
T
E

S
I 

D
O

C
T

O
R

A
L 

U
P

F
/

2
0

2
3

T
E

S
I D

O
C

T
O

R
A

L U
P

F
/

2
0

2
3

To
w

ar
ds

 a
 S

ta
tis

tic
al

 P
hy

sic
s 

of
 M

aj
or

 E
vo

lu
tio

na
ry

 T
ra

ns
iti

on
s

In
fo

rm
at

io
n,

 T
he

rm
od

yn
am

ic
s 

an
d 

Ec
ol

og
y 

at
 th

e 
M

at
he

m
at

ic
al

 F
ou

nd
at

io
ns

 o
f E

vo
lu

tio
n

Jo
rd

i P
iñ

er
o 

F
er

na
nd

ez
Jordi Piñero Fernandez

Towards a Statistical Physics of   
Major Evolutionary Transitions
Information, Thermodynamics and     
Ecology at the Mathematical          
Foundations of Evolution





Towards a Statistical Physics of Major
Evolutionary Transitions

Information, Thermodynamics and Ecology at
the Mathematical Foundations of Evolution
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Abstract
This thesis aims at establishing the basis for a statistical physics the-

ory of major evolutionary transitions. Its structure is based on three major
pillars: nonequilibrium thermodynamics and information theory, stochas-
tic processes and cooperator ecosystems, and cognitive systems from a
statistical physics perspective. We argue how each of these pillars bound
and condition the emergence of major evolutionary transitions. Through a
thermodynamic based analysis, we derive bounds on entropy production
for primordial replicators and a universal bound on energy harvesting ap-
plicable to any molecular system. We study the effects of stochasticity
in neutral cooperative ecosystems and arrive at system assembly struc-
tures that emerge independently from selective forces. We introduce a
morphospace of possible cognitive architectures and propose a unifying
conjecture for all such systems.

Resum
Aquesta tesi té com a objectiu establir les bases per una teoria de la

fı́sica estadı́stica de les grans transicions evolutives. La seva estructura
consta de tres pilars bàsics: la termodinàmica de fora de l’equilibri i la
teoria de la informació, els processos estocàstics en els ecosistemes de
cooperadors, i els sistemes cognitius vistos des de la perspectiva de la
fı́sica estadı́stica. S’argumenta per què aquests pilars condicionen i li-
miten l’emergència de les grans transicions evolutives. A través d’una
anàlisi termodinàmic, es deriven els llindars de producció d’entropia dels
replicadors primitius i s’estableix un lı́mit universal a la capacitat d’ex-
tracció d’energia aplicable a qualsevol sistema molecular. S’estudien els
efectes de l’estocasticitat en ecosistemes de cooperadors neutres i se’n de-
mostra l’emergència d’estructures d’assemblatge de sistema independents
de forces selectives. S’introdueix el morfoespai de possibles arquitectures
cognitives i es proposa una conjectura unificadora per aquests sistemes.
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PREFACE

Life is riddled by complexity. From microscopic organisms to large
scale ecosystems, complex patterns of organization shape and connect our
living world at all levels. How did this complexity arise? Is there order in
the entangled bank?

There is a recurrent joke amongst statistical physicists: ‘if you pick
any positive number, as large as you want, it will always be closer to
zero than infinity; yet we insist on assuming that the thermodynamic limit
exists’. This pun hints at the phenomenon of more is different, a motto
coined by Phil Anderson in the homonymous 1972 essay. Here, Ander-
son warns us of the perils of a reductionist view and stresses that, while
fundamental laws pertaining to any generic agent (be it an electron, a gene
or an ant) uncover the elementary symmetries that govern it, if large num-
bers of such units are put together, then the microscopic symmetries begin
to break and new symmetries are revealed. This phenomenon pervades all
manner of systems: from magnets to traffic jams and the universe itself,
and the idea of a phase transition is its conceptual cornerstone. In any
case, it is the increasing of the number of degrees of freedom of our sys-
tem, i.e. the thermodynamic limit, that begets symmetry breaking. In
many ways, this dissertation concerns with the problem of such a limit in
its different forms.

But what about life? Isn’t life composed of a hierarchical structure
of systems upon systems? How does such a multilevel tapestry of forms
and function unfolds? In evolution, is it also true that ‘more is different’?
The history of Life of Earth is marked by a small number of major shifts
in complexity: from the Origins of Life itself, to the formation of the
first multicellular organisms or the emergence of language and societies;
these grand innovation events brought to bear by evolution are known as
the major evolutionary transitions, and they each have left a mark in all
the eras of our living planet and across the eons. Our quest here is to
understand them.
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In this dissertation we bring together three pillars of statistical physics;
nonequilibrium thermodynamics, stochastic processes and information
theory, wrapped up by the unifying thread of phase transitions. Our goal is
to put together a coherent framework in which to study the preconditions
for major evolutionary transitions to take place and outline the space of
what is possible and what not in the most remarkable shifts in complexity
that took place over evolutionary history.
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Chapter 1

INTRODUCTION

Nothing makes sense in biology
except under the light of evolution

T. Dobzhansky

Evolution underpins life’s astonishing diversity, its myriad of func-
tions and its complex structures at all scales. Since the revolutionary in-
sights of Darwin and Wallace over 150 years ago [Dar59, DW58], entire
generations of scientists have expanded the reach of the original theory
in many directions, from genomics to evolutionary game theory. This
advances have benefited from groundbreaking discoveries, in particular
the discovery of the structure of DNA by Watson, Crick and Franklin as
the information-carrying molecule that pervades the molecular fabric of
all life on Earth. Nowadays, evolutionary thinking is at the core of all
the Life Sciences. Among other implications of these developments is
the definition of a tree of life connecting every single living agent in the
biosphere to a common, original ancestor.
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Figure 1.1: Koltsov, Schrödinger & Lotka Three key figures that con-
tributed to the development of theoretical principles of life include (from left to
right) Nikolai Koltsov, Erwin Schrodinger and Alfred Lotka. The first two con-
tributed in diverse directions to highlight the nature of living information (ahead
of the revolution of molecular biology) and Schrodinger pointed to thermody-
namics as a crucial component to understand living systems. Lotka, on the other
hand, was a pioneer in suggesting that, also at the ecosystem level, energetics and
evolution should be included in our causal description of biological complexity.

Although the path from Darwin and Wallace’s work to the modern
synthesis is primarily grounded in experimental approximations (from the
fossil record to comparative genomics), theoretical ideas and mathemati-
cal models have played a crucial role. Darwin himself1 acknowledged the
influence of Malthus work on the limits of growth in establishing the prin-
ciple of Natural Selection. Not surprisingly, the development in the 20th
century of the evolutionary framework that defined the so-called “New
Synthesis” of evolution was based on mathematical modelling. Such
models were originally population-based constructs, represented by the
interplay between ecological interactions and the introduction of fitness
[HS88]. But life is also deeply tied to information and the laws of physics.
How can these be incorporated into the Darwinian framework?

1Moreover, Darwin also understood the power of mathematical thinking, as he men-
tioned in his autobiography. He wrote that he wished he had learned the basic principles
of mathematics, “for men thus endowed seem to have an extra sense.”

2



1.1. Information, complexity and evolution

One central issue within the theory (and a significant hole in Darwin’s
narrative) was the nature of information itself. Where is the substrate of
heredity and how is it propagated from generation to generation? The
exact way in which information is stored at the molecular level was eluci-
dated in 1953, but some scholars already advanced the mechanisms using
purely theoretical arguments. One of them was Nikolai Koltsov (Figure
1.1a), who, in 1927, hypothesized that inherited traits had to be stored in
some class of ‘special’ double-stranded giant molecules. In a somewhat
visionary way, he also concluded that such molecules would replicate in
a semi-conservative fashion, using each strand as a template [Soy01].

Koltsov’s brilliant prediction was pretty much forgotten, but in 1944
a small book entitled “What is Life?”, written by one of the founding
fathers of quantum physics, Erwin Schrödinger, brought back the prob-
lem of the nature of the hereditary material under a physics perspective
[Sch44]. The book was the outcome of a series of lectures delivered in
1943 at the Dublin Institute of Advanced Studies. At that time, there was
a debate on whether proteins or nucleic acids could be the right candi-
dates. At some point, Schrödinger conjectured that, whatever the final
solution was, it had to be some kind of ‘aperiodic crystal’. It was a pro-
found (and eventually correct) insight, and inspired and stimulated the
research that ended up in the discovery of the DNA double helix. How-
ever, Schrödinger had a wider vision of the problem. He was interested
in understanding how a physics of living systems could be defined, given
the apparently different nature of biological agents2. He pointed out that
there were no paradoxes in the high-order structures found in biology,
which apparently contradict standard thermodynamics. In a nutshell, if
the second law of thermodynamics tells us that the entropy always in-
creases (and so ‘disorder’ is expected to increase) this would appear as a

2Schrödinger himself had been influenced by the ideas of another famous physicist
that contributed to the rise of molecular biology: Max Delbrück. At the time, many
theoretical physicists turned to biology and evolution in search of fresh intellectual ad-
ventures, e.g. Leo Szilard or Walter Gilbert.
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paradox when dealing with life. This is of course not the case: the second
law applies to closed systems, while evolved living structures are out of
equilibrium, open systems. Such a distinction marked a crucial point for
the approach of physics to biological organization.

The importance of thermodynamics also received the attention of schol-
ars within higher-level living systems, far beyond molecules and cells.
This was the case of Alfred Lotka, a well-known mathematician whose
work on the dynamics of pairwise ecological interactions had an enor-
mous influence in ecology [Lot20, Vol26]. His research (which also in-
spires part of the developments of this thesis) is best known for the in-
sights it provided about the nature of predator-prey and competitive ex-
changes [Lot56, SB12, May19, Cas99]. But Lotka was also interested in
a wider perspective, in particular on the evolution of stable, diverse com-
munities and the general principles that guided their organization. To get
there, Lotka conjectured that universal laws should be constructed from
thermodynamics. In one of his papers [Lot22], he starts:

It has been pointed out by Boltzmann’ that the fundamen-
tal object of contention in the life-struggle, in the evolution
of the organic world, is available energy. In accord with
this observation is the principle that, in the struggle for ex-
istence, the advantage must go to those organisms whose
energy-capturing devices are most efficient in directing avail-
able energy into channels favourable to the preservation of
the species.

and in a follow-up paper entitled “Natural selection as a physical prin-
ciple” where he advocates for a new approach to evolution of communi-
ties where physical universal principles are integrated in a unified theory.
For such a theory to succeed, organisms and their interactions should be
amenable for a thermodynamics view grounded in engines and flows. He
explicitly writes:

For the battle array of organic evolution an assembly of armies
of energy transformers-accumulators (plants) and engines (an-
imals); armies composed of multitudes of similar units: the

4



individual organisms. The similarity of units invites to sta-
tistical treatment, the development of a statistical mechanics
of which the units shall be, not simple material particles in
of the type familiar in the kinetic theory [...]; the units in the
new statistical mechanics will be energy transformers subject
to irreversible collision which trigger action is a dominant
feature.

In the light of modern physics of active matter, this corresponds to an
ambitious program to bring together physics, agency and population dy-
namics. In this list we do not include information in an explicit way. It
was too soon for Lotka to have had in mind a computational picture of
biological agents (his “units”) as not only engines but also information
machines.

The new wave of conceptual ideas that started to shape a complexity
view of biology started in the early 1940s with the rise of Cybernetics
[Wie19]. Under the visionary perspective of Norbert Wiener a power-
ful, interdisciplinary field rapidly grew over the next decade with a major
ambition: understand biological systems (at any scale) in terms of regula-
tory feedback processes. Wiener, Arturo Rosenblueth and Julian Bigelow
published an influential paper entitled “Behavior, Purpose and Teleology”
where they outline the view of a theoretical attack to the problem of be-
haviour and agency [RWB43]. The same year, another groundbreaking
paper was put forward by Warren McCulloch and Walter Pitts: “A Logical
Calculus of the Ideas Immanent in Nervous Activity”, [MP43], published
in the Bulletin of Mathematical Biophysics3. McCulloch-Pitts theory is
nothing less than the first serious attempt to formalize neural networks
under a computational perspective. Using threshold units as the basic el-
ements for their systems approach to brain function, they showed how

3In 1939, Nicolas Rashevsky (1899-1972) founded The Bulletin of Mathematical
Biophysics, the first scientific journal explicitly devoted to the theoretical study of Bi-
ology and Evolution from a mathematical and physical perspective. Rashevsky was
deeply inspired by earlier pioneering work such as D’Arcy Thomson’s On Growth and
Form (1917) [Tho17], who himself was a contemporary of the late Charles Darwin. Ever
since, these seminal ideas have grown into a fully-fledged scientific field [NAS22].
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Figure 1.2: Turing, von Neumann and Shannon. Alan Turing, John von
Neumann and Claude Shannon contributed in fundamental ways to our under-
standing of the nature of computation and information. Interestingly, all of them
explored felt interested in pushing forward the boundaries of the fields they cre-
ated to ask themselves about living systems, from neural networks and brains to
problem-solving, robotic agents (Shannon appears holding his artificial mouse,
‘Theseus’, that he used as part of a maze-solving problem).

Boolean logic functions could be efficiently implemented by neural-like
elements. This model has prevailed since, and defines nowadays the basis
of most models of neural computation and artificial intelligence.

In parallel with the rise of cybernetics, the British mathematician Alan
Turing had published in 1936 his famous paper “On Computable Num-
bers, with an Application to the Entscheidungsproblem”, [Tur36], where
the formal bases of a theory of computation were established. In his paper
Turing proved that there is a Universal Computing Machine (now called
Universal Turing Machine, UTM) capable of performing any conceivable
mathematical computation [Hop84]. The implications of Turing work are
still of fundamental relevance in many fields and had enormous implica-
tions for the problem of mathematical completeness4.

4Many scholars consider Turing’s paper one of the most influential works in the
history of science. In particular, Turing showed that there was no solution to the decision
problem by first showing that the halting problem for Turing machines is undecidable:
it is not possible to decide algorithmically whether a Turing machine will ever halt.
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Another fundamental actor in this historic period of time, who was
well-acquainted with the rest, was the Hungarian-American mathemati-
cian John von Neumann, who also contributed to the problem of robust
computation in brains versus computers5. We owe to von Neumann the
definition and formalization of the computer architecture that became the
standard until our days (the so called von Neumann architecture). But he
was also fascinated by biology, from self-replicating systems to brains.
Shortly before his death, he published a small book entitled “The Com-
puter and the Brain”, [VNK12] where he made an attempt to compare
both. Von Neumann was particularly interested in a problem that will also
be relevant in the last part of this dissertation (see Chapter 4), namely:
how can we build a reliable machine made of unreliable units? At the
time of this work, computers were gigantic machines and vacuum tubes
were prone to failure, which caused the failure of the whole computing
process. Evolved brains had obviously solved that, but how?

The picture of this revolutionary period needs to be completed with
the contributions made by Claude Shannon. He is considered the father
of information theory (IT), which will be a central piece in the prob-
lems discussed here both within the context of thermodynamic bounds
on evolution and in cognition. In 1948, and based on the pioneering work
of George Boole [Boo54] he published6, “The Mathematical Theory of
Communication” in The Bell System Technical Journal, [Sha48]. There
he established the bases of information theory starting from the concept
of a communication channel, as depicted in Figure 1.3. In any given com-
munication system, there is a sender and a receiver of a given message,
which is transmitted through a medium (such as the air or a wire). In
the process, the message needs to be encoded at the beginning and de-
coded at the end of the linear chain. In general, each of the components

5Although not known for many decades, Turing also explored (around 1948) some
of the problems associated to neural architectures, in contrast with his own, sequential
machine concept. Turing speculated in his notes about the potential of what he called
“Unorganized Machines”. For a review of these ideas, see [CP99].

6A more accessible description of the theory was also published in the same year as
a book, [SW49].
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of this process is affected by noise. In other words, a given message can
fail to be properly sent due to one or several sources of noise. Shannon
was motivated by the problem of defining the best encoding strategy to
send a message between a given sender and a receiver, provided a set of
constraints derived from the noisiness of the channel. One important part
of the theory relies on the definition of a quantity, H , that relates to the
amount of “information” of a message. Shannon was thinking of a sender
that would generate sequences of n symbols at random, each one having
a probability {pi}i∈{1,...,n} of being generated. How can we define the
amount of information necessary to transmit a given symbol (or an array
of such) to the receiver?

One way of looking at the problem is to think in what do we exactly
mean by “information” when dealing with a certain number of choices.
Let us forget for a moment about the noisiness of the communication
channel. Consider, a system of n symbols, e.g. the words in the dictio-
nary. We are here interested in transmitting a single word (regardless of
context). Now, some words are rarer than others, for example ‘flabber-
gast’ is much rarer than ‘time’. Thus, we can assign a probability value
to each word in the English dictionary, namely pi for i = 1, . . . , n. If we
put the focus on the rarest of words, we might as well consider a generic
function that depends on the inverse probabilities:

h(pi) = f

(
1

pi

)
. (1.1)

In a way, we would like this function to measure the degree of ‘surprise’
given by the utterance of the i−th word. Overall, we could say that the
average amount of ‘surprise’ in the dictionary is given by

H (p) = ⟨h(p)⟩ =
n∑

i=1

pih(pi). (1.2)

At this point, Shannon proposed three conditions for the function H (and
indirectly for h) to accomplish (see Box 1.1), which lead him to the natu-
ral logarithm as an adequate candidate, i.e. h(pi) = ln

(
1
pi

)
. Accordingly,
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the so called Shannon’s entropy, which will be a central concept in this
dissertation, was defined as

H (p1, ..., pn) = ⟨− ln p⟩ = −
n∑

i=1

pi ln pi (1.3)

as the appropriate measure of overall uncertainty in a system of n sym-
bols7. As Shannon knew well, entropy was not a new concept. Ludwig
Boltzmann and Gibbs (see Chapter 2) already described this quantity as
is used in statistical physics. However, we haven not yet arrived at a defi-
nition of information but rather only at a measure of uncertainty assigned
to a symbol or a dictionary as a whole. To understand information, let us
play a simple game. Suppose a sender, Alice, picks up a word from the
dictionary completely at random. Importantly, once Alice has picked up
a word, say i∗, then she knows what exactly word it is, i.e pAi (t0) = δii∗ .
However, at that instant, Bob (the receiver) has no notion of what the
word is, i.e. pBi (t0) = 1/n, ∀i. Suppose they build some communication
process such that Bob can end up knowing exactly what Alice is holding
in her hand (e.g. a ‘yes-or-no’ algorithm spanning all the dictionary). At
the end of such process, Bob’s uncertainty about Alice’s word is reduced
to zero, this is pBi (tf ) = δii∗ . Formally, we write:

I = H
(
pB(t0)

)
− H

(
pB(tm)

)
= lnn, (1.4)

where the sign convention is determined a priori. This is what Shannon
called information, since it measures all the information acquired by Bob
in the process of communication with Alice8. A simpler example is given
by the so-called ‘binary-choice’. Suppose Alice instead just tosses a coin
and it lands either heads or tails, again, she knows exactly what the state
of coin is, and now Bob asks ‘Is it heads?’, to which Alice responds (un-
equivocally) either ‘yes’ or ‘no’. Then, in this case I = ln 2 := 1bit, the

7Advanced and complete approximations to this quantity have been derived recently
[HCM23].

8It is important to note that information only makes sense here when there are two
or more types of interacting agents, in this case these Alice and Bob, and in others, one
could consider an evolving agent and its environment, etc.

9



Figure 1.3: Information channel. Information transfer through a channel as
defined in Shannon’s original work versus genetic information transmission. Di-
agram adapted from Eigen [Eig13].

fundamental unit of information, with which we are now so familiar after
the computer revolution. Shannon did not stop here, and in his application
of ‘entropy’ he proved two theorems concerning the fundamental limits
of channel capacity, i.e. the maximum amount of information that can be
sent through a noisy medium. For a formal introduction on Information
Theory, see [CT91].

Remarkably, the theoretical architecture derived from Shannon’s IT
can be applied to several research contexts: from linguistics to biology.
Consider the case of the genetic code and the processes of transcription
and translation depicted in the bottom part of Figure 1.3. Here Alice is
picking up a gene, which frequency will depend on the organism’s geno-
type, while Bob is attempting to build the corresponding protein, but first,
this information needs to be transmitted. Thus, under this framework
transcription and translation are now the code or algorithm that is used to
transmit the message, and measuring the distributions over the genotype
by Alice and over proteins by Bob gives an account of the information
transferring that is taking place [Smi99, Smi00].
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As we will elaborate in Chapter 2, information has revealed itself not
only as a mathematical means to derive optimality bounds in codes or
a method to deal with swaths of data but it became an integral part of
physics itself [PHS15]. In fact, information and thermodynamic quanti-
ties (such as heat or work) are shown to be intimately related to one an-
other in ways that were, perhaps, unexpected by Shannon himself. This
realisation implies that information can be put on the same footing as the
energetics that Lotka used to characterize the power flows in living sys-
tems. This problem is one of the central topics of this dissertation, and
we will come back to it in Sections 2.1.3-2.4.

BOX 1.1: Shannon’s conditions for the definition of Information
Three key properties should be fulfilled by such a measure, namely:

1. H must be a continuous function.

2. If all the probabilities pi are identical, i. e. pi = 1/n , then H
should be a monotonic increasing function of n.

3. If a choice is broken down into two successive ones, the original
H should be the weighted sum of the individual values of H .

After their respective proposals, ideas emerging from both cybernetics
and information theory had a major influence in molecular biology, ecol-
ogy and evolution. As aforementioned, one obvious example in such in-
fluence is the terms adopted by the early molecular geneticists such as (ge-
netic) code, transcription, translation, or proofreading [Smi99, Smi00].
Within cells, fluctuations can also introduce molecular noise that makes it
difficult to propagate the information from DNA to the resulting protein
that can perform (or help perform) a given function. But how do they fit
into the evolutionary narrative? If life is so deeply informational, how can
these ideas and concepts be helpful in describing evolutionary patterns?
And what is the role of information thermodynamics?

Finally, a crucial factor here is the potential role played by contin-
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gency and randomness versus determinism. This is an old problem within
evolutionary biology and has often been cited within the context of Stephen
J. Gould’s idea of evolution as a highly historical process [Gou90, Gou02].
In Gould’s view, the path-dependent nature of evolutionary change has
a major impact on how evolutionary patterns and processes unfold over
large (macroevolutionary) time scales. To illustrate his point, Gould sug-
gested a mental experiment in his classic and controversial book entitled
Wonderful life. Think of the biosphere 550 million years ago, before the
Cambrian Explosion event. If it were possible to “re-run the tape of evo-
lution”, what kind of biosphere would be observable? Following the con-
tingent picture, it is reasonable to conclude that the biosphere would be
very different, almost alien. Is that so?

An alternative view is provided by two critical observations: (a) the
convergence in evolution [Mor03] and (b) the existence of fundamental
constraints that limit the space of the possible. These view is supported
by the rigorous study of complex adaptive systems, which posits the exis-
tence of higher-level laws of organisation that pervade the structural and
dynamical properties of broad classes of nonlinear systems, as shown
by the statistical physics approach [Sol11]. In particular, the hierarchic
structures evoked by complexity involve the presence of qualitative shifts
(phase transitions) which sit at the core of its explanatory power. Here,
we will take this stance.

Despite the necessarily historical nature of the process, many observ-
able structures (such as the camera eye design) are re-invented within
diverse clades in totally independent ways [Lan10]. Far from anecdotal,
this is a widespread pattern in evolution across scales [SMDN15]. Within
the context of developmental paths, which are largely responsible for the
complexity of the genotype-phenotype mapping, the late Pere Alberch
(Figure 1.4 middle) suggested that fundamental constraints exist in ac-
cessing the space of the possible forms [Alb89]. One central idea emerg-
ing from this work has to do with the possible and the actual. A major
contribution first proposed by palaeontologist David Raup [Rau66] is the
morphospace, i.e. a space of the possible that can help locate the observed
systems under consideration (shells, species, artefacts, organs, networks
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Figure 1.4: Gould, Alberch & Kauffman Is evolution contingent? Al-
though Stephen J. Gould (left) suggested that path dependence would strongly
influence future evolutionary outcomes, other scholars, such as Pere Alberch and
Stuart Kauffman, have argued against such views. While Alberch showed how
developmental constraints might strongly limit the space of the possible, Kauff-
man introduced the concept of “order for free”: evolution might be more than
natural selection.

or cancer types, to name a few) within a two- or three-axis coordinate sys-
tem. The morphospace helps to chart the diversity of solutions associated
with one of these classes of systems and detect patterns of possibilities.
Moreover, gaps and voids in this space provide unique windows into the
potential limits to the generative rules involved. Sometimes, sharp bound-
aries separate different designs or an occupied domain next to an empty
one. This sharp boundary can be connected with required innovations that
allow crossing from one domain to another.

The second pillar comes from a physics perspective of complexity
that is deeply connected to the concept of universality. As we discuss
below, there is a long tradition in physics concerning the study of phases
of matter and the transitions between them. In this field of phase transi-
tions [Yeo92, Sol11] the theory (and extensive experimental work) allows
defining simple models concerning the ways atoms or molecules interact
under different (tunable) external parametric conditions. Each phase has
well-defined qualitative properties that are markedly different from oth-
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ers. The transition from one phase to another is located at a specific points
or lines in parameter space, and different transitions may show the exact
same statistical properties. Such findings had enormous consequences for
our views of the nature of change and the presence of fundamental laws.

Nonequilibrium
Thermodynamics

Computation
& Information

Thermodynamic
Agents

Thermodynamics
of Cooperation Liquid Brains

Ecology & 
Cooperation

MET

Figure 1.5: Major conceptual pillars. A Venn diagram that sketches the three
major conceptual pillars that are considered in this dissertation. At the bottom
left, the limitations of information thermodynamics on early living systems and
the origins of life; at the top, the role of noise-induced assembly of cooperative
interacting systems; and at the bottom right the landscape of cognitive networks
about their physicality and computational function.

Along these lines, the pioneering work of theoretical biologist Stuart
Kauffman (one of the founding fathers of complexity science) revealed
a crucial concept that departs from the Darwinian paradigm: “order for
free” [Kau91, Kau93, Kau00]. By working on a diverse range of prob-
lems, including gene regulatory networks, rugged landscapes or autocat-
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alytic cycles [Kau69a, Kau71, Kau86, KL87] Kauffman discovered that
some fundamental properties regarding stability, evolvability and robust-
ness could be achieved “at the edge of chaos” [KK+95]. Such an idea can
be encapsulated in the very nature of critical points from physics. Order
for free must be understood as an unexpected source of predictable orga-
nization that cannot be explained in terms of natural selection. There are
intrinsic, emergent properties that strongly affect the space of the possible
and cannot be reduced to the microscopic details. This irreducible order
is at the core of complex adaptive systems across scales [SG00].

Figure 1.6: Maynard-Smith, Szathmáry & Jablonka Evolutionary biologists
John Maynard-Smith (left) and Eörs Szathmáry (center) published “The Ma-
jor Transitions in Evolution” in 1995, where they introduced the concept. Eva
Jablonka (right) and Marion J. Lamb focused the problem of METs on the emer-
gence of modes of transmission of information; hereditary and otherwise [JL06].
Jablonka and Lamb later published “Evolution in four dimensions”, in which
their novel and visionary ideas were put together [JL14].

The answers to our previous questions are found in the paths towards
complexity that life has traced for billions of years. Major innovation
events mark these evolutionary trajectories, and understanding such events
from a theoretical perspective pervades the motivation of this thesis. In
many cases, new forms of replication emerged, while forms of informa-
tion evolved into others. Replicators and messages are usually connected
since the emergence of more complex replicative entities often came with
novel forms of gathering, storing and processing information. As dis-
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cussed in the following chapters (particularly within the context of cogni-
tive agents), information will be the central concept that allows approach-
ing the problem of cognition and its landscape of possibilities. Along
with the mathematical theory outlined above, information has also been
crucial to understanding another pillar of biocomplexity: thermodynam-
ics. When dealing with early replicators, thermodynamic constraints are
expected to be very relevant. We will elaborate these in Chapter 2. Fi-
nally, the ecological context is essential to understand evolution. As Eve-
lyn Hutchinson would say, an evolutionary play occurs in the ecological
theatre [Hut65]. We will come back to this crucial point in Chapter 3. The
three key domains used here are outlined in Figure 1.5 using a Venn di-
agram. Many fundamental processes that define evolutionary complexity
occur at the intersections between them. But before we proceed, we need
first to define the major innovations, their meaning and the theoretical
challenges that are explored in this dissertation.

1.2. Major evolutionary transitions
The term Major Evolutionary Transition was first coined by Maynard-

Smith and Szathmáry (M-S&S) [SMS95, MSS95]. In this seminal work,
the two evolutionary biologists defined METs as profound innovation
events in evolution. Agreement on complete definition of METs is ar-
guably an open problem, and other scholars have extended or adapted
M-S&S’s view to enclose other evolutionary innovations [Mor04, DD05,
Lan10, JL14, Lan15]. Nonetheless, and for the most part, our discussion
here can be firmly grounded on M-S&S’s formulation. Let us now quote
[MSS95]:

“[after a major transition takes place], entities that were ca-
pable of independent replication before the transition can
replicate only as part of a larger whole after it[...]”

This tentative definition puts the focus on the process of replication, which
is one of the aspects studied in Chapter 2. To help us clarify what does
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such a definition entail, let us examine Table 1.1, which resumes the
METs considered in [MSS95]. Here, we note hat each transition involves
the emergence of a new kind of replicator that is build up from previously
existing replicative units, which no longer can operate at an individual
level: e.g. an insect colony replicates as a colony, not ant by ant [Gor99].
The only exception to this is provided by the earliest MET, i.e. the origins
of replication itself.

As mentioned, a remarkable feature after each MET is the emergent
information-processing structure. For example, within the Origins of Ge-
netic Information (see Table 1.1), from simple replicator molecules with
no translational function, to a large replicator entity based on translation
and coding. Here, we identify the emergence of genes themselves, which
provide the character of information in evolution. I.e., a higher replicator
structure that procures new ways of inheritance, regulation, variation and
selection. But how do these phenomena arise? And, perhaps more impor-
tantly, can a purely adaptive view of evolution explain the emergence of
such major transitions?

To advance in these questions, the bulk of the work by Maynard-
Smith, Szathmáry and later Jablonka and Lamb [JL06, JL14] focuses on
the search for universals: a deep study of the METs that reveals the com-
monalities between all of the transitions. This is a necessary step towards
a general theory, which has to result from an interdisciplinary synthesis
involving ideas of evolutionary theory and systems biology but also the
principles of self-organization, information theory, complexity and phase
transitions.

Let us give a brief account of how we can sketch any MET in its
simplest form. Suppose there are a number of darwinian agents, which
internal complexity allows them to evolve, adapt to an environment and,
of course, to replicate (Figure 1.7a). These agents interact amongst them-
selves. Interactions are the result of information processes that establish
an interdependence; these may come from the formation of cooperative
(autocatalytic) loops that permit collectives to surpass the error catastro-
phe [ES77, ES82] while avoiding parasitic actors [BH95] (Figure 1.7b),
and are precursors to the higher-level entities to emerge.
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Independent Replicators Interdependent Replicators Novel Unit of Selection Emergence of Hierarchy

a b c d

e

e.1 e.2 e.3

Figure 1.7: Sketch sequence of a major evolutionary transition. Consider
a set of replicative agents (a), which establish relations of inter-dependency
through some interactions (b). Precursor processes may push these interacting
agents to assemble into a higher-level replicator unit, which components are now
operating in an integrated manner (c). This gives rise to a hierarchic structure in
which higher and lower level agents interact yet their evolutionary landscapes
become detached. (e) corresponds to a major transition model from protocell
precursors to LUCA (Last Universal Common Ancestor) that is proposed in
[SEMSRM17]. In short: (e.1) consists of simple self-assembled vesicles via
some cyclic nonequilibrium process involving various molecular species, (e.2)
is a secondary stage where self-replication has emerged and (e.3) corresponds to
an advanced stage that includes internal complex structures that regulate infor-
mation and metabolic flows.
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Through a process of specialization of the internal degrees of free-
dom within these collectives, their components undergo division of labour
(DoL), which finally yields a novel entity that replicates as a whole (Fig-
ure 1.7c). This establishes a new level on the hierarchy, in which new
interactions will continue to evolve at multiple scales (Figure 1.7d).

Throughout this process, information transmission itself undergoes
transitions [JL06]. From replication at the lower-level to the high-level
entity, this process requires an integration of information from all its in-
ternal components to be passed on into its progeny. A case that clearly
exemplifies this phenomenon is the emergence of chromosomes, which
are higher-level entities that comprise a large number of replicator units
(genes). These new integrated information entities often permit novel
ways of exploring complex adaptive landscapes; e.g. through recombi-
nation. Finally, it is important to distinguish between complexification
and progress: the emergence of a hierarchic structures through the major
innovations events in evolution do not imply an a priori superiority for
an evolutionary stage over another. In any case, the hierarchic structure
reveals a system of systems, with bottom-up and top-down causation.
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Major Evolutionary
Transitions

[MSS95]

Lower
Level

Higher
Level Special Features

Origins of
Replication

Non-replicative
molecules and/or
biocompartments

Replicative
molecules and/or
biocompartments

Autocatalysis
Nonequilibrium

Origins of Genetic
Information

Non-translational
molecules

Translational-
molecules

RNA World
Genetic Codes

Origin of Eukarya Prokaryote Eukaryote
Endosymbiosis
Mutualism

Origins of Sex Asexual clones Sexual popul.
Recombination
Germline and soma

Origins of
Multicellularity

Unicellular
populations

Multicellular
organisms

Differentiation
Sepcialization

Origins of
Eusociality

Solitary individuals Colonies
Division of Labour
Cultural Evolution

Table 1.1: Major Evolutionary Transitions. Adapted from [MSS95]. M-S&S also include the transition from
primitive societies to human civilizations, pointing at language as one of its main characteristics.

20



1.3. Major transitions as phase transitions?

We started this section by briefly reviewing some key theoretical re-
sults of particular relevance to this dissertation. These pertain to the
physics of phase transitions, and all share an intrinsic simplicity in their
formulation yet an enormous explanatory power. This is a common fea-
ture of the physics approach to complexity: look first at the fundamental
rules and principles that pervade the dynamics of a given system, then, try
to capture the basic rules that drive interactions among its parts and de-
rive its expected emergent patterns[SMCL+96]. This approach has been
tremendously successful within statistical physics, in particular in relation
with phase transitions, a class of phenomena that has arguably deep ties
with evolutionary innovations [Sza15].

In general, phase transitions are associated to qualitative, dynamical
and structural shifts of organization of the states of matter when an exter-
nal parameter is tuned. Such changes are regularly captured by a so-called
order parameter, which essentially reduces the symmetries of the system
into a single variable that undergoes a dramatic change whenever a phase
transition occurs. The term phase transition has been generalized to many
other domains [Sol11]. A typical example is the phase change from liq-
uid to vapor in water, as shown in Figure 1.8e. Each phase is here defined
by the density of the system, which acts as an order parameter and ex-
periences a dramatic shift whenever the pressure, and temperature values
cross some concrete thresholds (see Figure 1.8b), whereas within a given
phase no major differences are observed after manipulation of the spe-
cific parameters (in this case, pressure or temperature). E.g., in water at
atmospheric pressure, an increase from 2oC to 25oC gives rise to a den-
sity change of about 2%, while crossing the boiling temperature produces
a change which is about 1600-fold. This is an example of a “first-order”
transition, and occurs in a myriad of systems; from polymers to climate
change (tipping points), and many others [Sol11]. Biological systems
also display these type of phenomena, for example, ant colonies explor-
ing their environment undergo processes that are very well captured by
the formalism of phase transitions [BSR01, PS19], and so do flocks of
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birds [VZ12] and virus assembly processes [SSE21].

Figure 1.8: Phase Transitions in Physics (a) magnetization of a ferromag-
netic, as described by the two-dimensional Ising model. Here we simulate a
lattice of spins using different temperatures and plot the average magnetization.
Two well-defined phases are observed, separated by a phase transition temper-
ature Tc. In the ferromagnetic phase, symmetry breaking occurs between two
equivalent macroscopic states (a,b), while a disordered, unique state is observ-
able in the paramagnetic phase (d). At Tc, (c), coexistence and complex patterns
of fluctuations are observable. Images (e) shows the ‘first-order’ phase transition
of water from liquid to vapor, and (f) shows the transition that takes place in bird
flocking [VZ12].
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A different class of transition, known as a second-order phase tran-
sition, involves yet another qualitative change but, this time, follows a
smooth ‘transition’ order parameter as parameters vary. Consider the be-
haviour of ferromagnetic materials: when a magnet is heated, it initially
maintains its magnetization (the order parameter), which decays until it
vanishes at a critical temperature Tc. In these transitions, remarkably rich
behaviour is observed, including both very high variance in both struc-
tural and dynamical traits. Divergent behaviour is also measured for some
macroscopic properties (such as susceptibility and heat capacity) as we
approach criticality. A microscopic description that allows formulating a
simple model capable of capturing most relevant features of the real tran-
sition is the so called Ising model or, as physicist Nigel Goldenfeld calls
it, “the Drosophila model of statistical mechanics”.

Imagine a magnet as a lattice of units (atoms), each one describable as
a microscopic magnet (spin) itself with two possible orientations: up and
down. Mathematically, this entails a collection of N units whose states
are indicated as Si ∈ {−1,+1}, for i = 1 . . . , N , and are located on a
geometric grid. The lowest energy state correspond to that when nearest
atoms have the same spin states. Denote the average number of up spins
(+1) by N+ and down spins (−1) by N−, and define the order parameter
of global magnetization as M = N+ − N−. This value gives a measure
of the force with which the magnet can attract other ferrous materials. As
the temperature grows, the coupling between spins becomes less and less
strong. If temperature T is below a critical value, labeled Tc, interactions
among nearest spins favour a dominant direction: either a majority of
up spins or the alternative dominated by down spins. However, if T >
Tc, disorder wins, and spins essentially behave randomly. This is thus
a transition between two equally likely ordered states with M ̸= 0 and
a disordered phase with M = 0. While the order parameter does not
experience a sudden shift, its derivative with respect to T is nonetheless
divergent. In fact, other macroscopic measurables such as susceptibility
(and heat capacity) still diverge at Tc (see Figure 1.8b).

All such phenomena is captured by the Ising model, which involves
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an energy function, H , given by:

H({Si}) = −J
∑

(j,k)

SjSk, (1.5)

where J is a coupling constant that weights the strength of spin-spin in-
teractions, and brackets (i, k) indicate ordered pairs restricted to nearest
neighbors in the lattice [CM05]. Note that, for a pair of spins, energy is
minimal when SjSk = 1, i.e. if both are equally oriented. The mathe-
matical and numerical simulations of (1.5) reveal a number of profound
insights on the physics around critical points [Yeo92]. On one hand,
when a spin changes its configuration Si → −Si while the system is
at the vicinity of Tc, then the effect it triggers will amplify to the full
scale of the system. This is known as the correlation length divergence
[Yeo92, Set21], and it implies that, at an effective level, the system is
now capable of long range correlations thus allowing it to access a very
large set of states (see complex structures forming at Tc in Figure 1.8);
this is an essential precursor for processing larger amounts of informa-
tion (much larger than the individual agent’s information capacity, in this
case, a single bit per Si). Over the last decades, this phenomenon has been
proposed as a characteristic feature shared by most complex adaptive sys-
tems [SMCL+96], while some scholars have put forward mechanisms by
which systems poise themselves towards criticality in a self-organized
manner [BTW88, BP95, Bak13, MB11].

On the other hand, taking (1.5) and extending it to non-trivial topolo-
gies beyond the lattice, or allowing interactions to be spin dependent,
i.e. via an interaction matrix (J)ij = Jij , result in one of the corner-
stones of modern statistics physics, namely the theory of spin glasses
[SN13, PUZ20]. This generalized version of the Ising model has the
capacity adequately model a vast array of complex systems from neu-
ral networks to the immune system. In Chapter 4 of this dissertation, we
will return to this model in order to explore the space of all possible cog-
nitive networks which involves both mobile and static neural agents. Few
are the seemingly innocuous mathematical expressions such as the Ising
model that carry within it riches beyond imagination.

24



1.4. Key Questions
In this Chapter, we have laid out some of the basic ideas that inspired

the research paths taken in this dissertation. In the following chapters,
we will unfold the problems, open questions and potential theoretical per-
spectives that are at the core of the research areas that have been addressed
here. Instead of studying specific METs, we focus on three major do-
mains (see Figure 1.5) of limits and universals pervading METs. These
three theoretical pillars are captured by our key questions:

Question I How can the thermodynamics of information be used to un-
veil the feasibility of early living systems?

The origins of this question have to be found in our interest to under-
stand the minimal requirements for survival and replication of a simple
autonomous agent. As discussed above, information is a central problem
in approaching the evolution of life, and any attempt to define general
laws and bounds to such agents necessarily requires the use of thermody-
namics.

Question II Are there constraints derived from stochastic-induced phe-
nomena in the assembly patterns of cooperative ecosystems?

Cooperation is a key player in most major evolutionary transitions.
This questions follows Lotka’s intuition on how to achieve minimal de-
scriptions for a collective of interacting species. Moreover, work done
at the Complex Systems Lab has revealed that, before the control of ge-
netic regulation, cooperative interactions are responsible for many com-
plex structures that permit METs (such as the transition to multicellu-
larity). Following these motivations, we decided to go to the baseline
and define the simplest cooperative ensemble and analyse its properties.
Against our intuition, such as neutral, stochastic system reveals order for
free.
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Question III Are there limitations to the possible cognitive architec-
tures reachable by evolution? How may the physics of threshold-based
neural interactions constrain the space of possible cognitions? What is
the impact of the “state” (liquid or solid) on cognitive complexity?

We will answer this question(s) with a broad modern exploration of the
literature which leads us to the formulation of a new conceptual landscape
which we term the ‘liquid brain hypothesis’. The goal of this project was
to find universal properties that pervade complexity in all cognitive sys-
tems from the neural cortex to ant colonies or the immune system. During
a workshop at the Santa Fe Institute on “Liquid Brains, Solid Brain”; the
necessity of mapping the space of possible cognitions (a morphospace of
possible ‘brains’) became clear. Thus, we decided on a systematic effort
in this direction. As a result, we wrote a comprehensive paper on the sta-
tistical physics of liquid versus solid brains, which unveiled a multiverse
of phase transitions at the fundamental theoretical core. Here, we return
to this ideas with renewed incentive and push forward this new emerging
field by presenting our cognitive morphospace together with a conjecture
that, we hope, will bear its fruits in the near future.
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Chapter 2

THERMODYNAMICS,
INFORMATION AND
EVOLUTION

Modern cosmology began with Darwin and Wallace

Leonard Susskind

The quote above is from a legendary physicist, Leonard Susskind,
writing in his book The Cosmic Landscape about the historical devel-
opment of cosmology. Cosmology can be seen, in many ways, as the
physics counterpart of biological evolution. This well-established field
has been growing to become a solid theoretical framework that success-
fully explains a plethora of phenomena. These include a vast array of
scales in space and time, from the first minutes of the universe to the for-
mation of galaxies and galactic clusters to potential scenarios for expan-
sion [Bau22]. It is worth noting that we know now that our own changing
universe underwent several major transitions from inflation to the dark
ages (after recombination) and onto the production of galaxies, stars and
our speck of dust we call Earth. But is this cosmological framework de-
tached from Darwinian evolution? Physicists like Lee Smolin do not be-
lieve so and have speculated about a natural selection process shaping the
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Figure 2.1: Prigogine, BZ reaction & the Krebs cycle. Ilya Prigogine (a)
posed that is made of dissipative structures. Simpler, but far from trivial ex-
amples from chemistry also reveal the potential for complex dynamics out of
chemical reactions. This is the case (b) of the Belousov-Zhabotinsky reaction,
which generates large-scale periodic webs in space and time. Biological systems
display complex dissipative structures that organize and sustain the flows of mat-
ter, energy and information. One example is the Krebs cycle (c), an image by
David Goodsell.

space of possible universes [Smo92, Smo04]. Scholars such as Harold
Morowitz provide their view of major transitions by merging cosmologi-
cal and biological change [Mor04]. Within this philosophical framework,
major evolutionary transitions as described in the previous chapter, are the
natural follow-up of cosmic evolution. What are a theory’s most relevant
components that encapsulate biology, physics and information?

In this dissertation, one of the main pillars of our approximation to
evolution is based on thermodynamics. Some visionary scholars carried
out some early attempts at such an interdisciplinary task [Ras60, Vol83,
Vol13a, Vol13b], who pioneered the surge of mathematical biophysics
and begun to connect the fields of biology, physics and chemistry through
the tapestry of thermodynamics. Major advances where put forward by
Ilya Prigogine (Figure 2.1a) and his collaborators [NP89] introduced the
concept of self-organization which brought new and provocative ideas to
tackle questions such as the emergence of order ”out of chaos”, while
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authors like Morowitz [Mor68, Mor13] emphasized the role of entropy
production and information in the molecular processes carried by living
systems.

One central idea within the early nonequilibrium thermodynamics de-
veloped within the Brussels school (and coined by Prigogine) was the
concept of dissipative structure. The theoretical framework involves an
equation for entropy production, δi associated with irreversible processes
within the system under consideration. Specifically, such entropy produc-
tion is written as

δiS =

∫

V

(
n∑

µ=1

XµJµ

)
dV

where the integral domain is the volume V of the system, and the term
within parenthesis is the specific entropy production. The sum involves
the products between thermodynamic forces Xi (such as gradients) and
the fluxes Ji associated to each force.

In a nutshell, a dissipative structure is an open system with a well-
defined dynamical organization resulting (in most cases) from symmetry
breaking. Prigogine’s developments provided the basis for a linear theory
of nonequilibrium thermodynamics, and in collaboration with Grégoire
Nicolis. They made a unique synthesis of ideas that connected this field
with nonlinear dynamics and bifurcation theory. Paradigmatic examples
of such structures (which can unfold in space and time) can be found
across physical, chemical and biological scales. Two examples are dis-
played in Figures 2.1b,c. The first is the Belousov-Zhabotinsky reaction.
Here, chemical reactions taking place at the microscopic scale and spatial
diffusion provide the basis for amplification processes that can be ob-
served as giant spiral waves. This is an excellent example of emergent
structures and the underlying irreducible order at the core of complex
systems: microscopic interactions taking place in a stochastic context
can generate large-scale phenomena that are orders of magnitude away
in space and time from the ”molecular chaos”. One crucial ingredient
responsible for this is a process that allows long-range order to be propa-
gated: diffusion. Another set of examples is given by biological rhythms
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and a whole family of metabolic cycles driven by a closet set of enzymatic
reactions, as it is the case of Kreb’s cycle (Figure 2.1c).

What is the relative importance of information, ecology and thermo-
dynamics when dealing with evolutionary innovations? One concept that
we consider fundamental here concerns a central problem in our under-
standing of how complexity originates. Since information-processing en-
tities will necessarily require flows of matter of energy, each step towards
a more complex organism will have a cost. Thinking in natural selection
and replicators, one could easily conclude that the expected biosphere
should be made of simple entities. But the answer to this problem might
remain precisely in the capacity of natural systems to adapt and even an-
ticipate their environments. As pointed out by physicist Jorge Wagens-
berg [Wag00]:

Any real object divides the world into two parts: itself and
the rest of the universe. Both portions influence each other
mutually through a real or imagined common surface: the
boundary. Changes in one induce changes in the other. Some
objects of this world display an extremely rare property: they
tend towards becoming independent of the uncertainty of their
environment. This is equivalent to another trend: the perpet-
uation of some identity. Let us call these objects living indi-
viduals: A living individual is a part of the world with some
identity that tends to become independent of the uncertainty
of the rest of the world.

In other words, attempts to build an explanatory theory for the emer-
gence of complexity must consider both agent properties and their inter-
actions with their worlds. All of them will involve nonequilibrium states,
and a full understanding of their feasibility and robustness will require
connecting information and thermodynamics. In this chapter, we review
some of the key ideas that are nowadays driving the development of a new
theory grounded in stochastic thermodynamics.
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Figure 2.2: Boltzmann, entropy and the arrow of time. In this drawing,
we sketch the concept of the second principle of thermodynamics and the proba-
bilistic description of entropy. From left to right, time increases and macroscopic
phenomena occur in a well-defined manner (and not in reverse). This includes
biological systems undergoing replication. Drawing courtesy of R. Solé.

2.1. Thermodynamics and information

James C. Maxwell was arguably the most revolutionary physicist of
the nineteenth century. After procuring his famous unification of the
theory of Electromagnetism, Maxwell turn his efforts into establish the
building blocks of Statistical Physics and Kinetic Theory [Max72]. It
was around this time that Maxwell came up with a most peculiar idea, a
paradox, which later became the source heated debate and inspiration to-
wards a theory of nonequilibrium physics and the nature of information.
This now-famous paradox is known as the “Maxwell’s demon”, and it
eventually led thermodynamics into the realm of the mesoscale: quantum
computers, nano-devices and cellular machinery. In this Section, we will
give a brief account of Maxwell’s paradox, how it is resolved and what
implications stem from considering information as a thermodynamic ob-
ject.
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2.1.1. The demon’s story

In 1854, Rudolf Clausius introduced the first statement of the second
law of thermodynamics as follows:

Heat can never pass from a colder to a warmer body without
some other change, connected therewith, occurring simulta-
neously.

Later, Lord Kelvin and Max Planck independently postulated equiva-
lent statements of the second law in terms of heat reservoirs and cyclic
engines. And just a decade afterwards, James C. Maxwell proposed a
gedanken experiment that seemed to violate this fundamental law by in-
troducing a “finite being” (later dubbed a daemon/demon) capable of let-
ting heat flow from a cold to a warm body while the demon is left un-
scathed. In short, the system consists of two compartments: on the right,
high-temperature particles (rapid jitter) are bouncing on the compartment
walls whilst on the left, cold particles are doing so at much lower (aver-
age) speeds. The demon can open and close a trap on the wall between
the two compartments. Moreover, it can measure the speed at which a
particle from either side is travelling towards the trap door and open or
close it at will. This way, the demon can facilitate the accumulation of
hot (high-speed) particles on the hotter compartment and vice-versa, thus
violating Clausius’s statement of the second law.

This apparent paradox by Maxwell ultimately led to the unraveling
of the thermodynamic nature of information. In the year 1929, Leo Szi-
lard [Szi29, LR90] proposed an engine that was capable of extracting
kBT ln 2 units of work after consuming a single bit of information on the
demon’s part 2.1.1. Two decades later, Szilard’s work lead to Brillouin
exploring the formal relation between thermodynamic and information
entropies [LR02], the former introduced by Ludwig Bolztmann around
1870 and later refined by Gibbs [Jay65], and the latter proposed by Claude
Shannon [Sha48] within the context of communication systems.
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BOX 2.1.1 - Szilard’s Engine
Szilard’s engine is a thought experiment proposed by Leo Szilard [Szi29]
and based on a single-particle version of the Maxwell’s demon. Consider
a box containing a single particle at temperature T . The box can be
separated in two compartments using a mobile (massless) wall, which is
placed and removed inside the box by the demon such that, when put in
place, separates the box into two equal volume spaces.

L R

L

L R L R

Thermalize

Figure 2.3: Szilard’s Engine in four stages (in order): measurement, expan-
sion and work extraction, return to initial state through thermalization at tem-
perature T = 1/kBβ.
The demon measures (i.e. acquires information about) the position of
the particle, either on the left (L) or the right (R). If it is at L, then the
demon places the wall attached to a piston pointing to extract work out
of the expansion of the L compartment from V/2 → V (see Fig. 2.3),
then remove the wall, thermalize, and restart the cycle. The total work
extracted is W = kBT lnVf/Vi = kBT ln 2, which (apparently) came at
no cost. In reality, the demon had first to receive an amount of informa-
tion equal to I = ln 2, since it is a binary choice (L or R). As later shown
by Landauer, the erasure of this bit of information implies the dissipation
of Q = kBTI = kBT ln 2, which yields ∆U = W + Q = 0, and the
thermodynamic cycle is effectively closed.

In a nutshell, Boltzmann considered the number of possible states at-
tainable by a system1, namely Ω, and postulated that Clausius state func-

1This is often denoted as the cardinality of the phase space.
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tion, entropy, is given by2

S = kB lnΩ , (2.1)

where kB = 1.384 × 10−23 JK−1 is the so-called Boltzmann constant.
This expression cannot generally be proven as a theorem, but it can be
shown to follow all of the properties desired in Clausius’ theory, which
is mainly concerned with entropy differences rather than exact entropy
values [Pel11, Ton12]. In his seminal paper of 1948, [Sha48], Shannon
used an analogue of the Boltzmann-Gibbs’s entropy to measure the infor-
mation that a message carries (see Chapter 1).

Solving Szilards and Brillouin’s questions took over several decades
and involved a merge of novel and provocative ideas [PHS15]: the rea-
son why the demon is not able to violate the 2nd Law is because all the
information required by it in order to decide whether to open or close the
trap will eventually dissipate into heat, more accurately, the demon will
dissipate a total of Q = kBTI (in joules). Therefore, the demon needs
to import energy in the form of work so that it can function cyclically,
and so that ∆U = W + Q eventually balances out. This indeed resolves
the paradox, but begs the question: why information? How does an ab-
stract (and somewhat subjective) concept such as information acquires a
physical (energetic) character? And, if so, what are the implications for
information processing as a thermodynamically constrained practice?

Rudolf Landauer advanced these questions in showing that the era-
sure of one bit of information from any possible memory device involves
a heat dump of kBT ln 2 of the system (i.e. the demon) into the heat
bath [Lan61]. This became known as the Landauer bound, and has been
since amply demonstrated both theoretically and experimentally [TSU+10,
BAP+12]. On the other hand, Bennett combined the newly found thermo-
dynamics of information with logic, reversibility and computation, while
Chaitin and Zurek took these ideas beyond by integrating thermodynam-
ics and Turing’s theory of computation, a combination that ultimately

2Boltzmann killed himself in 1906 in Duino, Italy. Buried in Vienna, on his tomb-
stone this formula is engraved.
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gave rise to the field of algorithmic information theory [Ben73, Zur89]3.

2.1.2. Stochastic thermodynamics

Gearing back into physics, right before the turn of the century, Chrisoff
Jarzynsky and Gavin Crooks realized an extension of statistical physics
capable of reproducing a large array of mesoscopic phenomena. Fa-
mously, they derived an extended version of the 2nd Law applicable to
stochastic (non-deterministic) trajectory ensambles on the phase space
[Jar97, Cro98], thus moving beyond the paradigm of Liouville and Poin-
caré. These ideas lead to the discipline of stochastic thermodynamics
(ST). In a nutshell, this formalism is capable of giving a notion of ener-
getic balances for systems that evolve according to stochastic equations of
motion (e.g. Wiener process). As such this new formalism requires gen-
eralized definitions of the core thermodynamical variables such as heat,
work and other state-functions like free energy and entropy (see [PP21]
pp. 36-66).

