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Summary

Until the present moment, an extensive amount of research has been done
on how humans estimate motion or parameters of a task, such as the time-
to-contact in simple scenarios. However, most avoid questioning how we
extract 3D information from 2D optic information. A Bayesian approach
based on a combination of optic and prior knowledge about statistical
regularities of the environment would allow solving the ambiguity when
translating 2D into 3D estimates. The present dissertation aims to analyse if
the estimation of motion and time-to-contact in complex 3D environments
is compatible with a combination of visual and prior information.

In the first study, we analyse the predictions of a Bayesian model with
a preference for slow speeds to estimate the direction of an object. The
information available to judge movement in depth is much less precise than
information about the lateral movement. Thus, combining both sources
of information with a prior with preference for low speeds, estimates of
motion in depth will be proportionally more attracted to low speeds than
estimates of lateral motion. Thus, the perceived direction would depend
on stimulus speed when estimating the ball’s direction. Our experimental
results showed that the bias in perceived direction increased at higher
speeds, which would be congruent with increasingly less precise motion
estimates (consistent with Weber’s law).

In the second study, we analyse the existing evidence on using a priori
knowledge of the Earth’s gravitational acceleration and the size of objects
to estimate the time to contact in parabolic trajectories. We analysed the
existing evidence for using knowledge of the Earth’s gravity and the size of
an object in the interaction with the surrounding environment. Next, we
simulate predictions of the GS model. This model allows predicting the
time to contact based on a combination of a priori variables (gravity and



ball size) and optic variables. We compare the accuracy of the predictions
of time-to-contact with an alternative only using optic variables, showing
that relying on priors of gravitation and ball size solves the ambiguity in
the estimation of the time-to-contact. Finally, we offer scenarios where the
GS model would lead to predictions with systematic errors, which we will
test in the following studies.

In the third study, we created trajectories for which the GS model
gives accurate predictions of the time to contact at different flight times but
provides different systematic errors at any other time. We hypothesized that
if the ball’s visibility is restricted to a short time window, the participants
would prefer to see the ball during the time windows in which the model
predictions are accurate. Our results showed that observers preferred to
use a relatively constant ball viewing time. However, we showed evidence
that the direction of the errors made by the participants for the different
trajectories tested corresponded to the direction predicted by the GS model.

In the fourth and final study, we investigated the role of a priori knowl-
edge of the Earth’s gravitational acceleration and ball size in estimating
the time of flight and the direction of motion of an observer towards the
interception point. We introduced our participants in an environment where
both gravitational acceleration and ball size was randomized trial-to-trial.
The observers’ task was to move towards the interception point and predict
the remaining flight time after a short occlusion. Our results provide ev-
idence for using prior knowledge of gravity and ball size to estimate the
time-to-contact. We also find evidence that gravitational acceleration may
play a role in guiding locomotion towards the interception point.

In summary, in this thesis, we contribute to answering a fundamental
question in Perception: how we interpret information to act in the world.
To do so, we show evidence that humans apply their knowledge about
regularities in the environment in the form of a priori knowledge of the
Earth’s gravitational acceleration, the size of the ball, or that objects stand

still in the world when interpreting visual information.
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Resumen

Hasta el momento, se ha realizado una gran cantidad de investigacion
sobre como el ser humano estima el movimiento o los pardmetros de una
tarea como el tiempo de contacto en escenarios simples. Sin embargo, la
mayoria evita preguntarse c6mo se extrae la informacién 3D a partir de la
informacién 6ptica 2D. Un enfoque bayesiano basado en una combinacién
de informacién 6ptica y a priori sobre regularidades estadisticas del entorno
interiorizadas en forma de conocimiento permitirfa resolver la ambigiiedad
a la hora de traducir claves dpticas en 2D a estimaciones sobre propiedades
del mundo en 3D. El objetivo de esta tesis es analizar si la estimacién
del movimiento y del tiempo de contacto en entornos 3D complejos es
compatible con una combinacién de informacién visual y a priori.

En el primer estudio, se analizan las predicciones de un modelo bayesiano
con preferencia por las velocidades lentas para la estimacién de la direccién
de un objeto. La informacién disponible para juzgar el movimiento en pro-
fundidad es mucho menos precisa que la informacién sobre el movimiento
lateral. Asi, cuando se combinan ambas fuentes de informacién con un prior
con preferencia por la velocidad baja, las estimaciones del movimiento
en profundidad serdn proporcionalmente mas atraidas por el prior que las
estimaciones del movimiento lateral. Por lo tanto, la direccion percibida de-
penderia de la velocidad del estimulo. Nuestros resultados experimentales
mostraron que el sesgo en la direccion percibida aumentaba a velocidades
mds altas, lo que serfa congruente con estimaciones de movimiento cada
vez menos precisas (consistente con la ley de Weber).

En el segundo estudio, analizamos las evidencias existentes sobre el
uso del conocimiento a priori de la aceleracién gravitatoria de la Tierra
y el tamafio de los objetos para estimar el tiempo de contacto en trayec-
torias parabdlicas. Analizamos las pruebas existentes sobre el uso del



conocimiento de la gravedad de la Tierra y el tamafio de un objeto en la
interaccién con el entorno. A continuacién, simulamos las predicciones del
modelo GS, un modelo que permite predecir el tiempo de contacto a partir
de una combinacién de variables a priori (gravedad y tamaiio de pelota) y
variables Opticas. Comparamos la precision de las predicciones del tiempo
de contacto con una alternativa que sélo utiliza variables dpticas, mostrando
que basarse en las variables a priori de la gravedad y el tamafio de la bola
resuelve la ambigiiedad en la estimacién del tiempo de contacto. Por ul-
timo, mostramos varios escenarios en los que el modelo GS conduciria a
predicciones con errores sistematicos; escenarios que pondremos a prueba
en los siguientes estudios.

En el tercer estudio, creamos trayectorias para las que el modelo GS da
predicciones precisas del tiempo hasta el contacto en diferentes tiempos
de vuelo, pero proporciona diferentes errores sistematicos en cualquier
otro momento. Hipotetizamos que, si la visibilidad de la pelota esta re-
stringida a una ventana de tiempo corta, los participantes preferirian ver
la pelota durante las ventanas de tiempo en las que las predicciones del
modelo son precisas. Nuestros resultados mostraron que los observadores
preferian utilizar un tiempo de visualizacién de la pelota relativamente con-
stante. Por otra parte, mostramos pruebas de que la direccidn de los errores
cometidos por los participantes para las diferentes trayectorias probadas se

correspondia con la direccién predicha por el modelo GS.

En el cuarto y dltimo estudio, investigamos el papel del conocimiento a
priori de la aceleracion gravitatoria de la Tierra y del tamafio de la pelota
en la estimacion del tiempo de vuelo y la direcciéon de movimiento de
un observador hacia el punto de interceptacion. Introdujimos a nuestros
participantes en un entorno en el que tanto la aceleracidon gravitatoria
como el tamaifio de la pelota se asignaban aleatoriamente ensayo a ensayo.
La tarea de los observadores consistia en desplazarse hacia el punto de
interceptacion y predecir el tiempo de vuelo restante tras una breve oclusion.
Nuestros resultados proporcionan pruebas del uso del conocimiento previo
de la gravedad y el tamafio de la pelota para estimar el tiempo de contacto.
También encontramos pruebas de que la aceleracién gravitatoria puede
desempefiar un papel en la orientacién de la locomocién hacia el punto de

intercepcion.

14 of 194



En resumen, en esta tesis contribuimos a responder a una cuestiéon funda-
mental en la Percepcion: cémo interpretamos la informacién para actuar en
el mundo. Para ello, mostramos evidencias de que los humanos aplican sus
conocimientos sobre regularidades del entorno en forma de conocimiento a
priori de la aceleracion gravitatoria de la tierra, del tamafio de la pelota o de
la estabilidad del mundo a nuestro alrededor para interpretar la informacién

visual.
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1 General Introduction

Contrary to what one might think, the world we live in is relatively
predictable. As of the time of writing, it is clear that neither the keyboard
will spontaneously grow like Alice in Wonderland nor start floating around
the room in weightlessness. Although pushed towards the absurd, these
examples bring out an important point. The world maintains an internal
coherence that underpins predictability. Throughout this thesis, we will
study how known statistics of the environment in the form of prior knowl-
edge affect our percepts and help build predictive components that can
be used to control our behaviour. Specifically, we will analyse how prior
knowledge of relevant visual features affects motion estimation in different
3D environments leading to systematic errors in our perception.

