
Automatic Characterization and Generation
of Music Loops and Instrument Samples for

Electronic Music Production

António Ramires

TESI DOCTORAL UPF / 2022

Thesis Directors:

Dr. Xavier Serra i Casals
Music Technology Group
Dept. of Information and Communication Technologies
Universitat Pompeu Fabra, Barcelona, Spain

Dr. Frederic Font Corbera
Music Technology Group
Dept. of Information and Communication Technologies
Universitat Pompeu Fabra, Barcelona, Spain

Dissertation submitted to the Department of Information and Communication
Technologies of Universitat Pompeu Fabra in partial fulfillment of the require-
ments for the degree of

DOCTOR PER LA UNIVERSITAT POMPEU FABRA

Copyright © 2022 by António Ramires
Licensed under Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0

Music Technology Group (http://mtg.upf.edu), Department of Information and Communic-
ation Technologies (http://upf.edu/dtic), Universitat Pompeu Fabra (http://upf.edu), Bar-
celona, Spain.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://mtg.upf.edu
http://upf.edu/dtic
http://upf.edu

iii

This thesis has been carried out at the Music Technology Group (MTG) of
Universitat Pompeu Fabra in Barcelona, Spain, from September. 2018 to Oc-
tober. 2022. It is supervised by Dr. Xavier Serra i Casals and Dr. Frederic Font
Corbera. This research has been supported by the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No. 765068.

Acknowledgments

I would like to start by expressing my most immense gratitude to Frederic Font
and Xavier Serra for the guidance and supervision they provided me through
these years. To Frederic for all the music and music technology discussions,
for teaching me how to code properly, for showing me how beautiful Freesound
is, for all the work reviewing and guidance. To Xavier for teaching me how
to think strategically, for all the knowledge that only someone who knows this
field so well can transmit and, above all, for giving me this opportunity to
work in the MTG and MIP-Frontiers. I still remember what I thought would
be just one more interview in the selection process, but it was a Skype meeting
to let me know I would be able to pursue a dream PhD in helping electronic
musicians through technology.
A very special thanks to my first mentor and forever friend, Matthew Davies.
He is one of the kindest and most dedicated persons I have ever met and the
person responsible for showing me MIR, making me fall in love with it and
providing me with all the tools and knowledge to be able to start this PhD
journey.
My deepest love and thankfulness to Catarina, for making the move to Bar-
celona a smooth ride, for all the plane travels at inappropriate times she took
to make Barcelona feel like my home, and for all the support and motivation
she gave me to take one of the biggest steps of my life. For all the love, kind-
ness, patience and emotional support she provided me with all these years,
which were essential to this PhD.
To my whole family, but especially to my parents Ana Paula and António,
my tia Helena, Mimi and Zizi, who have provided me with their own guidance
and pressure to wrap up this thesis, but most of all for the love, support and
comfort. To my grandparents and to tia Lulu, my aunts, uncles and cousins,
who gave me renewed energy through relaxing times and funny conversations.
To all the people I have met during these years in Barcelona. To all my MTG
friends for all the feedback, great discussions and, above all, great times and
fun breaks: Alastair, Albin, Alia, Andres, Angel, Behzad, Benno, Dmitry,
Eduardo, Enric, Furkan, Guillem, Helena, Jordi, Jorge, Juan, Jyoti, Lorenzo,
Luis, Marius, Miguel, Minz, Olga, both Pablos, Perfe, Philip, Pritish, Sergi,
Sergio, Thomas, Vsevold, Rafa and both Xaviers. To Cristina, Sonia and Lydia
for all the administrative help and patience towards such an unorganized person
as myself. To all the MIP-Frontiers gang. To all the researchers I have met
along the way, especially the ones I worked with: Jake, Patricio, Gilberto,

v

vi

Gerard, Jason, Jordan, Julian, Yi-Hsuan and Joann. To the Jokkoo family for
all the musical inspiration, fun times and crazy nights in Barcelona: Maguette,
Baba, Mookie, B4mba, Opoku, Mans O, Ikram, Silva, Mickel and Debruit. To
the crew at Beatoven.ai for believing in my work and providing me with time
and understanding to finish this thesis, it’s a pleasure working with you all.
Last but certainly not least, to all my Coimbra friends whose friendship and
support have been there for so many years and which keeps growing each day,
with a special thanks to Bicá, Brás, Cabrita, Chico, Craveiro, Diogo, Fábio,
Filipe, Gonçalo, Inês, João André, Mariana, Sandro and Silveira.

Abstract

Repurposing audio material to create new music - also known as sampling -
was a foundation of electronic music and is a fundamental component of this
practice. Loops are audio excerpts, usually of short duration, that can be
played repeatedly in a seamless manner. These loops can serve as the basis
for songs that music makers can combine, cut and rearrange and have been
extensively used in Electronic Dance Music (EDM) tracks. Similarly, the so-
called “one-shot sounds” are smaller musical constructs that are not meant
to be looped but are also typically used in EDM production. These might
be sound effects, drum sounds or even melodic phrases. Both loops and one-
shot sounds have been available for amateur and professional music makers
since the early ages of electronic music. Currently, large-scale databases of
audio offer huge collections of audio material for users to work with. The
navigation on these databases is, however, still heavily focused on hierarchical
tree directories. Consequently, sound retrieval is tiresome and often identified
as an undesired interruption in the creative process.
In our work, we address two fundamental methods for navigating sounds: char-
acterization and generation. Characterizing loops and one-shots in terms of
their instruments or instrumentation (e.g. drums, harmony, melody) allows
for organizing unstructured collections and a faster retrieval for music-making.
Generation of loops and one-shot sounds enables the creation of new sounds
not present in an audio collection through interpolation or modification of the
existing material. To achieve this, we employ deep-learning-based data-driven
methodologies for classification and generation.
We start by applying convolutional neural networks to the task of instrument
classification with a large-scale dataset of synthesized sounds augmented with
audio effects, achieving high accuracy. Then, we present a large annotated
collection of musical loops from Freesound, along with several applications
and use cases, which enable further research in loop characterization. Using
this dataset, we present an algorithm for classifying the instrumentation role
a loop can take in a music composition and show that it can be applied to
finding musical structure.
The first contribution to generation is a neural synthesizer of percussive sounds
based on high-level semantic concepts, along with a dataset of percussive one-
shots from Freesound. We then extend this architecture to generate drum loops
and evaluate several loss functions in terms of audio quality. Finally, we em-
ploy generative adversarial networks to create drum sounds with significantly

vii

viii Abstract

higher audio quality and present the results of a user study to understand the
preference for synthesis controls.
Developments in music technology have revolutionized music creation and have
enabled a vast amount of new music genres. Tools like the ones we propose
have the potential capacity to change the way music is made, perhaps in a
similar way to how sampling revolutionized music in the past.

Resum

La reutilització del material d’àudio per crear música nova -també coneguda
com a mostreig- va ser una base de la música electrònica i és un component
fonamental d’aquesta pràctica. Els “loops” són fragments d’àudio, generalment
de curta durada, que es poden reproduir repetidament. Aquests “loops” poden
servir com a base per a cançons que els creadors de música poden combinar,
retallar i reordenar i s’han utilitzat àmpliament a les pistes de Electronic Dance
Music (EDM). De la mateixa manera, els anomenats “one-shot sounds” són
construccions musicals més petites que no estan destinades a ser reproduïdes
en bucle, però que també s’utilitzen en la producció d’EDM. Aquests poden
ser efectes de so, sons de bateria o fins i tot frases melòdiques. Tant els “loops”
com els “one-shot sounds” han estat disponibles per als creadors de música
aficionats i professionals des del principi de la música electrònica. Actualment,
les bases de dades d’àudio a gran escala ofereixen col·leccions enormes de
material d’àudio perquè els usuaris puguin treballar. La navegació per aquestes
bases de dades, però, encara està molt centrada en directoris d’arbre jeràrquic.
Cosa que fa que la recuperació del so sigui tediosa i sovint s’identifica com una
interrupció no desitjada en el procés creatiu.
Al llarg d’aquesta tesi, tractem dos mètodes fonamentals per navegar els sons:
la caracterització i la generació. Caracteritzar “loops” i “one-shot sounds” pel
que fa als seus instruments o instrumentació (per exemple, bateria, harmonia,
melodia) permet organitzar col·leccions no estructurades d’audio i la cerca
més ràpida d’àudio per a la creació musical. La generació “loops” i “one-shot
sounds” permet la creació de nous sons no presents en una col·lecció d’àudio
mitjançant la interpolació o modificació del material existent. Per aconseguir-
ho, utilitzem metodologies basades en xarxes neuronals per a la classificació i
la generació.
Comencem aplicant xarxes neuronals convolucionals a la tasca de classificació
d’instruments amb un conjunt gran de dades amb sons augmentats utilitzant
efectes d’àudio, aconseguint una gran precisió. A continuació, presentem una
gran col·lecció anotada de “loops” musicals de Freesound, juntament amb
diverses aplicacions i casos d’ús, que permeten més recerca en la caracterització
de bucles. Utilitzant aquest conjunt de dades, presentem un algorisme per
classificar el paper instrumental que pot tenir en un “loop” en una composició
musical i mostrem que es pot utilitzar per a descriure l’estructura musical de
la peça.
La primera contribució respecte a la generació de sons és un sintetitzador neu-

ix

x Resum

ronal de sons percussius basat en conceptes semàntics d’alt nivell, juntament
amb un conjunt de dades de “one-shot sounds” percussius de Freesound. A
continuació, extenem aquesta arquitectura per generar “loops” de bateria i
evaluem diverses funcions de cost en termes de qualitat d’àudio. Finalment,
utilitzem xarxes adversàries generatives per crear sons de bateria amb una qua-
litat d’àudio significativament més alta i presentem els resultats d’un estudi
perceptual per entendre les preferències dels usuaris respecte els controls de
síntesi.
Els desenvolupaments de la tecnologia musical han revolucionat la creació mu-
sical i han permès una gran quantitat de nous gèneres musicals. Eines com
les que proposem tenen la capacitat potencial de canviar la manera com es fa
la música, potser d’una manera similar a com el mostreig va revolucionar la
música en el passat.

Resumen

Reutilizar material de audio para crear música nueva - también conocido como
sampling - fue un cimiento de la música electrónica y un componente funda-
mental de su práctica. Los bucles son extractos de audio, normalmente de corta
duración, que pueden ser reproducidos repetidamente y de forma ininterrum-
pida. Estos bucles pueden servir como base para canciones que los creadores de
música pueden combinar, cortar, y reorganizar, y han sido ampliamente utili-
zados en pistas de Electronic Dance Music (EDM). De la misma manera, los
llamados “sonidos one-shot” son constructos musicales más cortos cuya inten-
ción no es ser reproducidos en bucle y también son frecuentemente usados en
la producción de música EDM. Estos pueden ser efectos de sonido, sonidos de
batería, o incluso frases melódicas. Tanto los bucles como los sonidos one-shot,
han estado disponibles para creadores de música aficionados y profesionales
desde los comienzos de la música electrónica. Actualmente, las bases de datos
de audio a gran escala ofrecen grandes colecciones de material de audio para
que los usuarios utilicen. Sin embargo, la navegación por esas bases de datos
todavía se basa principalmente en jerarquías de árboles de carpetas. Conse-
cuentemente, la recuperación de sonidos es tediosa y a veces se identifica como
una interrupción no deseada del proceso creativo.
En nuestro trabajo, abordamos dos métodos fundamentales para la navega-
ción de sonidos: caracterización y generación. Caracterizar bucles y one-shots
en términos de sus instrumentos y su instrumentación (e.g. baterías, armonía,
melodía) permite organizar colecciones no estructuradas y una recuperación
más rápida para la creación de música. La generación permite la creación de
nuevos sonidos no presentes en una colección de audio a través de la interpo-
lación o modificación del material existente. Para lograr esto, empleamos me-
todologías basadas en datos y deep learning para la clasificación y generación.
Comenzamos aplicando redes neuronales convolucionales a la tarea de la clasi-
ficación de instrumentos con un dataset a gran escala de sonidos sintetizados
aumentados con efectos de audio, consiguiendo gran exactitud. Luego, presen-
tamos una gran colección anotada de bucles musicales de Freesound, junto con
múltiples aplicaciones y casos de uso, los cuales permiten más investigación
respecto a la caracterización de bucles. Usando esta colección, presentamos un
algoritmo para clasificar el rol de la instrumentación que un bucle puede tomar
en una composición musical, y mostramos que puede ser usado para encontrar
la estructura musical.
La primera contribución a la generación es un sintetizador neuronal de sonidos
percusivos basados en conceptos semánticos de alto nivel, junto con un dataset

xi

xii Resumen

de sonidos percusivos one-shot de Freesound. Después ampliamos esta arqui-
tectura para generar bucles de batería y evaluar varias funciones de pérdida
en términos de calidad de audio. Finalmente, empleamos redes generativas ad-
versarias para crear sonidos de batería con significativamente más calidad de
audio y presentamos los resultados de un estudio con usuarios para entender
las preferencias para los controles de la síntesis.
Los desarrollos en la tecnología musical han revolucionado la creación musical y
han permitido la aparición de una gran cantidad de nuevos géneros musicales.
Herramientas como las que proponemos tienen la capacidad de cambiar la
forma en la que se hace música, quizás de un modo similar a como el sampleo
revolucionó la música en el pasado.

Contents

Abstract VII

Resum IX

Resumen XI

Contents XIII

List of Figures XVII

List of Tables XIX

1 Introduction 1
1.1 Context . 2

1.1.1 The Use of Recorded Audio for Composition in Elec-
tronic Music . 2

1.1.2 Tape Music . 4
1.1.3 Digital Music Production 4
1.1.4 Large-Scale Sound Databases 5

1.2 Motivation . 6
1.3 Scope and Objectives . 11
1.4 Dissertation Outline . 12

I Automatic Characterization of Music Loops and Instru-
ment Samples for Electronic Music Production 17

2 Introduction and Overview of Characterisation 19
2.1 Automatic Audio Classification 19
2.2 Characterisation of Material for Music Production 20
2.3 Automatic Instrument Classification 23

3 Literature Review on Instrument Classification 25
3.1 Machine Learning and Automatic Classification 25
3.2 Deep Learning Architectures for Classification 28
3.3 Instrument Classification . 33

4 Classification of One-Shot Sounds 35

xiii

xiv Contents

4.1 Introduction . 35
4.2 Methodology . 37

4.2.1 Data Augmentation and Pre-Processing 37
4.2.2 Convolutional Neural Network 40

4.3 Evaluation . 41
4.4 Results . 42
4.5 Conclusions . 43

5 Freesound Loop Dataset and Annotation Tool 45
5.1 Introduction . 45
5.2 Dataset Creation . 48

5.2.1 Loop Selection . 48
5.2.2 Loop Annotation . 48
5.2.3 Dataset Availability . 52

5.3 Dataset Analysis . 52
5.3.1 Annotation Distribution 52
5.3.2 Inter-annotator Agreement 52

5.4 Benchmarking MIR Tasks . 55
5.5 Music Generation and Decomposition 57
5.6 Conclusion . 58

6 Automatic Instrumentation Role Classification 59
6.1 Introduction . 59
6.2 Methodology . 61

6.2.1 Implementation . 62
6.2.2 Network Training . 64
6.2.3 Loop Activation Transcription 65

6.3 Evaluation . 65
6.3.1 Automatic Instrumentation Role Classification 65
6.3.2 Loop Activation Transcription 67

6.4 Results & Discussion . 69
6.4.1 Automatic Instrumentation Role Classification 69
6.4.2 Loop Activation Transcription 70

6.5 Conclusions . 73

II Automatic Generation of Music Loops and Instrument
Samples for Electronic Music Production 75

7 Introduction and Overview of Creating Percussive Sounds 77
7.1 Percussion and Cultural Context 77
7.2 Creating Percussive Sounds . 78
7.3 Music Creation Using Deep Learning 79

Contents xv

8 Literature Review on Sound Generation 83
8.1 Deep Generative Models . 83

8.1.1 Autoregressive Models 84
8.1.2 Autoencoders . 86
8.1.3 Generative Adversarial Networks 87

8.2 Controlling Generative Models 89
8.3 Generative Models for Assisting Music Creation 90

9 Generation of One-shot Drum Sounds 95
9.1 Introduction . 95
9.2 Timbral features . 97
9.3 Dataset Curation . 97
9.4 Methodology . 98
9.5 Evaluation . 100

9.5.1 Data Pre-processing . 100
9.5.2 Network Training . 100
9.5.3 Evaluation . 101

9.6 Conclusions and Future Work 103

10 Generation of Drum Loops 105
10.1 Introduction . 105
10.2 Dataset Curation and Analysis 107
10.3 Methodology . 107

10.3.1 Time-varying Conditioning Features 108
10.3.2 Global Conditioning Features 108
10.3.3 Architecture . 109
10.3.4 Loss Functions . 109

10.4 Experiments . 111
10.4.1 Models . 111
10.4.2 Parameters . 111
10.4.3 Evaluation . 111

10.5 Results and Discussion . 112
10.5.1 Audio Quality Assessment 112
10.5.2 Timbral Feature Coherence 113

10.6 Conclusion . 113

11 Comparing Representations for Drum Synthesis 115
11.1 Introduction . 115
11.2 StyleGAN2 . 117
11.3 Controlling the Generation . 119
11.4 Methodology . 120

11.4.1 Dataset . 120
11.4.2 Data Pre-processing . 121

xvi Contents

11.4.3 Model and Training . 121
11.4.4 User Interface . 122
11.4.5 Evaluation . 124

11.5 Results and Discussion . 125
11.6 Conclusions . 127

12 Summary and Future Perspectives 129
12.1 Summary . 129
12.2 Summary of Contributions . 131
12.3 Limitations and Future Work 132

12.3.1 Classification of One-Shot Sounds 133
12.3.2 Freesound Loop Dataset and Annotation Tool 133
12.3.3 Automatic Instrumentation Role Classification 134
12.3.4 Generation of Percussion Sounds 134

A Glossary 137
A.1 Acronyms . 137

B Publications, Open Research and Reproducibility 139
B.1 Publications by the Author . 139

B.1.1 Articles in Peer-Reviewed Conferences 139
B.1.2 Extended Abstracts . 140
B.1.3 Perfomances . 140
B.1.4 Supervision of Master Thesis 141

B.2 Open Source Software . 141
B.3 Datasets . 141

C TIV.lib: an open-source library for the tonal description of
musical audio 143
C.1 Introduction . 143
C.2 Related work . 145

C.2.1 Tonal pitch spaces . 145
C.2.2 From the DFT of symbolic pitch distributions to the

Tonal Interval Vector space 145
C.3 TIV.lib: Implementation . 146
C.4 TIV.lib: Algorithms . 147
C.5 Applications and Perspectives 151
C.6 Conclusions . 153

D Freesound API: add 400k+ sounds to your plugin! 155

Bibliography 159

List of Figures

1.1 Examples of how sample collections are presented on two DAWs:
Ableton Live (left) and Native Instruments’ Maschine (right) . . . 7

1.2 User interfaces for Splice (top) and Sounds.com (bottom) 8
1.3 User interface for Freesound . 9

3.1 Example of an artificial neuron used for creating layers in neural
networks. 29

3.2 Example of a neural network layer. 30
3.3 Convolutional neural network architecture with feed-forward out-

put layer. 32

4.1 Single-layer CNN architecture proposed in Pons et al. (2017b) . . . 41

5.1 The user interface provided to the annotators, available online45. . 49
5.2 Distribution of BPMs in FSLD. 53

6.1 A simplified EM composition structure, built with five loop layers.
Log-scaled STFT power spectrogram (top) and corresponding role
activations: Chords (C), Melody (M), Sound Fx (F), Bass (B), and
Percussion (P) at 4-bar intervals (bottom). 60

6.2 Block diagram showing the configuration of the vertical filter net-
work with auto-pooling. 62

6.3 Loop activation transcription accuracy scores. 72
6.4 Estimated loop activation structure of Joyspark (2020) by Om Unit

using our proposed model. Log-scaled STFT power spectrogram of
the EM composition (top) and estimated templates corresponding
to the loop activations showing predictions for each class: Chords
(C), Melody (M), Sound Fx (F), Bass (B), and Percussion (P) at
4-bar intervals (bottom). 72

7.1 Example of interfaces for drum synthesis software. On the left FAW
Sublab and on the right the drum synthesizer modules from Ableton
Live 11. 79

8.1 Schematic of an RNN architecture. 85
8.2 Autoencoder architecture. 86
8.3 Difference between Autoencoders and Variational Autoencoders. . 87
8.4 Generative Adversarial Network architecture. 88
8.5 User interface for pix2pix conditional image generation 91

xvii

xviii List of Figures

9.1 The proposed architecture, with K = 15 layers. 99
9.2 A sample of the input envelope and features and the output wave-

forms for the various models for the KICK dataset 100
9.3 Results of the listening test, displaying the user preference between

loss functions for each of the datasets. 102

10.1 The waveform of the audio along with the activation function ex-
tracted using the Automatic Drum Transcription algorithm and the
energy envelope. 108

10.2 The Wave-U-Net architecture used in our study, the input includes
the local conditioning with onset detection functions, the global
HPCP and timbral features which are broadcast along time. The
output is the waveform of the loop. 110

11.1 StyleGAN2 Generator (left) and Discriminator (right) architectures. 120
11.2 Graphical User Interface with SeFa directions. 123
11.3 Graphical User Interface with InterfaceGAN directions. 124

C.1 A graph of the dependencies of the feature extraction modules of
TIV.lib. The algorithms connected to TIV(2) through a dashed line
require two inputs for the feature calculation. 147

C.2 Two DFT coefficients interpreted as chromaticity and diatonicy.
Three TIV are plotted for comparison: C major chord {0,4,7} (♢),
3-note chromatic cluster {0,1,2}(+), and C major scale {0,2,4,5,7,9,11}(•)149

C.3 Pure Data patch for online computation of diatonicity, chromaticity
and whole-toneness harmonic qualities of a live input audio signal,
using the TIV.lib. 151

C.4 Chromagram of the first minute of Kraftwerk’s “Spacelab.” 152
C.5 Output of the diatonicity, chromaticity and whole-toneness har-

monic qualities the first minute of Kraftwerk’s “Spacelab”, using
the TIV.lib. 152

List of Tables

4.1 Classification accuracy on the unprocessed test set. 42
4.2 Classification accuracy on the augmented test set. 43

5.1 Instrumentation roles and the examples provided for each category. 49
5.2 Taxonomy of genres used for the annotation and examples for each

category. 51
5.3 Distribution of the instrument roles and genre in our dataset. . . . 53
5.4 Distribution of the keys in our dataset. 54
5.5 Inter-annotator agreement for the MA subset. 54
5.6 Evaluation of tempo estimation algorithms in the proposed subsets. 56
5.7 Evaluation of key estimation algorithms in the proposed subsets. . 56
5.8 Evaluation of loop source quality (SDR, SIR, SAR) and estimated

layouts (F-measure and accuracy) for each song layout. 57

6.1 Distribution (%) of instrumentation roles in FSLD. 66
6.2 Distribution of the loops with only one instrumentation role in FSLD. 66
6.3 Distribution (%) of instrumentation roles in the test set. 67
6.4 AIRC performance (%) and model size for each configuration, where

bold indicates highest scores. 68
6.5 Loop activation transcription accuracy (%) results for AIRC con-

figurations, where bold indicates highest scores. 71

9.1 Objective verification of feature coherence across models and datasets.101
9.2 Objective verification of the accuracy on feature coherence for the

best performing models for each dataset. 102

10.1 FAD for the outputs of each of the models, when compared to the
original test data. FAD values closer to 0 indicate higher similarity
between the quality of the original audio and the assessed output. 113

10.2 Mean feature coherence across models for each error type. 113

11.1 Distribution of drum classes in the training dataset. 121
11.2 SVM accuracy when separating positive and negative examples in

InterfaceGAN. 122
11.3 CSI scores for the 3 latent space navigation schemes under test. . . 126
11.4 CSI weights for each dimension. 127

xix

CHAPTER 1
Introduction

The democratization of Electronic Music Production (EMP) is bringing ad-
vanced music creation tools to anyone who is interested in making music. The
developments in music technology, especially the development of Digital Audio
Workstation (DAW) and virtual instruments, have led to a democratization of
music production. Music makers, both professional and amateur, have the
tools for composing, playing instruments and processing audio all on their
personal computers. The technological evolution paved the way for making
EMP accessible to anyone who owns a personal computer and, with this, we
see amazing pieces of music surfacing from around the world from artists who
have never had formal music training.
Repurposing audio material to create new music, also known as sampling, was
a foundation of Electronic Music (EM) and is a fundamental component of this
practice. One-shot sounds — short isolated single instrumental notes, chords
or sound effects — and loops — repeating patterns associated with a partic-
ular instrument — form the basis of Electronic Dance Music (EDM) tracks
(Butler, 2006; Ratcliffe, 2014). Drum loops such as the ‘Funky Drummer’ and
the ‘Amen Break’1, originally from Funk records, have been sampled literally
thousands of times and are fundamental to the timbral character of hip-hop
and many EM genres.
While in early hip-hop these audio excerpts were collected from existent music
records, the democratization of music creation together with technological de-
velopments led to novel ways of distributing audio material. As an alternative
to using samples from copyrighted music, royalty-free sample collections aimed
directly at music makers surfaced. The way these collections were distributed
was linked with the technology available at the time, from sample CDs in
the 1990s, to small-sized sample packs distributed over the internet, to the

1An overview of how this loop reached mainstream music is presented here: https://bbc.
com/news/magazine-32087287

1

https://bbc.com/news/magazine-32087287
https://bbc.com/news/magazine-32087287

2 Introduction

large-scale collections made available with modern cloud storage technologies.
Together with the increase in the amount of material available for users, the
difficulty in navigating these sound collections also rose. This thesis presents
work towards improving the navigation of sound collections, through the high
level characterization and the generation of sounds similar to the sounds inside
these collections.
In this chapter, we will review the history of sampling practices in EM, under-
stand some of the issues identified by music makers when navigating large-scale
collections of sampleable material and introduce the methodologies presented
in this thesis towards enhancing this navigation.

1.1 Context

“An organ with each key linked to a turntable that would have
appropriate discs put on it as required; let’s suppose that the key-
board of this organ switches on the record players simultaneously
or one after the other (...). In theory we get a mother instrument,
capable of replacing not only all existing instruments but every
conceivable instrument.” Schaeffer (1952)

In these notes from the 23rd of April, 1948, Pierre Schaeffer envisioned the
concept of an instrument that would later create a revolution on the music
making paradigm, the sampler. The field of EM has often been led by com-
posers and inventors with a need to invent a way to realize their musical visions
(Holmes, 2012). One of these inventors/composers was Pierre Schaeffer. In or-
der to better understand EMP practices and evolution, we will review the
history of sound in EM. The context section will, therefore, focus on the evolu-
tion of the use of recorded audio in EM. We will start by reviewing Schaeffer’s
work, followed by the work of tape composers, arriving then at the possibilities
provided by digital samplers and computers. We will finish by analysing large
sound databases and licenses for remixing copyrighted pieces of work.

1.1.1 The Use of Recorded Audio for Composition in
Electronic Music

The use of sound and noise in the process of music creation, together with
electronic signals was pioneered by the work of Pierre Schaeffer with Pierre
Henry. The two collaborators were responsible for beginning of a new era
of EM, that of the recorded sound (Holmes, 2012). This new era was able
to withdraw the dependency on performance in EM creation, allowing the
establishment of music studios around the world.

1.1 Context 3

During World War II, at the time of the German occupation of France, Schaef-
fer worked for the Radiodiffusion Télévision Françaises (RTF), where he foun-
ded the Studio d’Essai in 1942. Due to his work in RTF, Schaeffer had access
to a variety of equipment for radio broadcasting, which he was able to employ
in his experiments and in the production of his musical pieces. These included
turntables, mixers, microphones, a direct-to-disc cutting lathe, which allowed
him to record audio to acetate discs, and a library of sound effects recordings
which were used for radio production.
During this research, Schaeffer focused his attention on using recording tech-
niques for isolating naturally produced sound events (Manning, 2004) and, in
1948, started to investigate how these sounds could be used as a basis for mu-
sic production. These experiments led to the creation of “Études de bruits”
(Studies of noises), a series of short studies which included one of Schaef-
fer’s most famous works, “Étude aux chemins de fer” (Railway Study). This
composition challenged Schaeffer to musically organize recordings of sound
produced by six locomotives at the Batignolles station in Paris (Palombini,
1993), which included the sounds of the locomotive’s whistling, trains acceler-
ating and wagons passing over joints in the rails (Manning, 2004). During this
work, Schaeffer discovered some techniques for editing the recording material
that are still used in today’s EM, such as glueing sounds together by play-
ing and re-recording them, playing sounds in reverse and in different speeds,
using volume control to manipulate the intensity and the envelope of sounds
and creating endless loops, which Schaeffer achieved through cutting the disc
grooves so that the sounds would repeat, in a similar manner to a scratched
disc. The success from “Études de bruits” and from other experimental works
and broadcasts led the RTF to provide funds for the creation of the first audio
studio in the world exclusively dedicated to the production of EM, the Groupe
de Recherches Musicales (GRM), in 1951.
Pierre Schaeffer continued his work, trying new techniques, methodologies and
tools (prominently the tape recorder), and working together with several com-
posers. Schaeffer’s influence on modern music is undeniable, as stated by one
of his students that achieved international success, Jean Michel Jarre, in an
interview for Radio France Internationale:

“Back in the ‘40s, Schaeffer invented the sample, the locked groove
- in other words, the loop -, the delay and the concept of reinjecting
sounds. It was Schaeffer who experimented with distorting sounds,
playing them backwards, speeding them up and slowing them down.
He was the one who invented the entire way music is made these
days.” Dicale (2007)

4 Introduction

1.1.2 Tape Music

Schaeffer was not alone on this EM revolution. The availability of the magnetic
tape recorder after World War II made the creation of EM easier, which resul-
ted in new EM studios in other European countries, in the United States and in
Japan. One of these studios was the Studio for Electronic Music of the West
German Radio in Cologne. While in GRM the aesthetic approaches to EM
creation focused on using only recorded natural sounds as source material, the
Cologne studio worked on creating music using only electronically synthesized
tones. Despite these strong aesthetic differences, the mutually exclusiveness of
the approaches from each studio disappeared due to an influx of composers to
both studios which led to a more broadly stylistic and open-minded period of
EM (Holmes, 2012).
In 1966 the magnetic tape studio was still the leading edge in EM technology.
By this year, there were at least 560 documented institutional and private
tape studios in the world. Only 40 per cent of these were sponsored by insti-
tutions and corporations, while the rest were privately owned (Holmes, 2012).
During these years, the major centres such as Cologne, Paris and Columbi-
a/Princeton were focusing their attention on producing works for tape. This
included recording and manipulation of acoustic instruments as well as nat-
ural and synthesized sounds. The aesthetics, practices and techniques used by
composers of tape music are still found in modern EM and laid the ground-
work for its development. Analyzing these techniques and practices, Holmes
(2012) proposes seven fundamental traits of EM, being number 5 the one most
relevant to our motivation: “In EM, the sound itself becomes the material of
composition”.

1.1.3 Digital Music Production

The developments in integrated circuit technology, specifically the invention
of the microprocessor in the 70s, led to new technologies, as well as a price
reduction, in EM equipment. New commercial and affordable digital samplers
started to surface in the 80s, which allowed music makers to record and process
sound without the need for a tape recorder. The first commercially available
digital sampler was the Fairlight CMI (Holmes, 2012). Despite its high price
(18000£ for the first version), it was able to reach commercial music, being
used by artists such as Herbie Hancock and Stevie Wonder. Due to the pop-
ularity of this sampler, new samplers surfaced such as the Akai SP60 and
the E-mu SP1200, which extended Fairlight CMI’s sampling capabilities, with
an easier-to-use interface that allowed quick cutting and pasting of sound,
at an affordable price. These samplers were able to reach a wider audience,
democratizing music production and creating a big imprint in many genres,

1.1 Context 5

especially in Hip-Hop where these samplers and updated versions of them are
still used. In this genre, musical excerpts, primarily from Funk and Soul music,
such as drum breaks were processed, looped and rearranged for a rapper to
sing on top. This is an example of derivative work, which we will detail in the
next section.
The last stage on the democratization of music production started with the
popularization of personal computers. The surfacing of DAW software for
personal computers allowed the music maker to have the tools for compos-
ing, playing instruments and processing audio all in their personal systems.
Along with this software, music makers may use controllers, such as MIDI
keyboards or pad-based controllers, as well as plugins which include software
audio synthesizers, software samplers and software effects. Currently, if an
external audio interface with sufficient inputs or outputs is provided, a DAW
can provide a large number of audio inputs or outputs, in the case of Ableton
Live 10, 256 mono inputs and outputs, as well as unlimited audio and MIDI
channels inside the software (Ableton, 2022). This availability of comprehens-
ive software for music production, together with easy access provided by the
internet to information on how to use them, has allowed people to start mak-
ing EM without having the need for expensive hardware or even a professional
recording studio. The majority of the EM done today is created or processed
through a computer and very famous pieces have been created with minimal
music making hardware, in places such as bedrooms or garages.

1.1.4 Large-Scale Sound Databases

The easy access to data sharing that the internet provided led to a series of so-
cial changes (Ritzer & Jurgenson, 2010). Consumers are shifting from a role of
passive consumption to customers who produce. As stated in Tapscott (1996),
“This is a dynamic world of customer innovation, where a new generation of
producer-consumers considers the “right to hack” its birthright”. Lessig (2008)
proposes the “Remix Culture”, a society which encourages derivative works
i.e. works based on other copyrighted works. The Creative Commons license
proposed by the Creative Commons organization, of which Lessig is one of
the founders, enabled these derivative works by allowing content creators to
authorize the free distribution, use and remixing of their work.
In the music ecosystem, the changes provided by the easy access to data sharing
go from recording, to production, to distribution and to consumption. Web-
sites like Bandcamp2 and Soundcloud3 replace the role of the music retailer
and distributor by allowing independent artists or labels to release and dis-

2https://bandcamp.com
3https://soundcloud.com

https://bandcamp.com
https://soundcloud.com

6 Introduction

tribute their music online, allowing the use of a Creative Commons license. In
the case of music recording and production, a set of online digital tools are
available to the producer-consumers. These range from online classes, to vir-
tual instruments or effects, to recorded sounds to be loaded in a sampler. The
latter might include premade audio loops, notes of recorded instruments or
even one-shot hits of audio. Ratcliffe (2014) proposes a typology for sampled
material in EDM which can be grouped into 4 categories: i) short, isolated
fragments; ii) loops and phrases; iii) larger elements; iv) transformed material.
DAWs normally come out of the box with a broad selection of sounds and, if
the music maker desires to increase their library, there is a variety of databases
that offer audio content that can be used for EMP.
A large-scale sound database is a collection of sounds that may or not be ori-
ented towards EMP. One example of the latter are catalogs of ethnographic
music recordings, including those of CREM4 or the Alan Lomax Archive5.
Although not specifically oriented for EMP, the sounds present in these data-
bases can be sampled as larger elements, according to the typology proposed by
Ratcliffe (2014). The databases which are more oriented towards music mak-
ing also have different characteristics between themselves. It may be the genre
for which the sounds are selected, types of sounds, the destination sampling
software or even the way they are commercialised. Currently, we see a trend
where companies which used to sell curated sample packs shift their content
to subscription paid cloud databases6.
Throughout this thesis, we will use several public collections of EM audio
material. However, our main focus will be an audio collection which is deeply
connected with the Remix Culture and with Creative Commons licensing, Free-
sound7: an online collaborative sound database where people with diverse in-
terests share recorded sound samples under Creative Commons licenses (Font
et al., 2013). This platform has originated and is still being developed in the
Music Technology Group of Universitat Pompeu Fabra, where this research is
carried out.

1.2 Motivation

The increasing amount of sounds and sample packs available to music makers
comes at the cost of a harder content browsing experience. Commonly, music
makers collect sample packs which come in various degrees of organization,

4https://archives.crem-cnrs.fr
5https://archive.culturalequity.org
6We can see examples of this in Native Instruments’ sounds.com or Loopmasters’ Loop-

cloud
7https://freesound.org

https://archives.crem-cnrs.fr
https://archive.culturalequity.org
https://freesound.org

1.2 Motivation 7

from a simple folder with several sounds inside to hierarchic directories with
the sounds organized by characteristics such as their instrument, tempo or key.
A personal collection can grow up to terabytes of audio files, and, if not well
maintained, it can be chaotic to navigate through the different folders. We
can already see from the sample browsing interfaces from two commonly used
DAWs, presented in Figure 1.1, that the current hierarchical tree structure
does not scale well with large collections of audio. Furthermore, each sample
pack can have its own organization and naming strategies, which might be
problematic for sound retrieval. Moreover, as sample packs are separated in
different directories, very similar sounds from two different sample packs can
be in different folders, leading to the music maker having to open and close
several directories for finding the desired sound.

Figure 1.1: Examples of how sample collections are presented on two DAWs: Ableton
Live (left) and Native Instruments’ Maschine (right)

When dealing with online collections, e.g. the websites of sample pack distrib-
utors or public sound collections, the problems are slightly different than the
ones which occur in a personal library. Online collections normally contain
larger amounts of sound, possibly tailored to different audiences and suitable
to different genres. To handle the large diversity and quantity of sounds, these
websites can resort to using a taxonomy to organize the sounds into different
categories. Although this helps the navigation, each website has its own tax-
onomy which can create disorganization in the consumer’s library. In Figures
1.2 and 1.3 we can see the user interface provided by three well-known online

8 Introduction

collections of sounds: Splice8, Sounds.com9 and Freesound10.

Pack Filename Time Key BPM

on BBM2_Kit5_Drop_Shaker_Loop_123_F_minor.wav
 bass music edm future house percussion shakers

 0:23 F min 123

on TAIKO_82_drum_loop_malcria.wav
 drums latin reggaeton shakers snares

 0:12 -- 82

on TAIKO_94_percussion_loop_fria.wav
 bongos drums hats latin reggaeton sidestick snap

 0:10 -- 94

on TAIKO_snare_dem.wav
 drums latin reggaeton snares

 0:00 -- --

on SC_EK_90_synth_tree_Ab.wav
 ambient idm live sounds pads synth

 0:11 G# maj 90

on HOODBOI_tonic_soft_kick_one_shot_01.wav
 drums future bass kicks pop soft

 0:00 -- --

on SO_PC_125_synth_comp_chaufa_Emin.wav
 cumbia latin american leads live sounds psychedelic synth

 0:15 E min 125

on aat_prc_finger.wav
 ambient leftfield bass percussion techno

 0:00 -- --

on SO_FS1_kick_nectarine.wav
 drums hip hop kicks live sounds pop rnb soul

 0:00 -- --

on SO_SN_90_strip_loop_evergreen.wav
 drums experimental field recordings found sounds grooves live sounds

 0:11 -- 90

on RARE_percussion_Kickdrum_bassdrum_brazil_104_loop6.wav
 deep live sounds percussion

 0:09 -- 104

on TAINY_120_melodic_loop_dh_Cmin.wav
 synth leads melody reggaeton trap pop layered

 0:16 C min 120

R&B / Soul

Techno / Minimal

Sounds (431,452)

Filter By character instrument loop/one-shot bpm key

Release Type W a v e f o r m N a m e Character / Instrument Bpm Key

Bk Afro House Piano Bpm 123 Key G
16 / 48k

Piano / Keys 123 G

Bk Afro House Bass Bpm 123 Key G
16 / 48k

Piano / Keys 123 G

Loop 120 Deep Foley House Loop Snappy Blocks Electro Indie Future Pop
24 / 48k

Block, Deep 120

SLP_Jack_House_S03_Click_Bass_01
24 / 44k

Click 60

4 Bars - House of Church
24 / 44k

Sound Effects, Riser 128 Cm

BD1_117bpm_House_Factory_Full
16 / 44k

Kick 117 C#

BD1_117bpm_House_Factory_Bass_Bbm
16 / 44k

Kick 117 A#m

01 Kick EDM Jungle House
24 / 44k

Kick

99 Deep_House_Chord 120BPM Em Chord Deep
24 / 48k

Chord, Deep 120 Em

98 Deep_House_Chord 120BPM D#m Chord Deep
24 / 48k

Chord, Deep 120 D#m

97 Deep_House_Chord 120BPM Gm Chord Deep
24 / 48k

Chord, Deep 120 Gm

Figure 1.2: User interfaces for Splice (top) and Sounds.com (bottom)

Online sample libraries targeted to EM creation such as Splice, Sounds.com
or Loopmasters11 have a fairly consistent organization and search interface.
Curated sample packs are typically categorized into one or more genres, while
individual samples can be found through the textual descriptions of their con-
tent. The instrument contained in the sample, timbral descriptors, genre, if
it is a loop or a one-shot, tempo and key are tags commonly used to describe
samples.

8https://splice.com
9https://sounds.com

10https://freesound.org
11https://loopmasters.com

https://splice.com
https://sounds.com
https://freesound.org
https://loopmasters.com

1.2 Motivation 9

licenses

Attribution (9343)
Attribution Noncommercial (3494)
Creative Commons 0 (16216)
Sampling+ (849)

tags

 ambient bass beat bpm dance

drum drums dubstep effect electro

electronic guitar house kick loop

loops multisample music noise
percussion piano processed sample samples

single-note sound synth

synthesizer techno trance

type

aiff (4613)
flac (1053)
m4a (92)
mp3 (2825)

previous next 1 2 3 4 5 6 7 ... 524 | 29902 sounds

-00:01

this is a bass sound, not tuned but it is a
perfect loop withouth clicks IT HAS NO
PANNING EFFECT ...

 bass 16b.wav

bass boop HUM ambiance metal deep GUITAR
rumble LOW rock BASS

 Veiler
 December 8th,
2013
 13032 downloads
 9 comments

 2 more results in the same pack "bass"

-00:25

Fairly real sounding bass guitar loop

 Electric bass guitar loo...

electric hard Loop bass 44100 Cajon
Electric-Dance-Music drum Bass Beat Wobble
Balloon Drop Live Dubstep Jungle Faux snare
kick Funk Off-Shot-Records

 tkky
 February 25th,
2022
 255 downloads
 0 comments

 3 more results in the same pack "Bass Hits & loops"

-00:41

Web Crawler bass //cc0

 Web Crawler Bass

Sound drum Bass song dnb cc0 kit construction
Design Reese samples bass

deadrobotmusic
 March 7th, 2022
 208 downloads
 0 comments

 9 more results in the same pack "[Song Construction Kit] - Web Cr..."

Figure 1.3: User interface for Freesound

Freesound is different from commercial sample databases due to its own nature.
The first characteristic to highlight is the diversity of sounds available which
goes from audio loops and instrument samples to be used in EMP, to foley
sounds and field recordings. This diversity offers unconventional sounds to
be used in EMP but also leads to difficult categorization and characteriza-
tion and to a big diversity in the recording quality of sounds. The navigation
and characterization of the sounds are based on unrestricted textual descrip-
tions and tags of the sounds provided by users. This leads to a search based
on noisy labels that different members use to characterize the same type of
sound. Finally, the navigation is based on search queries which return a list of
unorganized sounds.
Despite the differences between commercial sound collections, public libraries
such as Freesound or the archive each music maker has, navigating and retriev-
ing sounds can be cumbersome and lead to interruptions in the creative process.
In Andersen & Knees (2016) the authors interview music makers to identify
the difficulties they face when navigating their own personal sound collections.
As expected, the organization of audio collections, indexing and efficient re-
trieval of sounds are central to their practice of creating music. Some of the
issues they identify as problematic are presented in the following statements:

“Because we usually have to browse really huge libraries [...] that
most of the time are not really well organized.”
“If you have like a sample library with 500,000 different chords it
can take a while to actually find one because there are so many
possibilities.”
“Like, two hundred gigabytes of [samples]. I try to keep some kind
of organization.”

10 Introduction

“I easily get lost... I always have to scroll back and forth and it
ruins the flow when you’re playing”

When asked about strategies to locate sounds ‘they are looking for’, music
makers show a variety of strategies and emotions when dealing with DAWs:

“You just click randomly and just scrolling, it takes for ever!”
“Sometimes, when you don’t know what you are looking for, and
you’re just going randomly through your samples, that might be
helpful, but most of the time I have something in mind that I am
looking for, and I am just going through all these sound files, and
I am just waiting for the sound which I had in mind to suddenly
appear. Or what comes the closest to what I had in mind. So I
think that most of the time, I know what I am looking for, and
then it is just a matter of time before I find it.”
“Part of making music is about being lost a little bit and accident-
ally stumbling upon stuff that you didn’t think would work.”

From these fragments from the interviews conducted with music makers, we
can clearly see that file retrieving is identified as the one of the things that
mostly disrupts their workflow. In the same interviews, music makers ask for
semantically meaningful retrieval systems, which should have features which
enable surprise, opposition and control on the recommendation process:

“So it would be really useful to for example have some kind of
sorting system for drums, for example, where I could for example
choose: ‘bass drum’, and here it is: ‘bass’ and ‘bright’, and I would
like it to have maybe bass drum ‘round’ and ‘dry’, and you can
choose both, the more I choose, of course, the less results I will
have [...] So it is filtering it down, that is really helpful, if it works
well of course.”
“It would be even more useful to be able to search for a particular
snare, but I can’t really imagine how, I need something short, low
in pitch, dark or bright in tone and then it finds it...”
“There are a lot of adjectives for sound, but for me, if you want a
‘bright’ sound for example it actually means a sound with a lot of
treble, if you say you want a ‘warm’ sound, you put a round bass,
well, round is another adjective.”