Stochastic work (w) and heat (q) are operators on stochastic trajec-
tories, xλ(t), where λ denotes an external parameter (e.g. position of a
piston or external magnetic field), which may itself vary over time. Here
x represents the set of variables that constitute the full phase space. Con-
sider a discrete system (coupled to a thermal bath) with energy states
{εx}(λ). This non-equilibrium energetics are typically coupled to ex-
ternally driving forces that break detailed balanced conditions. During a
jump from state x → x′ (at fixed parameter values) the heat exchanged
with the reservoir is given by q (x → x′) = (εx′(λ)− εx(λ))+ϕxx′ , where
the term ϕxx′ is the driving term that breaks detailed balance condition
and depends intrinsically on the direction of the jump (either x → x′

or x′ → x). This represents, for example, the energetic contribution of
ATP hydrolysis in biochemical reactions, or the external action of optical

3For a comprehensive introduction to the history, development and principles behind
the theory of logical reversibility and the Landauer bounds, see [Sag14]. For a multidis-
ciplinary compilation of contributions from authors in different fields using the precepts
of information theory, Landauer bounds and algorithmic information theory see [Zur90].
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tweezers on the system.
By extension, work is defined over a trajectory by

w (xλ(t)) =

λf∫

λ0

dλ
∂εx
∂λ

+
∑

(x,x′)∈CP [xλ(t)]

ϕx′x , (2.2)

with CP indicating the time-ordered consecutive pairs of states followed
by the trajectory. Over a full trajectory, the combination of the both defi-
nitions for stochastic heat and work exchange yield

w(xλ(t)) + q(xλ(t)) = εxf
− εx0 , (2.3)

which can be regarded as a generalized 1st Law, which is now applied at
the level of stochastic trajectories. On the other hand, an outright candi-
date for a definition of stochastic entropy(see [PP21] pp. 47-53)4:

sx(t) = −kB ln px(t) , (2.4)

which is also an operator on a stochastic trajectory x(t). Finally, the con-
nection with the physical entropy of a system from the statistical ensemble
perspective is evaluated as the average over the stochastic entropy, i.e.

S(t) = ⟨s(t)⟩t = −kB
∑

x

px(t) ln px(t) , (2.5)

where the subscript t indicates that this is evaluated at a fixed time. At
a glance, ST does not seem to constitute an huge jump from the usual
precepts of statistical physics, however, the consideration of trajectory
ensembles instead of the state averaging (which is permitted under the
ergodic principle assumed in most equilibrium set-ups) provides a the-
oretical handle on an enormous array of nonequilibrium systems before
intractable [Sei08, Sei12, PP21].

4Here onward, wherever is not explicitly required, we shall drop the subscript λ.
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Extended 2nd Law and Fluctuation-Dissipation

In order to gain some intuition into the utility of the formalism of ST,
let us introduce a few results without a proof. An interesting example,
which can be directly derived from the previous considerations, is the
relation between probability measures on the ensemble of trajectories and
stochastic entropy differences [PP21]:

stotal(xλ(t)) = kB ln
P (xλ(t))

P
(
xλ̂(t̂)

) , (2.6)

where ·̂ indicates time-reversed. This entails an interpretation in terms of
reversibility in trajectory space, in other words, the total entropy in ST
as an operator on xλ(t) recounts its irreversibility. Considering averages
over forward (⟨·⟩F ) and backward (⟨·⟩B) trajectories, it is easy to show
that

⟨exp
[
−stotal (xλ) /kB

]
⟩F = 1 =⇒ ⟨stotal (xλ)⟩F ≥ 0 . (2.7)

This result offers a direct relation between the extended formalism of ST
and classic thermodynamics, and can be understood as a derivation of the
classic 2nd Law from ST axioms.

Jarzynsky and Crooks proved that for stochastic trajectories with equi-
librium end-states [Cro99, Cro00]5

Jarzynski equality: ⟨e−w⟩F = e−∆F , (2.8)

Crooks equality:
p(w;λ)

p(−w; λ̂)
= ew−∆F , (2.9)

where w is the work done on the system following a given (forward) tra-
jectory of the conditioned ensemble, while ∆F is the equilibrium free-
energy difference between its end-states, and p(w;λ), p(−w; λ̂) are the
probabilities extracting work w following a forward(λ) and backward(λ̂)
driving protocols, respectively. Crook’s result is a form of a nonequilib-
rium fluctuation-dissipation theorem.

5Initially, Jarzynski and Crooks proved this relations using equilibrium end-states.
Hatano and Sasa later showed that equivalent expressions apply with nonequilibrium
end-states, [Hat99, HS01].
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2.1.3. The thermodynamic nature of information

Armed with the tools of ST, physicists were capable of bringing clo-
sure to the Maxwell’s demon problem. In particular, it is easy to prove
that a system consisting of an object (the compartment in Szilard’s exam-
ple) and a device or observer (the demon) while in contact with a heat
bath can become correlated in a way that a measurement is done and free
energy in the form of work can then be extracted while preserving the
generalized 2nd Law. Suppose that the object is described by x ∈ X with

dev env

Figure 2.4: Thermodynamics of measurement. Generalization of a measure-
ment process from an ST approach: X represents the states of the measuring
device, Y the environment or the object which is going to be measured and
β = 1/kBT corresponds to the heat reservoir.

energy εx associated and, at initial time, it is at equilibrium with a temper-
ature reservoir at T = 1/kBβ. Any measurement requires that the object
and the device (which is described by y ∈ Y ) interact in some way. For
simplicity, consider that all states of the device (e.g. y = L,R in the Szi-
lard’s engine) are energetically equivalent, say εy = 0, for all y ∈ Y . By
definition, the mutual information between x and y at any given moment
in time is simply given by

I(X : Y ) =
∑

x,y

pxy ln
pxy
pxpy

.
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Now, if object and device are uncorrelated before the measurement (t =
t0), then px,y(t0) = p0xp

0
y. Assume that the measurement does not af-

fect the state of the object. The process of measuring will generate some
correlation between X and Y . Denote tm the time immediately after mea-
surement takes place. Then, using (2.5) we derive:

∆Ssys. = −kB
∑

x,y

[
pmxy ln p

m
xy − p0xy ln p

0
xy

]

= −kB
∑

x,y

pmxy ln
pmxy

pmx p
m
y

+
∑

y

[
p0y ln p

0
y − pmy ln pmy

]

= −kBI(obj. : dev.)m +∆Sdev.,

where we used the assumption p0x = pmx . Note that I(X : Y )m is the
mutual information once the device has measured the object. This result
indicates that, if the process is performed adiabatically (∆Ssys. = 0) then
∆Sdev. = kBI(obj. : dev.)m, i.e. that if information has been acquired
from the object, then the device entropy increases. Finally, if the device
needs to operate cyclically, then its entropy must be reduced again, which
implies a heat dump of value Q = kBI(obj. : dev.)m. This neatly brings
closure to the Maxwell’s demon paradox, and it does so by embracing the
physical principles of ST.

2.2. Replication, information and the 2nd law
The conceptualization of information as a natural thermodynamic quan-

tity has lead to renewed interest in the search for mathematical principles
in evolutionary theory and early living systems [SM16, VWKK22]. A
pressing question pertaining to any evolutionary process under the light of
the second law is the entropy production patterns that replication entails.
This problem has occupied physicists and complex systems scientists for
decades [Ras60, Mor68], and recent progress has come from the theoreti-
cal territory of Stochastic Thermodynamics. In England (2013) [Eng13],
the author combines the Crooks identity (2.9) and coarse-graining to de-
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rive a generalized second law that reads as

∆S tot.
A →B = β⟨q⟩A →B +∆Ssys.

A →B ≥ ln
Π (A → B)

Π (B → A )
, (2.10)

where A and B are macroscopic (coarse-grained) states (see Figure 2.5)
the averaging ⟨·⟩A →B corresponds to an average over all possible trajec-
tories that map initial microstates that belong to A to final microstates at
B, and Π(A → B) to the effective transition rate of all such trajectories.
This approach allows us to connect the microscopic biochemical level to
the larger macroscale (be it molecular, cellular or otherwise).

This refining of the second law permits a treatment of self-replication
under the umbrella of stochastic thermodynamics, which was studied in
[Eng13] for the simple self-replicator. Here A = • equals the presence
of a single replicator, and B = • + • indicates the presence of two such
replicators, hence, A → B captures the forward replicative step: • →
•+ •.

England’s (2013) results connect the reproductive fitness of a simple
replicator to its metabolic efficiency (through ⟨q⟩•→••) and internal state
distributions (∆Ssys.

•→••). In general, the entropic bound in (??) provides
a thermodynamic metric that can be used to compare different replicator
types that played a crucial role around the first METs, such as the Origins
of Life. In the following section, we study their thermodynamic limi-
tations depending on their coarse-grained (effective) coupling parameter
values and summarize our findings in [PS18].

2.3. Entropic bounds for elementary replica-
tors

Formally, living systems can be viewed as nonequilibrium dissipa-
tive structures that utilize matter, energy and information [Hop94] to self-
maintain, replicate and adapt. Most introductory literature on population
dynamics and evolution focuses its theoretical efforts on formalizing el-
ementary replicator systems from a kinetic approach, either determinis-
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Figure 2.5: Coarse-graining the replicators phase space. A generic phase
space Ω is parsed in two subsets (not necessarily joint), A and B. In the ex-
amples proposed in [PS18], such subsets are chosen so that they represent a
replicator before and after producing a copy of itself. Transition rates then map
to experimental rates at the macroscopic regime (see [PS18] pp. 2-3).

tic [Sch11] or stochastic [KRBN10]. However, the overreduction of the
“replicator” concept may lead to a loss of a contextual (materialist) view
in which components (external to the replicative entity) are too requiered
to complete its reproductive cycle6. Thus, and in the spirit of pushing for-
ward towards an all-encompasing theoretical baserock for evolution, an
in-between stage in which finer-grained degrees of freedom are not fully
swept away is required.

Recent results in the field on ST have proved valuable to advance such
questions in a more generalized (thermodynamically framed) context for
generic replicator systems [Eng13, PME16] as well as molecular infor-
mation copying systems [OTW17].

Our paper [PS18] is a theoretical exploration that aims to bring to-
gether the aforementioned mathematical tools in order to revisit the prob-
lem of the emergence of early replicators and derive simple thermody-
namic constrains to compare three general replicator types on the same

6See [SM16] pp. 20-21 and also Chapter 8 for a comprehensive critique to the con-
cept of “replicator”.
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footing. This is achieved without a large departure from the usual theo-
retization of the concept of replicators by exploiting novel results on the
statistical physics of self-replication and adaptation [Eng13, PME16].

Hence, in the paper [PS18], we set out to explore the thermodynamic
feasibility of the three elementary replicator motifs, i.e. simple, hyper-
bolic and parabolic replicators [SS97, Sza06, ES79, SS01, vK86, ZO87,
PJ04]. In particular, we contextualize the this decades-old problem by
employing the following aspects belonging to the theory of ST:

The possibility to invoke statistical measures over single trajectories
rather than ensembles of trajectories [PP21].

The so-called extended second law, which can be derived from
ST [PME16, BCLP16].

The coarse-graining scheme derived in [Eng13].

The results obtained allow us to go beyond the regular dynamic systems
approach while maintaining a simple mapping from a thermodynamic set-
up to a stochastic process view of the three replicator systems.

In this section we briefly account for the basic definitions, methods
and results discussed in [PS18] and refer the reader to Sec.2.1-2.2 in for
detailed derivations.

2.3.1. The three replicator types

In their paper on the Evolution from replicators to reproducers, [SS97]
(and later in [Sza06]) Szathmáry and Maynard-Smith propose a pathway
for the origins of heredity, which traces its essential steps to the three
basic replicator types (parabolic, simple and hyperbolic) and do so fol-
lowing a particular evolutionary argument which connects fidelity, growth
and cooperation. Let us elaborate by considering, at the same time, the
mathematical definitions of the replicator types and their implications for
establishing a reasonable route to the emergence of the first reproducers.
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Stability/Diversity Growth/Error-prone Cooperation/DoL

Figure 2.6: Three early replicator types. From left to right: the parabolic,
simple (exponential) and hyperbolic replicators. Classified by Szathmáry and
Maynard-Smith (1997) to form an evolutionary pathway from replicators to re-
producers.

Parabolic replication

The term parabolic comes from the inherent kinetic growth patterns
that a template-based replication displays when a rapid transition between
bounded and unbounded templates exists (see left in Figure 2.6). After
separating replicative time-scales and the complementary binding reac-
tion, the effective growth equation is given by (see Appendix A in [PS18]
for a formal proof of this statement),

dx

dt
= k

√
x ⇒ x(t) =

(
kt

2
+ x

1/2
0

)2

. (2.11)

The relevant features to be highlighted owing to this replicator type are:

Growth in its common exponential form is inhibited due to the pres-
ence of the complementary binding reaction.

Diversity is preserved due to the long stability of the bound template
compounds and the slow growth patterns, which precludes a strong
competitive exclusion between molecular species.

This scenario is proposed by S-MS as a precursor case in the Ori-
gins of Life argueing that: stability is central in a context of high en-

43



ergetic flows (which have the tendency to destabilize), diversity is en-
hanced (which helps explore the primordial evolutionary ladscape); how-
ever, heredity is limited, specifically because variations cannot spread
rapidly due to the slow growth of the parabolic replicator.

Simple replication

Simple replication is the most common notion of replicator that we
employ in biology and in physics. It pertains to the basic ideas of expo-
nential growth, examples of which range from nuclear chain reactions to
epidemic spread (see centre Figure 2.6). Its kinetic equation is written as

dx

dt
= k′x ⇒ x(t) = x0e

k′t. (2.12)

In the context of prebiotic replicators, it is considered by S-MS as a step
forward in their evolutionary pathway from replicators to reproducers,
posterior to the regime of parabolic dominance. The argument is simply
that their exponential nature boosts the process of competition between
variants such that selection takes over in an overwhelming manner. How-
ever, this phase is not fully stable and it hinders the complexification of
the replicative molecules over evolutionary time. This is fundamentally
because of Eigen’s error threshold or error catastrophe [SS82] which im-
poses a limit on the hereditable information carried by the replicator.

Hyperbolic replicator

The later stage in the evolution to reproducers is conduced by coop-
eration. Extensive work on this type of replicators was put forward by
Eigen and Schuster (1977) [ES79]. In particular, for a simple autocat-
alytic (self-cooperative) replicator entity (see right Figure 2.6, its kinetic
growth patterns follow:

dx

dt
= k′x2 ⇒ x(t) =

(
1

x0

− k′′t

)−1

, (2.13)
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which, under no other restrictions, will grow singularly as one approaches
a finite time asymptote t → ts = (k′′x0)

−1. This, of course, is not real-
istic, but speaks of the essential kinetic difference between this and the
former two replicator types.

From an evolutionary perspective, the hyperbolic replicator is con-
nected to two key aspects that pervade all METs:

Division of Labour (DoL): in cooperating entities, the aggregate be-
gins to distribute functions which interactions maintain the replica-
tive entity.

Resistance to parasitism: the facilitation of an increase in complex-
ity - which contrasts with the simple replicator type - permits the
avoidance of parasites (which tend to lag behind in this race to
higher and higher complexity).

As detailed in [Sza06] (and references therein), one of the important
drawbacks of hyperbolic replicators comes when one looks further from
the simplified single variable models such as Eq. (2.13), and considers au-
tocatalytic cycles of n steps. Here, it is possible to show that the larger the
n the stronger the metabolic kinetic directionality of the cycle is required
for the system to sustain itself. We will return to this particular problem
when we discuss our results on a second paper, in Section 2.4.3 of this
Thesis

In the following sections, we aim to embed this evolutionary view of
early replicators (and reproducers) into the paradigm of modern nonequi-
librium thermodynamics, which provides a different mode of looking at
these evolutionary transitions through the arrow of irreversibility.

2.3.2. A landscape of entropic bounds
Considering the arguments made in Sections 2.2 and 2.3.1, we are

now in a position to outline the main results of our paper [PS18]. Firstly,
we notice that the RHS on (2.10) corresponds to the average total entropy
production of the system at the macroscopic (coarse-grained) level un-
dergoing the (macro-)transition A → B in units of kB = 1 (see (2.6)
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and [PP21] pp. 67-70). Hence, we denote by lower entropic bound the
expression:

LEB(A ,B; Ω) := ln
Πτ (A → B)

Πτ (B → A )
. (2.14)

Note that this is a lower bound on the average work performed by the
system to undergo the coarse-grained transition from A → B; which is
an inescapable cost for any type of evolved or adaptive system. Our goal
for the rest of this section is to study how this cost translates into each of
the three replicator types when undergoing a single ‘replication’ event.

We consider the following assumptions7:

Replicators are isolated and independently modelled as a popula-
tion of individuals (n) in a closed urn (fixed maximum population
size, N ) with free-floating monomers that act as substrates (N−n).

Renewal of ‘seed’ replicators is present but negligible. To all effects
and purposes, this allows us to disregard absorbing points and cen-
tre the analysis on the thermodynamic restrictions on each replica-
tive strategy rather than its first-passage properties.

All replicator types are subject to the same effective (macroscopic)
decay rate, δ, which is a fixed parameter.

Particular only to the parabolic replicator: two time scales domi-
nate the system, namely the association-dissociation timescale (τ0)
and the replication (template-copying) timescale (τ1). By defini-
tion, τ0 ≪ τ1.

Next, we focus our study at the difference of LEB between each repli-
cator type, i.e.

∆LEB(r′|r) := LEB(r′)− LEB(r).
7Details of the derivations of the LEB for each replicator are found in [PS18] Sec.

2.2, 2.3 and Appendix B.
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Here r stands for a replicator type. We use s, h and p for the simple,
hyperbolic and parabolic replicators, respectively. We introduce coupling
constants for each of the replicators and reduce all constants against the
simple replicator replication rate ([PS18] pp. 6-8). We can now define
thermodynamic dominance (symbol ≻) for a pair of replicator types such
that

r′ ≻ r ⇔ ∆LEB(r′|r) > 0,

which indicates when a replicator is thermodynamically more favourable
than another, respectively. Note that this analysis only focuses on its
replicative properties, i.e. self-maintenance, robustness or stability are
not considered in this study. This gives rise to a landscape of LEB dif-
ferences, Figure 2.7, that allows for a characterization of the most ther-
modynamically feasible replicator type depending on the couplings of the
system and the initial population, which we termed x = n(0)/N .

2.4. Universal bounds for nonequlibrium
energy harvesting systems

Those are some of the things that molecules do
given four billion years of Evolution.

Carl Sagan

Evolution drives innovation at all scales; however, nothing escapes
the laws of thermodynamics. How can molecular systems adapt and in-
crease their information-processing capacities while adequately balancing
its thermodynamic costs? Early living systems required harvesting and
channeling energy to maintain themselves out-of-equilibrium via error-
correction or self-assembly processes. What type of trade-off must any
such system satisfy between the entreopy-increasing forces pulling it to
equilibrium forces and the energy harvesting configuration that keeps it
in a nonequilibrium state?
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Figure 2.7: Entropy production landscape for replicators. Diagram for the
dominance spaces of each replicator types (adapted from Fig.3 in [PS18]). The
depictions for simple, hyperbolic and parabolic replicators (shown in the dia-
gram’s legend) appear in the diagram whenever they acquire dominance. The
diagram’s horizontal and vertical axis are the hyperbolic and parabolic growth
rates divided by the simple replicator growth rate, respectively. Dominance shifts
in each of the regions depend on the initial condition x, for example, in the upper
right corner of the diagram, dominance shifts from parabolic to hyperbolic as we
move the initial condition, x, from 0 to 1. All separatrices are obtained exactly
and given in [PS18] pp. 7-8.

To answer this kinds of questions, we turn back to the generalized ver-
sion of the 2nd Law that the method fo Stochastic Thermodynamics offer.
In [PSK23] we provide a rigorous derivation of a universal trade-off be-
tween entropic-increasing forces and energetical rewards after systems
that poise themselves out-of-equilibrium and couple to another nonequi-
librium environment from which energy is extracted. Here, we spare the
reader of the technical details and attempt a heuristic review of the results
found in our paper as well a general interpretation of their meaning and
importance in the context of the emergence of early living systems.
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2.4.1. Evolution and energy transduction

Energy transduction is the process via which a system can extract en-
ergy from an environment at a given rate while maintaining itself in a
nonequilibrium steady state, e.g. a cycle that uses some energy to main-
tain itself running while acquiring some energy from an external source
in the process. Such types of processes pervade all manner of systems:
from elementary (molecular) biophysical cycles to artificial stochastic en-
gines8 [Hil13, SET98, AW13, ABMM16].

From an evolutionary perspective, the invention of energy transduc-
tion (or simply, energy harvesting) is intimately linked to key research
questions of the field of Origins of Life and METs (see [SM16] pp. 24-
25 & 28-31, [Mor68, Lan22]). On one hand, the emergence of energy
transduction and storage itself is regarded as a phase transition enabling
a coarse-grained description of system vs. environment which yields a
precursor stage of what Morowitz termed the paradigm of chemical self-
organization (see [SM16] Sec. 6.1.3 pp. 349-355). On the other hand, we
consider the emergence of control mechanisms, which we have vaguely
defined as those mechanisms internal to the system whose function is to
push its state to the optimal energy-harvesting configuration. These can
be thought of catalyzers, which utilize the present protometabolic archi-
tecture to manipulate the system. From the theory of early living systems,
control mechanisms correspond to the earliest precursor of genes, since
their adaptability and mutability is a necessary conditions for their opti-
mizing function. However, such evolutionary processes, from elementary
chemical systems to the earliest protocells and protometabolisms, must
take place by traversing a thermodynamically favourable pathway (within
permissible stochastic deviations).

From our analysis in [PSK23], we may consider a stage of early liv-
ing systems in which both a background protometabolism (which we
term baseline mechanisms) and control processes (a space of possible
catalyzers) are present. Thus, our analysis concerns with the universal

8See also [SM16] Sec. 5.4.1 and 5.4.2 pp. 322-325 for a short summary of the role
of energy transduction and storage and the Origins of Early Living Systems.
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bounds applicable to such class systems. In actuality, such a process clas-
sification can represent many other systems that operate on a molecu-
lar level and which internal dynamics are separable into two categories,
namely baseline and control. In general, the former is concerned with
the entropy-increasing (dissipative) mechanisms while the latter imbues
correlations with external (environmental) information, which facilitates
transduction and thus maximizes power yield. As an example, consider
a glucose transporter on a cell membrane. Its production and degrada-
tion rates can be included into its baseline processes, while the sensing
of external conditions (i.e. external glucose concentration) and molecular
signalling pathways to control the production of said transporter enzymes
are considered to control mechanisms9

Figure 2.8: A diagram of an energy harvesting system. The system’s states
are depicted as •. The system harvests energy and stores it in a work reser-
voir, hereby represented as a pulley holding a weight. Energy is extracted from
a nonequilibrium environment, which may or may not be dynamic itself. The
states of the environment are depicted by ◦. The conjunction of the system
and nonequilibrium energy source (environment) is in contact with a thermal
bath at T = 1/kBβ. Baseline processes (e.g. diffusion or degradation) are de-
picted in solid lines, while control mechanisms (pertaining to the system’s self-
maintenance processes) are dashed lines.

9In the article [PSK23], we explicitly explore a similar biological example in Section
5 of the SM.
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2.4.2. Universal bounds on energy harvesting
The central result in [PSK23] comes in the form of a convex optimiza-

tion problem that reads as:

∆Ẇ ∗ := max
p

−∂R
t S (p) + ⟨p− π, d− q⟩. (2.15)

For a complete detailed derivation and rigorous analysis of (2.15), see
the main text in [PSK23]. Here, we will focus on the interpretation and
applications of (2.15). Firstly, the expression (2.15) can be regarded as a
theorem whose assumptions are (1) the separability of the full system into
baseline and control mechanisms, (2) the 1st and 2nd laws of Stochastic
Thermodynamics; and (3) the irreducibility of the baseline processes (i.e.
all states of the system are reachable, even if highly unlikely). Now, let
us unfold (2.15) term by term:

∆Ẇ ∗: it corresponds to the the maximum increase of energy flow
into the reservoir that can be achieved via means of whichever con-
trol mechanisms evolution can possibly concoct.

−∂R
t S (p): this is the entropic cost due to pushing the system away

from equilibrium into a distribution (p) that facilitates energy trans-
duction. Note that if p is very far from equilibrium, then entropy
will increase dramatically, hence the minus derivative in front of
the entropy functional.

⟨p − π, d − q⟩: this is an average over the distribution reached by
the control system (p) from the distribution without any control (π),
weighed with the power gain through external driving from the en-
ergy source (d) minus the dissipative cost released by the system in
the form of heat (q).

Let us note that the RHS of (2.15) contains no terms that depend on
the specifics of the control mechanisms employed by the system.
Thus, it is universal in the sense that the maximum attainable power
increase, ∆Ẇ ∗, is a true unbreakable maximum given the baseline
description of the system.
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Solving (2.15) in general is not always possible, but can be resolved
using standard numeric recipes [DB16]. Closed-form solutions can be
obtained in three physically meaningful regimes, which we term linear
response (LR), corresponding to the situation in which the deviation of
configurations between controlled and uncontrolled systems, p−π, is very
small; macroscopic (M), which occurs when the pay-off is very large, and
the system can ‘afford’ a high entropic cost; and far-from-equilibrium
(FE), that results from a perturbative extension of the latter, i.e. when
entropic costs are small but non-negligible.

A distinction to be made between our analysis in [PSK23] and the
work done in the context of the so-called information engines (e.g. [Szi29,
MJ12]), is that in the latter the system is set up to consume information
as a fuel, just like in the Szilard engine, where the knowledge of a bit can
yield up to kBT ln 2 joules, whereas our formalism focuses on informa-
tion as a catalyzer, i.e. the system utilizes information (here interpreted as
the deviation of the baseline steady-state distribution π) to maximize its
coupling to an external power source which can yield arbitrary amounts of
power yield. This is the reason why we believe this principled approach
is more coherent in the context of early living systems and the origins of
life.

2.4.3. Illustrative examples

In order to motivate our theoretical results, in [PSK23] we provide
the reader with some examples. Here we will recover one significant case
inspired in the logic of biochemical cycles, dubbed the unicyclic model. In
Appendix 2 of this dissertation, we provide another example dubbed the
minimal thermodynamic guesser offering a full derivation of the system
within the three regimes outlined above.

Unicylic model

Consider a ring of n states that is coupled to a nonequilibrium environ-
ment out of which the energy can be drawn when transitions between two
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specific states occur (see Figure 2.9a). This example is can be interpreted
as a biochemical cycle that captures an energetic molecule (with some
value Θ in units of energy). Now, control mechanisms could be provided
by any possible catalytic molecules that facilitate the directionallity of
the cycle to maximize the energy output rate. In absence of such control
mechanisms, and evolving only under baseline (diffusive or degradation)
processes, the cycle tends to equilibrate such that no net flux is generated
and the power gain zeroes out on average.

However, the addition of catalytic forces also comes at a cost: e.g.
production of catalyzers (paid off by a heat release) or internal entropy
costs (derived from the internal microscopic configuration of the catalyz-
ers). Remarkably, the second law allows us to capture all of these costs in
a term that does not depend on whichever specific catalyzers are at play.
Hence, the following analysis will hold true whatever the catalytic system
evolution can come up with over time.

In [PSK23], we solve for the LR, M and FE regimes respectively,
compare our results with exact (numerical) solutions obtained with cvxpy
[DB16] (see pp. 4-5 in [PSK23] and Section 3 of the SM) and extend the
analysis to the case of a fluctuating environment, for which the reaction
that brings in the energetic flow moves along the cycle in a random man-
ner.

Here, we recover some of these results and ponder its meaning in
the context of precursor conditions for the early metabolic systems. As
argued above, a key point in the analysis of this model is that it gives rise
to a strong constraint on the evolutionary capabilities of a cyclic system
that transduces energy from a nonequilibrium environment in a simple
manner. For example, if the system is poised at the LR regime, then
the problem can be exactly solved and the maximum amount of power
increase attainable by any set of control mechanisms (catalyzers) is given
by the expression:

∆Ẇ ∗ = βΘ2 (n− 1)

4n2
, (2.16)
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a b

Figure 2.9: Unicycle model. Fig. (a) depicts a symmetric unicyclic model
coupled to a static environment that allows energy to flow when transition 1 → 2
takes place. Plots in (b) show how the three regimes (LR, M and FE) approximate
the exactly computed solution for ∆Ẇ ∗ as well as the corresponding optimal
distributions. The right figure shows the same in log-log scales and the inset
shows how the value for ∆Ẇ ∗ changes in the LR regime for different n values.

and the deviation from baseline steady-state follows

∆p∗i = [p∗ − π]i =
βΘ

4n2

{
2(i− 1)− (n+ 1) for i = 2, . . . , n

(n− 1) for i = n
.

(2.17)

Moreover, in this case, it is possible to assess the validity for the LR
approximation by setting ||∆p∗|| ≪ 1, which means that the system will
remain in the LR regime as long as

Θ ≪ ΘLR := 4
√
3

√
n3

n2 − 1
kBT. (2.18)

Together with (2.16), these are general results that carry a remarkable
interpretation. Suppose that the number of elements in the cycle is quite
large, i.e. n ≫ 1, which would correspond to large biochemical cycles
in chemical configuration space. Thus, if energy harvesting is to emerge
out of the exploitation of such cycles, these processes will more likely
be bound to the LR regime, since ΘLR ∼ n1/2. Therefore, this restricts
the total energy output due to its characteristically high entropic costs.
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Moreover, the longer the cycle, the higher the cost and the smaller the
returns on the maximum power increase possible, which follows

∆Ẇ ∗ ∼ 1

n
.

This can be regarded as a direct thermodynamic limitation on the evolu-
tionary prospects of any molecular system which engages -by evolution-
ary or selective means- in a process of maximizing energy harvesting, a
necessary element for the emergence of larger more complex entities.
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Chapter 3

STOCHASTIC HOLOBIONTS

The species in which peace and mutual support are the rule,
prosper, while the unsociable species decay

Pyotr Kropotkin

Life is a symbiotic and cooperative union that allows those
who associate to succeed

Lynn Margulis

Many major evolutionary transitions are grounded in the emergence
of new forms of cooperation capable of holding together higher-order
entities from simpler ones. Cooperation pervades the rise of molecu-
lar systems capable of overcoming mutation thresholds, multicellular as-
semblies incorporating division of labour, or insect societies’ appearance.
Each of these structures incorporates new properties that cannot be ob-
served at the level of its parts. Despite the burden involved in sustaining
the new, larger entity, the advantage of staying together can overcome,
under some circumstances, the cost of the association.

Cooperation can be achieved, in particular through closed catalytic
loops. For example, mutualistic interactions pervade ecological commu-
nities at many scales, from bacterial communities to microbiomes and
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large-scale ecosystems [Bro15]. Charles Darwin already outlined the
presence of these reciprocal relations in one of his memorable studies
on the ecology of earthworms, his last book [Dar92, Wil07]. The dia-
gram of Figure 3.1(a) summarises the underlying idea. Darwin realised
the presence of such cooperative connection, and it is worth mentioning
that worms (not considered fascinating animals at that time) are included
in Darwin’s famous quote about the “endless forms”:

It is interesting to contemplate a tangled bank, clothed with
many plants of many kinds, with birds singing on the bushes,
with various insects flitting about, and with worms crawling
through the damp earth, and to reflect that these elaborately
constructed forms, so different from each other, and depen-
dent upon each other in so complex a manner, have all been
produced by laws acting around us. These laws, taken in the
largest sense, being Growth with reproduction; Inheritance
which is almost implied by reproduction; Variability from the
indirect and direct action of the conditions of life, and from
use and disuse; a Ratio of Increase so high as to lead to a
Struggle for Life, and as a consequence to Natural Selection,
entailing Divergence of Character and the Extinction of less
improved forms. Thus, from the war of nature, from famine
and death, the most exalted object which we are capable of
conceiving, namely, the production of the higher animals, di-
rectly follows. There is grandeur in this view of life, with its
several powers, having been originally breathed by the Cre-
ator into a few forms or into one; and that, whilst this planet
has gone circling on according to the fixed law of gravity,
from so simple a beginning endless forms most beautiful and
most wonderful have been, and are being evolved.

In his work, which included -as usual- many experiments and field
observations, Darwin realized that earthworms improve soil porosity and
organic content that helps plants grow, resulting in more organic matter
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Figure 3.1: Darwin and Cooperation. Darwin mentioned the existence of co-
operative loops in his work on natural selection within the context of the impact
of earthworms (which was often mocked by contemporary cartoonists) on soils
and grass (a). Such closed cooperative loops are widespread in ecosystems and
involve several species (b) and have been formalized in terms of ”Hypercycles”,
as indicated in (c). These catalytic systems are prone to collapse under parasites
(d), which might have driven the evolution of complexity.

and mechanisms of soil preservation (favouring the earthworm popula-
tion). This positive feedback can be sketched in terms of a simple, closed
cooperative loop as shown in 3.1b. But the loops can be more complex,
as we outline in 3.1c. Here the vegetation is grazed by animals, whose ac-
tivity enhances the survival of invertebrates, improving soil quality, thus
favouring plant growth. In general, ecosystems are characterised by mul-
tiple feedback loops, and therefore interactions might be more complex
[Bro15].

With Darwin’s grand vision came a picture of evolution where species
would be connected through a divergent tree to be rooted in a common an-
cestor. Some new branches appear as speciation occurs, while others are
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terminated as species become extinct. But some significant events do not
fit so well this tree-like pattern. As mentioned in Chapter 1, one is the
emergence of complex cells, which required the cooperative (symbiotic)
mixing of two previously independent organisms [Sag67, Mar81]. Schol-
ars such as Merezhkovsky (Figure 3.2a) had previously hinted at this idea
(i.e. that the so-called tree of life was rather a meshed network instead),
but it was Lynn Margulis (Figure 3.2b) who definitively provided robust
and solid evidence for symbiosis as a cooperative explanation for the ori-
gin of eukaryotic cells. The problem of cooperation is of course, much
wider than this. Cooperation needs to be achieved again when multicellu-
larity first emerges, and it is also a fundamental component of the success
of humans in evolution. Not surprisingly, it has also been a very active
area within the social sciences. Here the problem is how cooperation
among selfish agents might emerge stably. Such problems can be formu-
lated in mathematical terms under the formalism of evolutionary game
theory, for which Maynard Smith, Robert Axelrod (Figure (Figure 3.2c)
and Peter Schuster (among other scholars) contributed to its building.

An elegant description of this class of cooperative loops is the hy-
percycle, first suggested within the context of prebiotic evolution [ES77,
ES78a, ES78b, Kau71, Kau86, SS97, Sza06, HL15, Sch16]. Here a sim-
ple catalytic system is defined forming a closed graph where the replica-
tion of each component is catalysed by a previous one in the loop. At the
same time, it also catalyses the replication of the next. The simplest case
is shown in Figure 3.1c for a two-member system [ES12, SS06]. If we
indicate by Φ1 and Φ2 their population sizes, a pair of coupled equations
allows us to represent the hypercycle model as follows:

dΦ1

dt
= α12Φ1Φ2

(
1− Φ1 + Φ2

K

)
− δ1Φ1

dΦ2

dt
= α21Φ1Φ2

(
1− Φ1 + Φ2

K

)
− δ2Φ2

(3.1)

where K stands for the system’s carrying capacity, δ is the degrada-
tion/death rate of both species, and the replication rates of the cross-
catalytic loop are indicated by αij > 0. Thus, due to the second-order
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Figure 3.2: Merezkhovsky, Margulis and Axelrod. Three major play-
ers in the development of a theory of cooperation and evolution: Konstantin
Merezhkovsky, Lynn Margulis and Robert Axelrod. The first two contributed to
develop the modern theory of symbiosis while Axelrod provided the basis for a
game-theoretic approach to the transition to cooperation.

kinetics, no proliferation of any of the two partners will occur without the
other.

The hypercycle is closely related to the hyperbolic replicator discussed
in the previous chapter. It can out-compete other non-cooperative species
[ES12, Sza06]. Still, a major drawback is that it can also be easily threat-
ened by a parasite (Figure 3.1d) capable of destabilising the whole system
[SS79]. Interestingly, mathematical and computer models indicate that
this problem can be limited by diffusion in a spatial domain1 [BBN96,
BH95, AS06, SS07].

Cooperation is formally describable as one kind of nonlinear interac-
tion that reveals several universal properties. Although much has been
developed regarding the statistical physics of cooperation, some impor-

1Hypercycles displaying spatial structures (Figure 3.1f) are obtained from n > 4
loops capable of exhibiting oscillations. In a nutshell, the spatial structure imposes a
limitation to the spread of the parasite, which can even go extinct if the inaccessibility
of its target species, combined with its death rate, makes it non-viable [NGM91].
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Figure 3.3: In silico and in vivo examples of cooperation. Three examples of
systems displaying pre-multicellular or proto-organismal properties are based on
the presence of competitive and cooperative interactions. The first two (a-b) are
emergent structures resembling organismal entities that emerge from simple, in-
direct cooperation [DNBM+16]. The third (c) is a close up to a gut microbiome,
formed by an ecological assembly of diverse species that share and process to-
gether a collective metabolic network.

tant problems remain. One concerns the pre-conditions associated with
the rise of cooperative assemblies. In this context, it has been shown that
some essential traits related to the emergence of multicellularity might
have predated this transition in its pre-genetic era. This is the case, for ex-
ample, of the self-organization of proto-organisms [DNS15] or the multi-
cellular-like organization of some microbiome assemblies (figure 3.3).

Evolved cooperation between two classes of cells emerges under a
suitable set of environmental conditions associated with stress [OVS19].
In these cases, we do not have actual multicellular organisms. Still, the
emergence of some traits tied to organismality is already there, from
the division of labour between different cell types to a spatial pattern-
ing that allows separating an internal medium from the external world.
Perhaps the crucial idea emerging from our growing understanding is the
understanding of organisms as holobionts, i.e. organisms made of a pre-
dictable ensemble of interacting or simply coexisting species. As pointed
in [GST12]:
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animals can no longer be considered individuals in any sense
of classical biology: anatomical, developmental, physiolog-
ical, immunological, genetic, or evolutionary. Our bodies
must be understood as holobionts whose anatomical, physio-
logical, immunological, and developmental functions evolved
in shared relationships of different species. Thus, the holo-
biont, with its integrated community of species, becomes a
unit of natural selection whose evolutionary mechanisms sug-
gest complexity hitherto largely unexplored.

A diverse range of models suggests that a complex landscape of organiza-
tion pervades true multicellular complexity. What is the minimal class of
model we can define that captures such pre-conditions? In other words,
what is the minimal model for a (stochastic) holobiont? The path fol-
lowed in this dissertation is to present and comprehensively analyse the
simplest, and yet significant case scenario: a stochastic, neutral model of
cooperators. In this case study, a population of cooperative species is con-
sidered with no predefined phenotypic heterogeneity. Instead, all species
are equal and compete for a limited space. Surprisingly, a distinct, co-
herent (and stable over long times) core of cooperators is shown to spon-
taneously emerge. This finding reveals that even under this minimal set
of assumptions and considering stochastic neutral rules of interaction, a
systems-level order beyond the species level is found.

3.1. Diversity and complexity
The approach taken here requires several well-established ideas and

measures from population ecology. We will need them to present our the-
oretical framework. Despite their broad range of types, ecosystems across
the biosphere share key quantitative similarities2, we will distinguish non-
spatially and spatially explicit cases. Examples of non-spatial patterns
are: (1) The diversity, sometimes described as the number of species S

2For a theoretical introduction to the diversity patterns employed in the field of Ecol-
ogy, see [Mag88] and Table I in [ASG+16] for a shortlist.
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present at a given time, but also using weighted quantities such as Simp-
son’s index (D) or a variation of Shannon’s entropy (H) (see Box 3.1).
(2) The relative species-abundance (RSA) patterns, i.e. the probability
that a given species is represented by a fraction x out of the total num-
ber of individuals of all species inhabiting a given region; (3) The species
turnover distribution (STD), that weights the variation over time of the
abundance of a given species within the larger interacting community and
(4) The lifetime distribution (LD), which characterizes the time between
first appearance and extinction of a given species.

BOX 3.1 - Diversity indexes
Introduced by Edward H. Simpson in 1949 [Sim49], the idea behind the
so-called Simpson’s index (D) is to go a step beyond a simple ‘count-
ing’ of the number of species within an ecosystem and introduce some
sense of abundance equality (or lack thereof). Shortly after, and with
the advent of Shannon’s Theory of Information, the Shannon-Wiener in-
dex to measure ecological diversity was proposed (H). Suppose that
a given ecosystem contains S, whose relative abundances are given by
{xi}i∈{1,...,S}. Then define

D =
S∑

i=1

x2
i , H = −

S∑

i=1

xi lnxi (3.2)

We notice that D ∈ [1/S, 1], where the lower bound is achieved when
xi = 1/S, ∀i (equidistribution) and the upper bound when ∃i∗ such
that xi∗ = 1 and xi ̸=i∗ = 0 (exclusion of S − 1 species or maximal
inequality). Some texts use the convention Ds = 1 − D. On the other
hand, H ∈ [0, lnS], with H = 0 when maximal inequality is reached
and H = lnS for equidistribution. A thorough introduction to these
topics and related is provided by Magurran (2003) [Mag03].

Spatial patterns often involve more sophisticated definitions since they
require two characteristic scales to be considered: spatial and temporal. A
usual example is the species-area relationship (SAR), which studies the
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number of species inhabiting an area A ⊂ R where here R represents the
whole of the area occupied by the ecosystem. SAR typically displays a
power-law of the form S(A) = cAz, where S here is the observed number
of species inside of A and z is a characteristic exponent that takes values
around z ∼ 0.2− 0.3. In this Thesis, we will only focus on studying non-
spatial patterns. Finally, in this text, we will deal with ecosystems of fixed
size, i.e. systems in which the total number of individuals populating it
is fixed a priori. Note that this does not imply the system is necessarily
closed (e.g. migration processes can occur via a replacement rule).

The quantitative approach led by ecologists has pushed the field into
developing an impressive theoretic corpus whose core philosophy is to
unveil the underlying mechanisms that give rise to such universal patterns.
From the physics perspective, two observations are to be made at this
point:

(I) The dynamics underlying these systems differ from usual Hamilto-
nian dynamics studied in statistical physics insofar as evolutionary
processes are present (selective and non-selective forces, extinction,
absorbing points, etc.).

(II) Whichever microscopic mechanisms one may concoct, statistical
physics teaches us that not all of these will be relevant for the emer-
gence of large-scale patterns. Thus, it is our task to distil the min-
imal set of interactions that conduce to the macroscopic behaviour
of the system that is relevant at our observational scale.

3.1.1. Neutral Theory of Ecology
In 1967, MacArthur and Wilson (Figure 3.4) published “The theory

of island biogeography”, which constituted a pioneering attempt to ex-
plain the macroecological patterns observed by ecologists from a stochas-
tic process viewpoint [MW01]. Particularly, they assessed the balance of
immigration and extinction within extant metacommunities on an island
that is close to a ‘mainland’ (M ), which acts as a species reservoir. They
showed that taken as purely stochastic processes, the aforementioned rates
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Figure 3.4: MacArthur, Wilson and Hubbell. Left to right: Robert H.
MacArthur (1930-1972), Edward O. Wilson (1929-2021), Stephen Hubbell
(1942- ). MacArthur and Wilson introduced the concept of Island Biogeogra-
phy in 1967 [MW01] as a pioneering approach to a stochastic-based theory of
ecology. In 2001, Hubbell developed the Neutral theory of Ecology [Hub11],
drawing a parallel to Kimura’s Neutral theory of Evolution [Kim83].

construed the shape of the ecosystem diversity in dependence on parame-
ters such as distance from mainland and neighbouring islands, island size
and human intervention (see scheme in Figure 3.5a).

The work by MacArthur and Wilson influenced ecological thinking
for generations and eventually produced a schism in the ecology commu-
nity between the so-called Niche theory and what later became known as
the Neutral theory (NT) of ecology. In a nutshell, the former school ar-
gues that the principle of competitive exclusion and resource-consumer
dynamics shape the structure and patterns of ecosystems, while the lat-
ter assumes a top-down approximation in which the details pertaining to
the microscopic (individual-to-individual) interactions are coarse-grained
and the system is analysed through the methods of stochastic processes.
In short, the goal of the NT of ecology is to derive testable expressions
for the observed macroecological patterns outlined in Section 3.1.
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BOX 3.1.1 - Neutral theory of competitors
It is possible to derive the RSA of a fixed-size neutral ecosystem (urn)
with S species and N individuals that is coupled to an external species
reservoir (mainland, M ). Consider an auxiliary parameter λ ∈ (0, 1]
and introduce the following iterative rules (Figure 3.5b):

1. With probability 1 − λ: a first individual is chosen at random, then
a second one: if their colours do not match, then the second pick
is changed by the colour of the first. If the colours match, nothing
changes. Then the two particles are put back into the urn.

2. With probability λ: an individual is selected at random from M and
replaces another (randomly selected) individual from the urn.

If the mainland species are equidistributed, then the system is fully neu-
tral (competitive equivalence). It is possible to solve this problem exactly
in the discrete [MAS00]. An approximate solution in the continuum for
the stationary regime is easy to derive using a Fokker-Planck approxi-
mation. Due to neutrality, any given species can act as the representative
of the whole ensemble. This reduces the problem to a single variable
x = n/N ∈ [0, 1] which, for N ≫ 1, evolves under transition rates

ω(x+∆x|x) = (1− λ)x(1− x) + λ(1− x)/S,

ω(x−∆x|x) = (1− λ)x(1− x) + λ (1− 1/S)x.

The steady-state distribution, i.e. the RSA, becomes:

Pst.(x) ∼ x−βe−2Nλx , β = 1− 2λ(N/S).

In 2001, Stephen Hubbell, who was deeply inspired by MacArthur
and Wilson’s theory, published “The Unified Neutral Theory of Biodiver-
sity and Biogeography” [Hub11]. Here, Hubbell focuses on monotrophic
communities, e.g. coral reefs, birds or plants in a forest; and makes the
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following assumptions to proceed:

a) Competitive equivalence b/w interacting species (neutral hypothesis):
at the dynamical scales considered, all species display the same fitness
value, i.e. compete with the same effectiveness.

b) Stochasticity at the individual level: birth-death processes, replication,
replacement, or random drift dominate the dynamics of the ecosystem
and its assembly.

c) Predictive macroscopic patterns from theory: the theoretical output is
based on global measures such as diversity, relative species-abundance
or SAR.

The vision of neutral theory was met with staunch criticism, consid-
ered unorthodox and often dubbed unrealistic [Ric06] (see [ASG+16] pp.
3-4 and references therein). Others embraced these ideas, developed the
theory [MAS00, SAM02, MAS04] and probed it via serious empirical
tests [VBHM03, AEM06]. The theoretical precepts of Hubbell and oth-
ers later came to be known as the Neutral theory of ecology. In this Thesis,
we base our work on these assumptions.

Finally, from a the Physics viewpoint, it is necessary to highlight how
the NT is much closer to the philosophical basis provided in (i) and (ii)
above. On one hand, the microscopic dynamics is now reduced to sim-
pler processes laid down in (a,b), thus losing the deterministic handle on
the system but –in some cases– gaining solvability. On the other hand,
a coarse-graining is necessarily imposed on the system in order to obtain
(c); this puts the focus on the large-scale statistical patterns, rather than in
the microscale details. The latter point brings the NT closer to nonequi-
librium thermodynamics of ecology.

3.2. Back to Cooperation
Our main research question for this Chapter is the development of a

Neutral theory of Cooperative Ecosystems. As we will argue, such a the-
ory is not merely an extension of the classic NT, but it actually involves
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Figure 3.5: Diagramatic descriptions of Island Biogeography and Hubbell’s
Neutral Theory. (a,b) Diagram and abstraction of the Theory of Island Biogeog-
raphy [MW01]. Arrows denote migration from mainland (M ) to an island or urn
(I, II or III) or between islands (e.g. I→II). Each color correspond to a species.
(b,c) Abstraction of the replacement rule in Hubbell’s NT of ecology.

a whole new set of methods and ideas that imbue this problem with an
idiosyncrasy of its own. The aim is thus to arrive at a top-down (macro-
scopic) analysis of cooperation in large sets of interactive agents (cooper-
ators); study their feasibility, stability and global features, while empha-
sizing the role of randomness, coexistence, turnover and other large-scale
patterns.

We will restrict our analysis to fixed-size ecosystems, i.e., ecosys-
tems that contain a fixed number of individuals (N ). We will consider a
minimal model for which only two species of cooperators coexists, de-
duce its principal stochastic properties and carry over several ideas when
moving forward to the study of the general multi-species case. In this
Thesis, we will only focus on the non-spatial properties of such systems,
with emphasis on patterns such as relative abundance distributions (RSA),
turnover (STD) and extinction patterns (LD) (see Section 3.1). Extension
to spatially constraint or fluctuating-size cooperative ecosystems are left
for future work.

3.2.1. Two-Species Cooperator Systems
In an experimental set-up due Müller et al. (2014) [MNNM14], the

authors showed how a synthetically engineered strain of bacteria, in which
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mutualism is forced via metabolic interaction between two mutants (bio-
marked in blue and yellow, respectively), reveals astonishing macroscopic
growth pattern differences (see Figure 3.6). In particular, in the top panel
of the Figure 3.6a, the system is strongly affected by competitive exclu-
sion, hence the radial color stripes which are separated at some character-
istic angular scale. On the other hand, the mutualist-pair type evolution,
shown in the lower panel of Figure 3.6a, beaks down the radial pattern
displayed by the above and facilitates coexistence: proximity between
species, and equidistribution is favoured.

Competition

A B

B
BA

A B

a

b

c

Figure 3.6: Competitors vs. cooperators I. In (a) we show two experiments of
competitive and cooperative bacterial populations growing on a Petri dish. Com-
petitive exclusion gives rise to single-species radial stripes, whereas engineered
mutualism (b) gives a mixed pattern, with local coexistence (from [MNNM14].
(c) Our model of this system considers an urn with two types of cooperator
species. Replication occurs only when two randomly selected individuals are
one from each of the strains.

To advance in our proposal for a NT of a holobiont dominated by
cooperators, it is necessary to consider this class of systems in which two
species of cooperators coexists in a fixed-size system while, at the same
time, are subject to stochastic noise and random migration fluxes. This
has been the object of our paper Piñero, Redner & Solé (2022) [PRS22],
which main findings we will followingly outline.
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Closed system

Let us begin by considering the closed system. Suppose that N indi-
viduals are placed in an urn (see Figure 3.6c) each belonging to species A
or species B. The iterative rules hereby imposed are:

1. Pick a random pair of individuals.

2. If the pair is of the type AB, one member of the pair reproduces. Oth-
erwise, nothing changes.

3. If 2. was successful, then the respective offspring replaces one random
individual from the urn.

Sections 2, 3 and 4 in [PRS22] provide an extensive set of results con-
cerning the problem of closed systems. Let us next recover and discuss
a few of them. Since the system size is fixed, denoting by n the number
of individuals of type A readily gives the same for B as N − n. We also
note that, as per the system defined by rules 1-3, the distribution is equiv-
alent for either A or B, hence, this two-species system is both neutral and
cooperative. At the same time, due to the replacement rule 3, there is an
intrinsec competition for “space” in the urn. Eventually, the system will
fall under the absorbing states n = N or n = 0. Statistical properties of
these two absoribing points (e.g. exit probability or average first passage
time) are identical due to symmetry.

From the deterministic view, and ignoring absorbing points for the
moment, the system contains a single fixed point at n = N/2. Moreover,
fluctuations around this fixed point are of the order of

√
N (see Eq. (6)

in [PRS22]). Solely the fact that there exists a fixed point around which
some fluctuations take place represents a strong departure from the com-
petitive counterpart. It is easy to show that for the latter no fixed point
exists, and only the usual absorbing points are present. In particular, the
size of the fluctuations for the competitive counterpart are population-
dependent3, namely Var(n) ≃ N⟨n⟩ (1− ⟨n⟩). Thus, the competitor

3This result can to derived from the example shown in Box 3.1.1 –and imposing
λ = 0– or simply considering equation (5b) in page 6 of [PRS22] where one substitutes
an = bn = (n/N)(1− n/N).
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two-species system will display a modulated (a.k.a. demographic) noise,
whilst the cooperators fluctuations are strongly constrained around its
fixed point. This lesson will have to carried over in the following steps
when considering systems of S > 2 cooperators.

3
Comp.
Coop.

Figure 3.7: Competitors vs. cooperators II: a comparison of analytical ex-
pressions for either type of two-species ecosystem for (left) the exit probability
, i.e. the probability that a given species takes over the system given an initial
condition, computed for N = 24; and the average first-passage time (in loga-
rithmic scale), i.e. the average time to reach fixation at either n = 0 or n = N
with initial condition n0 = N/2. Dashed/straight lines correspond to competi-
tors/cooperators cases.

The previous observations regarding the fluctuation behavior of either
system are also reflected in the patterns of exit probability (i.e. the proba-
bility that a species occupies the whole system given its initial condition)
and the mean fixation time (i.e. the average time for a species to reach
either absorbing point n = 0, N ). This implies that the fixation statis-
tics in either cases (competitors vs. cooperators) will differ substantially.
In particular, taking units of time to be such that every N iterations of
rules (1-3) then time is increased by 1, i.e. time increases δt = 1/N for
every iteration, then it is possible to compute the average fixation time
in each case (neutral competitors/neutral cooperators) assuming that the
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initial condition is n0 = N/2,

Tcomp.

(
n0 =

N

2

)
≃ N

4
, Tcoop.

(
n0 =

N

2

)
≃

√
8π

Ne
2N . (3.3)

The second result in (3.3) is obtained in Section 4 in [PRS22] using the
WKB method (see Box 3.2.1). We immediately note that Tcomp. and Tcoop.

differ enermously in their respective scalings: the former is linear with
the system size while the latter scales exponentially with N .

The reason behind the necessity of WKB is precisely another remark-
able feature of the presence of a fixed point in cooperative ecosystems. As
discussed above, the fluctuations around this point are of order

√
N but,

if n0 ∼ N/2, then the deviation that needs to take place in order to reach
fixation is of size N ≫

√
N (at the large N limit). This implies that,

at initial times, i.e. before fixation, the probability distribution is peaked
around n0 = N/2. If we denote this pseudo-steady distribution by P̃ (x)
(where x = n/N ), and since it resembles a delta-function, it will be well
represented by a exponential function of the type

P̃ (x) ∼ eNs(x)

As discussed in Box 3.2.1, this requires giving up the usual Fokker-Planck
approximation (which involves a perturbation of P around x), for an ap-
proach which studies the perturbations of the function s(x) instead; i.e.
the WKB method. This is another important lesson to carry over into
the extension to many-species cooperator ecosystems, where we expect a
similar phenomena to occur.