This introductory chapter aims to give the reader the necessary context
to understand the different experimental studies and grasp their relevance
for motion perception and optic flow, that is, the retinal changing pattern.
Thus, we must start with some key points. Throughout this thesis, we will
assume a constructivist perspective of Perception. This approach assumes
that recreate internal representations of features in the world based on
sensory information (Helmholtz, 1867). These representations would allow
us to predict future events based on simple computations that attempt to
replicate common patterns in the real world. In our everyday life, these
computations will allow us to predict that a cup will fall off the table if
we bump it unintentionally. However, this prediction would not apply in a
non-gravitational space, as the cup will be suspended in the air floating in
weightlessness. As a result, the over-generalisation of these computational
assumptions may lead to systematic errors.

From a probabilistic perspective, a feature about the visual world can
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be represented in the form of a probability distribution. A probability
distribution is a mathematical function that describes the occurrence of
an event with two parameters: accuracy and precision. Accuracy would
refer to the mean error of the estimation, while precision would refer to the
variability of those errors. The following figure illustrates the combination
of high/low accuracy and precision with an example of distance estimation
(see Figure 1.1).

High Accurecy - High Frecision 1 High Accuracy - Low Pracison
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Figure 1.1. Representation of different levels of accuracy and precision (high/low).
In this example, the ball is 30 meters from the observer (ball’s position in x), denoted
by a green vertical line. The y-axis represents distance estimation probability.
The steeper the distribution, the more likely a ball distance will be estimated.
Accuracy would represent the mean error concerning the real value to be represented.
Precision would represent the variability of the errors.

In Figure 1.1, accuracy would refer to the average error between the
actual distance to the ball (30 meters) and the estimates. If the estimates are
systematically biased away from the actual distance (bottom panels), the ac-
curacy of our estimate is low. Precision, however, would refer to the inverse
of the variability in our estimates. Right panels represent a high variability
in our estimates, that is, low precision. These two aspects become key when
describing the prior distributions that reflect our perceptual knowledge of
visual features of the environment. In turn, prior distributions affect how

we solve a fundamental problem in perception: the inverse problem.
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1.1 The inverse problem in Perception

Obtaining sensory information is key to grasping what is going on in our
environment. However, the interpretation of sensory information has to
serve some purpose. Whether it is to identify the nearest river or avoid a
predator pouncing on us, being able to interpret our environment correctly,
predict what will happen and act accordingly is key to maximising our
survival. Here, the visual system is crucial, providing information about
distant elements to interact with in the near future.

The problem with prediction is that we must first infer different states
of the environment and then extrapolate them over time. As we will see
below, the features of the objects around us are underspecified in the visual
information reaching our retina. Hence, visual information does not suffice
to infer those features in many cases. However, our ability to perform
actions that require some degree of prediction, such as catching or hitting
a ball on the fly, is astonishing (Brenner & Smeets, 2015; Regan, 2012).
Therefore, understanding how we translate optical information into features
of the world is fundamental.

As previously mentioned, relying only on visual information stimu-
lating our retina presents a profound problem: using 2D images to infer
properties of a 3D world. Relying on 2D images is problematic because
there are many interpretations but just one real cause or distal stimulus. This
epistemological problem is also known as the inverse problem of vision
(Kersten et al., 2004; Pizlo, 2001). Figure 1.2 represents a simple example
where many possible combinations of ball size and distance would project
the same retinal angle onto the retina. The retinal angle is the projected
angular size of an object on the retina (usually denoted by the Greek letter,
0).

It would be impossible to tell apart the actual size from the other pos-
sibilities without further information. Nevertheless, a simple solution to
this problem can be found in many species: binocular vision. A binocu-
lar system provides two independent and horizontally displaced images.
Their comparison solves the ambiguity partially within 2D images (Foley,
1980; Qian & Yazdanbakhsh, 2015). However, some elite sports players
maintained their performance after losing sight with one eye (Regan, 2012).
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Figure 1.2. Representation of the inverse problem as a many-to-one problem, where
many possible combinations of ball size and distances project the same angular size
onto the retina. In this case, the observer has no means to infer the real combination
of ball size and distance.

Thus, there might be another possible solution available with monocular
vision. In the following equation, the reader can see how retinal size, object
size and distance are related:

Distance ~ % (1.1)

Derived from the previous expression, one solution to this problem
could be imposing constraints to the possible ball sizes or distances (Pizlo,
2001). This would be close to using a ball size as an a priori. If ball size is
unknown or non-constant, distance cannot be computed. Thus, all distances
would be equally possible. In Figure 1.3 an equiprobable estimation is
represented by a uniform distribution (gold flat line). However, if ball size
is known and constant, distance can be computed as the ratio between ball
size and retinal size (Ittelson, 1951; Maltz et al., 2021). In that case, only a
handful of distances would remain possible given our available information
(black distribution in Figure 1.3). This simple example shows how prior
knowledge of a contextual variable (ball size) and the assumption of a
constant world, in this case, size constancy, provide the grounds to solve
the inverse problem. However, this solution may not lead to a correct
estimate if the wrong ball size is assumed.

Imagine that a Tennis ball size is assumed instead of assuming the
correct size (Soccer ball). Following Equation 1.1 the distance would be
underestimated (see Figure 1.3B). Thus, the accuracy of our prediction
would be undermined. On the other hand, uncertainty in our estimation

of distance would be caused by variability or noise in our visual measure,
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Figure 1.3. A) Probability distributions for judged distance with unknown ball size
(gold line) and the correct ball size assumed (black line). B) Probability distribution
assuming an incorrect ball size. C) Probability distribution with low precision visual
measurements.

retinal size (see black distribution in Figure 1.3A). Perceptual uncertainty
results from sensory measurements being affected by random noise of errors.
Generally, the sensory representation of a physical quantity is finite given
the limits of the biological structures involved in the process of transduction
and communication processes within the nervous system (Faisal & Wolpert,
2009). In this sense, measurement variability will influence perceptual
variability. For example, if the image of the ball is blurred, the retinal size
would be more variable, which would translate into more uncertainty in
distance estimation (see Figure 1.3C).

Here, classic psychophysics provides a standard method for estimating
the discriminability (variability) of sensory measurements in our system
(Fechner, 1948/1860). Weber’s law indicates that the discriminability
for most sensory modalities is a linear function of a constant known as
the Weber fraction (usually referred to with the letter k). Comparing the
Weber fraction across sensory modalities makes it possible to compare the
precision with which they are represented. For example, the precision of
positional estimates (Westheimer & McKee, 1977) is much higher than
that of motion (de Bruyn & Orban, 1988; McKee, 1981) or acceleration
(Gottsdanker et al., 1961a). As a rule of thumb, it is usually assumed
that estimating variables of a higher temporal order (velocity compared
with position) leads to increased measurement errors or Weber fractions.
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This suggests that using variables such as acceleration within our estimates
may not be the best approach because the following estimates will be very
unreliable.

1.2 Perception as a Bayesian inferential process

Since Helmholtz (1867), Perception has been proposed as an inferential
process in which visual information is interpreted as a best guess. This
inferential process has been formulated in terms of "encoding" and "decod-
ing" (Friston, 2010; Knill & Pouget, 2004; Wei & Stocker, 2015). Encoding
would correspond to the activity resulting from the transduction of external
energy that stimulates our sensory receptors resulting in an activity pat-
tern in our nervous system. The information resulting from the encoding
would be combined with prior knowledge during the Decoding providing a
"read-out". The read-out represents an interpretation of the available data.
In sum, the "encoding-decoding" framework generally assumes that we
usually have prior knowledge that will assist during the decoding to solve
the inverse problem of vision. In the following figure, the reader can see a
scheme of the whole cycle involved in any sensorimotor task.

Combining new sensory evidence with our previous knowledge makes
what is considered a Bayesian perspective. Following Helmholtz, 1867
thesis, the Bayesian perspective envisions Perception as an inferential
process that combines all the available information to obtain the most likely
interpretation (Maloney & Zhang, 2010). Within a Bayesian framework,
all the available pieces of information are weighted and then combined,
minimising the variance of the final estimate. The following expression
represents a simplified version of the Bayes’ theorem (Doya et al., 2007;
Knill & Pouget, 2004), the algorithm that describes how prior and new
information is combined.

P(Event|Data) oc P(Data|Event) x P(Event) (1.2)

How does the above expression reads? The left-hand side of the expres-
sion is the Posterior, that is, the conditional probability of an event given
the new information. In our perceptual experience, it would represent our
percept. The right-hand side represents the Likelihood, the probability of
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Figure 1.4. External visual information is encoded as a sensory array. Both sensory
information and prior knowledge are combined within the decoding process. The
product is a read-out or inference used to select an action from the existing repertoire.
An observer’s action would affect the environment and the optic array. From the
difference between the expected outcome of the action and the consequences,
the observer will store some information correcting the prior to refining further
estimates.
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the new information given an event multiplied by the Prior, that is, the prob-
ability of that event. Thus, the Posterior distribution would be proportional
! to the product between the Likelihood and Prior distributions.

