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Abstract

Telecommunication systems such as mobile communications are evolving over
time, and thanks to that, many digital services have arisen in the last decade.
Usually, these services ask their users to provide sensitive information in order
to identify them, and the service provider is the one managing all these data.
From the point of view of the user, in most cases, there is no choice other than
trusting the service provider, for what concerns the security of the service they
provide, and the privacy of the data they request.

In that regard, this thesis studies and proposes a novel self-sovereign identity
system based on Zero-Knowledge Proofs and Blockchain technologies, where the
management of personal data of individuals using digital services is carried out
by themselves, and their rights to use such services are verified in a decentralized
manner. Furthermore, we implement a library that, even when Zero-Knowledge
Proofs require high computing resources, allows us to compute these proofs in
embedded systems. Like this, we demonstrate that deploying our self-sovereign
identity system in a wide variety of devices is feasible.

Resum

Els sistemes de telecomunicacions tals com les comunicacions mòbils estan evolu-
cionant amb el temps, i gràcies a això, molts serveis digitals han aparegut en
l’última dècada. Normalment, aquests serveis demanen als seus usuaris facili-
tar dades sensibles amb l’objectiu d’identificar-los, i és el provëıdor del servei
l’encarregat de gestionar-les. Des del punt de vista de l’usuari, en molts casos,
no hi ha altra elecció que confiar en el provëıdor del servei, pel que fa a la
seguretat del servei que proporciona, i la privacitat de les dades que demana.

En aquesta ĺınia, aquesta tesi estudia i proposa un nou sistema d’identitat
autogovernada basat en proves de coneixement zero i en tecnologies de cadena
de blocs, on la gestió de les dades personals dels usuaris de serveis digitals és
portada a terme per ells mateixos, i els seus drets a utilitzar tals serveis són ver-
ificats de forma descentralitzada. Addicionalment, implementem una llibreria
que, tot i que les proves de coneixement zero requereixin recursos computacionals
elevats, ens permet computar aquestes proves en sistemes encastats. D’aquesta
manera, demostrem que desplegar el nostre sistema d’identitat autogovernada
en una gran varietat de dispositius és viable.
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Chapter 1

Introduction

Nowadays, there is a plethora of services that are provided and paid for online,
like video streaming subscriptions, car or parking sharing, purchasing tickets
for events, etc. Digital services usually issue tokens directly related to the
identities of their users after registering on their platform, and the users need
to authenticate using the same credentials each time they are willing to use
the service. Likewise, when using in-person services like going to a concert,
after paying for this service the user usually gets a ticket which proves that
they have the right to use that service. In both scenarios, the main concerns
are the centralization of the systems, and that they do not ensure customers’
privacy. The involved Service Providers (SPs) are authorities that offer services
and handle private data about users, and they need to be trusted in the fact
that the acquired data will not be misused.

For such a reason, it became of paramount importance to have robust au-
thentication protocols, able to ensure that users meet the requirements wanted
by the SPs, but providing at the same time a private-by-design architecture.
Having these needs in mind, Self-Sovereign Identity (SSI) systems [1] were in-
troduced: systems allowing users to manage their identities in a fully transpar-
ent manner. Technically speaking, Zero-Knowledge Proofs (ZKPs) [2] are one
of the main requirements for SSI systems to achieve their features. ZKPs are
cryptographic primitives allowing a party to prove knowledge of some secret
information, without leaking anything beyond the fact that such information is
true. However, there are still some open problems to address, which we tackle
in this thesis.

1
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1.1 Open Problems

SSI systems [3] serve the purpose where a user can prove ownership of the right
to use a specific service, while at the very same time, they are able to prove that
their right is valid, i.e. the SP still accepts such a right, which has not expired
or has not been revoked after being granted. While the first approach can be
achieved by combining a digital signature signed by the SP and being verified
into a ZKP, the privacy-preserving properties of this scheme make it difficult to
revoke a right later on.

On the other hand, unlinkability is a requirement as well: the SP should not
be able to link any user activity with other activities previously done. Otherwise,
information about the user would be leaked, and user profiling techniques could
be applied.

Moreover, another important feature is decentralization [4]: being able to
acquire rights and use them by means of an environment that can be verified by
all the involved parties, without having to rely on a central authority. In other
words, integrating our solution into a Blockchain would lead to a decentralized
and transparent protocol.

Finally, the user should have full control over the information about them
that is shared and should be able to accept or deny each request for personal
information. We define the different portions of personal information as provable
attributes, which combined define a license, that can be seen as the right of
someone to access a given service. We wrap up these properties as follows:

• Proof of Ownership: a user of a service is able to prove ownership
of a license that allows them to use such a service, without leaking any
information about them.

• Unlinkability: neither an eavesdropper adversary nor the SP can link
any activity of their users with other activities done in the network.

• Attribute Blinding: the user is capable of deciding which information
they want to leak to the SP, blinding the value and providing only the
desired information.

• Proof of Validity: users can prove ownership of a valid license, that has
been granted within a specific context (e.g. within a given Blockchain),
that has not expired, and that has not been revoked.

• Decentralized Nullification: nullifying a license means that once used,
it should not be spendable again. Decentralizing this process allows for a
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public nullification of the license, so it cannot be used in other contexts
as well. Even a malicious SP could not impersonate a user after receiving
a valid proof, by resending it.

Designing the above features becomes a challenging task. Plus, there are
several side-constraints to consider as well: thanks to 5G communications [5],
which optimize the network for different devices and services, we see fast adop-
tion of static internet-connected devices [6–8] like pollution sensors, traffic lights,
surveillance cameras, etc. Moreover, other mobile Internet of Things (IoT) [9]
devices, like autonomous cars, will be soon populating the cities. If we take
into account all the computers, smartphones, smartwatches, etc., we observe
how the density of devices is achieving high numbers. This can be translated
into a growing amount of private information exchanged over the network, and
in that regard, the need for SSI systems makes even more sense. For such a
reason, there is a real need for cryptographic protocols able to guarantee users’
privacy when using digital services, and it becomes important to design them
in a feasible way to be deployed in devices with low computing resources, such
as IoT devices.

1.2 Research Outcomes

In this thesis, we achieved the following research outcomes. First of all, we
analyzed the state of the art on the cryptographic schemes used nowadays for
authentication purposes, especially on IoT devices. This helped us to under-
stand the insecurities that live in many digital systems, and the need for a
common authentication framework designed with privacy in mind.

Considering the privacy properties of ZKPs and how some solutions use
their features in specific privacy-preserving applications, we proved how they
can be executed on a wide variety of devices, even on those with low computing
resources. To do so, we implemented from scratch ZPiE, a ZKP library able
to compute different kinds of ZKPs using computers, smartphones, and IoT
devices. Upon success, we had the confirmation that protocols based on ZKPs
can be executed on any kind of device if optimized properly.

Having the previous outcome reached, we designed an SSI system, SANS,
whose properties are depicted in Table 1.1. SANS, which uses ZKPs as its back-
bone, focuses its application scenario in 5G environments, with scalability to
any other digital service under some requirements. However, such a protocol
lacks some privacy features that can be overcome with decentralization.
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To overcome these privacy problems, we designed FORT, a novel protocol in-
tegrated into the Ethereum Blockchain, for achieving such features. It is an SSI
system that relies on Non-Fungible Tokens (NFTs): assets uniquely identifiable
that contain some specific information. To be precise, it provides an approach
for proving that a given license, represented as an NFT, has been acquired into
a given context, in this case, the Ethereum network. Plus, it integrates a way
to blind the attributes that identify the user, so only the desired information is
leaked. Nevertheless, we stated some problems that remained open: the trans-
parent nature of the Ethereum Blockchain allows adversaries to apply profiling
techniques on users of our solution. This leads to an incomplete unlinkability
property. Plus, even when Ethereum is a decentralized network, the application
of FORT followed a centralized approach. We tackled these problems, and we
provide a fully-private-by-design and fully-decentralized protocol, that complies
with all the properties above stated. In particular, we designed Citadel, a pro-
tocol that provides complete unlinkability thanks to the private nature of the
Blockchain where it is integrated, Dusk Network. It also provides a complete
Proof of Validity, where SPs can revoke licenses, and set expiration dates. Fi-
nally, the decentralized nullification of Citadel prevents misuses of the licenses,
and a more efficient and optimized protocol, as we will detail in Chapter 7.

Table 1.1: Comparison of our Self-Sovereign solutions.

Property SANS FORT Citadel
Proof of Ownership ✓ ✓ ✓
Attribute Blinding ✗ ✓ ✓

Unlinkability Complete Incomplete Complete
Proof of Validity ✗ Incomplete Complete
Nullification Centralized Centralized Decentralized

1.3 Contributions

Now, we outline all the contributions presented in this thesis, and how they
overcome the research outcomes. They can be summarized as follows:

• LASER. A lightweight and general solution based on a one-message pro-
tocol, which guarantees the integrity and validity of the authentication
in Remote Keyless Entry (RKE) systems, protecting the communication
against the well-known jamming-and-replay and relay attacks, without us-
ing complex cryptographic schemes. Moreover, we also adapt our protocol
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for Passive RKE (PRKE) systems. We also provide a novel frequency-
hopping-based approach that mitigates denial-of-service attacks. This re-
search led to the following publication:

Vanesa Daza, Xavier Salleras. LASER: Lightweight And SEcure Remote
keyless entry protocol. Proceedings of SECRYPT’19. 2019.

• ZPiE. A C library intended to create ZKP applications to be executed
in embedded systems. Its main feature is portability: it can be compiled,
executed, and used out-of-the-box in a wide variety of devices. Moreover,
our proof-of-concept has been proven to work smoothly on different de-
vices with limited resources, which can execute the ZKP authentication
protocols introduced later in this thesis. This research led to the following
publication:

Xavier Salleras, Vanesa Daza. ZPiE: Zero-knowledge Proofs in Embedded
systems. Special issue Recent Advances in Security, Privacy, and Applied
Cryptography of the journal Mathematics (2021).

• SANS. A novel SSI scheme for the 5G network slicing. We grant users
full control over their data: we introduce an approach to allow a user to
prove his right to access a specific service without leaking any information
about them. Our protocol is scalable and can be taken as a framework
for improving related technologies in similar scenarios, like authentication
in the 5G Radio Access Network (RAN) or other wireless networks and
services. This research led to the following publication:

Xavier Salleras, Vanesa Daza. SANS: Self-sovereign Authentication for
Network Slices. Special issue Trustworthy Networking for Beyond 5G Net-
works 2020 of the journal Security and Communication Networks.

• FORT. A decentralized system that allows customers to prove their right
to use specific services (either online or in-person) without revealing sensi-
tive information. To achieve decentralization we propose a solution where
all the data is handled by a Blockchain. We describe and uniquely identify
users’ rights using NFTs, and possession of these rights is demonstrated
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by using ZKPs. This research led to the following publication:

Xavier Salleras, Sergi Rovira, Vanesa Daza. FORT: Right-Proving and
Attribute-Blinding Self-Sovereign Authentication. Special issue Advances
in Blockchain Technology of the journal Mathematics (2022).

• Citadel. Even when ZKPs do not leak any information about the rights,
the NFTs in FORT are stored as public values linked to known accounts,
and thus, they can be traced. Here, we design a native privacy-preserving
NFT model for the Dusk Network Blockchain, and on top of it, we deploy
Citadel: our novel full-privacy-preserving SSI system, where the rights of
the users are privately stored on the Dusk Network Blockchain, and users
can prove their ownership in a fully private manner. This research led to
the following manuscript:

Xavier Salleras. Citadel: Self-Sovereign Identities on Dusk Network.

After the work done in LASER, where we study several security threats in IoT
devices, a problem to solve was identified: how to execute complex cryptographic
primitives in devices with low computing resources. As ZKPs are an essential
tool to build SSI systems, we worked on ZPiE. Thanks to this library, building
SANS was possible. Later, the decentralized approach introduced in FORT, which
takes SANS as its backbone, was published. And finally, the last hanging flaws
of FORT have been fixed with Citadel.

Furthermore, the following software has been developed out of the publica-
tions above introduced:

• The ZPiE library1, supporting the following Zero-Knowledge schemes on
top of the elliptic curves BN128 and BLS12-381:

– zk-SNARKs for arithmetic circuits, in particular, the Groth’16 scheme.
ZPiE also includes the following arithmetic circuits:

∗ EdDSA signature verification over Baby JubJub elliptic curve
and BN128.

∗ MiMC-7 hash function (BN128 order).

1https://github.com/xevisalle/zpie
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– Bulletproofs, supporting both range proofs and aggregated range
proofs.

• The CryptoolZ library2, containing some cryptographic primitives coded
in C, and intended to be used (but not limited to) in Zero-Knowledge
applications. In particular, we implemented:

– EdDSA signature algorithm over Baby JubJub elliptic curve and
BN128.

– MiMC-7 hash function (BN128 order).

• The Citadel Rust crate3, which allows to deploy and use Citadel.

2https://github.com/xevisalle/cryptoolz
3https://github.com/dusk-network/citadel
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Chapter 2

Preliminaries

In this section, we introduce the preliminaries of the solutions introduced in this
thesis. We first introduce the notation used in this document, plus some math-
ematical background and several cryptographic primitives. Later, we introduce
Blockchain technologies and their applications to IoT, and finally, we focus on
the details and the specific use cases of smart contracts.

2.1 Notation

Throughout the document, we will refer to parties and number spaces using an
uppercase calligraphic font, e.g. prover P, or message space M. We will use
standard lowercase letters to refer to integers, and standard uppercase letters
to refer to points, e.g. integer m, or the point P . The blackboard bold font will
be used to represent algebraic structures, e.g. a finite field F. We will use sans
serif font for abstract elements of a protocol, e.g. a transaction tx.

2.2 On the Security of Cryptographic Schemes

In this section, we start by giving a definition of security [10, Chapter 2.2.1] for
the sake of completeness. We later move to an overview of the main security
assumption used throughout the thesis.

9
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2.2.1 Security Definition

We consider an adversary A as a malicious player trying to attack a given cryp-
tographic scheme, either by compromising the privacy of the data, its integrity,
or denying the availability of the system. The chances of success of A in break-
ing a system is measured by its advantage AdvA. This is the difference between
the adversary’s probability of breaking the system and the probability that the
system could be broken by trying at random.

We measure the security of a given scheme by its computational cost against
the quantified security we can expect from such a scheme, where the latter is
assessed by the security parameter λ ∈ N. Using this setting, we say that a
function f : N→ [0, 1] is negligible if

f(λ) = O

(
1

p(λ)

)
(2.1)

for any polynomial p, and denote it using negl(λ). We consider that a scheme
is secure if the advantage of an adversary is negl(λ). Furthermore, and for our
purposes, we distinguish between the following adversaries:

• Computational: adversary running in probabilistic polynomial time (PPT).

• Perfect: adversary whose advantage is 0.

• Eavesdropper: passive listener on a channel.

2.2.2 The Discrete Logarithm Problem

We now define the Discrete Logarithm Problem (DLP), which we will directly
use in our constructions in this thesis. Let G be a cyclic group of order N , where
∀Q ∈ G there exists a unique value a ∈ ZN such that aP = Q. Here, a is the
discrete logarithm of Q respecting P. Knowing the pair (P,Q), the DLP consists
in finding a. Roughly speaking, if λ is chosen carefully, the DLP is considered
to be hard to solve. We formalize it as follows:

Definition 1 (Discrete Logarithm Problem). We assume that the DLP related
to a setting Gen(1λ) holds iff, for any PPT adversary A, the following probability
is satisfied:

Pr
[
(G, N, P )← Gen(1λ);Q← G; a← A(G, N, P,Q) : Q = aP

]
≤ negl(λ)
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2.3 Elliptic Curves

One of the main elements required for constructing the ZKP schemes that we
will use in this work are elliptic curves. An elliptic curve is defined as follows.

Definition 2 (Elliptic curve). Let E be an algebraic curve defined by the pro-
jective solutions of the equation

Y 2 = X3 + aX + b,

for some a, b ∈ Fq. If 4a3 − 27b2 ̸= 0, we call E an elliptic curve over Fq, and
denote this by E/Fq.

We are particularly interested in the so-called pairing-friendly elliptic curves,
and we describe them now. Let E be an elliptic curve over a finite field Fq, where
q is a prime number. We have the bilinear groups (G1,G2,GT ) of prime order
p, and a pairing

e : G1 ×G2 → GT

being a bilinear map. As the map e is bilinear, the following relation is satisfied

e(aP, bQ) = e(P,Q)ab,

for any P,Q ∈ E.
We are particularly interested in two elliptic curves, needed later on to de-

scribe the transaction model of Dusk Network. They are the BLS12-381 [11]
and the Jubjub [12] elliptic curves. Let p, q be two specific prime numbers of
255 and 381 bits, respectively. The curve BLS12-381 is defined over Fq by the
equation

E : Y 2 = X3 + 4,

and has different subgroups G1,G2 such that #G1 = #G2 = p. This curve
is pairing-friendly, meaning that pairings can be efficiently computed. On the
other hand, the Jubjub curve is defined by the equation

J : −X2 + Y 2 = 1 +

(
−10240

10241

)
X2Y 2,

over Fp (it is important to recall that p is the order of a prime subgroup of
the BLS12-381). We define a subgroup J whose order t is a 252-bit prime.
Throughout the document, we will mainly use scalar values from the field Ft,
and elements from J.

Throughout the document we will use other settings as well, in particular, the
Barreto-Naehrig elliptic curve called BN128 [13], along with the Baby JubJub
[14]. We will specify it when doing so.
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2.4 Commitments and Hash Functions

A commitment scheme allows a party to commit to a secret value v, to be
revealed at a later time. A commitment scheme works like a safe-deposit box,
in the following sense. The party that wishes to make a commitment puts the
value v inside the box, and lock it. They keep the key, but the box is kept in a
public place. The commitment hides the value inside, until the owner decides
to use the key and open it. At the same time, the commitment binds the value,
ensuring that the owner cannot change it after committing. In particular, the
commitment scheme that we will use in this thesis uses the specific perfect hiding
and computational binding properties, which we define now.

