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Resumen

Determinar los genes que están bajo selección positiva o negativa durante

la evolución del cáncer puede explicar cómo se forman y progresan los

tumores y además puede sugerir nuevos objetivos terapéuticos. Sin em-

bargo, la detección de selección utilizando datos de mutaciones somáticas

es un desafío debido a la heterogeneidad de la tasa de mutación en todo

el genoma y las limitaciones de los algoritmos existentes. En particular,

se necesitan métodos estadísticos que puedan identificar y cuantificar la

selección somática condicional, es decir, cambios en la selección debido

a la influencia de otros factores. En este estudio, nos centramos en el

efecto de las alteraciones del número de copias somáticas en la selección

de mutaciones.

Presentamos MutMatch, una metodología estadística que puede esti-

mar tanto la fuerza de selección en diferentes condiciones como las posi-

bles interacciones. Nuestro método también puede cuantificar el cambio

en la selección de mutaciones somáticas condicionado a otros factores y

su significación estadística. El método MutMatch incluye la heterogenei-

dad de la tasa de mutación en el genoma, la ambigüedad generada por

alteraciones en las dosis de genes y los patrones de mutación de trinucle-

ótidos. Lo logra estimando la tasa base de mutación a partir de genes

vecinos no seleccionados o regiones no restringidas dentro del mismo gen.

Aplicamos MutMatch para estudiar los efectos de selección específicos en

diferentes dosis de genes impulsores en cánceres humanos utilizando con-

juntos de datos de secuenciación del genoma, exoma y de paneles de genesl

a gran escala. A continuación, buscamos patrones genómicos de selección

negativa en regiones poco mutadas de oncogenes conocidos y en genes

identificados como esenciales en experimentos in vitro con líneas celulares.

Finalmente, caracterizamos el panorama del efecto de selección dependi-

ente a la dosis de los genes en cada tipo de tumor a través de un análisis

de reducción de dimensionalidad. Este análisis identificó al menos cuatro

tendencias que varían independientemente en los efectos de selección en

los genes impulsores, lo que puede proporcionar una clasificación de los

mecanismos de activación de oncogenes e inactivación de genes supresores

mediante combinaciones de alteraciones genéticas en tumores humanos.
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Abstract

Determining which genes are under positive or negative selection during

cancer evolution can explain how tumors form and progress, and sug-

gest new therapeutic targets. However, the detection of selection using

somatic mutation data is challenging because of severe confounding by

mutation rate heterogeneity across the genome and limitations of existing

algorithms. In particular, there is a need for statistical methods that can

identify and quantify conditional somatic selection, meaning changes in se-

lection due to the influence of other factors. In this study, we focus on the

effect of somatic copy number alterations on the selection of mutations.

We present MutMatch, a statistical methodology that can estimate both

the selection strength across different conditions and possible interactions.

Our method can also quantify the condition-specific change of somatic

mutation selection and its statistical significance. The MutMatch method

controls for mutation rate heterogeneity across the genome, gene dosage

confounding, and trinucleotide mutation signatures. It achieves this by de-

riving a mutation rate baseline estimated from neighboring non-selected

genes or non-constrained regions within the same gene. We applied Mut-

Match to study selection effects specific to different gene copy number

states on driver genes in human cancers using large-scale genome, exome,

and panel sequencing data sets. Next, we searched for genomic signatures

of negative selection in lowly mutated regions of known oncogenes, and in

genes identified as essential in in vitro experiments with cell lines. Finally,

we characterized the landscape of gene copy number-dependent selection

effect in cancer genes across each cancer type via a dimensionality reduc-

tion analysis. This identified at least four independently varying trends

in selection effects in driver genes, which can provide a classification of

mechanisms of oncogene activation and tumor suppressor inactivation by

combinations of genetic alterations in human tumors.
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Chapter 1

Introduction

1.1 Cancer statistics: incidence and mortality

Cancer is one of the leading causes of death worldwide, killing one out

of eight people [1]. In 134 countries, cancer is the leading cause (first or

second rank) of premature deaths in the cohort between 30 and 69 years

old. According to the yearly studies of the American Cancer Society, the

expected number of new cancer diagnoses in 2022 is around 1.9million
people; over 600 000 people die from cancer every year in only USA [2].

Although cancer can develop in anyone, age is a a major risk factor: over

80% of cancer patients in the US are older than 55 years old. Regardless,

each year, about 270 thousand cases are diagnosed in children. Having

18million cases in 2018 and a growing and aging population, it is predicted

that the total burden of cancer in the world will reach 29million cases by

2040 [3].

Understanding the mechanisms that underlie tumor formation and its

early development, transformation into more malignant subtypes, tumor

drug response, and different trajectories that the evolution of each tumor

can take is an important task in battling this disease and constructing

personalized or patient-specific therapy.
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1.2 Cancer as an evolutionary model

Cancer is an evolutionary process, given that somatic cells within an or-

ganism are subject to selection. The nature of this evolutionary process is

similar to that of unicellular microorganisms lacking sexual reproduction

[4, 5, 6].

Accumulation of mutations in cancer genomes provides a substrate for

subsequent action of selection pressures. Positive selection increases the

proportion of variants that give a fitness advantage for a tumor clone,

while negative selection, also known as purifying, removes mutations that

decrease cellular fitness compared to other clones [7, 8].

The lack of genetic recombination in somatic cells implies an inability

of selection to remove or fix individual variants. The unit of selection,

therefore, is the entire cancer genome, which will be removed from a tumor

cellular pool or not depending on its relative aggregate fitness compared

to other clones.

Mutations in a small proportion of the genome may lead to phenotypic

changes important for cancer cells, which correspond to 5%–10% of all

genes, according to different estimates [9]. Impactful mutations in these

genes can be passed to the daughter cells and fixed in the population

with time, or removed from the pool of mutations in cancer, depending on

whether they increase or decrease cellular fitness. Cancer-driving events,

including somatic mutations in cancer driver genes, have a positive impact

on cellular fitness and are selected positively. On the contrary, harmful

mutations in genes whose function is essential for tumor survival will be

negatively selected.

On the other hand, the vast majority of mutations do not change cellu-

lar fitness or change it lightly. As a result, they are not selected or weakly

selected. The loss or fixation of such mutations in the cellular population

entirely depends on the genetic background of the cell. Because of that,

these mutations are called passenger mutations. Clones with a fit back-

ground have a certain amount of passenger mutations; the exact number

and the characteristics of passenger mutations are highly specific to cancer

types, which can be used to classify tumors [10].
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The inability to uncouple any two mutations (also known as Hill-Robertson

interference) not only leads to the fixing of passenger or lightly deleterious

mutations in very fit backgrounds but also is the reason for the ineffective

selection of driver mutations if they appear in particularly unfit back-

grounds.

There are two Hill-Robertson interference processes: hitchhiking and

Muller’s ratchet [11, 12, 13]. Hitchhiking is a way for a mutation to stay

in a cell population and increase its allele frequency through a genomic

linkage to a positively selected driver mutation.

Muller’s ratchet mechanism is a process of continuous accumulation of

deleterious mutations in an asexual genome [12, 13]. The chance of reverse

mutations is very low, which makes the ratchet turn almost only one way.

When a critical number of deleterious mutations is acquired, cells undergo

a mutational meltdown [14, 11]. At this stage, first, the size of the cell

population decreases because of the negative selection acting on those

unfit genomes. In small-sized populations, genetic drift (changing the

allelic frequencies because of a random chance, or sampling error) plays

a significant role. The combination of Muller’s ratchet mechanism with

genetic drift becomes the main factor in the clone’s survival; with time, a

cell population might be lost as more fit clones outcompete them.

The rate of the two described Hill-Robertson interference processes de-

pends on the genomic mutation rate [11]. A high mutation rate leads to

an accumulation of higher numbers of passenger and deleterious mutations

(and higher proportions of these mutations): therefore, in tumors with a

high mutation rate and high mutation burden, the efficacy of the selection

is decreased [11].

1.3 Hallmarks of cancer

All the diversity of neoplastic diseases has certain common alterations in

cell physiology that allow the grouping of hundreds of known cancer types

and subtypes together. These alterations are essential for the pathological

development of the cell on its way to becoming malignant. Some of these

features are associated with changes that are independent of the signals
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that cells receive from the environment, while others are coupled to these

signals [15].

The changes happening in cancerous cells were analyzed in the work of

Hanahan & Weinberg in 2000, where they proposed that all the complex-

ity of human tumor diseases are summarized in six hallmarks of cancer

[15]. These traits include self-sufficiency in growth signals, insensitivity to

growth-inhibitory signals, evasion of apoptosis, limitless replicative poten-

tial, sustained angiogenesis, and tissue invasion and metastasis.

The final objective of all these phenotypical changes is to increase the

cell division rate, decrease the probability of cell death and help to compete

with other subclones. The listed traits are acquired gradually during the

development of human tumors and reflect biological capabilities needed at

different stages of tumor initiation and progression [15].

• Sustaining Proliferative Signaling. Normally, cell proliferation

is carefully regulated by the growth-promoting signals that are re-

ceived by the cell. Cancer cells have multiple ways to deregulate

this system to increase their division rate. In particular, they might

produce growth factors themselves, or send signals to their microen-

vironment that stimulate the release of such growth factors by non-

cancerous cells. Overexpressing receptors of such growth factors

has the same downstream effect: oversensitivity to the levels of the

growth factors and increased proliferation [16].

• Evading Growth Suppressors. Besides increasing proliferation,

cells need to resist negative signals downregulating the rate of cell

division rate. Tumors can suppress such programs of negative regula-

tion by inactivation of Tumor Suppressor Genes (TSGs), inhibition,

or counterbalancing [16].

• Resisting Cell Death. Programmed cell death, or apoptosis, is a

way an organism gets rid of heavily damaged, unneeded or unhealthy

cells. This cell process is started after various physiologic stresses,

which are exploited by anticancer therapies. However, tumors have

several strategies to limit the efficacy of apoptosis, including inacti-

vation or loss of TP53 tumor suppressor function, downregulation of

proapoptotic factors, and upregulation of antiapoptotic factors [16].
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• Enabling Replicative Immortality. For most of the cells in the

human organism, only a limited number of cell divisions are available

(Hayflick’s limit), which is determined by the activity of telomerase.

If this protein is not expressed or not active, each consequent division

inevitably leads to a shortening of the chromosome ends, loss of the

essential genes, and, ultimately, to cell death. Tumors demonstrate a

capability to divide endlessly, which is promoted by upregulation of

telomerase activity or, less commonly, through a recombination-like

mechanism or telomeres maintenance [16].

• Inducing Angiogenesis. Constant growth of tumors leads to the

increased need for oxygen and nutrient supply, as well as the efficient

evacuation of metabolites. Expectedly, pre-tumor vasculature does

not provide a good infrastructure to satisfy the newly formed and

growing needs in transportation. An “angiogenic switch’’ upregulat-

ing angiogenic signals is an essential step in forming many tumor

types, which causes new vessels to grow through the tumor to more

effectively deliver components needed for the tumor cells. The neo-

vascularization mechanisms vary between tumor types and may be

activated by the same mechanisms that are involved in proliferative

signaling [16].

• Activating Invasion and Metastasis. Later development stages

of various tumors are characterized by the local invasion in the sur-

rounding tissues, and even deattaching, spreading, and colonizing

other places in the body, including different organs. These changes

are facilitated and accompanied by alterations in cell shapes and loss

of the cell connections to the other cells or extracellular matrix. In

particular, upregulation and downregulation of different cadherins

were shown to be associated with metastasis in carcinomas [16].

Since 2000, new observations have been added to the original hallmarks

of cancer that helped clarify them. Currently, two new emerging hall-

marks have been added to the six original hallmarks [16].

• Deregulating cellular energetics. Tumor cells reorient cellular

energy production pathways such that glucose catabolism does not
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use oxygen. The breakdown of glucose into pyruvate by glycolysis

produces energy and reduces electron carriers. In healthy cells, elec-

trons are then transferred to the electron transport chain to yield

additional energy and are ultimately transferred to oxygen. How-

ever, even in the presence of oxygen, tumors preferentially ferment

pyruvate into lactate to restore the redox balance. This phenomenon

is known as the Warburg effect. Although this way of obtaining en-

ergy is much less efficient than oxidative phosphorylation that takes

place in mitochondria, it is believed that glycolytic intermediates

are used to synthesize new amino acids and nucleotides, essential for

the macromolecules of daughter cells in rapidly doubling tumor cells

[16].

• Avoiding immune destruction. The majority of cancer cells are

recognized by the immune system at early stages and eliminated

from the body by the immune system. How tumors escape im-

mune surveillance is still largely unknown. Some studies have re-

cently shown that cancer cells may inhibit the activity of Cytotoxic

T lymphocytes (CTLs) and Natural Killer (NK) cells by secreting

immunosuppressive factors (including TGF-β). Others argue that
cancer cells may attract immune cells, for example, regulatory T-

cells, using their immunosuppressive activity to escape immune re-

sponse [16].

Additionally, two enabling characteristics that help to acquire these

phenotypic changes are also commonly accepted in the field [16]:

• Genome instability and mutation. To acquire the changes listed

above, a cell should undergo certain alterations at DNA level. An

important requirement for such changes should be that they are in-

heritable (thus certain epigenetic changes might also be included)

and give a selective advantage to a subclone. In this paradigm,

tumor evolution is a chain of clonal expansions, where each clone

overcomes the previous one by obtaining an additional cancer hall-

mark. To facilitate the acquisition of these traits and compensate for

the activity of DNA-repair systems, mutation rates are often higher

in the tumor genome compared to normal cells. This is achieved
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by the alterations that lead to a Loss-of-Function (LoF) in DNA re-

pair pathways, mutations that increase the probability of mistakes

inserted by DNA polymerases. Another feature of cancer genomes

is widespread copy number alterations and aneuploidy [16].

• Tumor-promoting inflammation. Paradoxically, inflammation

accompanying tumor tissues has a tumor-promoting effect. A variety

of bioactive molecules taking part in the inflammation process have a

tumor-promoting effect, such as growth factor molecules, antiapop-

totic factors, pro-angiogenic factors, factors facilitating angiogenesis,

and many others. Reactive oxygen species released by inflammatory

cells additionally act as mutagenic factors, increasing the speed of

accumulation of mutations [16].

1.4 Discovery of cancer-driver events

In the context of the above-listed cancer hallmarks, it is of primary impor-

tance to understand how cancer cells acquire traits that give a selective

advantage and drive the course of tumor evolution, and which processes

facilitate them. One such enabling characteristic is genomic instability.

Here we will give a brief review of the main sources of genomic instability

in cancer cells, their types and prevalences, and how they can change cell

fitness.

1.4.1 Somatic alterations

Increasing genetic variability in a living system provides a substrate for

natural selection, that will select for the fittest genetic background and

remove the unfit ones from the population. Mutations and recombination

are the changes that increase genetic variability. The recombination pro-

cess happens mainly during meiosis, although some examples of somatic

recombination are known, including V(D)J recombination, which takes

part in the immune response formation. In the absence of recombina-

tion in normal somatic cells, accumulation of mutations and also genomic

instability that leads to a loss, gain, or rearrangement of genomic loci
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are the main sources of variability. A special type of genomic instability

is a catastrophic cellular event, chromothripsis, or chromosomal shatter-

ing. Chromothripsis is characterized by large-scale (tens to thousands)

chromosomal rearrangements occurring simultaneously early in tumor de-

velopment [17, 18].

1.4.1.1 Mutations

The most common type of genetic change in cancer is small mutations

– changes in the DNA sequence that occur locally. Mutations can be

classified according to various characteristics that can take into account

the scale of the change, the cause, and their consequence.

Most of the small mutations are point mutations, meaning that one

mutation leads to a change of a single nucleotide. However, sometimes

a single mutation event leads to a set of changes in the DNA, changing

the identity of several neighboring nucleotides at once. While they are

relevant for cancer development, they are not as well studied as point

mutations, partially because of their relative rareness. Here and later, I

will mainly refer to mutations having in mind point mutations, specifically

Single Nucleotide Variants (SNVs).

From the mechanistic point of view, small mutations can be split into

substitutions (substitutions of one nucleotide are called SNVs) and in-

dels (insertions or deletions).

Indels of lengths that are not multiples of three change the codons down-

stream are called a frameshiftmutations. Frameshift mutations are likely

to generate a premature stop codon in this new frame, which results in

the synthesis of a truncated protein. Otherwise, in-frame indels only lead

to the insertion of a few additional amino acids in the protein or a loss of

the amino acids.

SNVs can be classified according to the consequence at the phenotypic

level. First, a nucleotide change within a protein-coding region may lead or

may not lead to the change of the amino acid. Approximately two-thirds

of mutations are nonsynonymous and generate changes in the DNA

sequence. In contrast, about one-third of all mutations are synonymous
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at the level of amino acid because of the redundancy in the genetic code.

Nonetheless, somatic synonymous mutations might still be not silent and

affect the cellular fitness level. This can happen because of a bias in codon

usage in a cell: not every triplet encoding the same amino acid is used in

translation at the same frequency. Some trinucleotides are avoided, while

others are preferentially used to encode an amino acid. As a result, not

optimal usage of the codons can affect the rate and efficacy of translation.

Another effect of synonymous changes is that they may alter splicing sites

and therefore be under purifying selection, which was reported for the

human genome [19]. In cancer, synonymous changes sometimes affect

splicing in Oncogenes (OGs) and TSGs and are under selection [20].

Nonsynonymous changes, in its turn, can be further split into nonsense,

which generate premature stop-codon and truncated protein, and mis-

sense mutations that change the protein sequence. Rarely, stop-codons

can be lost, which results in the translation of some additional amino acids

before encountering a stop-codon in the 3’ UTR of the mRNA.

At the bigger phenotypical scale, mutations may be beneficial, neu-

tral, or deleterious for the cell. The frequency of beneficial mutations

is very low. However, it is these mutations that drive the course of tumor

evolution and are positively selected. Most of the somatic mutations are

neutral or deleterious, having no or weak functional impact on cellular

fitness.

Both deleterious and beneficial mutations are mainly generated by non-

synonymous changes. Both LoF and Gain-of-Function (GoF) mutations

can be beneficial, depending on the cancer gene function. Genes whose

activation is beneficial for the tumor are called oncogenes; genes that have

to be switched off in cancer are called TSGs. Expectedly, GoF mutations

are beneficial when they appear in TSGs and detrimental to oncogenes or

essential genes. Same way, GoF mutations in TSGs are not beneficial for

a cell and are positively selected for in oncogenes.
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1.4.1.2 Copy number changes

While there might not be many, somatic Copy Number Alterations (CNAs)

affect the biggest fraction of the genome compared to other changes that

happen in cancer [21, 1]. Highly sensitive identification of somatic CNAs

achieved by analyzing the allele imbalance at germline heterozygous loci

reports that 94% of the tumors have megabase-scale genomic copy number

alterations [22].

Apart from short deletions and insertions that are part of small muta-

tions, bigger genomic loci can be lost or gained during genome evolution.

Loss or gain of the whole chromosome leads to aneuploidy; more local

copy number events (focal changes or segments of a chromosome) affect

only a limited part of the chromosome, from a few kilobases to the entire

chromosome arm [23].

Deletions, or genomic losses, are opposed to genomic gains or amplifi-

cations. Depending on the number of the events, CNA of genomic regions

can be a homozygous deletion (two copies are lost), a loss or Loss Of

Heterozygosity (LOH) when only one copy is lost, a gain (an additional

copy is gained) or amplification, or high-level gain, defined as two or

more copies or eight or more copies, depending on the source [23]. A spe-

cific case of LOH is a copy-neutral LOH (CN-LOH), a lesion that results

in the presence of two identical alleles [24, 25].

Some of the CNAs contribute to the tumorigenesis, while others appear

randomly and accumulate under a neutral selection. CNAs contributing

to the tumorigenesis will have an elevated rate, which, however, is com-

plicated to estimate without an adequate model for background rates of

CNAs under neutral selection [21]. Mechanisms that lead to CN-LOH can

be different, including uniparental disomy (both copies are received from

the same parent), the identity of both parental alleles due to the close

relatedness of parents, or duplication of the allele after a genomic loss

[26]. Temporal ordering of CNAs events, spatial distribution, and selec-

tion pressures can elucidate the functional role of CNAs and therefore are

of great interest in cancer genomics.

10



Introduction

Contribution of copy number changes to tumorigenesis

The expected straightforward effect of copy number change is a change

in gene expression on the mRNA and protein level. This gene dosage

effect, in reality, however, is often compensated by another mechanism.

For example, dosage compensation through X-chromosome inactivation in

females and transcriptional upregulation helps to maintain homeostasis.

On the other hand, copy number effects in autosomal genes are less clear.

Generally, there is a correlation between a ploidity of a gene and the

transcription level, and the correlation becomes weaker for the protein

levels as many additional mechanisms and feedback loops participate in

maintaining a perfect proportion of the proteins [27, 28]. Nevertheless, in

some genes dosage effect of amplified or lost genes is not compensated,

which has a big role in cancer evolution [29, 30].

Contribution of CNA events to cancer evolution was discovered in 1971

when Knudson proposed the “two-hit hypothesis’’ [31]. In this model,

inactivation of a TSG requires two mutations that happen in two gene

copies normally present in the genome. This indicated a recessive nature

of the disease because a single gene copy can rescue a phenotype. Inacti-

vation of the gene can be achieved by a point mutation, a gene deletion,

epigenetic inactivation, or a combination of them. Homozygous deletions

of two-hit TSGs or a hemizygous deletion accompanied by inactivation

of the second allele by one of the alternative mechanisms are common in

tumors. Examples of well-known two-hit TSGs include RB1, PTEN, NF1

and others. Interestingly, some TSGs may switch from one-hit to two-hit

drivers between cancer types [32].

Other TSGs demonstrate a haploinsufficient nature: inactivation of only

one gene copy is enough to provoke a cancer phenotype. Observing a re-

current hemizygous deletion of the gene without an additional mutation

in the second gene copy can be an indicator of this type of inactivation

mechanism. Similarly, dominant-acting inactivation mutations will have

the same pattern of deletions in genes. A study of tumor samples with

hemizygous deletions published in 2012 suggested that gene islands en-

riched for the genes that negatively regulate proliferation and depleted

in genes that promote tumorigenesis are often hemizygously deleted in

tumors because of the cumulative haploinsufficiency of such gene groups
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[30].

Alternatively, homozygous deletions also can shape the evolution of can-

cer genomes through a negative selection: essential genes located close to

the TSGs are limiting the size of the homozygous deletion while tolerating

a hemizygous deletion [33].

The interplay between copy number changes and genome ploidy can bias

the results of analysis when seeking selection signals in CNAs distribution.

Tumors that underwent a genome duplication event have a significantly

lower proportion of the genome affected by a LOH. Moreover, a homozy-

gous loss of essential genes is not negatively selected in tumors with Whole

Genome Duplication (WGD) opposing to a negative selection in non-WGD

tumors. WGD not only masks a deleterious effect of deleterious mutations

in essential genes but also decreases the fitness cost of passenger mutations

(that still may be slightly deleterious) in non-essential genes. The bigger

the negative fitness cost of a passenger alteration, the more frequently

WGD will be selected in tumors, and the bigger fraction of WGD samples

will have a cancer type [34].

Mechanisms of copy number changes

Variability in lengths of genome loci affected by CNA suggests that

there are multiple mechanisms of origin. Homologous recombination and

non-homologous repair together play a key role in the generation of CNAs.

Both mechanisms are used to repair DNA damage: a sequence that is used

to repair DNA is homologous in one case and is not homologous or only

has microhomology in another case. Various DNA damages, breaks, or

gaps, including Double-Stranded Break (DSB), stalled replication forks

induce homologous recombination. If a sequence that was chosen to

repair a DNA break or damage was incorrect, the consequence of it is a

deletion or a gain.

Another source of copy number variation is non-homologous repair

pathways. Non-homologous repair outside of replication process con-

sists of Non-Homologous End Joining (NHEJ) pathway and non-canonical

Microhomology-Mediated End Joining (MMEJ) pathway. NHEJ repairs

DNA breaks by rejoining DSB ends without requiring a homological se-

quence, and MMEJ needs a sequence that has a microhomology. Often
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the end-joining process is not done correctly and small sequences might be

lost. Alternatively, free mitochondrial DNA or parts of retrotransposons

can be inserted in the place of DSB [35].

