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Abstract 

Phenology is the study of the timing of periodic life-cycle events in plants and animals, as well 

as how seasonal changes in climatic factors affect these events. In recent decades, temperature 

has increased, leading to changes in the timing of leaf phenophases and the lengthening of the 

photosynthetically growing season. These changes in vegetation phenology have an impact on 

the water and carbon cycle; the lengthening of the growing season has increased the carbon 

uptake of terrestrial ecosystems offsetting part of the atmospheric carbon from human 

emissions. However, future responses of vegetation phenology to warming are uncertain, 

raising concerns about the ability of vegetation to offset atmospheric carbon emissions. The 

main objective of the thesis was to characterize the spatial and temporal variability of land 

surface phenology and link this variability to climate drivers in a context of global warming. The 

research focused on understanding how rising temperatures might change the climate factors 

affecting vegetation phenology. The first two chapters deal with the methodology for estimating 

land surface phenology. In Chapter 1, we propose a new method for estimating land surface 

phenology in cloud-based platforms that can be applied to raw time series without the need for 

time series preprocessing. In Chapter 2, we present 10-meter resolution maps for the 

continental scale, emphasizing the importance of spatial resolution. Chapters 3 to 5 cover the 

impact of three climate factors, temperature, light, and water availability, on the vegetation 

phenology. In Chapter 3, results suggest that frozen soils constraint vegetation activity, and 

vegetation resume photosynthesis closely after soil thawing. Chapter 4 points at the climate 

constraints on carbon uptake phenology, particularly the limitation of radiation in temperate 

and cold regions in the Northern Hemisphere. These findings suggest that the start of the 

growing season may still advance, although at a slower pace, while radiation restrains 

photosynthesis in autumn, preventing the further delay of the end of season with future 

warming. Chapter 5 studies another factor, the occurrence of heatwaves and droughts, that 

advances the end of the growing season. In this chapter, we show evidence of early leaf shedding 

using 10-meter resolution satellite data, and link this phenomenon to high temperature and 

aridity conditions. These findings reveal that early leaf shedding is more recurrent and 

widespread than previously reported. The last chapter, Chapter 6, is a compendium of 

techniques and knowledge gained in previous chapters. We model the land surface phenology 

estimated with the technique describe in Chapter 1 and using a model based on the climate 

factors studied in Chapters 3-5. We analyze the climate constraints on vegetation phenology at 
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the global scale using a novel technique that explains the relationship between sun-induced 

fluorescence and climate factors in a machine learning model. The findings of the thesis 

demonstrate different spatial constraints of temperature, light, and water availability at the 

beginning and end of the growing season, suggesting that vegetation phenology will respond 

differently to future climatic warming depending on the location and type of vegetation. In some 

regions, rising temperatures may not translate into a lengthening of the growing season because 

of radiation and water constraints. 
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General introduction 

Phenology is defined as the timing of periodic life-cycle events in plants and animals and how 

these events are modulated by seasonal variations in climate (Schwartz, 2003). Life-cycle events 

in plant phenology involve changes in foliar biomass such as leaf unfolding and leaf shedding 

and the timing when vegetation becomes photosynthetically active, but also the timing for 

reproductive stages, such as flowering. Temperature, water availability, and day length have 

been proposed as the main environmental drivers that constrain vegetation activity and regulate 

plant phenology, acting eventually as confounded restraints for vegetation growth (Chuine & 

Régnière, 2017; Jolly et al., 2005; Kramer & Hänninen, 2009). These climate restraints induce 

vegetation into a stage of dormancy when the climate is adverse and a period of growth when 

conditions are favorable for vegetation activity. 

Phenology have gained attention, particularly for the study of leaf phenophases, because such 

events have been an indicator of global warming and more broadly for its link with global 

environmental change (Badeck et al., 2004; Cleland et al., 2007; Peñuelas et al., 2009; Peñuelas 

& Filella, 2001). With recent climatic warming, the timing of leaf unfolding has advanced, and 

the leaf shedding has delayed. These changes have lengthened the growing season, as observed 

from in situ measurements of leaf phenophases as well as long-term time series from satellite 

observations. Vegetation phenology influences the carbon and water cycle (Keenan et al., 2014; 

Myneni et al., 1997; Richardson et al., 2010), successional transition (Chuine, 2010), and plays a 

role in the feedbacks between vegetation and climate (Peñuelas & Filella, 2009; Richardson et 

al., 2013). The lengthening of the growing season due to rising temperatures has increased the 

carbon uptake of terrestrial ecosystems (Le Quéré et al., 2009), offsetting part of the 

atmospheric carbon resulting from human emissions. However, future responses of vegetation 

to warming and its capacity of offsetting atmospheric carbon remains unclear (Piao et al., 2019), 

which makes future atmospheric carbon concentration and climate projections uncertain.  

Remotely sensed data is becoming increasingly important for studying plant phenology and 

determining the effects of climate change on ecosystem functioning. Vegetation phenology 

explains the seasonal pattern of variation in vegetated land surfaces observed from satellite 

remote sensing. Such seasonal variations observed in remotely sensed data are known as land 

surface phenology. Structural vegetation indices, such as the normalized difference vegetation 

index (NDVI), indicate changes in foliar biomass, while physiological vegetation indices, such as 
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the photochemical reflectance index (PRI), are proxies of light use efficiency and changes in 

photosynthetic dynamics. Moreover, satellite products are derived from satellite spectral bands 

and provide time series of key biophysical variables such as leaf area index (LAI) and gross 

primary productivity (GPP). Such remotely sensed observations of land surface phenology have 

been validated with in situ observations of leaf phenophases, such as the PEP725 and the NPN 

networks, the PhenoCam network, and measurements of carbon fluxes in FLUXNET towers 

(Bórnez et al., 2020). 

Moderate to broad-resolution satellite data, such as the Advanced Very-High-Resolution 

Radiometer (AVHRR) (1.1 km) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) (500 m), have been employed often for the estimation of land surface phenology 

metrics (Park et al., 2016; Zeng et al., 2011). However, coarse resolution LSP metrics tend to 

overestimate the length of the growth season. Recent developments in remote sensing 

technology have made it possible to estimate LSP with higher spatial resolution. The Sentinel-2 

mission provides decametric images with frequent revisit times (5 d) and, jointly with Landsat-7 

and Landsat-8, the revisit time is reduced to 2-3 days at the equator. The dense time series of 

satellite data at finer scale allows for the extraction of phenology metrics and the study of 

vegetation dynamics at the canopy scale (Bolton et al., 2020). Moreover, the development of 

cloud-based platforms, such as Google Earth Engine (GEE) (Gorelick et al., 2017), allows for the 

processing of large volumes of satellite data for planetary-scale analysis (Hansen et al., 2013; 

Pekel et al., 2016). 

The main goal of the research presented in the thesis was to characterize the spatial and 

temporal variability of land surface phenology and link this variability to climate drivers within 

the context of global warming. The focus of the research was on gaining an understanding of 

how climate factors that are limiting photosynthesis at the start and end of the growing season 

might change as a result of rising temperatures. These climate factors included temperature, 

light, and water availability, and the climate variables used were mainly soil and air temperature, 

incoming shortwave radiation, and the aridity index. The thesis is divided in six chapters. 

Chapters 1 and 2 focus on methodological aspects of land surface phenology metric estimation, 

taking into account aspects such as the impact of the spatial resolution and time series 

processing in cloud-based platforms. Chapters 3 to 5 analyse the three climate factors 

aforementioned: temperature, and light and water availability. Chapter 6 explores a novel 
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method for explaining the constraints of climate factors on the phenology of carbon uptake at 

the global scale. 

More specifically, in Chapter 1, we propose a new method for land surface phenology. The 

method has the capability to estimate the start and end of the growing season observed from 

near-surface and remotely-sensed time series, as well as binary time series (dormant versus 

growing stages). It improves upon state-of-the-art methods because it processes raw time 

series, which allow the fast and large-scale estimation of phenology metrics in cloud-based 

platforms. The method is also useful for the estimation of phenology metrics in the following 

chapters. 

In Chapter 2, we present new data for the start and end of the growing season in a large area, 

the Arctic region, using a cloud-based platform. The phenology metrics were extracted from 

Sentinel-2 time series at 10-meter resolution and validated with near-surface reflectance 

measurements and cross-validated with MODIS data. The chapter evidences the importance of 

high-resolution land surface phenology estimation in heterogeneous landscapes. Such 

phenology metrics at 10-meter resolution are key for accurately monitoring forest disturbances 

as observed in Chapter 5. 

In Chapter 3, we investigate the role of soil temperature at the start of the growing season, a 

key variable that remains understudied in phenology studies. We hypothesized that vegetation 

starts the growing season when frozen water melts and becomes available to plants. Results 

showed a correlation between the thawing date and the start of the growing season at high 

latitudes, but this relationship weakened in southerly latitudes. 

In Chapter 4, we study the divergent spatial and temporal impacts of climate constraints on the 

vegetation activity at the start and end of the growing season. In particular, we examined the 

role of radiation on the vegetation productivity and how rising temperatures are increasing the 

radiation constraint at the end of the growing season. At the start of the growing season, 

however, vegetation is sensitive to temperature in most of the extratropical regions of the 

Northern Hemisphere and, thus, future global warming may still advance the start of the 

growing season especially for non-deciduous vegetation. 

In Chapter 5, the role of water and droughts is analysed for studying the premature leaf shedding 

in European deciduous forests, a phenomenon that has implications on forest productivity and 
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tree mortality. First, we showed evidence of anomalous early leaf shedding (before September 

1st) in several locations of Europe. Second, phenology metrics at the end of season were 

extracted from 10-meter resolution Sentinel-2 data, which that early leaf shedding is more 

recurrent and widespread than previously reported. Finally, we show that early leaf shedding is 

related to anomalous arid conditions that occurred during the study period.  

In Chapter 6, we extended the analysis of climate constraints that were examined in Chapter 3 

and 4, and considered the climate constraints of water as in Chapter 5. The global climate 

constraints on sun-induced fluorescence (SIF) were evaluated at the start and end of the growing 

season using a local interpretation of machine learning models, an approach that is novel for 

remote sensing studies. This approach estimates the contribution of the input variables –climate 

factors– on individual predictions of the model –SIF. Thus, this approach tackles lack of 

interpretability—the black box problem— in machine learning models used in remote sensing 

research. Results confirmed limitations of temperature, radiation, and vapor-pressure-deficit on 

vegetation productivity but at a finer spatial detail. 
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Abstract 

Cloud computing platforms are changing the way of analyzing remotely sensed data by providing 

high computational power and rapid access to massive volumes of data. Several types of studies 

use cloud-based platforms for global-scale analyses, but the number of land-surface phenology 

(LSP) studies that use cloud-based platforms is low. We analyzed the performance of state-of-

the-art LSP algorithms and propose a new threshold-based method that we implemented in 

Google Earth Engine (GEE). This new LSP method, called Maximum Separation (MS) method, 

applies a moving window that estimates the ratio of observations that exceed a given threshold 

before and after the central day. The start and end of the growing season are the days of the 

year when the difference between the ratios before and after the central day are minimal and 

maximal. The MODIS phenology metrics estimated with the MS method showed similar 

performances as traditional threshold methods when compared with ground estimations 

derived from the PhenoCam dataset, a network of digital cameras that provides near-surface 

remotely-sensed observations of vegetation phenology. The main advantage of the MS method 

is that it can be directly applied to daily non-smoothed time series without any additional 

preprocessing steps. The implementation of the proposed method in GEE allowed the 

processing of global phenological maps derived from MODIS. The distribution of code in GEE 

allows the reproducibility of results and the rapid processing of LSP metrics by the scientific 

community. 
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1.1. Introduction 

The study of land-surface phenology (LSP) entails the estimation of metrics from remotely 

sensed vegetation seasonality (Zeng et al., 2020). Its study is important for reliably estimating 

vegetation dynamics, commonly the start and end of the growing season (SoS and EoS), which 

correspond to the timing of the year when the vegetation is released from dormancy and when 

the growing season ends. Phenology has recently gained importance because of its linkage with 

global warming. Several studies have found that the length of the growing season has increased 

in recent decades due to the global warming (Cleland et al., 2007; Peñuelas & Filella, 2001). The 

influence of temperature and other climatic factors on the vegetation dynamics are still under 

discussion (Körner & Basler, 2010; Peñuelas & Filella, 2009), and reliable estimates of 

phenological metrics at a global scale are required to understand the links between the climatic 

factors and vegetation phenology. 

Many cloud-processing platforms have recently become available to the scientific community, 

which has allowed the processing of large amounts of remotely sensed data. Google Earth 

Engine (GEE) is one of the most popular platforms (Gorelick et al., 2017). Some studies have 

addressed temporal aspects such as data smoothing and, particularly, phenology estimation 

using a curve fitting method (Li et al., 2019), but the number of LSP studies that make use of 

cloud-computing platforms is still low. One reason that explains the low number of LSP studies 

is that temporal processing in cloud platforms requires methods that can be vectorized and 

easily implemented. Code vectorization is the process of transforming an algorithm so that 

instead of processing elements on an array separately, generally with a for loop, the operations 

are performed on all components of the array simultaneously (Walt et al., 2011). Such elements 

of the array are commonly pixel values or satellite time series. Code vectorization enhances the 

computational power of GEE and allows the processing of satellite time series in an optimized 

manner. A freely available implementation of an LSP method in GEE would allow the fast 

processing of satellite archives in a variety of products and would ease the accessibility of data 

for computing large-scale LSP maps at different spatial resolutions. 

The results of the state-of-the-art LSP methods, however, are affected to some extent by noise, 

gaps, and outliers presented in the time series, so a set of preprocessing steps are required to 

prepare and reconstruct the time series captured from remotely sensed data (Zeng et al., 2020). 

These steps commonly include outlier rejection filters, temporal compositing, smoothing, gap-
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filling and interpolation of the time series to regular or daily time steps. A commonly used 

approach in the literature is the maximum value composite (Jonsson & Eklundh, 2002; Zhang et 

al., 2006). This temporal compositing method computes the maximum value of the vegetation 

index for a temporal window and assumes that negatively biased values are contaminated by 

clouds or cloud shadows. In addition to the temporal compositing, smoothing techniques are 

also used to reduce the noise of the time series. The most common smoothing techniques can 

be classified into moving-window (Bórnez et al., 2020; Ma & Veroustraete, 2006; Viovy et al., 

1992) and curve-fitting methods (Beck et al., 2007; Fisher et al., 2006; Jonsson & Eklundh, 2002; 

Zhang et al., 2006). The first category runs a moving window in the time series, such as the 

moving average filter, while the second category fits a function to the time series, such as logistic 

and Gaussian models. These preprocessing steps have various shortcomings: a) they are highly 

parametric (window size, smoothing type), and results are not robust in all regions; 

preprocessing may work well in some places but not others, b) smoothing may affect the 

temporal pattern of vegetation seasonality and may thus add a bias to the LSP estimations, and 

c) defining the smoothing functions and their parameters requires expert knowledge and makes 

their implementation time consuming, although some program packages such as SPIRITS 

(Eerens & Haesen, 2013) and TIMESAT (Tan et al., 2010) include well-implemented methods. 

The choice of the preprocessing steps is critical, because the robustness of the results of LSP 

methods greatly depends on their quality (Zeng et al., 2020). The complexity of these 

preprocessing steps also impedes the implementation of LSP methods in GEE. The aim of this 

study was to develop a variant of the threshold method that (i) does not require preprocessing 

steps and thus does not need excessive user-defined parameters, (ii) has fast computing time 

and can be easily implemented in cloud-processing platforms, (iii) can be directly applied to daily 

remotely sensed observations and still compares well with LSP metrics estimated with ground 

data. 

1.2. Data and Methods 

1.2.1. LSP extraction methods 

1.2.1.1. Maximum separation method   

The method we propose, which we named Maximum Separation method (MS), is a variant of 

the threshold method. Given a time series of paired values {t, b}, where t is the time in days and 
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b is the vegetation activity represented by a biophysical variable, a vegetation index, a 

reflectance band, or any measure of greenness (Figure 1.1a), we defined a threshold value u 

dynamically (White et al., 1997) with Eq. 1. The threshold is dynamic because it is determined 

by a percentage (p) of the amplitude (difference between the minimum (bmin) and maximum (bmax) 

values of the season) 

minminmax )( bpbbu +−=
                                                                                                           (1) 

The threshold u is used to classify binarily the time series into 0, when b < u, and 1, when b > u. 

The binary time series b′ (Figure 1.1b) has values equal to zero during the dormant period and 

values equal to one during the growing season. The method then runs a moving window 

operation for each day of the binary time series. The operation calculates the difference 

between the proportion of observations with vegetation activity (b´= 1) before and after the 

central day of the moving window (Eq. 2): 

 −=
after

after

before

before

n

b

n

b
d

''

                                                                                                   (2)
 

where nbefore and nafter are the total number of observations before and after the central day of 

the moving window, and b′before and b′after are the number of observations above the threshold 

before and after the central day. 

The moving window generates a new time series {t, d}, with minimal values close to -1 when the 

time series exceeds the threshold and maximal values close to 1 at the end of the season (Figure 

1.1c). SoS (tsos) corresponds to the day when d is lowest, and EoS (teos) corresponds to the day 

when d is highest. We named the method Maximum Separation since the SoS and EoS represent 

the days when the difference between observations above the threshold before and after these 

dates is maximal. 

The running window in Eq. 2 can be applied to the entire time series and, then, the minimum 

and maximum ratios can be searched within a natural year (e.g. from 1 January to 31 December) 

or, in case of double seasonality, within a specific range of months. This property simplifies the 

LSP estimation in the Southern Hemisphere, where the main growing season usually occurs from 

November to February. 
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Figure 1.1. Estimation of the start of season (SoS) and end of season (EoS) using maximum separation at 
the Acadia PhenoCam deciduous forest site in 2010. a) The time series of Green Chromatic Coordinate 
Index (GCC), b) binary classification of the time series (0 = dormant period, 1 = growing season), and c) 
time series obtained by applying a moving window that estimates the difference in the proportion of 
growing season observations before and after a given day. SoS and EoS correspond to the minimum and 
maximum values in c), respectively. We used a dynamic threshold of 50% of the amplitude. The semi-
period of the moving window when calculating the proportions is 30 days. 

1.2.1.2. Threshold method  

The threshold method assigns the SoS (tsos) to the first day when the seasonal time series b 

exceeds a threshold u after the dormant period, while EoS (teos) is the last day of the season 

when b is greater than the threshold u. The threshold is computed dynamically with Eq. 1. The 

threshold method is inherently affected by noise in the time series and, thus, smoothing 

techniques are required before its application (Zeng et al., 2020). Here, we used three 

preprocessing methods: 

1) The first preprocessing method (TH1) used a variant of the so-called maximum 

composite value (Holben, 1986). The maximum composite value estimates the 

maximum value of a moving window. We used the 80th percentile instead, which was 

more robust against outliers. We estimated the composite every 8 days. The snow 

observations were replaced with the 5th percentile value obtained from the entire snow-
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free time series. This reclassification aims to reduce the sharp increase in the vegetation 

indices, particularly in NDVI, during the transition from snow to snow-free period, which 

may lead to unreliable estimate of the Start of Season. This approach has been adopted 

for LSP estimation in high-latitude biomes (Beck et al., 2007) and at the global scale 

(Gray et al., 2019). Finally, we applied a linear interpolation to convert the composite 

time series to daily estimates. 

2) The second preprocessing method (TH2) involved an outlier rejection algorithm that 

excluded low values, a smoothing step with the Savitzky–Golay filter (Chen et al., 2004), 

and a linear interpolation. The outlier rejection excluded observations that exceeded a 

level of tolerance to adjacent observations. The tolerance was 0.2 times the interpolated 

value for the given observation. The snow-contaminated values were replaced with the 

5th value of the snow-free time series and the cloud-contaminated values were filled by 

a linear interpolation. The Savitzky–Golay filter was then applied with a second 

polynomial order and a frame length of 21 days. The parameters of the Savitzky–Golay 

filter were set by trial and error (See an example of the compositing in Supplementary 

figure 1.1). These parameters have a strong influence in the reconstruction of the time 

series. 

3) The last preprocessing method (TH3) was a curve-fitting method. We fitted a logistic 

function (Eq. 3) to the first half of the season and another to the second half: 
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b
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−−+
=

                                                                                                          (3) 

where t is the Day of the Year; a, b and c are the parameters to be fitted: a determines the 

steepness of the curve, b is the maximum value of the time series, and c represents the 

maximum increase or decrease in the time series and is commonly associated with the SoS and 

EoS. We used the curve fitting only as a smoothing step, and the phenological metrics were 

extracted using the threshold method over the fitted function. 

1.2.2. Data 

1.2.2.1. MODIS data 

We extracted the phenology metrics SoS and EoS to the following MODIS products: 1) the 

MCD15A3H leaf area index (LAI) product (Myneni et al., n.d.), which has a temporal resolution 
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of four days at 500 meters of spatial resolution, and 2) the daily MOD09GA product (Vermote & 

Wolfe, 2020), also at 500 meters, from which we estimated the NDVI, the EVI, and the Green 

Chromatic Coordinate Index (GCC). The MOD09GA data is available from the year 2000, while 

MCD15A3H from 2002. The NDVI, EVI, and LAI are among the most commonly used vegetation 

indices in phenology studies (Zeng et al., 2020), while GCC is a vegetation index available in the 

PhenoCam dataset that has recently taken relevance in phenology studies because it is invariant 

to cloud shadows (Sonnentag et al., 2012) . The NDVI, EVI, and GCC are estimated directly from 

the spectral bands (Supplementary Table 1.1) and reflect the amount of live green vegetation in 

a pixel. These indices correlate with LAI, which is a biophysical variable that indicates the one-

side green leaf area per pixel (m2m-2). The LAI product in MCD15A3H product is estimated from 

modeled radiances (Knyazikhin, 1999). 

1.2.2.2. PhenoCam dataset 

The LSP metrics estimated with the MODIS products were validated with the PhenoCam Dataset 

v2.0 (Seyednasrollah et al., 2019). PhenoCam is a network of digital cameras that records images 

of the vegetation at high temporal resolution (commonly 30 minutes), at close range, and for a 

diverse range of ecosystems. The time series of images recorded by the digital cameras provide 

information on the seasonal changes in vegetation greenness that can be used to validate the 

phenology metrics extracted from remotely-sensed satellite data. PhenoCam has been 

previously used for validation LSP estimated from MODIS data (Hufkens et al., 2012), 

VEGETATION and PROBA-V (Bórnez et al., 2020), and Landsat-8 and Sentinel-2 (Bolton et al., 

2020). 

We considered all the sites of the PhenoCam dataset, but rejected the sites that presented 

continuous gaps in the time series (with gaps >30 days) or years with missing data. A total of 212 

sites were considered in the study; 9 sites in evergreen needleleaf forests (ENF), 23 sites in 

deciduous broadleaf forests (DBF), 77 sites in mixed forests (MX), 7 sites in open shrublands 

(OSH), 6 sites in woody savannah (OSH), 3 sites in savannah (SAV), 23 sites in grasslands (GRA), 

48 sites in temporary crops (CRO1), and 16 sites in cropland/natural vegetation mosaics (CRO2) 

(See Supplementary Table 1.2 for more metadata information of the PhenoCam sites and 

location map in Supplementary figure 1.2). Sites that presented time series with consistent gaps 

were rejected from the analysis.   
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PhenoCam Dataset v2.0 provides not only near-surface images but also the GCC-generated time 

series for certain areas of the image. The different regions observed by the digital camera may 

cover different types of vegetation that are presented in the site. We used the GCC time series 

of the primary vegetation type when more than one vegetation type was present in the 

PhenoCam site. The time coverage of PhenoCam data depends on the date when the digital 

camera was installed and, therefore, differs from one site to another; the PhenoCam that 

provided the earliest data was for year 2001, and the latest images were taken in 2018. The 

temporal coverage of the PhenoCam sites overlaps with the MODIS time series; 2000-2020 for 

MOD09GA and 2002-2020 for MCD15A3H). 

1.2.3. Experimental setup 

The phenology metrics, SoS and EoS, estimated with MODIS GCC, NDVI, EVI, and LAI were 

compared with the same metrics estimated with the GCC time series in the PhenoCam network. 

We reported the comparison between the satellite and the near-surface estimates in terms of 

mean error (ME) and root mean squared error (RMSE) (See formulas in Supplementary Table 

1.3). The ME represents a measure of the bias (mean average of the LSP differences PhenoCam 

– MODIS: positive ME indicates higher PhenoCam values than MODIS) and the RMSE gives an 

indication of the accuracy of the MODIS in relation to the PhenoCam LSP estimations (the 

standard deviation of an average MODIS LST estimation from the PhenoCam LSP estimation). 

The comparison between MODIS and PhenoCam LSP metrics aimed to test the performance of 

the MS in comparison to the three variants of the threshold method based on two aspects: 1) 

Threshold percentage (variable p in Eq. 1). We estimated the SoS and EoS with p values ranging 

from 10 to 90% in steps of 10%. 2) Primary vegetation type of the Phenocam site. For this case, 

we reported the ME and RMSE only for a threshold percentage of 50%.  

We also tested the influence of the window size but, since we found that this parameter has a 

marginal effect when it takes large values, we set the window radius to 30 days in all 

experiments of the study. A window size of 30 days represents a good compromise between 

robustness of the method against noise and computing time.  

Finally, we used Google Earth Engine to generate maps of the SoS and EoS fom the MODIS 

variables: GCC, NDVI, EVI, and LAI. The phenological maps in GEE were generated with the MS 

method with a threshold percentage of 50% and a window radius of 30 days. We used the 

RESOLVE Ecoregions 2017 map (Dinerstein et al., 2017) in order to mask the biomes that show 
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a negligible seasonality in the selected MODIS variables. The masked biomes were the tropical 

and subtropical dry broadleaf forests, tropical and subtropical coniferous forests, deserts and 

xeric shrublands, and mangroves 

1.3. Results 

The size of the moving window and the threshold percentage are the only parameters used in 

MS. Supplementary figure 1.3 shows the smoothing effect of the window size (semi-period of 

10, 30, and 90 days) over a time series of daily MODIS GCC (Supplementary figure 1.3a) for the 

Acadia site in the PhenoCam network. The smoothing in the time series derived from Eq. 2 is 

more remarkable in high window sizes (Supplementary figure 1.3c and 1.3d), and the absolute 

maximum and minimum, corresponding to the phenology metrics, are well-defined in the time 

series. A window size of 10 days, however, does not capture the maximum difference between 

dormant and growth observation (Supplementary figure 1.3b), which in turn results in 

unrealistic LSP estimations. 

