	

both	studies	to	evaluate	the	optimal	number	of	clusters.		

	

																3.5.1.	Hierarchical	cluster	analysis	
	
In	Study	1,	we	performed	a	hierarchical	cluster	analysis	using	the	Ward’s	linkage	

method,	which	 combines	pairs	of	 clusters	at	each	step	while	minimizing	 the	sum	of	

square	errors	from	the	cluster	mean.	First,	we	used	the	FSL	command-line	fslmeants	to	

calculate	the	mean	GM	volume	from	48	cortical	and	17	subcortical	ROIs	defined	by	the	

Harvard-Oxford	atlases	(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases)	in	MNI	standard	

space.	Mean	FA	values	were	extracted	from	20	tracts	of	interest	defined	in	the	JHU	atlas	

(Wakana	et	al.,	2007),	also	in	the	MNI	standard	space.	The	85	resulting	features	were	

then	merged	 into	 a	 single	 vector	 for	 each	 of	 the	 PD	 patients	 and	 used	 to	 perform	 a	

hierarchical	cluster	analysis	with	MATLAB	(release	2014b,	The	MathWorks,	Inc.,	Natick,	

Massachusetts).		

	

																3.5.2.	Cluster	analysis	using	Random	Forest	

In	Study	3,	we	performed	a	cluster	analysis	with	the	RF	method,	which	uses	an	ensemble	

classifier	consisting	of	many	decision	trees	(Breiman	et	al.,	1996).		

The	analysis	with	the	RF	method	was	applied	on	the	residuals	of	the	96	ROIs,	from	the	

MCALT	 atlas,	 which	 were	 adjusted	 by	 TIV	 and	 centre	 (Breiman	 et	 al.,	 2001).	 Then,	

through	 bootstrapping	 (Breiman	 et	 al.,	 1996),	 each	 tree	 was	 trained	 with	 a	 slightly	

different	set	of	the	data	(Amit	and	Geman,	1997),	which	consisted	of	70%	of	the	original	

data,	 while	 the	 remaining	 30%	 was	 used	 for	 validation.	 The	 RF	 method	 was	
implemented	in	R	(The	R	Foundation	for	Statistical	Computing;	version	4.0.3).	Cluster	

analysis	 using	 RF	 is	 based	 on	 the	 similarity	 (proximity)	 measure	 between	 pairs	 of	

observations	(Shi	and	Horvath,	2006).	First,	each	tree	assigns	the	observations	together	

on	a	certain	class	by	directing	them	on	the	same	terminal	node,	and	each	time	the	pair	
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of	observations	ends	up	on	the	same	terminal	node,	the	similarity	measure	increases	by	

1.	Agglomerative	hierarchical	clustering	with	the	average	linkage	method	was	then	used	

in	the	output	data	from	RF.	

	

Ordering	the	cluster	features	according	to	their	relevance	
	

In	 Study	 1,	 we	 used	 ANOVAs	 to	 determine	 which	 ROIs	 showed	 a	 greater	 difference	

between	the	3	groups.	Accordingly,	features	with	higher	F	values	were	considered	more	

relevant	in	differentiating	the	clusters.		

	

In	Study	3,	the	mean	decrease	in	the	Gini	index	was	used	to	identify	the	ROIs	with	the	

highest	contribution	to	the	cluster	analysis.	

 
							3.6.	COMPLEMENTARY	ANALYSES	
 
																3.6.1.	Receiver	Operating	Characteristic	(ROC)	curve	
	
In	 Study	 2,	we	 used	 the	 binomial	 logistic	 regression,	which	 is	 based	 on	 a	 regression	

model	 to	 predict	 the	probability	 that,	 for	 a	 given	 input	 data,	 each	 input	 belongs	 to	 a	

numeric	 category	 (0	 or	 1).	 It	 models	 data	 using	 a	 sigmoid	 function	 and	 becomes	 a	

classification	 technique	 when	 a	 threshold	 is	 established	 on	 the	 sigmoid	 (0.5).	 The	

receiver	 operating	 characteristic	 (ROC)	 curve	 was	 obtained	 from	 the	 probability	

estimations	by	the	logistic	regression	as	scores,	as	well	as	the	corresponding	area	under	

the	curve	(AUC).	

	

																3.6.2.	Supervised	Random	Forest	

In	Study	3,	a	supervised	RF	was	performed	using	the	10	most	relevant	ROIs	from	the	

unsupervised	RF	(the	ones	with	the	lowest	Gini	values)	as	predictor	variables,	and	the	

cluster	number	as	 the	dependent	variable.	Hence,	we	obtained	 information	on	which	

ROIs	better	characterized	each	cluster.	

	



 

  96	

	

																3.6.3.	Biomarkers	of	concomitant	pathology		
	
In	Study	3,	the	presence	of	concomitant	AD	and	cerebrovascular	disease	were	evaluated.		
	
In	 order	 to	 determine	 the	 presence	 of	 concomitant	 AD	 pathology,	 presence	 of	 both														

β-amyloid	and	tau	biomarkers	was	required,	as	they	are	both	needed	for	AD	diagnosis	

(Jack	et	 al.,	 2018).	 In	 the	E-DLB	consortium,	 the	β-amyloid	and	 tau	pathologies	were	

assessed	with	 CSF	 β-amyloid	 1-42	 and	 phosphorylated	 tau	 biomarkers;	while,	 in	 the	

Mayo	Clinic,	PET	imaging	with	PiB	and	flortaucipir	(AV-1451)	tracers	was	used	to	assess	

β-amyloid	and	tau	pathologies,	respectively.	Biomarker	levels	were	classified	as	normal	

or	 abnormal	 based	 on	 centre-specific	 established	 cut	 points.	 For	 more	 detailed	

information	on	the	biomarkers	procedure	please	see	Ferreira	et	al.,	(2020a)	for	the	E-

DLB,	and	Kantarci	et	al.,	(2017)	for	the	Mayo	Clinic.		

	

For	 cerebrovascular	 disease,	 white	 matter	 hyperintensities	 (WMH)	 were	 defined	 as	

signal	 abnormalities	 of	 variable	 size	 in	 the	 WM	 using	 a	 semi-quantitative	 method	

described	in	Ferreira	et	al.,	(2021).	

	

Differences	in	concomitant	AD	pathology	and	WMH	between	clusters	were	assessed	with	

ANOVA.	

	
																3.6.4.	Longitudinal	analysis:	linear	mixed	model	
	
In	Study	3,	in	order	to	evaluate	the	global	cognitive	decline	in	the	DLB	subtypes,	a	linear	

mixed	model	was	implemented	in	R	version	4.0.3.	The	linear	mixed	effects	model	design	

consisted	of	a	random	intercept	per	subject	with	the	model	reference	set	to	the	baseline	

and	cluster	3.	The	outcome	was	the	longitudinal	MMSE	scores	(12-month,	24-month	and	

36-month	follow-up).	The	fixed	effects	were	time	(categorical),	cluster	(categorical)	and	

interaction	 between	 time	 and	 cluster.	 Post-hoc	 pairwise	 comparisons	 were	 done	

between	clusters	based	on	model	estimates	with	multiple	comparisons	corrections	with	

Tukey	adjustment.
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A B S T R A C T   

Background: Parkinson’s disease (PD) is a heterogeneous condition. Cluster analysis based on cortical thickness 
has been used to define distinct patterns of brain atrophy in PD. However, the potential of other neuroimaging 
modalities, such as white matter (WM) fractional anisotropy (FA), which has also been demonstrated to be 
altered in PD, has not been investigated. 
Objective: We aim to characterize PD subtypes using a multimodal clustering approach based on cortical and 
subcortical gray matter (GM) volumes and FA measures. 
Methods: We included T1-weighted and diffusion-weighted MRI data from 62 PD patients and 33 healthy con-
trols. We extracted mean GM volumes from 48 cortical and 17 subcortical regions using FSL-VBM, and the mean 
FA from 20 WM tracts using Tract-Based Spatial Statistics (TBSS). Hierarchical cluster analysis was performed 
with the PD sample using Ward’s linkage method. Whole-brain voxel-wise intergroup comparisons of VBM and 
TBSS data were also performed using FSL. Neuropsychological and demographic statistical analyses were con-
ducted using IBM SPSS Statistics 25.0. 
Results: We identified three PD subtypes, with prominent differences in GM patterns and little WM involvement. 
One group (n = 15) with widespread cortical and subcortical GM volume and WM FA reductions and pronounced 
cognitive deficits; a second group (n = 21) with only cortical atrophy limited to frontal and temporal regions and 
more specific neuropsychological impairment, and a third group (n = 26) without detectable atrophy or 
cognition impairment. 
Conclusion: Multimodal MRI data allows classifying PD patients into groups according to GM and WM patterns, 
which in turn are associated with the cognitive profile.   

1. Introduction 

Parkinson’s disease (PD) is characterized by its clinical 

heterogeneity, which includes not only motor symptoms but also a wide 
range of non-motor manifestations [1,2]. Objective neuroimaging data 
obtained from magnetic resonance imaging (MRI) has been 
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demonstrated to be able to classify PD patients through cluster analysis. 
Uribe et al. [3] used cortical thickness from MRI data to define distinct 
anatomical subtypes in a non-demented PD sample, and found one 
group with frontal and occipital atrophy, a second group with 
parieto-temporal atrophy and a third with undetectable atrophy. These 
three patterns were then found to be associated with different clin-
ical/cognitive profiles. Moreover, a follow up of this study concluded 
that the three patterns progressed differently over time, the pattern with 
the youngest age at onset being the one associated with the least 
structural degeneration [4]. 

These studies have used cortical thickness to define the clusters 
representing atrophy profiles. However, previous studies have also 
shown volumetric differences in cortical and subcortical GM regions [5] 
as well as microstructural white matter (WM) alterations in PD [6]. In 
addition, GM and WM changes have been widely shown to be associated 
with cognitive impairment [5,7–9]. Recently, disruption of integration 
of structural brain networks was observed in PD subtypes identified 
through clinical data and was correlated with motor and cognitive 
deficits [10]. 

To date, no previous studies have combined GM and WM information 
extracted from MRI to detect different disease subgroups in PD using a 
multimodal hypothesis-free data-driven approach. We hypothesized 
that multimodal clustering including FA measures would allow us to 
more accurately identify subgroups of patients characterized by 
different patterns of neurodegeneration, which at the same time would 
be associated with distinctive clinical and neuropsychological pheno-
types. Accordingly, we aimed to combine measures of GM cortical and 
subcortical volumes, as well as measures of WM microstructure to 
determine (1) whether different anatomical profiles exist involving GM 
and WM patterns of brain atrophy; and (2) whether the different pat-
terns are associated with distinct cognitive profiles. 

2. Methods

2.1. Participants

The sample included 69 PD patients recruited from the Parkinson’s 
Disease and Movement Disorders Unit, Hospital Clínic (Barcelona, 
Spain), and 36 healthy controls (HC) from the Aging Institute in 
Barcelona. Inclusion criteria for patients were (i) fulfilling UK PD 
Society Brain Bank diagnostic criteria for PD and (ii) no surgical 
treatment with deep-brain stimulation. Exclusion criteria for all par-
ticipants were (i) dementia according to Movement Disorders Society 
criteria, (ii) Hoehn and Yahr (H&Y) scale score > 3, (iii) severe psy-
chiatric or neurological comorbidity, (iv) low global intelligence 
quotient estimated by the Vocabulary subtest of the Wechsler Adult 
Intelligence Scale 3rd edition (scalar score ≤ 7), (v) Mini Mental State 
Examination (MMSE) score below 25, (vi) claustrophobia, (vii) path-
ological MRI findings other than mild WM hyperintensities in the 
FLAIR sequence, and (viii) MRI artifacts. A total of 62 PD patients and 
33 HC were selected. The following participants were excluded from 
the study: five patients and two HC with MRI artifacts, two patients 
with claustrophobia and one HC with a cyst. The final sample 
included participants with and without mild cognitive impairment 
(MCI). Motor symptoms were assessed with the Unified Parkinson’s 
Disease Rating Scale, motor section (UPDRS-III). All PD patients were 
taking antiparkinsonian drugs that consisted of different combinations 
of L-dopa, catechol-O-methyltransferase inhibitors, monoamine oxi-
dase inhibitors, dopamine agonists, and amantadine. To standardize 
the doses, the L-dopa equivalent daily dose (LEDD) [11] was calcu-
lated. Written informed consent was obtained from all study partici-
pants after a full explanation of the procedures. The study was 
approved by the institutional Ethics Committee from the University of 
Barcelona (IRB00003099). 

2.2. Neuropsychological tests 

All participants underwent a comprehensive neuropsychological 
assessment in the on state addressing cognitive domains frequently 
impaired in PD [12]. Attention and working memory were assessed with 
the Trail Making Test (parts A and B), Digit Span Forward and Back-
ward, Stroop Color-word Test, Symbol Digits Modalities Test 
(SDMT)-Oral version. Executive functions were evaluated with phone-
mic and semantic fluencies. Language was assessed using the Boston 
Naming Test (BNT). Memory was assessed using Rey’s Auditory Verbal 
Learning Test total learning recall, delayed recall and recognition abil-
ities (RAVLT total, RAVLT recall, and RAVLT recognition, respectively). 
Visuospatial and visuoperceptual functions were assessed with Benton’s 
Judgement of Line Orientation (JLO), Visual Form Discrimination 
(VFD), and Facial Recognition (FRT) tests. Neuropsychiatric symptoms 
were evaluated with the Beck Depression Inventory-II, Starkstein’s 
Apathy Scale and Cumming’s Neuropsychiatric Inventory. Expected z 
scores adjusted for age, sex, and education were calculated for each test 
and subject based on a multiple regression analysis performed in the HC 
group [13]. The presence of MCI was defined using PD-MCI diagnostic 
criteria level II [12]. 

2.3. Neuroimaging data 

2.3.1. MRI acquisition 
MRI data were obtained with a 3T scanner (MAGNETOM Trio, 

Siemens, Germany). The scanning protocol included high-resolution 3- 
dimensional T1-weighted images acquired in the sagittal plane (TR: 
2300 ms, TE: 2.98 ms, TI: 900 ms, 240 slices, FOV: 256 mm; 1 mm 
isotropic voxel), and diffusion-weighted images (DTI): two sets of single 
band spin-echo diffusion weighted images in the axial plane with 
opposite (anterior-posterior and posterior-anterior) phase encoding di-
rections (TR: 7700 ms, TE: 89 ms, FOV: 244 mm; 2 mm isotropic voxel; 
number of directions: 30, b-value: 1000 s/mm2, b0 value: 0 s/mm2). 

2.3.2. Structural MRI preprocessing 
Structural data were analyzed with FSL-VBM [14]. First, structural 

images were brain-extracted and segmented into GM, WM and cere-
brospinal fluid, then registered to the Montreal Neurological Institute 
(MNI) 152 standard space using non-linear registration. The resulting 
images were averaged to create a study-specific template, to which 
native GM images were nonlinearly re-registered. Second, native GM 
images were registered to this study specific template and modulated to 
correct for local expansion or contraction due to the nonlinear compo-
nent of the spatial transformation. The modulated GM images were then 
smoothed with an isotropic Gaussian kernel with a sigma of 3 mm 
(FWHM = 6.9 mm) following the FSL guidelines [14]. 

2.3.3. Diffusion MRI preprocessing 
Diffusion MRI images were analyzed with FMRIB’s Diffusion 

Toolbox (FDT) software from FSL, (http://www.fmrib.ox.ac.uk/fsl). 
Individual fractional anisotropy (FA) maps were obtained using a 
Diffusion Tensor Model fit (DTIFIT) and introduced to group analysis 
using the Tract-Based Spatial Statistics (TBSS) protocol [15,16]. TBSS 
performs non-linear registration (FNIRT) of FA images to the MNI 
standard space and generates a mean FA skeleton that represents the 
center of all tracts common to the entire group. Then, the aligned FA 
image for each subject was projected onto the skeleton by filling the 
skeleton with FA values from the nearest relevant tract center. 

2.4. Hierarchical cluster analysis 

As described above, we obtained individual GM probability maps 
using a VBM approach and skeletonized FA maps from all subjects using 
a DTI approach with FSL. Using the FSL command-line fslmeants, we 
calculated the mean GM volume from 48 cortical regions and 17 
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subcortical regions of interest defined by the Harvard-Oxford atlases 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) in MNI standard space. 
Mean FA values were extracted from 20 tracts of interest defined in the 
JHU atlas [17], also in the MNI standard space. The 85 resulting features 
were then merged into a single vector for each of the 62 PD patients 
subject and used to perform a hierarchical cluster analysis with MATLAB 
(release 2014b, The MathWorks, Inc., Natick, Massachusetts) (Fig. 1). 
We used Ward’s clustering linkage method to combine pairs of clusters 
at each step while minimizing the sum of square errors from the cluster 
mean. Following the hierarchical structure of the analysis, each patient 
was first placed in his/her own cluster and then progressively clustered 
with others. Calinski-Harabasz criterion was used to evaluate the 
optimal number of clusters. Cluster analysis results are shown as a 
dendrogram with different levels of granularity. For each cluster, we 
defined a mean cluster vector of 85 features, calculated as the average of 
all features across the subjects included in the cluster. 

2.5. Other statistical analyses 

First, to quantify the differences between the groups identified 
through the clustering procedure, and to define their specific atrophy 
patterns compared with controls, we performed a set of t-tests using the 
GM and WM measures used as features. The results were corrected for 
multiple comparisons using false-discovery rate (FDR) correction across 
the 85 evaluated features, and the significance level was set at p < 0.05. 
To list the features according to their importance in forming the clusters, 
we used the F statistics obtained from ANOVAs. 

We then performed voxel-wise analyses to obtain maps of GM and 
WM. For that purpose, we used a permutation-based general linear 
model (GLM) using the whole-brain VBM and FA maps [18]. In these 
analyses, we tested for differences between PD groups as well as dif-
ferences between each group and controls. Age was considered as a 
covariate in the model. Results were corrected for multiple comparisons 

across space using family-wise error rate (FWE) correction, with a sig-
nificance level of p < 0.05. 

Demographic, neuropsychological, and clinical statistical analyses 
were conducted using IBM SPSS Statistics 25.0 (IBM Corp., Armonk, 
New York). To assess differences in demographic, clinical and neuro-
psychological quantitative variables, Kruskal-Wallis or Mann-Whitney U 
tests were used. Pearson’s chi-squared test was used for categorical 
variables. 

3. Results

The dendrogram resulting from the cluster analysis can be seen in the
Supplementary material 1. Both two-cluster and three-cluster solutions 
had a high variance ratio of the Calinski-Harabasz values. The two- 
cluster solution (variance ratio: 11.58) identified one group without 
detectable brain atrophy; and a second group with widespread reduction 
of cortical and subcortical GM volume, decreased FA, late disease onset 
and higher prevalence of MCI. Detailed information about the two- 
cluster solution is shown in Supplementary material 2. The three- 
cluster solution (variance ratio: 8.59) divided the non-specific atrophy 
group from the two-cluster solution into two subgroups (Supplementary 
material 2 and 3). The sample size was too small for higher group so-
lution, and the result would be considered too exploratory. 

Ordering the features according to their importance for forming the 
clusters showed GM features were more relevant than the WM features 
(Supplementary material 4). 

3.1. Whole-brain atrophy patterns in the three-cluster solution 

Exploratory whole-brain analyses were first performed without 
covariates (Supplementary material 5, 6 and 7). Whole-brain analysis of 
VBM maps considering age in the model showed group 1 (PD1, N: 15) 
had lower GM volumes than HC mainly in occipital and medial temporal 

Fig. 1. Schematic representation of the pipeline followed to extract the features used in the classification procedure. Abbreviations: FA – fractional anisotropy, GM – 
gray matter, ROI – region of interest, VBM – Voxel-based morphometry analysis. 
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regions including the parahippocampal gyrus, temporal pole, cuneus, 
lingual gyrus, occipital fusiform gyrus and occipital pole. The atrophy 
pattern of PD1 also included the bilateral orbital and medial frontal 
cortex, paracingulate gyrus, superior parietal lobe, precuneus, and 
insula. Moreover, PD1 showed volume reductions in subcortical gray 
matter compared to HC in bilateral putamen, caudate, thalamus, and 
nucleus accumbens as well as the hippocampus (FWE-corrected, p <
0.05) (Fig. 2A and Supplementary material 8). Group 2 (PD2, N: 21) had 
GM atrophy compared with HC mainly in bilateral orbital and prefrontal 
cortical regions including the bilateral anterior cingulate gyrus, orbito-
frontal cortex, medial prefrontal cortex, paracingulate gyri, frontal poles 
and the inferior and middle temporal gyri, as well as the right superior 

temporal gyrus (FWE-corrected, p < 0.05) (Fig. 2B and Supplementary 
material 8). Group 3 (PD3, N:26) did not show significant GM volume 
differences compared with HC (Fig. 2C). 

Comparisons between patient groups showed that PD1 had reduced 
subcortical GM volume compared with PD2 in the thalamus, amygdala 
and right putamen bilaterally as well as in the hippocampus. PD1 also 
showed a characteristic posterior cortical atrophy including bilateral 
occipital poles, lingual gyri and cuneus, together with parahippocampal 
and fusiform gyri, as well as reductions in insular and cerebellar regions 
(Supplementary material 8 and 9). PD1 showed reduced cortical GM 
when compared with PD3 bilaterally in superior and middle temporal 
gyri, medial temporal lobe, occipital pole, the insular cortex, the 

Fig. 2. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analyses of the three-cluster solution. VBM: (A) regions in which PD1 showed less 
gray matter volume than HC are shown in red; (B) regions in which PD2 showed less gray matter volume than HC are shown in green; (C) absence of differences 
between PD3 and HC (p < 0.05, FWE-corrected). Results were adjusted by age. TBSS: FA skeleton (yellow) and white matter tracts in which PD1 showed lower FA 
than HC (red). Radiological convention is used. Abbreviations: HC – healthy controls; PD1 – Parkinson’s disease patient subgroup 1; PD2 – Parkinson’s disease patient 
subgroup 2; PD3 – Parkinson’s disease patient subgroup 3. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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intracalcarine cortex, and the hippocampus and significant reductions of 
the amygdala, thalamus, putamen, caudate and nucleus accumbens 
bilaterally (Supplementary material 8 and 9). 

PD2 had less GM volume than PD3 in the right middle temporal 
gyrus. PD3 had less GM volume than PD2 in the cerebellum and the 
brainstem. HC had less GM than PD2 in the cerebellum (Supplementary 
material 8). 

Whole-brain analyses of FA maps showed lower FA values in PD1 
compared with HC in the corpus callosum and the following bilateral 
tracts: the inferior and superior longitudinal fasciculus, inferior fronto- 
occipital fasciculus, anterior thalamic radiation, uncinate fasciculus, 
corticospinal tract, and forceps major and minor (FWE-corrected, p <
0.05) (Fig. 2 and Supplementary material 10). There were no other 
significant differences between groups. 

3.2. Demographic and clinical characteristics of PD subtypes 

There were no differences in sex or years of education between 
groups. However, we did find significant differences in age between 
groups. PD3 was significantly younger than HC and the other PD groups, 
while PD1 tended to be older than HC (p = 0.054). PD groups did not 
differ in disease duration, motor disease severity as measured by the 
UPDRS-III, H&Y and LEDD, global cognition (MMSE), olfactory perfor-
mance, or presence of neuropsychiatric symptoms. PD1 had a later 
disease onset compared with PD3 (Table 1). 

3.3. Cognitive profiles of PD subtypes 

Fig. 3 summarizes the cognitive profiles of patients in the three 
groups (see also Supplementary Table 11). PD1 and PD2 performed 
significantly worse than HC in the following tests: FRT, TMT Part A and 
Part B, and Stroop Color Test. Whereas PD3 did not show significant 
differences in cognitive performance in comparison with HC. 

Moreover, PD1 performed significantly worse than HC and PD3 in 
RAVLT total and recognition scores, and in the semantic fluency test. 
PD1 also performed worse than HC in RAVLT recall. PD2 performed 

worse than HC in Stroop Words and SDMT. 
PD1 showed a higher percentage of MCI (67%) when compared with 

PD3 (27%) and HC (Table 1). 

4. Discussion

The main finding of this study is that a data-driven analysis based on
multimodal MRI data can identify PD patient subtypes according to GM 
and WM degeneration patterns. Despite similar disease duration, our 
results distinguished (1) a group of patients with bilateral tempo- 
parieto-occipital loss of cortical GM as well as subcortical GM volume 
degeneration and widespread FA reductions mainly affecting fronto- 
occipital WM tracts; (2) a second group with reduction of GM volumes 
in bilateral orbital and medial prefrontal, but also in temporal cortical 
regions, and (3) a third group without detectable GM or WM alterations. 