DSB can also lead to the loss of a telomere, in which case two sis-

ter chromatids without telomeres are likely to fuse, forming a dicentric

chromosome. In the telophase, those two centrosomes will be pulled in

two opposite directions, until inevitably another break does not happen

at a random position. Until the telomere is acquired, a breakage–fu-

sion–bridge cycle can repeat, causing multiple inverted duplications [35].

Replication slippage and template switching along the exposed

DNA template during replication can be the reason for short deletions

or duplications (with the upper length limit restricted by the length of

Okazaki fragments) [35, 36, 37, 38]. It happens when the lagging strand

has short inverted repeats, which causes the formation of secondary struc-

tures (for example, DNA hairpins). Replication machinery fails at copying

these secondary structures and resumes the synthesis after it, or, option-

ally, can switch templates. The frequency of replication slippage is higher

in regions with a high density of repeats, or in mutants with compromised

Mismatch Repair (MMR) system or enzymes involved in DNA replication.

1.4.1.3 Other types of somatic alterations

Apart from copy number changes and mutations, cancer genomes obtain

a variety of other somatic alterations.

Structural variants in cancer include inversions, translocations within

and between chromosomes, and complex events combining them with

duplications and deletions. An interesting example of a catastrophic event

that happens in a quarter of bone cancers is chromothripsis and has im-

plications in many other cancer types, characterized by many chromosomal

rearrangements in a single cell [39]. The special term chromoplexy has

been proposed for simultaneous combinatorial structural rearrangements

in multiple chromosomes at once [40].

Interestingly, exogenous virus DNA may be acquired in cancer genomes

with the most known examples of human papillomavirus, Epstein Barr
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virus, hepatitis B virus and human herpesvirus [1].

Disruption of epigenetic regulation also has implications in tumorigen-

esis. The role of DNA methylation in the regulation of transcription

levels of genes has been actively studied in normal cells. DNA methyla-

tion mainly occurs at the 5’ position of the cytosine ring in CpG dinu-

cleotides and has an opposite effect when it is in the gene promoter or a

gene body. DNA methylation is a negative transcription regulator in tran-

scription factor binding sites (in promoters and enhancers) and correlated

positively with the transcription levels when DNA methylation is in the

gene body where it is a marker of intronic sequences, repetitive sequences,

or retrotransposons [41, 42, 43]. Moreover, DNA methylation influences

the spatial organization of the genome and the formation of hetero- and

euchromatin by attracting histone modifiers.

Overall, cancer cells show genome-wide hypomethylation, which results

in genomic instability [44]. Notably, promoters in cancer cells often are

hypermethylated in CpG islands compared to normal tissue of the same

origin. In particular, promoter methylation is used to repress transcription

and decrease protein levels of tumor suppressor genes. Silencing of TSGs

via promoter methylation was shown for CDKN2A, MLH1, BRCA1 and

VHL. On the other hand, hypomethylation in IGF2 oncogene promoter

leads to the transcription upregulation in cancer [43].

Additionally, the change of the landscape of histone modifications

that regulate DNA packing, and gene expression is a hallmark of cancer

that is associated with increased potential of malignant transformations

[43]. Enzymes that are involved in recognizing, adding, and removing

histone marks are altered in many cancer types [43].

Epigenetic alterations, or epimutations, are a natural way of gene inac-

tivation that can often act as a second hit in two-hit genes following the

two-hit Knudson hypothesis [31, 45].
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1.4.2 Mutation processes

Mutations in a cell in normal conditions appear spontaneously, or as a

consequence of errors made during replication or recombination. Nor-

mally, these mistakes happen in any organism with a certain frequency

that depends on the fidelity of a particular polymerase. The majority of

the mistakes in replication do not pass to the daughter cells because of

the DNA repair enzymes that recognize and fix them. However, when

DNA repair systems are failing, errors in DNA become fixed mutations

that will be passed to the next generations. Interestingly, most mutagenic

lesions in DNA are not resolved within one cell cycle and can last a few

cell generations before being repaired or turning into a mutation [46].

Some factors can increase the probability of errors and mutations in

somatic cells. Endogenous factors start from changes that happen inside

a cell, and exogenous factors comprise different chemical or physical, or

biological mutagenic agents.

Many changes increasing a mutation rate in cells are cancer type spe-

cific. For example, expression of APOBEC enzymes that catalyze cytosine

deamination leads to an increase in the frequency of specific mutation pat-

terns in breast cancers [47, 48, 49]. Mutations in the exonuclease domain

of DNA polymerase ε cause hypermutation phenotype characterized by
the abundance of DNA lesions and high mutation burden of tumors in

some cohorts of patients with colorectal, brain, and uterus cancer [50, 51].

Defects and dysfunction of DNA repair systems, such as MMR, Base Exci-

sion Repair (BER), Nucleotide Excision Repair (NER) are also associated

with an elevated level of tumor mutation burden [52].

A variety of different factors, both endogenous and exogenous, affect

the mutation rate at different scales. A more detailed overview of them is

presented further.

1.4.3 Mutation rate heterogeneity

As mentioned above, the vast majority of nonsynonymous mutations do

not change the fitness of the somatic cell. Such mutations are called pas-

senger mutations as opposed to driver mutations that happen in cancer
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genes and directly influence the course of the disease. As passenger muta-

tions do not change the fitness of tumors, the speed of their accumulation

entirely depends on the activity of selectively neutral mutational processes

in a cell, both exogenous and endogenous.

Interestingly, the number of somatic passenger mutations correlates with

the age of a patient, which together with an observation that a part of

somatic mutations is shared between healthy and cancer tissues of the same

origin suggests that at least half of somatic mutations in cancer appear

before tumor initiation [53]. A later study by Tang et al. (2020) conducted

on melanoma confirmed that mutation burdens of cancer cells were similar

to mutation burdens of the neighboring normal cells [54]. This pattern,

however, is not universal. For example, Reorink et al. (2018) reported that

most mutations in colorectal cancer cells were acquired during the latest

clonal expansion and were absent in the normal colorectal cells [55]. The

differences might be driven by the activation of an additional mutational

process after an acquisition of a driver alteration.

Tumor mutation rate can be estimated by accessing the regional muta-

tion density that not only depends on the cancer type and stage of the

tumor but also varies across the genome. Heterogeneity of mutation rate is

present in cancer cells at many scales, from the level of a single nucleotide

to a megabase level [52].

1.4.3.1 Domain-scale variability

Replication time

Large-scale variability of somatic mutation rate is correlated with the

state of the chromatin and the DNA replication time. Openness/closeness

of the chromatin, its enrichment with repressive or active chromatin marks,

and replication time are largely correlated factors: all of them are associ-

ated with the gene expression level and clusters of genes that are highly

or lowly expressed. However, careful analysis of the effects of each of the

mentioned factors with controlling for confounders has shown that replica-

tion time can explain a big proportion of mutation rate variability across

the genome and cell types [52, 56, 57]. The association at a megabase scale

between replication time and DNA accessibility to the DNAse enzymes,
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estimated via density of DNAse hypersensitive sites, explains a correla-

tion between the lower density of DNase I hypersensitive (DHS) sites and

higher mutation rates, which does not hold at smaller scale changes in

DNA accessibility. Similarly, active and repressive chromatin marks alone

have a subtle effect on changes in mutation rate, confirming that the major

factor shaping the regional mutation rate is replication time.

However, a strong association between replication time and mutation

rate does not reflect a causal relationship. There is growing evidence

that DNA replication time likely affects the mutation rate through the

process of differential DNA repair efficiency in late and early replicating

regions. MMR-deficient tumors have more flat distribution of mutation

rates between early and late replicating regions, supporting that MMR

preferentially targets early replicating regions [58]. This was further val-

idated with direct experiments that have shown that artificially induced

MMR failure in human cell lines results in losing some variability between

mutation rates in regions with different replication times. Additionally,

DNA damage may preferentially target less active domains of heterochro-

matin [59, 60]. One of the proposed mechanisms is that the peripheral

location in the nucleus of heterochromatin makes it more accessible for

UV light and damage induced by UV exposure [59].

1.4.3.2 Between-genes and within-gene variability

H3K36me3 histone mark

Smaller scale variability at a level from a kilobase to hundreds of kilo-

bases concerns differential mutation rates between genes and across differ-

ent gene body parts. Mechanisms of such differences are associated with

differential gene transcription levels. Highly expressed genes have a lower

local mutation rate in both transcribed and untranscribed strands. En-

richment of highly expressed genes with a specific histone mark H3K36me3

was shown to be causal for this association. In particular, H3K36me3 at-

tracts mismatch recognition protein to DNA in G1 and early S phases,

which ensures faster correction of DNA damage in genes that have mod-

ification on histones of this type [61]. The abundance of H3K36me3 is

generally increased in the 3’-ends of the genes compared to the 5’ ends,
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which determines the gradient of mutation rate changes along the gene

body.

Coding and non-coding regions

Within-gene mutation rate has been observed to differ between exonic

and intronic gene parts. Partially, this can be explained by higher levels

of H3K36me3 histone marks in exons. Stringent analysis controlling for

confounding factors such as repeat frequencies, GC-content, alignability

of short reads, and excluding low-quality mutation calls demonstrated no

statistically significant difference between mutation rates in exonic and in-

tronic parts. On the other hand, selection forces acting on the coding gene

parts may change the observed local mutation rate in exons. For example,

a study published in 2012 has found that exons of cancer genes are enriched

with mutations compared to the intronic regions and other untranslated

DNA segments [62]. Another study has shown that spicing-associated se-

quences have a depleted mutation rate [63]. Oxidative damage in genic

parts was also observed to be depleted compared to the intergenic regions

[52].

Strand assymetry

The local mutation rate within a gene also depends on the strand. At

least two mechanisms cause an asymmetry in mutation rates between

strands. One of them is a transcription-coupled NER that preferentially

removes DNA damage on the transcribed strand. Another one, less un-

derstood, is transcription-coupled damage that preferentially targets non-

transcribed DNA strand [64].

Strand asymmetry can be created by a single mutational process com-

bined with the subsequent selection of variants [46]. This is the case if

mutations are created by a mutational process that does not have a flat

mutational profile (that is, specifically mutating certain nucleotides) and

if its intensity is high enough to generate multiple lesions within the same

cell cycle. Here, each strand is damaged similarly, but the changes are

asymmetrical: a damaged nucleotide in one strand will correspond to a

normal nucleotide in another and vice versa. Because DNA lesions can

remain in a cell for some time, they can pass the first round of division

without being repaired or resolved into mutations [46]. This way, lesions
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in sister chromatids become separated in daughter cells, where they are

then resolved. Some of those mutations can be driver mutations and this

will have a substantial fitness advantage for a cell carrying it. Statistically,

driver mutations are rare, so only one of the daughter cells will likely have

it. This will lead to the clonal expansion of only one of the daughter cells

and with that, an enrichment of mutations of a certain type if called on

the forward strand of the reference genome [46].

Interestingly, strand asymmetry spans regions that are smaller than a

whole chromosome, as expected under the assumption that there is no

recombination in somatic cells. However, the direction of the strand bias

changes every several megabases for autosomes and is absent in the X chro-

mosome in males. This suggests that homologous recombination plays a

key role in resolving such clustered lesions, and is an additional mecha-

nism of increasing the genetic diversity of somatic cells by combinatorial

assembly of genetic variants [46].

1.4.3.3 Local variability at the sub-gene level

Transcription factors binding sites

Variability at the scale of tens of base pairs to kilobases is often associ-

ated with the enrichment of binding sites of Transcription Factors (TFs).

For example, binding sites of the CTCF/cohesin complex that plays a

key role in chromatin architecture and transcription are hypermutable. In

many cancer types, such as stomach, colorectal, skin, liver, and melanoma,

there was shown more than a 3-fold increase of local mutation rates in

CTCF/cohesin binding sites [65, 66, 67]. One explanation of this is the

physical exclusion of the repair systems from binding sites, both MMR

and NER [65, 66].

Interference of proteins bound to the DNA with the NER is also ob-

served for other TFs, especially in cancers where exposure to mutagens

is more common: lung cancer and skin cancer. Disentangling which TFs

have such interesting effects is challenging because many of them form

complexes. Moreover, TF binding sites often overlap with CTCF bind-

ing sites. Another curious example is proteins of the ETS family, whose

binding sites demonstrated an elevated mutation rate due to the differ-

19



Introduction

ential DNA damage in those sites, as opposed to differential DNA repair.

DNA bound to ETS proteins decreases the resistance to the UV-induced

damage [68, 69].

Nucleosomes

Mutation rates have been shown to follow the periodicity of nucleosome

occupancy in the genome, both at the population and somatic levels [70,

71, 72, 73]. Regular nucleosomal architecture influences the local mutation

rate at the two periodicity lengths. Strong periodic pattern 10 basepairs

length repeats the changes in DNA minor groove orientation, in particular,

whether it faces towards the nucleosome or away from it. While a minor

groove facing out the histones is theoretically more accessible for the DNA

repair enzymes, mutagens might preferentially target the same nucleotides.

Which factor plays a bigger role depends on the mutagen: UV-induced

DNA damage is accumulating faster than the DNA repair systems acts

upon them [72].

Another regularity in local mutation rates is observed at the level of 200

nucleotides, which corresponds to the internucleosomal distances. Inter-

nucleosomal, or linker DNA, is more exposed to DNA damage and DNA

repair machinery. Similarly, type of the DNA damage influences the final

distribution of mutation rates: UV-induced damage is enriched in nucle-

osomes, while cytosine deamination is nearly absent in nucleosomal DNA

[74, 71].

1.4.3.4 Nucleotide-scale variability

Mutational signatures

The smallest scale of mutation rate heterogeneity is associated with the

probability of having a mutation in a particular nucleotide context. Ana-

lyzing the patterns of relative frequencies of mutation types in thousands

of tumor samples made it possible to reconstruct mutational signatures de-

fined as relative frequencies of mutation types in a particular trinucleotide

context [75, 76]. A linear combination of mutational signatures determines

the final picture of mutation frequencies in a tumor sample.

Although the mutational signature is a mathematical construct [75], it is
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expected (and shown in some cases) that a unique mutational process gen-

erates a mutational signature. Mutational processes can be of endogenous

origin (deficiencies in repair pathways, mutations in polymerases, and so

on) or can be as well a result of the activity of some exogenic mutagen.

For example, signatures 2 and 13 that have an excess of C>T and C>G

mutations are associated with the deaminase activity of proteins from the

APOBEC family cytidine deaminases [75]. Signature 7 is generated by

UV-induced DNA damage with C>T changes, and signature 4 is corre-

lated with smoking (C>A mutations) [75]. Unfortunately, out of more

than 50 known signatures, only for a small fraction there is a clear under-

standing of a process that lies behind it, and even for a smaller fraction of

the proposed etymologies was proved experimentally.

One limitation of the method is that certain mutational processes might

generate not only single nucleotide substitutions but as well result in short

and long indels, copy number changes, or can be better differentiated by

using penta-, heptanucleotide or even longer mutational context [77, 78].

Including these features, as well as the strand identity, can increase the

number of signatures and characterize them better. Certain progress has

been made in this direction, however, the limited number of mutations

available makes this more complex and elaborated analysis challenging.

Mutational hotspots

Recurrently mutated positions in cancer, or hotspots, are thought to be

under selection and to have a functional impact [79]. For example, one of

the most common and well-known cancer mutations are V600E mutation

in BRAF gene, G12/13 position in KRAS, Q61 in NRAS that activate

oncogenic pathways [80, 81]. Selected hotspots are common in cancers,

comprising more than 1% of all the mutations in cancer [82]

However, many genomic positions frequently mutated in cancers are not

selected; here and later we will refer to them as passenger or mutational

hotspots. Small mutations or bigger-scale structural variants in such mu-

tational hotspots are caused by specific mutational processes that target

local sequences, many of which we have covered in the current section.

For example, DNA hairpins that are formed by palindromic sequences are

targeted by ABOPEC activity [83]. Multiple secondary structures and

non-canonical forms of DNA such as G-quadruplexes, Z- and H-forms of
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DNA are associated with an elevated local mutation rate [84]. Mutational

hotspots are also associated with the TF binding sites [52, 65, 66, 67].

1.4.4 Computational approaches for identifying selection

One of the great challenges of cancer genomics is identifying genes that are

under selection in cancer and promoting tumor evolution. This knowledge

is crucial for an understanding of the principles of cancer development, se-

lection pressures constraining and driving tumorigenesis, and identifying

cancer vulnerabilities that can be targeted by cancer therapies. Recent ad-

vances in sequencing large-scale genomic datasets provided a large number

of cancer genomes for studying somatic selection [85, 86, 87, 88]. Some of

the proposed methods to study selection in cancer genomes are inspired

by the methods used in population and comparative genetics, for example,

the dN/dS ratio that compares the rate of nonsynonymous changes with

the rate of synonymous changes that is presumably reflecting the rate of

neutral evolution [9, 89, 90, 91].

Despite obvious similarities between the evolution of organisms and so-

matic cells within a body, cancer evolution has particular features that

make a straightforward application of methods developed for population

genetics inadequate. The major difference relies on the factor of muta-

tional heterogeneity, which leads to many false-positives hits, both for

positive and negative selection [92, 93, 94].

A variety of statistical methods have been developed for discovering the

genes under selection in tumor genomes. A big proportion of them exploits

the principle that the rate of driver mutations should be higher than the

rate of passenger mutations.

Direct comparison of mutation rates between genes is not considered

to be the best practice because of the big variability of mutation rates

in the genome and other confounding factors. While the top-mutated

genes in tumors are usually cancer-driving genes, the prediction of cancer

genes based on the analysis of recurrent mutations in the tumor without

control for confounders gives a lot of false-positive hits. They appear in

the analysis because these genes are enriched with mutational hotspots

due to certain local features of DNA [92].
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Accurate estimation of the rate of passenger mutations for each gene

is quite challenging. State-of-the-art methods (dNdSCV, MutSigCV ) are

modeling background mutation rates using mutation rate covariates, such

as DNA replication timing or gene transcription activity while controlling

for Trinucleotide Mutation Spectra (MS96) [92, 9]. This is extremely

important to control for the activity of different mutational processes while

modeling background mutation rate; it is often done through mutation rate

prediction separately for each mutation type in trinucleotide context.

While the inclusion of mutation rate covariates is a working approach,

one can not be entirely sure that cell-line data of DNA replication time

and gene expression does not change when a cell undergoes a malignant

transformation. On the contrary, one of the cancer hallmarks is epigenetic

changes that modify histone marks and the pattern of DNA methylation

that affects how DNA is packed, and, therefore, the local mutation rate.

Probabilistic modeling of mutation counts via the Bayesian framework

does not have the limitation of having wrong point estimates and relies

fully on the tumor data. The CBaSe method estimates a distribution of

per-gene mutation probabilities by fitting synonymous mutation counts

across the entire set of genes. Implicitly, this form of equation considers

all known and unknown covariates of mutation rate, also controlling gene-

specific parameters that describe local heterogeneity of mutation rate and

synonymous target size [91].

MutPanning method uses the assumption that functionally important

mutations in driver genes (although likely to be generated by the same

mutational processes that are active in passenger genes) will deviate from

the characteristic contexts around passenger mutations. Following this

logic, genes that have mutations in unusual contexts are likely to be driver

genes [95]. Standard MS96 or extended nucleotide contexts can be used

depending on the data. A limitation of the approach is that it cannot

be applied to find selected genes in cancer types with low background

mutation rates. MutPanning implements a combination of this feature

with the signals normally used for the detection of cancer genes [95].

A heuristic approach for discovering and classifying cancer genes was

proposed by Vogelstein et al. in 2013 [96]. Genes that have at least 20%

of mutations that are recurrent missense mutations in the same amino

23



Introduction

acids were classified as oncogenes. To be classified as a tumor suppressor,

at least 20% of mutations in a gene are required to be inactivation (non-

sense or frameshift) mutations. “20/20 rule’’ was shown to work well for

known cancer genes, accurately separating tumor suppressor genes from

oncogenes [96]. However, the sensitivity of this method to detect novel

cancer genes might not be very high, because a large number of mutations

is required [96, 97].

A similar idea based on the fact that oncogenes are activated mainly by

mutations clustered in specific amino acid residues is exploited in other

methods. Mutation clustering was interpreted as a signal of positive selec-

tion in several publications [98, 99, 100]. Relying not only on the informa-

tion of clustering mutations in primary DNA sequence but including data

about 3D clustering of mutations in protein further increases the sensitiv-

ity of this approach [100, 101]. Another way to enhance the signal is to

focus on certain domains of the protein, functional sites (phosphorylation

sites, protein-protein interaction surfaces) [102, 103, 104] or search for the

bias in clustering of mutations with high functional impact [105].

Analysis of distributions and frequencies of CNA events also give an in-

sight into which genes are essential for tumor development (such genes will

have an increased level of amplifications and a decreased rate of deletions)

and which genes need to be inactivated (opposite trend) [106, 30, 107].

A major problem is in constructing an accurate model that can predict

a baseline level of copy number events under the assumption of neutral

evolution. Another difficulty comes from the fact that many CNAs affect

several genes at once, which makes it harder to interpret the results.

Interestingly, combining several types of data in one analysis allows one

to find a selection by looking at the coordination between copy number

events, for example, the length of hemizygous and homozygous deletions

in the locus [33]. Interaction between mutation rate or copy number event

can also provide an insight into the function of a gene [31, 89, 32, 108].
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1.5 Somatic selection

1.5.1 Negative selection in cancer

Various studies showed that negative germline selection on nonsynony-

mous mutations in different populations prevails over a positive selection,

with a very low average dN/dS metric ranging between 0.01 and 0.1 [109,
110, 9]. Analysis of common variation in germline mutations of the human

population estimated the dN/dS ratio for nonsense mutations to be 0.08,
which indicates that 92% of nonsense mutations are removed by negative

selection [111].

In contrast to germline selection, purifying selection in cancer cells is

not playing a global role with a normalized dN/dS ratio being slightly

above one [9]. Moreover, similar values of dN/dS are observed in healthy

somatic tissues from multiple organs (skin, small intestine, liver, colon,

blood).

In frequently mutated cancer genes, dN/dS can reach very high values.

Depending on the type of selected mutations, cancer genes are separated

into two main groups: TSGs and OGs. In TSGs inactivating mutations

(nonsense, frameshift, or missense mutations) are under a strong positive

selection. OGs contribute to cancer by acquiring gain-of-function missense

mutations that cluster in functionally important gene parts.

Intriguingly, negative selection does not seem to play a big role in cancer

cells. Only a tiny fraction of genes were reported to have dN/dS values

significantly lower than one [9]. Martincorena et al. (2017) argue that it

was possible to miss signals of negative selection if numbers of positively

and negatively selected mutations in a given gene are exactly balanced

– which is unlikely to happen for a large number of studied genes. The

negative selection was extensively searched for in multiple studies that

suggested a few gene groups that are essential for the survival of the tumor.

In particular, signals of negative selection were enriched in a group of cell-

essential genes identified with in vitro by Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPR) screens [91]. Importantly, among

genes with the strongest signal of negative selection, authors have found

a group of genes with a reported oncogenic role in cancer [91]. Consistent
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with this finding, truncating mutations in oncogenes were reported to be

under negative selection [112, 97]. These genes have to be activated to

drive tumorigenesis; inactivation of such genes, on the contrary, inhibits

proliferation and is not tolerated in cancer. The apparent lack of negative

selection can be explained by various reasons. Detection of depletion of

mutation rates is a particularly difficult task because of the data sparsity

and requires much larger datasets compared to the number of mutations

needed to find a mutational excess [91]. Indeed, cancers that had higher

mutational densities exhibited stronger signals of negative selection [91,

113].