To describe the process of Bayesian inference, let us use an example.
Imagine the context of a tennis training session. An athlete has to estimate
the remaining flight time of a ball thrown by a well-known training machine.
Her visual measurements (i.e. retinal size or the displacement of ball’s
image) would represent the Likelihood distribution for different flight
durations Figure 1.5 (black lines in Figure 1.5). The previous experience
with that machine would conform to the Prior knowledge (golden lines in
Figure 1.5). The Likelihood and the Prior distributions will result in the
Posterior. The Posterior distribution would represent the most probable
flight durations given our available information (blue lines in Figure 1.5).
The above example is an ordinary case where the player has access to
reliable information (left panel in Figure 1.5). However, what would
happen if visual information were compromised?

Retatls Likeliood 1 Uneeiabls Lisaliood ]

p
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.‘ i
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® Likethood #* Prior # Postarior

Figure 1.5. Representation of Bayesian estimation under the presence of reliable
(left) and unreliable (right) sensory evidence (Likelihood). When the Likelihood is
reliable, the effect of the Prior is limited. Thus, the Posterior is very close to the
estimates provided by the Likelihood. In contrast, in the right panel, the Likelihood
is unreliable. As a result, the Prior is weighted more heavily. Despite the Prior
being the same, the relative weight differs due to different Likelihood reliability.

Imagine that the tennis player removes her contacts while training. In

I"oc" reads as proportional.
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this case, her visual information may be blurry due to myopia, and thus,
her visual measurements would be unreliable. To optimise her flight time
estimates, she should rely more heavily on her prior knowledge. In this
case, relying more on the Prior shifted the Posterior distribution closer
to the peak of the Prior distribution. Note that in both conditions, the
Prior distribution is the same. However, relying more on the Prior if the
Likelihood is unreliable would lead to an optimal estimate.

The Bayesian perspective has been a prolific research program in the
last decades (see Geisler, 2011; Wei and Stocker, 2017 for reviews), show-
ing that both sensorimotor tasks and perceptual judgments are consistent
with combining visual and prior information. Among others, we would
find pointing tasks (Trommershauser et al., 2003), manual interception
(Mclntyre et al., 2001; Zago et al., 2004), visual tracking tasks (Jorges &
Lépez-Moliner, 2020b), and motion judgements (Stocker & Simoncelli,
2006; Weiss et al., 2002) and temporal estimation (Jazayeri & Shadlen,
2010). However, Bayesian models have not gone uncriticised (Bowers &
Davis, 2012; Rahnev & Denison, 2018). One of the main criticisms raised
against the Bayesian perspective argues that many proposed models are
underspecified. In this line, Bowers and Davis (2012) argues that usually,
the parameters of either the Likelihood or the prior are chosen a posteriori
to fit the data. Therefore, those models are hardly falsifiable. Nevertheless,
recent works aimed at constraining better the Bayesian model to address
this problem (Wei & Stocker, 2015, 2017).

1.3 A complex but predictable visual world

Framing Perception as a Bayesian inferential process is helpful because
our world is governed by a series of regularities that we can extract from
interacting with our environment. Throughout our lives, we encounter
certain regularities as individuals or as species, such as the light coming
from above (Adams et al., 2004), bigger objects being heavier (Peters et al.,
2018) or objects of constant size (Ittelson, 1951; Lépez-Moliner & Keil,
2012) that provide the grounds to solve the inverse problem on a day-to-
day basis. However, in some cases, using those constraints would lead
to perceptual errors or illusory percepts (Brunswik, 1956; Kording et al.,
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2007; Samad et al., 2015). In the following sections, we will discuss how
prior knowledge may assist in estimating motion and temporal predictions,
highlighting how their use sometimes leads to perceptual errors.

1.3.1 Motion estimation

The study of local motion estimation has shown that perceived motion
depends on factors such as motion direction, stimulus contrast, luminance
or spatial frequency. For example, several studies have shown that motion
for low contrast stimuli is consistently underestimated when compared
with high contrast ones (Thompson, 1982; Weiss et al., 2002). A similar
underestimation has been found for motion-in-depth compared to lateral
motion (Brooks & Stone, 2006; Welchman et al., 2008). This bias may
seem shocking at first glance. However, assuming that the objects around
us generally remain still, a preference for slow motions arises as an optimal
percept. This bias has proved to have general applicability, showing that
it could even explain biases in the perceived direction of trajectories in a
collision course (Aguado & Lépez-Moliner, 2019; Welchman et al., 2008;
Welchman et al., 2004), time perception (Chen et al., 2016) and even tactile
illusions (Goldreich, 2007).

However, we generally do not estimate the speed of an object in the void.
Instead, we estimate it in natural contexts for intercept or to predict the time
it will take to reach some point. In most cases, this cannot be done directly
using only visual information. Instead, it would be necessary to translate
retinal measurements into 3D information, i.e. real-world measurements.

When we judge the velocity of two identical known balls at different
distances moving at the same speed, we tend to perceive their movement as
being equal even though the angular information is different (Distler et al.,
2000; Rock et al., 1968; Zohary & Sittig, 1993) (see Figure 1.6A). This
phenomenon is often referred to as speed constancy. Just as known object
size allows to compute the distance with an object, it might also provide
the grounds to estimate 3D motion in absolute coordinates. Indeed, speed
constancy only holds in rich environments where contextual and pictorial
cues are available. Instead, in a context with low pictorial cues such as a
clear sky, speed estimates would be biased towards angular measures (Bian
et al., 2013; McKee & Welch, 1989; Rushton & Duke, 2009).
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Figure 1.6. A) Two identical balls move at the same speed but at different distances,
projecting distinct angular displacement. B) Ball moving in depth at a constant
speed towards an observer. Motion-in-depth can be computed from retinal size
correlates. C) Ball moving in a parabolic trajectory. Since distance does not change
linearly, it can not be estimated from retinal size.

When an object moves towards the observer at a constant speed, motion
in depth can be estimated using information about how the distance of
the ball changes over time using retinal size correlates (see Figure 1.6B)
(L6pez-Moliner et al., 2007; Regan & Beverley, 1979; Rushton, 2004).
However, in parabolic trajectories, the distance with the observer does
not decline linearly. For example, in some cases, the distance to the ball
increases as it travels upwards (see Figure 1.6C). For this reason, motion
in depth cannot be retrieved through correlates of retinal size or binocular
cues. Instead, some studies argue that a combination of known gravity
and visual cues can provide estimates of motion-in-depth (Brouwer et al.,
2006; Jorges & Lopez-Moliner, 2017; Saxberg, 1987a). Nevertheless, the
literature suggests that if possible, the observers would prefer to rely on
correlates of retinal expansion and ball size to estimate motion-in-depth
(Todd, 1981).
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1.3.2 Temporal prediction

The time it takes an object to reach a predefined location is commonly
known as the time-to-contact (TTC). Daily, we face scenarios where pre-
dicting precisely the time-to-contact with a car on the highway, a flying ball,
or a cup falling off the table is vital to execute an action properly. Generally,
position and velocity estimates can be used to extrapolate the movement.
However, relying only on velocity estimates would result in significant
temporal errors inconsistent with our own experience when dealing with
accelerated motion.

One solution to intercept an object without prediction entails coupling
some visual cue between actions and the motion of the object to be inter-
cepted (Chapman, 1968; Montagne et al., 1999; Peper et al., 1994). This
way, our actions would be self-corrected based on concurrent sensory infor-
mation. However, relying on concurrent information may be problematic.
Sensory feedback is usually delayed around 80-150 ms (Miall et al., 1986;
Nijhawan, 1994). Because of that, online corrections would lead to jerky
behaviour (Kistemaker et al., 2009; Tresilian, 1995) which is incoherent
with amateur performance in batting or catching (McLeod et al., 2006;
Regan, 1992).

Another solution that would avoid the need to predict could entail
establishing mappings between different sources of visual information and
temporal estimates. This strategy would allow producing timed actions
without invoking internal computations or prior knowledge. For example,
pressing a button when an object reaches a distance or an optic cue reaches
a threshold (Lépez-Moliner & Keil, 2012). This scheme would apply to
a multitude of tasks even without sensorimotor feedback (Baures et al.,
2007; Zhao & Warren, 2015). Nevertheless, it would be a strategy attached
to the conditions present when the mapping was learnt and thus, neither
generalisable to other situations nor transferable to other tasks.

Thus, the prediction seems the most reasonable solution to reach such
levels of accuracy at the time the system deals with sensorimotor delays.
For example, we have previously mentioned that a preference for slow
speeds could affect the estimation of the direction of an object in depth.
This perceptual bias may impair our performance in catching or hitting a
ball. However, continuously correcting our actions based on the perceived

27 of 194



errors as we obtain sensory feedback would explain our accuracy (Brenner
& Smeets, 2018; Regan, 2012). Furthermore, previous studies have shown
that the integration of new visual evidence may help us refine our motion
(Snowden & Braddick, 1991) and temporal estimates (de la Malla & Lépez-
Moliner, 2015) in a Bayesian fashion similar to signal processing algorithms
used in Engineering (Kalman, 1960).