 

Figure 1.2. Root mean squared error (RMSE) and mean error (ME) obtained from the comparison of the 
LSP metrics generated with MODIS Green Chromatic Coordinate (GCC) and the PhenoCam dataset for a 
range of threshold values. The LSP metrics are the Start of Season (SoS) and the End of Season (EoS). 
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The MS showed similar results as the best threshold method, which was TH2, for all MODIS 

variables (figure 1.2 and Supplementary figure 1.4). TH2 showed the best results for the SoS, 

while the MS showed better results for the EoS, although overall differences between LSP 

methods were marginal and none of the MODIS variables excelled in the comparison with 

PhenoCam. The best result in terms of RMSE were obtained with a threshold percentage of 40% 

(SoS RMSE = 19.8 d in TH2 using NDVI; EoS RMSE = 23.0 d in MS using LAI). Threshold 

percentages that ranged from 30 to 60% showed the best results in terms of RMSE for GCC, 

NDVI, EVI, and LAI, and low accuracy in extreme percentages, particularly >80%. The SoS showed 

better results than the EoS; the minimum RMSE ranged from 20 to 25 days in the SoS, while the 

same statistic was between 25 to 30 days in the EoS for the GCC, NDVI, and EVI. The impact of 

the threshold was less significant in terms of ME for the SoS, but more apparent in the EoS. TH2 

outperformed in SoS with a negligible bias for all variables. MS, TH1, and TH2 showed a similar 

pattern in the ME regarding the threshold percentage, while the TH3 (logistic fitting) presented 

a different trend in the ME, particularly for the EoS. 

 

Figure 1.3. Root mean squared error (RMSE) and mean error (ME) obtained from the comparison of the 
LSP metrics generated with MODIS Green Chromatic Coordinate (GCC) and the PhenoCam dataset. The 
comparison is based on the land cover of the Phenocam sites: evergreen needleleaf forests (ENF), 
deciduous broadleaf forests (DBF), mixed forests (MX), open shrublands (OSH), woody savannah (WSA), 
savannah (SAV), grasslands (GRA), temporary crops (CRO1), and cropland/natural vegetation mosaics 
(CRO2). The LSP metrics are the Start (SoS) and the End of Season (EoS). 
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The RMSE between MODIS and PhenoCam LSP metrics depended to a great extent on the type 

of vegetation. The ME and RMSE differed between land covers in MODIS GCC (figure 1.3) and 

the rest of MODIS variables (Supplementary Figure 5). The best results were found in DBF and 

MX in the four methods (e.g., ME = -7.2 d and RMSE = 0.6 d for EoS and ME = -0.2 d and RMSE = 

12.8 d for EoS in DBF estimated with MS). Contrarily, on average, land covers that represented 

evergreen showed a high RMSE 

The maps of mean SoS and EoS estimated with MS using the MODIS GCC product for the period 

2001-2019 are presented in Figure 1.4, and the maps generated with the NDVI, EVI, and LAI are 

presented in Supplementary figure 1.6. The four vegetation indices showed similar spatial 

patterns at the global scale. 

 

Figure 1.4. Maps of the mean start and end of season (SoS and EoS) estimated using the Maximum 
Separation method and a dynamic threshold of 50% of the amplitude. The SoS and EoS are shown as the 
Day of Year (DoY). The Maximum Separation method was applied to the MODIS GCC (MOD09GA). 
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1.4. Discussion 

The proposed MS method showed accuracy similar to the best threshold method. Differences 

in accuracy were higher among land cover types and threshold values rather than LSP methods 

and MODIS variables. Although MS did not excel in the comparison with PhenoCam, the 

proposed method presents an advantage over the threshold method; MS was applied directly 

to daily non-smoothed time series and with fewer parameters compared to the conventional 

threshold method with preprocessing steps. The simplicity of the MS method allowed a 

straightforward implementation in GEE and the production of phenological maps at the global 

scale. In this way, GEE allowed the rapid processing of custom algorithms and overcame the 

computing time that would be necessary for processing LSP maps with a local computer. 

 One of the two parameters of the MS method is the size of the moving window, which can be 

set with prior knowledge of the length of the growing season. A large window entailed a higher 

computational cost, but it positively affected the estimation of the phenological metric 

(Supplementary figure 1.3), because the window covered more observations and the impact of 

noise was minimized. The main consideration in the selection of the window size is that it should 

not exceed the length of the growing season, particularly in vegetation types that present a short 

growing season such as high-latitude shrublands, alpine grasslands, and precipitation-sensitive 

vegetation.   

The second parameter of the MS method is the threshold percentage, which had a strong 

influence on the accuracy of the LSP estimates (figure 1.2). The MS, and the threshold methods 

in general, outputs unreliable LSP estimates when the time series present significant noise and 

outliers. Noise and outliers may lead to unreliable threshold values in Eq. 1, which in turn results 

in inaccurate LSP estimates. This also explains the good results of the MS and the threshold 

methods in medium-range threshold percentages (figure 1.2). For the SoS for instance, a low 

threshold percentage is more likely to detect a noisy high value as the first observation that 

overpasses the threshold. These results further proves the robustness of medium threshold 

percentages against clouds, cloud shadows, and other contamination effects (Bolton et al., 2020; 

Bórnez et al., 2020). 

The MS and the variants of the threshold method performed better in deciduous broadleaf 

forests and mixed forests. Deciduous forests generally show a well-defined seasonality that is 

reflected in sharp changes in the vegetation indices, particularly during the leaf unfolding period. 
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On the contrary, in evergreen, changes in greenness indices are marginal because leaves are 

perennial, which makes LSP estimation challenging, and phenology changes are observed at the 

photosynthetic level (Yin et al., 2020). Moreover, vegetation indices may not reflect a logistic-

type of growth, which explain the poor results of TH3 and a ME that is linearly correlated with 

the threshold percentage (figure 1.2). (Gray et al., 2019) reported that EVI did not reflect a 

logistic growth in specific ecosystems and, thus, justified the use of the threshold method for 

the MODIS Land Cover Dynamics version 6 over the logistic modelling used in the previous 

version of the product. 

1.5. Conclusions 

This study proposed a new method (Maximum Separation, MS) ideal for fast and large-scale 

estimates of phenological metrics in cloud computing platforms such as GEE. The MS presents 

similar results as the threshold method with time series preprocessing, but the simplicity of its 

implementation when applied to different satellite products makes MS more pragmatic than the 

threshold method, particularly when the data require preprocessing for time series smoothing. 

We provide the GEE code and Python implementation, which can be used in other remotely 

sensed data. Future studies may thus benefit from this method and customize it for their 

regional studies. 
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Abstract 

The high spatial resolution and revisit time of Sentinel-2A/B tandem satellites allow a potentially 

improved retrieval of land surface phenology (LSP). The biome and regional characteristics, 

however, greatly constrain the design of the LSP algorithms. In the Arctic, such biome-specific 

characteristics include prolonged periods of snow cover, persistent cloud cover, and shortness 

of the growing season. Here, we evaluate the feasibility of Sentinel-2 for deriving high-resolution 

LSP maps of the Arctic. We extracted the timing of the start and end of season (SoS and EoS, 

respectively) for the years 2019 and 2020 with a simple implementation of the threshold method 

in Google Earth Engine (GEE). We found a high level of similarity between Sentinel-2 and 

PhenoCam metrics; the best results were observed with Sentinel-2 enhanced vegetation index 

(EVI) (root mean squared error (RMSE) and mean error (ME) of 3.0 d and –0.3 d for the SoS, and 

6.5 d and –3.8 d for the EoS, respectively), although other vegetation indices presented similar 

performances. The phenological maps of Sentinel-2 EVI compared well with the same maps 

extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) in homogeneous 

landscapes (RMSE and ME of 9.2 d and 2.9 d for the SoS, and 6.4 and –0.9 d for the EoS, 

respectively). Unreliable LSP estimates were filtered and a quality flag indicator was activated 

when the Sentinel-2 time series presented a long period (>40 d) of missing data; discontinuities 

were lower in spring and early summer (9.2%) than in late summer and autumn (39.4%). The 

Sentinel-2 high-resolution LSP maps and the GEE phenological extraction method will support 

vegetation monitoring and contribute to improving the representation of Artic vegetation 

phenology in land surface models. 
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2.1. Introduction 

Studies of the Arctic are becoming increasingly important, particularly in the context of the onset 

of an expected tipping point in the function of its ecosystems as a result of ongoing climate 

warming (Post et al., 2019) that is lengthening the growing season and increasing vegetation 

productivity (Park et al., 2016; H. Zeng et al., 2011). Rising levels of vegetation productivity in 

the Arctic, characterized as greening, result in reduced albedo that further drives the warming 

trend (Chapin et al., 2005; Peñuelas & Filella, 2009) and has consequences for the regional 

carbon cycle (Schuur et al., 2009). For example, permafrost is thawing at an accelerating pace in 

a process that releases greenhouse gases and, consequently, exacerbates the warming trend in 

the region (Schuur et al., 2015). 

Land surface phenology (LSP), the study of remotely-sensed seasonal patterns in vegetation 

growth (Helman, 2018), complements the sparse field observations at high latitudes and is 

essential in the assessment and monitoring of responses of arctic vegetation to climate 

warming. Reliable LSP maps of the Arctic could be used to support models that show positive 

feedbacks between trends in climate warming and a lengthening growing season (H. Zeng et al., 

2011), while studies of Arctic LSP may reveal a link between the advancement of spring onset, 

drought severity, and an increase in the incidence of artic fires over recent decades (Witze, n.d.), 

and support reports of links between carbon uptake and phenology metrics related to 

vegetation greenness, such as the amplitude of the vegetation index (Myers-Smith et al., 2020). 

Studies of Arctic LSP have tended to use moderate-resolution satellite data, such as the 

Advanced Very-High-Resolution Radiometer (AVHRR) (1.1 km) and the Moderate Resolution 

Imaging Spectroradiometer (MODIS) (500 m) (Park et al., 2016; H. Zeng et al., 2011). At these 

high latitudes, there are two key challenges for LSP analysis (Myers-Smith et al., 2020). Firstly, 

LSP methods tend to erroneously detect the end of a snow period as the start of season (SoS), 

particularly in methods that extract phenology metrics from greenness indices, such as the 

normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), where 

distinct changes in reflectance during the snowmelt period are incorrectly detected as the onset 

of vegetation growth. To account for this problem, vegetation indices that are insensitive to 

snow have been developed to improve phenology estimation (Jin & Eklundh, 2014; Wang et al., 

2017). Secondly, a lack of valid satellite observations due to persistent cloud cover hampers LSP 
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estimation, so biome-specific algorithms based on the combination of multi-satellite data and 

spatio-temporal gap filling methods have been developed (H. Zeng et al., 2011). 

Recent advances in remote sensing technologies present opportunities for the estimation of LSP 

at greater spatial resolution. Sentinel-2 mission provides decametric images with frequent 

revisit times (<5 d), allowing the extraction of phenology metrics (Bolton et al., 2020) and study 

of vegetation dynamics at the canopy scale, while the development of cloud-based platforms, 

such as Google Earth Engine (GEE) (Gorelick et al., 2017), allows processing of large volumes of 

satellite data for planetary-scale analysis (Hansen et al., 2013; Pekel et al., 2016) and increases 

the accessibility of high-resolution satellite archive data required for time series analyses. 

The objectives of this study were (1) evaluating the feasibility of Sentinel-2 for LSP retrieval in 

the Arctic at a spatial resolution of 10 m, (2) proposing a novel and fast cloud computing 

implementation in GEE of the widely used threshold phenological extraction method, and (3) 

assessing the performances of the Arctic Sentinel-2 LSP maps for the SoS and end of season (EoS) 

for the years 2019 and 2020 based on the comparison with MODIS LSP and PhenoCam ground 

data. 

2.2. Materials and Methods 

2.2.1. Study area 

We generated SoS and EoS maps over regions classified as tundra in the RESOLVE Ecoregions 

dataset 2017 (Dinerstein et al., 2017). High latitudes of the Arctic, where winters are cold and 

summers are short, are mostly uninhabited by human populations; here, tundra soils contain a 

layer of permafrost that prevents the growth of trees, but supports the growth of grass and 

shrub vegetation during the short summer period between June and August, as revealed by 

vegetation index time series (e.g., NDVI and EVI). 

2.2.2. Data 

We generated LSP metrics for 2019 and 2020 using Sentinel-2 level-2A data, which provide daily 

top-of-canopy reflectance at 10, 20, and 60 m of spatial resolution; from these data, we used 

the 10-meter resolution bands 2, 3, 4, and 8, and the 20-meter band 12. Sentinel-2A and -2B 

multispectral satellites were launched in 2015 and 2017, respectively, and have a revisit time of 
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5 d at the equator that decreases with increasing latitude. The maximum revisit time between 1 

May and 30 September 2019 for latitudes between 70 and 75° was 1.7 d (average: 0.9 d) (Figure 

2.1a). The LSP metrics estimated with Sentinel-2 were compared with the same metrics 

estimated from the 500 m MOD09GAv6 product (Vermote & Wolfe, 2015). 

Maximum discontinuity in the time series from spring and early summer (1 May to 15 July) and 

later summer and autumn (15 July to 30 September) was plotted after non-valid observations 

had been filtered using values of the quality band scene classification layer (SCL) provided in the 

Sentinel-2 level-2A, where 1 = saturated or defective; 2 = dark area pixels; 3 = cloud shadows; 6 

= water; and, 7−10 = clouds and cirrus (Figure 2.1b,c). 

 

Figure 2.1. Revisit time of Sentinel-2 (a) and maximum discontinuity in the Sentinel-2 Level 2A time series 
after cloud masking for spring and early summer (1 May to 15 July) (b) and late summer and autumn (15 
July to 30 September) 2019 (c). 

2.2.3. Phenology extraction 

We adopted a widely used threshold method (Bolton et al., 2020; Bórnez et al., 2020; Gray et al., 

2019) that assigns the SoS and EoS as the first and last days of the season, respectively, on which 

a threshold u is exceeded; u may be a constant or defined dynamically for each pixel (L. Zeng et 

al., 2020). In this study, we estimated u as a dynamic value that depends on the annual amplitude 

of the time series (Equation (1)): 

u = (Vmin - Vmax) x p + Vmin, (1) 
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where Vmin and Vmax are the minimum and maximum annual values in the time series, 

respectively, and p is a given proportion (%) of the amplitude. In this study, we used p = 0.5 as 

the mid-greenup and mid-greendown of the growing season. The threshold metrics estimated 

with 50% of the amplitude are less affected by biases due to discontinuities in the time series 

(Bolton et al., 2020). We applied two variants of the threshold method as follows: 

1. Threshold method without smoothing. The threshold method was applied directly to 

the daily time series. For the SoS, we searched for the earliest date when the daily 

vegetation index exceeded u; then, we applied a linear interpolation between this first 

observation when the vegetation index was >u and the preceding observation from 

which to estimate SoS as the value >u (Figure 2.2c). For the EoS, the linear interpolation 

was applied between the latest date when the vegetation index was >u, and the 

subsequent observation, where EoS corresponded to the linearly interpolated value >u. 

2. Threshold method after smoothing. The time series data were smoothed prior to the 

extraction of LSP metrics (Figure 2.2d), as is common practice in LSP estimation to 

reduce noise and discontinuities of time series data (L. Zeng et al., 2020). The criteria for 

selection of the processing steps were based on the feasibility of their implementation 

in GEE, without comprising the recreation of the phenology curve (see GEE code in 

Supplementary Materials). Excessive smoothing of time series may lead to unrealistic 

recreations of the growing season. We first applied a moving average window, with an 

average radius of 10 d, every 20 d (Figure 2.2d); if a pixel in the 20 d composite window 

was empty due to a lack of valid observations, the window size was increased to 40 d. 

Next, we applied a cubic interpolation to convert the 20 d composites to a daily time 

series. The threshold was estimated from the amplitude of the interpolated time series, 

rather than with daily observations, and then the SoS and EoS were estimated as the 

first and last days, respectively, that exceeded the dynamic threshold in the interpolated 

time series. 

2.2.4. Sentinel-2 vegetation indices 

We extracted the phenology metrics from four vegetation indices: the green chromatic 

coordinate (GCC) (Equation (2)) (Sonnentag et al., 2012), NDVI (Equation (3)), EVI (Equation (4)) 

(Huete et al., 2002), and normalized difference phenology index (NDPI) (Equation (5)) (Wang et 

al., 2017). These spectral indexes reflect the greenness of vegetation and are calculated from 
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different spectral bands in Senteinl-2: Blue (Band 2), Green (Band 3), Red (Band 4), near-infrared 

(NIR) (Band 8), and shortwave-infrared (SWIR2) (Band 12). The formulas of these vegetation 

indices are: 

GCC =  
Green

Blue +  Green +  Red
 , (2) 

NDVI =  
NIR −  Red

NIR +  Red
 , (3) 

EVI = 2.5 
(NIR −  Red)

NIR +  6 x Red − 7.5 𝑥 Blue + 1
 , and (4) 

NDPI =  
NIR − (alpha 𝑥 Red + (1 − alpha) 𝑥 𝑆𝑊𝐼𝑅2)

NIR + (alpha 𝑥 Red + (1 − alpha) 𝑥 𝑆𝑊𝐼𝑅2)
 (5) 

where alpha was originally set to 0.74 for MODIS (Wang et al., 2017), but re-estimated to 0.51 

for Sentinel-2 in the current study (see section Estimation of the optimal alpha in NDPI in 

Supplementary Materials, Supplementary Figure 2.1). The NDPI was specifically designed to 

cope with the snow observations in LSP studies. 

2.2.4.1. Reclassification of snow observations in green chromatic coordinate 

(GCC), normalized difference vegetation index (NDVI), and enhanced 

vegetation index (EVI) 

NDVI and EVI show a sharp increase after snowmelt in tundra vegetation (Figure 2.2a,b), 

because the previously snow-covered vegetation canopy is predominantly evergreen. The break 

in the time series attributed to the transition snow-to-vegetation and vegetation-to-snow is 

problematic in the estimation of LSP metrics. The SoS and EoS can be erroneously assigned to 

the snow transition dates instead to the actual vegetation dynamics. The reclassification of snow 

and post-thaw values is a common practice in Arctic LSP studies (Beck et al., 2007; Bolton et al., 

2020) to ensure a consistent threshold value (Equation (1)). We reclassified the snow 

observations to a fixed minimum value, which is specific for each vegetation index: GCCmin = 0.31, 

NDVImin = 0.39, EVImin = 0.2 (See histograms in Supplementary Figure 2.2), and NDPImin = 0.24 

(Supplementary Figure 2.1). This parameter was estimated as the mean value of the first 

Sentinel-2 snow-free observation of the year, extracted from 400 points randomly distributed. 

For the NDPI, the NDPImin corresponded to the mean NDPI value of snow observations for the 

optimal alpha (Supplementary Figure 2.1). The pixels that presented a maximum vegetation 
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index in the time series below the minimum snow value were masked as non-vegetated pixels 

and the phenology metrics were not computed. 

 

Figure 2.2. Illustration of vegetation dynamics for a randomly selected pixel in the Arctic. (a) True color 
compositions of Sentinel-2 time series data during 2019; (b) Sentinel-2 normalized difference vegetation 
index (NDVI) time series during 2019, with reference to true color compositions shown in (a); (c) Sentinel-
2 NDVI time series after cloud masking and snow reclassification, where start of season (SoS) and end of 
season (EoS) correspond to the earliest and latest linearly interpolated NDVI values, respectively, above a 
threshold defined dynamically as 50% of the annual amplitude; and, panel (d) application of the threshold 
method over a smoothed and interpolated time series. 

2.2.5. Implementation of land surface phenology algorithms in Google Earth 

Engine 

The two variants of the threshold method were vectorized for their correct implementation in 

GEE. The vectorization is the process of transforming a code so that all components of an array 

are processed simultaneously (Walt et al., 2011). This concept is contrary to the commonly used 

practice in LSP estimation, in which time series are processed separately, pixel by pixel, in a for 

loop. The use of for loops are, however, highly discouraged in GEE in preference for the 

recommended map functions. For instance, the moving average for the 20-day composition was 
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implemented as a function that maps a list of dates (see code in Supplementary Materials). The 

function takes the dates as the input arguments to filter the Sentinel-2 collection with a window 

size of 20 days and, then, makes the average out of the selected images. The purpose of the map 

function is that each element of the array, in this case the dates, is processed separately and, 

consequently, each 20-day composition is generated at the same time. 

2.2.6. Validation with PhenoCam 

The SoS and EoS metrics extracted from Sentinel-2 were compared with the same metrics 

estimated from the near-surface reflectances of the PhenoCam network (Richardson et al., 

2018). PhenoCam provides half-hourly images captured from digital cameras for 393 sites across 

North America and Europe, from which 15 cameras cover the tundra biome. At the moment of 

the analysis, GEE provided Sentinel-2 data from 2019 onwards, and only three sites presented 

available data in the Arctic for the years 2019 and 2020. The PhenoCam data used in the study 

was presented as provisional near-real time and subject to changes. The coordinates of these 

three PhenoCam cameras, used in the study, are shown in Supplementary Table 2.1. PhenoCam 

also provides daily time series of GCC derived from different regions of interest observed by the 

digital camera (Richardson et al., 2018). Such regions of interest cover the vegetation types in 

the site. For the selected sites, however, the camera only observed one vegetation type 

consisting of tundra grasses. 

The GCC has been proved a good index for LSP estimation (Sonnentag et al., 2012) since the time 

series does not present the sharp increase during the snowmelt. However, we also reclassified 

the snow values in PhenoCam GCC to the minimum value of the snow-free time series in order 

to be consistent with the forcing applied in the other Sentinel-2 vegetation indices. The snow 

observations in GCC were identified and selected by their similar values before and after the 

growing season (see Supplementary Figures 3–5). 

We extracted the LSP metrics with a 50% threshold method from the daily GCC time series for 

the years 2019 and 2020 and compared them with the same LSP metrics estimated from the 

four Sentinel-2 vegetation indices (GCC, NDVI, EVI, and NDPI). The statistics that we reported 

were the mean error (ME) as the bias metric and the root mean squared error (RMSE) as the 

accuracy metric. Although the selected PhenoCam sites cover a homogeneous area, the location 

of the sites were manually relocated to ensure consistency with the area observed by the digital 
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camera. The adjustment of the site coordinates was based on the orientation of the camera; the 

coordinates were relocated to 50 m from the original coordinates in the direction of the 

observation of the camera. 

2.2.7. Comparison with the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Surface Phenology 

Our estimates of SoS and EoS using Sentinel-2 time series were compared with estimates based 

on MODIS time series data, using the same metrics and LSP extraction method; we also applied 

the reclassification of snow values to the MODIS time series. To compare both satellite datasets, 

we resized the 10 m Sentinel-2 LSP estimates to the 500 m MODIS projection. The Sentinel-2 

was aggregated by averaging the pixels that lie within a 500 m MODIS pixel. The resampled SoS 

and EoS estimated with Sentinel-2 and the original MODIS LSP metrics, both at 500 m, were 

compared pixel-wise and the ME and RMSE were reported. To ensure reliable estimates in 

MODIS, we only considered the MODIS LSP estimates obtained from time series that presented 

a gap lower than 10 days. This condition did not result in an excessive filtering of pixels since the 

MODIS time series had a maximum gap that generally did not exceed 20 days (Supplementary 

Figure 2.6). 

To test the reliability of our MODIS LSP estimates, we compared the SoS and EoS with the 

‘Mid_greenup’ and ‘Mid_greendown’ layers, respectively, of the MODIS Land Cover Dynamics 

product (MCD12Q2v6) (Friedl et al., 2019). The MCD12Q2v6 product was also estimated using 

the threshold method, with a dynamic threshold of 50% in the ‘Mid_greenup’ and 

‘Mid_greendown’ layers (Gray et al., 2019). MCD12Q2v6 data for 2019 were unavailable at the 

time of this analysis, so we compared our MODIS LSP estimates for 2018 with the MCD12Q2v6 

layers for 2018. 

2.3. Results 

The Sentinel-2 vegetation index that showed the best results in the comparison with PhenoCam 

was the EVI (SoS and EoS ME: –0.3 and –3.8 d, and SoS and EoS RMSE: 3.0 and 6.5 d) for the 

threshold method without time series smoothing (Figure 2.3). Results with the threshold 

method with smoothing were less conclusive (Supplementary Figure 2.7); RMSE and ME results 

were uneven between SoS and EoS for the same LSP method and none of the vegetation indices 
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excelled in both ME and RMSE. Overall, the four Sentinel-2 vegetation indices compared well 

with PhenoCam, and the RMSE and ME were generally below 10 d for the two threshold 

methods (see time series of PhenoCam and Sentinel-2 in Supplementary Figures 3–5). 

 

Figure 2.3. Comparison of start of season (SoS) and end of season (EoS) dates between PhenoCam and 
four vegetation indices estimated with Sentinel-2. The comparison was performed for three PhenoCam 
sites in the tundra biome for the years 2019 and 2020. The vegetation indices were the green chromatic 
coordinate (GCC) in PhenoCam and the GCC, normalized difference vegetation index (NDVI), enhanced 
vegetation index (EVI), and normalized difference phenology index (NDPI) for Sentinel-2. The phenology 
metrics were extracted with a 50% threshold method without time series smoothing. The bias between 
PhenoCam and Sentinel-2 is reported with the mean error (ME) and the accuracy with the root mean 
squared error (RMSE). 

LSP maps generated using Sentinel-2 EVI (Figure 2.4a,b) showed a high level of similarity at the 

continental scale compared with the same phenology metrics estimated with MODIS time series 

(Supplementary Figure 2.8). However, at the local scale, differences were apparent particularly 

in the EoS; similarly, the map of length of season (LoS) (Figure 2.5a), which represented the 

difference between EoS and SoS, showed spatial patterns and latitudinal gradients that are 

expected across the region, with shorter LoS in the surrounding areas of the Kara Sea and Arctic 

Archipelago (Figure 2.5b), and in elevated areas, such as the Central Siberian Plateau (Figure 

2.5c). At the local level, the SoS and EoS maps derived from Sentinel-2 showed a high degree of 

detail that moderate scales of resolution were unable to capture. For instance, Figure 2.5d 

shows the positive relationship between LoS and elevation in the Scandinavian mountains. The 

altitudinal gradient is observed at the canopy scale, which allows the analysis of LSP metrics by 

vegetation type. Figure 2.5e shows another example of the effect of topography on the LoS in 

the Ural Mountains. In this second example, the LoS is different in both sites of the mountain 

range depending on the presence of glaciers. Supplementary Figure 2.9 shows the different 

spring growth onset depending on the land cover type, tundra shrublands and herbaceous cover 

in the delta of the Lena River. 
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Figure 2.4. Maps of (a) start of season (SoS) and (b) end of season (EoS) in the Arctic estimated using 
Sentinel-2 for 2019. The phenology metrics were extracted with the 50% threshold method applied to the 
non-smoothed Sentinel-2 enhanced vegetation index (EVI) time series. 