Purifying selection can be less effective in the presence of a wild-type

allele in the case of heterozygous recessive mutations. In hemizygous ge-

nomic regions, weak signals of negative selection were reported for non-

sense and high-impact missense mutations and not for low-impact mis-

sense and synonymous mutations [89, 9]. Consistent with this, tumors

that have undergone WGD show no purifying selection on essential genes,

while tumors before genome duplication have a negative selection on es-

sential genes in hemizygous loci [34]. Redundancy of cellular pathways is

another reason why deleterious mutations inactivating any gene can, to a

certain extent, be tolerated.

Another reason for having weak signals of negative selection in cancer

is a lack of recombination, which facilitates the accumulation of weakly

deleterious mutations in fit genetic backgrounds with strong cancer driver

mutations through hitchhiking and Muller’s ratchet mechanisms [11, 9].

Consistent with this, tumors with a lower mutation load (that is, a low

number of mutations in a tumor sample) have been shown to have stronger

signals of negative selection. The efficacy of purifying selection is decreased

in tumors that have a higher mutation rate because of genetic linkage

between driver and passenger mutations [11].

Last, but not least, multiple bottlenecks throughout tumor evolution

make the factor of genetic drift very substantial. Indeed, random sampling

of a small-sized population increases the chance of fixing in populations

weakly deleterious mutations that are more numerous compared to the

cancer-driver mutations because they are more likely to arise during the

random mutational process.
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In this study (Section 3.2.3), we will address the question to which

extent negative selection can play a role in determining tumor fitness using

essential genes from CRISPR screens and essential genes identified with

germline variants. Furthermore, we will test the hypothesis that for some

genes (specifically, for OGs), both postive and negative selection affect the

distribution of mutation rates, thus making signals of selection weaker and

harder to detect (Section 3.2.2).

1.5.2 Epistatic interactions in cancer

Epistatic interactions were first reported in 1909 by Bateson as interactions

among individual genes [114]. In that context, the main visual mark of

epistasis was a distortion of Mendelian ratios of genotypes. Later, the

term reappeared in statistical genetics and was used to describe a non-

linear additive effect of contributions of single genes on a phenotype [115].

Epistasis is an important feature of complex biological systems. Mul-

tiple examples of epistasis can all be summarised as deviations from the

additive expected effect of two or more genetic features on the response

variable, which is a phenotype of interest [116]. Epistasis in general terms

is a property of a fitness landscape – a mapping function from a set of

genotypes to fitness [117, 118]. A basic example of non-additive effects

of two factors on phenotype is dominant and recessive gene alleles: com-

bining unique effects of each of the alleles does not predict a phenotype

produced by a heterozygous combination of them.

Hundreds of genomic and epigenomic alterations arise in cancer genomes

with complex combinatorial effects on phenotype. Despite long and ex-

tensive research in the field, the combinatorial effects of most genetic al-

terations are still poorly defined. Understanding how selection changes

depending on the genetic background of the cell is one of the open ques-

tions. The interplay of genomic alterations with exogenous environmental

factors, such as the type of treatment that is prescribed to a patient, and

the selection of evolutionary trajectories depending on the activities of

mutational processes, can navigate cancer therapies to choose the most

effective. Existing cancer-specific treatments reflect the complex interac-

tions of genetic networks that exist within each cancer type.
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Given two genetic alterations – for example, mutations in genes A and B

that decrease cellular fitness by 30% and 50%, respectively, – and knowing

their unique and combinatorial effects, we can expect several modes of

interaction. If mutations do not interact, the expected fitness of double

mutant can be calculated by multiplying the fitnesses of single mutants:

0.7×0.5 = 0.35. Any other estimate for cellular fitness in a double mutant
implies a genetic interaction (Figure 1.1).

Figure 1.1: Interaction between mutations in genes A and B. Illustration

to the epistatic interaction given the individual fitness effects of mutations in

genes A and B.

Genetic interaction can be positive (enhancement, or synergistic effect

of two mutations) or negative (suppressive effect). Furthermore, positive

interaction for this case can cause a synthetic lethality – 100% decrease

in fitness, or cell death. The less strong epistatic effect is synthetic
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sick – decrease in fitness bigger than 65% and less than a 100% (for

the particular case of 30% and 50% of fitness decrease of genes A and

B). Synthetic viable, on the contrary, is a type of interaction when

two mutations are antagonistic and mask deleterious effects of each other.

Double mutant regains maximal fitness. In the case of incomplete genetic

suppression, the deleterious effect is less profound in the double mutant

than expected and can take any value between 0% and 65%.

These complex interactions are very important as mechanisms to stabi-

lize the cellular microenvironment and ensure homeostasis. The emergence

of new alleles in a cell, most likely non-optimal, will probably not have

a strong deleterious effect on fitness and results in functional buffering.

However, the next genetic alteration may disrupt the network: the more

complex genetic aberrations, the more likely that they are deleterious.

1.5.2.1 Epistatic interactions between mutations

All types of genetic interaction have been reported in cancer cells. Tumors

often have mutations in pairs of cancer genes. For example, mutations in

RAS are often accompanied by the MYC activation (genetic enhance-

ment). The toxic effect of mutations in BRCA1/BRCA2 (arrest in G2/M

checkpoint) is suppressed by the inactivation of TP53. This way, DNA

damage in a cell does not cause apoptosis and can lead to the accumu-

lation of the next driver mutations. Similarly, inactivation mutation in

tumor suppressor gene RB1 helps the cell to suppress a negative effect of

mutations in another tumor suppressor gene VHL [119].

However, some types of observed relationships can have a second layer

and may be not what they seem. For example, the interaction between

oncogenic driver mutations ATM and RAS genes was previously viewed as

a genetic enhancement effect. Surprisingly, later studies have shown that

oncogenic mutations in RAS gene cause deleterious effects of oncogene-

induced senescence, which includes ATM activation. This deleterious ef-

fect is, however, outweighed by the strong selective advantage that receives

a cell with a mutated RAS gene. The deleterious effect can be mitigated

by a second mutation that inactivates the ATM gene. Therefore, this is

an example of synthetic viability rather than enhancement effect [119].
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The synthetic lethal relationship is usually explained by the functional

redundancy of two genes. The loss of function of one gene can be compen-

sated by the activity of a second; however, in the absence of the second

gene cell cannot perform the needed function and dies. Gene pairs ex-

hibiting such relationships are of great interest, as they suggest targets

for targeted therapies in patients with compromised function of one gene.

Not only this makes such therapies more effective but also it decreases the

harm made to normal cells due to drug toxicity. Only cells with mutations

in one of the synthetic lethal partners are susceptible to such therapies.

The first therapy exploiting this mechanism was inhibitors of PARP in

BRCA1- or BRCA2-deficient tumors [119]. This example, however, illus-

trates not the redundancy of cellular functions but the induced essentiality

of PARP-polymerase in the perturbed organization of biological networks

within cells where BRCA1 or BRCA2 gene is inactivated.

Given the toxic result of mutations in some cancer genes, it is reasonable

to assume that not only a combination of two mutations needed to rescue

cancer phenotype but also the order of the mutations is important. For ex-

ample, a mutation in TP53 should precede a mutation in BRCA1/BRCA2,

and inactivation of RB1 should happen before VHL inactivation.

Not only the presence of two mutations, but also the order of their

acquisition can play a role in tumor evolution. Furthermore, the first

mutation can decrease the number of evolutionary paths that the cell

can take further, as some mutations in this genetic background might be

deleterious.

1.5.2.2 Epistatic interactions between mutations and CNAs

A classical example of epistasis in cancer is Knudson’s two-hit hypothesis

that we have described in the previous section. In short, two alleles of

the TSGs need to be inactivated to acquire cancer phenotypes [31]. The

exact way how alleles are inactivated in a cell can vary. Two independent

somatic point mutations switching off the TSG, although not forbidden,

happen rarely. A fraction of the population has a genetic predisposition to

cancer as they carry a pre-existing germline mutation in TSG. Only one

additional somatic mutation is needed to completely inactivate a TSG in
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such people (which is more likely to happen during a person’s lifetime), in

agreement with the two-hit model.

Successful inactivation of both allele copies can be done through a com-

bination of different somatic alterations: point mutation + deletion of a

second allele, point mutation + epimutation that downregulates the tran-

scription of the second copy, or epimutation in the background of deletion

of another allele.

Not all TSGs have this type of relationship between selection on the two

gene copies. The exact estimations of what proportion of genes operate

under the two-hit model are not available and the scale of it might be

quite limited. Among the known genes that act as two-hit genes at least

in some cancers, are RB1, TP53, CDKN2A genes [120].

In contrast to two-hit genes, hemizygous inactivation mutation in one-

hit TSGs is sufficient to acquire a malignant phenotype. One-hit TSGs

may be caused by at least two scenarios: dominant-active mechanism of

action of inactivating (negative) mutations or haploinsufficiency of the

gene. Haploinsufficiency refers to the phenomenon when one copy of the

wild-type allele present in a cell is not enough to perform its function.

Haploinsufficient TSGs might also be sensitive to the increased dosage of

the gene (triploisensitivity) [120].

Cumulative haploinsufficiency and triplosensitivity were proposed to

drive aneuploidy patterns in the cancer genome. It was reported that

hemizygously deleted regions are enriched in for “STOP” genes (negative

regulators of cell proliferation, largely TSGs) and depleted of “GO” genes

(positive regulators of proliferation, OGs and essential genes) [30]. Fur-

thermore, haploinsufficiency and triplosensitivity of gene groups together

with their tumorigenic potency can explain the pattern of copy number

alterations in the genome at the scale of whole chromosomes and chromo-

some arms [120].

Reversing the expectations of the researchers, the same study reported

that X-chromosome encodes 86% more TSGs than expected by chance.

Oncogenes, on the other hand, were not overrepresented in X-chromosome

[120]. X-chromosome is functionally haploid in all sexes because of dosage

compensation, which implies that mutations in TSGs can not be masked
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by a second allele, thus contributing to cancer. The reasons for the ob-

served pattern are not yet known; however, natural selection did not act

to remove TSGs from X-chromosome, as cancer usually develops in post-

reproductive age.

Essential genes in hemizygous regions show signs of weak selection [89,

9]. Having more than one wild-type allele of a gene destroys the negative

selection pressure on the essential gene, which corresponds to the samples

without a gene loss or samples with duplication in a genome [34]. Ge-

netic buffering can be also provided by gene paralogs as demonstrated by

De Kegel et al (2019) [121]. Differential activity of the paralog pairs in

different cell lines provides a possible explanation why the essentiality of

a gene sometimes depends on the genetic context (conditionally essential

genes) [121]. Interestingly, paralogs that arose as a consequence of WGD

events during the course of human evolution are less likely to be essential

compared to the paralogs from small-scale genetic duplications [121].

Focal homozygous deletions are limited in length, and the length de-

pends on the local density of the “GO” genes in the neighborhood. An

essential gene located close to a TSG limits the region of homozygous

deletion, which gives a selective advantage to a cell and is not affecting to

the same extent the length of hemizygous deletions [33].

1.5.2.3 Mutant allele imbalance

The interplay between mutations and copy number alterations, namely

deletions, has been extensively studied for a two-hit class of TSGs. GoF

mutations in oncogenes were long thought to be dominant-acting and

therefore not dependent on the copy number status [122]. Indeed, many

oncogenic mutations in proto-oncogenes are heterozygous. Most com-

monly focally amplified oncogenes are rarely mutated, and frequently mu-

tated oncogenes are rarely focally amplified, suggesting functional redun-

dancy of the two types of GoF alterations.

Few exceptions to this rule exist: the amplification of the mutated ver-

sion of a gene can additionally increase cellular fitness [123, 124, 125]. A

class of two-hit gain genes identified by Park et al. (2021) describes a

group of cancer genes (6 OGs and 2 TSGs) for which co-occurrence be-
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tween mutations and gains in tumor samples was higher than expected by

chance [32]. For these genes, by analyzing allele frequencies in samples,

it was also shown that the amplified allelic variant is the mutated one,

independently confirming the results.

Selection for dosage increase of oncogenic mutations was carefully stud-

ied by Bielski et al. (2018) [108]. The authors reported an allelic imbalance

for 45% of all oncogenic mutations across 69 OGs. Consistent with the

current knowledge that focal amplifications are rare for mutated onco-

genes, only 12% of allelic imbalance was caused by focal amplifications. A

bigger proportion of allele imbalance (33%) was due to the loss of the wild-

type allele through LOH or CN-LOH [108]. Similarly, single-copy gains

accounted for 33% of allelic imbalance in OGs. In contrast with OGs,

allele imbalance in TSGs was mainly explained by loss of the wild-type

allele, accounting for the 84% of allelic imbalance.

Comparing the number of the wild-type and the mutated alleles, it

is possible to infer which allele is selected through allele imbalance and

whether the allelic imbalance is driven by positive or negative selection

on the mutated allele. Few oncogenes in tumors with hemizygous hotspot

driver mutations which had experiencedWGD event and subsequent single-

copy loss were analyzed: EGFR, BRAF, KRAS, NRAS andMAP2K1. For

these genes, in a deletion event, the allele that was kept in a tumor with

the mutated one. This result indicated a positive selection pressure for

mutant allele imbalance [108].

A broader analysis of selection acting on mutant allele imbalance across

all mechanisms of allelic imbalance confirmed this finding. Positive selec-

tion for the mutant alleles across tumors varied for different genes, being

less common for some genes (15% for IDH1) and more common for other

genes. Despite this, in tumors with mutant allele imbalance, positive se-

lection pressure was strong – 74% mutant allele-specific selection for IDH1

or almost always (>93% of cases) for MTOR and MET genes.

There were, however, few exceptions – genes U2AF1, SF3B1 and SRSF2

encoding members of spliceosome – showing an opposite trend: retaining

a wild-type copy of the oncogene in tumors with hemizygous deletions. It

indicates a negative selection pressure that ensures the presence of at least

one wild-type copy of haplo-essential genes in the cancer cell. Low-level
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genomic gains also preferentially targeted wild-type alleles rather than the

mutated allele.

Allelic imbalance in oncogenes favoring mutant alleles was proposed to

have two mechanistic explanations [29] based on their functional conse-

quence. The first scenario suggests that the selection favors an increase

in the dosage of the mutant allele, and the number of wild-type alleles

present in a cell does not affect cellular fitness. Oncogenic mutations that

are selected by this mechanism may be not sufficient to initiate a tumor on

their own, and additional overexpression is needed to acquire a malignant

phenotype. Alternatively, additional drivers in the same gene or other

oncogenes can also lead to the increase of cumulative oncogenic potency,

as shown for PIK3CA, HER2 and EGFR among others [29]. This mecha-

nism should be manifested via mutant allele imbalance genomic gains and

amplifications.

The second mechanism proposes that there is an antagonistic relation-

ship between the wild-type allele and the mutant allele, which gives a

selective advantage to the subclone that loses the wild-type allele. Stoi-

chiometry or the ratio between the number of wild-type alleles and mutant

alleles in a cell is a factor that determines the fitness landscape rather

than the number of mutant alleles alone. Change in stoichiometry can be

achieved through a loss of the wild-type allele (predominantly) or gains of

the mutant allele [29].

Mechanisms of antagonistic and tumor suppressive role of wild-type al-

leles remain to be unclear. Some experiments suggest that inhibition of

the mutant allele can be achieved through the formation of a heterodimer

with a protein product of the wild-type allele, which leads to the block-

ing of the oncogenic potential of the mutant allele. Indeed, dimerization

of KRAS was shown to be a crucial step in cellular transformation and

activation of MAPK [126, 127, 128].

1.6 Aim and objectives

Understanding how the interplay between copy number and mutation rate

in genes shapes somatic evolution lacks a systematic approach that can
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detect and quantify conditional somatic selection across multiple groups of

genes. A variety of methods have been proposed and developed to detect

and quantify selection in somatic cancer cells [9, 92, 91, 90, 95, 129]. The

majority of them, however, are not suitable for detection and quantifying

epistatic effects in the somatic selection and estimating to which extent

selection might depend on other factors.

Thus, the aim of this thesis was to develop a statistical method-

ology that aims to detect and quantify condition-specific selection and

apply it to analyze epistasis between selection on point mutations

and gene copy number status in tumor.

In particular, we are interested in studying how the selection landscape

in known cancer genes changes between tissues, between types of muta-

tion, and between copy number states of the gene. This would provide a

theoretical ground to group similar cancer genes by the molecular mech-

anism of (in)activation, or identify genes under negative selection, which

may be therapeutically relevant.

Along with this, we want to classify cancer genes in an unsupervised

manner using their spectra of selection across tissues, and epistatic inter-

action between selected mutations and gene deletion or amplification.

Therefore, the objectives of this thesis are:

• To develop and test a statistical methodology for measuring con-

ditional selection in somatic cells, while rigorously controlling for

confounding by mutation rate heterogeneity.

• Apply the method to systematically characterize copy number state-

specific selection across >17 000 human cancer genomes, further val-
idating the results in an independent data set(s).

• Test the hypothesis that negative selection is overlooked in tumors:

– Search for signals of negative selection in genes that were es-

sential in CRISPR screening experiments in cell lines [130] and

genes constrained in human populations [131].

– Test the hypothesis that many mutations in oncogenes may

sometimes be under negative selection in cancer and that this

35



Introduction

is obscured by simultaneously acting positive selection.

• Derive a new global, systematic classification of cancer genes by

mechanisms of (in)activation, inferred from the patterns of selection

on missense vs nonsense mutations in different parts of genes (in/out

of hotspots for missense mutations and Nonsense-Mediated mRNA

Decay (NMD)-detected versus NMD-evading regions for nonsense

mutations), and in different copy number states.
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Chapter 2

Development and

evaluation of the

MutMatch method

2.1 Overview

In this chapter, we introduce the developed method MutMatch which is

able to identify selection and condition-specific change of selection while

controlling for the mutation rate heterogeneity across the genome and

mutation signatures. To do so, it estimates the baseline mutation rate

from neighboring genes or non-constrained regions within the same genes.

Additionally, it controls for mutation rate changes that are driven by dif-

ferences in trinucleotide composition and activities of different mutation

processes (Section 2.2.1).

Additionally, we aim to reduce the effect of all factors that change the

rate of mutation accumulation locally. This is achieved by removing from

the neighborhood genes that we consider to be mutation rate outliers

(Section 2.4.2).

We have also studied the limitations of the method, which requires a

high number of mutations to accurately estimate selection effects. Biases
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of estimates appear because of the size differences between the group used

to model the baseline mutation rate, and the tested genomic region. To

overcome this problem, we propose to use randomized selection distribu-

tions and correct selection estimates by subtracting the median coefficient

of the randomized selection effects (Section 2.3).

The MutMatch method was shown to accurately predict known mutated

cancer genes from Cancer Gene Census (CGC) [132], with Area Under

the Receiver Operating Characteristics (AUROC) score = 0.77 for non-
synonymous mutations. Overall, we believe that the MutMatch method

can be applied for addressing many open questions regarding epistatic in-

teractions between mutations and other factors in cancers, for example,

conditional selection of genes in tumors showing hypermutated phenotype,

or in metastatic tumors.

2.2 Design of the MutMatch method

2.2.1 Mutation rate modeling

To detect the selection signal in a gene, we compare the mutation rate in

the gene of interest with the baseline mutation rate. We adopted several

approaches where the baseline mutation rate can be modeled with different

sets of mutations that are presumably under neutral selection (details in

Section 2.2.5).

To describe the variability in mutation counts in a genomic locus, we

model raw mutation counts Y using the following Generalized Linear

Model (GLM):

logE[Y ] = λ = ωt+
∑
i

miµi +
∑
j

zjβj + α+ log r (2.1)

where t is a dummy variable (target variable) used to distinguish mu-
tations accumulated in a genomic area that is currently being tested for a

selection signal and the control group. The effect of selection is quantified

by ω.
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The coefficient ω (or selection effect) reflects the log-fold change of mu-
tation rates in the tested genomic area (where t = 1) compared to the
region used to model a baseline mutation rate (where t = 0). Positive ω
estimate indicates enrichment of mutations and positive selection, while

negative ω estimate corresponds to the mutation depletion in the area of
interest and negative selection.

In somatic evolution, it is crucial to control for different activities of

mutational processes on different oligonucleotides [93, 133, 9]. This is

controlled by mutation type variables m and corresponding effects µ.

Other variables can be used to account for differences in mutation rate

because of differential usage of mutation processes between cancer types,

thus including cancer type as a variable for pan-cancer analysis. Other

types of optional variables can be included to control for confounders or

batch effects, such as the source of the data. We denote these variables as

z and write their corresponding effects as β.

We include the base mutation rate α as the intercept of the model.

Finally, to adjust the mutation counts to the maximal number of mutations

that can happen, we include the number of nucleotides at risk r as an
exposure variable. This allows us to model rates using mutation counts.

Practically, it accounts for different DNA length in genomic loci.

The general form of the method allows us to easily extend a model to

search for differential or condition-specific selection. Estimation of the

effect of exogenous and endogenous factors on selection strength in the

cancer genome may lead to the discovery of cancer vulnerabilities, or help

with understanding which mechanisms are involved in the activation or

inactivation of cancer genes in different patients.

In this work, we focus on the effect of copy number changes on the

selection of genes, with minor changes, the same approach can identify

selection forces that are specific to the tumors with hypermutation phe-

notype, cancer-specific selection changes, changes in selection between the

stages of the tumor.

When looking for conditional selection signals in genes we use an ex-

tended version of the regression that includes a condition variable c en-
coding the state of the genomic region with respect to the condition (for
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example, copy number state of a gene) and the interaction term of the

target variable t with the condition variable c.

logE[Y ] = λ = ωt+
∑
i

miµi +
∑
j

zjβj + cγ + δ tc+ α+ log r (2.2)

It should be noted that here, we present a general formula that does

not incorporate all variations. The modular organization of the workflow

allows the inclusion of many conditional variables and testing for the in-

teraction of any pair of variables, as well as estimation of higher-order

interactions between multiple variables.

2.2.1.1 Different regression models

At this stage, we try to fit different GLMs to describe the observed distri-

bution of mutation counts in a studied region while accounting for user-

defined variables.

In the case of an abundance of mutation counts, a negative binomial

with the mean λ and the overdispersion parameter δ can be used:

Y ∼ NB(λ, δ) (2.3)

When the number of mutations is limited, Poisson distribution with the

mean λ is better suited.

Y ∼ Poisson(λ) (2.4)

However, detecting statistical interactions requires a large number of

mutations for regression to be able to fit the parameters. Cancer mutation

datasets that are available for analysis often do not have enough mutations

because of controlling for many parameters, which leads to data sparsity.

Low mutation counts and uneven distribution of DNA lengths result in

errors in the estimation of selection.

40



Development and evaluation of the MutMatch method

Moreover, the bias is enhanced due to the problem of perfect separation

when a linear combination of the predictors is perfectly predictive of the

outcome. In this case, absolute values of regression estimates are pushed

very far which makes them unlikely and untrustable [134, 135]. To reduce

this problem, we use an extension of the classical GLM by adding a weakly

informative prior distribution of regression coefficients (e.g. selection es-

timates) [136]. This assumes that the majority of effects are centered at

zero and that there is a low probability that there will be a change greater

than 5 on a logarithmic scale. The parameters for independent prior dis-

tributions (for the regression intercept and predictors) can be changed in

the implementation of this approach in the bayesglm function from arm

package in R [136].

2.2.2 Input data

The method is implemented in a way that allows to easily substitute vari-

ables that a user wants to control for, input mutations, and annotation

of samples. The MutMatch program requires a set of mandatory files as

input:

1. Mutation data file. Mutations should be formatted in 1-base,

in VCF-like format with columns: CHROM, POS, ALT, REF,

SAMPLE. Only Single Nucleotide Variants (SNVs), in particular

substitutions, are considered by the MutMatch method.

2. Genome-wide sample annotation. This file should include the

information about each variable that a user wants to either include in

the regression model or to be using it to run fit regression separately

for each value of the annotation. This annotation should not change

depending on the position in a genome. An example would be a

cancer type.

3. Gene-specific annotation. Some variables (for example, a condi-

tion variable c that distinguishes genes with a different copy number
status in a cell) have gene-specific values and are not consistent

within one sample. A gene-specific annotation should be provided

in a separate file. The file should contain columns SAMPLE and
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HUGO Gene Nomenclature Committee (HGNC) (gene name). A

dummy variable CNA in this example should denote the state of

the gene in each tumor sample.