Patients grouped in PD1, which interestingly was the group with a 
higher percentage of MCI (67%), showed extensive atrophy similar to 
that previously reported using cortical thickness [3], as well as evident 
atrophy in bilateral hippocampus and subcortical structures, including 
the amygdala, thalamus, putamen and caudate. Similarly, the PD2 
subgroup showed bilateral atrophy in orbitofrontal and temporal 
cortices, which partially overlapped with PD1. In this context, and 
without longitudinal evidence, these results could be indicative of 
different stages of evolution in our group. However, PD groups did not 
differ in the years of evolution of the disease, and although those in PD1 
were older than in PD2, age of onset was also older. In addition, there 
were no differences in UPDRS part III or H&Y scores, or medication. 
Thus, our results reinforce the classical findings that late onset of the 
disease is associated with greater degree of atrophy and rapid disease 
progression [19]. 

Although most of the published results regarding loss of WM integ-
rity in PD are based on analyses of regions of interest, whole-brain 
studies evidenced the involvement of the corpus callosum, cingulum 
and major association tracts in PD-MCI patients [7,9,20], but not in PD 
without MCI [9]. Nonetheless, these results are still scarce and less 
consistent than those reporting GM atrophy. In this regard, the existence 

Table 1 
Demographic and clinical characteristics of the three-cluster solution PD subtypes. Abbreviations: BDI – Beck Depression Inventory II; HC – healthy controls; IQ – 
interquartile range; LEDD – L-dopa equivalent daily dose; MCI – mild cognitive impairment; NA – not applicable; NPI – Neuropsychiatric Inventory; PD1 – Parkinson’s 
disease group 1 patients; PD2 – Parkinson’s disease group 2 patients; PD3 – Parkinson’s disease group 3 patients; UPDRS – Unified Parkinson’s Disease Rating 
Scale; UPSIT – University of Pennsylvania Smell Identification Test.a The chi- squared test was used;b The Kruskal-Wallis test was used.   

HC (N:33) PD1 (N:15) PD2 (N:21) PD3 (N:26) test-stats p-value Significant contrasts 

18/15 13/2 14/7 19/7 5.4 0.145a – 
66(15) 75(14) 68(9) 58.5(11) 29.273 <0.001b PD3 vs HC 

PD3 vs PD2 
PD3 vs PD1 

12(8) 11(12) 13(9) 13(9) 1.171 0.768b – 
NA 7(7.5) 9(9) 7(5.5) 1.302 0.521b – 
NA 67(10) 57(11) 50(12.25) 20.097 <0.001b PD1 vs PD3 
NA 650(415) 469(515) 593.75(324) 0.651 0.722b – 
NA 30(1) 29(2) 30(2) 2.258 0.521b – 
NA 1/6/1/4 1/10/0/9 6/14/0/6 14.754 0.064a – 
0.102(3.32) − 0.96(4.32) 0.074(5.58) − 0.51(4.02) 1.908 0.592b – 
3 (10%) 10 (67%) 10 (48%) 7(27%) 17.431 0.001a PD1 vs HC 

PD1 vs PD3 
PD2 vs HC 

5/26/0 0/2/12 1/11/8 1/13/11 34.998 <0.001a PD1 vs HC 
PD2 vs HC 
PD3 vs HC 

20/9/0 0/4/7 1/14/3 3/13/6 53.56 <0.001a PD1 vs HC 
PD2 vs HC 
PD3 vs HC 

5(8) 7(10) 9(12) 7(6) 4.5 0.212b – 
5/25 (17%) 7/8 (47%) 10/9 (48%) 8/15 (31%) 9.757 0.135a – 
1(4) 9(8) 7.5(19) 6(11) 19.047 <0.001b PD1 vs HC 

PD2 vs HC 
PD3 vs HC 

sex (m/f) 
age, median (IQ) 

Education, years, median (IQ) 
Disease duration, median (IQ) 
Age of onset, median (IQ) 
LEDD, mg, median (IQ) 
UPDRS part III, median (IQ) 
Hoehn & Yahr, n, 1/2/2.5/3 
MMSE, median (IQ) 
Total MCI, n (%) 

UPSIT (normosmia/hyposmia/anosmia) 

Sniffin (normosmia/hyposmia/anosmia) 

BDI, median (IQ) 
Apathy scale (apathy/normal) 
NPI, median (IQ) 

Visual hallucinations (no/yes), n (%) 29/0 11/4 (27%) 18/3 (14%) 21/5 (19%) 7.414 0.06a –  
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of different PD subtypes could help to elucidate previous controversial 
results on the study of WM abnormalities. 

Our results suggest that only a subgroup with widespread GM atro-
phy showed WM alterations compared to HC, in line with the recent 
results of Abassi et al. [10] showing structural connectivity differences 
in PD subtypes. Unfortunately, in that study the authors did not report 
whole-brain FA differences in PD subtypes since the analyses were 
limited to the basal ganglia. Our results suggest that DTI abnormalities 
in PD patients could be understood as secondary to axonal degeneration 
after cortical and subcortical neuronal body damage, which conse-
quently would be expected to be found alongside GM atrophy. 

Our findings also revealed the existence of a third subgroup (PD3), 
which was the youngest group with earlier disease onset. Despite the 
similarity in other clinical variables between groups, PD3 patients did 
not show significant structural differences with HC neither in GM nor in 
WM, after controlling for age. Similarly, previous studies reported 
negative results when comparing PD patients without cognitive 
impairment and HC in cortical and subcortical GM using whole-brain 
VBM or WM methods [7,9]. Previous cortical thickness analyses also 
showed negative results when comparing PD and HC [21,22] or 
described differences that did not survive correction for multiple com-
parisons [23]. 

Regarding the neuropsychological performance of the PD subgroups, 
both PD1 and PD2 subtypes performed worse than HC in the Facial 
Recognition Test, TMT Part A and Part B, and Stroop Color Test; whereas 
PD3 performed similarly to HC. Moreover, PD1 also performed signifi-
cantly worse than HC and PD3 in RAVLT and the semantic fluency test. It 
is noteworthy that the impairment in total learning and delayed recall 
verbal tasks characteristic of the PD1 subtype has been associated with 
future cognitive impairment in PD [24], the hippocampus being a key 
structure to understanding the memory changes in PD without dementia 
[25]. Additionally, PD1 had semantic memory impairment that agrees 
with the involvement of posterior cortical regions [4,26]. Specifically, 
posterior based cortical deficits, and semantic fluency in particular, have 
been shown to be a predictor of dementia in PD [27]. More precisely, the 
PD1 atrophy pattern also included the primary occipital cortex, just as it 
has been found before in early PD patients [28], and might be related to 
color perception deficits described in PD [29]. 

On the other hand, the PD2 subgroup did not show a detectable 
cognitive profile to distinguish it from other PD subgroups; however, the 
brain atrophy pattern in this group was clearly different. Despite a 
discreet overlap between PD1 and PD2, there is a dissociation between 
these groups: while the PD2 pattern consisted of a more prominent 

orbitofrontal atrophy including bilateral frontal medial regions, but also 
anterior areas, PD1 was characterized by extensive atrophic changes in 
bilateral temporo-parieto-occipital regions. This dissociation may have 
not only important cognitive but also behavioral and mood conse-
quences. In this context, depression in PD has been related to decreased 
GM volume in orbitofrontal and temporal regions [30]. In the same way, 
apathy and recognition of emotions have been seen to correlate with GM 
volumes in the orbitofrontal cortex [31,32], the amygdala [31] and the 
temporal cortex [32]. Although we did not find significant differences 
between groups in BDI or the apathy scale, PD1 and PD2 yielded the 
highest percentage of subjects with apathy (close to 50%), while PD3 
and HC showed lower percentages. In this regard, the inclusion of tests 
sensitive to orbitofrontal and posterior deficits in the neuropsychologi-
cal batteries used to assess PD patients is of crucial interest as previously 
stated [3]. 

The need to better understand the heterogeneity seen in other 
neurodegenerative disorders, such as Alzheimer’s disease (AD), has 
similarly led to the use of neuroimaging data and cluster analysis to 
assess the presence of potential subgroups [33]. Taking one step further, 
Jeon and colleagues recently used a multimodal cluster analysis based 
on cortical thickness, tau and amyloid depositions, which led to the 
characterization of three AD subgroups [34], mainly driven by the tau 
deposition and cortical atrophic pattern. However, multidimensionality 
remains a limitation of these studies, as well as of our work, despite our 
having managed to improve the high dimensionality problem compared 
with previous cluster analyses [3,34] through the use of only 85 fea-
tures. Further progress in this issue will allow, for example, combining 
different diffusion measures in an optimal model in order to better 
characterize WM differences between PD subtypes. Another limitation 
would be that PD patients with a Hoehn and Yahr scale score above 3 
were excluded from the study, which could have reduced the variability 
of the PD sample and, consequently, the probability of finding other PD 
groups. Finally, the wide confidence intervals of the neuropsychological 
data suggest that a larger sample would be required in order to more 
precisely identify cognitive differences between groups. 

In conclusion, the use of unsupervised machine learning methods 
based on multimodal MRI data allows the classification of PD patients 
into the following subtypes: one group with cortical and subcortical GM 
atrophy, widespread WM abnormalities and worse cognition; a second 
group with mainly orbitofrontal and temporal cortical atrophy; and a 
third group without detectable GM or WM abnormalities, earlier disease 
onset and normal cognition. It is also worth noting that even though 
both WM and GM contributed to defining the different groups, GM 

Fig. 3. Three-cluster solution – neuropsycho-
logical profiles. Neuropsychological profiles for 
healthy controls (blue), PD1 (red), PD2 (green) 
and PD3 (purple). Data are presented as z scores. 
The signs of TMTA, TMTB and TMTAB scores are 
flipped. In all cases, lower z scores indicate worse 
performance. Abbreviations: BNT – Boston 
Naming Test; FRT – Facial Recognition Test; HC – 
healthy controls; PD1 – Parkinson’s disease pa-
tient subgroup 1; PD2 – Parkinson’s disease pa-
tient subgroup 2; PD3 – Parkinson’s disease 
patient group 3; RAVLT – Rey Auditory Verbal 
Learning Test; SDMT – Symbol Digits Modalities 
Test; Stroop color – Stroop color test; Stroop 
word – Stroop word test; Stroop word-color – 
Stroop word-color interference; TMTA – Trail 
Making Test Part A; TMTB – Trail Making Test 
Part B; TMTAB – Trail Making Test A minus B. 
Tests displayed are the ones showing significant 
differences between groups. (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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degeneration patterns were more relevant in the characterization of PD 
groups than WM alterations. Nevertheless, incorporating FA measures to 
the clustering algorithm implies moving one step closer to multimodal 
approaches. Moreover, these results add to recent evidence regarding 
different phenotypes in PD, which not only differ in cognitive perfor-
mance but also in patterns of brain degeneration, thus lending further 
support to the hypothesis of distinct disease courses. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.parkreldis.2020.11.010. 
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SUPPLEMENTARY	MATERIAL	

	
Supplementary	material	1	

	

Dendrogram	of	the	62	PD	patients	clustered	according	to	gray	matter	volume	and	fractional	anisotropy	values.	
PD	patient	subgroups	1	(PD1),	2	(PD2)	and	3	(PD3)	in	red,	blue	and	green,	respectively.	
	

	
	
Supplementary	material	2	(2-cluster	solution)	
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Supplementary	material	2	
	
	 HC	(N:33)	 PD1	(N:36)	 PD2	(N:26)	 Test	

stats	
p-
value	

Post	
hoc	analysis	

sex	(m/f)	 18/15	 27/9	 19/7	 3.807a	 .149	 -	

age,	mean	(SD)	 66.03(10.88)	 69.81(8.49)	 57.88(7)	 23.027b	 <.001	 PD2	vs	HC	
PD2	vs	PD1	

Education,	years,	mean	(SD)	 12.56(4.70)	 12.22(8.49)	 13.54(4.77)	 1.136b	 .567	 -	

Disease	duration,	mean	(SD)	 NA	 9(6.95)	 7.96(4.51)	 0.05c	 .823	 -	

Age	of	onset,	mean	(SD)	 NA	 60.65(10.78)	 50(8.84)	 14.72c	 <.001	 -	

UPDRS	part	III,	mean	(SD)	 NA	 17.69(9.65)	 13.92(7.22)	 1.815c	 .178	 -	

Hoehn	&	Yahr,	n,	1/2/2.5/3		 NA	 2/16/1/13	 6/14/0/6	 8.316c	 .081	 -	

Total	MCI,	n	(%)	 27/3		

(10%)	

16/20	

(55.55%)	
19/7	

(26.92%)	
15.987a	 <.001	 PD1	vs	HC	

PD1	vs	PD2	

LEDD,	mg,	mean	(SD)	 NA	 655.96	
(427.588)	

591.79	
(285.883)	

446.5c	 .946	 -	

UPSIT,	n,	normosmia/hiposmia/anosmia	5/26/0	 1/13/20	 1/13/11	 48.672a	 <.001	 PD1	vs	HC	
PD2	vs	HC	

Sniffin,n,	normosmia/hiposmia/anosmia	20/9/0	 1/18/10	 3/13/6	 42.611a	 <.001	 PD1	vs	HC	
PD2	vs	HC	

Escala	Apathy,	n,	normal/apatia	 25/5	 17/17	 15/8	 8.652a	 .07	 -	

MMSE,	median	(IQ)	 0.102(3.32)	 -0.616(5.61)	 -0.515	

(4.02)	
1.55b	 .46	 -	
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Supplementary	material	2	
	

Results	from	the	two-cluster	solution.	A.	Voxel-based	morphometry	analysis.	Regions	in	which	PD1	showed	

less	gray	matter	volume	than	HC	are	shown	in	red;	regions	in	which	PD1	showed	less	gray	matter	volume	than	

PD2	are	shown	in	green	(p	<0.05,	FWE-corrected).	B.	Demographic	and	clinical	characteristics	of	PD	subtypes.	

C.	Features	used	in	the	cluster	analysis.	Abbreviations:	HC	–	healthy	controls;	IQ	–	interquartile	range;	LEDD	–	

L-dopa	equivalent	daily	dose;	MCI	–	mild	cognitive	impairment;	NA	–	not	applicable;	PD1	–	Parkinson's	disease	

group	1	patients;	PD2	–	Parkinson’s	disease	group	2	patients;	UPDRS	–	Unified	Parkinson's	Disease	Rating	

Scale;	UPSIT	 –	University	 of	 Pennsylvania	 Smell	 Identification	Test.	 a	The	 chi-squared	 test	was	used.	 b	 The	

Kruskal-Wallis	test	was	used.	C	The	Mann-Whitney	U	test	was	used.	

	

Supplementary	material	3	

	

Features	used	in	the	three-cluster	solution	analysis.	The	(A)	20	white	matter	tracts,	(B)	48	cortical	regions	and	

(C)	17	subcortical	regions	used	as	features	to	perform	the	hierarchical	clustering	analysis.	T-tests	performed	

between	groups	(FDR	corrected,	p-value	<	0.05).	Regions	in	which	gray	matter	volume	or	fractional	anisotropy	

were	 significantly	 different	 (according	 to	 the	 contrast	 shown	 in	 the	 horizontal	 axis)	 are	 shown	 in	 blue;	

significant	 results	 in	 the	 opposite	 contrasts	 are	 shown	 in	 red.	 Abbreviations:	HC	 –	 healthy	 controls;	 Inf.	 –	

Inferior;	L	–	Left;	PD1	–	Parkinson’s	disease	patient	subgroup	1;	PD2	–	Parkinson’s	disease	patient	subgroup	

2;	PD3	–	Parkinson’s	disease	patient	subgroup	3;	R	–	Right;	Sup.	–	Superior.	
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Features	ordered	according	to	their	importance	in	the	cluster	formation.	F-scores	of	the	ANOVAs	above	5	are	

reported.	

	

	

	

	

	

	

	

	

	

	

Order of features for the 3-cluster solution
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VBM	AND	TBSS	ANALYSES	WITHOUT	INTRODUCING	AGE	AS	A	COVARIATE.	

	

Whole-brain	analyses	of	VBM	maps	showed	 that	PD1	had	 less	GM	volume	 than	HC	mainly	 in	occipital	 and	

medial	temporal	regions	as	well	as	in	subcortical	structures.	PD2	had	reduced	GM	compared	with	HC	mainly	

in	bilateral	orbital	and	medial	prefrontal	regions.	PD3,	in	turn,	showed	lower	GM	volume	than	HC	in	a	small	

right	frontal	region	(Supplementary	material	6)	(FWE-corrected,	p	<	0.05).	HC	showed	lower	GM	volume	than	

PD2	 in	 the	 cerebellum,	 and	 lower	 GM	 volume	 than	 PD3	 in	 the	 putamen	 (Supplementary	 material	 7).	

Comparisons	between	PD	groups	showed	that	PD1	had	reduced	GM	volume	in	subcortical	structures	when	

compared	with	PD2	and	PD3	as	well	as	lower	GM	volume	than	PD3	in	temporal,	occipital	and	frontal	regions	

(FWE-corrected,	p	<	0.05).	

	

Whole-brain	analyses	of	FA	maps	using	TBSS	showed	extensive	regions	with	lower	FA	values	in	PD1	compared	

with	HC	(Supplementary	material	6)	and	PD3	(FWE-corrected,	p	<	0.05).	PD1	also	showed	lower	FA	than	PD2	

in	the	bilateral	inferior	fronto-occipital	fasciculus	and	corticospinal	tract.	In	turn,	PD2	showed	lower	FA	than	

PD3	in	some	regions	of	these	same	tracts	(Supplementary	material	6	and	7).	
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Voxel-based	 morphometry	 (VBM)	 and	 tract-based	 spatial	 statistics	 (TBSS)	 analyses	 of	 the	 three-cluster	

solution.	VBM:	regions	in	which	PD1	showed	less	gray	matter	volume	than	HC	are	shown	in	red	(A);	regions	in	

which	PD2	showed	less	gray	matter	volume	than	HC	are	shown	in	green	(B);	(C)	regions	in	which	PD3	showed	

less	gray	matter	volume	than	HC	are	shown	in	blue	(p	<0.05,	FWE-corrected).	TBSS:	FA	skeleton	(yellow)	and	

white	matter	tracts	in	which	PD1	showed	less	FA	than	HC	(red).	Radiological	convention	is	used.	Abbreviations:	

HC	 –	 healthy	 controls;	 PD1	 –	 Parkinson’s	 disease	 patient	 subgroup	 1;	 PD2	 –	 Parkinson’s	 disease	 patient	

subgroup	2;	PD3	–	Parkinson’s	disease	patient	subgroup	3.	
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Location	of	significant	clusters	(>10	voxels)	of	the	three-cluster	solution	without	covariates.	Harvard-Oxford	

Cortical	Structural	Atlas	and	 JHU	White-Matter	Tractography	Atlas	were	used	 to	determine	 the	anatomical	

locations.	 Abbreviations:	 HC	 –	 Healthy	 Controls;	 PD1	 –	 Parkinson’s	 disease	 patient	 subgroup	 1;	 PD2	 –	

Parkinson’s	disease	patient	 subgroup	2;	PD3	–	Parkinson’s	disease	patient	 subgroup	3;	TBSS	–	 tract-based	

spatial	statistics,	VBM	–	Voxel-based	morphometry	analysis,	R	–	Right,	L	–	Left.		
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Location	of	significant	clusters	(>10	voxels)	of	the	three-cluster	solution.	Harvard-Oxford	Cortical	Structural	

Atlas	 and	 JHU	 White-Matter	 Tractography	 Atlas	 were	 used	 to	 determine	 the	 anatomical	 locations.	

Abbreviations:	HC	–	Healthy	Controls;	PD1	–	Parkinson’s	disease	patient	subgroup	1;	PD2	–	Parkinson’s	disease	

patient	 subgroup	 2;	 PD3	 –	 Parkinson’s	 disease	 patient	 subgroup	 3;	 TBSS	 –	 Tract-based	 spatial	 statistics;												

VBM	–	Voxel-based	morphometry	Analysis;	R	–	Right;	L	–	Left.		
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Supplementary	material	9	

Voxel-based	 morphometry	 comparisons	 between	 three-cluster	 solution	 groups	 (p<0.05,	 FWE-corrected).	

Abbreviations:	PD1	–	Parkinson’s	disease	patient	subgroup	1;	PD2	–	Parkinson’s	disease	patient	subgroup	2;	

PD3	–	Parkinson’s	disease	patient	subgroup	3.	

	

Supplementary	material	10	

	
Tract-based	spatial	statistics	(TBSS)	analysis.	The	FA	skeleton	is	shown	in	green	and	white	matter	tracts	in	

which	PD1	showed	less	FA	than	HC	are	shown	in	red.	Radiological	convention	is	used.	Abbreviations:	HC	–	

healthy	controls;	PD1	–	Parkinson’s	disease	patient	subgroup	1.	
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Neuropsychological	 data	 presented	 as	 z-scores.	 For	 the	 statistical	 analyses	 Kruskal-Wallis	 test	 and	Mann-

Whitney	U	test	were	used.	Outliers	were	excluded	when	required.	Abbreviations:	BNT	–	Boston	Naming	Test;	

FRT	 –	 Facial	 Recognition	 Test;	 HC	 –	 Healthy	 Controls;	 JLO	 –	 Judgment	 of	 Line	 Orientation	 Test;	 PD1	 –	

Parkinson’s	 disease	 patient	 subgroup	1;	 PD2	 –	 Parkinson’s	 disease	 patient	 subgroup	2;	 PD3	 –	 Parkinson’s	

disease	patient	subgroup	3;	RAVLT	–	Rey’s	Auditory	Verbal	Learning	Test;	SDMT	–	Symbol	Digit	Modalities	

Test;	TMTA-	Trail	Making	test	part	A;	TMTB	–	Trail	Making	Test.	
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Impaired Structural Connectivity in Parkinson’s Disease
Patients with Mild Cognitive Impairment:

A Study Based on Probabilistic Tractography
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Abstract

Background: Probabilistic tractography, in combination with graph theory, has been used to reconstruct the
structural whole-brain connectome. Threshold-free network-based statistics (TFNBS) is a useful technique to
study structural connectivity in neurodegenerative disorders; however, there are no previous studies using
TFNBS in Parkinson’s disease (PD) with and without mild cognitive impairment (MCI).
Materials and Methods: Sixty-two PD patients, 27 of whom classified as PD-MCI, and 51 healthy controls (HC)
underwent diffusion-weighted 3T magnetic resonance imaging. Probabilistic tractography, using FMRIB Soft-
ware Library (FSL), was used to compute the number of streamlines (NOS) between regions. NOS matrices
were used to find group differences with TFNBS, and to calculate global and local measures of network integrity
using graph theory. A binominal logistic regression was then used to assess the discrimination between PD with
and without MCI using non-overlapping significant tracts. Tract-based spatial statistics were also performed with
FSL to study changes in fractional anisotropy (FA) and mean diffusivity.
Results: PD-MCI showed 37 white matter connections with reduced connectivity strength compared with HC,
mainly involving temporal/occipital regions. These were able to differentiate PD-MCI from PD without MCI
with an area under the curve of 83–85%. PD without MCI showed disrupted connectivity in 18 connections in-
volving frontal/temporal regions. No significant differences were found in graph measures. Only PD-MCI
showed reduced FA compared with HC.
Discussion: TFNBS based on whole-brain probabilistic tractography can detect structural connectivity alterations
in PD with and without MCI. Reduced structural connectivity in fronto-striatal and posterior cortico-cortical con-
nections is associated with PD-MCI.

Keywords: DTI; magnetic resonance imaging; mild cognitive impairment; Parkinson’s disease; probabilistic trac-
tography; TFNBS
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Impact Statement

Our data help to clarify that whole-brain connectome analysis based on probabilistic tractography is a useful and sensitive
approach to explore the role of white matter damages as a relevant pathological substrate of cognitive deficits in Parkinson’s
disease (PD). Our results might add some evidence regarding the involvement of mostly posterior cortical regions and their
connections in PD patients with worse cognitive prognosis. Therefore, a threshold-free network-based statistics approach
might indicate that structural connectivity abnormalities are not a global phenomenon, and suggests the implication of re-
gional and predominantly posterior structural network disruption underlying cognitive impairment in PD.

Introduction

Parkinson’s disease (PD) is a neurodegenerative disor-
der chiefly known for its motor symptoms; however,

the course of PD is also accompanied by a broad range of
nonmotor features, including cognitive decline (Kalia and
Lang 2015). Mild cognitive impairment (MCI) is a common
trait of PD that may be present in its earliest stages, gradually
advancing with the progression of the disease and potentially
leading to dementia, thus unfavorably affecting the patient’s
quality of life (Antonini et al. 2012).