Open system

Finally, including an immigration component into the two-species co-
operator system is explored in Section 5 of [PRS22], where we showed
that migration is a strong system stabilizer4 In particular, when λ >
1/(N + 1)

4We refer the reader to this section for an exhaustive analysis.
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BOX 3.2.1 - The WKB Method
Named after Wentzel, Kramers and Brillouin; the WKB method was
many times independently discovered over history. The earliest known
case is due to the italian astronomer Francesco Carlini (1817) [Sac20].
The method reached ample fame as an approach to solve wave-function
problems in Quantum Mechanics.
In Stochastic Processes, we commonly use the Fokker-Planck (FP) ap-
proximation to derive a PDE for our distribution P (x, t). Within the FP
equation lays a perturbative assumption, namely that ∆P ≃ P ′∆x +
Ṗ∆x/D + 1

2
P ′′(∆x)2 + · · · , where D = (∆x)2/∆t is a finite constant.

However, if dealing with systems of fixed number of particles, N ≫ 1,
it is common to have

P ∼ eNs(x,t), (3.4)

where x = n/N is the fraction of the number of individuals (n) of a cer-
tain species, and ∆x = 1/N . For such a class of systems, the aforemen-
tioned expansion breaks down completely. Heuristically, this is because
a small deviation in x now yields an exponential shift on P , due to the
nature of a large exponential argument. This is a common phenomenon
in the theory of large deviations [AM17]. In this context, WKB arises as
a successful approximation by letting

s(x, t) = s0(x, t) + s1(x, t)∆x+O
(
∆x2

)
. (3.5)

For a one-dimensional markovian process with transition rates ω(x −
∆x|x) =: ω−(x) and ω(x+∆x|x) =: ω+(x), the stationary solution for
Pst.(x) through sst.(x) is (see Appendix C of [PRS22]):

sst.
0 (x) =

x∫
dx′ω+(x

′)

ω−(x′)
, sst.

1 (x) = −1

2
ln [ω+(x)ω−(x)] . (3.6)

the system becomes unimodal around its fixed point, i.e. equidistribution
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is guaranteed. This stabilization role is expected to follow qualitatively
when considering the S−species system.

3.3. Multi-Species Cooperator Systems
In this section, we will discuss ongoing work which, at the moment of

submission of this Thesis, it has not yet been published. For the purposes
of completion, we will outline a series of preliminary results and discuss
both our current work and possible future directions.

In order to approach a theoretical model for systems of cooperators,
we first consider the general deterministic expression (belonging to a
Lotka-Volterra class of equations)

dnk

dt
= αknk +

S∑

l=1

γkl
N

nknl − nkΦ(n), (3.7)

with k ∈ {1, . . . , S} and
∑S

k=1 nk = N , which is imposed via

Φ (n) =
∑

k

nk

(
αk +

S∑

l=1

γkl
N

nknl/N

)

Assuming neutrality corresponds to setting

αk = α , γkl = γ , ∀k, l with k ̸= l and γkk = 0 (3.8)

Classic NT is recovered by turning off all the second order interactions,
i.e. γ = 0. However, motivated by the questions posed above, here we
will focus our efforts on studying the properties of a fully cooperative
neutral ecosystem, by taking (3.8) and assigning α = 0 and γ > 0.

3.3.1. Deterministic system
Following an equivalent procedure as before, it is instructive to begin

by studying the deterministic set of equations resulting after applying the
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assumptions above to obtain

dnk

dt
=

1

N

S∑

l=1
l ̸=k

nknl


1− 1

N

S∑

m=1
m ̸=l

nm


 = nk

[
D(n)−

(nk

N

)]
, (3.9)

where we have shifted time as t → γt and introduced the Simpson’s
functional as

D(n) =
S∑

k=1

(nk

N

)2
=

n · n
N2

.

Note that this functional comes out of the treatment of equations (3.7)
with only the assumptions concerning neutrality and cooperative interac-
tions. As discussed in Section 3.1, the Simpson’s index is bound within
the interval [1/S, 1] and measures the diversity of the system, with D =
1/S corresponding to equidistribution. Next, it is possible to show that
equation (3.9) contains 2S − 1 fixed points and S true absorbing points.
To make sense of this statement, it is practical to turn to a geometrical
visualization.

The manifold that represents the closed ecosystem containing S species
is given by the S−simplex, which we denote by MS which is an (S−1)−
dimensional space defined by

MS =

{
x ∈ [0, 1]S |

∑

k

xk = 1

}
,

where we defined xk = nk/N for all k. Now, the simplest of all the
2S fixed points is given by equidistribution among all S species, i.e.
x∗ = (1/S)1T . This results immediately from (3.9), since the Simp-
son’s functional takes the value D = 1/S, and thus the right parenthesis
in (3.9) vanishes for all k. Assume a system that is set to begin evolv-
ing according to some stochastic process from a state close (or equal to)
the fixed point n∗ ↔ x∗ ∈ MS . If the evolution is stochastic (see be-
low), then some deviation will push the system into the boundary of the
S−simplex, ∂MS . Whenever this happens, then the system jumps to a
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one lesser dimensional simplex, MS−1, with one of the dimensions now
turned off, i.e. xk′ = 0 for some k′. The surviving (non-zero) species will
continue to evolve over time on a reduced system that will contain another
fixed point, namely n∗

k ̸=k′ = N/(S−1) and n∗
k′ = 0. See Figure 3.8. This

process, which we term as the extinction of a single species, will proceed
onwards for the stochastic closed neutral system of cooperators until fix-
ation occurs for a given species, i.e. one species takes all. Observe that,
while we clearly have that

M1 ⊂ · · · ⊂ MS−1 ⊂ MS,

there are
(
S
i

)
possible MS−i manifolds with i = 0, . . . , S − 1, each of

which has a fixed point at its respective center. These add up to a total of
2S − 1 fixed points. Importantly, each of these fixed points is only truely
attractive when restricting the system into its corresponding submanifold.
In other words, the attractiveness of all these fixed points remains ‘hidden’
until the system’s trajectory hits its corresponding submanifold M1≤r≤S .
On the other hand, the system can only be finally absorbed (fixed) into S
different M1 simplexes, one for each species.

Before moving on to a full stochastic version of our neutral cooperator
ecosystem dynamics, let us study a generalized potential function as per-
cieved by any representative species on the ecosystem. Recall that, owing
to neutrality, any species equally represents the dynamics of any other. If
working on the continuum, i.e. for xk = nk/N for all k, then from (3.9),
we read:

dxk

dt
= xk [D(x)− xk] , (3.10)

with now D(x) = x · x. Equation (3.10) bares remarkable similarities
with the replicators equation [Sch11], where D(x) would correspond to
a global (mean-field) positive feedback, and the remaining term between
brackets acts as a regulator that pushes all species to maintain diversity.
In dynamical systems jargon, xk = 0 (extinction) and xk = D(x) are the
two fixed point equations. Note that, if the remaining species are such
that xk = 1/R for some k = 1, . . . , R ≤ S and xk′ ̸=k = 0 for the rest
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Figure 3.8: Attractors in the simplex representation. (a) Shows the M4 sim-
plex where A, B, C and D denote each of the S = 4 species, respectively. Each
corner represents fixation (full occupancy) of every respective species, pairs such
as AB represent coexistence between only two species, thrices such as ABC,
coexistence between three species, and ABCD is the central fixed point corre-
sponding to equidistribution. (b) Depicts two stochastic trajectories, one occur-
ring at the bulk of M4 and another taking place after the extinction or collapse
of species A, which constraints the trajectory at the M3 with BCD as a center
attractor.

of the species, then we achieve the latter fixed point; this represents all
central points of every simplex MR. In particular, R = 1 correspond
to the S possible fixation points (vertices of MS). Now, consider, the
quasi-potential function:

V (x) = −1

4
[D(x)]2 +

1

3

∑

k′

x3
k′ , (3.11)

then it is easy to show that

dxk

dt
= −∂V (x)

∂xk

.

Which fits the conventional definition of a potential function. Represent-
ing this function is rather impractical, since its dimension is very large.
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However, if we situate the system in some MR, with 1 ≤ R ≤ S, then,
for a given representative species, namely x̃ ̸= 0, the rest of the non-
zero densitites will approximately take values around x ∼ 1/R, which
gives D(x) ≈ 1/R. Under this approximation, by taking the equation for
x̃ in (3.10) , with x̃ > 0, we can rederive a single-variable generalized
potential, namely

V (x̃) ≈ − x̃2

2R
+

x̃3

3
= − 1

6R3
+

y2

2R
+

y3

3
, (3.12)

where y := x̃ − (1/R), i.e. a shift to the fixed point. Expression (3.12)
is a very rough approximation, since it acts as if blocking all degrees of
freedom but x̃, which is highly unrealistic. However, it gives us a per-
spective on how the stochastic counterpart to our deterministic problem
will behave. For example, from (3.12) we read, from the quadratic term,
a Hooke coefficient k = 1/R. This means that we should expect fluctua-
tions around ⟨y⟩ = 0 (which correspond to ⟨x̃⟩ = 1/R) to be of order

σy =
√

⟨y2⟩ ∼
√

R

N
. (3.13)

Although a very rough estimate, expression (3.16) implies that every
time an extinction occurs, i.e. R → R− 1, then the fluctuations decrease
by δσy (MR → MR−1) ≈ −1/2

√
RN . This result implies a slow-down

effect as extinctions occur over time, i.e. the smaller the number of re-
maining species (R) the smaller the fluctuation size around the simplex’s
center. All of the above results can be stated without involving a full
stochastic model of the dynamics of the neutral cooperators ecosystem.
However, in order to assess properties such as extinction times in each
simplex, MR, or a more wide description of the species-abundance distri-
bution (RSA), then a stochastic extension is requiered.

3.3.2. Stochastic system
Having learned some of our system’s elementary properties from the

deterministic approach, we now turn to its stochastic counterpart. In this
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Thesis we will introduce an iterative model and explore it via computer
simulation. Then we will outline the difficulties entailing a respecitve
theoretical treatment of the probability distributions and enumerate which
approximations are and are not successful in providing analytical insight
on the problem.

BOX 3.3.2 - Fluctuations of a simple oscillator
A lot in Physics is based in exploiting the niceities of the oscillator dy-
namics. Consider a simlpe harmonic oscillator with Hooke constant k
under thermal noise, β = 1/kBT . Its hamiltionian is simply given by

H(p, x) =
p2

2m
+

1

2
kx2.

Using the Gibbs measure, P (p, x) ∼ e−βH(p,x), we study the marginal
distribution for P (x) =

∫
dpP (p, x), which gives

P (x) =
1

Z
e−

β
2
kx2

, Z =

∫
dqe−

β
2
kq2 =

√
βk

2π
. (3.14)

Thus, σx = 1/
√
βk. However, for systems under demographic noise the

common scaling for the distribution is coupled not with an inverse tem-
perature but with the sysem size, i.e. β → N . Here, P (x) ∼ e−Ns(x),
where s(x) is a generalized (stochastic) potential function. If s(x) con-
tains a second order term with coupling k/2, then the fluctuations will
scale as

σx ∼ 1√
kN

.

Consider a finite-sized urn with a fixed population of N individuals
from S species (colors) which are all cooperators (as followingly defined).
Let us consider the following iterative rules (see Figure 3.9):

1. Pick a random pair of individuals.

2. If this pair belong to distinct species, then randomly replicate one of
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them.

3. Return the initial pair to the urn, and, if in 2 there was a newly created
individual, then return it to the urn by replacing a randomly chosen
element from it.

Figure 3.9: Closed neutral cooperators system. Simple depiction of the al-
gorithm for closed neutral cooperative ecosystems. Here the urn represents the
finite-sized system with each color representing a different species. Only species
of distinct colors can interact in pairs to produce offspring, which, if succesful,
will replace a random element from the urn. Every iteration, δt = 1/N units of
time are consumed.

We choose our units of time such that, for each iteration of the algo-
rithm above, then t is incremented by δt = 1/N . Heuristically, since
all species but one random species will eventually become extinct, it is
clear that the closed system will follow a trajectory that has ‘memory’
on which species have previously died out and finished up ‘choosing’ a
single species. However, as we have established in Section 3.2.1, this pro-
cess will take in exponential time in N . In fact, simulating this algorithm
gives rise to a non-trivial set of trajectories towards extinction that shift
the central point of attraction (as predicted by the analysis above). De-
note by TR the average time between an extinctions MR+1 → MR and
MR → MR−1, and study look at the trajectories of R(T ), with every TR

(for each trajectory) marking an extinction event, which corresponds to a
unit jump downwards of the graph given in Figure 3.10.
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a

extinctions

b

Figure 3.10: Extinction dynamics. (a) In log-log scales, three trajectories of
the coarse-grainned state of R(t) for N = 103 and S = 50. Note that T (1)

R ≪
T
(2)
R ≪ T

(3)
R , which means that extinction times grow faster than exponentially

with R. (b) Also in log-log scales, shows the average extinction times from
R → R − 1, i.e. TR, as a function of R, for N = 103 and S = 50. We note
the superexponential increase in average extinction time at the left tailing end
of the graph, while the noisy fluctuations at the right end are only due to rapid
extinction rates happening at larger R.

Thus, we observe how the relaxation times become longer at each sub-
simplex, while the quasi-steady state distribution is stabilized for longer
periods of time, that is, until an extinction point is reached and the system
choses a next (smaller dimensional) simplex5. This is not too surprising
given that, heuristically, we have shown that in each subsimplex the fluc-
tuations decay (3.16). These observations lead us to conclude that the
closed ecosystem behaves as a glass [SN13]. The study of glasses (or
spin glasses) constitute today an enormous field of research within the
statistical physics community with multilpe ramifications into Complex
Systems, Ecology, Evolutionary Theory and more (see [SN13] for an in-
troduction to spin glass theory and [PUZ20] for a technical primer). In
particular, here we are interested in the glassy features of: long relaxtion
times and contingent trajectories.

An immediate shortcoming from the fact that the system is glassy
is that its high level of interactions renders it hard to study analytically.

5Note that, from our simple algorithm, transitions corresponding to double extinc-
tions cannot occur in a single time-step.
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In the first place, the application of the Fokker-Planck approximation to
obtain some estimation on the quasi-steady state distributions emerging
in between extinction events becomes too rough. The reason is that the
strong memory dependence of the trajectories (either in full population
denstity vector space or in the coarse-grainned remaining species variable
space) makes the usual markovian assumptions behind equations of the
Fokker-Planck type irredeemably hopeless. Even though this was sorted
out in the two-species case by using the WKB approximation, neither will
this method be capable of bringing any good estimation of the average
first-passage times observed in Figure 3.10.

In contrast, we must turn to the relatively recent methods of approx-
imation for the treatment of glassy systems with long relaxation times
and attempt to arrive at a solution while redefining the problem from the
general theoretical angle to our ecosystem’s view.

Here, we stop our argument and outline future steps towards the reso-
lution of this problem. We have observed that the closed system displays
non-trivial relaxation dynamics, even though its strict asymptotic limit
(t → ∞) is the trivial solution of equal probability of fixation for any of
the equidistributed initial number of species (S) . However, due to the
exponential scaling to reach such true fixed states, the relevant features of
the system reside only in its intermediate extinction/relaxation dynamics.
These relaxation times cannot be easily captured by a similar analysis as
in the case of S = 2 due to the irreducibility of the global interactions
encapsulated in the term D(x) in (3.11).

Followingly, we will consider the implications of opening up the ecosys-
tem to migration. We will do so for small migration rates, which will re-
sult in an interesting intermediate regime between the closed system and
the migration dominated system (see [MW01]).

3.3.3. Open ecosystems

After arriving at an analytical hold-on on the intricacies of the neu-
tral theory of cooperators for the closed ecosystem case, we conclude this
chapter by introducing migration into the ecosystem. In particular, we
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will show the main role of migration is that it acts as a system’s “stabi-
lizer”: how it breaks some of the glassy properties discussed above and
allows for better analytical treatment of the main ecological features that
we are interested in.

In the first place, implementing migration into the deterministic view
of the theory of neutral cooperators for fixed-size ecosystems is similar
to what is done in the classic NT of competitors [SAM02]. More specifi-
cally, one can easily extend (3.10) to

dxk

dt
= xk (D(x)− xk) + µ

(
1

S
− xk

)
, (3.15)

where µ ∈ R+ is some coupling reflecting the migration rate with respect
to the cooperation interaction rates. We note that now only one fixed
point exists in the system, i.e. the homogeneous state xk = 1/S for all
k = 1, . . . , S. In other words, the carved-out multi-simplex space with
holes in each simplex centre is now smoothen such that only an attractor
point persists at the centre of MS , and no absorbing points are left in the
system6.

Perhaps more importantly, the open ecosystem scenario offers the pos-
sibility to study a series of ecological observables that is much closer to
what experimental data can support, namely, species-abundance distribu-
tions (RSA), species survival timescales (LD) and turnover times (STD)
(see Section 3.1).

To approach the problem from a heuristic (analytical) perspective. Let
us consider that the migration rate coupling is very small when compared
with the cooperation interaction forcing, which in (3.15) we set it equal
to 1, i.e. µ ≪ 1. Following a similar hand-wavy argument as we did
in (3.16), in this case, we argue that, on average, the system still displays a
fast (transient) phase of extinctions leading to an equilibrium value of ex-
tant species7. Thus, we denote R as the average number of extant species
and proceed similarly as before by applying our approach to D(x) ≈ 1/R

6This fact is not too surprising. After all, migration is also required in the classic NT
in order to arrive at sensible observables [MAS00, SAM02, MAS04].

7As we will discuss later, the actual species that survive this first transient do not per-
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and studying the fluctuations over the generalized potential:

V (x̃) ≈ − x̃2

2R
+

x̃3

3
− µ

S
x̃+

µ

2S
x̃2. (3.16)

This time, our fixed point is shifted as

x̃∗ ≈ 1

R
− µ

(
1− R

S

)
,

where we have neglected higher orders of µ. This yields to a characteristic
fluctuation size of

σ ∼
√

S

N

(
1

r
− ν + 2rν

)
, (3.17)

where r := R/S is the fraction of remaining species and ν := µS, which
is no longer an infinitesimal value. Thus, if migration is strong, then we
expect to have r → 1 and σ ∼

√
S/N(1 + ν); whereas if the system is

such that µ → 0, then we expect R → O(1) and r → O(1/S), which
implies that, under these circumstances, σ ∼ O(S/

√
N).

However, it is important to note that, while this analysis helps in gain-
ing intuition for how the system fluctuates depending on µ, it does not
provide a concrete analytical answer to the question of what actual diver-
sity (i.e. r = R/S) we expect to observe for a given migration rate. An
answer to this question requires a better understanding of the relaxation
dynamics of the system, which displays a glassy behaviour for low values
of µ. Here, we will limit ourselves at providing a procedural argument

Notice that, for small µ values, the system presumably displays a be-
haviour proximal to that of the closed system theory. On the other hand,
a rough estimation of the number of species inhabiting the ecosystem can
be obtained by comparing extinction (Γµ) and species-reentry (Γ̃µ) rates,
hence equilibrium is reached when

ΓN,S(R;µ) ≃ Γ̃N,S(R;µ). (3.18)

sist indefinitely over time; instead, slow turnover takes place while keeping the average
number of species present in the system relatively constant.
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The key point is to assume that extinction rate ΓN,S(R;µ) ≈ ΓN,S(R;µ =
0) for sufficiently small values of µ, which corresponds to the inverse
glassy relaxation time discussed in the previous section. On the other
hand, migration reentry rates are easily computed from

Γ̃N,S(R;µ)δt = µ

(
1− R

S

)
. (3.19)

Thus, combining (3.19) with (3.18) should yield an approximated equa-
tion for R∗

N,S(µ). This should correspond to the numerical curves shown
in Figure 3.11a, and would constitute a prediction for the expected diver-
sity of the ecosystem.

Cooperators 
Core

Outliers

Migration
Dominated

a

b

c

Figure 3.11: Survival species and RSA. Parameter space (r, ν) = (R/S, µS)
is shown in (a), where the curves of R∗(µ) obtained from numerical simulations
corresponding to N = 20, 40 (dashed, straight) and S1 = N , S2 = N/2 and
S3 = N/4, respectively. As the mutation rates increase, the system undergoes a
nonlinear transformation from a bi-modular (cooperator core plus outliers, (b))
phase into a uni-modular one (migration dominated, (c)).

A core of cooperators

The right plots in Figure 3.11 reveal two types of underlying relative-
abundance distributions, one that reflects the high-migration regime in
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which the system fluctuates around R∗ ∼ S; and a second one, occur-
ring at low migration rates, which shows a two-level system of species,
namely outliers and core cooperators species. Let us elaborate on our
latter definitions by focusing on the second type of RSA:

Core Cooperators: this set of roughly R < S species appears in
large abundances. They display feedback dynamics in which, via
cooperation, they maintain their core dominance over large periods
of time.

Outliers: this abundance peak corresponds to the new entry of species
driven by migration processes. There is a flow of species between
the outliers and the cooperators that we study below.

This is one of the main results of our analysis. On one hand, it pro-
vides a strong constraint on the kinds of ecosystem assemblies adopted
by cooperative agents; it predicts the presence of a cluster of species that
‘take over and maintain themselves in the ecosystem despite the presence
of a second (highly unstable) a cluster of species with very low abun-
dances that arise from migratory processes.

Species turnover patterns

One way to measure and compare the robustness of the core of coop-
erators and the cluster of outliers is to study the species turnover times
conditional to belonging to each of these subsets. Let us define τext as the
time any given species takes to go extinct. At first, and owing to neu-
trality, we do not indicate whether a species will belong to either cluster
(cooperators or outliers). Figure 3.12a,b shows how we can think about
this problem using the approximated potential, (3.12), which, if plotted,
shows that the potential barrier for a core cooperator species to go extinct
is much larger than an outlier. Hence, we expect that the outliers will
quickly go to extinction and undergo rapid turnover; while the cluster of
cooperators will go extinct at much longer times with a low turnover fre-
quency. Figure 3.12c shows that this is precisely how the dynamics occur.
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Note the log-log scales of the plot and observe that the count for extinc-
tions at small timescales (the first peak from left to right) is exponentially
larger than that pertaining to large timescales (second peak). This indi-
cates that the system dynamics implemented (stochastically) classifies the
extant species into the two classes described above, despite the lack of any
species-specificity (neutrality). Finally, as expected, when the migration
parameter is turned on (µ ≫ 1), the system recovers the statistics of a
‘migration-only’ model with a single peak of turnover time statistics that
depends only on the diversity of the species pool (Figure 3.12d).

c d

a b

Figure 3.12: Species turn-over patterns. The top figures depict the time spent
by any given species at a non-zero abundance state from its re-entry. At low
µ: (a) shows rapid and slow lifetimes for outlier and core-cooperator species.
The bottom figures are histogram plots in for a simulation with N = 1000 and
S = 500 at small (c) and large (d) µ. Particularly, (c) shows this two-level
clustering of rapid-frequent vs slow-rare turnover.
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Chapter 4

LIQUID BRAINS AND
COGNITIVE SPACES

Can a machine be made super-critical?

Alan Turing

The dominant role of information processing in living systems makes
biology different from physics. As physicist John Hopfield pointed out,
it is computation that makes biology different from physics [Hop94]. We
have previously discussed the importance of information à là Shannon and
its connection to the formalism of stochastic thermodynamics. We have
shown how such approaches allow for an understanding of certain ther-
modynamic bounds on adaptive agents and replicators.While such bounds
provide a strong handle on some of the evolutionary constraints for a very
general class of systems, other barriers to achieving higher complexity
are present in the history of evolution. In particular, cognition as informa-
tion processing is essential for building up the statistical physics theory of
METs. How many information-based transitions are there? What is the
diversity of solutions associated with the resulting complexity?

The conquering of the planet by biological cognitive agents has been
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achieved across scales. It involves several major cognitive transitions1.
A first important research undertaking consists of tracing the origins of
the evolutionary steps that allowed information to be a crucial part of
early replicators and the prerequisites for such early cognitive systems to
emerge and become selectively relevant. One may conjecture that one
of the reasons why information processing became so widespread and
tied to life is that, while cognitive complexity is costly, it has the po-
tential to yield arbitrarily large advantages since it allows a reduction of
environmental uncertainty [Wag00, SS18]. When dealing with the large-
scale networks of interconnected agents (which here we loosely define
as brains), one of their main adaptive traits is their capability to operate
as prediction engines. But what needs to be predicted? How complex a
prediction machine has to be? And how does an information-processing
system constrains its internal agent’s complexity?

A central problem that only begun to be seriously considered with
the rise of evolutionary theory is: why brains? Darwin’s groundbreaking
theory of evolution by natural selection transformed how scientists looked
at the natural world [Dar59]. Biological structures are no longer mere
parts of a classification scheme organized into categories. Darwin himself
contributed to locating the human mind as part of the evolutionary path
that connects us with the rest of the cognitive systems in the biosphere. To
Darwin, cognition was widespread, perhaps present even in plants, and a
question of degree, not quality. Here we will look at how it pervades
complexity and whether or not qualitative properties separate the diverse
forms in which “brains” (or cognitive matter) can be defined.

For multicellular animals, the presence of a brain resulted from the
advantages of perception and an active exploration of their worlds. The
moving hypothesis posits that active exploration of an organism’s spatial
environment was a key step in the evolutionary trajectory that produced
brains [Lli02]. Under this viewpoint, prediction is both a cause and a con-
sequence of animal movement, and its implementation requires learning

1The definition of cognition is currently debated by scholars from multiple disci-
plines. However, this debate is beyond the scope of this dissertation. For further reading,
see [LD20].
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Figure 4.1: Examples of cognitive networks classified with labels solid/liquid
and neural/aneural: (a) standard neurons, (b) flatworm nervous system, (c) com-
puter chips, (d) placozoans, (e) roots, (f) leaf stomata, (g) ant colonies, (h) termite
societies, (i) robot swarms, (j) slime mould (Physarum), (k) immune system and
(l) microbial communities. Image extracted from [SMF19].
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networks to emerge. But the ways evolution has made possible cognitions
diverge considerably when looking beyond standard brain architectures,
particularly vertebrate brains, remain an open problem. A very different
class of cognitive network is exemplified by ant colonies, which are often
referred to as superorganisms. The label is a reminder that they exhibit
collective behavior and operate as a single entity, much like an individ-
ual organism. These highly organized social structures have enabled ants
to thrive in virtually every corner of the planet. As it occurs with multi-
cellular animals as individuals, which display developement and cellular
differentiation, one of the key features of ant colonies is their division
of labor. That is, different ants have different roles within the colony,
sometimes as fixed castes, and sometimes in a flexible way; with some
specializing in foraging, some in nest maintenance, and others in defense.
This specialization enables the colony to efficiently utilize its resources
and respond to changing conditions. Moreover, ant colonies manipulate
information by a combination of both chemical and tactile (ant-to-ant)
signals to communicate and respond to colony needs and environmental
challenges. The architecture is thus fluid, the system is a network of in-
terconnected brains and they use (in the vast majority of species) a nest
that also carries information. How relevant is individual versus collective
complexity? Is it appropriate to talk about one brain here?

The answer to the previous questions can be achieved by (1) find-
ing universal principles of information processing and computation in
network-based agents and (2) mapping the space of cognitive systems
systematically. Networks are an appropriate framework since the fabric
of the best-known cognitive systems -brains- is made of large numbers of
interconnected neurons that gather, process and respond to their worlds.
To this end, in this chapter, we will highlight a few case studies presented
in a synthesis work on the biology and statistical physics of liquid brains
[SMF19, PS19]. We start with a summary of how solid brains can be
modelled, compared with two case studies: collective behaviour in social
insects and a model of the immune system grounded in the physics of spin
glasses. Finally, we define a tentative space of cognition (Solé and Piñero,
unpublished).
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4.1. Brains, neurons and solid cognition

We use the term “brains” in a generic way: it will refer to ensembles
of interconnected neurons (or neural-like agents). Since its inception in
the mid-twentieth century, the field of neural networks has experienced
massive growth and has moved on in multiple directions. Nonetheless,
two key turning points were the classical paper by Hopfield [Hop82] and
the development of multi-layer, feed-forward networks capable of com-
plex recognition tasks. These became the basis for a statistical physics
description of neural networks that emerged and primarily marked the de-
velopment of this class of systems, and all were based on the simplest neu-
ral model first due to Warren McCulloch & Walter Pitts (1943) [MP43].

The pictorial conceptualization behind the McCulloch-Pitts neuron is
sketched in Figure 4.2. This formal neuron is a simple Boolean system
that reacts to a set of N inputs from a set of input neurons and responds
to the sum of these inputs in a threshold manner. The stat of each formal
neuron is indicated as Sk and can take two possible values: each input
and the output can be a 0 or 1 (we can also use −1 and +1). These two
states are commonly associated with the resting and firing states: either
the neuron remains inactive or is active and sends signals to other neurons.
But how each neuron influences another is weighted by the nature and
strength of the connection between them. These weights are indicated
by ωki and have continuous values: positive or negative for activator or
inhibitory connections, respectively.

In the McCulloch-Pitts approach, a neuron (Si) that receives the input
from others integrates all of them, each weighted by the value and sign
captured by ωki. The result is the following discrete equation:

Si(t+ 1) = ϕ

(
N∑

k=1

ωkiSj(t)− θi

)
, (4.1)

where an additional number, θi is introduced. This is a threshold for re-
sponse: the neuron will fire if the sum in the RHS is larger than θ. The
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Figure 4.2: Real and formal neurons. In (a), a pyramidal neuron is shown
to be compared with the toy model of a neuron, as suggested by McCulloch and
Pitts (b), where the minimal components are preserved at the logic level. A set of
“input neurons”, {S1, ..., Sn}, send their signals to neuron Si in which the sum
of all inputs, weighted by their specific links ωki, is performed and compared
to an internal threshold number θi. The decision of firing is then made using a
transference function φ(Σ).
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function ϕ(x) introduces this all-or-none response:

ϕ(x) =

{
1 ; if x > 0

0 ; otherwise
. (4.2)

The shape of this function is displayed in Figure 4.2. It is a step-like re-
sponse, but more general response functions can be defined. As an exam-
ple, we could use a saturating form with intermediate continuous values,
namely ϕ(x) = 1/(1 + exp(−βx)). Here β approaches the step-function
limit as β grows to high values. A major result shown in [MP43] is that
every Boolean gate can be mapped into a neural circuit described as a set
of connected formal neurons, which implies that all possible computer
operations are theoretically executable by brains [Arb12].

4.1.1. Solid brains: criticality

Dynamical activity in cortical networks constitutes a significant line
of active research and has been central to accounting for the enormous po-
tential of neural nets for optimal information processing. In particular, the
critical brain hypothesis [Chi04, Chi10, SP13, Mun18] states that the op-
timal computational state of activity patterns for the cortex coincides with
a critical point in neural activity. Criticality refers to a state where the
brain is poised at the edge of chaos, with neural activity exhibiting com-
plex patterns that are neither completely random nor completely regular.
Here scaling laws are a characteristic pattern found both in the spatial and
temporal organization of brain activity.

One of the key reasons for the relevance of criticality is that it has
been associated with a range of cognitive tasks, such as perception, at-
tention, memory, and decision-making. It has been conjectured that crit-
icality may play a fundamental role in how the brain processes informa-
tion. Moreover, it is a relevant feature that might explain how coordinated
functional traits emerge and are optimized. Notably, the departure from
the critical state is likely connected with neurological disorders. Studies
have shown that pathological conditions such as epilepsy, schizophrenia,
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and Alzheimer’s disease are associated with changes in neural activity
that disrupt the critical state of the brain. This suggests that criticality
in neural activity may be essential for maintaining healthy brain function
and preventing neurological disorders.

Modelling the complexities of the whole brain dynamics is far from
simple, and a complete approximation should consider the interplay be-
tween spatial dynamics, synchronization and noise that is intrinsic to cor-
tical networks. An example of the kind of model that is commonly used is
a dynamical system of local membrane depolarization potentials , Vi(t),
of a set of spiking neurons (see [DJR+08] and references therein) that
reads:

τ
dVi

dt
= −(Vi(t)− Vl) + τ

N∑

j=1

Jij
∑

k

δ(t− t
(k)
j ) (4.3)

where Vl is the resting potential, the matrix Jij introduces the couplings
(the synaptic efficiency) between neurons and the last term on the right-
hand side introduces the synaptic current from presynaptic neurons. This
class of integrate and fire models2 involve a highly nonlinear dynamics,
and analytic results are seldom easy to be derived. However, a simple
model helps understand the presence of well-defined phases and the pres-
ence of criticality. As it occurs with other problems considered here, dis-
cretization allows for simplifying the system representation, while keep-
ing the most fundamental properties [HG14].

Consider a system of N agents (neurons) with two possible states, say
active and inactive. Suppose we indicate by Si(t) the state of a given
neuron, with Si ∈ {0, 1}. In that case, we can consider the previous

2In the integrate and fire model, the neuron is represented as a simple electrical cir-
cuit, with a capacitor that stores charge and a resistor that allows charge to leak out.
When a synaptic input arrives, it causes a small change in the voltage across the capac-
itor. If the voltage reaches a certain threshold, the neuron fires an action potential, and
the capacitor is discharged. After firing, the neuron is temporarily refractory, meaning it
cannot fire again until a certain amount of time has passed. Despite their simplicity, these
models have been widely used to represent both single-cell and network-level features
of neural assemblies.
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McCulloch-Pitts threshold model as the dynamical framework to describe
the dynamical changes. Suppose we restrict ourselves to a system of ex-
citatory, homogeneous synaptic couplings, i.e. Jij = J > 0. In that
case, it is possible to consider a random network where the j-th neuron is
connected with kj neighbours. Since N is fixed, we have N = Na + Ni

where Na and Ni are the numbers of active and inactive neurons, respec-
tively. An equation for the dynamics of Na can be easily derived from the
following:

dNa(t)

dt
=

N∑

j=1

J

[
ki∑

i=1

P(Sj(t) = 0 ∩ Si(t) = 1)− 1

τ
Sj(t)

]
(4.4)

We introduce a characteristic decay time, τ , for the spontaneous inacti-
vation of a given unit. Here P(Sj = 0 ∩ Si = 1) indicates the joint
probability of having the units Sj and a given neighbour Si. Assuming
the network is homogeneous, we use ki = ⟨k⟩. Additionally, let us ig-
nore correlations (as in a standard mean field approximation) and assume
stochastic independence, i.e. P(Sj = 0 ∩ Si = 1) = P(Sj = 0)P(Si = 1)
to obtain:

dNa

dt
= J

(
N∑

j=1

P(Sj = 0)

)(
ki∑

i=1

P(Si = 1)

)
− 1

τ
Na (4.5)

Under these assumptions, using A = Na/N , and dividing both sides of
the previous equation by N , we obtain a dynamical equation for the ac-
tivity3:

dA

dt
= −1

τ
A+ J⟨k⟩A(1− A). (4.6)

The fixed points for this dynamical equation are obtained from dA/dt = 0
and are A∗ = 0 (no activity) and

A∗ = 1− 1

τJ⟨k⟩ (4.7)

3An extra approximation is to consider the network is such that ⟨k⟩ is small.
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It is easy to show (see Section 2b in [PS19]) that the activity fluctuations
will relax following a scaling of the form

δA(t) ∼ exp

[
− t

τ
(1− J⟨k⟩)

]
. (4.8)

This implies that, if J⟨k⟩ → 1, then the effective relaxation time, T ,
diverges following a scaling law

T ∼ |1− J⟨k⟩|−1

which is a hallmark of criticality.
It has been shown that the plasticity and rapid dynamical response

present in the critical regime of activity constitutes an optimal regime
for fast response to external stimuli and optimal information processing
[Beg08]. From a clinical perspective, moving away towards lower con-
nectivity corresponds to an unconscious brain state, while the opposite
produces high activation modes that are akin to epilepsy [Zim20]. As
shown below, this critical point’s presence and adaptive relevance might
be a universal, shared property of cognitive networks. In practical terms,
the presence of criticality is observable by the rapid increase in the time
series variance associated with the dynamical state.

4.2. Liquid brain attractors
As mentioned at the beginning of the chapter, a whole class of living

systems, along with some artificial ones, can be described as liquid brains.
These include different types of social insects (ants, termites, bees and
social wasps), immune systems (formed by many cells moving and inter-
acting within a fluid medium), and flocks of birds and fish schools. The
fluid dynamics that dominate each example within these classes is a char-
acteristic trait: the spatial location of each agent changes over time. As a
consequence, their interactions (direct or indirect) also change. This con-
trasts sharply with the spatial correlations intrinsic to solid brains, where
agents (neurons) remain in the same positions, and cell-cell connections
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Figure 4.3: Criticality in solid-liquid brains. (a) shows a section of neural cor-
tex with micro-electrodes attached to record activity (adapted from [EFG+07]),
such cortical patterns of activity are shown to be poised near criticality (b), which
is modelled after a phase transition displayed in the propagating activity model
(4.6) and controlled by the connectivity parameter ⟨k⟩. (c) shows an ant species
from the genus Leptothorax that displays an oscillatory pattern of activity which
is too captured by letting the system approach criticality in a phase transition
model (4.13), which is controlled by the density of ants ρ. Adapted from [PS19].
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evolve in time due to learning. Moreover, there are different kinds of
agent complexities involved. Cells in the immune system are to be com-
pared (in terms of complexity) with neurons in brains, while ants, termites
or birds are each equipped with a whole brain. In that respect, the latter
are brains made of brains.

There is a vast literature on self-organization in ant and termite colonies
that we cannot summarize here [CDF+20]. Studying these systems in-
volves various modelling approximations, from simple non-linear differ-
ential equations to pattern-formation models incorporating the physical
context and boundary conditions as part of the problem.

In this section, we address, using a specific model, one first impor-
tant question: How do liquid brain attractors differ from those associ-
ated with solid brains? To answer such a question, let us consider an
ant colony where a finite number of tasks must be executed. Our exam-
ple is inspired by the colonies of harvester ants (belonging to the genus
Pogonomyrmex), so-called because they collect, store and eat seeds. A
colony living in a dryland environment performs various tasks outside the
nest, several of which are easily identified. Foragers, for example, leave
the nest on shared foraging trails, collect food, and return it to the nest.
Nest maintenance workers maintain interior tunnels, carry out sand, and
clear vegetation from the nest mound. On the other hand, patrollers re-
cruit foragers towards new food sources. Finally, midden workers sort and
maintain the colony refuse pile. The main point is that, through ant-to-ant
interactions, ants can switch from one task to another when the colony’s
needs and/or as a response to environmental states change.

One expected result is that the number of attractors will be somehow
reduced by the inevitable degeneracy associated with the nature of inter-
actions. The reason has to be found in how we define the ”states” in our
system. It is clear that each ant has a brain, and thus, at the individual
scale, neuron states are relevant and would define individual behavioural
conditions. But there is a functional class, too: the one that describes
the task being performed by each ant. In this context, observations can
be used to code the transition probabilities between tasks in a dynamical
system defined as a threshold neural network [GGT92].
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Figure 4.4: Population-level attractors and task allocation. Here virtual ants
(a) each carrying a 3-spin internal description. The total state space is a three-
dimensional Boolean cube (b). The model exhibits attractor dynamics with an
associated energy function (see text), as illustrated in (c-d), for a two-task system
with α = 1 and β = 0.1 in (c) and β = 0.5 in (d). Figure from [PS19].

Let us consider our colony as formed by a set of N ants interacting
through a matrix Jµ

jk Considering ants as mobile agents, their states are
updated following a threshold function:

Sµ
j (t+ 1) = Θ

(
hµ
j (t)

)
= Θ

(∑

k

Jµ
jkS

µ
k (t)

)
. (4.9)

The (internal) state of the j-th ant belonging to the task µ, Sµ
j will remain

the same provided that Sµ
j h

µ
j > 0.

As is done in models of solid neural networks, an energy function is
defined accordingly as follows:

H ({Sµ
k }, {Jµ

ij}) = −1

2

∑

µ

∑

i,j

Jµ
ijS

µ
i S

µ
j . (4.10)
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But this is a highly degenerate state, and The observable state is the num-
ber of ants performing each task, which leads to an energy is defined in
terms of the set {nk}:

H ({nk,Γij}) = −1

2

∑

i,j

Γijninj , (4.11)

with a new set of parameters {Γij} that depend on the microscopic cou-
plings (see [GGT92]). The system’s equilibrium states (attractors) are the
minima of this function and, for Γ11 = Γ22 = α and Γ12 = Γ21 = β:

H (N1, N2) = −1

2

(
αN2

1 + αN2
2 − 2βN1N2

)
, (4.12)

as it is illustrated in Figure 4.4. The crucial point to be made here is
that, in our liquid context, the high-dimensional nature of neural networks
derived from the connectivity matrix (which distinguishes between spe-
cific pairs of neurons) is no longer valid. Changing connectivity matrices
and the lack of agent individuality (beyond its task string) imply low-
dimensional attractors.

4.3. Liquid brain criticality
Although the nature of the attractors in liquid brains clearly departs

from those associated with solid ones, a common property seems shared
by both: the exploitation of critical points. It seems to be present in fish
schools and flocks of birds and has been described in some ant colonies.
Here we consider this example, which has been reported for ant colonies
of the genus Leptothorax [SMG93, SM95] Such critical dynamics are re-
vealed by recording the number of individuals that are active (and thus
perform tasks and move around). Such recordings indicate critical-like
behaviour, with low activity levels punctuated by synchronized bursts of
activity. Such bursts are triggered by the local activation of an inactive
individual by an active one. Additionally, inactive ants can spontaneously
activate with some probability. The statistics are consistent, particularly
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Figure 4.5: Modelling ant colony interactions on a lattice. Instead of a fixed
distribution of elements placed at regular locations (a) the proper modelling of
an ant colony should consider instead a liquid system (b) where active elements
(filled circles) can move to the nearest locations, while inactive ones (open cir-
cles) remain in the same place.

at the time scale level, with scale-free fluctuations and scaling behaviour.
The observed patterns indicate that there are no regular dynamics at the
individual level, and thus collective activations are not just a set of cou-
pled oscillators that get in sync.

The previous observations of the collective and single-ant behaviour
suggest that the problem is somewhat similar to the one explored above
on the propagation of activity in cortical systems. An important observa-
tion to be made here is that ants can adjust their nest density by changing
their boundaries and that a critical density of ants can sustain the critical-
like fluctuations found in nature. This suggests that they might get self-
organized in a critical state. A simple model helps us capture this phe-
nomenon and allows us to compare the two cases, solid and liquid brains,
under the light of self-organization and criticality.

Consider a two-dimensional lattice. At each point, an ant can be
present or not; if present, it can be either active or inactive. If left alone,
an ant maintains activity during some characteristic time τ . In general, the
update of individual states will occur using our familiar threshold func-
tion update, similar to the one discussed in previous sections. If we reduce
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our scope to the only-activation scenario, when nearby ants are active an
inactive ant will activate with some coupling J . Following the same steps,
we can write [PS19] a simple mean-field model that now reads:

dA

dt
=

J

τ
A(ρ− A)− 1

τ
A, (4.13)

where A is the fraction of active ants in the lattice and ρ is the total density
of ants. Notice that instead of average connectivity, the likelihood of local
interactions is weighted by the ant density parameter. Equivalently as in
the analysis done in Section 4.1.1, we obtain fluctuations of order

δA(t) ∼ exp

[
− t

τ
(1− Jρ)

]
, (4.14)

around the zero activity point, thus criticality is reached Jρ → 1, with
a relaxation time diverging like T ∼ |1− Jρ|−1. At the active phase,
A∗ = ρ− 1/J . See Figure 4.3c,d.

After this exercise, we observe that either system (solid or liquid) be-
haves similarly from an activity dynamics perspective. Despite their ap-
parent physical differences, we say that these systems belong to the same
universality class. The fact that both self-organize to criticality [MB11] is
arguably a major feature of evolution involving interacting systems whose
function is to perform a cognitive task.

4.4. The immune system as a liquid brain
Our last example deals with a major evolutionary innovation, namely

the emergence of the immune system. This liquid network is made of
several diverse cell types (allowing, once again, division of labour) that
responds to pathogens to protect the individual from infection. This is a
complex adaptive system capable of memory and learning. Major contri-
butions to theoretical immunology came from the statistical physics anal-
ysis of its memory states and the immune repertoire, and a great account
of them was written by Alan Perelson and Gerard Weisbuch (Figure 4.6)
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Figure 4.6: Perelson, Weisbuch and Parisi. Three pioneers in the develop-
ment of models of immune system’s complexity, some involving the connection-
ist approach [Far90]. From left to right: Alan Perelson, Gerard Weisbuch and
Giorgio Parisi. Perelson and Weisbuch made major contributions to theoretical
immunology, including work on immune networks. Some of these models are
deeply connected with spin glasses, a field developed by Parisi, who won a No-
bel Prize in Physics in 2022.

in their classic paper Immunology for physicists, [PW97]. Some of their
work was based on previous work in statistical physics concerning disor-
dered systems. In 1990, Parisi [Par90] presented a simple model of the
IS that explored its memory capacity in ways similar to those used in the
statistical physics of neural networks. In this particular work, Parisi was
inspired by the study of idiotypic networks [Jer74] and used a spin glass
analogy.

Parisi considered a system such as (4.15) in which every degree of
freedom corresponds to an idiotype, and {Jij} are suitably defined (see
Section 3b(iii) in [PS19]). This analysis yielded a prediction for the num-
ber of possible memory states attainable by the system, which is of the
order 2λN , with λ ∼ 0.3, where N is the total number of idiotypes (which
are around 106 − 107 in humans). These findings fuelled the application
of statistical physics to the analysis of the immune system.
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BOX 4.4: Spin glasses: what & why?
Spin glass theory surged in the context of condensed matter around the
1970’sa [SN13], but was independently discovered in the context of evo-
lution by Stuart Kauffman [Kau69b, KL87, Kau93]. Spin glasses per-
vade a wide range of problems, from material sciences to artificial neural
nets. Its theoretic core is difficult to synthesize, however, some intuition
can be gained by studying the (seemingly innocuous) energy function:

H ({Jij}, {Si}) = −
∑

(i,j)

JijSiSj. (4.15)

Here, {Si} are the states of the i = 1, . . . , N degrees of freedom (dubbed
spins), (J)ij = Jij its pair-wise interaction matrix, and the brackets (i, j)
indicate some type of connection topology between the spins. The sys-
tem spontaneously tends to its lower energy values. When Jij = J , we
have the well-known Ising model [Set21], which captures the essential
phase transition of a magnet or liquid-vapor. When Jij becomes some-
what more complicated, a radically new outlook emerges. Here, a key
concept is given by frustration. Consider a two-state case, Si = {↑, ↓},
and suppose that Jij = J < 0. Then, if the system’s topology is trian-
gular (see Fig. 4.7), we recognize that top spin cannot relax into a stable
state.

?

Figure 4.7: Frustration and Fitness Landscapes. Left: frustration of
an N = 3 (antiferromagnetic) spin system. Right: Waddington landscape
[Wad14], which displays ultrametricity.

aSee [And88a, And88b, And88c, And88d, And89a, And89b, And90] for an intro-
ductory set of essays by the brilliant Phil Anderson.
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This is a microscopic example of frustration for a very small setup. Scal-
ing up this phenomenon into a fully-fledged spin glass, with, e.g. ran-
domly generated Jij values, results in a rich variety of phenomena. Frus-
tration can represent the evolutionary aspects of epistasis, which involve
the non-linear fitness responses after mutation for coupled genes, and
it ultimately gives rise to an ultrametric characterization of all the ac-
cessible spin glass states, which, in evolutionary theory, constrains the
possible paths the system may evolve through. In development, this phe-
nomenon is captured by Waddington’s landscape (Fig. 4.7).

For example, Percus et al. [PPP92, PPP93] combined the statisti-
cal analysis of idiotypic interactions to propose an answer to the self vs.
non-self distinguishability problem in immune systems, as well as bet-
ter accounting for the completeness of the immune repertoire as a shared
memory system between the individual agents (idiotypes) and the collec-
tive network, i.e. the networks spin-glass energy minima (see Section 3b
in [PS19], and [PW97] for a comprehensive introduction).

Parisi’s model belongs to the discrete, symmetric picture inspired by
Hopfield networks, but many different problems can be considered, given
the complexity and diversity implicit in IS organization. Let us consider,
for example, the dynamics of the IS by studying a simple model of the
population xi associated with the i-th B-cell clonal type [dB88, DBH89,
DBKP90]. Suppose that it can be described as the sum of three different
terms, which constitute a balance between a source (cell production from
the bone marrow), a linear decay term associated with cell death and the
proliferation resulting from the stimulation by other clones coupled to a
cell proliferation rate p. Formally:

dxi

dt
= m− δxi + pϕ(hi)xi. (4.16)

The factor ϕ(hi) in the last term involves information-processing mecha-
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Figure 4.8: Early models of the adaptive immune response were based on a
neural network picture (a), but involved transfer functions with two thresholds
(b). On the molecular scale. the IS is a pattern-recognition system where molec-
ular interactions between cells (c) are mediated by a matching process (d).

nisms akin to the McCulloch-Pitts neuron, while we set

hi =
n∑

j=1

Jijxj + Aixi, (4.17)

where n is the total immune clonal repertoire, and the weight matrix Jij
encodes for all the interactions between the clonal types; which can be
either inhibitory or excitatory. Here, Ai is the i−associated antigen con-
centration in the environment, which acts as an external field. In this case,
the nature of the function ϕ(h) is a continuous-valued population level, in-
stead of a step-wise one (4.2). In particular, De Boer and Hogeweg (1989)
used a log-bell-shaped response function following experimental obser-
vations (Figure 4.8b, see [PW97] pp. 1237-1239 and references therein)
Other models explore such couplings in correspondence with biochem-
ical affinities for epitope-paratope molecular interaction [BA10] (Figure
4.8c,d, see Section 3b(iv)-(vi) in [PS19]).

We note that, albeit the system described by (4.16) is much more com-
plicated than the approximations given in (4.6) and (4.13), they are deeply
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connected in a formal but also in a universal manner. Thus, in spite of
the fact that the immune system’s computational objectives (essentially
the distinction of a foreign or malign antigen in the body) differ widely
from those that arise in insect colonies or brain function; it is possible
to conjecture that its operational optimality is too self-organized around
criticality.

4.5. Mapping liquid versus solid cognition

The conceptual framework advanced in this chapter asks for a new
synthesis. Solid and liquid brains are both the outcome of evolution-
ary forces, are shaped by some common constraints and display several
dissimilarities that might be related to their adaptive response to envi-
ronmental needs. A successful synthesis will need a complex systems
perspective. The examples discussed above, along with all those consid-
ered in the review [PS19], deal with systems displaying a diverse range
of information processing capacities, each describable by a different class
of physical state. Moreover, some are tied to complex organs within or-
ganisms resulting from a developmental process, while others, such as
ant or termite societies, cannot be mapped into the organ picture, despite
they experience some kind of developmental process. A tentative space
of possible cognitive systems should thus include as potential axes: (1)
computational complexity, (2) physical state and (3) to what extent the
system is the result of a developmental process. Let us consider some
case studies that will help us in determining the bounds of our space and
locate the different classes of cognition.

The solid, vertebrate brain that has been intensively studied over the
last century might have resulted from an evolutionary pressure to deal
with a challenging environment to be actively explored. Thus, movement
would be a major driver for solid brains to merge. Such brains, as we
have discussed above, are describable topologically by a static graph with
spatially located nodes (which can degrade and disappear) connected by
means of a weighted matrix. In terms of dynamics, various threshold-
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Figure 4.9: Collective intelligence is an emergent phenomenon where inter-
actions among individuals (a) need to be understood under the context of the
scaffold they create (the nest), which involves a network of interactions (b) that
occurs and adapts over time to a changing set of physical boundary conditions
(c).The arrows between models are a reminder that emergent phenomena occur
when moving between levels, and that there is an irreducible feedback loop be-
tween colony organization and individual degrees of freedom.

based dynamical systems exist that can do the job of modelling different
kinds of phenomena, from synchronization to pattern recognition. How-
ever, if a collective of agents is at work, and the agents are mobile, we
have a rather different situation. Starting from early, pre-social insects,
superorganisms emerged as a consequence of cooperative interactions that
included: (a) remain close to eggs and (b) take care of them for a while.
Such care was typically taking place in a spatial context defined as a pre-
cursor of a nest architecture. The advantages of this early cooperation are
clear: by protecting young larvae or pre-adult offspring from predators
or external uncertainties. Since the underlying organization is that of a
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Figure 4.10: Morphospace for liquid and solid cognition. The left image is a
tentative space of the possible where the axes are defined y: (i) the computational
complexity of the system, (ii) the physical state (from liquid to solid) and (iii)
the presence of a developmental process that generates the final network. Six
examples are shown: (a) blood cells (both red and white), (b) Leptothorax sp.
Ants, (c) bird flocks (image by Xavi Bou), (d) cortical neurons in a vertebrate
brain (drawing by Ramon y Cajal), (e) stomata in a plant leave and (f) a random
nanowire neural network.

collective of individuals, decision making is no longer a centralized phe-
nomenon, to be located in the network. The emergence of the superorgan-
ism (i.e. a cooperative group of agents equipped with brains) necessarily
entails to deal with the constrains derived from multi-agency.

With the exception of army ants, one of the universal traits of col-
lective intelligence is the presence of a nest. Nest complexity allows to
define a set of complexity levels associated to different traits (and mod-
elling approximations) from individuals to whole colonies, as illustrated
in Figure 4.9 in the case study of termites. They are constructed by ex-
ploiting self-organization principles that include Turing-like instabilities
[TBD98] Nests can be simple (such as the one of Leptothorax colonies)
or extremely complex, as it is the case of termite societies. Termite nests
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are engineered structures that can be found in many regions of the world
[Tur11]. The construction of a termite nest is a complex process that
involves the cooperation and coordination of thousands of individual ter-
mites whose individual size can be three orders of magnitude smaller than
the nest. One of the key features of termite nests is their ability to reg-
ulate temperature and humidity levels throughout the day and night. All
these features gave support to understand the colony as a whole (nest and
individuals) as a class of homeostatic organism [Tur19]

The time development follows a predictable sequence of events, which
include the initial formation of a pattern of pillars and arches. While the
dynamics of individuals can be described, in lab conditions, as a thresh-
old neural network, as soon as we consider termites in the nest context,
a feedback loop between the emergent physical scaffold and termite be-
havior emerges [TBD98]. Such process can also be described in terms of
networks of connected chambers and evidence suggests that these nets are
close to a critical point. This time, criticality is associated to percolation:
chambers are connected by tunnels in such a way that it spans the nest
volume in an efficient way with a sparse connectivity [VCMP+09]. All
in all, there is a subset in our morphospace, as sketched in Figure 4.10,
where swarms, the immune system and some artificial collectives (such
as kilobots) occupy a domain of close-to-liquid structure, low or interme-
diate development (with the exception of the immune system) and limited
cognitive (computational) complexity.

In our cognition cube we easily locate solid brains in a corner of the
space. This is of course an oversimplification, since we cannot collapse
a whole range of brain architectures in a single point. What we want to
point out is that they define an upper bound that combines full develop-
ment (as an organ within an organism), high computational complexity. It
shares this top roof of the space with organs (including the immune sys-
tem) that also gather and respond to information but in much simpler ways
and usually dominated by negative control feedbacks. Among the general
traits observed in most of these solid brains is the presence of some kind
of intermediate processing elements. Within the context of cortical sys-
tems, these interneurons have been known since Cajal’s early studies of
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brain architecture. They are a specially important element from the point
of view of the evolution of cognitive complexity. They do not directly re-
ceive inputs form the environment nor directly respond to such inputs. In-
stead, they are intermediate steps in the non-trivial information processing
allowed by a solid neural network. We emphasize here this class of ele-
ment because it is fundamentally absent (or only indirectly present) in the
liquid phase of our morphospace. Moreover, located on the same plane
but in the low-cognition side we locate plants, whose ”solid” architecture
[DNB19], sessile nature4 and lack of intermediate processing units makes
them a successful group that might not have required cognitive powers to
get there. However, we also know that some plant subsystems (plants are
highly modular, clonal organisms) are capable of responding to specific
external signals (such as water and CO2 levels) in a distributed manner
with critical-like behaviour [PWMM04].