In the field of Music Information Retrieval (MIR), several studies were aimed
at creating and evaluating interfaces for browsing and retrieving sounds. Tech-
niques for presenting and arranging one shot-sounds, sorted by their timbral

1.3 Scope and Objectives 11

and sonic qualities, such as Freesound Explorer (Font & Bandiera, 2017) and
Soundtorch (Heise et al., 2008), have been proposed. Significant research aimed
at discovering the most relevant descriptors for audio artists, specifically the
AudioCommons12 project. One of the outcomes of this project was a set of
high-level timbral descriptors which is derived from the most common ad-
jectives used to describe sounds in Freesound. Most of the algorithms for
calculating these descriptors were conceived by experts with deep knowledge
on music and signal processing. If music makers can understand the features
extracted from the audio, these can be directly used for navigation and char-
acterizing their sample library. Another approach relies on using algorithms
which identify similar content to group related sounds together (clustering)
(Favory et al., 2020) or to present examples similar to a query (query-by-
example) (Downie, 2003; Roma & Serra, 2015). Besides the descriptors, these
techniques normally require a machine learning algorithm for handling the sim-
ilarity computation. Machine learning algorithms can learn directly from the
training data which are the most relevant features or correlation of features to
describe the audio.
Deep learning methods are a subset of machine learning algorithms which are
able to learn descriptors directly from the data, therefore removing the need for
features designed by experts. This set of algorithms has shown impressive suc-
cess in a variety of tasks, from the generation of images to music classification
and auto-tagging. These technologies can be applied to audio samples collec-
tions, in order to assist musical creation through an improved sample browsing
experience. However, deep learning algorithms typically require large amounts
of data in order to be able to learn meaningful features and perform well. Large
online collections with audio material for music making, such as Freesound, can
be leveraged to obtain this data.

1.3 Scope and Objectives

The main goal of this dissertation is to develop novel data-driven systems
which can enable new techniques for navigating large-scale collections and con-
sequently assisting EMP. To this end, we leverage publicly available collections
of musical audio aimed at music creation to train deep-learning models for two
use-cases:

Automatic Classification: systems aimed at automatically identifying
characteristics which can help navigate large musical audio collections
directly from the audio itself.

12https://audiocommons.org

https://audiocommons.org

12 Introduction

Generation: systems that are capable of creating new sounds similar to
the ones in the collections, through the navigation of latent space. These
systems enable generating random sounds, sounds similar to a query and
interpolating between sounds.

This dissertation was conducted as part of the New Frontiers in Music Inform-
ation Processing (MIP-Frontiers) project13, which is a research project funded
by the European Union’s Horizon 2020 research and innovation program un-
der the Marie Skłodowska-Curie grant agreement No. 765068. One of the
main objectives of this project is to encourage collaboration between academia
and industry so that the outcomes of the project can reach finished products
and the end consumer in a faster manner. The host institution for this work
is Universitat Pompeu Fabra, where Freesound is developed and maintained,
while a secondment was conducted in Native Instruments GmbH (NI), which
maintains a large collection of sounds in the factory library of their products,
as well as in their expansions14. The use of Freesound and NI’s data enables
us to evaluate the proposed systems with two fairly different structured col-
lections, Freesound which represents an unsorted library with different user
methodologies for describing sounds and NI’s data which is tagged by experts
in a carefully thought hierarchy. Another mechanism for increasing the im-
pact of research which is highlighted in the MIP-Frontiers project is making
the data and code created during this project openly accessible and freely avail-
able. Towards this goal, we open-source all the code needed to replicate our
experiments, as well as most of the data used throughout this work.

1.4 Dissertation Outline

In this section, we provide an overview of the following chapters, main experi-
ments and contributions. The thesis is organized as follows:

Chapter 1 (this chapter) presents a brief history of EM and how repur-
posing audio material for composition has been one of its main elements.
How audio material was used through time and the evolution of how au-
dio files have been shared between music makers are introduced, as well as
some of the common issues highlighted by creators when browsing their
collections of audio files. This chapter also provides contextualization for
the research conducted, its motivation and goals.

In Part I we describe our contributions towards automatically charac-
terizing instrumental audio samples:

13https://mip-frontiers.eu
14https://native-instruments.com/en/catalog/maschine/expansions

https://mip-frontiers.eu
https://native-instruments.com/en/catalog/maschine/expansions

1.4 Dissertation Outline 13

• Chapter 2 introduces the topic of instrument classification, while
Chapter 3 presents a survey of previous techniques and datasets
used for this task and some of its current shortcomings when ap-
plied to assisting EMP. Relevant deep learning algorithms for clas-
sification are introduced together with key audio signal processing
concepts, which are explained so as to provide the reader with the
necessary context to understand the following chapters.

• Chapter 4 is based on Ramires & Serra (2019) and describes our
work on training and evaluating a state-of-the-art model for clas-
sifying instrumental sounds when processed with commonly used
audio effects in music production. In order to evaluate the robust-
ness of the model, we use data augmentation with audio effects and
evaluate how each effect influences classification accuracy.

• Chapter 5, based on Ramires et al. (2020c), presents the Freesound
Loop Dataset (FSLD), a new large-scale dataset of music loops an-
notated by experts. The loops originate from Freesound, so the
audio in the dataset may be redistributed. The annotations include
instrument, tempo, meter, key and genre tags. The methodology
used to assemble and annotate the data is described, as well as a
report on the distribution of tags in the data and inter-annotator
agreement. The online loop annotator tool that was developed for
the annotation procedure is presented and, to illustrate the use-
fulness of FSLD, we describe short case studies on using FSLD to
estimate tempo and key, generate music pieces, and evaluate a loop
separation algorithm.

• Chapter 6 is based on Drysdale et al. (2022) and details our work
towards automatically labelling loops of key structural groups such
as bass, percussive or melodic elements by the role they occupy in a
piece of music through the task of Automatic Instrumentation Role
Classification (AIRC). We experiment with several deep-learning
architectures and propose a data augmentation method for improv-
ing multi-label representation to balance classes within the FSLD.
To improve the classification accuracy of the architectures, we also
evaluate different pooling operations. Additionally, we demonstrate
how our proposed AIRC method is useful for analyzing the struc-
ture of Electronic Music (EM) compositions through loop activation
transcription.

In Part II we describe our contributions towards generating drum sounds,
controlled by high-level parameters which music makers understand:

• Chapter 7 provides a brief history of sound synthesis and the evolu-
tion of techniques for creating percussive sounds through time, while

14 Introduction

Chapter 8 presents an overview of neural networks used for syn-
thesis, introduces commonly used architectures for this task, their
advantages and disadvantages. A survey of deep learning models
for synthesizing percussive sounds is also presented.

• Chapter 9, based on Ramires et al. (2020b), presents a deep neural
network-based methodology for synthesizing percussive sounds with
control over high-level timbral characteristics of the sounds. This
approach allows for intuitive control of a neural synthesizer, en-
abling the user to shape sounds without extensive knowledge of sig-
nal processing. We use a feed-forward convolutional neural network-
based architecture, which is able to map input parameters to the
corresponding waveform. Two datasets are presented to evaluate
the approach in both a restrictive context and in one covering a
broader spectrum of sounds. Finally, the quality of the output
sound is evaluated using a subjective listening test.

• Chapter 10 is based on Chandna et al. (2021) and presents LoopNet,
a feed-forward generative model for creating drum loops conditioned
on intuitive parameters. This work extends Ramires et al. (2020b)
to generate drum loops based on global features pertaining to timbre
and harmony and time-varying features pertaining to the rhythm.
We also evaluate the quality of the generated audio and propose
intuitive controls and techniques for composers to map the ideas in
their minds to an audio loop.

• Chapter 11, based on Ramires et al. (2022), presents an analysis
on evaluating how different deep learning based interfaces support
creative control over drum generation by conducting a user study
based on the Creativity Support Index (CSI). We train a Generative
Adversarial Network (GAN) and experiment with both a supervised
method that decodes semantic latent space directions and an unsu-
pervised Closed-Form Factorization approach from computer vision
literature to parameterize the generation.

Chapter 12 concludes this dissertation. We present a summary and
a discussion of the work presented and show our progress towards the
objectives we aimed to pursue. Future perspectives for research in the
topic of assisting EMP with deep neural networks.

Additionally, in Appendix C and D we present two codebases we de-
veloped: TIV.lib (Ramires et al., 2020a) and Freesound JUCE API
(Ramires & Font, 2019). TIV.lib is an open-source python library for
the content-based tonal description of musical audio signals based on the
Tonal Interval Vectors (TIV) (Bernardes et al., 2016a). The Freesound
JUCE API is a client library which interacts with the Freesound web API

1.4 Dissertation Outline 15

(Akkermans et al., 2011) implemented in JUCE, a library commonly used
for creating virtual instruments for DAWs.

Part I

Automatic Characterization
of Music Loops and

Instrument Samples for
Electronic Music Production

17

CHAPTER 2
Introduction and Overview of

Characterisation

In Part I (this Part) of this dissertation, we aim to use deep learning to classify
instrumental sounds. Most commercial providers of sounds for music-making
use expert annotation to classify and characterise the content they provide,
which becomes costly. Collections such as Freesound and the personal libraries
of music makers cannot afford this annotation service.
Our main goal is to create technologies which can analyse the audios present in
unorganised collections of sound material and provide tags which can help mu-
sic makers navigate these collections. Automatically classifying instrumental
sounds in unstructured large audio databases provides an intuitive way of
navigating them, and a better characterisation of the sounds contained. For
databases where the annotation of the sounds is done manually, it can be a way
to simplify the job of the annotator, by providing suggested annotations or,
if the system is reliable enough, only presenting sounds with low classification
confidence. The recent developments in deep learning towards automatically
characterising unorganised data show that this set of algorithms is a promising
avenue for us to reach our goal.

2.1 Automatic Audio Classification

The automatic classification of sounds is a heavily studied Signal Processing
topic. It is applied to tasks we do in our daily life such as converting voice
queries to text (speech recognition) and speaker identification. Automatic
sound classification has been applied to several fields, some arbitrary examples
of this are i) biology, where Kahl et al. (2021) present a system for identifying
birds through recordings of their singing; in medicine, Laguarta et al. (2020)
train an algorithm to discriminate a COVID cough from a normal one, and iii)

19

20 Introduction and Overview of Characterisation

sound event detection (Fonseca et al., 2019) which aims to classify the events
that occur in an audio recording.
In the case of music, a strong effort has been put towards automatically ex-
tracting semantic characteristics which humans typically use to describe music
pieces. Despite its musicology controversy, music genre classification has been
a central task of MIR research with hundreds of publications written about the
subject (Knees & Schedl, 2016). The aim of this task is to automatically assign
a music genre or sub-genre, based on a taxonomy, to a music recording. It can
help organise unstructured collections of music and, due to the largely available
annotated collections of music belonging to streaming platforms, data-driven
algorithms can be of great use.
A MIR task which is significantly related to genre classification is auto-tagging.
Although both tasks aim to assign semantic labels to music pieces, auto-
tagging labels are not specific to genre and sub-genre. The datasets used
in auto-tagging typically dictate the tags a system predicts, with typical data-
sets used being the MagnaTagATune (Law et al., 2009), which contains tags
proposed by amateurs in a game-like platform, and the Million Song Dataset
(Bertin-Mahieux et al., 2011) where the tags have been obtained from scrap-
ing Last.fm15. Due to this diverse taxonomy, the auto-tagging classification
is normally multi-label, where different tags such as “male vocal” and “hard
rock” can occur together.
Another MIR classification task used to organise music libraries and automat-
ically create playlists is mood and emotion recognition. This task employs a
higher degree of subjectivity than the previous ones as the same music piece
can create different emotions in each listener. The labels used for the classific-
ation can be categorical — a limited number of emotions such as happy, sad or
angry — or dimensional — emotions are mapped to a continuous space with
several dimensions of human emotions e.g. valence-arousal (Knees & Schedl,
2016).

2.2 Characterisation of Material for Music
Production

In the previous section, we described MIR classification tasks which are useful
for classifying finished music pieces but are not suitable for classifying music-
making material. There are three MIR tasks which have seen a significant
amount of studies that can help organise loops in unsorted collections: tempo,
pitch, key and chord extraction.

15https://last.fm

https://last.fm

2.2 Characterisation of Material for Music Production 21

Tempo estimation is a topic which has received significant attention in MIR
(McKinney et al., 2007; Gouyon et al., 2006) and state-of-the-art algorithms
are able to achieve high accuracy in identifying the tempo of music (Böck et al.,
2015). Tempo is defined in Gouyon et al. (2006) as the rate of musical beats
in time. It provides a useful feature for the retrieval of sounds for EMP when
the music being created is based on a fixed tempo, which is the most typical
scenario in EDM. The music maker will only work with a specific range of
tempo values based on the tempo of the track being created so that no sound
deformation occurs when time-stretching the audio to fit the desired tempo.
A common framework in tempo estimation approaches is proposed in Gouyon
& Dixon (2005) which Böck et al. (2015) summarises in three stages and
presents the techniques used in recently proposed algorithms. The first stage is
the derivation of relevant features from raw audio such as a list of onset times
or a frame-based feature vector. Previous examples have used the envelope of
the audio signal (Scheirer, 1998), bandpass filters (Wu & Jang, 2014) and onset
detection functions (Davies & Plumbley, 2007). The second step is the calcu-
lation of periodicities from the extracted features. For this task, Fast Fourier
Transform (FFT) based methods like tempograms (Wu & Jang, 2014), auto-
correlation (Dixon, 2001) or comb filters (Davies & Plumbley, 2007) have been
used. Finally, a dominant period is extracted from the calculated periodicities
through post-processing. The output of this final stage is the rate of beats
of the audio material and can be expressed in Beats Per Minute (BPM). The
techniques used for this last stage range from simply selecting the most dom-
inant periodicity peak, to machine learning approaches and the use of music
genre-specific knowledge to create constraints on the possible tempo measures
(Davies & Plumbley, 2008). The state-of-the-art accuracy on several datasets
is obtained by Böck et al. (2015), where the authors use neural networks to
learn features to be used in the first stage of the tempo estimation, together
with a resonant comb filter.
The evaluation of these algorithms is normally based on their accuracy in
tempo estimation of annotated music datasets. Evaluation metrics normally
used are Accuracy1 and Accuracy2, where one or two tempo estimations are
accepted as the correct BPM. In the Music Information Retrieval Evaluation
eXchange (MIREX) a tempo extraction challenge exists since its conception,
where tempo estimation algorithms are compared on their accuracy on selected
datasets.
Pitch is the perceptual quality of a sound which is connected to the funda-
mental frequency of a sound. While the timbre of a sound is related to the
harmonics of the fundamental frequency generated by an instrument, pitch
allows judging sounds as higher or lower. Automatically identifying the pitch
of a musical sound allows knowing the note played in a sound sample and en-
ables posterior repitching to create a tuned melody. When applied to longer

22 Introduction and Overview of Characterisation

music sections, where there are several notes played in a sequence, this task
is usually called pitch tracking (Salamon, 2013). Early works in predominant
melody extraction focused on extracting the pitch of individual instrumental
sounds (Anderson, 1997). After, works such as Salamon & Gómez (2012) and
Mauch & Dixon (2014) have addressed the extraction of a monophonic lead
melody from polyphonic recordings. Recently, the focus has shifted towards
enabling the extraction of polyphonic melodies from polyphonic audio (Cuesta
et al., 2020).
Another audio characterisation problem which has seen significant research
in MIR is key estimation. In Gómez (2006a), key is defined as “a system of
relationships between a series of pitches having a tonic, or central pitch class,
as its most important element”. The motivation of key estimation for EMP is
of similar nature to tempo estimation. Music makers need tonal information
to mix and layer sound files according to their tonal content (Faraldo et al.,
2016).
Key estimation systems usually follow an essential architecture. We will only
focus on the approaches which retrieve characteristics from the audio domain
and not symbolic approaches. Faraldo Pérez (2018) details the most commonly
used architectures for this task, which can be decomposed on two steps. First,
the audio signal is converted to the frequency domain and mapped into vector
representations which present the intensities of the twelve semi-tones of the
pitch classes over time (Peeters, 2006), such as Chroma or Pitch Class Profile.
This step is followed by a classification stage where these pitch classes are
compared to reference material. In the case of template-based key estimation
methods, these vector representations are then compared to existing tonality
models, which can be key profiles (Peeters, 2006) or a geometrical space (Chew,
2000).
The evaluation of these systems, which also have a MIREX task, is also nor-
mally performed by quantifying their accuracy on key labelling an annotated
dataset. In the evaluation of this MIREX task, incorrect key estimations which
are considered tonally close are less penalised than the unrelated estimations.
Key estimation using contextual information from EDM has been explored
in Faraldo Pérez (2018). In Faraldo et al. (2016), the authors present tonal
characteristics of EDM which suggest that key estimation “should take into
account style-specific particularities and be tailored to specific genres rather
than aiming at all-purpose solutions”. In his work, a new key profile is de-
veloped, trained on an EDM dataset, and some pre-processing related to the
presented characteristics is proposed. The use of the context related to the
music genre shows better performance than general approaches for an EDM
dataset.
Another related task which deserves attention is chord estimation. A similar

2.3 Automatic Instrument Classification 23

approach to key estimation is used for this task by firstly converting audio to a
vector representation of the pitch classes and then a classifier is used to identify
the chord. A detailed review of the methods used in literature for these steps
is proposed in McVicar et al. (2014).

2.3 Automatic Instrument Classification

Instrument classification is a task which aims to identify the instrument that
created a particular sound in an audio recording. To understand this task,
we need to understand one musical concept which is essential to distinguish-
ing instruments: the timbre. In the seminal instrument classification work
by Herrera-Boyer et al. (2003), the authors employ the definition of timbre
provided in American National Standards Institute. Committee on Bioacous-
tics et al. (1973): “the features that allow one to distinguish two sounds that
are equal in pitch, loudness, and subjective duration”. Instrument classific-
ation has been targeted for different use cases such as instrument detection
(understanding which instruments occur on a recording), instrument segment-
ation (identifying when certain instruments occur in an audio recording) or for
assisting other MIR tasks such as source separation (Knees & Schedl, 2016;
Schedl et al., 2014).
In Part I of this dissertation, we focus on classifying electronic music produc-
tion sounds based on their timbral characteristics. We aim to apply and eval-
uate classification algorithms in the task of instrument and instrumentation
role classification, towards a better characterisation of sounds in collections
for electronic music making. Instrument classification has mostly targeted the
classification of acoustic or electrical instrumental sounds in isolation or in mu-
sic recordings. Using deep learning and taking advantage of the ease of access
to digitally generated sounds from virtual synthesizers and online collections,
we want to use instrument classification for characterising sounds used in EMP.
EM sounds can have very different characteristics from the acoustic and elec-
tric ones which were studied in classic MIR due to the possibilities offered
by synthesizers, heavy use of sound effects and the freedom of exploration in
sound design favoured in EM.
In this chapter (Chapter 2), we presented existing techniques for audio classi-
fication in MIR and motivated as to why specific algorithms suited for EM are
necessary. In Chapter 3 we will present an overview of the methodologies for
instrument classification used on the past and present the deep learning con-
text required to understand the approaches we use in the subsequent chapters.
In Chapter 4, we present our work towards classifying the instruments which
created the one-shot sounds from a big collection of synthesised notes. Data
augmentation techniques based on audio effects and their performance when

24 Introduction and Overview of Characterisation

classifying sounds processed by audio effects are also presented. Chapter 5
presents our effort in creating the Freesound Loop Dataset (FSLD), a Creative
Commons collection of audio loops meant to be used in EMP. The annota-
tion tool developed for collecting and describing the loops is presented, as well
as several benchmarks for MIR tasks. Finally, Chapter 6 presents our work
in Automatic Instrumentation Role Classification (AIRC) in loops. Instead of
automatically identifying instruments, we aim to find if a loop contains chords,
percussion, melody, effects and/or bass. We also extend this work in order to
automatically infer the structure of EM pieces.

CHAPTER 3
Literature Review on

Instrument Classification

In this chapter, we make a review of the key ideas proposed for instrument
classification through time. In order to provide a better understanding of the
machine learning methodologies that have been used in previous work and
the deep learning algorithms we use throughout our thesis, we will present an
introduction to how these data-driven algorithms work, their main weaknesses
and advantages.
We will start by presenting an overview of machine learning methods. Then,
we will focus on deep learning algorithms for classification and finalize with an
in-depth look at instrument classification approaches.

3.1 Machine Learning and Automatic Classification

Machine learning is the discipline which studies how to build and understand
systems that can automatically improve and learn through experience (Jordan
& Mitchell, 2015). Machine learning approaches enable us to train a system
by providing it data examples with the desired input-output, which for several
tasks is easier than designing the system manually to do the desired task.
Therefore, machine learning can enable the development of complex algorithms
without needing expert knowledge of the data or task at hand.
Machine learning can be divided into three main paradigms: supervised, unsu-
pervised and reinforcement learning. As the main focus of Part I of the thesis
is supervised learning, we will start by providing an overview of the two other
concepts and then focus on supervised learning. Reinforcement learning uses
agents which perform actions, which can be correct or not, to learn how to
interact with an environment to achieve a goal (Sutton & Barto, 2018). One
easy-to-understand application of this concept is the Artificial Inteligence (AI)

25

26 Literature Review on Instrument Classification

for games which learn to be good at a game by playing against other AIs.
Different AIs can have different exploration and exploitation settings, and a
set of actions can be deemed correct if an AI can win a game. The AI which
won more games can be selected as the best one and used to play against real
players. Instead of working with an expert player at the game to develop a
rule-based algorithm that can win a game, we can train one of these AIs at
a lower cost and possibly better results. Reinforcement learning is used in
several fields such as autonomous driving, sequence prediction and gaming. If
the reader would like to know more about this concept, we recommend reading
the work of Sutton & Barto (2018), which provides a good introduction to this
topic.
Unsupervised machine learning algorithms will be studied in more detail in
Part II. However, we will now provide an overview to more easily differentiate
it from supervised learning. Unsupervised learning generally involves learning
patterns from unlabeled data. One of the most well-known tasks in this topic
is dimensionality reduction. By training dimensionality reduction algorithms
with high-dimensionality data such as images (which are normally represented
by a huge amount of pixels) or sound (which can have more than 44.1 thou-
sand samples per second), we can ideally obtain a compact representation of
the examples in, for instance, 2- or 3-dimensional visualizations. Well-known
algorithms for dimensionality reduction include Principal Component Analysis
(PCA) (Wold et al., 1987) and Autoencoder (AE) (Kingma & Welling, 2014)
that we will review in Part II. Another typical problem in unsupervised learn-
ing is automatic clustering — partitioning unlabeled data into smaller groups
with similar characteristics. Examples of clustering algorithms are k-Means
and Hierarchical Clustering. An exhaustive list of clustering algorithms is
available at Xu & Tian (2015). The main issue with unsupervised learning is
that the amount of data necessary for these algorithms to learn high-quality
representations is significantly bigger than when using labeled data (Jordan &
Mitchell, 2015).
The most widely used machine learning methods and the ones that we will be
exploring in Part I of this thesis are supervised machine learning algorithms.
As the name indicates, these algorithms learn from labeled training data. This
ground truth data takes the form of input-output pairs, which we will represent
by (x,y). The objective of this algorithm is to learn a function that maps the
inputs x to an output prediction y. Ideally, the model can learn from the
training data and be able to predict an output correctly y∗ for an input x∗,
which was not seen during training. The input x can be a simple vector or take
a more complex representation such as text, an image, a sequences or a sound.
Likewise, the output y can go from a simple binary True or False (e.g. in the
case of spam detection) to a vector of binary labels or even images and sound.
Supervised learning is typically divided into two main problems according to

3.1 Machine Learning and Automatic Classification 27

their output: regression when predicting continuous values and classification
when predicting a discrete class label.
In classification tasks, the aim is to create a program which can assign one or
more of k categories to an input x. When using machine learning, a trainable al-
gorithm is usually given the objective to produce a function f : x∗ ∈Rn → 1, ...,k
(Goodfellow et al., 2016). This classification algorithm can be represented by
y∗ = f (x∗), where the output y∗ is a combination of the k possible labels. If
the algorithm is supposed to only provide a single label to a sound, the task
is usually named single label classification. Otherwise, if more than one label
can be assigned, the task is called multi label classification. In some cases,
the classification algorithm outputs the probability of the input x∗ belonging
to any of the classes. To convert the probability to a binary label, a binary
decision threshold can be used.
Typically, the pipeline of classification algorithms can be divided into two
parts: the front- and back-end. When using this terminology, the front-end
is responsible for directly interacting with the input and mapping it through
a feature extraction part, i.e. extracting relevant patterns or characteristics
from the data. The output of the front-end part can be a high-dimensional
embedding space of handcrafted features16 carefully selected by a researcher
or a latent space learned by the machine learning algorithm itself. The back-
end is the part responsible for mapping the representation given by the front
end to the output label. Traditionally, classification with machine learning
used feature extraction front-ends. As an example in the audio domain, if
we would like to classify the instrument of a sound, we would start by select-
ing handcrafted audio features pertaining to timbre such as the spectral flux,
spectral complexity or the Mel-Frequency Cepstral Coefficients (MFCC) from
Essentia (Bogdanov et al., 2013) and extract these features from our audio
dataset. Then, we could use these as the input to a classifier such as k-nearest
neighbors, Support-Vector Machines (SVMs) or decision trees17. The idea be-
hind this rationale is that by reducing the input from the digital audio which
can have a dimensionality of SampleRate∗Duration, these algorithms are easier
and faster to train and we keep a pertinent audio representation for the task.
These classifiers typically use an objective function with trainable variables
(also called weights) whose values are set by iterating through the dataset. By
going through each example (x,y) on the training dataset, the classifiers adjust
the value of the weights to find the best fit for y = f (x) in the full dataset.
Machine learning algorithms come with their own set of issues. The main
ones are related to the data they are trained with. If this data is insufficient,

16By handcrafted features, we mean characteristics designed by experts, which are derived
from the input without the use of machine learning.

17An explanation of how these algorithms and a complete overview of classification al-
gorithms can be found in Mitchell (1997).

28 Literature Review on Instrument Classification

lacks variety or does not represent the problem at hand, the algorithm is due
to overfitting — not being able to generalize well to data never seen before.
Furthermore, some of these algorithms, especially ones with lots of trainable
weights, lack interpretability, as the mapping f (x) between input and output
can be very abstract. Moreover, if the data is not representative of what
it samples, the algorithms can have biases towards lower represented classes.
For very complex problems, extracting features which are tailored to all the
possible data variations can be close to impossible using handcrafted features.
For example, in speech recognition, it would be very complicated to create
handcrafted features which are invariant to the speaker’s accent (Goodfellow
et al., 2016).
In the following section, we will look at a new set of machine learning al-
gorithms which aim to bypass this feature designing problem: deep learning
algorithms.

3.2 Deep Learning Architectures for Classification

With the increase of computational power in the past years, a new set of
algorithms within machine learning have been proposed. These are called
deep learning algorithms and they are able to learn directly from the high-
dimensional data, therefore skipping the handcrafted feature selection step.
Although deep learning algorithms have existed since the 1940’s (Goodfellow
et al., 2016), their success and popularity is relatively new. This is due to
several factors but mostly to the increase in the amount of available training
data and the increase in computational power and software libraries for parallel
processing of data.
Neural networks are the backbone of deep learning algorithms. While some
neural networks, such as the feed-forward neural network, have been used
as back-ends in the traditional machine learning paradigm, they excel when
used within the deep learning paradigm. The name of these networks comes
from their inspiration from the architecture of the brain, where neurons are
connected to each other to create a large network. To understand neural
networks, we will start by understanding their most basic component — the
neuron — and understand how they connect to create networks. We will then
look at commonly used neural network architectures and understand some of
their main issues.
The artificial neuron consists of an affine transformation which is followed by
a non-linearity (Bengio, 2009). They have several inputs and only one output
which can be broadcast to other neurons. The affine transformation consists of
a weighted sum of all its inputs and a bias term. Both the weights of the sum
and the bias are trainable parameters. The non-linearity step is achieved by

3.2 Deep Learning Architectures for Classification 29

Input Layer Weights

Output
Activation
Function

y

Figure 3.1: Example of an artificial neuron used for creating layers in neural net-
works.

an activation function which should be differentiable so that a gradient-based
training can be used and computationally efficient for fast training. Commonly
used activation functions are softmax (3.1), Rectified Linear Units (ReLU)
(3.2)(Nair & Hinton, 2010) or a sigmoid function (3.3). A visual representation
of an artificial neuron is provided in Figure 3.1.

f (x) =
1

1+ exp−x
(3.1)

f (x) = max(o,x) (3.2)

f (x) =
1

1+ exp−x
(3.3)

In feed-forward networks, neurons are organized into multiple layers, where
each neuron receives its input from the neurons of the previous layer and sends
its output to the ones in the next layer, as can be seen in Figure 3.2. The
first layer is typically called the input layer and is responsible for receiving
external data. Likewise, the output layer is the last one and is responsible for
outputting the classification result. The layers in between are termed hidden
layers and these are responsible for learning the representations needed to go
from input to a label. Typically, the closer a layer is to the output layer, the
higher the level of the representation calculated (Bengio, 2009).
As we have seen before, the goal of a classification algorithm is to approximate
a function y = f (x), which maps an input x to a category y for all the examples
in the training data. In a feed-forward network, if the weights are represented
by θ , the approximated mapping function can be represented by y∗ = f ∗(x,θ).
The goal of the network is to learn the best θ so that f ∗(x,θ)≈ f (x). To achieve

30 Literature Review on Instrument Classification

Figure 3.2: Example of a neural network layer.

this goal, the training procedure used in most deep learning algorithms is back-
propagation based on Stochastic Gradient Descent (SGD) optimization. For
a batch of examples from the training dataset, an error is calculated between
the network’s output and the ground truth labels using a loss function. This
loss function is normally designed to fit the task at hand, where the researcher
chooses which kind of errors are more or less significant in the application scen-
ario. Commonly used loss functions for classification are the mean-squared er-
ror (3.4) or the binary cross entropy loss (3.5). When the loss is calculated for
a batch of examples, the next step is to adjust the weights based on this error.
This is where the SGD acts by identifying which weights were more responsible
for the error and by modifying them by a proportional amount. An important
parameter to introduce here is the learning rate, a tuning parameter which
defines how much the weights should be modified. Setting a high value for
this parameter improves convergence speed but leads to lower final accuracy.
On the other hand, if this value is set too small, it might take too long to
train and can make the optimization procedure get stuck in local minima. A
common technique is to use variable learning rates based on training time or
classification accuracy.

f (y, ŷ) = (ŷ− y)2 (3.4)

f (y, ŷ) =−(y log(ŷ)+(1− y) log(1− ŷ)) (3.5)

Another common technique applied to training neural networks is regulariza-

3.2 Deep Learning Architectures for Classification 31

tion: modifications to the algorithm in order to reduce its generalization error
but not its training error (Goodfellow et al., 2016). These techniques are fairly
different from each other, as this is a very generic problem. However, some
commonly used examples are:

Data augmentation: artificially creating variations of the training data,
e.g. rotating the images in a dataset;

Parameter norm penalties: constraining the weights so that they take
values within a range;

Dropout: randomly disabling neurons during training so that the network
learns to be more robust;

Early stopping: stopping the training before the accuracy is maximum
in the training set

Noise robustness: making the model better suitable to deal with noisy
data by injecting it at the label level or in the weights.

Finally, an important step for neural network training is the initialization of
the weights. If the initial values are too large, the network will not learn well
and will have exploding gradients. If they are too small, the network will not
learn at all. Two algorithms are typically used for the initialization: Xavier
(Glorot & Bengio, 2010) and He (He et al., 2015).
A detailed review of neural network training, loss functions, initialization, reg-
ularization and learning rate schedule is provided in Goodfellow et al. (2016).
A special type of neural networks which are particularly suited to sequential
data and which have seen increasing interest in classification tasks are Con-
volutional Neural Network (CNN). Instead of neurons, these networks use a
function inspired by the convolution mathematical operation to extract inform-
ation from the data. Instead of learning the weights of neurons, these networks
learn filters (also known as kernels) which slide through the data and identify
relevant features. After performing this convolution-like operation with a ker-
nel through an input, we obtain an intermediate representation often called
feature maps. In Figure 3.3, we show an example of the architecture of a CNN
with feed-forward output layers.
Typically, a convolutional layer has three components: the convolution stage
with several filters, followed by a nonlinear activation function and a pooling
stage. Pooling is a special type of operation which is heavily used in CNNs for
reducing the size of feature maps and, consequently, memory usage, number
of parameters and computational complexity. To this end, they take parts
of the feature maps and reduce them to a smaller representation. There are

32 Literature Review on Instrument Classification

Input

Convolution

Layer

Max-Pooling Convolution

Layer

Max-Pooling Feed-Forward Feed-Forward

Figure 3.3: Convolutional neural network architecture with feed-forward output
layer.

two heavily used pooling operations which are used: max and average pooling.
Max and average pooling take a window of fixed size (2x2 is commonly used)
and slide it through the feature map. Their output is either the maximum
or average value in that windowed part of the feature map. Global pooling
is a similar technique which uses the full feature map instead of a window.
The use of pooling layers helps making the learned representations invariant
to translations in the input (Goodfellow et al., 2016).
When training classification neural networks, it’s common to split the full
data we have into 3 groups. The training set is used for the network to learn
the representations and classification weights. The validation set is a part of
the data that the algorithm does not see during training. The classification
accuracy on the validation set provides us with information on how the model
performs on unseen data and allows us to tune the parameters of the model
to achieve a higher generalization. Finally, the test set is assembled from the
data which is not present in the training and validation set and enables us to
obtain an approximate generalization error and overall accuracy of the trained
model.
The biggest issues with deep learning models relate to their use of big amounts
of data and processing power, as well as the lack of interpretability of their
results. As we know, deep learning models benefit from the amount of data
available for training. Access to enormous amounts of data and, consequently,
computational capability is normally reserved for big companies. Although
they are responsible for some of the most fascinating applications which use
deep learning, the lack of resources in smaller companies and universities makes
this field very unbalanced. Interpretability of the results provided by deep
learning methods is also a very significant problem. Although some recent
studies have been delving into increasing the interpretability of deep learning
models, these algorithms are hard to decipher due to the abstractions that
form their basis. Finally, deep learning models tend to reproduce the same
biases present in their data. Although this is normally an issue that derives

3.3 Instrument Classification 33

from the biases in the real world, we want deep learning algorithms to be fair
and treat everyone the same. For an in depth survey on algorithmic biases and
fairness concerns in deep learning, we refer the reader to Mehrabi et al. (2021).

3.3 Instrument Classification

Automatic instrument classification can be split into two related tasks with a
similar goal. The first is the identification of instruments in single instrument
recordings (which can be isolated or overlapping notes), while the second is
recognising the predominant instrument in a mixture of sounds.
Instrument classification approaches followed a similar course as general clas-
sification methodologies. Early algorithms used two modules for this classi-
fication, one for extracting and selecting handcrafted features (e.g. MFCC,
spectral centroid, roll-off, and flux) and another for classification (e.g. k-
nearest neighbors, SVMs or hidden Markov models). For example, Essid et al.
(2006) experiment with more than 150 handcrafted features in which a se-
lection is given as input to Gaussian mixture modeling algorithm and SVMs.
Benetos et al. (2006) perform instrument classification by combining a set of
handcrafted features, a feature selection algorithm and non-negative matrix
factorization. In Fuhrmann & Herrera (2010), SVMs with a set of timbral-
related handcrafted features are used to quantify music similarity. A thorough
overview of algorithms for instrument classification using traditional machine
learning techniques is presented in Herrera-Boyer et al. (2003) and Fuhrmann
(2012).
Recent work has shown the effectiveness of using CNNs for instrument clas-
sification (Pons et al., 2017b; Han et al., 2017; Li et al., 2015; Park & Lee,
2015). Commonly used input representations of audio for instrument classi-
fication are the waveform and the spectrogram of the audio. While the raw
audio can provide all the information possible to the network, for long in-
puts, the network has to be very big. On the other hand, when dealing with
spectrograms, the input size can be smaller, and the networks are, therefore,
more compact. When raw audio or spectrograms are given, CNNs are able
to learn and identify local spectro-temporal patterns relevant to the task to
which they are applied. When utilized for MIR tasks, CNNs have outper-
formed the previous state-of-the-art approaches for various tasks (Nam et al.,
2019; Han et al., 2017). For automatic instrument classification, the state-of-
the-art approaches use CNNs trained on different representations of the input,
such as raw audio (Li et al., 2015), spectrograms together with multiresolution
recurrence plots (Park & Lee, 2015) and log Mel-frequency spectrograms (Han
et al., 2017; Pons et al., 2017b). In Pons et al. (2017b), CNNs were tailored
towards learning timbre representations in log Mel-frequency spectrograms by

34 Literature Review on Instrument Classification

using vertical filters instead of the commonly used square filters. This provides
a pitch invariance on the features learned by the front end, which is ideal for
timbre-related features. For instrument classification, this approach displays
a close to the state-of-the-art (Han et al., 2017) accuracy on the Instrument
Recognition in Musical Audio Signals (IRMAS) dataset (Bosch et al., 2012)
while reducing the number of trainable parameters by approximately 23 times
on the single-layer proposed model.
The evaluation in instrument classification is a fairly simple task. The typical
accuracy metrics can be used to measure the correctness of a model’s pre-
diction: f-measure, precision, recall and overall accuracy in case the model
output is binary. In the case of a mode outputs a probability, Area Under
the Receiver Operating Characteristic Curve (ROC-AUC) or Area Under the
Precision-Recall Curve (PR-AUC) can be used. The Datasets used for the
evaluation and training of these algorithms include Real World Computing
(RWC) Music Database (Goto et al., 2002) or the University of Iowa Musical
Instrument Samples18. While these datasets are small (RWC has 50 instru-
ments), they proved to be good for classification using handcrafted features.
New datasets such as the IRMAS Bosch et al. (2012) for predominant instru-
ment classification and GoodSounds (Romani Picas et al., 2015) with single
instrument recordings have been created and provided sufficient data for deep
learning approaches to be able to surpass more traditional machine learning
approaches. However, most of these datasets use either polyphonic music re-
cordings or recorded notes of classical music instruments. In electronic music, a
lot of the sounds present in music makers’ collections are generated by synthes-
izers which provide different timbres than the ones in classical instruments. A
new high-quality dataset of one-shot instrumental notes was presented in Engel
et al. (2017), largely surpassing the size of the previous datasets, containing
305979 musical notes with unique pitch, timbre and envelope generated from
digital instruments.
In Chapter 4, we will be looking at using this dataset to train a model based on
the Pons et al. (2017b) CNN and augmenting it with audio effects to verify how
robust it is to the processed data. In Chapter 5, we will present a new dataset of
loops from Freesound, which can be used to properly evaluate how classification
algorithms perform on real music-making data. Finally, in Chapter 6, we will
use the loop dataset from Chapter 5 to train a classifier of instrumentation
roles. This enables us to organize a loop collection by their instrumentation
roles, and we show that it can be extended to automatically infer the structure
of music compositions.

18https://theremin.music.uiowa.edu/MIS.html

https://theremin.music.uiowa.edu/MIS.html

CHAPTER 4
Classification of One-Shot

Sounds

Automatic classification of one-shot instrumental sounds allows automatically
categorizing the sounds contained in sound collections for electronic music
making, allowing easier navigation and better characterization. Automatic in-
strument classification has mostly targeted the classification of unprocessed
isolated instrumental sounds or detecting predominant instruments in mixed
music tracks. For this classification to be useful in audio databases for Elec-
tronic Music Production (EMP), it has to be robust to the audio effects applied
to unprocessed sounds.
In this chapter, we evaluate how a state-of-the-art model trained with a large
dataset of one-shot instrumental sounds performs when classifying instruments
processed with audio effects. In order to evaluate the robustness of the model,
we use data augmentation with audio effects and evaluate how each effect
influences the classification accuracy.
This chapter is based on Ramires, A., & Serra, X. (2019). Data augmentation
for instrument classification robust to audio effects. In Proceedings of the
International Conference on Digital Audio Effects (DAFx).

4.1 Introduction

The automatic classification of one-shot instrumental sounds remains an open
research topic for Music Information Retrieval (MIR). While the research
on this field has been mostly performed on clean and unprocessed sounds,
the sounds provided by EMP databases may also contain “production-ready”
sounds, with audio effects applied on them. Therefore, in order for this auto-
matic classification to be reliable for EMP sample databases, it has to be robust
to the types of audio effects applied to these instruments. In our study, we

35

36 Classification of One-Shot Sounds

evaluate the robustness of a state-of-the-art automatic classification method
for sounds with audio effects, and analyze how data augmentation can be used
to improve classification accuracy.
Recent work has shown the effectiveness of using Convolutional Neural Net-
work (CNN) for instrument classification (Pons et al., 2017b; Han et al., 2017;
Li et al., 2015; Park & Lee, 2015). CNNs can be seen as trainable feature
extractors, where kernels (or filters) with trainable parameters are convolved
over an input, being able to capture local spatial and temporal characterist-
ics. This architecture has been applied with great success to the detection,
segmentation and recognition of objects and regions in images (LeCun et al.,
2015). In the audio domain, when raw audio or spectograms are given, CNNs
are able to learn and identify local spectro-temporal patterns relevant to the
task to which they are applied. CNNs have outperformed previous state-of-
the-art approaches for various MIR tasks (Nam et al., 2019; Han et al., 2017),
specially instrument classification (Li et al., 2015; Park & Lee, 2015; Pons
et al., 2017b).
Within the context of NSynth (Engel et al., 2017), a new high-quality data-
set of one shot instrumental notes was presented, largely surpassing the size
of the previous datasets, containing 305979 musical notes with unique pitch,
timbre and envelope. The sounds were collected from 1006 instruments from
commercial sample libraries and are annotated based on their source (acoustic,
electronic or synthetic), instrument family and sonic qualities. The instrument
families used in the annotation are bass, brass, flute, guitar, keyboard, mallet,
organ, reed, string, synth lead and vocal. The dataset is available online19 and
provides a good basis for training and evaluating one shot instrumental sound
classifiers. This dataset is already split in training, validation and test sets,
where the instruments present in the training set do not overlap with the ones
present in validation and test sets. However, to the best of our knowledge,
no methods for instrument classification have so far been evaluated on this
dataset.
In order to increase the generalization of a model further than the data provided
to it, one possible approach is to use data augmentation. This approach can
be described as applying deformations to a collection of training samples, in a
way that the correct labels can still be deduced (McFee et al., 2015a). In com-
puter vision, transforming images by cropping, rotation, reflection or scaling
are commonly used techniques for data augmentation. In the audio domain, an
intuitive and practical transformation is applying audio effects to the original
training audio files. Transformations such as time-stretching, pitch-shifting,
dynamic range compression and adding background noise have been applied
with success to environmental sound classification, for overcoming the data

19https://magenta.tensorflow.org/datasets/nsynth

https://magenta.tensorflow.org/datasets/nsynth

4.2 Methodology 37

scarcity problems (Salamon & Bello, 2017). In Ko et al. (2017), artificial
reverberation was applied to speech recordings, so as to create a speech recog-
nition system robust to reverberant speech. For instrument recognition, the
same set of effects used in Salamon & Bello (2017) was applied with success in
McFee et al. (2015a). We believe that the use of audio effects typically used
in EMP such as echo, reverb, chorus, saturation, heavy distortion or flanger
can lead to a useful augmentation, as well as to an increase in robustness in
instrument classification scenarios where the instrument recordings have these
effects applied.
The rest of the chapter is structured as follows: Section 4.2 presents the meth-
odology we used to classify the sounds in the dataset and the data augmenta-
tion procedure. In Section 4.3 we detail the evaluation of the different models,
while Section 4.4 presents the results we achieved and a discussion of them.
Finally, Section 4.5 concludes this chapter by presenting its contributions and
proposes avenues for future work.

4.2 Methodology

In our study we conduct two experiments. First, we try to understand how
augmenting a dataset with specific effects can improve instrument classification
and secondly, we see if this augmentation can improve the robustness of a model
to the selected effect.
To investigate this, we process the training, validation and test sets of the
NSynth (Engel et al., 2017) dataset with audio effects. A state-of-the-art
deep learning architecture for instrument classification (Pons et al., 2017b)
is then trained with the original training set, and appended with each of the
augmented datasets for each effect. We use the model trained with the original
training set as a baseline and compare how the models trained with augmented
versions perform on the original test and on the augmented versions of it for
each effect. The code for the experiments and evaluation is available in a public
GitHub repository20.