However, predictions based solely on sensory information would not
suffice to explain certain events in everyday life. For example, even if
we only see the upwards part of a parabolic trajectory, we will predict
the descending part (Grealy et al., 2004; Lépez-Moliner et al., 2010).
Incorporating visual acceleration estimates into the system would explain
this phenomenon. However, our perception of acceleration is too poor to
be used reliably (Gottsdanker et al., 1961a; Werkhoven et al., 1992). Thus,
a strong prediction of the ball moving downwards can not be based on
acceleration estimates. In turn, knowledge of the gravitational constant
would be a way of incorporating acceleration into our predictions without
the need to estimate it visually (Jorges & Lépez-Moliner, 2017).

Research studying Gravity perception is challenging because visual
and vestibular information may be inconsistent. For example, in Virtual
Reality (VR), it is possible to modify the visual feedback to match arbitrary
gravitational accelerations. However, the vestibular information from the
otoliths would still be consistent with Earth’s gravitational constant. A
prominent exception is Mclntyre et al. (2001). Mclntyre et al. (2001)
carried out the first experiment with astronauts in space where visual
and vestibular information is congruent. Astronauts were able to time
their actions accurately. However, they initiated the interceptive action
consistently with an assumption of 1g. This effect persisted for the first
few days of the experiment in the space, although the errors were slowly
reduced over the days. These results show human attunement to Earth’s
gravity, which could be interpreted as a strong prior that adapts slowly to

new environments.

Further studies have shown that the internal representation of terrestrial
gravitation is consistent with tasks such as biological motion perception
(Jokisch & Troje, 2003), interception of free-fall (Lacquaniti & Maioli,
1989) and parabolic trajectories (de la Malla & Lépez-Moliner, 2015; Russo
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et al., 2017) or judging durations (Jorges et al., 2021; Jorges & Loépez-
Moliner, 2019). Estimating the time-to-contact on parabolic trajectories
would allow to anticipate the interception point or plan a displacement if
needed. In this respect, the GS model (Gémez & Lépez-Moliner, 2013) pro-
poses an algorithm to predict the remaining time-to-contact of a parabolic
trajectory with a combination of visual information and prior knowledge of
gravitation or object size. Besides the a priori variables, the formulation
of the GS model (Equation 4.3) includes monocular cues such as retinal
size (6), the elevation angle (y), that is, the angle between eyes’ and ball’s
height; and its the first derivative with time (y). In Figure 1.7, the reader
can see a representation of the above-mentioned visual cues available in a
parabolic trajectory.
size vy

2
TTC~ — . — . . __ 1.3
¢ G 0 cos(y) (13)

The observer is assumed to use known constants of gravitational ac-
celeration and object size. Therefore, this model would predict systematic
errors that would be testable. As illustrated in Figure 1.7B, the time-to-
contact is overestimated when faced with gravities greater than terrestrial.
Conversely, the time-to-contact is underestimated with a ball bigger than
the assumed size. Note that the direction of the errors with unexpected
gravitations or ball sizes arise because each term is in the denominator and
the numerator of the expression, respectively.

This model predicts the time-to-contact accurately for purely parabolic
trajectories in a collision course with the observer. Nevertheless, in real
life, parabolic trajectories are deviated by air drag or the Magnus effect
(Adair, 2002; Brancazio, 1985; Hubbard, 1995) which would undermine
the accuracy of the predictions.
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Figure 1.7. A) Representation of a parabolic trajectory under different gravitational
accelerations (see legend). The monocular cues available for the estimation of
time-to-contact are represented with shaded areas. Retinal size (6, in blue), the
elevation angle (y, in pink) and the rate of change of the elevation angle (y, in
burdeos). B) Predictions of time-to-contact for head-on approaches based on the
GS model. A discontinuous line in the background indicates perfect accuracy in the
predictions. Terrestrial gravity (G = 9.807 m/s) and Soccer ball size were assumed.
Trajectories with different ball sizes (panels) and gravitational accelerations (colour
code) were simulated.
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2 Research objectives

2.1 Aims and objectives

During the introductory chapter, we have discussed one of the fundamental
problems of Perception, the inverse problem and how the use of prior dis-
tributions can tackle this problem. Studying how information is processed
to solve the inverse problem is the foundation behind the main objective of
this thesis.

So far, extensive research has been carried out on estimating motion
or time-to-contact in relatively simple scenarios. However, most of these
studies have avoided questioning whether we can extract 3D information
from visual information when faced with tasks like catching a ball on the
fly. A Bayesian approach provides predictions based on visual informa-
tion and prior knowledge. The main objective of this thesis is to analyse
whether estimating the motion and time-to-contact of objects in complex
3D environments is compatible with a Bayesian model. In order to analyse

our main objective, we set different sub-objectives:

o Objective 1: Analyse whether direction estimation is consistent with
a Bayesian model with a preference for slow speeds and the estimates
of 3D motion following Weber’s law.

e Objective 2: Describe the available evidence on the use of priors
about object gravitational acceleration and object’s size. Simulate
and analyse the predictions of time-to-contact of a model based on
both priors (GS model) to characterise their accuracy and precision

in complex environments.

e Objective 3: Analyse whether the errors in estimating time-to-



contact for parabolic trajectories are consistent with predictions based
on the GS model.

2.2 Hypothesis

2.2.1 Motion direction estimation with motion-in-depth

As explained in the introductory chapter, the estimation of the direction of
an object in collision with the observer is commonly biased. The existing
explanation for this bias would be consistent with the combination of
visual sensory information and a prior expectation of zero motion in the
scene. Specifically, this bias would arise from the differential attraction
towards the prior for lateral and depth movement. However, to further
constrain and validate this model, it would be necessary for this perceptual
bias to occur under the same prior but with different levels of physical
and perceived speed. According to Weber’s law, trajectories with higher
velocities will experience reduced precision, which, in turn, would result in
more significant biases in the perceived direction. In Chapter 3 (Study 1),
we worked with two main hypotheses to test if the estimation of direction

is consistent with a Bayesian model on motion estimation:

¢ Hypothesis 1.1: Trajectories of larger physical and perceived speed
will lead to greater biases in perceived direction.

o Hypothesis 1.2: A slow-motion prior will explain direction estimates
will less error than a model based solely on visual information (e.g.

visual evidence).

2.2.2 Gravity and Size Priors to estimate the Time-to-
contact

To address the second objective of this thesis, in Chapter 4 (Study 2), we
review the literature supporting the use of internalised priors of size and
gravity for the estimation of time-to-contact in 3D parabolic trajectories.
We worked with the hypothesis that (Hypothesis 2.1) the predictions of
time-to-contact for parabolic trajectories based on the GS model are more
accurate and precise than the predictions based only on visual information.
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We first reviewed the optic cues readily available for an observer from a
parabolic trajectory to estimate the time-to-contact. Our literature review
suggests that all the variables included in the computations of the GS model
are encoded precisely enough to provide a reliable estimation of time-to-
contact in combination with priors of gravity and ball size. Then, we
simulated predictions based on the GS model and analysed their accuracy
and precision compared to predictions based on a combination of optic
cues. Our simulations sketch the GS model as a flexible algorithm that
provides predictions of the remaining time-to-contact even when the ball’s
course does not follow a perfect parabola or the ball is not in a collision
course with the observer.

2.2.3 Time-to-contact in 3D parabolic trajectories

In the course of Chapter 4 (Study 2), we showed that the GS model predicts
systematic errors in different situations:

e Trajectories directed to a point other than the observer’s location.

e Trajectories in which the assumed gravity or ball size do not match
the actual parameters of the task.

e Trajectories affected by complex effects such as air drag.

In Chapter 5 (Study 3), we analysed the first situation where the tra-
jectory is not in a collision course with the observer. In Chapter 4 (Study
2), we described how the predictions of the GS model would differ de-
pending on the ending point of the trajectory with respect to the observer.
Concretely, we identified that for trajectories directed to a point behind the
observer, the estimates of the time-to-contact are accurate at two different
moments during the flight. At launch and at a different time during the
flight depending on the specific geometry of the parabola. Concretely, when
the viewing angle describes a right angle between the observer, the ball and
the interception location. If an observer were to use the GS model to predict
time-to-contact but viewing time is restricted to a brief temporal window,
she would benefit from using the information within the time window when
the predictions are accurate. During any other viewing time, the predictions
of the GS model would present systematic errors. Those errors would
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allow us to compare with the errors in our participants’ estimates. Taking
into account the above, in this Chapter 5 (Study 3), we worked with two
different hypotheses:

o Hypothesis 3.1: If participants exploit the GS model, they will look
at the trajectory more often when the predictions of the GS model

are more accurate.