 

Figure 2.5. Map of length of season (LoS) in the Arctic estimated using Sentinel-2 enhanced vegetation 
index (EVI) time series for 2019 (a). EVI time series and start of season (SoS) and end of season (EoS) for 
two randomly selected pixels (b,c); note, the time series in (b) show a shorter LoS than in (c) due to the 
latitudinal gradient. Arctic digital elevation model map (ArcticDEM) and LoS exemplify the altitudinal 
gradient of phenology in the Scandinavian mountains and the Ural mountains (d,e) and comparison of LoS 
estimated with Sentinel-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) (d). The 
phenology metrics were extracted with the 50% threshold method applied to the non-smoothed Sentinel-
2 EVI time series. 
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The comparison between the LSP metrics estimated using MODIS and Sentinel-2 resized to 500 

m, in which MODIS pixels were filtered when variance of the Sentinel-2 phenology estimates 

within the 500 m pixel were >5 d2, showed a high level of similarity in homogeneous landscapes 

(Figure 2.6), regardless of data smoothing (Figure 2.6a,b), and greater similarity for SoS than EoS 

(e.g., threshold method with smoothing SoS and EoS RMSE: 8.1 and 10.4 d, respectively). The 

comparison of our MODIS estimates and the MCD12Q2v6 product (Supplementary Figure 2.10) 

showed a slight bias towards EoS (threshold method with smoothing ME: 4.9 and 6.4 d, 

respectively) and similarity with Sentinel-2 for SoS and EoS (threshold method without 

smoothing RMSE = 10.2 and 9.8 d for SoS and EoS, respectively). 

 

Figure 2.6. Comparison of the phenology metrics, start of season (SoS) and end of season (EoS), estimated 
with Sentinel-2 and MODIS (MOD09GAv6) time series using the threshold method without (a) and with 
(b) data smoothing. The bias between PhenoCam and Sentinel-2 is reported with the mean error (ME) 
and the accuracy with the root mean squared error (RMSE). 

The phenology maps of the Arctic presented some unreliable LSP estimates, particularly when 

there were continuous gaps in the time series, due to the presence of clouds. The proportion of 

vegetated land pixels in the study area with a gap length that exceeded 40 days was 9.2% for 

the spring and early summer period and 39.4% for the late summer and autumn period. These 

percentages refer only to the pixels that presented an EVI value higher than 0.2 and, thus, were 

considered as vegetated land in the study. The percentage of pixels flagged as non-vegetated 

areas (EVI values lower than 0.2 during the entire time series) was 15.4%. Figure 2.7 illustrates 

the flags associated with the SoS estimates. The regions with low revisit times (Figure 2.1a) were 

prone to discontinuities in the time series. 
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Figure 2.7. Example of flags associated with gaps in the Sentinel-2 time series in the Scandinavian 
mountains. (a) Revisit time; (b) maximum enhanced vegetation index (EVI) for 2019; (c) flags raised during 
the estimation of end-of-season (EoS); (d) EoS estimation. Red: non-vegetated pixels (EVI<0.2); blue: pixels 
with >40-d gap in time series; EoS was extracted with the 50% threshold method applied to the non-
smoothed Sentinel-2 EVI time series. 

2.4. Discussion 

The high agreement between the phenology metrics estimated with Sentinel-2 and MODIS 

corroborates the feasibility of LSP estimation owing to the low revisit time of the Sentinel-2 time 

series (Bolton et al., 2020) in a region prone to cloud coverage. We found that only 9.2% of pixels 

showed a discontinuity of >40 d in the time series during the green-up period. In contrast, the 

cloud coverage was more persistent in late summer and autumn (39.4% of pixels with >40-d 

gap), and this high level of cloud occurrence may explain the lower similarity between EoS 

estimated using Sentinel-2 and MODIS. Such discontinuities in time series make the use of gap-

filling techniques and robust smoothing techniques necessary for the accurate estimation of LSP 

metrics (Bolton et al., 2020). Moreover, when time series present continuous gaps, the combined 

use of Sentinel-2 and Landsat-8 is recommended as, overall, the combination of sensors 

provides improved LSP estimates (Kowalski et al., 2020). 

The comparison with PhenoCam further proves the feasibility of LSP estimation with Sentinel-2 

with a variety of vegetation indices. Results showed that the EVI performed the best. It was 

shown by (Kowalski et al., 2020) that EVI was more suited than NDVI in temperate deciduous 

forests and (Bolton et al., 2020) used EVI2 (two-band EVI) for continental-scale analysis, both 
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using a combination of Landsat-8 and Sentinel-2. Despite this, an extensive analysis including 

more in situ observations is required to further justify the use of EVI in Arctic phenology studies. 

Moreover, the correct reclassification of snow values seems more determinant than the variable 

selection in high-latitudes. 

The procedure for flagging pixels with discontinuities in the time series may be used to identify 

good-quality pixels for further analysis in phenology studies; however, this flag only works when 

clouds are successfully filtered. Non-valid observations that were not filtered, mainly cloud-

contaminated pixels and cloud shadows that were not reflected in the quality band, are included 

in the time series and may underestimate the long gaps in the Sentinel-2 time series. 

Furthermore, such contaminated values may change the growing season curve in the vegetation 

index time series and lead to erroneous estimates of the phenology. 

We found high levels of similarity between the phenology metrics estimated using Sentinel-2 

and MODIS and PhenoCam, even though the comparison reflects changes in vegetation 

greenness that do not necessarily correspond to vegetation phenophases or vegetation 

productivity (Helman, 2018). In situ databases, such as the National Phenology Network (NPN) 

[29], the Pan European Phenology database (PEP725) [30], and the FLUXNET network [31] are 

essential to ground-truth remotely sensed phenological changes in vegetation. Near-surface 

LSP, such as the PhenoCam network, supports the validation of satellite LSP estimates, as 

observed in the current study. Phenophase observations provide information on the timing of 

relevant stages in the annual life cycle of vegetation, such as the leaf-out, which may differ from 

the LSP metrics estimated from a satellite (Bórnez et al., 2020). Similarly, the onset and the end 

of the photosynthetic activity, estimated from time series of carbon fluxes in FLUXNET, do not 

match with the LSP metrics depending on the forest ecosystem (D’Odorico et al., 2015). 

Phenophase, carbon fluxes, and near-surface LSP measurements are scarce in the Arctic, with 

the distribution of digital cameras generally restricted to northern areas of Alaska, so data are 

lacking for adequate validation of high-latitude LSP maps. 

The use of cloud platforms, such as GEE, has made possible the estimation of LSP using Sentinel-

2 time series for extensive regions, such as the Arctic. In this study, the generation of the 

phenology maps for the Arctic used approximately 133,000 Sentinel-2 images, solely for the year 

2019; this type of platform is a useful tool that allows the scientific community to inspect such 

dense, high-spatial resolution time series. Furthermore, GEE allows sharing the code and data, 
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and researchers can easily reproduce the algorithm and inspect the time series locally (see GEE 

code in Supplementary Materials). 

The resulting phenology maps should be taken with caution when data availability is scarce, 

which occurs particularly during the EoS (39.4% of pixels with >40 d gap). The combination of 

Sentinel-2 and Landsat-8 is recommended when continuous gaps are present in the time series, 

and more elaborated phenological retrieval methods including gap-filling and robust smoothing 

techniques should be used instead. Despite this, sensor harmonization and temporal smoothing 

may improve the LSP retrievals but at the expenses of adding complexity to the preprocessing, 

which impedes the implementation and fast computation in GEE. Our SoS and EoS maps may 

benefit future Arctic phenology studies that aim to analyze spatial variability in vegetation 

dynamics and require a high degree of detail at the canopy level; test effects of spatial scaling 

on temporal changes in phenology; and identify homogeneous landscapes in which phenology 

dynamics are similar. 

2.5. Conclusions 

Here, we present the first high-spatial resolution maps (10 m) of SoS and EoS that fully cover the 

Arctic for the most recent years (2019–2020). We prove the feasibility of phenology metric 

extraction in the region solely with Sentinel-2 and using basic implementations of the threshold 

method in GEE; the high revisit time at high latitudes allows dense time series to be obtained 

under cloud-free conditions in 1–3 days and only 9.2% of pixels showed a discontinuity of >40 d 

in the time series during the green-up period. We propose a set of forcing values for the 

reclassification of snow observations in Sentinel-2 for three common vegetation indices used in 

LSP estimation: GCC, NDVI, and EVI; and also provide a re-adjusted parameterization of the NDPI 

specifically for Sentinel-2. Future work may use the adjusted parameters and forcing values 

along with the implementation of the threshold method in GEE for large-scale estimation of 

phenology metrics. The retrieved Sentinel-2 high-resolution LSP maps and the proposed GEE 

phenological extraction method will support monitoring vegetation changes at high-spatial 

resolution and are expected to contribute to the representation of Artic vegetation phenology 

in land surface models. 
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Abstract 

Soil temperature remains isothermal at 0 °C and water shifts to a liquid phase during soil 

thawing. Vegetation may receive this process as a signal and a key to restore physiological 

activity. We aimed to show the relationship between the timing of soil thawing and the spring 

growth onset. We estimated the delay between the soil thawing and the spring growth onset in 

78 sites of the FLUXNET network. We built a soil thawing map derived from modelling for the 

northern hemisphere and related it to the greenness onset estimated with satellite imagery. 

Spring onset estimated with GPP time series occurred shortly after soil surface thawing in tundra 

(1.1 ± 3.5 days) and alpine grasslands (16.6 ± 5.8 days). The association was weaker for 

deciduous forests (40.3 ± 4.2 days), especially where soils freeze infrequently. Needleaved 

forests tended to start the growing season before the end of thawing (-17.4 ± 3.6 days), although 

observations from remote sensing (MODIS Land Cover Dynamics) indicated that the onset of 

greenness started after the thawing period (26.8 ± 3.2 days). This study highlights the role of soil 

temperature at the spring growth onset at high latitudes. Soil thawing becomes less relevant in 

temperate forests, where soil is occasionally frozen and other climate factors become more 

important. 
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3.1. Introduction 

Phenology is defined as the timing of periodic life-cycle events (Schwartz, 2003). Phenology has 

recently gained attention as an indicator of global warming and more broadly for its link with 

global environmental change (Badeck et al., 2004; Cleland et al., 2007; Peñuelas et al., 2009; 

Peñuelas & Filella, 2001). Plant phenology is primarily modulated by the seasonal variation in 

climate, which involves a stage of dormancy when the climate is adverse and a period of growth 

when conditions are favorable for vegetation activity. Temperature, water availability, and day 

length have been proposed as the main environmental drivers that constrain vegetation activity 

and regulate plant phenology, acting eventually as confounded restraints for vegetation growth 

(Chuine & Régnière, 2017; Jolly et al., 2005; Kramer & Hänninen, 2009). Temperature is the main 

climatic factor regulating plant phenology for the onset of vegetation in the northern high 

latitudes (Schwartz, 2003). Evidence for the interaction of temperature with other limiting 

factors, e.g. photoperiod and water availability, though, is under discussion (Fu et al., 2019; 

Körner & Basler, 2010; Peñuelas et al., 2004) and, the choice of the climatic variables for 

modeling phenology is an open science question.  

Air temperature has been widely used to simulate the transition from dormancy to growth in 

temperature-limited biomes, and jointly with day length, an indicator of photoperiod, for 

modeling plant phenology in the Northern Hemisphere (Badeck et al., 2004; Peñuelas & Filella, 

2001). Some biome-specific studies, however, have suggested that soil temperature more 

accurately indicates the start of the growing season (Baldocchi et al., 2005; Jiang et al., 2018; 

Lieth, 2013; Semenchuk et al., 2016; Starr et al., 2008), although a study showed a stronger 

connection with air temperature than soil temperature for boreal forests (Tanja et al., 2003). 

Some studies even suggested that the lengthening of the growing season in tundra during recent 

decades was primarily caused by a change in the seasonal thaw cycle (Barichivich et al., 2013; 

Kimball et al., 2006). A soil warming experiment in subarctic grasslands, which reduced the 

occurrence of soil frost, revealed that the growing season lengthened across the entire range of 

IPCC warming projections for 2100 and reported no indications of photoperiod constraints 

within that warming range (Leblans et al., 2017). 

A frozen soil strictly limits vegetation growth and overrules any impact of eventual favorable air 

temperatures during spring. Thawing occurs when soil remains isothermal at 0 °C, triggering 

some processes that may be used as signals for the vegetation to restore physiological activity. 
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Water only returns to its liquid form and becomes available to roots (Noormets, 2009) during 

and after thawing. In addition to a direct signal of soil thawing, soil temperature has been found 

to exert a stronger influence on plants than air temperature. For example, soil temperature has 

also been associated with physiological processes such as root elongation (Wang et al., 2018) 

and root respiration (Lloyd & Taylor, 1994). Soil-warming experiments have found that an overall 

increase in soil temperature affected specific traits; leaf area, leaf expansion rates, and diameter 

growth in deciduous trees (Farnsworth et al., 1995; Wheeler et al., 2016), needle starch content 

and photochemical efficiency in boreal forests (Repo et al., 2004), and flowering frequency in 

tundra (Khorsand et al., 2015).   

These results suggest that soil temperature may play a more deterministic limiting role than air 

temperature at the onset of spring at high latitudes. We tested the hypothesis that soil thawing 

regulates spring growth onset at high latitudes but becomes less relevant where soil is only 

sporadically frozen. 

3.2. Materials and Methods 

3.2.1. Phenology derived from in situ and satellite data 

We used the same methodology as Zhang et al, 2003 to estimate the start of season at the 

FLUXNET sites. We took the daily mean gross primary productivity (GPP) measurements 

(daytime partitioning method) and adjusted a logistic function for each year for the period 

January 1st to July 1st. The start of season at the FLUXNET sites (GPP SoS) was the day when the 

second derivative of the logistic function was maximal.  

We used the MCD12Q2 V5 Land Cover Dynamics product (MODIS SoS) for the period 2001-2014. 

MCD12Q2 phenological metrics are estimated yearly, with a logistic function fitted over the 

MODIS EVI time series (Zhang et al., 2003). We used the layer ‘Onset Greenness Increase’, which 

represents the day of the year on which the positive curvature of the fitted logistic function is 

maximal.  

3.2.2. Estimation of the start and end of thawing 

We defined the end of thawing (EoT) as the last day before solstice with daily mean soil 

temperature <0.5 °C and defined the start of thawing (SoT) as the closest day before EoT with a 
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temperature below -0.5 °C. We estimated the EoT and SoT using the in situ records of soil 

temperature at the FLUXNET sites in the Profile 1 (TS_1_1_1), which corresponds to soil 

temperature measured at the shallowest layer, with a different depth depending on the 

FLUXNET site but commonly 2-5 centimeters. The EoT was also estimated using the layer of soil 

temperature at 10-centimeter depth available in the Global Land Data Assimilation System 

(GLDAS) dataset (See section 2.3.). This resulted in global maps of EoT at 0.25° resolution.  We 

used a threshold of 0.5 °C instead of 0 °C to avoid false-positive estimates of EoT due to noise 

and slight variations in the soil temperature time series during thawing. 

3.2.3. Global climatic data set 

We used the GLDAS version 2.1 as a global climatic data set for the daily representation of soil 

temperature at a global scale. GLDAS is a land-surface modeling system developed by the 

Goddard Space Flight Center of the National Aeronautics and Space Administration and by the 

National Centers for Environmental Prediction of the National Oceanic and Atmospheric 

Administration. The version 2.1 provides data for the period 2000 up until the present time. 

Ground measurements (meteorological data), such as soil temperature, and satellite 

observations are ingested in order to constrain the land-surface model and restrain unrealistic 

model states. GLDAS offers 3-hourly estimates of earth-surface variables such as soil 

temperature at different depths. We used the soil temperature product at 10-centimeter depth 

with a spatial resolution of 0.25°. 

3.2.4. Resizing and filtering MODIS SoS 

The spatial resolutions of GLDAS EoT and MODIS SoS differed, so we resized the resolution of 

MODIS SoS (500 m) to the resolution of GLDAS EoT (0.25°) to make the comparison between the 

two datasets consistent. We first masked the yearly MODIS SoS images with the MODIS IGBP 

Land Cover (MCD12Q1) product. MODIS SoS was masked separately with the IGBP classes 1) 

deciduous broadleaved forests (deciduous forests), 2) evergreen needleleaved forests 

(needleleaved forests), 3) shrubland, 4) open shrubland, and 5) grassland. For the tundra biome, 

we only considered the pixels classified as shrubland, open shrubland, and grassland at >50° 

latitude. Finally, the masked MODIS SoS images were resized to 0.25° using the mean as the 

resampling operation. This resulted in six sets of MODIS SoS for each land cover for the period 

2001-2014. 
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3.2.5. Experimental setup and statistical analyses 

We analyzed 78 sites of the FLUXNET network and compared the timing of spring onset of 

ecosystem GPP with thawing date. We used all sites north of 30°N latitude that are located in 

tundra (13 sites) and alpine (4 sites) climates, and the sites categorized in the IGBP classification 

as deciduous broadleaved forests (DBF) (18 sites in temperate and 1 site boreal climate zones) 

or evergreen needleaved forests (ENF) (25 sites in temperate and 17 sites boreal climate zones). 

Supplementary Table 3.1 shows the coordinates and biome of the selected sites. We excluded 

the sites without in situ soil temperature records. 

We investigated at which soil temperature the GPP was significantly positive in each biome. We 

grouped the half-hourly GPP observations in intervals of 0.5°C of soil temperature. We applied 

a two-tailed Student's t-test at each interval of soil temperature with a significance of 95%. We 

considered that GPP was positive at a certain temperature when the lower GPP confidence 

interval was greater than 0.5 mol CO2 m-2 s-1. 

The SoT and EoT estimated with the FLUXNET records were compared with two independent 

observations of the start of the growing season (SoS): 1) SoS estimated with daily in situ 

observations of the FLUXNET GPP time series (GPP SoS) and 2) SoS extracted from remote-

sensing sources (MODIS SoS). We applied the two-tailed Student's t-test with a significance of 

95% to find whether the day of the EoT and the spring onset (GPP SoS and MODIS SoS) were 

significantly different. We reported the mean difference, confidence interval, and coefficient of 

determination (R2) between the end of thawing and the spring onset. 

We also compared the spring onset observed with satellite derived data (MODIS SoS) with the 

thawing period estimated with the GLDAS. The MODIS SoS was filtered and resized to the 

resolution of the GLDAS to make the datasets comparable. Similarly to the comparison at the 

FLUXNET sites, we reported the R2 and the mean difference with a confidence interval of 95% 

between the EoT and the MODIS SoS. The analysis covers a time period from 2000 to 2015 for 

the comparison between FLUXNET and MODIS, and from 2001 to 2017 for the comparison 

between the GLDAS and MODIS. 
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3.3. Results 

The growing seasons were primarily driven by temperature in the 78 FLUXNET sites; GPP and air 

temperature had similar intra-seasonal patterns. Gross primary productivity at these sites was 

highest in summer, when the air and soil temperatures were also highest. The Italian site IT-Ro1 

was the only exception, where GPP decreased during summer due to water stress. A 

representation of air and soil temperature, GPP and spring onset is shown in Supplementary 

Figure 1 for five FLUXNET sites.  GPP was insignificant with frozen soil in all biomes (Figure 3.1). 

The lowest soil temperature at which GPP was significantly higher than 0.5 mol CO2 m-2 s-1 was 

1°C in tundra, -0.5°C in alpine grasslands, -1 °C in needleaved forests, and 4.5 °C in deciduous 

forests. 

Figure 3.1. Gross primary productivity (GPP) in relation to soil temperature in the FLUXNET sites. The x-

axis shows soil temperature measured at the shallowest layer. The distribution of GPP is presented with 

the 50th percentile (continuous line), 75th percentile (dashed line), and 90th percentile (dotted line). The 

red line shows the lowest temperature in which GPP is significantly higher than 0 °C. The temporal 

resolution of the GPP and temperature data is half-hourly.  

Spring onset occurred during thawing (41% of observations for GPP SoS and 6% of the 

observations for MODIS SoS) or after EoT (51% of observations for GPP SoS and 59% of the 

observations for MODIS SoS) (Figure 3.2). Only 8% of the observations occurred when soil was 

frozen in GPP SoS, primarily in needleaved forests. Spring onset for tundra and alpine grasslands 
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tended to start shortly after the EoT (1.1 ± 3.5 d for GPP SoS and 18.5 ± 3.0 d for MODIS SoS for 

tundra, 16.6 ± 5.8 d for GPP SoS and 32.9 ± 8.3 d for MODIS SoS for alpine grasslands). Spring 

onset tended to start with a longer delay after EoT in deciduous forests with seasonally frozen 

soil (40.3 ± 4.2 d for GPP SoS and 46.4 ± 3.8 d for MODIS SoS), while needleleaved forests showed 

discrepant results between the two sources of data (-17.3 ± 3.6 d for GPP SoS and 26.8 ± 3.2 d 

for MODIS SoS). 

 

Figure 3.2. Boxplots of the normalized delay ((a) and (c)) and absolute delay ((b) and (d)) of spring onset 
after the end of thawing (EoT) for tundra, alpine grasslands, needleaved forests, and deciduous forests. 
The absolute delay is the number of days between spring onset and EoT, and the normalized delay 
represents spring onset relative to thawing, with start of thawing (SoT) = 0 and EoT = 1. Spring onset is 
presented as FLUXNET gross primary productivity (GPP) start of season (SoS) in (a) and (b) and as MODIS 
SoS (‘MidGreenup1’ band in MCD12Q2v6 product) in (c) and (d). The central mark of the boxplot indicates 
the median, the bottom and top edges indicate the 25th and 75th percentiles. The whiskers cover until the 
most extreme data points not considered outliers, and outliers are plotted with the ‘+’ symbol. 

The association between the GPP SoS and the EoT SoS is different in deciduous than in 

needleleaved forests (Figure 3.3a). Spring onset occurs with positive temperatures in deciduous 
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forests, while needleleaved forest starts their growing season before the soil has completely 

thawed. Tundra and alpine grasslands show the highest agreement of spring onset with the EoT 

(RMSE = 9.03 in GPP SoS and RMSE = 20.45 in MODIS SoS). FLUXNET sites in the boreal biome 

also showed a better agreement than the sites in the temperate biome in both GPP SoS and 

MODIS SoS (Supplementary Figure 3.2). In addition, soil did not freeze in some sites of the 

temperate biome, which explains the EoT values equal to 0 in Figure 3.3 and Supplementary 

Figure 3.2. 

 

Figure 3.3. Scatter plots of spring onset (gross primary productivity (GPP) start of season (SoS) (a) and 

MODIS SoS (‘MidGreenup1’ band in MCD12Q2v6 product) (b)) and the last day before the growing season 

using soil temperature >0.5 °C. Point colors represent tundra (blue), alpine grasslands (black), needleaved 

forests (red), and deciduous forests (green). Notice that the best fit between the spring onset and the end 

of thawing corresponds to tundra and alpine grasslands. 

The comparison of MODIS SoS with the global estimates of EoT (Figure 3.4) led to similar results 

as the observations at the FLUXNET sites. The onset of greenness estimated with MODIS 

occurred near EoT in the land cover types that represent tundra (8.63 ± 7.96 d in shrubland IGBP 

class, 16.97 ± 7.72 d in open shrubland IGBP class, and 18.80 ± 14.55 d in grassland IGBP class), 

while deciduous forests showed the highest delay (34.24 ± 18.59 d). The high delay in deciduous 

forests can be observed in the map showing the difference mean MODIS SoS - mean EoT (Figure 

3.5) at the most southerly latitudes of the deciduous forest distribution (eastern North America, 

central Europe, and northern China). We observed a high interannual variability in the MODIS 

SoS and EoT also at low latitudes (Supplementary Figure 3.3). Contrarily to the results in the 
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FLUXNET sites, the MODIS SoS in needleleaved forests show a similar pattern as deciduous 

forests and do not present a negative delay compared to the EoT (20.03 ± 14.15 d). 

 

Figure 3.4. Relationships between MODIS start of season (SoS) and end of thawing (EoT) estimated using 
the GLDAS dataset. Each panel represents MODIS SoS (‘MidGreenup1’ band in MCD12Q2v6 product) 
masked with the MODIS IGBP Land Cover product for cover types (a) grassland, (b) open shrubland, (c) 
shrubland, (b) evergreen needleleaved forests, and (e) deciduous broadleaved forests. The land cover 
types grassland, open shrubland, and shrubland for latitudes higher than 50° represent predominantly 
the tundra biome. The maximum density (md) varies depending on the land cover.  

 

 

Figure 3.5. Maps of (a) mean end of thawing (EoT), (b) mean MODIS start of season (SoS), and (c) mean 
difference (MODIS SoS - EoT) for the period 2001-2017. EoT was estimated using the GLDAS data set as 
the last day of the dormant period with soil temperatures <0.5 °C. MODIS SoS is the ‘MidGreenup1’ band 
in MCD12Q2v6 product. We resized MODIS SoS to the spatial resolution of the GLDAS dataset. The map 
projection is the Lambert Azimuthal Equal-Area. 
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3.4. Discussion 

Spring onset of vegetation activity and soil thawing were closely associated in tundra and alpine 

grasslands, and weakly associated where soil froze intermittently. Water remains inaccessible 

to plants in frozen soils, inhibiting vegetation activity. This process is particularly relevant in 

regions with deep frost, where the vegetation has maximal root depth <0.5 m in tundra or <2 m 

in boreal forests (Canadell et al., 1996). Likewise, most root biomass in boreal and temperate 

forests is in shallow soil layers, where most mineralization processes release the greatest 

amount of nutrients. Frozen soil, even if only the first few centimeters, may therefore imply 

inhibition of vegetation activity, as suggested by the results from the FLUXNET towers, where 

the GPP is insignificant when soil temperatures are negative (Figure 3.1). In addition, most of 

the observations of spring onset, both MODIS SoS and GPP SoS, coincided with positive or near 

freezing soil temperatures (Figure 3.2). 

Water gradually shifts from the solid to the liquid form during thawing, which plants may use as 

a signal to start their activity. Our results, however, indicated that the time between EoT and 

spring onset depended on the biome. These differences can be attributed to different forcing 

requirements for which vegetation has different adaptive histories. Deciduous forests seem to 

require greater heat accumulation than tundra and needleleaved forests to initiate spring 

growth. Many studies have suggested that the high thermal forcing required by deciduous trees, 

which delays the vegetation onset date after the EoT, is an adaptation to prevent frost damage 

in late spring (Fu et al., 2015; Laube et al., 2014). In addition, deciduous forests have adapted 

their high thermal forcing depending on the background climate (Peaucelle et al., 2019), with 

lower heat requirements in colder climates. This would explain the high delay between the 

spring onset and EoT in deciduous forest in the lowest latitudes of the study, while the only 

FLUXNET site with deciduous forests located in the boreal zone shows a close association 

between the spring onset and the thawing period. Similarly to the site with deciduous forest in 

the boreal biome, tundra and alpine grasslands have a low heat requirements, very likely 

because their SoS also occurs very late in the season, when light availability is already high, and 

these plants may therefore have reduced their heat requirement to maximize profit from the 

high light conditions in late spring.  