4. Variables to include in the regression. File with a list of vari-

ables defining the regression model. This should always include:

• the target variable t that distinguishes mutations between tested
and control loci (named isTarget in the code implementation).

• the mutation type variable m (named MutationType in a file).

The remaining variables are user-defined. If sample annotation con-

tains a variable that is not used in this file, this is interpreted as

a signal that regression should be fitted separately for each level of

this variable (or a combination of variables in case more than one

variable is missing). The inclusion of condition-specific selection is

made by adding a term variable1 : variable2. For example, if sam-
ple annotation provides Copy Number Alteration (CNA) status of a

gene, conditional selection associated with a change of copy number

status is denoted with isTarget : CNA.

5. HGNCsymbol. A name of a gene for which selection estimates

should be calculated. It is possible to use an alias for a gene name.

6. Clustering level for mutation spectra. It ranges from 0 to

96 where 1 means no separating mutation types and 96 stratifying

mutations into 96 mutation types with controlling of 1 nucleotide

upstream and downstream. 0 stands for relative pentanucleotide

frequency matching procedure, described in Section 2.2.4.2.

Briefly, we account for the different pentanucleotide compositions of

tested and control regions by subsampling regions and proportionally

decreasing the number of mutations in them until the composition

between genomic regions is the same. Therefore, the differences in

mutation rate between the tested and control regions cannot be due

to the differential contribution of mutational processes rather than

selection.
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2.2.3 Output interpretation

Coefficient estimates ω,µi, βi, γ, and δ are obtained after fitting a regres-
sion model searching for conditional selection. Each estimate tells by how

much the mutation rate changes when a corresponding variable changes

its value from the basal to the tested. Some coefficients, such as µi and

βi, are disregarded in further analyses. Coefficients ω and δ, on the other
hand, are the key estimates that reflect the selection forces.

For example, if the coefficient ω associated with the t variable is equal
to 0.5, this means that the mutation rate is increased by e0.5 = 1.649 in
the tested genomic area compared to the area used to model a baseline

mutation rate, given that all the other variables are in the base level. In

other words, ∼65% of mutations in the tested genomic locus are driver

mutations and are positively selected. On the contrary, ω = −0.5 means
that ∼40% (e−0.5 = 0.607) of mutations were lost due to the negative
selection (Figure S8.1).

A coefficient estimate δ that is associated with an interaction between
a selection variable t and a condition variable c shows the effect of the
condition change on the selection. This is a deviation from the expected

behavior in the assumption that the selection variable t and the condition
variable c have an independent effect on the mutation rate.

2.2.4 Mutation spectra control

The nucleotide context of a DNA sequence plays a big role in the process

of acquiring DNA damage that leads to mutations. It is widely accepted

to define mutational processes by relative proportions of mutated bases in

trinucleotide context [75], although some works are using an expanded se-

quence context and control for penta- or heptanucleotide mutation context

[78, 50].

2.2.4.1 Control for trinucleotide mutation spectra

To control for the context-dependent mutagenesis, the MutMatch method

stratifies all the mutations into different classes according to the trinu-
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cleotide context of the point mutation (Trinucleotide Mutation Spectra

(MS96)). A combination of 6 main substitution classes (C>A, C>G,

C>T, T>A, T>C, T>G) collapsed strand-symmetrically with upstream

and downstream adjacent nucleotides results in 6 × 16 = 96 mutational
contexts. These classes are included in a regression model as dummy vari-

ables.

2.2.4.2 Matching of relative mutation frequencies

However, when accounting for the trinucleotide context, not all mutation

types may have a sufficient number of mutations to properly estimate se-

lection. To overcome this challenge, specific algorithms have to be utilized.

One approach is to match the relative pentanucleotide composition be-

tween the central gene and its neighbors. To do that we first calculate

the proportions of different pentanucleotides within each region, leaving

for the downstream analysis only those pentanucleotides that are present

in both groups. Next, the target frequencies of each pentanucleotide are

determined depending on how much they differ between the central and

neighboring genes. If a particular pentanucleotide is more frequent in

the neighboring area (but no more than 3 times more frequent), then the

target frequency will be taken as in the central genes, and otherwise if not.

After that, we sample sites from the genome to comply with the target

proportions of each pentanucleotide. Simultaneously, the number of mu-

tations in these pentanucleotide contexts is proportionally decreased and

then sampled using a multinomial distribution (Hansen-Hurwitz method,

UPMultinomial function from the sampling package in R) [137]. Finally,

all mutation counts are summarized in one number by taking a sum, as

well as all nucleotides at risk.

This approach produces a set of summarized mutation counts and sum-

marized length of each region that are representing the expected number

of mutations in case neighboring genes and central genes had the same

pentanucleotide composition. This procedure is repeated fifty times for

excluding the influence of random factors in the multinomial sampling of

sites. Later, summary tables are used for estimation of mutation enrich-

ment in a gene of interest.
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2.2.4.3 Clustering of mutation types

An alternative way to decrease the number of estimated parameters in

regression is clustering similar mutation types. The similarity of muta-

tion types of evaluated based on their relative frequencies across samples

in the non-coding parts of the genome using Whole Genome Sequencing

(WGS) data. We clustered 96 mutation types (separating MS96) using

hierarchical clustering.

This makes it possible to choose the number of groups of mutation

types that will be controlled in a regression, ranging from 1 to 96. For

example, cutting the hierarchical clustering at level 1 will not differentiate

between mutations, cutting the clustering at level 2 will separate NCG>T

mutations from all other types (NDH>N, where D is A, G or T). Clustering

level of 96 means that MS96 is treated as a variable (described in 2.2.4.1).

Regardless of the chosen parameter, the algorithm separates mutations

from six main mutation classes. Additional mutation types will be ex-

tracted from the data based on the chosen level of cutting the clustering.

In the example of cutting the hierarchical clustering at level 1, seven mu-

tation types will be used to stratify the data: NCG>T, NCH>T (H is A,

C or T), C>A, C>G, T>A, T>C, T>G. Similarly, 7 substitution types

(A>T, A>C, A>G, C>A, C>T, C>G, or CpG>N) were used in the paper

of Zapata et al. (2018) [133].

2.2.5 Baseline mutation rate models

Estimation of a selection strength for a gene is performed using gene an-

notation in the reference human genome assembly GRCh37 (hg19). Only

mutations located in exonic parts of the most expressed transcript variant

are used [138]. To account for the selection in splice sites at the 5’ and 3’

ends of introns, the coordinate of each exon are extended by 5 nucleotides

upstream and downstream inside the intronic region.
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2.2.5.1 Neighboring genes baseline

The mutation rate baseline is mainly shaped by the DNA replication time

domains and/or other features varying on the same scale of 100 kb – 1 Mb

such as Topologically Associating Domains (TADs) [52, 56, 57]. Having

this in mind, it is reasonable to assume that the background mutation

activity in a close gene neighborhood is very similar, with minor differences

driven by changes in oligonucleotide composition and selection forces. On

the other hand, the majority of the genome is evolving under neutral

selection, and a randomly chosen gene will most likely be not selected [9,

139]. Therefore, exonic parts of genes in the close neighborhood (below 1

Mb) can be used to model a background mutation rate [20].

The neighborhood size can, in principle, be used as a parameter with the

default value set up to be 500 kb (0.5 Mb) both upstream and downstream

[20]. The choice of the neighborhood length is substantiated in Section

2.4.1. In gene-poor areas, if no gene is located in such a neighborhood,

the neighborhood is extended until at least one gene on each side is found

(excluding the case when one side is limited by a chromosome end).

Similarly, as for the central gene, only mutations located in the exonic

parts with 5-nucleotide extension for splice sites of the most expressed

transcripts for neighboring genes are used [138]. If a gene-specific an-

notation is used in the analysis, a neighboring gene is excluded from the

analysis if the annotation is not matching between the central gene and the

neighboring gene. For instance, if one copy of a central gene is deleted in

a sample but deletion is focal and only a part of the genes in the neighbor-

hood are deleted, only those that are deleted will be further used to model

a background mutation rate. Given the trivial effect of the copy number

changes on the DNA amounts and, consequentially, on the number of mu-

tations, this way we ensure that the modeled mutation rate derived from

gene neighborhoods is not confounded by the copy number state changes.
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2.2.5.2 Effectively synonymous exonic sites using CADD ge-

nomic score

Some individual mutations have a very strong functional impact on the

transcript or the protein level (driver mutations or deleterious mutations),

while other mutations may have no phenotypic effect. This is often the

case, but not always [20], when a mutation is synonymous or

near-synonymous, leading to a retaining the same amino acid or to a

change to an amino acid that is similar in its physicochemical proper-

ties. A drastic change in amino acid sequence can have no effect or a

very small effect when it is located in a non-conserved part of a gene,

supposedly having no functional involvement in gene activity. Since the

phenotypic effect of such mutations is weak or absent, such mutations are

not subject to a selection in somatic evolution and can be used to model

a background mutation rate [140, 105, 141, 133].

We use Combined Annotation-Dependent Depletion (CADD) genomic

score to distinguish between genomic regions where changes are likely to

have a functional impact and those where mutations have no deleterious

effect [142]. Details are in Section 7.5.

2.2.5.3 Other mutation rate baselines

In addition to using neighboring genes, the MutMatch framework allows

using other baselines for modeling background mutation rates. These in-

clude:

• Invex-like method. Introns and flanking non-coding parts of a

gene (including intronic parts of neighboring genes if a gene has no

introns) are used to estimate an expected number of mutations in

exonic parts, similar to Hodis et al. (2012) [62].

• Trans-neighbors. Genes are grouped into clusters based on the

mutation rate level in their non-coding parts. For every gene from a

cluster, the selection is estimated by comparing the mutation rate in

the exonic parts of a tested gene with intronic parts of all genes in

the same mutation rate cluster, similar to Supek et al. (2014) [20].
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• dN/dS. Mutations are classified by their phenotypic effect: the rate

of nonsynonymous changes is compared with the rate of synonymous

mutations [9, 91, 90].

• Other functional impact scores (e.g. REVEL). Mutations are

separated into groups based on additional ranking scores, similar

to CADD baseline. For example, a Rare Exome Variant Ensemble

Learner (REVEL) score that predicts the pathogenicity of mutations

can be used to compare the rate of pathogenic mutations with the

rate of proxy-neutral mutations [143].

2.2.6 Filtering of genomic sites

2.2.6.1 Mutation rate outlier genes

Mutation rate heterogeneity at a smaller level (generated by mutational

hotspots on the gene and subgene scale) can confound our framework and

lead to the detection of differences in mutation rates between control and

test sequences that can be interpreted as selection [92, 93]. To avoid such

situations and decrease the false-positive rate we exclude “outlier” genes

from the neighborhood that might be enriched or depleted with mutational

hotspots compared to the level in the gene of interest. Details are described

in Section 2.4.2.

2.2.6.2 Regions with uncertainty in mapping and conversion-

unstable positions

We also filtered regions to avoid errors in mutation-calling or mapping or

reads. For each genomic region, only nucleotides that are mappable ac-

cording to the CRG75 Alignability track were considered. Additionally, we

removed positions that were unstable when converting between GRCh37

and GRCh38 (conversion-unstable positions) [144, 145].
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2.2.6.3 User-defined genomic regions

In specific cases, one can be interested in measuring selection in particular

parts of a gene. For instance, selection acting on nonsense mutations in

NMD-detected regions, on all nonsynonymous mutations inside, inside or

outside of hotspots (details on the used filters see in Section 7.6) [112,

82]. It is possible to specify a set of genomic coordinates that should be

used to collect mutations exclusively or, on the contrary, excluded from

the analysis.

2.3 Correction of regression estimates

2.3.1 Data sparsity leads to estimation biases

Controlling for confounding factors is a mandatory task in searching so-

matic evolution due to the high heterogeneity of mutation rates across

the genome, copy number states, and other factors [9, 92, 89]. However,

stratifying by a large number of such variables simultaneously, using our

MutMatch regression framework leads to a small number of mutations in

each category.

In this case, an important role in estimating regression parameters play

additional factors such as relative lengths of tested and control genomic

regions (i.e. the central gene, and the neighboring genes). The combina-

tion of low mutation counts and unequal sizes of these groups leads to the

inaccurate estimation of the regression parameters. The estimates may

be biased to the negative side or positive side, depending on which group

(control or test) has more chances of acquiring a mutation solely due to

the DNA length.

Let us illustrate it using an example when a selection in gene G is

estimated using the average mutation rate modeled with N neighboring

genes Vi, i ∈
{
1, · · · , N}.

If a gene G is selected with the selection strength equal to ω, it means
that given a sufficient number of mutations they will be observed eω times
more frequently in the gene G than in genes Vi. Assuming there is no selec-
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tion (ω = 0), the mutation counts will be distributed randomly generating
the same mutation rate in the control and the tested groups. However, if

the number of mutations is low, a mutation is more likely to be observed

in the group of neighboring genes Vi. The reason is that the total amount

of DNA in these genes is bigger than in a gene G which results in an

underestimation of the selection. An estimate of the selection strength ω̂
shows a false-negative selection.

Controlling for variables that have “typical” values and values that are

less common in the population further leads to disproportionate distribu-

tions of DNA sequences between cohorts. For example, if one wants to

separate samples by the copy number state of a gene, it will result that

only a small fraction of samples will have a non-diploid state. This leads

to the subsequent misestimation of the conditional selection (Figure 2.1).

Figure 2.1: Bias in estimating regression coefficients. Low number of

mutations leads to high noise-to-signal ratio, inaccuracy of estimation of mutation

rate, and bias in regression estimates.

Increasing the number of mutations in regression leads to removing the

bias. Interestingly, there is a non-monotonous relationship between the

number of mutations and the estimation error using the particular imple-

mentation of the Bayesian regression method that we applied (Figure 2.2)

[136].
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Figure 2.2: Estimation error of regression. The data was simulated using

a neutral selection model (ω = 0, red dotted line) with CGF = 10. Estimated
coefficients ω̂ are shown as a function of the total mutation number in a model
(the sum of the mutation counts in the tested and control groups).

When zero or only a few mutations are present, each of them changes

the mutation rate in the tested and control groups in a different pro-

portion. The group with a longer DNA sequence (usually, this is the

neighboring genes group in the case of the neighbors’ method) will have a

proportionally lower mutation rate, thus regression will return a positive

coefficient. Next mutations appearing in the region will more likely target

the neighboring group of genes with the probability proportional to the

control group factor (CGF ), that is, how much more DNA sequence is in
the control group (in this case, in the neighboring genes Vi) compared to

the tested group (central gene G). This will create a negative estimation
error.
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CGF =
Lc

Lt
, (2.5)

where Lc is the total length of the DNA sequence in the control group

(neighboring genes Vi in this example), and Lt is the length of the DNA

sequence in the tested group (central gene G in this example).

Therefore, although these estimates have large standard errors (Figure

S8.2), they introduce a bias in selection estimates because the length of

the control group is not equal to the length of the tested group.

The described relation depends on the relative DNA lengths of the tested

and control groups; the bias is negative when the control group is bigger

than the tested (CGF > 1) and positive in the opposite scenario (CGF <
1). For example, using neighboring genes to model the baseline mutation
rate leads to underestimation of selection effects, while coefficients from

the CADD baseline, which has longer sequences in the tested group tend

to be overestimated.

The extent of misestimation of regression coefficients strongly depends

on the total number of mutations (which is influenced by background

mutation rate) and the extent of CGF . High absolute CGF values cause

a larger bias and require a bigger number of mutations in regression for

accurate ω estimation (Figure 2.3).

Figure 2.3: Estimation error depends on the CGF. Bigger difference be-

tween the sizes of the tested and control groups requires more mutations to ac-

curately estimate regression coefficients.
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Taking this into account, one cannot consider the raw coefficients that

regression produces as estimates of selection. Therefore, a procedure to

correct these biases due to low mutation counts was needed.

2.3.2 Randomization approach to debias selection esti-

mates

To remove the bias in selection estimates, we generate a null distribution

of selection estimates for ω and δ coefficients using a randomization pro-
cedure. The parameters of the null distribution are used to check if the

estimate from the actual data is effectively different from the median of

the distribution of random data (Figure 2.4).

Figure 2.4: Estimation of the real selection strength. The deviation

between the real estimates and the median of the null distribution of randomized

estimates is interpreted as the corrected selection effect. The ω1 is effectively

negative (is lower than the median of the null distribution) and the ω2 is effectively

positive (is greater than the median of the null distribution). The absolute values

of a null distribution are not affecting the procedure.

To generate a null distribution of regression estimates we first calculate

the total number of mutations Mtotal in the genomic region (including

the tested locus and in the control genomic region) while accounting for

the mutation type and other variables (for instance, cancer type). Then,

mutations are shuffled between the tested group and the baseline group

randomly, with the probability of receiving a mutation proportional to the
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DNA length of each region. Each generated table is then used to estimate

selection effects under randomness. This procedure is repeated 50 times.

The parameters of the distribution of the randomized selection effects are

then used as described above (Figure 2.5).

Figure 2.5: Randomization procedure to correct biases in the data.

Repeated n = 50 times to generate a null distribution of regression estimates of
selection (ω and δ).

We compared uncorrected selection estimates with the corrected ones

(Figure 2.6) across different copy number states for random genes (neu-

tral baseline), cancer genes, and essential genes. For random genes, the

distribution of all selection estimates after correction for the bias was cen-

tered at 0, as expected. On the contrary, there was a negative bias of the

random genes for uncorrected selection estimates.

Selection estimates corrected for the bias can be used for further anal-

ysis.
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Figure 2.6: Selection estimates before and after correction. Estimates

for selection on nonsynonymous mutations in a diploid state and a conditional

selection in a hemizygous state or cells with copy number gain. Uncorrected

estimates tend to be more negative than expected, based on the assumption that

random genes should be under neutral selection. Bias-corrected estimates for

random genes are centered at zero for all copy number states, as expected.

2.4 Benchmarking and evaluation

2.4.1 Size of the neighborhood

We wish to determine the appropriate size of the neighborhood to model

the expected mutation rate in a genomic locus. While the neighborhood

should not be too big to be able to reflect local changes in a mutation rate,

it should have enough genes and acquired mutations to precisely model

mutation rates.

Given that the average human gene length is about 2.7×104 nucleotides
(Figure S8.3) and the genome length is 3.2 × 109, one gene can be found

55



Development and evaluation of the MutMatch method

on average every 1.2×105 nucleotides [146]. This distance gives us an idea
of the minimal neighborhood length that is reasonable to have: it cannot

be smaller than 100 kb.

To determine the optimal neighborhood length, we benchmarked dif-

ferent neighborhood sizes against the test’s ability to distinguish between

the positive selection of known cancer genes [132] in cognate cancer types

and neutral selection in random genes (Figure 2.7).

Figure 2.7: AUROC scores for each neighborhood size. The separation

of debiased selection effects ω was used to predict mutated Census cancer genes
in cognate cancers versus random genes. One dot corresponds to the AUROC

score in one cancer type. The dotted line is the maximal median AUROC score

per group in tested sizes (corresponds to 700 kb).

An additional factor in determining the size of the neighborhood was

the average length of deletions and amplification in tumor samples (Figure

2.8). Although the median length of heterozygous deletions and low-level

gains was above 1 Mb, up to 25% of low-level copy number changes were

shorter than 0.5 Mb.
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Figure 2.8: Cumulative distribution of lengths of different copy number

states in a genome. Based on the TCGA copy number annotation of samples

derived from SNP-array data using GISTIC [106].

2.4.2 Mutation rate outliers in neighboring genes

Sometimes neighboring genes have a different mutation profile than the

central gene, implying that neighboring genes do not provide an adequate

baseline to model a mutation rate. This phenomenon can occur when

neighboring genes are selected, have different transcription levels, have

different transcription factor sites abundance, or have different sets of

chromatin marks [147, 148, 149, 9, 92].

To overcome this challenge, we exclude from the neighborhoods those

genes that we consider outliers in mutation rate. For this, we compare

the intronic mutation rate between the central gene and every gene in the

neighborhood while accounting for trinucleotide mutation spectra with a

matching procedure. Preprocessing of the data and calculation of the

outlier scores Soutlier was performed by Marina Salvadores [150].

In this procedure, a 20 kb sequence around the central position of the

gene is taken excluding exons, CRG75 unalignable regions, CTCF binding

sites, ETS TF, and APOBEC hairpins since they were shown to influence

mutation rates) [52]. If the sequence remaining after this filtering step was
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shorter than 5 kb, the transcript was discarded. In the same way, tran-

scripts that had no mutations were discarded. In total 18 227 transcripts

passed this filter.

For each gene, its sequence was processed so that the difference between

window trinucleotide composition and the reference trinucleotide compo-

sition (whole genome trinucleotide frequencies) was minimized. This was

achieved by removing the trinucleotide positions in an iterative manner

(10 000 iterations) for a gene-trinucleotide combination with the biggest

deviation in proportion from the reference proportion. At the end of the

procedure, the difference in relative trinucleotide composition of genes and

the reference trinucleotide frequencies was not higher than 0.035 – which
was considered to be negligible.

Next, the total number of mutations acquired in each gene was compared

to generate a matrix of differences in mutation rate between genes x and
y. Soutlier measures how well the gene’s mutation rate is representative
of the genomic neighborhood it resides in and was calculated using the

formula 2.6.

Soutlier = log
Mx/Lx

My/Ly
, (2.6)

where M is the number of mutations observed in a gene, and L is the
gene length.

Additionally, 11 transcripts without mutations were excluded after a

matching procedure to avoid infinite values of Soutlier. In the end, an

Soutlier value was calculated for 18 214 transcripts.

The distribution of this score depending on the distance between same-

chromosome transcripts is shown in Figure 2.9.

We tested different thresholds using the Soutlier to exclude mutation
rate outliers from the neighborhood: after applying the strictest threshold

(0.2), on average, 44% of the genes are excluded from the neighborhood

(Figure 2.10). The positive selection benchmark was used to find the op-

timal value of Soutlier to separate neighboring genes with similar mutation
rates from those that were not. We found that the value of 0.2), which
corresponds to 20% of variability in the mutation rate is the optimal
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threshold.

Figure 2.9: Cumulative distribution of lengths of different copy number

states in a genome. The length of CNAs was calculates using the The Cancer

Genome Atlas Program (TCGA) annotation of tumor samples.

Finally, with the chosen neighborhood size of 500 kb and Soutlier = 0.2,
we estimated that CGF for a set of cancer genes was about 4.8, meaning
the size of the control group to draw the expected mutation rate was 4.8
times bigger than the size of a tested gene. According to our simulations, at

least 10 mutations should be in the model to avoid biases when CGF = 5
(Figure S8.4).

Last, we have tested the ability of the MutMatch method to distinguish

between neutrally evolving genes (random genes) and positively selected

genes (known cancer genes in cognate cancers [132]) using different sets

of mutations. The difference in selection strength between groups was the

strongest when considering the selection signal derived from all nonsyn-

onymous mutations with AUROC score = 0.77 (Figure S8.5).
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Figure 2.10: The distribution of Soutlier between genes not further than

500 kb apart. The dotted lines show the tested thresholds (0.2, 0.3, 0.5, 0.7,
0.9); the proportion of the genes in the neighborhood after filtering out outliers
defined by each threshold is shown.

Overall, our results suggest that the MutMatch method is a flexible ap-

proach that can detect selection in human cancers. Although it has certain

limitations, their effect can be reduced by using a randomization approach,

filtering out mutation rate outlier genes, and via other techniques.

Based on the results of this chapter, we conclude that the MutMatch

method can be used to test for changes in selection strength that appear

under certain conditions. In the following two chapters, we will focus on

the signals of selection in tumors that can be used to find cancer vulner-

abilities, as well as the epistatic relationship between mutations and copy

number changes in the human genome.
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Chapter 3

Oncogenes and essential

genes are under purifying

selection in human tumors

3.1 Overview

In this chapter, we analyze selection estimates obtained by MutMatch to

genomic mutation and copy number variation data. We estimated selec-

tion acting on a set of cell-essential genes [130], Tumor Suppressor Genes

(TSGs) and Oncogenes (OGs) from the Cancer Gene Census list, and a

set of random genes used as a control group. More specifically, these selec-

tion estimates for each gene were obtained for each cancer type, separately

in the diploid state and across different copy number states. Finally, we

estimated pan-cancer selection by adjusting for cancer identity.