What is there in the domain of no development and solid cognition.
In this case, several examples can be described that are the result of ar-
tificial designs. Here we only indicate a few, from neuromorphic com-
puters (where one goal is to get inspiration from cortical neurons to de-
sign neural circuits) to xenobots. The latter are Xenobots can be de-
fined as a new class of synthetic living machine made from frog embryo
cells[KBLB20, EL21]. They are designed using an evolutionary algo-
rithm that predicts optimal shapes able to perform given functionalities
(such as cleaning up a given area). One of the remarkable outcomes of
this research is the fact that ”behaviour” can be disconnected from any
neural equipment and instead be strongly tied to morphology (see [BL16]
and references therein).

Along with the examples outlined in this chapter and reviewed in
[PS19], some remarkable organisms appear to inhabit a rather special
place in the cognitive universe. This is the case of the slime mould
Physarum, which has been studied extensively for its remarkable ability

4Seeds might be the exception to this rule. They are the ”moving” part of plants and
are equipped in many cases with a gene regulatory network that allows decision making
possible. This is particularly relevant in the context of germination, which requires
integration of temporal information.
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to exhibit complex, self-organized behaviour [Ada10, DLBS10, NYT00].
This organism is a single-celled (but multi-nucleated) eukaryote that can
grow up to several centimetres in size and moves by extending its cyto-
plasmic mass in a rhythmic, pulsating manner. Despite its simple struc-
ture and lack of a nervous system, Physarum can solve many different
problems5, from finding the shortest path between two points to construct-
ing efficient transport networks. The latter is based on the ability of this
organism to form networks that can optimize transport. We have here
an adaptive network of connections that is connected to shape shifts and
has been modelled by a threshold-like transport model where an original
graph (with nodes occupied by nutrient) is formed by a uniform spread of
the mould followed by a selection of shortest paths that can be essentially
understood as a least action process [BMV12, TKN07]. The final com-
putation of this shape-shifting, unique organism is nothing but morphol-
ogy. The shape of the final set of living connected paths is the solution
to the input problem. Interestingly, some fundamental similarities exist
between this and the ways ant colonies use pheromone trails to explore
their worlds.

A final point can be made here regarding the empty spaces of our
morphospace. Consistently with our conjecture that liquid systems will
have highly degenerate attractors and thus a much lower dimensionality
associated to their attractor landscape, a complex cognition comparable
to the one of solid brains is unlikely to be sustained. In this context, al-
though it is possible to suggest a hybrid model that combines ants and
fields to obtain some kind of Hopfield-like network [IMS91] the needs of
a colony might be so reduced that an efficient and diverse task allocation
mechanism might largely suffice to deal with environmental uncertain-
ties. In this context, the ecological context that we have explored in this

5It can solve mazes and other complex spatial problems. When presented with a
maze, Physarum will initially explore the available paths at random, extending its ten-
drils in all directions. However, over time, the organism will converge on the shortest
path between the entrance and the exit of the maze, forming a network that optimizes the
flow of nutrients. This process is driven by the chemical signals that Physarum releases
as it moves through the maze, which reinforce the paths that are already being used and
inhibit the exploration of less efficient routes.
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dissertation, where cooperation plays a specially relevant role, might play
a fundamental role in shaping the architecture of liquid interactions.
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Chapter 5

DISCUSSION

5.1. Thermodynamic bounds on
replication and energy harvesting

In Chapter 2 we have established a framework embedded into the
language of nonequilibrium thermodynamics that allows for a compari-
son between different replicator classes (Section 2.3.1). Such analysis is
groun-ded on the extended second law and previous results on coarse-
graining for mesoscopic systems [Eng13] (Section 2.2).

Our results contrast with previous work, which focused only on dy-
namic or kinetic arguments [SS97], and connect the replicator processes
to thermodynamic statements about the minimal entropy production re-
quired (here dubbed LEB for low entropy bounds) per replication event
in each of the three basic replicator types. This established a thermo-
dynamic metric by which it is possible to compare these replicators on
energetic rather than kinetic grounds.

A deeper exploration for such dissipative bounds are object of future
work. In particular, the following are open questions to be resolved:

Application of the LEB framework in explicit competition set-ups.
This problem consists on finding entropy production rates for sys-
tems that couple a coarse-grained description of a transition of pairs
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of replicators, for example: (s,p) → (s, s).

Introduction of absorbing points. If a replicator can go extinct,
how can this formalism be implemented given that detailed bal-
ance would break down? Are there ways to extend the current
mainstream nonequilibrium physics so that an even more complete
second law is achieved and, from it, derive appropiate bounds on
entropy production for the different replicator architectures?

Also in Chapter 2, by considering a very general set-up for systems ca-
pable of harvesting energy from a nonequilibrium source, we have demon-
strated the existence of universal bounds on the power yield in the space
of all possible controlled energy transduction architectures. Our proof is
grounded on a rigorous analsys of the interplay between energy extraction
and information-entropic forces in molecular energy harvesting systems.
We applied our formalism to basic architectures inspired by the logic of
early biochemical cycles and arrived at following two major conclusions
(1) early living systems biochemistry are constrained in achieving opera-
tional control of energy sources and (2) larger cycles, which could have
been reachable in chemistry space, might have been selected against due
to the higher entropic costs of maintenance as shown by (2.16) and (2.18)
and their scaling behavior with n, the cycle size.

Further research arising from these second set of results should be
directed at answering questions like:

1. The study Pareto-fronts on the trade-off landscape given by (2.15).
Can thse give rise to phase transitions [SS13]? And, is so:

a) Is there a particular type transitions to be expected?

b) Are there general restrictions that shape of the objective func-
tion?

2. If the system contains some nonlinearities, e.g., in the manner in
which energy is extracted, then, does the regime analysis provided
(LR, M and FE regimes) still hold?
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3. Is it then possible to model major transitions on energy harvesting
(e.g. endosymbiosis) using our framework?

4. In absence of a good criterion for the separation of degrees of free-
dom, are there endogenous processes that self-organize the system
into agent and environment? If so, then how does this reflect on the
type of optimization problem proposed here?

Finally, as usual in the any formal framework pertaining to statistical
physics, it is important to recall that all of our underlying theoretical back-
ground is ultimately based a theory of probability [Jay65]. This observa-
tion is useful when aiming to translate advances of the kind we proposed
here into other paradigms, such as the Statistical Physics of Evolution
[Pel11]. Here, thermal baths are replaced by mutational backgrounds and
the degrees of freedom are substituted by genes or bit-arrays, while the
fitness landscapes take the role of a free-energy functional. In this con-
text, an extension of our formalism might lead to a better understanding
of universal bounds on evolutionary speed limits, a topic that has recently
gained a lot of attention [SFS18, Ito18, ID20, IDC+21].

5.2. Precursor patterns in cooperative systems
In Chapter 3, we have turned to cooperation as a universal feature of

METs. We have borrowed the tools and methods of stochastic processes
to construct models of two and multiple species of cooperators. We have
considered a minimal set of assumptions, which led us to the analysis
of a Neutral theory of cooperative ecosystems. Out of this analysis, we
concluded that at low migration rates:

The system spontaneously breaks the symmetries imposed by neu-
trality and gives rise to a two-level description of the extant species:
outliers and core cooperators. The emerging patterns reveal that:

• A species belonging to the outliers set is short-lived and is
kept at low abundance rates.

119



• A species belonging to the cooperators core remains relatively
stable for long periods of time at large abundance rates, and
fluctuations to extinction are rare.

Equilibrium between migration and extinction is heavily dominated
by the long relaxation times observed in the closed system of co-
operators. Out of this equilibrium emerges a non-linear relation
between the extant number of species (R), the system’s size (N ),
the external species diversity (S) and the migration rate (µ). Such
non-trivial relation is the object of further study and it is central
to the understanding of how cooperative ecosystems assemble and
self-stabilize.

In summary, our findings highlight the strength of the stochastic ef-
fects on a system of cooperative agents. In particular, it shows that there
are precursor patterning phenomena that shape how the system assem-
blies before genetic control or other selective forces take any action. This
is a characteristic feature of what complex systems scholars like Stuart
Kauffman dubbed ‘order for free’ [Kau93]. In short: the system of coop-
erators, once established, construes a scaffold upon which adaptation will
operate. This is an example of how the physics of stochastic processes
may facilitate the appearance of a MET.

5.3. Towards a unifying theory of
cognitive networks

In Chapter 4, we reviewed the historic approach to cognitive networks
from simple neural models to the various biological cognitive systems of
all types (from ant colonies to slime mould). We highlight the statistical
physics framework that model such systems in a unifying way, and pro-
vide a new characterization based on a morphospace with axes spanning
the physical state (liquid to solid), degree of developement and the compu-
tational complexity of any given cognitive network. These are represented

120



qualitatively and offer a holistic view of the space of all possible cogni-
tive networks, which allows us to consider cases that are not explored by
evolution, and, if so, ask why.

Throughout Chapter 4 we emphasize the role of criticality, as intro-
duced in Chapter 1, and argue that it plays an essential role in matching
the collective system’s dynamics and the emerging computational com-
plexity at the system’s level, which corresponds to two of the theoretical
pillars of METs considered in Chapter 1 (see Figure 1.5).

On the other hand, we study another limiting case of a highly liquid
system, i.e. the immune system. We notice the following (see also Table
1 and Section 3b(vii) in [PS19]):

(a) Connectivity is physically liquid, i.e., there’s a high degree of interac-
tion between the agents. Following the spin-glass metaphor 4.4, the
topology of (i, j) is closer to a clique than a sparse network. However,
as a counterpart, the set of {Jij}, which correspond to the epitope-
paratope couplings, becomes highly specific.

(b) Memory and learning processes are mediated by a combination of
population-based set of attractors plus a synaptic (epitope-paratope)
based system of allocation. This parallels with the degeneracy of
memory states observed in ant colonies, particularly in their division
of labour (see Figure 4.4).

(c) Following the analysis of [BA10] (see Section 3b in [PS19]), a dual
classification of idiotypes emerges: strongly and weakly interact-
ing. This heterogeneity is exploited by the system in solving the self
vs. non-self identificaton problem. This heterogeneity in interaction
weights constitutes a strong analogy to the heterogeneity found in the
cortex neuron firing frequency distribution [BM14, LKR11], which
reveals two types of neurons at play: generalists (high activity) and
specialists (low activity). In contrast with the previous argument in
(b), this reveals a connection the immune system with cortical net-
works.
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These observations lead to an astonishing conclusion, namely that,
despite the underlying physical support of either system (the barin cor-
tex and the immune system), evolution has shaped their computational
strategies in strikingly similar ways. While, at the same time, the immune
system uses population proliferation processes to determine its functional
state, specially when activating its antigenic response. This reinforces the
hypothesis that not every kind of computational architecture is possible
or, at least, not easily reachable by evolutionary means.

We finish this discussion with a conjecture. Consider any system
made out of a large number of agents that interact pair-wisely and do
so under under three constraints:

Interactions: connections between two agents, (i, j), are estab-
lished and broken at some rate σ. This relates with the liquidity of
the system.

Weights: interaction forcing couplings, Jij , have some degree of
heterogeneity1, γ. This relates to the synaptic adaptability and
specificity of the system.

Activity: a characteristic activity decay timescale given, τ , which
determines the microscopic computational timescale of the agents2

Then, our conjecture can be heuristically formulated as follows:

For any brain-like system to be poised at an optimal regime
for cognition, then

c := σγτ = O(1). (5.1)

We term this conjecture the liquid brain hypothesis, and it states that a sys-
tem in a optimal computational regime will display a trade-off governed

1Here, we do not define this parameter in any explicit form, but only heuristically. A
proper definition of heterogeneity in cognitive networks is left for future work.

2Recall this τ was used in Sections 4.1.1 and 4.3 when we discussed about criticality
in cognitive networks.
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by a constant c, which is adimensional, of order one, and its value will
depend on each system considered and the methods used to determine
{σ, γ, τ}. We posit that, for a consistent definition of these measures,
most (if not all) evolved cognitive networks will operate at the manifold
defined by (5.1).

To make matters clear, consider a few heuristic examples:

Suppose a system, like the cortex, for which we have some de-
gree of heterogeneity in the neural weights, γ. However, the rate
of establishing new interactions, σ is much slower than the neural
activity decay rate, τ−1. Thus, we expect combination of the three
terms gives rise to some constant c of order 1.

Similarly, ants of the same colony may display homogeneous inter-
action couplings, i.e. a simple ant-to-ant pheromone signal, which
means that γ ≪ 1. To attain a sufficient level of computational ca-
pacity, ant colonies show a fast interaction rate when compared to
its activity decay rate, i.e. στ ≫ 1, which compensates the RHS of
(5.1). As is the case explores in Section 4.3, here σ will too depend
on the colony density, ρ.

To proof our liquid brain hypothesis requires a more rigorous frame-
work. Such a mathematical theory will necessarily combine the aspects
discussed in Chapter 4 regarding self-organization towards criticality, spin
glass statistics and reaction-diffusion patterns in different spatial layouts.
Other lessons from Chapter 3 regarding cooperation and population dis-
tributions may also play an important role. This constitutes a program of
research that will doubtlessly be part future research efforts.
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Chapter 6

CONCLUSIONS

The goal of this PhD project was to advance towards a unifying frame-
work for understanding the complexity shifts pertaining to the major evo-
lutionary transitions. This framework is based on three pillars: nonequi-
librium thermodynamics, stochastic processes and ecological assembly
and the theory of information and computation.

In Chapter 1, we set out to tackle three concrete objectives proposed
as key questions (Section 1.4), the first of which relates to the bounds on
early living systems imposed by thermodynamic laws. Here, we found
that:

Macroscopic replicator kinetics (hyperbolic, parabolic or simple)
and the internal minimal entropy production values are intrinsically
related via the extended 2nd law and the process of coarse-graining.

Entropic bounds on each replicator type reveal a thermodynamic
metric with which one can argue about the feasibility of replica-
tors over the course of evolution through irreversibility arguments,
rather than kinetic ones.

Energy harvesting can be constrained by the information or entropy
reducing costs of controlling internal cycles in a system to correlate
with the external nonequilibrium source of power, the environment.

125



Information can be used as a catalyzer in an energy harvesting sys-
tem, rather than fuel. The latter use is limited to produce energetic
yields of around ∼ kBT ln 2, while the former is unbounded and
depends on the system at hand.

Early biochemical cyles were likely constrained by their information-
associated costs. This results in a non-adaptive force towards smaller
cycles as the primordial metabolic networks at the Origins of Life.

The second key question concerns with stochastic-induced constraints
on the assembly of cooperative ecosystems, and the potential role played
by these as precursor stages for selection to operate on top. Here, we
found that it is possible to build a neutral theory of cooperator ecosystems,
which display the following properties:

System states decay in exponential time with an argument that scales
as the system size, N .

The long relaxation times, which correspond to long extinction pro-
cesses, are nonlinear with S and belong to a certain class of glassy
systems.

Understanding diversity and assembly requires in cooperative ecosys-
tems requires a strong handle on its extinction dynamics.

Simulations show that a two-level system emerges ‘for free’ out of
the stochastic noise, namely core cooperators (with high degree of
stability and perseverance) and outliners (low species lifetime and
large turnover rates). We argue that such phenomenon constitutes a
strong precursor for cooperative systems to turn into a larger scale
unit, a major universal feature of METs.

The third key question pertains to the evolvability and feasibility of
possible cognitive architectures and their constrains both physical and
computation. We based our discussion on the conceptualization brought
by in the special issue on ‘Liquid brians, solid brains’ [SMF19], that took
place at the Santa Fe Institute in 2018. In our analysis, we found that:
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Criticality and self-organization around criticality appear as a uni-
versal feature across known cognitive architectures, which leads us
to extend the critical brain hypothesis into the larger space of cog-
nitive networks which includes liquid brains.

Stark physical differences exist between the memory allocation mech-
anisms present in solid vs. liquid neural nets. In particular, solid
brains display a high degree of heterogeneity and memory is en-
coded in the individual neurons; while liquid brains like an ant
colony use a distributed memory system based on population lev-
els, which implies a high degeneracy of states with respect to the
individual neurons (ants).

It is possible to arrive at a conjecture about a trade-off that any type
of cognitive system undergoes in optimizing its computational or
functional targets, i.e. that there is a balance between interaction-
formation rates, heterogeneity of weights and natural activity decay
time of a neuron. We posit that a rigorous definition of this bal-
ancing is possible and captures a universal pattern in all cognitive
neural systems reachable by evolutionary processes.
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Abstract: Life evolved on our planet by means of a combination of Darwinian selection and
innovations leading to higher levels of complexity. The emergence and selection of replicating
entities is a central problem in prebiotic evolution. Theoretical models have shown how populations
of different types of replicating entities exclude or coexist with other classes of replicators. Models are
typically kinetic, based on standard replicator equations. On the other hand, the presence of
thermodynamical constraints for these systems remain an open question. This is largely due to
the lack of a general theory of statistical methods for systems far from equilibrium. Nonetheless, a first
approach to this problem has been put forward in a series of novel developements falling under
the rubric of the extended second law of thermodynamics. The work presented here is twofold:
firstly, we review this theoretical framework and provide a brief description of the three fundamental
replicator types in prebiotic evolution: parabolic, malthusian and hyperbolic. Secondly, we employ
these previously mentioned techinques to explore how replicators are constrained by thermodynamics.
Finally, we comment and discuss where further research should be focused on.

Keywords: evolution; replicators; life; entropy; thermodynamics

1. Introduction

Biology follows the laws of physics, and yet it remains distinctive from many standard physical
systems in a number of ways. In the first place, life’s self-replicating mechanisms stand as a major
difficulty when approaching it from a simple physical setup. On the other hand, life too differs from
physics in its computational nature: all living forms conduct some sort of computation as a crucial
component of their adaptive potential [1]. The success of life over chemistry is largely associated to the
emergence of prebiotic molecular mechanisms that, in turn, allowed for a template-based landscape
to become dominant over the whole biosphere. How this took place is one of the most fundamental
questions in science [2–4].

Life forms are out-of-equilibrium structures capable to employ available matter, energy and
information to propagate some type of identity. Most theoretical approaches to the evolution of
replicators have been grounded on a kinetic description. Under such framework, interactions between
(typically molecular) agents are represented by nonlinear differential equations, known as replicator
equations [5]. They provide a deterministic view of Darwinian dynamics. However, as pointed out
by Smith and Morowitz, “the abstraction of the replicator, which reduces Darwinian dynamics to
its essentials, also de-emphasizes the chemical nature of life” [6]. The same can be concluded in
relation with the lack of a thermodynamical context. Despite early efforts towards the development of
a physics of evolutionary dynamics [6–9] a more satisfactory formalism has yet to emerge. In particular,

Entropy 2018, 20, 98; doi:10.3390/e20020098 www.mdpi.com/journal/entropy



Entropy 2018, 20, 98 2 of 15

life propagation processes require an entropy production and balance equations can be defined [9–11].
However, a more general non-equilibrium statistical physics approach suitable for the problem of
self-replication has been missing until recently [12–19]. How can this novel approach apply to
the fundamental problem of replicator dynamics in the eary stages of Life on Earth? Beyond the
self-replicating potential of cells and molecules, several replication strategies are at work in living
systems, also involving multiple scales [20–22]. The basic growth dynamics followed by each class
has remarkably different consequences for selection. The simplest class is the Mathusian (exponential)
growth dynamics exhibited by cellular systems growing under unlimited resources. Two other types
of replicators are observed in Nature. One is associated to the emergence of cooperation dynamics,
with different classes of replicators helping each other and forming a mutualistic assembly [23].
The second is related to a template-based replication mechanism that we can identify in living systems
as the standard mechanism of nucleic acid replication. This mechanism has been shown to lead to the
“survival of everyone”: it provides a mechanism capable of sustaining very diverse populations of
replicators [24–26].

From the physics perspective, these systems involve large number of internal degrees of freedom
interacting in an out-of-equilibrium context. In turn, this interplay in the microscopic level leads to
a macroscopic emergent (coarse-grained) dynamics. A thermodynamical connection between these
two levels can be made following the statistical physics methods cited above. The work presented
here is an attempt to delineate these fundamental thermodynamical constraints for the three elemental
types of prebiotic replicators.

2. Entropic Bounds for Replicators

Let us begin by reviewing the theoretical framework upon which the analysis of the problem will
unfold [15,17–19]. Here, we outline a simplified version of theoretical basis behind this non-equilibrium
approach. We also comment on the generalizations of the so-called extended second law [19].
Then, we summarize the elemental classes of replicators and their essential aspects [21], together
with a series of implications regarding selection and adaptation. Finally, we lay out an approach to the
question of how non-equilibrium thermodynamical bounds arise in these types of systems and how
such constraints might have affected early evolutionary scenarios.

2.1. The Extended Second Law

Consider a classical time-evolving system described by its microscopical trajectory in the phase
space x(t) ∈ Ω plus a set of controlled parameters λ(t) evolving in a time interval t ∈ [0, τ] that act like
external drivers for any given trajectory. Assume that the system remains in contact with a heat bath
at temperature T = 1/β throughout the entire trajectory. Denote the transition probability from
a miscroscopical state x to y in the time interval ε by πε[x → y]. Now, if we slice time as ti+1 − ti = ε,
with tn = τ = nε and t0 = 0, then, for sufficiently small ε, the microscopical reversibility condition
implies [13,14]:

πε[x∗(τ − t)]
πε[x(t + tn−1)]

· · · πε[x∗(t1 − t)]
πε[x(t)]

= exp

{
−β

n−1

∑
i=0

Qb
i→i+1

}
, (1)

where the superscript ∗ denotes momentum-reversed microstates, and Qb
i→i+1 denotes the heat

exchange in going from from states x(ti) to x(ti+1) as measured from the heat bath. Heuristically, (1) is
interpreted as the composed detailed balance condition on each time-slice of the trajectory
x(t) (see Figure 1a). This can be represented by the functional relation:

πτ [x∗(τ − t)]
πτ [x(t)]

= exp {−βQb[x(t)]} . (2)
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Figure 1. Scheme of the formal approach to expressions (1)–(4). (a) A time-discretization is implemented
in order to characterize the microscopical reversibility condition; (b) A qualitative scheme of possible
trajectories between macrostates on the global phase space. The macroscopic coarse-grained states,
A (dark shaded region) and B (light shaded region) are defined as disjoint (A∩ B = ∅) sections on
the phase state Ω. The set of forward paths of duration τ constrained to start in A and finish in B is
denoted by xτ .

Next, let us introduce two macrostates which can be interpreted as two disjoint sections of the
phase space,A,B ⊂ Ω (see Figure 1b). Let us introduce notation for macrostate bounded trajectories in
Ω by defining the set of forward trajectories xτ = {x(t), t ∈ [0, τ] | x(0) ∈ A ∧ x(τ) ∈ B}, i.e., the set
of possible trajectories subject to condition that the initial microstate is in A and the final must be in B.
Then, construct the formal coarse-grained transition rate from A to B as

Πτ(A → B) =
∫

xτ

D[x(t)]πτ [x(t)] , (3)

while, equivalently, denote x∗τ = {x∗(τ − t), t ∈ [0, τ] | x∗(τ) ∈ B ∧ x∗(0) ∈ A} as the set of reversed
macrostate bounded trajectories, driven by the reverse protocol λ̄(τ − t) (details on the derivation can
be found in [19]), and compute the inverse coarse-grained transition rate from B to A as

Πτ(B → A) =
∫

x∗τ
D[x∗(τ − t)]πτ [x∗(τ − t)] . (4)

Here onwards, let use bracket notation
〈
·
〉

to denote averages over forward paths xτ . Under this
theoretical framework, it can be shown [17,19] that the following relation must hold:

〈
exp

{
−∆H[x(t)]− βQb[x(t)] + log

[
Πτ(A → B)
Πτ(B → A)

]}〉
= 1 , (5)

where we have defined the path-dependant observable:

∆H[x(t)] = − log
[

pτ (x(τ))
p0 (x(0))

]
, (6)

with pτ (x(τ)) and p0 (x(0)) standing for the probability of landing at a certain x(τ) ∈ B at time
t = τ and departing from x(0) ∈ A at time t = 0. Notice that (6) is a functional that depends on the
boundary conditions of the trajectory x(t). Let us define,

βW [x(t)] ≡ ∆H[x(t)] + βQb[x(t)] , (7)
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as a functional observable over the sample of forward paths xτ . On the one hand, a first order expansion
on (5) imposes the following boundaries to the fraction of the coarse-grained transition rates:

log
[

Πτ(A → B)
Πτ(B → A)

]
≤ β 〈W [x(t)]〉 = 〈∆H[x(t)]〉+ β 〈Qb[x(t)]〉 . (8)

This results implicitely allude to the Landauer bounds on heat production for bit erasure [27–29].
Inequality (8) constraints the irreversibility of the macroscopic process A → B with respect to
the average generalized entropy produced internally, ∆H, and externally (into the bath), βQb,
and it is dubbed the Extended/Bayesian Second Law (ESL) [17,19]. One interpretation is that
macroscopic irreversibility increases the minimum dissipated energy during the process A → B.
Interestingly, expression (8) formalizes a bound on entropy production in relation to the coarse-grained
properties of the process, such as the macroscipic transition rates. This result is of particular interest
since, under many experimental circumstances, these are the only measurable quantities for a given
system. We will come back to this point in the following sections.

On the other hand, a general perturbative analysis using the cumulant expansion [30] onto (5)
leads to

log
[

Πτ(A → B)
Πτ(B → A)

]
= ∑

l≥1
(−β)l−1 ωl

l!
, (9)

where ωl stands for the l−th cumulant of the distribution of βW [x(t)]. In fact, (9) allows for a more
sophisticated view of

log
[

Πτ(A → B)
Πτ(B → A)

]
= β 〈W〉 −Φτ(β) , (10)

where, formally

Φτ(β) =
β2

2
〈W〉2c −

β3

6
〈W〉3c + · · · (11)

with the subscript c indicating cumulant expressions. Combining Equations (5) and (9), it can be shown
that Φτ ≥ 0. Indeed, Φτ is a measure the fluctuations of the distribution associated to observable
W [x(t)]. Thus, Equation (10) represents an extended fluctuation-dissipation theorem, where the LHS
reflects the macroscopic (coarse-grained) irreversibility property and the RHS a balance between
dissipated work and fluctuations over the xτ sample.

This result is of particular interest when a system is arranged such that a choice between two
macroscopical end-states is forced. In such cases, fluctuation discrepancies might break symmetry thus
favoring certain macroscopical transitions or supressing others [18].

Moreover, these theoretical results can be generalized to less constrained versions of the ESL
where no equlibrium trajectory end-points are required plus the system needs not to be at a fixed
temperature, eventhough there is still contact with a heat bath (cf. [19]). Under this generalized lens,
relations (5), (8)–(10) are formally equivalent, only now the space of possibilities over which averages
are taken is constrained by the implemented coarse-grain. On the other hand, this implies that the
operators in (7) are too redefined owing to the coarse-graining imposed in the system.

In the following sections we will revisit the paradigm of prebiotic replicators, and focus on how
to minimally embed this problem into the formalism discussed above. Subsequently, we will argue
how these entropic constraints may have coupled to prebiotic selection and added preassure to in
an evolutionary context.

2.2. Replicators & Reproducers

Several fundamental replication strategies are at play in living systems. These strategies are
present in multiple scales, from molecular replicators to cells and beyond. Each class of replicating
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agent is characterized by a kinetic pattern, which dynamics entail distinct selective implications.
Here, we will focus on three characteristic replicator classes [20,21].

Simple replicators: commonly known as Malthusian agents, correspond to systems whereby
a single component A is capable of making a copy of itself by using the available resources, namely E,
generating a certain waste product, W. Schematically,

A + E
g−→ A + A + (W) . (12)

Assuming a large repository of resources, the kinetics of this process can be reduced to a linear
dynamical equation (see Table 1). Systems following this mechanism obey exponential growth laws.

Hyperbolic replicators: one of the most relevant novelties in evolution [31,32] is the concept of
autocatalysis. This mechanism is a precursor of self-replicating entities that largely define the nature
of living structures. It has been put forward by several authors [33–36] as a central process in the
chemistry of prebiotic systems involving the emergence of cooperative agents (see Figure 2a).

A + A + E h−→ A + A + A + (W) . (13)

Again, under well-mixed and unlimited resource conditions, the hyperbolic replicator kinetics is
reduced to a second order equation (see Table 1). Autocatalytic growth is characterized by displaying
a finite-time singularity at tc = 1/hx0 [21].

a b

Figure 2. Hyperbolic and parabolic replicators. In (a) we display a simplified scheme of an experimental
implementation of a catalytic set of ribozymes forming a cooperative loop. Here each component of
the system helps the next to replicate. Dashed lines indicate weaker catalytic links (modified from [37]).
The parabolic system outlined in (b) is based on complementary (template) peptide chains involving
a ligation mechanism (adapted from [38]).

Parabolic replicators: this type of replicator arises from a combination of molecular reactions.
In particular, oligonucleotides are known to exhibit such behaviour [26,39–41]. The minimal scheme
where this particular dynamics is observed consists of the set of processes (see Figure 2b).

A + E c−→ AA + (W)
a
�
b

A + A + (W ′) , (14)

which, under conditions a� b� c is reduced to a parabolic law ẋ = ρ
√

x, where x denotes the total
concentration of the molecular component A regardless of the configuration, it being either associated
(AA) or dissociated (A) (see Appendix A). Parameter ρ = c

√
2b/a.
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Table 1. Summary of the minimal expressions for the kinetics of the three replicator classes discussed
above. We have denoted as x the gross concentration of replicating molecules A, independently
of the configuration.

Replicator Class Reaction Scheme Effective Dynamics

Simple A + E→ A + A ẋ = gx
Hyperbolic A + A + E→ A + A + A ẋ = hx2

Parabolic A + E→ AA↔ A + A ẋ = ρx1/2

2.3. Coarse-Grained Dynamics of Replicators

The dynamics of the three types of replicators discussed above are taking place on the macroscopic
level. Molecular replicators encapsulate a whole system rich in complexity and structure, thus the
measurable transition rates, such as g, h or ρ above, are emergent features of the interplay of the many
internal degrees of freedom of the system. However, the statistical properties of these phenomena are
non-ergodic, since replicating is constrained by an initial and a final coarse-grained states. As discussed
in Section 2.1, averages reflecting the macroscopic transition rates are taken over a section of the space
of possibilities, specifically over the subset of possible microscopical trajectories with an initial number
of replicators n− 1 and a final number n (given a time scale τ), as detailed below.

To begin with, suppose that a system is composed of a fixed number of molecular templates or
chains, N, which can either be internally ordered such that they behave as a replicators (A), namely
active chains, or simply act as substrate (E), namely inactive chains. The goal here is to define
an unambiguous coarse-graining measure capable of distinguishing two meaningful macroscopic
states of the system. To do so, we will consider three such systems which replicators’ act accordingly
with the three replicator classes summarized in Table 1. We will also suppose that all replicators
undergo equivalent decay processes. This assumption is taken so that we are able to probe the
thermodynamical bounds purely for the processes involving replication. For simplicity, we use open
systems (source flowing in) but finite (fixed total number of particles).

Following a markovian approach [42,43], each set of reaction rules allows defining transition
probabilities and a master equation that in general will read:

dP(n, t)
dt

= ∑
m 6=n

ω (n|m) P(m, t)− ∑
m 6=n

ω (m|n) P(n, t) , (15)

which gives the probability P(n, t) of observing n active chains at time t. Here the ω(i|j) terms
introduce the transition probabilities associated to each rule, duely determined by the corresponding
Malthusian, hyperbolic and parabolic cases. The three urn-like systems analysied here are chemostat
models since, when an element (replicator) decays, it is replaced by newly available source particles E
(see Appendix B for details). In summary,

dP(n, t)
dt

= g
( n

N

) (
1− n

N

)
[P(n− 1, t)− P(n, t)]− δ

( n
N

)
[P(n, t)− P(n + 1, t)] , (16)

dP(n, t)
dt

= h
( n

N

)2 (
1− n

N

)
[P(n− 1, t)− P(n, t)]− δ

( n
N

)
[P(n, t)− P(n + 1, t)] , (17)

dP(n, t)
dt

=
bc
2a

(√
1 + 4an

bN − 1
) (

1− n
N
)
[P(n− 1, t)− P(n, t)]

−δ
( n

N
)
[P(n, t)− P(n + 1, t)] .

(18)

Notice that (16)–(18) are non-equilibrium macroscopic representations of the replicating dynamics.
Here, the internal interactions that produce the effective behaviour described by the previous set of equations
are all integrated out into its corresponding coupling constants. Thus, within this macroscopical
framework we shall define the phase space subsets:
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• A—state in which the system contains a total number of n− 1 active chains.
• B—state in which the system contains a total amount of n active chains.

Let us focus on the explicit bounds given by the LHS in expression (5). We first introduce notation
for these lower entropic bounds,

LEBr(x) := log
[

Πτ(A → B)
Πτ(B → A)

]
, (19)

where the subscript r ∈ {s, h, p} indicates the replicator type (simple, hyperbolic and parabolic
respectively), while x := n/N in each case. Therefore, considering that the transition rates Πτ(A → B)
and Πτ(B → A) for the defined coarse-grained states A and B correspond to the prefactors in each
master equation above,

LEBs(x) = log
[ g

δ
(1− x)

]
, LEBh(x) = log

[
h
δ

x(1− x)
]

, (20)

LEBp(x) = log

[
c
δ

α

x

(√
1 +

2x
α
− 1

)
(1− x)

]
, (21)

where we have defined α := b/2a. Finally, introduce notation ∆LEB(r|r′) := LEBr(x)− LEBr′(x) in
order to compare each replicator type. Hence, for h and p against s we derive

∆LEB(h|s) = log
(

h
g

x
)

, (22)

∆LEB(p|s) = log

[
c
g

α

x

(√
1 +

2x
α
− 1

)]
, (23)

while, ∆LEB(h|p) = ∆LEB(h|s)− ∆LEB(p|s). Notice that, since all replicators decay mechanism has
been chosen to be equivalent (see Appendix B), then relative bounds ∆LEB(r|r′) are δ−independent.
Figure 3a–f show various curves (22) and (23) against the density value x.

Focusing on the limiting cases where the lower bounds between distinct replicators coincide,
∆LEB(r|r′) = 0, it is possible to derive the density values for which the LEB for replicator r exceeds
that of replicator r′ and viceversa. This is an interesting exercise since minimal entropy production can
provide a guideline for thermodynamically advantageous processes. Bare in mind that exploring LEBs
does not include the full picture, as fluctuations can shift the average dissipared energy and unbalance
irreversibility as discussed above (cf. [18]).

Thus, let us define the LEB crossover density xrr′ from r-LEB dominance to r′-LEB dominance,
or, simply, ∆LEB(r|r′)

∣∣
xrr′

= 0. Working with reduced variables h̄ := h/g and c̄ := c/g we derive

xrr′ = xrr′(h̄, c̄) following (22) and (23):

xsh = h̄−1 , xps = 2αc̄ (c̄− 1) , x3
ph +

2αc̄
h̄

(
xph −

c̄
h̄

)
= 0 , (24)

where the equation for xph, the density value where LEB dominance shifts from parabolic hyperbolic
is given in an implicit form (Algebraic analysis shows that the equation for xph contains a single real
root.). On the other hand, 0 < xrr′ < 1 must be held, as it stands for a density variable.
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Figure 3. The central diagram corresponds to the space spanning the reduced variables (h̄, c̄).
We distinguish six phases depending on the dominance of the LEB of each replicator type, {S, H, P}.
(a) S-dominant (the simple replicator LEB exceeds that of both parabolic and hyperbolic); (b) P/S
i.e., at low densities, it is S-dominant, while, for x > xps we observe S dominance; (c) P-dominant
at all density values; (d) P/H P at low densities and H-dominant for x > xph; (e) P/S/H where
the three replicators share dominance at some point, jumping orderedly at density values xps < xsh;
(f) here simple replicators have a higher LEB at low densities than parabolic ones, but hyperbolic
ones take over at high densities, x > xsh. Numerical values of (h̄, c̄) for each plot are: (a) (0.8, 0.8);
(b) (1.42, 0.8); (c) (1.82, 0.8); (d) (1.5, 2); (e) (1.125, 1.5); (f) (0.75, 1.5), while α = 0.5 for all graphs.

These considerations allow for a construction of a diagram (h̄, c̄) where space is divided into
sections characterised by the replicator-types that display a dominant LEB. For instance, for h̄, c̄ < 1
the simple replicator’s lower entropic production bound is always larger than the other two types,
we denote this sector of the phase space by S (red shaded region in Figure 3). Most regions,
however, will display dominance of entropy production by one type of replicators for a range of
densities, and shift dominance over another type for another range of x values (see Figure 3b,d–f).

The lines separating sections of LEB dominance are given by the following set of inequalities,
all derived from the results above:

P ⇔
{

c̄ > 1 & 0 < h̄
}

, (25)

S ⇔
{

c̄ < µα & h̄ < 1
}
∪
{

c̄ < ηα(h̄) & h̄ > 1
}

, (26)

H ⇔
{

c̄ < µα h̄ & h̄ > 1
}

, (27)

with the associated functions

µα :=
1
2

(
1 +

√
1 +

2
α

)
, ηα(h̄) :=

1
2

(
1 +

√
1 +

2
αh̄

)
. (28)

Notice that, in several patches of the space of parameters depicted in Figure 3, LEB dominance is
dependent on specific density values. Also, ∆LEB(r|r′) functions behave such that LEB dominance



Entropy 2018, 20, 98 9 of 15

always appears ordered as P, S and H, respectively. This ordered sequence can be understood as
an indication of an underlying thermodynamical constraint for these pre-biotic replicating systems.
Finally, notice that this analysis has been performed with fixed value of α. Nonetheless, shifting the
values of this internal parameter does not substantially modify the structure of the phase space given
in Figure 3, in fact, its topological arrangement will remain invariant.

Hence, from macroscopical considerations involving both coarse-grained values for the coupling
constants {g, h, c} and internal parameter α, we are able to derive a phase space compartmentalisation
that allows a classification based on the lower (generalized) entropy production bounds for each
replicator type. A qualitative tendency emerges from this picture: the parabolic replicator generates
more entropy at low densities while so does the hyperbolic at high x values, leaving the simple
replicator in between.

3. Discussion

A significant gap in our understanding of evolution, particularly in relation with early events
and simple living systems, stems from the lack of a physical theory incorporating a thermodynamic
description of replication dynamics. Self-replication stands as the one characteristic feature of living
matter and its singular character was early appreciated by theoreticians when comparing cells and
machines [44,45]. This work was an important step towards an understanding of the logic and
computational nature of self-replicating agents. But a physical equivalent addressing the fundamental
physics bounds to replication has been missing.

Recent work has addressed this problem revealing a powerful connection between entropy
production and the transition probabilities underlying a stochastic, microscopic description [17,46].
Such connection can be efficiently exploited to analyse, under the coarse-graining described above,
the general tendency of a Darwinian replicator to replicate itself. In this way, it is possible in
particular to compare the efficiency of different classes of replicators by looking at their relative
lower entropy bounds.

Instead of a direct comparison of the systems’ measurable replication rates, this framework
focuses on how, via a coarse-graining procedure, these parameters are resulting from the interplay
of the many internal degrees of freedom. This technique ultimately leads to the estimation of the
lower entropic bounds for each replicator. We interpret these non-equilibrium thermodynamic bounds
as a consistent way of comparing and evaluating the likelihood of observing different classes of
replicators. This is summarised in the phase diagram shown in Figure 3 where the relative dominance
of each class is indicated. Notice that the analysis above does not involve competition between the
replicator classes. All computations for the entropic bounds are done by considering the replicators to
be evolving separately (see Appendix B for details).

Congruent approaches have been recently put forward following an equivalent theoretical
formalism studying the non-equilibrium costs of production and destruction of polymers [47].
On the other hand, the present approach ought to be regarded as a minimal theoretical setup,
and a number of issues can be raised. For instance, the fact that prebiotic systems might have exploited
physical environments where sharp gradients are present, as it occurs with water-air interfaces [48].
Further developments in non-equilibrium statistical physics are needed in order to tackle these types
of heterogeneities.

Even at this level of description, we can see how the coarse-graining predicts what to expect
for the constraints operating on the classes of replicators in early evolutionary stages. The diagrams
reveal the threshold conditions that would allow particular types of replicators to thrive or coexist
in a competing scenario. In some domains only Malthusian dynamics are thermodynamically
dominant, while, in others, parabolic replicators seem to be more efficient at generating entropy.
Also, in some regions, a combination of parabolic and hyperbolic (cooperator) agents would share
dominance. Overall, there is a robust characterisation of dominance related to the density of the
system, revealing a preferential order as we move from low to high densities.
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Future work should be aimed at the construction of theoretical microscopic models such
that coarse-graining operations can be unambiguously defined and subsequent operations may be
computed in order to obtain the emergent transition rates. This would yield a deeper understanding
of both the coarse-graining process and how some biological systems seem to be able to operate at the
edge of what is possible. Such an approach can lead to novel insights into the problem of how major
evolutionary transitions (which are often tied to the emergence of novel classes of replicators) occur.
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Appendix A

The argument for the effective kinetic law for the parabolic replicator goes as following:
let y = [AA] (concentration of associated molecules), and z = [A] (concentration of dissociated
molecules). Thus, define x = 2y + z as the gross stoichiometric concentration of molecules of type A,
regardless of configuration. Assuming that the time-scale of the replication reaction (here moduled by
ratio c) is much larger than the association/dissociation processes, then, by focusing on the dynamics
of replication, we can assume balanced equilibrium

by = az2 ⇔ z =

√
b
a

y1/2 . (A1)

Then, analysing the dynamics of the replication reaction, which is modulated by the parameter c,

dy
dt

= cz = c

√
b
a

y1/2 , (A2)

while the kinetics for the gross concentration x is obtained by using (A1) as

dx
dt

= 2
dy
dt

+
dz
dt

=
cb
2a

+ 2c

√
b
a

y1/2, (A3)

but, as a� b, then the equilibrium of the association/dissociation reaction is very much unbalanced
in favour of the associated molecular configuration AA, which implies that x ≈ 2y. Thus, we conclude
that the kinetics for x is given by

dx
dt

=
cb
2a

+ c

√
2b
a

x1/2. (A4)
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Truncating at leading terms in (b/a), we derive

dx
dt
≈ ρx1/2, (A5)

with ρ = c
√

2b
a .

Appendix B

Consider a well-mixed urn filled with N elements that can be characterised as dead or alive.
Notice that such a characterisation embodies some kind of coarse-grained measure, since we are
deliberately ignoring (integrating) all internal degrees of freedom for each element. Denote by n < N
the number of active (alive) elements in the urn at a given time t. In the following sections we will
derive the coarse-grained (mesoscopic) time-dependent dynamics. Hence, for each replicator type,
let us construct a master equation of the form

dP(n, t)
dt

= ∑
m 6=n

ω (n|m) P(m, t)− ∑
m 6=n

ω (m|n) P(n, t) , (A6)

while restricting the dynamics to a first-step process and introducing a natural (single-particle) decay
process modulated by parameter δ that will be equivalent to all replicating motifs. It is important to
remark that these systems are implicitly open. This is because every time an active element turns into
an inactive one what really is happening it is flowing out of the system and letting new source (E) flow
in. In this sense, the proposed models are analogous to chemostats.

Appendix B.1

Beginning with the simple replicator, introduce the following rules (see Figure A1):

1. Pick an element of the urn at random.
2. If active, with probability g, pick a second element at random and (if not active) activate.
3. Pick an element at random again.
4. If active, with probability δ, deactivate.

ba c

Figure A1. A summary of the rules of replication in an urn model. Active chains are drawn as filled
balls and inactive chains are white balls. (a) represents the action of selecting an active chain replicating
following the simple replicator mechanism; (b) shows the replicating process of a hypercyclic replicator;
(c) corresponds to the decay which, for the purpose of this work, is supposed to act equivalently in
each replicator-type.

For the simple replicator, using the notation on Table 1, plus adding a single-particle decay process,

ω(n|n− 1) =
(

n− 1
N

)(
N − n + 2

N

)
g ; ω(n|n + 1) =

(
n+1

N

)
δ (A7)
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Then, for sufficiently large N, it is possible to approach the dynamics by

dP(n, t)
dt

= g
( n

N

) (
1− n

N

)
[P(n− 1, t)− P(n, t)]− δ

( n
N

)
[P(n, t)− P(n + 1, t)] , (A8)

Appendix B.2

Consider now the dynamics of hyperbolic replicators. Following the rules summarized in Table 1,
introduce the algorithm (see Figure A1):

1. Pick an element of the urn at random.
2. If active, pick a second element at random.
3. If active, with probability h, pick a third element at random and (if not active) activate.
4. Pick an element at random again.
5. If active, with probability δ, deactivate.

Hence, restricting the dynamics to a first-step process, we may deduce the following transition
probabilities (cf. [49,50])

ω(n|n− 1) =
(

n− 1
N

)(
n− 2

N

)(
N − n + 3

N

)
h ; ω(n|n + 1) =

(
n+1

N

)
δ (A9)

which, for N � 1, lead to the master equation

dP(n, t)
dt

= h
( n

N

)2 (
1− n

N

)
[P(n− 1, t)− P(n, t)]− δ

( n
N

)
[P(n, t)− P(n + 1, t)] , (A10)

Appendix B.3

Finally, let us derive the macroscopical dynamics for a parabolic replicator by implementing the
following set of rules on an urn of N elements (see Figure A2):

1. Pick an element of the urn at random. If active, then: (i) if in associated state (AA) then,
with probability a, dissociate and iterate; (ii) if dissociated, pick a second element and,
if active, with probability b, associate. Iterate this process until equilibrium is reached for
association/dissociation reaction.

2. Pick an element of the urn at random. If active, pick a second element at random, if empty,
with probability c, replicate.

3. Pick an element of the urn at random. If active, with probability δ, deactivate.

a b c

Figure A2. This diagram shows how the urn model of parabolic replicators is implemented.
(a,b) correspond to the rapid association/dissociation reactions, which are supposed to equilibrate in
much shorter time-scales than the replicating process, which is shown in (c), i.e., τ0 � τ1. The process
of equilibration (left box) is iterated a large number of times before the loop goes into the replication
process (right box).
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The situation for the parabolic replicator is a peculiar one, for one thing, it involves
two characteristic time-scales, a rapid one, concerning the association/dissociation process
(see Appendix A), and the replication process. In order to approximate the transition rates let us
define k as the number of associated pairs, AA, and m as the number of dissociated active elements
in the urn, A. Let N be the total number of elements in the urn, including associated, dissociated
and deactivated elements. Let us denote by n the total number of active elements, regardless of
configuration, then, n = 2k + m. Now, assuming rapid equilibration of the association/dissociation
reaction in (14),

(
2k
N

)
b =

(m
N

)2
a⇔ m2 =

2b
a

kN , (A11)

which can be related to the number n by

m2 =
b
a
(n−m)N ⇔ m(n) =

bN
2a

(√
1 +

4an
bN
− 1

)
, (A12)

where we neglect the negative root, as it is non-physical. Hence, it is now possible to construct a master
equation for the first-step process of replication as in (14), with

ω(n|n− 1) =
(

m + 1
N

)(
N − n + 1

N

)
c ; ω(n|n + 1) =

(
n+1

N

)
δ (A13)

which, for N � 1, and using (A12) lead to

dP(n, t)
dt

=
bc
2a

(√
1 +

4an
bN
− 1

)(
1− n

N

)
[P(n− 1, t)− P(n, t)]

− δ
( n

N

)
[P(n, t)− P(n + 1, t)] , (A14)
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Universal bounds and thermodynamic tradeoffs in nonequilibrium energy harvesting
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Many molecular systems operate by harvesting and storing energy from their environments. However, the
maintenance of a nonequilibrium state necessary to support energy harvesting itself carries thermodynamic
costs. We consider the optimal tradeoff between costs and benefits of energy harvesting in a nonequilibrium
steady state, for a system that may be in contact with a fluctuating environment. We find a universal bound on this
tradeoff, which leads to closed-form expressions for optimal power output and optimal steady-state distributions
for three physically meaningful regimes. Our results are illustrated using a model of a unicyclic network, which
is inspired by the logic of biomolecular cycles.

Introduction.— Various kinds of molecular systems, rang-
ing from biological organisms to artificial devices, operate
by continuously harvesting and storing energy from their en-
vironment [1–3]. In order to sustain energy harvesting, how-
ever, such systemsmaintain an organized nonequilibrium state,
which itself requires costly self-maintenance processes such as
error correction and self-assembly. In addition, such systems
may be regulated by information flows about changing inter-
nal and environmental conditions, which also have unavoid-
able thermodynamic costs [4, 5]. Thus, there is a fundamental
tradeoff between the benefits of energy harvesting versus the
costs of maintaining and regulating the required nonequilib-
rium state.

In this Letter, we study this tradeoff in a general setting. We
consider a system in a nonequilibrium steady state which pro-
duces power by harvesting energy from its environment and
storing it in an internal work reservoir. We suppose that the
ability to harvest and store energy from the environment de-
pends on the system’s fluctuating state (Fig. 1a). For example,
in a bacterium, the ability to transport sugar from the environ-
ment depends on the fluctuating availability of certain proteins
inside the cell. We also consider an extension of this setup,
where energy harvesting may depend on the state of a fluctu-
ating environment (Fig. 1b). This may represent, for example,
the fluctuations of the sugar concentration in the bacterium’s
environment.

In our setup, the system and environment undergo two types
of processes: baseline and control [6]. Baseline processes are
entropy-increasing (diffusion, degradation, etc.) and lead to
a loss of information about optimal states for energy harvest-
ing, while control processes carry out self-maintenance and
regulation (synthesis, sensing of environmental states, etc.)
required for maintaining the nonequilibrium state. We com-
pare the thermodynamic benefit of the control processes, in
terms of how much they increase power output, versus their
fundamental costs, as determined by the Second Law.

Ourmain result is an expression of themaximum power out-
put achievable by any set of control processes, given a fixed
baseline. This bound is stated in terms of an optimization
problem, which also determines the optimal steady-state dis-
tribution for maximizing power output. We find closed-form

expressions for optimal power output and optimal steady state
in three physically meaningful regimes: the weakly driven
linear response regime, the irreversible macroscopic regime,
and an intermediate far-from-equilibrium regime. Our analy-
sis illuminates the tradeoffs involved in energy harvesting in
various kinds of nonequilibrium systems.
Setup.— We consider a physical system with n states cou-

pled to a heat bath at inverse temperature β, an internal work
reservoir, and a nonequilibrium environment which acts as a
source of driving (work input). The probability distribution
over states is indicated as p, where pi is the probability of state
i ∈ {1, . . . , n}. Each state i may be a microstate or a coarse-
grained mesostate with an internal entropy si [7]. In case of
coarse-graining, we assume a separation of scales so that the
internal entropy does not depend on the mesostate distribution
p (in the absence of coarse-graining, si = 0). Given distribu-
tion p, we write the overall entropy as S(p) := S(p) + 〈p, s〉,
where S(p) := 〈p,− ln p〉 is the Shannon entropy and 〈p, s〉
is the internal contribution. (Here 〈x, y〉 :=

∑
i xiyi and ln p

indicates element-wise logarithm.)
The system undergoes two different types of processes:

baseline and control [6]. The probability distribution evolves
according to a master equation ∂tp = R̄p, where R̄ = R+R′

is the combination of the baselineR and controlR′ rate matri-
ces. We typically use unadorned symbols for baseline quanti-

X

Y

a b

X

Figure 1. (a)We consider a fluctuating systemX that can harvest and
store energy from its environment (red arrows) in a state-dependent
way. We study the tradeoff between the benefits of energy harvesting
versus the cost of maintaining the required nonequilibrium state. (b)
SystemX may be coupled to a fluctuating environment Y , such that
the rate of energy harvesting also depends on the fluctuating state of
the environment.

ar
X

iv
:s

ub
m

it/
47

79
39

8 
 [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  9
 M

ar
 2

02
3



2

ties, primes for control quantities, and overline for combined
quantities. The overall rate of change of system entropy is
∂tS(p) = ∂Rt S(p) + ∂R

′
t S(p), where

∂Rt S(p) := 〈Rp,− ln p+ s〉, ∂R
′

t S(p) := 〈R′p,− ln p+ s〉

are the baseline and control contributions.
We consider the thermodynamics of baseline and control

processes via three thermodynamic observables: heat flow
to the bath, power output to the internal work reservoir, and
power input from the environment. For baseline processes, we
write the expected heat flow, power output, and power input
under distribution p as 〈p, q〉, 〈p, w〉, and 〈p, d〉, respectively.
Here qi indicates the heat output/sec when the system is in
state i, and similarly for wi (work output/sec) and di (work
input/sec). These energy exchanges may be due to transitions
between states or due to internal fluxes within mesostates. For
instance, if the baseline dissipates Qji joules of heat for each
transition i → j and Q̇i joules/sec due to internal fluxes in
mesostate i, then qi = Q̇i +

∑
j(6=i)RjiQji. In a similar

way, for control processes, we write the expected heat, power
output, and power input as 〈p, q′〉, 〈p, w′〉, and 〈p, d′〉.

We assume that the baseline rate matrix R is irreducible,
which implies that it has a unique steady state, π. In this case,
the combined rate matrix R̄must also be irreducible with some
unique steady state π̄. We assume that the control processes
obey the Second Law,

∂R
′

t S(p) + β〈p, q′〉 ≥ 0 for all p. (1)

We also assume that the baseline and control processes obey
the First Law (conservation of energy), and in particular that
heat and work flows balance in both steady states π and π̄,

〈π,w+ q− d〉 = 0, 〈π̄, w+w′ + q+ q′ − d− d′〉 = 0. (2)

Cost and benefit of control.— We now study the thermody-
namic benefits and costs of the control processes. We define
the benefit as the increase of steady-state power output when
control is present versus not present,

∆Ẇ (π̄) := 〈π̄, w + w′〉 − 〈π,w〉. (3)

We define the cost of the control processes as the minimal
thermodynamic cost needed to maintain the nonequilibrium
steady state π̄, given the fixed baseline. This minimal cost is
given by the rate of entropy decrease due to control processes.
Combining with (1) and the fact that entropy is constant in
steady state, ∂R′t S(π̄) + ∂Rt S(π̄) = 0, gives

∂Rt S(π̄)/β ≤ 〈π̄, q′〉. (4)

In words, ∂Rt S(π̄) quantifies the amount of self-maintenance
(error correction, repair, etc.) that must be performed by con-
trol in order to counteract the dissipative baseline in steady
state, and this self-maintenance leads to a minimal thermo-
dynamic cost in terms of heat flow. We note that (4) was

previously shown to be the minimal cost of maintaining a
nonequilibrium steady state in Refs. [6, 8].
We emphasize that the particular way to divide the system’s

dynamics into baseline and controlwill depend on the scientific
question being investigated. In many cases, the baseline will
represent unavoidable dissipative processes while the control
will represent beneficial power-increasing processes, in which
case ∂Rt S(π̄) > 0 and ∆Ẇ (π̄) > 0, so there is a tradeoff
between the two. However, the division into baseline and
control may both be drawn in other ways, and in principle both
∆Ẇ and ∂Rt S may be either positive or negative.
Maximum power increase.— We now derive our first main

result, a bound on the power increase that reflects the optimal
tradeoff between cost and benefit of control. Our derivation
makes use of one physically motivated assumption: that the
control processes are only coupled to the heat bath and the
system’s internal work reservoir and do not directly exchange
work with the environment, d′ = 0.
Before proceeding, we first derive the bound

∆Ẇ (π̄) ≤ −∂Rt S(π̄)/β + 〈π̄ − π, d− q〉. (5)

To do so, we subtract one term from another in (2) and then
use d′ = 0 to give ∆Ẇ (π̄) + 〈π̄, q′〉 + 〈π̄ − π, q − d〉 = 0.
Plugging in (4) and rearranging leads to (5). This inequality
becomes tight when the control processes are thermodynami-
cally reversible, so that (4) is tight.