Different neuroimaging approaches have been used to de-
scribe neuroanatomical correlates of MCI in PD. Previous
studies comparing PD-MCI with healthy controls (HC) and
PD without MCI have revealed global gray matter (GM) atro-
phy (Segura et al. 2014) and ventricular enlargement (Dalaker
et al. 2010; Segura et al. 2014), as well as cortical thinning
mainly involving posterior regions (Pereira et al. 2014; Segura
et al. 2014). Nevertheless, little is known about the relevance of
white matter (WM) microstructure degeneration in PD, or spe-
cifically in PD-MCI. Diffusion-weighted magnetic resonance
imaging (MRI) (DWI) is a commonly used acquisition method
to study the complex organization of WM tracts. However,
tract-based spatial statistics (TBSS), a commonly used analysis
method based on whole-brain voxel-based fractional anisot-
ropy (FA) measures, have not been conclusive in characteriz-
ing WM alterations in PD, as some have found decreased
FA in the corpus callosum (Garcia-Diaz et al. 2018), corona
radiata, as well as in the internal and external capsule (Li
et al. 2018) when comparing PD with HC, while others did
not find significant results (Worker et al. 2014).

In addition, a few studies have focused on PD-MCI, show-
ing decreased FA compared with HC in major associative
tracts, the corona radiata and the corpus callosum (Agosta
et al. 2014; Hattori et al. 2012; Melzer et al. 2013), but others
did not find FA differences between PD-MCI patients and
PD without MCI using TBSS (Galantucci et al. 2017).

Tractography is another DWI technique, which permits recon-
struction of WM tracts and quantification of the local fiber den-
sity. This approach, in combination with graph theory, has been
used to identify integration and segregation abnormalities in the
reconstructed structural whole-brain connectome of PD patients
(Abbasi et al. 2020; Mishra et al. 2020; Nigro et al. 2016).

Galantucci and colleagues (2017) studied structural con-
nectivity across different brain systems and found PD-MCI
to have reduced structural connectivity in networks, includ-
ing the basal ganglia and fronto-parietal regions, when com-
pared with HC and with PD patients without MCI. Wang and
colleagues found decreased structural connectivity in PD-
MCI patients in comparison with PD without MCI in several
subnetworks, as well as reduced nodal efficiency, mostly in-
volving orbitofrontal regions (Wang et al. 2019).

The two studies mentioned above have used a determinis-
tic tractography approach (Galantucci et al. 2017; Wang
et al. 2019). However, with this approach, estimating the
true trajectories of WM tracts becomes a relevant problem
in the context of crossing or kissing fibers (Mori and Van
Zijl 2002). To surmount this limitation, and to account for
uncertainty in the estimation of the models at each voxel,
probabilistic tractography algorithms have been proposed
(Behrens et al. 2007). Muller and colleagues (2019) used
both types of tractography in the same PD sample and dem-
onstrated the benefits of probabilistic tractography over the
deterministic one.

Given this, other studies have opted for probabilistic trac-
tography to study PD patients (Abbasi et al. 2020; Barbagallo
et al. 2017; Shah et al. 2017). Some of the reported findings
are decreased clustering coefficient (Shah et al. 2017), de-
creased global efficiency, and increased path length in PD,
as well as disrupted networks, which were mainly subcortical
and already present in the early stages of the disease (Abbasi
et al. 2020). In addition, changes in brain network metrics,
such as decreased global efficiency and increased character-
istic path length, have been found to correlate with a decline
in global cognition (Abbasi et al. 2020).

When aiming to describe specific patterns of connectivity al-
terations in an edge-wise manner, network-based statistic
(NBS) (Zalesky et al. 2010) has been one of the most fre-
quently used methods. Using NBS, many studies have de-
scribed reduced connectivity in PD compared with HC
(Barbagallo et al. 2017; Gou et al. 2018; Nigro et al. 2016;
Shah et al. 2017). In the last years, the development of the
threshold-free network-based statistics (TFNBS) method (Bag-
gio et al. 2018), which, unlike NBS, does not require the a pri-
ori definition of a component-defining threshold and generates
edge-wise significant values, has been proposed as a step for-
ward. TFNBS has been proved to be able to detect alterations
in the organization and topology of WM tracts, along with the
potential to correctly distinguish between neurodegenerative
motor disorders (Abos et al. 2019a, 2019b).

To the best of our knowledge, there is no previous work
studying TFNBS based on probabilistic tractography and
graph theory analysis to characterize whole-brain structural
connectivity in PD-MCI. In this regard, the present study
aims to investigate potential abnormalities associated with
MCI in PD in the complex structural brain networks.

Materials and Methods

Participants

The initial sample included 69 PD patients recruited from
the Parkinson’s Disease and Movement Disorders Unit, Hos-
pital Clı́nic (Barcelona, Spain), and 54 HC from the Institut
d’Envelliment, Universitat Autònoma de Barcelona. Inclusion
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criteria for patients were (1) fulfilling UK PD Society Brain
Bank diagnostic criteria for PD and (2) no surgical treatment
with deep-brain stimulation. Exclusion criteria for all partici-
pants were (1) dementia according to Movement Disorders
Society criteria, (2) Hoehn and Yahr (H&Y) scale score >3,
(3) severe psychiatric or neurological comorbidity, (4) low
global intelligence quotient estimated by the vocabulary sub-
test of the Wechsler Adult Intelligence Scale 3rd edition (scalar
score £7), (5) Mini Mental State Examination (MMSE) score
below 25, (6) claustrophobia, (7) pathological MRI findings
other than mild WM hyperintensities in the fluid attenuated
inversion recovery (FLAIR) sequence, and (8) MRI artifacts.
A total of 62 PD patients and 51 HC were finally selected.
The following participants were excluded from the study:
five patients and two HC with MRI artifacts, two patients
with claustrophobia, and one HC with a cyst. Motor symptoms
were assessed with the Unified Parkinson’s Disease Rating
Scale, motor section (UPDRS-III).

All PD patients were taking antiparkinsonian drugs that
consisted of different combinations of L-dopa, catechol-O-
methyltransferase inhibitors, monoamine oxidase inhibitors,
dopamine agonists, and amantadine. To standardize the doses,
the L-dopa equivalent daily dose (LEDD) (Tomlinson et al.
2010) was calculated. Written informed consent was obtained
from all study participants after a full explanation of the pro-
cedures. The study was approved by the Institutional Ethics
Committee from the University of Barcelona (IRB00003099).

Neuropsychological tests

All participants underwent a comprehensive neuropsycho-
logical assessment in the on state addressing cognitive do-
mains frequently impaired in PD (Litvan et al. 2012).
Attention and working memory were assessed with the Trail
Making Test (parts A and B), Digit Span Forward and Back-
ward, Stroop Color-Word Test, Symbol Digits Modalities
Test—oral version. Executive functions were evaluated with
phonemic and semantic fluencies. Language was assessed
by the Boston Naming Test (BNT). Memory was assessed
using Rey’s Auditory Verbal Learning Test total learning re-
call, delayed recall, and recognition abilities (RAVLT total,
RAVLT recall, and RAVLT recognition, respectively). Visuo-
spatial and visuoperceptual functions were assessed with
Benton’s Judgment of Line Orientation, Visual Form Discrim-
ination (VFD), and Facial Recognition (FRT) tests. Neuro-
psychiatric symptoms were evaluated with the Beck
Depression Inventory-II, Starkstein’s Apathy Scale, and Cum-
ming’s Neuropsychiatric Inventory. Expected z scores ad-
justed for age, sex, and education were calculated for each
test and subject based on a multiple regression analysis per-
formed in the HC (Aarsland et al. 2009). The presence of
MCI was defined using PD-MCI diagnostic criteria level II
(Litvan et al. 2012).

MRI acquisition

MRI data were acquired with a 3 T scanner (MAGNETOM
Trio, Siemens, Germany). The scanning protocol included
high-resolution, three-dimensional, T1-weighted images ac-
quired in the sagittal plane (repetition time [TR] = 2300 ms,
echo time [TE] = 2.98 ms, inversion time [TI] = 900 ms, 240
slices, field of view [FOV] = 256 mm; 1 mm isotropic voxel),
two sets of single-band, spin-echo diffusion-weighted images

in the axial plane with opposite (anterior-posterior and
posterior-anterior) phase encoding directions (TR = 7700 ms,
TE = 89 ms, FOV = 244 mm; 2 mm isotropic voxel; num-
ber of directions = 30, b-value = 1000 sec/mm2, b0 value =
0 sec/mm2), and a T2-weighted axial FLAIR sequence
(TR = 9000 ms, TE = 96 ms).

MRI preprocessing

Structural MRI preprocessing was performed using the auto-
mated FreeSurfer (version 5.1) pipeline. The cerebral cortex
was parcellated into gyral and sulcal structures based on 68
cortical regions of interest (ROIs) from the Desikan/Killiany
atlas (Desikan et al. 2006), and 18 deep gray matter (DGM)
ROIs from the automated FreeSurfer segmentation step
(Filipek et al. 1994; Fischl and Dale 2000; Seidman et al.
1997). DWI images were preprocessed with the FMRIB
Software Library (FSL; version 5.08). The preprocessing
steps included brain extraction using Brain Extraction
Tool, susceptibility-induced distortion correction using
topup, and eddy-current distortion and subject motion cor-
rection with eddy. FMRIB’s Diffusion Toolbox (FDT) was
used for data processing, local diffusion modeling, and trac-
tography ( Jbabdi et al. 2012).

Tract-based spatial statistics

Preprocessed diffusion MRI images were analyzed with
FDT software from FSL. Individual FA maps were obtained
using a Diffusion Tensor Model fit (DTIFIT), and the voxel-
wise statistical analysis of FA was carried through with
TBSS (Smith et al. 2006). TBSS performs nonlinear registra-
tion (using Nonlinear Image Registration Tool [FMRIB]) of
FA images from DTIFIT to the MNI standard space and gen-
erates a mean FA skeleton that represents the center of all WM
tracts common to the whole group. Each subject’s FA image
was projected onto the skeleton and the resulting FA skeleton
images were fed into a general linear model (GLM) modeling
the three groups (HC, PD without MCI, PD-MCI) to find
vertex-wise differences in FA skeleton maps. The same steps
were used to obtain the mean diffusivity (MD) maps. The
global mean FA and MD were also extracted.

Tractography and structural connectivity analysis

To run probabilistic tractography, the 86 ROIs previously
obtained with FreeSurfer were linearly registered from na-
tive structural space to native diffusion space with FMRIB’s
Linear Image Registration Tool ( Jenkinson et al. 2002) to be
used as seeds. Next, Bedpostx was applied to calculate the
probability distribution of fiber directions in each voxel
(Behrens et al. 2007). Then, we ran the tractography with
the Probrtarckx2 tool (Behrens et al. 2007) using 5000
streamlines from each ROI, and an ROI-by-ROI connectivity
setting obtaining an 86 · 86 connectivity matrix per subject,
which contained the number of reconstructed streamlines
(number of streamlines [NOS]) between each pair of ROIs.
NOS was taken as a measure of the strength of structural con-
nectivity between these regions. To minimize false-positive
connections, streamlines intersecting fewer than two regions
were ignored, and those detected in at least 50% of the individ-
uals were considered (Abos et al. 2019b; Zalesky et al. 2010).
Finally, to test tract-wise differences between groups in
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interregional NOS, we used TFNBS (Baggio et al. 2018),
which performs statistical inference on the data matrix.
Results were corrected using family-wise error rate (FWE)
correction, with a significance level of p < 0.05. Whole-brain
NOS was also calculated as the mean of all NOS values.

Graph theory computation

Graph theory topological parameters derived from the
thresholded NOS matrices were obtained using the Brain
Connectivity Toolbox from MATLAB. The graph metrics
included global and local normalized clustering coefficient,
global and local node degree, small worldness, normalized
path length, modularity, local efficiency, and betweenness
centrality (see Rubinov and Sporns [2010] for detailed defi-
nitions and calculations of the graph metrics).

Additional statistical analyses

Demographic, neuropsychological, and clinical statistical
analyses were conducted using IBM SPSS Statistics 25.0
(IBM Corp., Armonk, NY). To assess differences in demo-
graphic, clinical, and neuropsychological quantitative vari-
ables, the Kruskal–Wallis or Mann–Whitney U tests were
used. The chi-squared test was used for categorical variables.
Intergroup comparisons for summary graph measures, as
well as for global mean FA; MD and NOS were assessed
with GLM using in-house MATLAB scripts and Monte
Carlo simulations with 5,000 permutations. Results were
corrected for multiple testing using FWE correction, with a
significance level of p < 0.05. Correlations between neuro-
psychological test scores and clinic data with global FA mea-
sures and NOS were evaluated using Pearson correlation.

Additional analyses were conducted to explore differences
between PD with and without MCI. For this purpose, the
number of connections with significantly reduced connectiv-
ity strength in PD-MCI patients compared with HC was
matched to those obtained in PD without MCI compared
with HC, and the overlapping connections were excluded.
The resulting non-overlapping connections were used to cal-
culate their capacity to discern between both groups of PD
patients. This set of connections was split into cortico-corti-
cal and cortico-DGM. To observe if both sets of connec-
tions could separately discriminate between PD with and

without MCI, a binomial logistic regression for classification
was performed using MATLAB (The MathWorks, Inc.;
R2019b). Binomial logistic regression is based on a regres-
sion model to predict the probability that, for a given input
data, each input belongs to a numeric category (0 or 1). It
models data using a sigmoid function and becomes a classi-
fication technique when a threshold is established on the sig-
moid (0.5). The receiver operating characteristic (ROC)
curve was obtained from the probability estimations by the
logistic regression as scores, as well as the corresponding
area under the curve (AUC).

Results

Demographic and clinical characteristics of PD

PD patients and the HC group did not differ significantly
in age or years of education, but they did in gender (Supple-
mentary Data S1). Twenty-seven PD patients were classified
as PD-MCI, and 35 without MCI. Regarding the sociodemo-
graphic and clinical characteristics of the three groups (HC,
PD without MCI, and PD-MCI), shown in Table 1, no signif-
icant differences between groups were observed for age,
years of education, nor global cognition (MMSE). A signif-
icant effect was found in gender ( p = 0.006). PD groups did
not differ in disease duration, LEDD, nor in motor disease se-
verity as measured by the UPDRS-III scale. There was a dif-
ference in H&Y scores ( p = 0.044) between subgroups.

Neuropsychological differences between groups

Table 2 shows differences in neuropsychological perfor-
mance between groups. PD-MCI patient scores were signif-
icantly worse than those of PD without MCI and HC in all
tests except forward and backward digits, and BNT. PD-
MCI patients also showed lower scores than HC in VFD
and FRT.

TBSS analysis

The TBSS analysis did not show significant differences be-
tween PD and HC in FA nor in MD. However, when the PD
sample was subdivided according to the presence of MCI,
PD-MCI patients showed reduced FA compared with HC
( p = 0.031) (Fig. 1). Concretely, decreased FA was detected

Table 1. Sociodemographic and Clinical Data

HC (n = 51) PD without MCI (n = 35) PD-MCI (n = 27) Stats (p)

Sex (male/female) 23/28 27/8 19/8 10.26 (0.006)
Age, median (IQR) 66 (17) 63 (11) 68 (16) 2.54 (0.28)
Education (years), median (IQR) 12 (7) 14 (10) 11 (7) 2.70 (0.26)
Disease duration (years), median (IQR) NA 7 (6.25) 8 (9.25) 537.5 (0.36)
Age of onset, median (IQR) NA 55.5 (12) 55.5 (21) 477 (0.601)
LEDD (mg), median (IQR) NA 526.75 (362.5) 575 (502.5) 495 (0.79)
UPDRS part III, median (IQR) NA 15 (9.75) 15 (10) 446 (0.83)
Hoehn and Yahr, n, 1/2/2.5/3 NA 8/20/0/7 2/11/1/13 8.12 (0.04)
MMSE, median (IQR) 0.096 (1.33) 0.11 (1.43) �0.85 (2.31) 3.43 (0.18)
IADL, median (IQR) 8 (0) 7 (2) 7 (3) 22.53 (<0.001)

Group differences were assessed using Kruskal–Wallis or Mann–Whitney U test according to the number of groups being compared. Cat-
egorical variables were analyzed with Pearson’s chi-squared test.

HC, healthy controls; IADL, instrumental activities of the daily life; IQR, interquartile range; LEDD, L-dopa equivalent daily dose; MCI,
mild cognitive impairment; MMSE, Mini Mental State Examination; NA, not applicable; PD, Parkinson’s disease; UPDRS, Unified Parkin-
son’s Disease Rating Scale.
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Table 2. Group Comparison of Neuropsychological Performance

HC
PD

without MCI PD-MCI Stats (p) Post hoc

VFD 0.28 (0.95) 0.08 (0.82) �0.34 (1.87) 11.53 (0.003) HC vs. PD-MCI
JLO 0.25 (1.08) 0.23 (0.59) �0.35 (1.84) 9.79 (0.007) HC vs. PD-MCI

PD without MCI vs. PD-MCI
FRT 0.01 (1.18) �0.08 (1.17) �0.80 (1.45) 13.9 (0.001) HC vs. PD-MCI
Phonemic fluency �0.60 (1.41) �0.05 (1.42) �0.47 (1.33) 3.83 (0.15) —
Semantic fluency �0.37 (1.18) �0.15 (1.27) �1.21 (1.27) 20.90 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
RAVLT total 0.11 (1.38) 0.32 (1.31) �0.80 (2.12) 13.17 (0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
RAVLT recuperation 0.03 (1.13) 0.02 (1.90) �1.33 (2.36) 20.90 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
Forward digits span �0.40 (0.90) �0.27 (1.16) �0.64 (1.44) 1.40 (0.50) —
Backward digits span �0.17 (0.76) �0.09 (1.13) �0.33 (1.06) 2.91 (0.23) —
Stroop word �0.23 (1.14) �0.33 (0.95) �1.62 (1.28) 26.78 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
Stroop color 0.14 (1.14) �0.17 (0.65) �1.40 (1.27) 33.34 (<0.001) HC vs. PD-MCI

no MCI vs. PD-MCI
Stroop word-color �0.07 (1.18) 0.01 (0.93) �1.07 (0.86) 24.17 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
SDMT �0.08 (1.06) �0.24 (1.08) �1.15 (1.24) 24.42 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
TMTA 0.20 (1.17) 0.30 (0.91) 1.35 (1.92) 18.94 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
TMTB 0.32 (1.70) 0.36 (0.94) 1.98 (8.20) 20.82 (<0.001) HC vs. PD-MCI

PD without MCI vs. PD-MCI
TMTBA 2.18 (1.80) 1.73 (1.21) 2.50 (7.33) 9.55 (0.008) PD without MCI vs. PD-MCI
BNT 0.10 (0.90) �0.07 (0.94) 0.05 (1.37) 2.77 (0.25) —

Neuropsychological data presented as z-scores. For the statistical analyses Kruskal–Wallis test and Mann–Whitney U test were used.
BNT, Boston Naming Test; FRT, Facial Recognition Test; JLO, Judgment of Line Orientation Test; RAVLT, Rey’s Auditory Verbal

Learning Test; SDMT, Symbol Digits Modality Test; TMTA, Trail Making Test part A; TMTB, Trail Making Test part B; TMTAB,
Trail Making Test B minus A; VFD, Visual Form Discrimination.

FIG. 1. White matter maps
(in green) showing regions of
significantly decreased FA in
PD-MCI patients compared
with HC (in red). Results
were adjusted by gender
( p < 0.05, FWE-corrected).
Radiological convention is
used. FA, fractional anisot-
ropy; HC, healthy controls;
MCI, mild cognitive impair-
ment; PD, Parkinson’s dis-
ease; WM, white matter.
Color images are available
online.
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in the left inferior fronto-occipital fasciculus, corticospinal
tract, inferior and superior longitudinal fasciculus, and forceps
major. There were no differences between PD without MCI
and HC, nor between PD subgroups. In contrast, TBSS analy-
sis on MD maps did not show any significant results.

Comparisons in global mean FA did not show significant
differences when comparing PD with HC (F = 1.102;
p = 0.323) or when comparing PD-MCI or PD without MCI
with HC (F = 1.104; p = 0.339).

No significant intergroup differences in global mean MD
were found either between PD patients and HC (F = 0.126;
p = 0.723) or when assessing the three previously mentioned
groups (F = 0.546; p = 0.588).

TFNBS analysis

The PD patient group showed a reduced number of stream-
lines (NOS) compared with HC in 114 connections (FWE-
corrected, p < 0.05). From these 114 connections, 67 were
found to be cortico-cortical (59%), 46 were cortico-DGM
(40%), and only one was a DGM-DGM connection (1%).
No connections showed significantly higher NOS in PD pa-
tients compared with HC. Figure 2 shows the violin plot distri-
bution of the average NOS derived from the 114 connections.

When studying the two PD groups separately, we found
that both PD-MCI and PD without MCI showed reduced

NOS compared with HC; specifically, patients with PD-
MCI showed a higher number of altered connections than
PD without MCI (Fig. 3). However, differences between
PD-MCI and PD without MCI did not reach statistical
significance. PD-MCI showed reduced connectivity in 37
connections when compared with HC, 16 of which were
cortico-cortical (43%), mainly involving temporal and oc-
cipital regions, and 21 were cortico-DGM (57%). At the
same time, PD without MCI showed reduced structural con-
nectivity compared with HC in 18 connections mainly in-
volving frontal and temporal regions. Twelve connections
were cortico-cortical (67%), five were cortico-DGM
(28%), and only one was a DGM-DGM connection (5%).
No connections showed significantly higher NOS in any of
the PD groups compared with HC (Supplementary Data S2).

Whole-brain mean NOS was significantly reduced in PD
compared with HC (T = 2.78, p = 0.003). When divided into
PD-MCI and PD without MCI, both subgroups showed de-
creased whole-brain mean NOS compared with HC
(T = 2.56, p = 0.008 for PD-MCI and T = 2.13, p = 0.022 for
PD without MCI; FWE-corrected).

We then selected the connections that were differentially
altered in PD-MCI and did not overlap with the ones altered
in PD without MCI, and we evaluated their discriminatory
capabilities using classification metrics. The ROC analysis
showed that cortico-cortical connections with reduced NOS
in PD-MCI compared with HC determined a good AUC of
0.83 in distinguishing patients with MCI from those without
MCI. In the same line, for DGM-cortical connections, we
obtained an AUC of 0.85 (Supplementary Data S3 and Sup-
plementary Figure S1).

NOS and FA values did not correlate with clinical vari-
ables nor with cognitive performance.

Graph analysis

No group effect was found for global graph parameters,
which included the normalized clustering coefficient, mean
node degree, small worldness, normalized path length, and
modularity (Table 3). However, we found differences in
local graph measures (FWE-corrected, p < 0.05), which im-
plied decreased local efficiency, node degree, and nodal clus-
tering coefficient in both PD groups compared with HC
(Table 4). Of note, we found differences between PD groups
according to MCI presence. PD without MCI had higher
nodal clustering coefficient in the left banks of the superior
temporal sulcus, postcentral, transverse temporal cortices,
as well as in the right superior parietal cortex in comparison
with PD-MCI (Table 4). PD-MCI patients, on the contrary,
showed higher local efficiency and nodal clustering coeffi-
cient in the right accumbens, as well as increased node de-
gree in the left banks of the superior temporal sulcus, when
compared with PD without MCI.

Discussion

We have studied structural connectivity alterations in PD
and PD-MCI by assessing local changes in WM integrity
with TBSS, pair-wise connectivity measures using TFNBS,
and global as well as local measures of network integrity
using graph theory. As far as we know, this is the first
work investigating structural connectivity using TFNBS
based on probabilistic tractography in PD-MCI.

FIG. 2. Comparison of mean connectivity between HC and
PD patients. Plots illustrate the distribution of average NOS
derived from the 114 connections with significantly reduced
connectivity in PD compared with HC. Significance of inter-
group analyses (FWE-corrected, p < 0.05) is shown. NOS,
number of streamlines; TFNBS, threshold-free network-
based statistics. Color images are available online.
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PD patients showed reduced NOS compared with HC.
Structural connectivity reduction was present in both PD-
MCI and PD without MCI patients. Specifically, PD-MCI
showed a higher number of abnormal connections involving
cortico-DGM connections and mainly posterior cortico-
cortical regions. PD patients without MCI, in turn, showed
fewer impaired connections, mostly located in bilateral pre-

frontal regions. Our data suggest that whole-brain connec-
tome analysis based on probabilistic tractography is a
useful and sensitive approach to explore the structural abnor-
malities related to cognitive decline in PD.

Whole-brain analysis of pair-wise connections showed re-
duced NOS in PD compared with HC in 114 connections.
Particularly, PD-MCI showed reduced connectivity in a

FIG. 3. Schematic representation of the structural connections with reduced structural connectivity strength in PD-MCI (A)
and PD without MCI (B) compared with HC using TFNBS. Violin plots illustrate the distribution of the measures of average
NOS obtained using TFNBS: connections derived from (C) the 37 significantly reduced tracts found in PD-MCI patients
compared with HC and (D) the 18 significantly reduced tracts found in PD without MCI compared with HC. NOS values
were z-transformed to allow better comparability. Connectivity figures were drawn using Surf Ice. Significance of intergroup
analyses (FWE-corrected, p < 0.05) is shown. Neurological convention is used. Color images are available online.
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higher number of connections than PD without MCI, which
were mainly fronto-striatal and posterior cortico-cortical
connections.