The main results reported in this chapter include:

• Opposing selection forces shape mutational profile in oncogenes in

tumors: positive selection in hotspots bearing Gain-of-Function (GoF)

mutations, and negative selection in nonsense mutations and non-

synonymous mutations outside of hotspots.
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• Mixture of positive and negative selection leads to underestimation

of genes positively selected in cancers, as well as obscuring signals of

negative selection.

• Focusing on regions that are putatively under positive selection in-

creases the sensitivity of cancer gene discovery. Negative selection

on oncogenes is prevalent and may be exploited for therapeutic pur-

poses.

• Cell-essential genes are under weak but nonetheless measurable nega-

tive selection in tumors; the signal becomes more evident with larger

sample sizes which increases the number of mutations.

• Genes essential at the population level do not exhibit signatures of

negative selection.

3.2 Results

3.2.1 Negative and positive oncogene selection shape tu-

mor evolution

We first looked for signs of selection across different genes (random, core

essential genes, cancer genes) in a diploid state (Figure 3.1). To accomplish

this, we included copy number data as a covariate in the model and fitted

a model with the conditional selection term (as detailed in Methods of this

chapter, equation 3.2). Coefficients that were associated with the gene in

the diploid state (the reference state in the analysis) were then analyzed.

For each cancer gene, we divided cancer types into two categories: those

where a gene was positively selected (cognate cancer types) and those

where it was not selected (noncognate cancer types). Positive selection

to separate cognate and non-cognate cancer types was estimated per gene

across all copy number states (as detailed in Section 7.3).
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Figure 3.1: Selection in diploid state. Debiased selection estimates for the

neutral copy number status of a gene obtained on the discovery cohort. The

number of gene-tumor pairs used to produce each of the box plots is written in

the left part of the plot.

Expectedly, we found a strong positive selection of nonsynonymous mu-

tations in cancer genes in cognate cancer types but not in other gene

groups. An even stronger positive selection was observed in hotspot sites,

with positive selection acting in strict hotspots defined by Trevino et al.

(2020) [82] and weaker selection in permissive hotspots detected in this

work (Section 7.6.1). Selection in hotspots of noncognate cancer types

was significantly lower than in cognate cancer types. However, selection

estimates were higher than in random genes and essential genes. Likely,

some gene-tissue combinations from this group are selected positively, al-

though selection pressure is weaker than in the group of cognate cancer

types.

Nonsense mutations in cancer genes in cognate cancer types were se-

lected positively. TSGs in cognate cancer types had a strong positive

selection on nonsense mutations, while the weaker (but still positive) se-

lection was also shown for TSGs in noncognate cancer types. Similarly,

there was an enrichment of nonsense mutations in some cognate cancer
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types for OGs. While unexpected, this enrichment could be explained by

rare GoF truncating mutations [151, 152, 153].

Interestingly, signs of negative selection were found for OGs in noncog-

nate cancer types. The lower quartile of the distribution of selection in

oncogenes for nonsense mutations was more negative compared to random

genes. Purifying selection for Nonsense-Mediated mRNA Decay (NMD)-

inducing nonsense somatic mutations in a group analysis of oncogenes was

previously shown in the work of Lindeboom et al. (2016) [112]. While the

power afforded by the data analyzed here did not allow us to show sig-

nificant individual hits under negative selection (best observed FDR was

0.78), we highlight the potential candidates where the absolute value of

negative selection was the greatest: IL6ST in BRCA-Lum cancer, KMT2A

in COREAD-POLE cancer, BIRC6 in LUSC and others (Figure 3.2).

Figure 3.2: Selection on nonsense mutations in the diploid state.

We next asked what fraction of cancer gene mutations are in hotspots.

We estimated what is the proportion of mutations in hotspots for each

mutation type (Figure 3.3). The fraction of mutations in hotspots for

oncogenes was higher than in tumor suppressor genes. The exact propor-

tion of hotspot mutations per gene depends on the hotspot definition: it

is, expectedly, much lower when using a Trevino set of hotspot sites and

larger using a self-defined and more permissive set of hotspots (Section
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7.6.1). The proportion of hotspot mutations in tumor suppressor genes

was much larger than in random genes; we estimated that at least 85.7%
of all mutations for 3/4 of tumor suppressor genes in cognate cancer types
are in hotspots.

Figure 3.3: Fraction of mutations located in hotspots for different gene

and mutation types. One data point represents the value from one gene-tumor

combination.

3.2.2 Opposing selection forces lead to underestimation of

positive and negative selection

To obtain more accurate estimations of selection in cancer types, we es-

timated selection across different copy number states (Figure 3.4). While

results were overall similar to the selection estimated for the diploid state,

certain patterns became more evident. In particular, we found negative

selection on nonsynonymous mutations in essential genes, which was not

observed in the previous analysis, suggesting that not controlling for copy

number state of genes may increase the power to detect positive or negative

selection acting on point mutations.

We hypothesized that the pattern of mutations on OGs might be ex-

plained not only by positive selection but also by a negative selection that

simultaneously acts to remove deleterious mutations in regions located

outside of hotspots. To examine this, we estimated selection in hotspots-

free gene regions using a permissive set of hotspots for exclusion (7.6.1).

Indeed, nonsynonymous mutations in OGs in noncognate cancer types
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were selected more negatively in comparison to the set of random genes

(in random genes, the effect sizes were distributed with the first quartile

Q1 = −0.4 and median Q2 = 0, in OGs Q1 = −0.6 and Q2 = −0.01). On
the other hand, in cognate cancer types, the difference was not statistically

significant (Q1 = −0.5 and Q2 = 0).

Similarly, for TSGs in noncognate cancer types, we found negative se-

lection outside of permissive hotspots (Q1 = −0.4 and Q2 = 0), and for
cognate cancer types the difference was not significant (Q1 = −0.2 and
Q2 = 0).

Figure 3.4: Selection across all copy number states. Debiased selection

estimates ω across all copy number states of a gene obtained on the discovery
cohort. The number of gene-cancer-type pairs used to produce each of the box-

plots is written in the left part of the plot. One data point corresponds to one

gene-tumor combination.

Although the effect is small, it can reflect negative selection on regions

of genes that are essential for the activity of a gene. Stronger sign of

signals of negative selection in noncognate cancer types together with weak

signals of positive selection in hotspots leads us to think that some of these

noncognate cancer types might be wrongly annotated. In other words,

the negative selection can offset some signals of positive selection on the

same gene, reducing the power to detect positive selection and wrongly
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annotating the gene as noncognate.

To test this, we compared selection estimates for hotspots with selection

estimates for hotspot-free areas (Figure 3.5).

Figure 3.5: Selection acting on different areas in a gene. Debiased

selection estimates ωacross all copy number states of a gene obtained on the
discovery cohort. One data point corresponds to one gene-tumor combination.

A substantial proportion of genes in noncognate cancer types with neg-

ative selection outside of hotspots were positively selected in hotspots. For

these genes, the total signal of selection will be the result of the balancing

forces and will be neutral or weakly positive or negative, depending on the

proportion of the hotspot sites in a gene. Our definition of cognate and

noncognate cancer types, although adjusted to account for weak positive
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signals of selection (for cognate cancer types FDR ≤ 10% and noncognate
FDR ≥ 75%, as detailed in Section 7.3), was missing such cases.

3.2.2.1 Noncanonical oncogene addiction

We examined if negative selection acting simultaneously at gene level and

reducing the number of positively selected mutations could also be de-

tected in the analysis while adjusting for copy number states. Results

obtained using selection estimates across copy number states were similar

to results from selection estimates for the diploid state. We compared sig-

nals of selection inside strict Trevino hotspots against hotspot-free areas

outside of the permissive set of hotspots (Figure 3.6) focusing on oncogenes

that had such strict hotspots.

As seen in Figure 3.6, OGs formed two clusters. First group, where

hotspots mutations were not selected, predominately contained genes in

noncognate cancer types. The second group consisted mainly, but not

only, of cognate cancer types and had a strong selection in hotspots.

Negatively selected genes were present in both groups, which proposes

that there are two types of negative selection removing deleterious muta-

tions from oncogenes. The first type of negative selection acts on driver

oncogenes and illustrates a phenomenon known as oncogene addiction:

dependence of a cell on a single oncogene, which is otherwise usually acti-

vated by GoF mutations. The second type of negative selection, however,

demonstrates that even tumors depend on the oncogene function even in

some cases where that specific oncogene is not a driver of tumorigenesis in

that particular tumor. Herein we term this phenomenon “non-canonical

oncogene addiction”.
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Figure 3.6: Two mechanisms of oncogene negative selection cancer

types. Non-canonical oncogene addiction (no positive selection in hotspots) and

misannotated cancer types (hotspot sites are positively selected). One data point

corresponds to one gene-tumor combination.

Non-canonical oncogene addiction would be a new mechanism that makes

cell dependent on the function of an oncogene even without its activation.

Possibly, we speculate that this dependency on the healthy function of OG

may exist in healthy tissues as well, which would mean that some OGs

are essential genes. MYCN, MYC, MTOR, BRAF, KIT, KDR and XPO1

genes are examples of genes from this group showing negative selection

signals in noncognate cancer types.
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3.2.2.2 EGFR is selected in BRCA, HNSC, and ESAD cancers

As shown above, interfering signals of positive and negative selection in

different genic areas can lead to an underestimation of positive selection

strength, thus increasing the number of false negative identifications of

driver genes. This problem is important to address for genes that have

inhibitors passing the stage of clinical trials or are already used in targeted

therapies for cancer types.

An important example that fits this description is EGFR gene. Known

cognate cancer types where EGFR is positively selected include brain and

LUAD [95, 85, 9, 154]. Collective results of our analyses suggest that

EGFR is selected in BRCA-Lum (a luminal subtype of breast cancer),

ESAD, ESCA, GBM, HNSC, LGG, LUAD. In particular, the gene level

positive selection was not captured in BRCA-Lum because of negative

selection outside of hotspots.

To additionally illustrate this, we plotted raw mutation rates in the

EGFR gene and its neighbors in a set of tissues including those known from

the literature EGFR cognate cancer types (lung and brain) (Figure 3.7A)

and presumably noncognate cancer types (Figure 3.7B). We compared the

mutation rates inside of hotspots, outside, and overall in the whole gene.

Taken together, our results demonstrate that mutations in EGFR gene

in HNSC and BRCA-Lum cancer are positively selected inside of hotspots

(the mutation rate is higher in the EGFR gene than in the neighboring

genes). Furthermore, selection in BRCA-Lum cancer EGFR appears to be

subtype-specific. For this subtype EGFR is negatively outside of hotspots.
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Figure 3.7: Mutation rate of EGFR gene and its neighbors across copy num-

ber states. Mutation rate is calculated mutation counts divided by the length of the gene

without controlling for Trinucleotide Mutation Spectra (MS96) or copy number state. The

estimated mutation rate is plotted with 95% confidence intervals. Asteriscs indicate can-

cer types where the gene was positively selected. Y-axis is log-transformed. A. Potentially

new cognate cancer types together with previously known: LUAD, GBM, LGG. B. Po-

tentially new cognate cancer types together with noncognate cancer types: Kidney, MM,

PAAD, PRAD, SKCM.

EGFR might also be positively selected in ESAD cancer. Although this

gene-tissue combination did not pass our mutation number filter in the

copy number analysis (at least 2 mutations required in the model per

copy number state), it passes the filter considering the mutations only

in the diploid state. Importantly, EGFR was not identified as a signifi-

cantly mutated driver gene in ESAD, HNSC, and BRCA in the two recent

comprehensive studies of similar-sized datasets [95, 85, 154].

Apart from EGFR, we additionally compared raw mutation rates between

genesMTOR, XPO1, GNAQ, and their respective neighboring genes. Sim-

ilarly, elevated mutation rates were present in hotspots for cancer types

that are not considered cognate cancer types according to the Cancer Gene

Census (CGC) or MutPanning annotations (Figures S8.6, S8.7, S8.8).

This provides additional examples of genes that may have been missed

in previous efforts to catalog driver genes because of simultaneous posi-

tive and negative selection acting on them.

3.2.2.3 Re-annotation of cognate cancer types for known cancer

genes

We addressed the question of how many driver cancer types-gene pairs may

have been lost due to the opposing forces that remove deleterious muta-

tions and keep beneficial ones. We estimated selection strength across dif-

ferent copy number states from different mutation types and regions. We

found that more than 1800 unique pairs had positive selection estimates

(FDR < 25%) when considering the cancer types with the largest number
of mutations. We excluded cancer subtypes with microsatellite instabil-

ity and hypermutation phenotype to avoid spurious correlations because

of the extended mutational signatures (i.e. wider than the trinucleotide,
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which we rigorously control for in our method).

Out of over 1800 driver gene-tissue pairs, less than a third could be de-

tected using a standard approach (selection signal using nonsynonymous

mutations from the whole gene), and almost all the pairs (over 1500 com-

binations) were found using a permissive definition of hotspots (Figure

3.8).

Figure 3.8: Total number of selected gene-tumor pairs discovered us-

ing different mutation classes. Cognate gene-tumor pairs identified without

controlling for copy number state in 13 cancer types with the largest number of

mutaitons.

The largest overlap, as expected, was between combinations found while

estimating selection signals in permissive hotspots for all nonsynonymous

mutations and missense mutations (Figure 3.9). Additionally, 183 cog-

nate pairs were found only using nonsynonymous mutations in permissive

hotspots and 46 with missense mutations in permissive hotspots. Further-

more, 25 cognate pairs were discovered with mutations in strict hotspots

with nonsynonymous mutations, two pairs – with missense mutations in

strict hotspots, and two using nonsense mutations in NMD-detected sites

were missed in all other setups.

Overall, restricting the analysis to only a specific gene parts results in the

larger number of cognate cancer types than focusing on one of the mu-
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tation types. For example, even for oncogenes where nonsense mutations

are not expected to be positively selected, a model that was including

all nonsynonymous mutations (missense and nonsense together) predicted

more cognate cancer types.

Figure 3.9: Number of overlapping and unique combinations of cognate

cancer type-gene pairs found by different approaches.

3.2.3 Essential genes are negatively selected in soma

We analyzed selection on nonsynonymous mutations in a pan-cancer anal-

ysis across 13 major cancers with the largest numbers of mutations (BLCA,

BRCA-Lum, COREAD, ESAD, HNSC, Kidney, LGG, LUAD, LUSC,

MM, PAAD, PRAD, SKCM).

Our results show that cell-line essential genes (CEG2) are negatively se-

lected in the pan-cancer analysis. Regardless, there was not enough power

in the dataset to detect the negative selection of essential genes in each

cancer type separately.

To exclude the influence of any cancer-type specific mutation signature

that might create a bias in the estimation of selection, we repeated the

analysis while removing each cancer type one by one (Figure 3.10). Al-

though removing melanoma had a cancer type created the biggest impact

on the selection estimates, in all these analyses selection estimates of es-

sential genes were lower than selection estimates of random genes (FDR

< 1%).
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Figure 3.10: Selection in the diploid state in a pan-cancer analysis.

Selection in the two gene groups – random and core essential genes (CEG2) –

estimated in a pan-cancer analysis [130]. Only the cancer types with the largest

number of mutations were considered. One data point corresponds to the selec-

tion estimate in one gene across all cancer types excluding one (X-axis). Asterisks

indicate the level of significance of the difference between gene groups while con-

trolling for the multiple testing: ‘*’ for FDR ≤ 0.05, ‘****’ for FDR ≤ 1 · 10−4.

We sought to understand whether known essentiality metrics correlate

with selection estimates across the genome, that is, whether genes are

under stronger negative selection in tumor genomes if they are ranked as

more essential by previous methods.

We compared the selection estimated with the mean cell-essentiality scores

across different cell lines (Computational correction of copy-number effect

in CRISPR-Cas9 essentiality screens (CERES) score by Clustered Reg-

ularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 approach,

[155]) and essentiality score derived from a population data (selection of

Loss-of-Function (LoF) germline point mutations summarized in Loss-of-

function Observed over Expected Upper bound Fraction (LOEUF) score,

[156]).
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Figure 3.11: Somatic cell lines derived and population essentiality

scores do not correlate with somatic selection estimated in tumors.

Lower values of CERES and LOEUF scores correlate with a higher chance of

being essential in cell-line knockout experiments or with haploinsufficiency at the

population level. We observe no correlation between these essentiality scores and

estimates of selection derived with the MutMatch method (in the diploid state,

pan-cancer analysis) across all genes.

No significant correlation was observed between essentiality defined by

CRISPR-Cas9 experiments with cancer cell lines and tumors (Pearson’s

correlation = 0.07). Similarly, our results showed no correlation between
pan-cancer selection estimates for genes and their negative selection of

heterozygous, loss-of-function variants at the population level that is mea-

sured by LOEUF score (Figure 3.11).

Moreover, we tested if the most essential genes according to the LOEUF

metric had a shifted distribution of selection effects quantified with the

MutMatch method (top-10%, top-500, top-200, top-100, top-50 of the

most genes were tested). Surprisingly, our data showed no variability in

the coefficient estimates depending on the gene ranking (Figure 3.12).
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Figure 3.12: The most essential genes according to the LOEUF score

are not more negatively selected than less essential genes. Only top-25%

of genes with the most essential LOEUF score are presented here.

We also compared the distributions of essentiality scores in different gene

groups: essential genes, cancer genes, and random genes (Figure S8.9).

Interestingly, there was an enrichment of genes under purifying selection

(lower values or bins of examined scores) in cancer genes and essential

genes compared to the random set of genes (Figure S8.9A). The enrichment

of low CERES scores in the group of core cell essential genes compared to

the random genes is expected by the design of the essential gene set (Q1 =
−2.64 and Q2 = −2.16 for essential genes and Q1 = 0.11 and Q2 = 0.32
for random genes). In contrast, lower than in random genes parameters

of the distribution were not expected for cancer genes (Q1 = −0.17 and
Q2 = 0.21 for TSGs and Q1 = −4 · 10−3 Q2 = 0.27 for OGs).

Similarly, cancer genes and essential genes had a bigger proportion of

the genes with the low LOEUF score compared to the expected (Figure

S8.9B). Almost half (49.9%) of all essential genes were having the lowest
30% LOEUF scores versus 28% for random genes. In cancer genes, 63%

and 65% of OGs and TSGs, respectively, had the LOEUF scores from the

lowest 3 deciles.

This proves that functions of cell essential and cancer genes are vital not

only at the level of the cell or a tumor but also at the organismal level.

However, constraints on the mutation profile of those genes found with

essentiality screens only partially overlap with somatic negative selection.

This may be because somatic selection estimates are noisy, which is likely

to improve with larger data sets.
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Altogether, we find core cell-essential genes that were previously identified

via CRISPR screening experiments in cell lines [130] are more related to

the somatically negatively selected genes than those genes whose evolution

is constrained in the population (by LOEUF score). Two independent

scores are weakly correlated (Pearson’s correlation = 0.15, Figure 3.13),
and so they provide orthogonal metrics to gene essentiality.

Figure 3.13: LOEUF and CERES scores are weakly correlated.

3.3 Chapter methods

3.3.1 Gene classification

Cancer genes from CGC list [132] were classified by their role in cancer in

three groups: OGs, TSGs, and unclassified genes. The latter group was

excluded from the analysis.

First, we used the classification provided by CGC to separate OGs from

TSGs [132]. For genes with mixed annotation, we used TUSON q-values

[120] with the following thresholds:

1. q-valueOG < 0.4 and q-valueTSG > 0.6 to be classified as an OG

2. q-valueTSG < 0.4 and q-valueOG > 0.6 for TSGs
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Next, for the genes left in the unclassified category, we calculated the pro-

portion of nonsense mutations from all the mutations in a gene. Following

the “20/20 rule” [96], genes with nonsense mutations comprising more than

20% of all mutations were classified as TSGs.

After this, our cancer genes dataset contained 249 oncogenes, 305 tumor

suppressor genes, and 123 unclassified genes with no identified or mixed

role in cancer.

To have a positive control set where a negative selection can be expected,

we used a list of CEG2 core essential genes from Hart et al. (2017) [130].

We also included a set of 300 random genes (excluding known cancer genes

from CGC and MutPanning [95]) in our analysis to have a neutral baseline.

3.3.2 Gene selection models

For cancer-specific estimates of selection across the copy number state we

used the following regression formula to model raw mutation counts Y :

logE[Y ] = ωt+
∑
i

miµi + α+ log r (3.1)

where trinucleotide-specific differences in mutation rate m are controlled

using MS96 stratification of mutations, and the t variable separates mu-
tations from a baseline (neighboring genes) and the gene of interest and is

the key variable in estimating a selection strength. For the details on the

formula see Section 2.2.1.

For cancer-specific estimates of selection controlling for Copy Number Al-

teration (CNA) we used the following regression formula:

logE[Y ] = ωt+
∑
i

miµi + cγ

+ δ tc+ α+ log r

(3.2)

Here, condition variable c separates diploid versus deleted state of a gene
in samples for estimation of selection change upon deletion δ, or diploid
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versus a gain state of a gene in samples for estimation of selection change

upon gene gain δ.

For pan-cancer analysis, we included cancer variable z to account for
cancer-driven variations in mutation rate and CNA:

logE[Y ] = ωt+
∑
i

miµi +
∑
j

zjβj + cγ

+ δ tc+ α+ log r

(3.3)

3.3.3 Post-processing of regression estimates of selection

For all selection estimates (ω – selection in the diploid state, and δ – selec-
tion change upon a CNA event), we subtracted the median of the selection

estimates null distribution generated using a randomization procedure to

correct the estimates for the bias (Section 2.3.2).

We filtered gene-tissue pairs based on the number of mutations in each

state (diploid state, gain, or deletion state). We required at least two

mutations to be observed in an analyzed genomic region (with a theoretical

possibility of having one mutation in a central gene and neighboring genes)

for regression in cancer-specific analysis and ten mutations for pan-cancer

analysis. We required at least six mutations to be observed in an analyzed

genomic region in the analysis across all copy number states.
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Chapter 4

Epistatic interaction

between mutations and

copy number alterations in

the same gene

4.1 Overview

In this chapter, we highlight the most interesting results we found study-

ing how selection changes depending on whether a copy of a gene was

duplicated or lost. We estimated selection in two independent datasets

using neighboring passenger genes or low-impact mutations to model the

baseline mutation rate, while stringently controlling for the confounding

effect of gene dosage on mutation burden. The result of this and additional

analyses demonstrate:

• For most Tumor Suppressor Genes (TSGs) and Oncogenes (OGs),

tumors that either lost or gained a gene copy had a stronger selection

for driver Single Nucleotide Variant (SNV) mutations (missense and

nonsense for TSGs and missense for OGs).
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• In samples with a copy gain, normally, the mutant allele gets am-

plified rather than the wild-type allele for both OGs and TSGs in

cognate cancer types. Some individual genes are the exceptions from

this pattern, showing strong negative selection for amplifying a mu-

tant allele.

• Mutant allele imbalance in samples with gene copy-gains shown for

TSGs suggests that a dominant negative mechanism of inactivating

mutations is common in TSGs.

• Mutant allele imbalance achieved by deletions or copy-gains reflects

different selection forces that favor either removal of the wild-type

allele or increasing the dosage of the alleles.

4.2 Results

4.2.1 Conditional selection upon hemizygous gene loss

4.2.1.1 Selection estimates

To evaluate how somatic Copy Number Alterations (CNAs) affect the

selection of somatic point mutations in genes, we performed two analyses.

In the first analysis, we estimated conditional selection on point mutations

associated with a gene loss (i.e. a change in selection strength that is

observed in tumor genomes where a gene copy is deleted). In the second

analysis, we estimated selection change upon a gene copy-gain.
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Figure 4.1: Regression coefficient δdeletion on the interaction term be-

tween the selection variable t and copy number variable c. Debiased
conditional selection estimates obtained for each gene using the different muta-

tion classes of the discovery cohort. The change of selection strength δdeletion
between samples where genes are in the diploid state and where a gene copy was

lost was estimated using neighboring genes as a mutational baseline. One data

point corresponds to one gene-tumor combination. The number of gene-tumor

pairs used to produce each of the boxplots is written in the left part of the plot.