Our results show that needleaved forests can release from dormancy and start their gross 

primary production during the thawing period with near freezing soil temperatures, which 
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corroborates the photosynthetic acclimation to cold in boreal needleaved forests (Oquist & 

Huner, 2003). However, the results obtained from remote sensing show that the onset in 

greenness in needleaved forests occurs much closer to the end of the thawing period. This 

suggests that evergreen needleaved trees start the growing season when temperatures become 

favorable using the needles preserved during the dormant period, but needle emergence occurs 

much later than the start of the photosynthetic activity. The delay between GPP SoS and onset 

of greenness was also observed with remotely-sensed data in previous studies (Melaas et al., 

2013; Walther et al., 2016). An alternative explanation for the early GPP SoS in boreal forests is 

that understory might have started the photosynthetic activity before the trees in the overstory 

and, thus, vegetation in the understory layer accounted for the carbon fluxes before the thawing 

period. This would be supported by the findings of (Ikawa et al., 2015), which showed the 

contributions of the understory in boreal ecosystems to the carbon and energy balances. 

The hypothesis that tundra has adapted to the long period with frozen soils by reducing its heat 

requirement implies that spring onset is highly responsive to soil thawing. This hypothesis is 

supported by studies with long time series of snow melt and by soil-warming experiments 

reporting that spring onset is advanced by an increasingly earlier soil thawing (Barichivich et al., 

2013; Kimball et al., 2006; Leblans et al., 2017). Spring onset in arctic and subarctic vegetation 

may thus continue to advance as soil thawing occurs earlier with climate warming. The possible 

restriction in vegetation growth because of insufficient levels of incoming radiation or hours of 

sunshine is, however, still undetermined. 

Our results suggest that the role of soil temperature is secondary at southerly latitudes for 

deciduous and needleaved forests. Sites with favorable soil and air temperatures throughout 

the year may be constrained by photoperiod (Zohner et al., 2016), by chilling requirements 

(Chuine et al., 2010), or by both (Fu et al., 2019). These regions without soil temperature 

regulation had the largest differences between MODIS SoS and EoT, as observed in the 

difference map in Figure 3.5. The differences observed between the EoT and the GPP SoS at the 

FLUXNET towers with needleleaved forests cannot be depicted with the MODIS SoS and, thus, 

are not reflected in the map in Figure 3.5. 

In summary, we demonstrate that spring onset rarely occurs with negative soil temperatures, 

indicating that frozen soil acted as a major constraint on vegetation activity. We also 

demonstrate that vegetation activity began shortly after thawing in tundra, after soil 
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temperatures at 2-centimeter depth surpassed the 0 °C threshold. This correlation became 

weaker for lower latitudes. Needleleaved forests can start the gross primary production during 

the thawing period, while deciduous forests delayed the spring onset especially at more 

southerly latitudes. These results thus provide insight in the onset of spring that can be used for 

improving phenological models, especially in tundra and boreal forests where soil thawing plays 

a major role in controlling the start of vegetation activity. Further studies may take advantage 

of recent advances in mapping soil thawing using microwave remote sensing to estimate the 

start of the growing season at northern latitudes. 
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Abstract 

Climatic warming has lengthened the growing season in recent decades, thus affecting the 

functioning and biogeochemistry of ecosystems, the global carbon cycle and climate. 

Temperature response of phenology varies spatially and temporally, even within species, and 

daily total intensity of radiation and water availability may play a role. Whether radiation and 

water will constrain the trend towards longer growing seasons with future warming is uncertain. 

We empirically modelled the thresholds of temperature, radiation, and water under which daily 

carbon uptake is constrained and thereafter reduced the two-dimensionality of the 

temperature-radiation constraint to one single variable, θ, which represents the angle in a polar 

coordinate system for the temperature-radiation observations during the start and end of the 

growing season. In dryland ecosystems, water availability fully constrains the lengthening of the 

growing season, which indicates that future warming might reduce the length of the growing 

season by increasing water demand. In temperate and cold regions, we revealed that radiation 

is a major factor limiting photosynthetic activity that constrains the phenology response to 

temperature during the end-of-season. In contrast, the start of the growing season is overall 

highly sensitive to temperature but not constrained by radiation at the hemispheric scale. This 

study thus revealed that while at the end-of-season the phenology response to warming is 

constrained at the hemispheric scale, at the start-of-season the advance of spring onset may 

continue, even if it is at a slower pace. 
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4.1.    Introduction 

Seasonal changes in weather conditions drive the timing of the start and end of vegetation 

growth. With recent climatic warming, the growing season has lengthened, with the start of the 

growing season (SoS) advancing more than the end of the growing season (EoS) delaying(Menzel 

et al., 2006; Peñuelas & Filella, 2001). Vegetation phenology influences the carbon and water 

cycle(Keenan et al., 2014; Myneni et al., 1997; Richardson et al., 2010), successional 

transition(Chuine, 2010), and plays a role in the feedbacks between vegetation and 

climate(Peñuelas & Filella, 2009; Richardson et al., 2013). The warming-induced lengthening of 

the growing season has increased the carbon uptake(Le Quéré et al., 2009), offsetting 

atmospheric carbon from human emissions. However, how phenology may respond to future 

warming and whether vegetation will increase carbon sequestration remains unclear(Piao et al., 

2019), which adds uncertainty to future atmospheric carbon concentration and, thus, climate 

projections. 

Previous research suggests that chilling requirements will constrain the advance of leaf 

unfolding in deciduous forests by reducing temperature sensitivity(Fu et al., 2015), whereas 

other factors such as precipitation(Peaucelle et al., 2019) and photoperiod(Körner & Basler, 

2010; Meng et al., 2021; Zohner et al., 2016) may increase the heat requirements during the 

ecodormancy stage and, as a result, slow down the warming-induced advance of the leaf 

unfolding. With regards to leaf senescence, a recent study found that increased productivity 

during the growing season counteracts the warming-induced delay in leaf senescence(Zani et 

al., 2020). These findings are based on the study of leaf phenophases in deciduous forests 

obtained from in situ observations or remotely-sensed vegetation greenness indices, such as the 

normalized vegetation difference index (NDVI).  

The key conceptual framework in these studies is that pre-SoS and pre-EoS conditions affect the 

timing of tree phenophases(Chuine et al., 2013). For instance, prolonged high temperatures in 

spring advance the leaf unfolding date. However, a line of research has shown that the start and 

end of the photosynthetically active season are directly influenced by current meteorological 

conditions, not by pre-SoS or pre-EoS conditions. This is evidenced by a decoupling between 

remotely sensed vegetation greenness and proxies of photosynthetic activity(Jeong et al., 2017; 

Yin et al., 2020; Zhang et al., 2020), which indicates that vegetation might present leaves but 

these are not photosynthetically active because meteorological conditions are restricting 
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photosynthetic activity at the moment. For instance, vegetation productivity declines in 

agreement with the decrease in radiation intensity during autumn(Zhang et al., 2020), and a lack 

of available light may thus prompt the end of the growing season. Similarly, water availability 

determines the start and end of the photosynthetically active season in tropical dryland 

ecosystems(Eamus & Prior, 2001). 

Given the link between photosynthesis and current meteorological conditions, the seasonality 

of carbon uptake can be modelled with meteorological variables, and the start and end of the 

growing season can be determined by constraint functions(Jolly et al., 2005). The constraint 

functions define the photosynthesis-inhibiting thresholds that restrict the carbon uptake during 

the growing season. The start and end of the season occur when a limiting factor, such as air 

temperature, radiation intensity, or water availability, exceeds the threshold under which 

photosynthesis is constrained. Using this phenology modelling framework, carbon uptake 

phenology can be thus determined by the law of limiting factors, i.e., by the most limiting factor. 

Here, we aimed to clarify the role of climate constraints during the start and end of the 

photosynthetically active season and how these constraints change among ecosystems and over 

space. To achieve this, we first determined whether the law of limiting factors holds true for 

carbon uptake phenology. Then, we evaluated the current constraints on SoS and EoS by 

radiation and temperature in temperate and cold regions of the Northern Hemisphere and by 

water in tropical dryland ecosystems. Lastly, we estimated the potential lengthening of the 

growing season in a warming scenario in which radiation might take over the role as a limiting 

factor of photosynthetic activity phenology. To evaluate the limitations of temperature, 

radiation, and water, we empirically modelled the phenology of carbon uptake from FLUXNET 

towers using three climatic variables: daily mean air temperature, daily total incoming 

shortwave radiation, and mean soil water content. 

4.2.    Methods 

4.2.1.    Data 

We used daily in situ records from 85 sites of the FLUXNET2015 Tier 1 data set (see 

Supplementary Figure 4.1 for the locations of the sites), daily mean GPP obtained using the day-

time partitioning method observed at the FLUXNET towers. These 85 sites represent all sites 

>30°N in the tundra, boreal, and temperate biomes, excluding cropland sites. We used air 
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temperature and incoming shortwave radiation at 0.1 arc degrees from the ERA5-Land hourly 

data for the hemispheric scale analysis. Four-day clear-sky daily contiguous solar-induced 

chlorophyll fluorescence (CSIF) estimates at 0.05° from the OCO-2 (Orbiting Carbon 

Observatory-2) SIF data set were used to represent the spatial variation of vegetation phenology 

in temperate and cold regions of the Northern Hemisphere and tropical dryland regions for 

2001-2020. SIF observations have been demonstrated to track the seasonality of GPP 

globally(Sun et al., 2017). The biome types at the FLUXNET sites were characterised using the 

MODIS MCD12Q1 V6 product for the mode of land cover during 2001-2019 and the RESOLVE 

Ecoregions 2017 map. The temperate and cold regions include tundra, boreal forests, temperate 

broadleaf and mixed forests, and temperate coniferous forests in the RESOLVE Ecoregions 2017 

map (Supplementary Figure 4.1). We also masked the areas where the mean radiation during 

the winter solstice exceeded the 27 W m-2 threshold (Supplementary Figure 4.1). The mean 

radiation during the winter solstice was estimated using the average of shortwave radiation 

from the ERA5-Land observed from DoY 345 and 365 and aggregated over the 2001-2020 period. 

For the dryland ecosystems, we included the regions classified as tropical and subtropical 

grasslands, savannas and shrublands in the RESOLVE Ecoregions 2017 map. 

4.2.2.    Phenological estimation and modelling 

Phenology was modelled using two approaches that produced similar estimates of the start of 

the growing season (SoS) and the end of the growing season (EoS). The first approach used a 

neural network that fitted the ERA5-Land daily mean air temperature, incoming shortwave 

radiation, and soil water content to the daily mean GPP. The fitting method was a neural 

network with two hidden layers with 8 and 2 neurons and trained using a gradient-descent 

optimisation algorithm. Each FLUXNET site obtains records with different temporal coverages, 

so we randomly selected two-year observations from each site to avoid overfitting the sites with 

the longest time series. We estimated the phenological dates using the modelled GPP time series 

generated from the climatic records from the FLUXNET sites. Then, we used the maximum-

separation method(Descals et al., 2020) for estimating the phenological metrics (SoS and EoS). 

This method is robust against noise and can determine phenological metrics over raw time 

series, avoiding biases in phenological estimates due to the excessive smoothing of time series. 

The size of the window in the maximum-separation method was set to 60 days; different window 

sizes produced similar estimates of SoS and EoS. 
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The second approach for phenological modelling used a binary supervised classification, which 

labelled the FLUXNET daily records as class ‘inhibited’ when GPP was <2 and class ‘active’ when 

GPP was >2 g C m-2 d-1. We used a predefined function (Eq. 1) as a decision boundary between 

the two classes, because the GPP modelled by the neural network had a decision boundary that 

followed this pattern (Figure 4.1a). The parameters of the decision boundary (T, S, and C) were 

estimated using an exhaustive grid search; the overall accuracy of all combinations of parameter 

C (representing the curvature of the function, from 50 to 300 in steps of 25), temperature (T, 

from -5 to 10 °C in steps of 0.1 °C), and radiation (S, from 0 to 150 W m-2 in steps of 1 W m-2) 

were evaluated using the FLUXNET daily records, and we selected the parameters that fit best 

for overall accuracy. The overall accuracy was estimated as the ratio of correctly classified 

observations to the total number of observations. The confidence intervals of the parameters 

were calculated using bootstrapping; the parameters were estimated 100 times with random 

sampling with replacement, and the confidence interval represented the 5th and 95th 

percentiles of the distribution of the estimated parameters. We estimated the phenological 

dates from the binary time series (inhibited vs active) generated from the classification of the 

climatic variables at the FLUXNET towers. We used the maximum-separation method for 

extracting SoS and EoS, because this method can also estimate phenological metrics in a binary 

time series. 

𝐺𝑃𝑃 =  
𝐶

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒−𝑇
+ 𝑆 − 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛                                                                                       (Eq. 1) 

The parameters T, S, and C were estimated using four fixed GPP thresholds (1, 2, 2.5, and 3). The 

phenological metrics reported in Figure 4.2, Supplementary Figure 4.2, and Supplementary 

Figure 4.3 represent the average of all SoS and EoS estimated using the classification approach.  

We also used the maximum-separation method for the phenological estimates in the OCO2SIF 

time series. We used the averages of SoS and EoS estimated using four fixed SIF thresholds (10, 

20, 25, and 30). For the potential dates on which SoS and EoS were restricted only by radiation 

(SoSpot and EoSpot), we changed the decision boundary in Eq. 1 to a constant radiation threshold 

of 27 W m-2; the observation was considered inhibited when shortwave radiation was <27 W m-

2 and active when it was >27 W m-2. The 27 W m-2 represents the value S in Eq. 1 for the GPP 

threshold equal to 2. The potential SoS and EoS were estimated using the binary time series 

generated from the shortwave radiation records in the ERA5-Land data set. 
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The GPP modelling in tropical dryland ecosystem was done with OCO2-SIF time series, as a proxy 

of GPP, and with air temperature, shortwave radiation, and soil moisture at 7-28 cm depth 

extracted from the ERA5-Land dataset. The time series were extracted from 56 BELMANIP2 sites 

that are classified as tropical and subtropical grasslands, savannas and shrublands in the 

RESOLVE Ecoregions 2017 map. BELMANIP2(Weiss et al., 2014) is a network of sites that present 

a high landscape homogeneity and is used for the calibration and validation of land satellite 

products. Given the heterogeneity of soil moisture contents in different sites, we scaled the soil 

moisture time series such that the minimum soil moisture was 0, and the maximum was 1. Thus, 

we estimated the phenological dates as percentages of the soil moisture amplitude. We found 

that the start and end of the season corresponded to the 20% threshold of the soil moisture 

time series. 

4.2.3.   Estimation of constraints on phenological dates by temperature and radiation 

The restriction of the onset and end of carbon uptake by temperature and radiation was 

estimated geometrically (Eq. 2) based on the decision boundary (Eq. 1) obtained in the 

classification approach. Eq. 2 calculates the angle θ given by the vertices A, B, and C, where A 

and B have fixed coordinates in (T, S) and (T, 25), respectively. The coordinates of C are given by 

the temperature (TA) and shortwave radiation (SW) at the time of the phenological event. A 

graphical representation of the estimates of θ is shown in Supplementary Figure 4.7; a high 

temperature and low amount of radiation at the time of the phenological event lead to low 

values of θ proximal to 0°, and a low temperature and high amount of radiation at the time of 

the phenological event lead to high values of θ proximal to 90°. Values of θ <0 or >90° were 

clamped to 0 and 90°, respectively.  

θ = tan−1 (
25 𝑥 (𝑆𝑊−𝑆)

300 𝑥 (𝑇𝐴−𝑇)
)                                                                                                            (Eq. 2) 

4.2.4.   Estimation of temperature and aridity dependency 

The dependency of SoS and EoS to temperature was estimated for 2001-2020 using ERA5-Land 

and the phenological dates extracted from the OCO2SIF time series. We used two different time 

periods for estimating the mean air temperature: 15 and 30 days before the mean phenological 

date. We used Pearson correlations, which is termed temperature dependency, instead of the 

conventional metric of temperature sensitivity(Fu et al., 2015), because the latter overestimates 
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the sensitivity when the temperature time series is highly variable(Keenan et al., 2020), which 

could potentially weaken the spatial analysis in our study. The temperature sensitivity estimated 

with the OCO2SIF dataset gave the same results as the temperature dependency; temperature 

sensitivity was higher in the SoS than the EoS, and it was substantially lower in regions where 

radiation is constraining vegetation activity. In tropical dryland ecosystems, we investigated the 

dependency of phenological dates to the aridity index (the ratio of precipitation (P) to potential 

evapotranspiration (PET)) calculated for the 15 days before the mean phenological date. The 

precipitation was extracted from the ERA5-Land dataset and the potential evapotranspiration 

was calculated using a model adapted for the ERA5-Land dataset(Singer et al., 2021). 

4.3.    Results 

4.3.1.    Limiting factors in the phenology of carbon uptake 

We first modelled gross primary production (GPP) in each FLUXNET site as a function of 

temperature and radiation. If the law of the limiting factor holds true, the seasonality of GPP 

would be fully explained with meteorological variables, and the difference between simulated 

and observed GPP during pre-SoS (15 days before the start of the season) and post-EoS (15 days 

after the end of the season) would be close to 0. Simulated GPP during pre-SoS presented a low 

bias compared to observed GPP in evergreen needleleaved forests for pre-SoS and post-EoS 

(+0.50 g C m-2 d-1 and +0.16 g C m-2 d-1, respectively) (Supplementary Figure 4.2). This indicates 

that photosynthesis ceased as soon as temperature and radiation conditions were unfavourable. 

In contrast, deciduous forests presented the largest bias during the pre-SoS (+1.2 g C m-2 d-1), 

indicating that conditions were favourable for photosynthesis but the ecosystem remained 

dormant. The bias was also positive, but lower, for simulated carbon uptake during post-EoS 

(+0.49 g C m-2 d-1), suggesting that deciduous trees prepared for leaf senescence before 

conditions became unfavourable for vegetation growth. 

Second, we used the FLUXNET observations to train a single model that explains carbon uptake 

as a function of temperature and radiation in the temperate and cold regions of the Northern 

Hemisphere. FLUXNET data records show that photosynthetic activity occurs within specific 

ranges of temperature and radiation (Figure 4.1a). The constraint on photosynthetic activity, 

when GPP is <2 g C m-2 d-1, can be formulated as a rational function (hereafter constraint 

boundary) with asymptotes for temperature at 2.5 (2.0, 3.4) °C (95% confidence interval) and 

for shortwave radiation at 27 (11, 54) W m-2. We used the constraint boundary as a model that 
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determines in a binary fashion whether conditions are favourable for vegetation growth or, 

contrarily, temperature and radiation restrict daily mean GPP. The constraint boundary was able 

to discriminate between dormant and growing season with an overall classification accuracy of 

84.7 %, which remained similar for different vegetation types (Supplementary Table 4.1). Overall 

accuracy was highest in evergreen needleleaved forests (87.9 %). 

Thirdly, we determined the start and end of the carbon uptake using the constraint boundary. 

We estimated the SoS as the timing of the year when climatic conditions become favourable for 

vegetation activity, and the EoS as the time of the year when these conditions cease. The SoS 

and EoS were simulated in the FLUXNET sites using climatic time series and then compared to 

the observed SoS and EoS from the FLUXNET GPP. A high agreement between simulated and 

observed phenological dates would indicate that the law of the minimum holds true in the 

regulation of carbon uptake phenology. The estimated and observed phenological metrics 

agreed well in evergreen needleleaved forests for a wide range of latitudes, regardless of biome 

(Root mean squared error (RMSE) was 9.3 d and 10.4 d, and Mean Error (ME) was -9.7 d and 

13.0 d for SoS and EoS, respectively) (Supplementary Figure 4.3); constraints of radiation and 

temperature explained the SoS and EoS in the FLUXNET site San Rossore (IT-SRo), with a 

Mediterranean climate, as well as the FLUXNET site Saskatchewan (Ca-Obs), covering a boreal 

forest. The largest bias was found for SoS in deciduous forests (RMSE was 11.9 d and 12.6 d, and 

ME was 27.2 d and -13.2 d for SoS and EoS, respectively).  

Lastly, we used remotely-sensed OCO2-SIF (Orbiting Carbon Observatory-2 solar-induced 

chlorophyll fluorescence), a proxy of GPP, to support the findings in the FLUXNET sites and 

extend the analysis to water-restricted regions in the tropics. For these dryland ecosystems, we 

included temperature, radiation, and soil moisture records as predictive variables in the GPP 

model. Changes in soil moisture influenced GPP seasonality (Figure 4.1d), while temperature 

and radiation had negligible effects on the carbon uptake. The growing season started when soil 

moisture increased rapidly, when the rainy season began, and ended when soil moisture 

returned to low levels (Figure 4.1e). The spatial patterns of observed and simulated SoS and EoS 

show the same spatial patterns in temperate and cold regions of the Northern Hemisphere and 

tropical dryland regions (Supplementary Figure 4.4 and 4.5), further corroborating that carbon 

uptake phenology can be determined with the most limiting meteorological factor. 
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Figure 4.1. Gross Primary Production (GPP) modelling and the relationships of the start and end of the 
growing season (SoS and EoS, respectively) with climate factors. a) Estimated GPP for different air 
temperatures and amounts of shortwave radiation for the temperate and cold regions of the Northern 
Hemisphere, and d) for different air temperature and soil moisture levels in tropical dryland ecosystems. 
The restriction of the phenological dates by temperature and radiation was estimated using the angle θ, 
representing the gradients of temperature and radiation in constraining GPP (θ1 and θ2 represent the 
highest constraints on GPP by radiation and temperature, respectively). b) Climatic factors during SoS and 
EoS obtained from the GPP time series in the FLUXNET sites, and e) from SIF time series in the BELMANIP2 
sites. Error bars show two standard deviations. The black line depicts the constraint boundary between 
GPP below and above 2 g C m-2 d-1 in b), and SIF below and above 0.05 in e). Dotted lines show the 95% 
confidence interval for the constraint boundary. c) Histograms of the coefficients (R) for the correlation 
between temperature (ERA5-Land) and phenological dates (estimated from the OCO-2 SIF time series) 
during 2001-2020. The asterisk represents that mean R was significantly different (p-value < 0.05) in the 
regions with the highest radiation constrain during the SoS (θ < 65) and in the regions with the highest 
temperature constrain during the EoS (θ > 50). The threshold of θ for the SoS represents the 5th percentile 
of all mean θ values, while the threshold of θ for the EoS is the 95th percentile of the mean θ values. f) 
Histograms of R between the aridity index (the ratio of precipitation (P) to potential evapotranspiration 
(PET)) and phenological dates in tropical dryland ecosystems. The simulated SIF values in d) were 
generated with a constant radiation of 250 W m-2, which represents the approximate mean radiation in 
tropical dryland ecosystems. 
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4.3.2.    Current climate constraints on carbon uptake phenology 

Temperature and radiation during SoS and EoS at the FLUXNET sites were within the ranges 

defined by the constraint boundary (Figure 4.1b and Supplementary Figure 4.6), although on 

average the daily mean radiation differed between SoS (air temperature, 7.2 °C; shortwave 

radiation, 213 W m-2) and EoS (air temperature, 8.0 °C; shortwave radiation, 107 W m-2), which 

suggests a contrasting limitation of temperature and radiation during the start and the end of 

the carbon uptake season in temperate and cold regions of the Northern Hemisphere. To 

quantify the limitations of radiation and temperature, we reduced the two-dimensionality of the 

temperature-radiation constraint to one single variable; θ, which represents the angle in polar 

coordinate system for the temperature-radiation observations on a range from 0 to 90 (0 = fully 

restricted by radiation and 90 = fully restricted by temperature; See Methods and 

Supplementary Figure 4.7). Values of θ in temperate and cold regions were on average high 

during the spring onset (median and 5 - 95th percentile range was 87 [65, 98]) and low during 

the end of season (32 [14, 50]) (Figure 4.2b and Supplementary Figure 4.8), which indicates a 

high temperature limitation on the carbon uptake during the SoS and a moderate radiation 

limitation during the EoS. The regions where radiation limitation was highest during the SoS and 

EoS correspond to temperate Europe (Supplementary Figure 4.8), while temperature restricted 

the SoS and EoS in high-latitude and high-altitude regions. In dryland ecosystems, SIF phenology 

was determined by the 20% threshold in soil moisture, and temperature and radiation did not 

exhibit a constraint boundary. 

The limitation of radiation to photosynthesis was linked to a low sensitivity of phenology to 

temperature in temperate and cold regions of the Northern Hemisphere. Temperature 

dependency was estimated using the coefficient of correlation between temperature and 

phenological dates obtained from OCO2SIF time series, which provides more spatial and 

temporal coverage (2001-2020) than the FLUXNET GPP records. SoS was on average more 

dependent than EoS to temperature. The dependency of phenological dates to temperature was 

significantly lower when the limitation of radiation was high (Figure 4.1c). Regions with the 

highest radiation limitation during the SoS, where values of θ were lower than the 5th percentile 

(θ < 65), presented a lower temperature dependency (R = -0.50) than the rest of the regions (R 

= -0.63). Similarly, regions with the lowest radiation limitation during the EoS, defined as values 

greater than the 95th percentile (θ > 50), exhibited a greater temperature dependency (R = 0.23) 

than the rest of the regions (R = 0.16). In tropical dryland ecosystems, SoS and EoS were 
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dependent to the aridity index (the ratio of precipitation (P) to potential evapotranspiration 

(PET)). The dependency was negative during the SoS (R = -0.23) and positive during the EoS (R = 

0.31) (Figure 4.1f), indicating that increasing aridity delays the SoS and advances the EoS and, 

thus, shortens the length of the growing season. 

 

Figure 4.2. Potential lengthening of the growing season in temperate and cold regions of the Northern 
Hemisphere. a) Latitudinal gradients of the observed SoS and EoS, obtained from the GPP time series at 
the FLUXNET towers, and the mean potential start of season SoSpot and mean potential end of season 
EoSpot, which represent the dates when shortwave radiation is surpasses the 27 W m-2. We offset the Day 
of Year such as the summer solstice (DoYsolstice) is the origin of the axis. b) Magnitudes of the constraints 
on SoS and EoS by radiation and temperature. The constraints (θ) on GPP are associated with the gradients 
of temperature and radiation; the temperature gradient increases with θ, and the radiation gradient 
decreases with θ. c) Potential advance of SoS and potential delay of EoS estimated using the ERA5-Land 
and OCO-2 SIF data sets for 2001-2020. 