A previous study identified decreased global FA and in-
creased global MD, as well as structural brain connectivity
changes in certain subnetworks based on FA and MD values,
which included basal ganglia as well as frontal and parietal
nodes in PD-MCI patients in comparison with HC (Galan-
tucci et al. 2017). Similarly, our results showed reduced
NOS in fronto-striatal connections, which are known to be
related to early cognitive deficits in PD, including those com-
monly described as dopaminergic fronto-striatal executive
impairments (Schapira et al. 2017).

In agreement with our results, Galantucci and colleagues
(2017) did not find differences in global NOS between PD pa-
tient subgroups; nonetheless, both PD-MCI and PD without
MCI groups showed reduced global NOS in comparison with
HC (Galantucci et al. 2017). In addition, in their study, initial
FA NBS analyses showed no differences between PD patients.
However, when more liberal statistical thresholds were used,
FA connection changes were identified, and were similar to
PD changes between controls and PD-MCI patients.

In contrast with the results of Galantucci et al. (2017) that
found decreased FA in PD-MCI compared with HC in a bilat-
eral principal connected component, we identified significant
differences mainly in the left hemisphere. The differences
could be due to the sample characteristics, as Galantucci
et al. (2017) performed the analysis using matched PD sam-
ples. However, our results agree with those of Agosta et al.
(2014) that reported decreased FA in PD-MCI compared
with HC in several left tracts. A recent review of DTI in PD
and other parkinsonism showed that although FA decreases
are often bilateral, there are also different studies showing
only left hemisphere decreases (Zhang et al. 2020). The origin
of hemispheric asymmetries is unknown; however, the unilat-
eral findings do not necessarily imply that the other hemisphere
is not affected, the nonsignificant results may be a consequence
of the specific threshold established for statistical significance.

In our study, moreover, PD-MCI patients showed reduced
NOS in cortico-cortical connections mainly including temporal
and occipital regions. In this context, posterior cortical-based
neuropsychological deficits have been related to a higher risk

of evolution to dementia (Williams-Gray et al. 2007). This hy-
pothesis is supported by findings from other modalities: FDG-
PET data have shown that posterior cortical hypometabolism
may play an important role in the pathogenesis of cognitive im-
pairment in PD (Garcia-Garcia et al. 2012; Wu et al. 2018).
Moreover, regional cortical thinning in parieto-temporal re-
gions, as well as increased global atrophy, has been suggested
as structural neuroimaging markers of cognitive impairment in
nondemented PD patients (Segura et al. 2014; Uribe et al. 2016).

Furthermore, based on pathological findings, the presence
of cortical Lewy body pathology, as well as concomitant
Alzheimer pathology, seems to be the most relevant factor
in the development of cognitive impairment in PD (Halliday
et al. 2014). A possible explanation is that neuronal cell bodies
could be affected, with gradual loss of synaptic terminals, but
dendritic arborization and neuronal connections could also be
affected. Therefore, WM abnormalities observed in cogni-
tively impaired patients may be understood as secondary to
axonal degeneration after neuronal body damage. Within
this framework, our results might add some evidence regard-
ing the involvement of mostly posterior cortical regions and
their connections in PD patients to worse cognitive prognosis.

In our work, logistic regression and ROC curve analysis
showed that decreased cortico-cortical and cortico-DGM
connections described in the group comparison between
PD-MCI patients and HC can identify subgroups of patients
with an AUC of 83% and 85%, respectively. Although our
analyses were done to provide a quantification of the results
obtained from the whole connectome, they are in accordance
with results from recent approaches that have assessed the
discriminant value of features extracted from MRI modali-
ties. A previous study showed that structural connectivity
data are relevant in distinguishing parkinsonian patients at
the single-subject level with an overall accuracy of 82.23%
(Abos et al. 2019b). In PD patients, these MRI data are
also able to correctly discern PD patients from HC in longi-
tudinal studies, obtaining similar accuracy results (83.6%)
(Peña-Nogales et al. 2019). Only one previous study in
PD-MCI (Galantucci et al. 2017) showed that structural ab-
normalities identified throughout the NBS approach could
discriminate PD-MCI from those with PD without MCI
with an 81% accuracy.

Table 3. Global Graph Measures

HC PD Stat (F)/p

Modularity 0.5260 (0.0176) 0.5244 (0.0133) 0.04/0.9978
Normalized clustering coefficient 1.4506 (0.1399) 1.4946 (0.1661) 1.34/0.5816
Mean node degree 68.0465 (3.5116) 68.0465 (3.5116) 3.38/0.1964
Small worldness 1.2687 (0.1423) 1.3248 (0.1580) 2.22/0.3608
Normalized path length 1.1284 (0.0169) 1.1284 (0.0169) 3.78/0.1564

HC PD without MCI PD-MCI Stat (F)/p

Modularity 0.5260 (0.0176) 0.5281 (0.0176) 0.5235 (0.0111) 0.96/0.773
Normalized clustering coefficient 1.4506 (0.1399) 1.5040 (0.1795) 1.4763 (0.1620) 0.81/0.833
Mean node degree 68.0465 (3.5116) 66.6744 (4.6977) 66.9070 (4.3721) 1.68/0.476
Small worldness 1.2687 (0.1423) 1.3397 (0.1602) 1.3130 (0.1650) 1.33/0.613
Normalized path length 1.1284 (0.0169) 1.123 (0.016) 1.1255 (0.0288) 2.16/0.322

Group differences were assessed using Monte Carlo simulations with 5,000 permutations (FWE-corrected, p < 0.05).
FWE, family-wise error rate.
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Table 4. Local Graph Measures

ROI

Post hoc p-value

HC vs. PD
without MCI

HC vs.
PD-MCI

PD without MCI
vs. PD-MCI Significant contrast

Local efficiency
Left cuneus n.s. 0.0418 n.s. HC > PD-MCI
Left lateral orbitofrontal 0.0018 0.01 n.s. HC > PD without MCI, HC > PD-MCI
Left lingual n.s. 0.0186 n.s. HC > PD-MCI
Left medial orbitofrontal 0.0486 n.s. n.s. HC > PD without MCI
Left pars orbitalis 0.0074 0.002 n.s. HC > PD without MCI, HC > PD-MCI
Left pars triangularis 0.0108 0.0016 n.s. HC > PD without MCI, HC > PD-MCI
Left pericalcarine n.s. 0.03 n.s. HC > PD-MCI
Left postcentral n.s. 0.009 0.0144 HC > PD-MCI, PD without MCI > PD-MCI
Left rostral anterior cingulate n.s. 0.035 n.s. HC > PD-MCI
Left superior temporal n.s. 0.0146 n.s. HC > PD-MCI
Left temporal pole 0.0378 n.s. n.s. HC > PD without MCI
Right bankssts n.s. 0.035 n.s. HC > PD-MCI
Right inferior temporal 0.0124 n.s. n.s. HC > PD without MCI
Right lateral orbitofrontal 0.0134 n.s. n.s. HC > PD without MCI
Right medial orbitofrontal 0.0302 n.s. n.s. HC > PD without MCI
Right postcentral n.s. 0.0036 n.s. HC > PD-MCI
Right superior parietal n.s. 0.0334 0.0244 HC > PD-MCI, PD without MCI > PD-MCI
Right temporal pole 0.0246 n.s. n.s. HC > PD without MCI
Left amygdala 0.033 n.s. n.s. HC > PD without MCI
Left hippocampus n.s. 0.0176 n.s. HC > PD-MCI
Left putamen 0.0496 n.s. n.s. HC > PD without MCI
Right accumbens n.s. n.s. 0.0366 PD-MCI > PD without MCI

Mean node degree
Left bankssts 0.0216 n.s. 0.049 HC > PD without MCI,

PD-MCI > PD without MCI
Left cuneus n.s. 0.0446 n.s. HC > PD-MCI
Left entorhinal n.s. 0.0082 n.s. HC > PD-MCI
Left frontal pole n.s. 0.0144 n.s. HC > PD-MCI
Left inferior temporal 0.0162 n.s. n.s. HC > PD without MCI
Left lateral orbitofrontal 0.0208 0.0338 n.s. HC > PD without MCI, HC > PD-MCI
Left lingual n.s. 0.0038 0.034 HC > PD-MCI, PD without MCI > PD-MCI
Left pars opercularis 0.0426 n.s. n.s. HC > PD without MCI
Left pars orbitalis 0.0014 0.0034 n.s. HC > PD without MCI, HC > PD-MCI
Left pars triangularis 0.0136 0.0284 n.s. HC > PD without MCI, HC > PD-MCI
Left rostral middle frontal n.s. 0.0146 n.s. HC > PD-MCI
Right frontal pole n.s. 0.0406 n.s. HC > PD-MCI
Right inferior parietal n.s. 0.0412 0.0356 HC > PD-MCI, PD without MCI > PD-MCI
Right lateral orbitofrontal 0.0022 n.s. n.s. HC > PD without MCI
Right pars orbitalis 0.0028 n.s. n.s. HC > PD without MCI
Left hippocampus 0.0418 0.0014 n.s. HC > PD without MCI, HC > PD-MCI
Right hippocampus n.s. 0.0142 n.s. HC > PD-MCI

Nodal clustering coefficient
Left bankssts n.s. n.s. 0.0472 PD without MCI > PD-MCI
Left lateral orbitofrontal 0.0012 0.0032 n.s. HC > PD without MCI, HC > PD-MCI
Left lingual n.s. 0.0162 n.s. HC > PD-MCI
Left medial orbitofrontal 0.0122 0.0382 n.s. HC > PD without MCI, HC > PD-MCI
Left pars orbitalis 0.026 0.0024 n.s. HC > PD without MCI, HC > PD-MCI
Left pars triangularis 0.01 0.0012 n.s. HC > PD without MCI, HC > PD-MCI
Left pericalcarine n.s. 0.0194 n.s. HC > PD-MCI
Left postcentral n.s. 0.0076 0.0342 HC > PD-MCI, PD without MCI > PD-MCI
Left rostral anterior cingulate n.s. 0.0464 n.s. HC > PD-MCI
Left rostral middle frontal 0.045 n.s. n.s. HC > PD without MCI
Left superior temporal n.s. 0.009 n.s. HC > PD-MCI
Left temporal pole 0.0246 n.s. n.s. HC > PD without MCI
Left transverse temporal n.s. n.s. 0.0336 PD without MCI > PD-MCI
Right bankssts n.s. 0.0248 0.0516 HC > PD-MCI
Right inferior temporal 0.0084 n.s. n.s. HC > PD without MCI
Right lateral orbitofrontal 0.0146 n.s. n.s. HC > PD without MCI

(continued)
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On the contrary, in our study, other measures derived from
DTI showed lower sensitivity to WM abnormalities. We did
not find significant differences between groups using mean
global measures such as mean global FA and MD. Moreover,
only PD-MCI patients compared with HC showed microstruc-
tural damage measured by TBSS. Previous literature using this
methodological approach suggested that WM damage was
emerging as a relevant pathological substrate of cognitive def-
icits in PD patients (Baggio et al. 2018; Hattori et al. 2012).
While some studies identified widespread bilateral WM abnor-
malities in PD-MCI compared with PD without cognitive im-
pairment in the left corticospinal tract, inferior longitudinal
fasciculus, and forceps major (Agosta et al. 2014), others
found more spatially restricted regions limited to the corona
radiata (Melzer et al. 2013) and the posterior part of the corpus
callosum (Garcia-Diaz et al. 2018), or did not find significant
differences (Galantucci et al. 2017; Hattori et al. 2012).

Characterizing the structural connectome through graph
theory provides information about the organization of the
network (Griffa et al. 2013). Few studies have investigated
the WM structural network connectome alterations in PD-
MCI patients. In our study, graph analysis of global network
properties did not show significant differences. Similarly, al-
though Wang et al. (2019) reported decreased global effi-
ciency and increased shortest path length in PD-MCI
compared with HC, both important indicators of network
interconnectivity, they did not find significant differences be-
tween PD subgroups or PD without MCI and HC. Contrarily,
Galantucci et al. (2017), using FA and MD matrices, found
increased assortativity—that is, the preference of a node to
connect with similar nodes—and reduced clustering coeffi-
cient and global efficiency when comparing PD with and
without MCI, suggesting global abnormalities in structural
networks (Galantucci et al. 2017).

Moreover, our exploratory analysis brought noteworthy
differences in local graph measures to light. PD patients
showed less local efficiency, nodal degree, and clustering co-
efficient in several regions. Intergroup comparisons mostly
suggested decreased nodal clustering coefficient, specifically
in the left banks of the superior temporal sulcus, postcentral,
transverse temporal cortices, as well as in the right superior
parietal cortex in PD-MCI, in comparison with PD patients

without cognitive impairment. The opposite trend was ob-
served only in the right accumbens together with increased
node degree in the left banks of the superior temporal sulcus.
Widespread regions with decreased nodal efficiency have
been previously observed between PD subgroups and HC.
However, when PD-MCI and PD without MCI were com-
pared, the reported regions only involved the left olfactory
cortex and the left superior frontal gyrus, but not posterior re-
gions (Wang et al. 2019).

In this sense, it should be pointed out that the reproducibil-
ity of network metrics can be affected by many factors. One
relevant aspect would be that previous studies estimated
structural connectivity using deterministic tractography,
whereas our results were based on a probabilistic approach.
Methodological differences as well as diversity in patient
characteristics could be contributing to the heterogeneity of
these results.

Previous results, taken altogether, highlighted the involve-
ment of complex structural brain networks in PD-related
cognitive impairment, rather than degeneration of individual
WM tracts. Nevertheless, our TFNBS analysis, which
allowed us to find a predominant reduction of NOS between
PD patients and HC with no a priori selection of tracts, as
well as the graph analysis results, might indicate that these
structural abnormalities are not a global phenomenon and
suggests the implication of regional and predominantly pos-
terior structural network disruption underlying cognitive im-
pairment in PD.

By combining the different methods, we aimed to surpass
their individual limitations and give a more accurate vision
of structural connectivity in PD-MCI. TBSS is a method that
can detect changes in FA throughout the WM of the brain si-
multaneously. At the same time, although it is an approachable
method that delivers comprehensive images, it may also cover
relevant aspects of the data, as it only makes use of the FA map
and discards the orientations’ information.

This leads to complications when it comes to anatomical
specificity in regions where paths of different structures
merge (Bach et al. 2014). On the contrary, DTI fiber tracking
measurements are derived from individual WM connec-
tions, and they do allow us to distinguish between adjacent
connections.

Table 4. (Continued)

ROI

Post hoc p-value

HC vs. PD
without MCI

HC vs.
PD-MCI

PD without MCI
vs. PD-MCI Significant contrast

Right medial orbitofrontal 0.0152 n.s. n.s. HC > PD without MCI
Right postcentral n.s. 0.004 n.s. HC > PD-MCI
Right superior parietal n.s. 0.0266 0.0358 HC > PD-MCI, PD without MCI > PD-MCI
Right temporal pole 0.0298 n.s. n.s. HC > PD without MCI
Left accumbens 0.0248 n.s. n.s. HC > PD without MCI
Left amygdala 0.0328 n.s. n.s. HC > PD without MCI
Left hippocampus n.s. 0.0164 n.s. HC > PD-MCI
Left putamen 0.0448 n.s. n.s. HC > PD without MCI
Right accumbens 0.0124 n.s. 0.01 HC > PD without MCI,

PD-MCI > PD without MCI

Group differences were assessed using Monte Carlo simulations with 5,000 permutations (FWE-corrected, p < 0.05).
n.s., not significant; ROI, regions of interest.
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However, they may also introduce spurious WM connec-
tions that do not exist, a limitation that we had tried to min-
imize by ignoring streamlines intersecting fewer than two
regions and only considering the connections between pairs
of regions that were detected in at least 50% of the individ-
uals. While other approaches to the method, such as con-
strained spherical deconvolution, had managed to improve
it ( Jeurissen et al. 2011). In addition, graph theory facilitates
study of topological properties of an entire network, instead
of an individual analysis of large numbers of tracts. However
it has its limitations as well, as these parameters are influ-
enced by the number of nodes of the network, which are in-
deed arbitrarily chosen. For this reason, we selected well-
implemented and standardized atlases.

As expected, in line with previous studies (Segura et al.
2014), our neuropsychological results showed a significantly
worse performance in verbal memory, semantic fluency, visuo-
spatial and visuoperceptive functions, and processing speed in
PD-MCI compared with PD without MCI and HC. However,
although altered WM has been recurrently associated with
PD-MCI, we did not find significant correlations between cog-
nition and WM measures in accordance with previous studies
(Agosta et al. 2014). Although there are several authors who
found significant correlations between neuropsychological per-
formance and FA decreases (Zhang et al. 2020, review), they
usually combine PD with and without MCI. Greater variability
in the degree of cognitive impairment as well as in FA reduc-
tions favors the finding of correlations. It is probable that in our
sample there is not enough variability within the PD-MCI
group to provide statistical significance. Regarding the studies
using NBS, only one reported significant correlations between
the neuropsychological performance and graph measures, but
they did not distinguish between PD with and without MCI
(Wang et al. 2019).

On the contrary, it could also be considered that cognitive
impairment is mainly explained by GM degeneration. For
example, when both GM and WM changes are considered
in the same sample, WM appears to be explaining just a
small part of the degenerative pattern. In Inguanzo et al.
(2021), we used GM and WM measures to perform a hierar-
chical cluster analysis, and we found three subgroups, of
which only one presented WM alterations. Accordingly, cog-
nitive performance in PD has been consistently seen to cor-
relate with GM structural parameters (Garcia-Diaz et al.
2018; Mak et al. 2014), and with functional connectivity
(Baggio et al. 2015).

Baggio and colleagues (2015) found that PD-MCI patients
had reduced functional connectivity between the dorsal atten-
tion network and fronto-insular regions, as well as increased
connectivity between posterior cortical regions and the default
mode network, which in turn correlated with the attention/ex-
ecutive and visuospatial/visuoperceptual functions. Graph the-
ory approaches also showed that PD-MCI had increased
clustering coefficient, small-worldness, and modularity mea-
sures, which were negatively associated with visuospatial/
visuoperceptual and memory scores (Baggio et al. 2014). All
these taken together suggest that WM might be playing a sec-
ondary role in the cognitive impairment of PD.

Conversely, beyond the acceptance of MCI definition (Lit-
van et al. 2012) as useful clinical criteria to identify patients
with worse cognitive profiles and dementia risk, recent evi-
dence suggested the existence of a more complex picture,

identifying PD subtypes based on neuropsychological, clini-
cal, and MRI data (Dujardin et al. 2013; Uribe et al. 2016;
Fereshtehnejad et al. 2017; Inguanzo et al. 2021). In light
of our results, it could be suggested that the study of struc-
tural connectivity in PD subtypes might facilitate the study
of different patterns of cognitive deterioration and shed
light on their anatomical basis/substrates. Future studies
should consider a whole-brain approach to better describe
structural connectivity abnormalities in PD subtypes and its
possible association with cognitive impairment. Moreover,
combining neuroimaging with clinical data would allow for
better precision in finding PD subgroups.

Conclusion

In conclusion, whole-brain structural connectivity tech-
niques based on probabilistic tractography allow identifica-
tion of reduced connectivity in fronto-striatal and posterior
cortical connections related to cognitive decline in PD and
are able to reveal potential structural connectivity indicators
to classify PD disease phenotypes with high accuracy.
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SUPPLEMENTARY	MATERIAL	

	

Supplementary	Data	S1	

	
	 HC	(n=51)	 PD	(n=62)	 Stats			

(p-value)	

Age,	

median(IQ)	

66	(17)	 64.5	(15)	 1485.5	(0.58)	

Gender	(m/f)	 23/28	 46/16	 9.963	(0.002)	

Years	of	

education	

12(7)	 13(9)	 1664.5	(0.48)	

H&Y	

(1/2/2.5/3)	

NA	 10/31/1/20	 -	

UPDRS	III	 NA	 15	(11)	 -	

LEDD	 NA	 526.75	(348.75)	 -	

Years	of	

evolution	

NA	 7	(7)	 -	

IADL,	median	

(IQ)	

8	(0)	 7	(3)	 858	(<0.001)	

MMSE,	median	

(IQ)	

0.096	(1.33)	 0.094(1.33)	 1393.5	

(0.279)	

	

Group	differences	were	assessed	using	Mann-Whitney	U	test	or	Pearson’s	chi	squared	test.		Abbreviations:	HC	

–	healthy	controls;	IQ	–	interquartile	range;	LEDD	–	L-dopa	equivalent	daily	dose;	NA	–	not	applicable;	PD	–	

Parkinson’s	disease;	UPDRS	–	Unified	Parkinson’s	Disease	Rating	Scale.		
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Supplementary	Data	S2	

	

	

Structural	connectivity	connections	with	reduced	number	of	streamlines	in	PD-MCI	compared	with	HC	and	PD	

without	MCI	compared	with	HC.	Abbreviations:	HC	–	healthy	controls;	MCI	–	mild	cognitive	impairment;	PD	–	

Parkinson’s	disease	patients.	
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Supplementary	Data	S3	

	

	

Set	 of	 cortico-cortical	 and	 cortico-DGM	 tracts	 used	 to	 obtain	 the	 ROC	 curves	 and	 corresponding	 AUC.	

Abbreviations:	AUC	–	Area	Under	the	Curve;	ROC	–	Receiver	Operating	Characteristic.	

	

Supplementary	Figure	S1	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	
	
	
																							ROC	curves	obtained	from	the	(A)	cortico-cortical	tracts	and	(B)	DGM-cortical	tracts.	
																																															Abbreviations:	ROC	-	Receiver	Operating	Characteristic.	
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Background.	Dementia	with	Lewy	bodies	(DLB)	 is	a	neurodegenerative	

disorder	with	a	wide	heterogeneity	of	symptoms.	This	heterogeneity	has	

been	 disentangled	 using	 data-driven	 analysis	 on	 clinical	 data	 and	

hypothesis-driven	 analysis	 on	 magnetic	 resonance	 imaging	 (MRI).	

However,	more	research	is	needed	to	advance	our	understanding	of	the	

biology	underlying	this	heterogeneity	in	DLB.		

Objectives.	We	used	a	data-driven	clustering	approach	on	MRI	data	and	

characterized	 the	 resulting	 subtypes	 using	 demographic,	 clinical,	 and	

biomarker	data.		

Methods.	We	 included	 165	 patients	with	 probable	DLB	 from	 the	Mayo	

Clinic	 and	 3	 centers	 from	 the	 European	 DLB	 consortium.	 We	 used	 a	

random	forest-based	method	to	 identify	subtypes	based	on	gray	matter	

(GM)	volumes	from	82	cortical,	12	subcortical,	and	2	brainstem	regions.	

To	characterize	the	subtypes,	we	assessed	between-group	differences	in	

MRI	volumes,	demographic,	and	clinical	data	as	well	as	tau,	β-amyloid	and	

cerebrovascular	biomarkers.		

Results.	We	 identified	 3	 DLB	 subtypes	 with	 different	 patterns	 of	 GM	

volume	and	clinical	profiles:	a	subtype	with	cortical	predominant	low	GM	

volumes	 that	 included	 older	 patients	 with	 worse	 global	 cognition	 and	

faster	cognitive	decline	over	3	years	(n=49,	30%);	a	subtype	with	low	GM	

volumes	in	fronto-occipital	regions	(n=76,	46%);	and	a	subtype	of	younger	

patients	with	the	highest	cortical	GM	volumes,	but	proportionally	 lower	

GM	 volumes	 in	 basal	 ganglia	 and	 a	 higher	 frequency	 of	 cognitive	

fluctuations	(n=40,	24%).		

Conclusions.	 In	 this	 relatively	 large	 multi-center	 cohort,	 data-driven	

analysis	on	MRI	revealed	3	distinct	subtypes	within	probable	DLB,	which	

may	 have	 implications	 for	 clinical	 workout,	 research,	 and	 therapeutic	

decisions.	
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INTRODUCTION	

Dementia	 with	 Lewy	 bodies	 (DLB)	 is	 a	

neurodegenerative	 disease	 clinically	

characterized	by	visual	hallucinations	(VH),	

cognitive	 fluctuations	 (CF),	 parkinsonism,	

and	 rapid	 eye	 movement	 sleep	 behavior	

disorder	 (RBD)1.	 These	 cardinal	 clinical	

features	 can	 course	 together	 with	 other	

symptomatology	 such	 as	 autonomic	

dysfunction,	hyposmia,	or	anxiety,	and	vary	

in	 the	 frequency	 and	 temporal	 appearance	

across	 patients.	 This	 clinical	 complexity	

translates	 into	 a	 substantial	 clinical	

heterogeneity	in	probable	DLB	(pDLB)	that	

has	 been	 approached	 through	 the	

investigation	of	disease	subtypes2.		

	

Neuropathologically,	 DLB	 is	 characterized	

by	abnormal	accumulation	of	intraneuronal	

alpha-synuclein	 aggregates,	 similarly	 to	

Parkinson’s	 disease	 (PD)	 with	 dementia.	