In agreement with the two-hit model of gene inactivation (Figure 4.1) [31],

nonsense mutation and deletions were cooccurring more than expected

by chance in TSGs. Interestingly, although the effect was stronger for

cognate cancer types, a long tail of positive interaction was also shown

for noncognate cancer types. This confirms the previous statement that

some of the non-cognate cancer types (identified using selection estimates

across copy number states) are false positives and are selected.

We observed a depletion in the rate of nonsense mutations in OGs upon

deletion compared to the baseline, which, however, was not significant

– likely due to the small sample size (Figure 4.1). Additionally, 25th

percentiles derived from distributions of conditional selection estimates

outside of permissive hotspots in OGs and TSGs were significantly lower
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than from random genes. We believe this represents signs of negative

selection in hemizygous regions of some genes (at least a quarter of them,

judging by the 25th percentile), especially for OGs.

Both in OGs and TSGs, selection on all nonsynonymous mutations was

stronger in samples with a gene loss (Figure 4.1). The estimates of con-

ditional selection were higher for genes under selection: for random genes

the upper quartile Q3 = 0.1 and median Q2 = 0, while for OGs Q3 = 0.46
and median Q2 = 0.05 and for TSGs Q3 = 0.7 and median Q2 = 0.3. This
effect was even more pronounced in the case of mutations in permissive

hotspots: Q3 = 0.45 for OGs, Q3 = 0.74 for TSGs, Q3 = 0.02 for random
genes.

It was expected for two-hit TSGs, which need to inactivate both alleles to

produce a cancer phenotype. However, for OGs, enrichment of mutations

with gene loss in a cell was not anticipated.

There can be two explanations for the observed increased mutation rate

in oncogenes. If a gene loss happens after the Gain-of-Function (GoF)

activating mutation, losing the wild-type allele is beneficial because (1)

losing an allele with a GoF mutation may lead to the tumor regression

and therefore is negatively selected (2) wild-type allele can have tumor

suppressive effect. The first explanation would illustrate the paradigm of

oncogene addiction (dependency of tumor on a single activated oncogenic

pathway). The second hypothesis has been studied for RAS genes, where

the wild-type allele seems to have an inhibitory effect on the mutant allele

[157, 158].

4.2.1.2 Mutation frequencies

To substantiate this observation, we compared mutation frequencies in

samples with a gene loss between gene groups, having a group of random

genes as a baseline. The frequency of a mutation in a cell population

depends on the dosage of the mutation (number of mutant gene copies),

ploidy of the cell, and tumor purity (fraction of tumor cells in a sample).

We corrected Variant Allele Frequency (VAF) estimates to avoid variabil-

ity driven by changes in tumor purity between samples. VAF estimates
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after this procedure, however, were not equal to x/y, where x ≤ y and
x, y are whole numbers (with the expected values across deleted, neutral
or amplified state 0, 1/3, 1/2, 2/3, 1). The observed estimates, however,
were not following this pattern, likely because of the noise in the read

counts, subclonal mutations, or events of Whole Genome Duplications

(WGDs). To account for this, we added a control group of random genes

to have a neutral baseline for passenger mutations. Higher frequencies of

mutations in the tested set of genes imply a stronger positive selection or

an earlier-occurring variant.

Figure 4.2: Mutation frequencies in samples with a gene loss.One data

point corresponds to one adjusted frequency of one missense or nonsense mutation

for each tumor sample from The Cancer Genome Atlas Program (TCGA).

Allele frequencies of mutations in tumor suppressor genes were signif-

icantly higher than those in random genes (Wilcoxon test p-value =

4 · 10−4) with the median for the group of random genes Q2 = 0.46 and
TSGs Q2 = 0.6. In particular, for individual genes STAG2, KDM6A,

AMER1, FBXW7, VHL and TP53, it was possible to show a significant

increase in VAFs compared to the set of random genes at a threshold of

FDR ≤ 0.05 (Figure 4.3A).
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Figure 4.3: Mutation frequencies in samples with a gene loss. A. Variant

allele frequencies corrected by the sample purity for TSGs across cognate cancer

types (one data point corresponds to one nonsynonymous mutation). Asterisks

denote genes with significantly different distributions from the distribution of a

group of random genes (Mann-Whitney test with multiple testing corrections).

The level of significance of the difference is encoded: ‘∗’ for FDR ≤ 0.05, ‘∗∗’ for
FDR ≤ 1 · 10−2, ‘∗∗∗’ for FDR ≤ 1 · 10−3, ‘∗∗∗∗’ for FDR ≤ 1 · 10−4. B. Variant
allele frequencies corrected by the sample purity for OGs across cognate cancer

types. Asterisks are defined as in panel A.86
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VAFs of oncogenes, on the other hand, were not significantly different from

the VAFs of random genes, both for individual genes and all oncogenes

together (Figure 4.3, 4.2). For OGs the distribution of allele frequencies

of mutations had a median Q2 = 0.44 compared with the Q2 = 0.46
observed in the group of random genes. Restricting analysis only to a set

of gene-tissue combinations that showed a mutation enrichment in samples

with deletion, did not help to achieve statistical significance (Q2 = 0.42
versus Q2 = 0.45 for the group of random genes).

We checked whether genes that showed a significantly increased VAF of

mutations also exhibited a positive selection change on mutations upon

deletion (Figure S8.10). Although they all had higher selection estimates

than random genes, only selection effects estimated using the neighboring

genes baseline in TP53 gene across cognate cancer types were significantly

greater than estimates in the random genes baseline.

4.2.2 Conditional selection upon copy number gain

4.2.2.1 Selection estimates

We estimated conditional selection associated with a copy number gene

gain for different cancer genes and mutation types (Figure 4.4). In brief, we

consider the interaction term between the selection variable t (separating
the tested gene from genes in its neighborhood) and the condition variable

c (defining the gene copy number state in a tumor). We observed that
driver mutations (nonsense for TSGs and missense for TSGs and OGs)

had an increased selection (δ > 0) in samples with copy number gene gain
in both TSGs and OGs.
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Figure 4.4: Regression coefficient δ on the interaction term between

the selection variable t and copy number variable c. Debiased conditional
selection estimates obtained for each gene using the different mutation classes of

the discovery cohort. The change of selection strength between samples where

genes are in the diploid state and where a gene copy was gained was estimated

using neighboring genes as a mutational baseline. One data point corresponds to

one gene-tumor combination. The number of gene-tumor pairs used to produce

each of the boxplots is written in the left part of the plot.

The interpretation of this result is that tumor samples carrying an addi-

tional gene copy had an increased mutation rate compared to the expected

implying an increased positive selection in tumors with copy number gains.

Mutation enrichment in oncogenes was shown previously in papers by Biel-

ski et al. (2018) [108] and Park et al. (2021) [32] in samples with gene

amplification. Here we additionally show that this mutation rate increase

still stands after controlling for the confounding effect of gene dosage,

which increases the apparent mutation rate trivially (via the increased

amount of DNA) to a certain extent also in nonselected genes.

On the other hand, additional positive selection pressure on tumor sup-

pressor mutations in samples with gains was not anticipated. We further

investigated this by checking which alleles – the wild-type or the mutant
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– were the ones that got amplified in TSGs.

4.2.2.2 Mutation frequencies

To collect additional evidence that mutations in oncogenes are positively

selected upon the gain of an additional gene copy, we analyzed VAFs of

cancer genes mutations in samples with different numbers of gene copies

(Figure 4.5).

Figure 4.5: Variant allele frequencies of mutations in tumor samples

with a gene copy number gain. One data point corresponds to one adjusted

frequency of one missense or nonsense mutation for each tumor sample from

TCGA.

Compared to the VAFs of random genes, frequencies of missense mutations

in oncogenes showed higher values, suggesting that the mutant allele is

the one that gets duplicated more often than expected by chance. On the

contrary, nonsense mutations had lower frequencies suggesting negative

selection on the increasing dosage of truncated proteins.

The allelic imbalance has been previously shown to be selected in can-
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cers, with examples of oncogenes under positive and negative selection on

increasing the dosage of mutant alleles [108].

Oncogenes PDGFRB, NRAS, KRAS, FGFR3, PIK3CA individually had

significantly higher mutant allele frequencies compared to a random genes

baseline at FDR ≤ 0.05. On the contrary, the allelic imbalance was fa-

voring a duplication of a wild-type allele for BCLAF1 and EGFR genes,

consistent with a putative signal of negative selection in EGFR described

above (Figure 4.6B).

Similarly, potentially inactivating mutations (both missense and nonsense)

had higher VAFs in tumor suppressor genes compared to random genes

baseline. We suggest that preferential amplification of mutant gene copies

(or a negative selection on amplification of wild-type alleles) implies the

non-dominant-acting character of mutations in tumor suppressor genes.

In other words, increasing the proportion of non-functional or less active

(hypomorphic) gene products might be beneficial for the fitness of cancer

cells, conceivably due to haploinsufficiency or due to a partially dominant-

negative effect.

In particular, PBRM1, STK11, CDKN1A, TP53, CDKN2A, NSD1,

PPP2R1A, FBXW7, NF1, ARHGAP35, KEAP1, PTPRB, and APC

genes had significantly higher values of mutant VAFs at FDR ≤ 0.05 (Fig-
ure 4.6A), which suggests a dosage-sensitivity in those tumor suppressor

genes and non-dominant (or incompletely dominant) character of inacti-

vation of those genes.

We compared the results of the VAF test with the estimates of conditional

selection obtained with the MutMatch method. Of all the oncogenes with

significantly higher VAFs, only KRAS was shown to have a stronger selec-

tion in samples with gene gains in cognate cancer types. Other genes, such

as NRAS, FGFR3 and PIK3CA also had a positive selection change upon

gene gain but the difference was not significant at a threshold of FDR ≤
0.05.
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Figure 4.6: Mutation frequencies in samples with a gene copy num-

ber gain. A. Variant allele frequencies corrected by the sample purity for

TSGs across cognate cancer types (one data point corresponds to one nonsynony-

mous mutation). Asterisks denote genes with significantly different distributions

(Mann-Whitney test with multiple testing corrections). The level of significance

of the difference is encoded: ‘∗’ for FDR ≤ 0.05, ‘∗∗’ for FDR ≤ 1 · 10−2, ‘∗∗∗’
for FDR ≤ 1 · 10−3, ‘∗∗∗∗’ for FDR ≤ 1 · 10−4. B. Variant allele frequencies

corrected by the sample purity for OGs across cognate cancer types. Asterisks

are defined as in panel A. 91
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4.2.3 Validation in an independent dataset

To verify the positive selection change upon deletion of a gene or copy

number gain in TSG and OG, we estimated conditional selection in an in-

dependent Genomics Evidence Neoplasia Information Exchange (GENIE)

dataset using low-impact nonsynonymous mutations to estimate a baseline

mutation rate (Figure 4.7).

Figure 4.7: Selection on nonsynonymous mutations in diploid state

and conditional selection upon CNA events in GENIE study. Debiased

regression coefficient ω (estimation of selection pressure in the diploid state and
debiased regression coefficients δ on the interaction term between the selection

variable t and copy number variable c, for gene deletions, and copy gains. One
data point corresponds to one gene-tumor combination. The number of gene-

tumor pairs used to produce each of the boxplots is written in the left part of the

plot.

The number of genes passing the filtering stage (meaning, with a sufficient

number of observed mutations, n > 4 in each of the copy number states)
was lower compared to the discovery cohort due to the design of the study

(panel sequencing of a restricted number of genes, which were all deemed

to be cancer driver genes). As a result, the expected behavior of a gene

under neutral selection could only be approximated using cancer genes in

noncognate cancer types, and a random gene control is not available.

The selection of nonsynonymous mutations for genes in the diploid state
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was positive in both groups of cancer types, cognate and noncognate,

with a stronger effect in cognate cancer types, expectedly. Low numbers

of genes in each group did not allow us to claim a statistically significant

difference between the groups. Nevertheless, selection change upon both

gain and deletion was positive for both TSGs and OGs, substantiating the

overall findings in the discovery cohort.

Although this difference in independent validation data was not significant,

it does nonetheless provide additional evidence of positive selection of the

cancer genes to increase the dosage of a mutant allele or the proportion

of the mutant allele product in a cell by amplifying the mutant allele or

removing a wild-type allele.

4.3 Chapter methods

4.3.1 Gene selection models

We estimated selection change upon deletion or single-copy gain for each

cancer separately in two datasets: the discovery cohort comprising over

17 000 Whole Genome Sequencing (WGS) and Whole Exome Sequenc-

ing (WES) samples and the validation cohort with ∼90 000 samples with
targeted sequencing data. Regression estimates for the interaction term

between t and CNA variable were then analyzed, as detailed in Section

2.2.1.

To control for batch effects observed in numbers of mutations and CNAs in

the validation dataset, we modified the original formula 3.2 in the following

way:

logE[Y ] = ωt+
∑
i

miµi +
∑
j

zjβj + cγ+

+ δ tc+ α+ log r,

(4.1)

where z is responsible for separating samples from MSK and DFCI cohorts
of the GENIE project.
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4.3.2 Post-processing of regression estimates of selection

Selection estimates were then debiased using a randomization approach

described in Section 2.3.2. For later analysis, we only focused on genes

that had at least 4 mutations across all samples where a gene was in a

diploid state and at least 4 mutations in samples where a gene copy was

deleted or gained, separately for each cancer type.

4.3.3 VAF testing

VAF analysis was performed using the TCGA dataset. We calculated allele

frequencies for missense and nonsense mutations located in the same ge-

nomic regions that were used for the estimation of selection (including re-

moval of unmappable and conversion-unstable positions). VAF estimates

were then adjusted to control for a sample purity (Consensus measurement

of Purity Estimation from TCGAbiolinks [159, 160, 161]:

na

(na + nr)
× 1

P
, (4.2)

where na and nr is the number of alternative and reference reads, and P
is the sample purity.
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Chapter 5

Mechanistic classification of

cancer genes based on

selection effects

5.1 Overview

In this chapter, we studied the implications that measuring increased or

decreased selection on somatic point mutations in non-diploid copy num-

ber state has on classifying cancer genes by mechanism of (in)activation.

We suggest that the combination of coefficients δdeletion and δgain explains
the mechanism of action of driver mutations in cancer genes and addition-

ally suggests the contribution of the wild-type allele to tumor fitness. We

provide an overview of the possibilities that can generate different com-

binations of mutant allele imbalance, and characterized the landscape of

selection effects on cancer driver genes, summarizing them into “selection

signatures” via a dimensionality reduction analysis.

• We characterized 8 possible scenarios of differential selection acting

on point mutations in driver genes in tumors that have lost or gained

a gene copy.

• Principal Component Analysis (PCA) suggests that genes in tumors
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do not form distinct clusters by the mechanism of (in)activation,

but rather form a continuous spectrum of cancer-driving potential

via multiple mechanisms.

• The most significant trend in variation between genes is correlating

with the selection on the diploid state (14.3% of variance explained).
In addition, the interaction of selection on mutations with the copy

number state (i.e. conditional selection) can explain at least 24.9%
of variance in the selection effects across cancer genes.

• Genes in tumors do not form discrete clusters according to the se-

lection strength, rather they form a continuum of driving potential.

• Similarly, one-hit and two-hit genes are not clearly separated by the

Principal Components (PCs) that constitute “selection signatures”.

We suggest that mechanisms driving fitness change caused by the

mutant allele imbalance in driver genes also form a continuum rather

than discrete mechanistic categories.

5.2 Results

5.2.1 Dosage and stoichiometry of the wild-type and mu-

tant alleles affect tumor fitness

Our results (as described in previous chapters) indicate that there is a

prevalent interaction between selection strength on point mutations and

copy number gains and deletions, in both oncogenes and tumor suppressor

genes. Some genes had both increased mutation rates in tumor samples

with gene loss and also in tumor samples with an additional copy of the

gene; this observation was supported in the group of tumor suppressor

genes and oncogenes (Figures 5.1, 5.2). Copy number alterations of any

sort correlate with an increased selection of point mutations in the same

cancer gene.
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Figure 5.1: Epistatic interaction between selection in a gene and copy

number state for tumor suppressors. Debiased regression estimates of con-

ditional selection effects δ obtained for each gene using all nonsynonymous mu-
tations of the discovery cohort. Two analyses were performed to estimate con-

ditional selection: one comparing mutation rates between diploid samples and

samples with a hemizygous gene loss (x-axis), and another comparing mutation

rates between diploid samples and samples with a copy number gain of the gene

(y-axis). Gene name and cancer type are labeled for the strongest effect sizes.
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Figure 5.2: Epistatic interaction between selection in a gene and copy

number state for oncogenes. Debiased regression estimates of conditional

selection effects δ obtained for each gene using all nonsynonymous mutations
of the discovery cohort. Two analyses were performed to estimate conditional

selection: one comparing mutation rates between diploid samples and samples

with a hemizygous gene loss (x-axis), and another comparing mutation rates

between diploid samples and samples with a copy number gain of the gene (y-

axis). Gene name and cancer type are labeled for the strongest effect sizes.

We suggest that this illustrates a complex interaction where both the rel-

ative stoichiometry and the absolute dosage of the mutant allele affect the

fitness of cancer cells. Epistasis between a selection of point mutations

and Copy Number Alteration (CNA) deletion events (i.e. increased se-

lection upon deletion, δ > 0) can be explained by the increased fitness
of cancer cells after the elimination of wild-type alleles, which can play

98



Mechanistic classification of cancer genes based on selection effects

a tumor-suppressing role (notably including also the wild-type alleles of

oncogenes).

Alternatively, a negative difference in selection strength on point muta-

tions between CNA conditions (i.e. negative selection change upon dele-

tion or mutual exclusivity, δ < 0) may signal an essential function of the
wild-type allele in a cell. A positive interaction between selection and gene

copy gain shows that dosage increases fitness.

Lastly, reduced selection on mutations in tumor samples with CNA gain

could be due to the redundancy of two independent gain-of-function

genomic alterations (either gene gain/amplification or Gain-of-Function

(GoF) mutation is sufficient), or also the toxicity of the increased dosage

of the mutant gene product.

We propose a mechanistic classification of cancer driver genes based on a

combination of observed selection effects for epistatic interactions involv-

ing point mutations and CNA events.

1. Mutual exclusivity with deletions and with gains

[δdeletion < 0 ∧ δgain < 0]
Genes, whose wild-type allele is essential for tumor survival. Gene

gain has the same effect as acquiring a mutation. Both GoF mu-

tations are sufficient for the tumorigenesis (no additive effect) and

therefore are redundant (for oncogenes). Alternatively, an increased

dosage of the mutant allele is toxic to the tumor.

2. Mutual exclusivity with deletions, cooccurrence with gains

[δdeletion < 0 ∧ δgain > 0]
Genes whose wild-type allele is essential for tumor survival. Increas-

ing the amount of mutant allele without removing the wild-type

allele is beneficial for a clone.

3. No interaction with deletions, cooccurrence with gains

[δdeletion ≈ 0 ∧ δgain > 0]
Wild-type allele does not play a tumor suppressive function nor has

an essential role in cancer cell survival. Increasing the dosage of the

mutant allele has a positive effect on tumor fitness, possibly due to

the weak character of a single mutation.
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4. Cooccurrence with deletions and with gains

[δdeletion > 0 ∧ δgain > 0]
The wild-type allele plays a tumor-suppressing role, and so its re-

moval increases tumor fitness. Increasing the dosage (absolute copy

number) of the mutant allele, or the proportion (relative copy num-

ber compared to the wild-type allele) of the mutant allele results in

a similar effect.

5. Cooccurrence with deletions, mutual exclusivity with gains

[δdeletion > 0 ∧ δgain < 0]
The wild-type allele is essential, gains are either redundant with

mutations (for oncogenes) or lead to a toxic product of a mutant

allele.

6. No interaction with deletions, mutual exclusivity with

gains

[δdeletion ≈ 0 ∧ δgain < 0]
The presence of the wild-type allele does not change the fitness of

tumors with the mutant allele, gains are either redundant with mu-

tations (for oncogenes) or lead to a toxic product of a mutant allele.

7. Cooccurrence with deletions, no interaction with gains

[δdeletion > 0 ∧ δgain ≈ 0]
The wild-type allele plays a tumor-suppressive role, and so its re-

moval increases tumor fitness. Increasing the proportion of the mu-

tant allele is not sufficient to inhibit the wild-type allele activity.

8. No interaction with deletions, cooccurrence with gains

[δdeletion ≈ 0 ∧ δgain > 0]
The wild-type allele does not play a tumor-suppressive role. Sin-

gle mutations are hypomorphic and increasing the dosage (absolute

number of mutant alleles) rather than the relative proportion of the

mutant allele among all alleles benefits tumor fitness.

5.2.2 Inferring gene clusters from the patterns of selection

To reduce the dimensionality of the data and thereby perform an unsuper-

vised analysis to categorize the main trends of variation between cancer

100



Mechanistic classification of cancer genes based on selection effects

genes in their selection effects by CNA state, we performed PCA.

The estimates for selection in the diploid state (ω), and selection strength
change in tumors that have lost (δdeletion) or gained a copy of a gene (δgain)
in various cancer types were summarized using PCA.

The first 3 components were statistically significant (broken stick test

[162]) and explained 39.2% of the variance in the data (Figure S8.11).

Although the next principal components were not significant by this par-

ticular test, we consider them useful to understand the contribution of

different selection effects on the whole dataset (Figure 5.3).

The first Principal Component (PC) had the highest loadings from

the selection on all nonsynonymous mutations in the diploid state (in-

cluding missense and nonsense mutations), and selection interactions with

gene gain and gene loss, and the lowest loadings from selection acting on

the synonymous mutations (Figure 5.3). Basically, this PC1 can be seen

as the strongest overall positive selection observed in a gene, both selec-

tion conditional on the gene copy number state and selection acting in

the diploid state. As expected, genes in cognate cancer types had higher

scores of this PC1 signature (Figures 5.4, S8.13).

The second PC separates the mechanistic groups of one-hit from the two-

hit loss genes [31, 32]. High values had gene-tumor pairs with stronger

selection in the diploid state ω and a decreased (or not changed) selection
in the tumors that lost a gene copy (δ <= 0). The top gene-tumor pairs
with the highest score were SOCS1 in MALY, PIM1 in DLBC, BRAF

in THCA, and KRAS in UCEC. In contrast, low values of this PC had

genes with much stronger selection in tumors with hemizygous gene loss

compared to the tumors where the gene is in the diploid state (the top

hits: ACVR1 in GBM, VHL in KICH).

The third PC, similarly to the second one, was stratifying two-hit genes

versus one-hit genes, however in the case of PC3 it was for gains (in PC2

for losses). Again, genes in cognate cancer types had a significantly shifted

distribution of scores in this PC than the rest of the genes, suggesting a

broad biological relevance of this PC.
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Figure 5.3: Strongest contrubuting features to the first six principal

components (PCs). All features were sorted by their loadings to each PC.

Here we plot the top 4 features (most positive loading) and bottom 4 features

(most negative loading) for each PC.
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Figure 5.4: PCA analysis of selection effects across cancer types and

mutation classes. Principal components 1 to 3 are shown for genes with the 15

most frequently mutated cancer genes: TP53, KRAS, APC, BRAF, PTEN, RB1,

GNAQ, PIK3CA, VHL, GNA11, IDH1, GTF2I, PBRM1, ARID1A, BAP1.A, B

C. Gene groups in the space defined by the three first PCs. Genes with the

highest absolute scores are labeled. D. Usage of principle components by the

gene groups across all cancer types.

Both two-hit loss and two-hit gain genes were rare in the group of cognate

gene-tumor pairs, for both Tumor Suppressor Genes (TSGs) and Onco-

genes (OGs) (Figure 5.5). However, some of the cognate pairs were indeed

two-hit, while, unusually, a bigger number of two-hit genes was observed in

the group of noncognate tumors for cancer genes, in cancer types that were

neither cognate nor noncognate (unclassified group), and random genes.