4.2.1 Data Augmentation and Pre-Processing

The audio effects for the augmentation were applied directly to the audio
files present in the training, validation splits of the NSynth dataset (Engel
et al., 2017). For the augmentation procedure, we used a pitch-shifting effect
present in the LibROSA21 library and audio effects in the form of Virtual

20https://github.com/aframires/instrument-classifier
21https://librosa.github.io/librosa

https://librosa.github.io/librosa

38 Classification of One-Shot Sounds

Studio Technology (VST) audio plugins. For the augmentation which used
audio plugins, the effects were applied directly to the audio signals using the
Mrs. Watson22 command-line audio plugin host. This command line tool
was designed for automating audio processing tasks and allows the loading
of an input sound file, processing it using a VST audio effect and saving the
processed sound. In order to maintain transparency and reproducibility of
this study only VST plugins which are freely distributed online were selected.
The parameters used in the augmentation procedure were the ones set in the
factory default preset for each audio plugin, except for those which the default
preset did not alter the sound significantly.
The audio effects used were the following:

Heavy distortion: A Bitcrusher audio effect which produces distortion
through the reduction of the sampling rate and the bit depth of the input
sound was used in the training set. The VST plugin used for augmenting
the training set was the TAL-Bitcrusher23. For the test and validation
set, we used Camel Audio’s CamelCrusher24 plugin which provides dis-
tortion using tube overdrive emulation combined with a compressor.

Saturation: For this effect, tube saturation and amplifier simulation
plugins were used. The audio effect creates harmonics in the signal,
replicating the saturation effect from a valve- or vacuum-tube amplifier
(Zölzer, 2011). For this augmentation we focused on a subtle satura-
tion which did not create noticeable distortion. The plugin used in the
training set was the TAL-Tube23, while for the validation and test set
Shattered Glass Audio’s Ace25 replica of a 1950s all tube amplifier was
used.

Reverb: To create a reverberation effect, the TAL-Reverb-4 plugin26

was used in the test set. This effect replicates the artificial reverb ob-
tained in a plate reverb unit. For the validation and test set we used Oril-
River27 algorithmic reverb, which models the reverb provided by room
acoustics. The default preset for this plugin mimics the reverb present
in a small room.

Echo: A delay effect with long decay and with a big delay time (more
than 50ms) (Zölzer, 2011) was used to create an echo effect. We used the

22https://github.com/teragonaudio/MrsWatson
23https://tal-software.com/products/tal-effects
24https://audiopluginsforfree.com/camelcrusher
25https://shatteredglassaudio.com/product/103
26https://tal-software.com/products/tal-reverb-4
27https://kvraudio.com/product/orilriver-by-denis-tihanov

https://github.com/teragonaudio/MrsWatson
https://tal-software.com/products/tal-effects
https://audiopluginsforfree.com/camelcrusher
https://shatteredglassaudio.com/product/103
https://tal-software.com/products/tal-reverb-4
https://kvraudio.com/product/orilriver-by-denis-tihanov

4.2 Methodology 39

TAL-Dub-228 VST plugin in the training set and soundhack’s ++delay29

in the validation and test set. For this last plugin, we adapted the factory
default preset, changing the delay time to 181.7 ms and the feedback
parameter to 50%, so that the echo effect was more noticeable.

Flanger: For this delay effect, the input audio is summed with a delayed
version of it, creating a comb filter effect. The time of the delay is short
(less than 15 ms) and is varied with a low frequency oscillator (Zölzer,
2011; Reiss & McPherson, 2014). Flanger effects can also have a feedback
parameter, where the output of the delay line is routed back to its input.
For the training set, the VST plugin used was the TAL-Flanger23, while
for the test and validation sets we used Blue Cat’s Flanger30, which
mimics a vintage flanger effect.

Chorus: The chorus effect simulates the timing and pitch variations
present when several individual sounds with similar pitch and timbre
play in unison (Reiss & McPherson, 2014). The implementation of this
effect is similar to the flanger. The chorus uses longer delay times (around
30 ms), a larger number of voices (more than one) and normally does not
contain the feedback parameter (Zölzer, 2011; Reiss & McPherson, 2014).
The VST effect used in the training set was the TAL-Chorus-LX31 which
tries to emulate the chorus module present in the Juno 60 synthesizer.
For the test and validation sets, we used Blue Cat’s Chorus32, which
replicates a single voice vintage chorus effect.

Pitch shifting: For this effect, the LibROSA Python package for mu-
sical and audio analysis was used. This library contains a function which
pitch shifts the input audio. As the dataset used contains recordings
of the instruments for every note in the chromatic scale in successive
octaves, our approach focused on pitch-shifting in steps smaller than
one semitone, similarly to what can occur in a detuned instrument.
The bins_per_octave parameter of the pitch-shifting function was set
to 72 = 12× 6 while the n_steps parameter was set to a random value
between 1 and 5 for each sound. Neither 0 or 6 were selected as possible
values as it would be the same as not altering the sound or pitch-shifting
it by one semitone. The intention of the random assignment in the
n_steps is to ensure the size of this augmented dataset is equal to the
size of the datasets of other effects.

28https://tal-software.com/products/tal-dub
29https://soundhack.com/freeware
30https://bluecataudio.com/Products/Product_Flanger
31https://tal-software.com/products/tal-chorus-lx
32https://bluecataudio.com/Products/Product_Chorus

https://tal-software.com/products/tal-dub
https://soundhack.com/freeware
https://bluecataudio.com/Products/Product_Flanger
https://tal-software.com/products/tal-chorus-lx
https://bluecataudio.com/Products/Product_Chorus

40 Classification of One-Shot Sounds

The audio resulting from this augmentation step can be longer than the original
unprocessed audio. In order to keep all examples with the same length, the
processed audio files were trimmed, ensuring all audio samples had a fixed
duration of 4 s, similar to the sounds presented in the NSynth dataset(Engel
et al., 2017).
The next step in the data processing pipeline is representing each sound in a
log-scaled mel-spectogram. First, a 1024-point Short-Time Fourier Transform
(STFT) is calculated on the signal, with a 75% overlap. The magnitude of the
STFT result is converted to a mel-spectogram with 80 components, covering
a frequency range from 40 Hz to 7600 Hz. Finally, the logarithm of the mel-
spectogram is calculated, resulting in a 80×247 log-scaled mel-spectogram for
the 4 s sounds sampled at 16 kHz present in the NSynth dataset (Engel et al.,
2017).

4.2.2 Convolutional Neural Network

The CNN architecture we chose to use in our experiment is the single-layer
architecture proposed by Pons et al. (2017b) for the musical instrument clas-
sification experiment, which has an implementation available online33. This
architecture uses vertical convolution filters in order to better model timbral
characteristics present in the spectogram, achieving close to state-of-the-art
results of Han et al. (2017), using a much smaller model (23 times less train-
able parameters) and a consequently lower training time.
We chose the single-layer architecture presented in this study and adapted
it to take an input of size 80× 247. This architecture contains a single but
wide convolutional layer with different filters with various sizes, to capture the
timbral characteristics of the input:

128 filters of size 5×1 and 8×1;

64 filters of size 5×3 and 80×3;

32 filters of size 5×5 and 80×5.

Batch normalization Ioffe & Szegedy (2015) is used after the convolutional layer
and the activation function used is Exponential Linear Unit (ELU) (Clevert
et al., 2016). Max pooling is applied in the channel dimension for learning
pitch invariant representations. Finally, 50% dropout is applied to the output
layer, which is a densely connected 11-way layer, with the softmax activation
function. A graph of the model can be seen in Figure 4.1. For more information
on this architecture and its properties see Pons et al. (2017b).

33https://github.com/Veleslavia/EUSIPCO2017

https://github.com/Veleslavia/EUSIPCO2017

4.3 Evaluation 41

input_1: InputLayer

1_50_conv: Conv2D 3_50_conv: Conv2D 5_50_conv: Conv2D 1_70_conv: Conv2D 3_70_conv: Conv2D 5_70_conv: Conv2D

1_50_bn: BatchNormalization 3_50_bn: BatchNormalization 5_50_bn: BatchNormalization 1_70_bn: BatchNormalization 3_70_bn: BatchNormalization 5_70_bn: BatchNormalization

elu: ELU elu_1: ELU elu_2: ELU elu_3: ELU elu_4: ELU elu_5: ELU

1_50_pool: MaxPooling2D 3_50_pool: MaxPooling2D 5_50_pool: MaxPooling2D 1_70_pool: MaxPooling2D 3_70_pool: MaxPooling2D 5_70_pool: MaxPooling2D

1_50_flatten: Flatten 3_50_flatten: Flatten 5_50_flatten: Flatten 1_70_flatten: Flatten 3_70_flatten: Flatten 5_70_flatten: Flatten

concatenate: Concatenate

dropout: Dropout

prediction: Dense

Figure 4.1: Single-layer CNN architecture proposed in Pons et al. (2017b)

4.3 Evaluation

The training of the models used the Adam optimizer (Kingma & Ba, 2015),
with a learning rate of 0.001. In the original paper (Pons et al., 2017b) the
authors used Stochastic Gradient Descent (SGD) with a learning rate reduction
every 5 epochs. This was shown to provide good accuracy on the IRMAS
dataset. However, we chose to use Adam as an optimizer because it does not
need significant tuning as SGD. Furthermore, using a variable learning rate
dependent on the number of epochs could benefit the larger training datasets
as is the case of the ones with augmentation. A batch size of 50 examples was
used, as it was the largest batch size able to fit the memory of the available
GPUs. The loss function employed for the training was the categorical cross-
entropy, as used in Pons et al. (2017b), which can be calculated as shown
in Equation (4.1), where N represents the number of observations (examples
in the training set) and pmodel [yi ∈ Cyi] is the predicted probability of the ith

observation belonging to the correct class Cyi .

loss =− 1
N

N

∑
i=1

log pmodel[yi ∈Cyi] (4.1)

To compare the models trained with the different datasets, we used categorical
accuracy as evaluation metric, described in Equation (4.2). A prediction is
considered correct if the index of the output node with highest value is the
same as the correct label.

Categorical Accuracy = Correct predictions/N (4.2)

42 Classification of One-Shot Sounds

All the models were trained until the categorical accuracy did not improve in
the validation set after 10 epochs and the model which provided the best value
for the validation set was evaluated in the test set.

4.4 Results

Two experiments were conducted in our study. We firstly evaluated how aug-
menting the training set of NSynth by applying audio effects to the sounds
can improve the automatic classification on the instruments of the unmodified
test set. In the second experiment we evaluated how robust a state-of-the-
art model for instrument classification is when classifying sounds where these
audio effects are applied.

Test Effect Train Effect Accuracy

None

None (baseline) 0.7378
Heavy distortion 0.7473

Saturation 0.7349
Reverb 0.7375
Chorus 0.7417
Echo 0.7336

Flanger 0.7412
Pitch Shifting 0.7334

Table 4.1: Classification accuracy on the unprocessed test set.

The results of the first experiment are presented in Table 4.1, where the classi-
fication accuracy between the models trained with the original NSynth training
set augmented with audio effects can be compared to the baseline (unprocessed
dataset). We see that the increase in accuracy only occurs for chorus, heavy
distortion and flanger effects. The highest classification accuracy was achieved
by the dataset augmented with heavy distortion, where an increase of 1% was
obtained. However, all the accuracy values are in a small interval (between
0.7334 and 0.7473), which means that the model was not able to learn from the
augmented datasets. Future experiments are needed in order to understand
why this occurs. In Salamon & Bello (2017), the authors state that the super-
ior performance obtained was due to an augmentation procedure coupled with
an increase in the model capacity. Experiments with higher capacity models
can be performed to understand if the size of the model used is limiting its
performance on learning from the augmented dataset.
In Table 4.2, we present the accuracy values obtained when evaluating the
trained model on test sets processed with effects. The first thing we verify is
that the accuracy of the classification greatly decreases for almost all effects,

4.5 Conclusions 43

Test Effect Train Effect Accuracy
Heavy distortion None 0.3145

Heavy distortion 0.3518
Saturation None 0.4836

Saturation 0.4607
Reverb None 0.3931

Reverb 0.3774
Chorus None 0.6348

Chorus 0.6436
Echo None 0.4719

Echo 0.4319
Flanger None 0.7046

Flanger 0.7002
Pitch Shifting None 0.6980

Pitch Shifting 0.6741

Table 4.2: Classification accuracy on the augmented test set.

when compared to the unprocessed sound classification. The model seems to be
more robust to the flanger and to the pitch shifting effect, where the difference
between the accuracy on the unprocessed test set and on the processed one is
smaller than 4%. The effects which caused the biggest drops in accuracy (>
20%) were the heavy distortion, the saturation, the echo and the reverb. When
evaluating if training with the augmented datasets increased the robustness of
the model, we see that this is only true for the chorus and distortion effect.
While for the heavy distortion effect the accuracy when training with the
augmented set is improved by a significant value (≈ 4%), the difference in
accuracy between training with the augmented and the unprocessed sets are
generally small. Further experiments can be performed to understand the bad
generalization of the model.

4.5 Conclusions

In this chapter, we evaluated how a state-of-the-art algorithm for automatic
instrument classification performs when classifying the NSynth dataset and
how augmenting this dataset with audio effects commonly used in electronic
music production influences its accuracy on both the original and processed
versions of the audio. We identify that the accuracy of this algorithm is greatly
decreased when tested on sounds where audio effects are applied and see that

44 Classification of One-Shot Sounds

the augmentation can lead to better classification in unprocessed sounds.
Future work includes experimenting with a higher capacity model. Work can
also be conducted on further augmenting the datasets. Although the effects
applied were the same in the training, validation and test sets, the implement-
ations used was different in the training set. This leads to a different timbre
between the sets that the architecture might not be able to generalize to. Aug-
menting the dataset using a number of different settings for each effect, as well
as different combinations of the effects applied are other future possibilities for
research.

CHAPTER 5
Freesound Loop Dataset and

Annotation Tool

Music loops are essential ingredients in electronic music production, and there
is a high demand for pre-recorded loops in a variety of styles. Several com-
mercial and community databases have been created to meet this demand, but
most are not suitable for research due to their strict licensing. In this chapter,
we present the Freesound Loop Dataset (FSLD), a new large-scale dataset
of music loops annotated by experts. The loops originate from Freesound, a
community database of audio recordings released under Creative Commons
licenses, so the audio in our dataset may be redistributed. The annotations
include instrument, tempo, meter, key and genre tags. We describe the meth-
odology used to assemble and annotate the data, and report on the distribu-
tion of tags in the data and inter-annotator agreement. We also present to the
community an online loop annotator tool that we developed. To illustrate the
usefulness of FSLD, we present short case studies on using it to estimate tempo
and key, generate music tracks, and evaluate a loop separation algorithm. We
anticipate that the community will find yet more uses for the data, in applic-
ations from automatic loop characterization to algorithmic composition.
This chapter is based on Ramires, A., Font, F., Bogdanov, D., Smith, J.,
Yang, Y.H., Ching, J., Chen, B.Y., Wu, Y.K., Wei-Han, H., & Serra, X.
(2020). The Freesound Loop Dataset and Annotation Tool. In Proceedings
of the 21st International Society for Music Information Retrieval Conference
(ISMIR).

5.1 Introduction

Audio loops have been made available for amateur and professional music
makers since the early ages of electronic music. Currently, large-scale databases

45

46 Freesound Loop Dataset and Annotation Tool

of audio offer huge collections of audio material for users to work with. Some
databases, like Freesound34 and Looperman35, are community-oriented: people
upload their sounds so that other users can employ them in their works. More
commonly, collections are commercially oriented: loops are available to paying
costumers, either through a subscription service (e.g. Sounds.com36, Splice37)
or by allowing customers to buy packs of loops (e.g. Loopmasters38, and Prime
Loops39).
Despite the number of loops available on these databases, the technologies used
to analyse and navigate these databases still rely on human annotations and
human content curation to, for instance, group sounds into packs for specific
genres or styles. Loops are being manually annotated with information like
instrument, tonality (key), tempo (BPM) and music genre. This is a time-
consuming task which is often unfeasible, which results in badly annotated
databases and poor user experience when browsing them. In the field of Music
Information Retrieval (MIR), a substantial effort has been put into automatic-
ally identifying the aforementioned characteristics for musical pieces. However,
loops are inherently different from music pieces (i.e. with reduced instrument-
ation and short length). Therefore, existing MIR algorithms need to be tested
and (possibly) adapted to work successfully in this scenario.
Early work on the retrieval of loops focused on tempo extraction and transcrip-
tion from drum loops (Gillet & Richard, 2004; Gouyon et al., 2006). Gouyon
et al. (2006) compared several tempo induction algorithms proposed in the
ISMIR 2004 competition. The loop dataset used in this work has been com-
monly used for evaluating tempo estimation algorithms and is divided into
three subsets. One of these comprises two thousand audio loops (with tempo
annotations) from Sound Effects Library40. These audio loops are not free and
a license needs to be obtained to use them for research.
Automatic transcription of drum loops focuses on identifying when the differ-
ent percussion instruments occur in a loop. Gillet & Richard (2004) used a
collection of 315 drum loops for evaluating their system and provided “a com-
pressed version of a few drum loops”. The URL to the webpage the authors
provide is broken and, presumably, the lower quality versions of the loops do
not represent commercial-quality content. The authors also use this dataset
for automatically retrieving drum loops from spoken queries (Gillet & Richard,
2005). This database was later used by Ravelli et al. (2007) and Bello et al.

34https://freesound.org
35https://looperman.com
36https://sounds.com
37https://splice.com
38https://loopmasters.com
39https://primeloops.com
40http://sound-effects-library.com

https://freesound.org
https://looperman.com
https://sounds.com
https://splice.com
https://loopmasters.com
https://primeloops.com
http://sound-effects-library.com

5.1 Introduction 47

(2006) for automatic rhythm modification and analysis of drum loops.
The work of Gómez-Marín et al. (2015) explores rhythmic similarity measures
for audio loops . The authors validate the proposed metric using 9 drum break
loops from Rhythm Lab41. The authors do not specify which are the drum
loops used.
Font & Serra (2016) presented a dataset of audio loops from Freesound (Font
et al., 2013) in their work on tempo estimation and a confidence measure
for tempo in audio loops. The authors use two commercial datasets, loops
bundled with music production software Apple’s Logic Pro42 and Acoustica’s
Mixcraft43, and two community datasets. The first one is a private collection
of loops downloaded from Looperman, which was previously used for research
in Roma (2015). Looperman does not allow the re-distribution of loops “as is”,
and considers as misuse the automatic download of their loops44. A collection
of 4000 loops from Freesound, obtained by searching Freesound for sounds with
the queries “loop” and “bpm” is also proposed. The sounds’ filenames, tags
and textual descriptions are parsed to identify tempo annotations provided by
the users. However, these annotations are not always accurate, and, to enable
further work on audio loops, more information besides the tempo is desired.
In short, existing academic work which employs loops resorts to commercial
samples as the source of data and open datasets do not have complete and
reliable annotations. This makes it difficult to reproduce existing research. To
promote open and accessible research on audio loops, we propose a free and
distributable database of loops from Freesound, which provides production-
ready sounds with high-quality annotations.
We present the Freesound Loop Dataset (FSLD), an open dataset with 9,455
music loops to support reproducible research in MIR. FSLD contains production-
ready loops from Freesound which are distributed under Creative Commons
licenses and can, therefore, be freely shared among the research community
and industry. Part of the dataset has been manually annotated with inform-
ation about rhythm, tonality, instrumentation and genre, in a similar way as
commercially available loop collections are annotated. The annotation service
is made public45 so that the community can work on enlarging the annotations
of this collection. We expect this dataset to have an impact on the research
community as it supports further research into several timely research topics
which are also of great interest to the industry.
The rest of the chapter is structured as follows. Section 5.2 details how the

41https://rhythm-lab.com
42https://apple.com/logic-pro
43https://acoustica.com/mixcraft
44https://looperman.com/help/terms
45http://mtg.upf.edu/fslannotator

https://rhythm-lab.com
https://apple.com/logic-pro
https://acoustica.com/mixcraft
https://looperman.com/help/terms
http://mtg.upf.edu/fslannotator

48 Freesound Loop Dataset and Annotation Tool

proposed dataset was collected and annotated. In Section 5.3, general statistics
of the dataset are given. In Section 5.4 and 5.5, we present some potential
applications and provide a benchmark of the dataset using some classic MIR
tasks. Finally, in Section 5.6, we conclude and suggest future work directions.

5.2 Dataset Creation

In this section the process we have followed to create the dataset is described.
We show how we collected the loops to annotate, how they were pre-analyzed
for a faster annotation procedure and explain what was annotated and how
the annotation tool was implemented. Finally, we present how the dataset is
distributed and organized.

5.2.1 Loop Selection

To select an initial pool of candidate loops, we followed the same methodology
as in Font & Serra (2016): i.e., we retrieved sounds with both “loop” and “bpm”
keywords on Freesound, resulting in 9,490 sounds. Using the Freesound API,
it was straightforward to obtain these loops and their metadata—title, tags,
textual description, and author’s username.

5.2.2 Loop Annotation

We want the loops in our dataset to be annotated in a way which is similar
to commercially available loops. This way, we make sure that the loop char-
acterization is compatible with industry standards. For this, we decided to
annotate the loops’ instrumentation, tempo, time signature, key and genre,
as described below. The annotation was performed by 8 MIR researchers and
students, with knowledge of electronic music production. To make the annota-
tion procedure as efficient as possible, we created a web application for the
annotators with several tools at their disposal, which can be seen in Fig. 5.1.
This application was developed using Flask46, a web framework for Python.
This interface provides fields for the annotators to fill in the desired inform-
ation, which will be described in the following sections. The instructions are
provided on tooltips for quick access by annotators.

46https://flask.palletsprojects.com

https://flask.palletsprojects.com

5.2 Dataset Creation 49

Figure 5.1: The user interface provided to the annotators, available online45.

5.2.2.1 Instrumentation

Instead of annotating instruments in a traditional way, which would not be
straightforward in heavily processed audio or more experimental loops, we
chose to annotate general roles which can be useful for both music makers and
automatic generation of music. We asked annotators to tick all the roles that
apply to each loop. Usually, specific instruments could be easily assigned to a
specific role. We present the roles along with some examples in Table 5.1.

Role Example Instruments
Percussion Drums, glitches, tuned percussion
Bass Synth bass, fingered bass
Chords Piano chords, guitar chords, synth pads
Melody Instrument playing a melody, arpeggiator
Sound FX Risers, cinematic sounds, foley, scratching
Vocal Singing voice, spoken word, vocoder

Table 5.1: Instrumentation roles and the examples provided for each category.

50 Freesound Loop Dataset and Annotation Tool

5.2.2.2 Rhythmic Characteristics

We asked for annotations on three rhythmic aspects:
Tempo provides an easy measure of rhythmic compatibility and is the most
common information provided in commercial loop databases. We ask annot-
ators if the loop has a clear and steady tempo, to identify loops with constant
tempo and clear beat (BPM value and steady tempo), with changing tempo
(BPM value of the initial tempo and no steady tempo), and loops with no clear
beat but where the tempo can be inferred (BPM value and no steady tempo).
Meter is not a feature we see annotated as often as BPM, which might be due
to the common use of 4/4 meter in electronic music. This feature is relevant to
annotate, for calculating the number of bars in a loop, from its meter, tempo
and duration.
Finally, as sometimes the length of the audio file is not the length of the loop,
we also annotate if it is well-cut. If there is some silence at the beginning or
the end of the file or if there is a “tail” (e.g. a decay of a reverb effect) when
the audio is exported, it might not loop correctly just by staring the loop again
when it finishes playing.

5.2.2.3 Tonal Characteristics

We annotate if the loop has prominent tonal content and, if so, to indicate a
root key and mode that matches the tonal content of the loop (i.e., root note
from a chromatic scale and Major/Minor mode). We explained “prominent
tonal content” as whether it is easy to sing along to the loop or to find a
meaningful root note for the loop. For root key annotations, we asked to
choose a note from a dropdown with 12 notes, or “Unknown” in case the key
could not be found. For annotating mode, the annotators had the choice of
“Major” or “Minor” if the loop sounded good with one of these modes; “None”
if the loop could not be clearly assigned to either “Major” or “Minor” (e.g.
loop contains a single note); or “Unknown” for other cases.

5.2.2.4 Genre

We annotate genre in non-exclusive categories, where each is assigned to a loop
if it can be used to make music in that genre. To create a taxonomy which
would be similar to commercially available ones, we merged the taxonomies of
Sounds.com and Splice. These were chosen as they provided several examples
for each genre and had similar parent categories. We present the taxonomy in
Table 5.2.

5.2 Dataset Creation 51

Genre Examples
Bass Music Dubstep, Drum and Bass, Jungle
Live Sounds Rock, Jazz, Disco
Cinematic Sound FX, Filmscore, Sci-Fi
Global Reggae, Dancehall, Indian Music
Hip Hop Trap, Boom Bap, Lofi Hip Hop
Electronic Ambient, IDM, Chill Out
House / Techno Deep House, Electro, Tech House
Other Dance Music EDM, Psy Trance, Hardstyle

Table 5.2: Taxonomy of genres used for the annotation and examples for each cat-
egory.

5.2.2.5 Loop Pre-Analysis and Annotation Tools

We performed a pre-analysis on the loops to obtain tempo, key and genre
suggestions. To obtain the tempo information, we followed the same approach
of Font & Serra (2016), parsing the title, description and the tags of the loop
for tempo information provided by users. To propose an initial key and mode
to the annotators, we analyzed the loops using the algorithm proposed by
Faraldo et al. (2016), which is implemented in the Essentia audio analysis
library (Bogdanov et al., 2013). Finally, by taking the genre information from
the textual metadata of the loops, we were able to map some of the sounds
to the genres to annotate. The checkboxes were selected for the genres which
either were mentioned or had a sub-genre mentioned in the textual metadata.
Our annotators were familiar with the annotation procedure and took the pre-
annotations only as suggestions to speed-up the annotation process.
In the annotation tool, at the top of the display is the loop’s metadata: its
unique sound id, title, author’s username, and the tags and textual description
provided by the author (see Fig. 5.1). The waveform of the loop and a playhead
is also shown, which are linked to an audio player. The audio player always
restarts the playback of the loop when it finishes, and triggers a metronome
with the BPM provided in the BPM annotation field. We provide stop, play
and pause controls for the loop and metronome and volume controls for the
loop. A button which restarts only the metronome is also present. To ease
finding a key and mode which suits the loop, we present a synthesizer which
plays the chord present in the tonal annotation section. In case the mode
selected is “None” or “Unknown”, the synthesizer will just play the root note
of the key selected. Using the computer’s keyboard, the annotator can cycle
through the options for key and mode, in several octaves. Finally, buttons are
provided for submitting the annotation when it is finished, saving the sound
for later and discarding the sound in case it is not a loop.

52 Freesound Loop Dataset and Annotation Tool

5.2.3 Dataset Availability

The loops and corresponding annotations (provided in a JSON file) are publicly
available on Zenodo47. This dataset can be divided into three subsets, defined
by their level of annotations. These are:

Multiple-annotations (MA): the loops annotated by at least two research-
ers. It contains 1,472 loops.

Single-annotation (SA): the loops annotated by a single researcher. Cur-
rently contains 1,464 loops.

Automatic-annotations (AA): the loops annotated by the analysis al-
gorithms mentioned in Section 5.2.2.5. Contains 9,455 loops: the loops
in MA and SA and 6,519 more.

In addition to the main dataset, we provide a repository48 with the code used
for the annotation tool interface and server, the pre-analysis that generated the
subset of automatic annotations, and the analysis and potential applications
presented in Sections 5.3, 5.4 and 5.5.

5.3 Dataset Analysis

To understand the diversity and reliability of the dataset, we investigate the
distribution of annotated characteristics and inter-annotator agreement.

5.3.1 Annotation Distribution

The human-annotated part of the dataset contains 1,579 sounds which, in total,
have been annotated 2,809 times. The distribution of genres, instrumentation,
and keys are shown in Tables 5.3 and 5.4 and the tempo histogram in Figure
5.2. It is well-balanced in terms of instrument and genre; reasonably balanced
in terms of tempo, although 120 bpm dominates; and highly imbalanced in
terms of key, with C Major and Minor dominating.

5.3.2 Inter-annotator Agreement

To measure the agreement of the annotators in our dataset, we measure the
inter-annotator agreement for the MA annotations subset. To do this, we use

47https://doi.org/10.5281/zenodo.3967852
48https://github.com/aframires/freesound-loop-annotator

https://doi.org/10.5281/zenodo.3967852
https://github.com/aframires/freesound-loop-annotator

5.3 Dataset Analysis 53

Percussion 54.95%
Bass 19.10%
Chords 11.90%
Melody 21.31%
FX 24.80%
Vocal 2.29%

Bass Music 32.04%
Live Sounds 21.38%
Cinematic 19.95%
Global 14.26%
Hip-hop 17.29%
House/Techno 29.05%
Other Dance Music 25.63%

Table 5.3: Distribution of the instrument roles and genre in our dataset.

30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

0

200

400

600

800

1000

Figure 5.2: Distribution of BPMs in FSLD.

two metrics: proportion of overall agreement (Agr.) for all the annotations, and
positive and negative agreement (PA and NA) (Feinstein & Cicchetti, 1990)
for binary classification tasks. The proportion of overall agreement reflects
the number of cases when both annotators agree on a label, and is calculated
by dividing their number by the total number of annotations. This overall
metric does not distinguish the agreement in positive and negative cases, so
for the binary annotation tasks we also calculated the positive and negative
agreement. The formulas for calculating these are given in Eq. 5.1, where
the variables represent the annotations by the annotators (e.g., NP = first
annotator answered negative, second positive).

PA =
2PP

2PP+NP+PN
, (5.1)

NA =
2NN

2NN +NP+PN
, (5.2)

Table 5.5 presents the results for this analysis. We can see that overall, the
values for the agreement are high. Bass, melody and chords have a lower
positive agreement value, despite the high negative agreement. This might

54 Freesound Loop Dataset and Annotation Tool

Key Maj Min None Unknown
C 9.63% 8.38% 3.65% 0.95%
C# 1.38% 2.84% 0.60% 0.43%
D 3.31% 5.37% 1.85% 0.39%
D# 1.29% 2.49% 0.73% 0.21%
E 2.28% 3.65% 1.20% 0.26%
F 4.64% 4.43% 1.16% 0.34%
F# 1.12% 2.49% 1.12% 0.13%
G 2.66% 4.25% 1.93% 0.43%
G# 1.72% 2.58% 0.90% 0.13%
A 3.01% 5.50% 1.68% 0.26%
A# 1.50% 1.89% 0.52% 0.04%
B 0.82% 3.01% 0.64% 0.21%

Table 5.4: Distribution of the keys in our dataset.

Char. Sub-Char. Agr. PA NA
Inst. Percussion 85.16% 86.62% 83.35%

Bass 76.73% 45.83% 85.19%
Melody 82.33% 60.57% 88.61%
Chords 87.40% 47.35% 92.84%
FX 72.04% 43.61% 81.41%
Vocal 98.66% 71.88% 99.31%

Tempo BPM 87.84% NA NA
Signature 97.84% NA NA
Well Cut 86.88% 92.73% 32.82%

Key Root 67.56% NA NA
Mode 69.80% NA NA

Genre Bass Music 69.50% 53.26% 77.37%
Live Sounds 80.09% 55.28% 87.19%
Cinematic 81.66% 57.14% 88.33%
Global 82.33% 51.53% 89.19%
Hip-Hop 79.05% 31.30% 87.64%
House/Techno 69.35% 48.56% 78.17%
Other 73.53% 45.64% 82.50%

Table 5.5: Inter-annotator agreement for the MA subset.

indicate that annotators are not able to easily distinguish if an element should
fit in one of the 3 roles, but can say when it is not present. The lower value
for root key agreement indicates that several keys are used to describe the
same sounds. This fits our annotating indications, where we asked annotators
to select a key which sounds good with the loop and therefore, personal taste

5.4 Benchmarking MIR Tasks 55

may arise in this choice. Finally, the positive agreement for genres always has
values lower than 65%, which might be due to how genre might be perceived
subjectively between annotators.

5.4 Benchmarking MIR Tasks

To demonstrate the usefulness of this dataset, we use it in several short case
studies. To benchmark tempo, we followed the evaluation approach of Font
& Serra (2016) and used the Accuracy 1 and Accuracy 2 presented in Gouyon
et al. (2006), together with the Accuracy 1e proposed in Font & Serra (2016).
Due to space constraints, here we only report the mean of the 3 accuracies.
Full results can be seen in an accompanying website49. The algorithms selected
for the tempo benchmarking were the following (details for each algorithm can
be found in respective papers):

Percival (Percival & Tzanetakis, 2014): We use both the original
implementation and the one provided in Essentia.
Zapata (Zapata et al., 2014): Implementation provided in Essentia.
Degara (Degara et al., 2012): We also use Essentia’s implementation.
Böck (Böck et al., 2015):We use the 3 variants available in the Mad-
mom library50: COMB, ACF and DBN.

We validate tempo estimation algorithms on the 3 proposed subsets. Key
estimation is only validated on the MA and SA subsets as we do not have
original uploader annotations for key. The MA subset, which has at least 2
annotations per loop, was analyzed in two ways: BOTH and EITHER. In
BOTH, we run the MIR algorithms exclusively on the loops which have the
same labels from both annotators. In EITHER, the output of the algorithm
was deemed correct if it was at least one of the annotated labels. The results
are presented in Table 5.6
We can see that the results are similar to the ones obtained in Font & Serra
(2016), with Percival14 having better accuracy across all the datasets. We can
see that the accuracy increases from AA to SA, and from SA to BOTH. This
might be due to the user-annotated loops having incorrect annotations; it may
also be that when both annotators agree on a tempo, the tempo is strong and
defined. The EITHER evaluation gives the largest accuracies, which may be
due to its broader criteria for considering tempos correct.

49https://aframires.github.io/freesound-loop-annotator
50https://github.com/CPJKU/madmom

https://aframires.github.io/freesound-loop-annotator
https://github.com/CPJKU/madmom

56 Freesound Loop Dataset and Annotation Tool

Algorithm AA SA BOTH EITHER
Percival14 58.09 62.98 65.75 84.13
Percival14e 57.82 64.00 65.49 84.98
Zapata14 51.81 58.79 58.99 77.97
Degara12 52.32 58.77 59.31 79.16
Bock15COMB 44.42 51.17 52.92 71.35
Bock15ACF 48.65 51.96 54.75 74.90
Bock15DBN 45.76 50.60 52.32 70.90

Table 5.6: Evaluation of tempo estimation algorithms in the proposed subsets.

For benchmarking key estimation algorithms, we used the evaluation metrics
from MIREX51, which evaluates how close the estimated key and the annotated
key are to provide an accuracy. The algorithms compared in the evaluation
were the following:

EDMKey (Faraldo et al., 2016): We use the implementation in
Essentia, with 4 key profiles: Krumhansl (Krumhans, 1990), Temper-
ley (Temperley, 1999), Shaath (Sha’ath, 2011) and the one proposed in
(Faraldo et al., 2016).

EssentiaBasic (Bogdanov et al., 2013): Essentia’s implementation
of the algorithm presented by Gómez (Gómez, 2006b).

QMUL (Noland & Sandler, 2007): We use the Key Detection im-
plementation available in QM Vamp Plugins52.

In Table 5.7, we present part of the results of the key estimation evaluation.
Due to lack of space, only the final MIREX scores for each dataset are presen-
ted. The full results can be seen in the accompanying website49.

Algorithm SA BOTH EITHER
Edmkey 72.26 88.25 85.63
EdmkeyKrumhansl 66.99 84.85 82.98
EdmkeyTemperley 61.46 71.78 71.77
EdmkeyShaath 72.38 88.25 85.63
EssentiaBasic 71.25 88.80 85.30
QMULKeyDetector 35.09 42.15 46.25

Table 5.7: Evaluation of key estimation algorithms in the proposed subsets.

We see that EssentiaBasic and EDMkey are the best performing algorithms
here. EDMKey has been specially tuned to be used for EDM, which might

51https://music-ir.org/mirex/wiki/2019:Audio_Key_Detection
52https://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-keydetector

https://music-ir.org/mirex/wiki/2019:Audio_Key_Detection
https://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-keydetector

5.5 Music Generation and Decomposition 57

make it more suitable to the loops we are annotating. We again see that the
accuracy increases from SA to BOTH, which might indicate again that when
the key is clear and defined, the algorithms are also able to correctly identify
it.

5.5 Music Generation and Decomposition

Another way the dataset is valuable is for creating synthetic datasets of songs
for evaluating loop-extraction algorithms, such as Smith & Goto (2018). We
created 100 random songs, each using 5 random drum loops and 5 non-drum
loops (chosen from a subset of 4/4, 120-bpm, 1-bar, single-instrument loops
for which there was no disagreement among the annotators on the instru-
ment role). Each song is a random arrangement of the loops, either in a
sparse arrangement, in which one drum and one non-drum loop occurs per
bar, or a dense one, in which 4 loops occur per bar (i.e., 2 drum and 2 non-
drum). For comparison, we also recreated the “composed” and “factorial”
layouts from Smith & Goto (2018). Examples of each layout are shown on the
accompanying website.
We used the public implementation53 of Smith & Goto (2018) to extract loops
for each song, informed with the true number of loop segments (4 or 10) and
the true downbeat boundaries. The metrics SDR, SIR and SAR (the signal to
distortion, interference and artefacts ratios (Raffel et al., 2014)) are reported
in the left part of Table 5.8.
These are normally computed by trying all permutations of estimated sources
to true sources and using that which maximizes the score. This is infeasible
for permutations of 10 items, so we first find the permutation that maximizes
the similarity between the source and true loop spectra.

Layout SDR SIR SAR F1 Acc.
Sparse –5.2 –3.9 15.8 0.194 0.691
Dense –7.9 –7.3 14.4 0.294 0.542
Composed 12.5 18.4 22.6 0.585 0.546
Factorial 19.8 29.2 24.1 0.560 0.551

Table 5.8: Evaluation of loop source quality (SDR, SIR, SAR) and estimated layouts
(F-measure and accuracy) for each song layout.

This permutation is also used to evaluate the quality of the estimated lay-
out. We binarize each row of the estimated layout, using the row’s mean as
threshold. We then compute the raw accuracy (as in Smith & Goto (2018)),

53https://github.com/jblsmith/loopextractor

https://github.com/jblsmith/loopextractor

58 Freesound Loop Dataset and Annotation Tool

but here we propose also using the F-measure, so as not to weight true negat-
ives unduly. The results are in the right columns of Table 5.8.
SDR, SIR and SAR are all lower for the random 10-part songs than for the
4-part songs, showing that we have created a more challenging testing ground
for loop extraction systems. For the layout evaluation, our evaluation makes
clear that the raw accuracy gives undue weight to true negatives: the highest
accuracy was obtained for the sparse layouts, despite having the lowest F-
measure. This short evaluation is a proof of concept; with more space, we
could study the impact of the instrumentation, number of loops, loop duration,
and other factors on the separation quality. We can also generate layouts with
loops of many durations and evaluate hierarchical loop extraction systems.

5.6 Conclusion

In this chapter, we presented our work on addressing the lack of standard
loop datasets to carry MIR tasks. We presented FSLD, a dataset of audio
loops annotated at a level similar to commercial loop collections. These loops
are licensed for redistribution and can be used and redistributed for research
purposes. We provide a detailed analysis of the dataset and its annotations and
provided several use cases for tempo and key benchmarking, music generation
and loop separation. Furthermore, we present the online annotation tool used
to build the dataset, and we make it available online so other researchers and
the general public can contribute and extend the dataset.

CHAPTER 6
Automatic Instrumentation

Role Classification

In this chapter, we look at labeling loops of key structural groups such as bass,
percussive or melodic elements by the role they occupy in a piece of music
through the task of Automatic Instrumentation Role Classification (AIRC).
Such labels assist Electronic Music (EM) producers in the identification of
compatible loops in large unstructured audio databases. While human an-
notation is often laborious, automatic classification allows for fast and scalable
generation of these labels. We experiment with several deep-learning archi-
tectures and propose a data augmentation method for improving multi-label
representation to balance classes within the Freesound Loop Dataset (FSLD).
To improve the classification accuracy of the architectures, we also evaluate
different pooling operations and, additionally, we demonstrate how our pro-
posed AIRC method is useful for analyzing the structure of EM compositions
through loop activation transcription.
This chapter is based on the early experiments conducted in Ching, J., Ramires,
A., & Yang, Y.H. (2020). Instrument Role Classification: Auto-tagging for
Loop Based Music. In Proceedings of The 2020 Joint Conference on AI Mu-
sic Creativity (MuMe + CSMC), while most of the contributions are taken
from Drysdale, J., Ramires, A., Serra, X., & Hockman, J. (2022). Improved
Automatic Instrumentation Role Classification and Loop Activation Transcrip-
tion. In Proceedings of the International Conference on Digital Audio Effects
(DAFx).

6.1 Introduction

Loops serve as the material from which music makers can generate EM com-
positions through various editing and combinatory processes (e.g., layering,

59

60 Automatic Instrumentation Role Classification

splicing, rearranging). Figure 6.1 depicts a simplified representation of the
EM creation process involving the layering and repeated activation of loops
with different roles.

Figure 6.1: A simplified EM composition structure, built with five loop layers. Log-
scaled STFT power spectrogram (top) and corresponding role activations: Chords (C),
Melody (M), Sound Fx (F), Bass (B), and Percussion (P) at 4-bar intervals (bottom).

In recent years, there has been an increased focus on research related to audio
loops within the field of music information retrieval. There are several methods
that exist for automated loop retrieval (Gillet & Richard, 2005; López-Serrano
et al., 2017; Shi & Mysore, 2018; Smith et al., 2019; Chen et al., 2020), and
loop creation (Cocharro et al., 2014; Alain et al., 2020; Chandna et al., 2021).
In addition, there are two recent methods proposed for loop activation tran-
scription, a task that involves estimating the locations in which loops oc-
cur throughout a piece of music. López-Serrano et al. (2016) proposed a
method for decomposing loop-based EM using Non-Negative Matrix Factoriza-
tion Deconvolution (NMFD) (Smaragdis, 2004) to estimate spectral templates
and rhythmic activations from magnitude spectrograms. Following this work,
Smith & Goto (2018) propose an alternative method to discovering loop ac-
tivations of EM using Non-Negative Tensor Factorization (NTF) (FitzGerald
et al., 2006). While non-negative matrix factorization approaches allow for

6.2 Methodology 61

separation of mixed audio into the constituent loops of a music composition,
they rely on non-varying repetitions of loops and do not optimize independence
between learned loop representations.
As an alternative to the aforementioned approaches, which seek to identify the
instrument within a loop and its associated activation, AIRC is a music auto-
tagging task that estimates the presence of active instrumentation role groups
(e.g., percussion, bass, melody, chords, sound Fx) within audio recordings. Re-
search in AIRC has been facilitated by the development of the Freesound Loop
Dataset (FSLD), presented in the previous chapter, due to its large amount of
loops and corresponding instrumentation role annotations.
We apply AIRC to full EM compositions, in which multiple instrumentation
roles (e.g., percussion, melody, bass) are often active. To handle the lack
of co-occurring loops in the FSLD, we introduce a novel data augmentation
technique to balance classes and experiment with several deep-learning archi-
tectures and pooling operations, resulting in a state-of-the-art AIRC system.
We then demonstrate the usefulness of AIRC in EM structural analysis by
comparing our system with previous approaches for loop activation estimation.
Additionally, the proposed AIRC system is shown to derive key structural
information from full-length EM compositions in the form of instrumentation
role activation maps, which would be of use in tasks such automatic DJing
(Vande Veire & De Bie, 2018), mashups (Davies et al., 2013), and loop creation
(Shi & Mysore, 2018).
The remainder of this chapter is structured as follows: Section 6.2, presents
the proposed method for AIRC and loop activation transcription. Evaluation
methodology and the datasets used in this study are detailed in Section 6.3
and the results and discussion are provided Section 6.4. Conclusions and sug-
gestions for future work are presented in Section 6.5.

6.2 Methodology

In this study, several Convolutional Neural Network (CNN) architectures are
evaluated to identify the best system for AIRC. Each architecture utilizes dif-
ferent configurations of front-end filter shapes to learn a representation from
spectrograms and pooling operations that derive the final predictions by sum-
marizing the information learned by the network.
As the data employed in AIRC contains different types of musical audio, from
tonal melodies to noise-like sound Fx, this motivates the experimentation of
architectures aimed at different sound classification tasks. Three front-end
filter shapes are used: general domain square filters, vertical filters (Pons et al.,
2017b) tailored towards classifying the timbre of melodic instruments, and

62 Automatic Instrumentation Role Classification

harmonic band-passfilters which capture harmonic characteristics(Won et al.,
2020).
To improve the AIRC predictions, two methods for summarizing the informa-
tion learned in the final convolutional layers of a CNN are investigated. The
standard approach to is to use Global Max Pooling (GMP); however, this
infers strict assumptions about the label characteristics of the data. In the
closely related field of sound event detection, auto-pooling has been proposed
to automatically learn the best suited operation by interpolating between max-,
mean-, or min-pooling during training. We implement both GMP and auto-
pooling and compare their performance for the task of AIRC.