Definition 3 (Perfect Hiding). A commitment scheme is perfectly hiding iff,
for any computationally unbounded eavesdropper adversary A,

Pr

 ck ← Setup(1λ);
m0,m1 ← A(1λ, ck); b← {0, 1};

r ← R; c← Comck (mb; r); b̃← A(c)
: b̃ = b

 =
1

2

Definition 4 (Computational Binding). A commitment scheme is computa-
tionally binding iff, for any PPT adversary A,

Pr

[
ck ← Setup(1λ);

m0,m1, r0, r1 ← A(1λ, ck)
:

m0 ̸= m1;
Comck (m0; r0) = Comck (m1; r1)

]
≤ negl(λ)

We are particularly interested in Non-interactive Commitment Schemes, de-
fined as follows:

Definition 5 (Non-interactive Commitment). A non-interactive commitment
scheme consists of a tuple of algorithms (Setup, Commit, Open). The Setup al-
gorithm ck ← Setup(1λ) generates a public commitment key ck given the security
parameter λ. Given the public commitment key ck, the commitment algorithm
Commit defines a function Comck : M× R → C for a message space M, a
randomness space R and a commitment space C. Given a message m ∈ M,
the commitment algorithm samples r ← R uniformly at random and computes
Comck (m; r) ∈ C. Given m, r and a commitment c ∈ C, the Open algorithm
Openck (m; r; c) outputs 1/0 whether or not c is a valid commitment for the pair
m, r. A non-interactive commitment scheme is perfectly hiding, and computa-
tionally binding under the DLP.
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In this work, we will use the Pedersen Commitment along with the Jubjub
elliptic curve. Let J be a group of order t and set our message and randomness
spacesM,R = Ft and our commitment space C = J. The Setup, Commit, and
Open algorithms for Pedersen commitments are defined as follows:

• Setup. Sample and output the commitment key ck = (G,G′)← J.

• Commit. On input a message m ∈ M, sample randomness r ← Ft and
output

c = Comck (m; r) = mG+ rG′.

• Open. Reveal m, r. With these values, anyone can recompute the commit-
ment and check whether it matches the commitment previously provided.

The Pedersen Commitment scheme is perfectly hiding, and computationally
binding under the DLP.

On the other hand, we will make use of hash functions, which we define as
follows.

Definition 6 (Hash Functions). A cryptographic hash function is a function
H : {0, 1}∗ → {0, 1}ℓ that is collision-resistant, that is, it is hard to find x, x′ ∈
{0, 1}∗ such that x ̸= x′ but H(x) = H(x′).

Throughout the document, we will be using two specific hash functions: first,
BLAKE2b [15], a lightweight and efficient hash function. Second, Poseidon [16],
whose main feature is being SNARK-friendly: it is cheap in terms of computing
resources when computed into a specific ZKP scheme called zk-SNARK.

2.5 Merkle Trees

Merkle trees [17] are data structures containing at every node the hash of its
children nodes. Considering a k-ary tree of h levels, the single node at level 0
is called the root of the tree, and the kh nodes at level h are called the leaves.
Given a node placed in the level i, the k nodes in the level i+1 that are adjacent
to it are called its children. Plus, a node is the other’s sibling if they all are
children of the same node.

The tree is partially updated every time a new value is written (or modified)
into a leaf, always resulting in a new root of the tree. Furthermore, given a root
r, it is easy to prove that a value x is in a leaf of a tree with root r. The proof
works as follows:
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• Prove. For i = h, . . . , 1, let xi be the node that is in level i and is in the
unique path from x to the root. Let yi,1, . . . , yi,k−1 be the k − 1 siblings
of xi. Output

(x, (y1,1, . . . , y1,k−1), . . . , (yh,1, . . . , yh,k−1)).

• Verify. Parse input as (xh, (y1,1, . . . , y1,k−1), . . . , (yh,1, . . . , yh,k−1)), where
xh is the purported value and yi,1, . . . , yi,k−1 are the purported siblings at
level i. For i = h− 1, . . . , 0, compute1

xi = H (xi+1, yi+1,1, . . . , yi+1,k−1) .

If x0 equals the root r of the set we are proving membership of, the proof
is verified.

We can prove membership in a set of size kh by sending kh values, so we can
state that the communication complexity for proving the membership is O(kh).
If the hash function is collision-resistant, the proof is sound.

2.6 Digital Signatures

Digital signatures are one of the most important pieces needed to build our
solutions. In particular, we are interested in the Schnorr signature scheme,
which we describe now. Let G,G′ ← J. Then, we have the following algorithms:

• Setup. Sample a secret key sk← Ft and compute a public key pk = skG.

• Sign. To sign a message m using sk, sample r ← Ft and compute R = rG.
Compute the challenge c = H(m,R), and set

u = r − csk.

Set the signature sig = (R, u).

• Verify. To verify a signature sig = (R, u) of a message m using pk, we first
compute c = H(m,R) and check whether the following equality holds:

R
?
= uG+ cpk,

If it equals, accept the signature, reject otherwise.

1Additionaly, the prover also has to send ⌈log2 k⌉ bits for each level, specifying the position
of xi with respect to its siblings, so that the verifier knows in which order to arrange the inputs
of the hash.
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This scheme is existentially unforgeable under chosen-message attacks under
the DLP, in the random oracle model [18, Section 12.5.1].

We are also interested in a double-key version of this signature scheme, that
will be used to delegate some computations later in the transaction model of
Dusk Network. We have the following algorithms:

• Setup. Sample a secret key sk ← Ft and compute a public keypair
(pk, pk′) = (skG, skG′).

• Sign. To sign a message m using sk, sample r ← Ft and compute (R,R′) =
(rG, rG′). Compute the challenge c = H(m,R,R′), and also

u = r − csk.

Finally, set the signature sig = (R,R′, u).

• Verify. To verify a signature sig = (R,R′, u) of a messagem using (pk, pk′),
we first compute c = H(m,R,R′) and check whether the following equal-
ities hold:

R
?
= uG+ cpk,

R′ ?
= uG′ + cpk′.

If they are equal, accept the signature, reject otherwise.

Throughout the document, we will also use a variant of the Schnorr signa-
ture, called the Edwards-curve Digital Signature Algorithm (EdDSA) [14].

2.7 Zero-Knowledge Proofs

A Zero-Knowledge Proof (ZKP) [2] is a cryptographic primitive allowing a
prover P to convince a verifier V that a public statement is true, without leaking
any secret information.

Given a statement u, and a witness w being some secret information only
known by P, P wants to convince V that they know w. Both u and w are
related by a set of operations defined by a circuit, a graph composed of different
wires and gates, which leads to a set of equations involving the inputs and the
outputs of these gates. Each of these equations is called a constraint. P can
execute a proving algorithm using u as the set of public inputs, and w as the
private inputs. This execution outputs a set of elements, which we call the proof
π. P sends π to V, who will use a verifying algorithm to verify that u is true,
for a given w only known by P. In essence, ZKPs must satisfy 3 properties:
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• Completeness: If the statement is true, P must be able to convince V.

• Soundness: If the statement is false, P must not be able to convince V
that the statement is true.

• Zero-knowledge: V must not learn any information from the proof be-
yond the fact that the statement is true.

First ZKP schemes used to achieve the aforesaid properties by exchanging
several messages between P and V. However, non-interactive ZKPs [19] arose,
providing an extra feature, where P could prove statements to V by sending
them a single message, instead of several interactions.

Even so, computing and verifying ZKPs used to require high computing re-
sources, and this made them impractical in real applications. More recently,
Zero-Knowledge Succinct and Non-interactive ARguments of Knowledge (zk-
SNARKs) [20] appeared: ZKPs that can be computed and verified in a more
efficient way, compared to previous solutions, making them suitable for real ap-
plications, like privacy-preserving cryptocurrencies [21]. As shown in Table 2.1,
one of the first efficient schemes was a zk-SNARK introduced in BSCTV’13 [22].
Such a scheme was later improved by the zk-SNARK introduced in Groth’16
[23], which is still one of the most efficient zk-SNARK schemes, especially when
it comes to the verification algorithm. One of the main drawbacks of this kind
of construction is the need for a trusted party that performs a trusted setup: a
phase where some public parameters are generated, which will be used to gener-
ate and verify proofs. In this regard, Sonic [24] is a zk-SNARK that introduces a
scheme where the setup can be updated for different circuits without the need to
repeat the trusted setup generation. Another efficient zk-SNARK is Libra [25],
which prover is guaranteed to outperform, even when the verifier does not have
constant complexity. Another recent and widely used work on this topic was
done by the authors in [26]. They introduce PlonK, a scheme with the same
advantages that Sonic has, but improving the speed of the prover. Finally, re-
cent research such as [27] shows a way to design a more efficient prover, while
not compromising the verifier.

On the other hand, and beyond zk-SNARKs, we can find other ZKP schemes
like Bulletproofs [28], which have the main advantage of not requiring a trusted
setup. They are especially useful when the prover needs to compute a range
proof [30], instead of an arithmetic circuit. Moreover, other concerns like post-
quantum security have also arisen in the Zero-Knowledge field, and in this re-
gard, we have a scheme supposed to be post-quantum secure, called zk-STARKs
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Table 2.1: Comparison of different ZKP constructions, in regards to their asymp-
totic efficiency, where n is the number of gates of the circuit and d its depth.
(TS = trusted setup, PQS = post-quantum secure, |π| = proof size, ⊙ = per-
statement, △ = updatable)

Scheme TS PQS Prove Verify |π| Assumption
BSCTV’13 [22] ⊙ no O(n log n) O(1) O(1) q-PKE
Groth’16 [23] ⊙ no O(n log n) O(1) O(1) q-PKE
Sonic [24] △ no O(n log n) O(1) O(1) AGM
Libra [25] △ no O(n) O(d log n) O(d log n) q-SBDH, q-PKE

Bulletproofs [28] no no O(n) O(n) O(log n) DLP

zk-STARKs [29] no yes O(n log2 n) O(log2 n) O(log2 n) CRHF

(Zero-Knowledge Succinct Transparent ARgument of Knowledge) [29]. Post-
quantum security is not a property of zk-SNARKs or Bulletproofs.

Finally, the soundness property of each of the schemes described relies on
different security assumptions [31]. Most of the zk-SNARK constructions use
a strong assumption called q-Power Knowledge of Exponent (q-PKE), which
is not the best solution. On the other hand, Bulletproofs or zk-STARKs use
better assumptions: the DLP and Collision Resistant Hash Functions (CRHF),
respectively.

To develop ZKP applications, libraries like the one provided in this thesis
are required. One of the main libraries to accomplish this purpose is libsnark2,
a C++ library for constructing zk-SNARKs, which was used for some time by
Zcash [21], based on the specific zk-SNARK construction introduced in [22], but
supporting [23] as well, among others. Even when this library provides excellent
benchmarks, one of the main drawbacks of this library, as the authors state, is
not being well-optimized for ARM architectures.

Another library with similar benchmarks is bellman3, implemented in Rust
and meant for constructing zk-SNARKs, developed and currently used by Zcash.

Moreover, when it comes to developing DApps for the Ethereum blockchain,
we previously stated that a verifier coded in Solidity is required. ZoKrates4

is a python toolbox for zk-SNARKs intended to generate Solidity verifiers, to
be deployed into the Ethereum Blockchain. Furthermore, a similar approach
is snarkjs5, a JavaScript library for constructing zk-SNARKs. It includes a

2https://github.com/scipr-lab/libsnark
3https://github.com/zkcrypto/bellman/
4https://github.com/Zokrates/ZoKrates
5https://github.com/iden3/snarkjs
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clear API for generating trusted setups using a fairly secure MPC protocol, for
generating proofs, and for verifying them. Plus, it also provides an easy way to
export the verifier in Solidity, to deploy it into the Ethereum Blockchain.

2.7.1 zk-SNARKs

In this section, we do a high-level overview of how to construct a zk-SNARK
(based on the construction introduced in [23]), which is also the scheme used in
our proof-of-concept ZPiE.

zk-SNARKs [22] are the most used ZKPs, because they are short and suc-
cinct: the proofs can be verified in a few milliseconds. However, they require a
trusted setup where some public parameters are generated. These parameters,
called the Common Reference String (CRS) are used by P and V to generate
and verify proofs. To generate the CRS, a secret randomness τ is used, and
such a randomness should be destroyed afterward. If an attacker gets τ , the
soundness property of the scheme breaks: the attacker would be able to com-
pute false proofs that anyone could verify as if they were correct. As such, the
CRS is commonly computed using a secure Multi-Party Computation (MPC)
protocol [32], where τ can only be leaked if all the participants are malicious.
The computing complexity of generating a setup, computing proofs, and verify-
ing them, depends on the number of operations that we do in the circuit, which
is also the number of gates n.

Regarding the security of zk-SNARKs, it mainly relies on the security of
elliptic curves. Breaking the security of the elliptic curve used by a specific con-
struction would lead to being able to generate false proofs and thus, breaking
the soundness property of the scheme. Among the most used curves in ZKPs we
have a Barreto-Naehrig curve [33] called BN128, which security level in prac-
tice is estimated to be 110-bits [34]. Another common curve in this scenario
is BLS12-381 [21], which has around 128-bits of security, with the drawback of
heavier group operations. More recent research is introduced in [35], where a
new curve called BW6-761 is introduced. As stated by its authors, the verifica-
tion of proofs is at least five times faster than other state-of-the-art curves.

The zk-SNARK construction we will work on requires a pairing-friendly
elliptic curve E over a finite field Fq, where q is a prime number, with the
bilinear groups (G1,G2,GT ) of prime order p and a pairing e : G1 ×G2 → GT

being a bilinear map. We need the following generators: an element g being a
generator for G1, an element h being a generator for G2, and e(g, h) being a
generator for GT . In order to represent group elements, we use the multiplicative
notation: we write [a]1 for ga, [b]2 for hb, and [c]T for e(g, h)c.
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Arithmetic circuit. A circuit is a directed acyclic graph composed of
different wires and gates, which lead to a set of equations relating the inputs
and the outputs of these gates. The inputs and the output of this circuit, as
well as the operations defined in the gates, are elements over a prime field Fp,
where p is the order of E.

Rank 1 Constraint System. A Rank 1 Constraint System (R1CS) is
a system of equations that checks the correctness of all the operations in our
circuit, by grouping them in constraints. Each constraint is composed of a
multiplicative gate with its two inputs and its output. Having a statement u
and a witness w, a R1CS is defined as a set of vectors (a, b, c) describing our
circuit, whose solution is a vector s = (u,w) such that the following equation is
satisfied:

< a, s > · < b, s > − < c, s >= 0 (2.2)

Quadratic Arithmetic Program. AQuadratic Arithmetic Program (QAP)
is a polynomial representation of the R1CS, which bundles all its constraints
into one. It is a tuple of the polynomials (A,B,C,Z(x)), where Z(x) divides
Ai(x) ·Bi(x)− Ci(x) without remainder. They satisfy the following equation:

m∑
i=0

siAi(x)) ·
m∑
i=0

siBi(x)−
m∑
i=0

siCi(x) = H(x)Z(x) (2.3)

Let R be a relation composed of the elliptic curve E over Fq, the pairing e
and a QAP (A,B,C,Z(x)) representing a circuit. The Groth’16 construction is
divided into three algorithms (further details can be found in Appendix A), as
depicted in Figure 2.1:

• pk, vk ← Setup(R): given the relation R, the first step of the protocol
generates a common reference string (CRS) σ = ([σ1]1, [σ2]2). From the
CRS, some elements will be extracted into what we call the proving key pk,
sent to the prover P to generate proofs. Moreover, other required elements
will be taken into the verifying key vk, and sent to the verifier V to verify
the proofs generated by P. In order to generate the CRS (i.e. pk and vk),
a random set of values τ is used. This τ , also known as trapdoor, should
be destroyed after performing the setup, as any party having τ would be
able to generate false proofs. To solve this last drawback, the setup must
be generated by a trusted party (i.e. a set of entities performing a secure
MPC protocol). In scenarios such as cryptocurrencies using zk-SNARKs
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(i.e. Zcash), an untrusty setup could lead to malicious parties using τ to
create false transactions, thus leading to losses of money.

• π ← Prove(R, pk, u, w): a proof π = ([πA]1, [πB ]2, [πC ]1) is generated by
the prover, by multiplying u and w by some polynomials provided in σ.
The prover also needs to compute the coefficients h of H(x), which can be
achieved in O(n log n) using Fast Fourier Transform (FFT) techniques, as
explained in detail in Appendix B. Then, h is multiplied by a polynomial
provided in σ. The number of multi-exponentiations required to compute
π are (note that multi-exponentiations in G2 are more expensive than
multi-exponentiations in G1):

– to compute [πA]1: |u|+ |w| multi-exponentiations in G1.

– to compute [πB ]2: |u|+ |w| multi-exponentiations in G2.

– to compute [πC ]1: |u|+ 2 · |w|+ |h| multi-exponentiations in G1.

• 0/1← Verify(R, vk, u, π): the verifier accepts the proof (1) if an equation
composed of three pairings [36] holds. Otherwise, the proof is rejected (0).
Moreover, modifying a single bit of the proof leads to a proof that cannot
be verified.

As such, the workflow of these algorithms in real applications would work as
follows: we first need to compute the setup by means of a trusted party (step 1
in Figure 2.1). Later, this party shall share the required values with each of the
involved parties, the prover, and the verifier (step 2 in Figure 2.1). As shown
in steps 3 and 4, the prover computes the proof π and sends it to the verifier,
who verifies it (step 5 in Figure 2.1). Steps 1 and 2 are performed only once,
and later, the prover can compute as many proofs as they want using the same
values computed during the setup.

2.7.2 Bulletproofs

Bulletproofs [28] are short non-interactive zero-knowledge arguments of knowl-
edge that require no trusted setup. This means that the prover P sends a single
message to the verifier V, and this is enough to prove knowledge of the secret
information. There is no need to rely on any prior information generated by a
trusted party.