Additionally,	 DLB	 patients	 often	 have	

concomitant	 Alzheimer’s	 disease	 (AD)	

pathology,	including	β-amyloid	plaques	and	

tau	 neurofibrillary	 tangles,	 which	

contributes	to	the	heterogeneity	within	DLB.	

Structural	 magnetic	 resonance	 imaging	

(MRI)	 is	 recently	 emerging	 as	 a	 promising	

technique	 to	 aid	 differential	 diagnosis	 and	

investigate	disease	subtypes,	both	in	pDLB3	

and	AD4.	Kantarci	et	al.	(2012)5	investigated	

3	 neuropathologically	 defined	 subtypes	

based	 on	 the	 presence	 of	 concomitant	 AD	

pathology	 and	 the	 spatial	 location	of	 Lewy	

pathology	(brainstem,	limbic,	or	diffuse).	An	

increasing	likelihood	of	neuropathologically	

confirmed	 DLB	 was	 associated	 with	 high	

gray	matter	(GM)	volumes	in	the	amygdala	

and	 the	 hippocampus5.	 In	 contrast,	 lower	

hippocampal	 volumes	 in	 pDLB	 have	 been	

related	 to	 a	more	 aggressive	 course	 of	 the	

disease6.	 These	 early	 studies	 focused	 on	

medial	 temporal	 areas	 have	 recently	 been	

extended	 to	 include	 posterior	 and	 frontal	

brain	 areas.	 Oppedal	 and	 Ferreira	 et	 al.	

(2019)3	 classified	pDLB	patients	 according	

to	 4	 brain	 atrophy	 subtypes	 previously	

described	 in	 AD7.	 The	 majority	 of	 pDLB	

patients	 were	 classified	 as	 hippocampal-

sparing	or	minimal	atrophy	subtypes.	These	

previous	studies	were	all	hypothesis-driven,	

while	 data-driven	 studies	 can	 reveal	

important	 aspects	 of	 the	 heterogeneity	 in	

neurodegenerative	 diseases8.	 For	 instance,	

in	 PD	 several	 data-driven	 studies	 have	

revealed	 that	 different	 brain	 atrophy	

subtypes	 drive	 part	 of	 the	 variability	 in	

clinical	phenotype9–11.	However,	despite	the	

preliminary	evidence	about	the	existence	of	

DLB	subtypes	and	the	need	for	personalized	

medicine	 approaches,	 data-driven	

subtyping	studies	are	still	lacking	in	patients	

with	pDLB.	

	

The	overall	goal	of	this	study	was	to	advance	

our	 current	 understanding	 of	 the	

heterogeneity	 in	 DLB	 by	 expanding	 the	

previous	 research	 using	 a	 data-driven	



 

 144		

clustering	 method	 to	 investigate	 MRI	

subtypes.	The	specific	objectives	were	(1)	to	

identify	DLB	subtypes	based	on	different	GM	

volumetric	patterns,	and	(2)	to	characterize	

their	 clinical	 phenotypes	 at	 baseline	 and	

cognitive	 trajectories	 over	 three	 years	 of	

follow-up.		

	

METHODS	

	

1. Participants	

A	total	of	165	pDLB	patients	participated	in	

this	 multicenter	 study.	 The	 data	 were	 a	

combination	 of	 the	 E-DLB	 consortium	 (n=	

97)12	,	including	29	subjects	from	Prague,	34	

from	 Strasbourg,	 and	 34	 from	 VUmc	

Amsterdam,	and	the	Mayo	Clinic	DLB	cohort	

from	Rochester,	MN,	United	States	(n=	68).	

Diagnosis	 and	 the	 presence/absence	 of	

cardinal	clinical	features	were	based	on	the	

2005	 International	 Consensus	 Criteria	 for	

pDLB13,	 to	 allow	 harmonization	 among	

centers.	 All	 cardinal	 clinical	 features	 were	

assessed,	 including	 presence	 of	

parkinsonism,	VH,	CF,	and	a	clinical	history	

of	 probable	 RBD.	 The	 Mini-Mental	 State	

Examination	(MMSE)	was	used	as	a	measure	

of	global	cognition.	Exclusion	criteria	were:	

(i)	presence	of	acute	delirium,	(ii)	terminal	

illness,	(iii)	previous	stroke,	(iv)	psychotic	or	

bipolar	disorder,	(v)	craniocerebral	trauma,	

and	(vi)	recent	diagnosis	of	a	major	somatic	

illness.		

	

	

2. β-Amyloid	and	tau	biomarkers		

β-amyloid	 and	 tau	 pathologies	 were	

assessed	 with	 cerebrospinal	 fluid	 (CSF)	 β-

amyloid	 1-42	 and	 phosphorylated	 tau	

biomarkers	 in	 the	 E-DLB	 cohort,	 and	with	

the	 positron	 emission	 tomography	 (PET)	

Pittsburgh	 compound	 B	 (PiB)	 and	

Flortaucipir	(AV-1451)	tracers	in	the	Mayo	

Clinic.	 Biomarker	 levels	 were	 classified	 as	

normal	 or	 abnormal	 based	 on	 center-

specific	established	cut	points,	as	explained	

in	detail	in	14,15.	Currently,	positivity	in	both	

β-amyloid	and	tau	biomarkers	is	needed	for	

the	diagnosis	of	AD16.	Hence,	in	the	current	

study,	 we	 defined	 concomitant	 AD	

pathology	when	our	pDLB	patients	showed	

positivity	 in	 both	 β-amyloid	 and	 tau	

biomarkers,	in	the	subsample	with	available	

biomarkers	(n	=	122).	

	

3. Ethics	

Local	ethics	committee	at	each	E-DLB	center	

and	 the	 Mayo	 Clinic	 Institutional	 Review	

Board	 approved	 the	 study.	 Informed	

consent	on	participation	was	obtained	from	

all	 patients	 or	 appropriate	 surrogates	

according	to	the	Declaration	of	Helsinki.		

	

4. Neuroimaging	data		

4.1. MRI	acquisition		

A	 high-resolution	 3D	 T1-weigthed	

magnetization	prepared	rapid	gradient	echo	

(MPRAGE)	sequence	and	a	FLAIR	sequence	

were	 acquired	 in	 3T	 (The	 Day	 Hospital	 of	
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Geriatrics,	Memory	Resource	and	Research	

Center,	 CMRR,	 Strasbourg,	 France;	 the	 VU	

University	 Medical	 Center,	 VUmc,	

Amsterdam,	the	Netherlands;	and	the	Mayo	

Clinic,	 Rochester,	 US)	 and	 1.5T	 (Motol	

University	Hospital,	Prague,	Czech	Republic)	

scanners.		

4.2. MRI	preprocessing		

Images	 from	 the	 E-DLB	 consortium	 were	

managed	 through	 the	 HiveDB	 database	

system17.	All	the	data	were	preprocessed	at	

the	 Mayo	 Clinic.	 Using	 ANTs18,	 the	 Mayo	

Clinic	 Adult	 Lifespan	 Template	 (MCALT)	

(https://www.nitrc.org/projects/mcalt/)	

atlas	was	propagated	 to	 individuals’	native	

MPRAGE	space	and	regional	estimations	of	

volume	 across	 cortical	 and	 subcortical	 GM	

structures	 were	 calculated.	 Tissue	

probabilities	 were	 determined	 for	 each	

MPRAGE	 using	 the	 unified	 segmentation	

algorithm	in	SPM12	(Wellcome	Trust	Center	

for	Neuroimaging,	London,	UK),	with	MCALT	

tissue	 priors	 and	 settings19.	 A	 total	 of	 82	

cortical	 ROIs,	 12	 subcortical	 ROIs	 and	 2	

brainstem	 ROIs	 were	 used	 in	 this	 study	

(Supplementary	 material	 1).	 The	 total	

intracranial	 volume	 (TIV)	 was	 calculated	

from	the	tissue	probabilities.	To	account	for	

between-subject	variability	in	GM	volumes,	

a	multiple	linear	regression	model	was	fitted	

per	 each	ROI	 (outcome	variable),	with	TIV	

and	center	included	as	predictors.	Residuals	

obtained	from	these	regression	models	were	

used	 for	 the	 analyses.	 White	 matter	

hyperintensities	 (WMH)	 were	 defined	 as	

signal	 abnormalities	 of	 variable	 size	 in	 the	

white	 matter	 (WM),	 using	 a	 semi-

quantitative	method	 described	 in	 previous	

publications20.	

5. Subtypes	 of	 pDLB	 based	 on	 data-

driven	analysis	

We	 performed	 a	 cluster	 analysis	 with	 the	

random	 forest	 method	 applied	 on	 the	

residuals	 of	 the	 96	 ROIs21.	 The	 random	

forest	 method	 is	 an	 ensemble	 classifier	

consisting	of	many	decision	trees22.	Through	

bootstrapping22,	each	tree	was	trained	with	

a	 slightly	 different	 set	 of	 the	 data23,	which	

consisted	of	70%	of	the	original	data,	while	

the	remaining	30%	was	used	for	validation.	

The	 random	 forest	 method	 was	

implemented	 in	 R	 (The	 R	 Foundation	 for	

Statistical	Computing;	version	4.0.3)24.	

Cluster	 analysis	 using	 random	 forest	 is	

based	on	the	similarity	(proximity)	measure	

between	 pairs	 of	 observations25.	 Each	 tree	

assigns	 the	 observations	 together	 on	 a	

certain	class	by	directing	them	on	the	same	

terminal	 node,	 and	 each	 time	 the	 pair	 of	

observations	ends	up	on	the	same	terminal	

node,	the	similarity	measure	increases	by	1.	

At	the	end	of	the	process,	the	similarities	are	

symmetrized	and	divided	by	the	number	of	

trees.	Agglomerative	hierarchical	clustering	

with	the	average	linkage	method26	was	then	

used	in	the	output	data	from	random	forest.	

The	 Calinski-Harabasz	 index	 was	 used	 to	
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evaluate	 the	 optimal	 number	 of	 clusters,	

where	2	to	10	clusters	were	considered.	The	

mean	decrease	in	the	Gini	index	was	used	to	

identify	 the	 ROIs	 with	 the	 highest	

contribution	to	the	cluster	analysis.	The	10	

most	 relevant	 ROIs	 were	 then	 used	 for	 a	

supervised	random	forest,	in	which	the	ROIs	

were	the	predictor	variable	and	the	cluster	

number	 the	 dependent	 variable.	 This	

supervised	model	was	performed	to	identify	

the	ROIs	that	best	discriminate	between	the	

clusters.	

	

6. Statistical	analyses	

Differences	 in	 demographic	 and	 clinical	

measures	 as	 well	 as	 biomarkers	 were	

assessed	 with	 one-way	 ANOVA	 for	

continuous	variables	and	the	Pearson’s	chi-

square	 test	 for	 categorical	 variables.	

Differences	 between	 GM	 across	 ROIs	were	

assessed	 with	 ANCOVA	 adjusting	 by	 age.	

These	 analyses	were	performed	using	 IBM	

SPSS	 Statistics	 27.0	 (IBM	 Corp.,	 Armonk,	

New	York).	The	results	from	ANCOVA	were	

corrected	 for	 multiple	 comparisons	 using	

the	 false-discovery	 rate	 (FDR)	 adjustment	

across	 the	 96	 ROIs,	 with	 the	 significance	

level	 set	at	p	<	0.05.	A	 linear	mixed	model	

was	 implemented	 in	 R	 to	 assess	 cognitive	

decline	over	3	years	as	measured	by	MMSE	

scores	(Supplementary	material	2).	

	

	

RESULTS	

Cohort	characteristics	

The	cohort	included	165	patients	with	pDLB,	

72%	male,	a	mean	age	of	69	years	(SD=8.57,	

range	45-88	years)	and	disease	duration	of	

5.65	 years	 (SD=4.34).	 The	 mean	 years	 of	

education	was	 13.63	 years	 (SD=3.88).	 The	

mean	MMSE	score	was	22.91	(SD=5.22),	and	

the	 mean	 WMH	 burden	 was	 16.12	 cm3	

(SD=13.25),	which	roughly	corresponds	to	a	

Fazekas	 score27	 of	 2	 (moderate	 WMH	

burden).	 Regarding	 the	 cardinal	 clinical	

features,	55%	of	 the	patients	had	VH,	83%	

had	 CF,	 87%	 had	 parkinsonism,	 and	 78%	

had	probable	RBD.	43%	of	the	patients	were	

APOE	e4	carriers	and	11%	were	classified	as	

having	 concomitant	 AD	 (CSF	 subsample,	

n=122).		

	

Data-driven	analysis	using	random	forest	
	

The	 three-cluster	 solution	 showed	 the	

highest	 Calinski-Harabasz	 index	

(CH=167.41),	 compared	 to	 the	 two-cluster	

solution	 (CH=105.14)	 and	 the	 four-cluster	

solution	 (CH=157.46).	 Based	 on	 this	 and	

visual	 inspection	 of	 the	 dendrogram	

(Supplementary	material	3),	we	selected	the	

three-cluster	 solution	 for	 subsequent	

analyses.	
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Morphological	 characterization	 of	 the	

MRI	subtypes	

	

Whole-brain	 GM	 patterns	 were	

characterized	 by	 comparing	 the	 subtypes	

across	 the	 96	 ROIs	 entered	 in	 the	 cluster	

analysis.	 ANCOVAs	 are	 shown	 in	

Supplementary	 material	 4,	 and	 Figure	 1	

summarizes	 the	 regional	 differences	

between	 clusters.	 Cluster	 1	 (C1)	 was	 the	

subtype	 with	 overall	 lower	 GM	 volumes	

compared	to	cluster	2	(C2)	and	3	(C3),	while	

C1	showed	GM	volumes	in	the	basal	ganglia	

(BG)	comparable	 to	 those	 in	 the	other	 two	

clusters	 (Supplementary	 material	 4).	 In	

consequence,	we	labeled	C1	as	the	‘cortical	

predominant’	subtype.	C2	had	intermediate	

GM	 volumes.	 However,	 C1	 and	 C2	 did	 not	

differ	 in	 frontal	 and	 occipital	 volumes	

(Figure	1A),	suggesting		that	C2	had	relative	

lower	 GM	 volumes	 in	 frontal	 and	 occipital	

areas.	Hence,	we	 labeled	C2	as	 the	 ‘fronto-

occipital	 predominant’	 subtype.	 Finally,	 C3	

had	the	highest	cortical	GM	volumes	but	did	

not	differ	in	BG	GM	volumes	with	the	other	

two	 clusters.	Hence,	 C3	was	 labeled	 as	 the	

‘subcortical	 predominant’	 subtype	 (Figure	

1B	 and	 1C).	 To	 further	 investigate	 these	

observations	with	regard	to	BG	volumes	in	

relation	to	cortical	volumes,	we	computed	a	

ratio	by	adding	the	bilateral	volumes	of	the	

pallidum,	 putamen	 and	 caudate,	 and	

dividing	them	by	the	total	sum	of	all	cortical	

ROIs	(Figure	2).	The	ratio	was	significantly	

lower	 in	 C3	 compared	 with	 the	 other	 2	

subtypes,	and	it	was	significantly	lower	in	C2	

compared	 with	 C1	 (F	 (2,162)	 =	 31.609,	

p<0.001).	 Figure	 3	 shows	 the	 10	 most	

important	 ROIs	 in	 discriminating	 the	 3	

clusters	(Supplementary	material	5	and	6).	

GM	volume	in	the	left	middle	cingulum	was	

the	most	important	ROI	in	discriminating	C1	

and	C2	from	C3	(higher	volume	in	C3);	and	

the	 right	 olfactory	 cortex	 was	 the	 most	

important	ROI	in	discriminating	C2	from	C1	

(higher	volume	in	C2).	

	

Clinical	 characterization	 of	 the	 MRI	

subtypes	

	

C3	 included	 the	 youngest	 patients	 and	 C1	

the	 oldest	 ones	 (Table	 1).	 C1	 had	 higher	

years	of	education	than	both	C2	and	C3	and	

had	 significantly	 worse	 MMSE	 scores	 at	

baseline	compared	with	C3.	The	differences	

in	MMSE	remained	when	accounting	for	age	

and	 education	 (F(2,	 161)=5.936,	 p=0.005).	

The	 longitudinal	 analysis	 of	 MMSE	

trajectories	over	3	years	showed	that	C1	had	

a	 more	 rapid	 cognitive	 decline	 over	 time	

compared	 to	 C3	 (Figure	 4).	 C1	 also	 had	 a	

higher	 WMH	 burden	 than	 the	 other	 2	

subtypes	(Table	1).	However,	differences	in	

WMH	burden	disappeared	after	accounting	

for	age	(F	(2,	162)=2.643,	p=0.074).		
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Figure	1:	Visualization	of	the	effect	sizes	(Hedges’	g)	of	the	differences	in	GM	volumes	across	pDLB	clusters.	
(A)	Regions	in	which	the	cortical	predominant	cluster	(C1)	showed	lower	GM	volumes	than	 the	fronto-occipital	
predominant	cluster	(C2);	(B)	Regions	in	which	the	cortical	predominant	cluster	(C1)	showed	lower	GM	volumes	
than	the	subcortical	predominant	cluster	(C3);	(C)	regions	in	which	the	fronto-occipital	predominant	cluster	(C2)	
showed	reduced	GM	volumes	than	the	subcortical	predominant	cluster	(C3).	The	cerebellum	and	vermis	were	not	
included	 in	 the	analyses.	Abbreviations:	C	–	Cluster,	 GM	–	Gray	matter,	pDLB	–	 probable	Dementia	with	Lewy	
bodies.	

Figure	 2:	 Ratio	 of	 basal	 ganglia	 (BG)	 to	

cortical	GM	volumes.	The	plot	illustrates	the	

distribution	 of	 the	 ratio	 across	 clusters.	

Significance	 for	 pair-wise	 comparisons	 is	

indicated	with	an	asterisk	(p<0.05).				

Abbreviations:		BG	–	basal	ganglia;		

C1	–	cluster	1;	C2	–	cluster	2;	C3	-	cluster	3.	
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Figure	3:	Visualization	of	the	10	most	relevant	regions	in	discriminating	the	3	clusters.	The	supervised	

random	forest	model	performed	with	the	10	most	relevant	ROIs	showed	that	(in	blue)	the	left	middle	cingulum	

discriminated	 the	 cortical	 predominant	 (C1)	 and	 fronto-occipital	 (C2)	 subtypes	 from	 the	 subcortical	

predominant	 (C3)	 subtype,	 while	 the	 right	 olfactory	 cortex	 discriminated	 the	 cortical	 predominant	 (C1)	

subtype	from	the	fronto-occipital	(C2)	subtype.	

	

	

	

Table	1:	Demographic,	clinical,	and	biomarker	characteristics	of	the	pDLB	clusters.	Abbreviations:	AD	–	

Alzheimer’s	disease;	C	–	Cluster;	DLB	–	Dementia	with	Lewy	bodies;	MMSE	–	Mini	Mental	State	Examination;	

RBD	–	Rapid-eye	movement	behavior	disorder;	SD	–	Standard	deviation.	a	One-way	ANOVA	was	used;	bThe	chi-

squared	test	was	used.	1	Missing	data	from	1	subject;	2	missing	data	from	17	subjects;	3	missing	data	from	8	

subjects;	4		missing	data	from	2	subjects;	5	missing	data	from	4	subjects;	6	missing	data	from	5	subjects;	7	missing	

data	from	6	subjects;	8	missing	data	from	20	subjects;	9	missing	data	from	16	subjects;	10	missing	data	from	7	

subjects.		

	

C1 (N=49)
Cortical 

predominant

C2(N=76)
Fronto-
occipital

C3(N=40)
Subcortical 

predominant
statistic (p-value) post-hoc

Age, mean (SD) 73.43 (8.02) 69.05 (7.52) 63.68 (8.23) 17.048 (<0.001)a C1 > C2, C1 > C3, C2 > C3
Years of education, mean (SD) 15.02 (3.61) 13.24 (3.90) 12.60 (3.80) 5.117 (0.007)a C1 > C2, C1 > C3
MMSE, mean (SD) 21.57(5.49) 22.93(5.27)1 24.50 (4.38) 3.579 (0.030)a C3 > C1 
Sex, male (%) 71% 79% 60% 4.696 (0.096)b

Disease duration (years), mean (SD) 5.109 (3.63)2 5.093 (3.46)2 7.25 (6)3 2.961 (0.056)a

Visual hallucinations (presence) 66%4 52%1 48% 3.461 (0.177)b

Cognitive fluctuations (presence) 71%5 85%4 95%4 8.614 (0.013)b C3 > C1
Probable RBD (presence) 78%5 81%7 71%6 1.362 (0.506)b

Parkinsonism (presence) 94%4 90% 78% 4.473 (0.107)b

APOE genotype, ε4 carriers (presence) 37% 53%5 34%4 4.770 (0.092)b

Concomitant AD pathology (presence) 7%8 15%9 6%10 2.352 (0.309) b

White matter hyperintensities, mean (SD) 21.37 (15.41) 14.55 (13.13) 12.43 (7.958) 6.230 (0.002)a C1 > C2, C1 > C3

He afegit la disease duration de Mayo I el comentari de l’Eric de 
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Figure	4:	Cognitive	decline	over	3	years	of	follow-up	as	measured	with	the	MMSE.	Dots	represent	raw	

data	 in	 the	 background,	 the	 darker	 dots	 involve	 several	 individuals	 with	 the	 same	 score.	 Lines	 in	 the	

foreground	represent	estimated	marginal	means	and	error	bars	based	on	the	standard	error	obtained	from	the	

linear	mixed	model.	 The	 cortical	 predominant	 subtype	 (C1)	 had	 significantly	 lower	MMSE	 scores	 than	 the	

subcortical	predominant	subtype	(C3)	at	baseline	(p=0.042),	with	increasing	magnitude	of	the	differences	over	

time	 as	 reflected	 by	 the	 lower	 MMSE	 scores	 at	 12-month	 follow-up	 (p<0.001)	 the	 24-month	 follow-up	

(p<0.001)	and	the	36-month	follow-up	(p<0.001).	The	fronto-occipital	(C2)	subtype	had	lower	MMSE	scores	

than	the	subcortical	predominant	(C3)	subtype	at	the	36-month	follow-up	(p=0.007).	The	cortical	predominant	

(C1)	and	fronto-occipital	(C2)	subtypes	did	not	differ	in	MMSE	scores	over	time.	At	baseline,	MMSE	scores	were	

available	 for	 49	 (C1),	 75	 (C2),	 and	 40	 (C3)	 pDLB	 patients;	 at	 the	 12-month	 follow-up,	MMSE	 scores	were	

available	 for	 30	 (C1),	 38	 (C2),	 and	 29	 (C3)	 pDLB	 patients;	 at	 the	 24-month	 follow-up,	MMSE	 scores	were	

available	for	22(C1),	29	(C2),	and	25	(C3)	pDLB	patients;	and	at	the	36-month	follow-up	MMSE	scores	were	

available	for	7	(C1),	12	(C2),	and	11	(C3)	pDLB	patients.	Abbreviations:	C1	–	Cluster	1	(cortical	predominant	

subtype);	C2	-	Cluster	2	(fronto-occipital	subtype);	C3	–	Cluster	3	(subcortical	predominant	subtype);	MMSE	-	

Mini-Mental	State	Examination.

DLB subtype
Cortical predominant subtype
Fronto-occipital subtype
Subcortical predominant subtype



 

 151		

Regarding	 the	cardinal	clinical	 features,	C3	

showed	 a	 significantly	 higher	 frequency	 of	

CF	 (95%)	 compared	 with	 C1	 (71%)	

(p=0.013).	 Although	 there	 were	 no	

significant	 differences	 between	 groups	 in	

the	other	clinical	features,	visual	inspection	

showed	that	C1	had	the	highest	frequency	of	

VH	 (66%)	 and	 parkinsonism	 (94%);	while	

C2	 had	 the	 highest	 frequency	 of	 probable	

RBD	 (81%)	 (Table	 1).	 The	 frequency	 of	

APOE	 e4	 carriers	 was	 statistically	

comparable	 across	 groups,	 although	 visual	

inspection	 showed	 that	 C2	 had	 a	 higher	

frequency	 of	APOE	 e4	 carriers	 (53%)	 than	

C1	 (37%)	 and	 C3	 (34%).	 Further,	 visual	

inspection	 showed	 a	 higher	 frequency	 of	

pDLB	 patients	 with	 concomitant	 AD	

pathology	in	C2	(15%)	as	compared	with	C1	

(7%)	and	C3	(6%)	(Table	1).	