4.3.3.    Potential lengthening of the growing season in temperate and cold regions of 

the Northern Hemisphere 

We defined the dates when radiation could potentially become the climatic variable that fully 

restricted photosynthetic activity during spring onset and autumnal senescence as SoSpot and 

EoSpot, representing the days of the year when daily shortwave radiation reaches the 27 W m-2 

threshold in spring and autumn. The 27 W m-2 threshold represents the lowest constraint 

boundary of radiation (Fig 1a). The current EoS was generally similar to the predicted EoSpot 

based on the FLUXNET and gridded climatic data (Figure 4.2a, c) (mean difference EoSpot – EoS 
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was 23.6 d for FLUXNET), indicating a strong constraint of radiation on GPP senescence in the 

Northern Hemisphere (Figure 4.2b) and suggesting that future climatic warming cannot delay 

the end of the photosynthetically growing season due to low levels of radiation in autumn. The 

observed SoS estimated using FLUXNET and gridded climatic data, in contrast, was far from 

reaching SoSpot at the hemispheric scale (Figure 4.2c) (mean difference SoSpot – SoS was -79.3 d 

for FLUXNET). SoS was only close to SoSpot in Europe. These findings suggest that the advance of 

spring onset was overall not limited by radiation, and future warming can potentially lead to an 

advance of the spring onset of carbon uptake in evergreen needleaved forests, which respond 

promptly to favourable temperature and radiation conditions. 

4.4.    Discussion 

Our results indicate that the most limiting factor determines the start and end of the 

photosynthetically active season. Carbon uptake by vegetation begins soon after conditions for 

growth become favorable and ceases when these conditions decline. Limiting factors are 

temperature and radiation in temperate and cold regions, and water availability in dryland 

ecosystems. We showed that climate constraint boundaries, which define the threshold under 

which photosynthesis is inhibited, can differentiate between active and restricted vegetation 

stages and, thus, determine the phenological dates across latitudes in evergreen needleaved 

forests. However, our findings were inconclusive regarding whether limiting factors determined 

the start and end of the growing season in deciduous forests. 

The cold-avoidance strategy of deciduous forests may explain their exception to the law of the 

limiting factors in the phenology of the carbon uptake. Deciduous trees respond differently than 

evergreen conifers to cold winters. Most conifers in temperate and cold regions have a cold-

tolerant strategy. Leaves in conifers resist cold, reject excessive radiation when temperatures 

are still low in the spring, and resume photosynthetic activity as soon as climatic conditions are 

favorable(Chang et al., 2021). In contrast, deciduous trees shed their leaves in autumn and leaf 

budbreak in spring (Chuine et al., 2013). This would account for our findings that deciduous trees 

remain dormant during the spring, even when photosynthesis conditions are favorable. The 

ecodormancy stage is only broken when a certain amount of heat is accumulated. Such heat 

requirements would explain the long difference between modelled SoS and flux-based SoS in 

deciduous forests. Thus, previous weather conditions affect the phenophases of deciduous 
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species, but not the carbon uptake phenology, which is determined by current weather 

conditions. 

Temperature is the main limiting factor during spring onset, but temperature and radiation may 

have been limiting during autumn in temperate and cold regions of the Northern 

Hemisphere(Zhang et al., 2020). Temperature is seasonally asymmetrical, with lower 

temperatures before the summer solstice than after. That is because leafless temperate 

deciduous forests and snow-covered ecosystems have a high albedo in the springtime. Tundra 

FLUXNET sites provide key examples; daily mean air temperatures remained <2.5 °C just before 

the summer solstice, when annual radiation was at its peak. Because spring is colder than 

autumn, the growing season begins closer to the summer solstice than the senescence stage 

does. During the EoS, the radiation constraint on photosynthetic activity is increased because 

autumn temperatures remain high. This suggests that, as a result of future warming, radiation 

constraints will increase further in autumn, limiting the delay of the EoS. 

The strongest radiation constraint was found in temperate Europe, where the maritime 

influence kept temperatures favourable for vegetation growth in autumn. In contrast, 

temperature mostly constrained carbon uptake phenology in high-elevated regions, which 

suggests that warming could potentially advance the SoS and delay the EoS in alpine ecosystems 

more than radiation-restricted vegetation. This further support the claims of spatial 

homogeneity in spring phenology(Liu et al., 2019) and the reduction of the altitudinal gradient 

in phenological dates as a result of global warming(Vitasse et al., 2018). With climatic warming, 

high-elevated vegetation will lengthen the growing season more than low-elevated vegetation, 

equalizing phenological dates across elevations. 

Our findings have important implications for phenology modelling and the study of the global 

carbon cycle and the vegetation responses to climatic warming. Phenophase observations are 

straightforward to collect, which may account for their long records. Phenology research has 

had a major focus on the timing of phenophases in temperate deciduous forests(Piao et al., 

2019). The PEP725, the most widely used in situ phenological database, mostly contains 

phenophase records of deciduous species in Central Europe. However, we showed that the 

climate of Europe has milder temperatures than other areas of the same latitude, exacerbating 

the limitation of radiation in both spring and autumn. Secondly, deciduous forests have high 

heat requirements for their release from dormancy that differ from other vegetation types, 
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which explains their different responses to favorable weather conditions during the spring 

onset. Lastly, the coverage of deciduous trees and mixed forests represents only 18% of the 

temperate and cold regions of the Northern Hemisphere (Supplementary Figure 4.1). All these 

factors indicate that forecasted shifts in phenology under climatic warming and projections of 

carbon sequestration by vegetation, based on the sole modelling of phenophases of deciduous 

trees in Central Europe, cannot be scaled to other biomes of the Northern Hemisphere. Our 

findings highlight the importance of extensive carbon uptake observations for the study of the 

global carbon cycle. Carbon uptake phenology is more difficult to track than tree phenophases, 

and only in situ (FLUXNET) and satellite (SIF) observations have been made extensively over the 

last two decades. 

Radiation constraints explain the nonuniform seasonal temperature dependency during the SoS 

and EoS and across the temperate and cold regions, indicating divergent responses of vegetation 

phenology to future climatic warming. The dependency of the SoS and EoS to temperature was 

significantly lower in regions where radiation constraints were the highest. These results 

indicate that the sensitivity of vegetation phenology to temperature decreases with the 

increasing constraints of radiation. Our results show that the senescence stage has a low 

temperature dependency due to the constraints of radiation, and this might be a reason for the 

lower magnitude in the EoS delay than the SoS advance(Menzel et al., 2006). SoS could continue 

its advance with future warming, even if it is at a lower pace(Fu et al., 2015), although the 

advance of spring onset would be highly spatially variable depending on the local radiation 

limitations. In tropical dryland ecosystems, carbon uptake phenology is sensitive to the aridity 

index. This indicates that the length of the growing season would shorten with climatic warming, 

as the warming-induced increase in potential evapotranspiration will be greater than the 

increase in precipitation(Sherwood & Fu, 2014). The constraints imposed by radiation and water 

should be considered in modelling future phenological responses to climatic warming because 

the length of the growing season may be overestimated if temperature is the only climatic factor 

considered. 
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Abstract 

Heatwaves and droughts are becoming more common and severe in Europe, causing changes in 

tree phenology, disrupting the sequestration of carbon, and causing tree mortality on a 

continental scale. The responses of leaf shedding to heatwaves and droughts remain uncertain, 

although temperate deciduous forests may shed their leaves if exposed to extreme heat and 

water stress. Little information, however, is available about the extent of early leaf shedding 

induced by drought, likely because it occurs in small forest patches and can be discriminated 

only during a few weeks. We used highly spatiotemporal Sentinel-2 data as evidence of 

widespread drought-induced early leaf shedding in Europe from 2017 to 2021. The 10-m 

resolution Sentinel-2 data identified early leaf shedding not detected by a low-resolution (500 

m) MODIS sensor. Early leaf shedding was identified in 90 locations throughout Europe during 

2017-2021, and its occurrence was linked to preceding anomalously high temperatures and arid 

conditions. Our results also indicated that mean summer NDVI decreased significantly in the 

years following early leaf shedding, suggesting a legacy decline in vegetation productivity. Our 

study demonstrates that decametric satellite data can be used to monitor the responses of 

forests to drought at the canopy level and indicates that early leaf shedding associated with 

heatwaves is more widespread and frequent across the continent than previously thought. 
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5.1.    Introduction 

Increases in temperature have lengthened the growing season over the last few decades 

(Menzel et al., 2006); leaf unfolding has advanced and leaf shedding has delayed in central 

Europe. These changes in vegetation phenology have increased the uptake of carbon by 

vegetation (Keenan et al., 2014). How vegetation phenology will respond to future climatic 

warming and to extreme climate, however, is unclear, particularly for leaf shedding, which 

remains insufficiently studied (Gallinat et al., 2015). Growing evidence suggests that heatwaves 

and droughts reduce the sequestration of carbon by vegetation (Bastos et al., 2020; Ciais et al., 

2005), and heatwaves such as the European heatwave in 2003 have legacy effects and reduce 

carbon sequestration in the following years (Ciais et al., 2005). Drought is also an important 

cause of tree mortality in Europe, and drought is expected to worsen, potentially increasing tree 

mortality (Senf et al., 2020). Studies on the response of leaf shedding to heatwaves and 

droughts, however, have provided divergent results, and a deeper understanding of leaf 

shedding is needed to forecast atmospheric carbon levels and reduce uncertainties in climatic 

projections. 

One line of research suggests that leaf shedding may be delayed in response to high 

temperatures in autumn and the presence of heatwaves and droughts. A study in North America 

using remotely sensed data indicated that drought stress delayed the start of dormancy (Xie et 

al., 2015). Another study found a positive correlation between the end of the growing season, 

estimated from satellite data, and a drought index in temperate biomes (Bórnez et al., 2021), 

and in situ measurements indicated that foliar longevity in deciduous trees was greater during 

the 2003 European heatwave than in previous years (Leuzinger et al., 2005). Manipulative 

experiments found that heat stress or dry air had no effect on the start of leaf shedding. (Mariën 

et al., 2021).  

Another line of research suggests that the timing of leaf shedding in temperate deciduous 

forests cannot be delayed further, because photoperiod triggers leaf shedding in autumn (Way 

& Montgomery, 2015). Leaf shedding may even advance with climatic warming because 

shedding is linked to increased summer productivity (Zani et al., 2020), which is expected to 

increase with rising temperatures. Drought-induced early leaf shedding has been reported from 

local observations, some as far back as the 1913 drought in the United States of America 

(Kozlowski, 1976). Early leaf shedding in response to heatwaves and droughts, however, has 
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been poorly documented using remotely-sensed data, and only one recent study found satellite 

evidence of early leaf shedding during the 2018 European heatwave (Brun et al., 2020).  

Land-surface phenology (LSP) is studied using the seasonality of indices of vegetation greenness 

and links observations from satellites with in situ observations of phenophases (Bornez et al., 

2020). LSP studies have focused mainly on moderate- to low-resolution satellite data (spatial 

resolution >100 m), including data from MODIS (Zhang et al., 2003), AVHRR (Julien & Sobrino, 

2009), and Proba-V (Bornez et al., 2020), among other satellite sensors. The spatial resolution 

of remotely sensed satellite data, however, has an impact on the estimation of phenological 

metrics (Hmimina et al., 2013), and low resolution may hamper the detection of early leaf 

shedding; LSP metrics at moderate resolutions generally delay the date of the end of the growing 

season (Hmimina et al., 2013), particularly in heterogeneous landscapes. The date of early leaf 

shedding from moderate-resolution satellite data may thus be underestimated or remain 

undetected when shedding occurs in small forest patches.  

The recent launch of decametric-resolution satellites with short revisiting times enables the 

extraction of phenological data at the canopy scale. Sentinel-2 provides images at 10-m 

resolution. The revisiting time is 5 d at the equator but increases with latitude and can provide 

daily observations above 65° latitude (Descals et al., 2020). Previous studies have estimated LSP 

metrics at the canopy level on a continental scale (Bolton et al., 2020; Descals et al., 2020) and 

have linked LSP metrics with in situ observations of phenophases and PhenoCam time series 

(Tian et al., 2021). High-resolution satellite data can potentially improve the monitoring of future 

responses of forests to climate change (Hartmann et al., 2022); Sentinel-2 may enable the 

detection of early leaf shedding on a continental scale and for the years covered by the satellite 

mission, quantifying the advance of early leaf shedding.  

A recent study explored the feasibility of using 10-m Sentinel-2 data for the detection of early 

leaf shedding during the 2018 European heatwave (Brun et al., 2020). Whether the occurrence 

will be limited to that specific heatwave or whether it will be more widespread and recurrent 

across the continent, however, is unclear. We studied the occurrence of early leaf shedding and 

its link to summer meteorological conditions in European temperate deciduous forests using 

Sentinel-2 data for widespread early leaf shedding across Europe during 2017-2021. We 

quantified the evidence of shifts in the dates of leaf shedding across the continent and compared 

them to low-resolution phenological data from MODIS. We inspected the legacy effects on the 
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mean normalised difference vegetation index (NDVI) in summer in the years after the early leaf 

shedding. Finally, we investigated the link between the dates of early leaf shedding and two 

climatic variables, temperature and aridity, to determine whether leaf shedding advances or 

delays as a response of summer meteorological conditions. 

5.2.    Methods 

5.2.1.    Study area 

We investigated the occurrence of early leaf shedding in Europe for 2017-2021. The study area 

was limited to Europe because it is the only region covered by Sentinel-2 Level 2A for this period, 

with the rest of the globe only covered for 2019-2021. The study area covered the southern and 

central distribution of temperate deciduous forests in Europe, between 43 and 55°N and 3°W 

and 36°E, excluding the northeastern part of the boundary. This slightly longer coverage allowed 

a more robust temporal analysis that linked early leaf shedding and summer climatic conditions. 

The region experienced a severe heatwave and drought in central Europe in 2018 (Bastos et al., 

2020) and in the Carpathians in 2019. The climate of the region is mostly temperate, but the 

southern part has a Mediterranean climate, where arid conditions in summer are more severe 

than in central Europe. This difference in climate accounts for the different composition of tree 

species in the study area; drought-tolerant deciduous species such as Quercus faginea and Q. 

frainetto grow under the Mediterranean climate in southern Europe, and common temperate 

deciduous species such as Q. ruber and Fagus sylvatica grow primarily at northern latitudes or 

highly elevated areas that have less severe arid conditions. 

5.2.2.    LSP estimation with Sentinel-2 

We processed the Sentinel-2 Level-2A (surface reflectance) time series and estimated the end 

of the growing season (EoS) in the study area for 2017-2021. EoS was estimated using the 

threshold-based method proposed by (Descals et al., 2020). The method consists of five steps. 

1) Invalid observations were masked using the Scene Classification Layer, which is included in 

the Sentinel-2 Level-2A product. We also masked observations that were flagged as clouds with 

a probability >65% in the cloud mask generated with the sentinel2-cloud-detector library of the 

European Space Agency (ESA). 2) We generated a time series of NDVI, i.e. the normalised 

difference between the near-infrared and red bands (bands 8 and 4 in Sentinel-2, respectively). 

3) The NDVI time series at a revisiting time of 5 d were linearly interpolated at daily steps. 4) EoS 
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was estimated as the day when NDVI decreased in late summer and autumn, exceeding a 

dynamic threshold. The threshold was defined as 20% of the annual amplitude plus the annual 

minimum NDVI value. The 20% threshold represents low NDVI values that ensure the estimation 

of the leaf-shedding date. Values lower than the 20% threshold may lead to inconsistent 

estimates of EoS because of the noise in the NDVI time series during dormancy. 5) EoS was 

rejected if the gap between the closest valid observations before and after the EoS date was >15 

d. We thereby ensured that only high-confidence estimates from dense Sentinel-2 time series 

were included in the analysis. 

5.2.3.    Detection of early leaf shedding 

We identified pixels where early leaf shedding could potentially occur when the EoS estimated 

using Sentinel-2 data was earlier than 1 September. We used this definition because leaf 

shedding commonly occurs after this date in European deciduous forests. The same criterion 

was used in a previous study that detected early leaf shedding in central Europe (Brun et al., 

2020). We masked potential false positives of early leaf shedding in these pixels. First, we 

removed pixels with vegetation that was affected by wildfires. Areas affected by summer 

wildfires also presented a decline in the NDVI time series, similar to the decrease in areas 

affected by early leaf shedding. We masked early-EoS pixels that overlapped with the FIRMS 

active-fire product (Giglio et al., 2016). Second, we masked all types of vegetation that were not 

deciduous broadleaf forests (DBFs). The DBF mask was obtained from the Copernicus Global 

Land Cover Layers (CGLS-LC100 Collection 3) at a resolution of 100 m for 2019 (Buchhorn et al., 

2020), which included the class ‘deciduous broadleaf closed forest (tree canopy >70%)’. We also 

used the ESA WorldCover 10-m v100, with the class ‘Trees’, to mask the remaining non-forest 

pixels. Finally, we applied a filter to remove isolated pixels that had early EoSs.  

The occurrence of early leaf shedding was validated using a random sampling of pixels. We 

randomly sampled 150 points where Sentinel-2 potentially detected early leaf shedding during 

2017-2021 (EoS date before 1 September). The points were sampled such that the minimum 

distance between two points was >10 km. The validation was done by visual interpretation of 

Sentinel-2 images. We visualised RGB true-colour Sentinel-2 images (bands 4, 3, and 2, 

corresponding to the red, green, and blue bands) and labelled the points as early leaf shedding 

if the RGB image indicated that the forest canopy was brownish between 20 August and 10 

September. If a point was a false positive, we also labelled the cause of the false positive.  
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The Sentinel-2 EoS was compared to the EoS provided in the MCD12Q2 V6 Land Cover Dynamics 

product (Friedl et al., 2019). The aim of this comparison was to determine whether low 

resolution (MODIS product at 500-m resolution) could detect early leaf shedding. We used the 

MidgreenDown and the Dormancy metrics from the MCD12Q2 product, which represent the 

dates when the Enhanced Vegetation Index 2 (EVI2) last crossed 50 and 15% of the annual 

amplitude, respectively. The data were compared only at the points where early leaf shedding 

was confirmed by visual inspection for 2017-2019, which are the years that Sentinel-2 and 

MCD12Q2 product overlap. We also investigated whether the size of the forest affected by early 

leaf shedding influenced the MODIS EoS metrics. We hypothesised that the larger the affected 

area, the better MODIS EoS could identify early leaf shedding, resulting in a decrease in the 

difference between the Sentinel-2 EoS and MODIS EoS metrics. We inspected the difference in 

EoS between the two sensors as a function of the size of the affected area. The affected forest 

size was calculated as the number of 10-m pixels with early leaf shedding detected by Sentinel-

2 that fell within a 500-m MODIS pixel. 

5.2.4.    Legacy effects of early leaf shedding 

We investigated whether early leaf shedding affected the productivity of the forests in the years 

after the occurrence by identifying the trends in NDVI in the pixels where early leaf shedding 

was confirmed by visual interpretation. We extracted the mean NDVI for early summer (June 

and July), when NDVI in DBFs peaks during the growing season. We then analysed the trends in 

NDVI in the pixels where early leaf shedding was detected. We inspected whether the NDVI 

significantly decreased the year after the early leaf shedding. We used a two-sample t-test to 

determine if the mean summer NDVI differed significantly between years with a confidence 

interval >95%. 

5.2.5.    Assessment of drought impacts on leaf shedding 

The relationship between early EoS and extreme climate was investigated using two climatic 

time series: air temperature and the aridity index. We used the air temperature 2 m above the 

surface provided by the ERA5-Land hourly data set (Muñoz-Sabater et al., 2021). The aridity 

index (P PET-1) is the ratio of rainfall to potential evapotranspiration for a given time interval 

(Sherwood & Fu, 2014). The rainfall was obtained directly from the ERA5-Land hourly data set. 
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Potential evapotranspiration was calculated hourly using the method described by (Singer et al., 

2021), which was based on the FAO Penman-Monteith equation.  

We examined the relationships between temperature, aridity index, and the EoS date to identify 

two types of processes. 

1)  We investigated whether deciduous trees advanced the leaf shedding during short-

term anomalous high temperatures and arid periods (i.e. low values of the aridity index) 

by first extracting the mean temperature and mean aridity before the date of early leaf 

shedding using various time intervals (15, 30, 60, 90, and 120 d). We then extracted the 

aridity for the same day of the year (DoY) but for other years during 2001-2021. Finally, 

we tested whether the temperature and aridity were significantly different in the year 

with an early EoS compared to 2001-2021. The data for temperature and aridity from 

2001 to 2021 were normalised so that the mean was 0 and the standard deviation was 

1. Assuming a Gaussian distribution, anomalous temperatures and aridities will have a 

normalised value differing substantially from 0. 

2) We investigated whether deciduous trees delayed the shedding of leaves when the 

temperature and aridity were generally anomalously high throughout the growing 

season. For this case, we estimated the mean temperature and mean aridity for summer 

(June, July, August, and September) for 2001-2019, the period for which the MCD12Q2 

V6 data were available. We then calculated the sensitivity of the MCD12Q2 EoS 

MidGreendown to mean summer temperature and mean summer aridity. The 

sensitivities to temperature and aridity were calculated as the linear slopes between 

EoS and the mean summer temperature and mean summer aridity, respectively, using 

an ordinary least-squares regression over all DBF pixels in the study area. 

5.3.    Results 

5.3.1.    Detection of early leaf shedding 

We identified 90 points with early leaf shedding from 150 randomly selected locations in pixels 

where Sentinel-2 EoS was earlier than 1 September (Figure 5.1a; Supplementary Tables 5.1 and 

5.2). Early leaf shedding was found throughout the study area and study period (2017-2021). 

Occurrence was highest in 2018 and 2019 (Figure 5.1b) and lowest in 2017. The insufficient 
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number of valid observations during 2017 was the primary cause of false positives in our 

method; a total of 17 points were incorrectly detected as early leaf shedding for 2017, mostly in 

central Europe (Figure 5.1a). Other causes of false positives were the inaccuracy of the DBF mask 

(14 points); many locations were in fact shrubland, which may be more prone to early leaf 

shedding than DBF forests. The early decrease in NDVI was caused by fires at 11 points, even 

though the FIRMS active-fire product was used to mask them, and forests were clear-cut at 7 

points. 

 

Figure 5.1. Spatial distribution of the validation points. a) One hundred and fifty points were randomly 
distributed in pixels where the end of the growing season (EoS), obtained with Sentinel-2, was earlier than 
1 September. The colours of the points depict the labels assigned during the visual interpretation of 
Sentinel-2 images. Early leaf shedding was identified in 90 points. False positives appeared in the other 
points due to the lack of available data for 2017, inaccuracies in the mask for deciduous broadleaf forests 
(DBFs), the presence of wildfires and clear-cuts, and other reasons. b) The year of detection for the 90 
points where early leaf shedding was identified with the visual interpretation of Sentinel-2 images. Early 
leaf shedding occurred in 110 site-years; some sites experienced early leaf shedding more than once 
during 2017-2021. The numbers in parentheses represent the number of occurrences. 

The true-colour images at a resolution of 10 m identified the times before early leaf shedding 

(Figure 5.2a), after early leaf shedding (Figure 5.2b) and after all trees had entered dormancy 

(Figure 5.2c) at the 90 points where early leaf shedding was confirmed. The brown colour in the 
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RGB images depicts the areas where trees had coloured leaves or where their leaves were shed. 

Supplementary Figure 5.1 depicts forests that had been cleared or affected by fires, which are 

disturbances that were also identified visually in Sentinel-2 and discriminated against early leaf 

shedding.  

 

Figure 5.2. Sentinel-2 images for three sites and three times during the growing season: a) before early 
leaf shedding, b) after early leaf shedding, and c) after all trees have entered dormancy. The images show 
a true-colour composition; the channels correspond to Sentinel-2 bands 4 (red), 3 (green), and 2 (blue). 
Forests that have shed leaves prematurely in the growing season are depicted by brown in the middle 
images. The red and green points correspond to pixels whose time series are displayed in Figure 5.3.  

The Sentinel-2 time series indicated that NDVI for a year with early leaf shedding decreased 

before 1 September (DoY = 244), substantially earlier than other years during 2017-2021 (Figure 
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5.3). The NDVI time series at two pixel locations, with early and normal leaf shedding, indicated 

that the vegetation at both locations had a similar seasonality, with similar EoSs. EoS, however, 

diverged for the year in which early leaf shedding was detected. The pixels with early leaf 

shedding had a sharp decrease in NDVI, with subsequent low NDVI values that were similar to 

those when the deciduous trees became dormant. 

 

Figure 5.3. Time series of the normalised difference vegetation index (NDVI) for a canopy with early leaf 
shedding (red points) and a canopy that shed its leaves near the median of 2017-2021 (green points) at 
three sites (Figure 5.2). The time of the year when early leaf shedding was detected is indicated by the 
beige shading. The site locations are shown in Figure 5.2. 

The magnitude of the early EoS was underestimated in satellite data with lower spatial 

resolution. MODIS underestimated the advance in the timing of early leaf shedding (Figure 5.4a). 

Sentinel-2 EoS was estimated using the 20% threshold, and the MODIS MidGreenDown and 

Dormancy metrics were calculated using a similar LSP method but using 50 and 15% thresholds, 

respectively. The Sentinel-2 EoS date should thus be between the MODIS MidGreenDown and 

Dormancy dates. Sentinel-2, however, generally detected early leaf shedding 9 [0, 24.25] d 

(median and interquartile range) before MODIS MidGreenDown and 71 [63.75, 85.25] d before 

MODIS Dormancy (Figure 5.4b). The differences in EoS between Sentinel-2 and MODIS could be 
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attributed to the use of a different satellite sensor or vegetation index (NDVI versus EVI2), but 

the same comparison for the year preceding the early leaf shedding indicated that Sentinel-2 

EoS was between the MidGreenDown and dormancy dates (the difference was -23 [-47, -12.75] 

d and 12 [3, 27.5] d, respectively; Supplementary Figure 5.2), thus indicating that the difference 

in variable (NDVI versus EVI2) did not have an impact on the difference between Sentinel-2 and 

MODIS EoS.  

 

Figure 5.4. Comparison between the end of the growing season (EoS) obtained from MODIS and Sentinel-
2 for 90 sites where early leaf shedding was detected. a) Representation of the Sentinel-2 EoS and the 
MODIS MidGreendown and Dormancy metrics per site. Sites are numbered with the Sentinel-2 EoS in 
ascending order. We show only 69 sites, which are the sites where the MODIS MidGreendown and 
Dormancy metrics were available. b) Boxplots showing the difference in distribution between the 
Sentinel-2 EoS and the MODIS EoS metrics. Red line depicts the median, blue box represents the 
interquartile range, and red crosses outside the whiskers are outliers (>2 and <-2 standard deviations). c) 
Effect of scale on the estimates of early leaf shedding in MODIS. The x-axis shows the number of pixels in 
which Sentinel-2 detected early leaf shedding within a 500-m MODIS pixel. The y-axis shows the difference 
between the Sentinel-2 EoS and the MODIS EoS metrics at each site. 

The difference between the Sentinel-2 EoS metrics and the MODIS EoS metrics decreased as the 

size of the forest affected by early leaf shedding increased (Figure 5.4c), indicating that the EoS 

for both sensors became more similar as the effect grew in size. The slope, however, was only 

significant for the MODIS MidGreendown metric at a confidence interval of 95%. On average, 

the difference between Sentinel-2 EoS and the MODIS MidGreendown was close to zero when 

more than 2000 Sentinel-2 pixels presented early leaf shedding within a 500-meter MODIS pixel. 
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5.3.2.    Legacy effects of early leaf shedding 

The overall mean summer NDVI decreased in the year after the early leaf shedding (Figure 5.5). 