Bulletproofs were designed to enable efficient confidential transactions in
cryptocurrencies, but they have found many other applications, such as short-
ening proofs of solvency or enabling confidential smart contracts [37]. The main



2.7. ZERO-KNOWLEDGE PROOFS 21

Setup

Prover Verifier

Figure 2.1: Zero-Knowledge Proof System.

technical feature of Bulletproofs is to prove that a committed value lies within
a certain interval. For example, in the context of Blockchains, it is very useful
to have an efficient protocol to prove that a secret value lies in the interval
[0, 2n − 1] for some large value of n ∈ Z≥0. In the cryptographic community,
this feature is called a range proof. Range proofs allow us to prove that a secret
value (previously committed to) lies within a certain range. They do not leak
any information about the secret value but the fact that it lies within the desired
range.

Let G be a cyclic group of prime order p and let Zp be the ring of integers
modulo p. An inner-product argument lets P convince V that they know two
vectors (bold font denotes a vector) a,b ∈ Zn

p such that

C = gahb and c = ⟨a,b⟩,

where g,h ∈ Gn are independent generators, c ∈ Zp, and C ∈ G. Now, let
c ∈ Zp and let C ∈ G be a Pedersen Commitment to c using randomness r. An
inner-product range proof allows P to convince V that c ∈ [0, 2n−1] by proving
the relation

{(g, h ∈ G, C, n ; c, r ∈ Zp) : C = hrgc ∧ c ∈ [0, 2n − 1]}.

Now consider the case where P needs to provide multiple range proofs at the
same time. The idea of aggregated range proofs is to build a system that can
provide a proof for multiple secret values and its efficiency is better than doing
one proof for each of the secrets. Since the inner-product range proofs provided
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by Bulletproofs have logarithmic size, it is possible to build efficient aggregated
logarithmic range proofs. That is, it is possible to efficiently prove the relation

{(g, h ∈ G,C ∈ Gm ; c, r ∈ Zm
p ) : Cj = hrjgcj ∧ cj ∈ [0, 2n − 1] ∀j ∈ [1,m]},

where m corresponds to the number of proofs. Bulletproofs can be computed in
O(n), and verified in linear time as well. The communication complexity (the
size of the proofs) is O(log n).

2.8 Blockchain

A Blockchain [38] is a unique and immutable data structure called ledger, and
shared by a set of nodes. Cryptocurrencies like Bitcoin [39] use such technology,
and populate the ledger with transactions exchanging money between parties.
These transactions are cryptographically validated by the nodes of the network,
to be sure that each user spends what belongs to them. This process is a
consensus agreed on by all the users of the network (e.g. Proof of Work [40],
Proof of Stake [41], etc.).

Beyond the feature of exchanging money, Blockchains like Ethereum [42]
grant the possibility of executing decentralized applications (DApps) on-chain.
DApps are possible thanks to smart contracts [43], programs that can be ex-
ecuted on-chain thanks to the Ethereum Virtual Machine (EVM) [44]. Such
contracts and the EVM allow, for instance, to execute some action (like issuing
a payment) upon fulfilling some conditions.

Furthermore, other Blockchains like Dusk Network [45] also provide virtual
machines to execute smart contracts. In this particular case, Dusk has the Rusk
virtual machine, which like the EVM can execute smart contracts, but with
the difference that all the transactions handled by Rusk are private by default,
thanks to ZKPs.

From a more technical perspective, it is worth mentioning that, in order to
prevent saturation of the network, users are required to pay gas in order to
execute transactions. This is the amount of Dusk coins per amount of bytes
needed to execute a transaction. Depending on how busy the Dusk Network is,
the price of the gas increases or decreases. Like this, performing a Denial-of-
Service (DoS) attack becomes so expensive that is infeasible [46].
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2.9 Smart Contracts

One of the most useful Blockchains in regards to our scenario is Ethereum [42].
It is a network whose purpose is not to be a currency for making payments but
a way to run distributed applications (DApps). DApps are possible thanks to
smart contracts [43], pieces of code executed on the Ethereum Virtual Machine
(EVM) [44]. Such contracts and the EVM allow users, for instance, to be paid
upon fulfilling some conditions. That is, for instance, distributed exchanges:
applications where users buy or sell their cryptocurrencies to other users.

In order to execute transactions, Ethereum requires gas. This is the amount
of Ether (Ethereum’s coin) per amount of bytes needed to run a transaction.
Depending on how busy the Ethereum network is, the price of gas increases or
decreases. This can make using Ethereum very expensive. To overcome such
a problem, Zero-Knowledge-Rollups (zk-Rollups) have been proposed recently
[47]. They basically group several transactions into a single transaction of the
main Ethereum Blockchain. Whereas the Ethereum network is called Layer 1,
the zk-Rollup is commonly called application of Layer 2. zk-Rollups are possible
thanks to ZKPs. zk-Rollups are introduced in Section 2.10.

Similarly, as Ethereum does, Dusk Network [45] is a Layer 1 Blockchain
that provides a virtual machine called Rusk which enables the deployment and
execution of smart contracts. However, they introduce the Confidential Secu-
rity Contract Standard (XSC), which ensures the preservation of transactional
confidentiality while simultaneously guaranteeing compliance through the use
of ZKPs. This opens the door to a wide variety of use cases where privacy is a
must, but accountability is required at the very same time.

2.10 zk-Rollups

zk-Rollups [47], as depicted in Figure 2.2, create batches of several transac-
tions in a Layer 2 scenario, and publish the whole batch into a single Layer
1 transaction. This saves a lot of gas that would be consumed if each trans-
action was executed directly on the main Blockchain. To do so, we have two
actors, the transactors willing to create a rollup transaction, and the relayers
computing the required operations to make the rollup work. In that regard,
transactors send transactions to the relayers containing information about the
sender, the receiver, the amount of tokens to be sent, etc. Such transactions
also include a signature of the transaction. As stated previously, ZKPs require
an elliptic curve, as proofs are sets of elements on such curves. For instance, the
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BN128 is the currently used curve for zk-SNARKs in Ethereum. The signature
scheme used is EdDSA, which also requires an additional elliptic curve where
parameters are compatible with the zk-SNARKs elliptic curve (BN128). In this
scenario, the Baby JubJub elliptic curve is used, for its compatibility with the
parameters of BN128.

Once the relayer has received a bunch of transactions, they compute a Merkle
tree of the previous accounts’ state and the new state. Later, they compute
a zk-SNARK which verifies all the signatures, and posts on the Blockchain a
transaction containing this batch: the rollup transactions, the previous and new
root states, and the zk-SNARK. This transaction is verified by a smart contract
previously deployed on the Blockchain.

batch M-1 batch M batch M+1batch M-2 batch M+2

... ...

... ...

block N+1block N-1 block N

Blockchain mainnet

zk-Rollup chain

Figure 2.2: zk-Rollups overview.



Chapter 3

LASER: Lightweight And
SEcure Remote keyless
entry protocol

The usage of RKE systems has been increasing over the years, being widely
used to remotely lock and unlock cars, garage doors, sensors, doorbells, or
alarms. The first RKE systems used a simple protocol, where a code was sent
in plaintext to a receiver that had to execute a command, let us say, unlock
a door. However, as sniffing and replaying the code was enough to be able to
unlock such a door, a new scheme called rolling codes was developed, and it is
still widely used nowadays. Such a scheme is supposed to be secure because
the key fob computes and sends a new code each time it is used, and each
code is accepted by the receiver just once. Nonetheless, it has been proved that
rolling codes are vulnerable to different attacks, and authorities are starting
to report1 criminals taking profit of these vulnerabilities. This fact has led
researchers to design new secure schemes [48] to protect these systems, but
their complexity made manufacturers not implement them, so it would mean
developing key fobs with some disadvantages, i.e. a higher price or a faster
draining of the battery. This is due to the fact that many solutions proposed to
use cryptographic schemes [49] which needed higher computing power than the
available in the current fobs. Furthermore, the proposed protocols usually need

1https://www.west-midlands.police.uk/news/watch-police-release-footage-relay-crime
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more than one message to exchange some private information or instruction
commands. For example, some solutions [50] require to use a 4-way handshake
before sending an instruction command, which increases the complexity of the
protocol.

We provide a secure protocol to be implemented by manufacturers into both
RKE and PRKE systems. Our scheme is robust against both jamming-and-
replay attacks and relay attacks; furthermore, it mitigates the effectiveness of
jamming-based denial-of-service attacks, thanks to the integration into the pro-
tocol of a frequency-hopping approach. Moreover, our solution is a one-message
protocol for RKE systems and a two messages protocol for PRKE systems,
where both approaches use a hash function proved to have low CPU resources
consumption. As such, our solution is lightweight, scalable, and easy to imple-
ment. The purpose of this solution is to be applied to key fobs with the only
requirement of having a real-time clock, synchronized periodically as detailed in
our protocol. We also demonstrate how our solution can be implemented, and
we achieve good results.

3.1 Remote Keyless Entry Systems

We call RKE to those systems which are composed of a fob F and a device
D. When a button on F is pressed, a radio frequency signal is sent to D,
including an instruction command that D will have to execute. These systems
are commonly used to lock or unlock cars and open their boots, to open a garage
door, to control a temperature sensor, etc. The main protocols used by these
systems can be divided as follows:

• Fixed codes. This is the simplest scheme. As depicted in Figure 3.1a, F
sends a command cmd to D, which is essentially a bit stream referring to
an action that D will have to perform.

• Rolling codes. There is a wide variety of rolling codes algorithms, but all
of them rely on the idea of sending different codes each time a button of
F is pressed. In order to accomplish this purpose, both F and D have
previously agreed on a secret key from which derives a sequence of codes
N1, N2, ..., Np. Then, as depicted in Figure 3.1b, each time a button on F
is pressed, the next code c is computed and sent to D, who checks if the
received number is equal to a value c that previously it also computed.
Apart from c, a command cmd is also sent, which is typically a sequence
of bits that refers to an action D will have to do, i.e. unlock a car. Each
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(a) Fixed codes protocol (b) Rolling codes protocol

(c) Challenge-response protocol

Figure 3.1: Main RKE and PRKE protocols
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value c can be used only once. In case D may have not received some of
the codes sent by F , it commonly checks up to the next 256 generated
codes, and when a correct value c is received by D, all the codes behind
it cannot be used again. One of the most used rolling codes devices has
been KeeLoq [51].

On the other hand, Passive Remote Keyless Entry (PRKE) systems [52] are
a special type of RKE. PRKE systems do not require the user to manipulate F .
Instead, as soon as D receives an external input (i.e. if D is a door, someone
pulling the handle), it automatically sends a request to F , which replies with a
confirmation. The most used protocol [53] for PRKE systems is the challenge-
response protocol:

Challenge-response protocol for PRKE Both D and F perform the fol-
lowing 2-message handshake:

1. First, D computes a random value r (the challenge), and sends it to F.

2. F encrypts r using a pre-shared symmetric-key sk, and sends the en-
crypted value c to D.

3. D decrypts c using the same key sk and verifies the identity of F .

For example, if D is a car using a challenge-response protocol, when the user
carrying F pulls the car handle, D sends a message with a challenge r, and as
soon as F receives it, it replies with its answer. This is depicted in Figure 3.1c.

3.2 Attacks against RKE and PRKE

Jamming-and-replay attack. As depicted in Figure 3.2, these attacks [54]
are performed using two transceiver devices. One of them is placed near to D,
hidden from the view of the victim V, and jamming the frequency used by the
system an adversary A is willing to hack. Then, the other one is close to F ,
eavesdropping on the communications. When V presses the button of F , the
signal it sends is jammed by the jamming transceiver J , and V is forced to use
an alternative (i.e. a physical key). Meanwhile, A captures the message sent
by F , and as D never receives it, A will be able to replay it later. Finally, the
jammer can be remotely deactivated by A, as soon as they are sure that V will
not try to use F again.
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Figure 3.2: Jamming-and-replay attack

Relay attack. As it can be seen in Figure 3.3, this kind of attacks [55] are
performed using two transceivers connected through an LTE network or similar.
One of them is close to D, and the other one to F . Like this, they create a bridge
between both endpoints. If the attacked system is a PRKE, when the adversary
A2 pulls the car handle the challenge-response protocol is performed through
the bridge created by both adversaries. Otherwise, if we are talking about an
RKE system, we have to expect that the user may either accidentally press the
button on F , or leave it unattended (thus allowing the adversary A1 to press
the button).

Figure 3.3: Relay attack

Denial-of-service (DoS) attack. This kind of attack [56] is also based
on jamming the frequency used by the protocol, but in this case with the main
goal of denying the service. It has a lower impact on the system security as it
does not grant access to the system, but it bothers the user, who will require a
physical key if they want to perform the action.

3.3 Related Work

Regarding the attacks against RKE systems, an important contribution on the
topic has been recently done in [57]. They demonstrate as the jamming-and-
relay attacks are nowadays still effective against a wide variety of modern cars,



30 CHAPTER 3. LASER

by making use of two units of a radio frequency device called HackRF One2,
one for jamming and the other one for logging data and replaying later.

A particular RKE scheme based on rolling codes, and widely used by many
manufacturers, is called Hitag2 [58]. An important contribution related to this
type of RKE has been done in [59], where a novel correlation-based attack is
presented. This attack allows an adversary to recover the secret key used in
Hitag2 systems, just by eavesdropping on at least four of the codes sent by
the fob. Thus, it allows the adversary to clone the fob. As stated in the paper,
major manufacturers have sold systems with this vulnerability for over 20 years.
As such, the need for new secure and easy-to-implement schemes becomes clear.

Implementation of the attacks. By making use of two radio frequency
devices called Yardstick One3 (YS1), a jamming-and-replay attack can be per-
formed by using a python implementation4 of this attack. This implementation
makes use of a library called rflib, included in a software used by YS1 called Rf-
Cat5. That said, one antenna will be jamming while the other will be sniffing the
code of the fob. The same implementation is useful for performing just the DoS
attack. Moreover, taking this implementation as a starting point, implementing
a relay attack is trivial.

Proposed solutions. Many secure schemes [48], [50] have been designed
to increase the security of RKE and PRKE systems. The main problem they
present is their complexity, so they use cryptographic schemes which are hard
to implement into cheap key fobs. On the other hand, some schemes [60] have
been proven to be both simple and effective against relay attacks. One of them,
proposed in [61], demonstrates that a protocol calculating the time between
message exchanges can determine if a relay attack is being performed against a
PRKE or not. This is the main idea behind LASER, which also solves the replay
vulnerability.

3.4 Solution Overview

In this section, we explain step-by-step our protocol, LASER, for both RKE and
PRKE systems. We consider a fob F and a generic device D, assuming it to be
a car. First, both endpoints have to agree on a randomly generated secret key
sk large enough to make a brute-force attack hard to accomplish (i.e. a 256-bits

2https://greatscottgadgets.com/hackrf/
3https://greatscottgadgets.com/yardstickone/
4https://github.com/exploitagency/rfcat-rolljam
5https://github.com/atlas0fd00m/rfcat



3.5. LASER FOR RKE 31

key). They also need to agree on a set of commands cmd, used for example to
lock the car, unlock it, etc. D also has a car identification number (device id)
known by F .

In both RKE and PRKE systems, both F and D will be required to compute
a hash. The hash function used by both devices was required to be lightweight
in order to optimize the timings and the resources consumption. For our imple-
mentation and analysis, we have chosen to use Blake2, a hash function proposed
in [15], which guarantees a low power and computing resources consumption.
Furthermore, it is proved to be as fast as MD5, but solving the security vulner-
abilities MD5 presents.

In particular, we are interested in using Blake2s, a version of Blake2 op-
timized for 8-bit platforms, which are the kind of cheap processors commonly
used for key fobs. Basing our solution on the usage of a hash function like
Blake2 instead of using some complex cryptographic scheme, we are decreasing
the costs of implementing our solution, and also avoiding a fast draining of the
battery.

Our solution performs a frequency-hopping protocol where the frequency
channel used to transmit the messages changes each period of time p. This
means that both D and F must agree on the same channel, and to achieve it
they perform the following protocol.

Frequency-hopping for LASER The frequency-hopping for a specific end-
point, which has a number of available frequency channels Nc, is performed as
follows:

1. Each period of time p (both F and D have previously agreed on this value)
both parties get the current date-time d in a timestamp form and calculate
the hash h = Hash(sk, d).

2. It calculates the channel ch, which is the modulo Nc of the integer repre-
sentation of h: ch ≡ int(h) (mod Nc).

The next subsections explain the specific details for both RKE and PRKE
systems.

3.5 LASER for RKE

In this subsection, we first explain all the steps of the RKE protocol in detail,
and later the main approach used to prevent each kind of attack.
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3.5.1 Protocol Decription

In this scheme, D is required to be always listening to a specific channel, so
it will be continuously performing the frequency-hopping protocol previously
introduced. However, F will perform it just before starting the LASER protocol.
When the owner of D wants to execute a command cmd by pressing a button
on F , F calculates ch by first calculating h, but rounding the timestamp to the
previous multiple of p. Then, the next protocol is performed (as depicted in
Figure 3.4):

LASER for RKE Both D and F follow the next protocol:

1. F takes the current timestamp tstart, and computes h = Hash(sk, tstart).

2. F sends h over ch along with the real timestamp tstart and the command
cmd.

3. As soon as D receives the message sent in the last step, it gets the current
timestamp tend, and checks if the difference between tstart and tend is
lower than or equal to a threshold γ, previously estimated.

4. If the above condition is true, and h is correct, D executes cmd.

,

,

Figure 3.4: LASER for RKE

Accurate time synchronization between F and D is crucial, as F has to send
an exact timestamp. To overcome this drawback, we propose the usage of the
same approach we introduced in our protocol: if F sends a timestamp tstart
that does not verifies (tend − tstart) ≤ γ, D replies with a message hsync, tsync,
where tsync is the correct timestamp and hsync = Hash(sk, tsync). F updates
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its real-time clock after verifying hsync. The purpose of sending also a hash here
is to prevent an adversary from being able to send messages to F to modify its
current time.