6.2.1 Implementation

Audio is input into the networks as a spectrogram representation, from which
features are extracted through convolutional layers. Output predictions return
values between [0.,1.] depicting the presence of active instrumentation roles.
For each network, the input layer is a four-dimensional tensor t ∈ Rb×w×h×c,
with batch size b, number of frames w, number of frequency bins h, and chan-
nels c. Following Pons et al. (2017b), each model uses L2-norm regularization
of filter weights to encourage loudness invariance with the exception to the
harmonic CNN-based models, which use a weight decay of 1e–4 (Won et al.,
2020).

6.2.1.1 Vertical filter network

Ba
tc

h
N

or
m

al
iz

at
io

n
M

ax
 P

oo
lin

g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

Ba
tc

h
N

or
m

al
iz

at
io

n
M

ax
Po

ol
in

g

C
on

v:
12

8
(3

,3
)

Ba
tc

h
N

or
m

al
iz

at
io

n
M

ax
 P

oo
lin

g

C
on

v:
12

8
(4

,1
)

Ba
tc

h
N

or
m

al
iz

at
io

n
Ti

m
e

D
is

tri
bu

te
d

D
en

se

Au
to

Po
ol

Pr
ed

ic
tio

ns

Frequency

Ti
m

e

Figure 6.2: Block diagram showing the configuration of the vertical filter network
with auto-pooling.

The vertical filter network (VF-CNN) is based on the multi-layer architecture
in Pons et al. (2017b) for predominant musical instrument recognition. Figure
6.2 provides an overview of the VF-CNN configuration. The input spectrogram
is set to be of size 500×128 to accommodate for longer observations of audio
loops (see Section 6.2.2). The front-end utilizes several vertical convolution

6.2 Methodology 63

filter sizes (black rectangles in Figure 6.2) to efficiently model timbral charac-
teristics present in the spectrogram. Custom filter sizes are used to capture
both wide (e.g., bass, chords) and shallow spectral shapes (e.g, percussion).
The numbers and sizes of filters used in the front-end are as follows: 128 filters
of sizes 5× 1 and 80× 1; 64 filters of sizes 5× 3 and 80× 3; and 32 filters of
sizes 5×5 and 80×5.
All convolutions in the front-end use same padding, and max-pooling is applied
to obtain a 16×16 summary of each feature map. This is followed by two 2-
D convolutional layers with batch normalization (Ioffe & Szegedy, 2015) and
Exponential Linear Unit (ELU) (Clevert et al., 2016) activation functions. The
first 2-D convolutional layer is followed by strided (2,2) max-pooling. After
the final 2-D convolutional layer, we experiment with two pooling operations
to summarize the information learned by previous layers prior to predictions
(see Subsection 6.2.1.4).

6.2.1.2 Square filter network

The square filter network (SF-CNN) contains four 2-D convolutional layers
with 128 small-rectangular filters of size 3× 3 and same padding. After each
convolutional layer, batch normalization is applied with an ELU (Clevert et al.,
2016) activation function. Each convolutional layer is followed by strided (2,2)
max-pooling, with the exception of the final convolutional layer, which also
uses one of the two summarization pooling operations described in Section
6.2.1.4.

6.2.1.3 Harmonic CNN

In Ching et al. (2020), AIRC was approached using a CNN with a data-driven
harmonic filter-based front-end (H-CNN) (Won et al., 2020). We re-implement
this architecture and use it as a baseline to test our proposed models. The in-
put t is passed through a set of triangular band-pass filters to obtain a tensor
representing it as six harmonics. Harmonic structure is captured by treating
the harmonics as channels and processed by a 2-D CNN. The CNN consists of
seven convolution layers and a fully connected layer. All but the final convolu-
tional layer is followed by 2×2 max-pooling, batch normalization and a Rec-
tified Linear Units (ReLU) activation function. Global max-pooling is applied
to the final convolutional layer. The output layer is a 5-way fully-connected
layer with, a sigmoid activation function and a 50 % dropout.

64 Automatic Instrumentation Role Classification

6.2.1.4 Summarization Pooling

We consider two pooling operations for summarizing the information learned in
the final convolutional layers: auto-pooling and standard global max-pooling.
Auto-pool is a trainable pooling operator capable of adapting to data char-
acteristics by interpolating between min-, max-, or average-pooling (McFee
et al., 2018). For the configurations that use auto-pooling, the final convolu-
tional layer uses as kernel size (4,1). This is followed by batch normalization
and a time-distributed dense layer with a sigmoid activation function and r
output nodes, where r is equal to the number of classes. The output of the
time-distributed dense layer is fed to the auto-pooling operation, which pro-
duces the final predictions.
For configurations that use GMP, the final convolutional layer is summarized
with global max-pooling and then fed to a fully-connected output layer con-
sisting of r output nodes, sigmoid activation functions and a 50% dropout.

6.2.1.5 Loss function

The loss function used for updating the parameters of each model is Binary
Cross Entropy (BCE). BCE can be calculated as:

BCE =− 1
N

N
∑
i=1

yi · log(p(yi))+(1− yi) · log (1− p(yi)) (6.1)

where N represents the number of examples in the training set and p(yi) is the
predicted probability of the ith example.

6.2.2 Network Training

Input audio is pre-processed through resampling and conversion to a spectro-
gram representation. Audio loops are resampled to 16kHz and the Short-Time
Fourier Transform (STFT) of each loop is calculated using a window size of
512 samples and a hop size of 256 samples. For the H-CNN, magnitudes of
STFT are provided as input to the model. For the SF-CNN and VF-CNN, the
inputs are log-scaled Mel spectrograms with 128 Mel-frequency bands.
All models are trained using the Adam optimizer (Kingma & Ba, 2015) with
a learning rate 1e–4, where each iteration takes a mini-batch of 8 examples.
All weights are initialized using He’s constant (He et al., 2015) to promote
equalized learning. Early stopping was used to complete the training once the
model performance ceases to improve over 15 epochs. The epoch that achieves
the best accuracy on the validation set is used for testing.

6.3 Evaluation 65

6.2.3 Loop Activation Transcription

Loop activation transcription involves predicting the loop activations of instru-
mentation roles as they occur over time. Taking advantage of the grid-based
structure and consequently fixed tempo of loop-based EM, we are able to use
the proposed AIRC system to analyze the loop structure of a given composi-
tion. The AIRC system enforces separation between roles by design and does
not rely on loops being an exact repetition of themselves, thus making it robust
to variation such as automation and resequencing.
Instrumental role predictions for full EM compositions are obtained by passing
an audio file into the AIRC system in 4-bar segments and assessing output
activations. Segmenting a full-length EM composition into 4-bar loops, on
which we then perform AIRC, instrumentation role activations may be derived
for each loop, results in a form of EM transcription.

6.3 Evaluation

The AIRC model presented in Section 6.2 is assessed through two evaluations
to determine: 1) AIRC performance using the various configurations and aug-
mented version of the FSLD, and 2) performance for loop activation transcrip-
tion.

6.3.1 Automatic Instrumentation Role Classification

6.3.1.1 Evaluation Methodology

The architectures (i.e., VF-CNN, SF-CNN, and H-CNN) and pooling strategies
(i.e., auto-pooling and GMP) presented in Section 6.2 are evaluated in order to
determine the optimal configuration for AIRC. Following Pons et al. (2017a),
we use two sets of performance measurements: Area Under the Receiver Oper-
ating Characteristic Curve (ROC-AUC) and Area Under the Precision-Recall
Curve (PR-AUC). The metrics were calculated on the test set for each of the
models under evaluation.
In Ching et al. (2020), we also calculate the F1 score; however, we omit this
evaluation metric as it depends on a decision threshold applied to the per-class
output scores; whereas, ROC-AUC and PR-AUC measure model performance
globally, integrating all possible thresholds.

66 Automatic Instrumentation Role Classification

6.3.1.2 Augmented Freesound Loop Dataset

To train and evaluate the different models we use the FSLD (Ramires et al.,
2020c), comprising of various loops uploaded to Freesound (Font et al., 2013)
under Creative Commons licensing. Of the various annotations present within
the FSLD, we use tempo, key and loop instrumentation roles. The most
important of which is the instrumentation role—a multi-label annotation for
which the possible roles are: percussion, bass, chords, melody, sound Fx and
vocals.
The original FSLD contains 2936 loops, of which 1531 have only one instru-
mentation role and 1405 have more than one. As can be seen from the class
distribution in Table 6.1, the classes in this dataset are heavily imbalanced.

Percussion 54.95 Fx 24.80
Bass 19.10 Melody 21.31
Chords 11.90 Vocal 2.29

Table 6.1: Distribution (%) of instrumentation roles in FSLD.

In order to adapt this dataset to our task, we apply modifications to the data.
We first remove all vocal loops as they do not provide sufficient training and
testing material. All remaining loops are time-stretched to 120 Beats Per
Minute (BPM). Longer loops are cropped to a length of 4 bars (i.e., 8 secs),
while loops shorter than 4 bars are cropped to either 1 or 2 bars and repeated
to a length of 4 bars. We separate loops which have multiple instrumentation
roles from those which only have one, and randomly select 70% of each for
training and 30% for validation and testing. From the latter split, 60% are
used for testing and 40% for validation.
Besides using the previously described training set of the FSLD, we applied
a data augmentation procedure to handle the main imbalance issues on the
dataset. These are 1) the lesser presence of loops with more than one instru-
mentation role (i.e., multi-label) compared to the ones with just one role (i.e.,
single-label) and; 2) the number of loops for each instrumentation role class,
shown in Table 6.2.
The data augmentation procedure utilizes common production techniques that
are used in commercial music recordings including key matching, tempo match-
ing and the use of audio Fx such as distortion, reverb and chorus.

Percussion 929 Fx 222
Bass 92 Melody 174
Chords 102

Table 6.2: Distribution of the loops with only one instrumentation role in FSLD.

6.3 Evaluation 67

To balance the number of loops per class, we use an augmentation methodo-
logy similar to the one proposed in Chapter 4. The loops are processed through
several effects, including delay, bitcrusher, chorus, flanger, reverb, tube satur-
ation and pitch-shifting, resulting in 1000 loops for each of the r classes under
observation (r = 5), totaling 5000 loops.
We create multi-role data by overlapping loops from each augmented single
label class such that all single and combined classes contain the same number
of loops. We start by calculating the possible combinations

(r
k

)
, where k is the

number of instrumentation roles in the combination (2 ≤ k ≤ 5). To balance
the dataset in both the number of loops per instrumentation role and in k,
the number of augmented loops (5000) is divided by

(r
k

)
to obtain the num-

ber of loops required for each combination (e.g., for k=2, 5000/
(r

k

)
= 500 for

each combination of roles). The final loops are then created by harmonically
combining the single instrumental role loops. We combine only loops with
compatible modes (e.g., Major with Major), and pitch shift the selected loops
to their average key. Discarding the original multi-label loops of the training
set, this process results in a total of 25000 loops that can can used for training.
In order to evaluate the effect of this augmentation procedure (Aug), we com-
pare the accuracy of the models trained with those trained with the original
dataset (FSLD) on the same test and validation data.

Percussion 27.59 Fx 23.17
Bass 20.33 Melody 18.15
Chords 10.77

Table 6.3: Distribution (%) of instrumentation roles in the test set.

6.3.2 Loop Activation Transcription

6.3.2.1 Evaluation Methodology

To investigate the capacity of the AIRC system for transcribing loop activations
in EM compositions, we compare all the AIRC configurations (Section 6.2).
The best performing configurations are then compared with the results of the
previous approach to loop activation transcription by Smith & Goto (2018).
As in López-Serrano et al. (2016) and Smith & Goto (2018), we evaluate the
loop activation predictions against a ground truth in terms of accuracy. As
accuracy expects a binarized transcription, we use a repeated k-fold cross val-
idation together with a grid search to identify the best threshold for binarising
the predictions of each role. In order to investigate the generalization of the
proposed models, we use 2-fold cross validation repeated 10 times, where one
fold is used as a validation set to identify thresholds and the other is reserved

68 Automatic Instrumentation Role Classification

M
od

el
D

at
as

et
P

oo
lin

g
P

ar
am

.
P

R
-A

U
C

R
O

C
-A

U
C

B
as

s
F

x
P

er
c.

C
ho

rd
s

M
el

od
y

H
-C

N
N

A
ug

G
M

P
36

19
98

6
59

.1
8

77
.3

4
40

.3
0

57
.0

5
94

.6
0

47
.9

2
56

.0
1

H
-C

N
N

Pu
re

G
M

P
36

19
98

6
61

.8
3

80
.3

9
53

.6
5

42
.2

1
94

.1
0

60
.3

0
58

.8
9

V
F-

C
N

N
A

ug
G

M
P

10
98

86
9

65
.6

0
80

.9
9

47
.1

1
64

.9
2

97
.6

2
63

.1
1

55
.2

2
V

F-
C

N
N

Pu
re

A
ut

o
11

02
39

4
66

.9
8

82
.5

2
57

.5
9

66
.4

3
95

.7
5

50
.3

7
64

.7
7

V
F-

C
N

N
A

ug
A

ut
o

11
02

39
4

67
.4

7
81

.4
0

46
.1

8
67

.1
0

97
.0

5
56

.1
3

70
.8

9
SF

-C
N

N
A

ug
A

ut
o

31
36

74
68

.1
5

82
.1

9
55

.1
2

68
.3

0
98

.0
3

58
.8

1
60

.4
9

SF
-C

N
N

A
ug

G
M

P
44

57
01

68
.4

0
81

.5
9

62
.2

1
59

.8
0

95
.9

3
62

.3
9

61
.6

8
SF

-C
N

N
Pu

re
G

M
P

44
57

01
68

.7
4

83
.8

3
58

.7
2

63
.1

1
95

.9
7

64
.7

4
61

.1
4

V
F-

C
N

N
Pu

re
G

M
P

10
98

86
9

70
.6

2
85

.7
2

53
.8

3
71

.7
3

97
.8

4
64

.9
0

64
.7

8
SF

-C
N

N
Pu

re
A

ut
o

31
36

74
71

.2
8

85
.1

2
57

.7
6

59
.1

8
95

.9
8

73
.2

0
70

.3
0

Ta
bl

e
6.

4:
A

IR
C

pe
rfo

rm
an

ce
(%

)
an

d
m

od
el

siz
e

fo
r

ea
ch

co
nfi

gu
ra

tio
n,

w
he

re
bo

ld
in

di
ca

te
s

hi
gh

es
t

sc
or

es
.

6.4 Results & Discussion 69

for computing accuracy against the ground truth. Thresholds for each class
are identified by performing a grid search over a range between 0.01 and 1
with a step size of 0.01, then selecting the thresholds which provide highest
accuracy on the validation set.
In Smith & Goto (2018), approaches which require the downbeat tracking are
considered guided. As our proposed approach requires BPM annotations for
time-stretching, we only compare our models with the guided algorithms.

6.3.2.2 Dataset

We apply our proposed models to the dataset used in López-Serrano et al.
(2016) and Smith & Goto (2018). The dataset consists of simplified EM com-
positions built by generating templates similar to the ones in Figure 6.1 with
4-bar loops. We refer to this as the Artificial dataset for the reason that the
the loops are repeated without variation, which would usually be achieved in
professional music through DAW techniques, such as automation and resequen-
cing.
The automatic arrangement method provided in Smith & Goto (2018) is used
to build 21 music compositions with seven genres and three templates–composed,
factorial and shuffled factorial. For the composed template, loops are intro-
duced and removed in an iterative manner. The factorial template contains all
possible combinations of loops, arranged iteratively. The shuffled factorial tem-
plate contains the same loop combinations, with shuffled ordering. Factorial
and shuffled factorial datasets are useful for seeing how the models perform
on all of the loop combination possibilities for the Artificial dataset, whereas
composed layout is more representative of typical EM compositions in regards
to the way that loops are iteratively introduced and removed throughout the
composition.
Following the AIRC procedure, compositions are time-stretched from their
annotated tempo to 120BPM and divided into 4-bar loops, which are provided
as input to the AIRC systems.

6.4 Results & Discussion

6.4.1 Automatic Instrumentation Role Classification

The models are evaluated using use the Macro Average (MA) of the PR-AUC
and of the ROC-AUC as a global metric. For individual instrumentation roles,
we only show the PR-AUC. Due to the imbalance of the FSLD, which also

70 Automatic Instrumentation Role Classification

affects the test set (Table 6.3), MA is used to provide an average accuracy over
each class.
Table 6.4 presents the results of our AIRC experiment for the models discussed
in Section 6.2, in which each model is presented in ascending order of their
average PR-AUC. The ROC-AUC performance measure is consistently higher
than PR-AUC; however, this metric can lead to over-optimistic scores when
the dataset is unbalanced (Davis & Goadrich, 2006).
The best performing models w.r.t PR-AUC, are the SF-CNN with auto-pooling
(71.28%) followed by the VF-CNN with GMP (70.61%). Both models surpass
the current state-of-the-art, H-CNN trained on FSLD (61.82%) by a substantial
margin. The SF-CNN mostly performs better than its VF-CNN counterpart.
Vertical filters have been demonstrated to produce comparatively better results
with tonal musical audio (Pons, 2019); however, the results of our evaluations
suggest that square filters generalise better to the non-standard types of audio
associated with EM.
The overall best performing model in terms of PR-AUC is the SF-CNN with
auto-pooling trained on the Pure dataset. However, by closely inspecting the
results achieved for individual instrumentation roles, it can be seen that it
surpasses by almost 10% the PR-AUC achieved by other models in the Chords
class, while not achieving such a high result in Bass, Fx and Percussion.
The highest performing instrumentation role for all models is Percussion, which
was expected due to this role having the largest number of examples in the
FSLD dataset. The roles that generally perform worst are Bass and Chords,
which have the smallest number of examples in the FSLD. The performance
of Bass has a considerable increase when using a combination of the SF-CNN
with GMP and augmented data. Additionally, Chords performs significantly
better when using the SF-CNN and auto-pooling configuration trained with
the Pure dataset.
The best three performing models in terms of PR-AUC are trained on the
Pure dataset, followed by the Augmented one. However, it can be seen that
the Bass, Percussion and Melody roles tend to benefit from training with the
Augmented dataset. As the configurations perform better for different classes,
it is possible to use a combination of the models for classifying individual
instrumentation roles. This combination would lead to an average PR-AUC of
75,213%, substantially surpassing each model.

6.4.2 Loop Activation Transcription

Table 6.5 presents the loop activation transcription results using the AIRC con-
figurations (Section 6.2) to transcribe the compositions in the Artifical data-
set. Each model is presented in ascending order of their mean classification

6.4 Results & Discussion 71

accuracy over the instrumentation roles. Additionally, Table 6.5 provides the
classification accuracy for each individual role (Bass, Drums, Fx and Melody).

Model Data Pooling Mean Bass Drums Fx Melody
H-CNN Pure GMP 75.1 71.8 96.1 55.6 76.7
H-CNN Aug GMP 79.5 53.1 95.8 81.6 87.6
VF-CNN Pure Auto 80.2 63.7 98.6 63.1 95.3
VF-CNN Pure GMP 80.9 69.0 99.3 65.8 89.4
SF-CNN Pure Auto 81.0 66.9 97.3 71.6 88.4
SF-CNN Pure GMP 81.8 69.2 100.0 63.4 94.6
VF-CNN Aug Auto 82.5 74.2 99.7 79.7 76.6
VF-CNN Aug GMP 84.7 71.7 100.0 75.7 91.4
SF-CNN Aug GMP 86.2 71.7 100.0 79.6 93.2
SF-CNN Aug Auto 86.9 68.3 100.0 85.7 93.4

Table 6.5: Loop activation transcription accuracy (%) results for AIRC configura-
tions, where bold indicates highest scores.

The overall best performing model uses the SF-CNN with auto-pooling config-
uration trained using the augmented dataset (86.9%) followed by the SF-CNN
with GMP (86.2%). For this task, models trained with the augmented dataset
generally appear to outperform those trained with Pure dataset, which could
be due to the fact that the augmentation process ensures there is a balanced
distribution of all possible role combinations and it is common in the com-
positions for several roles to be active in a single loop. Drums are classified
most accurately for all model configurations with four models achieving 100%
accuracy. This is expected as percussion has the largest number of samples in
the FSLD dataset, and is usually the most prominent element in EM composi-
tions. In some cases, the VF-CNN configuration seems to improve performance
of Melody and Bass roles, which could suggest that the classification of roles
containing melodic instruments benefit from using vertical filters at the front
end of the system.
Figure 6.3 presents loop activation transcription results for the three template
variations using our two best performing AIRC configurations (i.e., SF-CNN-
AUTO and SF-CNN-GMP) compared with the NTF (Smith & Goto, 2018)
and NMFD (López-Serrano et al., 2016) methods previously proposed for this
task.
On a glance, we can see our architectures out perform the previous meth-
ods in regards to accuracy for the composed layout, with SF-CNN-GMP (red)
achieving the highest score. NTF (blue) achieves the best performance for the
factorial layouts closely followed by our SF-CNN-AUTO architecture. Fur-
thermore, the AIRC system has a considerably faster runtime than NTF (∼30
secs per composition) and NMFD (∼10 mins per composition). Predictions

72 Automatic Instrumentation Role Classification

for a full EM composition are calculated in under a second using AIRC, which
could be beneficial when analyzing large collections of music in DJ software.
As mentioned in Smith & Goto (2018), an additional shortcoming of the NTF
and NMFD approaches is that the algorithms depend on loop roles not co-
occurring throughout the composition. The proposed AIRC approach enforces
independence between the different roles, thus making it more suitable for
transcribing loop activations of real-world EM compositions, in which loops
often vary through automation and resequencing.

Figure 6.3: Loop activation transcription accuracy scores.

Figure 6.4: Estimated loop activation structure of Joyspark (2020) by Om Unit us-
ing our proposed model. Log-scaled STFT power spectrogram of the EM composition
(top) and estimated templates corresponding to the loop activations showing predic-
tions for each class: Chords (C), Melody (M), Sound Fx (F), Bass (B), and Percussion
(P) at 4-bar intervals (bottom).

6.5 Conclusions 73

6.4.2.1 Real World Scenarios

Our approach to loop activation transcription with AIRC can be applied to full-
length, professionally produced EM, which has not been explored in previous
literature.
An Instrumentation Role Activation Map (IRAM) of the EM composition
Joyspark (2020) by Om Unit54 using the proposed method for loop-based EM
structure analysis (Section 6.3.2) is presented in Figure 6.4. For visualization
and comparison, we show a log-scaled STFT power spectrum of the EM com-
position above the IRAM. The IRAM allows us to visualize activations for each
role over the duration of the EM composition, where each square is a measure-
ment of four bars. Furthermore, we can see how each role develops throughout
the EM composition. For example, the melody role activations progressively
increase between bars 1–41, which corresponds with a synthesizer arpeggio
that is gradually introduced by automating the cut-off frequency of a low-pass
filter. Additionally, the chord role activations increase between bars 1–49 in
correlation with the chords in this section that gradually increase in volume.
Activations for the percussion role also correlate well with the composition as
can be seen between bars 49–81 and 97–129—the only sections that contain
percussion. Finally, the key structural sections of the composition are easily
identifiable. For example, the introduction to the composition (bars 1–49)
begins relatively sparse in the composition and IRAM; whereas, bars 49–81
and 97–129 are quite clearly the core of the piece—that is, the most energetic
sections of the composition typically established by the drop (Yadati et al.,
2014).
Additionally, the transcription enabled by our system could help EM producers
identify sections of music that contain specific roles. For example, this would
be useful for finding breakbeats (i.e., percussion-only passages) in digital music
recordings (López-Serrano et al., 2017).

6.5 Conclusions

In this chapter, we have introduced the task of Automatic Instrumentation
Role Classification (AIRC) of loops. We propose a method that utilizes a novel
data augmentation method and CNN-based architecture with auto-pooling.
The evaluation results show that we achieve a high accuracy score, allowing
for a more reliable transcription of loops in unstructured collections of audio.
Furthermore, we have introduced a deep learning approach for estimating the
structure of loop-based electronic music and compared it with previous loop

54https://omunit.bandcamp.com

https://omunit.bandcamp.com

74 Automatic Instrumentation Role Classification

activation detection methods. Our approach achieves comparable results while
achieving a considerably faster computation time.
The IRAM derived from our system has many potential use cases in music
production and performance. MIR tasks that rely on structural information
could benefit from this transcription (e.g., automatic DJing (Vande Veire &
De Bie, 2018), music mashups (Davies et al., 2013)). The IRAM could be used
as a visual aid for DJs to anticipate upcoming sounds (e.g., drums, bass) or to
help to identify key structural events in EM (Yadati et al., 2014).
A possible direction for future research in this area would be to train the
system using a smaller timescale (e.g., 1-bar measures) to achieve higher res-
olution transcription of instrumentation role activations. Additionally, as no
annotations for ground-truth instrumentation roles exist for real-world EM
compositions, future work could involve annotating a corpus of these record-
ings for the evaluation of this task.

Part II

Automatic Generation of
Music Loops and Instrument
Samples for Electronic Music

Production

75

CHAPTER 7
Introduction and Overview of

Creating Percussive Sounds

In this part of the dissertation, we focus our attention on the task of generating
drum sounds using deep learning in a controllable manner. Browsing and gen-
erating sounds are two different music creation tasks which share the same goal:
finding the ideal sound for a composition. The sounds retrieved through brows-
ing are limited to the sound collection being searched, while sound synthesis
is limited by the sonic characteristics of the sound source. Using generative
deep learning models trained with large sound collections, we can develop a
synthesizer which is able to create sounds with a similar diversity as the collec-
tion. Generative models, besides being able to generate sounds similar to the
ones seen during training, can create the in-between of these sounds and offer
new sonic possibilities. The generation of pitched sounds using deep learning
has seen a significant amount of research, while the synthesis of unpitched per-
cussive sounds has been largely ignored. On this part of this dissertation we
will therefore investigate the generation of percussive sounds using generative
deep learning models in a controllable manner.

7.1 Percussion and Cultural Context

Percussion is one of the main components in music and is normally responsible
for a song’s rhythm section. Percussion instruments have been part of human
life for a long time. Drums which use alligator skins as the membrane were
discovered in China, dating back to the Neolithic period (Liu, 2005). Since
then, percussion has accompanied human evolution in a variety of situations:
they have been used in ceremonies, to support rituals and even for military
purposes. In music, percussion has been a core part of the music made in
the last centuries. It is present in classical music orchestras, in rock and jazz

77

78 Introduction and Overview of Creating Percussive Sounds

bands and, more recently, in Electronic Music (EM). In this genre, percus-
sion and rhythm are one of the things that define sub-genres, where each is
commonly associated with a set of drum timbres and rhythm patterns. To
mention some examples, Dubstep typically uses a bright snare with a long de-
cay, House is focused on a round kick drum with a crispy snare, Classic Hip
Hop employs gritty acoustic drums obtained from Funk records, while Trap re-
lies on electronic long kick drums with synthesized hi-hats. The drum sounds
are therefore responsible for a big part of the feel of EM pieces. Choosing the
perfect drum sound in an efficient manner is extremely important, can help
speed up the whole composition process and even inspire the creator.

7.2 Creating Percussive Sounds

Most common percussion instruments create sound when struck or scraped,
while others emit sound when plucked, rubbed or even shaken (Latham, 2011).
Traditionally, timbral characteristics of percussion were obtained by modifying
the acoustic properties of the instruments themselves – for instance, the use of
different shell configurations or materials for constructing drums, or different
shapes and alloys for cymbals. Developments in analogue synthesis paved the
way for creating and designing percussive sounds electronically. New electronic
instruments were developed for generating these sounds either through play-
ing prerecorded samples or through synthesizing them. These are called drum
machines and became very popular for EM (Hasnain, 2017). As an example,
drum machines such as the Roland TR-808 generated sounds by combining
synthesized tones with white noise. These drum machines became a staple in
a variety of music genres including Hip Hop, House and Techno. However,
these early drum machines did not provide much control over the generation
of the sounds. With the developments in digital audio technology and com-
puter music, new drum machines were hand-designed using expert knowledge of
synthesis techniques and Electronic Music Production (EMP). More recently,
with the development of Digital Audio Workstation (DAW) and other music-
making software, digital drum sound creation became common practice for
music makers of all backgrounds, enabling advanced digital signal processing
techniques to be applied to drum sound design. Typically, a music maker
either selects drum sounds from their sound collection or creates it using a
dedicated software. These programs normally display parameters related to
the synthesis process such as the pitch, the energy envelope or effects applied
on top and can have presets (curated sounds where the parameters are selected
by an expert sound designer) to provide a starting point. In Figure 7.1, we
present interfaces for two well known drum synthesis software: FAW SubLab55

55https://futureaudioworkshop.com/sublab

https://futureaudioworkshop.com/sublab

7.3 Music Creation Using Deep Learning 79

and the Ableton Drum Synthesis (DS) devices. FAW SubLab provides a high-
level of control, perfect for expert users who know exactly what each control
can do. On the other hand, Ableton DS devices provide simple controls for
creating the percussion sounds, which is appropriate for novices.

(a) FAW SubLab

(b) Clang DS (c) Clap DS

(d) Cymbal DS (e) Kick DS

Figure 7.1: Example of interfaces for drum synthesis software. On the left FAW
Sublab and on the right the drum synthesizer modules from Ableton Live 11.

Concurrently, aesthetics have have evolved up to a point where virtually any
sound can be used as a percussive sound as long as it has some energy envelope
characteristics. Timbre does not need to be related to the one of traditional
percussion instruments or sound machines anymore, and creativity in percus-
sion sound design is strongly encouraged in EM.

7.3 Music Creation Using Deep Learning

Recent advances in deep learning introduced novel methodologies for synthes-
izing data. Instead of relying on experts for designing systems to generate spe-
cific kinds of data, these methodologies are data-driven: the algorithms learn
how to represent the distribution of data on which they are trained. Learning
this representation allows the creation of new examples similar to the data it
saw during training. In the case of digital sound, a generative model can be
taught how to create new audio waveforms (sample by sample), spectograms
or other representations of sounds. The controls provided by these models are
typically very different from the ones provided in a synthesizer. While syn-
thesizers commonly employ energy envelope, additive and subtractive synthesis
for generating sound, generative models create sound from points in a high-
dimensional space called the latent space. This representation is optimized to

80 Introduction and Overview of Creating Percussive Sounds

encode the audios it was trained with and enables the generation of similar
examples, without needing knowledge about sound synthesis. Architectures
such as Autoregressive Networks (Oord et al., 2016a; Engel et al., 2017; Mehri
et al., 2017), Variational Autoencoder (VAE) (Kingma & Welling, 2014), and
Generative Adversarial Network (GAN) (Goodfellow et al., 2014) have all been
proven to generate high-quality results in a variety of domains, from images
of human faces to musical audio, as will be further explained in Chapter 8. In
the image domain, these also enable new techniques for creating data: Style
transfer allows to compose one image on the style of another image, interpola-
tion permits to generate what is in-between two images by navigating a latent
space and image-to-image translation can create highly realistic images from
drawings.
In parallel, recent advancements in generative deep learning based methodolo-
gies have sparked a huge interest in music generation. Research has focused on
both the symbolic and the audio domains. On the symbolic side Dong et al.
(2018) use GANs to generate music pieces, Brunner et al. (2018) and Cífka
(2021) have experimented with transferring the style of music pieces, while
Grachten et al. (2020) and Lattner & Grachten (2019) are able to generate
bass and drums based on the rest of the music piece. Interesting possibilities
for music making using deep learning methodologies in the audio domain in-
clude timbre transfer, music source separation and generating musical sounds
such as singing voice and instrumental notes. Timbre transfer was presented
by Engel et al. (2020) and permits transforming a recording into a different
instrument directly on the audio domain. Music source separation allows the
decomposition of music recordings into their different elements such as bass,
drums, melody and harmony. This can enable new methods of sampling parts
of music pieces without the need for each element to appear alone. Source sep-
aration has been a deeply studied topic with some example literature presented
by Défossez (2021) and Stöter et al. (2019).
Our aim is to explore generative deep learning methodologies for making the
task of creating and navigating percussive sounds easier. We target conditional
synthesis based on high-level semantic parameters and automatically discover-
ing these parameters from unconditional models. The models we present can
be trained with private user collections, enabling the generation of samples sim-
ilar to the ones present in the collection and, through interpolation, generating
the in-between.
In Chapter 7 (this chapter), we started by presenting how the sound of drums
have been created throughout human history, from its inception to the possib-
ilities of drum synthesis offered by modern software. We also briefly described
some of the possibilities that deep learning presents towards new synthesis tech-
niques, which will be further detailed in Chapter 8. We will then explain our
contributions towards generating both percussive one-shots (Chapter 9) and

7.3 Music Creation Using Deep Learning 81

loops (Chapter 10) in a controllable manner. We will wrap up with Chapter
11 where we compare different control interfaces for generative models.

CHAPTER 8
Literature Review on Sound

Generation

In this chapter, we provide an overview of the approaches proposed for gen-
erating musical audio using deep learning methodologies. We will present the
fundamentals of generative modeling using deep learning techniques and the
main architectures which are used. We will also present interesting applica-
tions from other domains which use these set of algorithms. We then provide
an overview of techniques applied to provide some user control to the gener-
ative process. Finally, we do an in-depth review of how generative algorithms
have been used for music creation, with a strong focus on drum synthesis.

8.1 Deep Generative Models

We can define generative models as any model that, given a training set of
examples of a distribution X , somehow learns to represent an estimate of it
(Goodfellow, 2017). Deep generative models use deep learning to address this
task and have shown great progress in both generation quality and time. Dif-
ferent deep learning architectures have been proposed and applied to several
tasks: from generating new examples similar to the training data, to dimen-
sionality reduction and feature learning, data denoising, outlier detection and,
more recently, creating or assisting the creation of art.
The task of generating data that fits a distribution is significantly different
from the classification tasks studied in Chapter 3, especially when done in an
unsupervised manner. Instead of finding a function which maps data x to labels
y, in unsupervised learning the main goal is to learn an underlying structure
of the training data. Discriminative models, learn a probability distribution
p(y | x), while generative models learn the probability distribution p(x). One
common method to learn this density function is the principle of maximum

83

84 Literature Review on Sound Generation

likelihood: find the parameters for a model that maximize the likelihood of the
training data. A deeper discussion on the optimization of maximum likelihood
can be found in Goodfellow (2017).
Some generative models can assign density functions to the training data (ex-
plicit), some can only generate samples from the learned distribution (implicit),
and some can do both. Models with explicit density functions allow knowing
the likelihood of a new data point fed into the input. On the other hand, mod-
els with implicit density functions (e.g. GANs based on likelihood) do not allow
extracting a likelihood value, but allow sampling from the underlying distribu-
tion. The explicit density functions can be either tractable (in Autoregressive
models) or approximate (Variational Autoencoder (VAE)). Tractable density
functions output the actual value for the density function while models which
compute approximate density functions can only compute an approximation
to this probability.
In the following subsections, we will explore the most commonly used generat-
ive model architectures, their inner workings, example applications, advantages
and disadvantages.

8.1.1 Autoregressive Models

Autoregressive models treat each data example x as a sequence of points xi. If
we assume that x has T elements, p(x) can be decomposed as in Equation 8.1.
The chain rule from probability theory exemplified in Equation 8.2 allows to
break down p(x) into the probabilities of each point given the previous points.

p(x) = p(x1,x2,x3, ...,xT) (8.1)

p(x1,x2,x3, ...,xt) = p(x1)p(x2 | x1)p(x3 | x1,x2)... (8.2)

Autoregressive networks explicitly model the correlations between the different
points xi in a sequence x. Therefore, they can output a probability for a full
sequence x as well as to each point. Each generated point is conditioned on
the previous points and, consequently, only one point can be generated at a
time. Hence, autoregressive networks are very good at modeling the small-scale
dependencies of the data.
One of the main families of autoregressive models are the Recurrent Neural
Networks (RNNs), which use hidden states ht to store information of the pre-
vious points of the sequence. This hidden state is calculated according to the
following equation: ht = fW (ht−1,xt), where xt is the current segment, ht−1 the
previous hidden state and fW is the learnable network function with weights
W . In a vanilla RNN, fW (ht−1,xt) = tanh(Whhht−1 +Wxhxt +Vh), where Whh and

8.1 Deep Generative Models 85

Wxh are the learnable matrices for the hidden state and the input, and Vh the
learnable bias. For the output layer, RNNs have other trainable weights and
biases Why and Vy, and their output can be calculated as yt =Whyht . The train-
ing procedure updates the weights W and the biases V , by backpropagating a
loss function based on the timesteps of the generated example. An example of
a RNN architecture is presented on Figure 8.1 A detailed description of RNNs
and their training can be found at Sherstinsky (2020).

Output

layer

Hidden

layer

Input

layer

y yt-1

ht-1

xt-1

t-1Time

Unfold

t+1t

yt+1

ht+1

xt+1

yt

ht

xt

h

V

W
W W W W

U

x

Figure 8.1: Schematic of an RNN architecture.

RNNs main issues are the long time they take to generate a complete sequence,
as well as the difficulty in modeling large-scale dependencies of the data (long
time dependencies in the case of audio). The long generation time is due to
the networks only being able to generate one point at a time because of the
explicit conditioning on previous points.
In an attempt to mitigate the long-term forgetting of RNNs, Wavenet has been
proposed in Oord et al. (2016a). Instead of using RNN blocks, the prediction
of the next element in a sequence is done using a CNN which uses casual
dilated convolutions (Oord et al., 2016b). The causal aspect of the convolutions
enforces that the model respects the order of the elements in the sequence and
that it cannot depend on any of the future timesteps of the sequence. A dilated
convolution is a convolution where the filter is applied to a longer sequence,
by skipping input values according to a defined step. This enables the network
to have a bigger receptive field and be able to understand larger timescales of
the sequences it is trained with. Stacking more layers of dilated convolutions
further increases the receptive field of the model. As the Wavenet does not use
recurrent connections (as RNNs use the information of the previous state), the
predictions for the different timesteps can be computed in parallel. Therefore,
Wavenet is able to have a reduced training time, especially for long sequences.
When generating new data, however, each new sample to be generated requires
the previous point in the sequence, making inference fairly slow.

86 Literature Review on Sound Generation

8.1.2 Autoencoders

Autoencoders (AEs) (Hinton & Salakhutdinov, 2006) are neural networks which
aim to reconstruct an input signal, while learning efficient representations with
a lower dimensionality than the input. This architecture can be divided into
two components: the encoder and the decoder. The encoder e takes an ex-
ample x of the training data as input and maps it to a lower dimensional
representation z = e(x). The decoder d then transforms the embedding z to
a reconstruction of the training data x′ = d(e(x)). The reconstruction error
is backpropagated for the network to learn on how to improve. The use of a
latent space z with a smaller dimension than x forces the AE to learn the most
representative characteristics of the training data. AEs have shown signific-
ant performance on tasks such as dimensionality reduction and unsupervised
feature learning.

A compressed low dimensional

representantion of the input

Bottleneck

Encoder Decoder

fθ
gθ

X Z

Input Reconstructed

input

X

Figure 8.2: Autoencoder architecture.

One naive approach to generate new data using an AE would be to take a
random point z from the latent space and regenerate it through the decoder
d(z). As there is no explicit regularization applied when creating the latent
space, its continuity is not guaranteed and parts of it might not even be used
by the network. Furthermore, AEs are not probabilistic models and, therefore,
there is no reason for the distribution of the data generated from the latent
space to follow the distribution of the training data. To tackle these issues,
Variational Autoencoders (VAEs) (Kingma & Welling, 2014) apply a latent
space regularization during training that avoids overfitting and ensures con-
tinuity (points close in the latent space should generate similar results when
decoded) and completeness (any point from the latent space should decode to
a realistic output).

8.1 Deep Generative Models 87

Instead of encoding an input x as a single point, VAEs encode it as a distri-
bution (typically a multivariate Gaussian) over the latent space. The training
methodology is similar to AEs, after this encoding step, i) a point z is sampled
from the encoded distribution; ii) z is reconstructed through the decoder d(z),
and iii) the reconstruction error together with a regularization penalty are
calculated and backpropagated through the network. The regularization pen-
alty is the Kulback-Leibler divergence between the encoded distribution and
a standard Gaussian, which quantifies the similarity between these two distri-
butions. Forcing the mean to be close to 0 enforces the latent space to encode
similar examples together and to follow a similar probability distribution of
the training data (the most common examples in the data will be in the center
of the Gaussian latent space). Forcing the Gaussian’s co-variance matrix to be
close to the identity enables the continuity of the latent space by encouraging
the encoded distributions to overlap.

OutputInput
For AE

For VAE

Encoder

gθ (z|x) fθ (x|z)

z ~N (μz, ∑ z)

DecoderZ

z
μz

∑ z

X X

Figure 8.3: Difference between Autoencoders and Variational Autoencoders.

In order to generate new data from a VAE, we simply need to sample a point
z from the multivariate Gaussian and decode it through d(z). As the VAE
learns the distribution of the trained data, this Gaussian sampling also forces
the generated data to follow this distribution. Furthermore, we can use a
trained VAE to edit data by encoding it to a latent distribution, sampling
from it, and then modify the value of indexes of the latent point z.
Despite their fast training, generation and encoding time, generated samples
from VAEs tend to be blurry, probably due to the assumed factorized distri-
bution for the density function. To address this, this architecture has been
combined with an Autoregressive decoder (Razavi et al., 2019), at the cost of
longer generation time and possible training collapse.

8.1.3 Generative Adversarial Networks

The architectures which have been performing the best in terms of synthesis
quality are the Generative Adversarial Networks (GANs) (Goodfellow et al.,

88 Literature Review on Sound Generation

2014; Karras et al., 2020). Although GANs can be made to work using the
principle of maximum likelihood Grover et al. (2018), these normally employ
a different type of learning paradigm: adversarial training. GANs are com-
posed of two networks which compete against each other. One is the generator
network, which aims at creating examples similar to the ones present in the
training data by learning how to fool the discriminator. The discriminator
network’s job is to examine the examples created by the generator, as well as
from the training data, and to distinguish which ones are real (from the train-
ing data) and false (from the generated data). The discriminator is a typical
classifier network, which uses supervised learning to distinguish the real and
false classes. On the other end, the generator is a network similar to an AE’s
decoder, which takes a random point z from a random distribution, typically
Gaussian, and generates an example x′ from it.

Training set

Fake Image

Random

noise

Generator

Discriminator

Real
Fake

Figure 8.4: Generative Adversarial Network architecture.

This novel training methodology where two networks are learning in an ad-
versarial manner at the same time comes with some possible issues. One is
called Vanishing Gradients (Arjovsky & Bottou, 2017) and it occurs when
the discriminator achieves optimal performance, not allowing the generator to
learn anything more. Possible solutions to this include using the Wasserstein
loss (Arjovsky et al., 2017) or modified loss functions. Another common issue
with GANs is Mode Collapse, which happens when the generator creates very
similar outputs with no variability that the discriminator finds plausible to be
true. The network gets trapped in local minima and stops learning. As GANs
normally do not use maximum-likelihood loss functions, they are prone to have
a mode-seeking behavior, where just a part of the training data is represented.
Despite these disadvantages of GANs, these architectures have been showing
the best synthesis quality in several domains, from image to audio. Several
flavours of GAN with specific training methodologies and different goals have
been proposed. To generate images from a distribution, the ProGAN (Karras
et al., 2018) and the StyleGAN (Karras et al., 2020) enforce the networks to

8.2 Controlling Generative Models 89

learn the different resolutions of the data, achieving impressing quality on the
created images. GANs have also been employed to a variety of more creative
tasks, from editing the attributes of a face given as input (Shen & Zhou, 2021),
to transferring the “style” of an image to another image (Zhu et al., 2017), to
conditional image generation (Isola et al., 2017).

