
Chapter 2

Non-linear models for High Power
Amplifiers

In this chapter we start by developing the analytical formulation of a general structure
for the nonlinear distortion. This formulation, based on the Volterra series expansion, is
provided in order to demonstrate the validity of some classical approximations concerning
the use of higher order nonlinear models for HPA characterization. Then, one of the most
validated HPA models is described in some detail for its later use in our simulations. The
theoretical relations between its direct and inverse characteristics are included since they
constitute an important qualitative reference for the pre-distortion algorithms. Finally,
some foresight about certain limiting aspects on the invertibility of complex nonlinearities
is given and some graphical examples are briefly discussed.

The study of nonlinearities and their effects in communications systems can be carried
out through the analytical treatment of models that are conceived to approach the
fundamental physical nature of the devices and channels. Such treatment, often based
on solving non-trivial sets of differential equations ( normally untractable by algebraic
means), lead us to seek the aid of numeric methods and further simplifications to face
the almost unbeatable mathematical challenges therein involved. Hence, higher-level
transference models, normally referred to as ‘behavioural’ models, are required for
producing testable characterizations of nonlinearities by providing good accuracy at a
reasonable complexity for analysis as well as simulation purposes. For the representation
of nonlinear HPAs, input-output block models are mainly of two types: instantaneous or
memoryless models and models with memory. All of these models use either a limited
or unlimited number of parameters that are adjustable by means of fitting procedures
to represent the input-output functional relationship of a given real system. In the
case of unlimited coefficients (as in the case of the series expansion), the number of
independent components is normally restricted according to specific criteria, which is
related in communications to measures of significance of each component in the general
nonlinear behaviour. In turn, nonlinear models based on a limited set of parameters offer
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14 2.1. Volterra Series Model for Memoryless Non-linearities

simpler configurations and are accurate enough to represent or identify many nonlinear
systems. However, in some cases even memoryless models with few-parameters present
some specific inaccuracies and non-physical behaviours (e.g. the limitations of the Cann’s
model shown by Loika in [42]). These characterizations should be therefore carefully
applied under the restrictions found for each specific case. Thus, although some models
have become classical through their widespread application, they always deserve to be
reviewed in some detail or, at least, previously discussed before their application in the
specific scenario for which they have been selected.

2.1 Volterra Series Model for Memoryless Non-

linearities

This section addresses the general formulation of the non-linear AM/AM–AM/PM dis-
tortion starting from a Volterra Series Model which is used, under some restrictions, to
describe the general structure of the nonlinear effects considered in the thesis.

The Volterra series have been widely used in non-linear systems modeling and analysis.
They provide an appealing and quite general functional representation of the relation
between the output and the input of a nonlinear time-invariant system (TI-NLS) with or
without memory [43]. The Volterra Series Model (VSM) can be seen as a generalization
of the Taylor Series expressed in the form

y(t) = h0 +

∫ ∞

−∞
h1(τ1)x(t− τ1)dτ1 +

∫ ∞

−∞

∫ ∞

−∞
h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3 + · · · (2.1)

+

∫ ∞

−∞
· · ·
∫ ∞

−∞
hn(τ1, τ2, · · · , τn)x(t− τ1)x(t− τ2) · · ·x(t− τn)dτ1dτ2 · · · dτn + · · ·

where, for n = 1, 2, . . ., the system is defined as causal with

hn(τ1, . . . , τn) = 0, ∀ τi < 0, i = 1, 2, . . . , n. (2.2)

The functions {ho, h1(τ), h2(τ1, τ2), . . .} are called the Volterra kernels of the system.
The zero-order term h0 represents the system response to a continuous (dc) input. The
first-order kernel h1 is the linear impulse response of the system while the higher-order
kernels (n ≥ 2) can also be considered as multi-dimensional impulse responses that
characterize the higher order non-linearities of the system [44]. The VSM can be
particularized to consider the memoryless case of a system if the kernels are defined
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as delta functions δm(τ1, . . . , τm) centered with respect to the m-dimensional origin.
In such a case, the VSM becomes a polynomial expansion like the Taylor series model [45].