3.5.2 Security Analysis

Preventing jamming-and-replay in RKE. To prevent jamming-and-replay,
our solution sends a unique hashed value h of a string. Such string results from
concatenating a secret key sk and the current timestamp tstart at the moment
the protocol is initiated. Like this, each hash will be unique in time and will be
accepted by the receiver just at that moment. Plus, the fact of concatenating a
secret key makes it impossible for an adversary A to generate a new hash.

Preventing relay attack in RKE. We first need to estimate the threshold
γ, which is the maximum amount of time a message should take going from F
to D. In this scenario, if a message took an amount of time (tend− tstart) higher
than γ, we could say that F is placed further from D than what it should be
and that the protocol is performed by means of a relay attack, using an LTE
network or similar.

Preventing DoS in RKE. Both endpoints have a range of frequency chan-
nels Nc available to perform the frequency-hopping protocol, and the aim is to
agree on a channel ch without an adversary being able of knowing it. The pur-
pose is to change the transmitting channel each short period of time p (let us
say, 10 seconds), which should be defined by the manufacturer considering the
best performance of the device. By doing this, an adversary willing to perform
a DoS attack against us will have to jam a wide range of frequencies at the
same time. It can be done by means of several jamming devices, which is an
expensive investment6.

3.6 LASER for PRKE

In this subsection, we first explain all the steps of the PRKE protocol in detail,
and later we introduce the main approach used to prevent each kind of attack.

3.6.1 Protocol Decription

In this scheme, it will be F who is continuously performing the frequency-
hopping protocol. When the owner of D wants to unlock it by pulling the

6https://www.jammer-store.com/hpj16-all-frequencies-jammer.html
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handle, D calculates ch by first calculating h, but rounding the timestamp to
the previous multiple of p. Then, the next protocol is performed (as depicted
in Figure 3.5):

LASER for PRKE Both D and F follow the next protocol:

1. D sends over ch a synchronization message to F including the device id.
At the moment it sends the message, it also starts to calculate a message
exchanging time te.

2. F computes and sends h = Hash(sk, tp) to D.

3. As soon as D receives the message sent in the last step, it stops the counter
of te. Like this, now D knows a value te which is the time between D
sending a message and receiving a response. If the received value h is
correct and te is lower than or equal to a threshold γ, D executes the
desired action.

,

,

Figure 3.5: LASER for PRKE

In PRKE, if D does not receive a response after sending the first message
of the protocol, it can be that tp on F is incorrect. In this case, D must send
hsync, tsync using all the other frequencies, to be able to reach the one used by
F , and make it update its current time.

3.6.2 Security Analysis

Preventing jamming-and-replay in PRKE. To prevent jamming-and-replay,
in PRKE we also send a unique hashed value h of a string. Although we also
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compute h concatenating sk and a timestamp, in this case, the latter is slightly
different. For PRKE the prevention against relay attacks is based on another
approach we explain in the next paragraph, and this is the reason why we can
use the timestamp tp calculated during the frequency hopping protocol as the
value concatenated to sk. Like this, each h can be used only during a short
period of time p, thus preventing jamming-and-replay.

Preventing relay attacks in PRKE. The value te is the time it takes a
message to go from D to F , plus a response message to go back to D. By placing
F next to D and pulling the handle of the car, we can calculate an estimated
value γ, which is the threshold the protocol should never surpass. If a message
took an amount of time te higher than γ, we could say that F is placed further
from D than what it should be, and that the protocol is performed by means of
a relay attack. As in this case is D who calculates te, F will not be required to
calculate the current timestamp tstart, thus the protocol will be less time and
power consuming for it.

Preventing DoS in PRKE. For PRKE systems, the prevention against
DoS attacks works essentially like in RKE systems.

3.7 Estimating the Threshold

In this section, we estimate the threshold γ using our proof-of-concept7, and
then we use it to analyze the robustness of both systems against relay attacks.
For each system RKE and PRKE we have tried to execute a command one
thousand times. The success rate has been 100% in both cases, meaning that
the command has been always executed. By logging the timestamps into a
dataset, we have found out that the time it takes for a message to go from one
endpoint to the other one is never higher than tmax = 136 ms for the RKE
solution, as shown in Table 3.1. For PRKE systems, where the calculated time
is how much it takes D to receive F ’s reply, the maximum time it took has been
tmax = 175 ms.

At this point, we could think about the possibility of choosing the maxi-
mum value as the threshold. However, it could be dangerous if a relay attack
is performed: for the RKE system, if the message takes the minimum time
tmin = 55 ms to go to the adversary A1, and the second adversary A2 gets to
send the relayed message in the same amount of time, it would take 110 ms.
Assuming that the adversaries will not be able to exchange the relayed message

7https://github.com/xevisalle/laser
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Table 3.1: Information extracted from timestamps of RKE and PRKE systems,
expressed in milliseconds.

System tmax tmin tavg tQ3

RKE 136 55 71 79
PRKE 175 113 157 164

through an LTE network or similar in less than tmax − 110 = 26 ms is a weak
premise. To solve this, we could take the average amount of time, but then
we are compromising the usability of the system, so most of the time the user
will have to press the button more than once, as shown in Figure 3.6. We can
overcome this problem by calculating the third quartile of the dataset, which is
higher than the average in both RKE and PRKE systems. We can see in Figure
3.6 that now the effectivity is higher as well. As every time we press the button
in the fob we are sending around 6 messages, the probability of failing when
trying to execute a command is almost negligible, so the success rate for each
message is almost 75%.

0

10

20

30

40

50

60

70

80

90

100

 

 

Figure 3.6: Success rate when trying to execute a command in both RKE and
PRKE systems considering different thresholds.

3.8 Robustness against Relay Attacks

Let us have an RKE relay attack scenario as depicted in Figure 3.7. If the
minimum time it can ever take for the user’s hardware to send a message from
F to D is tmin, we can be sure that tFA1

= tmin is the minimum value that can
be achieved. As such, our scheme is secure as far as the adversaries are not able
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to achieve the following statement:

tFA1
+ tA1A2

+ tA2D ≤ γ

(tA1A2
+ tA2D) ≤ γ − tFA1

(tA1A2
+ tA2D) ≤ γ − tmin

(3.1)

Figure 3.7: RKE relay attack scenario.

On the other hand, we have a PRKE relay attack scenario as depicted in
Figure 3.8. If the minimum time it can ever take for the user’s hardware to
send a message from D to F and send the answer back to D is tmin, we can be
sure that (tDA2

+ tFA1
) = tmin is the minimum value that can be achieved. As

such, our scheme is secure as far as the adversaries are not able to achieve the
following statement:

tDA2
+ tA2A1

+ tA1F + tFA1
+ tA1A2

+ tA2D ≤ γ

(tA2A1
+ tA1F + tA1A2

+ tA2D) ≤ γ − (tDA2
+ tFA1

)

(tA2A1
+ tA1F + tA1A2

+ tA2D) ≤ γ − tmin

(3.2)

Figure 3.8: PRKE relay attack scenario.

If we take as an example the results we got, the adversaries trying to hack
LASER should achieve the next statements to succeed, where γ = tQ3 = 79 ms
and tmin = 55 ms for RKE:

(tA1A2
+ tA2D) ≤ 24 ms (3.3)

And γ = tQ3 = 164 ms and tmin = 113 ms for PRKE:

(tA2A1 + tA1F + tA1A2 + tA2D) ≤ 51 ms (3.4)
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For what concerns the bridge between A1 and A2, ideally it could be done
through an LTE network or similar. Knowing that the average uplink latency
in LTE networks is 10.5 ms [62], we could assume two adversaries getting lower
values for tA1A2 and tA2A1 . Even so, assuming that a relay attack can be
successful against LASER is a strong premise.



Chapter 4

ZPiE: Zero-knowledge
Proofs in Embedded
systems

Beyond anonymous cryptocurrencies, ZKPs are also used in smart contracts to
grant more privacy to its users: for instance, issuing a payment after using some
service, while keeping the identity of the user secret. Protocols based on such
approaches would be desirable in IoT scenarios, where many services are used,
and most of them (such as medical applications) collect sensitive data. However,
ZKP schemes require high computational resources, especially when the proof
is generated. Even when current ZKP implementations do a great job in terms
of efficiency, they are far from being portable, especially for embedded systems,
as most of them focus on web applications, with the usage of programming
languages like JavaScript, WebAssembly, or Python. Some solutions [63] try
to distribute the operations to be done to generate the proof between trusted
servers. However, such approaches require a trusted environment and a per-
sistent and fast connection with the server. Optimal solutions would be novel
implementations focused on devices with low resources.

We introduce ZPiE, a portable C library for generating and verifying ZKPs.
As an initial proof-of-concept, ZPiE implements the specific ZKP construction
called zk-SNARK. Our library provides a clear API to create proofs, and to
verify them. Upon doing several tests on different devices, we have proved that,
unlike other state-of-the-art solutions, ZPiE can be executed in x86, x86_64,

39
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aarch64 and arm32 CPU architectures out-of-the-box. In addition, after per-
forming several experiments using a x86_64 CPU (compatible with other state-
of-the-art libraries) and comparing the results with other solutions, we have
proved that ZPiE has a similar performance. Furthermore, our solution can be
easily integrated with existing implementations to be used in smart contracts.

In this chapter, we provide all details regarding ZPiE. We start with a com-
prehensive explanation of how it was designed, to later move to the technical
details. We later provide the techniques used to improve the efficiency of the
code. Finally, we provide an explanation of how to use the library.

4.1 Related Work

To develop ZKP applications, libraries like the one provided in this thesis are
required. One of the main libraries to accomplish this purpose is libsnark1,
a C++ library for constructing zk-SNARKs, which was used for some time by
Zcash [21], based on the specific zk-SNARK construction introduced in [22], but
supporting [23] as well, among others. Even when this library provides excellent
benchmarks, one of the main drawbacks of this library, as the authors state, is
not being well-optimized for ARM architectures.

Another library with similar benchmarks is bellman2, implemented in Rust
and meant for constructing zk-SNARKs, developed and currently used by Zcash.

Moreover, when it comes to developing DApps for the Ethereum Blockchain,
we previously stated that a verifier coded in Solidity is required. ZoKrates3

is a python toolbox for zk-SNARKs intended to generate Solidity verifiers, to
be deployed into the Ethereum Blockchain. Furthermore, a similar approach
is snarkjs4, a JavaScript library for constructing zk-SNARKs. It includes a
clear API for generating trusted setups using a fairly secure MPC protocol, for
generating proofs, and for verifying them. Plus, it also provides an easy way to
export the verifier in Solidity, to deploy it into the Ethereum Blockchain.

1https://github.com/scipr-lab/libsnark
2https://github.com/zkcrypto/bellman/
3https://github.com/Zokrates/ZoKrates
4https://github.com/iden3/snarkjs
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4.2 Solution Overview

ZPiE5 has been designed to provide a clear interface for developing ZKP appli-
cations. As such, it provides an API to design circuits, perform the setup phase,
generate proofs, and verify them. Furthermore, our solution can easily integrate
the verifier in Solidity applications (i.e. using ZoKrates or snarkjs), in order to
deploy smart contracts into the Ethereum network. ZPiE can be used in devices
with very low resources like a Raspberry Pi Zero, and in a wide variety of CPU
architectures: x86, x86_64, aarch64, and arm32.

Our solution has been designed with portability and scalability in mind.
For such a reason, we decided to use C to code it, which is still widely used
in embedded systems, and allows us full control over the hardware resources.
For dealing with big numbers we use GNU GMP6, which is one of the fastest
approaches to do operations with large numbers in C. For the group operations
over elliptic curves, and pairings, we rely on the MCL library7, a well-optimized
set of functions that offer us support for all the operations we need to perform.
Both GMP and MCL offer support for x86, x86_64, aarch64, and arm32 CPU
architectures. Moreover, all the code has been designed to split the workload
into threads, to increase the performance especially when the prover is executed
in a multicore CPU. Regarding the circuit design, both the circuit parser and
the circuit’ code developed by the user are coded in pure C, so they are both
compiled altogether along with all the other code for maximum performance.

4.3 Efficiency

The first step to being able to use our proof system is to generate the CRS
through the setup algorithm. Using Groth’16, the setup has a complexity of
O(n), so we need to compute a number of elements that depends only on the
size of the circuit. Regarding the verifier, where the complexity time is con-
stant (O(1)), they only need to compute 3 pairings and verify that an equation
holds, which is not expensive in terms of power consumption. Plus, the op-
erations which require more power consumption are done by the prover when
computing the proof. That is computing the h coefficients, and doing the multi-
exponentiations in G1 and G2.

5https://github.com/xevisalle/zpie
6https://gmplib.org/
7https://github.com/herumi/mcl
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4.3.1 Computing h coefficients

As stated in Appendix B, we rely on an FFT function to compute the coefficients
in O(n log n). Our FFT function has been designed to be as efficient as possible.
The size of the domain used for the FFTs in Ne = 2l, where l is a big integer, so
|h| = Ne. In total, the prover has to perform 3 inverse FFTs over a domain S,
3 FFTs over a shifted domain T , and one last inverse FFT over T . As depicted
in Figure 4.1, this set of operations is, for any number of constraints, the same
small percentage of all the operations performed to generate the proof.

4.3.2 Multi-exponentiations

Our solution uses three different multi-exponentiation approaches: the naive
multi-exponentiation (which is a serial approach), the multi-exponentiation func-
tion provided MCL, and a Bos-Coster multi-exponentiation algorithm (further
details provided in Appendix C). While the former achieves the worst results,
MCL gets better marks. However, our Bos-Coster implementation achieves the
best results. We split the Bos-Coster operations into chunks to increase the
performance when using multithreading. As depicted in Figure 4.1, the multi-
exponentiations represent a huge percentage of the operations to be done. In
addition, the heap sorting, a step required after each Bos-Coster execution,
increases exponentially in terms of global percentage.

4.4 Applications

Some of the use cases of ZKPs involve proving to another party that we know
the preimage of a hashed value, or that we have a valid signature for a secret
message. We implemented both approaches using ZPiE, and provide an API to
easily use them.

To use our library, we need to write a circuit that will be parsed later. To
do so, Listing 4.1 shows an example of how to compute the MiMC [64] hash of
a preimage xin. As can be seen, we set a public output h, the hash of the secret
preimage xin (in such a process some randomness k is used as well). In other
words, this circuit will compute a proof that once verified, the verifier will be
sure that who computed the proof knows xin. As can be seen in Listing 4.2,
ZPiE can compute the setup, the proof, and verify it by simply executing each
algorithm as shown in the snippet.

In addition, and as shown in Listing 4.3, ZPiE can easily verify an EdDSA [65]
signature by calling the function verify_eddsa(...), providing the required
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Figure 4.1: CPUs proving operations workload comparison of ZPiE executed in
a i7-11370H CPU in single-thread mode. The used zk-SNARK is Groth’16, and
the elliptic curve BN128.

parameters as shown in the snippet. In this scenario, the prover is proving to
the verifier that they know a valid signature for some secret message. In that
regard, the code can be modified depending on the use case, to select which
values are public or secret.

1 #include "../ circuits/mimc.c"

2

3 // main function called by the circuit parser

4 void circuit ()

5 {

6 element h, x_in , k;

7

8 // we init the public output h, and private inputs x_in and k

9 init_public (&h);

10 init(&x_in);

11 init(&k);

12

13 // we manually set preimage and randomness values

14 input(&x_in , "1234");

15 input(&k, "112233445566");

16

17 // compute a MiMC hash

18 mimc7(&h, &x_in , &k);
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19 }

Listing 4.1: Circuit example for computing the MiMC hash of a preimage.

1 #include "../ src/zpie.h"

2

3 int main()

4 {

5 // we perform the setup (../ data/provingkey.params and

6 // ../ data/verifyingkey.params)

7 init_setup ();

8 perform_setup ();

9

10 // we generate a proof (../ data/proof.params)

11 init_prover ();

12 generate_proof ();

13

14 // we verify the proof (../ data/proof.params)

15 init_verifier ();

16 if (verify_proof ()) printf("Proof verified .\n");

17 else printf("Proof cannot be verified .\n");

18 }

Listing 4.2: Program execution example

1 #include "../ circuits/eddsa.c"

2

3 // main function called by the circuit parser

4 void circuit ()

5 {

6 element out [4];

7 // we init the public output

8 for (int i = 0; i < 4; ++i)

9 {

10 init_public (&out[i]);

11 }

12

13 // we provide some example values

14 char *B1 = "52996192406415512816348655835182970302

15 82874472190772894086521144482721001553";

16 char *B2 = "16950150798460657717958625567821834550

17 301663161624707787222815936182638968203";

18 char *R1 = "12629481114452250573734381948187634057

19 00457487429548371463214326190311895864";

20 char *R2 = "12533500305127747239777484416561675628

21 195562065959201739446841668623540883587";

22 char *A1 = "21629779320182474195265732521833299809

23 982444552305142529409236301104997786342";
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24 char *A2 = "90118124453810306641426220662183318451

25 40881847034934166630871421746105699091";

26 char *msg = "1234";

27 char *signature = "2674591880888862378688383832785

28 447197125897205360861957116147165712709455207";

29

30 // we verify the signature

31 verify_eddsa(out , B1 , B2 , R1, R2, A1, A2, msg , signature);

32 }

Listing 4.3: Circuit example for verifying an EdDSA signature

4.5 Experiments and Results

In this section, we perform several experiments to prove the efficiency of our
solution. In order to do so, we implemented a circuit composed of 16384 con-
straints as shown in Listing 4.4.