8.2 Controlling Generative Models

In the previous section, we looked at some of the most used deep generative
architectures. In order to be able to use them for creative purposes, we need
to somehow control the generation process. Several approaches have been
proposed to allow a degree of controllability, such as data curation, analysis
and regularization of the latent space z, and conditioning of the network during
training.
The most significant way to control what a network generates is by curating
the data used for training. A network trained on a specific distribution of
data is not likely to be able to generate data from a very different distribution.
Therefore, the first step before training a model is to make sure that what we
want to generate is well represented in the training data.
Once a model is trained, new data can be generated by sampling random
points from the networks latent space. In an artistic scenario, the user most
likely wants a deeper control of the generated data than random sampling.
Projecting a data point x to the latent space (Creswell & Bharath, 2019; Zhu
et al., 2016) allows the network to generate something similar to x and retrieve
the embedding z for it, which allows to obtain a starting point for navigating
the latent space.
Once we have a starting point z, we probably want to edit some characteristics
of the generated data. To do this, we can manipulate the latent dimensions of
z until we achieve the final result. Each dimension of the latent space should
allow the manipulation of an individual or a set of features which capture
the variability of the data. Recent work has shown that GANs can capture
high-level semantic concepts (Yang et al., 2021) in the latent space dimensions.
Finding what each dimension controls can be cumbersome and, therefore, sev-
eral approaches have been proposed that allow the identification of the dimen-
sions that control specific characteristics of the generated data. Supervised
approaches (Yang et al., 2021; Jahanian et al., 2020; Shen et al., 2020) rely on
the annotation or automatic classification of the characteristics of randomly
sampled generated data from the model. On the other hand, dimensionality
reduction techniques such as Semantic Factorization (SeFa) (Shen & Zhou,
2021) and GANSpace (Härkönen et al., 2020) employ Closed-Form Factoriza-
tion or PCA to discover the directions in the latent dimensions that affect the

90 Literature Review on Sound Generation

most on the generated output.
Sometimes, however, the features the models learn while training do not re-
late to common human perceivable concepts or do not provide satisfactory
control over the generation process. Having each dimension represent a dif-
ferent concept, i.e. a disentangled representation, provides a greater degree
of control over the generation process. In order to explicitly enforce what the
dimensions represent, two methodologies can be applied during the training
process: latent space regularization and conditioning of the network. regular-
ization techniques apply a new element to the loss functions that enforce the
latent space to have certain characteristics. Chen et al. (2016) employ a latent
loss that maximizes the mutual information between latent variables and the
generated data. This results in a disentangled representation which allows the
control of rotation and the width of digits when trained on the MNIST data-
set (Lecun et al., 1998) and the presence or absence of glasses, hairstyles and
emotion when trained on the CelebA dataset (Liu et al., 2015). In the audio
domain, several regularization techniques have been applied to the generation
of musical audio using VAEs. Esling & Bitton (2018) propose three regulariza-
tion — an Additive Penalty Regularization, a Euclidean Regularization and a
Prior Regularization — that aim to enforce the VAE’s latent space to exhibit
the same topology as several perceptually motivated timbre spaces.
Conditioning is a fairly different approach from the previously described ones
and involves a new training paradigm. If we have extra information about our
data, we can use it as a conditioning signal c and train the models to learn
the conditional density distribution p(x|c) instead of the distribution p(x) we
were trying to learn previously. The chosen conditioning signal c can vary in
terms of how much information it contains, from low information signals such
as class labels (e.g. if we want to generate the sound of a guitar or a piano)
to very rich conditioning signals like one music piece we want to extract the
drums from. Conditional neural networks enabled a variety of new tasks in the
image domain, from generating digits from the MNIST dataset based on their
classes (Mirza & Osindero, 2014), to generating realistic images from drawings
or shapes (shown in Figure 8.5) (Isola et al., 2017) and even colorizing old black
and white pictures (Zhao et al., 2021). Conditional models therefore provide a
significant degree of control on the generation process, while maintaining great
synthesis quality.

8.3 Generative Models for Assisting Music
Creation

Audio synthesis technologies for music have been researched for many years,
ranging from synthesizers generating pitched waveforms, to singing voice syn-

8.3 Generative Models for Assisting Music Creation 91

Figure 8.5: User interface for pix2pix conditional image generation

thesizers conditioned on melody and text56, to deep learning based models
capable of generating entire songs (Carr & Zukowski, 2018; Zukowski & Carr,
2018). In the context of assisting music creation, generative models have shown
success especially in creating pitched instrumental sounds, when conditioned on
musical notes. A pioneering work on this field was NSynth (Engel et al., 2017),
a synthesizer based on the Wavenet autoregressive architecture, which, while
capable of generating high-quality sounds, is very resource intensive. While
the output of NSynth is subjectively similar to natural-sounding samples, the
sequential nature of the model means that the processing time for generation
is quite high, unless high-resource processing units are available. Wave-U-Net
(Stoller et al., 2018), a feed-forward adaptation of the Wavenet architecture
via probability density distillation has been proposed, showing that it is pos-
sible to directly map the input conditioning to the output waveform without
sequentially predicting each sample of the waveform. Originally proposed for
waveform-based source separation, this architecture consists of an encoder with
a series of temporal convolutions, each capturing important information at a
different temporal scale to produce a low-dimensional embedding. This em-
bedding is then decoded via upsampling operations to the dimensions of the
output waveform. Skip and residual connections are present between corres-
ponding layers of the encoder and decoder to propagate information between
the two stages of operation. The WaveGAN (Donahue et al., 2019) and GAN-
Synth (Engel et al., 2019) architectures are other examples of feed-forward
networks capable of synthesizing realistic musical notes. Both architectures
are based on GANs. However, AEs have also shown high potential. As we
have seen in the previous section, Esling & Bitton (2018) use VAEs together

56https://vocaloid.com

https://vocaloid.com

92 Literature Review on Sound Generation

with regularizers based on timbre perception metrics to generate instrumental
sounds controllable by navigating the latent space. Bitton et al. (2019) employ
adversarial AEs which are conditioned on the pitch, instrument and playing
techniques for generating sounds of orchestral instruments. Several audio rep-
resentations have been used in these works, such as the sound waveform (Engel
et al., 2017; Donahue et al., 2019), magnitude and phase spectrograms of the
signal (Engel et al., 2019) or only the magnitude spectrogram (Esling & Bitton,
2018; Bitton et al., 2019; Donahue et al., 2019; Bitton et al., 2018).
The existing work for the generation of percussive sounds is not as vast as the
one for musical instruments, as these approaches do not use drum sounds in
their dataset. For percussive sound synthesis using deep learning, the earli-
est work is the Neural Drum Machine (Aouameur et al., 2019), which uses a
Conditional Wasserstein Auto Encoder (Tolstikhin et al., 2018), trained on the
magnitude component of the spectrogram of percussive sounds coupled with a
multi-head CNN for reconstructing the audio from the spectral representation.
PCA is used on the low-dimensional representation learned by the AE to select
the 3 most influential directions within the 64 dimensions of the embedding.
These are provided to the user over a control interface. However these para-
meters controlled by the user are abstract and are not shown to be perceptually
relevant or semantically meaningful. The data used for training this network
was a proprietary dataset of drum sounds, which cannot be shared, making
the work not reproducible.
We then proposed Ramires et al. (2020b), a feed-forward neural network ar-
chitecture for the generation of drum sounds using the Wave-U-Net (Stoller
et al., 2018), conditioned on high-level timbral characteristics of the sound.
The conditioning features allow for reliable and intuitive control of the sound
generation process by music makers while taking advantage of the fast gen-
eration process provided by the Wave-U-Net. The main shortcoming of this
approach was the audio quality of the generated data, which was still not the
same as professional drum samples. Together with the model, we presented a
new dataset of percussive one-shot sounds, collected from Freesound, which is
available to the public. The details of the model training, dataset creation and
evaluation will be detailed in Chapter 9.
Two approaches based on GANs have been proposed after our work: DrumGAN
(Nistal et al., 2021) and Adversarial Synthesis of Drum Sounds (ASDS) (Drys-
dale et al., 2020). In ASDS, the authors train a conditional Wasserstein GAN
that learns to generate waveforms of drum sounds in high-resolution (44.1kHz).
The conditioning signal used is a label of the drum sound to be generated, such
as kick, snare or cymbal. The data that the model was trained with is also
private data which cannot be shared. Despite the high resolution, some audio
artifacts were still present in the generated audio and, again, we see the issue
of relying on the embeddings learned by the network for controlling the gen-

8.3 Generative Models for Assisting Music Creation 93

erated sound. DrumGAN, on the other end, employs the same conditioning
scheme as the network we proposed – the same high-level timbral features –
on a ProGAN (Karras et al., 2018). The training data is Sony’s in-house col-
lection of 300 thousand drum sounds, which comprises drum sounds obtained
from commercial sample pack providers (Nistal et al., 2021). The network is
able to generate both the real and the imaginary component of drum spectro-
grams, allowing the reconstruction of the original waveform through the use
of the inverse STFT. The resulting sounds are of very high quality, despite
the use of 16kHz as the sampling rate. However, the coherence between the
input values in the control signal and the resulting analysis of the output is
lower than the one achieved by our Wave-U-Net approach. Finally, in order to
generate drum loops from high-level semantic characteristics, we extended the
previously proposed Wave-U-Net architecture to be conditioned on features
with temporal information. This work will be presented in Chapter 10. In
Chapter 11, we show our work in comparing different control parameters for
percussion sound generation using GANs.
From this overview of generative models and how they can be applied to as-
sist music creation, we can see that the most important factors for conditional
waveform generation are the ability of the model to capture long-term tem-
poral relationships of the training data, allow for intuitive manipulation of the
generation process and provide audio samples with high-quality. The use of
publicly available data for training the models is also essential, as it allows for
reproducibility of the work and more research on the same area.

CHAPTER 9
Generation of One-shot Drum

Sounds

In this chapter, we present a deep neural network-based methodology for syn-
thesizing percussive sounds with control over high-level timbral characteristics
of the sounds. This approach allows for intuitive control of a synthesizer,
enabling the user to shape sounds without extensive knowledge of signal pro-
cessing. We use a feed-forward convolutional neural network-based architec-
ture, which is able to map input parameters to the corresponding waveform.
We propose two datasets to evaluate our approach on both a restrictive con-
text, and in one covering a broader spectrum of sounds. The timbral features
used as parameters are taken from recent literature in signal processing. We
also use these features for evaluation and validation of the presented model,
to ensure that changing the input parameters produces a congruent waveform
with the desired characteristics. Finally, we evaluate the quality of the output
sound using a subjective listening test.
This chapter is based on Ramires, A., Chandna, P., Favory, X., Gómez, E.,
& Serra, X. (2020). Neural Percussive Synthesis Parameterised by High-Level
Timbral Features. In Proceedings of the 45th IEEE International Conference
on Acoustics, Speech and Signal Processing (pp. 786–790).

9.1 Introduction

Percussion is one of the main components in music and is normally responsible
for a song’s rhythm section. Classic percussion instruments create sound when
struck or scraped; however new electronic instruments called drum machines
were developed for generating these sounds either through playing prerecorded
samples or through synthesizing them. However, these early drum machines
did not provide much control over the generation of the sounds. With the

95

96 Generation of One-shot Drum Sounds

developments in digital audio technology and computer music, new drum ma-
chines were hand-designed using expert knowledge on synthesis techniques and
electronic music production.
With the success of deep learning, several innovative generative methodolo-
gies for creating audio have been proposed in the recent years. Neural Drum
Machine (Aouameur et al., 2019) introduces percussive sound generation using
deep learning, based on a Conditional Wasserstein Autoencoder (AE) (Tol-
stikhin et al., 2018). Principal Component Analysis (PCA) is used on the
low-dimensional representation learned by the AE to select the most influen-
tial directions within the embedding space, which are given as control to users.
However these parameters are abstract and are not shown to be perceptually
relevant or semantically meaningful.
In our case, we wish to directly map a chosen set of features to the output
sound. The Wavenet (Oord et al., 2016a) architecture has been shown to
generate high quality waveforms conditioned on input features. However, the
autoregressive nature of the model makes it resource extensive and the short
nature of percussive sounds do not require the use of a long temporal model.
Therefore, for our study, we decided to use the Wave-U-Net (Stoller et al.,
2018) architecture, which has been shown to effectively model waveforms in
the case of source separation and follows a feed-forward convolutional archi-
tecture, making it resource efficient. The model takes as input a waveform,
downsamples it through a series of convolutional operations to generate a low
dimensional representation and then upsamples it through linear interpolation
followed by convolutions to the output dimensions. There are concatinative
connections between the corresponding layers of the upsampling and down-
sampling blocks. In our work, we adapt this architecture to fit the desired use
case.
The aim of our research is to create a single-event percussive-sound synthesizer
that can be intuitively controlled by users, despite their sound design know-
ledge. This requires both a back-end of a generative model that is able to
map the user controls to the output sound and a front end user interface. In
this chapter, we propose a generative methodology based on the Wave-U-Net
architecture (Stoller et al., 2018). Our method maps high-level characteristics
of sounds to the corresponding waveforms. The use of these features is aimed
at giving the end-user intuitive control over the sound generation process. We
also present a dataset of ≈ 10000 percussive one-shot sounds collected from
Freesound (Font et al., 2013), curated specially for this study.
The source code for our model is available online57, as are sound examples58,
showcasing the robustness of the models.

57https://github.com/pc2752/percussive_synth
58https://pc2752.github.io/percussive_synth

https://github.com/pc2752/percussive_synth
https://pc2752.github.io/percussive_synth

9.2 Timbral features 97

9.2 Timbral features

For our end goal, we require semantically meaningful features that can allow
for intuitive control of the synthesizer. In the field of Music Information Re-
trieval (MIR), a strong effort has been put on developing hand crafted features
which can characterize sounds. These features enable users to retrieve sounds
or music from large audio collections by automatically describing them ac-
cording to their timbre, their mood, or other characteristics which are easy to
understand by users. For our purpose, we need features pertaining to timbre.
We understand timbre as pertaining to perceptual characteristics of sounds
analogous to color or quality. Control over such features would enable the
user to intuitively shape sounds.
A set of such features have been proposed in Pearce et al. (2017), where recur-
rent query terms, related to timbral characteristics, used for searching sounds
in large audio databases were identified. Regression models were developed
by mapping user-collected ratings to timbral characteristics, which quantify
semantic attributes. These are hardness, depth, brightness, roughness, boomi-
ness, warmth and sharpness. The work proposes feature extractors pertaining
to these query terms and we use an open-source implementation of the same59.
For the rest of this chapter, we refer to the 7 features extracted by these ex-
tractors as timbral features.
Another relevant characteristic which is commonly present in drum synthes-
izers and music makers are used to work with is the temporal envelope of
the sound. This feature describes the energy of the sounds over time and is
normally available to users in drum synthesizers as a set of attack and decay
controls. We use an open-source implementation of the envelope algorithm
described in Zölzer (2008), present in the Essentia library (Bogdanov et al.,
2013). It must be noted that the timbral features described previously are
summary features, i.e. have a single value for each sound while the envelope
is time evolving and of the same dimensions as the waveform.

9.3 Dataset Curation

We curated two datasets in order to train our models in different scenarios.
The first consists of sounds taken from Freesound, a website which hosts a
collaborative collection of Creative Commons licensed sounds60 (Font et al.,
2013). We performed queries to the database with the name of percussion
instruments as keywords in order to retrieve a set of percussive sounds, with a

59https://github.com/AudioCommons/ac-audio-extractor
60https://freesound.org

https://github.com/AudioCommons/ac-audio-extractor
https://freesound.org

98 Generation of One-shot Drum Sounds

limit on effective duration of 1 second. We then conducted a manual verifica-
tion of these sounds61: to select the ones that were containing one single event,
and were of appreciable quality in the context of traditional electronic music
production. This process created a dataset of around 10000 sounds, containing
instruments such as kicks, snares, cymbals and bells. The dataset is publicly
available in a Zenodo repository62. For the rest of this chapter, we refer to this
dataset as Freesound One-Shot Percussive Sounds (FSOSPS).
A second dataset was created by aggregating about 5000 kick drum one-shot
samples from our personal collections, originating mostly from commercial
libraries. This type of sounds are often of high quality, annotated and contain
only one event which makes it very handy to construct a dataset of isolated
sounds, suiting our needs for training our model in a restricted context. We
refer to this dataset as KICK.
The aim of creating two datasets was to understand if our method could be
applicable for synthesizing a wide variety of percussion sounds, or if it was
more appropriate to focus on synthesizing only one type of sounds, in this case
the kick drum.

9.4 Methodology

We aim to model the probability distribution of the waveform x as a function
of the timbral features f s and the time-domain envelope e. To this end we
use a feed-forward convolutional neural network as a function approximator
to model P(x| f s,e). We use a U-Net architecture, similar to the one used by
Stoller et al. (2018), which has been shown to effectively model the waveform
of an audio signal. Our network takes the envelope as input and concatenates
to it the timbral features, f s, broadcast to the input dimensions, as done by
Oord et al. (2016a). As shown in Figure 9.1, downsampling is done via a
series of convolutions with stride 2, to produce a low-dimension embedding.
We use a filter length of 5 and double the number of filters after each 3 layers,
starting with 32 filters. A total of 15 layers are used in the encoder, leading
to an embedding of size 512. We upsample this low dimensional embedding
sequentially to the output x′, using linear interpolation followed by convolution.
This mirrors the approach used by Chandna et al. (2019) and Stoller et al.
(2018) and has been shown to avoid high frequency artifacts which appear
while upsampling with transposed convolutions. As with the U-Net, there are
connections between the corresponding layers of the encoder and decoder, as
shown in Figure 9.1.

61We developed an annotation tool available at this repository https://github.com/
xavierfav/percussive-annotator.

62https://doi.org/10.5281/zenodo.3665275

https://github.com/xavierfav/percussive-annotator
https://github.com/xavierfav/percussive-annotator
https://doi.org/10.5281/zenodo.3665275

9.4 Methodology 99

1D Convolution, stride = 2

Downsampling Block 1

Downsampling Block 2

Downsampling Block L

Embedding

1D Convolution

Upsampling Block 1

Upsampling Block 2

Upsampling Block L

Linear Interpolation

… …

Concat

Concat

Concat

Input envelope and timbral features Output Waveform

Figure 9.1: The proposed architecture, with K = 15 layers.

We initially used a simple reconstruction loss function, shown in equation 9.1
to optimise the network.

Lrecon = E[∥x′− x∥1] (9.1)

While this resulted in a decent output, we noticed that the network was able
to reproduce the low frequency components of the desired sound, but lacked
details in high frequency components. To rectify this, we added Short-Time
Fourier Transform (STFT) based loss, similar to Sahai et al. (2019). This loss
is shown in equation 9.2.

Lst f t = E[∥ST FT (x′)−ST FT (x)∥1] (9.2)

The final loss of this network is shown in equation 9.3.

L f inal = Lrecon +λLst f t (9.3)

Where λ is the weight given to the high frequency component of the recon-
struction.

100 Generation of One-shot Drum Sounds

Figure 9.2: A sample of the input envelope and features and the output waveforms
for the various models for the KICK dataset

9.5 Evaluation

9.5.1 Data Pre-processing

All sound were downsampled to a sampling rate of 16 kHz and silences were
removed from the beginning and end of the sounds. Following this, we cal-
culated the timbral features and envelope described in section 9.2 and then
zero-padded at the end of the sound to 16000 samples. The features were nor-
malized using min-max normalization, to ensure that the inputs were within
the range 0 to 1.

9.5.2 Network Training

The network was trained using the Adam optimizer (Kingma & Ba, 2015) for
2500 epochs with a batch size of 16. We use 90 % of the data for training and
10 % for evaluation. The STFT used for the Lst f t loss function is calculated over
1024 samples and a hop size of 512. With the given sampling rate, this led to
a frequency resolution of 16.125 Hz per bin. We evaluate the model with three
losses: the Lrecon loss, henceforth referred to as WAVE; the L f inal , referred to
as FULL; and a version with only the high frequency components of the STFT
for the Lst f t , referred as HIGH. This last model uses STFT components above
650 Hz or 40 bins as traditional kick synthesizers model a kick sound via a low
frequency sinusoid, generally below 650 Hz with some high frequency noise. We
use λ = 0.5 for our experiments.

9.5 Evaluation 101

9.5.3 Evaluation

The proposed models need to be evaluated in terms of the perceived audio
quality and the coherence of timbral features between the input and the out-
put. A preliminary assessment of the quality of reconstruction can be made
by looking at the output waveforms, shown in Figure 9.2 for a sample from
the test set of the KICK dataset. Although the reconstruction seems to be
visually accurate for the three models, the perceived quality of the audio is a
subjective metric that cannot be judged by simply looking at the plots. We
can objectively assess the coherence of the timbral features used as input to the
model. More importantly, we want to assess that a change in these features
leads to a corresponding change in the output.
To this end, we vary each individual timbral feature while maintaining the
other features constant. We then check the accuracy of the output waveform
via the same feature extractors used for training. For each individual feature,
we set values of low, corresponding to 0.2 over the normalized scale, mid,
corresponding to 0.5 and high, corresponding to 0.8. The respective outputs for
such models are termed x′lowi, x′mid i and x′highi and their corresponding features
are f si

low, f si
mid and f si

high for the ith feature. For coherent modeling, the models
should follow the order f si

high > f si
mid > f si

low. We assess the accuracy of this
order in three tests, E1, which checks the condition f si

high > f si
low, E2, which

checks f si
high > f si

mid and E3, which checks f si
mid > f si

low over all values of i. The
accuracy of the models over these tests is shown in Table 9.1 and a feature wise
summary is shown in Table 9.2.

Accuracy
Dataset Model E1 E2 E3

WAVE 0.601 0.569 0.552
FSOSPS HIGH 0.649 0.601 0.657

FULL 0.825 0.758 0.780
WAVE 0.805 0.722 0.722

KICK HIGH 0.876 0.789 0.769
FULL 0.920 0.814 0.798

Table 9.1: Objective verification of feature coherence across models and datasets.

It can be seen that the FULL model, followed by the HIGH, are the most
efficient at mapping the input features to the output waveform in terms of
feature coherence, but all three models do maintain this coherence to a high
degree.
While feature coherence is maintained for features like boominess, brightness,
depth and warmth for the full dataset, the models are less consistent in terms of

102 Generation of One-shot Drum Sounds

FSOSPS KICK
Feature E1 E2 E3 E1 E2 E3
Boominess 0.98 0.82 0.98 0.96 0.86 0.95
Brightness 0.99 0.99 1.00 0.99 0.98 0.84
Depth 0.94 0.65 0.94 0.99 0.89 0.94
Hardness 0.64 0.66 0.59 0.85 0.61 0.79
Roughness 0.63 0.59 0.57 0.84 0.80 0.62
Sharpness 0.63 0.77 0.45 0.90 0.91 0.54
Warmth 0.92 0.79 0.91 0.88 0.61 0.87

Table 9.2: Objective verification of the accuracy on feature coherence for the best
performing models for each dataset.

hardness, roughness and sharpness, particularly true for the FSOSPS dataset.
Given the absence of a suitable baseline system, we decided to use an online
AB listening test that compared the models among themselves and a reference
for subjective evaluation of quality. The participants of the test were presented
with 15 examples each from both datasets. Each example had two options, A
and B from two of the models used for the dataset, along with a reference
ground truth audio. There were 5 examples each from each of the 3 pairs. The
participant was asked to choose the audio clip which was closest in quality to
the reference audio. There were 35 participants in the listening test, the results
of which are shown in Figure 9.3.

12%

32%

19%

40%

11%

21%

49%

35%

48%

38%

12%

19%

35%

22%

78%

67%

30%

33%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

WAVE/HIGH

HIGH/FULL

WAVE/FULL

WAVE/HIGH

HIGH/FULL

WAVE/FULL

WAVE FULL HIGH nopref.

KICKS

FSOSPS

Figure 9.3: Results of the listening test, displaying the user preference between loss
functions for each of the datasets.

A clear preference for the HIGH model can be seen, especially for the KICK
dataset. This can be attributed partly to the choice of cutoff frequency used

9.6 Conclusions and Future Work 103

in the model and partly to the diversity of sounds in the FSOSPS dataset. We
note the difficulty in assessing audio quality over printed text and encourage
the user to visit our demo page and listen to the audio samples for assessment.

9.6 Conclusions and Future Work

In this work, we proposed a method using a feed-forward convolutional neural
network based on the Wave-U-Net (Stoller et al., 2018) for synthesizing per-
cussive sounds conditioned on semantically meaningful features.
Our final aim is to create a system that can be controlled using high-level
parameters, being semantically meaningful characteristics that correspond to
concepts casual music makers are familiar with. To this end, we use hand
crafted features designed by MIR experts and curate and present a dataset for
the purpose of modeling percussive sounds. Via objective evaluation, we were
able to verify that the control features do indeed modify the output waveform
as desired and quality assessment was done via an online listening test.
Future work on this area involves developing an interface for interacting with
the synthesizer, which allows to evaluate the approach in its context of use,
with real users. Improvements in the generated sound quality and extending
this architecture to be able to generate percussive loops will be the focus of
the following chapters.

CHAPTER 10
Generation of Drum Loops

In this chapter, we present LoopNet, a feed-forward generative model for cre-
ating loops conditioned on intuitive parameters. As a continuation to the
previous chapter, we use a large collection of public loops with the Wave-U-
Net architecture to map control parameters to audio. We also evaluate the
quality of the generated audio and propose intuitive controls for composers to
map the ideas in their minds to an audio loop.
This chapter is based on Chandna, P., Ramires, A., Serra, X., & Gómez, E.
(2021). LoopNet: Musical Loop Synthesis Conditioned on Intuitive Musical
Parameters. In Proceedings of the 46th IEEE International Conference on
Acoustics, Speech and Signal Processing (pp. 3395-3399).

10.1 Introduction

The concept of loops is not new, repetitive units or motifs which are repeated
through musical compositions have long been used in music across cultures,
allowing composers to maintain continuity with various degrees of variability
and complexity.
Audio synthesis technologies for music have been researched for many years,
ranging from synthesizers generating pitched waveforms, to singing voice syn-
thesizers conditioned on melody and text63, to deep learning based models
capable of generating entire songs (Carr & Zukowski, 2018; Zukowski & Carr,
2018). Initially proposed for generating high-quality speech samples, the Wave-
net architecture models each sample of a waveform as a function of the pre-
viously predicted time steps, leading to the autoregressive nomenclature. The
use of dilated causal convolutions allows the architecture to model longer term
temporal dependencies between samples in an audio waveform than in the

63https://vocaloid.com

105

https://vocaloid.com

106 Generation of Drum Loops

SampleRNN architecture. This architecture has subsequently been adapted for
musical generation like singing voice synthesis conditioned on lyrics (Blaauw
& Bonada, 2017), and instrument sound generation conditioned on the pitch
and latent representations of timbre (Engel et al., 2017; Dieleman et al., 2018;
Carr & Zukowski, 2018). While the output of these models is subjectively
similar to natural-sounding samples, the sequential nature of the model means
that the processing time for generation is quite high, unless high-resource pro-
cessing units are available. Feed-forward adaptations of the architecture via
probability density distillation have been proposed showing that it is possible
to directly map the input conditioning to the output waveform without se-
quentially predicting each sample of the waveform (Oord et al., 2018).
Efforts have been made to find semantic structures within the latent embed-
dings that can provide an intuitive control to the music producer, but there
remains a gap between the intuition behind the parameters of the generat-
ive model and the perceptual qualities of the audio generated. To this end,
works have used Music Information Retrieval (MIR) techniques to generate
single shot percussive sounds conditioned on semantically relevant musical
features that are perceptually easier for the user to understand and manip-
ulate (Ramires et al., 2020b; Nistal et al., 2021). In this chapter, we aim to
extend the generation of sounds conditioned on perceptually relevant features
from one-shot sounds to loops.
To this end, we model the waveform of a loop as a function of global fea-
tures pertaining to timbre and harmony and time-varying features pertain-
ing to rhythm. While there are several deep learning based architectural
choices (Dieleman et al., 2018; Donahue et al., 2019; Mehri et al., 2017) for
modeling such a distribution, we decided to use a feed-forward convolutional
design with skip and residual connections for the propagation of information
between the layers of the network. This allows for the feed-forward genera-
tion of waveforms conditioned on the input. We leverage a curated collection
of loop samples for training the model and evaluate our proposed methodo-
logy in terms of the perceived quality of the generated audio, the processing
time required and the feature coherence between the input conditioning and
the output sample. We also release our code publicly for reuse and provide
interactive examples for a demonstration 64.
The rest of the chapter is structured as follows: Section 10.2 presents a brief
overview of the dataset we use for training and testing our model. Our pro-
posed methodology is outlined in Section 10.3 and a description of the eval-
uation strategy we use is presented in Section 10.4. This is followed by the
results of our study in Section 10.5 and a discussion of the work presented here
and how it can be continued is presented on Section 10.6.

64https://github.com/aframires/drum-loop-synthesis

https://github.com/aframires/drum-loop-synthesis

10.2 Dataset Curation and Analysis 107

10.2 Dataset Curation and Analysis

To collect a dataset for training the generative model, we use loops from an
in-house collection of loops from Looperman65, a community loop database.
This database contains loops provided by users with annotations for genre,
instrumentation, key and tempo.
We collected 8838 loops from the drums66 category, with tempo annotations
ranging from 120 to 140 Beats Per Minute (BPM), the most frequent tempos
in the collection. As tempo annotations provided by users might be noisy, we
validate the tempo using a confidence measure (Font & Serra, 2016), taking into
account the difference in the duration of a single bar and the relative duration
of the entire loop. We only use loops which have a confidence measure higher
than 99%, leading to a total of 8226 loops.
The Wave-U-Net architecture works with fixed-length input and output, re-
quiring all loops to have the same length. To this end, we use the rubberband
library67 to time-stretch all the loops to 130BPM. We verified that this time-
stretch did not create artifacts and that the loops were still sounding coherent
after this step. To feed our model with fixed-length input, we split the loops
into 1-bar segments, with a duration of 1.846 s at 130BPM. This process led
to 49045 1-bar segments, which we then downsampled to 16 kHz and analyzed
as shown in the next section.
We used 90% of the 1-bar loops for training and the rest for testing. As
segments from the same loop are likely to be similar, we performed the training-
test split before segmenting the audio into 1-bar segments. As a result, there
is no overlap between the loops from which segments were used for training
and those which were used for testing.

10.3 Methodology

Once pre-processed, we analyze the loops to extract perceptually relevant fea-
tures which we map back to the waveform via the neural network. We consider
two types of features: local time-varying features, which are defined over the
same temporal scale as the output and global features which can be summar-
ized to be consistent across the length of the loop.

65https://looperman.com
66The instrumentation in the loops is not restricted to drums, even though the keyword

is used for shortlisting. The loops might also include complementary melodic instruments on
top of the drums.

67https://breakfastquay.com/rubberband

https://looperman.com
https://breakfastquay.com/rubberband

108 Generation of Drum Loops

10.3.1 Time-varying Conditioning Features

Local time-varying features correspond to the rhythm of the loop. To ob-
tain information on a loop’s rhythmic pattern, we use an Automatic Drum
Transcription algorithm (Southall et al., 2017). This algorithm models the
probability of a windowed frame of the analyzed audio having a kick drum,
a snare drum or a hi-hat. We use one-dimensional spline interpolation 68 to
interpolate the values from the windowed frames to the length of the wave-
form. An example of this representation for a loop in our dataset is presented
in Figure 10.1. As seen in the figure, the activation function has sparse energy
distribution across time, which does not represent the energy distribution of
the loop. To account for this, we also calculated the envelope of the waveform,
as in the previous chapter.

Audio Waveform

Kick/Bass Activation Function

Snare/Mid Activation Function

Hi Hat/High Activation Function

Envelope

Figure 10.1: The waveform of the audio along with the activation function extracted
using the Automatic Drum Transcription algorithm and the energy envelope.

10.3.2 Global Conditioning Features

Global conditioning features correspond to textural features, both harmonic
and non-harmonic, which can be assumed to be constant through the duration
of the loop. To summarize the harmonic texture of the audio across the length

68https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.spline.
html

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.spline.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.spline.html

10.3 Methodology 109

of the loop, we used Harmonic Pitch Class Profiles (HPCP) (Gómez, 2006b)69.
This feature represents the energy distribution across the 12-note chromatic
scale commonly used in western music and is also intuitive for music makers. To
model the abstract non-harmonic texture of the loop, we used the perceptually
pertinent timbral features proposed by Pearce et al. (2017). These are hard-
ness, depth, brightness, roughness, boominess, warmth and sharpness70. We
used the methodology proposed by Miron et al. (2013), to separately analyze
the different frequency bands in each loop. The signal was analyzed through
three different filters; a 1st order IIR low-pass filter with a cutoff frequency of
90 Hz, a 2nd order IIR band-pass centered in 280 Hz, and a 1st order IIR high-
pass filter with cutoff frequency at 9000 Hz. The global conditioning feature
for each of the frequency bands was summarized by taking an average across
all windowed frames, concatenated, normalized and broadcast across time for
conditioning the network as in Oord et al. (2016a).

10.3.3 Architecture

We use the feed-forward Wave-U-Net architecture (Stoller et al., 2018), used in
the previous chapter, for mapping the input features to the output waveform,
x. The architecture is shown in Figure 10.2, and consists of an encoder and
a decoder. The encoder downsamples the input via a series of convolutions
with stride 2, to produce a low-dimension embedding. A filter length of 5 is
used throughout the layers and the number of filters is doubled after each 3
layers, starting with 32 filters. We use 10 layers in the encoder, to produce a
low-dimensional embedding. This embedding is upsampled via linear interpol-
ation (Chandna et al., 2019; Stoller et al., 2018) and each upsampling operation
is followed by a 5× 1 convolution to generate the output, x̂. The inputs and
outputs are vectors of length 29538, representing the number of samples in 1
bar loops in our dataset. The corresponding layers in the encoder and decoder
are connected via the concatenation of features to allow for the propagation of
information (Stoller et al., 2018).

10.3.4 Loss Functions

In this work, we experiment with several loss functions and compare their
output quality. We used the reconstruction loss shown in Equation 10.1 and
complemented it with a perceptually motivated loss based on the Short-Time
Fourier Transform (STFT) based loss, shown in Equation 10.2. We used a hop

69The Essentia implementation at https://essentia.upf.edu/reference/streaming_HPCP.
html with the default parameters was used.

70To obtain these features we used an open-source implementation https://github.com/
AudioCommons/ac-audio-extractor.

https://essentia.upf.edu/reference/streaming_HPCP.html
https://essentia.upf.edu/reference/streaming_HPCP.html
https://github.com/AudioCommons/ac-audio-extractor
https://github.com/AudioCommons/ac-audio-extractor

110 Generation of Drum Loops

1D Convolution, stride = 2

Downsampling Block 1

Downsampling Block 2

Downsampling Block L

Embedding

1D Convolution

Upsampling Block 2

Upsampling Block L

Linear Interpolation

… …

Concat

Concat

Concat

Input Features Output Waveform

Figure 10.2: The Wave-U-Net architecture used in our study, the input includes
the local conditioning with onset detection functions, the global HPCP and timbral
features which are broadcast along time. The output is the waveform of the loop.

size of 512 for calculating the STFT for Lst f t , over a STFT window resolution
of 1024 samples, resulting in a frequency resolution of 16.125 Hz per bin. In
addition, we used the multi-resolution loss (Wang et al., 2020; Engel et al.,
2020), which consists of calculating the STFT with various FFT window res-
olutions (2048 samples for i = 0, 1024 samples for i = 1, 512 samples for i = 2,
256 samples for i = 3, 128 samples for i = 4, 64 samples for i = 5).

Lrecon = E[∥x̂− x∥1] (10.1)

Lst f t = E[∥x̂− x∥1]+E[∥ST FT (x̂)−ST FT (x)∥1] (10.2)

Lmulti = E[∥x̂− x∥1]+
5

∑
i=0

E[∥ST FTi(x̂)−ST FTi(x)∥1] (10.3)

For the rest of the chapter, we will refer to the model optimized using Equation
10.1 as WAV, the model optimized for Equation 10.2 as WAVSPEC and that
optimized using the multi-resolution loss (Engel et al., 2020) shown in Equation
10.3 as MULTI.

10.4 Experiments 111

10.4 Experiments

10.4.1 Models

In our experiment, we train and evaluate 5 different models. The first of the
models, termed as STFT, maps control features to the STFT of the wave-
form and uses the Griffin-Lim (Griffin & Lim, 1984) algorithm for waveform
reconstruction. The WAV, WAVSPEC and MULTI models map the input
features directly to the waveform and are optimized using the loss functions
described in Section 10.3.4. In addition, we train a model mapping the input
features minus the envelope to the corresponding waveform, optimized using
the multi-resolution loss. We term this model as MULTI NOENV.

10.4.2 Parameters

The network was trained using the Adam optimizer (Kingma & Ba, 2015)
with a batch size of 16. Like Dieleman et al. (2018), we found that after a
certain limit of optimization, the loss function did not directly correspond to
the audio quality of the output. As such, we heuristically selected the best
epoch for synthesis for each of the models.

10.4.3 Evaluation

While there are several aspects of the generated output that can be assessed,
we restrict our evaluation to two aspects: the audio quality and the coherence
between changes in the input features to the output audio.

10.4.3.1 Audio Quality Assessment

Audio quality is a subjective attribute, which is difficult to quantitatively meas-
ure as each person listening to the audio is likely to have their own perception of
the quality. Some quantitative metrics based on deep learning have been pro-
posed recently to assign a quantitative degree to this attribute, including the
Fréchet Audio Distance (FAD) (Kilgour et al., 2019), the Inception Score (Sali-
mans et al., 2016) and the Kernel Inception Distance (KID) (Bińkowski et al.,
2018). In this study, we use the FAD between the original test set and the
generated output to assess the audio quality of the output. This metric can
identify degradation of audio quality in a way related to human judgments, us-
ing audio-based latent embeddings from the Audioset (Gemmeke et al., 2017)
VGG’ish pre-trained model71. To create a baseline for this evaluation, we re-

71https://github.com/tensorflow/models/tree/master/research/audioset

https://github.com/tensorflow/models/tree/master/research/audioset

112 Generation of Drum Loops

synthesized the audio using the Griffin-Lim (Griffin & Lim, 1984) algorithm.
This baseline is termed as Griffin-Lim and has minimal degradation.

10.4.3.2 Timbral Feature Coherence

We want changes in the input features to be reflected in the synthesis output.
To this end, we assess feature coherence over 16 loops from the test set in a
manner similar to Ramires et al. (2020b) and Nistal et al. (2021). We syn-
thesized outputs changing each of the 21 timbral features individually, while
keeping the rest unchanged. The feature was changed to three different values:
0.2, 0.5 and 0.8, over the normalized scale. We refer to this outputs as x′lowi,
x′mid i and x′highi and their corresponding features are f si

low, f si
mid and f si

high for
the ith feature. This resulted in 16× 21× 3 = 1008 different outputs for each
model. We then extracted timbral features as described in Section 10.3.2.
We evaluate timbral feature coherence by validating if the models follow the
order f si

high > f si
mid > f si

low. For this, we use three tests (Ramires et al., 2020b;
Nistal et al., 2021): E1, which checks the condition f si

high > f si
low; E2, which

checks f si
high > f si

mid ; and E3, which checks f si
mid > f si

low over all generated
loops.

10.5 Results and Discussion

10.5.1 Audio Quality Assessment

The results for the assessment of audio quality using the FAD metric are presen-
ted in Table 10.1. We encourage the reader to listen and subjectively evaluate
the outputs for each model, provided in the accompanying website72. The
website includes synthesis examples from the test set, as well as an illustration
of user-interaction possibilities like timbre transfer
As seen in Table 10.1, the spectogram loss in the WAVSPEC model leads to an
improvement in synthesis quality over the WAV and STFT models. The use of
the multi-resolution loss in the MULTI models led to a significant improvement
in audio quality measured by the FAD. We also see that the use of the overall
envelope was redundant as the model was able to perform just as well when not
conditioned on this feature. We stress that this measure is just a simplification
of a highly subjective perceptual attribute and acknowledge that there is room
for improvement in the audio quality.

72https://github.com/aframires/drum-loop-synthesis

https://github.com/aframires/drum-loop-synthesis

10.6 Conclusion 113

Model FAD
Griffin-Lim 1.26
STFT 24.97
WAV 13.83
WAVSPEC 9.06
MULTI 3.73
MULTI NOENV 3.35

Table 10.1: FAD for the outputs of each of the models, when compared to the original
test data. FAD values closer to 0 indicate higher similarity between the quality of the
original audio and the assessed output.

10.5.2 Timbral Feature Coherence

The results of the feature coherence evaluation are presented in Table 10.2. A
high degree of coherence can be observed between changes in input features
and the resulting output for all models except the WAV model. The STFT
model outperforms the waveform based models for feature coherence but lags
in audio quality.

Accuracy
Model E1 E2 E3
STFT 87.50% 77.68% 79.46%
WAV 67.44% 62.86% 52.14%
WAVSPEC 76.79% 75.89% 74.11%
MULTI 87.50% 77.68% 75.00%
MULTI NOENV 83.93% 77.68% 75.00%

Table 10.2: Mean feature coherence across models for each error type.

10.6 Conclusion

We present LoopNet, a deep learning-based feed-forward loop synthesis al-
gorithm, mapping intuitive input controls directly to the corresponding wave-
form. The nature of the model allows for fast synthesis of the loop, with
processing time from control input to the synthesized output of the order of
0.5 s per loop, without the use of a GPU. In addition to the models presented in
this study, we tried and tested various other loss functions, including training
via the adversarial optimization and using DDSP (Engel et al., 2020) features
for synthesis. In this study, we present some of the handpicked models which
worked the best. We have verified that the models can maintain feature coher-
ence between the control inputs and the generated output. The quality of the

114 Generation of Drum Loops

sound generated is a subjective aspect, that we have simplified and evaluated
using a deep learning based methodology. The results are encouraging but
there is room for improvement.
The control features presented provide innovative avenues for user control over
the synthesis. Apart from the straightforward mapping of MIDI input over a
time grid to the input rhythm features, the drum transcription function can
also be computed directly from audio, allowing for mixing and matching of
rhythm, timbre and harmonic features over loops or even over more abstract
sounds such as human beatboxing or environmental sounds with interesting
timbre. We provide examples of these on our complimentary website along
with other interfaces for input control. We believe this will allow for a greater
degree of freedom for musicians looking to expand their musical creativity while
using loops for compositions. This also establishes a baseline for future works
in loop synthesis looking to improve the quality of the loops synthesized.

CHAPTER 11
Comparing Representations

for Drum Synthesis

In the previous chapters, we have proposed methodologies for controlling the
generative process of drum sounds using high-level semantic feature paramet-
erization. Different works have proposed different interfaces but no compre-
hensive analysis has been presented to evaluate how each approach relates to
the creative process. In this chapter, we evaluate how different interfaces sup-
port creative control over drum generation by conducting a user study based
on the Creativity Support Index (CSI). We experiment with both a supervised
method that decodes semantic latent space directions and an unsupervised
Closed-Form Factorization approach from computer vision literature to para-
meterize the generation process.
This chapter is based on Ramires, A., Juras, J., D. Parker, J., & Serra, X.
(2022). A Study of Control Methods for Percussive Sound Synthesis Based on
GANs. In Proceedings of the International Conference on Digital Audio Effects
(DAFx).

11.1 Introduction

Sound synthesis techniques for percussion sounds have evolved significantly
throughout the last decades, with many techniques being associated with and
even defining entire Electronic Music genres. Analogue synthesis paved the
way for creating and designing percussive sounds electronically. More recently,
with the development of music-making software such as Kick273, SubLab74

and the default drum synthesizers available in Digital Audio Workstations,
digital drum sound creation became common practice for music makers of

73https://sonicacademy.com/products/kick-2
74https://futureaudioworkshop.com/product/sublab

115

https://sonicacademy.com/products/kick-2
https://futureaudioworkshop.com/product/sublab

116 Comparing Representations for Drum Synthesis

all backgrounds, enabling advanced digital signal processing techniques to be
applied to drum sound design.
Recent advances in deep learning introduced novel methodologies for synthes-
izing data. Architectures such as Autoregressive Networks (Oord et al., 2016a;
Engel et al., 2017; Mehri et al., 2017), Variational Autoencoder (VAE) (Kingma
& Welling, 2014), and Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have all been proven to generate high-quality results in a variety of
domains, from images of human faces to musical audio. Besides achieving the
best synthesis quality in several domains, recent work has shown that GANs
can even capture high-level semantic concepts (Yang et al., 2021) in the latent
space dimensions driving the networks. Nevertheless, determining the correct
latent space feature to manipulate to achieve a specific variation in the data
space can be cumbersome – especially when dealing with high-dimensional lat-
ent spaces. To overcome this issue, new techniques have been proposed to find
directions in the latent space that correspond to semantic concepts, either in
a supervised (Shen et al., 2020) or unsupervised manner (Shen & Zhou, 2021).
Recently, research into percussive sound creation using generative deep learning
models has been receiving increased attention. Both DrumGAN (Nistal et al.,
2021) and Adversarial Synthesis of Drum Sounds (ASDS) (Drysdale et al.,
2020, 2021) employed the GAN training paradigm for this task. Each proposed
its own methodology for controlling the synthesis, conditioning on timbral
features, and the drum class respectively. Despite the significant research effort
in this area, no studies have yet compared the various approaches made to
controlling the synthesis process itself.
The main goal of our research is to evaluate 3 different methodologies for
navigating the latent space of a GAN trained to generate drum sounds. To
this end, we adapted StyleGANv2 (Karras et al., 2020) to accommodate the di-
mensionality of the time-frequency representation of musical audio and trained
the network on a private dataset of drum sounds. Both a supervised (Shen
et al., 2020) approach – where features determined from data generated by the
trained network are used to infer synthesis control – and an unsupervised (Shen
& Zhou, 2021) method – where synthesis control is determined based on the
learned weights of the network itself – were applied to the trained network to
find perceptually salient directions in the latent space. Finally, a user study
based on the CSI (Cherry & Latulipe, 2014) was employed to compare these
two latent navigation approaches against a simplistic approach to latent space
vector manipulation.