The RHS of (5) depends on the baseline, as well as the
steady-state distribution π̄ of the combined baseline and con-
trol rate matrix R̄. We remove the dependence on the control
by optimizing over possible steady states,

∆Ẇ ∗ = max
p
−∂Rt S(p)/β + 〈p− π, d− q〉, (6)

where the maximization is over all probability distributions. It
is clear that ∆Ẇ ∗ ≥ 0, since the objective vanishes for p = π.

Eq. (6) is our first main result. It expresses the maximum
benefit of control in a way that depends only on properties of
the baseline. It may be used to compute the efficiency of any
possible control processes as ∆Ẇ (π̄)/∆Ẇ ∗ ≤ 1. Maximum
efficiency is achieved if the control is thermodynamically re-
versible and implements the optimal steady-state distribution
π̄ = p∗, where p∗ achieves the maximum in (6).

In addition, the optimal p∗ shows how to construct con-
trol processes that achieve maximal efficiency. Assume for
simplicity that there is no coarse-graining (s = 0). Suppose
that the control processes obey local detailed balance (DB),
q′i =

∑
j R
′
ji ln(R′ji/R

′
ij), and that they are parameterized in

an Arrhenius form,R′ij = κe− ln p∗j . In the limit of fast control
κ → ∞, it may be verified that π̄ → p∗, that the bound (4)
becomes tight, and that ∆Ẇ (π̄)→ ∆Ẇ ∗ [6].

The bound (6) reflects a tradeoff between an information-
theoretic cost−∂Rt S(π̄)/β and an energetic benefit 〈p−π, d−
q〉. At first glance, this tradeoff resembles existing informa-
tion/energy tradeoffs in Maxwellian demons, Szilard engines,
and other kinds of “information engines” [9–16]. However, it
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is important to distinguish our result from information engines.
In a typical information engine, there is no external source of
driving and information (low entropy) serves as fuel, that is a
source of free energy that is consumed in the process of work
extraction. In an information engine, the “work value of a bit”
is microscopic, on the order of β−1 ln 2 per bit. We instead
consider the relationship between energy and information in
the presence of external driving, which is a scenario much
more similar to the one faced by biological organisms and
other autonomous systems [17, 18]. Here information plays a
fundamentally different role: it enables the system to tap into
external sources of energy that would otherwise be inaccessi-
ble, and it generally acts as a catalyst rather than a fuel. In our
setup, information does not necessarily get consumed during
work extraction, and the work value of a bit (the ratio between
the two terms in (6)) can be much larger than β−1 ln 2.

In fact, our result is more closely related to recent research
on dissipative heat engines [19–25], as well as power extrac-
tion from nonequilibrium heat baths, such as active baths with
non-thermal noise [26–28] or with inter-bath correlations [29].
However, instead of considering specific models, we provide a
general bound which is applicable to various kinds of nonequi-
librium systems in steady state.

Limiting regimes.—The bound (6) involves the optimization
of a convex function, which can be solved numerically using
standard techniques. However, the solution does not have a
closed-form expression in general, even for a simple two-state
system. Nonetheless, as we show in our second set of results,
closed-form expressions may be identified in three physically
meaningful regimes.

In the first regime, termed linear response (LR), the op-
timal distribution p∗ is close to the baseline steady state π.
Suppose for the moment that baseline obeys detailed balance,
πiRji = πjRij for all i, j. Typically, this implies that π is an
equilibrium state and that LR is the near-equilibrium regime
of weak driving. We can then rewrite (6) as

∆Ẇ ∗ = max
p

1

β
〈R(p− π), ln p− lnπ〉+ 〈p− π, ψLR〉 (7)

where, for convenience, we defined the LR “payoff vector”,

ψLR := d− q +RT (lnπ − s)/β. (8)

The first term in (7) vanishes to first order in p− π, thus ψLR

determines power output near equilibrium. Since p ≈ π by
assumption, we approximate ln pi − lnπi ≈ (pi − πi)/πi in
(7) to give

∆Ẇ ∗LR = max
p

1

β
〈R(p− π), D−2(p− π)〉+ 〈p− π, ψLR〉

where D is a diagonal matrix with entries Dii =
√
πi. As

shown in SM 1.1 [30], this expression is a convex quadratic
optimization, which can be solved in closed form. To introduce
this solution, let u(a) indicate the ath right eigenvector of
R normalized as ‖D−1u(a)‖ = 1, and let λα indicate the

corresponding real-valued eigenvalue (λ1 = 0). Then,

∆Ẇ ∗LR = β
∑

a>1

|Ωa|2
−λa

, p∗ = π +
∑

a>1

βΩa
−λa

u(a), (9)

where Ωa := 1
2 〈u(a), ψ

LR〉 is the loading of the payoff vector
on mode a.
Eq. (9) has a simple and physically meaningful interpreta-

tion. The optimal distribution p∗ shifts the baseline steady state
π toward relaxation mode a in proportion to the payoff load-
ing (Ωa) times the relaxation timescale (−1/λa). Similarly,
∆Ẇ ∗LR contains a separate contribution from each relaxation
mode, weighted by the payoff magnitude and timescale. In
this way, the optimal strategy minimizes the struggle against
dissipation while maximizing expected payoff.
Our analysis can be generalized to the case whereR does not

obey DB. Then (9) still holds, as long as we consider the eigen-
decomposition of the rate matrix Aij = (Rij + Rjiπi/πj)/2
instead of R. The rate matrix A obeys DB while having the
same steady state π and the dynamical activity on all edges as
R [31]. A = R iff R obeys DB, and it is sometimes called the
“additive reversibilization” of R [32].
In the second regime, which we call the macroscopic (M),

the objective (6) is dominated by terms linear in p. In this
case, we can ignore the nonlinear term in the objective (see
SM 1.2 [30]), turning it into a simple linear optimization,

∆Ẇ ∗M = max
p
〈p− π, ψM〉, ψM := d− q −RT s/β, (10)

where ψM is the macroscopic regime “payoff vector”. The
optimal distribution is a delta function centered at the optimal
state i∗ = arg maxi ψ

M
i , giving

∆Ẇ ∗M = ψM
i∗ − 〈π, ψM〉, p∗i = δi∗i. (11)

The M payoff vector ψM differs from the LR payoff vector
ψLR byRT lnπ, which reflects the fact that the baseline steady
state π has no effect on the M regime optimum. In fact, unlike
the LR solution, the M solution is well defined even when the
baseline steady state π does not have full support. The two
payoff vectors become equal when π is uniform.

We finish by considering a third regime intermediate be-
tween LR and M, which we call far-from-equilibrium (FE).
FE is a perturbation of the macroscopic regime that accounts
for the principal contributions of the nonlinear term in (6).
We use p∗i ≈ δi∗i to approximate 〈Rp, ln p〉 ≈∑iRii∗ ln pi.
Using ln pi∗ ≈ −

∑
i 6=i∗ pi, this can be further approximated

as 〈Rp, ln p〉 ≈∑i6=i∗(Rii∗ ln pi − Ri∗i∗pi). Plugging these
approximations into (6) decouples the values of pi in the objec-
tive function, allowing us to solve the optimization in closed
form (see SM 1.3 [30]):

∆Ẇ ∗FE = ∆Ẇ ∗M +
1

β

∑

i 6=i∗
Rii∗(ln p

∗
i − 1)

p∗i(6=i∗) =
Rii∗

β(ψM
i∗ − ψM

i ) +Ri∗i∗
, p∗i∗ = 1−

∑

i:i 6=i∗
p∗i

(12)
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The FE solution (12) also has a physically meaningful in-
terpretation. It is a perturbation of the M solution (11), which
shifts probability towards stateswith high transition rates (large
Rii∗ ) and small payoff decreases (ψM

i∗ − ψM
i ). This optimal

strategy balances loss of payoff against the cost of pumping
probability back against Rii∗ . The logic of the tradeoff is
similar to the LR solution (9), although it plays out somewhat
differently in the near-equilibrium and far-from-equilibrium
settings.

In SM 1 [30], we also discuss formal conditions when the
LR, M, and FE approximations are valid. In SM 5 [30],
we illustrate these condition using a simple model of a sugar
transporter, which is shown to be in the macroscopic regime.

Fluctuating environments.— In our last set of theoreti-
cal results, we consider a generalization of our previous ap-
proach in which the state space includes an explicitly mod-
eled fluctuating environment. Here each state i is a tuple
i = (x, y) ∈ X × Y , whereX is the system of interest and Y
is the environment.

In principle, the analysis above extends immediately to this
setup. However, the bound in (6) does not impose any con-
straints on how the control processes can interact with the
environment Y , which may be unrealistic in scenarios where
control cannot directly change the state of the environment.
For example, in an organism, control processes like genetic
regulation only affect the intracellular state; their impact on
environmental conditions (like nutrient concentrations) is only
indirect.

Our analysis can be extended to account for this kind of
constraint, which we term “local control”. Let us suppose
that the control rate matrix obeys R′(x′y′)(xy) = 0 whenever
y 6= y′, meaning that control cannot directly change the state
of the environment. In matrix notation, BR′ = 0 where B ∈
Z|Y |×|X||Y | has elementsBy′(xy) = 1−δy′y . Next, recall that
the combined steady-state distribution π̄ obeys (R+R′)π̄ = 0.
Multiplying both sides by B and simplifying gives BRπ̄ =
0, which must be satisfied by any achievable π̄ under local
control. This gives the following bound on work gain under
local control,

∆Ẇ ∗ = max
p:BRπ̄=0

−∂Rt S(p)/β + 〈p− π, d− q〉. (13)

The value will be smaller than (6) since the optimization has
more constraints, and the difference between the two quantifies
the cost of local control. Note also that the entropic term in
(13) may be decomposed into the entropy change of subsystem
X versus the information flow betweenX and Y [5]. This may
be used to study the costs/benefits of self-maintenance of X
versus the costs/benefits of information flow between X and
Y . We leave this investigation for future work.

In SM 2 [30], we show that (13) can be solved in closed
form in the LR regime where p∗ ≈ π. The solution has the
same form as (9), plus a correction due to the local control as-
sumption. We also derive solutions for the FE and M regimes,
under the additional assumption that the transitions of the en-
vironment Y do not depend on the state of the system X .
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Figure 2. Left: Maximum power gain ∆Ẇ ∗ for the unicyclic
network across different values of energy inputΘ (n = 5, β = 1). We
show the exact results, along with the LR, FE, andM approximations.
Middle: exact and approximate optimal solution p∗, using the FE
(top) and LR (bottom) approximations. The optimal state 1 is in the
middle of the histogram. Right: Log-log plot of ∆Ẇ ∗ vs. Θ across
more scales. LR is accurate at small Θ while the FE is accurate at
larger Θ. Inset: ∆Ẇ ∗ as a function of Θ for networks of different
sizes, ranging from n = 5 to n = 100. At larger Θ, the dependence
on network size disappears.

Example: unicyclic network.— We illustrate our approach
on a minimal model where energy harvesting requires the
maintenance of a steady-state current in a unicyclic network.
It may be interpreted as an idealized model of a biomolecular
cycle (e.g., an enzymatic cycle [33–35], transporter [36, 37], or
oscillator [38, 39]) in which energy is acquired at a particular
step of the cycle.
We consider a unicyclic system X with n states (without

coarse-graining) where the baseline dynamics involve diffu-
sion across a 1-dimensional ring (see Fig. 1):

Rx′x = δx′+1,x + δx+1,x′ − 2δx,x′ , (14)

where n+1 ≡ n. Each time the system completes a particular
transition 1 → 2, Θ units of energy are transferred from the
environment to the internal work reservoir (and vice versa for
the reverse transition 2 → 1). Energy is harvested without
dissipation (q = 0). There is no current under the baseline
dynamics in steady state, so baseline power output vanishes.

We study the increase of power output ∆Ẇ ∗ (6) in the LR,
FE, and M regimes. We summarize our main results, leaving
details for SM 3.2 [30]. In the near-equilibrium LR regime (9),
which holds when Θ is small,

∆Ẇ ∗LR = βΘ2 (n− 1)

4n2
. (15)

Thus, power output scales quadratically with Θ, and inversely
with the number of states in the cycle. For very large Θ, the
optimal distribution concentrates on the optimal state i∗ = 1,
so the M regime becomes relevant where ∆Ẇ ∗M = Θ. At
intermediate Θ, the FE regime (12) is relevant,

∆Ẇ ∗FE = Θ− 1

β
[2 + ln 2 + ln(βΘ− 1)(βΘ− 2)]. (16)

Unlike theLR regime, theMandFE solutions do not depend on
system sizen. In the SM,we also find the optimal distributions
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p∗ for the three regimes. The LR optimal distribution p∗ has
a remarkably simple form, building up in equally-sized steps
toward a “cliff” located at optimal state i∗ = 1.

We illustrate these results in Fig. 2. We show the exact value
of ∆Ẇ ∗, found by numerical optimization of Eq. (6), as well
as the LR, FE, and M approximations. We also show the exact
optimal distribution p∗ and its LR and FE approximations. On
the inset on the right, we show that ∆Ẇ ∗ does not depend on
n for large Θ.

In SM 3.3, we also consider an extension of the unicyclic
network model, where the system X is now coupled to a
fluctuating environment Y . We assume that X and Y both
haven states, and that their baseline dynamics are bipartite and
independent. X has the same dynamics (14) as before, while
Y has nonequilibrium unicyclic dynamics RYy′y = q((1 +
ε)δy′+1,y + δy+1,y′ − (2 + ε)δy,y′) (n + 1 ≡ n), where q is
the transition rate and ε determines the baseline cyclic current
in the environment. We assume that the environment controls
energy harvesting in the following way: Θ units of energy are
transferred to the internal work reservoir only when subsystem
X jumps from state x = y → x′ = y + 1, where y is the state
of the environment Y (see Fig. 1b).

We study the maximum power output under the “local con-
trol” assumption that the control cannot change the state of
Y . In this case, ∆Ẇ ∗ is given by the constrained optimiza-
tion (13). The optimal strategy requires X to continuously
measure the fluctuating state of the environment Y . In the
SM, we analyze power output in LR, M, and FE regimes. The
most illuminating result is the LR regime,

∆Ẇ ∗LR = βΘ2 (n− 1)

4n2

1

1 + q(1 + ε/2)
. (17)

Thus, optimal power output is equal to the power output with-
out a fluctuating environment (15), divided 1 + q(1 + ε/2).
As expected, power output decreases with q, the rate of envi-
ronmental transitions, and (15) is recovered as q → 0. Power
output also decreases as the cyclic current of the environment
increases, as determined by the parameter ε, since this makes
the environment more difficult to track.
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1. Maximum power increase, Eq. (6) (static environments)

We consider a system of n states indexed by i ∈ {1, . . . , n} that evolves according to a Markovian process with

rate matrix R̄ = R + R′, where R and R′ correspond to baseline and control processes respectively. Here we study

the optimization (6) in three limiting regimes.

1.1 Linear Response (LR) regime, Eq. (9)

We first consider (6) in the linear response regime, that is under the assumption that the optimal distribution is

close to the baseline steady state p∗ ≈ π, thereby arriving at (9). We assume that R is irreducible, so that π has full

support.

First, we rewrite the objective as

∆Ẇ ∗ = max
p

1

β
〈Rp, ln p− lnπ〉+ 〈p− π, ψLR〉 (S1)

= max
p

1

β
〈R(p− π), ln p− lnπ〉+ 〈p− π, ψLR〉 , (S2)

where we defined the LR payoff vector as in the main text,

ψLR = d− q +RT (lnπ − s)/β. (S3)

Eq. (S1) appears as (7) in the main text, while the second line follows from Rπ = 0.

Next, for convenience define the matrices A,D,M ∈ Rn×n,

Aij :=
(
Rij +Rji

πi
πj

)
/2 Dij := δij

√
πi M := D−1AD (S4)

Recall that A is an irreducible rate matrix with stationary distribution π, which obeys detailed balance if and only if

A = R. In addition,M = D−1AD implies thatM and A are related via a similarity transformation, which means

that for any right eigenpair (λ, u) of A,
(
λ,D−1u

)
is an eigenpair of the symmetric matrixM . In particular, since A

has a unique right eigenvector π with eigenvalue 0, thenM also has a unique eigenvector D−1π with eigenvalue 0.

Moreover, since A is a rate matrix, it is negative semidefinite (λa ≤ 0), and soM is also negative semidefinite. We

indicate the right eigenvectors of A as u(a) and the eigenvectors of the symetric matrixM as m(a) = D−1u(a). We

assume thatm(a) are normalized as ‖m(a)‖ = 1, therefore ‖D−1u(a)‖ = 1.

Next, define the vectors z, v ∈ Rn,

z := D−1(p− π) v :=
β

2
DψLR (S5)
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Using lnx ' x− 1 for x ≈ 1, we approximate the first term in (S2) as

∑

i,j

Rij (pj − πj) ln

(
pi
πi

)
'
∑

i,j

Rij (pj − πj)
(
pi − πi
πi

)
(S6)

=
∑

i,j

√
πj√
πi
Rijzjzi =

∑

i,j

√
πj√
πi
Aijzjzi =

∑

i,j

(D−1AD)ijzjzi. (S7)

Combining and using the definitions above, we can rewrite (S2) in matrix notation as

∆Ẇ (p) ' 1

β
(zTMz + 2zT v) . (S8)

Let us consider the maximization of (S8) with respect to z, under the constraints
∑

i pi = 1 and pi ≥ 0, ∀i ∈

{1, . . . , n}. Since by assumption π is strictly positive and p ≈ π, the second condition follows automatically. The

first constraint can be expressed as zTD−1π = 0, which gives
∑

i pi =
∑

i πi = 1. Thus, our optimization problem

is now given by

∆Ẇ ∗LR =
1

β
max

z∈Rn:〈z,D−1π〉=0
zTMz + 2zT v . (S9)

Eq. (S9) is a quadratic optimization problem, which can be solved using standard techniques from linear algebra.

For convenience we summarize these techniques in Theorem 1 in Sec. 6 of this SM. That theorem implies that

∆Ẇ ∗LR = − 1

β
vTM+v p∗ = π −DM+v (S10)

where M+ =
∑

a>1 λ
−1
a m(a)m

T
(a) is the Penrose-Moore pseudo-inverse of M . In applying Theorem 1, we used

result (S118) and the relation p∗ = π +Dz∗.

We can rewrite (S10) using the eigensystem ofM ,

∆Ẇ ∗LR =
1

β

∑

a>1

|〈v,m(a)〉|2
−λa

p∗ = π +
∑

a>1

〈v,m(a)〉
−λa

Dm(a) (S11)

Finally, as in the main text we define

Ωa =
1

β
〈v,m(a)〉 =

1

2
〈DψLR, D−1u(a)〉 =

1

2
〈ψLR, u(a)〉. (S12)

Plugging into (S10) gives Eq. (9) in the main text,

∆Ẇ ∗LR = β
∑

a>1

|Ωa|2
−λa

p∗ = π +
∑

a>1

βΩa

−λa
u(a) (S13)

Note that the assumption p∗ ≈ π holds when ‖p∗ − π‖ � 1. We can write

‖p∗ − π‖ = β
∥∥∥
∑

a>1

Ωa

−λa
u(a)

∥∥∥ ≤
∑

a>1

β|Ωa|
−λa

‖u(a)‖

≤
∑

a>1

β|Ωa|
−λa

‖D‖‖m(a)‖ ≤ β(n− 1) max
a>1
|Ωa/λa|max

i

√
πi ,

(S14)
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where we used the triangle inequality and properties of the matrix norm. Therefore, the LR approximation is

guaranteed to be valid when

max
a>1
|Ωa/λa| �

1

β(n− 1) maxi
√
πi
. (S15)

In other words, the payoff loading on each eigenmode must be slower than relaxation modes, up to a factor that

depends only on β, n, and the steady state π.

1.2 Macroscopic (M) regime, Eq. (11)

In the macroscopic (M) regime, we assume that the nonlinear terms in (6) are small compared to the linear terms.

This allows us to approximate the optimal solution as the linear optimization

∆Ẇ ∗ = max
p

1

β
〈Rp, ln p〉+ 〈p− π, ψM〉 (S16)

≈ max
p
〈p− π, ψM〉 (S17)

= ψM
i∗ − 〈π, ψM〉 =: ∆Ẇ ∗M . (S18)

Here ψM := d− q−RT s/β is the macroscopic payoff vector. The maximum in the last line is achieved by p∗i = δii∗

with i∗ = arg maxi ψ
M
i , which appears as (11) in the main text.

We now discuss when this approximation is valid. First, define the parameter α,

α :=
K

β∆Ẇ ∗M
, (S19)

whereK := maxi | −Rii| is the largest escape rate. This parameter reflects the balance between diffusion out of the

optimal state versus macroscopic power gain. Assuming α < 1, we show that
∣∣∣∣∣
∆Ẇ ∗

∆Ẇ ∗M
− 1

∣∣∣∣∣ ≤ α (− lnα− ln γ + n) (S20)

where we define the following constant which depends only on R:

γ := min
i:
∑
j Rij>0

πi (S21)

In fact, γ is the minimal steady-state probability of any state that has incoming transitions.

The RHS of (S20) vanishes for α → 0, so the LHS tightens as ∆Ẇ ∗/∆Ẇ ∗M → 1. Thus, the parameters α and γ

determine the regime of validity of the M approximation. At the same time, we emphasize that the M approximation

only becomes accurate in relative terms, not in additive terms (that is, it is not necessarily true that∆Ẇ ∗−∆Ẇ ∗M → 0).
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To derive (S20), we first consider an upper bound on ∆Ẇ ∗. Using Rp =
∑

j Rijpj ≥ Riipi and S(p) =

−∑i pi ln pi ≤ lnn, we have

〈Rp, ln p〉 =
∑

i,j

Rijpj ln pi ≤
∑

i

|Rii|(−pi ln pi) ≤ KS(p) ≤ K lnn (S22)

At the same time, since ∆Ẇ ∗M maximizes 〈p− π, ψM〉, we can plug into (S16) to write

∆Ẇ ∗ ≤ K(lnn)/β + ∆Ẇ ∗M = ∆Ẇ ∗M(α lnn+ 1) . (S23)

To derive a lower bound on ∆Ẇ ∗, define the distribution pi := (1− α) δii∗ + απi, with α defined in (S19).

Plugging this distribution into the objective in (S16) yields

∆Ẇ ∗ ≥ 1

β
〈Rp, ln p〉+ 〈p− π, ψM〉

=
1

β
(1− α)

∑

i

(Rii∗ ln pi) + 〈p− π, ψM〉 , (S24)

where we used that
∑

j Rij ((1− α) δji∗ + απj) = Rii∗ (1− α) since Rπ = 0. Using Ri∗i∗ ln pi∗ ≥ 0, we bound

the first term in the RHS of (S24) as
∑

i

Rii∗ ln pi ≥
∑

i:i 6=i∗
Rii∗ ln pi =

∑

i:i 6=i∗
Rii∗ ln(απi)

≥
∑

i 6=i∗
Rii∗(lnα+ ln γ)

= −Ri∗i∗(lnα+ ln γ) ≥ K (lnα+ ln γ) , (S25)

where we used that lnα+ ln γ < 0 in the last inequality. For the second term in (S24),
∑

i

(pi − πi)ψM
i = (1− α)

∑

i

(δii∗ − πi)ψM
i = (1− α)∆Ẇ ∗M . (S26)

We can plug (S25) and (S26) into (S24) to give a lower bound on ∆Ẇ ∗,

∆Ẇ ∗ ≥ (1− α)(−Ri∗i∗)(lnα+ ln γ)/β + (1− α)∆Ẇ ∗M

= (1− α)∆Ẇ ∗Mα(lnα+ ln γ) + (1− α)∆Ẇ ∗M

≥ ∆Ẇ ∗Mα(lnα+ ln γ) + (1− α)∆Ẇ ∗M

= ∆Ẇ ∗Mα(lnα+ ln γ − 1) + ∆Ẇ ∗M

≥ ∆Ẇ ∗Mα(lnα+ ln γ − n) + ∆Ẇ ∗M , (S27)

where in the second line we used the definition (S19), and in the third line we used lnα+ln γ < 0. Combining yields

∆Ẇ ∗Mα (lnα+ ln γ − n) ≤ ∆Ẇ ∗ −∆Ẇ ∗M ≤ α lnn , (S28)

which can be rearranged to give (S20).
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1.3 Far-from-Equilibrium (FE) regime, Eq. (12)

In this regime, we consider a perturbation of the macroscopic regime: we assume that the optimal p∗ is close to

delta function distribution centered at i∗ = argmaxiψM
i . If pi ≈ δii∗ ,

ṗi =
∑

j

Rijpj ≈ Rii∗ . (S29)

This allows us to approximate the entropic term in (S16) as

〈Rp, ln p〉 =
∑

i,j

Rijpj ln pi ≈
∑

i

Rii∗ ln pi

= Ri∗i∗ ln
(

1−
∑

i:i 6=i∗
pi

)
+
∑

i:i 6=i∗
Rii∗ ln pi ≈

∑

i:i 6=i∗
(−Ri∗i∗pi +Rii∗ ln pi) (S30)

where we used ln(1− x) ≈ −x when x ≈ 0. Plugging into (S16) gives

∆Ẇ(p) ' 1

β

∑

i:i 6=i∗
(−Ri∗i∗pi +Rii∗ ln pi) +

(
1−

∑

i:i 6=i∗
pi

)
ψM
i∗ +

∑

i:i 6=i∗
piψ

M
i − 〈π, ψM〉

= ∆Ẇ ∗M +
∑

i:i 6=i∗

[
−pi

(
ψM
i∗ − ψM

i + β−1Ri∗i∗
)

+ β−1Rii∗ ln pi
]
, (S31)

where ∆Ẇ ∗M := ψM
i∗ − 〈π, ψM〉, which does not depend on p. After maximizing with respect to {pi}i:i 6=i∗ by taking

derivatives and setting them to zero, one obtains:

p∗i =
Rii∗

β(ψM
i∗ − ψM

i ) +Ri∗i∗
(i 6= i∗), and p∗i∗ = 1−

∑

i:i 6=i∗
p∗i . (S32)

Plugging (S32) into (S31) gives

∆Ẇ ∗ ' ∆Ẇ ∗FE = ∆Ẇ ∗M +
1

β

∑

i:i 6=i∗
Rii∗(ln p

∗
i − 1) . (S33)

Let us briefly discuss the validity of the expressions above. As stated above, (S32) is valid when pi ≈ δii∗ . For

convenience, let i− = argmaxi 6=i∗ ψM
i indicate the second most valuable state of the system after i∗. We define the

payoff gap as

∆ψM
min := ψM

i∗ − ψM
i− = min

i:i 6=i∗
ψM
i∗ − ψM

i .

Now, considering the optimal probability for i 6= i∗ found in (S32), the FE approximation will be valid as long as

pi 6=i∗ � 1 ⇔ ψM
i∗ − ψM

i �
1

β
(Rii∗ −Ri∗i∗) ,

which holds as long as

∆ψM
min �

1

β
(Ri−i∗ −Ri∗i∗) . (S34)
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Expression (S34) implies that FE approximation is valid when the payoff gap is much larger than the rates at which

either i∗ flows into i− or escapes.
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2. Maximum power increase, Eq. (13) (fluctuating environments)

We now extend our setup to consider a fluctuating environment. Now we consider a combined system that

contains two subsystems X and Y , representing the “agent” and “environment” respectively, taking values in

{1, . . . , |X|} and {1, . . . , |Y |}. The baseline and control dynamics of the joint system are specified by the rate matrix

R,R′ ∈ R|X||Y |×|X||Y |.

Maximum power output in this setup is given by the constrained optimization problem (13). Here we consider this

optimization problem in three limiting regimes.

2.1 Additional assumptions

Before proceeding, we introduce three additional assumptions that are employed in some of our results below.

2.1 Local control

As described in the main text, we use the assumption of Local control in all our results on fluctuating environments.

In fact, it is due to this additional assumption that the fluctuating environment setup is not simply a special case of

the basic setup presented above.

The assumption of local control states that under the control rate matrix, the environment Y cannot change state:

Local control: R′(x′y′)(xy) = 0 if y′ 6= y . (S35)

This constraint can be formalized using the matrix

B ∈ R|Y |×|X||Y | with By′(xy) = 1− δy′y . (S36)

It can be verified that BR′ = 0 is equivalent to (S35). Recall that π̄ was defined as the steady-state solution of the

combination of baseline and control dynamics, (R + R′)π̄ = 0. Multiplying both sides of this equality by B and

then using BR′ = 0 implies BRπ̄ = 0. This equality must hold for any achievable steady state in (5). This gives the

following expression for maximum power gain in the presence of local control:

∆Ẇ ∗ = max
p:BRp=0

−∂Rt S(p)/β + 〈p− π, d− q〉, (S37)

where the optimization is over all probability distributions over |X||Y | outcomes. This expression appears as (13) in

the main text.
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Below, it will be convenient to rewrite (S37) in the form of (S1),

∆Ẇ ∗ = max
p:BRp=0

1

β
〈Rp, ln p− lnπ〉+ 〈p− π, ψLR〉, (S38)

where ψLR := d− q +RT (lnπ − s)/β is the LR payoff vector.

2.1 Independent environment

Where explicitly noted, we sometimes introduce an additional Independent environment assumption. This assump-

tion states that under the baseline rate matrixR, the dynamics of the agent and environment are bipartite [5], meaning

either the agent or environment can change state in any one jump, and moreover that the jumps of the environment

do not depend on the state of the agent. Formally, this means that the combined rate matrix has the general form

Independent environment: R(x′y′)(xy) = δyy′R
X|Y
(x′y)(xy) + δxx′R

Y
y′y. (S39)

RY is a rate matrix over environment Y which satisfies
∑

y′ R
Y
y′y = 0 for all y, which we assume has a unique steady

state πY . RX|Y is a kind of conditional rate matrix over X , where transitions of X can in principle depend on the

state of Y . Using
∑

x′,y′ R(x′y′)(xy) =
∑

y′ R
Y
y′y = 0, we have

∑

x′

R
X|Y
(x′y)(xy) =

∑

x′

R
X|Y
(x′y)(xy) +

∑

y′

RYy′y

=
∑

x′,y′

δyy′R
X|Y
(x′y)(xy) +

∑

x′,y′

δxx′R
Y
y′y =

∑

x′,y′

R(x′y′)(xy) = 0.

(S40)

Recall that local control (S37) implies that BRp = 0. Combining with (S39) allows us to write the product BR as

[BR]y′′,xy =
∑

x′,y′

(1− δy′y′′)R(x′y′)(xy) = −
∑

x′,y′

δy′y′′R(x′y′)(xy)

= −
∑

x′,y′

δy′y′′(δy,y′R
X|Y
(x′y)(xy) + δx,x′R

Y
y′y)

= −
∑

y′

δy′y′′(δy,y′
(∑

x′

R
X|Y
(x′y)(xy)

)
+RYy′y) = −RYy′′y, (S41)

In the last line, we used (S40). Given (S41), BRp = 0 implies that

[BRp]y′′ = −
∑

x,y

Ry′′ypxy = −
∑

y

Ry′′yp
Y
y = 0. (S42)

Therefore, the marginal distribution pY must be in steady state for the rate matrix RY ,

pY = πY . (S43)

Therefore, local control (S35) and independent environment (S39) jointly imply pY = πY .
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2.1 Independent agent-and-environment

Where explicitly noted, we sometimes also introduce the Independent agent-and-environment assumption, which

is sronger than the Independent environment assumption discussed above. This assumption states that under the

baseline rate matrix R, the dynamics of the agent and environment are bipartite and both evolve independently of

each other. Formally, this means that the combined rate matrix has the form

Independent agent-and-environment: R(x′y′)(xy) = δyy′R
X
x′x + δxx′R

Y
y′y. (S44)

Here RX and RY are rate matrices over the agent X and environment Y which satisfy
∑

x′ R
X
x′x = 0 for all x and

∑
y′ R

Y
y′y = 0 for all y, and which have unique steady states πX and πY .

2.2 Linear Response (LR) regime

We now derive the LR regime solution of (S38), that is the the maximum power gain ∆Ẇ ∗LR for a system coupled

to a fluctuating environment. We then show how imposing additional assumptions on the system’s dynamics can

simplify this solution dramatically. This simplification will be used in the example explored in Sec. 4 of this SM.

2.2 General case

We first derive LR solution of (S37) in the general case, assuming only Local control (S35). To begin, we expand

the state space considered in Sec. 1.1 to include both X and Y and study the constrained optimization problem:

∆Ẇ ∗LR =
1

β
max

z∈R|X||Y |:〈zD−1π〉=0
zTMz + 2zT v such that BRDz = 0. (S45)

where we define z, D, A, and M = D−1AD as in (S4) and (S5) above, and B as in (S36). The derivation of this

expression from (S37) is the same as the derivation of (S9), except that we included the constraint BRp = 0, which

is equivalent to BRDz = 0 given z = D−1(p− π).

The optimization problem (S45) is an equality-constrained quadratic optimization problem, which can be solved

using standard techniques. Using Theorem 1 from Sec. 6 of this SM (S116), the solution is given by

∆Ẇ ∗LR = −vTM+v + vTΛMΛv

z∗ = (Λ−M+)v =⇒ p∗ = π +D(Λ−M+)v ,

(S46)

where we defined the matrices Λ,Π ∈ R|X||Y |×|X||Y |:

Λ :=

[
I −

(
(−M)1/2Π

)+
(−M)1/2

]
M+ Π := I −



BRD

πTD−1




+ 

BRD

πTD−1


 (S47)
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The matrix Λ encodes the effect of the local control constraints on the solution of the optimization problem. The

solution (S46) may be compared with the unconstrained LR solution (S10); note that the solution agree when Λ = 0.

It is important to note that even though we focused specifically on the problem of power gain under local control,

the solution (S46) is more general. In particular, it may be used to study maximum power gain under various types

of linear constraints of the form G(p− π) = 0 for some arbitrary matrix G. For instance, this may be used to study

maximum power gain under conservation laws, or other types of constraints on the allowed steady state distributions

π̄.

In the following subsections, we demonstrate that the solution (S46) can be simplified by introducing the Independent

environment (S39) and Independent agent-and-environment (S44) assumptions.

2.2 Simplifying assumption: Independent environment

We show that under the assumption of Independent environment (S39), Π can be expressed in a simpler

form than (S47), and in particular without invoking the pseudo-inverse. First, define the following matrix

C ∈ R|X||Y |×|X||Y |:

C :=
∑

y

τ (y)τ (y)T , τ
(y)
x′y′ =

√
πx′|y′δyy′ for y ∈ Y. (S48)

We will show that Independent environment (S39) implies that

Π = I − C . (S49)

The derivation of (S49) proceeds in the following way. First, observe that the vectors τ (y) are orthonormal,

〈τ (y), τ (y′)〉 = δyy′ , and therefore that CC = C. In addition, C is symmetric, which implies that it is an orthogonal

projector. Next, for convenience define the matrix H =
[
BRD
πTD−1

]
, so that Π = I − H+H . Below, we first show

that the rowspace of H is a subspace of the column space of C. After that, we show that the dimension of the

column space of C is equal to the dimension of the rowspace of H . Therefore, the two spaces must be equal, so C

is the orthogonal projector onto the rowspace of H . But it is known that H+H is the orthogonal projector onto the

rowspace of H . Thus, it must be that C = H+H , implying (S49).

Let us show that the rowspace ofH is a subspace of the column space of C. The entries of C andH can be written

explicitly as

C(xy)(x′y′) =
√
πx|y

√
πx′|y′δy′y, Hy′′(xy) =





RYy′′y
√
πxy y′′ ∈ {1, . . . , |Y |}

√
πxy y′′ = |Y |+ 1

. (S50)
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Here we have used the expression of BR (S41) that holds under the Independent environment assumption. Then,

each row of H is a linear combination of the columns of C,

Ry′′y
√
πxy =

∑

x′,y′

c
(1,y′′)
x′y′

√
πx|y

√
πx′|y′δy′y c

(1,y′′)
x′y′ = RYy′′y′

√
πx′y′

√
πxy =

∑

x′,y′

c
(2)
x′y′
√
πx|y

√
πx′|y′δy′y c

(2)
x′y′ =

√
πx′y′ .

This means that the rowspace of H is a subspace of the column space of C.

Next, we show that the two spaces have the same dimension. It is clear that the column space of C has dimension

|Y | by construction (S48). To determine the rank of H , observe that

H =
[
BRD
πTD−1

]
=
[
BR
1T

]
D = (K ⊗ 11T )D,

whereK =
[
RY

1T

]
and ⊗ is the Kronecker product, where we again used (S41). By basic properties of rank,

rankH = rank (K ⊗ 11T ) = (rankK)(rank 11T ) = rankK.

Finally, define Pt = [tIY 1]K for t > 0 where IY is the |Y | × |Y | identity matrix, and note that rankPt ≤

rankK = rankH . For sufficiently small t, Pt is an |Y |× |Y | transition matrix which is strictly diagonally dominant,

and hence has full rank. Therefore, |Y | = rankPt, implying that |Y | ≤ rankH . At the same time, since the

rowspace of H is contained in column space of C, we must have rankH ≤ rankC = |Y |. Combining implies

rankH = |Y | = rankC.

2.2 Simplifying assumption: Independent-agent-and-environment

We now simplify the solution (S46) under the assumption of Independent agent-and-environment (S44). To begin,

we use (S44) to write the matrixM = D−1AD in explicit form as

M(x′y′)(xy) =
1

2

(√
πxy
πx′y′

R(x′y′)(xy) +

√
πx′y′

πxy
R(xy)(x′y′)

)

=
1

2



√
πXx
πXx′

RXx′x +

√
πXx′

πXx
RXxx′


 δy′y +

1

2



√
πYy

πYy′
RYy′y +

√
πYy′

πYy
RYyy′


 δx′x

≡MX
x′xδy′y +MY

y′yδx′x , (S51)

which for convenience we defined the matrixMX ∈ R|X|×|X| andMY ∈ R|Y |×|Y | as above. We also used that (S44)

implies that the steady state distribution factorizes as πxy = πXx π
Y
y . Observe that (S51) can be written in matrix

notation as

M = MX ⊗ IY + IX ⊗MY , (S52)
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where IX and IY are identity matrices of size |X| × |X| and |Y | × |Y |.

Let us denote the orthonormal eigensystems ofMX andMY as (λXa ,m
X
(a)) and (λYb ,m

Y
(b)) with a ∈ {1, . . . , |X|}

and b ∈ {1, . . . , |Y |}. SinceMX andMY are related to the rate matricesRX andRY by a similarity transformation,

the top eigenvectors forMX andMY (with λX1 = λY1 = 0) correspond to the marginal steady statesmX
(1)x =

√
πXx

and mY
(1)y =

√
πYy , respectively. Moreover, it can be shown that for all for a ∈ {1, . . . , |X|} and b ∈ {1, . . . , |Y |},

m(ab) := mX
(a) ⊗mY

(b) is an eigenvector ofM with eigenvalue λab = λXa + λYb :

Mm(ab) =
(
MX ⊗ IY + IX ⊗MY

) (
mX

(a) ⊗mY
(b)

)
= λXa m

X
(a) ⊗mY

(b) + λYb m
X
(a) ⊗mY

(b)

= (λXa + λYb )mX
(a) ⊗mY

(b) = λabm(ab) . (S53)

To summarize, we can write the eigendecomposition ofM as

M =
∑

a,b

(λXa + λYb )m(ab)m
T
(ab) =

∑

a,b

(λXa + λYb )m(ab)m
X
(a)m

X
(a)

T ⊗mY
(b)m

Y
(b)

T
. (S54)

Next, because the steady state factorizes, we can rewrite C (S50) as C(xy)(x′y′) =
√
πXx

√
πXx′ δy′y, or in matrix

notation

C = mX
(1)m

X
(1)

T ⊗ IX =
∑

b

mX
(1)m

X
(1)

T ⊗mY
(b)m

X
(b)

T
. (S55)

In addition, the assumption Independent agent-and-environment implies Independent environment (S39), which in

turn implies Π = I − C (S49). Combining gives

Π = I − C =
∑

a,b

mX
(a)m

X
(a)

T ⊗mY
(b)m

Y
(b)

T −
∑

b

mX
(1)m

X
(1)

T ⊗mY
(b)m

Y
(b)

T

=
∑

a>1,b

mX
(a)m

X
(a)

T ⊗mY
(b)m

Y
(b)

T
=
∑

a>1,b

m(ab)m
T
(ab) . (S56)

In this way, we expressed Π in terms of the eigenvectors ofM .

It is clear that M and Π commute. Therefore, we can apply (S117) from Theorem 1 in Sec. 6. It states that the

solution of (S45) is given by

∆Ẇ ∗LR = −vTΠM+Πv

z∗ = −(M+)Πv =⇒ p∗ = π −DM+Πv .

(S57)

Using the expression of the pseudo-inverse M+ =
∑

a,b:(a,b)6=(1,1)(λ
X
a + λYb )−1m(ab)m

T
(ab) and our expression for

Π (S56), we have

M+Π = ΠM+Π =
∑

a,b:a>1

(λXa + λYb )−1m(ab)m
T
(ab) . (S58)
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Finally, combining with (S57) allows us to write the solution as

∆Ẇ ∗LR = β
∑

a,b:a>1

|Ωab|2
−λa − λb

p∗ = π +
∑

a,b:a>1

βΩab

−λa − λb
u(ab) (S59)

where we defined

βΩab = 〈v,m(ab)〉 =
β

2
〈DψLR, D−1u(ab)〉 =

β

2
〈ψLR, u(ab)〉 , (S60)

exactly as in (S12), and u(ab) is an eigenvalue of the matrixA (see (S4) and paragraph after). This result is in complete

analogy with the static environment LR analysis (S13) and Eq. (9) in the main text.

2.3 Macroscopic (M) regime

We now derive the Macroscopic (M) regime solution for a system coupled to a fluctuating environment. To do so,

we will impose the assumptions of Local control (S35) and the Independent environment (S39).

Recall our definition of the macroscopic payoff vector ψM := d− q − β−1RT s from Sec. 1.2 . Also recall (S16),

∆Ẇ ∗ = max
p:BRp=0

1

β
〈Rp, ln p〉+ 〈p− π, ψM〉 , (S61)

Given Local control and Independent environment, BRp = 0 implies that pY = πY (S43). In addition, as in

Sec. 1.2, we assume that in the Macroscopic regime we may neglect the nonlinear first term in (S61), which gives the

approximation

∆Ẇ ∗ ≈ max
px|y

∑

y

πypx|yψ
M
xy − 〈π, ψM〉 . (S62)

This is a simple linear optimization, where the optimal conditional distribution is given by p∗x|y = δx∗yx with

x∗y = arg maxx ψ
M
xy, i.e., the x∗y is the best response state of X given that the environment is in state Y = y. The

approximate solution under this Macroscopic Regime is

∆Ẇ ∗M =
∑

y

πyψ
M
x∗yy
− 〈π, ψM〉 p∗xy ≈ δx∗yxπy , (S63)

2.4 Far-from-Equilibrium (FE) regime

We now derive the Far-from-equilibrium (FE) regime solution for a system coupled to a fluctuating environment.

To do so, we will impose the assumptions of Local control (S35) and the Independent environment (S39).
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We derive the Far-from-Equilibrium (FE) approximation as an expansion around the Macroscopic Regime solu-

tion (S63). Consider the nonlinear term in (S61),

〈Rp, ln p〉 =
∑

x,y

[pR]xy ln pxy =
∑

x,y

[pR]xy ln px|y ,

where we use the that
∑

y (
∑

x[pR]xy) ln py = 0 since pY = πY . We approximate the remaining term by using the

expression for p∗ in (S63),

∑

x,y

∑

x′,y′

px′y′R(xy)(x′y′) ln px|y ≈
∑

x,y

∑

y′

πy′R(x,y)(x∗
y′ ,y

′) ln px|y

=
∑

y,y′

πy′

( ∑

x 6=x∗y
R(x,y)(x∗

y′ ,y
′) ln px|y +R(x∗y,y)(x∗

y′ ,y
′) ln px∗y|y

)
. (S64)

Let us now expand the last term as follows

ln px∗y|y = ln
(

1−
∑

x 6=x∗y
px|y

)
≈ −

∑

x6=x∗y
px|y .

Next, we define

Rxy :=
∑

y′

πy′R(x,y)(x∗
y′ ,y

′), (S65)

which indicates the rate of probability flow from all “optimal states” (x∗y′ , y
′) to state (x, y). Thus, we obtain that

〈Rp, ln p〉 ≈
∑

y,x6=x∗y
(Rxy ln px|y −Rx∗yypx|y) . (S66)

Next, let us consider the linear term in (S61) and use the fact that pY = πY to write

〈p, ψM〉 =
∑

x,y

px|yπyψ
M
xy =

∑

y

πy

(
px∗y|yψ

M
x∗yy

+
∑

x 6=x∗y
px|yψ

M
xy

)

=
∑

y

πy

[(
1−

∑

x 6=x∗y
px|y

)
ψM
x∗yy

+
∑

x 6=x∗y
px|yψ

M
xy

]

=
∑

y

πy

[
ψM
x∗yy

+
∑

x 6=x∗y
px|y(ψ

M
xy − ψM

x∗yy
)
]
. (S67)

Then, combining (S63), (S66) and (S67),

∆Ẇ ∗ ≈ max
p:BRp=0

∆Ẇ ∗M +
1

β

∑

y,x6=x∗y

[
Rxy ln px|y −

(
β(ψM

x∗yy
− ψM

xy)πy +Rx∗yy
)
px|y

]
. (S68)

This optimization problem can be solved by taking derivatives with respect to px|y, which, after imposing pY = πY ,

gives

p∗xy = πy


δx∗yy +

∑

x′ 6=x∗y

(δxx′ − δxx∗y)Rx′y
β(ψM

x∗yy
− ψM

x′y)πy +Rx∗yy


 . (S69)
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Finally, inserting back into (S68) yields the FE approximation

∆Ẇ ∗FE = ∆Ẇ ∗M +
1

β

∑

y,x6=x∗y
Rxy

(
ln p∗x|y − 1

)
, (S70)

which is a generalization of (S33).
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3. Unicyclic model

Here we analyze the unicyclic model considered in the main text. We study both the case with a static environment

in Sec. 3.2 and the case with a fluctuating environment in Sec. 3.3. Before proceeding, we briefly introduce some

useful facts about the eigendecomposition of a unicylic rate matrix.

3.1 An Algebraic Aperitif: eigendecomposition of unicyclic rate matrix

Consider a unicylic rate matrix R,

R =




−2k k 0 · · · k

k −2k k · · · 0

0 k −2k · · · 0

...
...

... . . . ...

k 0 0 · · · −2k




, (S71)

which is a symmetric circulant matrix. Due to symmetry, its steady state is uniform: πi = 1
n , ∀i. The eigensystem

for R is obtained from the theory of circulant matrices [42], which, for odd n, yields:

λa = −2k [1−< (ωa)] = −2k

[
1− cos

(
2π(a− 1)

n

)]
, (S72)

where ωa := ei2π(a−1)/n. These eigenvalues are all degenerate twice (except λ(1) = 0, whose eigenvector is simply

(1, 1, . . . , 1)). An orthonormal choice of eigenbasis is given by the set

{m(a)} =

{
1√
n

(
1, ωa, ω

2
a, . . . , ω

n−1
a

)}
. (S73)

3.2 Unicyclic model: Static environment

We now analyze the unicyclic model in a static environment, using techniques developed in Sec. 1. We consider a

systems with n state arranged in a ring, where baseline transitions are symmetric with uniform kinetics: i
[

k]k�i+ 1

mod n, ∀i = 1, . . . , n (see Fig. S3 here and Fig. 1(a) in the main text). The baseline dynamics are equivalent to a

random walk on a one-dimensional ring, and the baseline rate matrix is given by (S71).

We assume that a single transition is coupled to the extraction of Θ work, without heat generation or internal

entropy change (q = 0 and s = 0). The reverse of this transition removes the same amount of energy from the

system’s internal work reservoir. Without loss of generality, we assume that such specific reaction is 1
[

k]k�2. Note
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Figure S3. A unicyclic system with transi-
tions across the n states with symmetric
back-and-forth rates k, as discussed in the
main text. Work Θ is gained every time
the system undergoes the transition 1→ 2,
while the work Θ is lost in the reverse tran-
sition 2→ 1.

that in the main text we have chosen to set the units of k = 1 without loss of generality. However, we have kept k

explicit in the rest of the SM. For this system, the baseline steady state is uniform, πi = 1/n, and the payoff vector is

given by

ψLR = ψM = (kΘ,−kΘ, 0, . . . , 0) . (S74)

In the rest of this section, we analyze this model in the LR and FE regime. We will also discuss the validity of

these approximation in terms of the model parameters.

3.2 Static environment: LR regime

We first consider the LR solution (S13). Recall that work Θ is extracted from the environment during transitions

from states 1 → 2, and its reverse reaction requires the same amount of work to be invested. Combining (S74)

with (S5), πi = 1/n, and D = 1√
n
In gives v = kβΘ

2
√
n

(1,−1, 0, . . . , 0). In addition, since R obeys detailed balance,

R = A. Finally, it is easy to verify thatM = D−1AD = A = R. Thus,M has the same eigendecomposition as R.

The normalized eigenvectors ofM are given by (S73).

We can compute Ωa = 〈v,m(a)〉/β for a = 2, . . . , n, using the eigenvector set given in (S73),which simply yields

Ωa =
kΘ

2n
(1− ωa) . (S75)

Next, we compute the maximum power difference attainable using (S13):

∆Ẇ ∗LR =

n∑

a=2

β |Ωa|2
−λa

= βk

(
Θ

2n

)2 n∑

a=2

|1− ωa|2

2
[
1− cos

(
2π(a−1)

n

)]

= βk

(
Θ

2n

)2 n∑

a=2

1 = βk

(
Θ

2n

)2

(n− 1) . (S76)
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On the other hand, continuing with odd n, it is also possible to compute the deviation of the optimal distribution

from stationary distribution using (S13),

∆p∗ = p∗ − π = β

n∑

a=2

Ω†aDm(a)

−λa
, (S77)

which is depicted in Fig. S4(a). (Note that, due to our choice of a complex-valued eigenbasis, we must be careful in

adding the complex conjugate on the Ωa, following the ordering of the operatorM+ in (S13).) Now, component by

component, we can rewrite (S77) as

∆p∗i =
βΘ

4n2

n∑

a=2

(1− ωa)†ωi−1
a

1− cos
(

2π(a−1)
n

)

=
βΘ

4n2

n∑

a=2

cos
(

2π(a−1)(i−1)
n

)
− cos

(
2π(a−1)(i−2)

n

)

1− cos
(

2π(a−1)
n

)

=
βΘ

4n2


−

n∑

a=2

cos

(
2π(a− 1)(i− 2)

n

)
−

n∑

a=2

sin
(

2π(a−1)(i−2)
n

)
sin
(

2π(a−1)
n

)

1− cos
(

2π(a−1)
n

)


 . (S78)

In the first line, we used the expressions for Ωa from (S75), λa from (S72), m(a) from (S73), and D = I/
√
n

and then simplified. In the second line, we expanded (1 − ωa)
†ωi−1
a = ωi−1

a − ωi−2
a into real and imaginary

components and then used that the imaginary components cancel over the sum. In the last line, we used the identity

cos(x + y) = cos(x) cos(y) − sin(x) sin(y) for x = 2π(a−1)(i−2)
n and y = 2π(a−1)

n and then simplified. It can be

verified that the first series in (S78) sums to−1. The second series is trickier but can be simplified using trigonometric

methods as shown in Ref. [43]. Plugging in that solution and simplifying gives the very simple expression:

∆p∗i =
βΘ

4n2





2(i− 1)− (n+ 1) for i = 2, . . . , n

(n− 1) for i = 1

. (S79)

Thus, in the LR regime, the optimal distribution builds up in equal increments starting at i = 2 until the optimal state

i = 1, after which it falls off a cliff. This is shown in Fig. S4.

Note that it is possible to compute the probability current across the transition 1 → 2, which we also leave as an

exercise to the reader:

k(p∗1 − p∗2) =
kβΘ

2n

(
n− 1

n

)
. (S80)

The expressions (S14) and (S15) suggest which values of Θ will cause the optimal solution to be in the LR regime.

In this case, however, it is possible to work out the norm ‖p∗ − π‖ exactly:

‖∆p∗‖ =
βΘ

4n2

[
n∑

x=2

(2x− n− 3)2 + (n− 1)2

]1/2

=
βΘ

4
√

3

√
n2 − 1

n3
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Figure S4. The optimal ∆p∗ (deviation of opti-
mal distribution from the uniform baseline steady
state) given (S79). The optimal distribution ex-
hibits a clockwise cyclic current given by (S80),
The magnitude of ∆p∗ decays as∼ n−1, so larger
rings will result in optimal distributions that are
closer to the baseline steady state.

which implies that the LR regime is valid when

‖p∗ − π‖ � 1⇔ Θ� 4
√

3

β

√
n3

n2 − 1
(S81)

In this case, the larger the number of states n in the ring, the wider the interval of Θ values that will make the

optimal solution fall into the LR regime, i.e. for large n we will obtain

Θ� 4
√

3

β

√
n.

3.2 Static environment: FE Regime

Consider the FE expressions (S32) with (S74). Notice that i∗ = 1, ∆ψM
2 = ψM

i∗ − ψM
2 = 2kΘ and ∆ψM

n =

ψM
i∗ − ψM

n = kΘ, while R21 = Rn1 = k, R11 = −2k and Rj1 = 0 for all j 6= 2, n. Hence, for a > 1, we obtain

p∗a =
Ra1

β∆ψM
a +R11

=





1
2(βΘ−1) a = 2

1
βΘ−2 a = n

0 otherwise

p∗1 = 1−
n∑

a=2

p∗a = 1− 3βΘ− 4

2(βΘ− 1)(βΘ− 2)
.