1 // main function called by the circuit parser

2 void circuit ()

3 {

4 element out;

5 // we init the public output

6 init_public (&out);

7

8 int mulsize = 16384;

9 element arr[mulsize ];

10

11 // we init an array of secret elements

12 init_array(arr , mulsize);

13

14 // we manually set a value

15 input(&arr[0], "12345678");

16

17 // do x multiplications

18 for (int i = 1; i < mulsize; i++)

19 {

20 mul(&arr[i], &arr[1], &arr[i-1]);

21 }

22

23 mul(&out , &arr[0], &arr[mulsize -1]);

24 }

Listing 4.4: Circuit example for computing 16384 constraints

As stated previously, zk-SNARKs are composed of three algorithms. The
setup is performed only once, so the performance of this algorithm is not of big
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importance in practice. However, using ZPiE, the setup of a circuit of 16384
constraints can be performed in 17 seconds using a laptop CPU in single-thread.
Regarding the proof verification, our zk-SNARK construction has a succinct
verifier which verifies any proof in just 0.0011 seconds.

Moreover, we performed several experiments to prove the performance of
ZPiE when computing proofs. First, we compared our solution with a well-
optimized library intended to generate proofs in desktop applications, libsnark.
As depicted in Figure 4.2, ZPiE achieves great results, similar to the ones
achieved by libsnark, both in single or multi-thread modes.

Then, as depicted in Figure 4.3, we executed our solution with different con-
straint amounts in two different processors, either in single and multi-thread
modes. As can be seen, the laptop processor i7-11370H (x86_64) achieves ex-
cellent results either in single or multi-thread modes. Regarding the mobile
processor Snapdragon 845 (aarch64), the results are still excellent in multi-
thread. In single-thread mode, the difference is bigger, yet the proofs can still
be executed in a fairly small amount of time.
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Figure 4.2: ZPiE and libsnark proving times comparison using different con-
straint amounts, in single-thread and multi-thread modes. All the tests are
executed using a i7-11370H CPU. The used zk-SNARK is Groth’16, and the
elliptic curve BN128.
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Figure 4.3: CPUs proving times comparison of ZPiE using different constraint
amounts, in single-thread and multi-thread modes. The used zk-SNARK is
Groth’16, and the elliptic curve BN128.

Furthermore, we successfully computed proofs using a Raspberry Pi Zero W,
which CPU architecture is ARM6l (arm32) and has a very low clock frequency
(700 MHz). As depicted in Figure 4.4, the results are much higher than using
mobile or desktop processors, yet the proofs can still be executed. As such, ZKP
applications could be executed in embedded devices, at least when speed is not
of paramount importance. For instance, protocols such as SANS, which needs
around 5000 constraints, could be executed in less than a minute using a Rasp-
berry Pi Zero W. This allows IoT devices to use privacy-preserving protocols
based on zk-SNARKs.
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Figure 4.4: CPUs proving times of ZPiE executed in a Raspberry Pi Zero W.
The used zk-SNARK is Groth’16, and the elliptic curve BN128.



Chapter 5

SANS: Self-sovereign
Authentication for Network
Slices

5G communications enhanced the way how mobile devices are connected to cel-
lular networks. They not solely improved the 4G Radio Access Network (RAN),
but also introduced a new paradigm where devices with different specifications
are routed through different physical and logical networks, called network slices.
This opened new business models, for instance, creating network slices for spe-
cific services offered by third parties. Like this, a Slice Operator (SO) ruling a
network slice may want to offer a service to users meeting some requirements
(e.g., users enrolled in a governmental program, users who have paid for using
such a service, etc.). Among the growing density of IoT devices using 5G com-
munications, we can find examples of devices sharing sensitive data over the
network: medical devices exchanging private information or autonomous cars
sharing their location with a network slice. Needless to say, this data should not
be traced by any SO or eavesdropper. In such a scenario, traditional authentica-
tion schemes leak all this data to the SO. As such, SSI [4] becomes an important
feature to implement: systems where users can control, access, and transpar-
ently consent to their identities, preventing entities from tracking and gathering
their personal data. Likewise, the main idea behind SSI systems is to provide
a unique mechanism for users to authenticate into different services, providing
only the required information, information that shall be non-traceable.

49



50 CHAPTER 5. SANS

We introduce SANS, a novel self-sovereign authentication approach where a
user demonstrates his right to access a service, without leaking any information
about them. Our approach is an underlying protocol to be integrated into
existing SSI systems, avoiding any user activity being linked with any other
activity done in the past or the future. Moreover, it also prevents the SO or an
attacker from impersonating them from tracking users’ activity. Our protocol
grants the user with these main features:

• Proof of Ownership: the user can prove that they meet the require-
ments needed for using a specific service.

• Unlinkability: the SO has no way to relate any user activity with another
activity done in the network.

We use ZKPs to achieve the aforesaid key features, allowing a user to prove
their right to access a specific service, requested by an SO, without leaking any
information about them.

5.1 Mobile Communications

5G is the fifth generation of mobile communications [5], which achieves faster
speeds than LTE networks and more reliable service. The 5G network is split
into different network slices, which are independent networks dedicated and op-
timized for specific services. This new architecture is built employing Software-
Defined Networking (SDN) and Network Functions Virtualization (NFV), along
with the physical infrastructure. All these changes lead to higher performance:
higher speeds, lower delays, and much less network latency. As depicted in
Figure 5.1, different kinds of User Equipment (UE) are part of different slices,
depending on their specifications or the services they are willing to use. In a
nutshell, the main network slices are:

• eMBB slice: The enhanced Mobile Broadband (eMBB) slice is meant
for services that require high bandwidth, like Internet browsing, high-
definition video streaming, virtual reality, etc.

• mMTC slice: The massive Machine Type Communications (mMTC)
slice aims to group a high density of devices, which do not have other
essential requirements like low latency or high bandwidth. Examples of
this are IoT devices, specifically in the context of smart cities.
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Figure 5.1: General 5G architecture overview.

• uRLLC slice: The ultra-Reliable and Low-Latency Communications
(uRLLC) slice aims to provide very low network latency, a crucial re-
quirement for services like autonomous driving or remote management.

As depicted in Figure 5.1, users connect their UE to the small 5G cells of
the 5G RAN, which forward the connections to the 5G core network, split into
different software-defined networks (i.e., eMBB, mMTC, uRLLC...).

Furthermore, access to the 5G core network is allowed not solely from the
new 5G RAN, but also from other networks like the 4G RAN or optical fiber
connections, depending on the requirements of the service. As such, we un-
derstand 5G as a heterogeneous network (HetNet), a network interconnecting
devices with different specifications and protocols, where a common and trust-
worthy authentication scheme would be a desirable feature.

5.2 Related Work

SSI systems have gained a lot of interest in the last few years. The author
in [1] envisioned an SSI system where users can control, consent, and widely
use their identities among different services, along with other properties. These
properties were redefined in [4] by the Sovrin Foundation1. They introduced

1https://sovrin.org/
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the guidelines on how SSI systems can be implemented along with Blockchain
technologies, providing a distributed architecture of trust without central au-
thorities managing users’ data. In this regard, SSI authentication schemes like
the one proposed in [66] make use of Blockchain technologies for deploying a
decentralized and private authentication system.

A good review of the state-of-the-art regarding this topic is done in [3]. As
they state, ZKPs allow a user to prove ownership of an identity, i.e., proving
knowledge of a secret key related to a public key stored in a Blockchain.

As stated previously, the core of network slicing relies on an SDN-based ar-
chitecture. In this regard, interesting research is addressed in [67], where a novel
authentication scheme preventing multiple types of SDN authentication attacks
is introduced. This makes even more sense in the context of a medical cloud
sharing sensitive information, a fact that has led to schemes [68] guaranteeing
a secure authentication in this scenario.

A more specific use case related to our approach is introduced in [69]. They
state some of the benefits of SSI for IoT devices, like the fact that the identities
of the owners of different devices are stored locally in the devices, rather than
on a centralized entity (i.e., the SO in our scenario). As explained by the
authors, SSI provides a layered authentication system separating application
authentication from channel authentication, where the former handles the trust
requirements. This grants a more reliable end-to-end security, where secure
communication is established among different protocols.

Among the aforesaid studies regarding SSI, to the best of our knowledge,
there are no solutions applied to 5G network slices. In this regard, we propose
a solution to integrate SSI into network slices in the next section.

5.3 Protocol Description

We start with a high-level description of SANS, and later move to a more detailed
one: a user willing to join a network slice to use its service may be required to
meet some requirements, like having paid a subscription fee. As such, the user
is a prover P willing to prove to a verifier V, the SO, that they have paid such
an amount (the statement). Our protocol accomplishes this purpose. To do
so, an important requirement of our protocol is being able to prove knowledge
of contracts signed using a given secret key: P must convince V that they
know a contract and its signature, which is verified using a public key. The
contract can be a secret value, and still, V must be convinced. In order to be
efficient, the used signing algorithms have to be ZKP-friendly, and this means
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that its operations can be reduced to a low number of constraints. For instance,
the Edwards-curve Digital Signature Algorithm (EdDSA) [65] is a fast signing
algorithm widely used with zk-SNARKs. Moreover, signature algorithms in zk-
SNARKs must be combined with efficient hashing functions as well. One of
the most efficient zk-SNARK-friendly hashes to the date is Poseidon [16], which
needs 8 times fewer constraints for its circuit than the widely used Pedersen
hash.

Our authentication scheme is divided into two protocols, depicted altogether
in Figure 5.2. The first one is the service registration protocol, to be performed
for each issued payment.

SANS SERVICE REGISTRATION PROTOCOL This protocol allows
the user to register to use a given service. Its steps are as follows:

1. P provides V some requested information req (e.g., a statement from the
bank stating that a payment has been issued).

2. After verifying req, V generates a unique byte-array token identifying
the user, and sends it to them along with a timestamp texp represent-
ing the contract expiration date. Moreover, V provides a signature S =
signskSO(token, texp) and its public key pkSO.

After having registered into the service, the user can use the provided pa-
rameters to authenticate into the service each time they needs to use it, and
thus, create a new session into the service. Moreover, in order to avoid replay
attacks [70] (i.e., an eavesdropper taking the proof and replying it to the SO),
every proof must include the hash of the secret token concatenated to a variable
public parameter c. Further details of such an approach are discussed in Section
5.4.

SANS SESSION AUTHENTICATION PROTOCOL This protocol is
meant to be performed each time the user wishes to prove their right to use a
service, following the next steps:

1. P computes a proof π out of the circuit depicted in Figure 5.3, whose
inputs are:

• c (public input)

• token (private input)

• S (private input)
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Figure 5.2: Overview of the service registration and the session authentication.

• pkSO (public input)

• texp (public input)

2. V verifies the proof π and grants the service.

As shown, we prove knowledge of a secret token concatenated to its expira-
tion date texp, which is the preimage of a public hash. This is our contract, and
we also prove that we know its secret signature (signed by V) using the public
key pkSO. This outputs 0 if the signature is verified.

5.4 Security Analysis

In this section, we analyze the security of our solution. We also detail how to
overcome some possible attacks.
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Figure 5.3: Circuit used by the session authentication protocol.

False proofs generation. The main drawback of some ZKP constructions
like zk-SNARKs is the need for a trusted setup. In many scenarios, like in
Zcash, an untrusty setup could lead to huge losses of money if a malicious party
gets the trapdoor τ and starts to create false transactions. However, this is not
a problem in our solution: a different setup can be generated by each SO. If
the SO keeps and spreads the trapdoor τ , anyone knowing τ will be able to
access the service by generating false proofs. As such, the protocol is secure as
long as the setup is generated only by the SO and they destroy τ . Furthermore,
as stated previously, the ZKP construction that best fits our solution at the
moment of writing this is the Groth’16 zk-SNARK. As such, the security of
SANS depends on a q-PKE assumption.

Elliptic curve attacks. The security of our solution also relies on the
security of elliptic curves. One of the most used curves in ZKPs is a Barreto-
Naehrig curve [13] called BN128, which security level in practice is estimated
to be 110-bits [34]. This means that an attacker willing to break BN128 shall
perform 2110 operations. Other curves like BLS12-381 [21] estimate around 128-
bits of security, with the drawback of heavier group operations. Breaking the
security of the used elliptic curve would lead to being able to generate false
proofs.
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Account sharing. Every computed proof is different since it is generated
using random parameters, allowing the user to generate different proofs with the
same inputs. As such, the user could generate multiple proofs for other users,
which would access the service with a single subscription. To overcome this issue,
a simple solution is integrated into our protocol: every proof must include the
hash of the secret token concatenated to a variable public parameter c. Ideally,
this parameter could be a timestamp with a specific accuracy, for instance, the
date in format yyyy/mm/dd plus the time in format hh:mm without seconds.
Plus, the signature verification will output 0 if correct, and thus, the hash as
well. Like this, an SO receiving the same hash more than once could identify
that those proofs have been computed using the same token. As such, if two
users are trying to use the service at the very same time, the SO can relate and
reject both connections.

5G RAN authentication. One of the main concerns about our solution is
to provide a fully private authentication, where the SO cannot learn the identity
of the user. In this scenario, we still have another party, the Internet Service
Provider (ISP), who acts as an SDN controller providing the architecture and
the workflows for optimal network slicing. As such, the ISP learns the identities
of the users from the moment that the UE accesses the 5G RAN. To overcome
this, we envision the usage of SANS when the UE is required to authenticate
for accessing the 5G RAN. In other words, the UE would be proving his right
to access the 5G RAN, for instance by proving that the user has paid the last
month’s bill to the ISP.

5.5 Efficiency Analysis

This section describes several efficiency considerations of SANS.
Computational complexity. The setup protocol depends only on the

number of gates, so this protocol has a linear computing complexity O(n). One
of the most consuming operations done by the prover is to compute the coeffi-
cients of a polynomial H(x), which can be computed more efficiently employing
FFT techniques [71], leading to a computing complexity of O(n log n). Further-
more, multi-exponentiations must be taken into account as well, and can be
improved using algorithms like Bos-Coster, as explained previously. The veri-
fier has to do a constant computation of group exponentiations and an equation
composed of three pairings.

Prover optimizations. There are different operations performed by the zk-
SNARK prover which can be parallelized in order to improve its efficiency. This
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means that CPU and GPU multiprocessing techniques can be applied to speed
up the implementations. Even so, the usage of external computing resources as
done in [72] can be taken into account. For instance, in the case of a prover
being a smartwatch with low computing resources, the heaviest computations
could be precomputed by the user’s phone, whose computing power should be
higher.

Circuit size. Our circuit contains a single EdDSA signature combined with
two hashes (to the date of writing this, Poseidon seems the best option). The
authors of circomlib2 developed optimal EdDSA and Poseidon circuits, which
leads our solution to a total size of 7565 constraints and affordable computing
times as shown in the next subsection.

5.6 Implementation and Benchmarks

We implemented3 our solution using snarkjs, a JavaScript and WASM frame-
work for implementing zk-SNARK applications. The reason for choosing this
option is its simplicity for implementing circuits and its portability in web en-
vironments. In this regard, we deployed our implementation in a web server, to
be executed by different devices using different web browsers. Overall, the num-
ber of constraints of this implementation is 7565, and as depicted in the chart
of Figure 5.4, our solution outperforms in high-performance CPUs (i7-8750H),
either using Mozilla Firefox or Google Chrome. As such, our solution could be
used in desktop applications with no problems with regard to performance.

On the other hand, the proving time increases notably in low-performance
processors (Intel Atom x7-Z8750), achieving timings higher than 2 seconds both
in Firefox and Chrome. An interesting fact is how Chrome performs slightly
better than Firefox in its desktop version, which does not apply to mobile CPUs
(Snapdragon 845). Regarding Snapdragon 845, even when it is a top mobile
processor, we can see as the results are not as good as i7-8750H. However, the
achieved results prove that our solution is feasible in performance, especially
when portability is a priority. Moreover, the memory consumption has been in
all tests between 150 and 200MB (not taking into account what is consumed by
default by the browsers).

Furthermore, we also tested libsnark4, a well-optimized C++ zk-SNARKs
library achieving excellent benchmarks, but with the drawback of not being as

2https://github.com/iden3/circomlib/
3https://github.com/xevisalle/sans
4https://github.com/scipr-lab/libsnark
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Figure 5.4: CPUs proving times comparison of SANS using a snarkjs imple-
mentation executed in multi-core mode for browsers. The used zk-SNARK is
Groth’16, and the elliptic curve BN128. Intel Atom x7-Z8750 and i7-8750H
run desktop browsers for Linux, Snapdragon 845 runs Firefox and Chrome for
Android 10.

portable as other solutions like snarkjs. For instance, as the authors of libsnark
state, the library is not well-optimized for ARM architectures (e.g. Snapdragon
845), and the BN128 curve is not supported in this architecture.

We implemented a circuit with the same amount of constraints that our
solution has, and we executed the prover in multi-core mode using Groth’16
and the BN128 curve. The obtained results are shown in the chart of Figure
5.5. As can be seen, libsnark achieves much better results than snarkjs, so
implementing SANS using this library would be even more feasible. Regarding
memory consumption, libsnark performs better as well: around 20 MB in both
tested devices. Furthermore, optimized libraries for mobiles and embedded sys-
tems would lead to additional performance improvement, so future work in this
regard would be an exciting research topic.
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Figure 5.5: CPUs proving times comparison of snarkjs and libsnark 7565 con-
straint circuits executed in multi-core mode. The used zk-SNARK is Groth’16,
and the elliptic curve BN128. Intel Atom x7-Z8750 and i7-8750H run a desktop
Linux distribution.
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Chapter 6

FORT: Right-proving and
Attribute-blinding
Self-sovereign
Authentication

A high density of devices is also translated to more data shared over the network.
A concerning fact is what happens with the data shared by users, especially
when such data is sensitive or can simply be used to profile users with no
permission. Even when the usage of Internet technologies is increasing very
fast, some security and privacy concerns [73,74] still need to be addressed. For
instance, medical devices sharing sensitive information about patients through
the network, GPS applications, or autonomous driving, are applications that
collect a lot of data about us. Even if the company behind says no personal data
is collected, we can only trust them, with no possibility of detecting misbehavior.