¢ Hypothesis 3.2: Estimates of the remaining time-to-contact will be
in the direction expected by the GS model across different trajecto-
ries.

In Chapter 6 (Study 4), we study the second situation mentioned above
in which the GS model would predict systematic temporal errors: when the
gravity and ball size do not correspond to the standard expected values. In
this study, gravitation and ball size were arbitrarily selected and thus, would
not correspond with our participants’ expectations. We designed a task in
which our participants had to move in a virtual reality setup replicating
the catch of a flying ball and predict the time-to-contact after an occlusion
at the end of the trajectory. We hypothesised that our observers would
commit systematic errors in the direction predicted by the GS model under
unexpected gravitations and ball sizes. Specifically, we hypothesise that:

e Hypothesis 4.1: Our observers would overestimate the remaining
time-to-contact if gravitation is greater than the standard on Earth
and vice-versa.

e Hypothesis 4.2: Our observers would underestimate the remaining
time-to-contact if the ball size is larger than the standard of a Soccer
ball and vice-versa.

e Hypothesis 4.3: Our observers would deviate their path travelled
towards the interception location in a direction consistent with a
misestimation of time-to-contact due to unexpected values of gravity
and ball size.



3 Study 1: Perceived speed of motion in depth
modulates misjudgements of approaching

trajectories consistently with a slow prior

Previous studies have shown that the angle of approach is consistently over-
estimated for approaching (but passing-by) objects. An explanation based on a
slow-motion prior has been proposed in the past to account for this bias. The mech-
anism relies on the (less reliable) in-depth component of the motion being more
attracted towards the slow motion prior than the (more reliable) lateral component.
This hypothesis predicts that faster speeds in depth will translate into a greater
bias if the perception of velocity in depth follows Weber’s law. Our approach is
different than the one used in previous studies where perceived speed and direction
were measured in different experiments. To test our hypothesis, we conducted
an experiment in which participants estimated approaching angles via a pointing
device, while at the same time comparing the speed of the approaching object with
a lateral velocity reference. This way, we couple perceived speed with perceived
trajectory for each approaching angle in the same trial. Our results show that the
directional bias is larger for faster objects, which is consistent with motion in depth
following Weber’s law. The differential biases can be accounted for by a Bayesian

model that includes a slow motion prior.

This study has been published as: Aguado, B., & Lépez-Moliner, J. (2019). Perceived
speed of motion in depth modulates misjudgements of approaching trajectories consistently
with a slow prior. Vision Research, 159, 1-9



3.1 Introduction

One of the main functions of the visual system is to recover the 3D structure
of the environment. This is particularly important when we need to estimate
the direction and speed of moving objects on a collision (or near-collision)
course with us.

Knowing how different cues, both monocular and binocular, contribute
to estimate direction and motion in depth (MID) has attracted interest in
the past (Beverley & Regan, 1973; Cumming & Parker, 1994), but still is
an active field of research (J. Harris et al., 2008; Rokers et al., 2018). Past
work on MID, however, has mainly focused on precision and accuracy of
motion estimates (J. Harris & Dean, 2003; Rushton & Duke, 2009).

Regarding the direction of approach, several studies have shown that
we tend to overestimate the bearing angle (from now on j3); see Figure 3.1)
of the trajectory of an approaching target (J. Harris & Drga, 2005; Lages,
2006; Poljac et al., 2006; Welchman et al., 2004). This is, we overestimate
the lateral distance by which a ball passes us. This can be counter-intuitive,
given that we are very sensitive to the motion direction of objects on a
collision course (Regan et al., 1986).

To explain this bias, Welchman et al. (2008) put forward a Bayesian
explanation that included the so-called Slow Motion Prior which is a
main component of a motion perception model by Stocker and Simoncelli
(2006). Sensory estimates (likelihood) are combined with an expectation
of nearly zero motion in the environment (prior) resulting in consistent
underestimations of speed (posterior), with the extent of underestimation
depending on the reliability of the likelihood (e.g. contrast of a grating;
Stocker and Simoncelli, 2006). Therefore, if the reliability of the signal is
low, the slow prior will be weighted more, resulting in a slower posterior
and, consequently, the speed of the stimulus will be underestimated more
strongly.

In the same study, Stocker and Simoncelli (2006) found that the width
of likelihood estimates for speed discrimination tasks increases logarith-
mically as a function of speed approximately following Weber’s law (for
targets moving faster than 1 deg/sec), as suggested by previous literature
in the field (McKee et al., 1986; Welch, 1989). Furthermore, they used
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Vy Posterior slow

Vy Likelihood slow

~ Vx Posterior fast

A V/y Likelihood fast

Prior Vx

Prior Vz

Posterior slow

Posterior fast

Vz Posterior slow

Vz Posterior fast

Likelihood slow

Likelihood fast

Vz Likelihood fast

Figure 3.1. The prior is represented by the grey radial gradient centred at V, =
V, = 0. Two different movements with the same bearing angle g are depicted in
this scene. The speed of each movement is indicated by the color of the arrow:
the slow movement is indicated in red whereas the fast movement is indicated in
blue. Assuming Weber’s law, the faster movement is noisier than the slower one,
which is denoted by the SD of the respective likelihood gaussian ones. In addition,
V, is less reliable than V, (depicted by the spread of the likelihood distributions
for each vector, represented as thick lines at the margin). The effect of the prior
(grey radial gradient, centered at V, = V, = 0) affects each speed vector differently.
This effect is represented by the shift of the posterior distribution (distributions
represented with dotted lines for each vector at the margin). Given that the prior
will affect the slow and fast movements differently, the perceived trajectory would
depend on the physical speed of the movement while keeping the physical trajectory
constant (8). The perceived trajectory is denoted by 3, for a slow movement (red)
and ﬁz for a fast movement (blue). The dashed segments connecting the centroids
of likelihood and posteriors denote the speed bias for each movement. ¢ represents
Bifeadt B4dmuth change for each eye.



a Bayesian Observer model to infer the shape (SD) of the Slow Motion
Prior, which falls from a peak at slow speeds becoming shallower for faster
ones. As a result, the prior expectation introduces increasingly biases for
the posterior as a function of the perceived speed.

Welchman et al. (2008) explained the underestimation of approaching
angles in terms of this slow prior: The estimate of the lateral component
(V,); Equation Equation 3.1) is more reliable than the estimate of the depth
component in MID (V,); Equation Equation 3.1)(see Figure 3.1).

hoi-d

y ~ 21 G.1)
i16-d
5-d?

Vv~ 2 (3.2)
i+6-d

V, estimates are based on the rate of change of the azimuth (¢); Equa-
tion Equation 3.3; Figure 3.1) and the rate of change of the disparity 6);
Equation Equation 3.4), while V,; depends solely on the rate of change of
the disparity. The variance of the azimuth signal is up to two times lower
than for disparity. As a consequence, V,, as it combines both signals, is
much more reliable than V,, which only depends on the less reliable signal,
the rate of change of the disparity (5)) (see Gaussian curves in Figure 3.1).
In Equation 3.1 and Equation 3.2: i stands for interocular distance and d

for viewing distance.

~ ¢L+¢R

. (3.3)

¢
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As Stocker and Simoncelli (2006) pointed out, the greater the reliability
of the measure, the lower the effect of the prior and vice-versa (see Fig-
ure 3.1). As a consequence, the fact that V, is much more reliable than
V. should result in a differential influence of the prior for the posterior
speed estimate. Under the assumption that Weber’s Law holds for motion
in depth, yields the prediction that faster velocities should lead to more
biased trajectories.

Specifically, our hypothesis suggests that higher speeds in depth would
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lead to a larger overestimation of the bearing angle. Since we assume that
the perception of the trajectory depends on the perceived speed (i.e. how
the depth component is affected by the slow motion prior), we can test the
hypothesis that the bias can be accounted for by how different speeds are
encoded through the mediation of a slow prior. Thus, we investigated if
different perceived speeds in depth lead to different degrees of bias on the
perceived angle. To do so, we followed a different approach than Welchman
et al. (2008). In the present study, we asked for the perceived speed in
the same trials used for adjusting the direction. In this way, we can study
if perceived speed is related to perceived direction for the same physical
trajectories. In this study, only the case in which the initial lateral position
of an object is the same as the position of the observer will be taken into
account. For a more general approach, see (Rokers et al., 2018). As a
final step, we formulated a Bayesian model to test the predictions of a slow
motion prior model.

3.2 Methods

3.2.1 Participants

Eleven observers participated in the experiment. All of them had normal
or corrected-to-normal vision and were naive with respect to the purpose
of the experiment. One subject was stereo-blind as tested with StereoFly
test (Stereo Optical Co.) and had to be excluded from further analysis. The
final sample consisted thus of ten participants (n=10).