The two-sample t-test indicated that the decrease was significant (95% confidence interval) for 

early leaf shedding that occurred in 2017, 2018, and 2019. The decrease was not significant for 

2020, but the difference was significant compared with the summer NDVI for 2017. These results 

suggest that summer NDVI decreased not only after the year of early leaf shedding but also in 

the years preceding it. This negative trend in NDVI was clear when early leaf shedding occurred 

in 2020 and 2021. The slope of this trend differed significantly from 0 for a confidence interval 

of 95%. The validity of this analysis, however, was hampered by the short time series; this 

analysis only included the five years of the Sentinel-2 data. Moreover, the NDVI did not decrease 

the year after early leaf shedding in some of the sites (see site 29 in Figure 5.3). 

 

Figure 5.5. Mean summer normalised difference vegetation index (NDVI) at sites where early leaf 
shedding was observed during 2017-2021. The sites were grouped depending on the year of the 
occurrence. The titles show the year of disturbance and the number of sites in parentheses. Only sites 
with one year of early leaf shedding during 2017-2021 were considered. The thin lines represent the 
summer NDVI per site, and the thick line represents the mean summer NDVI across sites. 

5.3.3.    Assessment of drought impacts to leaf shedding 

Early leaf shedding generally occurred at anomalously high temperatures and aridity (Figure 

5.6). The normalised temperature and aridity 30 d before early leaf shedding were 0.41 [-0.01, 

1.10] and -0.61 [-1.03, -0.23], respectively. The 30-d temperature was significantly higher and 

the 30-day aridity was significantly lower than the average for 2001-2021 for the same DoYs 

(p<0.05). When considering other aggregation periods (15, 60, 90, and 120 d before early leaf 

shedding), the mean temperature and mean aridity were also significantly different than the 

long-term averages (Supplementary Figure 5.3). 
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The analysis above considered aggregated mean temperature and aridity for all the sites where 

early leaf shedding was detected. The period under which arid conditions affect early leaf 

shedding, however, may differ locally. The area of early leaf shedding increased for specific years 

when conditions were driest (Figure 5.7), corroborating the finding in Figure 5.6, but the length 

of time under which the conditions were arid depended on the region. For example, a short 

period of arid conditions led to leaf shedding in the Carpathians (Figure 5.7b), while forests shed 

their leaves after an unusually long arid period in the Apennines and central Europe (Figure 5.7a 

and c).  

 

Figure 5.6. Anomalies of temperature and aridity (P PET-1) at the 90 sites where early leaf shedding was 
identified. Temperature and aridity were calculated for a time lag of 30 d before early leaf shedding. The 
boxplots depict the temperature and aridity distributions normalised for 2001-2021; mean = 0 and 
standard deviation = 1. ‘Early EoS’ represents the normalised temperature and aridity for the year of early 
leaf shedding detected during 2017-2021, and ‘normal EoS’ represents the normalised temperature and 
aridity for the other years during 2017-2021. Red line depicts the median, blue box represents the 
interquartile range, and red crosses outside the whiskers are outliers (>2 and <-2 standard deviations). 

The sensitivity of MODIS EoS was positive (0.86 d °C-1) to summer mean temperature and 

negative (-6.12 d mm mm-1) to summer mean aridity during 2001-2019, indicating that EoS was 

delayed with hotter and drier summers. The percentage of pixels with significant sensitivity was 

relatively low; 12.98 and 8.99% of the pixels covering DBFs had a significant sensitivity of EoS to 

temperature and aridity, respectively. The positive sensitivity to temperature and negative 

sensitivity to aridity were generally found throughout the study area except the northern coast 

of the Anatolian peninsula (Figure 5.8). 
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Figure 5.7. Accumulated area that reached the end of the growing season (EoS) at three sites. The 

accumulated EoS was calculated for an area of 1010 km2 at each site. Red lines correspond to years in 
which early EoS was detected. Black lines are other years during 2017-2021. The lower panels show the 
30-d aridity (P PET-1) for 2017-2021.  

5.4.    Discussion 

Sentinel-2 was able to identify early leaf shedding at the continental scale during 2017-2021. 

Early leaf shedding occurred not only during extreme short-term heatwaves, such as the 2018 

European heatwave, but in every year during 2017-2021 when meteorological conditions were 

less severe. The estimation of early EoS was possible due to the short revisiting times of the 

Sentinel-2A and -2B satellites. The MODIS EoS product greatly underestimated early leaf 

shedding. Low spatial resolution tends to overestimate the length of the growing season 

(Hmimina et al., 2013), which hampers the retrospective study of early leaf shedding before the 

era of Sentinel-2 or Landsat-7 and -8. The bias between Sentinel-2 and MODIS differed greatly 

among sites. Our results indicated that these differences depended on the varying sizes of the 

areas that experienced early leaf shedding. MODIS may thus detect early leaf shedding more 

accurately when it occurs in large areas, reducing the bias associated with the Sentinel-2 

estimate. Early leaf shedding in European temperate deciduous forests, however, occurs mainly 

at a small scale and can be observed only during the last weeks of the growing season in late 

summer and early autumn. In contrast, tree mortality in coniferous trees can be easily detected 

with decametric-resolution satellite images in the following growing season (Meddens et al., 

2013), which may account for why early leaf shedding in DBFs has been insufficiently studied in 
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remote-sensing studies, with only one study using Sentinel-2 data to cover this event (Brun et 

al., 2020). 

Early leaf shedding was linked to unusually high temperatures and aridity in the days preceding 

the event. Most occurrences were in central Europe in 2018 and the Carpathians in 2019. These 

occurrences coincided in time and space with European heatwaves. The data from some sites 

also suggested that early leaf shedding stopped when aridity decreased (Figure 5.7), presumably 

because rain resumed. Our results indicated a link between early leaf shedding and arid 

conditions in summer, but the direct causes that trigger leaf shedding remain unknown. 

Deciduous broadleaved trees may simply shed their leaves to prevent excessive 

evapotranspiration (Bréda et al., 2006), which may help prevent the stems from desiccating, 

reducing the likelihood of death. This strategy does not apply to coniferous trees, where 

hydraulic failure occurs during arid conditions, leading to tree death (Arend et al., 2021). Pest 

infestations are another plausible cause of early leaf shedding. A previous study found that 

deciduous trees shed their leaves as a mechanism to control pest populations (Karban, 2007).  

Satellite data identified a divergent response of EoS to drought in deciduous forests. The 

Sentinel-2 data indicated that leaves were shed prematurely in forest patches during the 

growing season, but the MODIS data indicated that deciduous forests generally delayed leaf 

shedding during warm and arid seasons. Similar results were found with low spatial resolution 

(Bórnez et al., 2021) and in situ observations (Leuzinger et al., 2005). Delayed shedding in an 

arid summer may involve a mechanism distinct from early leaf shedding. Heatwaves may induce 

early leaf shedding locally due to their brief duration but high severity of heat stress. Continual 

arid conditions during the summer, however, can reduce vegetation productivity (Ciais et al., 

2005), which in turn could account for the delay in leaf shedding (Zani et al., 2020). Such 

persisting arid conditions throughout the growing season are not severe enough to cause early 

leaf shedding, which also suggests that early leaf shedding occurs when specific thresholds for 

heat and water stress are exceeded, but additional evidence is required to support this 

hypothesis. 

Our results indicated that NDVI decreased the year after the early leaf shedding, indicating a 

legacy effect on carbon uptake in following years. A previous study found that carbon 

sequestration decreased after the 2003 European heatwave (Ciais et al., 2005). The effect of 

early leaf shedding on the annual carbon uptake nevertheless remains uncertain. Annual carbon 
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uptake may not be affected, because carbon uptake in spring increases due to early SoS and 

high spring temperatures (Bastos et al., 2020). Our findings indicate that future increases in 

droughts will negatively influence carbon uptake in temperate forests. More extreme droughts 

will lead to forests shedding their leaves prematurely, as we have demonstrated. These forests 

will cease to take up carbon very early in the growing season.  

The detection of early leaf shedding was possible in some area, but we also found shortcomings 

in our method that hampered the estimation of EoS using the Sentinel-2 data. One shortcoming 

was the low availability of data in cloud-prone regions. The frequency of observations could be 

increased by including data from Landsat satellites, which would improve the confidence of EoS 

estimates, particularly for 2017 when only images from Sentinel-2A were available and the 

revisit time was 10 days. Our method of detection could be improved with more accurate forest 

masks and optimised algorithms for detecting clouds, as (Brun et al., 2020) have done for Central 

Europe. These improvements would reduce false positives, allowing for confident estimates of 

areas of early leaf shedding following the practices used by (Olofsson et al., 2014). Lastly, we 

found false positives associated with clear-cutting. These false positives are more difficult to 

detect automatically, and future algorithms for monitoring early leaf shedding should take this 

difficulty into account, particularly for central Europe where this harvesting practice is common.  

Our study demonstrates the feasibility of using decametric satellite data to monitor forest 

responses to drought at the canopy level. Sentinel-2 acquisitions are freely delivered in near 

real-time with a resolution of 10 m, enabling the rapid detection and localisation of early leaf 

shedding. Our method may thus facilitate in situ observations by helping define the area to visit 

when an event occurs. These local observations would contribute to a better understanding of 

the factors that contribute to early leaf shedding. The causes of early leaf shedding are difficult 

to deduce from satellite data alone, and field observations are required to confirm the 

underlying mechanisms. Future research may also examine the decrease in NDVI in the years 

preceding early leaf shedding, which could be attributed to the effects of global warming on 

forest health in Europe. 
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Abstract 

Data-driven models using machine learning have been widely used in remote sensing 

applications such as the retrieval of biophysical variables and land cover classification. However, 

these models behave as a ‘black box’, meaning that the relationships between the input and 

predicted variables are hard to interpret. Recent regression models that downscale sun-induced 

fluorescence (SIF) with MODIS and weather variables are an example. The impact of weather 

variables on the predicted SIF in these models is unknown. The explanation of such weather-SIF 

relationships would aid in the understanding of climate-related constraints on carbon uptake 

phenology. Here, we used SHapley Additive exPlanations (SHAP) –a novel technique based on 

game theory– for explaining the contribution of input variables to the individual predictions in 

a machine learning model. We explored the capabilities of this technique with a weather-SIF 

model. The regression model predicted TROPOSIF measurements from ERA5-Land air 

temperature, shortwave radiation, and vapor-pressure-deficit (VPD) data. The SHAP values of 

the model were estimated at the start and end of the growing season for the entire globe. These 

values depicted the global constraints of the three climate variables on the photosynthetically 

active season and confirmed existing limitations regarding terrestrial carbon uptake with 

unprecedented spatial detail. Radiation was the limiting factor in tropical rainforest and VPD 

constrained the start and end of the growing season in tropical dryland ecosystems. In extra-

tropical regions, temperature was the main limiting factor during the start of the growing 

season, but both temperature and radiation constrained photosynthesis at the end of the 

growing season. This technique may help future remote sensing studies that require the use of 

non-interpretable machine-learning regression models and explain how input variables 

contribute to the model prediction at the spatial and temporal scales. 
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6.1.    Introduction 

The field of vegetation phenology has gained attention recently, with the number of publications 

on phenology quintupling in the last two decades (Fu et al., 2020). This growing interest can be 

partially attributed to the link between changes in vegetation phenology and rising 

temperatures (Peñuelas et al., 2009), and the questions regarding how vegetation will respond 

to future climatic warming (Piao et al., 2019). Despite the growing interest in this field, 

phenology modelling has not received as much attention (Fu et al., 2020). Phenology modelling 

is important for understanding the factors influencing the timing of the onset and end of growing 

seasons and predict how vegetation will respond to future warming, which is critical for 

determining whether the growing season will continue to lengthen in the future, thus leading to 

further vegetation carbon uptake (Keenan et al., 2014).  

The transition between the dormant and growing season and the climate factors determining it 

have been explained globally by models employing climate thresholds. (Jolly et al., 2005) 

calculated the growing season index (GSI), calculated with cut-off functions on three weather 

variables: temperature, vapor-pressure-deficit (VPD), and day length. These cut-off functions 

represent thresholds that were defined by expert knowledge and are constant for the entire 

globe. The GSI shows seasonal changes throughout the year and aims to replicate a spectral 

index (e.g., normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)) 

or a biophysical variable (e.g., leaf area index (LAI)).  

Other studies used regression models to fit climate datasets to vegetation indices or biophysical 

variables. Both standard machine learning regression –such as random forests (Li and Xiao, 

2019)–, and deep learning (Ahmad et al., 2020) have been used given their ability to fit non-

linear and non-parametric relationships between dependent and independent variables. This 

methodology predicts vegetation indices or biophysical variables, and the climate thresholds 

are, thus, defined empirically and more accurately than the cut-off functions in (Jolly et al., 

2005). However, an important flaw in machine learning models is the lack of interpretability. 

Contrarily to (Jolly et al., 2005), the impact of the weather variables on the predicted outcome 

remains challenging in machine learning models. Recent regression models using vegetation 

indices and weather variables to downscale sun-induced fluorescence (SIF) are an example. For 

instance, the GOSIF product (Li and Xiao, 2019) uses a machine learning regression model to fit 

SIF with weather variables and EVI.  
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Machine learning models, however, do not allow for a clear understanding of the relationships 

between input and output variables – this refers to the impact of individual weather 

observations on the predicted SIF. A state-of-the-art local interpretation method for model 

explainability is SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017), an approach 

that explains the contribution of input variables on the model output. SHAP has been used for 

understanding the risk of hypoxemia during anaesthesia (Lundberg et al., 2018), interpret the 

features that make an online product review helpful (Meng et al., 2020), understanding the 

pollutant removal mechanisms in wastewater treatment plants (Wang et al., 2022), or analysing 

large-scale biobank data for potential gene–gene and gene–environment interactions (Johnsen 

et al., 2021). This technique is, however, novel in remote sensing studies and might help to 

understand spatial and temporal impacts of geospatial data in machine learning models. 

The aim of this study was to demonstrate the capability of a local interpretation technique to 

explain the correlation between geospatial gridded data and model predictions in a machine 

learning model. We used the case of weather-SIF models (Li and Xiao, 2019) to determine the 

global constraints of weather variables on vegetation activity. To achieve the objective of the 

study, we modelled TROPOSIF measurements using ERA5-Land temperature, shortwave 

radiation, and VPD. Then, we used SHAP to describe the effect of weather variables on SIF at the 

start and end of the growing season and, thus, determine the climate constraints on vegetation 

phenology. Finally, we discussed and validated the model interpretation with SHAP compared 

with the current understanding on carbon uptake dynamics. Finally, we discuss the consistency 

of the results obtained with SHAP considering the current understanding on carbon uptake 

dynamics. 

6.2. Data 

6.2.1. TROPOSIF global sun-induced fluorescence dataset 

We used the TROPOSIF L2B product (Guanter et al., 2021), which provides non-gridded SIF 

measurements derived from observations in the 743–758 nm and 665–785 nm part of the 

spectrum. The observations were made by the TROPOMI sensor onboard Sentinel-5. The 

methodology that generates SIF uses a retrieval method that fits the top-of-atmosphere 

radiances with SIF training sets (Guanter et al., 2015). We used the data for all the product time 

coverage, which spans from May 2018 to April 2021. We used the SIF_745_corr, which 

represents corrected SIF in the 743–758 nm window. SIF observations that presented a cloud 
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cover greater than 50% were rejected. The L2B product already masks observations with cloud 

cover greater than 80%, a view zenith angle greater than 60°, and a solar zenith angle greater 

than 70°. 

6.2.2. ERA5-Land hourly data 

We used gridded climatic data from the ECMWF Re-Analysis data version 5 (ERA5-Land) hourly 

dataset (Muñoz-Sabater et al., 2021). The ERA5-Land is a reanalysis dataset that covers a period 

from 1950 to present. The data were produced by a combination of modelled data with 

observations collected across the globe and improves upon the ERA-5 since it has higher spatial 

resolution (about 9 km) at the same temporal resolution (1 hour). We used the near-surface air 

temperature (2m temperature) and the surface solar radiation downwards –the solar shortwave 

radiation that reaches the surface of the Earth. We also estimated VPD –atmospheric demand 

for evapotranspiration– using the ERA5 near-surface air temperature and dew point 

temperature (2m dew point temperature) as described by Barkhordarian et al. (2019). 

6.3. Methods 

6.3.1. Extraction of training pairs (TROPOSIF - ERA5) in Belmanip2 sites 

We collected pairs of TROPOSIF measurements and ERA5 observations as training data. These 

data were used to train a machine learning model that predicted SIF from temperature, 

shortwave radiation, and VPD. We extracted the TROPOSIF and ERA5 data from the Belmanip2 

sites for the period going from May 2018 to April 2021. The Belmanip2 consists of a collection 

of 445 sites of homogeneous areas that include the most representative land covers of the world 

(Weiss et al., 2014). We excluded bare soil, cropland, and other non-natural or non-vegetated 

land covers, which resulted in 233 sites (see location map of the Belmanip points in 

Supplementary Figure 6.1) including the following land covers: evergreen needleleaf forests 

(ENF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed forests 

(MX), closed shrublands (CSH), open shrublands (OSH), woody savannah (WSA), savannah (SAV), 

and grasslands (GRA). The land cover types were determined for each Belmanip2 site with the 

‘LC_Type1’ layer of the MCD12Q1v6 product. The ERA5 data were extracted at hourly temporal 

resolution, and then aggregated daily. The TROPOSIF dataset provides daily non-gridded SIF 

measurements. We, thus, extracted the daily SIF observations that were located the closest to 

a Belmanip2 site. SIF observations more than 5 km away from a Belmanip2 site were rejected. 
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A total of 140,969 pairs of data were generated from the 233 sites for the May 2018 - April 2021 

period. 

6.3.2. Weather – SIF model 

The regression model that fitted ERA5 data (air temperature, shortwave radiation, and VPD) to 

TROPOSIF was the Gradient Boosting (Friedman, 2001). Gradient Boosting is an ensemble model 

that uses decision trees as weak learners, where decision trees are trained sequentially by 

correcting the errors of a previously trained decision tree. The performance of the decision trees 

is improved using a loss function. We used Gradient Boosting because it is a common machine 

learning model used by the research community, it can easily capture non-linear and non-

parametric relationships, and has very fast training and deployment times (Bentéjac et al., 2021). 

We trained the Gradient Boosting model with 75% of the data and kept the remaining 25% for 

validation. The accuracy metrics that we reported are the mean error (ME: difference between 

predicted minus observed), root-mean-squared error (RMSE), and the coefficient of 

determination (R2).  

We performed hyperparameter tuning to find the optimal parameters of the Gradient Boosting 

regression model. The hyperparameter tuning consisted of a random search for different 

combinations of hyperparameter values. The range of hyperparameters is depicted in 

Supplementary Table 6.1. For each combination of parameters, the RMSE of the model was 

evaluated with a 4-fold partition (75% training and 25% validation). The accuracy of the Gradient 

Boosting model was tested using 100 different hyperparameter combinations, and the model 

with the lowest root-mean-squared error (RMSE) was selected. 

Additionally, we did a 4-fold cross-site validation that consisted of training with 175 sites (75% 

of the sites) and validating with the remaining 58 sites (25% of the sites). We reported the 

averaged accuracy metrics over the four folds. 

6.3.3. Local interpretation with SHAP 

The local interpretation of the Gradient Boosting was done with SHapley Additive exPlanations 

(SHAP) (Lundberg and Lee, 2017). SHAP is a state-of-the-art technique for machine learning 

explainability; it aims to explain the correlations between input and output variables in any 

machine learning model, in both regression and classification algorithms. SHAP is based on the 
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Shapley values (Shapley, 1953) of game theory and is categorized as a local interpretation 

technique  –it explains the contribution of the input variables to individual model predictions. 

SHAP values represent the marginal effect of the input variables on the prior expectation of the 

model output. A negative SHAP value for a given input variable implies that the input variable 

has a decreasing effect on the model output, and vice versa; a positive SHAP value means that 

the input variable increases the model output. The greater the absolute value of SHAP, the 

greater the impact of the input variable on the predicted value. The model prediction is the prior 

expectation of the model plus the summatory of the SHAP values of all input variables. The 

mathematical formulation for SHAP is described in (Lundberg and Lee, 2017). In this study, we 

used the SHAP package in Python and used the approximation method for tree-based machine 

learning models (Lundberg et al., 2020). 

6.3.4. Land Surface Phenology metric estimation 

Phenological metrics were extracted from the predicted SIF time series at the global scale. We 

estimated the start of season (SoS) and end of season (EoS) using the Maximum Separation (MS) 

method (Descals et al., 2020). This is a threshold-based method that can effectively estimate 

phenological metrics without the need of time series pre-processing prior to the phenology 

extraction. These types of time series pre-processing include smoothing and interpolation 

techniques that are applied to improve the robustness of the phenology estimates. However, 

these pre-processing steps may produce a time series that differs from the original, resulting in 

biases in the phenology estimates. The Maximum Separation method can be applied directly to 

the original time series. 

As any threshold-based method, the MS required a threshold value to calculate the SoS and EoS 

from the SIF time series. For each pixel, we defined a dynamic threshold, which represented 20% 

of the amplitude plus the minimum SIF value in the time series. The MS runs a moving window 

that calculates the proportion of observations that are above the threshold before and after the 

central day of the moving window. We determined a moving window size of 120 days (including 

the days before and after the central day). The moving window is applied for every day of the 

time series. SoS and EoS are defined as the days of the year when the difference in proportions 

(before minus after) reaches the minimum and maximum during the year. The implementation 

of the MS method is available in Python and in Google Earth Engine (Descals et al., 2020). 
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6.4. Results 

The combination of hyperparameters that lead to the lowest RMSE in the validation dataset is 

shown in Supplementary Table 6.1. For these hyperparameters, RMSE was 0.21 mW m-2 sr-1 nm-

1, ME was -0.00 mW m-2 sr-1 nm-1, and R2 was 0.38. The accuracy metrics differed slightly 

depending on the land cover type (Supplementary Figure 6.2). The lowest accuracy was found 

in DBF (ME = 0.14 mW m-2 sr-1 nm-1, RMSE = 0.35 mW m-2 sr-1 nm-1), while the accuracy of the 

other land covers was close to the overall accuracy, with a minimal ME (ranging from -0.04 mW 

m-2 sr-1 nm-1 in OSH to 0.06 mW m-2 sr-1 nm-1 in MX) and similar RMSE (ranging from 0.15 mW m-

2 sr-1 nm-1 in CSH to 0.23 mW m-2 sr-1 nm-1 in MX).  

 

Figure 6.1. Time series of observed and predicted sun-induced fluorescence (SIF), air temperature, 
shortwave radiation, and vapor-pressure-deficit (VPD) in one grassland (GRA) and one mixed forest (MX) 
sites of the BELMANIP2 network. Vertical green lines depict the start of the growing season and blue lines 
represent the end of the growing season derived from predicted SIF time series. The observed SIF was 
extracted from the TROPOSIF dataset, while the predicted SIF was estimated with three climate variables 
using a machine learning regression model. Colours in the air temperature, shortwave radiation, and VPD 
time series depict the SHAP values. SHAP values indicate the impact of the input variables on the model 
mean SIF. Negative SHAP values mean that the input variable decreases the predicted SIF.  
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The model saturated the predicted values to 0.5 mW m-2 sr-1 nm-1 in observations with high SIF. 

Some observations above that value were underestimated, particularly in DBF and MX. Overall, 

the model fitted the data without substantial biases for SIF observations below 0.5 mW m-2 sr-1 

nm-1, which were the bulk of SIF observations. The cross-site validation did not differ 

substantially from the overall statistics except for the mean error. RMSE was 0.21 mW m-2 sr-1 

nm-1, ME was -7.22 mW m-2 sr-1 nm-1, and R2 was 0.37. Time series for two Belmanip2 sites 

exemplify the predicted SIF compared to the TROPOSIF measurements (Figure 6.1), and show 

that the model replicates the seasonality of the observed SIF, as also shown in the comparison 

between phenology metrics estimated with observed and predicted SIF (Supplementary Figure 

6.3 and Supplementary Figure 6.4).  

The time series of SHAP values represented the impact of the input climate variables on the 

predicted SIF. For instance, both low temperature and low shortwave radiation during winter 

were the most limiting factors in the Belmanip2 site 393 (Figure 6.1), located mid-latitude in a 

temperate climate. In Belmanip2 site 189 –a site in a dryland ecosystem– the SHAP values 

indicate that seasonal changes in VPD determined the SIF seasonality, with the growing season 

occurring when VPD values decrease to their annual minimum. These SHAP time series show 

the seasonal climate constraints throughout the year, and the constraints can be extracted at 

the start and end of the growing season. For example, in the site covering a dryland ecosystem, 

the SHAP values at the end of the growing season 2019 were 0.18 mW m-2 sr-1 nm-1 for air 

temperature, 0.03 mW m-2 sr-1 nm-1 for shortwave radiation and -0.26 mW m-2 sr-1 nm-1 for VPD. 

The low SHAP value for VPD means that this variable had a negative contribution on the prior 

expectation of the SIF model (0.13 mW m-2 sr-1 nm-1), indicating that VPD was constraining 

vegetation activity at that moment of the year. The predicted SIF at the end of season was 0.08 

mW m-2 sr-1 nm-1, which is the result of adding the SHAP values (0.18 + 0.03 – 0.26 mW m-2 sr-1 

nm-1) to the prior expectation of the model (0.13 mW m-2 sr-1 nm-1) (Supplementary Figure 6.5). 

SHAP values for the Belmanip2 sites show that high temperature and shortwave radiation had 

an overall positive impact on modelled SIF, while higher VPD had a negative impact (Figure 6.2). 

VPD was the variable with the highest overall importance followed by temperature and 

shortwave radiation. The most extreme VPD values had a effect of approximately -0.3 and 0.3 

mW m-2 sr-1 nm-1, while the lowest and highest shortwave radiation had a lower effect, 

approximately -0.1 and 0.15 mW m-2 sr-1 nm-1.  
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Figure 6.2. SHAP values of three input variables (air temperature (TA), shortwave radiation (SW), and 
vapor-pressure-deficit (VPD)) in a machine learning model that predicts sun-induced fluorescence (SIF). 
The SHAP values were estimated for 35,242 site-year observations of the Belmanip2 network (25% of the 
total observations were kept for model validation). SHAP values indicate the contribution of the input 
climate variables on the mean SIF. Negative SHAP values mean that the input variable decreases the 
predicted SIF and vice versa. The higher the absolute SHAP value, the higher the impact on predicted SIF. 
Color bars indicate the range of values (minimum to maximum) for each climate variable. 