In this context, new digital services have appeared in the market, changing
the way how users interact with them. Among many use cases, we can find car
sharing, buying tickets for events, subscriptions to streaming services, etc. As
centralization was a property of these applications that used to lead to control of
the network by some individuals, Blockchains [39] started to change the way peo-
ple interact with online services. The most common example, cryptocurrencies,
has become a payment method without central authorities (i.e. banks) con-
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trolling the stream of the issued transactions and all the collateral information.
Moreover, beyond being a payment solution, Blockchains like Ethereum [42]
offer a way to execute programs on-chain. Those programs, called smart con-
tracts, allow issuing a payment to a specific party as soon as this party proves
that they meet some requirements specified in the contract. This same approach
is used in many DApps [75] nowadays, like paying a subscription to some service.

Decentralization implies that public data stored in the Blockchain can be ac-
cessed by anyone. This leads to some privacy concerns: as Blockchains publicly
store all the network activity, user tracking or profiling becomes an issue to be
addressed. In such regard, the problem gets worse when users of a Blockchain-
based service need to interact with real-world services (i.e. proving to the staff
of an event that you paid for the ticket), so if anyone learns your Blockchain
identity, they learn all your history.

To solve the privacy concerns that arose on Blockchain applications, ZKPs
started to be integrated within Blockchain projects like Zcash [21]. In the Zcash
example, these primitives allow users to issue transactions without leaking their
identity or the amount of money they are spending while proving that they are
solvent.

In such a scenario, the concept of SSI appeared. In the previous chapter, we
introduced SANS, allowing users to prove to Service Providers (SP) that they
own a token that proves their right to use a specific service. Such a solution
is suitable in many scenarios, but in some cases can have efficiency drawbacks
since it relies on a ZKP construction called zk-SNARKs [23], which requires high
computing power. This scheme is executable on Internet of Things (IoT) devices
thanks to implementations like ZPiE [76], but taking a fair amount of time. This
fact makes such a solution infeasible in use cases where IoT devices must prove
several things in a short amount of time (i.e. willing to use a smartwatch to
prove a right, having a door sensor with a cheap CPU verifying proofs, etc.).
Besides, this solution is still centralized, which means that if the SP disappears,
the user no longer owns the right.

In this chapter, we introduce FORT, a novel self-sovereign authentication
protocol, combined with Blockchain technologies to provide a solution where
users of a service acquire rights, which are a set of different provable blinded
attributes. Such attributes are portions of personal information which have been
blinded: they are invisible to the SP, and only the user can decide how much
information about them has to be leaked. These attributes are represented
by NFTs [77] on the Blockchain, which can be granted on-chain by entities
providing services, the SPs, and verified off-chain. For instance, a car willing
to access a smart city would have to prove its right to do so, that is having two
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attributes: a certificate stating that the car has a low emissions level, and a
fee payment receipt for entering the city. Once the right is represented in the
Blockchain using an NFT, the car will be able to prove off-chain the possession
of such a right, by using a ZKP. Such proof will state the possession of a valid
NFT, without leaking the identifier of such NFT nor the identity of the car
owner. Furthermore, our solution also skips third-party fees: for instance, in
the scenario of buying tickets online for some event, in many cases, the ticket
is issued by a third party that handles all the ticketing management, and who
needs to be trusted. Furthermore, this party charges the users a service fee. Our
solution relies on the Blockchain. Thus, the event organizer does not need to
rely on third parties, and the user does not share his identity nor pay a service
fee.

Our contribution relies on zk-SNARKs, but also on range proofs, another
ZKP scheme where users prove that a value lies within a given range, without
leaking such a value to other parties. In particular, we use the Bulletproofs [28]
range proofs scheme. For that reason, our second contribution in this chapter
is the implementation of a Bulletproofs module for ZPiE. Our implementation
achieves excellent benchmarks, and using such a module, we implement our
protocol and show its efficiency in IoT devices.

6.1 Related Work

SSI systems [1] have the premise of deploying protocols where users of different
services can manage their identities in a secure, transparent, and private way.
A general idea in this regard, and similar to our solution, was envisioned as a
system where users can claim and prove possession of different rights associated
with their identities, without compromising their privacy [4]. Furthermore, the
combination of SSI systems with ZKPs has become a new research topic in the
last few years [3]. In this regard, solutions like SANS [78] introduce a private
authentication mechanism based on ZKPs. Using such tools, SANS allows users
to prove their rights to access several services, without the Service Provider
(SP) knowing the identity of the users, while guaranteeing that the users are
allowed to use the service (e.g. the users have paid a subscription fee).

There are some differences between SANS and this work. In all cases, owner-
ship of a given token can be proved (Proof of Ownership). Moreover, this work
can prove that the token exists in the Blockchain (Proof of Validity). We also de-
ploy attributes blinding, where our solution becomes completely self-sovereign:
users can choose to reveal specific portions of their data in a transparent way.
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Regarding privacy in online transactions, other research papers like [79] ex-
plore an interesting way to provide a privacy-preserving authentication protocol
by means of Physical Unclonable Functions (PUFs), providing a solid and effi-
cient protocol.

Besides, ongoing research regarding how zk-SNARKs can contribute to scal-
ability in Blockchains is done in [80], where research on distributed proofs gen-
eration making use of recursive zk-SNARKs is done.

On the other hand, combining IoT devices and NFTs is not an unexplored
research area. Recent research [81] introduced a solution to manage IoT devices
securely. They associate NFTs stored in Blockchains with IoT devices, to grant
them a unique and indivisible identity.

Finally, to the best of our knowledge, there are no other solutions that pro-
vide a private-by-design and self-sovereign system to authenticate users, provid-
ing at the very same time a decentralized architecture, just like FORT does.

6.2 Solution Overview

Our solution is meant to be used in scenarios where users need to prove their
right to use a service, for instance, accessing a house rented online. In such a
scenario, we envision the usage of a certificate installed in the user’s smartphone
(or smartwatch, or any similar device) which can be validated by some sensor
installed in the door of the house. Once validated, the SP might want a proof
of meeting some requirements, linked with the previously validated certificate.
We detail this workflow (as depicted in Figure 6.1) in this section, as follows:

1. Read on-chain information: the user acquires some attributes granted
by third parties, which can be an SP to whom the user is buying a ticket or
subscription, a governmental entity verifying your personal information,
a bank providing a proof of solvency, etc. Such attributes are granted
through an NFT stored in a Blockchain. The SP issues an NFT repre-
senting the user’s attributes. The SP mints this NFT on-chain, and later
transfers it to the user’s address. Now, the user can read these attributes
from the Blockchain.

2. Compute proof (the certificate): the user acts as a prover, and com-
putes a ZKP from the information collected from the NFT, as detailed in
the circuit of Figure 6.2, and installs this certificate in his device.

3. Send proof (read certificate): The user tries to use the service by
showing the certificate to the SP, who reads it.



6.2. SOLUTION OVERVIEW 65

4. Verify on-chain information: the SP needs to partially read the Merkle
tree of the Blockchain (as detailed in the next section) to be able to verify
(in the next step) that the attributes the user wants to prove are really
on-chain (the NFT).

5. Verify proof (validate the certificate): The SP verifies the ZKP, thus
verifying the rights of the user.

After performing this protocol, the SP can ask the user for some information
about the attributes, for instance, if they lay within a specific range. To do it,
the user computes a bulletproof and sends it to SP, the verifier. Then, the SP
verifies that the bulletproof sent by the user is correct, and knows for sure that
the value is within a specific range.

User

(3) sendProof

Service Provider

(1) readOnchainInfo (4) verifyOnchainInfo

Blockchain

(2) computeProof (5) verifyProof

Figure 6.1: FORT protocol scenario overview.

Ideally, a desirable way to implement our protocol would be creating the
NFTs directly using a Blockchain, and proving that we own them using the
signature details involving the Blockchain transaction representing each NFT.
However, this has some constraints regarding scalability and efficiency: first, the
gas fees in the case of Ethereum can become very expensive, so using a trans-
action for a single right is far from optimal. Second, the elliptic curve used to
sign Ethereum transactions, the secp256k1, is not pairing-friendly, so generating
proofs proving ownership of the private key used to sign the transaction will not
be efficient. To solve this problem, FORT relies on zk-Rollups for scalability, and
on EdDSA for proofs off-chain.
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6.3 Protocol Decription

To be able to prove rights to access the service, the first thing a user needs to
do is to receive an NFT stating some attributes about them. To do so, the user
needs to contact the SP and provide them a proof of meeting some requirements.
Then, SP executes Algorithm 1: after validating the requirements, it issues an
NFT representing the user’s attributes. The SP mints this NFT on-chain, and
later transfers it to the user’s address.

Algorithm 1 Create NFT

Environment: vector of x attributes: attributes[x]; user’s address: pkuser; user’s
conditions: cnd
nft← create nft(attributes[x]):
if verify conditions(cnd) then

nft.id = rand();
nft.attr = attributes[:];
nft.S = signskSP(H(nft.id, nft.attr, pkuser));
mint nft(nft);
transfer nft(nft, pkuser);

end

Upon receiving the NFT, the user is ready to anonymously prove possession
of such an NFT, and thus, their rights. To do so, the user will follow the next
protocol.

FORT PROTOCOL We have a user willing to use a service, and a Service
Provider (SP) offering it. They perform the following steps:

1. (user) : Read the NFT transaction to be proved, which is published in the
Blockchain, and the IDs of a set of NFT transactions in the batch batch ids,
where |batch ids| = 2x, and x is agreed by consensus. From this, using the
leaf corresponding to the user’s nft.id, create a Merkle proof merkle proof.

2. (user) : Send a proof π to the SP, computed using the circuit depicted in
Figure 6.2, along with the batch ids.

3. (SP) : Receive (π, batch ids) from the user.

4. (SP) : Collect the ID of the transactions in the batch and compute the
root of the Merkle tree root.
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5. (SP) : Execute Algorithm 2, if it returns 1, grant the service, reject oth-
erwise.

hash()verify_merkle_proof()
priv.priv.

merkle_proof

nft.id

0
(pub.)

root

nft.attr

verify_sig()
priv.

0
(pub.)

nft.S

com
(pub.)

commit()
priv. priv.

rpkSP

scalar_mul()

Gk

hash()

c

nullifier
(pub.)

(pkuser)

Figure 6.2: Circuit for our solution.

Algorithm 2 Verify right

Environment: Zero-knowledge proof π.
1/0← verify right(π):
if (nullifier, 0, 0) ← verify proof(π) and !(is seen(nullifier)) then

return 1;
else

return 0;
end

As explained above, the proof used in the protocol uses the circuit depicted
in Figure 6.2. As can be seen, the circuit includes a verification of the signature
nft.S, using the public key of the SP pkSP. The inputs of the signature were the
attributes nft.attr along with the ID nft.id and the public key of the user pkuser.
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The challenge c is hashed along with nft.id and the user’s private key k. nft.id
is also used to verify the merkle proof.

Finally, and before the SP grants the service, the prover might have to create
a bulletproof to reveal some information about the attributes. This is done using
com, a Pedersen Commitment. This process is detailed in Algorithm 3.

Algorithm 3 Create Bulletproof

Environment: secret key k; vector of x attributes: attributes[x]; vector of x
commitments: C[x]
πb[x]← create bulletproof(C[x], attributes[x]):
for i in x do

πb[i]← bulletproof(C[i], attributes[i])
end

6.4 Security Analysis

An important element to consider when analyzing the security of FORT is the
ZKP scheme to use. The main drawback of some ZKP constructions like zk-
SNARKs, when used in scenarios like cryptocurrencies, is the need for a trusted
setup. An untrusty setup could lead to huge losses of money if a malicious party
gets the seed used to compute it, so it could create false transactions. This is
not a problem in our solution: a different setup can be generated by each SP,
as the proofs are verified off-chain by a single entity, the SP, and they are the
main interested in not leaking the secret seed.

Moreover, the soundness property of each scheme relies on different secu-
rity assumptions, like some zk-SNARK schemes relying on the q-PKE assump-
tion. Furthermore, the security of these schemes relies on the security of elliptic
curves, where breaking the security of the selected curve would lead to being
able to generate false proofs. One of the most used curves in ZKPs is the BN128,
which security level in practice is estimated to be 110-bits [34]. Other curves like
BLS12-381 [21] estimate around 128-bits of security, with the drawback of heav-
ier group operations. More recent research is introduced in [82], where a new
curve called BW6-761 is introduced. As stated by its authors, the verification
of proofs is at least five times faster than other state-of-the-art curves.

Regarding the circuit we have designed, our solution grants several privacy
and authentication features:
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• Proof of Ownership: the circuit used in FORT verifies a signature nft.S
of an input nft.id, nft.attr, pkuser, using the public key of SP, pkSP. Also,
pkuser is the output of the scalar multiplication kG, where k is the user’s
private key. This ensures that the user owns the NFT, as only they can
compute the public key using the private key, while keeping both values
private, so SP cannot learn the identity of the user.

• Proof of Validity: the user computes a Merkle tree out of a batch
batch ids, and provides into the circuit a Merkle proof as a private input,
for a given nft.id. This ensures that the NFT the user is proving ownership
of has been transacted in the Blockchain. SP can compute the root of the
Merkle tree root′ itself, and check if it equals root.

• Unlinkability: as the values identifying the user are private inputs of the
circuit, the SP has no way to link any user activity done in the network
with other activities done by the same user.

• Nullification: the circuit computes the hash of nft.id, the private key k,
and a challenge c. The format of this value could change in different scenar-
ios. Taking the example of proving ownership of a ticket for an event, ide-

ally, c would be the date of such an event. If is seen(nullifier, previous[])
?
= 1

holds, it means that someone already entered the event with the same
NFT. This is true because neither nft.id nor k can change, so nullifier will
always be the same for a given public input c. This prevents a user to
use the same right multiple times, and to compute valid proofs for other
users.

• Attribute blinding: the private information the user wants to share
only when required, the attributes, are private inputs of the circuit. Such
values are committed using a Pedersen Commitment (i.e. com, but as
many as required can be included in the circuit), so the verifier learns these
commitments, and the prover later uses a Bulletproof to prove knowledge
of them, and to prove that they are within a specific range.

FORT, as introduced in this section, can also be seen as a framework to be
modified to match the needs of every use case that our solution could be deployed
to. This means, selecting the proper ZKP scheme to be used, recomputing the
certificate each time instead of using Bulletproofs, selecting a different challenge
c, etc.
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6.5 Implementation and Benchmarks

In this section, we explain the capabilities and implementation details of the
Bulletproofs module we developed and later explain how we implemented our
specific solution using our module.

6.5.1 Bulletproofs Module

We implemented Bulletproofs as a module integrated into ZPiE. As explained
previously, this library uses GMP and MCL as dependencies: GMP is a pure
C library used to handle big numbers and operations involving them, and MCL
is a library written in C++, which offers a C wrapper for using it in pure C
projects, used to do elliptic curve operations. The library also supports the
elliptic curves BN128 and BLS12-381, which are thus also supported by our
implementation. We implemented an API that allows us to generate aggregated
range proofs using the Bulletproofs scheme above referred, and to verify them.
The instructions on how to compile and use the library can be found in the
README of the repository. The code can be used as explained in Listing 1.

1 #include "../ src/zpie.h"

2

3 int main()

4 {

5 // init the bulletproofs module for 2 aggregated proofs of 64

bits

6 bulletproof_init (64, 2);

7

8 // set some values to prove knowledge of and compute the

bulletproof

9 unsigned char *si[] = {"1234", "5678"};

10 bulletproof_prove(si);

11

12 // verify the bulletproof (../ data/bulletproof.params)

13 if(bulletproof_verify ()) printf("Bulletproof verified .\n");

14 else printf("Bulletproof cannot be verified .\n");

15 }

Listing 6.1: Bulletproof generation example. Generation of 2 aggregated proofs
of 64 bits.

We benchmarked our implementation as depicted in Figure 6.3. Moreover,
we improved the efficiency of our solution by using multi-threading in several
parts of the prover and the verifier, where splitting the operations in different
cores was possible. As we can see, we are benchmarking the time it takes by the
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prover, either in single-core (SC) or multi-core (MC), to compute the proofs.
We performed the experiments for several amounts of aggregated proofs of 64
bits, using a 4-cores CPU, and the BN128.
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Figure 6.3: CPUs proving times of our solution.

6.5.2 Solution Deployment

In this subsection, we detail the deployment of the three main parts of our
protocol, generate rights, generate the certificate, and prove the attributes.

Generate Rights

The first step to using our solution is to generate the rights that our users
will need to prove. To do so, an SP needs to provide a service and sell its
subscription using an NFT minted to a smart contract-based Blockchain. For
testing purposes, we used an Ethereum testnet where we created test NFTs
using a reference implementation of ERC-721 (the Ethereum NFT standard)1.

1https://github.com/nibbstack/erc721
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After deploying an NFT to the Blockchain, a user can buy it. Once done, they
are ready to generate the certificate.

The computational costs for generating the NFTs are negligible, as no heavy
cryptographic computations are involved in the process. Regarding the time it
takes to be reflected on the Blockchain, it would depend on how crowded it
is (typically it will take only a few minutes). On the other hand, one of the
main concerns regarding this step when deploying it into the mainnet is the
amount of gas required to execute the smart contract that mints the NFT. As
discussed before, using zk-Rollups would be the best choice to reduce the cost
when moving our solution to a production environment.

Generate the Certificate

As explained previously, the prover precomputes the certificate, which is a zk-
SNARK, required to use a specific service. The SP will verify the certificate
and will be sure of the prover’s right to use the service. We used circomlib2 to
estimate the number of constraints of the circuit used in our solution and thus,
its efficiency. To create our circuit, we rely on four main functions:

• scalar mul(): the circuit needs to multiply a number k by a point on an
elliptic curve G. To do this scalar multiplication using BN128, circomlib
uses 776 constraints.

• hash(): the circuit needs to perform 2 fixed hashes, plus a variable number
of hashes to compute a Merkle tree. A fairly secure and efficient hash
function is Poseidon [16], which only uses 210 constraints in circomlib.

• verify signature(): we use the state-of-the-art signature scheme EdDSA [65]
over BN128 provided in circomlib, which uses 4018 constraints.

• merkle tree(): the circuit needs to compute a Merkle tree. Assuming that
|batch ids| = 256 = 28, our solution will need to compute 8 Poseidon
hashes. This sums up to 1680 constraints.