The research in this study is part of an ongoing research program
that has been approved by the local ethics committee of the University
of Barcelona. This study is in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Before taking part in

the experiment, every subject signed an informed consent form.
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3.2.2 Material

Apparatus

Two Sony laser projectors (VPL-FHZ57) were used to provide overlaid
images on a back-projection screen (244 cm height and 184 cm width) with
a resolution of 1920x1080 pixels. The refresh rate of the image was 85 Hz
for each eye. Circular polarizing filters were used to provide stereoscopic
images. A pointing device (see Procedure; Figure 3.2) was used to record
the perceived direction with the position data being acquired by an Arduino
board. The device was calibrated to provide linear measures of azimuth
within a 180 degrees space. It was calibrated only once to make sure that
the measurements were consistent across the participants. A custom input
device with 2 buttons was used for the participants to indicate whether the
first or second ball moved faster within each trial.

A Top View: B Lateral View:

X (lateral) Test (x-z component)

B: £[2,4,8,16,32, ] Reference (x component)

2 (depth)

7

Trajectory estimation device ———

Screen Screen

Speed estimation device

Figure 3.2. The figure represents a top (A) and lateral (B) view of the setup. (A)
The colour of each trajectory indicates the bearing angle. In order to produce an
estimate of the bearing angle, the participants aligned the pointer with the perceived
direction of movement. To estimate the speed of the target moving in depth the
participants were instructed to press a button indicating which ball had moved faster
(blue for first/reference or red for second/test). As illustrated in the top view, the
reference target only included a lateral component of movement (grey dashed line).
However, test target included depth and lateral speed components (no vertical speed
component was involved)
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Stimulus

The stimulus consisted of two spheres with a checked texture presented
consecutively. The first ball (reference target) moved along the x axis
without any depth or vertical component. The second ball (test target)
included a z (depth component) approaching to the observer at different
bearing angles (8 = 2, 4, 8, 16, 32, 64 degrees) which would pass the
observer either to their left (negative ) or right (positive 3) (see colour
code for each S in Figure 3.2). The simulated vertical position of the target
was 1.48 meters above the ground. The vertical speed component was
0, that is, there was no change in vertical position. The initial distances
from the observer were 4 and 5 meters for the reference and test target
respectively. We chose these values to match the average visual angle for
both targets. The physical radius of the target was 3.3 cm (the size of a
standard tennis ball). The presentation time was fixed to 1 s. The reference
speed and 8 were pseudo-randomized within participants and angles taking
the values 2, 2.5 or 3 m/s (26.5, 32 and 37.5 deg/s). Once determined,
the reference target was the same for a given angle and participant, while
the speed of the test target (with depth component) varied according to a
Bayesian staircase (see Procedure). Since the estimated duration of the
experiment using all possible combinations of direction and velocity (3
speeds and 12 directions) was too high, each participant observed only 12
different pseudo-randomized conditions.

3.2.3 Procedure

The experiment was performed in a dim room. Participants stood centrally
at 2 m distance from the screen. The projected disparity was adapted to
each participant’s inter-ocular distance.

One session consisted of 360 trials (30 trials per approaching angle).
Each trial consisted of two trajectories. We first showed the reference target
that moved laterally (V, component only: reference speed), followed by the
test target (test speed: motion in depth with both V, and V, components).
The speed of the test target varied according to a QUEST procedure (A. B.
Watson & Pelli, 1983). We ran a total of twelve interleaved QUEST stair-
cases (30 trials each), one for each combination of speed and approaching
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angle to compute the point of subjective equality (PSE) of speed between
the test and reference target, that is, the speed of the motion in depth that is
perceived as fast as the reference movement.

The participants completed 10-15 training trials previous to the main
experimental procedure in order to familiarize themselves with the task.
No feedback about response performance was provided during any part of
the experiment.

After the two stimuli disappeared, an auditory signal prompted the

participants to perform 2 different tasks in each trial:

1. Trajectory estimation: The observers were required to estimate the
trajectory of the test target with the pointing device. To this end, the
participants aligned the pointer with the perceived direction of the

movement.

2. Speed estimation: In a two alternative forced choice (2AFC) task,
the participants were instructed to press a button indicating which
ball had moved faster (left for first/reference or right for second/test).

The participants gave their response for the speed estimation task while
keeping the pointing device aligned with the estimated trajectory (from
now on J3), such that both responses were registered simultaneously.

3.3 Model Specification

We developed a Bayesian model to estimate the variability of a prior in the
x — z plane that can describe the perceived trajectories in our experimental
results. To define this model we assumed that motion and direction were
estimated consistently with one another. For the sake of simplicity we
introduced the model assuming that 8 > 0, but the same would apply for 8
< 0. Stocker and Simoncelli (2005) found that motion estimates deviated
from the Weber’s law for low angular speeds (< 1 deg/s). In order to
account for this deviation, they decided to introduce a correction for speed
estimates in their model. Even though Welchman et al. (2008) introduced
this adjustment, since the angular velocities of our experiment are much

greater, we have not corrected for this deviation.
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We defined the likelihood distribution of our test stimulus as a 2D
Gaussian () for each S, that is, a join of two 1D distributions, one for each
axis or component (i.e. V, and V, as viewed by an observer).

PV Vo) = Ny o2y (3.5)
p(‘.ﬁ‘vx) = Ni,o) (3.6)
P(@IV.) = Ny o2y (3.7)

Means for V, and V, were defined from the estimated PSE for each
reference speed and §:

PSE, = PSE - sin(B) (3.8)

PSE. = PSE - cos(B) (3.9)

Standard deviations for V, and V, were defined as the discrimination
thresholds for each component. Assuming that Weber’s law holds for the
range of speeds shown in this experiment, we calculated the discrimination
thresholds for each component. Lateral discrimination thresholds were
calculated assuming a Weber fraction of 10% as previously found in the
literature (Portfors-Yeomans & Regan, 1996; Welchman et al., 2008).
Depth discrimination thresholds, similarly, were obtained assuming that
the Weber fraction at 8 = 2 is approximately equivalent to that of a stimulus
in a collision course with the observer (8 = 0). Therefore, we obtained the
standard deviations from the respective Weber fractions (from now on WF
for x and z axis by § and participant (see inset at Figure 3.2B):

0y = WFy - Vgey - sin(B) = 0, ~0.1-Vgy-sin(B) (3.10)

0, = "VFZ . VRef . COS(ﬂ) = o, X WF[;J_rz . VRef . szn(ﬁ) (311)
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Therefore, V, and V, follow a 2D Gaussian distribution with compo-

nents:

P(@IVy) = Nipsi, o) (3.12)

P(¢‘Vz) = N(pse.0?) (3.13)

The distribution of the prior was defined as an isotropic 2D Gaus-
sian in real world speed with mean O and a free parameter (variance).
We chose a Gaussian with mean O since, in practical terms, a Gaussian
approximates very well to a prior distribution following a power law
as used by Stocker and Simoncelli (2006) and Welchman et al. (2008)
(p(|v]) = exp 04+ =849y Additionally, this is also motivated by the
assumption that speeds > 1 (deg/s) follow Weber’s law.

Dv, = N(O’O.Z) (314)

v

Pv. = N(O,(rﬁ) (315)

The variance of the prior (v2) is the only free parameter in this model.
To estimate it, we obtained the posterior of each component V, and V, by
means of a MLE procedure (Ernst & Banks, 2002). This procedure com-
bines different sources of information (prior and likelihood) in a weighted
fashion to obtain an optimal posterior estimate (see Figure 3.1):

N PSE,

VxPred = 2 (3'16)
(%)

. PSE,

= —1 . (;)2 (3.17)

By simple trigonometry, the trajectories were calculated as a function

ZPred

of the predicted components of speed.

>

>

Bprea = arctan <ﬂ) (3.18)

ZPred
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As aresult:

Biaspeq = ﬁPred —-B (3.19)

We estimated the free parameter (prior variance) in a optimization
routine using the optim function included in R (R Core Team, 2020). The
objective function was formulated as a minimization of the sum of squared
differences between the predicted (Bpreq) and the measured trajectories (3)

for each trial.

Min : > (Bprea — B)? (3.20)

Substituting in Eq. Equation 3.18 with Equation 3.16 and Equa-
tion 3.17:

PSE - sin(B) / (1 + (WFy - Viey - sin(B)/or,)?) )
PSE -cos(B) / (1 + (WF, - Vgey - cos(ﬂ)/m)z)(3 o

In Figure 3.5B we use Equation 3.21 to show the predicted perceived

ﬁpred = arctan (

trajectories for each reference speed using parameters WF, = 0.1; WF, =
0.28; and the prior standard deviation obtained by the optimization routine
o, = 0.33.