The impact of temperature, shortwave radiation, and VPD on predicted SIF differed spatially 

during the SoS and EoS. The maps of SHAP values at the SoS and EoS show that it was mostly in 

extratropical areas that temperature constrained SIF (Figure 6.3). However, VPD was the highest 

constraint in tropical dryland ecosystems, while radiation was the limiting factor in tropical 

rainforests. The impact of temperature, shortwave radiation and VPD differed in some regions 

depending on whether it was the start or the end of the season. The most prominent difference 

was observed in extratropical regions. Temperature was the only factor that constrained SIF 

during the SoS (except for Europe) but both temperature and secondarily radiation constrained 

SIF in extratropical regions during the EoS. 
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Figure 6.3. Maps of the climate constraints on carbon uptake at the start and end of the growing season. 
The maps represent an RGB composite of SHAP values. SHAP values were estimated from a machine 
learning model that fitted sun-induced fluorescence (SIF) with three climate variables: air temperature, 
shortwave radiation, and vapor-pressure-deficit. The SoS and EoS were estimated from daily averaged 
predicted SIF time series for the 2012-2021 period. The three climate variables were extracted from the 
ERA5-Land dataset and daily averaged for the 2012-2021 period. Low SHAP values indicate that the input 
variable decreases the average modelled SIF, suggesting the climate variable constrains carbon uptake. 
The maps depict the inverse of the SHAP values for illustration purposes (higher values indicate a greater 
SIF constraint). 

6.5. Discussion 

The results demonstrated the capabilities of SHAP in a case study that made use of geospatial 

climate data as input variables of a machine learning model. A weather-SIF model was trained 

on Belmanip2 sites using ERA5-Land and TROPOSIF measurements. SHAP values showed the 
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spatial and temporal impacts of the three climate variables –air temperature, shortwave 

radiation, and VPD– on SIF, indicating climate constraints on the carbon uptake dynamics.  

The model showed good performance for replicating the vegetation seasonality even though it 

only considered weather variables as input. For low and medium values, the model had a 

minimal bias, but it struggled to predict high values (SIF >5 mW m-2 sr-1 nm-1), which were largely 

underestimated. The underestimated SIF would be potentially corrected if a proxy for the 

fraction of Absorbed Photosynthetically Active Radiation (fAPAR) was included in the model. 

fAPAR might explain the variance in high SIF values for similar weather conditions. Proxies for 

fAPAR are the NDVI and EVI. Should a spectral index be used, the model would have a similar 

typology of input variables as the GOSIF product (Li and Xiao, 2019). GOSIF used EVI and weather 

variables (air temperature, VPD, and photosynthetically active radiation (PAR)) to predict 

Orbiting Carbon Observatory-2 (OCO-2) measurements. If we included a spectral index, 

however, the model would be less explainable because part of the predicted SIF would be 

attributed to changes in NDVI, which would conceal the marginal contributions of weather 

variables on the predicted SIF. Besides that, our model explanation aimed to understand the 

impact on SIF purely attributed to climate variables and, thus, providing accurate SIF predictions 

were less important than reproducing the SIF seasonality.  

SHAP values confirmed previous finding on the spatial and temporal climate constraints on the 

vegetation activity. SHAP maps showed that VPD was the main factor limiting SIF in tropical 

dryland ecosystems at the start and end of the growing season. The growing season in these 

areas coincides with the rainfall season.  High evaporative demand induces vegetation –mostly 

grasslands and sparse woody vegetation– into dormancy in the form of deep roots (Zhou et al., 

2020). In tropical rainforests, however, both temperature and water are adequate for plants, 

and radiation was the only factor found to constrain SIF. This differs from the maps produced by 

(Jolly et al., 2005) which depicted tropical rainforests (Amazon and Central Africa) without any 

climate limitations. However, previous studies do suggest that radiation is a limiting factor in 

this biome, which supports our finding (Aguilos et al., 2018; Weber et al., 2009). In extratropical 

areas, temperature was the main constraint at the start and end of the growing season. Also, in 

extratropical areas, cold temperatures drive vegetation into dormancy, but we see a divergent 

constraint in terms of radiation. Overall, radiation was not limiting SIF during the SoS, except for 

Europe. This is due to the higher temperatures found in Europe compared to the rest of regions 

at similar latitudes. At the EoS, the radiation constraint was more generalized in the extratropical 
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areas of the Northern Hemisphere. This is consistent with recent findings (Zhang et al., 2020), 

which show that due to radiation constraints, rising temperatures will not increase autumn 

greening. The results obtained with SHAP are, thus, in line with the current understanding of 

carbon uptake dynamics.  

SHAP proved to be a useful technique for explaining the correlations between SIF and climate 

factors that were captured by the machine learning model. The explainability of the ML models 

with SHAP, on the other hand, must be considered with caution. SHAP values show researchers 

which correlations machine learning has found, but these correlations do not necessarily imply 

a causality between input and output variables (Heskes et al., 2020). Expert knowledge is 

required to determine whether the correlations are coherent with the reality of the problem, 

and further research is required to determine whether causality exists. In our case study, we 

validated our findings with literature that supported the results revealed by SHAP maps. The 

capability of SHAP to explain spatially and temporally the predictions from geospatial gridded 

time series might assist remote sensing applications. 
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General discussion and conclusions 

Satellite data is important for phenology studies, but limitations in the interpretation of time 

series, method and variable selection, and spatial resolution must be considered. The first two 

chapters tackle these uncertainties; Chapter 1 solves the problem of time series pre-processing 

in the estimation of phenology metrics and Chapter 2 shows the importance of high-spatial 

resolution for depicting vegetation dynamics at the canopy level. Other studies carried out 

during the thesis focused on other limitations of land surface phenology. For instance, we linked 

land surface phenology metrics with in situ measurements of phenophases, PhenoCam records, 

and carbon fluxes in deciduous trees (Bornez et al., 2020; Bórnez et al., 2020). We also 

demonstrated the divergent responses of vegetation indices during senescence stages of 

deciduous trees (Yin et al., 2020), indicating that vegetation indices might reflect leaf biomass 

or vegetation productivity and revealing the importance of variable selection.   

The findings of Chapters 3-5 show that at the beginning and end of the growing season, different 

spatial constraints of temperature, light, and water availability exist, implying that vegetation 

phenology will respond differently to future climatic warming. These constraints might slow 

down the lengthening of the growing season in the future. This has important implications for 

the carbon cycle; future projections must consider that the capacity of terrestrial ecosystems to 

remove carbon from the atmosphere might be compromised in the 21st century. The finding in 

Chapters 3-5 were upscaled to the global scale with a local interpretation method. Moreover, 

the method presented in Chapter 6 tackles a methodological problem that broadly affects many 

remote sensing studies using machine learning models, and puts machine learning explainability 

into a new and key perspective for the remote sensing community. In the following paragraphs, 

we will briefly summarize the findings presented in each of the chapters as a general discussion 

and conclusions of the thesis. 

We proposed a new land surface phenology method in Chapter 1, which had the advantage of 

allowing rapid processing of LSP maps on a global scale using a cloud-based platform. 

Furthermore, the method can handle raw time series without the use of preprocessing 

techniques like smoothing, gap filling, or interpolation. Other methods required time series pre-

processing (Bornez et al., 2020) or the use of smoothed and interpolated products (Verger et al., 

2016). These preprocessing techniques may distort the time series seasonality, whereas our 

method processes the data while maintaining the seasonality. Our method is more practical than 
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the standard threshold method because of the ease with which it can be applied to various 

satellite products. As in other chapters where we used our method to extract land surface 

phenology metrics, our study could help future phenology studies that require a fast and reliable 

method for extracting land surface phenology metrics. 

Cloud-based platforms, Google Earth Engine in particular (Gorelick et al., 2017), also enabled the 

processing of land surface phenology metrics at the continental scale, as demonstrated in 

Chapter 2, in which we presented maps of the start and end of season for the Arctic. The chapter 

demonstrates that the high agreement between the phenology metrics estimated with Sentinel-

2 and MODIS confirms the viability of LSP estimation due to the short revisit time of the Sentinel-

2 time series (Bolton et al., 2020), even in cloudy regions. The data was further validated by the 

high level of similarity between the phenology metrics estimated using Sentinel-2 and MODIS 

and PhenoCam. When continuous gaps in the time series are present, however, the combination 

of Sentinel-2 and Landsat-8 is recommended. The chapter demonstrates how estimating land 

surface phenology at a 10-meter resolution allows for the study of canopy-level vegetation 

dynamics. This is crucial for comprehending the processes that take place in small forest patches, 

as shown in Chapter 4. Furthermore, 10-meter resolution is critical for accurately depicting the 

dynamics of vegetation in heterogeneous landscapes like crop-forest mosaics. 

In Chapter 3, we found that spring onset of vegetation activity and soil thawing were closely 

associated in tundra and alpine grasslands, and weakly associated where soil froze 

intermittently. Deciduous forests at southerly latitudes required greater heat accumulation to 

unfold their leaves and initiate spring growth than tundra and needleleaved forests (Piao et al., 

2019). The onset in greenness in needleaved forests, in particular boreal forests, was much 

closer to the end of the thawing period, further suggesting that this vegetation type starts the 

growing season when temperatures become favorable. The chapter also showed that spring 

onset rarely occured with negative soil temperatures, indicating that frozen soil acted as a major 

constraint on vegetation activity. However, the possible restriction in vegetation growth 

because of other climate constraints, such as insufficient levels of incoming radiation, was still 

undetermined but covered in Chapter 4.  

Chapter 4 also confirms that carbon uptake by non-deciduous forests begins shortly after 

favorable growth conditions arise and ends when these conditions decline. The chapter 

confirmed that limiting factors of vegetation activity were temperature and radiation in 
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temperate and cold regions, and water availability in dryland ecosystems. Furthermore, we 

demonstrated that climate constraints differed between regions and seasonally. The strongest 

radiation constraint was found in temperate Europe, where the maritime influence maintained 

temperatures that were favorable for vegetation growth, especially in the autumn. 

Temperature, on the other hand, largely constrained carbon uptake phenology in most of the 

Northern Hemisphere, particularly in high-elevated regions. These findings suggest that future 

warming may advance the SoS, but at a slower rate. As previously reported (Zhang et al., 2020), 

radiation exerts a constraint on photosynthesis, which could prevent the EoS from advancing 

significantly with future warming. Carbon uptake phenology in tropical dryland ecosystems, on 

the other hand, is sensitive to aridity, suggesting that as the climate warms, the length of the 

growing season will shorten. 

Water stress may also play an increasing role in leaf shedding in temperate deciduous forest 

under global warming. Chapter 5 demonstrates that early leaf shedding was linked to unusually 

high temperatures and aridity in the days preceding the event. Most occurrences were in central 

Europe in 2018, as previously reported (Brun et al., 2020), and the Carpathians in 2019, although 

early leaf shedding was detected in all years of the Sentinel-2 time series across Europe. Higher 

temperatures mean higher evaporative demands (Sherwood & Fu, 2014), which seems to induce 

the early leaf shedding and disrupt leaf senescence in deciduous forests. The results suggest that 

future increases in droughts will shrink the length of the growing season and negatively 

influence carbon uptake from forests. 

In the last chapter, a novel remote sensing technique (Lundberg & Lee, 2017) confirmed 

worldwide constraints on carbon uptake phenology (Jolly et al., 2005). VPD was the key factor 

restricting SIF in tropical dryland ecosystems during the start and end of the growing season, 

according to the SHAP maps. Tropical rainforests have availability to both temperature and 

water, but radiation was the limiting factor for SIF. SHAP values also corroborated the findings 

in Chapter 4 about the divergent radiation constraints at the start and end of the season in 

extratropical Northern Hemisphere regions.  

Phenology research that makes use of satellite remote sensing may benefit from our recent 

developments in land surface phenology estimation as well as the SHAP technique that we have 

proposed. Our research demonstrates that decametric satellite data can be used to successfully 

monitor vegetation phenology and the responses of forest canopies to drought at the canopy 
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level. Our findings have important implications for phenology modeling, as well as the study of 

the global carbon cycle and the responses of vegetation to climatic warming. 
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Supplementary Table 1.1. Vegetation indices used in the extraction of Land Surface Phenology (LSP) 
metrics.  

 

Vegetation Index       Formula   

Normalized Vegetation Difference Index (NDVI) 

 

  

 

Enhanced Vegetation Index (EVI) 

 

    

Green Chromatic Coordinate (GCC) 

 

  

 

 

  



132 
 

Supplementary Table 1.2. Site name, time coverage and land cover of the PhenoCam sites used in the 
study. The land cover types are evergreen needleaved forests (ENF), deciduous broadleaved forests (DBF), 
mixed forests (MX), open shrublands (OSH), woody savannah (WSA), savannah (SAV), grasslands (GRA), 
temporary crops (CRO1), and cropland/natural vegetation mosaics (CRO2). 

Site name 
Year 
start 

Year 
end 

Land 
Cover  

  Site name 
Year 
start 

Year 
end 

Land 
Cover  

  Site name 
Year 
start 

Year 
end 

Land 
Cover  

 

NEON.D01.BART.DP1.00033 2016 2018 MF  harvard 2008 2018 MF  spruceA0P21SH 2017 2018 MF  

NEON.D01.BART.DP1.00042 2016 2018 MF  harvardbarn2 2012 2018 MF  spruceT0P06SH 2017 2018 MF  

NEON.D01.HARV.DP1.00033 2016 2018 MF  harvardbarn 2011 2018 MF  spruceT0P06 2015 2018 MF  

NEON.D01.HARV.DP1.00042 2016 2018 MF  harvardblo 2009 2018 MF  spruceT0P19ESH 2017 2018 MF  

NEON.D02.BLAN.DP1.00033 2016 2018 CRO2  harvardfarmnorth 2015 2018 CRO2  spruceT0P19E 2015 2018 MF  

NEON.D02.SCBI.DP1.00033 2016 2018 DBF  harvardfarmsouth 2015 2018 MF  spruceT2P11ESH 2017 2018 MF  

NEON.D02.SERC.DP1.00033 2016 2018 DBF  harvardgarden 2016 2018 MF  spruceT2P11E 2015 2018 MF  

NEON.D03.JERC.DP1.00042 2016 2018 WSA  harvardhemlock2 2015 2018 MF  spruceT2P20SH 2017 2018 MF  

NEON.D05.TREE.DP1.00033 2016 2018 MF  harvardhemlock 2010 2012 MF  spruceT2P20 2015 2018 MF  

NEON.D05.TREE.DP1.00042 2016 2018 MF  harvardlph 2010 2011 MF  spruceT4P04ESH 2017 2018 MF  

NEON.D05.UNDE.DP1.00033 2016 2018 MF  hawbeckereddy 2015 2018 MF  spruceT4P04E 2015 2018 MF  

NEON.D06.KONA.DP1.00042 2016 2018 GRA  humnokericea 2015 2018 CRO1  spruceT4P13SH 2017 2018 MF  

NEON.D06.KONZ.DP1.00033 2017 2018 GRA  humnokericec 2015 2018 CRO1  spruceT4P13 2015 2018 MF  

NEON.D06.KONZ.DP1.00042 2017 2018 GRA  innsbruck 2013 2018 ENF  spruceT6P08 2015 2018 MF  

NEON.D07.GRSM.DP1.00033 2017 2018 MF  intervale 2015 2016 MF  spruceT6P16ESH 2017 2018 MF  

NEON.D07.GRSM.DP1.00042 2017 2018 MF  jasperridge 2012 2017 WSA  spruceT6P16E 2015 2018 MF  

NEON.D07.ORNL.DP1.00033 2016 2018 MF  jernort 2014 2018 OSH  spruceT9P10ESH 2017 2018 MF  

NEON.D07.ORNL.DP1.00042 2016 2018 MF  joycekilmer 2006 2013 DBF  spruceT9P10E 2015 2018 MF  

NEON.D07.WALK.DP1.20002 2016 2018 DBF  juncabalejo 2016 2018 CRO1  spruceT9P17 2015 2018 MF  

NEON.D08.LENO.DP1.00033 2016 2018 MF  kansas 2012 2018 CRO2  stjones 2015 2018 CRO2  

NEON.D09.DCFS.DP1.00033 2017 2018 CRO1  kelloggcorn2 2015 2018 CRO2  sweetbriar 2014 2018 DBF  

NEON.D09.NOGP.DP1.00033 2017 2018 GRA  kelloggcornsoy2 2015 2018 CRO2  sweetbriargrass 2016 2018 CRO2  

NEON.D09.NOGP.DP1.00042 2017 2018 GRA  kelloggmiscanthus 2015 2018 CRO2  sylvania 2015 2018 MF  

NEON.D09.PRLA.DP1.20002 2017 2018 CRO1  kendall 2012 2018 GRA  teddy 2010 2018 GRA  

NEON.D09.WOOD.DP1.00033 2016 2018 CRO1  keplerltar 2018 2018 CRO2  tfforest 2016 2018 MF  

NEON.D10.ARIK.DP1.20002 2016 2018 GRA  kingmanfarm 2016 2018 MF  thompsonfarm2N 2009 2010 MF  

NEON.D11.CLBJ.DP1.00033 2017 2017 GRA  konza 2012 2018 GRA  tonzi 2011 2018 SAV  

NEON.D11.OAES.DP1.00033 2017 2018 GRA  lacclair 2014 2018 MF  torgnon-ld 2012 2018 ENF  

acadia 2007 2017 MF  laclaflamme 2014 2018 MF  torgnon-nd 2013 2018 GRA  

alligatorriver 2012 2018 MF  laurentides 2013 2018 MF  torrepalacio 2017 2018 OSH  

arbutuslakeinlet 2015 2018 MF  lethbridge 2011 2018 GRA  turkeypointdbf 2012 2018 DBF  

archboldbahia 2017 2018 CRO2  lostcreek 2015 2018 MF  turkeypointenf02 2012 2018 CRO2  

arsltarmdcr 2017 2018 CRO2  luckyhills 2013 2015 OSH  turkeypointenf39 2012 2018 MF  

arsmnswanlake1 2015 2018 CRO1  macleish 2017 2018 MF  turkeypointenf74 2012 2018 MF  

arsmorris1 2017 2018 CRO1  mammothcave 2002 2003 DBF  twitchellalfalfa2 2016 2018 CRO1  

arsmorris2 2017 2018 CRO1  mandanh5 2015 2018 CRO1  twosfpr 2018 2018 GRA  

asa 2010 2014 MF  mandani2 2016 2018 CRO1  uiefmaize 2008 2018 CRO1  

ashbottoms 2015 2017 GRA  manilacotton 2016 2018 CRO1  uiefmiscanthus 2008 2018 CRO1  

ashburnham 2012 2016 MF  marcell 2014 2018 MF  uiefprairie 2008 2018 CRO1  

asuhighlands 2016 2018 CRO2  marena 2012 2018 GRA  uiefswitchgrass 2008 2018 CRO1  

bartlettir 2008 2016 MF  mayberry 2010 2018 WSA  umichbiological2 2008 2014 MF  

bbc1 2015 2018 MF  mead1 2016 2018 CRO1  umichbiological 2008 2014 DBF  

bbc2 2015 2018 MF  mead2 2016 2018 CRO1  upperbuffalo 2006 2007 DBF  

bbc5 2015 2018 MF  mead3 2016 2018 CRO1  usgseros 2014 2017 CRO1  

bbc7 2015 2018 MF  meadpasture 2016 2018 CRO1  usmpj 2013 2018 OSH  

bouldincorn 2017 2018 CRO1  missouriozarks 2012 2018 DBF  usof1 2017 2017 CRO1  

boundarywaters 2006 2007 MF  montebondonegrass 2015 2018 GRA  usof2 2017 2017 CRO1  

bozeman 2016 2018 GRA  monture 2001 2010 CRO1  usof3 2017 2018 CRO1  

bullshoals 2013 2018 DBF  morganmonroe2 2017 2018 DBF  uwmfieldsta 2013 2018 CRO2  

burdettericea 2015 2018 CRO1  morganmonroe 2008 2018 DBF  vaira 2011 2018 WSA  

burdettericec 2015 2018 CRO1  nationalelkrefuge 2015 2018 CRO1  warrenwilson 2016 2018 CRO2  

butte 2009 2018 GRA  ninemileprairie 2015 2017 CRO1  westpond 2012 2018 CRO1  

cafboydnorthltar01 2017 2018 CRO1  niwot3 2015 2018 ENF  willamettepoplar 2015 2018 CRO1  

cafboydsouthltar01 2018 2018 CRO1  niwot5 2016 2018 ENF  willamettewheat 2015 2016 CRO1  

cafcookeastltar01 2017 2018 CRO1  northattleboroma 2012 2018 CRO2  willowcreek 2012 2018 DBF  

canadaOA 2011 2016 MF  oakridge1 2008 2009 DBF  wolfesneckfarm 2017 2018 MF  

canadaOBS 2011 2018 ENF  oakridge2 2008 2016 DBF  woodshole 2011 2018 MF  

canadaoa2 2016 2018 MF  oakville 2014 2018 CRO1  woodstockvt 2015 2016 MF  

chibougamau 2008 2011 ENF  oregonMP 2011 2018 ENF       
coaloilpoint 2008 2012 OSH  pace 2017 2018 DBF       

columbiamissouri 2006 2007 DBF  portal 2017 2018 OSH       
coville 2010 2014 OSH  quickbird 2014 2015 GRA       

coweeta 2011 2016 MF  robinson2 2017 2018 DBF       
cperuvb 2015 2018 GRA  robinson 2017 2018 DBF       

dollysods 2003 2014 DBF  rosemount 2008 2008 CRO1       
donanafuenteduque 2017 2018 WSA  rosemountcons 2017 2018 CRO1       

drippingsprings 2001 2009 WSA  rosemountconv 2017 2018 CRO1       
dukehw 2013 2018 MF  rosemountg21 2015 2017 CRO1       

eastend2 2017 2018 CRO1  rosemountnprs 2015 2018 CRO1       
esalb 2016 2018 CRO1  russellsage 2013 2018 MF       
eslm1 2014 2018 SAV  segabluechute 2018 2018 GRA       

eucflux 2018 2018 ENF  shahariya 2011 2013 CRO1       
forbes 2017 2018 SAV  sherman 2014 2015 CRO1       

gatesofthemountains 2001 2009 ENF  smokypurchase 2003 2006 DBF       
grandrivergrass 2015 2018 CRO1  snakerivermn 2010 2010 MF       

grandteton 2015 2018 GRA  spruceA0EMI 2016 2018 MF       
greenridge1 2016 2018 DBF  spruceA0P07 2016 2018 MF       
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Supplementary Table 1.3. Statistics used for the comparison between Land Surface Phenology (LSP) 
metrics generated with MODIS and PhenoCam. The LSP metrics are compared pairwise (xi-yi), where xi 
represents a LSP metric extracted from PhenoCam and yi is the same LSP metric extracted from MODIS. 
The LSP metrics are the Start of Season (SoS) or End of Season (EoS). 

 

Statistic       Formula 

Mean error (ME) 

 

Root mean squared error (RMSE) 
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Supplementary figure 1.1. Example of three types of time series preprocessing for Land Surface Phenology 
estimation. TH1 and TH2 use a moving-window approach; TH1 uses an 8-day composite and then 
interpolates the composites to daily observations, while TH2 uses an outlier rejection algorithm that 
excluded low values, a smoothing step with the Savitzky–Golay filter, and a linear interpolation. TH3 fits 
a logistic function to the time series. 
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Supplementary figure 1.2. Location map of the PhenoCam sites selected in the study.  
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Supplementary figure 1.3. Impact of window size on the maximum separation method for the Acadia 
PhenoCam deciduous forest site. The time series in a) shows the daily MODIS Green Chromatic Coordinate 
Index (GCC) for 2016-2018. Red dots in this panel depict the observations that lay below a dynamic 
threshold of 50% of the amplitude. The time series in b), c), and d) show the differences in the proportion 
of dormant observations for different window sizes (semi-period of 10, 30, and 90 day). 
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Supplementary figure 1.4. Root mean squared error (RMSE) and mean error (ME) obtained from the 
comparison of the LSP metrics generated with the PhenoCam dataset and the MODIS normalized 
difference vegetation index (NDVI), enhanced vegetation index (EVI), and leaf area index (LAI) for a range 
of threshold values. The LSP metrics are the Start of Season (SoS) and the End of Season (EoS). 
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Supplementary figure 1.5. Root mean squared error (RMSE) and mean error (ME) obtained from the 
comparison of the LSP metrics generated with the PhenoCam dataset and the MODIS normalized 
difference vegetation index (NDVI), enhanced vegetation index (EVI), and leaf area index (LAI). The 
comparison is based on the land cover of the Phenocam sites: evergreen needleleaf forests (ENF), 
deciduous broadleaf forests (DBF), mixed forests (MX), open shrublands (OSH), woody savannah (WSA), 
savannah (SAV), grasslands (GRA), temporary crops (CRO1), and cropland/natural vegetation mosaics 
(CRO2). The LSP metrics are the Start of Season (SoS) and the End of Season (EoS).  
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Supplementary figure 1.6. Maps of the mean start and end of season (SoS and EoS) estimated using the 
Maximum Separation method and a dynamic threshold of 50% of the amplitude for years 2001-2019. The 
SoS and EoS are shown as the Day of Year (DoY). The Maximum Separation method was applied to the 
MODIS NDVI, EVI, and LAI with a window size of radius equal to 30 days. The maps were processed fully 
in Google Earth Engine. 
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Chapter 2 

Improved estimates of Arctic Land Surface Phenology using 

Sentinel-2 time series 
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Estimation of the optimal alpha in Normalized Difference Phenology Index (NDPI) 

Normalized difference phenology index (NDPI), defined as eq. 5, adjusts the snow observations 

to the same values of bare soil and corrects the break in the time series due to the snow-to-

vegetation transition. Since the alpha parameter was originally set according to the spectral 

response of MODIS, we re-estimated the optimal alpha parameter for Sentinel-2.  

The optimal alpha was originally set so that the NDPI estimated 32 typical spectral responses to 

show the maximum separability between vegetation and snow-bare soil. Here, instead of using 

typical spectral responses from the Aster Spectral Library, we estimated the spectral responses 

empirically in snow, vegetation during the dormant period, and vegetation during the peak 

growth (Supplementary Figure 1). First, we randomly distributed 400 points covering Sentinel-2 

pixels that did not present long discontinuities in the time series (maximum gap < 10 days). Then, 

we extracted the Red, near infrared (NIR), and shortwave-infrared (SWIR2) values of the 

following observations: a) The last Sentinel-2 snow observation (reflected in the scene 

classification layer (SCL)) before the growing season, b) the first Sentinel-2 snow-free 

observation of the year, and c) the observation with the maximum normalized difference 

vegetation index (NDVI) value. Values in a) corresponded to snow, b) corresponded to bare soil 

or vegetation during the dormant period, and c) corresponded to vegetation during the 

maximum growth activity. Finally, we searched for the alpha that showed the best separability 

between vegetation during the maximum growth, and the snow and dormant vegetation. 
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Supplementary Table 2.1. Site name and coordinates of the PhenoCam sites used in the study. 