(S82)

The maximum power gain is given by Eq. (12),

∆Ẇ ∗FE = ψM
1 + β−1

n∑

a=2

Ra1 (ln p∗a − 1) (S83)

= k(Θ− 2/β)− kβ−1 ln [2(βΘ− 1)(βΘ− 2)] . (S84)

Here we used the fact that, for this model, 〈π, ψM〉 = 0.
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3.3 Unicyclic model: Fluctuating environment

We now extend our analysis by considering a more elaborate model, illustrated in Fig. 1(b) in the main text.

Here, the rate of work extraction can depend on the state of an explicitly modeled environment, requiring the use of

techniques developed in Sec. 2. We will derive bounds on maximum power gain under the Local control assumption

(see Sec. 2 1 a).

Suppose that the system X and environment Y both have n states, and they individually undergo transitions over

a ring of n states. The baseline dynamics for system X is given by the unbiased random walk as in discussed in

Sec. 3.2. The baseline dynamics over environment Y are given by a biased random walk parameterized as in (S85)

(see below). Crucially, the work gained by the system X depends on the state of Y . Specifically, Θ of work is

delivered each time system X undergoes the transition X = y to X = y + 1, where y is the state of environment Y .

We parameterize the transition rates over Y in the following manner:

RYy′y =





q ; y′ = y + 1 mod n

(1 + ε)q ; y′ = y − 1 mod n

−(2 + ε)q ; y′ = y

0 ; otherwise

, (S85)

for asymmetry parameter ε. When the states of Y are arranged as ring and numbered following the convention of

a clock and ε > 0, the state of the environment tends to cycle counterclockwise. It may be verified that the global

dynamics are bipartite and independent, i.e. R = RX⊗IY +IX⊗RY , andR ∈ Rn2×n2 is an irreducible rate matrix.

Thus, the Independent agent-and-environment assumption (S44) is satisfied, since there is no explicit dependence of

x in the transitions of the Y partition, RY , and vice-versa.

Owing to the symmetry of the setup, the baseline steady-state distribution is uniform, πxy = 1/n2, ∀x, y. Moreover,

πxy = πxπy with πx = πy = 1/n, and therefore also py = 1/n.

3.4 LR regime

As discussed in Sec. 2 2 c, we consider the eigensystems of the matrices MX and MY . In this example D =

(1/n)In2 , andM = A = (R+RT )/2. By symmetry RX = (RX)T , while (for ε 6= 1) RY 6= (RY )T . Let us denote

QY := (RY + (RY )T )/2 such thatM = RX ⊗ IY + IX ⊗QY . In matrix form:
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QY =




−(2 + ε)q (1 + ε
2)q 0 · · · (1 + ε

2)q

(1 + ε
2)q −(2 + ε)q (1 + ε

2)q · · · 0

0 (1 + ε
2)q −(2 + ε)q · · · 0

...
...

... . . . ...

(1 + ε
2)q 0 0 · · · −(2 + ε)q




. (S86)

Next, consider the orthonormal eigensystems
(
λXa ,m

X
(a)

)
of RX and

(
λYb ,m

Y
(b)

)
of QY with indexes a, b =

1, . . . , n. As shown above, λX1 = λY1 = 0, which correspond to the steady states of X and Y , i.e. mX
(1)x =

√
πx =

√
1/n =

√
πy = mY

(1)y. The eigensystem ofM is given by
{
λab = λXa + λYb ,m(ab) = mX

(a) ⊗mY
(b)

}
.

From the properties of circulant matrices [42],

λab = −2k

[
1− cos

(
2π(a− 1)

n

)]
− q(2 + ε)

[
1− cos

(
2π(b− 1)

n

)]
(S87)

Note that, for odd n (odd n2), the eigenvalues are four times degenerate, since transformations like a→ n+ 2− a or

b→ n+ 2− b yield the same eigenvalue of 1 < a, b < (n+ 1)/2. For even n (even n2) there is a set of eigenvalues

that are only twice degenerate, namely those indexed as {a(n/2 + 1)} with 1 < a < n/2 + 1, and those indexed as

{(n/2 + 1)b} with 1 < b < n/2 + 1, plus a single non-degenerate eigenvalue at ab = (n/2 + 1)(n/2 + 1).

The orthonormal eigenvector system is given by
{
m(ab) = m(a) ⊗m(b)

}
, where m(c) :=

n−1/2
(
1, ωc, ω

2
c , . . . , ω

n−1
c

)
and ωc := ei2π(c−1)/n for c = a, b. Hence,

m(ab) =
1

n

(
1, ωa, ω

2
a, . . . , ω

n−1
a

)
⊗
(
1, ωb, ω

2
b , . . . , ω

n−1
b

)
, (S88)

which can be written in xy coordinates as

[
m(ab)

]
xy

=
1

n
ωx−1
a ωy−1

b =
1

n
e

2πi

n
[(a−1)(x−1)+(b−1)(y−1)] . (S89)

In this case, it is convenient to work in the complex form for the eigenvector system.

We are now in a position to compute ∆Ẇ ∗LR and p∗. Recall the definition of v from (S5). By symmetryRT lnπ = 0

and, by assumption, q = s = 0. Hence, v = β
2Dd. The driving vector d ∈ Rn2 is given by

dxy =





kΘ
(
δxy − δ(x+1)y

)
x = 1, . . . , n− 1

kΘ (δxy − δ1y) x = n

, ∀y = 1, . . . , n . (S90)

Thus, the dot product

〈v,m(ab)〉 =
βkΘ

2n2


 ∑

x 6=n,y

(
δxy − δ(x+1)y

)
ωx−1
a ωy−1

b +
∑

y

(δny − δ1y)ω
n−1
a ωy−1

b
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=
βkΘ

2n2


∑

x 6=n

(
ωx−1
a ωx−1

b − ωx−1
a ωxb

)
+ ωn−1

a

(
ωn−1
b − 1

)



=
βkΘ

2n2

∑

x

ωx−1
a+b−1(1− ωb) . (S91)

Hence, the dot product squared can be written, with a bit of algebra, as

|〈v,m(ab)〉|2 =

(
βkΘ

2n2

)2

|1− ωb|2
∣∣∣∣∣
∑

x

ωx−1
a+b−1

∣∣∣∣∣

2

=

(
βkΘ

2n

)2

2

[
1− cos

(
2π(b− 1)

n

)]
δ (a+ b mod n, 2) .

(S92)

Since we will sum 1 < a ≤ n and 1 ≤ b ≤ n, then 1 < a + b ≤ 2n and hence a + b modn ≡ 2 iff b = n− a + 2.

Therefore,

∆Ẇ ∗LR = β

(
kΘ

2n

)2∑

a>1

1− cos
(

2π(n−a+1)
n

)

k
[
1− cos

(
2π(a−1)

n

)]
+ q

(
1 + ε

2

) [
1− cos

(
2π(n−a+1)

n

)] . (S93)

Now observe that cos
(

2π(n−a+1)
n

)
= cos

(
2π(a−1)

n

)
, so the summation above reduces to

∆Ẇ ∗LR = kβΘ2 (n− 1)

4n2(1 + ξ)
. (S94)

where we used ξ := q
(
1 + ε

2

)
/k to simplify notation. This is our main result for the fluctuating environment model,

which appears as Eq. (17) in the main text.

Some interesting limiting cases are

• q
(
1 + ε

2

)
� k, where the agent’s baseline dynamics is much faster than the environment’s. Then,

∆Ẇ ∗LR = kβΘ2 (n− 1)

4n2

(
1− ξ +O(ξ2)

)

=
[
k − q

(
1 +

ε

2

)]
βΘ2 (n− 1)

2n2

(
1 +O(ξ2)

)
,

(S95)

which coincides with (S76) if q → 0.

• q
(
1 + ε

2

)
� k where the environment’s baseline dynamics is much faster than the agent’s. Then,

∆Ẇ ∗LR ≈ βΘ2k

ξ

(n− 1)

4n2
= βΘ2 k2

(
1 + ε

2

) (n− 1)

4n2
. (S96)

These limiting cases are closely related to our results in Sec. 1.1. Essentially, if one of the two timescales (either

the agent’s or the environment’s) is much faster than the other, then the system is equivalent to the static ring with n

states. Within the LR regime, the approximated solution of ∆p∗ can also be found using (S59) as

∆p∗xy =
βΘ

4n3

∑

a>1

(1− ω−1
a )ωx−ya

(1 + ξ)[1− cos
(

2π(a−1)
n

)
]
, (S97)
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with ωa := ei2π(a−1)/n. Similarly to Section 3.2, the solution can be computed exactly computed to give:

∆p∗xy =
βΘ

4n3(1 + ξ)





2(x− y)− (n+ 1) for x− y = 1, . . . , n− 1

(n− 1) for x = y

, (S98)

The proof of (S98), which is left as an exercise to the reader, follows the same logic as the derivation of (S79).

Plotting ∆p∗xy0 for some fixed value of y0 yields a graph equivalent to Fig. S4 after transforming Θ→ Θ/(1 + ξ) and

adding the respective n factors. Here, the sharp probability deviation drop occurs at x = x∗y = y0 → y0 + 1.

3.5 Fluctuating environment: FE regime

We now consider the FE regime in the fluctuating environment. We first compute the Macroscopic Regime

approximation (S63),

∆Ẇ ∗M =
∑

y

ψM
x∗yy

n
− 〈π, ψM〉 = kΘ , (S99)

where we used πy = 1/n, the expression (S90) for d, and the fact that x∗y = y. We also used that 〈π, ψM〉 = 0,

which is easy to show given the symmetries of (S90). Then, using all of the above, plus the definition of the effective

transition ratesRxy in (S65),

Rxy =
1

n

∑

y′

R(x,y)(x∗
y′=y

′,y′) =
1

n

∑

y′

(
δyy′R

X
x′y′ + δxy′R

Y
y′y

)
=

1

n

(
RXxy +RYyx

)

=





(k + q)/n y = x+ 1 mod n

− [2k + (2 + ε)q] /n x = y

[k + (1 + ε)q] /n x = y + 1 mod n

0 otherwise

. (S100)

At this point, we apply (S69) to obtain:

p∗x 6=x∗y|y =





k+q
kβΘ−2k−(2+ε)q y = x+ 1 mod n

k+(1+ε)q
2kβΘ−2k−(2+ε)q x = y + 1 mod n

0 otherwise

. (S101)

while, for x = x∗y = y,

p∗x=y|y = 1−
∑

x 6=y
p∗x|y = 1− k + q

kβΘ− 2k − (2 + ε)q
− k + (1 + ε)q

2kβΘ− 2k − (2 + ε)q
. (S102)
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Joint distributions are simply obtained by p∗xy = p∗yp
∗
x|y = πyp

∗
x|y = p∗x|y/n. On the other hand, to solve for the

maximum power gain in the FE regime, we use (S70) to obtain:

∆Ẇ ∗FE = ∆Ẇ ∗M +
∑

y
x=y+1 mod n

Rxy
(

ln p∗x|y − 1
)

+
∑

x
y=x+1 mod n

Rxy
(

ln p∗x|y − 1
)

= ∆Ẇ ∗M + nR(y+1)y

(
ln p∗x=y+1|y − 1

)
+ nR(y−1)y

(
ln p∗x=y−1|y − 1

)
. (S103)
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Figure S5. We consider a unicyclic system
with transitions across the n states with
symmetric back-and-forth rates k. A single
state, labelled by i = 1, leads to a flux of
work input with power θ.

4. Alternative unicyclic model

In this section, we consider an alternative unicyclic model (see Fig. S5), different from the one studied in Sec. 3.

We restrict our analysis to the case of a static environment, using techniques developed in Sec. 1.

In this model, the baseline dynamics are once again unicyclic with symmetric rates, as in Sec. 3.2. However, the

transmission of work to the system from the environment operates differently. In this model, power transfer is not

coupled to transitions. Instead, a single state leads to an internal flux of work from the environment; without loss of

generality, we choose this state to be i = 1. In other words, the symmetry of the ring is broken by the presence of a

highly energetic state (i = 1), however there is no preferential direction for the probability current. The power output

when the system is in state 1 is given by the parameter θ, which carries the same units as Ẇ . The baseline steady

state is uniform, πi = 1/n. We assume that q = 0 and s = 0, so the payoff vector is given by

ψLR = ψM = (θ, 0, . . . , 0) . (S104)

This section provides another illustration of how our theoretical framework unfolds in different scenarios. Note

that this model is not discussed in the main text, and only appears here in the SM. Below we consider both the LR

and FE regimes.
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Figure S6. The optimal ∆p∗ (the deviation of the
optimal distribution from the uniform baseline
steady state) from (S108). Note that there optimal
distribution does not lead to a cyclic current.

4.1 Static environment: LR Regime

Using the eigensystem discussed in discussed in Sec. 3.1, the expression for LR maximum power gain is Let us

begin by computing the expression for maximum power gain in the LR regime, recall,

∆Ẇ ∗LR = β

n∑

a=2

Ω2
a

−λa
, (S105)

with Ωa = 〈v,m(a)〉, where the vectors m(a) correspond to the eigensystem discussed in discussed in Sec. 3.1, i.e.

in (S73). On the other hand, here v = βθ
2
√
n

(1, 0, . . . , 0). The latter is obtained by construction using (S4) and (S5).

Thus,

Ωa =
θ

2n
.

For large even n, it is possible to show that [44]

n/2∑

a=2

1

1− cos
(

2π(a−1)
n

) ' n2

12
+O(1) , (S106)

which allows us to write

∆Ẇ ∗LR '
β

12k

(
θ

2

)2

. (S107)

If we wanted to approximate the result above for a large odd n, we would need to add a term proportional to 1/4n2,

which is of second order, hence the leading order is still captured by expression (S107).

We can also study the optimal distribution using (S13),

∆p∗ = β

n∑

a=2

Ω†aDm(a)

−λa
=

βθ

4kn2

n∑

a=2

u(a)

1− cos
(

2π(a−1)
n

) (S108)

with u(a) :=
(
1, wa, w

2
a, . . . , w

n−1
a

)
. This is computed numerically and its behavior is shown in Fig. S4(b). We leave

this computation as an exercise to the reader.
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Expression (S15) suggests sufficiency conditions for when the optimum will be in the LR regime. Note that, in this

case, maxa>1 Ωa = θ/2n while

min
a>1
−λa = 4kmin

a>1
sin2

(
π(a− 1)

n

)
= 4k sin2

(π
n

)
.

Then, using ‖D‖ = 1/
√
n, condition (S15) will read as:

θ

2n
� 4k

√
n

β(n− 1)
sin2

(π
n

)
⇔ θ � 8

√
nk

β

(
n

n− 1

)
sin2

(π
n

)
. (S109)

For sufficiently large n, we can approximate sin2(πn) ≈ (πn)2, so the LR regime is valid when

θ � 8π2

n3/2

k

β
. (S110)

Expression (S15), however, is not necessarily a tight bound. That is, the result here obtained is a sufficient condition

for the LR regime to be valid, but not always a necessary one.

4.1 FE Regime

We now analyze the FE regime of model shown in Fig. S5(b). Following a similar procedure as above, we have

i∗ = 1, ∆ψM
2 = ∆ψM

n = θ, R21 = Rn1 = k, R11 = −2k and Rj1 = 0 for all j 6= 2, n. Thus, for a > 1, we obtain:

pa =
Ra1

∆ψM
a +R11

=
1

βθ/k − 2
(δ2a + δna)

p∗1 = 1−
n∑

a=2

p∗a =
βθ/2k − 2

βθ/2k − 1
.

(S111)

Note that, for this example, 〈π, ψM〉 = θ/n. Therefore,

∆Ẇ ∗FE = ψM
1 − 〈π, ψM〉+ β−1

n∑

a=2

Ra1 (ln p∗a − 1)

= θ

(
n− 1

n

)
− 2kβ−1

[
1 + ln

(
βθk−1 − 2

)]
. (S112)
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5. Glucose Transporter

We illustrate our approach on a biologically-inspired example of a membrane-bound transporter. Although this

example is highly idealized and simplified, its goal is to show in general terms how our methods can be used to study

biological questions.

We consider a system X and environment Y , where X is a membrane-bound transporter protein (e.g., in an E.

coli) and Y indicates the absence/presence of extracellular glucose. Specifically, X is the coarse-grained state of

nAA amino acids that make up a transporter protein. We use an order-of-magnitude estimate of nAA = 500 [45]. X

can be in one of two macrostates: x = 0 when the amino acids are free-floating and in equilibrium in the intracellular

medium, and x = 1 when the amino acids are polymerized into a protein. The unpolymerized state has a much larger

equilibrium entropy, due to the sequence and spatial degrees of freedom of the free-floating amino acids. For each

free-floating amino acid, the entropy increase due to sequence freedom is ≈ ln 20 while the entropy increase due to

spatial freedom can be roughly approximated as ≈ 20 nats, as the log ratio of the volume of an E. coli, ≈ 10−18m3,

and a protein, ≈ 10−27m3 [46, 47]. Combining gives internal entropy of sxy = δx,0nAA(ln 20 + 20) [7]. The

environment Y can also be in one of two states: y = 0 when there is no glucose in the environment, and y = 1 when

there is glucose. When both glucose and transporter are present, x = 1 and y = 1, transport takes place at an uptake

rate γ glucose/sec. This is represented by a power output/input observables wxy = dxy = δx,1δy,1γη, where η is

joules of energy acquired for each glucose molecule. We suppose that the cell is growing in anaerobic conditions and

metabolizing 2 ATP per glucose via fermentation, so η = 2× 20 kBT (kBT ≡ 1/β is taken to be room temperature).

We use a typical value of nAA = 500 amino acids per transporter.

The baseline processes include two types of transitions. First, X spontaneously transitions from the polymerized

to the unpolymerized macrostate due to degradation and dilution, R(0,y)(1,y) = kd (we assume that this transition is

effectively irreversible). We choose kd = 1/1200 to represent dilution when the cell is growing at a doubling time of

20 minutes. Second, the presence of glucose in the environment randomly fluctuates, R(x,1)(x,0) = R(x,0)(x,1) = kf .

We take kf = kd, so that the extracellular concentration fluctuates once per cell lifetime. One can verify that πx = δx,0

in the baseline steady state due to the irreversible degradation transition, thus power output vanishes in the baseline

steady state.

The control process involves the synthesis of transporters, which is regulated by the presence of extracellular

glucose, R(1,1)(0,1) = ks (we assume this reaction is effectively irreversible). This synthesis releases ≈ nAA80 kT

of heat, due to the hydrolysis of 4 ATP molecules per amino acid and 20 kT of heat per ATP. We set ks = 1/10

representing ≈ 10 s timescale necessary for transcribing and translating a protein [48]. For simplicity, we ignore
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Figure S7. Model of transport of glucose. Left: In blue, the controlled output power difference for real param-
eter values in blue; in orange, the maximum power increase obtained from numerical optimization (S61)
and, in black crosses, the Macroscopic Regime value (see Section 2.3). Inset shows the efficiency of the
process the the same values of γ. Right: Shows the efficiency of the system measured against the maximum
power increase, ∆Ẇ (π̄)/∆Ẇ ∗ as a function of γ.

other thermodynamic costs, such as those associated with active transport, regulation, transcription, etc.

In Fig. S7, we show results as a function of the uptake rate parameter γ (glucose/sec), whose changes can reflect

varying concentration of glucose in macrostate Y = 1 as well as different levels of transporter efficiency. We explore

a range from γ = 0 to the physiologically maximal γ = 100 [48]. The left plot shows the power increase achieved

by the actual control processes, ∆Ẇ (π̄). It also shows the optimal power increase ∆Ẇ ∗ as determined by numerical

optimization (S61), assuming the locality constraint that control processes cannot directly modify the state of Y (as

in (S61)). We also plot the “best response” Macroscopic Regime prediction (see Section 2.3). There is a critical level

of uptake,

γcrit = kdnAA(ln 20 + 20)/ηβ ≈ 0.24, (S113)

for which benefit of the transporter outweighs its minimal cost.

In this model, the free energy scales are such that the nonlinear term can be ignored in our optimization problem,

and the optimal distribution is close to the “best response” Macroscopic Regime distribution described in Section 2.3,

wherex = y if γ > γcrit andx = 0 otherwise. Thus, theMacroscopic Regime prediction,∆Ẇ ∗M = η
2 max(γ−γcrit, 0),

is highly accurate. The inset on the left shows the efficiency calculated as ∆Ẇ (π̄)/∆Ẇ ∗. Efficiency is low at low

uptake rates, due to the inefficiency of translation, but quickly increases to ≈ 1 as γ grows.
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We may also consider accuracy of the Macroscopic approximation by evaluating the parameter α, as defined in

(S19). For simplicity, consider the limit where the environment changes very fast, kf →∞. In this case, the model

is reduced to a two-state system representing the cell only (X ∈ {0, 1}), which is faced with a random environment

where glucose is present half the time. The numerator of (S19) (maximum escape rate) is kd = 1/1200, while the

denominator (macroscopic power increase in units of entropy) is β∆Ẇ ∗M = βψi∗ = γ40/2− 500(ln 20 + 20)/1200

(the factor of 1/2 enters because the glucose is only present half the time). At a realistic uptake value of of γ ≈ 10

glucose/sec, ∆Ẇ ∗M ≈ γ40/2 = 200 and α = (1/1200)/200 ≈ 4× 10−6, as mentioned in the main text.
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6. Quadratic optimization theorem

In this section, we provide a useful theorem for solving the quadratic optimization problems that occurs in our

analysis of the linear response (LR) regime. It uses standard techniques from linear algebra.

Theorem 1. Consider the maximization problem

V = max
z∈Rn:uT z=0,Gz=0

zTMz + 2zT v, (S114)

where M ∈ Rn×n is a negative semidefinite matrix with a single null eigenvector u ∈ Rn, the matrix G ∈ Rn×k

encodes some set of k constraints, and v ∈ Rn is any vector. For convenience, define

Π := I −
[
G
uT
]+ [ G

uT
]

Λ :=

[
I −

(
(−M)1/2Π

)+
(−M)1/2

]
M+. (S115)

The solution is given by:

in the general case: V = −vTM+v + vTΛMΛv z∗ = (Λ−M+)v (S116)

if Π andM commute: V = −vTΠM+Πv z∗ = −M+Πv (S117)

if G = 0: V = −vTM+v z∗ = −M+v (S118)

Proof. We first consider the most general case, (S116). Define the block matrix H :=
[
G
uT
]
, so that Π = I −H+H

is the orthogonal projector onto the kernel of H . Note that for any vector z, the vector Πz satisfies the constraints in

(S114), GΠz = 0 and uTΠz = 0, so for any allowed z we can assume z = Πz. We then eliminate the constraints in

our optimization problem by replacing z by Πz in the objective,

V = max
z
zTΠMΠz + 2(Πz)T v. (S119)

Next, recall thatM is a symmetric matrix with a single null eigenvector u. The orthogonal projector onto the range

ofM is

MM+ = I − uuT . (S120)

The range ofM includes the kernel of H , which means

MM+Π = Π− uuT (I −H+H) = Π, (S121)

as follows from uuTH+H = u([0 1]H)H+H = u[0 1]H = uuT . Using MM+Π = Π from (S121), rewrite the

objective in (S119) as

zTΠMΠz + 2(Πz)T v = zTΠMΠz + 2zTΠMM+v
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= (Πz +M+v)TM(Πz +M+v)− vTM+v

= −(Πz − M̄+v)T M̄(Πz − M̄+v)− vTM+v

= −vTM+v −
∥∥∥M̄1/2Πz − M̄1/2M̄+v

∥∥∥
2
. (S122)

where for convenience we defined the positive semidefinite matrix M̄ = −M . Note that for any A, x, y,

‖Ax− y‖2 =
∥∥AA+y − y +Ax−AA+y

∥∥2

=
∥∥(AA+ − I)y

∥∥2
+
∥∥A(x−A+y)

∥∥2 ≥
∥∥(AA+ − I)y

∥∥2
, (S123)

where in the first line we added and subtractedAA+y, and in the second line used the orthogonality (AA+−I)A = 0.

This lower bound is achieved by any vector of the form,

x∗ = A+y + (I −A+A)g g ∈ Rn. (S124)

Plugging (S123) into (S122) gives

∥∥∥M̄1/2Πz − M̄1/2M̄+v
∥∥∥

2
≥
∥∥∥
[
M̄1/2Π(M̄1/2Π)+ − I

]
M̄1/2M̄+v

∥∥∥
2

=
∥∥∥M̄1/2

[
(M̄1/2Π)+M̄1/2 − I

]
M̄+v

∥∥∥
2

=
∥∥∥M̄1/2

[
I − (M̄1/2Π)+M̄1/2

]
M+v

∥∥∥
2

(S125)

= vTΛM̄Λv = −vTΛMΛv, (S126)

where Λ is defined as in (S115). In the second line, we simplified slightly by using that

Π(AΠ)+ = (AΠ)+ (S127)

for any A whenever Π is an orthogonal projector (see Appendix A in [41]).

The value of V in (S116) follows by combining (S119), (S122), and (S126). To find z∗, using (S124) we know that

the minimum is achieved by

z∗ = (M̄1/2Π)+M̄1/2M̄+v + (I − (M̄1/2Π)+M̄1/2Π)g. (S128)

Recall, however, that any allowed z in the original problem (S114) satisfies z = Πz. Multiplying both sides of (S128)

by Π gives

z∗ = Π(M̄1/2Π)+M̄1/2M̄+v + Π(I − (M̄1/2Π)+M̄1/2Π)g

= (M̄1/2Π)+M̄1/2M̄+v
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≡ −((−M)1/2Π)+(−M)1/2M+v.

In the second line, we used (S127) in the first term, and cancelled the second term by using that Π = (M̄1/2)+M̄1/2Π

and a bit of rearranging.

Next, we consider the special case (S117). Note that if Π commutes withM , then

(M̄1/2Π)+M̄1/2 = Π(M̄1/2)+M̄1/2 = ΠM̄+M̄ = M̄M̄+Π = Π,

where we used (S121). Plugging into (S115) gives Λ = (I −Π)M+, and plugging into (S116) gives z∗ = −ΠM+v,

as in (S117). We also have

ΛMΛ = (I −Π)M+MM+(I −Π)

= (I −Π)M+(I −Π)

= M+ − 2M+Π + ΠM+Π

= M+ −ΠM+Π,

where we used that ΠM+Π = M+ΠΠ = M+Π. Plugging into (S116) and rearranging gives V = −vTΠM+Πv,

as in (S117).

Finally, we consider the special case (S118) where G = 0. Then it can be verified from (S115) and (S120) that

Π = MM+. Plugging into (S117) and simplifying gives (S118).
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Abstract
Cooperative interactions pervade in a broad range of many-body populations, such as ecological
communities, social organizations, and economic webs. We investigate the dynamics of a
population of two equivalent species A and B that are driven by cooperative and symmetric
interactions between these species. For an isolated population, we determine the probability to
reach fixation, where only one species remains, as a function of the initial concentrations of the two
species, as well as the time to reach fixation. The latter scales exponentially with the population
size. When members of each species migrate into the population at rate λ and replace a randomly
selected individual, surprisingly rich dynamics ensues. Ostensibly, the population reaches a steady
state, but the steady-state population distribution undergoes a unimodal to trimodal transition as
the migration rate decreases below a critical value λc. In the low-migration regime, λ < λc, the
steady state is not truly steady, but instead strongly fluctuates between near-fixation states, where
the population consists of mostly A’s or of mostly B’s. The characteristic time scale of these
fluctuations diverges as λ−1. Thus in spite of the cooperative interaction, a typical snapshot of the
population will contain almost all A’s or almost all B’s.

1. Introduction

Competitive interactions have played a prominent role in the literature of ecological and evolutionary dynam-
ics, as well as in economics and sociology [1–3]. Resource limitations and their impact in defining the outcome
of competition among species has shaped a large part of evolutionary thinking. A counterpoint to competition
is cooperativity in which there are positive interactions and feedback loops between species. These mechanisms
have received increasing attention recently [4, 5]. In fact, it is the presence of cooperative interactions, where
positive reciprocal exchanges are at work, that appear to drive innovations in evolution and also maintain
biodiversity in Nature [5].

Cooperation, or mutualism, has been part of mathematical models of populations since the formulation
of Lotka–Volterra equations [2] and a variety of statistical physics models of human cooperation [6, 7]. In its
most abstract form, two species (for example, A and B in figure 1(a)) ‘help’ each other by means of a mutual
positive interaction; in some cases, both partners completely rely on one another for survival. This feature
underlies the two-species system in figure 1(b), where a given species requires the other to replicate because
each species needs a molecule that is produced by the partner species.

Recent experimental studies have shown that such cooperative populations can in fact be engineered. By
following the scheme in figure 1(b), it is possible to create a completely symmetric pairwise dependence and
make these mixed populations grow on a Petri dish [8–10]. Figure 1(c) shows the outcome of symmetric
competition when each strain is marked with a different fluorescent protein: each strain locally out competes
the other, thereby generating stripes of segregated domains. The cooperatively interacting population, on the
other hand, constrains both species to remain in proximity, leading to a well-mixed population (figure 1(d)).
These simple engineered, or synthetic, bacterial populations, which can be tuned so that they become virtually

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. In pairwise cooperation (a) the replication (closed arrows) of a given species A requires the help of B and vice versa.
This feedback occurs, for example, when two types of bacteria A and B each lack a metabolite for reproduction that is supplied by
the other species (small circles in (b)). Such cooperative feedbacks are commonplace and help maintaining diversity.
Experimental set-ups using engineered bacteria (c) and (d) reveal the marked difference between competitive and cooperative
interactions. In (c), two equal competitors grow on a Petri dish and locally exclude each other, as shown by the growing bands that
indicate the presence of only one strain. With cooperativity (d), the mutual dependency drives both strains to persist and mix.

symmetric, allow one to explore the fundamental dynamical features of interacting living consortia and also
study the impact of stochasticity [11–13].

In this paper, we present an analytic approach to understand the role of stochasticity in a simple two-
species stochastic model of cooperation. This model represents a special case of evolutionary game dynamics
[14–17], with a specific and particularly simple form of the payoff matrix. We emphasize that we are not treat-
ing a general ecological model, but rather a simplified system in which only cooperative interactions occur.
This scenario appears to be more relevant for the microbiome [18–20]. Current advances in microbial ecology
involve experimental setups with a small number of interacting species [21, 22]. In this model, we treat both
closed and open populations, in which there is either no migration or a finite rate of migration into the popula-
tion, respectively. We define microscopic rules that incorporate both cooperativity, in which each species helps
the other, as well as neutrality, in which neither species is preferred over the other. We first determine the steady
state of the population in the absence of stochastic fluctuations. For a finite population, we then incorporate
stochasticity and determine the time until fixation is reached for the situation where no migration can occur.
When migration is allowed (with compensatory removal), the population now reaches a steady state; however,
the character of this steady state dramatically changes as function of the migration rate. For large migration
rate, both species are present in roughly equal abundances. However, for a sufficiently small migration rate,
the population strongly fluctuates between consisting of nearly all A or all B. Thus a typical realization of the
population has a completely different character that the average population. This change in behavior is mir-
rored by a bimodal to trimodal transition in the shape of the steady-state probability distribution of species
abundances.

In section 2, we outline basic features of our two-species cooperation model in the absence of migration.
We solve the model in the mean-field approximation and then include the role of stochasticity due to the
finiteness of the population. For a finite population, we determine the fixation probability as a function of the
initial population composition and the time until fixation, where only a single species remains. In section 5,
we incorporate migratory inflow, with compensatory removal, so that the population size remains fixed and
reaches a steady state. We discuss basic features of this steady state, including the intriguing feature that the
species abundances can exhibit huge fluctuations, even though time-averaged properties are constant. We give
some concluding remarks in section 6.

2. Two-species cooperation

We investigate a finite population of N particles, with n of species A and N − n of species B. The population
undergoes repeated reaction events in which each event consists of the following steps (figure 2):

(a) Pick a random pair of particles.

(b) If the pair is AB, one member of this pair reproduces; if the pair is AA or BB, nothing happens.

(c) The newly reproduced offspring replaces one randomly selected particle in the remainder of the
population.

2



J.Phys.Complex. 3 (2022) 015011 (15pp) J Piñero et al

Figure 2. The reaction step in two-species cooperation. Two randomly selected particles happen to be from different species,
namely A and B (red and blue). One of them reproduces (B, blue), an event that is aided by the presence of the other (A, red). The
offspring replaces another randomly selected particle from the remainder of the population. In the example shown, the newly
generated B replaces an A.

Thus interactions between members of different species are cooperative in nature, while members of the
same species are non interacting. The replacement step (iii) ensures that the total population remains fixed. The
lack of interactions between AA and BB pairs follows from the assumption of strict mutualism, i.e., replication
occurs if and only if both species are present (as sketched in figure 2). After each update, time is incremented by
1
N . This time increment corresponds to each particle undergoing, on average, steps (i)–(iii) in a single time unit.
While this dynamics manifestly conserves the total number of particles, the composition of the population can
change. When the population consists entirely of a single species—either all A’s or all B’s—there is no further
dynamics and the population fixates.

If an A reproduces in a single interaction, then with probability 1 − n
N ≡ 1 − x, the A offspring replaces a

B and n → n + 1. Conversely, with probability x = n
N , the A offspring replaces an existing A so that n does not

change. The probability an at which n → n + 1 therefore is

an = 2x(1 − x) × 1

2
× (1 − x) = x(1 − x)2. (1a)

Throughout, we use the variables n and x = n
N interchangeably. In (1a), the factor 2x(1 − x) gives the probabil-

ity a randomly selected pair is AB, the factor 1
2 gives the probability that the A in this pair reproduces, and the

factor 1 − x gives the probability that the A offspring replaces a B. By the same reasoning, when a B reproduces
in an interaction, the probability at which n → n − 1 is

bn = 2x(1 − x) × 1

2
× x = x2(1 − x). (1b)

Here the trailing factor x in (1b) accounts for the probability that the B offspring replaces an A. Finally, the
probability that the number of A’s and B’s does not change is given by

x2 + (1 − x)2 + 2x(1 − x)

[
1

2
x +

1

2
(1 − x)

]
= 1 − x(1 − x) = 1 − an − bn. (1c)

The terms x2 + (1 − x)2 give the probability to pick either an AA or BB pair, for which no change in n occurs.
For the last term, 2x(1 − x) is again the probability of picking an AB pair, while the factor in the square brackets
is the probability that the offspring (either A or B with probability 1

2 ) replaces its own kind so that n does not
change.

3. Mean-field approaches

3.1. Rate equation
Using the probabilities in equation (1), the rate equation for the average number of A’s is

ṅ = N (an − bn) = Nx(1 − x)(1 − 2x), (2a)

3
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or equivalently,

ẋ = x(1 − x)(1 − 2x). (2b)

To keep the notation simple, n and x refer to average values in this section; that is, we do not write angle
brackets. This rate equation has a stable fixed point at x = 1

2 and unstable fixed points at x = 0 and x = 1. The
stability of the fixed point at x = 1

2 arises because the transition probabilities (1) tend to reduce population
imbalances. Thus the steady state in this continuum description is a static population that consists of equal
densities of A’s and B’s. That is, cooperativity promotes diversity in the mean-field description.

The solution to the rate equation (2b) may be straightforwardly obtained by first performing a partial
fraction decomposition:

dt =
dx

x(1 − x)(1 − 2x)
= dx

(
1

x
− 1

1 − x
+

4

1 − 2x

)
,

from which

t =

∫ x

x0

dy

(
1

y
− 1

1 − y
+

4

1 − 2y

)
= −4 ln

x(1 − x)(1 − 2x)

x0(1 − x0)(1 − 2x0)
.

We then obtain x(t) by solving the resulting cubic equation. For t → ∞, the limiting behavior is

x(t) � 1

2
− 2x0(1 − x0)(1 − 2x0)e−t/4, (3)

so that the stable fixed point x∗ = 1
2 is approached exponentially quickly in time.

3.2. Master equation and its moments
In the stochastic dynamics where n is a discrete variable, the true fixed points are at x = 0 and x = 1. Even
though the fixed point at x∗ = 1

2 is stable in the continuum limit, stochastic fluctuations allow the population to
explore the full state space and eventually get trapped at either x = 0 or x = 1. This behavior is analogous to the
extinction phenomena that arise, for example, in the logistic birth-death process, A → 2A and 2A → 0, as well
as other reactions of this genre [23–26]. In these reactions, the rate equation predicts a steady population, Ns,
which is determined by the balance between the birth and death rates. However, in the true stochastic dynamics,
the population fluctuates around Ns, which actually is the quasi steady-state value. Ultimately, a sufficiently
large fluctuation occurs that leads to extinction, from which there can be no escape, with an extinction time
that scales exponentially in Ns [23–27].

To understand the stochastic dynamics for two-species cooperation, we study Pn(t), the probability that the
population consists of n A’s and (N − n) B’s at time t. The time dependence of this probability distribution is
given by

Ṗn = N
[
an−1Pn−1 + bn+1Pn+1 − (an + bn) Pn

]
. (4)

When the number of particles N is small, the set of equation (4) can be straightforwardly solved. For the initial
condition of equal numbers of A’s and B’s, both P0(t) and PN(t) approach 1

2 as t → ∞, while all the other Pn(t)
vanish exponentially quickly in time. This direct approach quickly becomes tedious as N increases, however,
and to gain insight into the long-time dynamics for general N, it is useful to study low-order moments of Pn.
From equation (4) and using an and bn from equation (1), the first moment obeys

〈ẋ〉 =
1

N

∑

n

nṖn =
∑

1�n�N

{nan−1Pn−1 + nbn+1Pn+1 − n (an + bn) Pn}

=
∑

1�n�N

{(n + 1)anPn + (n − 1)bnPn − n (an + bn) Pn}

=
∑

1�n�N

(an − bn)Pn = 〈x(1 − x)(1 − 2x)〉. (5a)

Here we now explicitly write angle brackets to denote average values. Under the assumption of no
correlations, that is, 〈xk〉 = 〈x〉k, (5a) reproduces the rate equation (2b).

Similarly, the equation of motion for the second moment is

4
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〈ẋ2〉 =
1

N2

∑

n

n2Ṗn =
1

N

∑

1�n�N

{
n2an−1Pn−1 + n2bn+1Pn+1 − n2 (an + bn) Pn

}

=
1

N

∑

1�n�N

{
(n + 1)2anPn + (n − 1)2bnPn − n2 (an + bn) Pn

}

=
1

N
〈x(1 − x)〉 + 2〈x2(1 − x)(1 − 2x)〉. (5b)

It is more convenient to express (5a) and (5b) in terms of z ≡ 2x − 1, which lies in the range [−1, 1]. Doing
so, we obtain

〈ż〉 = −1

2
〈z(1 − z2)〉

〈ż2〉 = 〈(1 − z2)

(
1

N
− z2

)
〉,

(6)

which are both symmetric about z = 0. If we make the assumption of no correlations, that is, 〈zk〉 = 〈z〉k, then
the first equation reproduces the result that z = 0 is a stable fixed point. The second equation then predicts
that the width of the distribution initially grows and eventually ‘sticks’ at the value

√
N. To check this point,

we numerically integrated equation (4) for small values of N. From the resulting solution, we find that the
width of the probability distribution initially grows with time and later approaches a nearly fixed value that
is proportional to

√
N. However, at very long times, there is slow leakage of the probability distribution to

the true stochastic fixed points at z = ±1. Thus the probability distribution eventually approaches two delta-
function peaks at these fixed points. This behavior cannot be captured by low-order moment equations, such
as (6). Instead, we need to study the full stochastic dynamics; this is done in the following section.

4. Fixation probability and fixation time

We now turn to two quantities of primary interest in the stochastic dynamics, namely, (i) the fixation (or
exit) probability En, and (ii) the fixation time Tn. The fixation probability En is defined as the probability that a
population of size N that initially contains n particles of type A reaches the static fixation state of all A’s. We use
the backward Kolmogorov equation [28, 29] to compute the fixation probability. In this approach, En satisfies
the recursion

En = anEn+1 + bnEn−1 + (1 − an − bn) En. (7)

Since the process renews itself after each event, we can express the fixation probability from the state that
contains n A’s in terms of the appropriately weighted average of the fixation probabilities after a single step
to the states n − 1, n, and n + 1. The weights are merely the hopping probabilities to these respective states.
Equation (7) is subject to the boundary conditions E0 = 0 and EN = 1. The first condition corresponds to the
impossibility of reaching a population of all A’s if the initial state contains no A’s, while the second condition
corresponds to the initial state coinciding with the desired final state of all A’s.

The solution to (7) is (see appendix A for the calculational details)

En =

n−1∑

m=0

[(
N − 1

m

)]−1 /N−1∑

m=0

[(
N − 1

m

)]−1

. (8)

Neither of these sums has a closed form, but for N → ∞ the denominator approaches 2 [30]. For N 
 1, En

and its continuum counterpart E(x) (see also appendix A) are nearly independent of x = n
N when x is not close

to 0 or 1. Figure 3 shows this dependence of En on n. Also shown are the corresponding results from discrete
simulations of the fixation process. Simulations are carried out by setting a finite size (N) array of particles
with two possible states. Each iteration the particles interact following rules (ii) and (iii) with the interaction
rates given by expressions (1a) and (1b). Time is updated by Δt = [N (an + bn)]−1 after each iteration.

The anti-sigmoidal shape of En arises from the underlying drift that tends to drive any initial population
towards x = 1

2 . Eventually, a large and rare stochastic fluctuation causes the population to escape this effective
potential well and reach fixation. This anti-sigmoidal shape also strongly contrasts with the Moran process
[31], which is symmetric (neutral), but non-cooperative. Here an AB pair equiprobably converts to either AA
or to BB. As a result of this lack of cooperativity, the fixation probability in the strictly neutral Moran process
is simply the linear function E(x) = x [29, 31–33].

We now investigate the fixation time Tn, which is defined as the average time for the population of N
particles to first reach either of the two fixation states, n = 0 or n = N, when the population initially contains

5
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Figure 3. Dependence of the discrete and continuum fixation probabilities, En and E(x), versus x for the cases N = 8 and 16. The
smooth curves represent E(x) from equation (A.5) and the dots represent simulation results.

n A’s. Within the same backward Kolmogorov framework as that used for the fixation probability, the fixation
time satisfies [28, 29]

Tn = anTn+1 + bnTn−1 + (1 − an − bn) Tn + δt. (9)

Again Tn may be expressed as the appropriately weighted average of the fixation time after a single hopping
event to the states n − 1, n, and n + 1, plus the time δt = 1

N required for this single step. The latter corresponds
to each particle being updated once, on average, in a single time unit. The equation for Tn is subject to the
boundary conditions T0 = TN = 0; namely, if the population starts in a fixation state, the time to reach this
state is 0. The result for the fixation time is (see appendix B)

Tn = En

N−1∑

m=1

Qm −
n−1∑

m=1

Qm, (10)

where
Qn ≡ αn + rnαn−1 + rnrn−1 αn−2 + · · · + rn rn−1 . . . r2α1,

with Q0 = 0, rn = bn/an, and αn ≡ δt/an.
It does not seem possible to reduce (10) to a compact form, but the main feature of this exact expression

is that the fixation time scales exponentially in N and is nearly independent of n (or, equivalently, x), except
for n close to 0 or to N (figure 4). The exponential dependence on N again arises because of the existence of
an effective potential well, whose depth grows linearly with N, which draws the population toward the state
x = 1

2 . The near independence of the fixation time on the initial condition is a consequence of the population
being drawn toward the bottom of this potential well, where the concentrations of A and B are equal. As a
result, the value of the fixation time for any initial value of x is close to the fixation time when the population
starts from the bottom of the potential well at x = 1

2 .
It is possible, however, to obtain an analytical expression for the average fixation time by the WKB method

[23–26]. The idea of this approach is that the probability distribution settles into a quasi-steady state that
assumes an exponential large-deviation form. From equation (4), there is a slow leakage from this quasi-steady
state to the fixation state whose rate, Γ(N), is given by

Γ(N)δt = b1P̃1 + aN−1P̃N−1 = 2b1P̃1, (11)

i.e., the flux from states that are one step away from fixation to the fixation states. Here the tilde denotes the
steady-state distribution and we also use the symmetry n ↔ N − n. We then identify the inverse of this leakage
rate with the fixation time.

We obtain an approximate equation for the continuum probability distribution P̃n → P̃(x) by setting the
time derivative in the master equation (4) to zero, and writing n ± 1 as x ± δx to give

a(x − δx)P̃(x−δx) + b(x + δx)P̃(x+δx) = [a(x) + b(x)] P̃(x). (12)

We now assume that P̃(x) has the exponential form P̃(x) ∼ eS(x)/δx = eNS0(x)+S1(x)+··· and substitute this form
into (12) to give (up to O(1))

S0(x) =

∫ x

dz log

[
a(z)

b(z)

]
, S1(x) = −1

2
log [a(x)b(x)] . (13)

6
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Figure 4. (a) Dependence of the fixation time Tn versus x = n
N using a data-collapse scheme by resetting the scale

Tn → N e−Nlog2Tn for each N value. This scaling factor corresponds to the prediction made in equation (16). The solid lines follow
the predictions obtained from equation (10). The plot marks {×, + and ∗} correspond to simulated average fixation times for
N = 8, 16 and 24 in blue, green and red colors, respectively. Each data point is obtained by averaging 103 simulated fixation
processes at corresponding values of n and N. (b) Dependence of the fixation time from the symmetric initial state, TN/2 (red dots)
computed by (10) and the WKB prediction for the inverse leakage rate from the quasi-steady state (blue line), following (16).

Now using (1a) and (1b) for a(x) and b(x), we have

P̃(x) ∼ eNS0(x)

x3/2(1 − x)3/2
, (14)

with S0(x) = −x log x − (1 − x)log(1 − x). Note that the action S0(x) is peaked at the quasi-state state x = 1
2 .

We normalize P̃(x) by using the Laplace method for N → ∞ [34],

∫ 1

0

eNS0(x)

x3/2(1 − x)3/2
dx ≈

√
32

N
eN log 2,

so that

P̃(x) � N√
32π

eN[−x log x−(1−x) log(1−x)−log 2]

x3/2(1 − x)3/2
. (15)

We now compute the fixation rate Γ by substituting

P̃

(
1

N

)
� N3

√
32π

e1−N log 2 and b

(
1

N

)
� 1

N2
,

into equation (11) to give

Γ(N) =
N e√

8π
e−N log 2. (16)

We now identify the inverse of this rate with the average fixation time. As shown in figure 4(b), this inverse
rate accurately matches the simulation data for the fixation time.

5. Two-species cooperation with migration

We now incorporate migration into the dynamics, in which particles of either species migrate into the popu-
lation at the same fixed rate λ, and each new particle replaces a randomly selected existing particle. Because
migration is accompanied by replacement, the population size remains fixed, which is the physically most rel-
evant case. Now the population is driven to a steady state rather than to fixation and we want to understand
the nature of this steady state.

5.1. Probability distribution
For a population that consists of n A’s and (N − n) B’s, suppose that the migrant is an A. With probability
1
2 (1 − x), the A migrant replaces a B and n → n + 1, while with probability 1

2 x, the A migrant replaces an A,
and the composition of the population remains the same. Similar reasoning applies when the migrant is a B.
As a result of a migration event, the average change in the number of A’s is 1

2 (1 − x) − 1
2 x. The rate equation

for n now is (compare with equation (2))

〈ṅ〉 = N(1 − λ) [x(1 − x)(1 − 2x)] +
1

2
Nλ(1 − 2x). (17)

7



J.Phys.Complex. 3 (2022) 015011 (15pp) J Piñero et al

For λ > 0, x = 0 and x = 1 are no longer fixed points and only the remaining fixed point at x = 1
2 is stable.

In the absence of fluctuations, the population is thus driven to a steady-state distribution, Pn(t → ∞), that
is peaked about x = 1

2 . Because there is no absorbing state in the stochastic dynamics, we might anticipate a
similar behavior for Pn(t → ∞) when stochasticity is accounted for. We will show, however, that within the
Fokker–Planck approximation the steady-state distribution can either be unimodal or trimodal in shape and
the latter case corresponds to a steady state that is not truly steady.

The probability distribution Pn is now governed by the master equation

Ṗn = N(1 − λ)
[
an−1Pn−1 + bn+1Pn+1 − (an + bn) Pn

]

+ Nλ
[
cn−1Pn−1 + dn+1Pn+1 − (cn + dn) Pn

]
, (18)

with hopping probabilities due to migration that are given by

cn =
1

2

(
1 − n

N

)
dn =

1

2

n

N
. (19)

We now determine the continuum probability distribution in the Fokker–Planck approximation. As we shall
see, this continuum expression for the probability distribution matches simulation data quite well, thus
justifying the Fokker–Planck approximation ex post facto as a way to probe steady-state properties.

In terms of x = n
N , dx = 1

N , Pn → P(x), we expand (18) in a Taylor series up to second order. This gives the
Fokker–Planck equation [28, 35]

Pt = −
{

(1−2x)

[
(1−λ)x(1−x) +

λ

2

]
P(x, t)

}

x

+
1

2N

{[
(1−λ)x(1−x) +

λ

2

]
P(x, t)

}

xx

≡ −{v(x)P(x, t)}x + {D(x)P(x, t)}xx, (20)

where the subscripts denote partial derivatives.
The steady state is defined by solving this equation with the left-hand side set to zero. Integrating once gives

(DP)x − vP = B, where B is a constant. We determine the constant by evaluating this equation at the symmetry
point x = 1

2 . Because the probability distribution is symmetric about x = 1
2 , Px(x = 1

2 ) = 0. Moreover, at x =
1
2 , v = 0 and Dx = 0, which implies that B = 0. Thus we only need to solve (DP)x − vP = 0, whose solution is

P(x) = C exp

{∫ x

dy
v(y) − Dy(y)

D(y)

}
= C exp

{
− log D(x) +

∫ x

dy
v(y)

D(y)

}

=
C

D(x)
exp

{∫ x

dy 2N(1 − 2y)

}

= C′
[

1

(1−λ)x(1−x) + λ
2

]
e2Nx(1−x), (21)

where the constant C′ is determined by normalization.
For λ → 0, P(x) is concentrated near x = 0 and near x = 1; these peaks correspond to the near-fixation

states. Because of rare fluctuations, however, the population stochastically switches between states where
almost all particles are of type A to states where almost all particles are of type B. Naively, one therefore antic-
ipates that the steady-state distribution should be bimodal, with a peak at each of the two near-fixation states.
Unexpectedly, there always remains a peak at x = 1

2 (which may be vanishingly small), so that the this distri-
bution is trimodal in the small-λ regime. As λ increases beyond a critical value, the steady-state distribution
undergoes a trimodal to unimodal transition (figure 5).

For fixed N, we determine the transition between trimodality and unimodality by finding the point(s)
where P′(x) = 0. This calculation gives, after straightforward algebra,

P′(x) ∝ (1 − 2x) e2Nx(1−x)

[
2N − (λ − 1)

D(x)2

]
,

where again D(x) is the diffusion coefficient defined by equation (20). The leading factor of 1 − 2x equals 0 at
x = 1

2 and corresponds to the extremum in the distribution at x = 1
2 .

However, there are additional extrema at the points where the factor in the square brackets equals 0. To
determine these extrema, we first determine the zero of this factor at x = 0, 1. Thus we have the condition
2N = (1 − λ)/(λ/2)2. Since we will find that λ � 1, we also neglect λ compared to 1 to give

λc =

√
2

N
. (22)

8
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Figure 5. Steady-state probability distributions for N = 10 on a semi-logarithmic scale for values of λ/λc = 10−4, 10−2, 100 and
101 in blue, orange, red and black, respectively. The respective data points correspond to simulation results.

For λ < λc, the distribution P(x) has three extrema. To find the location of the two secondary extrema for
λ � λc, it is convenient to now use the variable y = x − 1

2 with y → ± 1
2 , which corresponds to x close to zero

or to 1. Now the condition that the factor in the square brackets equals zero gives

2N � 1

(2ε + λ/2)2
,

from which we obtain

ε � 1

4
(λc − λ) for λ < λc. (23)

In the regime λ < λc, the distribution P(x) is necessarily trimodal because the point x = 1
2 is always a local

maximum of P(x). To verify this point, we compute the second derivative of P(x) at x = 1
2 ,

P′′(x) = e2Nx(1−x)

[
(1 − 2x)2 − 2 +

2(1 − λ)

D(x)3
D′(x)

]
,

which is indeed negative at x = 1
2 .

5.2. Macroscopic fluctuations in the steady state
An intriguing feature of two-species cooperation with migration is that the steady state is not strictly steady,
especially when λ is small (figure 6). For λ � λc, substantial time ranges exist during which little or no immi-
gration occurs. During these periods, the population will tend to approach one of the fixation states. Even if the
population does reach a state of all A’s or all B’s, immigration eventually drives the population towards an equal
number of A’s and B’s. The competing effects of cooperation and immigration therefore cause the popula-
tion to wander stochastically from one near-fixation state to the other, with returns to the equal-concentration
point x = 1

2 controlled by the immigration rate (figure 6). Related phenomenology occurs in noisy voter mod-
els [36–39]. The extended time periods during which the population is close to fixation corresponds to the
large weight in the secondary peaks of the probability distribution in figure 5. In contrast, when the immigra-
tion rate is much larger than λc, the rapid inflow of equal numbers of A’s and B’s ensures that the population
contains roughly equal numbers of both species.

One way to quantify these fluctuations is by the return time RT, which we define as the time interval between
successive points where x = 1

2 . As suggested by figure 6, this return time will be short for λ 
 λc and become
long for λ � λc. The latter behavior is a harbinger of large composition fluctuations in the population. We
can again use the backward Kolmogorov approach to determine the λ dependence of the return time. Let τn

denote the average time to reach the balanced state of equal numbers of A’s and B’s when starting from a state
where the number of A’s equals n > 1

2 N. Then

RT =
1

N
+ τ1+N/2. (24)

That is, starting from the balanced state, the average return time to this state is the average time for a single
event, 1

N , where the population now consists of N
2 + 1 A’s and N

2 − 1 B’s, plus the average time to reach the
balanced state when starting from this minimally imbalanced state.

9
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Figure 6. Typical population trajectories in composition space for λ/λc = 2 × 10−3 (blue) and λ/λc = 2 (orange) for the case
N = 10.

Figure 7. Dependence of the return time RT on λ/λc for various values of N.

In analogy with equation (9) for the fixation time, the time τ n satisfies the recursion

τn = (1 − λ)
[
anτn+1 + bnτn−1 + (1 − an − bn) τn

]

+ λ
[
cnτn+1 + dnτn−1 + (1 − cn − dn) τn

]
+ δt, (25a)

with an, bn given by (1a) and (1b), and cn, dn given by (19). We can rewrite this recursion in the canonical form
of equation (9):

τn = a′
nτn+1 + b′

nτn−1 + (1 − a′
n − b′

n)τn + δt, (25b)

where a′
n = (1 − λ)an + λcn and b′

n = (1 − λ)bn + λdn. This recursion is valid for 1
2 N < n < N, while for

n = N the first term in (25b) is absent. This missing term acts as the effective reflecting boundary condition
for n = N. At n = 1

2 N, the appropriate boundary condition is τN/2 = 0; namely, the balanced state corresponds
to the end of the process. The result for τ n for arbitrary n is given in (D.5), while the return time RT itself is
given in (D.4) (see appendix D for details). Figure 7 shows that RT scales as λ−1 for λ → 0. This behavior is the
source of the long-lived temporal fluctuations in the composition of the population, as illustrated in figure 6.