3.4 Data analysis

3.4.1 Speed estimation

We fit a cumulative Gaussian curve (mean and SD) to the proportion of
faster than standard responses for each 8 and participant using the R (R
Core Team, 2020) package quickpsy (Linares & Lépez-Moliner, 2016)
in order to obtain the PSE (i.e speed in the cumulative Gaussian curve
that elicited 50% faster from the standard). We defined the discrimination
thresholds as the half difference between 16% and 84% faster from the
standard response probabilities in the psychometric function (i.e. 1 standard
deviation).

Then, we calculated the Weber fractions for each 8 and reference speed
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as the discrimination threshold divided by the speed of the reference motion.
We calculated this value for each participant and bearing angle separately.

Next, we obtained a ratio between the PSE and the reference speed.
This value represents a measure of the degree of underestimation of the
test relative to the reference speed. Ratios larger than 1 would denote an
underestimation of test speed compared to reference speed.

Then, we used the PSE as a boundary to classify each trial as perceived
as slow and fast. We made sure that the mean speed difference between
both categories (i.e. slow and fast) was above discrimination threshold for
speed by comparing the discrimination threshold with the speed difference
between slow and fast groups across S in a two-way ANOVA.

3.4.2 Trajectory estimation

First, we filtered out those trials in which participants misjudged the ab-
solute direction of the test movement (either left or right; less than 1%).
Then we fitted a Linear Mixed Model to disentangle the effect of the speed
group and 8 over 3 with the R-package Ime4 (Bates et al., 2015). We
transformed the dependent variable 3 into its absolute value and 4 into the
logarithm of its absolute variable to linearize the data. Speed group, 8 and
their interaction were introduced as fixed effects. Slopes of 8 by participant
and trial were introduced as random effects.

3.5 Results

3.5.1 Speed estimation

Figure 3.3A shows the psychometric fit for the speed judgement of a
representative participant. In this example, both psychometric fits were
carried out for the same reference speed (2 m/s), but for two different
bearing angles (8). Figure 3.3B illustrates to what extent speed in depth
was underestimated relative to lateral speed (ratios larger than one denote
underestimation of the test target speed). Speed in depth was strongly
underestimated for trajectories closer to the observer (smaller §). For these
trajectories, the velocity had to be increased by a factor of 1.5-2 in order
to be perceived as moving as fast as the reference. The underestimation

46 of 194



Table 3.1. Weber fractions for each £3.

Weber Fraction CI
-64 0.13 0.06 - 0.20
-32 0.10 0.02-0.17
-16 0.14 0.02-0.26
-8 0.20 0.11-0.29
-4 0.26 0.14-0.38
2 0.23 0.09 - 0.37
2 0.30 0.14-0.46
4 0.22 0.14 - 0.31
8 0.08 0.04-0.12
16 0.16 0.10-0.22
32 0.08 0.03-0.14
64 0.13 0.01-0.24

Table 3.2. Weber fractions for each reference

speed.
Weber Fraction CI
2.00 0.18 0.14-0.23
2.50 0.16 0.12-0.21
3.00 0.16 0.12-0.20

attenuates and disappears for trajectories approaching a lateral movement.
These results are in line with the matching speeds for lateral and depth
motion in Welchman et al. (2008).

Figure 3.3C shows Weber fractions for the estimation of speed in depth.
As expected, Weber fractions depend on the presented trajectory (F(11,
85) = 2.73, p = .005) and increased as the V, component (i.e. 3) increased.
Participants thus judged the speed of MID less accurately than for lateral
motion (see Table 3.1). Our results show a Weber fraction close to 0.25 for
depth speed estimation, which is in agreement with those values reported
by Welchman et al. (2008) and Rushton and Duke (2009). However, we
found no significative effect of the reference speed (F(1, 85) = 0.001 p
= .975, see Table 3.2) or interaction effect (F (11, 85) = 0.91, p = .538)
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Figure 3.3. A) Psychometric functions for two different bearing angles for one
participant (reference speed: 2 m/s). The y axis indicates the probability of judging
the target’s speed as faster than the reference speed. The horizontal error bar
indicates the discrimination threshold. Speed in depth is underestimated with
respect to the reference movement, as shown by the psychometric curve for S=2.
Discrimination thresholds are higher for motion in depth compared to lateral motion.
B) Average relative speed (PSE/Standard lateral). Values above the dashed line
(Ratio > 1) denote underestimation of depth vs lateral speed. C) Weber Fraction
as a function of 8. Weber fractions are higher for motion in depth, indicating that
observers are less precise when judging differences for MID compared to lateral
movement. D) Representation of the differences between fast and slow trials (blue)
and differential threshold (red) across . Error bars indicate the 95% confidence
interval. Mean differences for slow-fast trials are consistently higher than the
discrimination threshold, therefore we assume speed was perceived as different.
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suggesting that MID estimates follow Weber’s law.

Finally, Figure 3.3D illustrates, for the sake of comparison, the speed
differences between slow and fast trials and the measured differential thresh-
olds. The speed difference (fast-slow) was significantly larger than the
differential threshold F(1, 198) = 24.63, p < .001) and did not change sig-
nificantly with £ (i.e. interaction with 3 failed to reach significance, F(11,
198) = 0.82, p = .620). This provides sufficient grounds to assume that fast
and slow speeds were perceived differently for further trajectory analysis.

3.5.2 Trajectory estimation

Figure 3.4 displays the average perceived trajectory across subjects and
B split by slow/fast trials in a polar representation. Figure 3.5A shows
the adjusted trajectory () as a function of the physical trajectory of the
stimulus (3).

Figure 3.4. Polar representation of the average perceived trajectory pooled across
subjects for each 8 and slow/fast perceived speed (upwards/downwards triangles in-
dicate fast or slow group of trials respectively). Smaller triangles indicate observer’s
mean perceived trajectory split by 3, perceived speed and participant. Jittering was
added to the smaller triangles in order to ease interpretation.

An ANOVA on j3 yielded a significant (trivial though) effect of 8 (F(1,
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3560) = 7495.39, p < .001) and, more importantly, speed group (F(1, 3560)
= 100.77, p < .001) indicating that the perceived speed of the physical
movement had an effect on the perceived trajectory and thus confirming
our hypothesis showing that faster perceived speeds lead to more biased
trajectory estimates. The interaction failed to reach significance (F(1,
3560) = 2.44, p = .118), indicating that the effect of the physical speed is
independent of the presented trajectories in our study.

3.5.3 Bayesian model

As obtained by the optimization routine, the standard deviation of the
slow prior is V,, = 0.329. Figure 3.5B shows the performance of the
Bayesian model split by reference speed and mean participant reports of
the participants.

The predictions of the model strongly correlate with the reported esti-
mates 3 (r(3481) = 0.91, p < .001). To check the suitability of our model
predicting 3, we computed and compared the log likelihood of a model
with real 8 and reference speed as a dependent variables against a model
including only the predicted trajectories in the Bayesian model fpreq. The
results show that the Bayesian model has a larger likelihood (LogLik Bpred:
-15625.86) than the model based on 8 and reference speed (LogLik 5 x
Vrer: -16414.7). This shows that our model predicts better ﬁ’ than a model
relying on the physical trajectory () and reference speed.

3.5.4 Initial distance under-estimation

A Bayesian model can successfully explain several characteristics of this
bias in the perceived trajectory (i.e. superior bias close to 8 = 0), participants
variability (Welchman et al., 2008) and dependence with speed). However,
a more parsimonious explanation for these results could be a simple mis-
estimation of the initial distance on the target. Since viewing distance and
target size are important variables to extract the rate of change in depth from
the optic array, a constant underestimation of the initial distance would
result in an overestimation of the trajectory of the target. We, therefore,
checked if an underestimation of the initial distance could explain our
results.
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Figure 3.5. A) Average perceived trajectory between subjects as a function of
the physical trajectory of the stimulus (8) split by fast/slow perceived speed (up-
wards/downwards triangles indicate fast or slow group of trials respectively). Error
bar indicates the 95% confidence interval. Smaller triangles indicate observer’s
mean perceived trajectory split by 5, perceived speed and participant. B) The curves
represent the fit of the model across 3 split by reference speed. The points indicate
the individual mean reported trajectories for each participant split by reference
speed and 8 (WF, =0.1; WF, = 0.28; o, = 0.33). Horizontal jittering was added
to the individual points in both figures to ease interpretation. Inset indicates the
Weber fractions used to estimate the perceived trajectories in the model for each
participant.
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In order to do so, we specified a linear model of the perceived trajectory
(B) as a function of the initial distance (Dy), and derived the expected value
of the parameter that multiplies Dy assuming there is no underestimation.