In total, our circuit can be implemented using 6894 constraints. We coded
a proof-of-concept using ZPiE3, and executed the code using a laptop, a smart-
phone and a Raspberry Pi Zero. To demonstrate the scalability of our solution,

2https://github.com/iden3/circomlib
3https://github.com/xevisalle/zpie
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we also executed the circuit using snarkjs4, a JavaScript implementation of zk-
SNARKs which can be executed in web browsers. This is perfect for scalability
in web applications, with the performance drawback it involves, compared with
binaries executed directly in the kernel. Table 6.1 shows the results.

Table 6.1: Performance results of FORT in different devices using different
implementations. All experiments use Groth’16 and BN128.

Device Prover Verifier
Raspberry Pi Zero W (ZPiE) 79.058 s 0.134 s
Snapdragon 732G (ZPiE) 0.830 s 0.005 s

i7-11370H (ZPiE) 0.157 s 0.000733 s
i7-11370H - Firefox (snarkjs) 0.694 s 0.022 s

As can be seen, either in high-end devices (a laptop CPU like i7-11370H)
or in mobile CPUs (snapdragon 732G), the proofs used in our protocol can be
computed in a fair small amount of time using ZPiE. On the other hand, the
time increases a lot when talking about extremely low-end CPUs like the one
used in the Raspberry Pi Zero. Nevertheless, computing the proof in about a
minute taking into account the single-core 700MHz CPU that it uses (approx.
10$), is a good result. Furthermore, an advantage of FORT is that proofs can
be precomputed much before being used. Plus, even in worst-case scenarios,
protocols like the one introduced in [72] would allow those devices to rely on
computations on other servers owned by the same user, using a secure channel.

Regarding the verification of these proofs, as we stated previously, the verifier
is succinct: all the proofs can be verified in just a few milliseconds, with no
relation to the size of the circuit. As can be seen, ZPiE outperforms here even
in the Raspberry Pi, where it takes roughly 0.1 seconds to verify proofs.

Finally, we can see how either the prover and the verifier in snarkjs are
much slower than ZPiE for the same CPU. However, such a result was expected
and taking into account the trade-off between performance and scalability, still
it is a great result.

Prove the Attributes

The SP, after verifying the certificate, might want to be sure that some of
the attributes nft.attr meet some additional requirements (e.g. being within a

4https://github.com/iden3/snarkjs
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given range). For such purpose, we compute a Bulletproof from the Pedersen
Commitment described in the zk-SNARK circuit. We use the module introduced
in the last section to achieve this outcome. In Listing 2 we show how to deploy
our solution, where the prover proves knowledge of the Pedersen Commitment,
and that the secret lies within the range [0, 28 − 1].

1 #include "../ src/zpie.h"

2

3 int main()

4 {

5 // we init the bulletproofs module , for a bulletproof of 8 bits

6 bulletproof_init (8, 1);

7

8 // we get the context (G, H, V[], gammas [])

9 context ctx;

10 bulletproof_get_context (&ctx);

11

12 // we state that we will provide the random gamma and we assign

it

13 // according to the one used in the certificate

14 bulletproof_user_gammas (1);

15 mclBnFr_setInt (&ctx.gammas [0], 1234); // r = 1234

16

17 // we need to create a bulletproof for this commitment:

18 // out4 = attr*G + r*H

19 // we set the input attr = "250"

20 unsigned char *si[] = {"250"};

21 bulletproof_prove(si);

22

23 // now P -> V: Bulletproof

24 // V reads out4 from the certificate , and verifies the

Bulletproof:

25 if(bulletproof_verify ()) printf("Bulletproof verified .\n");

26 else printf("Bulletproof cannot be verified .\n");

27 }

Listing 6.2: Implementation of our solution.

The above code for proving knowledge of an 8-bit attribute takes only 0.3
seconds on a Raspberry Pi Zero. This time increases as the size of the attributes
does the same, but being a fair amount of time to be able to use our solution
in IoT devices without problems. Executing the same approach using a zk-
SNARK will require around 776 constraints, and the benchmark gives us 10.5
seconds. As such, it is clear that Bulletproofs are a much better approach for
this specific use case, where provers will be able to execute the protocol instantly
using low-powered devices.



Chapter 7

Citadel: Self-Sovereign
Identities on Dusk Network

In this chapter, we introduce two main contributions. First, we design a private
NFT model to be integrated with Dusk Network. Using such a model, a user
buying an NFT will receive a token that only they will be able to read. This
approach has full integration with the Dusk Network Blockchain: the changes
to the original protocol are minimal and have zero impact on their performance.
Plus, our contribution is secure under the same assumptions taken for the orig-
inal transaction model of Dusk, called Phoenix.

Second, we introduce Citadel: an SSI system fully integrated with Dusk
that allows users to acquire licenses (a.k.a. rights), and prove their ownership
using ZKPs. By means of our novel and private NFT model, the licenses are
privately stored in the Blockchain, and thus, we solve the traceability problem
that other solutions had. In particular, we provide a system with the following
capabilities:

• Proof of Ownership: a user of a service is able to prove ownership of a
license that allows them to use such a service.

• Proof of Validity: our solution introduces the possibility to revoke li-
censes. Users can prove ownership of a valid license, that has not been
revoked.

• Unlinkability: the SP cannot link any activity of their users with other
activities done in the network.

75
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• Decentralized Nullification: our system solves the problem regarding
the possibility of reusing the proofs, where a malicious SP could imper-
sonate the user after receiving a valid proof: by means of an on-chain and
decentralized nullification, like done in the standard stack of Dusk, proofs
cannot be reused.

• Attribute Blinding: the user is capable of deciding which information
they want to leak to the SP, blinding the value and providing only the
desired information.

We describe a novel protocol for authenticating in several services but pre-
serving at the very same time our privacy. Imagine we want to buy a ticket
for a concert. Nowadays, what we would do in most cases is to buy the ticket
using a web page that will get information about our browser, our credit card,
our bank account, ourselves... Moreover, they will charge us a fee for the ticket
management service, and probably they will charge a fee to the concert promo-
tor as well. Furthermore, as soon as we show the ticket to the concert, they will
be able to link our image to the information previously gathered.

Using Citadel, we can do much better. In particular, we want to buy a
license (a.k.a. a right) to use some service (e.g. the ticket of the example above
is a license, to be used in a concert, which is a service) without leaking any
information about us. Furthermore, we want to use such a service as many
times as permitted by the SP, without them being able to link our activity or
learn our identity. Moreover, we want a decentralized system that does not rely
on third parties to manage our identities and licenses.

To achieve the aforesaid features, we first rely on Dusk Network as the
decentralized framework that our solution is based. Then, we need a way to
privately share assets among users of the Dusk Network. For this reason, in
Section 7.3 we design a novel and private NFT model for Dusk. Finally, we
need a way to anonymously prove ownership of our acquired licenses (i.e. the
NFTs), so we introduce our solution in Section 7.4.

Furthermore, our solution is fully integrated into the Dusk stack, where the
deployment of the solution will have minimal impact on other parts already
implemented. In this same regard, Dusk has some features allowing users to
delegate heavy computing tasks to trusted parties, in a secure and private man-
ner. Our solution has been designed taking all these features into account, and
thus, heavy computing tasks of our protocol can be delegated as well. This
fact is important, as allows for better scalability and faster integration of our
protocol into a wider set of scenarios, like web environments, IoT devices with
low computing power, etc.
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After describing our solution in full detail, we analyze its security, and finally
provide benchmarks using our proof-of-concept implementation1, to demon-
strate its deployment feasibility.

7.1 Related Work

Interesting SSI approaches have been introduced recently, like the one detailed
in [83]. This paper states a way to deploy an SSI system that grants anonymity
to its users at the network level. Other solutions like [84] introduce a Blockchain-
based system for preserving the privacy of users when managing their vaccine
certificates.

In most cases, state-of-the-art SSI systems use ZKPs as the backbone of
their architecture: cryptographic primitives allowing users to prove knowledge
of some information, without leaking anything about it. This is the case of
SANS [78], where the authors introduce a private authentication protocol based
on these primitives. Using SANS, users can prove their rights to access different
services, without the SP knowing the identity of the users.

Often, they also rely on Blockchain technologies [39], in order to achieve
decentralization and immutability, when it comes to buying and granting rights
to users. For instance, projects like iden3 2 or Jolocom3 build SSI systems where
owners of Decentralized Identities (DIDs) are able to manage them in a private
manner. At the time of writing this, both solutions rely on the Ethereum
Blockchain.

On the other hand, FORT is an SSI system that relies on NFTs. What they
do, is represent the right acquired by someone as an NFT stored on a Blockchain,
and they can prove ownership of this right by means of a ZKP. However, even
when it does a great job preserving the privacy of the users of different services,
this solution still has some open problems to address: the NFTs, as implemented
nowadays, are publicly stored on Blockchains like Ethereum. This means that,
even when users can privately prove ownership of such rights, they can still be
traced on-chain. As stated in the open problems section, being able to integrate
their solution into Blockchains like Dusk Network would lead to enhanced pri-
vacy. Dusk Network is a Blockchain where all the transactions are private by
default, and capable of executing smart contracts with built-in privacy features.

1The proof-of-concept implementation can be found in the following repository:
https://github.com/dusk-network/citadel

2https://iden3.io
3https://jolocom.io
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Being able to integrate a private-by-design NFT model into Dusk, would lead
to the possibility of designing and deploying an SSI system on top of it, which
would prevent on-chain traceability.

Furthermore, FORT presents another problem: the SPs need to be trusted,
as the ZKPs sent to them could be reused by them, impersonating like this the
users. As such, finding a way to ensure that a license that has been already
used cannot be reused in other scenarios, would be a desirable feature.

7.2 Building Blocks: The Phoenix Transaction
Model

In this subsection, we introduce the details about Phoenix4, the transaction
model used by Dusk Network.

7.2.1 Overview of Phoenix

Dusk Network is an open-source public Blockchain with a UTXO-based archi-
tecture that allows the execution of obfuscated transactions and confidential
smart contracts. In Phoenix, UTXOs are called notes, and the network keeps
track of all these notes by storing their hashes in the leaves of a Merkle tree of
notes. In other words, when a transaction is validated, the network includes the
hashes of the new notes to the leaves of this tree.

All transactions include a ZKP called tx proof that proves that the trans-
action has been performed following the network rules. Essentially, what this
ZKP does is the following: first, it nullifies a note that the user is willing to
spend. Second, proves that the user knows the value of a new note to mint,
that will be sent to the receiver. Finally, proves that the amount of Dusk coins
nullified is equal to the amount of coins created.

Greater details about the parameters included in the transaction have been
skipped here, for the sake of completeness. Nevertheless, the next subsections
explain how the protocol manages the notes nullification and minting, by intro-
ducing first the different keys the users have to handle.

7.2.2 Protocol Keys

In Phoenix, we have different kinds of keys. First, we have the static keys that
belong to each user of the network, and we introduce them here as follows.

4https://github.com/dusk-network/phoenix-core
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Let G,G′ ← J be two JubJub points acting as our generators. We denote by
HPoseidon andHBLAKE2b the Poseidon and BLAKE2b hash functions, respectively.
Each user computes the following keys:

• Secret key: sk = (a, b), where a, b← Ft.

• Public key: pk = (A,B), where A = aG and B = bG.

As noticed, Phoenix uses two-element keys, which allows users of the network
to delegate the process of scanning for the notes addressed to them.

On the other hand, each note is associated with a unique one-time keypair
(an approach introduced in [85]), instead of using the static public key of the
receiver, which hinders traceability.

The computation of these keys is based on the Diffie–Hellman key exchange
protocol [86]. The note public key of a note sent to a receiver with public key
pair pk = (A,B), and its associated note secret key, are computed as follows:

• Note public key: a sender willing to send money to a receiver whose
public key pk = (A,B) is known by them in advance, must first compute
a note public key npk following next steps.

1. Sample r uniformly at random from Ft.

2. Compute a symmetric Diffie–Hellman key kDH = rA.

3. Compute a one-time public key npk = HBLAKE2b(kDH)G+B.

4. Compute R = rG.

The sender of a note will attach to it the note public key npk and the
partial Diffie–Hellman R used to create npk. Given a pair (npk, R), the
receiver can identify whether the note was sent to them by recomputing
k̃DH = aR (using their secret a), and checking the equation

npk
?
= HBLAKE2b(k̃DH)G+B.

• Note secret key: the receiver can compute the note secret key nsk =
HBLAKE2b(kDH) + b, to be used when willing to spend that note. This key
can only be computed by the receiver of the note since they are the only
ones holding the whole secret key sk = (a, b), and sk cannot be recovered
from public information. This is due to the DLP in J.
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7.2.3 Protocol Details

A note is defined as the following set of elements:

N = {type, com, pos, nonce, enc, npk, R}.

where type indicates the type of the note, either transparent or obfuscated;
com is a commitment to the value of the note; pos is the position of the note
in the Merkle tree of notes; nonce is an initialization vector needed for the
encryption scheme; enc is an encryption of the opening of com that can be
decrypted using the receiver’s view key; npk is the note’s public key, whose
associated private key nsk can only be computed by the receiver of the note;
and R is a point in the Jubjub subgroup J that allows the receiver to compute
nsk and also identify that they are the receiver of the transaction.

We describe Phoenix in the general scenario in which a sender wishes to
send different amounts of money v1, . . . , vn to different receivers with public
keys pk1, . . . , pkn. We assume the sender owns a set of notes {Nold

1 , . . . ,Nold
m }

each with an associated amount wi such that

m∑
i=1

wi ≥
n∑

i=1

vi,

i.e. the sender has enough funds.
When creating the transaction to transfer the funds, the sender will have to

nullify the set of old notes being spent and mint a new set of notes {Nnew
1 , . . . ,Nnew

n }
with the corresponding values vi, and assigned to the corresponding receivers.
The most common case is n = 2, where a sender generates a note Nnew

1 with
value v for a receiver, and a second note Nnew

2 for themselves with value change =
v −

∑m
i=1 wi.

To mint a new note for a receiver whose static public key is pk, we first
compute the note public key (npk, R) of the receiver as described in Section 7.2.2.
Next, we need to set the type of the transaction: if the transaction is transparent,
we set type = 0, and if the transaction is obfuscated, we set type = 1. We also
set v to the amount of money of the new note N. Finally, we need to commit
to v, and encrypt the opening as well. To do so, we first set a blinding factor
for the commitment and a nonce for the encryption:

• If type = 0, set s = 0 and nonce = 0.

• If type = 1, set s← Ft and nonce← Ft.
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and compute the value commitment com = Comck (v; s). Then, we encrypt
the opening of com:

• If type = 0, then set enc = v.

• If type = 1, then enc = EnckDH
(v||s; nonce).

Now, we can set the new note to

N = {type, com, nonce, enc, npk, R}.

The next step is to compute a ZKP using the circuit depicted in Figure 7.1
to prove the following elements:

• Membership: the sender must prove that every N ∈ {Nold
i }mi=1 is in-

cluded in the Merkle tree of notes. To do so, the sender provides a
Merkle proof for HPoseidon(N), and the circuit verifies the Merkle proof
in verify merkle proof(). We observe that all these inputs are private
and hence, the proof will not reveal which note is being spent, only that
it belongs to the Merkle tree of notes.

• Ownership: the sender must prove that they hold the note secret key
nsk of every note N ∈ {Nold

i }mi=1. Instead of including their private key
as an input to the circuit and computing npk inside, the sender proves
(using the verify signature() box inside the circuit) that they can sign
a message with that key. In this case, they use the double-key Schnorr
signature scheme to sign the hash of the transaction.

• Nullification: the sender must prove that nullifier = HPoseidon(npk′||pos).
Note that the sender provides the nullification key npk′ = nskG′ as an
input to the circuit and not the note secret key nsk. As we just explained,
the double-key Schnorr signature guarantees that npk′ is indeed nskG′.
The result of the hash() box is the nullifier, which is a public output of
the circuit that is later included as part of the transaction.

• Balance integrity: the verify balance() box checks that

m∑
i=1

wi −
n∑

i=1

vi − gas = 0, (7.1)

where gas is the maximum amount of gas that the sender is willing to pay
for the transaction.
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Figure 7.1: Arithmetic circuit for a Dusk transaction proof.

Observe that using the double-key Schnorr signature as proof that the user
holds nsk, allows users to delegate the generation of the ZKP to a partially
trusted third party, that is, a proof helper. This delegation would require the
user to entrust the old and new values of the notes to the proof helper, but not
their secret key.

Finally, the remaining checks not verified inside the circuit are performed by
the network. For instance, checking that the nullifier included in the transaction
matches the output of the circuit, or that the note has the right typeset.

7.3 A Private NFT Model for Dusk

As described in the previous section, coins in Dusk are represented as notes, and
they can be either transparent notes (type = 0), or obfuscated notes (type = 1).
Here we introduce two new types of notes: transparent NFT notes (type = 2)
and obfuscated NFT notes (type = 3).

As stated previously, a user willing to spend Dusk notes needs to mint new
notes while nullifying the old ones. Like this, a user can spend one note, and
create a new note for the receiver, and another one with the change for them-



7.4. DESCRIPTION OF CITADEL 83

selves. When willing to mint a new NFT, a user will need to execute the minting
contract where a Dusk note will be used to pay for the contract gas (and thus,
it will be nullified), and a new note will be created to receive the change. Ad-
ditionally, a new NFT note will be created. The creation of an NFT note does
not need to be part of the ZKP circuit, as it is not involved in the balance to be
verified. As such, it is enough to include the new NFT note in the transaction.
A note representing an NFT contains the same data as other notes do, but in
this case, what before was the note value in Dusk coins v, now is the payloadNFT
of the NFT. To mint a new note, we first compute the note public key npk and
the value R of the receiver as described in Section 7.2.2, plus the symmetric
key kDH. Then, we set the parameters of each new NFT note N by executing a
function

mint nft(npk, R, payloadNFT, kDH)

whose workflow is described in Algorithm 4.
As described previously, users willing to spend notes have to nullify them, a

process that involves providing a ZKP whose circuit computes the hash of the
note. In this process, the parameter type is set to private, as it is not relevant
information for the protocol. It is of paramount importance to notice that
after deploying this model, this parameter has to be public. Otherwise, an
adversary could spend an NFT note pretending to be spending a regular note
and would be able to create huge amounts of money out of the blue.