	

DISCUSSION	

In	 this	 study,	 we	 expanded	 previous	

hypothesis-driven	MRI	subtyping	studies	in	

pDLB	 by	 conducting	 a	 data-driven	 MRI	

subtyping.	 We	 included	 a	 relatively	 large	

multi-center	 cohort	 including	 countries	

from	 Europe	 and	 the	 US.	 We	 found	 3	

subtypes	 within	 pDLB:	 (1)	 a	 cortical	

predominant	subtype,	which	included	older	

patients	with	lower	GM	volumes	and	worse	

global	 cognition;	 (2)	 a	 fronto-occipital	

subtype	with	intermediate	GM	volumes;	and	

(3)	 a	 subcortical	 predominant	 subtype,	

which	 included	 younger	 patients	 with	

higher	GM	volumes	and	a	higher	frequency	

of	CF.	Differences	in	GM	volumes	and	global	

cognition	were	independent	of	age.	

	

C1	-	the	cortical	predominant	subtype	-		was	

the	subtype	with	lowest	GM	volumes	across	

all	cortical	regions	and	with	the	worst	global	

cognitive	 performance.	 This	 subtype	

resembles	 the	widespread	 cortical	 atrophy	

subtype	 with	 worst	 cognition	 previously	

reported	 in	 PD11.	 A	 similar	 widespread	

cortical	atrophy	subtype	in	AD	has	also	been	

described	 to	 be	 the	 subtype	 with	 worst	

cognitive	 performance4.	 C2	 -	 the	 fronto-

occipital	subtype	-	had	intermediate	age	and	

GM	 volumes	 across	 many	 of	 the	 cortical	

regions,	 with	 particular	 involvement	 of	

fronto-occipital	 regions.	 This	 subtype	

resembles	a	subtype	previously	described	in	

PD,	which	had	reduced	cortical	thickness	in	

fronto-occipital	regions9.	C3	-the	subcortical	

predominant	subtype	-	was	the	subtype	with	

highest	GM	volumes,	which	is	reminiscent	of	

the	minimal-atrophy	 subtype	 described	 by	

Oppedal.,	 et	 al3.	 Similarly,	 clustering	

analyses	 in	 PD	 have	 repeatedly	 found	 a	

subtype	 with	 cortical	 thickness	 and	 GM	

volumes	comparable	to	healthy	controls9,11.	

	

An	important	finding	in	the	current	study	is	

that	 despite	 the	 prominent	 differences	 in	

cortical	 GM	 volumes,	 we	 did	 not	 find	 any	

significant	 differences	 in	 the	 volume	of	BG	

GM	 across	 subtypes.	 Nonetheless,	 the	
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subcortical	 predominant	 subtype	 (C3)	 had	

lower	 subcortical	 GM	 volumes	 relative	 to	

cortical	 GM	 volumes	 as	 compared	 with	

cortical	 predominant	 (C1)	 and	 fronto-

occipital	(C2)	subtypes.	These	observations	

suggest	 that	 the	 lack	 of	 differences	 in	 BG	

may	reflect	the	same	level	of	atrophy	in	our	

three	 subtypes,	 instead	 of	 preserved	 GM	

volumes.	 Previous	 studies	 showed	 that	

while	 pDLB	patients	 can	 have	 a	 pattern	 of	

minimal	 cortical	 atrophy3,	 on	average	 they	

have	reduced	GM	volumes	in	BG	compared	

to	 healthy	 controls28–30.	 Reduced	 GM	

volumes	 in	 BG	 have	 been	 associated	 with	

attentional	deficits	in	pDLB,	which	suggests	

that	 BG	 may	 be	 an	 early	 site	 of	

neurodegeneration31.	This	finding	supports	

the	idea	that	the	3	subtypes	in	our	study	do	

have	some	degree	of	neurodegeneration	 in	

the	BG.	

	

Altogether,	our	3	subtypes	show	a	gradient	

of	neurodegeneration	with	low	GM	volumes	

in	 the	 cortical	 predominant	 subtype,	

intermediate	 GM	 volumes	 in	 the	 fronto-

occipital	 subtype,	 and	highest	GM	volumes	

in	the	subcortical	predominant	subtype.	An	

important	 question	 is	 whether	 our	 DLB	

subtypes	 reflect	 different	 stages	 of	 the	

disease	 or	 distinct	 subtypes.	 The	 cortical	

predominant	 subtype	 could	 represent	

patients	 at	 a	 more	 advanced	 stage	 of	 the	

disease	 while	 the	 other	 2	 subtypes	 could	

represent	 less	 advanced	 stages.	 However,	

the	different	morphological	patterns	and	the	

lower	cognitive	performance	in	the	cortical	

predominant	 subtype	 remained	 after	 the	

statistical	 control	 for	 age,	 which	 suggests	

that	 the	 aforementioned	 subtype	 may	

represent	a	subtype	with	a	more	aggressive	

progression.	 This	 interpretation	 is	 further	

supported	by	two	more	findings.	Firstly,	the	

cortical	 predominant	 	 showed	 the	 most	

rapid	 cognitive	decline	over	3	 years,	while	

the	 subcortical	 predominant	 had	 relatively	

stable	 cognitive	 performance	 over	 time.	

Secondly,	 there	 were	 no	 significant	

differences	 in	 disease	 duration	 across	

subtypes,	 while	 the	 subcortical	

predominant	subtype	had,	qualitatively,	the	

longest	 disease	 duration.	 Hence,	 the	 late-

onset	form	of	pDLB	seems	to	confer	a	more	

aggressive	 presentation,	 while	 the	 early-

onset	form	seems	to	have	a	better	prognosis,	

as	it	has	been	previously	described	in	PD32.	

In	 other	 diseases	 such	 as	 AD,	 the	 cortical	

predominant	subtype	(our	C1)	is	also	a	more	

aggressive	presentation	of	the	disease	and	is	

considered	a	distinct	subtype	rather	than	a	

disease	 stage4,33,34.	 In	 addition,	 the	

differences	 in	 clinical	 features	 described	

below	further	support	this	interpretation	on	

different	subtypes	rather	than	subgroups	at	

different	stages	of	the	disease.		

	

It	 is	worth	noting	 that	 the	olfactory	 cortex	

was	 the	 most	 important	 brain	 region	 to	

differentiate	the	cortical	predominant	from	
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the	 other	 subtypes,	 together	 with	 the	

different	morphological	 patterns	 observed,	

this	 finding	 suggests	 different	 pathological	

pathways.	 We	 could	 speculate	 that	 the	

cortical	 predominant	 subtype	 reflects	 a	

variant	 with	 more	 intense	

neurodegeneration	 in	 olfactory	 cortex,	

perhaps	 reflecting	 origin	 of	 Lewy–related	

pathology	 in	 that	 area.	 Pathology	 in	

olfactory	 cortex	 is	 recognized	 in	 Braak’s	

scheme	 for	 the	 progression	 of	 alpha-

synuclein	 pathology35	 and	 in	 the	 revised	

diagnostic	 criteria	 of	 DLB1,	 as	 a	 distinct	

subtype.	In	contrast,	the	subcortical	subtype	

could	reflect	patients	predominantly	 in	 the	

BG	stage	while	the	fronto-occipital	subtype	

would	have	reached	the	cortex	as	predicted	

by	 Braak’s	 scheme.	 The	 highest	 BG	 to	

cortical	GM	ratio	in	the	cortical	predominant		

also	supports	the	idea	that	this	subtype	may	

deviate	 from	 a	 progression	 of	 the	 disease	

where	 Lewy	 pathology	 reaches	 BG	 before	

targeting	olfactory	and	other	cortices.		

	

Clinically,	 the	 3	 subtypes	 only	 differed	

significantly	 in	 the	 presence	 of	 CF.	 Even	

though	the	subcortical	predominant	was	the	

subtype	with	highest	cortical	GM	volumes,	it	

was	 also	 the	 subtype	 with	 the	 highest	

frequency	of	patients	with	CF.	CF	have	been	

related	 to	 altered	 functional	 connectivity	

between	 the	 fronto-parietal	 network	 and	

subcortical	 regions	 such	 as	 pallidum	 and	

putamen36.	 This	 finding	 could	 explain	 the	

higher	 frequency	 of	 CF	 in	 the	 subcortical	

predominant,	 a	 subtype	 that	 has	

proportionally	lower	GM	volumes	in	the	BG.	

The	dynamic	nature	of	CF	could	be	related	to	

disconnection	 between	 cortical	 and	

subcortical	 GM	 structures	 in	 the	

aforementioned	 subtype.	 Brain	

disconnection	has	been	suggested	as	one	of	

the	 explanations	 for	 the	 minimal	 atrophy	

subtype	 of	 AD37,	 a	 subtype	 that	 has	 the	

highest	 GM	 volumes,	 like	 our	 subcortical	

predominant	subtype.	

	

Concerning	 VH,	 despite	 no	 statistically	

significant	 differences	 between	 subtypes,	

visual	 inspection	 revealed	 that	 the	 cortical	

predominant	 subtype	 had	 the	 highest	

frequency	 (66%)	 of	 VH,	 especially	 when	

compared	 with	 the	 subcortical	 subtype	

(48%).	Previous	studies	reported	that	pDLB	

patients	with	VH	had	reduced	GM	volumes	

in	inferior	frontal	regions38,39	and	cuneus40,	

when	compared	with	pDLB	patients	without	

VH.	 In	 our	 study,	 the	 cortical	 predominant	

had	 lower	 GM	 volumes	 in	 inferior	 frontal	

regions	 and	 cuneus	 than	 both	 the	 fronto-

occipital	 and	 subcortical	 predominant	

subtypes.	

	

Regarding	parkinsonism,	the	groups	did	not	

differ	in	this	clinical	feature,	which	could	be	

explained	by	comparable	GM	volumes	in	BG	

across	subtypes.	Dysfunction	of	the	BG	is	a	

well-known	 hallmark	 of	 DLB1	 and	 is	 often	
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related	 with	 motor	 impairment.	 Aberrant	

functional	 connectivity	 of	 the	 BG	 has	 been	

described	 in	 diseases	 with	 motor	

impairment	such	as	PD41	and	is	independent	

of	cognitive	status	in	PD42.	

	

In	 addition,	 comorbid	 brain	 pathologies	

could	be	one	of	 the	 factors	 contributing	 to	

MRI	subtypes	in	pDLB.	We	assessed	WMHs	

as	 a	 common	 proxy	 of	 cerebrovascular	

disease,	and	β-amyloid	and	tau	biomarkers	

to	 inform	 on	 concomitant	 AD.	We	 found	 a	

higher	 WMH	 burden	 in	 the	 cortical	

predominant	 subtype	 in	 comparison	 with	

the	 other	 subtypes.	 However,	 this	 finding	

seemed	 to	 be	 primarily	 explained	 by	 the	

older	 age	 characteristic	 of	 this	 subtype.	 A	

recent	 study	 on	 pDLB	 showed	 the	

association	 of	 WMHs	 with	 GM	 in	 several	

cortical	 areas	 characteristic	 of	 the	 cortical	

predominant	 subtype,	 particularly,	 the	

olfactory	 cortex20.	 In	 the	 current	 study	we	

included	a	measure	of	global	WMH	burden,	

and	 future	 studies	 investigating	 regional	

distributions	of	WMHs	across	MRI	subtypes	

is	warranted.	Contrarily,	the	frequency	of	AD	

pathology	 (positive	 β-amyloid	 and	 tau	

biomarkers)	 did	 not	 reflect	 the	 age	

differences	 found	 in	 our	 subtypes.	 Rather,	

visual	 inspection	 suggests	 that	 the	 fronto-

occipital	subtype	had	the	highest	frequency	

of	 AD	 pathology.	 The	 interpretation	 of	

increased	concomitant	AD	pathology	in	the	

fronto-occipital	subtype	is	supported	by	its	

tendency	 to	 include	 a	 higher	 frequency	

(53%)	of	APOE	e4	carriers	than	the	cortical	

predominant	 (37%)	 and	 subcortical	

predominant	(34%)	subtypes,	since	APOE	e4	

is	 considered	 the	 strongest	 genetic	 risk	

factor	 for	 AD43.	 Further,	 the	 pattern	 of	

amyloid	 PET	 binding	 in	 DLB	 with	

concomitant	 AD44	 includes	 very	 similar	

cortical	areas	to	those	describing	our	fronto-

occipital	subtype.		

	

Hippocampal	 volume	 is	 known	 to	 explain	

part	 of	 the	 heterogeneity	 in	 the	 clinical	

phenotype	 of	 DLB5,6,45.	 Further,	 although	

subtypes	with	 higher	 hippocampal	 volume	

are	 the	 most	 common	 patterns	 in	 pDLB,	

hippocampal	atrophy	was	reported	in	close	

to	40%	of	pDLB	patients3.	A	novelty	of	our	

study	is	that	by	using	a	data-driven	method	

to	identify	MRI	subtypes	of	pDLB	for	the	first	

time	 in	 the	 field,	 we	 observed	 that	

hippocampal	 volume	 was	 not	 among	 the	

regions	that	best	reflected	the	heterogeneity	

in	 GM	 patterns	 in	 pDLB.	 Rather,	 cortically	

predominant,	subcortical	predominant,	and	

fronto-occipital	GM	patterns	 illustrated	the	

best	 mapping	 of	 morphological	

heterogeneity	 in	 our	 cohort	 of	 pDLB	

patients.	 A	 possible	 explanation	 for	 this	

finding	 is	 that	 hippocampal	 volume	 may	

have	 a	 more	 relevant	 role	 in	 DLB	

heterogeneity	 at	 more	 advanced	 stages	 of	

the	disease,	as	in	the	cohorts	often	included	

in	postmortem	studies.	 In	younger	 cohorts	
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at	 less	 advanced	 stages	 of	 the	 disease,	 the	

presence	 of	 concomitant	 AD	 pathology	 is	

lower14,	as	reflected	by	the	 low	proportion	

of	 pDLB	 patients	 with	 positive	 AD	

biomarkers	 in	 our	 current	 study,	 and	 the	

contribution	of	hippocampal	volume	to	DLB	

heterogeneity	may	also	be	lower.		

	

The	 current	 study	 has	 some	 limitations.	

Firstly,	we	did	not	have	a	group	of	healthy	

controls;	while	our	main	goal	was	to	identify	

MRI	 subtypes	 in	 DLB	 and	 investigate	

demographic,	 clinical,	 and	 biomarker	

differences	 among	 them,	 having	 a	 control	

group	 could	 help	 to	 further	 characterize	

some	aspects	of	our	subtypes.	However,	the	

different	centers	included	in	this	study	had	

previously	 compared	 their	 DLB	 patients	

with	 their	 respective	 control	 groups;	 in	

consequence,	our	interpretations	were	built	

on	previously	established	data.	Secondly,	we	

had	some	missing	data	for	β-amyloid	and	tau	

biomarkers,	 giving	 a	 small	 subsample	 for	

statistical	 analysis.	 Still,	 we	 reported	 the	

proportion	 of	 biomarker-positive	 DLB	

patients	 along	with	 group	 sizes	 due	 to	 the	

clinical	 interest	 of	 those	 data.	 Thirdly,	 the	

current	 study	 is	 cross-sectional,	 like	

virtually	 all	 current	 MRI	 subtyping	

studies4,8.	 The	 advent	 of	 new	 longitudinal	

clustering	methods46	will	open	 the	door	 to	

future	 longitudinal	 subtyping	 studies	 in	

DLB,	helping	 to	better	characterize	disease	

progression	of	our	current	DLB	subtypes.		

In	 conclusion,	 by	 using	 a	 data-driven	

approach	 on	 a	 relatively	 large	 cohort	 of	

pDLB	 patients,	 we	 found	 3	 MRI	 subtypes	

characterized	 by	 different	 patterns	 of	 GM	

volumes	and	clinical	profiles:	(1)	a	subtype	

with	 predominant	 cortical	 atrophy	 and	

worse	global	cognition,	(2)	a	fronto-occipital	

subtype	with	intermediate	GM	volumes,	and	

(3)	 a	 subcortical	 subtype	 with	 higher	 GM	

volumes	and	a	higher	 frequency	of	CF.	Our	

current	 findings	 shed	 some	 light	 in	 our	

endeavor	 to	 better	 understand	 the	 biology	

underlying	 the	 clinical	 heterogeneity	 in	

pDLB.	Our	approach	is	novel	in	DLB,	and	we	

hope	 it	 can	 inspire	 future	 works	 to	 help	

establish	 distinct	 neurodegeneration	

subtypes,	 as	 well	 as	 their	 links	 with	 close	

disorders	such	as	PD	and	AD.	The	ultimate	

goal	would	be	to	leverage	this	knowledge	to	

realize	 personalized	 medicine	 approaches,	

in	 which	 biomarkers	 and	 subtypes	 would	

guide	 therapeutic	 decisions	 in	

neurodegenerative	diseases.	
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SUPPLEMENTARY	MATERIAL	
	
Supplementary	material	1	

	

Supplementary	material	2	
The	linear	mixed	effects	model	was	conducted	in	R	version	4.0.3	using	the	lme4	package.	

The	design	consisted	of	a	random	intercept	per	subject	with	the	model	reference	set	to	

the	baseline	and	cluster	3.	The	outcome	was	the	longitudinal	MMSE	scores	(12-month,	

24-month	and	36-month	 follow-up).	The	 fixed	effects	were	 time	(categorical),	 cluster	

(categorical)	and	interaction	between	time	and	cluster.	Post-hoc	pairwise	comparisons	

were	 done	 between	 clusters	 based	 on	 model	 estimates	 with	 multiple	 comparisons	

corrections	with	Tukey	adjustment	(using	emmeans	package).	

LIST	OF	ROIs	ENTERED	IN	THE	ANALYSIS	
	

Precentral	bilateral	
	

Occipital	Inf	bilateral	
Frontal	Sup	bilateral	 Fusiform	bilateral	

Frontal	Sup	Orb	bilateral	 Postcentral	bilateral	
Frontal	Mid	bilateral	 Parietal	Sup	bilateral	

Frontal	Mid	Orb	bilateral	 Parietal	Inf	bilateral	
Frontal	Inf	Oper	bilateral	 Supramarginal	bilateral	
Frontal	Inf	Tri	bilateral	 Angular	bilateral	
Frontal	Inf	Orb	bilateral	 Precuneus	bilateral	
Rolandic	Oper	bilateral	 Paracentral	lobule	bilateral	
Supp	Motor	Area	bilateral	 Caudate	bilateral	

Olfactory	bilateral	 Pallidum	bilateral	
Frontal	Sup	Medial	bilateral	 Putamen	bilateral	
Frontal	Med	Orb	bilateral	 Thalamus	bilateral	

Rectus	bilateral	 Heschl	bilateral	
Insula	bilateral	 Temporal	Sup	bilateral	

Cingulum	Ant	bilateral	 Temporal	Pole	Sup	bilateral	
Cingulum	Mid	bilateral	 Temporal	Mid	bilateral	
Hippocampus	bilateral	 Temporal	Pole	Mid	bilateral	
Amygdala	bilateral	 Temporal	Inf	bilateral	
Calcarine	bilateral	 Pons	
Cuneus	bilateral	 Dorsal	Mesopontine	
Lingual	bilateral	 Entorhinal	Cortex	bilateral	

Occipital	Sup	bilateral	 ParaHippocampal	bilateral	
Occipital	Mid	bilateral	 Cingulum	Post	bilateral	

	 Retrosplenial	Cortex	bilateral	
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Supplementary	material	3	
Dendrogram	from	the	cluster	analysis	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Figure	1:	Dendrogram	of	the	165	patients	with	pDLB	clustered	according	to	gray	matter	volumes.	

Abbreviations:	C1	–	Cluster	1,	C2	–	Cluster	2,	C3	–	Cluster	3,	DLB	–	Dementia	with	Lewy	bodies.	

165 DLB 

C1 (N=49) C2 (N=76) C3 (N=40) 



 

 	

Supplementary	material	4	

	 C1(n=49)	 C2(n=76)	 C3(n=40)	 F		 p-value		 post-hoc	
Precentral_L	 -0.717	(1.058)	 0.081	(1.156)	 0.723	(0.972)	 24.943	 1.37E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Precentral_R	 -0.613	(1.366)	 0.038	(1.032)	 0.679	(1.134)	 17.002	 3.56E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Sup_L	 -0.471(0.944)	 0.028	(0.983)	 0.522	(1.024)	 14.044	 3.42E-06	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Sup_R	 -0.365	(0.995)	 -0.138	(1.033)	 0.709	(0.875)	 17.731	 2.11E-07	 C1	<	C3,	C2	<	C3	
Frontal_Sup_Orb_L	 -0.259	(0.307)	 0.017	(0.298)	 0.283	(0.262)	 50.636	 1.19E-16	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Sup_Orb_R	 -0.277	(0.328)	 0.027	(0.310)	 0.288	(0.384)	 41.743	 1.98E-14	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Mid_L	 -0.666	(1.946)	 -0.053	(1.940)	 0.917	(2.352)	 8.104	 0.000512632	 C1	<	C3,	C2	<	C3	
Frontal_Mid_R	 -0.858	(1.914)	 0.076	(1.913)	 0.906	(1.961)	 11.519	 2.70E-05	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Mid_Orb_L	 -0.381	(0.440)	 0.028	(0.463)	 0.412	(0.494)	 42.525	 1.42E-14	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Mid_Orb_R	 -0.382	(0.486)	 0.104	(0.453)	 0.270	(0.422)	 32.574	 7.04E-12	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Inf_Oper_L	 -0.169	(0.562)	 -0.056	(0.529)	 0.313	(0.629)	 10.622	 5.79E-05	 C1	<	C3,	C2	<	C3	
Frontal_Inf_Oper_R	 -0.369	(0.432)	 0.034	(0.457)	 0.387	(0.635)	 32.956	 5.65E-12	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Inf_Tri_L	 -0.337	(0.576)	 0.062	(0.537)	 0.293	(0.575)	 18.469	 1.23E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Inf_Tri_R	 -0.328	(0.569)	 0.003	(0.615)	 0.395	(0.564)	 20.859	 2.22E-08	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Inf_Orb_L	 -0.525	(0.664)	 0.152	(0.527)	 0.352	(0.510)	 39.274	 9.45E-14	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Inf_Orb_R	 -0.462	(0.634)	 0.094	(0.522)	 0.387	(0.579)	 33.306	 4.71E-12	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Rolandic_Oper_L	 -0.282	(0.354)	 -0.014	(0.348)	 0.374	(0.418)	 46.489	 1.23E-15	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Rolandic_Oper_R	 -0.352	(0.487)	 0.011	(0.422)	 0.409	(0.518)	 38.287	 1.59E-13	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Supp_Motor_Area_L	 -0.502	(0.563)	 0.110	(0.710)	 0.406	(0.894)	 23.672	 3.01E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Supp_Motor_Area_R	 -0.409	(0.627)	 0.026	(0.886)	 0.452	(0.902)	 15.102	 1.49E-06	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Olfactory_L	 -0.037	(0.096)	 0.001	(0.089)	 0.0438	(0.105)	 9.873	 0.000109714	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Olfactory_R	 -0.043	(0.104)	 0.001(0.101)	 0.051	(0.108)	 11.3	 3.23E-05	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Sup_Medial_L	 -0.345	(0.830)	 -0.105	(0.839)	 0.623	(0.923)	 18.695	 1.07E-07	 C1	<	C3,	C2	<	C3	
Frontal_Sup_Medial_R	 -0.297	(0.962)	 -0.051	(1.130)	 0.462	(1.064)	 6.999	 0.001342815	 C1	<	C3,	C2	<	C3	
Frontal_Med_Orb_L	 -0.332	(0.372)	 0.055	(0.379)	 0.302	(0.300)	 47.162	 9.07E-16	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Frontal_Med_Orb_R	 -0.273	(0.445)	 0.083	(0.438)	 0.176	(0.297)	 19.379	 6.43E-08	 C1	<	C2,	C1	<	C3	
Rectus_L	 -0.1553	(0.285)	 0.037	(0.238)	 0.118	(0.324)	 14.799	 1.86E-06	 C1	<	C2,	C1	<	C3	
Rectus_R	 -0.154	(0.241)	 0.053	(0.251)	 0.087	(0.265)	 15.736	 9.16E-07	 C1	<	C2,	C1	<	C3	
Insula_L	 -0.454	(0.408)	 0.043	(0.439)	 0.473	(0.482)	 67.639	 1.14E-20	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Insula_R	 -0.534	(0.477)	 0.109	(0.419)	 0.447	(0.536)	 71.318	 6.34E-21	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Cingulum_Ant_L	 -0.163	(0.508)	 -0.052	(0.555)	 0.300	(0.578)	 10.378	 7.09E-05	 C1	<	C3,	C2	<	C3	
Cingulum_Ant_R	 -0.241	(0.650)	 -0.094	(0.806)	 0.476	(0.662)	 14.444	 2.47E-06	 C1	<	C3,	C2	<	C3	
Cingulum_Mid_L	 -0.109	(0.384)	 -0.039	(0.304)	 0.209	(0.408)	 11.748	 2.24E-05	 C1	<	C3,	C2	<	C3	
Cingulum_Mid_R	 -0.219	(0.368)	 0.026	(0.398)	 0.217	(0.403)	 17.428	 2.60E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Hippocampus_L	 -0.145	(0.354)	 -0.010	(0.342)	 0.199	(0.281)	 14.798	 1.86E-06	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Hippocampus_R	 -0.152	(0.390)	 0.011	(0.298)	 0.165	(0.256)	 13.513	 5.23E-06	 C1	<	C2,	C1	<	C3,	C2	<	C3	