PhenoCam site name Latitude Longitude 

imcrktussock 68.6063°N 149.3041°W 

NEON.D18.TOOL.DP1.00033 68.6611°N 149.3705°W 

NEON.D19.HEAL.DP1.00033  63.8757°N 149.2133°W 
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Supplementary figure 2.1. Relationship between the normalized difference phenology index (NDPI) 
derived from Sentinel-2 data and the alpha parameter (eq. 5) for three stages in the tundra time series: 
vegetation during the maximum growth (green), vegetation after snowmelt (red), and snow observations 
(blue). The central line is the mean of 400 samples and the error bar represents one standard deviation. 
The optimal alpha value that provides the maximum separability between productive vegetation and 
vegetation during the dormant period and snow is 0.51 (black line). 
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Supplementary figure 2.2. Histogram of Sentinel-2 green coordinate chromatic (GCC) index, normalized 
difference vegetation index (NDVI), and enhanced vegetation index (EVI) values observed after the last 
snow observation. The histogram represents the NDVI value of vegetation during the dormant period. 
This analysis only considers the time series with a gap that did not exceed 10 days.  
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Supplementary figure 2.3. Time series of green coordinate chromatic (GCC) index of the PhenoCam site 
imcrkrtussock and four vegetation indices extracted for the site location from the Sentinel-2 level 2A for 
the years 2019 and 2020, and the associated land surface phenology metrics estimated with the threshold 
method. The vegetation indices were the GCC, normalized difference vegetation index (NDVI), enhanced 
vegetation index (EVI), and normalized difference phenology index (NDPI). 
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Supplementary figure 2.4. Time series of green coordinate chromatic (GCC) index of the PhenoCam site 
NEON.D18.TOOL.DP1.00033 and four vegetation indices extracted for the site location from the Sentinel-
2 level 2A for the years 2019 and 2020, and the associated land surface phenology metrics estimated with 
the threshold method. The vegetation indices were the GCC, normalized difference vegetation index 
(NDVI), enhanced vegetation index (EVI), and normalized difference phenology index (NDPI). 
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Supplementary figure 2.5. Time series of green coordinate chromatic (GCC) index of the PhenoCam site 
NEON.D19.HEAL.DP1.00033 and four vegetation indices extracted for the site location from the Sentinel-
2 level 2A for the years 2019 and 2020, and the associated land surface phenology metrics estimated with 
the threshold method. The vegetation indices were the GCC, normalized difference vegetation index 
(NDVI), enhanced vegetation index (EVI), and normalized difference phenology index (NDPI). 
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Supplementary figure 2.6. Maximum discontinuity in the surface spectral reflectance of Moderate 
Resolution Imaging Spectroradiometer (MODIS) (MOD09GAv6) time series after cloud masking for (a) 
spring and early summer (1 May to 15 July) and (b) late summer and autumn (15 July to 30 September) 
2019. 
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Supplementary figure 2.7. Comparison of start of season (SoS) and end of season (EoS) dates between 
PhenoCam and four vegetation indices estimated with Sentinel-2. The comparison was performed for 
three PhenoCam sites in the tundra biome for the years 2019 and 2020. The vegetation indices were the 
green chromatic coordinate (GCC) in PhenoCam and the GCC, normalized difference vegetation index 
(NDVI), enhanced vegetation index (EVI), and normalized difference phenology index (NDPI) for Sentinel-
2. The phenology metrics were extracted with a 50% threshold method after time series smoothing. The 
bias between PhenoCam and Sentinel-2 is reported with the mean error (ME) and the accuracy with the 
root mean squared error (RMSE). 

  



150 
 

 

Supplementary figure 2.8. Difference between start of season (a) and end of season (EoS) (b) phenology 
metrics extracted with the 50% threshold method applied to the non-smoothed Sentinel-2 and MODIS 
enhanced vegetation index (EVI) time series for the Arctic in 2019. The phenology metrics estimated with 
Sentinel-2 were resized to the spatial resolution of MODIS (500 m). 
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Supplementary figure 2.9. Differences in the vegetation dynamics in the delta of the Lena River. The 
Sentinel-2 image is a true composition (R: Red, G: Green, and B: blue) taken on 3 August 2019. The land 
cover is the GlobCover 2009.Changes in the land cover dynamics, primarily in the spring growth onset, 
depended on the vegetation type; greening occurs in the shrublands in the mainland earlier than the 
herbaceous cover in the delta.  
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Supplementary figure 2.10. Comparison between the phenology metrics extracted with the 50% threshold 
method applied to the non-smoothed (a) and smoothed (b) enhanced vegetation index (EVI) MODIS time 
series derived from MOD09GAv6 surface reflectance product and the bands ‘MidGreenup_1’ and 
‘MidGreendown_1’ in the MCD12Q2v6 phenology product for 2018. 
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Supplementary Table 3.1. Information for the 78 FLUXNET sites. 

Site ID IGBP Latitude (°) Longitude (°)  Site ID IGBP Latitude (°) Longitude (°) 

CA-Man ENF1 55.8796 -98.4808  IT-Ro1 DBF 42.4081 11.93 
CA-NS1 ENF 55.8792 -98.4839  IT-Ro2 DBF 42.3903 11.9209 
CA-NS2 ENF 55.9058 -98.5247  IT-SR2 ENF 43.732 10.291 
CA-NS3 ENF 55.9117 -98.3822  IT-SRo ENF 43.7279 10.2844 
CA-NS4 ENF 55.9144 -98.3806  IT-Tor GRA 45.8444 7.5781 
CA-NS5 ENF 55.8631 -98.485  JP-MBF DBF 44.3869 142.3186 
CA-Oas DBF2 53.6289 -106.1978  NL-Loo ENF 52.1666 5.7436 
CA-Obs ENF 53.9872 -105.1178  NO-Adv WET 78.186 15.923 
CA-Qfo ENF 49.6925 -74.3421  NO-Blv SNO3 78.9216 11.8311 
CA-SF1 ENF 54.485 -105.8176  RU-Che WET 68.613 161.3414 
CA-SF2 ENF 54.2539 -105.8775  RU-Cok OSH4 70.8291 147.4943 
CA-TP1 ENF 42.6609 -80.5595  RU-Fyo ENF 56.4615 32.9221 
CA-TP2 ENF 42.7744 -80.4588  RU-Sam GRA 72.3738 126.4958 
CA-TP3 ENF 42.7068 -80.3483  RU-Tks GRA 71.5943 128.8878 
CA-TP4 ENF 42.7102 -80.3574  RU-Vrk CSH5 67.0547 62.9405 
CA-TPD DBF 42.6353 -80.5577  SE-St1 WET 68.3542 19.0503 
CH-Dav ENF 46.8153 9.8559  US-Atq WET 70.4696 -157.4089 
CN-Ha2 WET6 37.6086 101.3269  US-GLE ENF 41.3665 -106.2399 
CN-HaM GRA7 37.37 101.18  US-Ha1 DBF 42.5378 -72.1715 
CZ-BK1 ENF 49.5021 18.5369  US-Ivo WET 68.4865 -155.7503 
DE-Hai DBF 51.0792 10.453  US-MMS DBF 39.3232 -86.4131 
DE-Lkb ENF 49.0996 13.3047  US-Me1 ENF 44.5794 -121.5 
DE-Lnf DBF 51.3282 10.3678  US-Me2 ENF 44.4523 -121.5574 
DE-Obe ENF 50.7867 13.7213  US-Me3 ENF 44.3154 -121.6078 
DE-Tha ENF 50.9624 13.5652  US-Me4 ENF 44.4992 -121.6224 
DK-NuF WET 64.1308 -51.3861  US-Me5 ENF 44.4372 -121.5668 
DK-Sor DBF 55.4859 11.6446  US-Me6 ENF 44.3233 -121.6078 
DK-ZaF WET 74.4814 -20.5545  US-NR1 ENF 40.0329 -105.5464 
DK-ZaH GRA 74.4733 -20.5503  US-Oho DBF 41.5545 -83.8438 
FI-Hyy ENF 61.8474 24.2948  US-Prr ENF 65.1237 -147.4876 
FI-Let ENF 60.6418 23.9595  US-UMB DBF 45.5598 -84.7138 
FI-Sod ENF 67.3624 26.6386  US-UMd DBF 45.5625 -84.6975 
FR-LBr ENF 44.7171 -0.7693  US-WCr DBF 45.8059 -90.0799 
IT-Col DBF 41.8494 13.5881  US-Wi0 ENF 46.6188 -91.0814 
IT-Isp DBF 45.8126 8.6336  US-Wi1 DBF 46.7305 -91.2329 
IT-La2 ENF 45.9542 11.2853  US-Wi2 ENF 46.6869 -91.1528 
IT-Lav ENF 45.9562 11.2813  US-Wi3 DBF 46.6347 -91.0987 

IT-MBo GRA 46.0147 11.0458  US-Wi4 ENF 46.7393 -91.1663 
IT-Ren ENF 46.5869 11.4337  US-Wi8 DBF 46.7223 -91.2524 

 
1 Evergreen needleleaf forests 
2 Deciduous broadleaf forests 
3 Snow and ice 
4 Open shrublands 
5 Closed shrublands 
6 Permanent wetlands 
7 Grasslands 
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Supplementary Figure 3.1. One year of measurements at five FLUXNET sites representative of (a) tundra, 
(b) boreal forest, (c) alpine grassland, and (d) and (e) temperate forests with seasonally frozen soil. Soil 
temperature was measured at a depth of 2 cm, GPP SoS was estimated with the GPP time series of the 
flux towers, and MODIS SoS is the ‘Onset Greenness Increase’ of the MCD12Q2 V5 Land Cover Dynamics 
product. 
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Supplementary Figure 3.2. Scatter plots of spring onset (gross primary productivity (GPP) start of season 
(SoS) (a) and MODIS SoS (‘MidGreenup1’ band in MCD12Q2v6 product) (b)) and the last day before the 
growing season using soil temperature >0.5 °C. Point colors represent boreal forests (black) and 
temperate forests (magenta) for both deciduous and needleaved forests. 
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Supplementary Figure 3.3. Maps of standard deviation of end of thawing (EoT) (a) and standard deviation 
of MODIS start of season (SoS) (b) for the period 2001-2014. EoT was estimated using the GLDAS dataset 
as the last day of the dormant period with soil temperatures <0.5 °C. MODIS SoS is the ‘Onset Greenness 
Increase’ layer in the MCD12Q2 V5 Land Cover Dynamics product. We resized MODIS SoS to the spatial 
resolution of GLDAS. The map projection is the Lambert Azimuthal Equal-Area. 
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Supplementary Table 4.1. Parameters of A, B, and C of the constraint boundary for different GPP 
thresholds, and overall accuracy (OA) obtained by binary classification (dormant versus growing stage) 
from climatic time series in the FLUXNET sites for different vegetation types; tundra, evergreen 
needleaved forests (ENF), deciduous broadleaved forests (DBF), mixed forests (MX), and grasslands (GRA). 
Values between parenthesis in A and B represent the 95% confidence interval.    
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Supplementary figure 4.1. Mean incoming shortwave radiation during the winter solstice, estimated as 
the mean radiation from the Day of Year 345 to 365 and aggregated over the 2000-2020 period, locations 
of the FLUXNET sites used in the study, and distribution of deciduous broadleaved forests and mixed 
forests extracted from the MODIS Land Cover product, and biomes of the temperate and cold regions of 
the Northern Hemisphere extracted from the RESOLVE ECOREGIONS dataset. 
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Supplementary figure 4.2. Mean difference between simulated GPP and observed GPP during pre-SoS (15 
days before the start of season) and post-EoS (15 days after the end of season) at the FLUXNET sites 
classified as deciduous broadleaved forests (DBF) and evergreen needleaved forests (ENF) in temperate 
and cold regions of the Northern Hemisphere.  
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Supplementary figure 4.3. Comparison between observed and simulated start of the growing season (SoS) 
(in red) and end of the growing season (EoS) (in blue) at the FLUXNET towers in temperate and cold regions 
of the Northern Hemisphere. Observed SoS and EoS was obtained from GPP time series from the FLUXNET 
towers. Simulated SoS and EoS was obtained from ERA5-Land temperature and radiation time series. We 
reported the mean error (ME), the root mean squared error (RMSE), and the number of observations (n). 
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Supplementary figure 4.4. Comparison of the mean start of the growing season (SoS) and end of the 
growing season (EoS) extracted from the OCO-2 SIF time series and SoS and EoS estimated using the air 
temperature and amount of shortwave radiation from the ERA5-Land records during 2001-2020 in 
temperate and cold regions of the Northern Hemisphere. 
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Supplementary figure 4.5. Comparison of the mean start of the growing season (SoS) and end of the 
growing season (EoS) extracted from the OCO-2 SIF time series and SoS and EoS estimated using air 
temperature, shortwave radiation, and soil moisture from the ERA5-Land records during 2001-2020 in the 
Sahel. 
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Supplementary figure 4.6. Temperature and radiation at the start and end of carbon uptake at the 
FLUXNET sites for various vegetation types in temperate and cold regions of the Northern Hemisphere. 
Errors bars indicate two standard deviations. 
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Supplementary figure 4.7. Graphical representation of the estimation of θ. θ1 and θ2 represent the highest 
constraints on GPP by radiation and temperature, respectively. The radiation constraint during a 
phenological event (θpheno) is estimated with the points A and B, with fixed coordinates defined by the 
asymptotes (red lines) of a rational function (black line), and the point C with variable coordinates 
depending on the temperature and radiation during the phenological event. 
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Supplementary figure 4.8. Histogram of the climatic constraints, depicted by θ, during the start of the 
growing season (SoS) and the end of the growing season (EoS) for the temperate and cold regions of the 
Northern Hemisphere. High values of θ represent a high restriction of photosynthetic activity by 
temperature, and low values of θ represent a high restriction by radiation. The pixels in red depict the 
areas with the highest radiation constraint (< 5th percentile of θ (p5)) and the pixels in blue depict the 
areas with the highest temperature limitation on the phenological dates (> 95th percentile of θ (p95)). 
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Supplementary Table 5.1. List of the 90 randomly distributed points where early leaf shedding was 
detected with Sentinel-2 for 2017-2021. 

Site 
Latitude 

(°N) 
Longitude 

(°) 
Year of early 
leaf shedding 

  Site 
Latitude 

(°N) 
Longitude 

(°) 
Year of early 
leaf shedding 

1 51.5884 10.7581 2018   46 44.8300 25.8105 2019 

2 51.5877 12.3224 2018   47 44.7648 19.9258 2018 

3 50.9620 10.3089 2018   48 44.6907 34.0465 2018 

4 50.6364 14.0646 2018   49 44.6758 38.2729 2021 

5 50.4716 9.0572 2018   50 44.6346 26.1390 2019 

6 50.3485 13.0455 2018   51 44.5737 23.4262 2019 

7 50.3343 10.6697 2018   52 44.5559 25.2572 2019 

8 50.3008 5.3208 2018   53 44.4794 26.3529 2018 

9 50.2299 7.5697 2020   54 44.4325 24.1928 2019 

10 50.0257 8.7236 2018   55 44.3662 25.0815 2019 

11 49.9785 13.8007 2018   56 44.3198 15.6831 2017 

12 49.9705 12.2161 2018   57 44.1616 21.7527 2019 

13 49.7223 8.5197 2018   58 44.1541 23.7302 2019 

14 49.6157 14.1869 2018   59 44.1385 27.8190 2019 

15 48.9773 2.1278 2020   60 43.9994 10.4104 2021 

16 47.8527 7.4244 2018   61 43.9550 21.6769 2019 

17 47.6473 7.4800 2018   62 43.8725 27.6829 2021 

18 47.4120 6.3112 2018   63 43.6960 27.7317 2021 

19 47.2932 22.2024 2019   64 43.6246 26.9566 2021 

20 47.0194 6.0057 2018   65 43.6006 16.7657 2017 

21 46.9266 21.9809 2019   66 43.4329 11.6335 2021 

22 46.7666 3.5761 2020   67 43.4260 25.7916 2020 

23 46.6947 3.1664 2020   68 43.3017 11.9891 2017 

24 46.6744 22.1416 2019   69 43.2290 12.2487 2017 

25 46.3974 19.1924 2019   70 43.0914 -0.4635 2018 

26 46.3621 5.4843 2018   71 42.9999 24.2759 2021 

27 46.2886 22.1328 2019   72 42.9738 26.8285 2019 

28 46.1408 21.6416 2019   73 42.9463 12.1702 2021 

29 46.1030 26.3210 2019   74 42.8685 12.2148 2021 

30 45.9805 2.8621 2020   75 42.8623 27.7090 2019 

31 45.9517 27.8966 2019   76 42.3447 27.3153 2019 

32 45.9042 17.8029 2019   77 42.3173 21.5422 2021 

33 45.8832 22.4997 2019   78 42.1342 2.2482 2017 

34 45.8708 5.2992 2020   79 41.7993 27.9238 2020 

35 45.7571 28.2998 2019   80 41.4131 34.5849 2018 

36 45.4741 15.7036 2019   81 41.3851 14.2311 2017 

37 45.4660 21.6428 2019   82 41.3579 32.2147 2018 

38 45.3205 16.6713 2019   83 41.1924 32.4993 2018 

39 45.3033 16.9093 2019   84 41.1708 23.0888 2021 

40 45.1663 17.3987 2018   85 41.0436 36.1558 2018 

41 45.1338 21.3708 2019   86 40.9326 29.5742 2019 

42 44.9974 4.5977 2020   87 40.6652 36.1244 2018 

43 44.9464 19.0650 2018   88 40.3432 29.5074 2018 

44 44.9208 28.5164 2020   89 40.0996 29.8976 2018 

45 44.8707 5.3461 2020   90 40.0756 28.6682 2018 
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Supplementary Table 5.2. List of the 60 randomly distributed points where false positives of early leaf 
shedding were detected with Sentinel-2 for 2017-2021. The column ‘Comment’ categorises the cause of 
the false positives; low availability of data in 2017 (2017), presence of clear-cutting (‘Clear-cut’), land cover 
is not deciduous broadleaved forest (Not DBF), presence of wildfires (Wildfire), and other reasons (Other).   

Site 
Latitude 

(°N) 
Longitude 

(°) 
Year of 

detection 
Comment   Site 

Latitude 
(°N) 

Longitude 
(°) 

Year of 
detection 

Comment 

91 52.2266 9.3249 2017 2017   121 44.5904 21.1123 2019 Other 

92 52.0932 12.3139 2017 2017   122 44.5737 8.8363 2020 Wildfire 

93 51.8630 12.1392 2017 2017   123 44.5212 10.4102 2017 Wildfire 

94 51.6949 9.0444 2017 2017   124 44.4344 11.3968 2021 Not DBF 

95 51.5550 8.9713 2017 2017   125 44.3835 9.7173 2017 2017 

96 51.4324 9.3457 2017 2017   126 44.3244 9.3869 2017 Wildfire 

97 51.1987 8.6428 2017 2017   127 44.2741 25.7336 2019 Other 

98 51.1564 9.0813 2017 2017   128 43.3443 17.1742 2017 Not DBF 

99 50.5972 13.5134 2017 2017   129 43.3128 24.1000 2019 Not DBF 

100 49.8991 6.9337 2017 2017   130 43.2511 11.1039 2018 Clear-cut 

101 49.6955 4.3789 2021 Clear-cut   131 43.1036 21.8572 2019 Not DBF 

102 49.4756 13.5091 2017 2017   132 42.9643 25.3288 2020 Other 

103 49.4529 2.9018 2017 2017   133 42.9168 2.5136 2019 Not DBF 

104 49.3265 12.8750 2017 Other   134 42.8441 18.9664 2021 Other 

105 49.2748 7.8171 2017 Other   135 42.6159 13.7179 2021 Wildfire 

106 48.6121 5.6215 2020 Clear-cut   136 42.6121 12.3443 2021 Not DBF 

107 48.4334 7.3438 2017 2017   137 42.4682 9.3828 2021 Not DBF 

108 48.1914 4.8521 2020 Other   138 42.2957 26.5618 2019 Not DBF 

109 47.5630 1.5840 2021 Clear-cut   139 42.1534 12.0261 2021 Not DBF 

110 47.3978 4.9607 2020 Clear-cut   140 41.9480 13.4390 2017 Wildfire 

111 47.3280 0.3084 2021 Clear-cut   141 41.8651 9.3125 2020 Not DBF 

112 47.3191 26.2285 2017 2017   142 41.3689 13.8233 2017 Wildfire 

113 47.0771 24.2676 2018 Not DBF   143 41.3597 32.8321 2018 Other 

114 46.4033 13.6250 2021 Other   144 40.7879 21.3406 2019 Not DBF 

115 46.0303 4.5338 2020 Not DBF   145 40.7749 15.3810 2017 Clear-cut 

116 45.6843 15.9663 2019 Other   146 40.7377 14.7326 2019 Wildfire 

117 44.9556 4.8136 2020 Wildfire   147 39.9993 21.5753 2021 Wildfire 

118 44.8400 4.3134 2020 Not DBF   148 39.8220 28.5393 2018 Not DBF 

119 44.7497 0.8191 2017 2017   149 39.4118 16.3277 2017 Wildfire 

120 44.7042 9.4756 2017 2017   150 39.0044 16.2175 2017 Wildfire 
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Supplementary Figure 5.1. Six validation points where Sentinel-2 detected an early end of the growing 
season (before 1 September). The upper images show a true-colour Sentinel-2 composition of clear-
cutting, and the lower images show forests that were affected by wildfires. 
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Supplementary Figure 5.2. Comparison between the end of the growing season (EoS) obtained from 
MODIS and Sentinel-2 for 90 sites. The comparison was for the year before premature leaf shedding was 
detected. The left panel shows a representation of the Sentinel-2 EoS and the MODIS MidGreendown and 
dormancy metrics. Sites are numbered with the Sentinel-2 EoS in ascending order. We show only 69 sites, 
which are the sites where the MODIS MidGreendown and dormancy metrics were available. The right 
panel shows boxplots of the difference in distribution between the Sentinel-2 EoS and the MODIS metrics. 
Red line depicts the median, blue box represents the interquartile range, and red crosses outside the 
whiskers are outliers (>2 and <-2 standard deviations). 
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Supplementary Figure 5.3. Anomalies of temperature and aridity (P PET-1) at the 90 sites where early leaf 
shedding was identified. Temperature and aridity were calculated for four intervals: 15, 30, 60, 90, and 
120 d before early leaf shedding. The boxplots depict the distributions of temperature and aridity 
normalised for 2001-2021; mean = 0 and standard deviation = 1. ‘Early EoS’ represents the normalised 
temperature and aridity for the year of early leaf shedding detected during 2017-2021, and ‘normal EoS’ 
represents the normalised temperature and aridity for the other years during 2017-2021. 
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Supplementary Table 6.1. List of Gradient Boosting hyperparameters that were evaluated using a random 
search. The accuracy of the Gradient Boosting model was evaluated with 100 random combinations of 
these hyperparameters and the model with the lowest root-mean-squared error (RMSE) was selected. 
The combination of hyperparameters that lead to the lowest RMSE is included in the column ‘Best 
parameter’. 

Hyperparameter Values Best parameter 

max_depth [3, 4, 5, 7, 10] 3 

learning_rate [0.005, 0.01, 0.05, 0.1] 0.05 

subsample [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.7 

colsample_bytree [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 0.8 

colsample_bylevel [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] 0.4 

n_estimators [200, 300, 400, 500, 600, 700, 800, 900] 300 
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Supplementary figure 6.1. Location map of the 233 Belmanip2 sites. Colours depict vegetation cover 
types: evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), deciduous broadleaf 
forests (DBF), mixed forests (MX), closed shrublands (CSH), open shrublands (OSH), woody savannah 
(WSA), savannah (SAV), and grasslands (GRA). 
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Supplementary figure 6.2. Comparison between observed and predicted sun-induced fluorescence (SIF) 
in 233 sites of the Belmanip2 network. The observed SIF was extracted from the TROPOSIF dataset. The 
predicted SIF was estimated from a machine learning model that fitted the observed SIF with three ERA5-
Land variables: air temperature, shortwave radiation, and vapor-pressure-deficit. Each panel shows the 
comparison for a different land cover type: evergreen needleleaf forests (ENF), deciduous needleleaf 
forests (DNF), deciduous broadleaf forests (DBF), mixed forests (MX), closed shrublands (CSH), open 
shrublands (OSH), woody savannah (WSA), savannah (SAV), and grasslands (GRA). The tile of each panel 
reports the mean error (ME), root-mean-squared error (RMSE), and the coefficient of determination (R2). 
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Supplementary figure 6.3. Comparison between the start of the growing season estimated from time 
series of observed and predicted sun-induced fluorescence (SIF) in 233 sites of the Belmanip2 network. 
The time series of observed SIF were extracted from the TROPOSIF dataset, and the time series of 
predicted SIF was estimated from weather-SIF model. The measurements indicate the Day of Year (DoY) 
at which the growing season begins for the years 2018 to 2021. The metrics were estimated using a 
threshold-based method: SoS was defined as the date for which SIF reaches a 20% of the annual amplitude 
before the maximum. Each panel shows the comparison for a different land cover type: evergreen 
needleleaf forests (ENF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed 
forests (MX), closed shrublands (CSH), open shrublands (OSH), woody savannah (WSA), savannah (SAV), 
and grasslands (GRA). The tile of each panel reports the mean error (ME), root-mean-squared error 
(RMSE), and the coefficient of determination (R2). 
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Supplementary figure 6.4. Comparison between the end of the growing season estimated from time series 
of observed and predicted sun-induced fluorescence (SIF) in 233 sites of the Belmanip2 network. The time 
series of observed SIF were extracted from the TROPOSIF dataset, and the time series of predicted SIF 
was estimated from weather-SIF model. The measurements indicate the Day of Year (DoY) at which the 
growing season ends for the years 2018 to 2021. The metrics were estimated using a threshold-based 
method: EoS was defined as the date for which SIF reaches a 20% of the annual amplitude after the 
maximum. Each panel shows the comparison for a different land cover type: evergreen needleleaf forests 
(ENF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed forests (MX), closed 
shrublands (CSH), open shrublands (OSH), woody savannah (WSA), savannah (SAV), and grasslands (GRA). 
The tile of each panel reports the mean error (ME), root-mean-squared error (RMSE), and the coefficient 
of determination (R2). 
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Supplementary figure 6.5. Waterfall plots depicting the contribution of three climate variables (air 
temperature (TA), shortwave radiation (SW), and vapor-pressure-deficit (VPD)) on the model output f(x) 
in one grassland (GRA) and one mixed forest (MX) sites of the BELMANIP2 network. The prediction is done 
for the end of the season (EoS) for year 2019. The output of the model is the prior expectation of the 
model E[f(x)] plus the summatory of SHAP values. Red arrows indicate a positive contribution and blue 
arrows indicate a negative contribution of the input variable to the predicted value. 
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