11.2 StyleGAN2 117

11.2 StyleGAN2

As its name implies, StyleGAN2 is a flavor of GAN – a neural network ar-
chitecture that exploits adversarially training independent generator (G) and
discriminator (D) networks. The input to the former are one-dimensional vec-
tors z from a latent space Z - an independent and identically distributed Gaus-
sian probability distribution, while the latter is input with one-, or multi-
dimensional, vectors of data x from the data space X , which represents all
real data instances. The generator is tasked with learning a mapping between
pz(z), and pdata(x), the probability distribution of all training data samples.
The discriminator is a classifier that ideally scores real data examples (train-
ing data) with a score of D(X) = 1, and generated data examples with a score
of D(G(Z)) = 0. Thus, the discriminator wishes to maximize the probability
of assigning the correct label to both training data and generated data. For
training data, it is trained to maximise the expected value over all instances
in X :

EX∼pdata [logD(X)] (11.1)
Likewise for generated data, the discriminator is trained to maximize the ex-
pected value over all generated fake instances G(Z):

EZ∼pz [log(1−D(G(Z))] (11.2)

while the generator works to minimize Equation 11.2. Adversarial training
amounts to a two-player minimax game between the generator and discrimin-
ator networks:

min
G

max
D

V (D,G) := EX∼pdata [logD(X)] +

EZ∼pz [log(1−D(G(Z))]
(11.3)

StyleGAN2 is part of a lineage of generative models developed by the NVIDIA
research team. Initially motivated by stabilizing the training process for GANs,
Karras et al. (2018) proposed ProGAN – a new model architecture and corres-
ponding training procedure that ‘progressively’ trained layers of a deep convo-
lutional GAN against different downsampled resolutions of its training data.
StyleGAN radically revised the deep convolutional GAN architecture, by rede-
fining the functional relationship between latent space vectors and the gener-
ator network (Karras et al., 2019): (i) As a means to disentangle possible non-
linear subspaces within the normally distributed latent space z ∈ Z, a learned
intermediate latent space, or style space, w ∈ W , was introduced. Connected
to the latent space by a non-linear mapping, f : Z →W , the style space doesn’t
have to support sampling according to any fixed distribution; (ii) Instead of

118 Comparing Representations for Drum Synthesis

feeding the latent vector directly to the generator network like in ProGAN,
StyleGAN fed the generator with a fixed seed and applied the style vectors in
w across each layer of the generator through an affine transformation. This
effectively applied the affine-transformed style to each level of resolution in the
network, influencing coarse features at lower resolution layers, and fine-grained
features at higher resolution layers.
Improving on ProGAN’s unsatisfactory performance in generating stochastic
image features (hair, background foliage, pores, etc.), StyleGAN further in-
troduced noise to each resolution layer of the generator, scaled by a learned
weight. While the network generated state-of-the-art images, artifacts from
the training procedure – notably shift-invariance, were left as open questions
for future work.
StyleGAN2 introduces several improvements on the original StyleGAN archi-
tecture (Karras et al., 2020). To address ‘blob’-like artifacts that were common
in generated StyleGAN images, StyleGAN2 replaces inter-layer normalization
(Adaptive Instance Normalisation (AdaIN), which independently normalizes
both the mean and variance between adjacent convolution layers) with what
Karras et al. refer to as weight demodulation. In general, the goal of inter-layer
normalization is to remove the statistics of the applied style vector, w, from
the output feature map. However, by normalizing both the mean and variance
between layers, information discovered by the network about the magnitudes of
the features relative to each other is potentially destroyed – which is speculated
as a culprit for the ‘blob’-like artifacts. Weight demodulation is proposed as a
‘weaker’ means to normalize than AdaIN (and respectively pixel-wise normal-
ization in ProGAN), since it is based on statistical assumptions of the signal
passing through the layer rather than the actual contents of the feature map
– which thus preserves relative magnitude information between layers.
Furthermore, the StyleGAN2 network is no longer trained progressively: it was
shown that with a large enough training dataset, the gradient updates applied
to the network during training are roughly in line with how ProGAN trains
– ie. early training focuses on lower resolution layers, and progressively fine-
tunes higher resolution layers; and without the risk of shift-invariant image
generation.
The many innovations of StyleGAN2 led us to believe that it would be a
well-suited architecture to synthesize drum sounds. Notably, given the many
different drum classes present in our dataset, the disentangled nature of the
network architecture’s style space presents the potential for latent conditioning
suitable for coherent interpolation between drum classes. Furthermore, the
trainable stochastic noise components fed to each network layer are well suited
for the task of generating the noise components common to drum sounds –
from kick drum transients to sustained hi-hats and cymbals.

11.3 Controlling the Generation 119

11.3 Controlling the Generation

To allow a degree of control over the synthesis process in generative models,
several approaches have been proposed. Previous research on percussive sound
generation used conditioning features which, based on an external conditional
signal c, force the model to learn the conditional probability p(x|c). The chosen
conditioning signal c can vary in terms of how much information it contains,
from low information signals like class labels (e.g. kick, snare or cymbal), to
very rich conditioning signals like the envelope of the drum sound.
In this chapter we compare supervised and unsupervised approaches for finding
latent directions in the learned latent space of GANs. While conditioning
can be used as a control for the generation process, we want to create a fair
comparison between approaches. We therefore focus on approaches that do not
require constraining the network during training and can be applied directly
to a pre-trained model. Our goal is to find latent directions n ∈ Rd , with
some interpretable meaning, which allow the modification of a sound G(z)
with latent code z to a new sound G(z′) = G(z+αn) where α represents the
amount of modification.
Unsupervised methods rely on applying dimensionality reduction to the trained
latent space to find the directions n that correspond to the most significant
change in the output. Early experiments (Härkönen et al., 2020) relied on
generating data from points in the latent space and posterior application of
PCA to discover the directions. In this work, we use Semantic Factorization
(SeFa) (Shen & Zhou, 2021), a closed-form factorization method that does
not require sampling and can learn directions directly from the weights of the
trained model. The paper shows that given any latent code z, and the weight
matrix A, the edit operation G(z′) can be achieved by adding the term αAn on
the projected code. Therefore, A contains all information related to the output
variation. The basis for finding the latent directions in SeFa is to solve the
optimization problem:

n = argmax
n∈Rd :nT n=1

||An||22 (11.4)

where ||.||2 denotes the l2 norm. The solutions for this problem are shown to
be the eigenvectors of AT A with the largest eigenvalues. This method showed
remarkable performance when applied to the pre-trained StyleGAN (Karras
et al., 2019) model for generating faces, being able to identify the directions
corresponding to pose, presence of glasses, gender and amount of smiling, in a
more disentangled manner than PCA.
Supervised methods for discovering latent space directions require an annota-
tion procedure on synthesized data to train classifiers in the latent space. In

120 Comparing Representations for Drum Synthesis

Conv + Downsample Layer

Conv + Downsample Layer

Conv + Downsample Layer

Audio to Spectrogram
W

Z

Spectrogram to Audio

Seed Noise

Modulated Conv + Upsample Layer

Dense Layer

Dense Layer

…

M
ap

pi
ng

 N
et

w
or

k

…

Affine
Transforms

Scaling Factors

Modulated Conv + Upsample Layer

Modulated Conv + Upsample Layer

Modulated Conv + Upsample Layer

…

MiniBatch Std

Conv Layer

Fully Connected Layer

Figure 11.1: StyleGAN2 Generator (left) and Discriminator (right) architectures.

InterfaceGAN (Shen et al., 2020), it is assumed that, for binary character-
istics, there is a hyperplane in the latent space which separates positive and
negative examples. To find the hyperplane, a large amount of data needs to
be generated from the trained network to be later classified using classifica-
tion algorithms. The authors experimented with classifiers for the pose, smile,
age, gender and eyeglasses to get positive and negative labels for the generated
data and used Support-Vector Machines (SVMs) to then find the dividing lat-
ent space hyperplane for each characteristic. The direction n that encodes a
characteristic to modify is therefore a normal vector of the discovered hyper-
plane, which passes by, z, the latent code we want to modify. It is also shown
that the larger the magnitude of the modification α is, the more affected the
sample is according to the encoded direction – despite n being found through
a binary classification hyperplane. This algorithm also has shown remarkable
performance when editing faces in terms of pose, smile and age.

11.4 Methodology

11.4.1 Dataset

The network was trained on the entire corpus of one-shot drum samples in-
cluded with Native Instrument Maschine Expansion releases. Table 11.1 shows
the distribution of sample counts for each drum class in the dataset. These
samples were all created by the Native Instruments sound design department
throughout the last decade. As a result, there is an inherent consistency across
the dataset in terms of quality, onset locations, and pre-normalized sample
volumes.

11.4 Methodology 121

Drum Class Count Drum Class Count
Claps 1547 Combo 91
Cymbal 1270 Hand Drum 99
HiHat 4645 Kick 4025
Mallet Drum 5 Metallic 73
Percussion 3365 Shaker 1122
Snare 3332 Tambourine 3
Tom 1017 Wooden 36

Total 20630

Table 11.1: Distribution of drum classes in the training dataset.

11.4.2 Data Pre-processing

As our network was trained on a two-dimensional spectrogram representation
of our audio data sampled at 16kHz, data pre-processing was implemented as
follows. (i) Audio recordings were resampled to 16kHz and zero-padded to
16k samples, representing one second of audio data. (ii) A logarithmic ‘fade-
out’ was added to the last 30% of each audio vector. (iii) Audio vectors were
normalised to a floating-point range of [-1.0, 1.0]. (iv) Audio vectors were
converted to complex spectrograms, using the following parameters: hop size
of 512 samples, window size of 2048 samples, and an FFT size of 2048 samples.
(v) Complex valued spectrogram reshaped into a 2 channel feature map of real
and imaginary components per channel. (vi) Finally, the DC component of
the 2 channel spectrogram representation was removed.

11.4.3 Model and Training

The default implementation of StyleGAN2 provided by NVIDIA was used, with
some adaptations made to it to work with spectrograms of shape 1024× 32:
(i) The network was modified to handle rectangular shapes instead of only
square data. (ii) The resolution of the smaller feature map in the generator
was set to 64×2, which is doubled every layer. (iii) The network was adapted
to handle only 2 channels, instead of the 1 or 3 channels commonly used for
image generation. We use 5 synthesis blocks in the generator comprising a
Modulated Convolutional and an Upsampling layer. On the discriminator 5
blocks comprising of a Convolutional and a Downsample layer are used. An
overview of the complete network is presented in Figure 11.1.
The network was trained on a virtual Google Cloud Platform machine, using
PyTorch’s GPU library Distributed Data Parallel to train across 4 NVIDIA
Tesla T4 GPUs. The latent space and style space dimensions were both set to
512, and the learning rate was set to 2e−3. A batch size of 8 examples was

122 Comparing Representations for Drum Synthesis

Feature Validation Accuracy Test Accuracy
Boominess 100% 70.9%
Brightness 99.2% 67.6%
Depth 99.2% 72.7%
Hardness 97.5% 72.0%
Roughness 100% 52.3%
Sharpness 100% 66.5%
Warmth 100% 81.8%

Table 11.2: SVM accuracy when separating positive and negative examples in In-
terfaceGAN.

used. Although the stated GAN training objective is to arrive at an equilibrium
point, where the discriminator outputs similar scores for real and generated
data, in practice, the quality of data output from the network is typically
maximized before the equilibrium is reached. A Fréchet Audio Distance (FAD)
analysis was used to determine which training epoch corresponds to the highest
quality and most diverse audio output (Kilgour et al., 2019). Epoch 243, which
corresponds to the network being exposed to 5,012,000 spectrograms, generated
a minimum FAD score of 2.689. The code used to train and create the model,
as well as audio examples for the reader to assess the audio quality are available
on the accompanying website.75

11.4.4 User Interface

We want to evaluate how our drum generation model can help foster creativity
when assisting music makers in creating drum sounds. To this end, we created
a graphical user interface that allows generating random sounds, navigating the
Z latent space, and also modifying sounds according to the directions learned
by the SeFa and InterfaceGAN algorithms. The interface can be seen in Figures
11.2 and 11.3.
The first panel on the left of the user interface in Figure 11.2 represents the
Z latent space. This is the first interface we evaluate. The user can set the
value for each of the 512 dimensions by either drawing the vector with the
computer mouse, or randomly seeding each latent dimension, and generate the
corresponding audio output.
The second interface and control methodology we want to evaluate are the 7
most significant directions returned by the unsupervised SeFa algorithm when
applied to our trained model. The choice of 7 as the number of directions was
to have the same number of control parameters as the timbral features used for

75https://aframires.github.io/stylegan2-ada-pytorch

https://aframires.github.io/stylegan2-ada-pytorch

11.4 Methodology 123

Generate Random Seed

Generate Drum Sample

Save Drum Sample to Disk

Z-Space Seed SEFA Directions
0: 0.1

1: - 0.5

2: 0.0

3: 0.4

4: - 0.2

5: - 0.8

6: 0.7

Figure 11.2: Graphical User Interface with SeFa directions.

InterfaceGAN. Similarly to the best-performing approach in the original SeFa
paper (Shen & Zhou, 2021), we use the latent semantic factorization algorithm
on the W space. These parameters are exposed as 7 horizontal faders, as shown
in Figure 11.2, and are labeled and displayed in decreasing order of importance.
The last interface to evaluate is the supervised directions produced by In-
terfaceGAN, shown in Figure 11.3. InterfaceGAN requires the generation of
examples from the trained network, as well as posterior manual or automatic
annotation. To this end, we generate 10000 percussion sounds from our net-
work and annotate them with the descriptors computed from AudioCommons
timbral models (Pearce et al., 2017). This set of 7 descriptors were obtained
from analyzing recurrent query terms related to timbral characteristics used
for searching Freesound (Font et al., 2013). These features are hardness, depth,
brightness, roughness, boominess, warmth and sharpness, and are calculated
through regression models implemented in the AudioCommmons Extractor76.
These exact descriptors have been previously used as conditioning features
for controlling drum synthesis in previous work (Ramires et al., 2020b; Nistal
et al., 2021).
To obtain the desired directions in InterfaceGAN, we use the latent embed-
dings in the W space, as these show higher classification accuracy in the SVM
training stage (Shen et al., 2022). For the SVM training, we used 280 training

76https://github.com/AudioCommons/ac-audio-extractor

https://github.com/AudioCommons/ac-audio-extractor

124 Comparing Representations for Drum Synthesis

Generate Random Seed

Generate Drum Sample

Save Drum Sample to Disk

Z-Space Seed Interface Directions
Hardness: 0.1

Depth: - 0.5

Brightness: 0.0

Roughness: 0.4

Warmth: - 0.2

Sharpness: - 0.8

Boominess: 0.7

Figure 11.3: Graphical User Interface with InterfaceGAN directions.

examples, 120 for validation, and the test set comprised the remaining 9600
samples. With this amount of data, the supervised algorithm was able to
achieve a separation boundary which was able to separate negative and pos-
itive elements with decent accuracy as shown in Table 11.2. The parameters
for the training, validation and test split were the ones used in the original
InterfaceGAN article (Shen et al., 2022). The high validation accuracy, ac-
companied with lower values for test accuracy might indicate that this split
might not be the best, as there are a lot of test examples and the training data
is fairly limited.
We provide examples of manipulating each of the 7 features from SeFa and
InterfaceGAN in the accompanying website75.

11.4.5 Evaluation

Ultimately, evaluating user control over the generation of drum sounds fo-
cuses on the extent to which a user can express creativity. While designing
a user study for evaluating the different approaches to parameterizing the
StyleGAN2-based drum synthesizer, we determined that the Creativity Sup-
port Index (CSI) is the most relevant tool. The CSI is a psychometric survey
designed to evaluate the extent to which a ‘creative support system’ can assist
a user engaged in creative work – in this case synthesizing drums. The CSI
measures six dimensions of creativity support: Exploration, Expressiveness,

11.5 Results and Discussion 125

Immersion, Enjoyment, Results Worth Effort, and Collaboration. It allows
researchers to evaluate how well a tool supports creative work overall and can
pinpoint weaknesses in the various dimensions listed above. Subsequently, we
present some example statements with which the test subjects are asked to
rate from ‘Highly Agree’ (10) to ‘Highly Disagree’ (0), while they evaluate
each of the three approaches to parameterization explored in the study: dir-
ectly manipulating Z-Space, SeFa latent directions, and InterfaceGAN latent
directions. Some example questions in the CSI are:

Exploration: “It was easy for me to explore many different ideas, options,
designs, or outcomes, using this system or tool.”

Immersion: “My attention was fully tuned to the activity, and I forgot
about the system or tool that I was using.”

Results Worth Effort: “What I was able to produce was worth the effort
I had to exert to produce it.”

As a final step in the evaluation, test subjects are asked to complete a ‘paired-
dimension comparison’, which assesses how each subject values (or weights)
each of the dimensions of creativity support already evaluated in the rating
scale section. With these weights, the CSI score is determined by:

CSIscore =

(CollaborationRating×CollaborationWeigh +

EnjoymentRating×EnjoymentWeight +
ExplorationRating×ExplorationWeight +
ExpressivenessRating×ExpressivenessWeight +
ImmersionRating× ImmersionWeight +
ResultsWorthEffortRating ×

ResultsWorthEffortWeight) / 3.0

11.5 Results and Discussion

The evaluation was completed by 14 participants with various degrees of music
production knowledge, from no music experience to professional music produ-
cers.
The results for the CSI evaluation are presented in Table 11.3. SeFa was the
preferred interface by the participants, followed by the Z-space and the Inter-
faceGAN. SeFa has a clear preference with a margin of 4.14 in relation to the

126 Comparing Representations for Drum Synthesis

second best performing method. The results for InterfaceGAN and Z-Space
are fairly similar, with a difference between the two of just 0.67. The low pref-
erence for InterfaceGAN could also be due to the low test-score obtained when
finding the directions. However, when exploring this parameter space, the dir-
ections seemed to correspond to the desired attributes. Generally, participants
reported having fun and were positively surprised by the ease of generating per-
cussion sounds with each of the three techniques. Participants also commented
on having enjoyed the exploratory process.

Z-Space SeFa InterfaceGAN
62.85 ± 11.91 66.99 ± 11.38 62.18 ± 11.40

Table 11.3: CSI scores for the 3 latent space navigation schemes under test.

Given the limited number of participants and their diverse backgrounds, the
CSI scores unfortunately bear large confidence intervals and, therefore, these
results cannot be said to be statistically significant. However, the trend towards
favoring SeFa parameterization in this exploratory study was further echoed
in anecdotes from participants during the debrief.
By interacting with the SeFa latent directions, it was reported that they were
clearly related to specific concepts in the data space. While the first two para-
meters controlled the drum class and the amount of noise content respectively,
the following controls controlled finer characteristics such as the decay time,
depth, and boominess. The last controls labeled 5 and 6 did not impart any
consistent variation in sounds generated across different latent samples.
Furthermore, participants reported an interesting user experience while inter-
acting with the SeFa controls: If they wished to create kick drums, they could
simply tweak the SeFa sliders (likely the first two sliders influencing drum class
characteristics) to produce a kick sample for the currently chosen latent vector
in the Z-Space. Then, subsequent randomly seeded latent vectors generated
kick drums with different timbral characteristics. The same was found for
hi-hats, toms, and snares, but less easily for other percussion types. This is
likely attributed to the former having the highest representation in the training
dataset.
On the other hand, a few participants characterized some InterfaceGAN para-
meters as redundant and not orthogonal to each other. Some participants
reported issues regarding a lack of consistency from one seed to the next and
not understanding the semantic concepts behind the parameters. Although
having labeled directions could be desired for some experienced participants,
testers valued the potential for exploring new timbres using SeFa without the
need for music production knowledge – for example, the terminology employed
by the InterfaceGAN UI.

11.6 Conclusions 127

In Table 11.4, we present the accumulated participant weights resulting from
the ‘paired-dimension comparison’ in the CSI study.

CSI Weight Value
Collaboration 0.64
Enjoyment 2.43
Exploration 3.64
Expressiveness 3.36
Immersion 2.00
Results Worth Effort 3.21

Table 11.4: CSI weights for each dimension.

From these results, it can be seen that the participants mentioned Exploration,
Expressiveness and Results Worth Effort as the most important dimensions of
creativity support for generating drum sounds. The high importance for Ex-
ploration could be the reason as to why SeFa scores highly in the CSI scale,
as this system allows a controllable but serendipitous exploration of the latent
space. Enjoyment and Immersion were still important but not as significant
as the previously mentioned ones. Collaboration was the least significant di-
mension with a weight of almost 0.

11.6 Conclusions

In this work, we evaluated three methodologies for designing and editing drum
sounds using GANs. To this end, a StyleGAN2 network was adapted to work
with audio data and trained on a large private collection of drum sounds.
We adapted two methodologies that showed promising results in controlling
the generation of images – SeFa and InterfaceGAN – to our use case. We
compared these approaches against the unconstrained navigation of the latent
space of the network through a user test based on the Creativity Support
Index. Our user study found that the unsupervised approach SeFa performed
better for creative engagement with the StyleGAN2 network and we described
the advantages and disadvantages of each interface.
Avenues for future work include the research and development of characteristics
and classifiers better suited for the task of drum synthesis, to further improve
the supervised approach InterfaceGAN. Redoing the experiment in a more
specific scenario (e.g. replicating a drum sound or exploring drum sounds to
fit a composition) could lead to a more confident result. Furthermore, creative
possibilities of the StyleGAN2 network such as style mixing and adjusting
magnitudes of noise at each resolution layer of the network could be included

128 Comparing Representations for Drum Synthesis

in the latent direction analyses explored in this chapter, to further enrich the
quality of the resulting parameterization.

CHAPTER 12
Summary and Future

Perspectives

In this chapter, we present the conclusions of this thesis. We start by sum-
marizing the work we have conducted throughout this thesis and the main
takeaways that have been presented at the end of each chapter. We will then
present an overview of our most significant contributions that we have achieved
throughout our research. Finally, we present our views on issues, limitations
and future avenues for research in the our work and the topics covered by this
thesis.

12.1 Summary

In this thesis, we explore ways in which deep learning can assist electronic
music creation by providing new ways of browsing and exploring collections
of music production sounds. To this end, we experimented with classification
and generation techniques, the former to characterize musical material and
the latter to create the sounds in-between the sounds present in music-making
collections. With the large increase of sound material for music making that is
available through online platforms, navigating both personal and online sound
collections for music making can get extremely cumbersome. Previous studies
conducted with artists have shown that this navigation is one of their main
sources of disruption in the creative process. They ask for techniques to browse
sounds based on their characterization. Despite the advances in recent tech-
nologies, the way of navigating collections of these production-ready sounds is
still based on hierarchical tree directories and textual queries.
However, these large amounts of data which complicate navigation are what
deep learning algorithms require to be trained. While automatic charac-
terization had previously been researched with small datasets, handcrafted

129

130 Summary and Future Perspectives

descriptors and traditional machine learning algorithms, there is now an op-
portunity to investigate it with deep learning methodologies further. Likewise,
the possibilities offered by generative deep learning algorithms allow synthes-
izing sounds through high-level controls and without the need for extensive
sound design knowledge.
In order to characterize music-making samples, we started by training a CNN
architecture with a large-scale collection of instrumental sounds generated from
digital synthesizers. The aim is to automatically classify the instrument in
a one-shot sample into a category such as guitar, mallet or keyboard, in a
similar way to the ones in commercial collections. We further investigated how
a musically motivated data augmentation technique based on audio effects
influenced classification accuracy and how sounds processed with these effects
are harder to classify.
Following this work, we focused on the classification of loops. The biggest
complication of this task was the lack of a high-quality dataset which had
sufficient loops to power deep learning algorithms and which was free and
available to use for research purposes. To face this difficulty, we created the
FSLD dataset with Creative Commons loops from Freesound which comprises
≈ 10000 loops of which ≈ 3000 are annotated. An annotation tool was created
to ease the annotation process and extend the dataset by the community.
With the FSLD, we were able to explore a new characterization task entitled
automatic instrumentation role classification. The objective is to classify loops
based on the roles they can take in a finished music composition: percussion,
bass, chords, melody or effects. We compare several CNN architectures with
different filters and pooling operators to evaluate their performance on this
task. The augmentation technique from our work on one-shot instrument
classification is combined with a music-motivated mixing of loops to create
a larger and more balanced dataset. A use case for automatically identifying
the structure of music pieces is also presented.
As a way of creating new samples from a collection, we then focused on gener-
ative deep learning. We took upon the use case of generative modeling of drum
sounds based on high-level semantic characteristics. We used the Wave-U-Net
feed-forward architecture conditioned on the energy envelope and seven timbral
descriptors with semantic meaning (e.g. boominess, sharpness and roughness).
We trained the model with a dataset of percussion one-shot sounds from Free-
sound that we curated and made available to the community.
The promising results we obtained from this first experiment led us to extend
the architecture to generate full percussion loops. To this end, we collected
drum loops from a public database and extended the feature set for condi-
tioning. We extracted the same seven timbral features from the low, mid and
high-frequency ranges and used the onset detection function provided by an

12.2 Summary of Contributions 131

automatic drum transcription algorithm. This allowed us to generate high-
quality percussion loops, which can be controlled through a MIDI-like repres-
entation.
Finally, within the secondment in Native Instruments and to improve the syn-
thesis quality of the one-shot generative model, we developed and trained a
GAN-based architecture to generate one-shot drum sounds from NI’s collec-
tion without any conditioning. We wanted to use this experiment to evaluate
different parameters for controlling the percussion synthesis. Therefore, we
compared the learned network embeddings, a dimensionality-reduced version
of the embeddings and the previously used timbral features.
In the following section, we will summarize our contributions. Then, we will
present the publications derived from this thesis and the code and datasets
made publicly available. To conclude, we will detail the limitations of our
work and present some future avenues for research derived from this thesis.

12.2 Summary of Contributions

The goal of this thesis is to enable new browsing possibilities for sounds in
large-scale electronic music production collections. We focused on two main
objectives: characterization and generation of EMP sounds. We will start
by presenting our contributions and key results from Part I, which relates to
sound classification, followed by the ones present in Part II, which relate to
sound generation. The main contributions of this thesis can be summarized as
follows:

A new algorithm for instrument classification in one-shot sounds using
CNNs (Chapter 4). A new data augmentation technique is proposed
which is based on audio effects, improving classification accuracy. The
NSynth dataset is used, which had not been used before for classification,
and a baseline for further research using this dataset is provided. Finally,
it is identified that using audio effects creates a severe problem when
performing instrument classification.

A new dataset of music loops for electronic music making (FSLD), and
the annotation tool used for creating the dataset (Chapter 5). This
dataset is the first public large-scale dataset of loops with high-quality
annotations and with licenses which allow it to be used for scientific re-
search and easily redistributed. The high amount of loops also enables it
to be used for supervised deep-learning tasks. A detailed dataset analysis
is presented, together with several use cases for tempo and key analysis,
music generation and loop separation.

132 Summary and Future Perspectives

Introduction of a new research task, Automatic Instrumentation Role
Classification (AIRC), which can be evaluated using FSLD. A detailed
comparison of several CNN architectures to address this task is provided.
The classification accuracy obtained is high, and the algorithm perform-
ance in finding the structure of music pieces is on par with previous
methods, which are more resource intensive. A novel data augmentation
methodology for FSLD is proposed, and it is shown that it increases the
accuracy in the structure classification task.

A method for generating percussion sounds using a feed-forward convo-
lutional network based on the Wave-U-Net is presented (Chapter 9). As
conditioning, handcrafted features designed by MIR experts are used,
which relate to semantic timbral attributes which music makers under-
stand. It is shown that the conditioning works properly and that chan-
ging the parameters indeed modifies the values of the features in the
output. The use of the Wave-U-Net-based architecture leads to a faster
generation. Also part of this contribution is a curated dataset of one-shot
percussive sounds from Freesound, which is used to train the model.

A method for generating longer sequences of audio with more than one
instrument (Chapter 10). This is the first deep learning system which can
generate drum loops and which can be controlled using semantic high-
level parameters and using a similar representation to MIDI. Various loss
functions are tested and the synthesis quality of each one is compared.
The architecture used allows extremely fast generation of loops, even
without the use of a GPU.

A user-based evaluation using Creativity Support Index (CSI) of three
sets of parameters used for controlling drum synthesis in GANs (Chapter
11). A GAN architecture is proposed based on StyleGAN2 to evaluate
relevant directions on the latent embeddings which can be used for con-
trolling the sound generation in a meaningful way. The sets of parameters
are obtained using supervised and unsupervised algorithms.

Two software libraries for i) the tonal description of audio signals; and
for ii) interacting with Freesound from audio plug-ins (Appendix C and
D).

12.3 Limitations and Future Work

In this section, we present the limitations we believe our work has, as well as
some of the possible avenues for future research in these topics.

12.3 Limitations and Future Work 133

12.3.1 Classification of One-Shot Sounds

Our work on the automatic classification of one-shot sounds opened several
avenues for future research on the topic. To begin with, the accuracy can be
fairly improved as the one obtained by our models did not surpass 75%. To
achieve more reliable predictions, one of the possible pathways would be to
experiment with higher capacity models, which should be able to make better
use of the high amount of data than the single-layer architecture we used.
Another possible way to improve these values is to extend the data augment-
ation pipeline to apply a more diverse set of effects with different settings. In
our work, we used a fixed set of effects with their default parameters. To have
a more reliable data augmentation and evaluation, more audio effects can be
used and their parameters randomized, which will lead to a higher diversity in
the train and test data. The higher variety in the training set can lead to a
higher diversity of examples seen by the model at training which can lead to it
learning techniques which make it more robust to the perturbations created.
In the test set, it can lead to a more precise evaluation of how it performs on
the transformed data.
Another possible avenue for future work would be adding acoustic and electric
instruments to the training data, as the dataset we used only contains digital
ones. This could lead to a trained model which can be extremely robust and
fit to any instrument classification task.

12.3.2 Freesound Loop Dataset and Annotation Tool

The main limitations of the Freesound Loop Dataset are the number of loops,
the amount which is annotated and the annotation detail. To increase the
number of loops in FSLD, one possible way would be to collaborate with com-
mercial sample providers to add their loops to the dataset. Integrating these
loops would require modifying their original metadata to fit the taxonomy in
FSLD. However, as most of the characteristics annotated were chosen consid-
ering commercial collections, this should not pose a hard task.
One way to increase the amount of annotated loops within FSLD would be to
promote the use of the annotation tool we developed. Ideally, methods to do
this would be finding ways to get the MIR community involved in annotating
more loops or hiring experts to do this procedure.
A possible limitation of FSLD is the level of detail at which the annotations
are. It would be interesting to have a finer grain of specificity in annotated
characteristics. The biggest difference between this dataset and commercial
collections is that we annotate the instrumentation role instead of the instru-
ment. In the case of Freesound, as some of the sounds are highly experimental,

134 Summary and Future Perspectives

it is hard to identify the instrument which created the sounds but not the in-
strumentation roles. However, having a more detailed instrument annotation
would enable more possibilities in future work on this dataset.
Finally, future avenues for research using this dataset are related to the ap-
plications for which it can be used. Tempo, key and chord estimation specific
to loops are tasks that can be further advanced using the dataset. Also, auto-
matic music creation and automatic generation of new loops based on the ones
in the dataset are interesting possibilities for future work.

12.3.3 Automatic Instrumentation Role Classification

Our work in automatic instrumentation role classification opened new paths
for research on both improving the classification accuracy as well as developing
new applications based on the algorithm. Although the accuracy obtained in
our AIRC algorithms was quite high, there is always room for improvement
with more data and higher capacity models.
When applying the models trained on loops to full music pieces, one thing we
saw that could be improved was the resolution of the results, as the results
currently being provided are for 4-bar segments. Attention-based techniques
or training with smaller fragments of data can lead to this finer resolution,
as well as more explainability of what parts of the audio are being taken into
consideration for the final output.
Regarding applications, we envision several use cases for which the algorithm
can be used. The first one is using the predictions on musical pieces as visual
cues for DJs to understand a track’s structure. This information can also be
used for automatic DJing systems to create smoother transitions. Knowing the
structure of a music piece also allows copying its structure into an unfinished
piece. If a music maker only has, for example, the chorus of a track but does
not know how to structure it, they can copy the output of our system and apply
it. Finally, one very interesting avenue of research would be finding samples
from existing music. This would correspond to a faster version of crate-digging,
a practice common among hip-hop producers where they go through crates of
records to find isolated instrumental sections that can be used in their compos-
itions. Our system can identify parts composed of only percussive elements or
melodic/harmonic elements, which, in vinyl records, was only possible through
hearing the full composition.

12.3.4 Generation of Percussion Sounds

In this subsection, we will present the main drawbacks we faced and avenues
for future work in the generation of percussive one-shots and loops. These will

12.3 Limitations and Future Work 135

be presented together for the three chapters related to this topic because the
issues and promising directions are fairly similar. We believe the major draw-
backs faced are the synthesized audio quality of the generated examples, the
evaluation methodologies, the parameters we used for controlling the synthesis
and the large amount of data required to train these models.
The main issue in our work on using the Wave-U-Net for generating drum
sounds was the insufficient audio quality of the generated sounds to be used
for professional audio applications. This was probably due to the choice of
loss functions, as we have seen in the loop generation work. Although the
synthesis quality improved significantly from one work to another, we find
that there is still room for improvement, specifically in developing new loss
functions specifically targeted at audio and the task of percussion synthesis.
Furthermore, we believe better evaluation metrics to monitor the achieved
audio quality during the training are required, as we will further develop in the
following paragraph. When using the GAN architecture, we saw that synthesis
quality increased even further. One of the main advantages of this architecture
is the use of its specific loss function which is based on the discriminator
accuracy, and not directly calculated from the audio. Novel architectures with
special training paradigms can further help increase audio quality.
Evaluating the audio quality of deep learning generated sounds is normally
done through user tests which compare the generated sounds to a reference
or through a reference-free metric such as the Fréchet Audio Distance (FAD).
The main concern with user testing is the time and effort which is needed to
do it in an appropriate manner and possibly associated financial costs. Fur-
thermore, these tests cannot assign an absolute value for the audio quality of
the generated sound, as this is a highly subjective aspect of sound. The use
of a reference-free metric such as FAD can handle all these shortcomings and
is shown to be able to quantify the amount of distortion present in processed
audio. However, this metric relies on statistics extracted from both the train-
ing set and the generated data and, in the case the generated data does not
fit a similar distribution to the training data (e.g. the model creates more
snares than kick drums, when kick drums are more prominent in the training
data), the values will be less accurate. Therefore, there is a need for better
metrics to quantify audio quality in generative deep learning models, which do
not require user testing and do not relate to the distribution of the generated
audio.
Another difficulty in evaluating generative models is assessing their usability
and how they enable creativity. Evaluating these aspects is also done through
user studies and interviews, which can be cumbersome. In the work we con-
ducted, we used the AudioCommons timbral features as parameters for the
generation as we believe they are semantically rich and music makers can un-
derstand them. However, as some users mentioned in our final drum synthesis

136 Summary and Future Perspectives

work, they found that these parameters were not decoupled from each other.
Obviously, this could be due to the supervised method for finding latent dir-
ections not working as well as it should, and this is, consequently, a possible
improvement. However, the selection of the best parameters for controlled
drum synthesis is still an open issue which needs significant work. Interviews
with music makers and professional sound designers should be done, and an
iterative procedure of testing with users and improving these systems would
be ideal. Furthermore, for these algorithms to reach the end-user, appropriate
user interfaces and integration with commonly used systems still have to be
done.
Finally, to adapt our models to the collections of music makers and allow them
to train them on their collections, new techniques which require fewer data
have to be researched. This would enable music makers to have a trained
model which generates data similar to the ones they commonly use and should
therefore prefer. This would also enable a new type of collection to be shared
between artists, where, instead of a sample pack, the artist could share their
own drum synthesizer.

Appendix A
Glossary

A.1 Acronyms

AdaIN Adaptive Instance Normalisation
AE Autoencoder
AI Artificial Inteligence
AIRC Automatic Instrumentation Role Classification
API Application Programming Interface
ASDS Adversarial Synthesis of Drum Sounds
BCE Binary Cross Entropy
BPM Beats Per Minute
CD Compact Disk
CNN Convolutional Neural Network
CREM Centre de Recherche en Ethnomusicologie
CSI Creativity Support Index
DAW Digital Audio Workstation
DFT Discrete Fourier Transform
DS Drum Synthesis
EDM Electronic Dance Music
ELU Exponential Linear Unit
EM Electronic Music
EMP Electronic Music Production
FAD Fréchet Audio Distance
FFT Fast Fourier Transform
FSLD Freesound Loop Dataset
FSOSPS Freesound One-Shot Percussive Sounds
GAN Generative Adversarial Network
GMP Global Max Pooling
GPU Graphical Processing Unit

137

138 ACRONYMS

GRM Groupe de Recherches Musicales
HPCP Harmonic Pitch Class Profiles
IIR Infinite Impulse Response
IRAM Instrumentation Role Activation Map
IRMAS Instrument Recognition in Musical Audio Signals
ISMIR International Society for Music Information Retrieval
KID Kernel Inception Distance
MA Macro Average
MFCC Mel-Frequency Cepstral Coefficients
MIDI Musical Instrument Digital Interface
MIP-
Frontiers

New Frontiers in Music Information Processing

MIR Music Information Retrieval
MIREX Music Information Retrieval Evaluation eXchange
NI Native Instruments GmbH
NMFD Non-Negative Matrix Factorization Deconvolution
NTF Non-Negative Tensor Factorization
PCA Principal Component Analysis
PR-AUC Area Under the Precision-Recall Curve
ReLU Rectified Linear Units
RNN Recurrent Neural Network
ROC-AUC Area Under the Receiver Operating Characteristic Curve
RTF Radiodiffusion Télévision Françaises
RWC Real World Computing
SeFa Semantic Factorization
SGD Stochastic Gradient Descent
STFT Short-Time Fourier Transform
SVM Support-Vector Machine
TIV Tonal Interval Vectors
VAE Variational Autoencoder
VST Virtual Studio Technology

Appendix B
Publications, Open Research

and Reproducibility

Open science is one of the main focuses within the MIP-Frontiers project, and
we have tried to follow its principles as much as possible. We have made most of
our research output available publicly to everyone, for free and under copyleft
licenses. Open science helps the research community firstly by promoting more
transparent results which other researchers can verify. Sharing the code and
data of experiments can also increase their impact in academia and industry
by enabling easier reproducibility and implementation of the research.

B.1 Publications by the Author

The work we conducted throughout this thesis was published in multiple con-
ferences with high impact in the MIR and music technology field. These con-
ferences were also selected due to publishing their proceedings freely and in an
open manner. Additionally, to have all the papers available through the same
place for free access and so that they are easier to disseminate, we published
the preprint versions on arxiv77 and e-Repositori78 under open licenses. The
publications that were conducted during the PhD are the following:

B.1.1 Articles in Peer-Reviewed Conferences

Ramires, A., & Serra, X. (2019). Data augmentation for instrument
classification robust to audio effects. In Proceedings of the International
Conference on Digital Audio Effects (DAFx).

77https://arxiv.org
78https://repositori.upf.edu

139

https://arxiv.org
https://repositori.upf.edu

140 Publications, Open Research and Reproducibility

Ramires, A., Font, F., Bogdanov, D., Smith, J., Yang, Y.H., Ching, J.,
Chen, B.Y., Wu, Y.K., Wei-Han, H., & Serra, X. (2020). The Freesound
Loop Dataset and Annotation Tool. In Proceedings of the 21st Interna-
tional Society for Music Information Retrieval Conference (ISMIR).

Ching, J., Ramires, A., & Yang, Y.H. (2020). Instrument Role Clas-
sification: Auto-tagging for Loop Based Music. In Proceedings of The
2020 Joint Conference on AI Music Creativity (MuMe + CSMC).

Drysdale, J., Ramires, A., Serra, X., & Hockman, J. (2022). Im-
proved Automatic Instrumentation Role Classification and Loop Activ-
ation Transcription. In Proceedings of the International Conference on
Digital Audio Effects (DAFx).

Ramires, A., Chandna, P., Favory, X., Gómez, E., & Serra, X. (2020).
Neural Percussive Synthesis Parameterised by High-Level Timbral Fea-
tures. In Proceedings of the 45th IEEE International Conference on
Acoustics, Speech and Signal Processing (pp. 786–790).

Chandna, P., Ramires, A., Serra, X., & Gómez, E. (2021). LoopNet:
Musical Loop Synthesis Conditioned on Intuitive Musical Parameters.
In Proceedings of the 46th IEEE International Conference on Acoustics,
Speech and Signal Processing (pp. 3395-3399).

Ramires, A., Juras, J., D. Parker, J., & Serra, X. (2022). A Study
of Control Methods for Percussive Sound Synthesis Based on GANs.
In Proceedings of the International Conference on Digital Audio Effects
(DAFx).

Ramires, A., Bernardes, G., Davies, M., & Serra, X. (2020). TIV.LIB:
An Open-Source Library for the Tonal Description of Musical Audio.
In Proceedings of the International Conference on Digital Audio Effects
(DAFx).

B.1.2 Extended Abstracts

Ramires, A., Font, F., & Serra, X. (2019). Freesound JUCE API. In
Audio Developer Conference 2019 (ADC19).

B.1.3 Perfomances

Roma, G., Font, F., & Ramires, A. (2021). Floop Jam. In Proceedings
of the International Web Audio Conference.

B.2 Open Source Software 141

B.1.4 Supervision of Master Thesis

Pérez Fernández, M. (2020). Harmonic compatibility for loops in elec-
tronic music. (MSc Thesis, Universitat Pompeu Fabra).

B.2 Open Source Software

Making research reproducible and openly accessible enables faster scientific
progress and makes it easier for companies to deploy it. The use of open
licenses in our code allows it to be deployed in professional tools as long as these
use similar licenses. Furthermore, providing the code to the public can enable
further research in the fields covered by the thesis by providing an easy way of
reproducing our results and experimenting with novel techniques built upon
our experiments. Despite the extra time required to make our experiments
easily reproducible, we believe the advantages outweigh these costs. To enable
the general audience to experiment with our drum generation tools, we have
created interactive demos on Google Colaboratory for the research in Chapters
9 and 10.
The code for reproducing our experiments is available at:

Chapter 4: https://github.com/aframires/instrument-classifier

Chapter 5: https://github.com/aframires/freesound-loop-annotator

Chapter 6: https://github.com/aframires/airc

Chapter 9: https://github.com/pc2752/percussive_synth

Chapter 10: https://github.com/aframires/drum-loop-synthesis

Chapter 11: https://github.com/aframires/stylegan2-ada-pytorch

Appendix C: https://github.com/aframires/TIVlib

Appendix D: https://github.com/mtg/freesound-juce

B.3 Datasets

On the field of MIR applied to EMP, one of the main concerns is the lack of
datasets which can be used in research and shared with the public. This is
especially important when working with deep learning models that require big
amounts of data to be able to generalize well to unseen examples. Leveraging
Freesound, we were able to create two large-scale datasets:

https://github.com/aframires/instrument-classifier
https://github.com/aframires/freesound-loop-annotator
https://github.com/aframires/airc
https://github.com/pc2752/percussive_synth
https://github.com/aframires/drum-loop-synthesis
https://github.com/aframires/stylegan2-ada-pytorch
https://github.com/aframires/TIVlib
https://github.com/mtg/freesound-juce

142 Publications, Open Research and Reproducibility

The Freesound Loop Dataset (FSLD) is available at https://doi.org/10.
5281/zenodo.3967852 and contains 9,455 loops from Freesound.org and
the corresponding annotations. All the loops have annotations on the
tempo and genre provided by the users who uploaded them, an auto-
matically obtained key label and the textual metadata from Freesound.
Approximately 3 000 of these loops also have tempo, key, genre and in-
strumentation annotations made by the experts who contributed. This
dataset was already downloaded 4 000 times.

The Freesound One-Shot Percussive Sounds (FSOSPS) dataset is avail-
able at https://doi.org/10.5281/zenodo.3665275 and contains the 10254
one-shot (single event) percussive sounds from Freesound.org and the
corresponding timbral analysis used in Ramires et al. (2020b). These
sounds were obtained by querying Freesound with words associated with
percussive instruments, such as “percussion”, “kick”, “wood” or “clave”.
We manually selected sounds which only had one event and were not
loops and standardized their format in terms of length, normalization
and sampling rate. This dataset was downloaded 490 times.

https://doi.org/10.5281/zenodo.3967852
https://doi.org/10.5281/zenodo.3967852
https://doi.org/10.5281/zenodo.3665275

Appendix C
TIV.lib: an open-source

library for the tonal
description of musical audio

In this appendix, we present TIV.lib, an open-source library for the content-
based tonal description of musical audio signals. Its main novelty relies on
the perceptually-inspired Tonal Interval Vector space based on the Discrete
Fourier transform, from which multiple instantaneous and global representa-
tions, descriptors and metrics are computed—e.g., harmonic change, disson-
ance, diatonicity, and musical key. The library is cross-platform, implemented
in Python and the graphical programming language Pure Data, and can be
used in both online and offline scenarios. Of note is its potential for enhanced
Music Information Retrieval, where tonal descriptors sit at the core of numer-
ous methods and applications.