 

 	

	 C1(n=49)	 C2(n=76)	 C3(n=40)	 F		 p-value		 post-hoc	
Amygdala_L	 -0.034	(0.093)	 0.001	(0.110)	 0.040	(0.079)	 7.723	 0.001116279	 C1	<	C3	
Amygdala_R	 -0.059	(0.104)	 0.010	(0.101)	 0.051	(0.086)	 18.038	 1.71E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Calcarine_L	 -0.183	(0.814)	 -0.188	(0.760)	 0.582	(0.843)	 16.618	 4.80E-07	 C1	<	C3,	C2	<	C3	
Calcarine_R	 -0.290	(0.757)	 -0.082	(0.724)	 0.512	(0.895)	 15.334	 1.26E-06	 C1	<	C3,	C2	<	C3	
Cuneus_L	 -0.370	(0.7851)	 -0.094	(0.742)	 0.634	(0.917)	 22.928	 4.95E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Cuneus_R	 -0.405	(0.708)	 0.001	(0.718)	 0.494	(0.848)	 19.939	 4.39E-08	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Lingual_L	 -0.547	(0.867)	 0.008	(0.995)	 0.655	(0.965)	 22.166	 8.75E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Lingual_R	 -0.577	(0.837)	 0.062	(0.797)	 0.588	(0.895)	 27.829	 1.66E-10	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Occipital_Sup_L	 -0.214	(0.477)	 -0.134	(0.500)	 0.518	(0.640)	 31.469	 1.39E-11	 C1	<	C3,	C2	<	C3	
Occipital_Sup_R	 -0.180	(0.719)	 -0.082	(0.579)	 0.377	(0.594)	 11.969	 1.87E-05	 C1	<	C3,	C2	<	C3	
Occipital_Mid_L	 -0.666	(1.158)	 -0.062	(1.346)	 0.934	(1.141)	 23.167	 4.20E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Occipital_Mid_R	 -0.494	(0.913)	 -0.022	(0.770)	 0.648	(0.819)	 26.807	 3.43E-10	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Occipital_Inf_L	 -0.270	(0.574)	 -0.097	(0.583)	 0.517	(0.445)	 31.237	 1.55E-11	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Occipital_Inf_R	 -0.338	(0.706)	 -0.032(0.670)	 0.477	(0.629)	 20.599	 2.66E-08	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Fusiform_L	 -0.631(0.988)	 0.027	(0.977)	 0.721	(0.795)	 29.204	 6.26E-11	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Fusiform_R	 -0.726	(1.045)	 0.160	(0.841)	 0.584	(0.898)	 30.798	 2.06E-11	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Postcentral_L	 -0.667	(1.061)	 0.021	(1.003)	 0.777(1.319)	 23.889	 2.63E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Postcentral_R	 -0.553	(1.011)	 0.061	(1.024)	 0.560	(1.190)	 15.241	 1.34E-06	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Parietal_Sup_L	 -0.482	(0.881)	 0.090	(0.995)	 0.419	(0.869)	 13.364	 5.86E-06	 C1	<	C2,	C1	<	C3	
Parietal_Sup_R	 -0.531	(0.819)	 0.069	(0.774)	 0.518	(0.857)	 24.013	 2.32E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Parietal_Inf_L	 -0.318	(0.450)	 0.121	(0.423)	 0.160	(0.468)	 21.436	 1.49E-08	 C1	<	C2,	C1	<	C3	
Parietal_Inf_R	 -0.370	(0.508)	 0.064	(0.706)	 0.332	(0.714)	 16.386	 5.71E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
SupraMarginal_L	 -0.489	(0.746)	 0.061	(0.752)	 0.482	(0.669)	 25.151	 1.15E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
SupraMarginal_R	 -0.391	(0.696)	 0.023	(0.687)	 0.433	(0.698)	 19.653	 5.41E-08	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Angular_L	 -0.329	(0.757)	 0.075	(1.044)	 0.261	(0.983)	 5.587	 0.005393258	 C1	<	C2,	C1	<	C3	
Angular_R	 -0.649	(0.963)	 0.117	(1.209)	 0.572	(1.101)	 17.247	 2.96E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Precuneus_L	 -0.938	(0.870)	 0.054	(0.992)	 1.045	(0.916)	 67.966	 1.14E-20	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Precuneus_R	 -0.902	(0.986)	 0.041	(0.971)	 1.026	(1.100)	 54.214	 1.60E-17	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Paracentral_Lobule_L	 -0.359	(1.050)	 0.058	(0.854)	 0.328	(0.972)	 7.396	 0.001116279	 C1	<	C2,	C1	<	C3	
Paracentral_Lobule_R	 -0.305	(1.058)	 0.012	(0.791)	 0.351	(0.955)	 6.908	 0.001116279	 C1	<	C3	
Caudate_L	 -0.0172		

(0.335)	
0.0001(0.278)	 0.021	(0.288)	 0.219	 0.812463158	 n.s	

Caudate_R	 -0.014	(0.387)	 0.001(0.324)	 0.016	(0.317)	 0.109	 0.897	 n.s	
Pallidum_L	 -0.001	(0.049)	 0.004	(0.059)	 -0.007	(0.059)	 0.668	 0.536347826	 n.s	
Pallidum_R	 -0.002	(0.040)	 0.004	(0.055)	 -0.005	(0.056)	 0.562	 0.589419355	 n.s	
Putamen_L	 -0.036	(0.408)	 0.001	(0.463)	 0.042	(0.445)	 0.428	 0.666893617	 n.s	
Putamen_R	 -0.094	(0.415)	 0.019	(0.442)	 0.080	(0.384)	 2.436	 0.096	 n.s	
Thalamus_L	 -0.224	(0.288)	 0.047	(0.247)	 0.184	(0.322)	 32.224	 9.07E-21	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Thalamus_R	 -0.182	(0.311)	 0.028	(0.272)	 0.169	(0.334)	 19.548	 5.74E-08	 C1	<	C2,	C1	<	C3,	C2	<	C3	



 

 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Mean(SD)	of	the	residuals	adjusted	for	centre,	ICV	and	age.	ANCOVAs	and	corrected	p-values.	
	
	

	 C1(n=49)	 C2(n=76)	 C3(n=40)	 F		 p-value		 post-hoc	
Heschl_L	 -0.158	(0.186)	 0.028	(0.240)	 0.138	(0.310)	 21.207	 1.74E-08	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Heschl_R	 -0.090	(0.146)	 0.013	(0.170)	 0.084	(0.220)	 13.532	 5.22E-06	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Temporal_Sup_L	 -0.744	(1.003)	 0.240	(1.150)	 0.456	(1.219)	 18.815	 9.91E-08	 C1	<	C2,	C1	<	C3	
Temporal_Sup_R	 -0.666	(0.995)	 0.171	(1.056)	 0.490	(1.218)	 17.501	 2.50E-07	 C1	<	C2,	C1	<	C3	
Temporal_Pole_Sup_L	 -0.216	(0.446)	 0.048	(0.424)	 0.174	(0.351)	 12.995	 7.92E-06	 C1	<	C2,	C1	<	C3	
Temporal_Pole_Sup_R	 -0.232	(0.405)	 0.057	(0.375)	 0.176	(0.430)	 15.902	 8.11E-07	 C1	<	C2,	C1	<	C3	
Temporal_Mid_L	 -0.759	(1.385)	 -0.152(1.295)	 1.219	(1.356)	 31.992	 1.01E-11	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Temporal_Mid_R	 -1.217	(1.566)	 0.1202(1.505)	 1.262	(1.477)	 38.769	 1.23E-13	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Temporal_Pole_Mid_L	 -0.217	(0.404)	 0.017	(0.512)	 0.234	(0.474)	 12.478	 1.22E-05	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Temporal_Pole_Mid_R	 -0.338	(0.440)	 0.048	(0.502)	 0.322	(0.567)	 24.79	 1.37E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Temporal_Inf_L	 -0.842	(1.073)	 0.077	(0.990)	 0.885	(0.994)	 42.058	 1.76E-14	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Temporal_Inf_R	 -1.166	(1.040)	 0.132	(1.144)	 1.177	(1.213)	 65.704	 2.63E-20	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Pons	 -0.013	(0.030)	 -0.001(0.027)	 0.018	(0.063)	 8.84	 0.000269776	 C1	<	C3,	C2	<	C3	
Dorsal_Mesopontine	 -0.002	(0.007)	 -	0.0003(0.007)	 0.003	(0.008)	 6.622	 0.002181818	 C1	<	C3,	C2	<	C3	
Entorhinal_Cortex_L	 -0.074	(0.279)	 0.016	(0.282)	 0.059	(0.244)	 3.474	 0.0352	 C1	<	C3	
Entorhinal_Cortex_R	 -0.103(0.195)	 0.024	(0.262)	 0.080	(0.2484)	 8.599	 0.000331248	 C1	<	C2,	C1	<	C3	
ParaHippocampal_L	 -0.092	(0.216)	 0.003	(0.264)	 0.1064	(0.218)	 9.28	 0.000184009	 C1	<	C2,	C1	<	C3,	C2	<	C3	
ParaHippocampal_R	 -0.135	(0.239)	 0.022	(0.228)	 0.122	(0.265)	 16.249	 6.29E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Cingulum_Post_L	 -0.078	(0.129)	 0.004	(0.139)	 0.087	(0.166)	 18.559	 1.17E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Cingulum_Post_R	 -0.100	(0.166)	 0.026	(0.154)	 0.072	(0.169)	 17.744	 2.11E-07	 C1	<	C2,	C1	<	C3	
Retrosplenial_Cortex_L	 -0.119	(0.151)	 0.010	(0.192)	 0.126	(0.243)	 22.126	 8.78E-09	 C1	<	C2,	C1	<	C3,	C2	<	C3	
Retrosplenial_Cortex_R	 -0.071	(0.126)	 0.006	(0.135)	 0.076	(0.150)	 16.074	 7.15E-07	 C1	<	C2,	C1	<	C3,	C2	<	C3	
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Supplementary	material	5	
	
The	10	ROIs	with	the	lowest	Gini	Index	values.	The	mean	decrease	in	the	Gini	index	was	

used	to	identify	the	ROIs	with	the	highest	contribution	to	the	cluster	analysis.	

	

	
10	TOP	ROIs	 Gini	Index	
Right	Pallidum	 0.9521002	

Left	frontal	inferior	operculum	 0.9675189	

Left	Olfactory	cortex	 0.9774211	

Left	Pallidum	 0.9898548	

Left	middle	cingulum	 0.9928215	

Pons	 0.9928266	

Left	Caudate	 0.9935472	

Right	Caudate	 0.9976649	

Right	Olfactory	cortex	 1.0100825	

Left	Putamen	 1.0108899	
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Supplementary	material	6	
	
Supervised	classification	tree	showing	the	complete	view	of	the	variable	discrimination	

rules	for	the	DLB	clusters.	Among	the	10	most	relevant	ROIs,	the	left	middle	cingulum,	

which	showed	greater	volumes	in	C3	compared	to	C1	and	C2,	was	placed	on	top	of	the	

tree,	 indicating	 that	 it	 was	 the	 most	 relevant	 ROI	 to	 discriminate	 between	 the	 DLB	

clusters.	Then,	the	tree	was	divided	into	2	branches:	one	that	included	C1	and	C2,	and	

another	one	for	C3.	The	branch	including	C1	and	C2	had	the	left	opercular	inferior	frontal	

on	top	of	the	branch,	which	had	a	greater	GM	volume	in	C3	compared	to	C1	and	C2,	but	

it	 did	 not	 differ	 between	 C1	 and	 C2.	 Next,	 the	 right	 olfactory	 cortex	 was	 able	 to	

discriminate	between	C1	and	C2,	with	C2	showing	larger	GM	volumes	than	C1.	
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Supplementary	material	7	
	

timepoint	=	MMSE	baseline	
	

contrast	 estimate	 SE	 df	 t-stat	 	p-value	 Lower	CL	 Upper	CL	

1-2	 -1.31	 0.987	 188	 -1.33	 0.3806	 -3.64	 1.0196	

1-3	 -2.79	 1.145	 188	 -2.433	 0.0419	 -5.49	 -0.0805	

2-3	 -1.47	 1.052	 188	 -1.4	 0.3428	 -3.96	 1.0122	

timepoint	=	MMSE	12months	
	 	 	 	 	

contrast	 estimate	 SE	 df	 t-stat	 p-value	 Lower	CL	 Upper	CL	

1-2	 -1.95	 1.103	 260	 -1.766	 0.1831	 -4.55	 0.6523	

1-3	 -4.59	 1.234	 236	 -3.719	 0.0007	 -7.5	 -1.6787	

2-3	 -2.64	 1.148	 244	 -2.3	 0.0577	 -5.35	 0.0672	

timepoint	=	MMSE	24months	
	 	 	 	 	

contrast	 estimate	 SE	 df	 t-stat	 p-value	 Lower	CL	 Upper	CL	

1-2	 -2.35	 1.173	 297	 -2.006	 0.1124	 -5.11	 0.4094	

1-3	 -4.96	 1.288	 265	 -3.847	 0.0004	 -7.99	 -1.9204	

2-3	 -2.6	 1.193	 270	 -2.182	 0.076	 -5.42	 0.208	

timepoint	=	MMSE	36months	
	 	 	 	 	

contrast	 estimate	 SE	 df	 t-stat	 p-value	 Lower	CL	 Upper	CL	

1-2	 -2.14	 1.551	 350	 -1.382	 0.3517	 -5.8	 1.5083	

1-3	 -6.57	 1.643	 355	 -4	 0.0002	 -10.44	 -2.7039	

2-3	 -4.43	 1.46	 352	 -3.032	 0.0073	 -7.86	 -0.9902	

	

The	 method	 used	 for	 degrees	 of	 freedom	 was	 the	 Kenward-Roger	 method,	 and	 the	 p-value	

adjustment	was	 carried	 out	 with	 the	 Tukey	method	 for	 comparing	 a	 family	 of	 3	 estimates.	 A	

confidence	level	(CL)	of	0.95	was	used.	
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CHAPTER	5		
General	Discussion	
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The	 main	 objective	 of	 the	 current	 Doctoral	 Thesis	 was	 to	 find	 subtypes	 within	

Parkinson’s	 disease	 and	 Dementia	 with	 Lewy	 bodies	 using	 data-driven	 approaches	

based	on	different	neuroimaging	modalities,	as	well	as	to	characterize	changes	in	brain	

architecture	underlying	mild	cognitive	impairment	in	Parkinson’s	disease.	

	

In	 this	 Thesis	we	present	 the	 first	 clustering	 done	 in	 PD	 combining	 grey	matter	 and	

fractional	anisotropy,	as	well	as	the	first	clustering	based	on	MRI	data	ever	done	in	DLB.	

Also,	 in	 the	 study	 of	 mild	 cognitive	 impairment	 in	 PD,	 ours	 is	 the	 first	 analysis	 in	

structural	connectivity	based	on	probabilistic	tractography	and	TFNBS.	

	

Grey	matter	patterns	in	Parkinson’s	disease	and	Dementia	with	Lewy	bodies	

subtypes	
	

In	Study	1	and	3,	we	described	3	subtypes	within	PD	and	DLB,	respectively,	by	using	

different	data-driven	subtyping	approaches.		

	

In	 the	 first	 study,	 we	 identified	 a	 first	 subtype,	 PD1,	 with	 widespread	 GM	 atrophy,	

including	cortical	and	subcortical	regions,	as	well	as	WM	FA	reductions	and	the	worse	

neuropsychological	profile.	PD1	had	the	worst	performance	in	the	memory	and	language	

domains.	Along	this	line,	impairment	in	memory	tasks	(Levy	et	al.,	2002)	as	well	as	in	

semantic	 fluency	 (Williams-Gray	 et	 al.,	 2007)	 have	 been	 described	 as	 predictors	 of	

cognitive	decline	in	PD.	The	second	subtype,	PD2,	only	presented	with	cortical	atrophy	

limited	to	fronto-temporal	regions.	 In	our	Study	1	there	was	a	partial	sample	overlap	

with	a	5-year	gap	with	the	sample	used	in	Uribe	et	al.,	(2016),	in	which	a	hierarchical	

cluster	analysis	using	the	Ward’s	linkage	method	was	also	performed.	However,	in	Uribe	

et	al.,	(2016)	the	cluster	analysis	was	based	on	vertex-wise	cortical	thickness	measures.	

In	 that	 previous	 study,	 a	 PD	 subtype	 with	 neither	 detectable	 atrophy	 nor	 cognitive	

impairment	was	also	found,	as	was	described	in	our	PD3.		

	

In	Study	3	we	described	3	DLB	subtypes,	a	 first	subtype	with	the	 lowest	GM	volumes	

across	all	cortical	regions,	worse	cognitive	performance	and	older	age.	This	subtype	was	
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named	 as	 cortical	 predominant	 subtype	 and	 resembled	 PD1	 from	 Study	 1,	 for	 its	

widespread	pattern	of	reduced	GM	as	well	as	for	its	impaired	cognition.	Despite	having	

a	 different	 neuropathological	 basis,	 the	 cortical	 predominant	DLB	 subtype	 presented	

similarities	 with	 the	 hippocampal-sparing	 subtype	 described	 in	 AD	 (Ferreira	 et	 al.,	

2020b	 for	 a	 review).	 The	 hippocampal-sparing	 AD	 subtype	 is	 characterized	 by	

neurodegeneration	involving	frontal,	parietal	and	temporal	cortices,	the	highest	level	of	

education,	and	an	aggressive	course	of	the	disease	(Ferreira	et	al.,	2020b	for	a	review),	

similar	 to	 the	 cortical	 predominant	 DLB	 subtype,	 which	 not	 only	 had	more	 years	 of	

education	 compared	 to	 the	 other	 2	 subtypes	 but	 also	 presented	 a	 more	 aggressive	

course,	 as	 it	 showed	 widespread	 reductions	 of	 GM	 volumes	 compared	 to	 the	 other	

groups	 after	 the	 same	 years	 of	 disease	 duration,	 as	 well	 as	 the	 most	 pronounced	

cognitive	decline	over	time.	Qualitatively,	the	cortical	predominant	DLB	subtype	showed	

the	highest	percentage	of	individuals	with	VH,	as	well	as	the	PD1	subtype	described	in	

Study	 1.	 Reduced	 GM	 volumes	 in	 occipital	 regions	 could	 explain	 the	 slightly	 higher	

frequencies	in	the	aforementioned	subtypes.	Specifically,	the	cuneus	–	the	primary	visual	

cortex	-	has	been	related	to	VH	in	DLB	(Blanc	et	al.,	2016),	while	in	PD,	VH	have	been	

related	 to	 GM	 atrophy	 in	 parieto-occipital	 areas,	 secondary	 visual	 cortex,	 and	 the	

hippocampus	head	(Ibarretxe-Bilbao	et	al.,	2011	for	a	review).	Along	this	line,	in	the	DLB	

study	(Study	3),	the	number	of	patients	with	VH	in	the	cortical	predominant	and	fronto-

occipital	subtypes	were	closer	than	they	were	between	PD1	and	PD2	(Study	1),	perhaps	

due	to	the	fact	that,	while	in	the	PD	cluster	analysis,	PD2	was	characterized	by	fronto-

temporal	atrophy,	in	the	DLB	analysis,	the	second	subtype	was	characterized	by	frontal	

and	occipital	atrophy.	The	second	DLB	subtype	-	the	fronto-occipital	subtype	-	had	an	

age	in	between	the	cortical	predominant	and	subcortical	predominant	subtypes,	as	well	

as	reduced	GM	volumes	across	many	of	the	cortical	regions,	with	particular	involvement	

of	frontal	and	occipital	regions.	Interestingly,	in	a	previous	PD	study,	Uribe	et	al.,	(2016)	

also	found	a	pattern	of	cortical	thinning	involving	frontal	and	occipital	regions.	Finally,	

the	third	DLB	subtype	-	the	cortical	predominant	subtype	-	was	the	one	with	the	highest	

GM	volumes,	resembling	PD3	from	Study	1,	which	did	not	present	GM	atrophy	compared	

to	healthy	controls.	Moreover,	 it	 is	 reminiscent	of	 the	PD	subtype	without	detectable	

cortical	thinning	compared	to	controls	described	in	Uribe	et	al.,	(2016)	as	well	as	to	the	
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AD	minimal-atrophy	subtype	recurrently	described	in	AD	MRI	studies	(Ferreira	et	al.,	

2020b	for	a	review).	

	

Age	of	onset	and	disease	severity	
	
Although	 there	was	 the	 same	 disease	 duration	 among	 the	 PD	 subtypes	 described	 in	

Study	1	and	the	DLB	subtypes	described	in	Study	3,	the	youngest	subtype	from	the	PD	

sample	 (PD3),	 as	 well	 as	 the	 youngest	 subtype	 from	 the	 DLB	 study	 (subcortical	

predominant	subtype),	were	the	ones	with	preserved	GM	volumes	and	better	cognitive	

performance.	On	 the	other	hand,	 in	Study	1,	 the	subtype	with	 the	oldest	onset	of	 the	

disease	(PD1)	was	characterized	by	GM	atrophy	affecting	the	largest	number	of	cortical	

regions,	as	well	as	subcortical	regions.	Additionally,	it	had	the	worse	neuropsychological	

profile.	 In	 Study	 3,	 the	 older	 DLB	 subtype	 -	 the	 cortical	 predominant	 -	 also	 had	

widespread	 reduced	GM	volumes	 compared	 to	 the	other	 subtypes	and	presented	 the	

lowest	global	cognition	scores	at	baseline	as	well	as	faster	cognitive	decline	over	time.	

	

Previous	 cluster	 studies	 based	 on	 clinical	 data	 had	 exclusively	 found	 2	 clusters	

corresponding	to	young	and	late-onset	subtypes	(Schrag	et	al.,	2006;	Post	et	al.,	2008).	

Interestingly,	in	our	2-cluster	solution	from	our	PD	study	(Study	1),	we	also	defined	the	

young-onset	group	and	the	late-onset	group,	that	with	the	highest	percentage	of	patients	

with	 MCI	 (Supplementary	 material	 from	 Study	 1).	 Previous	 other	 clinical	 studies	

described	more	than	2	clusters	but	always	 finding	the	young	and	 late-onset	subtypes	

(van	 Rooden	 et	 al.,	 2011;	 Erro	 et	 al.,	 2013).	 Additional	 studies	 focusing	 on	

neuropsychological	 (Dujardin	 et	 al.,	 2013;	 Lopes	 et	 al.,	 2017;	 LaBelle	 et	 al.,	 2017)	 or	

combining	both	clinical	and	neuropsychological	data	(Fereshtehnejad	et	al.,	2017)	have	

also	given	evidence	of	2	differentiated	courses	of	the	disease.	Taking	one	step	further,	

Uribe	 et	 al.,	 (2016)	 performed	 a	 hierarchical	 cluster	 analysis	 and,	 in	 the	 2-cluster	

solution,	again	described	the	subtypes	as	young	and	late-onset	with	worse	cognition.	It	

should	be	emphasized	that,	in	AD	as	opposed	to	PD,	early	age	of	onset	is	related	to	worse	

progression	 of	 the	 disease,	 while	 late	 onset	 is	 associated	 with	 a	 better	 prognosis	

(Ferreira	et	al.,	2020b	for	a	review).	All	these	studies	give	evidence	of	the	importance	of	
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considering	age	as	a	variable	of	 interest,	 rather	 than	a	 confounder,	when	performing	

subtyping	analyses,	as	it	has	been	demonstrated	to	be	a	specific	characteristic	that	differs	

among	subtypes.	Here,	the	input	data	of	the	cluster	analyses	(Studies	1	and	3)	was	not	

adjusted	by	age,	but	we	did	account	for	it	once	the	clusters	were	defined.	

 

Studies	 1	 and	 3	 provide	 more	 evidence	 to	 the	 current	 knowledge	 of	 age-at-onset	

implications	in	PD,	as	well	as	in	DLB	prognosis,	by	showing	that	the	subtypes	with	the	

latest	onset	suffer	from	a	more	aggressive	course	of	the	disease,	characterized	not	only	

by	a	more	pronounced	cognitive	decline	but	also	by	patterns	of	extensive	reduced	GM	

volumes.	

	

The	effect	of	ageing	in	neurodegenerative	disorders	
	
Brain	 ageing	 involves	 vascular	 injury	 and	abnormal	protein	deposits	 that	 are	 able	 to	

produce	cognitive	deficits,	 leading	to	a	greater	comorbidity	associated	with	ageing.	In	

consequence,	 it	 appears	 as	 a	 primary	 risk	 factor	 for	 a	 variety	 of	 neurodegenerative	

disorders	such	as	AD,	PD	and	DLB	(Hou	et	al.,	2019).	Additionally,	 the	coexistence	of	

cumulative	 effects	 of	 neuropathological	 changes,	 as	 well	 as	 the	 interaction	 among	

protein	alterations,	can	have	a	relevant	impact	that	should	be	considered.			