Given the following equivalence:

m@:% (3.22)

Multiplying V, and V., by the total time of presentation #; we obtain:

Vet
tan(B) = D—OO (3.23)

Then, we can compute the value of (V, fy)) in our experiment and use
it as a constant (k) in the linear model:

_k
=D

tan(B) (3.24)

Therefore, if Dy is underestimated we expect a slope larger than 1
dependent on the term DLO since Dy is in the denominator. Based on Eq.
Equation 3.24, we applied a Linear Mixed Model to estimate this slope
and check if it is larger than 1. Slopes of the ratio (DLO) were introduced as
random effects, and the intercept was dropped since it is not present in Eq.
Equation 3.24. The results for the fixed effects showed that the slope do not
differ from 1 (Estimate = -6.479, 1(9.267) = -0.389, p = 0.706). Therefore,
we did not find enough evidence to support the hypothesis that the initial

viewing distance may have been underestimated.

3.6 Discussion

In this study we found a dependence between the speed and the perceived
direction of an object, congruent with a Bayesian model of depth perception
based on a slow prior as proposed by Welchman et al. (2008) and Stocker
and Simoncelli (2006).

Our data show that the movement in depth is strongly underestimated
with respect to lateral movement. A comparison between the Weber frac-
tions for our trajectories (Figure 3.3C) shows that reliability depends on the
z component, that, in turn, translates into the bearing angle (). Consistent
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with this, we have found that the variability in the estimation of the move-
ment in depth is approximately two times greater. This is important, since,
within a Bayesian framework depth estimates would be more affected than
lateral estimates, presumably, causing the directional bias found in this and

other studies.

In this study we were mainly interested in obtaining the PSE coupled
with the estimated trajectory rather than obtaining a precise estimate of
the discrimination threshold (AV). For this reason we chose the QUEST
method. However, as Figure 3.3A (8 = 64) shows, for a few conditions, the
amount of speeds sampled by this procedure might affect these estimates.
Because of this reason we had to formulate our Bayesian model assuming
a Weber Fraction based on previous literature for the lateral movement. In
addition, our results show that the PSE for 8 = + 64 is significantly lower
than the reference speed (#(18.0) = -5.16, p < .001). This is against our first
hypothesis, given that the rest of the angles show an underestimation of
speed with respect to the reference. We hypothesized that, in this condition,
for high speeds the target would have to move out of the projection frustrum
before 1 s. (presentation time) possibly causing an effect on the perceived
speed (Anstis & Kim, 2018). Consequently, the participants could have
judged the test target as faster than the reference.

Our results are in line with previous literature in which the speed
in depth was strongly underestimated with respect to lateral movements
(Brenner et al., 1996; Brooks & Stone, 2006; Rushton & Duke, 2009;
Welchman et al., 2008). For example, in Lages (2006), the participants
were prompted to indicate both, the perceived trajectory angle and radial
distance for stimuli moving in the x — z space. Their results show a visual
space describing an ellipsoidal shape as a result of V, being underestimated
with respect to V, for the same physical speeds. Rokers et al. (2018)
showed that a Bayesian model based on the slow motion prior can account
for errors when judging the direction of an object. Their model is capable of
predicting perceptual errors under different levels of contrast, eccentricity
and distance to the stimulus. According to their results, the greater the
distance to the stimulus, the greater the perceived lateral bias. The extent of
trajectory bias in our study is higher than shown in the previous literature
(J. Harris & Dean, 2003; Welchman et al., 2008). However, just as the
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Rokers et al. (2018) model would predict, given that our initial distance is
the highest (5, 1, and 0.5 m. respectively), the trajectory bias we would
found would be the strongest.

Recently, Wei and Stocker (2017) have proposed a simple mathematical
relationship that could be applied to this study. They hypothesize that
perceptual bias is proportional to the rate of change of the discrimination
threshold along the stimulus space, a notion that is supported by our results.
At high angular speeds, lateral motion perception seems to follow Weber’s
law (Stocker & Simoncelli, 2006). Also, as we found in this study, Weber’s
law seems to apply to motion in depth. Therefore, the attraction towards
the slow prior would be stronger for higher angular speeds (see Figure 3.1).
This would account for an increased directional bias for higher speeds as
shown by our results.

Even though our results seem clear, simulations of 3D movement in
stereoscopic setups are known to introduce problems such as the conflict
between vergence and accommodation. Conflict between these two cues
could be responsible for consistent depth underestimation shifting perceived
position closer to the screen due to accommodation for simulated depth
movements (Regan et al., 1986), that is, increasing the bias in the perceived
bearing angle. However, this conflict has been studied with contradictory
outcomes for perceived distance, which according to our results would
be a by-product of speed estimation: Watt et al. (2005) found that when
accommodation was changed by manipulating the distance between display
and observer, disparity scaling was corrected. Willemsen et al. (2008),
however, found that vergence-accommodation conflict does not affect the

perceived distance.

Future studies may explore the effect of a target moving with a non-null
vertical component in order to constrain a full 3D motion model. It is
known that sensitivities for stimulus oriented vertically or horizontally are
nearly equal (Manning et al., 2018a; Portfors-Yeomans & Regan, 1996)
and reports in the x — y plane show little directional bias (Welchman et al.,
2008). We thus expect our results to generalize to the y — z plane. On
the other hand, Poljac, Neggers, and Van Den Berg (2006) found that bias
in the plane y — z is lower than x — z, suggesting that vertical estimation
may be less reliable than lateral estimation. Interestingly, Poljac et al.
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(2006) found that direction was estimated more precisely when the target
crossed the eye height. This suggests that additional visual cues may be
used to estimate the direction of moving targets in this case. Furthermore,
the participants performed the experiment in a free gaze situation. Since
pursuit is known to influence the accuracy of speed estimates (Schiitz et al.,
2008), an interesting future direction would be to investigate the effect of
smooth pursuit or fixation on the speed precision estimation for motion in
depth and the resulting lateral bias.

Given that we have found a dependence between the estimation of speed
and direction, there might be some common neural processes integrating
both features. Lages and Heron (2010) previously proposed a parallel
processing of 2D velocity estimates and disparity to extract estimates of 3D
motion. 2D motion information would be encoded in V1 under a preference
for slow speeds and selective directions (Perrone, 2006; Series et al., 2002).
This could be interpreted as a prior for slow speeds (Vintch & Gardner,
2014). Then, this information is further processed by MT (Braddick et al.,
2001; Burge & Geisler, 2015; Sanada & DeAngelis, 2014). Concerning
disparity, an early computation of this signal is carried out by V1 (Nienborg
et al., 2005). Further indirect projections to MT relay on V2 and V3 (Ponce
et al., 2008) as an intermediate processing of disparity (Thomas et al.,
2002). As a result, speed, direction and disparity processing are performed
by MT. Therefore, it is the most probable candidate for the integration
of these signals in order to obtain the structure of 3D motion perception
(Rokers et al., 2009).

3.7 Conclusions

We show that the direction of an object on a near-collision course with the
observer is overestimated as a function of the perceived speed. Objects
are consistently judged as passing the observer further away than they
actually do. Our methodology allowed us to couple the perceived speed
for different bearing angles (8) with directional biases in depth perception.
Our results indicate that a Bayesian model of speed discrimination in depth
following Weber’s law can successfully simulate both types of perceptual
biases denoting a coherence between speed and direction estimation. Thus,
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future research could manipulate the reliability of motion signals to further
investigate the relation between motion and direction estimates.
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4 Study 2: Gravity and known size calibrate
visual information to time parabolic

trajectories

Catching a ball in a parabolic flight is a complex task in which the time and area of
interception are strongly coupled, making interception possible for a short period.
Although this makes the estimation of time-to-contact (TTC) from visual informa-
tion in parabolic trajectories very useful, previous attempts to explain our precision
in interceptive tasks circumvent the need to estimate TTC to guide our action. Ob-
taining TTC from optical variables alone in parabolic trajectories would imply very
complex transformations from 2D retinal images to a 3D layout. We propose based
on previous work and show by using simulations that exploiting prior distributions
of gravity and known physical size makes these transformations much simpler,
enabling predictive capacities from minimal early visual information. Optical infor-
mation is inherently ambiguous, and therefore, it is necessary to explain how these
prior distributions generate predictions. Here is where the role of prior information
comes into play: it could help to interpret and calibrate visual information to yield
meaningful predictions of the remaining TTC. The objective of this work is: (1) to
describe the primary sources of information available to the observer in parabolic
trajectories; (2) unveil how prior information can be used to disambiguate the
sources of visual information within a Bayesian encoding-decoding framework; (3)
show that such predictions might be robust against complex dynamic environments
and (4) indicate future lines of research to scrutinize the role of prior knowledge

calibrating visual information and prediction for action control.

This study has been published as: Aguado, B., & Lépez-Moliner, J. (2021a). Gravity and
known size calibrate visual information to time parabolic tr