On the other hand, and as described in this section, the changes in the whole
protocol are minimal. As such, deploying our model to the current system should
be trivial.

7.4 Description of Citadel

Now, we are going the introduce all the details about Citadel. Then, we will
detail its security analysis, and finally, we will perform some experiments in
order to get benchmarks of the protocol.

7.4.1 Protocol Details

Let us have a user willing to pay a service provider SP for a license to use their
service, and willing to anonymously prove ownership of this license afterward.
First, the user will execute a payment in the Dusk Network addressed to the SP,
including into the transaction the required information to receive the license.
Upon receiving the payment, the SP will send back a license to the user, using
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Algorithm 4 Minting algorithm for private NFTs.

Inputs:
(npk, R): the public note key of the receiver npk and the related value R.
payloadNFT: a value being the desired content of our NFT note N.
k: a symmetric encryption key.

Algorithm:

1. Set the type of note.

• If the NFT note is transparent, set type = 2.

• If the NFT note is obfuscated, set type = 3.

2. Set a nonce for the encryption.

• If type = 2, set nonce = 0.

• If type = 3, set nonce← Ft.

3. Encrypt the payloadNFT.

• If type = 2, then set enc = payloadNFT.

• If type = 3, then enc = Enck(payloadNFT; nonce), where Enc() is a
symmetric encryption function.

4. Set the new NFT note to

N = {type, enc, nonce, R, npk}.
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the same Blockchain. In order to use the license, the user will have to call
a smart contract deployed in the Dusk Network, called the license contract.
Essentially, the user will provide a proof that demonstrates that they own a
valid license, the license contract will verify the proof, and will append a license
nullifier to a Merkle tree of nullifiers. By means of a session cookie included in
the same contract call, and addressed to the SP, the user will be able to request
the service using an off-chain and secure channel. The protocol is described in
full detail as follows.

CITADEL PROTOCOL The protocol has three main parties: a Service
Provider SP offering a service, and publicly sharing its public key pkSP, a user
willing to use a service provided by the SP, and the Dusk Network Blockchain.
The protocol consists of eight main steps performed between the involved par-
ties. These steps are depicted in Figure 7.2, and described as follows.

1. (user) send note license req : Compute a note public key (npkuser, Ruser)
belonging to the user, using the user’s own public key, and also an addi-
tional key kuser = HPoseidon(npkuser, nskuser), by computing first the user’s
nskuser. Then, send the required amount of Dusk coins to the SP, in order
to pay for the service. Into the same transaction, send an NFT to the SP
using the function mint nft(npkSP, RSP, payloadNFT, kDH), whose arguments
are computed as follows:

• (npkSP, RSP) is the SP’s note public key, computed through his public
key pkSP.

• payloadNFT = (npkuser, Ruser, kuser).

• kDH is computed using the SP’s public key.

2. (SP) get note license req : Continuously check the network for incoming
license requests. Upon receiving the payment from a user, define a set of
attributes attr representing the license, and compute a digital signature
as follows:

siglic = sign single keyskSP(npkuser, attr)

3. (SP) send note license : Set the payloadNFT = {siglic, attr}, and send the li-
cense to the user using the functionmint nft(npkuser, Ruser, payloadNFT, kuser).

4. (user) get note license : Receive the note containing the license.
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5. (user) call nullify license : When desiring to use the license, nullify it by
executing a call to the license contract. The following steps are performed:

• The user sets a session cookie sc = (s0, s1, s2)← Ft.

• The user creates a new NFT note where payloadNFT = sc, and the SP
is the receiver.

• The user issues the transaction that includes the NFT described in
the previous step, by calling the license contract. In this case, the
tx proof is computed as done in the standard Phoenix model, but
into the same circuit, the circuit depicted in Figure 7.3 is appended.

• The network validators will execute the smart contract, which verifies
the proof. Upon success, the NFT note will be forwarded, and the
license nullifier nullifierlic will be added to the Merkle tree of nullifiers.

6. (SP) get note session cookie : Receive a note containing the session cookie
sc.

7. (user) req service : Request the service to the SP, establishing communica-
tion using a secure channel, and providing the tuple (tx hash, attr, pkSP, c, sc).

8. (SP) grant service : Grant or deny the service upon verification of the
following steps:

• Check whether or not the values (attr, pkSP, c) are correct.

• Check whether or not the openings ((pkSP, s0), (attr, s1), (c, s2)) match
the commitments comhash

0 , com1, com2 found in the transaction tx hash.

As can be seen, the fact that only the user knows the nsk required to compute
siglic allows them to prove ownership of the license, by means of the double key
Schnorr signature, and this license is verified by proving knowledge of a valid
signature verified with the public key of the SP.

Moreover, we can appreciate in the circuit how the license is linked to the
npkuser, and the user also verifies a Merkle proof that proves membership of this
note in the Dusk Network. This brings the revocation feature: if under some
circumstances the SP no longer accepts some previously issued licenses, they
can prove to the network that a given note contains a license issued by them,
and under a consensus agreement, it will be removed. As such, after removal,
the user will not be able to provide valid proofs for this license anymore. Plus,
it can happen that a user receives a license, but the transaction is finally not
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Dusk NetworkUser Service Provider

(1) send_note_license_req

(2) get_note_license_req

(3) send_note_license

(4) get_note_license

(7) req_service

(8) grant_service

(5) call_nullify_license

(6) get_note_session_cookie

Figure 7.2: Overview of the protocol messages exchanged between the user, the
Dusk Network, and the SP.

accepted in the Blockchain (e.g. the transaction proof was not correct, some
regulation checks have failed, etc.). In this scenario, the received license will not
be valid, and the user indeed will not be able to provide a correct Merkle proof.

Furthermore, the SP might request the user to nullify the license they are
using (i.e. this is a single-use license, like entering a concert). This is done
through the computation of nullifierlic. The deployment of this part of the circuit
has two different possibilities:

• If we set c = 0 (or directly remove this input from the circuit), the license
will be able to be used only once.

• If the SP requests the user to set a custom value for c (e.g. the date of an
event), the license will be able to be reused only under certain conditions.

It is also interesting to notice that the whole protocol has been designed with
perfect integration into Dusk Network. As can be noticed, all the information
needed to prove ownership of a license is stored on-chain. As such, a user setting
up a new instance of the Dusk wallet will be able to retrieve all the licenses by
simply knowing his static secret key, as would be done with the whole Dusk
protocol. The same happens with the delegation of the received notes check,
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Figure 7.3: Arithmetic circuit for proving a license’s ownership.

where the user delegates the process of checking which notes are addressed to
them. In Citadel, the user can securely delegate the check of received licenses.
Furthermore, proof delegation is also possible, as the user knowing nsk will use
this key to sign a specific transaction, and this cannot be modified.

7.4.2 Security Analysis

We start the security analysis of Citadel by elaborating on the ZKP scheme to
use. The need for a trusted setup is one of the main drawbacks of some ZKP
constructions like PlonK, especially when used in scenarios like cryptocurrencies.
An untrusty setup where an adversary gets the seed used to compute it would
allow them to create false transactions, and this would lead to huge losses of
money. In Citadel, an untrusted setup would lead to user impersonation, and
being able to use others’ licenses.

On the other hand, the soundness property of PlonK relies on the AGM, a
weaker assumption than the q-PKE. Regarding the elliptic curve used in our
scenario, the BLS12-381 [21] is estimated to have around 128-bits of security,
which complies with the security standards.

We now put the spotlight on the security of the circuit we have designed,
which grants the following features:

• Proof of Ownership: the circuit used in Citadel verifies a signature
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siglic of an input message (npkuser, attr), using the public key of SP, pkSP.
Also, a double key signature sigstx of a transaction hash tx hash is verified
in-circuit, referring to the transaction where the ZKP will be appended.

siglic verification ensures that the license attributes are correct, and sigstx
ensures that the user owns such a license, as only they can compute npkuser
using the note secret key and compute such a signature, while keeping all
these values private, so SP cannot learn the identity of the user. An
adversary would not be able to prove ownership as long as nskuser is not
leaked to them. This is true under the DLP.

• Proof of Validity: the fact that npkuser is part of the signature siglic,
ensures that the license is assigned to a specific note of the Dusk Network,
and thus, a specific user of this Blockchain. The circuit verifies a Merkle
proof of the NFT note containing the license, which is included in the
Merkle tree of notes. This ensures that the license the user is proving
ownership of has been transacted in the Dusk Network, and is a valid
license at the moment of issuing the transaction.

An adversary willing to successfully prove ownership of a transferred li-
cense would have to craft a new pair (npkuser,attr) that verifies siglic. This
is infeasible under the DLP. Furthermore, the crafted npkuser would have
to be a collision verifying the Merkle proof.

• Unlinkability: the user sends the one-time key pair (npkuser, Ruser) to the
SP, instead of the public key pk. The fact that the information about the
user learned by the SP is a set of one-time values ensures that the identity
of the user sending these values cannot be linked to other activities done in
the network. The key npkuser is computed from the value nskuser, which is
kept secret and used only one time. As there are no other values involved
in the process that identifies the user, they cannot be linked to the user’s
identity. This is true as long as the user does not reuse nskuser. On the
other hand, npkuser = HBLAKE2b(rA)G+B, where r is sampled at random
and (A,B) is the user’s public key. As both HBLAKE2b(rA)G and B are
only known by the user, there is no way an adversary can learn B, because
npkuser can be decomposed in many ways.

From the point of view of the network, there is unlinkability as well: when
issuing the transaction, no one is able to link the nullified license to the SP,
as the pkSP is blinded by committing to this value using the hash() function
and a random value s0. An adversary would not be able to learn pkSP as
long as the randomness involved in the hashing process is not leaked to
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them. This is true assuming that the hashing function is collision-resistant.
On the other hand, both attr and c could leak information about the
service and the user. For this reason, we commit to these values (as they
are scalars instead of points, we can use the Pedersen Commitment which
requires fewer constraints than the hash function). An adversary would
not be able to learn (attr, c) as long as the random values involved in the
commitments are not leaked to them. This is true under the DLP, which
holds for the Pedersen Commitment.

• Decentralized Nullification: the circuit computes the hash of npkuser
and a public challenge c, resulting in nullifierlic. The format of the c value
could change in different scenarios. Taking the example of proving own-
ership of a ticket for an event, ideally, c would be the date of such an
event. If a function checking if a given nullifier has been previously seen,

results in the equation is seen(nullifierlic, previous nullifiers[])
?
= 1 holding,

it means that someone already entered the event with the same license.
As such, we ensure that a user cannot use the same license multiple times,
nor compute valid proofs for other users. npkuser is fixed in advance, as
such, nullifierlic will always be the same for a given public input c, which
needs to be validated by the SP.

• Attribute Blinding: As described previously, the user provides an open-
ing for the commitment com1 to the SP, thus leaking the attr value. An
adversary would not be able to provide a valid opening as long as the ran-
domness involved in the commitment of attr is not leaked to them. This
is true under the DLP, which holds for the Pedersen Commitment.

Depending on the use case, it could be desirable that the values involved in
attr are kept totally or partially private. In this scenario, and as suggested
in the FORT protocol, the user could instead provide an additional proof
of knowledge, proving to the SP that they know the opening of com1. As
an example, a Bulletproof is a kind of ZKP allowing to prove knowledge
of a value that lies within a certain range.

7.4.3 Benchmarks

We use dusk-plonk to code the circuit used in our solution. Like this, we get
the number of constraints of its different elements and thus, the efficiency of
computing (and verifying) proofs. Our circuit needs four main functions:
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• hash(): we use the Poseidon hash function, which uses 977 contraints
when hashing 1 input. The amount of constraints increases depending on
the number of inputs.

• commit(): the Pedersen Commitment requires 527 constraints.

• verify sig single key(): Dusk uses the Schnorr proof signature scheme over
BLS12-381, which uses 3388 constraints when using the single key ver-
sion.

• verify sig double key(): Dusk uses the Schnorr proof signature scheme over
BLS12-381, which uses 6645 constraints when using the double key
version.

• verify merkle proof(): the circuit needs to verify a Merkle proof. Dusk uses
Merkle trees of depth 17, as such, our solution will need to compute 17
Poseidon hashes. This sums up to 17807 constraints.

We implemented our circuit using a total amount of 34861 constraints.
Here, we need to add the constraints needed to compute the default tx proof,
which are 31486 constraints for nullifying one note. We benchmarked both
the prover and verifier using an Apple Silicon M1 CPU. The prover takes 16.232
seconds to compute the proof, and the verifier 0.007 seconds to verify it.

Plus, it has to be taken into account that an advantage of Citadel is that
licenses can be nullified much before being used. This means that long ZKP
proving times will not have a big impact on the performance of the protocol
even when using devices with low computing resources. Nonetheless, and as
mentioned previously, computations can be delegated as done in the standard
Phoenix model, so high-performing CPUs will compute the proofs even in less
time.
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Appendix A

Groth’16

Let R be a relation composed of the elliptic curve E over Fq, the pairing e
and a QAP (A,B,C,Z(x)) representing a circuit. The Groth’16 construction is
divided into three algorithms:

• σ ← Setup(R): To perform the setup, we pick α, β, γ, δ, x from Fr and
define τ = (α, β, γ, δ, x). Later we compute σ = ([σ1]1, [σ2]2):

vk′ = {βAi(x) + αBi(x) + Ci(x)

γ
}li=0

pk′ = {βAi(x) + αBi(x) + Ci(x)

δ
}mi=l+1

σ1 = (α, β, δ, {xi}n−1
i=0 , vk

′, pk′, {x
it(x)

δ
}n−2
i=0 )

(A.1)

σ2 = (β, γ, δ, {xi}n−1
i=0 ) (A.2)

• π ← Prove(R, σ, s) The prover randomly picks r, c in Fp and computes
π = ([πA]1, [πB ]2, [πC ]1):
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πA = α+

m∑
i=0

siAi(x) + rδ

πB = β +

m∑
i=0

siBi(x) + cδ

π′
C =

∑m
i=l+1 si(βAi(x) + αBi(x) + Ci(x)) + h(x)t(x)

δ
πC = π′

C + πAc+ πBr − rcδ

(A.3)

• 0/1 ← V erify(R, σ, u, π): the verifier accepts the proof iff the following
equation holds:

[p1]T = [πA]1 · [πB ]2

[p2]T = [α]1 · [β]2

[p3]T =

l∑
i=0

si[
βAi(x) + αBi(x) + Ci(x)

γ
]1 · [γ]2

[p4]T = [C]1 · [δ]2
[p1]T = [p2]T + [p3]T + [p4]T

(A.4)



Appendix B

FFT Techniques

Our QAP is a 3-matrix set of size N ×M . Working on Fp, where p is a prime
number and the order of the used elliptic curve, we find a generator g for our
field. Having this, we find two values k and an extended size for N , called
Ne = 2l (where l is an integer ’large enough’) such that p = kNe+1. As can be
seen, Ne is a power of 2, as 2-addicity is a desirable property for more efficient
FFT algorithms. With this, now we can find our Neth primitive root of unity:

ω ≡ gk mod p (B.1)

This generates our domain:

S = {1, ω, ..., ωNe−1} (B.2)

Now we need to compute three polynomials A(z) = {A0, ..., AM−1}, B(z) =
{B0, ...,
BM−1}, C(z) = {C0, ..., CM−1}, where z is our toxic waste x defined in the
Groth setup:
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Ai(z) =

Ne−1∑
j=0

Li,j ·
Lagj(z)

z − Sj

Bi(z) =

Ne−1∑
j=0

Ri,j ·
Lagj(z)

z − S(j)

Ci(z) =

Ne−1∑
j=0

Oi,j ·
Lagj(z)

z − S(j)

(B.3)

where

Lag1(z) =
zNe − 1

Ne

Lagj+1(z) = ωLagj(z)

(B.4)

As such, the setup has defined three polynomials A(x), B(x), C(x). Now, using
a solution to our circuit w the prover computes the following values:

A =

M−1∑
i=0

Ai · wi

B =

M−1∑
i=0

Bi · wi

C =

M−1∑
i=0

Ci · wi

(B.5)

And we can check:

A ∗B − C = 0 (B.6)

Now, the prover computes the evaluation of three polynomials:
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Aj =

M−1∑
i=0

Li,j · wi

Bj =

M−1∑
i=0

Ri,j · wi

Cj =

M−1∑
i=0

Oi,j · wi

(B.7)

Now, the prover will use A(z), B(z), C(z) to compute the coefficients h of H(x):

H(x) =
A(x)B(x)− C(x)

Z(x)
(B.8)

In order to do so, the prover selects a random σ and computes a shifted domain
T = {σ, σω, ..., σωNe−1}. He also sets Z = σNe − 1 and does what follows:

• Computes 3 IFFTs in our domain S:

AS = IFFT (A,S)

BS = IFFT (B,S)

CS = IFFT (C, S)

(B.9)

• Computes 3 FFTs in our domain T :

AT = FFT (AS , T )

BT = FFT (BS , T )

CT = FFT (CS , T )

(B.10)

• Computes H =
ATBT − CT

Z
point by point.

• Computes the shifted coefficients hT = IFFT (H,T ) and it finally gets
h = hT /σ point by point.
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Appendix C

Bos-Coster

Let the pairs (s1, P1), (s2, P2), ..., (sn, Pn) be the elements of the multi-exponentiations
to perform. We sort the list from large to small si, by means of a well-optimised
binary heap. Then, while the list is larger than 1:

• (s1, P1) = (s1 − s2, P1)

• (s2, P2) = (s2, P1 + P2)

• if s1 = 0, we remove this pair

• We sort the list again

When only one pair remains, s1P1 is our solution.
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