	

Some	brain	regions	appear	to	be	more	sensitive	with	the	passage	of	time.	In	terms	of	

atrophy,	the	prefrontal	cortex	appears	as	the	most	affected,	followed	by	the	striatum,	and	

the	 temporal	 lobe,	 the	 cerebellum,	and	 the	hippocampus	 (Peters,	2006	 for	a	 review).	

Additionally,	 in	 PD-MCI,	 low	 hippocampal	 volume	 has	 been	 associated	 to	 the	

development	of	dementia	(Kandiah	et	al.,	2014),	and	the	temporal	lobe	is	known	to	be	

more	 affected	 in	 AD.	White	matter	 hyperintensities	 have	 been	 described	 to	 be	more	

prominent	 in	dementias	 (AD,	DLB	and	PDD)	 than	 in	PD,	and	have	been	associated	 to	

atrophy	in	the	medial	temporal	lobes	(Joki	et	al.,	2018).	Deposits	of	abnormal	proteins	

are	associated	with	ageing	and	can	contribute	to	the	final	disease	presentation.	In	Study	

3,	the	oldest	DLB	subtype,	the	cortical	predominant,	was	the	one	with	higher	number	of	

WMH,	a	result	that	appeared	to	be	associated	with	the	older	age	characteristic	of	that	
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group.	Additionally,	there	is	overlap	between	diseases,	DLB	is	an	α-synucleinopathy	that	

can	also	course	with	neurofibrillary	tangles	and	β-amyloid	plaques	(Zhang	et	al.,	2017	

for	 a	 review)	 with	 a	 symptomatology	 that	 resembles	 AD,	 making	 its	 diagnosis	

challenging.	 In	 Study	 3,	 we	 combined	 β-amyloid	 and	 tau	 biomarkers,	 although	 the	

number	of	DLB	patients	with	both	biomarkers	was	small	in	our	study	sample.	The	DLB	

subtype	with	 reduced	GM	volumes	 in	 frontal	 and	occipital	 regions	appeared	 to	have,	

qualitatively,	a	higher	number	of	subjects	with	concomitant	AD	pathology	and	a	higher	

number	of	APOE	e4	carriers,	the	genotype	well-known	to	be	the	strongest	risk	factor	for	

AD	 (Serrano-Pozo	 et	 al.,	 2021	 for	 a	 review).	 Even	 more,	 although	 PD	 is	 another	 α-

synucleinopathy,	when	 involving	dementia	 (PDD),	 it	also	courses	with	neurofibrillary	

tangles	 and	 β-amyloid	 plaques	 (Jellinger,	 2018	 for	 a	 review),	 which	 reinforces	 the	

association	between	 the	aforementioned	protein	deposits	and	ageing.	 In	 this	 context,	

accounting	 for	 ageing	 appears	 challenging	 and	 can	 prove	 to	 be	 a	 limitation,	 as	 it	 is	

difficult	to	discern	between	deviations	of	normal	ageing	and	ageing	itself.	In	this	context,	

mediation	methods	are	a	statistical	method	with	great	potential	to	aid	understanding	of	

how	ageing	is	mediating	the	effect	of	neurodegenerative	disorders	in	the	brain.		

	

Age	is	also	very	important	in	cluster	analyses.	On	the	one	hand,	considering	the	effect	of	

ageing	before	the	analysis	may	cloud	the	finding	of	subtypes	with	different	ages	at	onset.	

On	the	other,	not	accounting	for	age	can	lead	to	findings	associated,	to	a	certain	degree,	

to	the	normal	process	of	ageing.	In	a	recent	paper,	a	longitudinal	cluster	analysis,	that	

incorporated	the	comparison	with	a	control	group	in	the	cluster	procedure	itself,	was	

applied	in	AD	(Poulakis	et	al.,	2020).	In	this	context,	longitudinal	cluster	analyses	appear	

as	a	novel,	promising	 technique	to	be	used	 in	 large	PD	samples.	For	 future	studies,	 it	

would	be	also	of	 interest	 for	 the	patients	 included	 in	 the	studies	 to	have	 information	

regarding	the	different	proteins	associated	to	brain	degeneration.	
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Structural	connectivity	related	to	cognition	in	Parkinson’s	disease	
	
In	Study	1,	we	combined	WM	changes	measured	with	FA	measures	and	GM	volumes	to	

perform	a	multimodal	cluster	analysis	which	allowed	us	to	find	different	PD	subtypes	

considered	 both	 grey	 and	 white	 matter	 degeneration.	 After	 finding	 3	 subtypes,	 we	

performed	TBSS	analysis	to	compare	the	PD	subtypes	with	HC	and	found	that	only	one	

of	the	3	subtypes	presented	reduced	FA.	This	subtype	was	also	the	subtype	with	more	

widespread	GM	atrophy	and	higher	percentage	of	MCI.	In	Study	2,	we	approached	the	

WM	architecture	underlying	MCI	in	PD	through	different	techniques.	Again,	TBSS	only	

differentiated	PD-MCI	from	HC,	while	PD	without	MCI	did	not	show	alterations	in	FA.	

Previous	studies	were	also	unable	to	detect	alterations	in	FA	in	the	PD	without	MCI	group	

(Hattori	et	al.,	2012;	Agosta	et	al.,	2014).	Going	a	step	further,	we	studied	the	structural	

connectivity	 in	 PD	 with	 and	 without	 MCI	 using	 TFNBS	 based	 on	 probabilistic	

tractography.	 TFNBS	was	 able	 to	 show	 that	 PD	without	MCI	 had	 impaired	 structural	

connectivity	 compared	 to	 controls	 in	 cortico-deep	 grey	 matter	 and	 cortico-cortical	

connections	 involving	 bilateral	 fronto-temporal	 regions.	 On	 the	 other	 hand,	 PD-MCI	

doubled	the	number	of	connections	with	reduced	NOS	compared	to	controls,	and	in	this	

case,	the	impaired	connections	were	cortico-deep	grey	matter	connections	and	cortico-

cortical	connections	involving	temporal	and	occipital	regions.	Along	this	line,	posterior	

cortical-based	 neuropsychological	 deficits	 have	 been	 associated	 to	 a	 higher	 risk	 of	

developing	 dementia	 (Williams-Gray	 et	 al.,	 2007),	 and	 cortical	 thinning	 in	 parieto-

temporal	 regions	has	been	proposed	as	a	 structural	neuroimaging	marker	of	PD-MCI	

(Segura	et	al.,	2014;	Uribe	et	al.,	2016).	Conversely,	Galantucci	et	al.,	(2017),	found	PD-

MCI	to	have	reduced	structural	connectivity	in	networks	involving	the	basal	ganglia	and	

fronto-parietal	 regions	 by	 using	NBS	 based	 on	 a	 deterministic	 approach.	 FA	 and	MD	

values	obtained	from	the	networks	were	used	to	differentiate	PD-MCI	from	PD	without	

MCI	with	high	accuracy.	We	also	did	a	ROC	curve	analysis,	which	determined	that	cortico-

cortical	as	well	as	cortico-deep	grey	matter	connections	with	reduced	NOS,	in	PD-MCI	

compared	to	controls,	enabled	us	to	distinguish	between	patients	with	and	without	MCI.	
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Taken	 as	 a	 whole,	 our	 results	 suggest	 that	 complex	 structural	 brain	 networks	 are	

involved	 in	 cognitive	 impairment	 in	 PD,	 rather	 than	degenerations	 of	 individual	WM	

tracts.	

	

We	highlight	that	results	from	Study	1	and	2	offer	evidence	that	PD	is	not	primarily	a	

white	matter	disease.	When	entering	WM	as	input	of	the	cluster	analysis	(Study	1),	WM	

was	 not	 able	 to	 provide	 specific	 WM	 patterns	 needed	 to	 discern	 the	 3	 subtypes.	

Additionally,	in	Study	2,	although	revealing	clear	differences	in	structural	connectivity	

between	PD	with	and	without	MCI,	it	lacked	sufficient	statistical	power	to	significantly	

differentiate	between	the	two	aforementioned	PD	groups.	Conversely,	in	demyelinating	

diseases,	 such	 as	multiple	 sclerosis	 (MS),	 DTI	 has	 appeared	 as	 a	 useful	 technique	 to	

differentiate	between	MS	types	–	primary	progressive/relapsing	remitting	(Assaf	and	

Pasternak,	2008	for	a	review).	However,	in	PD,	WM	impairment	may	follow	GM	atrophy,	

which	seems	to	play	the	relevant	role	in	this	disease.	GM	has	been	described	to	be	able	

to	 differentiate	 PD	 from	HC,	 PD	with	 and	without	 cognitive	 impairment,	 and	 to	 find	

predictors	of	MCI	converting	to	dementia,	as	well	as	following	progression	over	time,	

and	 even	 finding	 different	 PD	 subtypes	 based	 on	 cortical	 thickness	 measures	

(Krajcovicova	et	al.,	2019	for	a	review).		

	

Does	white	matter	atrophy	precede	or	follow	grey	matter	atrophy?	
	
Some	studies	have	stated	that	WM	alterations	would	take	place	previous	to	GM	atrophy,	

a	conclusion	derived	from	the	fact	that	they	either	found	no	GM	atrophy	(Agosta	et	al.,	

2014)	 or	minimal	 GM	 differences	 (Rektor	 et	 al.,	 2018)	 in	 PD	with	 and	without	 MCI	

compared	 to	 controls,	while	TBSS	 showed	PD-MCI	 to	have	 reduced	FA	 (Agosta	et	 al.,	

2014;	Rektor	et	al.,	2018).	However,	these	studies	did	not	combine	both	modalities.	In	

Study	 1,	 through	 a	 multimodal	 approach	 in	 which	 GM	 and	 WM	 measures	 were	

considered	together,	we	detected	that	the	only	PD	subtype	presenting	reduced	FA	was	

PD1,	 the	 subtype	 with	 widespread	 GM	 atrophy.	 The	 other	 2	 subtypes	 did	 not	 show	

differences	 in	WM	compared	to	HC.	Furthermore,	PD1	was	the	subtype	with	a	higher	

percentage	 of	 patients	with	MCI.	 Additionally,	 in	 Study	 2,	 the	 TBSS	 analysis	 showed	

reduced	 FA	 in	 PD-MCI	 compared	 to	 controls,	 but	 PD	 without	 MCI	 showed	 no	 WM	
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alterations.	This	led	to	considering	that	WM	atrophy	appears	after	GM	atrophy,	and	not	

the	other	way	round.	We	also	showed	in	Study	1	that	GM	features	were	more	informative	

than	WM	features	in	the	cluster	analysis.	In	this	context,	we	conclude	that:	WM	is	less	

informative	 than	GM;	WM	alterations	 follow	GM	atrophy,	 and	WM	alone	may	not	 be	

informative	 enough	 to	 establish	PD	 subtypes	 on	 its	 own,	 but	 combined	with	GM	 can	

provide	a	more	detailed	characterization	of	PD	subtypes.	The	fact	that	some	studies	did	

not	 find	 differences	 in	 GM	 between	 PD	 and	 healthy	 controls	may	 be	 due	 to	 disease	

duration	 heterogeneity	 within	 the	 sample,	 methodological	 issues,	 or	 a	 less	 accurate	

characterization	of	MCI.	

	

Substrates	of	cognitive	impairment	
	
In	Study	1,	the	subtype	with	the	worst	neuropsychological	profile	was	the	one	with	more	

GM	 atrophy	 as	 well	 as	WM	 atrophy.	 In	 Study	 2,	 PD-MCI	 presented	 reduced	 FA	 and	

structural	 connectivity	 impairment	 affecting	more	 connections	 than	PD	without	MCI.	

Delving	deeper,	 in	Study	3,	 the	DLB	subtype	with	 the	worst	global	cognition	(cortical	

predominant	subtype)	was	the	one	with	the	lower	GM	volumes.	All	the	studies	reflect	

that	 the	 global	 cognitive	 decline	 in	 PD	 and	 DLB	 is	 associated	 with	 widespread	 GM	

atrophy,	and	possibly	to	WM	atrophy	secondary	to	GM	degeneration.	However,	cognitive	

fluctuations,	a	core	symptom	of	DLB,	were	a	characteristic	of	the	subtype	with	highest	

GM	volumes	-	the	subcortical	predominant.	Interestingly,	Peraza	et	al.,	(2014)	performed	

a	VBM	analysis,	to	compare	DLB	with	cognitive	fluctuations	to	healthy	controls,	which	

did	 not	 show	 significant	 differences,	 except	 for	 just	 2	 voxels.	 The	 aforementioned	

evidence	 together	 with	 the	 dynamic	 nature	 of	 cognitive	 fluctuations	 suggests	 that	

cognitive	fluctuations	are	not	a	consequence	of	GM	atrophy,	but	rather	the	product	of	a	

functional	connectivity	disruption.	 In	fact,	cognitive	fluctuations	have	been	associated	

with	 impaired	 functional	 connectivity	 between	 the	 fronto-parietal	 network	 and	

subcortical	regions	(Peraza	et	al.,	2014).	Interestingly,	brain	disconnection	has	also	been	

described	as	the	potential	cause	of	cognitive	decline	in	the	minimal	atrophy	subtype	of	

AD	(Ferreira	et	al.,	2019).	In	PD,	cognitive	deficits	have	also	been	approached	from	the	

functional	 perspective.	 In	 PD-MCI,	 impairment	 in	 functional	 connectivity	 within	 and	
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between	networks	has	been	reported	(Baggio	et	al.,	2014;	Baggio	et	al.,	2015),	as	well	as	

alterations	in	dynamic	functional	connectivity	(Díez-Cirarda	et	al.,	2018).	This	is	in	line	

with	 a	 later	 study	 that	 evaluated	 the	 progressive	 dysfunction	 in	 dynamic	 functional	

connectivity	by	studying	a	PD	sample	that	ranged	from	PD	without	cognitive	impairment	

to	PDD	(Fiorenzato	et	al.,	2019).		

	
Methodological	implications	of	cluster	analyses		
 
Disentangling	 subtypes	within	 neurodegenerative	 diseases	 seems	 to	 be	 a	 priority	 in	

current	research,	approached	through	both	unsupervised	and	supervised	methods.	The	

supervised	 approaches	 make	 specific	 assumptions	 about	 the	 data,	 forcing	 the	

observations	to	fit	into	a	specific	number	of	clusters/subtypes.	Consequently,	it	is	biased	

towards	prior	knowledge.	This	fact	makes	unsupervised	methods,	which	are	guided	by	

the	data	without	a	priori	hypothesis,	more	suitable	to	investigate	new	subtypes	(Feczko	

et	al.,	2019	for	a	review).	There	is	evidence	of	data-driven	analyses	finding	promising	

results	within	the	study	of	neurodegenerative	diseases	(Habes	et	al.,	2020	for	a	review).	

Similarly,	 when	 choosing	 specific	 ROIs	 as	 the	 input	 of	 the	 cluster	 analysis,	 we	 are	

working,	 to	 a	 certain	 level,	 with	 an	 hypothesis	 a	 priori.	 In	 Study	 3,	 from	 previous	

literature,	 we	 could	 have	 chosen	 specific	 ROIs,	 such	 as	 the	 hippocampus,	 instead	 of	

performing	a	whole-brain	analysis.	However,	 the	whole-brain	approach	revealed	 that	

the	hippocampus	was	not	among	the	10	most	relevant	ROIs	in	discerning	the	subtypes.	

Interestingly,	 the	hippocampus	did	not	appear	as	one	of	 the	main	regions	to	describe	

DLB.	A	possible	explanation	for	this	finding	is	that	hippocampal	volume	may	have	a	more	

relevant	 role	 in	 more	 advanced	 stages	 of	 DLB,	 as	 in	 the	 cohorts	 often	 included	 in	

postmortem	 studies.	 In	 younger	 cohorts	 at	 less	 advanced	 stages	 of	 the	 disease,	 the	

presence	of	concomitant	AD	pathology	is	lower	(Ferreira	et	al.,	2021),	as	reflected	by	the	

low	proportion	of	DLB	patients	with	positive	AD	biomarkers	in	Study	3.	Thus,	there	is	

highly	likelihood	of	DLB	pathology,	instead	of	AD-pathology,	which	has	been	associated	

with	 higher	 GM	 volumes	 in	 the	 hippocampus	 (Kantarci	 et	 al.,	 2012). Due	 to	 the	

aforementioned	reasons	and	evidence,	we	used	unsupervised	whole-brain	approaches	

in	order	to	find	new	PD	(Study	1)	and	DLB	subtypes	(Study	3).	Particularly	in	Study	3,	

we	present	the	first	data-driven	subtyping	analysis	based	on	MRI	carried	out	in	a	DLB	
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sample.	Nevertheless,	 there	are	 some	 limitations	 that	 should	be	addressed	 for	 future	

improvements.	On	the	one	hand,	most	studies	lack	validation	steps,	while	ideally,	studies	

should	have	an	independent	cohort	to	ensure	reproducibility	(Feczko	et	al.,	2019	for	a	

review).	Another	aspect	to	consider	is	the	input	data	used	for	the	subtyping	studies.	Until	

now,	the	majority	of	analyses	have	opted	for	either	focusing	on	high-dimensional	data	

from	one	single	modality	or	simplifying	data	from	different	modalities	in	order	to	be	able	

to	 combine	 them	 (Habes	 et	 al.,	 2020	 for	 a	 review).	 This	 leads	 to	 the	 curse	 of	

dimensionality,	which	when	extrapolated	to	the	biomedical	field,	implies	that	with	the	

increase	 of	 the	 number	 of	 features	 -	 for	 example,	 cognitive,	 behavioural	

(neuropsychological	 tests,	 specific	 scales,	 etc.)	 or	 biological	 (genetic	 biomarkers,	 GM	

volumes,	etc.)	 features	-	the	number	of	observations	(patients)	required	to	generalize	

the	model	rises	exponentially.	In	this	context,	two	main	problems	can	interfere	with	the	

reliability	of	 the	outcomes.	One	 is	 the	risk	of	overfitting,	which	occurs	when	we	have	

more	 features	 than	 observations.	 The	 other	 is	 that	 the	 observations	 are	 complex	 to	

cluster,	as	these	appear	equidistant	from	each	other.	Generally,	cluster	analyses	use	the	

Euclidean	distance	 to	measure	how	similar	 the	observations	 are;	 however,	 too	many	

features	 force	 distances	 to	 be	 equal,	 which	 implies	 ending	 up	 without	 groups	 of	

observations	 similar	 among	 themselves,	 which	 makes	 finding	 relevant	 clusters	

impossible.	 In	 the	 PD	 cluster	 analysis	 (Study	 1),	 we	 improved	 the	 problem	 of	

dimensionality	compared	to	previous	PD	cluster	analyses	based	on	MRI	data	(Uribe	et	

al.,	2016;	Uribe	et	al.,	2018)	by	reducing	the	number	of	features	entered	in	the	analysis.	

Still,	we	wanted	to	go	one	step	further	in	Study	3	and,	in	order	to	surpass	this	limitation,	

we	 opted	 for	 the	 Random	 Forest	 method,	 which	 overcomes	 this	 issue	 by	 building	

multiple	decision	trees.	In	each	tree,	only	a	subset	of	features	is	used,	reducing	the	space	

over	which	each	tree	is	minimizing.	Regarding	multimodality,	it	is	necessary	to	perform	

complex	 cluster	 analyses	 that	 incorporate	PET	 imaging	data	 to	MRI	 studies	 to	better	

understand	the	subtypes.	First	approaches	have	worked	on	combining	these	different	

modalities.	 Jeon	 et	 al.,	 (2019)	 performed	 a	 cluster	 analysis	 in	 AD	 combining	 cortical	

thickness,	as	well	as	tau	and	amyloid	burden.	PET	imaging	can	help	to	disentangle	which	

characteristics	are	due	to	a	specific	pathology,	rather	than	a	combination	of	pathologies,	

or	ageing	itself.	As	mentioned	above,	longitudinal	cluster	analyses	(Poulakis	et	al.,	2020)	
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seem	 to	 be	 a	 promising	 new	 technique	 that	 can	 help	 to	 clarify	 if	 the	 subtypes	 we	

recurrently	find	in	different	diseases,	such	as	AD	and	PD,	are	differentiated	entities,	as	it	

will	 facilitate	 the	 finding	 of	 subtypes	 based	 on	 their	 trajectories	 and	 emphasize	 the	

typicality	dimension	over	the	severity	dimension	(Ferreira	et	al.,	2020b	for	a	review),	

which	is	the	main	interest	when	performing	subtyping	analyses.		

	
Final	remarks	
	
The	present	Doctoral	Thesis	has	identified	different	patterns	of	atrophy	in	PD	and	DLB	

by	applying	unsupervised	data-driven	subtyping,	which	in	turn	has	been	associated	with	

specific	 clinical	 and	 neuropsychological	 profiles.	 Specifically,	 our	 work	 has	 provided	

more	evidence	of	 the	existence	of	 subtypes	within	PD	and	DLB.	 In	addition,	we	have	

studied	 cognition	by	 thoroughly	describing	 the	neuropsychological	profiles	of	 the	PD	

subtypes	and	by	approaching	structural	connectivity	in	PD-MCI.	

	

Our	hope	is	that	our	research	will	help	drive	forward	the	identifying	of	neuroimaging	

and	neuropsychological	biomarkers	that	would	assist	in	providing	a	specific	diagnosis	to	

DLB	and	PD	patients	resulting	in	a	more	personalized	treatment.		
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CHAPTER	6		
Conclusions	
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Through	the	combined	analysis	of	the	studies	included	in	this	Doctoral	Thesis,	we	can	

conclude	that:	

	

1. Three	subtypes	were	 identified	 in	Parkinson’s	disease	based	on	GM	and	WM	

structural	MRI	data.	One	subtype	characterized	by	loss	of	GM	in	bilateral	tempo-

parieto-occipital	 cortices	 and	 subcortical	 regions,	 as	 well	 as	 widespread	 FA	

reductions	mainly	affecting	fronto-occipital	WM	tracts;	a	second	subtype	with	

loss	of	GM	in	bilateral	orbital,	medial	prefrontal,	and	temporal	cortical	regions;	

and	a	third	subtype	without	detectable	GM	or	WM	alterations.		

	

2. Regarding	the	neuropsychological	profile	of	these	PD	subtypes,	the	first	subtype	

manifested	pronounced	cognitive	deficits	compared	to	healthy	controls	and	the	

third	 PD	 subtype,	while	 the	 third	 subtype	 did	 not	 show	detectable	 cognitive	

impairment.	 The	 second	 subtype	 presented	 low	 scores	 in	 certain	

neuropsychological	 tests	 including	Facial	Recognition	Test,	Trail	Making	Test	

part	 A	 and	 part	 B,	 Stroop	 Color	 Test,	 Stroop	 Word	 Test	 and	 Symbol	 Digit	

Modalities	Test	 compared	 to	healthy	 controls	but	did	not	differ	 from	any	PD	

subtype.	

	

3. The	 multimodal	 imaging	 cluster	 analysis	 revealed	 that	 the	 patterns	 of	 GM	

degeneration	are	more	relevant	in	the	characterization	of	PD	subtypes	than	WM	

alterations.	WM	alterations	are	only	observed	in	patients	with	widespread	GM	

involvement.	

	
	

4. Whole-brain	 structural	 connectivity	 based	 on	 probabilistic	 tractography	

revealed	reduced	fronto-striatal	connectivity	related	to	cognitive	decline	in	PD,	

as	well	as	 impaired	posterior	cortical	connections,	mainly	 involving	temporal	

and	occipital	regions.		
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5. Local	graph	measures	including	reduced	local	efficiency,	node	degree	and	nodal	

clustering	coefficient	are	able	to	differentiate	PD	with	and	without	MCI	as	well	

as	both	PD	from	controls.	

	
	

6. Three	 DLB	 subtypes	 with	 different	 patterns	 of	 GM	 were	 identified	 through	

cluster	 analysis.	 The	 cortical	 predominant	 subtype	 was	 characterized	 by	

widespread	reduced	GM	in	cortical	regions	compared	to	the	other	subtypes;	the	

fronto-occipital	 subtype	 had	 reduced	 GM	 volumes	 in	 frontal	 and	 occipital	

regions;	 finally,	 the	 subcortical	 predominant	 subtype	 was	 characterized	 by	

greater	GM	volumes	than	the	other	subtypes	except	for	the	basal	ganglia,	where	

it	showed	proportionally	lower	GM	volumes	than	the	other	subtypes.		

	

7. The	cortical	predominant	DLB	subtype	was	characterized	by	the	worse	global	

cognitive	 performance	 and	 fastest	 cognitive	 decline	 over	 time;	 while	 the	

subcortical	predominant,	although	presenting	with	the	greater	GM	volumes	and	

global	 cognitive	 performance,	 included	 the	 highest	 number	 of	 patients	 with	

cognitive	fluctuations.	
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