While some of the genes that were identified as two-hit in PCA were likely

to be errors caused by the low mutation rate resulting in noisy estimates

(for example, in random genes or essential genes), our data suggest that

two-hit can occur in non-cognate cancer types for cancer genes (i.e. those
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cancer types where the overall mutation rate for that gene is low thus it

was not identified as cognate by our definition).

This points out that some of the selected genes cannot be detected with the

standard methods (i.e. searching for the selection across all copy number

states jointly) – for example, VHL in KICH, ACVR1 in GBM, TMSB4X

in THCA and others. In these cases, the known cognate tumor types

did not include mentioned cancer types [85, 95, 132]. Using our method,

which considers different copy number states separately while estimating

selection (even in the case of estimating the overall selection signal) can

provide an extended annotation of the putative cognate cancer types for

each known cancer gene.

Figure 5.5: Cancer genes form a continuum, rather than distinct

groups, between one-hit and two-hit mechanistic classification. All can-

cer genes in all tumors plotted in the principal component space defined by the

PC2 and PC3. Cancer types that could not be defined as cognate or noncognate

are separated into the “unclassified” category.
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Additionally, we reviewed the fourth PC, which represents a stronger

selection of nonsense mutations on one extreme, while a stronger selection

of missense mutations (outside of hotspots thus presumably mainly Loss-

of-Function (LoF) missense) on the other extreme. Expectedly, this PC4

was relevant to the group of TSGs in cognate cancer types, separating

them from the rest of gene-tumor pairs (Figures 5.4, S8.12. Thus, certain

TSGs appear inactivated more often by missense and others by nonsense

mutations.

5.2.3 Selection signatures are differentially active between

cancer types

Next, we addressed the question of which tumors were enriched with spe-

cific selection signatures summarized by principal components. For the

15 top mutated cancer genes (across all cancer types) [95], we plotted the

scores of each PCs in the 30 cancer types with the biggest number of avail-

able mutations (Figure 5.6). The strongest selection “overall” determined

by PC1 was observed in Kidney, COREAD, LICH, PRAD, and BRCA.

Selection on two-hit loss genes (PC2) was the strongest in COREAD,

SKCM, PAAD, UCEC. Similarly, two-hit gain genes (PC3) were more

often in COREAD, UCEC, HNSC, PRAD.

Interestingly, nonsense mutations (PC4) appeared to be under the

strongest selection pressure in SKCM, BLCA, UCEC-POLE, UCEC-MSI,

LUSC, COREAD-MSI – tumors with the largest number of available mu-

tations (Pearson’s correlation between the median PC4 score in cancer

and the total number of nonsynonymous mutations = 0.786).We believe
this indicates, at least in part, a technical factor – lack of power to detect

selection on nonsense mutations in other cancer types due to the lower

number of mutations, rather than necessarily biological reasons. Consid-

ering a larger number of cancer genes (for example, all mutated genes from

Cancer Gene Census (CGC)) leads to a reduction of this pattern, likely

due to the increased proportion of the lowly mutated genes even in cancer

types with large mutation numbers.
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Figure 5.6: Scores of principal components stratified across cancer

types with the largest number of mutations. Only 15 top mutated cancer

genes were used to produce each boxplot [95]. For PCs, higher values correspond

to the stronger selection for glspc2, while for the rest of PCs lower values indicate

a stronger selection. 106
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Figure 5.7: 2D-density plots of scores of principal components for each

of the cancer types with the largest number of mutations. The corre-

lation between two-hit loss genes (negative values PC2) and two-hit gain genes

(positive values of PC3) is supported in many cancer types, with some excep-

tions (BLCA, LUSC, ESAD, ESCA, HNSC, LUSC, NSCLC, SKCM). Principal

component scores from all cancer genes were used in this analysis.
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Lastly, we tested if there is a correlation between two-hit gain and two-hit

loss genes. For that, using all genes from CGC we plotted their respective

scores of PC2 and PC3 separately for each cancer type. Confirming the

existence of the proposed correlation, the majority of the cancer types were

stretched in a diagonal direction, with genes that were either both two-hit

loss and two-hit gain, or one-hit loss and one-hit gain genes (Figure 5.7).

5.3 Chapter methods

5.3.1 PCA on selection estimates

The debiased estimates for (i) selection effect in the diploid state ω, (ii) se-
lection effect change upon deletion δdeletion, and (iii) selection effect change
upon gain δgain, for each gene in each cancer type were used to create an
atlas of copy-number dependent selection in the human soma.

To ensure the absence of notable selection in the group of random genes,

we excluded from them genes with low Loss-of-function Observed over Ex-

pected Upper bound Fraction (LOEUF) score (ranked in the most essential

30% of the genes) derived from population variants [156, 131], CEG2 es-

sential genes [130]) and cancer genes using MutPanning and CGC gene

lists [95, 132]. We also excluded genes that were either very short or

very long, allowing only 30% of difference between the median number

of the nucleotides in a gene that was used in the regression model. Fi-

nally, we removed genes with very high or very low gene expression using

the normalized transcript expression levels summarized per gene in 54 tis-

sues based on transcriptomics data from Human Protein Atlas (HPA) and

Genotype-Tissue Expression (GTEx) [163, 164].

For the selection in the diploid state, we averaged the estimates obtained

with two different models: one for gene loss and another for gene gain (3.2).

We focused on cancer types and genes for which selection effects were esti-

mated in at least 85% of gene-tumor pairs. Because of the high number of

missing values in the case of selection estimates for strict Trevino hotspots,

we excluded estimates inside or outside of them from the analysis. For the

gene-tumor combination passing these filters, missing values were imputed
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using imputePCA function from missMDA package in R.

PCA was performed on the centered and scaled data. To avoid overplot-

ting, we only show 15 genes from the control group of random genes and 15

genes from the control group of essential genes in the scatter plots above.
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Chapter 6

Discussion

In this study, we have developed the MutMatch statistical methodology

that can detect and quantify the interaction between selection on muta-

tions and other genomic features (either genetic or non-genetic in nature),

thus providing a new framework and tool to study changes in selection

effects and epistasis in human cancer genomes.

We next applied this developed MutMatch method to study the interaction

between selected mutations and gene copy number changes in cancer genes

across cancer types in various datasets. We used the baseline mutation

rate derived from the neighboring genes or low-impact nonsynonymous

mutations in the same gene, thus rigorously controlling for the confounding

effect of gene dosage on the apparent mutation burden.

6.1 Negative selection in cancer genomes

The extent to which negative selection changes mutation rates in cancer

genomes has been a much-debated topic in recent years. The common

ground is that genomic signatures of negative selection are very subtle

[165, 9, 91, 133] and so negative selection does not play a big role in

tumor evolution and the majority of the mutations in the genome are not

deleterious. According to this view, a somatic genome is accumulating
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mutations mostly under neutral or occasionally under positive selection

pressure [9]. This goes in agreement that the global selection estimate in

the genome aggregated across all genes is neutral or slightly positive [9,

133, 91].

However, several studies were focusing on finding negative selection in

the cancer genome [166, 112, 167, 89, 91, 133, 33, 168], since identifying

negatively selected (thus tumor-essential) genes would reveal therapeutic

targets. For example, Zapata et al. (2018) showed that a state-of-the-art

method for the detection of selection in human cancers [9] may overesti-

mate selection in per-gene analyses [133]. As a consequence, the amount

of negative selection in cancers is underestimated. They reported a sig-

nificant negative selection signal in 25 genes, and 668 essential genes with

a dN/dS < 0.5 cut-off [133]. This set of essential genes was enriched for
genes involved in protein synthesis and maturation, as well as genes that

participate in molecular transport [133].

Further, parts of genes that produce MHC-exposed native epitope se-

quences were under negative selection, thus decreasing the number of po-

tential new neo-antigens [133]. Consistently, frameshifting indel mutations

that escape Nonsense-Mediated mRNA Decay (NMD) silencing might be

under negative selection [169]. This suggests that escaping immune surveil-

lance is an important ability of human tumors that allows them to avoid

the immune response. However, as demonstrated by Van den Eynden et

al. (2019), the signals of negative selection in the immunopeptidome be-

come weak or absent when considering mutation signatures with respect to

the trinucleotide mutation types. They conclude that it can be caused by

artifacts acting via differential trinucleotide composition of certain genes

and via differential mutational signature activity on tumors, which is par-

ticularly relevant in skin cancers [94].

One of the challenges in the identification of tumor-essential genes is that

damaging mutations that should, in principle, be negatively selected can

act in a recessive manner. In other words, the presence of an intact gene

copy in a cell with a wild-type function masks the deleterious effect of the

mutation. By searching for purifying selected genes in hemizygous regions,

that is those bearing a deletion or a loss-of-heterozygosity, signatures of

negative selection may be more evident [9, 34]. As an example, Van den
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Eynden et al. (2016) found signals of negative selection in the POLR2A

gene and genes encoding for protein complex members [89]. This suggests

that negative selection may act on the change in the dosage of proteins

in the protein complex. Nevertheless, this negative selection might also

be explained simply by the essentiality of the protein complexes. 41%

of protein complexes contained at least 70% of genes that were shown as

essential in CRISPR-Cas9 screens [170, 89].

Overall, the presence of negative selection and the strength of the selection

against deleterious variants from cancer genomes have been unclear. We

addressed this problem by testing for signals of negative selection in known

essential genes and oncogenes.

6.1.1 Negative selection on cell-essential genes

Our methodology suggests that mutations in cancer genomes can com-

monly be both positively and negatively selected. In particular, core es-

sential genes [130] had a depletion in mutation rates compared to the

neutral mutation rate baseline derived from neighboring genes. Neighbor-

ing genes that are located within the deleted or gained locus rigorously

control for any confounding effect due to gene dosage changes, wherein

these effects are modeled separately in the regression framework we have

implemented. Moreover, to exclude the effect of unknown confounders, we

compared the bias-corrected selection effects ω with those from random

(putatively non-selected) genes, and also observed a negative shift for es-

sential genes. Notably, this was observed already in the diploid state and

it was not necessary to focus only on hemizygous regions as earlier. Our

results suggest that heterozygous somatic mutations in essential genes can

also sometimes be subject to purifying selection.

The list of 684 reference human core essential genes used in this study

was obtained through genome-scale knockout screening performed by

CRISPR-Cas9 technology [130] that typically introduces homozygous dis-

ruptions. These genes are likely to be essential in all cell types and encode

essential functions that are needed for cell survival, for instance, mRNA

splicing and protein translation.

Interestingly, the negative selection signal in our analysis was observed
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only when comparing mutation rates across all copy number states (while

controlling for DNA dosage effects), or in pan-cancer analysis with con-

trolling for copy number state across 13 “elite” cancer types with a high

number of available mutations, suggesting that statistical power due to

low sample size is limiting to identifying negative selection signatures.

To consider possible cancer type-specific biological effects or technical bi-

ases, we have repeated the estimation of selection effects, after the exclu-

sion of every cancer type from the pan-cancer analysis. This was partic-

ularly important to control for the case when a cancer type has a high

mutation number that can influence the pan-cancer signal, and in which

mutation rates may not be modeled accurately by our method.

The negative selection signal remained even after excluding samples with

melanoma. Mutational processes in melanoma are mainly induced by UV

light and are characterized by the extended mutational signature with a

context longer than a trinucleotide [77]. Therefore, trinucleotide mutation

spectra might be not sufficient to capture the mutation rate variability

between sites in some cases. Inaccuracies in the mutation rate model can

create a systematic bias and an illusion of differences in mutation rates

between the test and control groups [9]. Future directions of exploring

the landscape of selection in somatic cells should control for the extended

contexts such as pentanucleotides and heptanucleotides, shown to have

relevance to human mutation [77, 78].

Although the exclusion of melanoma samples reduced the difference in

selection estimated between essential and random genes, selection effects

of essential genes were nonetheless significantly lower than those of random

genes (Benjamini-Hochberg correction for multiple testing, FDR < 1%).
Importantly, the difference in the pan-cancer analysis was observed for

selection effects in diploid state ω but was not significant for coefficient
δ that quantifies the epistatic interaction between mutations and a gene
loss.

We have observed a weak correlation between the cell-essentiality Com-

putational correction of copy-number effect in CRISPR-Cas9 essentiality

screens (CERES) score measured from Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPR) screening assays on cultured cells

and the selection effects across all genes in the genome (Pearson’s corre-
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lation = 0.07) [155]. This demonstrates that cellular essential functions
experimentally identified for in vitro conditions, do not completely match

the essential functions in a tumor, where the environment is different than

in cell culture (e.g. pressures from the immune system, and competition

for resources, both absent from cultured cells). Certain genes, although

having a neutral CERES score (which suggests that their function in cell

lines is not essential), demonstrated negative selection in the genomic pan-

cancer analysis. Notably, CRISPR inactivates genes homozygously while

most somatic mutations do not (and in this analysis, we don’t focus on

the mutations that do).

These results suggest that although negative selection on essential genes

plays a role in cancer genomes, the effect size of selection is relatively

small, therefore it can be detected only in very large datasets (such as our

pan-cancer analysis with ∼18 000 somatic genomes, or combining muta-
tions from all copy number states together). Additionally, we detected no

change in relative selection effect in tumor samples carrying only one gene

copy (i.e. the other allele is deleted) indicates that cell-essential genes

are often haploinsufficient in tumors. Alternatively, this observation may

be a result of the low number of available mutations to properly model

the expected local mutation rate upon deletion; this issue would become

clearer with larger sample sizes.

6.1.2 Near-neutral selection acting in somatic cells on

population-constrained genes

We asked if genes that are under purifying selection in human populations

(often referred to as “constraint” in the relevant literature) also are under

negative selection in human soma. For that, we calculated the selection

effects for all genes in the genome, controlling for copy number state of a

gene, across the 13 “elite” cancer types (i.e. those with the highest number

of mutations available) in a pan-cancer analysis.

Using ranking of gene essentiality based on intolerance of a gene to a Loss-

of-Function (LoF) germline variants in a human population [131, 156], we

tested how this gene essentiality score correlates with the somatic selection

on that gene in tumors. We found no statistically significant difference in
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somatic selection effects in the diploid state between the random group

of genes that are not selected in human populations and the top-ranked

population essential genes (top-10%, top-500, top-200, top-100, top-50 of

ranked genes were tested).

These results suggest that population-level gene essentiality encodes for

a different set of cellular functions than those that are needed for tumor

survival and development. Indeed, some population-essential genes may

play a key role in the development of the embryo, mutations which cause

developmental disorders or fetal anomalies [156]. The essentiality of such

genes would presumably be limited to certain stages of organismal devel-

opment. At the later stages, selection pressure on these genes may relax,

and genes accumulate mutations at the same rate as the whole genome on

average.

As an additional consideration, the selection of mutations in essential genes

is captured at the level of the whole organism or tumor, although the

function of the gene might be tissue-specific. Therefore, even if the gene is

essential for the tumor with a certain origin, pan-cancer analysis is likely

to not detect it if the same gene is not essential for other tissues.

While some cellular functions are essential for the survival of a cell, or a

tumor, others depend on the stage of the organismal development, condi-

tions, or cell type. Genes that are essential for clonal tumor growth might

be not essential at the organismal level, and vice versa. We observed only

a weak correlation between the essentiality metrics for the population and

cell-line essentiality metrics, which demonstrates that the number of genes

that are simultaneously under a purifying selection in cell lines and a hu-

man population is not large.

Our results show that tumor-essential genes have more in common with

cell-line essential genes obtained with in vitro experiments rather than

with genes that are essential at the organismal level, that were identified

by a dearth of LoF variants in the human population.

Further research in this field will provide additional insights into cancer

essentiality and vulnerabilities that can be exploited for cancer therapies.

An interesting question is to identify genes essential to each tumor and

compare them to the cell line-specific essential genes, which would make
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good targets for personalized therapy. Additionally, the relationship be-

tween different levels of gene essentiality (organismal level, cellular level,

and tumor-essential genes) can be studied.

6.1.3 Signatures of negative selection in oncogenes

Oncogenes (OGs) and Tumor Suppressor Genes (TSGs) are the main

groups of genes that positively contribute to tumorigenesis. In contrast

to TSGs that have to be inactivated, the OGs need to acquire Gain-of-

Function (GoF) mutations to increase the fitness of a cell. mutations to

increase the fitness of a somatic cell. The dependency of cancer cells on the

maintained upregulated activity of certain OGs after they are mutated,

called oncogene addiction, has been established by Weinstein et al. (2002)

[171]; this principle is already successfully exploited for cancer therapy

(for example, for BRAF-mutant melanoma by BRAF inhibitors). Neg-

ative selection against NMD-triggering nonsense mutations in OGs has

been demonstrated by Lindeboom et al. (2016) [112]. Similarly, nonsense

mutations were depleted in OGs as shown by Bányai et al. (2021) [97].

These results suggest that the function of the OG is vital for the survival

and proliferation of cancer cells. We asked the question if the net distribu-

tion of mutations in OGs is the consequence of the simultaneous activity

of two selective forces: positive selection that increases the frequency of

cancer-driving mutations and purifying selection that removes from the

mutation pool the cancer-blocking, deleterious mutations.

The majority of mutations in OGs are located in hotspots, which can be

selected (increasing the fitness of a cell because of a GoF effect), or in

some cases mutational/non-selected mutation accumulation occurs due to

other reasons such as high propensity to DNA damage [83]. The regime of

selection that acts on the mutations outside of hotspots in OGs has been

less studied. We hypothesized that negative selection in OGs might be

acting not only on nonsense mutations but also more generally against all

nonsynonymous mutations, including the very numerous missense changes,

located outside of hotspots of the gene (Figure 6.1).
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Figure 6.1: Distribution of mutation rates in oncogenes, as opposed

to tumor suppressor genes, might reflect both positive and negative

selection on mutations.

To check this, we considered mutations within and outside of (1) known

selected hotspots identified by Trevino (2020) [82] and (2) in-house de-

tected, permissive set of sites with recurrent mutations (these include the

selected and some mutational hotspots; detailed in Section 7.6.1). While

the first, strict set of hotspots contains sites under selection, the genic

regions that do not include Trevino hotspots might still have an increased

mutation rate due to the mutation rate heterogeneity at the sub-gene level

(i.e. mutational hotspots). To exclude the influence of such confounders

we tested for signals of negative selection in genic regions located outside

of our permissive set of hotspots.

Confirming our hypothesis that hotspots-adjacent areas in OGs have de-

pleted mutation rates because of the negative selection, we observed a

stronger signal of negative selection in OGs than in random genes or in

TSGs. Interestingly, negative selection appeared to be stronger in noncog-

nate cancer types (i.e. those where OGs are not commonly affected by

GoF mutations). We have questioned whether those cancer types were in-

deed noncognate by estimating the selection while limiting to the selected

Trevino hotspots.

We found that part of the genes with the negative selection acting on the

outside of hotspots was selected in hotspots. This suggested that those

cancer types were, in fact, cognate even though our original definition,

based on prior databases, did not recognize them as such. This exam-
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ple illustrated that mixing signals from positive and negatively selected

mutations can lead to underestimation of the selection strength, both for

positive and negative.

The possibility of underestimation of negative selection was noted in the

paper by Martincorena et al. (2017) if the numbers of mutations that are

negatively selected and positively selected are balanced [9]. Nevertheless,

they found it unlikely that a large number of genes would have this balance.

Here we show that in the group of oncogenes this type of balance is of-

ten present due to the opposing forces that preserve the functionality of

essential parts of the gene and simultaneously positively select for gain-

of-function mutations. As a consequence of this, we observed that many

de facto cognate cancer types might be not identified while considering

hotspot and non-hotspot sites jointly, as the positive selection signal is

diluted. The correct re-annotation of cognate cancer types can help to in-

crease the number of anti-cancer therapies that inhibit oncogenic pathways

by repurposing the existing drugs.

As an example, we showed that mutations in EGFR gene apart from

known cognate cancer types (lung, brain) are also selected for in other,

previously unreported cancer types (esophagus, luminal subtype of breast

cancer). We also showed that many other genes, including MYC, MYCN,

MTOR, KIT, have a mutation pattern shaped by both positive and neg-

ative selection, which leads to the underestimation of positive selection of

these genes in cognate cancer types.

The proportion of the mutations that are removed by the negative se-

lection depends on the cancer type. Because of that, only those cancer

types where positive selection fixes more mutations (in hotspots) than

the negative selection removes (out of hotspots), appear as selected (or

cognate) cancer types. We believe such differences can be driven by the

context-dependent negative selection acting on some oncogenes in some

tissues. The mechanisms of such cancer-specific dependency on the onco-

gene function remain to be explored in future work.
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6.2 Mutant allele imbalance of cancer genes

The interplay between the selection of carcinogenic mutations and copy

number alteration events has been intriguing researchers for decades. The

pioneering work of Alfred Knudson on the RB1 tumor suppressor in heri-

table retinoblastoma inferred that the inherited variant must be followed

by a somatic “second hit” event [31], which is commonly a copy-number

deletion. The relationship of how mutations become more or less advan-

tageous depending on the copy number state of a gene in a cell can shed

some light on the mechanisms of actions of the mutations, or function of

a gene [31, 30, 33]. For example, gene losses lead to increased negative

selection in a group of cancer-essential genes [9, 89], which is however not

observed in tumor samples that have more than one copy of a gene (as

in samples with a gene locus in the diploid state or in samples that have

undergone a Whole Genome Duplication (WGD)) [89, 34].

Several studies have been made to address and systematically classify the

relationship between Copy Number Alteration (CNA) events and the se-

lection of point mutations at the gene level [108, 32, 172]. In a recent study

by Ciani et al. (2022), they found that more than half (56.4%) of mutant
allele imbalance was attributed to the CN-Loss Of Heterozygosity (LOH),

which would be classified as wild-type copy number [172]. Nevertheless,

the effect of changing the gene dosage on the strength of selection remains

understudied, since previous studies of allelic imbalance did not, to our

knowledge, implement mutation rate baselines that account for the rate

of neutral mutations. Controlling for the differences in the local mutation

rate that are caused by CNA events, altering the DNA quantity in a locus,

is crucial to decrease the false-positive and false-negative rates.

We addressed this problem by applying the MutMatch method to search

for changes in selection strength that are associated with a somatic gene

copy number loss or gain event in cancer samples. Independently from the

type of the CNA event, we have observed the increased selection for the

mutations in OGs and TSGs. While the selection on the allelic balance

via gains [108, 32] or heterozygous losses [108] has been previously shown

for OGs and TSGs associated with deletions [31], it was to our knowledge

not anticipated for the combination of TSGs and copy number gene gains.
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6.2.1 Allele imbalance of OGs in cognate cancer types

GoF mutations in OGs – in particular, missense mutations and copy num-

ber alterations – have been long considered to act in a dominant manner

[122]. For the majority of them with only a few exceptions, OGs that

are recurrently mutated in cancers are rarely focally amplified, and those

genes which are often focally amplified happen to be not frequently mu-

tated. Therefore, the mutations almost always are present in a heterozy-

gous manner, which implies that they are dominant [122].

Distinct patterns of mutant allele imbalance have been reported by Bielski

et al. (2018). By directly estimating the number of copies of the mutant

and the wild-type alleles in a large-scale analysis, they showed that these

numbers across cancer types were unmatched [108]. The mechanisms of

allele imbalance varied depending on the cancer type and the OGs, how-

ever, a similar proportion of mutations in studied OGs was attributed to

a copy number gain, or, less expectedly to a deletion (∼33% for each).

Independently, a positive interaction between copy number gene gains and

selection of the mutations was shown for some OGs, that were called “two-

hit gain ”genes, by analogy with the well-established concept “of two-hit”

loss TSGs where one allele is mutated and the other deleted or affected

by the copy number neutral loss of heterozygosity [32].

In both of these studies, the majority of OGs showed a positive selection

of mutations in tumor samples with changes in copy number states. In

other words, the mutant allele almost always had a bigger number of copies

than the wild-type allele. A few important exceptions that did not follow

this pattern were identified by Bielski et al. (2018) [108] and included

genes involved in splicing machinery, such as SF3B1, U2AF1, and SRSF2.