C.1 Introduction

In Music Information Retrieval (MIR), several libraries for musical content-
based audio analysis, such as Essentia (Bogdanov et al., 2013), Librosa (McFee
et al., 2015b), and madmom (Böck et al., 2016) have been developed. These
libraries have been widely adopted across academia and industry as they pro-
mote the fast prototyping of experimental methods and applications ranging
from large-scale applications such as audio fingerprinting and music recom-
mendation, to task-specific MIR analysis including chord recognition, struc-
tural segmentation, and beat tracking.
The tonal domain of content-based audio descriptors denotes all attributes
related to the vertical (i.e., harmonic) and horizontal (i.e., melodic and voice-
leading) combination of tones, as well as their higher-level governing principles,

143

144
TIV.lib: an open-source library for the tonal description of

musical audio

such as the concept of musical key. The earliest research in this domain was
driven by the methods applied to symbolic representations of music, e.g., MIDI
files. The jump from symbolic to musical audio domain raises significant prob-
lems and requires dedicated methods, as polyphonic audio-to-symbolic tran-
scription remains a challenging task (Benetos et al., 2018). While the state
of the art (Curtis Hawthorne et al., 2018; Ycart & Benetos, 2018) in poly-
phonic music transcription has advanced greatly due to the use of deep neural
networks, it remains largely restricted to piano-only recordings.
One of the most prominent tonal audio descriptors is the chroma vector. This
representation divides the energy of the spectrum of an audio signal in the
12 tones of the western chromatic scale across all octaves. This leads to
a 12-element vector where each element corresponds to the energy of each
pitch class. Throughout this work, this vector will be referred to as the
pitch profile. Many algorithms for this representation have been proposed,
including Pitch Class Profiles (Fujishima, 1999), Harmonic Pitch Class Pro-
files (HPCP) (Gómez, 2006b), the CRP chroma (Muller & Ewert, 2010), and
the NNLS chroma (Mauch & Dixon, 2010). Stemming from this 12-element
vector, many metrics and systems have been proposed, for key detection, chord
recognition, cover song identification, mood recognition, and harmonic mixing.
Yet, despite their fundamental role in many MIR tasks, tonal descriptors are
not only less prominent in existing content-based audio libraries, in comparison
with rhythmic or timbral descriptors (Bogdanov et al., 2013), but also their
perceptual basis is of limited scope (Bernardes et al., 2017b).
In the context of the aforementioned limitations, we present the TIV.lib, a
cross-platform library for Python and Pure Data, which automatically ex-
tracts multiple perceptually-aware tonal descriptions from polyphonic audio
signals, without requiring any audio-to-symbolic transcription stage. It owes
its conceptual basis to ongoing work within music theory on the Discrete Four-
ier Transform (DFT) of pitch profiles, which has been extended to the audio
domain (Bernardes et al., 2016a). The hierarchical nature of the Tonal Interval
Vectors (TIV) space allows the computation of instantaneous and global tonal
descriptors including harmonic change, (intervallic) dissonance, diatonicity,
chromaticity, and key, as well as the use of distance metrics to extrapolate dif-
ferent harmonic qualities across tonal hierarchies. Furthermore, it can enable
the efficient retrieval of isolated qualities or those resulting from audio mixes
in large annotated datasets as a simple nearest neighbour-search problem.
The remainder of this appendix is organized as follows. Section C.2 provides
an overview of the ongoing work on pitch profiles Discrete Fourier Trans-
form (DFT)-based methods within music theory, followed by a description
of the recently proposed Tonal Interval Vectors (TIV) space, which extends
the method to the audio domain. Section C.3 provides a global perspective
of the newly proposed TIV.lib architecture. Section C.4 details the mathem-

C.2 Related work 145

atical and musical interpretation of the description featured in TIV.lib and,
finally, Section C.5 discusses the scope of application scenarios of the library
and Section C.6 provides perspectives on future work.

C.2 Related work

C.2.1 Tonal pitch spaces

Within the research literature, numerous tonal pitch spaces and pitch distance
metrics have been proposed (Shepard, 1962; Lerdahl, 2004; Tymoczko, 2010;
Chew, 2007). They aim to capture perceptual musical phenomena by geomet-
rical and algebraic representations, which quantify and (visually) represent
pitch proximity. These spaces process pitch as symbolic manifestations, thus
capturing musical phenomena under very controlled conditions, with some of
the most prominent spaces discarding the pitch height dimension by collapsing
all octaves into a 12-tone pitch space.
Attempts to represent musical audio in the aforementioned spaces have been
pursued (Chuan & Chew, 2005; De Haas et al., 2008) by adopting an audio-
to-symbolic transcription stage. Yet, polyphonic transcription from musical
audio remains a challenging task which is prone to error.
Recently, Bernardes et al. (2016a) proposed a tonal pitch space which maps
chroma vectors derived from audio signals driven into a perceptually inspired
Discrete Fourier Transform (DFT) space. It expands the aforementioned pitch
spaces with strategies to process the timbral/spectral information from musical
audio.

C.2.2 From the DFT of symbolic pitch distributions to the
Tonal Interval Vector space

In music theory, the work proposed by Quinn (2007) and followed by Amiot
(2016); Yust (2019); Tymoczko & Yust (2019) on the DFT of pitch profiles, has
been shown to elicit many properties with music-theoretic value. Moreover,
in Dawson et al. (2020) DFT-based pitch spaces were shown to capture human
perceptual principles.
In the Fourier space, a 6-element complex vector, corresponding to the 1≤ k ≤ 6
DFT coefficients, is typically adopted. The magnitude of the Fourier coeffi-
cients has been used to study the shape of pitch profiles, notably concern-
ing the distribution of their interval content. This allows, for example, to
quantify diatonic or chromatic structure (see Section C.4 for a comprehens-
ive review of the interpretations of the coefficients). The phase of the pitch

146
TIV.lib: an open-source library for the tonal description of

musical audio

profiles in the Fourier space reveals aspects of tonal music in terms of voice-
leading (Tymoczko, 2008), tonal regions modelling and relations (Yust, 2017),
and the study of tuning systems (Amiot, 2016). In summary, the magnitude of
the pitch profiles express harmonic quality and the phases harmonic proximity.
Recently, a perceptually-inspired equal-tempered, enharmonic, DFT-based TIV
space (Bernardes et al., 2016a) was proposed. One novelty introduced by this
newly proposed space in relation to remaining Fourier spaces was the combined
use of the six coefficients in a TIV, T (k). Moreover, the perceptual basis of the
space is guaranteed by weighting each coefficients by empirical ratings of dyad
consonance, wa(k). T (k) allows the representation of hierarchical or multi-level
pitch due to the imposed L1 norm, such that:

T (k) = wa(k)
N−1

∑
n=0

c̄(n)e
− j2πkn

N ,

k ∈ Z with c̄(n) =
c(n)

∑N−1
n=0 c(n)

(C.1)

where N=12 is the dimension of the chroma vector, c(n), and k is set to 1 ≤
k ≤ 6 for T (k) since the remaining coefficients are symmetric. The weights,
wa(k) = {3,8,11.5,15,14.5,7.5}, adjust the contribution of each dimension k of
the space to comply with empirical ratings of dyad consonance as summarised
in Huron (1994). wa(k) accounts for the harmonic structure of musical audio
driven from an average spectrum of orchestral instruments (Bernardes et al.,
2017b).

C.3 TIV.lib: Implementation

The TIV.lib includes several signal-processing functions or descriptors for char-
acterising the tonal content of musical audio. This library is implemented in
Python, using only Numpy and Scipy as dependencies and Pure Data, with
both available to download at: http://bit.ly/2pBYhqZ. Illustrative analysis of
musical audio examples for the descriptors are provided in the Python down-
load link as a Jupyter Notebook. The Python implementation targets batch
offline processing and the Pure Data implementation online processing.
As an input, the library takes 12-element chroma vectors, c(n), from which
TIVs, T (k), are then computed. 79 Any input representation will have an ef-
fect on the space, as such we leave the choice of which chroma representation
up to the user in order to best fit the problem at hand. Although the system is

79A tutorial example on the extraction of HPCP representations from audio is provided
in the library package, both using Essentia and Librosa.

http://bit.ly/2pBYhqZ

C.4 TIV.lib: Algorithms 147

TIV (1)

TIV.mag
TIV.phases

TIV.hchange
TIV.diss

TIV.key

TIV (2)

TIV.combine
TIV.euclid
TIV.cosine

TIV.whole-toneness
TIV.chromaticity
TIV.diatonicity

Figure C.1: A graph of the dependencies of the feature extraction modules of TIV.lib.
The algorithms connected to TIV(2) through a dashed line require two inputs for the
feature calculation.

agnostic to the chosen chroma, we recommend the “cleanest” chroma repres-
entation, i.e., that which is closest to a symbolic representation, to be selected.
The time scale of the TIV is dependent of the adopted window size during the
chroma vector computation. For instantaneous TIVs, a single-window chroma
vector can be used as input. For global TIVs, consecutive chroma vectors can
be averaged across the time axis prior to the TIV computation.
In Figure C.1 we present the architecture of TIV.lib. In this graph of depend-
encies we can see the algorithms that have been implemented and which classes
they require for their calculation.

C.4 TIV.lib: Algorithms

This section details the functions included in the TIV.lib, focusing on their
mathematical definition and musical interpretation.
TIV is a 6-element complex vector, which transforms chroma into an interval
vector space by applying Eq. C.1, an L1-norm weighted DFT. The resulting
space dimensions combine intervallic information in the coefficients’ magnitude
and the tonal region (i.e., musical key area) it occupies in the coefficients’ phase.
The mapping between chroma and the TIV retains the bijective property of
the DFT and allows the representation of any variable-density pitch profile in
the chroma space as a unique location in the TIV space.

148
TIV.lib: an open-source library for the tonal description of

musical audio

TIV.mag is a 6-element (real) vector that reports the magnitude of the TIV
elements 1 ≤ k ≤ 6, such that:

mag(k) = ||T (k)|| (C.2)

It provides a characterisation of the harmonic quality of a pitch profile, namely
its intervallic content, distilling the same information as the pitch-class interval
vector (Forte, 1964, 1973). Mathematically, it is well-understood that a large
magnitude in T (k) coefficients indicates how evenly the pitch profile can be
divided by N/k. Musically, the work on the DFT of pitch profiles (Bernardes
et al., 2016a; Quinn, 2007) emphasizes the association between the magnitude
of Fourier coefficients and tonal qualities: ||T (1)|| ↔ chromaticity, ||T (2)|| ↔
dyadicity, ||T (3)||↔ triadicity, ||T (4)||↔ diminished quality, ||T (5)||↔ diatonicity,
||T (6)|| ↔ whole− toneness. Please refer to Amiot (2016); Yust (2019) for a
comprehensive discussion on the interpretation of the DFT coefficients.80 One
distinct property of the TIV.mag vector is its invariance under transposition
or inversion (Amiot, 2016). For example, all major triads or harmonic minor
scales share the same Fourier magnitude, hence the same TIV.mag vector 81.
TIV.phases is a 6-element (real) vector that reports the phases (or direction)
of the TIV coefficients 1 < k < 6, such that:

phases(k) = ∠T (k) (C.3)

It indicates which of the transpositions of a pitch profile quality is under ana-
lysis (Hoffman, 2008), as transposition of a pitch profile by p semitones, i.e.,
circular rotations of the chroma, c(n), rotates the T (k) by φ(p) = −2πkp

N . TIV
phases are also associated with regional (or key) areas, whose diatonic set is
organised as clusters in the TIV space (Bernardes et al., 2016a; Yust, 2017).
TIV.combine computes the resulting TIV from mixing (or summing) multiple
TIVs representing different musical audio signals. Due to the properties of the
DFT space, this operation can be efficiently computed as a linear combina-
tion of any number of TIVs, T (k). Given TIVs T1(k) and T2(k), their linear
combination, weighted by their respective energy, a1 and a2, is given by:

T1+2(k) =
T1(k) ·a1 +T2(k) ·a2

a1 +a2
(C.4)

a1 and a2 are retrieved from the discarded DC components T1(0) and T2(0).
TIV.chromaticity reports the level of concentration of a sonority in a specific
location of the chromatic pitch circle as a value within the [0,1] range, computed

80We note for each of these single Fourier coefficient quantities that the effects of the
weights can be factored out.

81Note that the phases, discarded here, will differ. As such, the uniqueness property of
the TIV is maintained as it combines both magnitude and phase information.

C.4 TIV.lib: Algorithms 149

Figure C.2: Two DFT coefficients interpreted as chromaticity and diatonicy. Three
TIV are plotted for comparison: C major chord {0,4,7} (♢), 3-note chromatic cluster
{0,1,2}(+), and C major scale {0,2,4,5,7,9,11}(•)

as the magnitude of the T (1) normalized to unity: ||T (1)||
wa(1)

. This value is close to
0 for sounds exhibiting energy in evenly-spaced pitch classes (such as typically
tonal chords and scales) and close to 1 for chromatic pitch aggregates.
TIV.diatonicity reports the level of concentration of a sonority within the circle
of fifths as a value within the [0,1] range. The larger the magnitude of the T (5)
normalized to unity, ||T (5)||

wa(5)
, the higher the level of diatonicity.

TIV.whole-toneness reports the proximity to one of the two existing whole-
tone collection within the 12-tone equal temperament tuning. The level of
whole-toneness is reported within the [0,1] range resulting from the magnitude
of the T (6) normalized to unity, such that: ||T (6)||

wa(6)
.

Fig. C.2 shows the DFT coefficients from which we extract chromaticity and
diatonicity descriptions as the magnitude of T (1) and T (5), respectively. We
plot pitch profiles that aim to illustrate the behaviour of each coefficient in eli-
citing the chromatic and diatonic character of the C major chord and C major
scale as well as chromatic 3-tone cluster by inspecting their magnitude. Note
that the magnitude of both the C major chord and C major scale, two proto-
typical diatonic pitch profiles, clearly have greater magnitude in the diatonic
T (5) coefficient in comparison with the three-note cluster, a prototypical chro-
matic profile. Conversely, in the chromatic T (1) coefficient, the magnitudes of
the above pitch profiles show the expected opposite behaviour, thus mapping
the three-note cluster further from the centre.
TIV.euclid and TIV.cosine compute the Euclidean, E, and cosine, C, distance

150
TIV.lib: an open-source library for the tonal description of

musical audio

between two given TIVs, T1(k) and T2(k), using Eqs. C.5 and C.6, respectively.

E{T1,T2}=
√

||T1 −T2||2 (C.5)

C{T1,T2}=
T1 ·T2

||T1||||T2||
(C.6)

The cosine distance (i.e., the angular distance) between TIVs can be used as
an indicator of how well pitch profiles “fit” or mix together. For example,
it quantifies the degree of tonal proximity of TIV mixtures, or informs which
translation or transposition of a TIVs best aligns with a given key. Conversely,
Euclidean distances between TIVs relate mostly to melodic (or horizontal)
distance. It captures the neighbouring relations observed in the Tonnetz, where
smaller distances agree with parsimonious movements between pitch profiles.
Please refer to Tymoczko & Yust (2019); Tymoczko (2008) for a comprehensive
discussion on this topic.
TIV.hchange computes a harmonic change detection function across the tem-
poral dimension of an audio signal. Peaks in this function indicate transitions
between regions that are harmonically stable. We compute a harmonic change
measure, λ , for an audio frame m as the Euclidean distance between frames
m+1 and m−1 (Eq. C.7), an approach inspired by Harte et al. (2006), which
can be understood as adopting three coefficients out of the 1 ≤ k ≤ 6 of the
TIV, T (k), i.e., those corresponding to the circle of fifths, the circle of minor
thirds, and the circle of major thirds.

λm =
√
||Tm−1 −Tm+1||2 (C.7)

TIV.diss provides an indicator of (interval content) dissonance, as the nor-
malized TIV magnitude subtracted from unity, 1− |T (k)|

|wa(k)| . This perceptually-
inspired indicator stems from the weighted magnitude of the TIV coefficients,
which rank the intervals 1 ≤ k ≤ 6 to match empirical ratings of dissonance
within the Western tonal music context (Bernardes et al., 2017b, 2016a).
TIV.key infers the key from an audio signal as a pitch class (tonic) and a mode
(major or minor). It is computed as the Euclidean distance from the 24 major
and minor key TIVs, T p⋆

r (k), defined as the shifts (i.e. rotation) of the 12 major
and 12 minor profiles, p, by Temperley (Temperley, 1999) or Sha’ath (Sha’ath,
2011), such that:

Rmin = argminr

√
||T ·α −T p⋆

r ||2 (C.8)

where T p⋆
r are 24 major and minor key profiles TIVs, p. When r ≤ 11 , we

adopt the major profile and when r ≥ 12, the minor profile. α is a bias intro-
duced to balance the distance between major and minor keys. Optimal values

C.5 Applications and Perspectives 151

Figure C.3: Pure Data patch for online computation of diatonicity, chromaticity and
whole-toneness harmonic qualities of a live input audio signal, using the TIV.lib.

of α = 0.2 and α = 0.55 have been proposed in Bernardes et al. (2017a) for
the Temperley (Temperley, 1999) and Shat’ath (Sha’ath, 2011) key profiles,
respectively. The output is an integer, Rmin, ranging between 0−11 for major
keys and 12− 23 for minor keys, where 0 corresponds to C major, 1 to C#
major, and so on through to 23 being B minor.

C.5 Applications and Perspectives

Following the emerging body of music theory literature on the DFT of pitch
profiles and the continuous work of the TIV space, we implemented the perceptually-
inspired TIV.lib in Python and Pure Data. The former aims at batch offline
processing and the latter mostly at online or real-time processing, but allowing
offline computations as well.
Figure C.3 shows an example usage of the TIV.lib functions for computing the
diatonicity, chromaticity and whole-toneness harmonic qualities in Pure Data.
In order to achieve the same result in Python, the following code can be ex-
ecuted:

import TIVlib as tiv

ex_tiv = tiv.TIV.from_pcp(example_chroma)
ex_wholetoneness = ex_tiv.wholetoneness()
ex_diatonicity = ex_tiv.diatonicity()
ex_chromacity = ex_tiv.chromaticity()

152
TIV.lib: an open-source library for the tonal description of

musical audio

We now provide an example usage of this library for extracting tonal features
of a musical piece. We run this code for an excerpt of the Kraftwerk song
“Spacelab,” to demonstrate how this library can provide useful information
related to its diatonicity and whole-toneness. As can be seen from the Chro-
magram in Figure C.4, this song starts in the whole tone scale [F# G# A#C
D E], and then moves, at 33 s, to a diatonic set [C D Eb F G Ab Bb C].
In Figure C.5 we show this by plotting the evolution of theTIV.diatonicity,
TIV.wholetoneness and TIV.chromaticity outputs for this music.

0 10 20 30 40 50 60
Time (s)

C
Db
D

Eb
E
F

Gb
G

Ab
A

Bb
B

HP
CP

 B
in

Figure C.4: Chromagram of the first minute of Kraftwerk’s “Spacelab.”

0 10 20 30 40 50 60
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Diatonicity
Wholetoneness
Chromaticity

Figure C.5: Output of the diatonicity, chromaticity and whole-toneness harmonic
qualities the first minute of Kraftwerk’s “Spacelab”, using the TIV.lib.

Several functions of the TIV.lib result from ongoing research and have been
evaluated in previous literature (Bernardes et al., 2017b, 2016a, 2017a, 2016b),
where the possibility of the TIV space to geometrically and algebraically cap-

C.6 Conclusions 153

ture existing spaces of perceptual and music theoretical value, such as Euler
and Krumhansl (Bernardes et al., 2016a), were shown. In particular, we high-
light our previous work on key recognition (Bernardes et al., 2017a) and har-
monic mixing (Bernardes et al., 2017b; Maçãs et al., 2019), where TIV-based
approaches outperformed more traditionally used harmonic features. In ad-
dition, the use of TIVs can also extend content-based audio processing by
providing a vector space where distances and metrics (e.g., dissonance and
harmonic proximity) among multi-level pitch, chords, and keys, capture per-
ceptual aspects of musical phenomena. Examples of creative possibilities of
the TIV space have also been shown in Musikverb (Pereira et al., 2018), where
it was used for developing a novel type of harmonically-adaptive reverb effect.
We strongly believe that the properties of the TIV space can be further ex-
plored in content-based audio processing. For example, the possibility to isol-
ate the harmonic quality in TIV.mag as a pitch-invariant audio representation
can be relevant for several MIR tasks that rely on multiple transposed ver-
sions of a given musical pattern, such as in query-by-humming, and cover song
detection. Moreover, the possibility to compute TIV mixes as a computation-
ally efficient linear combination allows for the fast retrieval of musical audio
from large datasets (e.g., Freesound (Font et al., 2013)), as a simple nearest-
neighbour search problem. Finally, the newly proposed indicators of tonal
quality such as TIV.chromaticity, TIV.diatonicity, TIV.wholte-toneness, and
TIV.diss not only extend musical theoretical methodologies to content-based
processing from audio performance data, but can also promote a greater un-
derstanding of tonal content in MIR tasks.
By providing streamlined access to a set of music theoretic properties which
are non-trivial to obtain from commonly used time-frequency representations
in MIR such as the STFT (or even from chroma-like representations directly),
we believe the TIV.lib can lay the foundation for a kind of “enhanced” MIR
in tasks such as chord recognition and key estimation which can directly lever-
age the complementary contextual information contained within the TIV.lib
descriptors.

C.6 Conclusions

In this appendix we have introduced the open-source tool, TIV.lib, as a means
to drive the uptake and usage of the Tonal Interval Space both in offline music
signal analysis via the python implementation, as well as in online contexts
using Pure Data. While we hope to see a growth of applications which benefit
from access to music theoretic harmonic features provided by TIV.lib our own
future work will focus in two principal areas: i) investigating the processing
stages which directly precede the calculation of the TIV; and ii) in the applic-

154
TIV.lib: an open-source library for the tonal description of

musical audio

ation of the TIV across large datasets. More specifically, we seek to study the
impact of different methods for calculating the requisite chroma vectors (e.g.,
HPCP (Gómez, 2006b), NNLS (Mauch & Dixon, 2010), or timbre-invariant
chroma (Muller & Ewert, 2010)) in the TIV space, as pursued in Bernardes
et al. (2017a, 2016b) within the scope of audio key detection. Furthermore, we
will study an optimal strategy to define the weights, wa(k), for particular audio
sources and to implement the descriptors in a large online musical database
supported by content-based analysis, as a strategy to study the descriptors
under a large-scale environment for musical retrieval and creation. Finally, we
intend to add this library to existing musical audio analysis libraries such as
Essentia and Librosa.

Appendix D
Freesound API: add 400k+

sounds to your plugin!

Freesound is a collaborative database where users share sound effects, field
recordings, musical samples and other audio material under Creative Com-
mons licenses. Freesound currently contains more than 415k sounds that have
been downloaded 139M times by 9M registered users. Freesound offers both
a website to interact with the database and a RESTful API which provides
programmatic browsing and retrieving of sounds and other Freesound content.
We present a JUCE client library which permits an easy integration of Free-
sound in JUCE projects. The presented library allows, among other things,
to make use of the advanced text and audio-based Freesound search engine,
to download and upload sounds, and the retrieval of a variety sound analysis
information (i.e. audio features) from all Freesound content
Freesound was created in 2005 at the Music Technology Group (MTG) of Uni-
versitat Pompeu Fabra (UPF) with the aim of creating a huge collaborative
database of sounds released under Creative Commons licenses. The sounds in
Freesound are uploaded by its users, who tag and describe them, leading to a
huge diversity of sounds. Besides the sound sharing between creators, one of
the main aims of Freesound is making this database available for scientific re-
search and for reuse in third party creative applications. The audio content in
the repository is analysed using the open-source audio analysis tool Essentia,
as well as with the Audio Commons Audio Extractor. More than 100 papers
have so far mentioned or used Freesound data for the research, enabling new
ways to search the collection and to better characterise the sounds contained.
Some of these algorithms are implemented in the Freesound API, an interface
to Freesound which allows the integration of Freesound in third party applic-
ations. Some of the projects which integrate Freesound content are listed in
Freesound Labs82. Companies using the Freesound API include, among others,

82labs.freesound.org

155

labs.freesound.org

156 Freesound API: add 400k+ sounds to your plugin!

Waves Audio, Acoustica, Audiogaming, Soundtrap,Soundly, Ardour, Mozilla,
Google, and Wolfram.
Freesound hosts a large variety of sounds which can be used for many ap-
plications such as music making, sound design, film making or video game
development. This sound diversity can be seen from the most used tags in
2018 which include varied terms such as field-recording, ambient, synth, loop,
water, beat or voice. A tag-cloud from the uploaded sounds and of the down-
loaded sounds can be seen in the blog83. Furthermore, allowing only Creative
Commons licenses makes Freesound being able to grow with the community.
The more users and sounds there are, more opportunities for remixing said
sounds are created. The amount of sounds present in Freesound, together with
the analysis and search tools it provides, enable the creation of novel creative
applications. Some selected examples of this are the Freesound Explorer84,
where sounds from Freesound are organised in a 2-dimensional space accord-
ing to their characteristics; Freemix85, a web based app for smartphones which
uses movement to trigger and modify sounds; Multi Web Audio Sequencer86,
an application for segment-based sequencing of Freesound sound clips; and
AudioTexture Free, a plugin that allows to generate infinite sounds, variations
or loops based on Freesound content. More of these examples can be found in
the aforementioned Freesound Labs portal.
The methods provided by the API can be divided in functions related to search-
ing, sounds, users and packs. These are described in the API documenta-
tion 87.The search resources include both a text search which allows exploring
sounds by matching their tags and other metadata, and an audio-based search
for finding sounds based on their audio characteristics. Search results can be
filtered by specifying properties that sounds should match such as its tags, its
file format, license, duration, or even high level analysis of the sounds such as
its loudness, its hardness, its tempo, its “boominess” or if it is a single event or a
loop. An example of how some of these features can be used for searching Free-
sound is presented in the Audio Commons Audio Extractor Demonstrator88.
The sounds returned in the search results are accompanied with its metadata,
including its analysis, the download link and general information such as its
name, license, rating or number of downloads. This comprises the sound re-
sources, together with several methods for interacting with the sounds. This
include searching for sounds similar to a specific sound, downloading, rating,
commenting, uploading and describing sounds. The user resources allow get-

83https://blog.freesound.org/?p=942
84https://labs.freesound.org/apps/freesound-explorer.html
85https://labs.freesound.org/apps/freemix.html
86https://labs.freesound.org/apps/multi-web-audio-sequencer.html
87https://freesound.org/docs/api/overview.html
88audiocommons.org/ac-audio-extractor/web_demonstrator/

https://blog.freesound.org/?p=942
https://labs.freesound.org/apps/freesound-explorer.html
https://labs.freesound.org/apps/freemix.html
https://labs.freesound.org/apps/multi-web-audio-sequencer.html
https://freesound.org/docs/api/overview.html
audiocommons.org/ac-audio-extractor/web_demonstrator/

Freesound API: add 400k+ sounds to your plugin! 157

ting information about a user, its uploaded sounds and packs. Finally, the
pack resources retrieve the sounds in a pack and allow downloading all the
sounds in a single zip file.
The JUCE client library we developed provides access to the Freesound API
including all of the aforementioned resources in easy to use C++ classes. The
authorization procedure is implemented in the FreesoundClient class and in-
cludes methods for carrying out the OAuth2 authentication procedure either
by opening an external browser window or by using a component which opens
the Freesound login page inside the JUCE application. The API resources
which return lists of sounds are automatically parsed to the SoundList class,
which contains methods for navigating through the search result pages and to
create a FSSound objects for each sound. The FSSound class contains imple-
mentations for all the methods contained in the sound resources, from getting
the general metadata and downloading the sound to obtaining sound analysis
information.
The client library is implemented as a single header and cpp file which can both
be easily integrated in JUCE projects as an include file or as a user module.
The code is open source and available in a GitHub repository89. Together
with the header and cpp files, code examples are provided to illustrate how the
client can be used. The full documentation is available at the following link.90

89https://github.com/aframires/freesound-juce
90https://mtg.github.io/freesound-juce/index.html

https://github.com/aframires/freesound-juce
https://mtg.github.io/freesound-juce/index.html

Bibliography

Ableton (2022). Ableton live 10: Compare editions. https://www.ableton.
com/en/live/compare-editions/ Acessed in 9/10/2022. [Cited on page 5.]

Akkermans, V., Font Corbera, F., Funollet, J., De Jong, B., Roma Trepat,
G., Togias, S., & Serra, X. (2011). Freesound 2: An improved platform for
sharing audio clips. In A. Klapuri & Colby Leider (Eds.) Proceedings of
the 12th International Society for Music Information Retrieval Conference,
ISMIR 2011,. University of Miami. [Cited on page 15.]

Alain, G., Chevalier-Boisvert, M., Osterrath, F., & Piche-Taillefer, R. (2020).
DeepDrummer: Generating Drum Loops using Deep Learning and a Human
in the Loop. In Proceedings of The 2020 Joint Conference on AI Music Cre-
ativity (CSMC + MuMe), pp. 81–91. Royal Institute of Technology (KTH).
[Cited on page 60.]

American National Standards Institute. Committee on Bioacoustics, Sonn, M.,
& Acoustical Society of America (1973). American National Standard Psy-
choacoustical Terminology. ANSI S3.20-1973. New York, NY: American Na-
tional Standards Institute. [Cited on page 23.]

Amiot, E. (2016). Music Through Fourier Space: Discrete Fourier Transform
in Music Theory. Cham, Switzerland: Springer. [Cited on pages 145, 146,
and 148.]

Andersen, K. & Knees, P. (2016). Conversations with Expert Users in Music
Retrieval and Research Challenges for Creative MIR. In J. Devaney, M. I.
Mandel, D. Turnbull, & G. Tzanetakis (Eds.) Proceedings of the 17th Inter-
national Society for Music Information Retrieval Conference, ISMIR 2016,
pp. 122–128. ISMIR. [Cited on page 9.]

Anderson, E. J. (1997). Limitations of short-time Fourier transforms in poly-
phonic pitch recognition. PhD Thesis, University of Washington, Seattle,
WA. [Cited on page 22.]

Aouameur, C., Esling, P., & Hadjeres, G. (2019). Neural Drum Machine : An
Interactive System for Real-time Synthesis of Drum Sounds. In K. Grace,
M. Cook, D. Ventura, & M. L. Maher (Eds.) Proceedings of the Tenth Inter-
national Conference on Computational Creativity, ICCC 2019, pp. 92–99.
Association for Computational Creativity (ACC). [Cited on pages 92 and 96.]

159

https://www.ableton.com/en/live/compare-editions/
https://www.ableton.com/en/live/compare-editions/

160 Bibliography

Arjovsky, M. & Bottou, L. (2017). Towards Principled Methods for Train-
ing Generative Adversarial Networks. In 5th International Conference on
Learning Representations, ICLR 2017 Conference Track Proceedings, pp.
1–17. OpenReview.net. [Cited on page 88.]

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative ad-
versarial networks. In D. Precup & Y. Whye Teh (Eds.) Proceedings of
the 34th International Conference on Machine Learning, ICML’17, Proceed-
ings of Machine Learning Research (PMLR), vol. PMLR 70, pp. 214–223.
JMLR.org. [Cited on page 88.]

Bello, J. P., Ravelli, E., & Sandler, M. B. (2006). Drum Sound Analysis for
the Manipulation of Rhythm in Drum Loops. In 2006 IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings, vol. 5,
pp. V–V. IEEE. [Cited on page 46.]

Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2018). Automatic Music Tran-
scription: An Overview. IEEE Signal Processing Magazine, 36(1), 20–30.
[Cited on page 144.]

Benetos, E., Kotti, M., & Kotropoulos, C. (2006). Musical Instrument Clas-
sification using Non-Negative Matrix Factorization Algorithms and Subset
Feature Selection. In 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, vol. 5, pp. V–V. IEEE. [Cited on
page 33.]

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and
Trends® in Machine Learning, 2(1), 1–127. [Cited on pages 28 and 29.]

Bernardes, G., Cocharro, D., Caetano, M., Guedes, C., & Davies, M. E.
(2016a). A multi-level tonal interval space for modelling pitch relatedness
and musical consonance. Journal of New Music Research, 45(4), 281–294.
[Cited on pages 14, 144, 145, 146, 148, 150, 152, and 153.]

Bernardes, G., Cocharro, D., Guedes, C., & Davies, M. E. P. (2016b). Har-
mony Generation Driven by a Perceptually Motivated Tonal Interval Space.
Computers in Entertainment, 14(2), 6:1–6:21. [Cited on pages 152 and 154.]

Bernardes, G., Davies, M. E. P., & Guedes, C. (2017a). Automatic musical key
estimation with adaptive mode bias. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 316–320. IEEE. [Cited on pages
151, 152, 153, and 154.]

Bernardes, G., Davies, M. E. P., & Guedes, C. (2017b). A Hierarchical Har-
monic Mixing Method. In M. Aramaki, M. E. P. Davies, R. Kronland-
Martinet, & S. Ystad (Eds.) Music Technology with Swing, CMMR 2017,

Bibliography 161

Lecture Notes in Computer Science (LNCS), vol. 11265, pp. 151–170. Cham:
Springer International Publishing. [Cited on pages 144, 146, 150, 152, and 153.]

Bertin-Mahieux, T., Ellis, D. P. W., Whitman, B., & Lamere, P. (2011). The
Million Song Dataset. In A. Klapuri & C. Leider (Eds.) Proceedings of
the 12th International Society for Music Information Retrieval Conference,
ISMIR 2011, pp. 591–596. University of Miami. [Cited on page 20.]

Bitton, A., Esling, P., Caillon, A., & Fouilleul, M. (2019). Assisted
Sound Sample Generation with Musical Conditioning in Adversarial Auto-
Encoders. Http://arxiv.org/abs/1904.06215. [Cited on page 92.]

Bitton, A., Esling, P., & Chemla-Romeu-Santos, A. (2018). Modu-
lated Variational auto-Encoders for many-to-many musical timbre transfer.
Http://arxiv.org/abs/1810.00222. [Cited on page 92.]

Bińkowski, M., Sutherland, D. J., Arbel, M., & Gretton, A. (2018). Demysti-
fying MMD GANs. In Proceedings of the 6th International Conference on
Learning Representations, ICLR 2018, pp. 1–36. ICLR. [Cited on page 111.]

Blaauw, M. & Bonada, J. (2017). A Neural Parametric Singing Synthesizer
Modeling Timbre and Expression from Natural Songs. Applied Sciences,
7(12), 1313. [Cited on page 106.]

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma,
G., Salamon, J., Zapata, J. R., & Serra, X. (2013). ESSENTIA: an Audio
Analysis Library for Music Information Retrieval. In A. de Souza Britto Ju-
nior, F. Gouyon, & S. Dixon (Eds.) Proceedings of the 14th International
Society for Music Information Retrieval Conference, ISMIR 2013, pp. 493–
498. ISMIR. [Cited on pages 27, 51, 56, 97, 143, and 144.]

Bosch, J. J., Janer, J., Fuhrmann, F., & Herrera, P. (2012). A Comparison of
Sound Segregation Techniques for Predominant Instrument Recognition in
Musical Audio Signals. In F. Gouyon, P. Herrera, L. G. Martins, & M. Müller
(Eds.) Proceedings of the 13th International Society for Music Information
Retrieval Conference, ISMIR 2012, pp. 559–564. ISMIR. [Cited on page 34.]

Brunner, G., Konrad, A., Wang, Y., & Wattenhofer, R. (2018). MIDI-VAE:
Modeling Dynamics and Instrumentation of Music with Applications to Style
Transfer. In E. Gómez, X. Hu, E. Humphrey, & E. Benetos (Eds.) Pro-
ceedings of the 19th International Society for Music Information Retrieval
Conference, ISMIR 2018, pp. 747–754. ISMIR. [Cited on page 80.]

Butler, M. J. (2006). Unlocking the Groove: Rhythm, meter, and musical design
in electronic dance music. Bloomington, IN: Indiana University Press. [Cited
on page 1.]

162 Bibliography

Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., & Widmer, G. (2016).
madmom: A New Python Audio and Music Signal Processing Library. In
Proceedings of the 24th ACM international conference on Multimedia, MM
’16, pp. 1174–1178. Association for Computing Machinery. [Cited on page 143.]

Böck, S., Krebs, F., & Widmer, G. (2015). Accurate Tempo Estimation Based
on Recurrent Neural Networks and Resonating Comb Filters. In M. Müller
& F. Wiering (Eds.) Proceedings of the 16th International Society for Music
Information Retrieval Conference, pp. 657–663. ISMIR. [Cited on pages 21
and 55.]

Carr, C. J. & Zukowski, Z. (2018). Generating Albums with SampleRNN to
Imitate Metal, Rock, and Punk Bands. Http://arxiv.org/abs/1811.06633.
[Cited on pages 91, 105, and 106.]

Chandna, P., Blaauw, M., Bonada, J., & Gómez, E. (2019). WGANSing:
A Multi-Voice Singing Voice Synthesizer Based on the Wasserstein-GAN.
In 27th European Signal Processing Conference, EUSIPCO 2019, pp. 1–5.
IEEE. [Cited on pages 98 and 109.]

Chandna, P., Ramires, A., Serra, X., & Gómez, E. (2021). Loopnet: Mu-
sical Loop Synthesis Conditioned on Intuitive Musical Parameters. In 2021
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2021, pp. 3395–3399. IEEE. [Cited on pages 14 and 60.]

Chen, B.-Y., Smith, J. B., & Yang, Y.-H. (2020). Neural loop combiner: Neural
network models for assessing the compatibility of loops. In Julie Cumming,
J. H. Lee, B. McFee, M. Schedl, J. Devaney, C. McKay, E. Zangerle, &
T. de Reuse (Eds.) Proceedings of the 21th International Society for Music
Information Retrieval Conference, ISMIR 2020, pp. 424–431. ISMIR. [Cited
on page 60.]

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel,
P. (2016). Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, NIPS’16, pp.
2180–2188. Curran Associates Inc. [Cited on page 90.]

Cherry, E. & Latulipe, C. (2014). Quantifying the Creativity Support of Di-
gital Tools through the Creativity Support Index. ACM Transactions on
Computer-Human Interaction, 21(4), 21:1–21:25. [Cited on page 116.]

Chew, E. (2000). Towards a mathematical model of tonality. PhD Thesis,
Massachusetts Institute of Technology, Cambridge, MA. [Cited on page 22.]

Bibliography 163

Chew, E. (2007). Out of the Grid and Into the Spiral: Geometric Interpret-
ations of and Comparisons with the Spiral-Array Model. In W. B. Hew-
lett, E. Selfridge-Field, & E. J. Correia (Eds.) Tonal Theory for the Digital
Age (Computing in Musicology), vol. 15, pp. 51–72. Stanford, CA: Cen-
ter for Computer Assisted Research in the Humanities, Stanford University
(CCARH). [Cited on page 145.]

Ching, J., Ramires, A., & Yang, Y.-H. (2020). Instrument Role Classifica-
tion: Auto-tagging for Loop Based Music. In Proceedings of The 2020 Joint
Conference on AI Music Creativity (CSMC + MuMe), pp. 196–202. Royal
Institute of Technology (KTH). [Cited on pages 63 and 65.]

Chuan, C.-H. & Chew, E. (2005). Polyphonic Audio Key Finding Using the
Spiral Array CEG Algorithm. In 2005 IEEE International Conference on
Multimedia and Expo, ICME 2005, pp. 21–24. IEEE. [Cited on page 145.]

Cífka, O. (2021). Deep learning methods for music style transfer. (Méthodes
d’apprentissage profond pour le transfert de style musical). PhD Thesis,
Polytechnic Institute of Paris, Palaiseau, France. [Cited on page 80.]

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2016). Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). In Y. Bengio &
Y. LeCun (Eds.) 4th International Conference on Learning Representations,
ICLR 2016, Conference Track Proceedings. [Cited on pages 40 and 63.]

Cocharro, D., Sioros, G., Caetano, M. F., & Davies, M. E. P. (2014). Real-time
Manipulation of Syncopation in Audio Loops. In A. Georgaki & G. Kour-
oupetroglou (Eds.) Joint Proceedings of the 40th International Computer
Music Conference, ICMC 2014, and the 11th Sound and Music Computing
Conference, SMC 2014. Michigan Publishing. [Cited on page 60.]

Creswell, A. & Bharath, A. A. (2019). Inverting the Generator of a Generative
Adversarial Network. IEEE Transactions on Neural Networks and Learning
Systems, 30(7), 1967–1974. [Cited on page 89.]

Cuesta, H., McFee, B., & Gómez, E. (2020). Multiple F0 Estimation in Vocal
Ensembles using Convolutional Neural Networks. In J. Cumming, J. H. Lee,
B. McFee, M. Schedl, J. Devaney, C. McKay, E. Zangerle, & T. de Reuse
(Eds.) Proceedings of the 21th International Society for Music Information
Retrieval Conference, ISMIR 2020, pp. 302–309. ISMIR. [Cited on page 22.]

Curtis Hawthorne, Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C.,
Engel, J., Oore, S., & Eck, D. (2018). Onsets and frames: Dual-objective
piano transcription. In E. Gómez, X. Hu, E. Humphrey, & E. Benetos (Eds.)
Proceedings of the 19th International Society for Music Information Retrieval
Conference, ISMIR 2018, pp. 50–57. ISMIR. [Cited on page 144.]

164 Bibliography

Davies, M. E., Hamel, P., Yoshii, K., Goto, M., de Souza Britto Junior, A.,
Fabien Gouyon, & Dixon, S. (2013). AutoMashUpper: An automatic multi-
song mashup system. In Proceedings of the 14th International Society for
Music Information Retrieval Conference, ISMIR 2013, pp. 575–580. ISMIR.
[Cited on pages 61 and 74.]

Davies, M. E. & Plumbley, M. D. (2008). Exploring the effect of rhythmic
style classification on automatic tempo estimation. In 16th European Signal
Processing Conference, EUSIPCO 2008, pp. 1–5. IEEE. [Cited on page 21.]

Davies, M. E. P. & Plumbley, M. D. (2007). Context-Dependent Beat Tracking
of Musical Audio. IEEE Transactions on Audio, Speech, and Language
Processing, 15(3), 1009–1020. [Cited on page 21.]

Davis, J. & Goadrich, M. (2006). The relationship between Precision-Recall
and ROC curves. In Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06, pp. 233–240. Association for Computing Ma-
chinery. [Cited on page 70.]

Dawson, M. R. W., Perez, A., & Sylvestre, S. (2020). Artificial Neural Net-
works Solve Musical Problems With Fourier Phase Spaces. Scientific Re-
ports, 10(1), 7151. [Cited on page 145.]

De Haas, B. W., Veltkamp, R. C., & Wiering, F. (2008). Tonal Pitch Step Dis-
tance: a Similarity Measure for Chord Progressions. In J. P. Bello, E. Chew,
& D. Turnbull (Eds.) Proceedings of the 9th International Conference on Mu-
sic Information Retrieval, ISMIR 2008, pp. 51–56. ISMIR. [Cited on page 145.]

Degara, N., Rua, E. A., Pena, A., Torres-Guijarro, S., Davies, M. E. P., &
Plumbley, M. D. (2012). Reliability-Informed Beat Tracking of Musical Sig-
nals. IEEE Transactions on Audio, Speech, and Language Processing, 20(1),
290–301. [Cited on page 55.]

Dicale, B. (2007). Jean-michel jarre re-records oxygène. http://www1.rfi.fr/
musiqueen/articles/096/article_7986.asp/ Acessed in 9/10/2022. [Cited on
page 3.]

Dieleman, S., van den Oord, A., & Simonyan, K. (2018). The Challenge of
Realistic Music Generation: Modelling Raw Audio at Scale. In Proceedings
of the 32nd International Conference on Neural Information Processing Sys-
tems, NIPS’18, pp. 8000–8010. Red Hook, NY: Curran Associates Inc. [Cited
on pages 106 and 111.]

Dixon, S. (2001). Automatic Extraction of Tempo and Beat From Express-
ive Performances. Journal of New Music Research, 30(1), 39–58. [Cited on
page 21.]

http://www1.rfi.fr/musiqueen/articles/096/article_7986.asp/
http://www1.rfi.fr/musiqueen/articles/096/article_7986.asp/

Bibliography 165

Donahue, C., McAuley, J. J., & Puckette, M. S. (2019). Adversarial Audio
Synthesis. In Proceedings of the 7th International Conference on Learning
Representations, ICLR 2019, pp. 1–16. ICLR. [Cited on pages 91, 92, and 106.]

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., & Yang, Y.-H. (2018). MuseGAN:
Multi-track Sequential Generative Adversarial Networks for Symbolic Music
Generation and Accompaniment. In S. A. McIlraith & K. Q. Weinberger
(Eds.) Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), pp. 34–41. Palo Alto, CA: AAAI Press. [Cited on
page 80.]

Downie, S. J. (2003). Music information retrieval. Annual Review of Inform-
ation Science and Technology, 37(1), 295–340. [Cited on page 11.]

Drysdale, J., Ramires, A., Serra, X., & Hockman, J. (2022). Improved Auto-
matic Instrumentation Role Classification and Loop Activation Transcrip-
tion. In G. Evangelista & N. Holighaus (Eds.) Proceedings of the 25th In-
ternational Conference on Digital Audio Effects, DAFx2022, DAFx20’ sVi-
ennaSeries, vol. 3, pp. 264–271. DAFx. [Cited on page 13.]

Drysdale, J., Tomczak, M., & Hockman, J. (2020). Adversarial synthesis of
drum sounds. In G. Evangelista (Ed.) Proceedings of the 23rd International
Conference on Digital Audio Effects, eDAFx-2020, DAFx20’ sViennaSeries,
vol. 1, pp. 167–172. DAFx. [Cited on pages 92 and 116.]