6. Discussion

Much of the literature on populations of multiple cooperating species has focused on the continuous limit.
Such a population is driven to an attractor state in which there are equal concentrations of each species. How-
ever, when finite-population stochasticity is incorporated, the true attractors of the dynamics of an isolated
population are instead the fixation states, in which only one species exists. Because stochastic effects are relevant

10
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in real systems, a discrete approach that incorporates this stochasticity is necessary to describe the dynamics
in a faithful way.

Within the discrete approach, we determined the probability for a finite population to reach a given fixation
state as a function of the initial condition, as well as the time to reach fixation. The behaviors of these two
quantities reflect the effective bias that drives the system to the quasi-steady state of equal concentrations of
the two species. Namely, the fixation probability is nearly independent of the initial condition and the fixation
time scales exponentially with population size N. As a consequence of this exponential dependence, fixation is
not observable in a laboratory or in a simulational time scale for any reasonable population size.

It is worth mentioning that the statistical features of two-species cooperation share similarities with the
vacillating voter model [40], despite their different microscopic update rules. In the vacillating voter model,
agents (voters) can be in one of two voting states and their agreement or disagreement is influenced by the
state of yet another neighbor. Here ‘vacillation’ refers to the possibility that a voter does not adopt the state of a
randomly chosen neighbor, as in the standard voter model, but may adopt the state of this additional neighbor.
The properties of this decision process drives the population toward a zero-magnetization state. This state is
equivalent to the attractor in two-species cooperation, where both species are equally represented.

When migration into the system can also occur, the population now ostensibly reaches a steady state. An
unanticipated feature of this steady state for small migration rate λ is that this state is not genuinely steady,
because there are long-term stochastic fluctuations that drive the population from one near-fixation state to the
opposite near-fixation state, with the population spending long time periods in these near-fixation states. Such
macroscopic wanderings are reflected in the steady-state abundance distribution, which is strongly peaked at
these near-fixation states for sufficiently small λ. The time scale associated with these fluctuations increases
rapidly as the migration rate decreases. Thus observations of a cooperative system have to be sufficiently long
to incorporate many such wanderings so as to ensure that true average behavior is actually probed. We found
that the return time—the time between successive instants where the number of A’s and B’s are equal—allows
us to quantify these temporal fluctuations in a precise way.

This observation of large fluctuations also has important ramifications for populations that consist of more
than two cooperating species. Depending the immigration rate, the population size N, and the number of dis-
tinct species S, the number of species that are actually present at any given time could be much less than S. Thus
a typical steady state could have a very different character than the average steady state that is predicted by the
time-independent density distribution. Moreover, a multispecies population will also exhibit large fluctuations
in the actual composition of the species that are present. This intriguing issue has recently been investigated
in the context of multispecies Lotka–Volterra models [41, 42]. The backward Kolmogorov equation offers the
possibility of obtaining new insights into these large fluctuations because of the relative simplicity of neutral
models of cooperating species.

The predictions presented in our study can also be tested in experimental settings that are based on
microfluidic chambers, where small populations of cells can be maintained so that long-term monitoring can
be performed. These small-scale devices offer a unique opportunity to explore the impact of population size
and validate the approximations presented in this work. Both well-mixed populations, as well as two- and
there-dimensional spatial populations, could be maintained in constant numbers over time. Future extensions
of our model, such as including cell death or environmental noise, would be helpful to design experimental
protocols and explore the conditions required to maintain stable cooperative cell assemblies [43, 44].
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Appendix A. The fixation probability

We want to solve equation (7) for the fixation probability:

En = anEn+1 + bnEn−1 + (1 − an − bn) En.

This calculation is standard (see, e.g., [45]) and we provide it here so that our presentation is self contained. It is
convenient to rewrite the above equation as an(En+1 − En) = bn(En − En−1), and then define un ≡ En − En−1
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and rn ≡ bn/an to recast it as the following first-order recursion for the un:

un = rn−1un−1 = rn−1rn−2rn−2 . . . r1u1,

with u1 = E1 − E0 = E1. We now define Rn =
∏n

m=1rm so that the equation for un becomes

un = Rn−1u1 = Rn−1E1. (A.1)

Since the un are successive differences of the En, we determine En by summing the un. Thus

En =

n∑

m=1

um =

n∑

m=1

Rm−1E1 =

n−1∑

m=0

RmE1, (A.2)

where we need to define R0 = 1 for consistency. We now determine the unknown E1 by using the boundary
condition EN = 1 in (A.2) to give EN =

∑N−1
m=0RmE1 = 1. Having found E1, the general solution for En is

En =
n−1∑

m=0

Rm

/N−1∑

m=0

Rm. (A.3)

To simplify the above expression, we start with an and bn defined in equation (1):

an =
n

N

(
1 − n

N

)2
bn =

( n

N

)2 (
1 − n

N

)
,

so that rn = bn/an = n/(N − n). Then

Rn = r1r2 . . . rn =
n!(N − n − 1)!

(N − 1)!
=

[(
N − 1

n

)]−1

.

Substituting this representation for Rn in (A.3) gives equation (8).
For completeness, we also give the continuum solution for the fixation probability. We take the continuum

limit of equation (7) by letting (n ± 1)/N → x ± dx, with dx = 1
N , and then expanding this equation to second

order in dx. This gives
E′′ + 2N(1 − 2x)E′ = 0, (A.4)

where the prime denotes differentiation with respect to x. This equation is subject to the boundary conditions
E(0) = 0 and E(1) = 1. As in the discrete formulation, the first condition corresponds to the impossibility of
reaching a population of all A’s if the initial state contains no A’s, while the second condition corresponds to
the initial state coinciding with the desired final state. The solution to (A.4), subject to the given boundary
conditions is

E(x) =

∫ x
0 du e2N(u2−u)

∫ 1
0 du e2N(u2−u)

=
1

2

[
1 +

erfi
(√

2N
(
x − 1

2

))

erfi(
√

N/2)

]
, (A.5)

where erfi is the imaginary error function. This expression from the continuum approximation agrees well
with the exact discrete result (8) (see figure 3). However, the continuum approach is no longer accurate for the
fixation time (see the next section).

Appendix B. The fixation time

We now solve the recursions (9) for the fixation time:

Tn = anTn+1 + bnTn−1 + (1 − an − bn) Tn + δt.

Following the same steps that led to (A.1), we obtain, for the difference vn ≡ Tn − Tn−1,

vn = rn−1vn−1 − αn−1, (B.1)

where αn ≡ δt/an. Notice that v1 = T1 − T0 = T1 ≡ R0T1.
We develop the recursion (B.1) to give

vn = rn−1rn−2vn−2 − αn−1 − rn−1αn−2

= rn−1rn−2rn−3vn−3 − αn−1 − rn−1αn−2 − rn−1rn−2αn−3

...
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continuing this development to the end leads to

vn = Rn−1v1 − Qn−1 = Rn−1T1 − Qn−1, (B.2)

where
Qn ≡ αn + rnαn−1 + rnrn−1αn−2 + · · · + rnrn−1 . . . r2α1,

and Q0 = 0 by virtue of (B.2).
Finally, we sum the vn to obtain the fixation time:

Tn =

n∑

m=1

vm =

n−1∑

m=0

RmT1 −
n−1∑

m=1

Qm. (B.3)

To eliminate the unknown T1, we use the boundary condition TN = 0 to give

T1 =

N−1∑

m=1

Qm

/N−1∑

m=0

Rm.

Substituting this in (B.3) and noting that
∑n−1

m=0Rm/
∑N−1

m=0Rm is just the fixation probability En, we obtain the
result quoted in equation (10).

Appendix C. WKB approximation

A comprehensive review of the application of the WKB method for large deviations in stochastic populations
can be found in [26]. In this section we summarize the basic steps to reach equation (13). We make the ansatz
P̃(x) ∼ exp

{
NS0(x) + S1(x) + O

(
N−1

)}
, and expand to linear order in δx to give

P̃(x ± δx) � P̃(x) exp

{
±S′

0 + δx

(
S′′

0

2
± S′

1

)}
� P̃(x)e±S′

0

[
1 + δx

(
S′′

0

2
± S′

1

)]
,

with δx = 1/N. We now define Λ ≡ eS′
0 and substitute this into (12) to obtain

(
a − a′δx

)
Λ−1

[
1 + δx

(
S′′

0

2
− S′

1

)]
+

(
b + b′δx

)
Λ

[
1 + δx

(
S′′

0

2
+ S′

1

)]
= a + b,

which can be separated into terms of O(1) and terms of O(δx). For the former, we have

aΛ−1 + bΛ = a + b, (C.1)

which has the two solutions Λ0 = 1 and Λ = a
b . The Λ0 solution corresponds to S′

0 = 0, and the resulting
constant can be absorbed by the normalization condition on P̃(x). The second solution is

S′
0 = log

(a

b

)
, (C.2)

which, after integration, results in the first expression in (13). For the O(δx) terms we must solve

− a′Λ−1 + aΛ−1

(
S′′

0

2
− S′

1

)
+ b′Λ + bΛ

(
S′′

0

2
+ S′

1

)
= 0, (C.3)

which, after substitution of Λ = a
b , yields

b

(
S′′

0

2
− S′

1

)
+ a

(
S′′

0

2
+ S′

1

)
= b

a′

a
− a

b′

b
. (C.4)

On the other hand, S′′
0 = a′

a − b′
b , which reduces the previous equation to

(a − b)S′
1 =

1

2

[
b

a′

a
− a

b′

b
− (a′ − b′)

]
= −1

2

(
a′

a
+

b′

b

)
(a − b). (C.5)

The first term in the brackets on the right-hand side corresponds to the derivative of log(ab). Hence, after
integration, we obtain the second expression in (13).
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Appendix D. The return time

We want to solve the recursion for the return time τn, defined as the time for the population to first reach the
state with equal numbers of A’s and B’s when the initial state contains n > 1

2 N A’s. The state with n = N plays
the role of an effective reflecting boundary condition. The system of equations that we wish to solve is (25b):

τn = a′
nτn+1 + b′

nτn−1 + (1 − a′
n − b′

n)τn + δt, (D.1a)

for 1 + N/2 � n < N, while for n = N the appropriate equation is

τN = b′
BτN−1 + (1 − a′

N − b′
N)τN + δt. (D.1b)

Using the fact that a′
N = 0, this last equation can be rewritten as

τN − τN−1 ≡ vN =
δt

b′
N

. (D.2)

The remaining N
2 − 1 equations (D.1a) are of the same type as (9) for the fixation time. Thus the solution for

τ n has the same form as (B.3):

τn =

n−1∑

m=N/2

R′
mτ1+N/2 −

n−1∑

m=1+N/2

Q′
m, (D.3)

where

R′
n =

n∏

m=1+N/2

b′
n

a′
n

≡
n∏

m=1+N/2

r′
n

and
Q′

n = α′
n + r′

nα
′
n−1 + r′

nr′
n−1α

′
n−2 + · · · + r′

nr′
n−1 . . . r′

2+N/2α
′
1+N/2,

with α′
n = δt/a′

n and Q′
N/2 = 0.

To eliminate the unknown τ 1+N/2, we now write (D.3) for the special cases of n = N and n = N − 1:

τN =

N−1∑

m=N/2

R′
mτ1+N/2 −

N−1∑

m=1+N/2

Q′
m τN−1 =

N−2∑

m=N/2

R′
mτ1+N/2 −

N−2∑

m=1+N/2

Q′
m.

Their difference is

τN − τN−1 = R′
N−1τ1+N/2 − Q′

N−1 =
δt

b′
N

,

so that τ 1+N/2 is given by

τ1+N/2 =
Q′

N−1 + δt/b′
N

R′
N−1

. (D.4)

Substituting this expression for τ 1+N/2 in (D.3) gives the average time to reach the balanced state of equal num-
bers of A’s and B’s when starting from a population that contains n A’s with a reflecting boundary condition
at n = N:

τn =

n−1∑

m=N/2

R′
m

Q′
N−1 + δt/b′

N

R′
N−1

−
n−1∑

m=1+N/2

Q′
m. (D.5)

What we want, however, is, the return time, defined as the average time to start at the balanced state and first
return to this state. This is RT = 1

N + τ1+N/2.
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Liquid neural networks (or ‘liquid brains’) are a widespread class of cognitive

living networks characterized by a common feature: the agents (ants or

immune cells, for example) move in space. Thus, no fixed, long-term agent-

agent connections are maintained, in contrast with standard neural systems.

How is this class of systems capable of displaying cognitive abilities, from learn-

ing to decision-making? In this paper, the collective dynamics, memory and

learning properties of liquid brains is explored under the perspective of statistical

physics. Using acomparative approach, we review the generic properties of three

large classes of systems, namely: standard neural networks (solid brains), ant

colonies and the immune system. It is shown that, despite their intrinsic physical

differences, these systems share key properties with standard neural systems in

terms of formal descriptions, but strongly depart in other ways. On one hand, the

attractors found in liquid brains are not always based on connection weights but

instead on population abundances. However, some liquid systems use fluctu-

ations in ways similar to those found in cortical networks, suggesting a

relevant role for criticality as a way of rapidly reacting to external signals.

This article is part of the theme issue ‘Liquid brains, solid brains: How

distributed cognitive architectures process information’.

1. Introduction
As pointed out by physicist John Hopfield, biology is different from physics in one

fundamental way: biological systems perform computations [1]. Within the con-

text of evolution, a crucial ingredient for the emergence of biological complexity

required the development of information-processing systems at multiple scales

[2]. Adaptation to a dynamic environment deeply benefited from non-genetic pro-

cesses that allowed response mechanisms to short-term changes. Thus, biological

computation is an intrinsic part of ourcurrent understanding of cell phenotypes [3]

and, not surprisingly, the molecular webs of interactions connecting genes, pro-

teins and metabolites have often been represented in terms of computations [4].

Once fast-responding molecular signalling mechanisms were in place, a whole

range of possibilities became available: individuals could not only respond to

environmental cues, but they could also start to interact with other individuals

prompting a higher-order cognitive network [5]. Such transition took place in a

diverse range of ways. It included the development of the first brain-like structures

[6,7] as well as societies formed by relatively simple agents (ants, termites or bees)

capable of performing complex cognitive actions at the collective level [8,9]. Ant

colonies have been compared to brains as both exhibit emergent collective phenom-

ena (dynamical and structural patterns of organization and behaviour that cannot

be reduced to the properties of single ants) and display cognition on a large scale

beyond that of the individual components [10,11]. These two examples represent

two distinguishable large classes of networks. Along with ant colonies, immune sys-

tems (ISs) also share traits characteristic of the metazoan nerve nets yet they strongly

depart from them in the fluid embodiment and nature of cell–cell interactions.

The previous three examples are displayed in figure 1. Here coupled neurons

(figure 1a), interacting ants (figure 1b) or immune cells responding to novel chal-

lenges (figure 1c) are shown, along with minimal representations of the underlying

networks (figure 1d– f ). The classical picture of a neural network involves a topo-

logical structure (a graph) with neurons occupying the nodes and interneuronal

& 2019 The Author(s) Published by the Royal Society. All rights reserved.



links becoming the edges (figure 1d). Two types of nodes are

shown, open and closed, associated to inactive or active neur-

ons, respectively. This is akin to simple interactive models

between active (on) and inactive (off) neurons. In this approxi-

mation, one treats these agents as small magnets the orientation

of which depends on their corresponding neighbours via some

non-trivial interaction rules. In general, physicists dub these

kinds of systems a spin-glass [12]. This concept lies at the core

of what follows here.

Ant colonies also involve collectives of interacting

individuals that can be modeled as on/off activity - e.g.

engaged in a task or not. However, the physical location of

such mobile agents change over time: the colony is ’liquid’.

Thus, interactions are now extended to a spatiotemporal

embedding, with agents interacting at a certain location in

one instant and then moving on to other locations to continue

interacting with each other. This particularity will constrain

the system’s adaptive properties in a non-trivial manner.

Within the liquid realm, we can still characterize two

paradigms: given their relative mobility and signal transmis-

sivity (see below) insect colonies are strongly affected by the

locality of their interactions, whereas ISs are highly mobile,

such that a well-mixed approach might accurately represent

their overall dynamics.

Other types of organisms, such as the slime mould

Physarum, solve some classes of optimization problems by

using a different form of fluid organization [13], although in

this case there is no neural substrate. Systems of this kind are

able to solve minimization problems on a network [14].

Upon the transition to multicellularity, cell types capable of

sensing and responding to signals appeared and permitted the

emergence of a novel class of systems: webs of connected cells.

These expanded the landscape of computations, including pro-

cessing the information in non-trivial (aneural) ways [2]. Such

primitive networks provided a reliable way of dealing with

complex decisions, integrating and storing memory and creat-

ing the conditions for increasing behavioural complexity.

Simple organisms such as hydra and planarian flatworms pro-

vide good illustrations of the early steps in this direction [7].

To some extent, all these systems can be modelled as networks

of neurons that are connected in a stable way over time. Each

pair of connected cells will remain linked over a given time

scale and changes will take place at the level of the type and

strength of the connection. Theoretical work has shown that

cognitive tasks performed by these ‘solid’ brains (simple and

complex) such as pattern recognition, associative memory or

language processing can be properly described. But what

about liquid brains?

In this paper, we review several models of both ant colony

and IS dynamics based on a neural network perspective and

compare them with previous studies on ‘solid’ brain models.

In table 1, we summarize some general qualitative properties

of the three classes of systems explored here, as well as others

that we found relevant. The list is not exhaustive and involves

generic descriptors that inevitably ignore the broad diversity of

sizes, organization levels and ecological contexts. Several key

components of each potential candidate, including size, age,

context or developmental trajectories have some influence in

the degree of robustness, memory potential or wiring patterns.

All these factors make this basic table a tentative one. Neverthe-

less, it also highlights the commonalities that we consider

relevant to our presentation.

Some key examples are worth mentioning. The label ‘liquid’

is used to describe a physical state that ignores spatial

(a)

(d)
Sj = I

Sj = I

Si = A

Si = A

(e)

(b) (c)

( f )

Figure 1. Network interactions in liquid versus solid brains. The three case studies analysed in this paper are shown, with examples of the agents involved in each
case. (a) Standard neural networks involve spatially localized cells connected through synaptic weights. In contrast with this architecture, liquid brains, including (b)
ant colonies and (c) the IS include mobile agents (or cell subsets) interacting in space and time with no fixed pairwise weights. A schematic of each case study is
outlined in the row below. Standard neural networks are defined in terms of connected excitable elements that can be roughly classified in active (firing) and
inactive (quiescent) neurons, here indicated as filled and open circles, respectively (d ). The wiring matrix remains basically the same in terms of topology (who is
connected with whom) but will be modified in strength due to experience. By contrast, ant colonies must be represented by disconnected graphs (e) where
interactions are possible within a given spatial range, here indicated by means of the grey circle. The IS allows several representations of the interactions, but
in many cases it is the molecular interaction between epitopes (strings of symbols in ( f )) that truly represents the underlying liquid brain dynamics.
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structuring, such as lymph nodes in the IS or the nest structure

of ant or termite colonies. Some of these features cannot be

taken as absolute indicators since they are strongly influenced

by life styles, size or behavioural context. The neural network

of a hydra or a planarian flatworm are simple and small and

might not display the modularity found in more complex

neural agents, but nevertheless they display spatially stable net-

works of neurons, which are reliable under cell loss. Other

relevant features (which are not included in table 1) such as

the self/non-self discrimination problem will be amply dis-

cussed later on. In the following sections, we summarize

several types of models used to represent and understand the

dynamics of the three case studies discussed here. By using

them, we aim at enhancing the universal elements shared by

these liquid systems while tracing a theoretical framework to

study them.

2. Solid brains
Standard neural networks (NN), from cell cultures to brains,

have received great attention since the 1950s. An especially suc-

cessful approach has been based on the use of statistical physics

as a robust formalism capable of capturing the collective prop-

erties exhibited by neural masses [15]. Both in statistical physics

as well as in logic models of NN, neurons are replaced by a toy

model representing only the minimal features exhibited by real

cells. The intricate structure of physiological neurons is ignored

and replaced by a formal object devoid of any specific traits

associated to cellular or molecular biological mechanisms.

Similarly, the way connections and propagation of activity

occurs is mapped into a simple graph. Despite all these over-

simplifications, NN theory (also known as connectionism)

has been capable of explaining the nature and relevance of col-

lective phenomena involved in a broad range of areas, from

learning in small metazoans to more complex phenomena

related to human cognition [16,17].

We use here the term ‘brains’ in a generic way too: it will

refer to ensembles of interconnected neurons (or neural-like

elements). Over the years the field has been growing in mul-

tiple directions, but a special turning point is the classical

paper by Hopfield [18] where the basis for a statistical physics

description of neural networks emerged and largely marked

the development of this class of systems. Such a physics per-

spective provided the basis for the understanding of their

global properties out from the underlying microscopic

description. Importantly, it also provided a systematic

approach to identify the presence of different phases associ-

ated with the presence or lack of memory as well as

dynamical states separating different types of activity. In

this way, the physics of phase transitions [19–21] became a

cornerstone to our understanding of neural networks.

The simplest, canonical model is based on an assembly of

two-state agents description [22,23]. These are denoted as

Si(t) [ f0, 1g or Si(t) [ f21, 1g (with i ¼ 1, . . ., N). Agents are

connected to each other through fixed synaptic links

(figure 1a): each element sends to and receives a signal from

another. Connectivity is represented by a matrix Jik [ R. The

system is modelled by a dynamical set of equations:

Si(tþ 1) ¼ Q
XN

j¼1

JijS j(t)� ui

0
@

1
A, (2:1)

where Q (z) ¼ 1 for z . 0 and zero otherwise. The scalar ui is a

threshold value. The so called external field, hi ¼
P

j JijS j(t),
weights the total input of Si. It is worth noting that the same

class of threshold model used to describe the dynamics

of NN has been used to approach the dynamics of gene

regulatory networks (GRN) [24, pp. 411–521, 25,26].

(a) Attractor dynamics in recurrent neural networks
A general treatment of these systems involves a high-dimen-

sional problem and a wide range of dynamical behaviours.

However, an illustration of the potential of NN as a way of sol-

ving computational problems in a distributed manner is

provided by the Hopfield model [18,27]. This consists of a

fully connected neural network described by the dynamical

Table 1. Comparative properties in liquid versus solid brains. This table summarizes a broad set of properties that are usually attributed to neural systems (solid
brains) and here compared to those reported from two relevant examples of liquid brains, namely the IS and insect (mostly ant) colonies. While the way
computations are performed is a parallel process in all systems, all also exhibit some degree of specialization, which can be understood as a modularity or a
division of labour (DOL). This first is observable in vertebrate brains while the later is a characteristic allocation of tasks that can occur either in societies with
different morphological castes or in monomorphic ones. Similarly, we label the learning and memory properties in terms of a simple, network-related set of
properties. In most cases studied here, the memory potential of an ant colony is related to short-term phenomena tied to the production of a pheromone field,
but long-term memories have also been reported at the individual level. In all these examples, we indicate by asterisk (*) those attributes that are not well
established or have been found in some case studies, and that will benefit from a theory of liquid brains.

brain insect colonies IS

computational nature distributed/modular distributed/DOL distributed/DOL

reliability under agent loss high high high

connectivity hard-wired yet plastic liquid but spatially constrained (*) liquid (*)

memory and learning synaptic population-based and synaptic population-based (Burnet)

and synaptic (Jerne)

regeneration potential low high high

externalities peripheral nervous system and technology (tools) nests and agriculture no

weighted interactions Hebbian pheromone-mediated antibody-mediated

dynamical state critical critical (*) critical (*)
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equations (2.1) with ui ¼ 0. Hopfield’s model assumes no self-

connection (Jii ¼ 0) and symmetry, i.e. Jij ¼ Jji. It can be shown

that the model only displays single-point equilibrium (attrac-

tors), i.e. asymptotically, the trained network will tend to a

stable configuration where all elements remain in a given

state (figure 2a–c). Additionally, Hopfield’s model allows the

network to store a number p of ‘memories’ (patterns) defined

as a set of vectors jm ¼ (jm1 , . . . , jmj , . . . , jmN), m ¼ 1. . ., p.

The storage process takes place within a ‘training phase’

where they are presented to the network in such a way that

each neuron Si adopts the memory state, i.e. Si ¼ ji and all its

synaptic weights Jij are updated (starting from Jij ¼ 0 at time

zero) following the so-called Hebb’s rule, which is summarized

in figure 2b. In a nutshell, correlated inputs increase weights,

whereas uncorrelated ones decrease them. It can be shown

[28] that the memory states jm are, in fact, the minima of a

(high-dimensional) energy function, namely:

H({jmi }) ¼ � 1

2

X
i,j

JijSiS j, Jij ¼
1

N

Xp

m¼0

j
m
i j

m
j (2:2)

and initial conditions close to a minimum will evolve towards

it. This is also outlined in figure 2c where we represent such

multiple minima. In summary, the Hopfield model is a dyna-

mical process of memory retrieval: stored patterns are

recovered by a purely dynamical process. Extensions to this

approach come by introducing thermal noise for the fSig
degrees of freedom. Usually, this is obtained via a temperature

T that accounts for stochastic thermal variations (and, more

generally, for noise). Each time we choose a neuron, the

probability of changing to (or remaining in) state Si ¼ þ1 is

a saturating function of the local field, namely:

P[Si(tþ 1) ¼ þ1 j hi(t)] ¼ f
1

T

X
j

JijS j(t)

0
@

1
A (2:3)

with T defining a temperature and f(x) a function such that

f(0) ¼ 0 and f(x)!+1 for x!+1. Temperature is not just

an additional attribute, as it actually provides a powerful

mechanism to escape from local minima. By using a stochastic

transition rule, it is possible to move to lower-energy states

from a given, suboptimal (usually non-memory) state. In this

context, a measure of memory capacity is introduced as a;
p/N, where p here corresponds to the number of well-stored

patterns. A phase-transition diagram captures the overall

system behaviour, depicted in figure 2d. The shaded region

represents states where the system is capable of retaining the

memory patterns, while, for the blank region, these are lost

due to noise. An abrupt transition separates these two regimes.

The previous model is an illustration of how cognitive

functions can be understood in terms of a system of connected

neurons. Here synaptic weights are modified in such a way that

the resulting attractor dynamics allows associative memory to

be the consequence of a relaxation towards energy minima.

Only steady states are thus allowed. However, as discussed

in the next section, a different picture emerges when we look

at the actual dynamical patterns exhibited by neural tissues.

(a) (b)

(d)

xi

xi

xixj > 0

xixj < 0

ac a

xj

xj

Jij

Jij

T

1

0

1 Jij Æ Jij + æ
N 

Jij Æ Jij –  æ
N 

(c)

1

Figure 2. Distributed computation in neural networks. Using a very simple set of rules, an NN model can store and retrieve memories in a robust manner. In the
Hopfield’s model, a massively connected set of neurons (a) with symmetric connections obeying Hebb’s rule (b) will display such properties. In (b), a pair of formal
neurons is shown receiving inputs ji, jj [ f21, 1g from a given memory state or pattern jm. If they are identical, i.e. ji ¼ jj, their connection is increased
(in both directions). Otherwise, Jij is decreased. (c) Network dynamics makes the system’s state flow to energy minima, thus recovering the desired memory state.
The model exhibits remarkable reliability against connection loss. In (d ), we show how reliable is memory retrieval against stochastic thermal variability. Parameter
a is a relative measure of memory capacity. The critical value ac ≃ 0.138 separates the two phases: memory reliability (shaded area) and unreliability (blank area).
This transition occurs sharply. Note that this critical value is specific for Hopfield nets; different interaction rules would yield different limitations to memory capacity.
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(b) Critical dynamics in cortical networks
If we think of an idealized graph such as the one described in

figure 1d, two classes of nodes can be defined: either inactive

or active. Active nodes are formed by firing neurons whose

excitability can be propagated to the nearest inactive areas

[29]. As a result, excitation waves can move across whole

areas. This would be a requirement to maintain integration in

a dynamical fashion [30]. This analysis gives rise to more

complex types of attractors instead of local stable points.

The minimal model that can describe the propagation or

activity is based on a contagion scenario where inactive

nodes can become active if they are connected to active

nodes. Moreover, an active node can spontaneously decay.

At the smallest scale, this is similar to the threshold dynamics

described above. The simplest case to consider is a homo-

geneous model where all connections are similar, capable of

propagating excitability with Jij ¼ J and an average connecti-

vity kkl. It can be shown that the large-scale (coarse-grained)

dynamics for this homogeneous case can be defined by the

equation [29]

dA
dt
¼ f(A) ¼ � 1

t
Aþ Jhki

t
A(1� A), (2:4)

where t is a characteristic time decay. A specially relevant

observation is that neural systems exhibit critical behaviour

[31–33]. Two main classes of dynamical behaviour can occur.

This can be shown using the fixed points, i.e. those A* such

that (dA/dt)A* ¼ 0. Two states are obtained. One is the trivial,

inactive phase where no activity propagates: A�0 ¼ 0. The

second phase is associated with the second fixed point, namely:

A�1 ¼ 1� 1

Jhki , (2:5)

which is properly defined (i.e. A�1 � 0) provided that Jkkl � 1.

A critical point separating the two phases is thus achieved for

Jkkl ¼ 1. For a given J value, the critical connectivity is given

by kklc ¼ 1/J.
In figure 3, two important diagrams are shown that sum-

marize the basic phenomena resulting from the previous

model. One is the so-called bifurcation diagram [35] where

the stable states A�0, A�1 are plotted against the average con-

nectivity kkl, with a marked change occurring at criticality

(figure 3c). Additionally, we also display (figure 3d) the

potential function V(A) [36], defined as

V(A) ¼ �
ð

f(A) dA, (2:6)

such that the dynamics derive from it, i.e.

dA=dt ¼ �dV(A)=dA. The minima (maxima) of the potential

correspond to stable (unstable) fixed points. As we approach

criticality, the potential function becomes increasingly flatter.

What is the impact of this flatness in the activity? In general,

shallow potentials are associated with higher time variability

and fluctuations diverge close to criticality. To show this,

we can use a linear stability analysis taking the state

A(t) ¼ A�k þ dA, i.e. a small deviation dA from a fixed point

A�k , and plugging it into the original equation for A(t). On a

first approximation, it can be shown that

ddA
dt
¼ @f(A)

@A

� �
A�k

dA ¼ l�kdA, (2:7)

where l�k is a scalar to be evaluated at each fixed point. The

resulting equation for fluctuations is linear. Thus, close to A�k ,

we expect a growth of fluctuations following an exponential

Sj = I

Si = A

A + I = 1

G

V
 (
A

)
A

A*
·kÒc = 1/J

(a)

(c) (d)

(b)

·kÒ > ·kÒc

·kÒ = ·kÒc

·kÒ < ·kÒc

·kÒ

Figure 3. Phase transitions in neural dynamics. In a simple version of large-scale dynamics of neural tissues, (a) tissues (such as brain cortex) can be represented as
a network of connected neighbouring areas that are connected with excitatory links (adapted from Eckmann et al. [34]). A toy model of this (b) could be rep-
resented as a lattice of neural elements connected as a grid with all elements linked to four elements in a homogeneous fashion. The analysis of this system reveals
a phase transition from zero activity to high-activity by crossing a critical value of average connections at kklc ¼ 1/J (c). A potential function can be obtained where
the two phases are revealed as stable states of V (A) (d). Here, large fluctuations show clear dominance around the critical point.
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growth or decay. For the inactive phase,1 we have

dA(t) ¼ (dA)0 el
�
0t ¼ (dA)0 exp

�1

t
(1� Jhki)t

� �
: (2:8)

As we can see, the system will return to the fixed point (when

kkl , 1/J) at a rate given by l0. As we get close to criticality, the

exponent gets smaller, the relaxation time rapidly increases.

If the previous result is written in terms of a relaxation time

T(J, kkl), i.e. dA(t) � exp (�t=T(J, hki)) we have

T(J, hki) � 1

1� Jhki , (2:9)

which rapidly diverges as Jkkl! 1. The divergence predicted

by this simple model is confirmed by the analysis of the

fluctuations found in neural systems.

The two previous models explore some essential compo-

nents of neural complexity. Both deal with collective behaviour

and exhibit special regions of parameter spaces that separate

different phases. Phase transitions are of central importance

within statistical physics, and provide a powerful framework

to capture how microscopic interactions translate into system-

level patterns and processes [36,37]. Their importance within

our context becomes manifest as qualitative changes in collective

behaviour are typically caused by phase transition phenomena

often associated with the density of individuals or the signals

they use to communicate. How these systems behave close

to transition points turns out to be a key issue, as it provides

understanding about how emergent phenomena occur.

3. Liquid brains
(a) Ant colony dynamics
Social insects, including ants and termites among other groups,

amount to about the same biomass as humans on the Earth [38].

With an evolutionary history spanning around a hundred

million years, eusocial colonies have deeply engineered the

environment and dominated the terrestrial biosphere [39]. In

trying to attach biological fitness, insect colonies appear to

behave as superorganisms: it is the colony as a whole that

plays an evolutionary role, rather than its individual agents

(ants). Across the biosphere, we encounter both monomorphic

and polymorphic ant colonies, the latter exhibiting

physiological–anatomical differences within a given colony.

However, it is estimated that 80% of ant species are monomor-

phic. The rest of species (polymorphic) can generally include

two or three different casts. Here onwards, we will focus our

study on monomorphic ant species.

On the other hand, various estimates state that the behav-

ioural repertoire of ant colonies ranges from 20 to 45 different

individual-ant behaviours [8, pp. 180–200]. In order to shift

from a given state to another and adapt to any given environ-

mental circumstance, ants use chemical signals called

pheromones. Different ant species use different sets of phero-

mones, some secrete only one type of molecule and others

use up to 20.2 Thus, information is processed in a two-level

fashion: mobile agents (ants) interacting with a set of diffusive

molecules (pheromones). Ants continuously detect

the pheromone concentrations and, upon integrating this

information, produce an internal image that affects their behav-

ioural state. Moreover, ant states prompt the secretion of one

(or more) pheromones thus reshaping their concentration

values. This coalescence of signalling back and forth allows

the whole colony to access global states where functions are

achieved by means of its underlying network of interactions.

Information is stored and processed through this ‘liquid

brain’ to give rise to various large-scale collective behaviours.

In the following examples, we will review several theoretical

approaches to modelling ant colony dynamics and compare

them with standard NN model efforts.

(i) Ant colonies as excitable neural nets
One of the simplest illustrations of the neural-like modelling

of insect colony dynamics is provided by the emergent

synchronization displayed by some small colonies of the genus

Leptothorax ([40,41]; see also [9], ch. 6). In a nutshell, it has been

observed that the colony-level activity displayed by their nests

exhibits a remarkable bursting pattern (figure 4a,b) that exhibits

a periodic component [42]. This means that ants can be active or

inactive and the total number of active individuals changes in

such a way that at times no ant in the colony is active while

the synchronization events are linked to an almost fully active

colony. These bursts have been found in other species [43] and

result from the propagation of activity carried by moving indi-

viduals that can activate dormant ants in ways similar to those
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Figure 4. Ant colonies as excitable neural nets. In some ant species, such as those belonging to the genus Leptothorax (a), oscillations in activity have been recorded
(b) revealing a collective synchronization phenomenon (both adapted from Solé [36]). This phenomenon can be described as an excitable neural system, where ants
(inset of c) are reduced to a Boolean representation with active and inactive individuals. (c) As the density of ants r increases, a phase change occurs at a critical
density, separating inactive from active colonies. (d) Potential function associated with the dynamics of these colonies: for densities larger (lower) than rc, a well-
defined minimum is displayed. Closer to criticality, this potential becomes flatter and allows wide fluctuations to occur.
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found in epidemic models [36,44,45]. Synchronization of neural

masses is in fact a major research field within neuroscience [46],

and it has been shown to pervade a wide range of functional

traits and behavioural patterns. Is there something similar

taking place in ant colonies?

This problem provides a simple example of a fluid network.

Here the description level of individuals and their interactions

is limited to a Boolean set of variables S ¼ f0, 1g associated

with the inactive (motionless) and active (moving) states,

respectively (see inset of figure 4c). An NN model here is

thus limited to a coarse-grained representation of ants. Such

a model was suggested in Solé et al. [40] under the assumption

that individuals can be described as an underlying continuous

variable Si [ [0, 1] (with i ¼ 1, . . ., N) which changes over time

following a dynamical equation:

Si(tþ 1) ¼ Q
X
j[Gi

J(h j(t), hi(t))S j(t)

0
@

1
A, (3:1)

which strongly resembles the familiar form of standard

NN. However, a rapid inspection reveals a fundamental

difference: here the matrix J(hj, hi) is state-dependent. In

other words, its value is a function of the specific pair of

agents that interact at a given time step. Specifically, we par-

tition the activity interval [0, 1] into two domains associated

with the active/inactive observables, i.e. hi ¼ Q [Si 2 u].

Thus, the interaction matrix will include only four

possible pairs,

[J(h j, hi)] ¼
J00 J01

J10 J11

� �
,

where J � 0. Once activity decreases below the threshold u, the

ant becomes inactive and stops moving. Otherwise, it moves

around as a random walker (unless constrained by other ants

occupying the nearest lattice sites). Here ants are assumed to

move on a discrete two-dimensional lattice V and interactions

occur in a strictly local manner, only affecting the set of nearest

neighbouring positions Gi of Si. Finally, an inactive ant (with

h , u) can become active spontaneously (achieving a state

S0 . u) with probability pa. A common feature of these matrices

is the presence of coupling terms connecting active and inactive

individuals, as expected from an excitable system where

activity can be propagated among agents. It is important to

notice that the collective synchronization does not result from

the coupling of individuals’ internal clock. Instead, single vir-

tual ants behave randomly. The dynamics of single elements

will be described by

Si(tþ 1) ¼ Q (gJ11S j(t)): (3:2)

A simple case can be solved, namely when the coupling is

small and activity remains small (which is consistent with

observation). If we choose Q (x) ¼ tanh x, then we may use

linear approximation tanh (gJz) � gJz which admits a solution

to the previous equation. If, initially, an ant is activated to a

level S0, then S(t) ¼ S0(gJ)t, which is a decaying function of

time. If an activation term is also introduced (i.e. active ants

can activate inactive ones), then a coarse-grained model can

be defined in probabilistic terms. Let us label as Na the

number of active ants. This number will change over time as

a consequence of both interactions and decay. The efficiency

of activation events will be proportional to gJ, assuming the

previous linear approximation. Hereafter, we will indicate

by N and r the total number and density of ants, respectively.

If A(x, t) indicates the probability density of active ants at

a given point of our two-dimensional lattice x [ V, then it

can be written as: A(x, t) ¼ P[Sx(t) ¼ 1]. The activity density

will evolve following a master equation according to the

previous rules:

dA(x, t)
dt

¼ gJ
q

Xq

hui
P[Sx(t) ¼ 0 > Su(t) ¼ 1]� aA(x, t), (3:3)

where kul indicates sum over the set of q nearest neighbours,

P[Sx ¼ 0 > Su ¼ 1] is the probability of having a pair of

nearest ants in different states.

The previous equation is exact, but its computation would

require knowledge of the probabilities associated with the

interactions between nearest sites. Several methods can be

used to solve this model with different levels of approxi-

mation. Here we will consider the simplest one, commonly

known as a mean field theory, which is based on suppressing

the spatial correlation between nearest sites. This is done by

assuming that the system is in fact well mixed and thus all

sites are neighbours or, in mathematical terms, q ¼ V. If this

is the case, we can use the total population

r(t) ¼
XV

x

r(x, t): (3:4)

By summing on both sides of the previous master equation,

and ignoring correlations between active and inactive neigh-

bours, it can be shown that the global dynamics can be

described as

dA
dt
¼ gJA(r�A)� aA, (3:5)

and this equation can be studied as a deterministic model of

ant colonies displaying excitable dynamics. The model has

two equilibrium points, namely A�0 ¼ 0 (no activity spreads)

and A�1 ¼ r� a=gJ, associated with persistent propagation.

The previous equation is similar to those used in epidemic

dynamics [47] associated with a population composed by

two classes of individuals (infected and susceptible). Using

the density of ants as a control parameter, these two phases

are separated by a critical point rc ¼ a/gJ. The global behav-

iour of this model is summarized in figure 4c where the

bifurcation diagram for this system is shown. Above rc

an active phase is present, whereas an inactive one is found

for r , rc.

In this system, the potential function V(A) is

V(A) ¼ �
ð

(gJA(r�A)� aA) dA (3:6)

and is displayed in figure 4d, where we show three examples

of its behaviour for different density values. As we already

discussed within the context of brain criticality, here too the

transition between phases as density is changed involves a

shallow potential function, indicating that wide fluctuations

should be expected to occur. One remarkable observation

from Leptothorax colonies is that they seem to be poised

close to the critical density [48] at density levels where

theory predicts that maximum information and behavioural

diversity is achieved [49,50]. As discussed above within the

context of neural tissues, criticality provides a source of fast

response and optimal information processing.
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The key message provided by this example is that a

commonality with other excitable neural systems exists: a uni-

versal property is the use of critical points to perform

cognitive tasks. Being poised close to critical states provides a

natural way of amplifying input signals while remaining most

of the time in a low-fluctuation state [51]. Such a compromise

makes sense as a way of displaying optimal information while

reducing the cost of the system’s state. Is there a well-defined

function that can be associated with this? The answer is yes.

By using self-synchronized patterns of activity a task may be

fulfilled more effectively than with non-synchronized activity,

at the same average level of activity per individual [52,53].

(ii) Collective decision-making and symmetry breaking
in ant colonies

The next case study involves a classic example of how fluid

brains solve a well-defined optimization problem. Specifically,

a given ant colony searching on a given spatial landscape

needs to discriminate between different available food sources

[54–56]. The decision-making rules involved here have inspired

major applications within computer science [57–60].

Consider the determination of the shortest path to a single

source, to be chosen between two alternatives. This problem

can be easily implemented in the laboratory, using a two-

bridge set-up (figure 5a). Here the ant nest would be located

to the left side and ants would walk through the two-bridge

array to reach a food source located on the right side. The

two branches can be identical or instead have different lengths.

The problem to be solved here is which one is the shortest.

Moreover, if one is chosen from a symmetric case (equal

paths) how is this choice made. Once again, the solution

cannot be found at the individual level: colony-level processes

need to be in place to make the right decision.

This problem can be understood in terms of statistical

mechanics where ants are described as Boolean, spin-like

variables and the pheromone acts as a field [61]. Here the

alternative paths are mathematically mapped to a ferromagnet

and the spin-pheromone coupling is described accordingly. In

order to introduce noise, explicit use of a temperature is made.

In order to present the key ideas under a macroscopic picture,

let us here explore a simplified version that can be easily

explored analytically.

Ants can use quorum-sensing mechanisms as a way of

creating and (responding to) pheromone fields thus generating

a large-scale chemical field that allows them to properly make

their decision. Initially, ants will walk on both bridges, choos-

ing randomly their branch. We should expect at this point an

equal number of ants on each branch, i.e. r1 = r2. However,

once an ant has found the food source, it releases a pheromone

as it returns to the nest. Other ants will detect the released

signal, which helps ants to decide where to move, releasing

further pheromones and amplifying the previous mark. The

pheromone trail also evaporates, and evaporation will be
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more effective in the longer trail, where more surface is avail-

able. As a result, the shortest path is more likely to be used,

and is eventually chosen. Ants have computed the shortest

path. A model describing this experiment can be defined as fol-

lows. If r1 and r2 indicate the concentrations of trail pheromone

in each branch, their dynamics [62] is given by a pair of

equations for the pheromone fields:

drk

dt
¼ mqkPk(r1, r2)� nrk, (3:7)

with k ¼ 1, 2. Here m is the rate of ants entering each branch, qi

the rate of pheromone production at the ith branch and n is the

rate of evaporation. The functions Pi(r1, r2) can now be under-

stood as probabilities of choosing a bridge depending on the

pheromone concentrations. These probabilities are well

described by a nonlinear, threshold response function [63,64]:

Pi(r1, r2) ¼ (ri þ K)2

Q (r1, r2)
, (3:8)

where Q (r1, r2) ¼
P

j¼1,2 (r j þ K)2 and i ¼ 1, 2. The parameter

K gives the likelihood of choosing a path free of pheromones

(ri ¼ 0).

This is a general model that incorporates attributes associ-

ated with each branch. But an interesting scenario arises

when one considers the symmetric case where q1 ¼ q2 ¼ q.

For this situation, the previous set of equations reduces to

dri

dt
¼ mq

(ri þ K)2

Q (r1, r2)
� nri: (3:9)

Here there is no true optimal choice: both branches are equal.

Now, although the obvious expectation is a similar distri-

bution of ants in each branch, this is not what is observed.

We would easily conclude that ants would choose both

paths and that individuals will equally walk in both

branches. However, what is typically seen is that the sym-

metry is broken in favour of one of the two branches. Why

is this the case? This phenomenon illustrates a very important

class of phase transition: the so called symmetry breaking

process. Despite the symmetry of the system, amplification

of initial fluctuations leads to the formation of a dominant

pheromone trail that is used by all ants once established.

The fixed points associated with this system are obtained

from dri/dt ¼ 0. One possible solution to this system is the

symmetric state r�1 ¼ r�2 ¼ r� (associated with equal use of

both branches), ants equally distributed in both branches.

For this special case, we have Pi(r
�
1, r�2) ¼ P(r�) ¼ mq=2 and

thus we only need to solve a single equation dr*/dt ¼ mq/

2 2 nr*, which gives a fixed point r* ¼ mq/(2n). This is the

symmetric state to be broken. The second scenario corresponds

to the choice of one of the branches (r�1 = r�2). Since r1 þ r2 ¼

2r* ¼ mq/n, we see that

mq
n
� r�i

� �
(r�i þ K)2 ¼ r�i

mq
n
� r�i þ K

� �2

, (3:10)

after some algebra, this gives the new fixed points

r�þ ¼ (r�1þ, r�2�) and r�� ¼ (r�1�, r�2þ) with

r�i+ ¼
mq
2n
þ mq

2n

� �2

+K2

� �1=2

: (3:11)

This pair of fixed points will exist provided that mq/2n . K,

which allows the derivation of a critical line (figure 5c)

mc ¼
2Kn

q
, (3:12)

indicating that there is a minimal rate of ants entering

the bridges required to observe the symmetry breaking

phenomena. For m . mc, the symmetric state becomes unstable

(figure 5b,c) while the two other solutions can be equally

likely. Below this value, the only fixed point is the symme-

tric case with identical flows of ants in each branch. This

symmetric model can be generalized to (more interesting)

asymmetric scenarios where the two potential choices are

different (see [55] and references therein) either because the

food sources are of different sizes or because the paths are of

different lengths and the shortest path needs to be chosen.

This symmetry breaking phenomenon has also been observed

in the ant colony panic responses [65], army ant trails [54] and

optimal group formation [66]. A specially interesting proposal

concerning the phenomenon of symmetry breaking in ants

was made in Bonabeau [67], where it was suggested that

flexible behaviour leading to efficient decisions is more likely

to occur close to critical points.

(iii) Task allocation in ant colonies as a parallel distributed
process

In the previous example, we considered a set of agents

described as binary variables, thus ignoring the combinatorial

complexity that should be expected from an insect equipped

with a brain. Moreover, it is clear that the active/inactive

dichotomy hides a repertoire of potential activities that can

be carried out by individuals, associated with the set of tasks

needed to maintain the colony. DOL is in fact one of the

most important and widespread phenomenon in nature, and

very common in social groups [68]. It has been shown that

the dynamics of subsets of individuals performing specific

tasks within colonies is an emergent phenomenon [10]. In

this scenario, a colony that needs to perform a given set of

tasks under given environmental conditions (and respond to

changes in flexible ways) must be capable of sensing its internal

state using some kind of distributed information processing.

Inspired by the dynamics of harvester ants, Gordon

et al. [69] proposed a neural network model of task alloca-

tion where individual ants are represented by a sequence of

Boolean variables instead of a single ON–OFF description.

Observations from extensive field work on harvester ants

(Pogonomyrmex) show that members of an ant colony perform

a variety tasks outside the nest, such as foraging and nest

maintenance work. Remarkably, this is a monomorphic

species, i.e. individuals exhibit identical phenotypes. The

number of ants actively performing each task changes over

time due to task switching as well as the presence of inactive

workers [70]. As discussed in Gordon [11], interactions

among ants involve physical contact. This allows sensing

the state of other nest-mates to create a network of informa-

tion exchanges. Experimental perturbation of the number of

ants performing a given task triggers changes in the numbers

of individuals performing other tasks. Importantly, this

switching dynamics is a consequence of the microscopic,

local ant–ant interactions. The attractors associated with

normal and perturbed conditions are thus a collective-level

outcome of individual interactions.
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In their model, Gordon and co-workers consider a set

of four observed tasks, namely: patrollers, foragers, nest main-

tenance and midden workers, displayed by harvester ants.

Additionally, individuals can become inactive (as reported in

ant colonies, see previous section). Since each type of ant

performing any of the four tasks can become inactive, the

model assumes that eight possible vectors can represent

the available space state which can be covered by an internal

state of three binary variables [69]. Specifically, ants are

described now as 3-spin vectors Sk ¼ (S1
k , S2

k , S3
k ). In their orig-

inal paper, they use the notation P ¼ active patroller, F ¼ active

forager, N ¼ active nest maintenance worker and M ¼ active

midden worker. The lower case versions ( p, f, n, m) would

indicate inactive versions of the previous vectors. The space

of possible internal states is indicated in figure 6a,b. These are

represented as vertices of a Boolean cube, where all states

are, respectively, indicated as strings of þ 1 and 21 values.

The simplest approach for this problem is to assume that

the different components of the internal state act indepen-

dently, with different associated weight matrices. In this

way, we would have

Sm
j (tþ 1) ¼ Q (hmj (t)) ¼ Q

X
k

JmjkSm

k (t)

 !
: (3:13)

The (internal) state of Sm
j will remain stable after one inter-

action, provided that Sm
j hm

j . 0. An energy function is

defined accordingly as follows:

H({Sm

k , Jmij }) ¼ � 1

2

X
m

X
i,j

Jmij Sm
i Sm

j : (3:14)

In the macroscopic realm, the observable state is the

number of ants performing each task from the repertoire. It

is then desirable to have a description where the energy mini-

mization is defined in terms of the set fnkg. Thus, the energy

function now reads as

H({nk, Gij}) ¼ �
1

2

X
i,j

Gijnin j, (3:15)

with a new set of parameters fGijg that depend on the micro-

scopic couplings and can be derived from the initial matrices

[69]. This energy function allows a description of the system’s

equilibrium states (attractors) as a high-dimensional surface

the minima of which correspond to the task allocation solutions.

This form is consistent with a reaction-based dynamics where

pairwise interactions among classes of individuals conditions

the global dynamics. As a simple illustration of this idea, let

us consider a two-state/two-task case, where it is not difficult
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Figure 6. Neural network model of task allocation in ant colonies. The dynamics of harvester ants in Gordon et al. [69] can be described in terms of virtual ants (a)
each carrying a 3-spin internal description, with changes taking place by means of direct pairwise interactions. The total state space is a three-dimensional Boolean
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to show that the energy function will correspond to

H(N1, N2) ¼ � 1

2

X
Si¼þ1

Sihi þ
X

S j¼�1

S jh j

0
@

1
A (3:16)

¼ � 1

2
(aN2

1 þ aN2
2 � 2bN1N2), (3:17)

where we use G11¼ G22¼ a and G12¼ G21¼ b. We can easily

recognize in this solution the elliptic paraboloid, displaying a

single minimum. In figure 6c, we show an almost symmetric

energy surface for a ¼ 1, b ¼ 0.1, whereas a less symmetric

case is displayed in figure 6d, where b ¼ 0.5. In the latter, the

coupling between the two tasks creates an elongated valley

that would allow for more population fluctuations.

(iv) Collective dynamics of communicating populations
Insect colonies use different organic molecules (pheromones)

to transmit signals and process information at a colony level.

It is safe to assume that evolution has imprinted on ants a

hard-wired pheromone-based detection physiology that gen-

erates an internal image of the local environment for each

individual ant; however, such a picture is incomplete when

confronted with the full complexity of the colony. It is the

cobweb of diffusing pheromone signals and ants acting as

rewiring agents that confers on the colony its true evolution-

ary potency. Individual ants are relegated to acting merely as

cogs within the macroscopical system [38]. This multiple-

scale interrelation is the object of study of the present

model by Mikhailov [71].

Imagine a colony of ants individually labelled as i¼ 1, . . ., N.

Now, introduce two-state variables for each ant as Si [

f21, þ1g, 8i. Thus, vector S ¼ (S1, . . ., SN) characterizes the

full configuration of the system. In this model, ants are again

acting as neural agents, but they are also able to send out

and receive messages into and from the colony. A message is

encoded in a pheromone cocktail, and ants continuously

secrete it. To simplify the system’s dynamics, we will consider

that a message is fully described with two labels, namelyms,j ¼

(s, j), where s [ f21, 1g and j corresponds to the address tag.

In other words, message ms,j delivers information s to the

jth ant.

Si(tþ t) ¼ sign (m(þ, i)�m(�, i)): (3:18)

Let us introduce a correspondence matrix, fvijg, with each of

the N(N 2 1) elements of the former taking values f2, þg.
The function of this matrix is to determine whether a signal

will be sent or not in a time interval t. The way it works is

depicted in figure 7c. If vji ¼ þ, the sender ant, i, will send a

message m+,j to ant j only if Si ¼+, whereas for vji ¼ 2, the

message will be anticorrelated with the state of i, i.e. a message

m+,j is sent only if Si ¼+. In simpler terms, the correspon-

dence matrix distinguished two channels of information

transfer: correlated (v ¼ þ) or anticorrelated (v ¼ 2) message

and sender state. On the other hand, we define a frequency

distribution, Iij, as the number of messages per unit time t

that ant j is sending to ant i (figure 7b). Within a spatial context,

it is clear that Iij ¼ I(ji 2 jj), where j � j is the distance between

two ants.