These OGs were labeled as haplo-essential genes that should retain one

copy of a wild-type allele to maintain homeostasis inside a cancer cell; this

represents a special case of negative selection acting upon OGs.

The results obtained in our current study are in agreement with this. How-

ever, we performed a systematic estimation of selection interaction with

copy gains for a larger list of cancer genes and focused on the activat-

ing mutations (presumably located in hotspots). This allowed us to get

a larger estimate for the proportion of genes that have a higher selection

121



Discussion

strength upon copy number change.

More than half of OGs in cognate cancer types had a higher mutation rate

in samples with a non-diploid gene state. In contrast, 41% of OGs exhib-

ited allelic imbalance in the study of Bielski et al. [108] (of 69 examined

OGs).

The positive relationship between the selection and the copy number

events challenges the common consensus of the fully dominant nature of

mutations in OGs. Our data suggest that, while some mutations in OGs

might indeed be dominant, others (including the mutations in hotspots)

represent a class of weaker, incompletely dominant mutations. This can

explain why the increase in the proportion of the mutant allele leads to

the increase in selective advantage. In this case, given that mutant allele

dosage remains to be the same in case of gene loss, selection of the mutant

allele should not be increased in tumor samples with gene deletion. In

case when the wild-type allele has an additional inhibitory effect on the

activity of the mutant allele, an increased selection of GoF mutations in

samples with gene loss is expected.

In our analysis, only 40% of genes-cancer type combinations with posi-

tive interaction between CNA gain and mutation rate, however, did not

demonstrate the increase of positive selection in tumor samples with CNA

loss, while in the remaining cases (which are the majority) the OG muta-

tions did interact also with CNA loss. This is consistent with a mechanism

that in the majority of such cases, even if the mutations are incompletely

dominant, there is an additional negative effect of the wild-type allele of

the OG on tumor fitness.

On the other hand, the selection change can be explained by the antag-

onistic, inhibitory action of the wild-type allele of an OG, as shown for

RAS genes [126, 127, 128, 29]. Similarly, the tumor suppressive effect of

the wild-type allele of a TSG can be lowered by decreasing its proportion.

Decreasing the proportion of the wild-type allele can, in turn, be achieved

either via deletion of the wild-type allele or by acquiring an additional

mutant gene copy.

The two described mechanisms are not mutually exclusive. Weak, in-

completely dominant GoF mutations that compete against the tumor-
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suppressive activity of the wild-type allele of the OG might be a natural

mechanism for limiting the opportunity to acquire cancerogenic mutations.

Further research to disentangle those models of mutation mode-of-action

and estimate what proportion of the tumors is driven by each of the mech-

anisms in each gene is warranted.

6.2.2 Allele imbalance of TSGs in cognate cancer types

Increased selection of mutations in TSGs in tumor samples with CNA

gain compared to the samples in the neutral copy number state possibly

indicates the dominant-negative character of these mutations. Dominant

negative mutations are characterized by the inhibitory effect of the mutant

protein on the function of the wild-type allele [173]. This, for example,

can be achieved if the function of the protein is limited by the availability

of the substrate, or if the protein acts in a homomeric complex. In these

cases, the wild-type activity will be inhibited by forming a non-functional

multimer, where mutant subunits poison the whole complex, or due to

competitive inhibition [173, 174, 175].

As opposed to dominant negative mutations, for two-hit LoF mutations

increasing the fitness of a subclone is expected only after the inactivation

of both alleles. The effect of inactivating mutations is not evident in cell

fitness when they target only one of the alleles.

Our analysis suggested that only a few TSGs in cognate cancer types have

a two-hit mechanism of inactivation, according to this definition. While

many of them do show an increased selection on mutation rates in the

hemizygous state, the majority of them are also selected in the diploid

state without any CNA. Therefore, we can conclude that the increased

fitness is explained by an increased proportion of a mutant, dysfunctional

protein which leads to a more complete aberration of a tumor-suppressing

pathway. In other words, a haploinsufficient TSG – which loses healthy

phenotype when one gene copy is inactivated – can be at the same time a

two-hit gene. Thus, these two mechanisms are not mutually exclusive.

Dominant-acting mutations can also explain the character of inactivation

of one-hit TSGs. The level of dominance (i.e. the efficacy of inhibiting

the wild-type allele) varies across different TSGs. For example, selection
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on the diploid state for TP53 mutations was one of the strongest, while

in tumor samples with an additional gene copy or with a gene loss the

selection did not increase greatly (with exceptions in two cancer types -

kidney and multiple myeloma cancers). In contrast, selection on PTEN

showed a gradient: selection in the samples with two gene copies was much

lower than in samples with one gene copy in PRAD, LGG, SKCM, BLCA

while the opposite pattern was observed in cancer types GBM, UCEC,

and LUSC.

Taking these results into consideration, we suggest that two mechanisms

of gene inactivation – through dominant negative-acting mutations or the

elimination of both copies of the gene – may be two ends of one spectrum.

In other words, because often the efficacy of inhibition of the mutant alle-

les on the functionality of the wild-type allele can be low, thus inactivation

of both alleles is needed to obtain a malignant phenotype. The incomplete

dominant-negative effect (which could be considered a kind of hypomor-

phism) in such mutations causes selection pressure to additionally increase

the proportion of the mutant allele. If the inhibition of the wild-type al-

lele by the mutant allele is very effective, increasing the proportion of

the mutant allele by selecting for the mutations has a small effect on the

fitness.

The relation between the selection in the diploid state and the gain/loss

copy number states appears to be cancer-type specific for each gene. As

shown in a recent study by Park et al. (2021), switching between one-hit

and two-hit genes may depend on the functional pathways active in a cell,

which can be specific to the lineage and the cancer type [176, 32].

6.3 Classification of genes based on the selection

patterns across copy number states

Using the Principal Component Analysis (PCA) data-driven approach, we

have identified at least three components that represent different somatic

selection signatures acting on cancer driver genes. With a certain degree

of simplification, these components reflect (i) “overall” selection on a gene,

(ii) the two-hit loss, and (iii) the two-hit gain selection. Additionally, the
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selection of nonsense mutations may be separated into the fourth compo-

nent.

We have observed that cancer genes do not show well-separated clusters

of two-hit genes versus one-hit genes or selected genes versus not selected

genes. Rather, they form a continuum of driving potential, and, more

surprisingly, seem to form a spectrum between one-hit and two-hit mech-

anisms of (in)activation meaning that both mechanisms may be operative

in the same gene with varying frequencies across tumors.

This can be compared with a recent classification by Park et al. (2021)

described four distinct groups of cancer genes genes by the mechanism of

action of selected mutations: one-hit genes, two-hit gain genes, two-hit

loss genes, and two-hit gain and loss genes [32]. We believe these variable

classification schemes might result from the increased size of our dataset,

or by rigorously controlling for the confounding effect of CNA on the num-

ber of mutations that is not due to selection (but caused trivially by the

changes in the amount of available DNA); the latter was enabled by the

use of neighboring genes mutation rate baseline in our method. We do

recognize that the precision of selection effects estimated with the Mut-

Match method could be limited because of the high number of variables

that are used to control for the heterogeneity of mutation rates using the

neighboring genes baseline.

The selection types summarized in some of the principal components may

be partially attributed to the difference in the number of mutations in

each cancer type dataset. This suggests that statistical power in our data

is still limiting. This means that the incorporation of the newly available

datasets can further improve the method’s sensitivity and precision, thus

enabling a more robust classification of cancer genes.
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7.1 Mutation and copy number data collection

and processing

We collected mutation and copy number data for two aggregated datasets

in this study: a discovery cohort and a validation cohort.

The discovery cohort comprised a mixture of Whole Exome Sequencing

(WES) and Whole Genome Sequencing (WGS) datasets from:

• WES somatic Single Nucleotide Variants (SNVs) from the The Multi-

Center Mutation Calling in Multiple Cancers (MC3) Project [177].

• WGS somatic SNVs from the The Cancer Genome Atlas Program

(TCGA) consortium [85].

• WGS somatic SNVs from Hartwig Medical Foundation (HMF)

project [86, 178].

• WGS somatic SNVs from Pan-Cancer Analysis Of Whole Genomes

(PCAWG) dataset [87, 179].

• WES somatic SNVs from PCAWG dataset [87, 179].
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• WGS somatic SNVs from Personal Oncogenomics project (POG570)

program [88, 180].

• WES somatic SNVs from The Clinical Proteomic Tumor Analysis

Consortium (CPTAC)-3 program [181, 182, 183].

• WGS somatic SNVs from MMRF-COMPASS study [184, 183].

The mutations that were called against the human version assembly

GRCh38 were were converted to the hg19 reference genome using LiftOver

[185]. Variant (nonsense, missense, synonymous) were annotated using

ANNOVAR software [186]. Highly mutated samples and samples with a

high fraction of indels were separated from the rest of the samples for

UCEC, CESC, COREAD, ESAD, ESCA, STAD, UCS cancers into sep-

arate subtypes denoted as “POLE” or “MSI” (Table 9.1). Cancer types

between different datasets were matched to increase the sample size for

each of them.

Altogether, we collected the genomes of 23 000 tumor samples with muta-

tions from 117 cancer types; the number of tumor samples per each tumor

type was ranging from 1 to over 1000 for PRAD (prostate adenocarci-

noma), BRCA-Lum (a luminal subtype of breast cancer), COREAD (col-

orectal adenocarcinoma), MM (multiple myeloma), kidney, PAAD (pan-

creatic adenocarcinoma), SKCM (skin cutaneous melanoma). The median

number of tumor samples was 57. The average number of SNV mutations

in each cancer type was 28 805, and the median number of mutations is

4136. The cancer types with the biggest number of mutations are listed

in Table 9.1.

For the validation dataset, we downloaded mutation calls for 90 713 tu-

mor samples across 75 cancer types from MSK-IMPACT and the Dana

Farber Cancer Institute (DFCI) Oncopanel of the American Association

for Cancer Research Project Genomics Evidence Neoplasia Information

Exchange (GENIE) (Release 11.1; syn32309524) [187, 188, 189]. In these

studies, only a limited number of cancer genes were sequenced. We deter-

mined the list of cancer genes that were targeted in both of these cohorts

such that the inter-gene differences of selection effects could not be caused

by the differential coverage of the two datasets.
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We collected Copy Number Alteration (CNA) data estimated with

GISTIC2 or purple programs for the majority of the samples listed above,

covering 17 644 samples of the discovery cohort and 89 243 samples of the

validation cohort. The estimates of the gene-level copy number status

were binarized according to the recommended sample-specific thresholds

for the GISTIC2 copy number levels.

For the discovery cohort, only low-level gains or hemizygous deletions were

considered for estimation of conditional selection upon CNA alteration

event. For the validation cohort, we have aggregated the estimates for the

copy number status of the gene. This way, any sample with the number

of gene copies greater than 2 was considered to be in a gain state, and

similarly for the samples in the deleted state.

7.2 Mutation frequencies

For every nonsynonymous (missense and nonsense) mutation from the

MC3 dataset Variant Allele Frequency (VAF) was calculated as F =
na

(na+nr)
, where F is the variant allele frequency, na and nr are the numbers

of alternative and reference reads.

To control for the purity of the tumor sample (that changes the final

number of sequenced reads bearing a mutation) we adjusted the formula

in the following way:

Fadj =
na

(na + nr)
× 1

P
, (7.1)

where P was the purity estimate from Consensus measurement of Purity

Estimation from TCGAbiolinks R package [159, 160, 161].

7.3 Annotation of cognate cancer types

To determine which cancer types were cognate (i.e. where cancer genes are

positively selected), we used different sources of data: annotation avail-

able in the known databases such as CGC or MutPanning [95, 132], and
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the selection estimates derived with the neighboring genes baseline in the

Discovery cohort.

The latter approach carries fewer risks of missing cognate cancer types

due to the different labels between annotation sources and our data, or

uncertainty in the case when annotations are not detailed to specify which

cancer subtype is cognate. Moreover, this helps to make sure that we do

not focus on gene-tumor pairs that are cognate, but have too few mutations

in the datasets due to the low number of samples in these cancer types.

We have estimated the selection effects in the discovery cohort for all

the cancer genes in the analysis across all copy number states (without

controlling for CNA variable). Cancer types where a gene was positively

selected (ω > 0 at a threshold of FDR ≤ 25%) were considered to be

cognate cancer types for this gene. To exclude from noncognate cancer

types (where cancer genes should not be selected) false-negative hits, we

required FDR ≥ 75%. The rest of the cancer types that did not fall into

either of these categories were separated into the “unclassified” group.

7.4 Simulation of bias in regression estimates

We modeled the bias in the estimation of regression coefficients using the

simplest neutral model that assumes no correlation between the mutation

rate and the genomic locus (ω = 0). The mutation counts are accumulated
in the genomic loci t proportionally to its size (length of DNA). The ratio
between the DNA lengths of the two genomic loci had one of the next

values: 1
S or S, where S ∈

{
1, 2, 5, 10, 20, 30, 40, 50}. S = 1 meant that

there was no difference in the lengths between genomic sites encoded with

the variable t.

The sizes of the genomic loci varied in our simulation, with the CGF
values between 1/50 to 50. The mutation counts Y were simulated using

the Poisson distribution with the mean λ:

Y ∼ Poisson(λ) (7.2)

The mutation rate α was the same across genomic sites; the observed
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number of mutations λ only depended on the DNA length of the locus r:

λ = ωt+ α+ log r (7.3)

We included the base mutation rate α as the intercept of the model, esti-
mating the model across for different values of α: −14 ≤α≤ −1.

Next, we fit the model 7.3 that generated the mutational counts to estimate

ω̂. The averaged values of ω̂ from 50 fitting procedures (with random

seeds) are presented in Figure 2.3.

7.5 CADD scores

We downloaded a bigWig file that contained pre-computed PHRED-

like −10 × log10 rank
total scaled Combined Annotation-Dependent Depletion

(CADD) scores for each genomic position (v.1.4) [142, 190]. The highest

CADD score of any 3 possible substitutions is displayed in this file with

higher values indicating a higher level of deleteriousness of the variant.

Scaled CADD-scores assign value 10 to the top-10% of all the CADD

scores in the reference genome, value 30 to the top-0.1% and so on.

To separate regions where mutations are likely to have a functional impact

versus regions that are evolutionary unconstrained, we used a cut-off of

20. This way, positions in a gene with top-1% most deleterious mutations

were tested for selection using a background mutation rate model from

unconstrained gene regions where CADD score was less than 20.

7.6 Genomic filters

7.6.1 Hotspot detection

We define a hotspot based on the codon-specific frequency of mutations

in a discovery cohort with the cut-off of 2 mutations per codon (Figure

7.1). This threshold yielded the recovery of 91.6% of previously identified
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selected hotspots [82] and 59.7% of mutations detected by exploration of

mutation clustering in the 3D structure of a protein [191].

Figure 7.1: Recovery of known hotspots for different hotspot cut-offs

in a discovery cohort. Hotspots were defined based on the number of muta-

tions at the codon level (X-axis). For different thresholds we calculated which

fraction of known hotspots from Trevino (2020) [82] and Gao et al. (2017) [191]

was recovered and what is the fraction of these hotspots in our empirical set of

hotspots. The cut-off of 2 mutations per codon was chosen, which corresponds to

the 91.6% of recovery of Trevino hotspots and 59% of recovery of 3D hotspots

(0.235% and 0.007% of all pemissive hotspot sites, respecitively.

Hotspots tend to cluster in 3D space as they target a functionally impor-

tant part of the protein, and often they also target a neighboring amino

acid. Some 3D clustered hotspots that were not recovered with this cut-off

are located in proximity to a hotspot in the discovery cohort. To avoid

missing such sites that are closely located to a detected hotspot, but have

fewer mutations (due to the limited number of mutations in the discovery

dataset), we lengthened our hotspots to include them. If another mutation

was found within 3 codons upstream or downstream from the hotspot, the

hotspot was extended to include this mutation. The median length of the

hotspots defined this way was 12 nucleotides, or 4 amino acids (Figure

7.2). This yielded in recovery of 75.2% of 3D clustered hotspots [191] and
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95.4% of Trevino hotspots [82].

Figure 7.2: Distribution of the hotspot sizes defined by different meth-

ods. Median size of the empirical hotspots with expansion was 12 nucleotides,

for Trevino hotspots [82] was 1 nucleotide and for 3D cluster hotspots was 3

nucleotides [191].

7.6.2 NMD-detected and NMD-evading regions

Genomic regions were split into those where Premature Termination

Codons (PTCs) lead to the degradation of the mRNA in a process of

Nonsense-Mediated mRNA Decay (NMD) or those where nonsense muta-

tions lead to a translation of a truncated protein sequence. The efficacy

of NMD for PTCs in a human model was predicted using the NMDetec-

tive algorithm [192]. The scores of NMDetective-A were obtained from

[192, 193]: regions with the score >0.52 were classified as NMD-detected
regions, and the rest was classified as NMD-evading regions.
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Supplementary Figures
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Figure S8.1: Fraction of selected mutations as a function of selection

effect ω. The fraction of positively selected mutations in a gene Mpos (the

difference between the observed number of mutations in a gene Mobserved and the

expected number of mutations Mexpected relative to the Mobserved) is shown in red.

The fraction of mutations that were either lost or are driver mutations (relative

to the Mobserved) is shown in black.
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Figure S8.2: Estimation error of regression. The data was simulated using

a neutral selection model (ω = 0, red dotted line) with CGF = 10. Estimated
coefficients ω̂ are shown as a function of the total mutation number that was in
the regression.
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Figure S8.3: Distribution of gene lengths in the human genome. Coor-

dinates of the genes from genome version GRCh37 assembly of the human genome

were used to calculate gene lengths. The red dashed line marks the median of

the distribution (corresponds to 27 336 bp).
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Figure S8.4: Estimation error of regression. The data was simulated using

a neutral selection model (ω = 0, red dotted line) with CGF = 5. Estimated
coefficients ω̂ are shown as a function of the total mutation number in a model
(the sum of the mutation counts in the tested and control groups).
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Figure S8.5: Area Under the Receiver Operating Characteristics (AU-

ROC) scores for different mutation sets. Random genes versus mutated

Census cancer genes in cognate cancers. The dotted line is the maximal median

AUROC score per group in tested sizes.
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Figure S8.6: Mutation rate of MTOR gene and its neighbors across

copy number states. Mutation rate is calculated mutation counts divided by

the length of the gene without controlling for Trinucleotide Mutation Spectra

(MS96) across copy number states; estimated mutation rate is plotted with 95%

confidence interval. Asterisks denote cancer types, where the gene was positively

selected. The level of significance of the difference is encoded: ‘∗’ for FDR ≤ 0.05,
‘∗∗’ for FDR ≤ 1 · 10−2, ‘∗∗∗’ for FDR ≤ 1 · 10−3, ‘∗∗∗∗’ for FDR ≤ 1 · 10−4. Y-
axis is log-transformed.
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Figure S8.7: Mutation rate of GNAQ gene and its neighbors across

copy number states. Mutation rate is calculated mutation counts divided by

the length of the gene without controlling for MS96 across copy number states;

estimated mutation rate is plotted with 95% confidence interval. Asterisks denote

cancer types, where the gene was positively selected. The level of significance of

the difference is encoded: ‘∗’ for FDR ≤ 0.05, ‘∗∗’ for FDR ≤ 1 · 10−2, ‘∗∗∗’ for
FDR ≤ 1 · 10−3, ‘∗∗∗∗’ for FDR ≤ 1 · 10−4. Y-axis is log-transformed.
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Figure S8.8: Mutation rate of XPO1 gene and its neighbors across

copy number states. Mutation rate is calculated mutation counts divided by

the length of the gene without controlling for MS96 across copy number states;

estimated mutation rate is plotted with 95% confidence interval. Asterisks denote

cancer types, where the gene was positively selected. The level of significance of

the difference is encoded: ‘∗’ for FDR ≤ 0.05, ‘∗∗’ for FDR ≤ 1 · 10−2, ‘∗∗∗’ for
FDR ≤ 1 · 10−3, ‘∗∗∗∗’ for FDR ≤ 1 · 10−4. Y-axis is log-transformed.
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Figure S8.9: Distributions of essentiality scores for main gene classes

in this study. A. CERES scores distribution: lower scores correspond to higher

cell essentiality in a cell depletion CRISPR–Cas9 essentiality screens. B. LOEUF

scores distribution: inferred from the population data of depletion of Loss-of-

Function (LoF) variants with lower scores correlating with haploinsufficiency.
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Figure S8.10: The distribution of regression coefficients δdeletion for Tu-
mor Suppressor Genes (TSGs) in cognate cancer types and the group

of random genes. Asterisks denote genes with significantly different distribu-

tions from the distribution of a group of random genes (Mann-Whitney test with

multiple testing corrections). The level of significance of the difference is encoded:

‘∗’ for FDR ≤ 0.05, ‘∗∗’ for FDR ≤ 1 · 10−2, ‘∗∗∗’ for FDR ≤ 1 · 10−3, ‘∗∗∗∗’ for
FDR ≤ 1 · 10−4
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Figure S8.11: Principal components and the variance explained by

them The number of significant components (n=3) was decided with the broken
stick method [162].

Figure S8.12: PCA analysis of selection effects across cancer types and

mutation classes. Principal components 4 to 6 are shown for genes with the

15 most frequently mutated cancer genes: TP53, KRAS, APC, BRAF, PTEN,

RB1, GNAQ, PIK3CA, VHL, GNA11, IDH1, GTF2I, PBRM1, ARID1A, BAP1.
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Figure S8.13: PCA analysis of selection effects across cancer types and

mutation classes. A, B C. Gene groups in the space defined by the three first

Principal Components (PCs). Cancer genes from Cancer Gene Census (CGC)

are plotted. Genes with the highest absolute scores are labeled. D. Usage of

principle components by the gene groups across all cancer types.

146



Chapter 9

Supplementary Tables

147



Supplementary Tables

Table 9.1: Cancer types from the discovery cohort with the largest number of

nonsynonymous mutations

Cancer Full cancer name
Number of

mutations

Number of

samples

SKCM Skin cutaneous melanoma 499 418 1004

UCEC-MSI Uterine corpus endometrial carcinoma

MSI tumor samples

270 215 168

LUAD Lung adenocarcinoma 212 630 996

UCEC-POLE Uterine corpus endometrial carcinoma

hypermutated tumor samples

205 066 47

LUSC Lung squamous cell carcinoma 166 235 700

COREAD Colorectal adenocarcinoma 128 934 1121

COREAD-POLE Colorectal adenocarcinoma

hypermutated tumor samples

124 671 27

COREAD-MSI Colorectal adenocarcinoma

MSI tumor samples

124 388 92

BLCA Bladder urothelial xcarcinoma 124 173 554

BRCA-Lum Breast invasive carcinoma

luminal subtype

108 439 1340

HNSC Head and neck squamous cell carcinoma 99 026 762

STAD-MSI Stomach adenocarcinoma

MSI tumor samples

82 613 86

PRAD Prostate adenocarcinoma 79 471 1530

PAAD Pancreatic adenocarcinoma 65 262 1011

BRCA Breast invasive carcinoma 60 263 810

MM Multiple myeloma 56 732 1089

LGG Brain lower grade glioma 53 987 588

Kidney Kidney cancer 50 870 1041

ESAD Esophageal adenocarcinoma 50 671 463

NSCLC Non-small cell lung cancer 49 075 117

STAD Stomach adenocarcinoma 48 011 450

UCEC Uterine corpus endometrial carcinoma 46 691 454

GBM Glioblastoma multiforme 43 163 438

PBCA Pediatric brain cancer 37 362 617

LIHC Liver hepatocellular carcinoma 36 784 417

CESC Cervical squamous cell carcinoma

and endocervical adenocarcinoma

36 719 334

SKCA Skin adenocarcinoma 34 959 100

ESCA Esophageal Cancer 30 948 253

OV Ovarian cancer 30 284 436

BRCA-tri- Breast invasive carcinoma

triple-negative subtype

29 983 328

LICA LICA 26 322 193

MALY Malignant lymphoma 20 239 252

NET Neuroendocrine cancer 18 669 263

BRCA-HER2 Breast invasive carcinoma

HER2-positive subtype

16 490 116
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