Drysdale, J., Tomczak, M., & Hockman, J. (2021). Style-based Drum Synthesis
with GAN Inversion. In Extended Abstracts for the Late-Breaking Demo
Sessions of the 22nd International Society for Music Information Retrieval
Conference, ISMIR 2021. ISMIR. [Cited on page 116.]

Défossez, A. (2021). Hybrid Spectrogram and Waveform Source Separation.
In Proceedings of the ISMIR 2021 Workshop on Music Source Separation:
Music Demixing Workshop, MDX21, pp. 1–11. ISMIR. [Cited on page 80.]

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., & Roberts, A.
(2019). GANSynth: Adversarial Neural Audio Synthesis. In Proceedings of
the 7th International Conference on Learning Representations, ICLR 2019.
ICLR. [Cited on pages 91 and 92.]

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., &
Simonyan, K. (2017). Neural Audio Synthesis of Musical Notes with Wave-
Net Autoencoders. In D. Precup & Y. W. Teh (Eds.) Proceedings of the

166 Bibliography

34th International Conference on Machine Learning, ICML’17, Proceed-
ings of Machine Learning Research (PMLR), vol. PMLR 70, pp. 1068–1077.
JMLR.org. [Cited on pages 34, 36, 37, 40, 80, 91, 92, 106, and 116.]

Engel, J. H., Hantrakul, L., Gu, C., & Roberts, A. (2020). DDSP: Differ-
entiable Digital Signal Processing. In Proceedings of the 8th International
Conference on Learning Representations, ICLR 2020. ICLR. [Cited on pages
80, 110, and 113.]

Esling, P. & Bitton, A. (2018). Bridging Audio Analysis, Perception and
Synthesis with Perceptually-regularized Variational Timbre Spaces. In
E. Gómez, X. Hu, E. Humphrey, & E. Benetos (Eds.) Proceedings of the
19th International Society for Music Information Retrieval Conference, IS-
MIR 2018, pp. 175–181. ISMIR. [Cited on pages 90, 91, and 92.]

Essid, S., Richard, G., & David, B. (2006). Musical instrument recognition by
pairwise classification strategies. IEEE Transactions on Audio, Speech, and
Language Processing, 14(4), 1401–1412. [Cited on page 33.]

Faraldo, �., Gómez, E., Jordà, S., & Herrera, P. (2016). Key Estimation in
Electronic Dance Music. In N. Ferro, F. Crestan, M.-F. Moens, J. Mothe,
F. Silvestri, G. M. Nunzio, C. Hauff, & G. Silvello (Eds.) Proceedings of the
38th European Conference on Information Retrieval, ECIR 2016: Advances
in Information Retrieva, Lecture Notes in Computer Science (LNCS), vol.
9626, pp. 335–347. Springer. [Cited on pages 22, 51, and 56.]

Faraldo Pérez, Á. (2018). Tonality Estimation in Electronic Dance Music:
A Computational and Musically Informed Examination. PhD Thesis, Uni-
versitat Pompeu Fabra, Barcelona, Spain. [Cited on page 22.]

Favory, X., Font, F., & Serra, X. (2020). Search Result Clustering in Collab-
orative Sound Collections. In C. Gurrin, B. �. Jónsson, N. Kando, K. Schöff-
mann, Y.-P. P. Chen, & N. E. O’Connor (Eds.) Proceedings of the 2020 on
International Conference on Multimedia Retrieval, ICMR 2020, pp. 207–
214. ACM. [Cited on page 11.]

Feinstein, A. R. & Cicchetti, D. V. (1990). High agreement but low Kappa:
I. the problems of two paradoxes. Journal of Clinical Epidemiology, 43(6),
543–549. [Cited on page 53.]

FitzGerald, D., Cranitch, M., & Coyle, E. (2006). Sound Source Separation
Using Shifted Non-Negative Tensor Factorisation. In 2006 IEEE Interna-
tional Conference on Acoustics Speech and Signal Processing Proceedings,
ICASSP 2006, vol. 5, pp. V–V. IEEE. [Cited on page 60.]

Bibliography 167

Fonseca, E., Plakal, M., Ellis, D. P. W., Font, F., Favory, X., & Serra, X.
(2019). Learning Sound Event Classifiers from Web Audio with Noisy Labels.
In 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2019, pp. 21–25. IEEE. [Cited on page 20.]

Font, F. & Bandiera, G. (2017). Freesound Explorer: Make Music While
Discovering Freesound! In F. Thalmann & S. Ewert (Eds.) Proceedings
of the 3rd International Web Audio Conference, WAC 2017. Queen Mary
University of London. [Cited on page 11.]

Font, F., Roma, G., & Serra, X. (2013). Freesound Technical Demo. In Pro-
ceedings of the 21st ACM international conference on Multimedia, MM ’13,
pp. 411–412. ACM. [Cited on pages 6, 47, 66, 96, 97, 123, and 153.]

Font, F. & Serra, X. (2016). Tempo Estimation for Music Loops and a Simple
Confidence Measure. In J. Devaney, M. I. Mandel, D. Turnbull, & G. Tzane-
takis (Eds.) Proceedings of the 17th International Society for Music Inform-
ation Retrieval Conference, ISMIR 2016, pp. 269–275. ISMIR. [Cited on pages
47, 48, 51, 55, and 107.]

Forte, A. (1964). A Theory of Set-Complexes for Music. Journal of Music
Theory, 8(2), 136–183. [Cited on page 148.]

Forte, A. (1973). The structure of atonal music, vol. 304. New Haven, CT:
Yale University Press. [Cited on page 148.]

Fuhrmann, F. (2012). Automatic musical instrument recognition from poly-
phonic music audio signals. PhD Thesis, Universitat Pompeu Fabra, Bar-
celona, Spain. [Cited on page 33.]

Fuhrmann, F. & Herrera, P. (2010). Polyphonic instrument recognition for
exploring semantic similarities in music. In Proceedings of the 13th Inter-
national Conference on Digital Audio Effects, DAFx-10, pp. 1–8. [Cited on
page 33.]

Fujishima, T. (1999). Realtime Chord Recognition of Musical Sound: a System
Using Common Lisp Music. In Proceedings of the 25th International Com-
puter Music Conference, ICMC 1999, pp. 464–467. Michigan Publishing.
[Cited on page 144.]

Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W.,
Moore, C. R., Plakal, M., & Ritter, M. (2017). Audio Set: An ontology
and human-labeled dataset for audio events. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, pp.
776–780. IEEE. [Cited on page 111.]

168 Bibliography

Gillet, O. & Richard, G. (2004). Automatic transcription of drum loops. In
2004 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pp. iv–iv. IEEE. [Cited on page 46.]

Gillet, O. & Richard, G. (2005). Drum Loops Retrieval from Spoken Queries.
Journal of Intelligent Information Systems, 24(2), 159–177. [Cited on pages 46
and 60.]

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training
deep feedforward neural networks. In Y. W. Teh & M. Titterington (Eds.)
Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, AISTATS 2009, Proceedings of Machine Learning Research
(PMLR), vol. PMLR 9, pp. 249–256. JMLR.org. [Cited on page 31.]

Goodfellow, I. (2017). NIPS 2016 Tutorial: Generative Adversarial Networks.
arXiv. [Cited on pages 83 and 84.]

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridg,
MA: MIT Press. [Cited on pages 27, 28, 31, and 32.]

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger (Eds.)
Advances in neural information processing systems 27: Annual Conference
on Neural Information Processing Systems 2014, NIPS 2014, pp. 2672–2680.
Red Hook, NY: Curran Associates, Inc. [Cited on pages 80, 87, and 116.]

Goto, M., Hashiguchi, H., Nishimura, T., & Oka, R. (2002). RWC Music
Database: Popular, Classical, and Jazz Music Databases. In Proceedings of
the 3rd International Society for Music Information Retrieval Conference,
ISMIR 2002, pp. 287–288. ISMIR. [Cited on page 34.]

Gouyon, F. & Dixon, S. (2005). A Review of Automatic Rhythm Description
Systems. Computer Music Journal, 29(1), 34–54. [Cited on page 21.]

Gouyon, F., Klapuri, A., Dixon, S., Alonso, M., Tzanetakis, G., Uhle, C., &
Cano, P. (2006). An experimental comparison of audio tempo induction
algorithms. IEEE Transactions on Audio, Speech, and Language Processing,
14(5), 1832–1844. [Cited on pages 21, 46, and 55.]

Grachten, M., Lattner, S., & Deruty, E. (2020). BassNet: A Variational Gated
Autoencoder for Conditional Generation of Bass Guitar Tracks with Learned
Interactive Control. Applied Sciences, 10(18). [Cited on page 80.]

Griffin, D. & Lim, J. (1984). Signal estimation from modified short-time Four-
ier transform. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 32(2), 236–243. [Cited on pages 111 and 112.]

Bibliography 169

Grover, A., Dhar, M., & Ermon, S. (2018). Flow-GAN: Combining Max-
imum Likelihood and Adversarial Learning in Generative Models. In S. A.
McIlraith & K. Q. Weinberger (Eds.) Proceedings of the 32nd AAAI Confer-
ence on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18), pp. 3069–3076. AAAI
Press. [Cited on page 88.]

Gómez, E. (2006a). Tonal Description of Music Audio Signals. PhD Thesis,
Universitat Pompeu Fabra, Barcelona, Spain. [Cited on page 22.]

Gómez, E. (2006b). Tonal Description of Polyphonic Audio for Music Content
Processing. INFORMS Journal on Computing, 18(3), 294–304. [Cited on
pages 56, 109, 144, and 154.]

Gómez-Marín, D., Jordà, S., & Herrera, P. (2015). PAD and SAD: Two
awareness-weighted rhythmic similarity distances. In Meinard Müller &
F. Wiering (Eds.) Proceedings of the 16th International Society for Mu-
sic Information Retrieval Conference, ISMIR 2015, pp. 666–672. ISMIR.
[Cited on page 47.]

Han, Y., Kim, J., & Lee, K. (2017). Deep Convolutional Neural Networks
for Predominant Instrument Recognition in Polyphonic Music. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 25(1), 208–221.
[Cited on pages 33, 34, 36, and 40.]

Harte, C., Sandler, M., & Gasser, M. (2006). Detecting harmonic change in
musical audio. In Proceedings of the 1st ACM workshop on Audio and music
computing multimedia, AMCMM ’06, pp. 21–26. ACM. [Cited on page 150.]

Hasnain, Z. (2017). How the roland tr-808 revolutionized mu-
sic. https://www.theverge.com/2017/4/3/15162488/roland-tr-808-music-
drum-machine-revolutionized-music/ Acessed in 9/10/2022. [Cited on page 78.]

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, pp. 1026–
1034. IEEE. [Cited on pages 31 and 64.]

Heise, S., Hlatky, M., & Loviscach, J. (2008). SoundTorch: Quick Browsing
in Large Audio Collections. In Proceedings of the125th Audio Engineering
Society Convention 2008, AES 2008, p. Paper 7544. AES. [Cited on page 11.]

Herrera-Boyer, P., Peeters, G., & Dubnov, S. (2003). Automatic Classification
of Musical Instrument Sounds. Journal of New Music Research, 32(1), 3–21.
[Cited on pages 23 and 33.]

https://www.theverge.com/2017/4/3/15162488/roland-tr-808-music-drum-machine-revolutionized-music/
https://www.theverge.com/2017/4/3/15162488/roland-tr-808-music-drum-machine-revolutionized-music/

170 Bibliography

Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of
Data with Neural Networks. Science, 313(5786), 504–507. [Cited on page 86.]

Hoffman, J. (2008). On Pitch-Class Set Cartography: Relations between Voice-
Leading Spaces and Fourier Spaces. Journal of Music Theory, 52(2), 219–
249. [Cited on page 148.]

Holmes, T. (2012). Electronic and experimental music: technology, music, and
culture. New York, NY: Routledge, 4th edn. [Cited on pages 2 and 4.]

Huron, D. (1994). Interval-class content in equally tempered pitch-class sets:
Common scales exhibit optimum tonal consonance. Music Perception, 11(3),
289–305. [Cited on page 146.]

Härkönen, E., Hertzmann, A., Lehtinen, J., & Paris, S. (2020). GANSpace:
Discovering Interpretable GAN Controls. In H. Larochelle, M. Ranzato,
R. Hadsell, M.-F. Balcan, & H.-T. Lin (Eds.) Advances in Neural Inform-
ation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, pp. 1–10. Curran Associates, Inc.
[Cited on pages 89 and 119.]

Ioffe, S. & Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. In ICML’15: Proceedings of
the 32nd International Conference on International Conference on Machine
Learning, July 6 - 11, 2015, ICML’15, vol. 37, pp. 448–456. JMLR.org. [Cited
on pages 40 and 63.]

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Trans-
lation with Conditional Adversarial Networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, pp. 5967–5976.
IEEE. [Cited on pages 89 and 90.]

Jahanian, A., Chai, L., & Isola, P. (2020). On the ”steerability” of gener-
ative adversarial networks. In 8th International Conference on Learning
Representations, ICLR 2020, Conference Track Proceedings. ICLR. [Cited on
page 89.]

Jordan, M. I. & Mitchell, T. M. (2015). Machine learning: Trends, perspect-
ives, and prospects. Science, 349(6245), 255–260. [Cited on pages 25 and 26.]

Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021). BirdNET: A deep
learning solution for avian diversity monitoring. Ecological Informatics, 61,
101236. [Cited on page 19.]

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive Growing of
GANs for Improved Quality, Stability, and Variation. In 6th International

Bibliography 171

Conference on Learning Representations, ICLR 2018, Conference Track Pro-
ceedings. ICLR. [Cited on pages 88, 93, and 117.]

Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture
for Generative Adversarial Networks. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2019, pp. 4401–4410. CVF
/ IEEE. [Cited on pages 117 and 119.]

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T.
(2020). Analyzing and Improving the Image Quality of StyleGAN. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, pp. 8107–8116. CVF / IEEE. [Cited on pages 88, 116, and 118.]

Kilgour, K., Zuluaga, M., Roblek, D., & Sharifi, M. (2019). Fréchet Audio
Distance: A Reference-Free Metric for Evaluating Music Enhancement Al-
gorithms. In Proceedings of the 20th Annual Conference of the International
Speech Communication Association, INTERSPEECH 2019, pp. 2350–2354.
ISCA. [Cited on pages 111 and 122.]

Kingma, D. P. & Ba, J. (2015). Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR 2015,
Conference Track Proceedings. ICLR. [Cited on pages 41, 64, 100, and 111.]

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. In 2nd
International Conference on Learning Representations, ICLR 2014, Confer-
ence Track Proceedings. ICLR. [Cited on pages 26, 80, 86, and 116.]

Knees, P. & Schedl, M. (2016). Music Similarity and Retrieval: An Introduc-
tion to Audio- and Web-Based Strategies, The Information Retrieval Series,
vol. 36. Heidelberg: Springer-Verlag GmbH, 1st edn. [Cited on pages 20 and 23.]

Ko, T., Peddinti, V., Povey, D., Seltzer, M. L., & Khudanpur, S. (2017). A
study on data augmentation of reverberant speech for robust speech recog-
nition. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2017, pp. 5220–5224. IEEE. [Cited on page 37.]

Krumhans, C. L. (1990). Cognitive Foundations of Musical Pitchl. Oxford
Psychology Series No. 17. New York, NY: Oxford University Press. [Cited on
page 56.]

Laguarta, J., Hueto, F., & Subirana, B. (2020). COVID-19 Artificial Intel-
ligence Diagnosis Using Only Cough Recordings. IEEE Open Journal of
Engineering in Medicine and Biology, 1, 275–281. [Cited on page 19.]

Latham, A. (Ed.) (2011). The Oxford Companion to Music. Oxford, UK:
Oxford University Press. [Cited on page 78.]

172 Bibliography

Lattner, S. & Grachten, M. (2019). High-Level Control of Drum Track Gener-
ation Using Learned Patterns of Rhythmic Interaction. In 2019 IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics, WASPAA
2019, pp. 35–39. IEEE. [Cited on page 80.]

Law, E., West, K., Mandel, M. I., Bay, M., & Downie, J. S. (2009). Evalu-
ation of algorithms using games: The case of music tagging. In K. Hirata,
G. Tzanetakis, & K. Yoshii (Eds.) Proceedings of the 10th International Soci-
ety for Music Information Retrieval Conference, ISMIR 2009, pp. 387–392.
ISMIR. [Cited on page 20.]

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444. [Cited on page 36.]

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11), 2278–
2324. [Cited on page 90.]

Lerdahl, F. (2004). Tonal pitch space. Oxford, UK: Oxford University Press.
[Cited on page 145.]

Lessig, L. (2008). Remix: Making art and commerce thrive in the hybrid
economy. New York, NY: Penguin Press. [Cited on page 5.]

Li, P., Qian, J., & Wang, T. (2015). Automatic Instrument Re-
cognition in Polyphonic Music Using Convolutional Neural Networks.
Http://arxiv.org/abs/1511.05520. [Cited on pages 33 and 36.]

Liu, L. (2005). The Chinese Neolithic: Trajectories to Early States. New
Studies in Archaeology. Cambridge, UK: Cambridge University Press. [Cited
on page 77.]

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes
in the Wild. In 2015 IEEE International Conference on Computer Vision,
ICCV 2015, pp. 3730–3738. IEEE. [Cited on page 90.]

López-Serrano, P., Dittmar, C., Driedger, J., & Müller, M. (2016). Towards
Modeling and Decomposing Loop-Based Electronic Music. In J. Devaney,
M. I. Mandel, D. Turnbull, & G. Tzanetakis (Eds.) Proceedings of the 17th
International Society for Music Information Retrieval Conference, ISMIR
2016, pp. 502–508. ISMIR. [Cited on pages 60, 67, 69, and 71.]

López-Serrano, P., Dittmar, C., & Müller, M. (2017). Finding Drum Breaks
in Digital Music Recordings. In M. Aramaki, M. E. P. Davies, R. Kronland-
Martinet, & S. Ystad (Eds.) Music Technology with Swing, CMMR 2017, Lec-
ture Notes in Computer Science (LNCS), vol. 11265, pp. 111–122. Springer
International Publishing. [Cited on pages 60 and 73.]

Bibliography 173

Manning, P. (2004). Electronic and Computer Music. Oxford, UK: Oxford
University Press. [Cited on page 3.]

Mauch, M. & Dixon, S. (2010). Approximate Note Transcription for the Im-
proved Identification of Difficult Chords. In S. J. Downie & R. C. Veltkamp
(Eds.) Proceedings of the 11th International Society for Music Information
Retrieval Conference, ISMIR 2010, pp. 135–140. ISMIR. [Cited on pages 144
and 154.]

Mauch, M. & Dixon, S. (2014). pYIN: A Fundamental Frequency Estimator
Using Probabilistic Threshold Distributions. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2014, pp. 659–663.
IEEE. [Cited on page 22.]

Maçãs, C., Rodrigues, A., Bernardes, G., & Machado, P. (2019). MixMash:
An Assistive Tool for Music Mashup Creation from Large Music Collections.
International Journal of Art, Culture, Design, and Technology (IJACDT),
8(2), 20–40. [Cited on page 153.]

McFee, B., Humphrey, E. J., & Bello, J. P. (2015a). A software framework for
musical data augmentation. In M. Müller & F. Wiering (Eds.) Proceedings of
the 16th International Society for Music Information Retrieval Conference,
ISMIR 2015, pp. 248–254. ISMIR. [Cited on pages 36 and 37.]

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., &
Nieto, O. (2015b). Librosa: Audio and music signal analysis in python. In
Kathryn Huff & J. Bergstra (Eds.) Proceedings of the 14th Python in Science
Conference, SciPy 2015, pp. 8–24. SciPy Conferences. [Cited on page 143.]

McFee, B., Salamon, J., & Bello, J. P. (2018). Adaptive Pooling Operators
for Weakly Labeled Sound Event Detection. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 26(11), 2180–2193. [Cited on page 64.]

McKinney, M. F., Moelants, D., Davies, M. E., & Klapuri, A. (2007). Eval-
uation of Audio Beat Tracking and Music Tempo Extraction Algorithms.
Journal of New Music Research, 36(1), 1–16. [Cited on page 21.]

McVicar, M., Santos-Rodríguez, R., Ni, Y., & Bie, T. D. (2014). Automatic
Chord Estimation from Audio: A Review of the State of the Art. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 22(2), 556–575.
[Cited on page 23.]

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A
Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys,
54(6), 115:1–115:35. [Cited on page 33.]

174 Bibliography

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville,
A. C., & Bengio, Y. (2017). SampleRNN: An Unconditional End-to-End
Neural Audio Generation Model. In Proceedings of the 5th International
Conference on Learning Representations, ICLR 2017. ICLR. [Cited on pages
80, 106, and 116.]

Miron, M., Davies, M. E., & Gouyon, F. (2013). An open-source drum tran-
scription system for Pure Data and Max MSP. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 221–225. IEEE.
[Cited on page 109.]

Mirza, M. & Osindero, S. (2014). Conditional Generative Adversarial Nets.
Http://arxiv.org/abs/1411.1784. [Cited on page 90.]

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Series in Computer
Science. New York, NY: McGraw-Hill. [Cited on page 27.]

Muller, M. & Ewert, S. (2010). Towards Timbre-Invariant Audio Features for
Harmony-Based Music. IEEE Transactions on Audio, Speech, and Language
Processing, 18(3), 649–662. [Cited on pages 144 and 154.]

Nair, V. & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted
Boltzmann Machines. In J. Fürnkranz & T. Joachims (Eds.) Proceedings
of the 27th International Conference on Machine Learning, ICML 2010,
ICML’10, pp. 807–814. Madison, WI: Omnipress. [Cited on page 29.]

Nam, J., Choi, K., Lee, J., Chou, S.-Y., & Yang, Y.-H. (2019). Deep Learning
for Audio-Based Music Classification and Tagging: Teaching Computers to
Distinguish Rock from Bach. IEEE Signal Processing Magazine, 36(1), 41–
51. [Cited on pages 33 and 36.]

Nistal, J., Lattner, S., & Richard, G. (2021). DrumGAN: Synthesis of drum
sounds with timbral feature conditioning using Generative Adversarial Net-
works. In J. H. Lee, A. Lerch, Z. Duan, J. Nam, P. Rao, P. van Kranenburg,
& A. Srinivasamurthy (Eds.) Proceedings of the 21st International Society
for Music Information Retrieval Conference, ISMIR 2021, pp. 484–492. IS-
MIR. [Cited on pages 92, 93, 106, 112, 116, and 123.]

Noland, K. & Sandler, M. (2007). Signal Processing Parameters for Tonality
Estimation. In Proceedings of the 122nd Audio Engineering Society Con-
vention, AES 2007, p. Paper 7155. AES. [Cited on page 56.]

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. W., & Kavukcuoglu, K. (2016a). WaveNet:
A Generative Model for Raw Audio. In The 9th ISCA Speech Synthesis
Workshop, SSW9, p. 125. International Speech Communication Association.
[Cited on pages 80, 85, 96, 98, 109, and 116.]

Bibliography 175

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., &
Kavukcuoglu, K. (2016b). Conditional Image Generation with PixelCNN
Decoders. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, &
I. Guyon (Eds.) Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, NIPS’16, pp. 4797–4805. Red
Hook, NY, USA: Curran Associates Inc. [Cited on page 85.]

Oord, A. v. d., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu,
K., Driessche, G. v. d., Lockhart, E., Cobo, L. C., Stimberg, F., Casagrande,
N., Grewe, D., Noury, S., Dieleman, S., Elsen, E., Kalchbrenner, N., Zen,
H., Graves, A., King, H., Walters, T., Belov, D., & Hassabis, D. (2018).
Parallel WaveNet: Fast High-Fidelity Speech Synthesis. In Proceedings of
the 35th International Conference on Machine Learning, ICML 18, Proceed-
ings of Machine Learning Research (PMLR), vol. PMLR 80, pp. 3915–3923.
JMLR.org. [Cited on page 106.]

Palombini, C. (1993). Machine Songs V: Pierre Schaeffer: From Research into
Noises to Experimental Music. Computer Music Journal, 17(3), 14–19. [Cited
on page 3.]

Park, T. & Lee, T. (2015). Musical instrument sound classification
with deep convolutional neural network using feature fusion approach.
Http://arxiv.org/abs/1512.07370. [Cited on pages 33 and 36.]

Pearce, A., Brookes, T., & Mason, R. (2017). Timbral Attributes for Sound
Effect Library Searching. In Proceedings of the International Conference on
Semantic Audio, AES 2017. AES. [Cited on pages 97, 109, and 123.]

Peeters, G. (2006). Musical key estimation of audio signal based on hidden
Markov modeling of chroma vectors. In Proceedings of the 9th International
Conference on Digital Audio Effects, DAFx-2006, p. Paper 127. DAFx. [Cited
on page 22.]

Percival, G. & Tzanetakis, G. (2014). Streamlined Tempo Estimation Based on
Autocorrelation and Cross-correlation With Pulses. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 22(12), 1765–1776. [Cited
on page 55.]

Pereira, J. P., Bernardes, G., & Penha, R. (2018). Musikverb: A Harmonically
Adaptive Audio Reverberation. In M. Davies, A. Ferreira, G. Campos, &
N. Fonseca (Eds.) Proceedings of the 21st International Conference on Digital
Audio Effects (DAFx-18), pp. 357–360. DAFx. [Cited on page 153.]

Pons, J. (2019). Deep neural networks for music and audio tagging. PhD
Thesis, Universitat Pompeu Fabra, Barcelona, Spain. [Cited on page 70.]

176 Bibliography

Pons, J., Nieto, O., Prockup, M., Schmidt, E., Ehmann, A., & Serra, X.
(2017a). End-to-end learning for music audio tagging at scale. In Pro-
ceedings of the 18th International Society for Music Information Retrieval
Conference, ISMIR 2017, pp. 472–477. ISMIR. [Cited on page 65.]

Pons, J., Slizovskaia, O., Gong, R., Gómez, E., & Serra, X. (2017b). Timbre
analysis of music audio signals with convolutional neural networks. In 25th
European Signal Processing Conference, EUSIPCO 2017, pp. 2744–2748.
EURASIP/ IEEE. [Cited on pages xvii, 33, 34, 36, 37, 40, 41, 61, and 62.]

Quinn, I. (2007). General Equal-Tempered Harmony: Parts 2 and 3. Perspect-
ives of New Music, 45(1), 4–63. [Cited on pages 145 and 148.]

Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D.,
& Ellis, D. P. (2014). mir_eval: A transparent implementation of common
MIR metrics. In H.-M. Wang, Y.-H. Yang, & J. H. Lee (Eds.) Proceedings of
the 15th International Society for Music Information Retrieval Conference,
ISMIR 2014, pp. 367–372. ISMIR. [Cited on page 57.]

Ramires, A., Bernardes, G., Davies, M., & Serra, X. (2020a). TIV.LIB:
An Open-Source Library for the Tonal Description of Musical Audio. In
G. Evangelista (Ed.) Proceedings of the 23rd International Conference on
Digital Audio Effects, eDAFx-2020, DAFx20’ sViennaSeries, vol. 1, pp. 304–
309. DAFx. [Cited on page 14.]

Ramires, A., Chandna, P., Favory, X., Gómez, E., & Serra, X. (2020b). Neural
Percussive Synthesis Parameterised by High-Level Timbral Features. In 2020
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2020, pp. 786–790. IEEE. [Cited on pages 14, 92, 106, 112, 123, and 142.]

Ramires, A. & Font, F. (2019). Poster: Freesound API: add 400k+ sounds to
your plugin. In Audio Developer Conference 2019 (ADC19). ADC. [Cited on
page 14.]

Ramires, A., Font, F., Bogdanov, D., Smith, J. B. L., Yang, Y.-H., Ching, J.,
Chen, B.-Y., Wu, Y.-K., Wei-Han, H., & Serra, X. (2020c). The Freesound
Loop Dataset and Annotation Tool. In J. Cumming, J. H. Lee, B. McFee,
M. Schedl, J. Devaney, C. McKay, E. Zangerle, & T. de Reuse (Eds.) Pro-
ceedings of the 21st International Society for Music Information Retrieval
Conference, ISMIR 2020, pp. 287–295. ISMIR. [Cited on pages 13 and 66.]

Ramires, A., Juras, J., Parker, J. D., & Serra, X. (2022). A Study of Control
Methods for Percussive Sound Synthesis Based on GANs. In G. Evangelista
& N. Holighaus (Eds.) Proceedings of the 25th International Conference on
Digital Audio Effects, DAFx2022, DAFx20’ sViennaSeries, vol. 3, pp. 224–
231. DAFx. [Cited on page 14.]

Bibliography 177

Ramires, A. & Serra, X. (2019). Data augmentation for instrument classi-
fication robust to audio effects. In Proceedings of the 22nd International
Conference on Digital Audio Effects, DAFx2019, pp. 1–6. DAFx. [Cited on
page 13.]

Ratcliffe, R. (2014). A proposed typology of sampled material within electronic
dance music. Dancecult: Journal of Electronic Dance Music Culture, 6(1),
97–122. [Cited on pages 1 and 6.]

Ravelli, E., Bello, J. P., & Sandler, M. (2007). Automatic Rhythm Modification
of Drum Loops. IEEE Signal Processing Letters, 14(4), 228–231. [Cited on
page 46.]

Razavi, A., Oord, A. v. d., & Vinyals, O. (2019). Generating Diverse High-
Fidelity Images with VQ-VAE-2. In H. M. Wallach, H. Larochelle, A. Bey-
gelzimer, F. d’Alché Buc, E. B. Fox, & R. Garnett (Eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Inform-
ation Processing Systems 2019, NeurIPS 2019, pp. 14837–14847. Curran
Associates, Inc. [Cited on page 87.]

Reiss, J. D. & McPherson, A. P. (2014). Audio effects: Theory, implementation
and application. Boca Raton, FL: CRC Press. [Cited on page 39.]

Ritzer, G. & Jurgenson, N. (2010). Production, Consumption, Prosumption:
The nature of capitalism in the age of the digital ‘prosumer’. Journal of
Consumer Culture, 10(1), 13–36. [Cited on page 5.]

Roma, G. (2015). Algorithms and representations for supporting online music
creation with large-scale audio databases. PhD Thesis, Universitat Pompeu
Fabra, Barcelona, Spain. [Cited on page 47.]

Roma, G. & Serra, X. (2015). Querying Freesound with a microphone. In
S. Goldszmidt, N. Schnell, V. Saiz, & B. Matuszewski (Eds.) Proceedings of
the 1st International Web Audio Conference, WAC 2015. IRCAM. [Cited on
page 11.]

Romani Picas, O., Parra Rodriguez, H., Dabiri, D., Tokuda, H., Hariya, W.,
Oishi, K., & Serra, X. (2015). A real-time system for measuring sound good-
ness in instrumental sounds. In Proceedings of the 138nd Audio Engineering
Society Convention, AES 2015, p. 9350. AES. [Cited on page 34.]

Sahai, A., Weber, R., & McWilliams, B. (2019). Spectrogram Feature Losses
for Music Source Separation. In 27th European Signal Processing Conference
(EUSIPCO 2019), 02-06 September 2019, A Coruna, Spain, pp. 1–5. IEEE.
[Cited on page 99.]

178 Bibliography

Salamon, J. & Bello, J. P. (2017). Deep Convolutional Neural Networks and
Data Augmentation for Environmental Sound Classification. IEEE Signal
Processing Letters, 24(3), 279–283. [Cited on pages 37 and 42.]

Salamon, J. & Gómez, E. (2012). Melody Extraction From Polyphonic Music
Signals Using Pitch Contour Characteristics. IEEE Transactions on Audio,
Speech, and Language Processing, 20(6), 1759–1770. [Cited on page 22.]

Salamon, J. J. (2013). Melody Extraction from Polyphonic Music Signals. PhD
Thesis, Universitat Pompeu Fabra, Barcelona, Spain. [Cited on page 22.]

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen,
X., & Chen, X. (2016). Improved Techniques for Training GANs. In D. D.
Lee, M. Sugiyama, U. von Luxburg, I. Guyon, & R. Garnett (Eds.) Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, NeurIPS 2016, pp. 2226–2234. Curran
Associates, Inc. [Cited on page 111.]

Schaeffer, P. (1952). A la recherche d’une musique concrète. Paris: Editions
du Seuil. [Cited on page 2.]

Schedl, M., Gómez, E., & Urbano, J. (2014). Music Information Retrieval:
Recent Developments and Applications. Foundations and Trends® in In-
formation Retrieval, 8(2-3), 127–261. [Cited on page 23.]

Scheirer, E. D. (1998). Tempo and beat analysis of acoustic musical signals.
The Journal of the Acoustical Society of America, 103(1), 588–601. [Cited on
page 21.]

Sha’ath, i. (2011). Estimation of key in digital music recordings. MSc thesis,
Birkbeck College, University of London, London, UK. [Cited on pages 56, 150,
and 151.]

Shen, Y., Gu, J., Tang, X., & Zhou, B. (2020). Interpreting the Latent Space
of GANs for Semantic Face Editing. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, pp. 9240–9249. CVF
/ IEEE. [Cited on pages 89, 116, and 120.]

Shen, Y., Yang, C., Tang, X., & Zhou, B. (2022). InterFaceGAN: Interpreting
the Disentangled Face Representation Learned by GANs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(4), 2004–2018. [Cited on
pages 123 and 124.]

Shen, Y. & Zhou, B. (2021). Closed-Form Factorization of Latent Semantics
in GANs. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2021, pp. 1532–1540. CVF / IEEE. [Cited on pages 89,
116, 119, and 123.]

Bibliography 179

Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling
with an unknown distance function. I. Psychometrika, 27(2), 125–140. [Cited
on page 145.]

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear
Phenomena, 404, 132306. [Cited on page 85.]

Shi, Z. & Mysore, G. J. (2018). LoopMaker: Automatic creation of music
loops from pre-recorded music. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI ’18, p. Paper 454. ACM.
[Cited on pages 60 and 61.]

Smaragdis, P. (2004). Non-negative Matrix Factor Deconvolution; Extraction
of Multiple Sound Sources from Monophonic Inputs. In C. G. Puntonet &
A. Prieto (Eds.) Independent Component Analysis and Blind Signal Separa-
tion: 5th International Conference, ICA 2004., Lecture Notes in Computer
Science (LNCS), pp. 494–499. Springer. [Cited on page 60.]

Smith, J. B., Kawasaki, Y., & Goto, M. (2019). Unmixer: An Interface for
Extracting and Remixing Loops. In A. Flexer, G. Peeters, J. Urbano, &
A. Volk (Eds.) Proceedings of the 20th International Society for Music In-
formation Retrieval Conference, ISMIR 2019, pp. 824–831. ISMIR. [Cited on
page 60.]

Smith, J. B. L. & Goto, M. (2018). Nonnegative Tensor Factorization for Source
Separation of Loops in Audio. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2018, pp. 171–175. IEEE.
[Cited on pages 57, 60, 67, 69, 71, and 72.]

Southall, C., Stables, R., & Hockman, J. (2017). Automatic Drum Tran-
scription for Polyphonic Recordings Using Soft Attention Mechanisms and
Convolutional Neural Networks. In S. Jo, Z. Duan, X. Hu, & D. Turnbull
(Eds.) Proceedings of the 18th International Society for Music Information
Retrieval Conference, ISMIR 2017, pp. 606–612. ISMIR. [Cited on page 108.]

Stoller, D., Ewert, S., & Dixon, S. (2018). Wave-U-Net: A Multi-Scale Neural
Network for End-to-End Audio Source Separation. In E. Gómez, X. Hu,
E. Humphrey, & E. Benetos (Eds.) Proceedings of the 19th International
Society for Music Information Retrieval Conference, ISMIR 2018, pp. 334–
340. ISMIR. [Cited on pages 91, 92, 96, 98, 103, and 109.]

Stöter, F.-R., Uhlich, S., Liutkus, A., & Mitsufuji, Y. (2019). Open-Unmix -
A Reference Implementation for Music Source Separation. Journal of Open
Source Software, 4(41), 1667. [Cited on page 80.]

180 Bibliography

Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An introduction.
Adaptive Computation and Machine Learning series. Cambridg, MA: MIT
press, 2nd edn. [Cited on pages 25 and 26.]

Tapscott, D. (1996). The digital economy: Promise and peril in the age of
networked intelligence. New York, NY: McGraw-Hill, 1st edn. [Cited on
page 5.]

Temperley, D. (1999). What’s Key for Key? The Krumhansl-Schmuckler Key-
Finding Algorithm Reconsidered. Music Perception, 17(1), 65–100. [Cited
on pages 56, 150, and 151.]

Tolstikhin, I. O., Bousquet, O., Gelly, S., & Schölkopf, B. (2018). Wasser-
stein Auto-Encoders. In Proceedings of the 6th International Conference
on Learning Representations, ICLR 2018, Conference Track Proceedings.
ICLR. [Cited on pages 92 and 96.]

Tymoczko, D. (2008). Set-Class Similarity, Voice Leading, and the Fourier
Transform. Journal of Music Theory, 52(2), 251–272. [Cited on pages 146
and 150.]

Tymoczko, D. (2010). A geometry of music: Harmony and counterpoint in the
extended common practice. New York, NY: Oxford University Press. [Cited
on page 145.]

Tymoczko, D. & Yust, J. (2019). Fourier Phase and Pitch-Class Sum. In
M. Montiel, F. Gomez-Martin, & O. A. Agustín-Aquino (Eds.) Mathemat-
ics and Computation in Music: 7th International Conference MCM 2019,
Lecture Notes in Computer Science (LNCS), vol. 11502, pp. 46–58. Springer
International Publishing. [Cited on pages 145 and 150.]

Vande Veire, L. & De Bie, T. (2018). From raw audio to a seamless mix:
creating an automated DJ system for Drum and Bass. EURASIP Journal
on Audio, Speech, and Music Processing, 2018(1), 13. [Cited on pages 61 and 74.]

Wang, X., Takaki, S., & Yamagishi, J. (2020). Neural Source-Filter Waveform
Models for Statistical Parametric Speech Synthesis. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 28, 402–415. [Cited on
page 110.]

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1), 37–52. [Cited on
page 26.]

Bibliography 181

Won, M., Chun, S., Nieto, O., & Serrc, X. (2020). Data-Driven Harmonic Fil-
ters for Audio Representation Learning. In 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2020, pp. 536–540.
IEEE. [Cited on pages 62 and 63.]

Wu, F.-H. F. & Jang, J.-S. R. (2014). A supervised learning method for tempo
estimation of musical audio. In 22nd Mediterranean Conference on Control
and Automation, pp. 599–604. IEEE. [Cited on page 21.]

Xu, D. & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms.
Annals of Data Science, 2(2), 165–193. [Cited on page 26.]

Yadati, K., Larson, M. A., Liem, C. C., & Hanjalic, A. (2014). Detecting
Drops in Electronic Dance Music: Content based approaches to a socially
significant music event. In H.-M. Wang, Y.-H. Yang, & J. H. Lee (Eds.)
Proceedings of the 15th Conference of the International Society for Music
Information Retrieval (ISMIR 2014), pp. 143–148. ISMIR. [Cited on pages 73
and 74.]

Yang, C., Shen, Y., & Zhou, B. (2021). Semantic Hierarchy Emerges in Deep
Generative Representations for Scene Synthesis. International Journal of
Computer Vision, 129(5), 1451–1466. [Cited on pages 89 and 116.]

Ycart, A. & Benetos, E. (2018). Polyphonic Music Sequence Transduction with
Meter-Constrained LSTM Networks. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2018, pp. 386–390.
IEEE. [Cited on page 144.]

Yust, J. (2017). Probing Questions About Keys: Tonal Distributions Through
the DFT. In O. A. Agustín-Aquino, E. Lluis-Puebla, & M. Montiel (Eds.)
Mathematics and Computation in Music: 6th International Conference
MCM 2017, Lecture Notes in Computer Science (LNCS), vol. 10527, pp.
167–179. Springer International Publishing. [Cited on pages 146 and 148.]

Yust, J. (2019). Stylistic information in pitch-class distributions. Journal of
New Music Research, 48(3), 217–231. [Cited on pages 145 and 148.]

Zapata, J. R., Davies, M. E. P., & Gómez, E. (2014). Multi-Feature Beat
Tracking. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 22(4), 816–825. [Cited on page 55.]

Zhao, Y., Po, L.-M., Cheung, K.-W., Yu, W.-Y., & Rehman, Y. A. U. (2021).
SCGAN: Saliency Map-Guided Colorization With Generative Adversarial
Network. IEEE Transactions on Circuits and Systems for Video Technology,
31(8), 3062–3077. [Cited on page 90.]

182 Bibliography

Zhu, J.-Y., Krähenbühl, P., Shechtman, E., & Efros, A. A. (2016). Generative
Visual Manipulation on the Natural Image Manifold. In B. Leibe, J. Matas,
N. Sebe, & M. Welling (Eds.) Computer Vision: 14th European Conference
ECCV 2016, Part V, Lecture Notes in Computer Science (LNCS), vol. 9909,
pp. 597–613. Springer International Publishing. [Cited on page 89.]

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-
Image Translation Using Cycle-Consistent Adversarial Networks. In 2017
IEEE International Conference on Computer Vision, ICCV 2017, pp. 2242–
2251. IEEE. [Cited on page 89.]

Zukowski, Z. & Carr, C. J. (2018). Generating Black Metal and Math Rock:
Beyond Bach, Beethoven, and Beatles. Http://arxiv.org/abs/1811.06639.
[Cited on pages 91 and 105.]

Zölzer, U. (2008). Digital audio signal processing. Chichester, UK: John Wiley
& Sons, 2nd edn. [Cited on page 97.]

Zölzer, U. (2011). DAFX: Digital Audio Effects. Chichester, UK: John Wiley
& Sons, 2nd edn. [Cited on pages 38 and 39.]

	Abstract
	Resum
	Resumen
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	The Use of Recorded Audio for Composition in Electronic Music
	Tape Music
	Digital Music Production
	Large-Scale Sound Databases

	Motivation
	Scope and Objectives
	Dissertation Outline

	Automatic Characterization of Music Loops and Instrument Samples for Electronic Music Production
	Introduction and Overview of Characterisation
	Automatic Audio Classification
	Characterisation of Material for Music Production
	Automatic Instrument Classification

	Literature Review on Instrument Classification
	Machine Learning and Automatic Classification
	Deep Learning Architectures for Classification
	Instrument Classification

	Classification of One-Shot Sounds
	Introduction
	Methodology
	Data Augmentation and Pre-Processing
	Convolutional Neural Network

	Evaluation
	Results
	Conclusions

	Freesound Loop Dataset and Annotation Tool
	Introduction
	Dataset Creation
	Loop Selection
	Loop Annotation
	Dataset Availability

	Dataset Analysis
	Annotation Distribution
	Inter-annotator Agreement

	Benchmarking MIR Tasks
	Music Generation and Decomposition
	Conclusion

	Automatic Instrumentation Role Classification
	Introduction
	Methodology
	Implementation
	Network Training
	Loop Activation Transcription

	Evaluation
	Automatic Instrumentation Role Classification
	Loop Activation Transcription

	Results & Discussion
	Automatic Instrumentation Role Classification
	Loop Activation Transcription

	Conclusions

	Automatic Generation of Music Loops and Instrument Samples for Electronic Music Production
	Introduction and Overview of Creating Percussive Sounds
	Percussion and Cultural Context
	Creating Percussive Sounds
	Music Creation Using Deep Learning

	Literature Review on Sound Generation
	Deep Generative Models
	Autoregressive Models
	Autoencoders
	Generative Adversarial Networks

	Controlling Generative Models
	Generative Models for Assisting Music Creation

	Generation of One-shot Drum Sounds
	Introduction
	Timbral features
	Dataset Curation
	Methodology
	Evaluation
	Data Pre-processing
	Network Training
	Evaluation

	Conclusions and Future Work

	Generation of Drum Loops
	Introduction
	Dataset Curation and Analysis
	Methodology
	Time-varying Conditioning Features
	Global Conditioning Features
	Architecture
	Loss Functions

	Experiments
	Models
	Parameters
	Evaluation

	Results and Discussion
	Audio Quality Assessment
	Timbral Feature Coherence

	Conclusion

	Comparing Representations for Drum Synthesis
	Introduction
	StyleGAN2
	Controlling the Generation
	Methodology
	Dataset
	Data Pre-processing
	Model and Training
	User Interface
	Evaluation

	Results and Discussion
	Conclusions

	Summary and Future Perspectives
	Summary
	Summary of Contributions
	Limitations and Future Work
	Classification of One-Shot Sounds
	Freesound Loop Dataset and Annotation Tool
	Automatic Instrumentation Role Classification
	Generation of Percussion Sounds

	Glossary
	Acronyms

	Publications, Open Research and Reproducibility
	Publications by the Author
	Articles in Peer-Reviewed Conferences
	Extended Abstracts
	Perfomances
	Supervision of Master Thesis

	Open Source Software
	Datasets

	TIV.lib: an open-source library for the tonal description of musical audio
	Introduction
	Related work
	Tonal pitch spaces
	From the DFT of symbolic pitch distributions to the Tonal Interval Vector space

	TIV.lib: Implementation
	TIV.lib: Algorithms
	Applications and Perspectives
	Conclusions

	Freesound API: add 400k+ sounds to your plugin!
	Bibliography