Let us then consider the dynamics of the messages

present in the system with labels (s, i),

dm(s, i)
dt

¼ �dm(s, i)þ 1

2

X
j

Iij(1þ svijS j), (3:19)

where we have dubbed d the message decay rate. Therefore,

under the stationary regime, we expect

m(s, i) ¼ 1

2d

X
j

Iij(1þ svijS j), (3:20)
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Figure 7. Collective communication dynamics in ant colonies. In (a), we display an agent i and a set of messages reaching it within time t, all addressed to i while
some carrying the þ order others the 2 order. These messages will be integrated according to equation (3.18). On the other hand, (b) shows how interactions via
message sending depends on the frequency (or intensity) of messaging between agents, I. Notice that I values decay with distance. Finally, the way that orders are
sent by senders (c) depends on yet another set of couplings fvij [ f2, þgg, which determine whether a þ or a 2 order will be dumped into the system
depending on the actual state of the sender Si ¼+. Schematically, the arrow connecting sender and receptor is blocked (crossed out) for anticorrelated correlation
between coupling vji and sender state Si.
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which, combined with (3.18), leads to

Si(tþ t) ¼ sign
1

d

X
j

IijvijS j

0
@

1
A: (3:21)

Notice that (3.21) is equivalent to the Hopfield model

(2.1), provided that vij ¼ vji. Thus, patterns can be stored

in a similar manner by following a Hebbian approach by

associating:

1

d
Iijvij ! Jij ¼

1

N

Xp

m¼0

j
m
i j

m
j , (3:22)

where, as in §2a, {jmi } will correspond to the agent states of

m ¼ 1, . . ., p different stored patterns. Although limitations

to capacity will also apply here, perhaps more interestingly,

other constraints will arise too, namely:

(1) Agent-to-agent distance dependence on the signal

intensity, Iij ¼ I(ji 2 jj), which should take the form of a

monotonically decreasing function. Effectively, this

leads to a diluted network, i.e. every agent does not

connect to every other agent.

(2) Environmental noise: signal loss due to fluctuations

of the information channel. This can be formalized as

thermal noise, which has also been discussed in §2a.

(3) Cost-efficiency effects: the address-message system

devised here carries with it a large cost on the senders

to produce the necessary chemical repertoire so that the

signal is well-transmitted with minimal error.

The previous models, with all the simplifications they con-

tain, provide a range of examples of how to approach collective

behavioural patterns in ant colonies. The first two examples

include amplification processes with two rather different out-

comes. In one case, time-dependent fluctuations are observed

and are connected to high information transfer. Additionally,

the suggested criticality provides a source for low energy use

together with a rapid response to perturbations. The second

deals with solving a short-path (optimization) task which

requires exploiting the well-known phenomenon of sym-

metry-breaking in order to redirect the population towards

the shortest branch. In both cases, the state of the system is

described by population values where individual ants have

no other identity than either being active/inactive or located

in one of the two possible paths.

The two other examples provide an increasingly more

defined state for ants. When dealing with a number of

tasks that require a distribution of individuals performing

them, ants are represented by a Boolean vector and inter-

actions occur following a threshold function (as in standard

neural nets) but with a state-dependent choice of links. In

other words, in contrast with neurons in solid brains, there

is no predefined weight matrix but a state-dependent one.

This is in fact an especially important difference, along with

the fact that the attractors are given by populations of Boo-

lean strings and any ant can end up in one of them. The

fourth model makes a strong attempt to get closer to Hop-

field’s picture, but is less realistic in terms of modelling real

case scenarios. In order to achieve that result, the model

requires incorporating chemical mediators along with the

correspondence matrix.

An important message from the previous examples is that

both liquid and solid brains share common descriptions

(at some level) such as the presence of threshold-like

phenomena. They also achieve attractor states but they are

smaller in number, and more degenerate in the liquid state

that the solid one, even if full connectivity is considered.

In the Hopfield model, for example, a very large number of

attractors are present, but each neuron will have a specific

set of connections. In the next section, we explore the

second class of liquid systems as defined by the dynamics

of cells in the IS. In this case, the functional constraints are

associated with detection and response to information invol-

ving signal cascades mediated by interacting sets of cells.

(b) The immune system as a liquid brain
The IS consists of a myriad of chemical compounds (e.g. anti-

bodies, cytokines) and multiple cell lines (B cells and T cells

or lymphocytes, macrophages, etc.) aggregated into a multi-

component complex system. The essential purpose of the IS

is to detect external and malicious agents (antigens) such as

viruses, bacteria or cancerous cells, and prompt an appropriate

reaction (antigen neutralization or tolerance). At the same time,

it must be able to distinguish the latter from internal signals

(the self). As such, the IS must be capable of processing, storing

and manipulating large amounts of information [72].

The map of interactions of the IS can be depicted as an

interwoven web of signalling and response functions

between all its agents. Unravelling a full picture of the IS is

beyond the scope of this work. For the purpose of our discus-

sion, we will focus on the three core elements that

significantly shape the IS architecture: T cells, B cells and anti-

bodies (Ab). Lymphocytes have specific enzymes on their

membranes that store a molecular compound that has been

randomly generated during its maturation process. This com-

pound binds to specific fragments of proteins (epitopes)

coming from an antigen (often through an antigen presenting

cell, APC), hence prompting an internal cascade of reactions

that activate the lymphocyte. The collection of receptors of a

given lymphocyte clone-line is dubbed an idiotype.

Upon detection, B cells (aided by helper T cells) will pro-

liferate thus generating copies of the same receptor structure,

while secreting large concentrations of its specific antibody.

In summary, the clonal expansion theory [73] states that,

since the generated clones share their idiotype, successive

binding to the antigen will be triggered and an amplification

process will lead to an immune response [74].

On the other hand, a more systemic approach to the IS

reveals an underlying network of idiotypes that excite or

inhibit one another through the same detection/reaction mech-

anisms as with antigens. This phenomenon is known as an

idiotypic cascade: an initial perturbation (antigen) activates a

series of idiotypes filling the system with their corresponding

antibodies (Ab1), which, in turn, are detected through another

set of idiotypes thus prompting a second batch of antibodies

(Ab2), and so on and so forth. This observation suggests a net-

work scheme where each node is associated with an idiotype

and each link will correspond to an interaction between any

two idiotypes (see later figure 9a–c).

Idiotypic cascades were first observed and theorized by Jerne

[75] and have since spurred a scientific debate between the

allopoietic/autopoietic (reductionist/systemic) approaches to
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the IS [76–78]. While Burnet’s theory provides some mechanisms

for how the IS generates its idiotypic repertoire capable of self/

non-self discrimination, Jerne’s network approach complements

this process and shows how a distributed computation concate-

nated to clonal theory might give rise to crucial information-

processing aspects of the immune response.

In this section, we will study some fundamental aspects of

the IS as a liquid brain. We will begin by looking at the size of

the IS and how it is constrained by its fundamental function

of antigen detection and discrimination. Then we will study

how the IS is capable of storing information at a network

level, discuss how it makes use of its idiotypic landscape

structure to naturally reproduce a reliable self/non-self classi-

fication, and briefly comment on the implications of such a

systems-view to the IS.

(i) Simple constraints for the probability of detection
Early studies of the IS showed that epitope reactivity for a gen-

eric lymphocyte (B cell or T cell) is of the order 1025; in other

words, the probability that a random epitope binds to the sur-

face of a lymphocyte is given by p ≃ 1025 [74]. This begs the

question: why wouldn’t the IS organize such that p � 1?

In Percus et al. [79], a simple argument was put forward to

show that the fact we observe such values of p might be related

to the problem of self/non-self recognition, which strongly

constrains the way the IS is assembled.

Consider the following definitions: n is the total number of

expressed antibody receptors in the IS repertoire, N is the

number of foreign epitopes for a given environment and N
0

denotes the number of self epitopes, or epitopes derived from

cells belonging to the organism. Thus, the goal of the IS is to

properly distinguish the foreign epitopes while avoiding an

immune response to the self-originated ones. Let us denote

by P(N, N
0
; n) the probability that the repertoire of size n is

able to properly detect N foreign epitopes and not detect N
0

self epitopes. Note that the probability of non-recognition

of a random epitope for a single lymphocyte is given by

q ¼ 1 2 p. Hence,

qn; probability of n consecutive non-recognitions
1� qn; probability of at least one recognition.

�

Therefore, we may now compute

P(N, N0; n) ¼ (1� qn)N(qn)N0 : (3:23)

The goal is to maximize equation (3.23). This is easily

done by maximizing the log P(N, N
0
; n), which leads to an

optimal value for q,

q ¼ 1þ N
N0

� ��1=n

� 1� 1

n
log 1þ N

N0

� �
, (3:24)

where we expanded the previous expression using 1/n� 1.

Notice that we can now write

p � 1

n
log 1þ N

N0

� �
: (3:25)

Inman (see [74, pp. 1226–1227] and references

therein) estimated the size of foreign epitopes to be of the

order N � 1016, while, for the human genome, if we approxi-

mate the number of self epitopes per protein to be of about

10, then N
0 � 106. The IS repertoire (total number of idiotypes)

can also be approximated by n � 107 [80], which, by equation

(3.25), yields a prediction of p � 2 � 1026. This is smaller

than empirically obtained values of p, which are of the order

pexp � 1025. This might imply that the IS is operating at a

non-optimal stage, reacting more often than necessary. This

suggests that further mechanisms must be at play in optimiz-

ing the immune response. Notice that, due to the logarithmic

nature of (3.25), possible miscalculations of N or N
0

will not

entail substantial deviations for the predicted value of the

detection probability p. For more details on this approach,

see Perelson & Oster [81, pp. 656–657 and references therein]

and Percus et al. [79].

(ii) Percolation thresholds in the immune system
After Jerne’s discovery of idiotypic cascades, novel ideas were

put forward in trying to understand the organizational prin-

ciples of the IS as a network. Perelson [77] introduced a

simple model of the idiotypic cascading phenomenon. Given

a repertoire of n idiotypes (i.e. n different types of antibodies),

and assuming that paratopes and epitopes can be thought of as

bit-strings of size L (figure 8c), then we will consider that an

antibody can detect (bind to) a given string if the number of

matched pairs of the ordered paratope–epitope interaction

exceeds a threshold value, u , n. As we will see, this readily

imposes strong bounds on the system performance.

Recall that, under Jerne’s paradigm, antibodies are now

capable of matching with other antibody types and concate-

nate into an idiotypic cascade. Thus, we can infer that, for a

high threshold value (low reactivity), fewer antibodies will be

matching, but also fewer antibodies will be able to detect and

react to a given antigen. On the other hand, the reverse is

also true: for low values of u (high reactivity), antibodies

will be triggered altogether, as the matching probability is

expected to increase. Therefore, it is interesting to study what

type of structure will emerge from this simplified model.

Suppose that a given antibody is physically connected to a

number of antibodies z, i.e. it will encounter up to z other anti-

body types but might or might not bind to them. Now, the

probability that any pair of antibodies do match is denoted

by p, which, by definition, will depend on u (see below).

Thus, given an initial perturbation into the system (such as

antigen exposure) then an idiotypic cascade is triggered,

where idiotypes react to each other. Such a process will look

like a Bethe lattice of degree z (figure 8a). Denote by A(i) the

number of activated antibodies at the ith layer of the tree,

then it is easy to show that:

A(iþ 1) ¼ p(z� 1)A(i), (3:26)

which implies that there will be a characteristic probability

value p ¼ pc ¼ (z 2 1)21, at which the network becomes con-

nected, exhibiting a percolation phase transition [36]. For

values of p . pc, the network is fully connected, while for p ,

pc, any initial perturbation will eventually die out (figure 8a,b).

For the IS one can argue that z � n in other words, the

system is sufficiently fluid and the coarse number of elements

is sufficiently large so that any physical interaction can occur.

This sets a value on the critical threshold at pc � n21. On the

other hand, one can compute p ¼ p(u) by assuming that each

bit, of the L-sized strings, is generated by a coin toss. Then,

the probability of having two strings with sufficient
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complementary bit-to-bit values is

p ¼
XL

k¼u

L
k

� �
1

2

� �k 1

2

� �L�k

¼ 1

2L

XL

k¼u

L
k

� �
, (3:27)

which is plotted in figure 8b. We observe a sudden

transition from low to high reactivity at around u � L/2.

In fact, as L! 1, then p(u)! 1 2 Q (L/2).

Both n and p have been independently measured ([77,

pp. 19–20] and references therein). The repertoire size is esti-

mated to be of the order n � 106, while p � 1025. Hence, the

IS operates in the post-critical regime, where connectivity is

high and large cascading events are common.

(iii) Information storage in immune networks
In the search for a clear understanding of how ISs store and

process information, optimization arguments as above do

not suffice under the light of Jerne’s theory of idiotypic net-

works. Initial attempts to describe how information is

distributed over the network connecting different idiotypes

were put forward by De Boer, Hogeweg, Weisbuch and Per-

elson (see [74, pp. 1229–1258], and references therein). Here,

we will briefly summarize a minimal model by Parisi [78]

that involves Hopfield-like NN and imposes global limits

on the pattern recognition processes that a distributed net-

work of idiotypes must follow.

Consider the set of antibody binary concentrations fci(t)
[ f0, 1gg, for i ¼ 1, . . ., N, with N the total number of

antibodies of a healthy human IS (around 106 2 107). To all

effects and purposes, ‘antibodies’ and ‘idiotypes’ are inter-

changable from here onwards. Next, we model idiotypic

interaction networks, by imposing a dynamical process of

idiotype concentrations in the same spirit as (2.1):

ci(tþ t) ¼ Q
X

j

Jijc j(t)

0
@

1
A: (3:28)

Now, the interactions between different idiotypes are media-

ted by fJijg, for which we consider the following properties:

(i) Jij ¼ 0, i.e. no idiotype self-interaction is allowed,

which is the case for paratope–epitope complementar-

ity matching;

(ii) Jij ¼ Jji, which is a simplification of the Onsager affi-

nity relations between idiotypes,3 logjJijj ¼ logjJjij;
(iii) Jij ¼ U(21, þ1), 8i = j.

Condition (iii) states that the values of the off-diagonal

elements of Jij are taken from the uniform distribution between

[21, 1]. These approximations allow for a derivation of overall

limits of distributed storage of information. The system is now

described as a spin glass [19,20,82].

Stable solutions for this particular problem turn out to be

fully characterized by an average number of pre-assigned con-

centrations, M. In other words, a generic initial configuration

of concentrations will inevitably flow into a stable state by

switching concentration values on and off until a pre-assigned

configuration of concentration levels is reached. These global

stable states act as memory basins similarly to how memory is

stored in the aforementioned NN models. Naturally, M , N,

thus, we can define a , 1 such that M ¼ aN.

Spin glass theory [82] predicts that, for N	 1, out of the

total 2N possible binary states of the system, and for con-

ditions (i)–(iii), a total of 2lN patterns can be stored, with

l � 0.3. Withal, we can now try to understand the relation

between l and parameter a.

Let us consider the probability (pm) of randomly choosing

a ‘memorized state’ out of all the possible configurations or,

simply, pm ¼ 2lN/2N ¼ 22(12l)N. However, because only M
preassigned concentrations are required to fully describe an

attractor, we then expect a number of compatible solutions

per stable state. Thus, let us compute the average number

of compatible solutions per attractor as

av. no.

of solutions

� �
¼ pm �

degeneracy

of config.

� �
(3:29)

¼ 2�(1�l)N � 2N�M (3:30)

¼ 2(l�a)M: (3:31)

Notice that the average number of solutions will be greater or

equal to one iff a , l � 0.3. Essentially, this imposes a bound

in M. In other words, if we denote ac ¼ l, then for M . acN,

no equilibrium states are found. Thus, Mc ; acN is the maxi-

mum number of pre-assigned antibody concentrations such

that the dynamics imposed by (3.28) flow into well-defined

stored patterns. This effectively constrains the memory con-

tent that an idiotypic interaction web is able to store.
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Figure 8. Percolation in immune networks. Idiotypic cascades take place at a
network level in the IS. (a) A critical percolation cascading on a Bethe lattice
of degree z ¼ 3. Concentric circles delimit successive layers of the cascade.
(b) The percolation probability depends on the matching threshold u. At
low threshold values, the system is highly connected, allowing deep pen-
etration across layers, while for high u, the matching probability decays
abruptly, leading to a phase of low connectivity with small-sized cascades.
Right in the interface, we have the percolation point. (c) Two strings
(eptiope-paratope) of length L ¼ 10 with seven matching pairs and three
non-matching pairs. For example, if threshold u ¼ 5, this particular pair
of strings would react, whereas for high fidelity matching (u ¼ 8), the
pair would not connect.
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Parisi’s contributions fuelled the statistical physics and

spin-glass approach to the analysis of the IS (see sections

below), but also suggested how complex interactions among

a large number of elements yield strong constraints in the

feasability of IS information processing. This has major impli-

cations in that it shows how selective preassures pushing for

a reliable IS must go beyond the purely genetic component

involved in epitope/idiotope generation. Under this higher-

level picture, the capacity for learning and reliably retrieving

information from the immune network is limited by funda-

mental statistical attributes. In the next sections, we will

study further the structure of these idiotypic networks and

explore how other computational properties can emerge from

such a systems analysis.

(iv) Idiotypic networks as liquid neural nets
In what remains of this section, we will outline a model by

Barra & Agliari (BA) [76] based on statistical physics of a

well-mixed/liquid neural web representing Jerne’s idiotypic

network. Let us assume:

(i) A given clone idiotype is fully characterized by a

string of L bits. All idiotypes are of the same size.

(ii) Each string is obtained from successive, independent

coin-tosses with values f0, 1g.
(iii) The number of cells of a clone-type is sufficiently large

so that potential idiotypic interactions are always

carried out with their respective intensity values.

Assumptions (i)–(ii) are sensible first approximations to the bio-

logical processes the IS undergoes during maturation [72]. On

the other hand, a sufficiently high number of lymphocytes per

idiotype is not realistic under the light of clonal expansion

theory. However, the goal of the BA model is to figure out the

overall implications of having an idiotypic network description.4

Let us construct an idiotope space YL ; {j [ {0, 1}L}

spanning all possible strings with bit-size L. Indexes i, j, . . . [

f1, . . ., Ng, with N corresponding to the total number of differ-

ent clone types in the IS. A priori, a complete repertoire would

seem to scale as N � 2L, however, as we will see, the network

constraints will give rise to another scaling behaviour between

the repertoire size and epitope/paratope length.

Next, we construct the network following a simple

model of chemical complementarity. As usual, let us define

a complementarity function:

kij :¼ 1

L

XL

m¼1

[ji
m(1� j j

m)þ j j
m(1� ji

m)]

¼ 1

L
(jji j þ jj jj � 2ji � j j), (3:32)

with jAj ;
PL

m¼1 Am. This accounts for the total number of

complementary inputs between idiotypes i and j. For

example, suppose L ¼ 5, then for ji ¼ (10101) and jj ¼

(01011), kij ¼ 4
5 (figure 9b). In turn, this allows the construc-

tion of a chemical affinity function

fb,L: Y� Y �! R

(ji, j j) 7�! fb,L(ji, j j) ¼ bkij � (1� kij),
(3:33)

which is defined as a balance between repulsion and attrac-

tion effects of anti-complementary and complementary

bit-pairs, moduled by trade-off parameter b � 0. Thus, it

will be bounded as 21 
 fb,L 
 þb, distinguishing two

Jjj

Ji i

Jij

j

j

j

j
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Figure 9. The IS as a liquid brain. (a) An interaction between an APC carrying a fragment of an antigen and presenting to a lymphocyte (L). (b) Upon matching, the
lymphocyte will react by secreting antibodies with the corresponding matching code, thus flooding the system with its idiotypic information and prompting an
idiotypic cascade. (c) A representation of the subjacent idiotypic network operating across the IS. This network is actually self-organized into two major blocks (e) of
heavily influential (darker region) and weakly influential (lighter region) nodes. Such an effect can be computationally studied by looking at the strength distribution
(d ), P(v), noting that picking a random node from the right/left (strong/weak) (i/j) ends of the spectrum, and then looking at its corresponding next neighbours
strength (�i=�j ), they typically fall under the same category, i.e. strong/weak nodes connect to strong/weak nodes. This suggests a network-like mechanism for
tackling the self (S)/non-self (NS) classification problem (v-axis is depicted in logarithmic scale). Strong nodes are responsible for self-addressed Ab, and
vice versa. Part (d ) is adapted from Barra & Agliari [76, pp. 15 – 16].
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interactive regimes for each pair of idiotypes:

fb,L ¼
,0 repulsive regime

.0 attractive regime.

�
(3:34)

Following these precepts, let us outline how the

unweighted network of idiotype-idiotype interactions will

unfold. The IS can be arguably approximated as a well-

mixed system. This means that, following (iii), any possible

physical interaction (B cell/T cell or APC/T cell, etc.) occurs

at a sufficiently high rate so that we need only to account for

their internal affinity structure. Let us then define pb,L as the

probability that two generic idiotypes display a matching

interaction. Consider the following:

(1) The idiotype strings, fjig, are extracted by a successive L
random coin-tosses with equal probability for f0, 1g
values, i.e. p0 ¼ p1 ¼ 1/2.

(2) The complementarity kij and affinity fb,L functions fully

regulate the interactions. In particular, we define a link

between two generic idiotypes ( ji, jj) iff fb,L( ji, jj) . 0,

i.e. if the pair lays on the attractive regime.

In general, the probability for any two idiotypes to produce a

complementarity value, k, is P(k) ¼ L
k

	 

=2L. Now, owing to

assumption (2) and (3.33), then

pb,L ¼ P
[

fb,L.0

k

0
@

1
A ¼ XL

k¼bL=(bþ1)cþ1

P(k): (3:35)

Since N is the total number of different idiotypes,

the emergent network picture will be described by an

Erdös–Renyi (ER) graph with degree distribution

fb,L(k) ¼ N
k

� �
pk
b,L(1� pb,L)N�k, (3:36)

the mean value of which corresponds to kkl � pb,L N. ER net-

works display a percolation point at which the system

acquires a giant connected component [36]. Typically, this

occurs at kkl ¼ 1, associated with pc: ¼ 1/N. Next, we explore

what regime we should expect the idiotypic network to be in

and how this reflects on the IS’s repertoire capacity.

For finite values of L, the shape of the function pb,L as a

function of b is that of a transfer function. Recall that the

trade-off parameter b separates the favourably repulsive

regime (b , 1) from the favourably attractive one (b . 1),

b ¼ 1 corresponding to the symmetric case. Now, if chains (epi-

topes/idiotypes) are considered to be large, then an

amplification process occurs depending on the favourably

repulsive/attractive regimes determined by the value of b.

Such amplification is reflected on the switch-like behaviour

of the connection probability. On the other hand, since the per-

colation threshold will be of the order of 1/N, even if the system

is repulsively favoured (b , 1), it can still easily become fully

connected.

Now, consider the three elements that are now coming

together: probability of connection, pb,L; number of idiotypes

(or different clones), N; and the average number of connections

per idiotype, kkl. While the probability of connection is purely a

result of the internal chemical interactions, kkl is a defining fea-

ture of our network. Yet experimental data shows a value of

N � 1018, and a connectivity between idiotypes in mature ISs

of pb,L � 3� 5% [83]. This means that we should expect a

densely connected network of around kkl � 1012.

Moreover, the fact that pb,L is so low suggests that the

system operates at the repulsive regime. That being, we

may now compute the relation between epitope size L and

number of idiotypes in the BA model by using (3.35) and

b , 1. This results in a scaling relation N �
ffiffiffi
L
p

egL, with

g , 1, as opposed to the bit-by-bit repertoire size, which

would grow as 2L [76, pp. 5–13].

Hitherto, we have been able to characterize idiotypic net-

works using only basic assumptions for chemical affinity,

which has led to a dense ER. But what kind of computations

is this system able to perform? And how does the IS use its

autopoietic features to distinguish the self/non-self? To pro-

vide an answer to these questions, we ought to look at a

fine-grained version of the idiotypic network and inquire

into how its interaction intensities are distributed over the net.

(v) Stewart – Varela – Coutinho theory
In their seminal papers Stewart, Varela and Coutinho [84,85]

showed that a network systems approach to the idiotypic

webs described by Jerne actually displayed two major interac-

tive blocks: a highly connected (strongly interacting) module

and a loosely connected (low interactive) one. Such an obser-

vation suggested that each module’s activity could correlate

to the self and non-self reactions of the IS. More specifically,

the strongly connected module acts as an auto-regulated

dynamical subsystem that is continuously activated and

auto-inhibited; this would correspond to a tolerance response,

thus associated with the self (S) stimuli, in a healthy IS. On the

other hand, the low interactive module shows a basal activity

in the system, but under the presence of a stimulus it will be

activated, thus prompting a neutralization response. The

latter module is then associated to the non-self (NS) stimuli.

Hence, through this network structural property the vast

repertoire of the IS is capable of sorting out the self/non-self.

Although this two-block structure could appear to be the

result of an intricate evolutionary process, by following

the BA model, a twofold assembly akin to Stewart, Varela

and Coutinho’s system is shown to emerge for free. This

would suggest a generative mechanism capable of explaining

the underlying self/non-self modular structure independently

of adaptive drives. Let us briefly explore how this phenomenon

takes place at the weighted network level.

(vi) Weighted idiotypic networks and mirror types
The affinity function fb,L works as a representation of the

chemical reactions that take place on the cell surfaces, then,

following a simple extension to the concept of interaction,

connection matrix Jij(b, L) can be defined as

Jij(b, L) � Q [fb,L(ji, j j)] e fb,L(ji ,j j): (3:37)

Notice how we still impose a lower threshold of connectance

by setting Jij ¼ 0 for fb,L 
 0, which keeps the previous net-

work picture, while turning on the matrix values smoothly

in the attractive regime. The exact values for all the Jij will

depend on each realization of the stochastically generated

network of idiotypes fjig, thus, it will be necessary to nor-

malize each interaction parameter over all the space of

possible networks [76, pp. 13–20].

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180376

16



Once the interaction intensities are in place, one can look

at the total strength for each idiotype (node) as

vi(b, L) ¼
X
jjJij.0

Jij(b, L): (3:38)

Heuristically, Jij values characterize the robustness of a given

i 2 j interaction, while vi measures how influential idiotype i
is relative to the whole network. Now, consider the weight

frequency distribution P(v), which can be shown to be well

approximated by a normal distribution [76, pp. 13–20]. If

we select an idiotype i and look at its first-order neighbours

that inhibit i, namely mirror-i idiotypes (or simply �i), then it

is possible to study how the system self-classifies these

pairs into two major classes (figure 9e): strong and weakly

interacting pairs. The fact that the interaction is symmetrically

strong/weak for each pair is a consequence of chemical

complementarity in the affinity function.

However, this simple realization turns out to be an extre-

mely powerful tool to resolve the self/non-self distinction.

In summary:

— The P(v) degree distribution separates the two regimes of

strong/weak influential nodes (figure 9d ). The weak

nodes (blank triangles) happen to have weak mirror

types (blank squares) whereas the strongly interacting

nodes (reversed blank triangles) have mirror types

(black squares) that also are highly interactive nodes.

This mechanism gives rise to the S=NS modules.

— The strong block is hypothesized to account for the self-

directed antibodies, while the weak module acts as a

basal signal only activated by the presence of non-self

antibodies (triggered by external antigens).

— Establishment of robust memories occurs more effectively

at the weakly interacting block, as relative variations in

the affinity values will produce more durable configur-

ation changes in this network module.

— Autoimmune diseases can now be understood as devi-

ations from the two-module structure, where strongly

interacting circuits (responsible for self-addressed anti-

bodies) may deviate towards lower weighted regions of

the spectrum, thus triggering auto-immune response.

Hence, a natural mechanism for fundamental compu-

tational questions such as the self/non-self identification is

derived from first principles. These are constructed under the

assumption that the interaction time scales are small compared

with the global observational time scales, while, on the other

hand the ability of the ‘neural agents’ (idiotypes) to rapidly pro-

pagate throughout the environment ultimately allows the

characterization of the idiotypic network as a biologically mean-

ingful system. Thus, the IS appears to be a limit case scenario for

‘liquid brains’, where it is precisely the high levels of agent mobi-

lity that give rise to its capacity to solve classification problems.

This realization leads to novel questions: are there size

limitations for ISs and their performance in terms of physical

embodiment? What are the consequences of these constraints

to the self/non-self distinguishability? Or, in general, can

different ‘ISs’ exists across multiple scales?

(vii) B cell and T cell interactions as a glassy system
Immune systems seem to conceal within a concoction

of networks the nodes (antibodies and lymphocytes) of

which can be active or inactive in relation to their

presence or concentration levels. New approaches based on

lymphocyte–lymphocyte interactions have shed light onto

the intrinsic glassy mechanisms behind IS information

processing [86,87].

The previous analysis has only focused on the presence–

absence of Ab types in an idiotypic context, yet, underlying

the dynamics of idiotypic cascades, B cell clone types are

behind the production (or lack thereof) of the antibodies.

This will entail the global state of the IS and, as discussed

above, allow for self/non-self distinguishability or memory

storage. On the other hand, T cells, helpers and suppressors,

will promote and inhibit the proliferation of B cells. From a

network perspective, this can be understood as a core bipar-

tite network with T cells on one layer and B cells on the other.

However, this internal network will contain both excitatory

and inhibitory interactions. Such a rich dynamical picture is

what ultimately confers the IS its glassy behaviour.

Under this framework, more profound questions can be

formally pursued. In Agliari et al. [86], the authors showed

how a spin-glass approach to the coupling between lympho-

cytes leads to different scenarios. In these, the overall clonal

expansion extent and the ratio between the number of B cells

and the number of T cells (helpers and suppressors) strongly

define the regions of stable memory storage and inability to

retrieve memories. This has major implications for complex

diseases such as HIV. Here, T-cell levels are depleted by the

virus and the system is driven into the spin-glass states

where the IS fails to operate reliably [86].

Finally, this provides a yet deeper analogy between liquid

brains and solid neural networks (see Hopfield model in §1).

In the latter, the memory capacity a measures the relative

number of patterns stored in a network of a given size, but

in the IS this seems to be constrained by the ratio in gross

numbers between the two type of lymphocytes. Nonetheless,

there is yet another fundamental distinction between the two

systems. Hopfield nets operate by interpreting a pattern at a

time (provided an input, multiple outputs can be reliably

retrieved), but the IS computational task works in a different

way; it needs to carry out parallel tasks (as the organism is

exposed to multiple pathogens at once), but its decision

boils down to a single bit of information: immune reaction

or tolerance. This imposes severe restrictions on both the idio-

typic and the lymphocyte networks of interactions (see [88]

for an excellent investigation into this matter).

4. Discussion
The emergence of cognition in our biosphere has been marked

by several key events that allowed the evolution of special

classes of cell phenotypes along with ways of wiring them

together. Nerve cells and nerve nets pervade the revolution

towards new life forms capable of dealing with non-genetic

information in complex ways. But the basic ingredients for

the emergence of complex forms of information processing

have appeared multiple times at different scales and in different

evolutionary contexts [2]. Neural-like processing systems have

evolved as specialized organs but also as communities of

moving agents. In both cases, agent–agent interactions involve

some sort of recognition, internal communication coding and

stimuli thresholds that decide if changes are made. As shown

in previous sections, simple models can capture relevant

phenomena associated with both classes of systems.
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These two classes of networks share emergence as a major

feature. Memory, learning or decision-making are grounded

in a set of bottom-up phenomena where emergent properties

arise from individual, microscopic interactions (figure 10).

Collective phenomena and a physics approach becomes a

natural common field from where to extract universal

features. These emergent traits can be attractor basins associ-

ated with memory states or efficient task allocation, but can

also be phase transitions due to the presence of critical con-

nectivities, or even criticality itself, enabling rapid and

efficient information transfer.

What is missing from our previous models? An important

piece of complexity that has been ignored in this discussion is

the internal complexity of the agents. This is not necessarily a

limitation. When dealing with complex systems, we purposely

ignore unnecessary detailed descriptions of the system in order

to render the problem solvable and provide true understand-

ing. The level of simplification is imposed by the kind of

question being addressed. As in the Hopfield model and

other classical neural network approaches, neuronal complex-

ity is reduced to the minimal description. The IS too is a rather

sophisticated system, exhibiting a considerable diversity of cell

types and interactions. Ants, on the other hand, are not simple

strings of Boolean bits. Individual cognition exists: ants carry

actual brains inside their heads, even if small ones [89].

As pointed out by some authors [90] even if these brains are

orders of magnitude smaller than ours, they exhibit some types

of cognitive skills. How important are they compared to

colony-level cognition? This is an open question that will

require further attention. It might be the case that increases in

the cognitive complexity of ant colonies is accompanied by

reductions in an individual’s cognition. Such a trade-off has

been explored in other contexts, like the evolution of multicel-

lularity [91], described by the term ‘complexity drain’. Previous

work used coupled discrete maps to suggest that collective

computation might also display this phenomenon [92]. Further

multiscale models of liquid brains should be developed to

properly address this question.

What other systems can be described as liquid brains? As

mentioned before, computations arising from gene–gene

regulatory links within cells have been studied using similar

formal schemes, from Boolean tables to threshold networks

[93,94]. Several observations also suggest that gene networks

might be critical [95–98].

A final comment needs to be made concerning the physical

phases used to present our classification between liquid and

solid. The use of the term ‘liquid’ to label the classes of systems

discussed here is only partially appropriate. Particularly in

relation to ants, their collective dynamics is more appropriately

described as ‘active matter’: ants (as well as bacterial and

robotic swarms) need to be understood as interacting self-pro-

pelled robots [99]. Here too the statistical physics approach has

played a key role in understanding coordinated behaviour and

its transitions. Once again, in spite of considerable differences,

deep analogies exist between classical equilibrium statistical

physics systems and those made of active units. Understanding

the cognitive complexity of liquid brains and its limits can pro-

vide deep insights into the evolution of information-

Ab2

(a) (i) (b) (i)

(ii) (ii)

(iii) (iii) Ab1

Ab4Ab3

Ab5

Ab6

Figure 10. Multiscale dynamics in liquid brains. As occurs with many other complex systems, each example of liquid brains involves several scales of description.
(a) Ant colonies perform diverse functionalities, such as collective foraging (aiii) on a colony-level basis. At a smaller scale, pairwise interactions among ants take
place (aii). Such interactions are localized and, thus, constrained by spatio-temporal properties such as agent mobility or density. At the top of this hierarchy (ai), we
encounter single ants as a system. These agents will be defined by a set of rules that drive their behaviour at this minimal scale. (b) A similar scheme can be made
for the IS. Scales now involve the idiotypic (or antibody type) network (biii), where information is processed, for instance, at the self/non-self discrimination level
(see above). As we zoom in, we encounter the cellular-scale interactions level (bii), which are also associated to the simple-matching recognition dynamics. Finally,
yet another level of complexity is reached at the description of the IS elementary agents (bi): viruses, paratopes, epitopes and surface receptors.
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processing, computational systems grounded in living

structures.
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Endnotes
1The same results are obtained when the active phase is used, since
the two points just exchange their stability.
2A trade-off between polymorphism and pheromone repertory is evi-
denced, as caste differentiation already segregates behavioural states
in a decisive way.
3Considering antisymmetric interactions leads to chaotic behaviour
for the time-dependent dynamics, which is arguably not a good
description of the IS as Ab concentrations would be observed to
behave randomly.
4Assumption (iii) acquires more relevance in the full BA model as the
coupling between the actual lymphocyte activity and the subjacent
idiotypic network is studied. In this paper, though, we concentrate
on the network-like features.
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A2. The Harvesting Guesser Model
In this section, we showcase the potential of our results concerning the

universal bounds on energy harvesting systems discussed in the previous
sections. We do so by examining an example called the two-state guesser.

1

0

Figure 7.1: Guesser model. The left shows the system (guesser and environ-
ment) with all internal microstates connected by a clique via its baseline mecha-
nisms. We show that this system is equivalent to a two-state system (right) where
the guesser only needs to be in the correct (1) state, i.e. x = y in order to harvest
energy from the environment, and so the system is optimized via some control
mechanisms (dashed-lined transitions). If the agent fails to guess the state of the
environment (0), then no energy is harvested.

Consider system with a configuration as shown in the left of Fig-
ure 7.1. The system is separated into two subsystems, namely the agent
(state space X) with n possible states and an environment (state space
Y ) also with n possible states. Suppose the baseline mechanisms con-
nect all the states of the each subsystem separately via a transition ma-
trix that forms a clique with equal rates, i.e. RX

x′x = kX , ∀x, x′ ∈ X ,
and RY

y′y = kY , ∀y, y′ ∈ Y . We note that, since baseline processes are
fully independent of the state of the environment and vice-versa, then the
agent-and-environment independency constraint is held.

Our main premise is that, whenever x = y, then θ units of energy
(in units of kBT = 1) per unit time are transferred to the work reservoir.
Thus, the agent is dubbed a guesser since it requires to ‘guess’ the state
the environment in order to harvest energy from it. For simplicity, we will
assume that the system operates in a dissipativeless manner (q = 0) and
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that no coarse-graining is involved (s = 0). The energy pay-off is given
by the vector

dxy = Dδxy, (7.1)

with D a constant in units of energy per unit time. We also assume that
all possible control mechanisms applicable to optimize the efficiency of
energy harvesting for the guesser are local, i.e., the condition of ‘local
control’ holds.

Variable reduction We begin by showing that the X × Y state space
can reduced to a 2 state system. Firsly, observe that given the above defi-
nitions, we can rewrite:

RX
x′x = kX(1− δx′x)− nkXδx′x ; RY

y′y = kY (1− δy′y)− nkY δy′y .

(7.2)

Thus, the system’s baseline dynamics follow:

∂R
t pxy = kXpx + kY py − nKpxy , (7.3)

where px and py indicate respective marginal distributions and K :=
kX + kY . Since our example corresponds to a system with a fluctuating
environment in which local control and agent-and-environment indepen-
dency conditions being held, then we have pY = πY (see Section 2.1 of
the SM in [PSK23] for a proof). In particular, owing to the symmetries of
RY , πy = 1/n, for all y ∈ Y . Then,

px =
∑

y

px|ypy =
1

n

∑

y

px|y =
1

n
= πx,

where the latter equality is derived immediately from the symmetries RX .
This can be readily interpreted as having no special x ∈ X or y ∈ Y
states; only correlation between these two affect the computation of ∆Ẇ ∗
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and p∗. Thus, the joint distribution can effectively be given for a single
parameter, the correctness probability, namely

pxy =

{
χ
n

x = y
1−χ

n(n−1)
x ̸= y

, (7.4)

with χ :=
∑

x,y:x=y pxy. This effectively reduces the problem into a two-
state system, with only two possible states, namely correct (x = y ⇔
C = 1), with probability χ, and incorrect (x = y ⇔ C = 0), with
probability 1−χ. Shifting to this reduced version of the problem implies
that now equation (7.3) reduces to:

∂R
t pxy =

K

n
− nKpxy

∑
x,y:x=y−→ ∂R

t χ = K (1− nχ) . (7.5)

For simplicity, we will redefine constant D given in (7.1) as:

D =
Kn

β
θ. (7.6)

Maximum power increase and optimal distribution. Using (2.15),
we study each term applied to the problem outlined above. First, we
derive:

−∂R
t S (p) =

K

n
ln

(∏

xy

pxy

)
+KnS(p)

= −Kn

(
χ− 1

n

)
ln

[
χ(n− 1)

1− χ

]
, (7.7)

where we used (7.4) in the last equality. On the other hand, using (7.6),
for the second term in (2.15) we obtain:

⟨p− π, d⟩ = D

(
χ− 1

n

)
. (7.8)
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Combining (7.7), (7.8) and redefinition (7.6), it is possible to arrive at the
following optimization problem for χ,

∆Ẇ ∗ = max
χ

Knβ−1Fn(χ; θ) , (7.9)

with

Fn(χ; θ) :=

(
χ− 1

n

){
θ − ln

[
χ(n− 1)

1− χ

]}
,

and solution for χ∗ given, in general, by:

χ∗
n(θ) = argmaxχFn(χ; θ) . (7.10)

Next, we will outline a method to solve (7.9) in the LR, FE and M regimes.

Implicit Solution Albeit simple to state, the optimization problem (7.9)
does not admit a close form solution. However, an implicit form is easy
to derive by setting
(
∂Fn

∂χ

)

θ

= 0 ⇒ θ(χ∗) =
χ∗ − 1

n

χ∗ (1− χ∗)
+ ln

[
χ∗(n− 1)

1− χ∗

]
. (7.11)

Inverting (7.11) is not possible in closed-form, but inverse plots can
be studied for different ranges of θ and different values for N , as shown
in Figure 7.2. Notice that, for large number of states n ≫ 1, then (7.11)
can be approximated by

θ − lnn =
1

(1− χ∗)
+ ln

[
χ∗

1− χ∗

]
, (7.12)

which can be solved exactly using the Lambert W function as

χ∗
n≫1(θ) ≃

W
(

eθ−1

n

)

1 + W
(

eθ−1

n

) . (7.13)

This solution becomes exact for large n as shown using dashed lines in
Figure 7.2. As expected, the larger the space of states, the more energetic
influx is required for the system to shift into the correct state. Shifting the
values of θ → θ′ = θ − lnn collapses the behavior of χ∗ to a universal
curve for large n (inset of the same figure).
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Figure 7.2: Optimal correctness. Optimal correctness probability (χ∗) as a
function of the power yield (θ) for n = 10, 102, 104. The inset shows how a shift
in the driving power scale, θ → θ′ = θ − ln(n − 1), collapses all curves at the
large n limit.

Linear Response Regime By hypothesis, in the LR approximation,
χ∗ ≈ 1/n, i.e. pxy is close to equidistribution. Recall that, in general,
this occurs when the energy influx is sufficiently small, then entropic
equilibration forces dominate the energetic trade-off in (2.15). Expand-
ing (7.11) around χ∗ ∼ 1/n and inverting for χ∗(θ), which in turn can be
expanded around θ ∼ 0, yields

χ∗
LR(θ) =

1

n

[
1 +

n− 1

2n
θ + O

(
θ2
)]

. (7.14)

Accordingly, we compute the optimal value for the reduced lagrangian
Fn, which gives

F LR∗
n (θ) =

θ

n

[(
n− 1

n

)
θ

2
+ O

(
θ2
)]

. (7.15)

This result is shown in dashed lines the left plot of Figure 7.3.

Far-from-Equilibrium Regime Similarly, the system is at the FE regime
when the agent’s state is highly correlated with the environment’s, i.e.
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Figure 7.3: Guesser’s maximum power increase. Curves (in log-log scales)
of the normalized optimal target for values of n = 10, 102, 103. Dashed/straight
lines correspond to the LR and FE approximations given by (7.15) and (7.19),
respectively. The inset shows the same plot after shifting the reduced coupling
θ → θ′ = θ − ln(n− 1).

χ∗ ∼ 1. This occurs when the energy influx is high, since under this cir-
cumstances the entropic contribution in (2.15) becomes of second order,
and the agent is capable of spending most of the time in the correct state.

In order to solve for this regime, let us consider an approximate form
for FN , namely

Fn(χ, θ) ≃ F FE
N (χ, θ) := −

(
1− 1

n

)
ln

[
χ(n− 1)

1− χ

]
+ θ

(
χ− 1

n

)
,

(7.16)

where we have used χ ∼ 1 in the prefactor of the entropic contribution.
This allows for a direct solution to the optimization problem, i.e.

(
∂F FE

N

∂χ

)

θ

= 0 ⇒ χ∗
FE(θ) =

1

2

[
1 +

√
1− 4(n− 1)

nθ

]
, (7.17)
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where the negative root is discarded since it contradicts χ∗ ∼ 1. Using a
large θ expansion, we write an asymptotic expression for the true χ∗(θ) at
the high information regime as:

χ∗
FE(θ) = 1−

(
1− 1

N

)
θ−1 + O(θ−2) . (7.18)

Equivalently, finding the maximum reduced lagrangian value as a power-
series of θ−1 can be achieved by simple substitution of (7.18) into (7.16),
yielding

F FE∗
N (θ) =

(
1− 1

N

)[
θ − ln (eNθ) +

(
1− 1

N

)
1

θ
+ O

(
θ−2
)]

,

(7.19)

which is too shown in straight lines the left plot of Figure 7.3.

Controlled solution In this section, we study the thermodynamics a
particular instance of the system governed by both baseline and control
processes, i.e. R̄ = R + R′, where R′ refers to the control mechanism
transition rates. Introduce:

R′Y
x′x

∣∣∣
y′=y

=
[
k′δx′y + k′e−ϕ (1− δx′y)

]
(1− δx′x) , (7.20)

such that R′
(x′y′)(xy) = δy′yR

′Y
x′x. Heuristically, this rate matrix defines

a guessing process that always shifts the agent’s state x → x′ either to
the ‘correct’ state (i.e. x′ = y) or works away from it due to thermal
fluctuations. Notice the above obeys local detailed balance:

RY
yx

RY
xy

∣∣∣
x ̸=y

= eϕ .

The thermodynamic interpretation of the parameter can be put in terms
such that ϕ = −βw′ > 0 with w′ < 0 the work done by the agent (hence
the negative sign) to tilt the transition from x ̸= y → x = y. In other
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words, w′ < 0 represents an expenditure of energy from the agent that is
required in order to proceed with the state-matching mechanism.

Let us study the stationary distribution,

0 = ∂tπ̄xy = kX
∑

y′

(π̄xy′ − π̄xy) + kY
∑

x′

(π̄x′y − π̄xy)

+ k′
∑

x′

(
π̄x′y − e−ϕπ̄xy

)
(1− δx′y) δxy , (7.21)

Owing to symmetry, both marginal probabilities are equidisitributed, π̄x =
π̄y = 1/n. This allows for a simplification as before:

π̄xy =

{
χst

n
, x = y

1−χst

n(n−1)
, x ̸= y

; (7.22)

where χst now stands for the agent’s stationary probability of sitting at
the same state as the environment’s, provided both baseline and control
mechanisms. Thus, we obtain χst after marginalizing (7.21) over states
x = y, which gives

χst =
1
n
+ ρ

1 + ρ [1 + (n− 1)e−ϕ]
, (7.23)

where we have defined the adimensional coupling:

ρ :=
k′

Kn
=

k′

(kX + kY )n
.

Increase of power yield: finding the average increase power flux is now
a straightforward computation using the definition, ∆Ẇ (π̄) = ⟨π̄, w +
w′⟩ − ⟨π,w⟩, and (7.23), which yields ∆Ẇ (π̄) = KNβ−1F̄n(θ, ϕ, ρ),
where

F̄n(θ, ϕ, ρ) =

(
χst − 1

n

)
θ − ρϕ

[
1−

(
1 + e−ϕ

)
χst] . (7.24)
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a. b.1 b.2

b.4b.3

Figure 7.4: Guesser phases. (a) Shows (in blue) the sheet for which ∆Ẇ (π̄) =
0. Above/below this sheet the net power difference for the controlled agent
is positive/negative. The orange transparent planes show how different sec-
tions of the three-dimensional functions (each at values of θ = 6, 12, 18) sep-
arate the space of parameters {ϕ, ρ}θ into phases of effective/innefective con-
trol (∆Ẇ (π̄) > 0/∆Ẇ (π̄) < 0). This plot is done for N = 4. Subfigures
(b.1), (b.2), (b.3) and (b.4) show a projection of the latter for four theta values,
θ = 6, 8, 12 and 16, respectively. Straight (dashed) lines separate effective from
inneffective control regimes for n = 4 (n = 8).

Here, χst is left as the implicit function of {n; θ, ϕ, ρ} given by (7.23).
Efficiency Patterns: having readily computed the maximum power yield,
(7.9), we now may define the efficiency of any controlled system with
respect to the optimal performance as

η =
∆Ẇ (π̄)

∆Ẇ ∗ . (7.25)

where η will depend on both the baseline and control parameters, as
well as system size (n). Pertaining to our current analysis, ηn(θ, ϕ, ρ) =
F̄n(θ, ϕ, ρ)/Fn(θ). The resulting patterns are numerically obtained, de-
picted and described in Figure 7.4 and Figure 7.5. As shown, for spe-
cific regions of the parameter space, the system performs at zero or nega-
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tive efficiencies, i.e. ∆Ẇ (π̄) < 0, while, for the same parameter values,
∆Ẇ ∗ ≥ 0. This means that the choice of control mechanisms can per-
form better or poorly depending on the parameter regions. In Figure 7.4,
the region of reduced control parameters {ρ, ϕ} for which η < 0 sits
under the sheet (given by condition ηn(θ, ϕ, ρ) = 0). Here parameter θ
parameter is drawn along the vertical axis. Figs. 7.4b.1-b.4 show slices
of constant θ for different N values. Here, shaded regions display nega-
tive efficiency. As expected, such regions grow with N . This is because
the larger the search space for the agent, the more energy it is required to
pump out energy to account for its entropic cost.

a.1

a.2

b.1 b.2

b.3 b.4

Figure 7.5: Guesser efficiency patterns. Subplots (a.1)-(a.2) show the non-
monotonic behavior of ηn(θ = 10, ϕ, ρ), for n = 10. (a.1) displays three curves
for ηN against ϕ, each fixing ρ = 1, 5, 10; (a.2) displays three ηn against ρ, each
fixing ϕ = 1, 2, 4. Note that there are regions where the efficiency becomes
negative, i.e., an ineffective controller (∆Ẇ (π̄) < 0 ⇔ ηN < 0). Both subplots
show a maximum efficiency value. Subfigures (b.1)–(b.4) are density maps of
efficiency values ηn > 0 for n = 4 with θ = 6, 8, 10, 12, respectively. Blank
spaces are inefficient (ηn < 0) regions. The maximum efficiency values attained
in each case are computed numerically and shown on each plot with the symbol
⋆.
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Another interesting result is the presence of a global efficiency max-
ima given our example of a control process. Figure 7.5 shows different ef-
ficiency curves and density plots for different values of θ sweeping around
the values of (ϕ, ρ). In all cases, a maxima is reached at some particular
value (shown in the figure) that sits within the effective region.
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tanez, Sergi Valverde, and Ricard Solé. Emergence of
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Kuznets-Speck, Sebastian Deffner, Efe Ilker, Jacob G
Scott, et al. Controlling the speed and trajectory of
evolution with counterdiabatic driving. Nature Physics,
17(1):135–142, 2021.

[IMS91] EM Izhikevich, AS Mikhailov, and NA Sveshnikov.
Memory, learning and neuromediators. BioSystems,
25(4):219–229, 1991.

[Ito18] Sosuke Ito. Stochastic thermodynamic interpretation
of information geometry. Physical review letters,
121(3):030605, 2018.

[Jar97] Christopher Jarzynski. Equilibrium free-energy differ-
ences from nonequilibrium measurements: A master-
equation approach. Physical Review E, 56(5):5018, 1997.

242



[Jay65] Edwin T Jaynes. Gibbs vs boltzmann entropies. American
Journal of Physics, 33(5):391–398, 1965.

[Jer74] Niels K Jerne. Towards a network theory of the immune
system. Ann. Immunol., 125:373–389, 1974.

[JL06] Eva Jablonka and Marion J Lamb. The evolution of in-
formation in the major transitions. Journal of theoretical
biology, 239(2):236–246, 2006.

[JL14] Eva Jablonka and Marion J Lamb. Evolution in four di-
mensions, revised edition: Genetic, epigenetic, behav-
ioral, and symbolic variation in the history of life. MIT
press, 2014.

[Kau69a] Stuart Kauffman. Homeostasis and differentiation in ran-
dom genetic control networks. Nature, 224(5215):177–
178, 1969.

[Kau69b] Stuart A Kauffman. Metabolic stability and epigenesis in
randomly constructed genetic nets. Journal of theoretical
biology, 22(3):437–467, 1969.

[Kau71] Stuart A Kauffman. Cellular homeostasis, epigenesis and
replication in randomly aggregated macromolecular sys-
tems. 1971.

[Kau86] Stuart A Kauffman. Autocatalytic sets of proteins. Jour-
nal of theoretical biology, 119(1):1–24, 1986.

[Kau91] Stuart A Kauffman. Antichaos and adaptation. Scientific
American, 265(2):78–85, 1991.

[Kau93] Stuart A Kauffman. The origins of order: Self-
organization and selection in evolution. Oxford Univer-
sity Press, USA, 1993.

243



[Kau00] Stuart A Kauffman. Investigations. Oxford University
Press, 2000.

[KBLB20] Sam Kriegman, Douglas Blackiston, Michael Levin, and
Josh Bongard. A scalable pipeline for designing reconfig-
urable organisms. Proceedings of the National Academy
of Sciences, 117(4):1853–1859, 2020.

[Kim83] Motoo Kimura. The neutral theory of molecular evolu-
tion. Cambridge University Press, 1983.

[KK+95] Stuart Kauffman, Stuart A Kauffman, et al. At home in
the universe: The search for laws of self-organization and
complexity. Oxford University Press, USA, 1995.

[KL87] Stuart Kauffman and Simon Levin. Towards a general
theory of adaptive walks on rugged landscapes. Journal
of theoretical Biology, 128(1):11–45, 1987.

[KRBN10] Pavel L Krapivsky, Sidney Redner, and Eli Ben-Naim. A
kinetic view of statistical physics. Cambridge University
Press, 2010.

[Lan61] Rolf Landauer. Irreversibility and heat generation in the
computing process. IBM journal of research and devel-
opment, 5(3):183–191, 1961.

[Lan10] Nick Lane. Life ascending: the ten great inventions of
evolution. Profile books, 2010.

[Lan15] Nick Lane. The vital question: energy, evolution, and the
origins of complex life. WW Norton & Company, 2015.

[Lan22] Nick Lane. Transformer: The Deep Chemistry of Life and
Death. Profile Books, 2022.

[LD20] Michael Levin and Daniel C Dennett. Cognition all the
way down. Aeon Essays, 2020.

244



[LKR11] Yonatan Loewenstein, Annerose Kuras, and Simon
Rumpel. Multiplicative dynamics underlie the emergence
of the log-normal distribution of spine sizes in the neocor-
tex in vivo. Journal of Neuroscience, 31(26):9481–9488,
2011.

[Lli02] Rodolfo R Llinás. I of the vortex: From neurons to self.
MIT press, 2002.

[Lot20] Alfred J Lotka. Analytical note on certain rhythmic re-
lations in organic systems. Proceedings of the National
Academy of Sciences, 6(7):410–415, 1920.

[Lot22] Alfred J Lotka. Contribution to the energetics of evolu-
tion. Proceedings of the National Academy of Sciences,
8(6):147–151, 1922.

[Lot56] Alfred J Lotka. Elements of mathematical biology. Dover
Publications, 1956.

[LR90] Harvey S Leff and Andrew F Rex. Maxwell’s demon.
Entropy, information, computing, 1990.

[LR02] Harvey Leff and Andrew F Rex. Maxwell’s Demon 2 En-
tropy, Classical and Quantum Information, Computing.
CRC Press, 2002.

[Mag88] Anne E Magurran. Ecological diversity and its measure-
ment. Princeton university press, 1988.

[Mag03] Anne E Magurran. Measuring Biological Diversity. John
Wiley & Sons, 2003.

[Mar81] Lynn Margulis. Symbiosis in cell evolution: Life and its
environment on the early earth. W.H Freeman and Co.,
1981.

245



[MAS00] Alan McKane, David Alonso, and Ricard V Solé. Mean-
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phase transitions in spatially extended two-member hy-
percycles. Journal of Theoretical Biology, 243(4):468–
482, 2006.

[SS07] Josep Sardanyés and Ricard V Solé. Spatio-temporal
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[SSE21] Ricard Solé, Josep Sardanyés, and Santiago F Elena.
Phase transitions in virology. Reports on Progress in
Physics, 84(11):115901, 2021.

[SW49] Claude E Shannon and Warren Weaver. A mathematical
model of communication. Urbana, IL: University of Illi-
nois Press, 11:11–20, 1949.

254
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[Sza15] Eörs Szathmáry. Toward major evolutionary transitions
theory 2.0. Proceedings of the National Academy of Sci-
ences, 112(33):10104–10111, 2015.
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