The general VS model is herein particularized for the case of a bandpass system. First,
let the base-band input signal model be

bx(t) = ux(t)e
jαx(t) (2.3)

where ux(t) = |bx(t)|. Thence, the bandpass input signal model for the analysis will be
defined as follows:

x(t) = Re{bx(t)ej2πfct} =
1

2
bx(t)e

j2πfct +
1

2
b∗x(t)e

−j2πfct. (2.4)

Replacing ωc = 2πfc for brevity and using eqs. (2.1) and (2.4), we obtain

y(t) = h0 +

∫ ∞

−∞
h1(τ1)Re{bx(t− τ1)ejωc(t−τ1)}dτ1

+

∫ ∞

−∞

∫ ∞

−∞
h2(τ1, τ2)Re{bx(t− τ1)ejωc(t−τ1)}Re{bx(t− τ2)ejωc(t−τ2)}dτ1dτ2

· · ·+
∫ ∞

−∞
· · ·
∫ ∞

−∞
hn(τ1, τ2, · · · , τn)

n∏
i=1

Re{bx(t− τi)ejωc(t−τi)}dτi + · · · (2.5)

The following narrow-band approximations will apply for this model:

Bx � fc ; Ti �
1

Bx
, i = 1, 2, . . . , n (2.6)

where the carrier frequency fc is defined much larger than the bandwidth of the in-
put base-band signal Bx, while the time span given by the inverse of this last is larger
than the duration Ti of any i-th component of the kernels hn(τ1, . . . , τn) defined for the
multi-dimensional convolution in (2.5). According to this, the kernels are characterized
as approximated delta functions. Then, for i = {1, 2, . . . , n} these conditions are declared
valid and allow us to consider that for the base-band information signal we can assume

bx(t− τi) ≈ bx(t) ; ∀ |τi| ≤ Ti (2.7)

which leads us to a memoryless approximation with regard to the base-band equivalent
of the non-linear system. However, the equivalent approximation in the passband phase
component,

ejωc(t−τi) ≈ ejωc(t), (2.8)
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is not valid since ωcτi will result in a significant quantity and cannot be neglected.
Then, from (2.5) and using the narrowband approximations, the VSM for the range
i = {1, . . . , n} can be converted to

y(t) = h0 +
n∑

m=1

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
m−times

hm(τ1, . . . , τm)
m∏
i=1

Re{bx(t)ejωc(t−τi)}dτm. (2.9)

Since the real part operator Re{ } is given by

Re{bx(t)ejωc(t−τi)} =
1

2

[
bx(t)e

jωc(t−τi) + b∗x(t)e
−jωc(t−τi)

]
(2.10)

then, from (2.3) and (2.10) we can rewrite the product in (2.9) as follows:

m∏
i=1

Re{bx(t)ejωc(t−τi)} =
m∏
i=1

Re{ux(t)ej[ωc(t−τi)+αx(t)]}

=

(
ux(t)

2

)m m∏
i=1

(
ej[ωc(t−τi)+αx(t)] + e−j[ωc(t−τi)+αx(t)]

)
(2.11)

=

(
ux(t)

2

)m m∑
�=0

C(m,�)∑
�′=1

ej
[(
m−2�

)(
ωct+αx(t)

)
+ωcΘ(�,�′)

]
. (2.12)

In these expressions, the product in (2.11) has been equivalently expressed as a sub-
grouped sum in (2.12). The parameter Θ(�, �′) stands for the summation

∑m
i=1(±)τi, where

the values τi assume positive or negative sign according to the different combinations of
“�” conjugated elements and “m − �” non-conjugated elements defined for each term
indexed by “�′”. This last expression is obtained by analyzing the product of m complex
binomials of the form

m∏
i=1

(ai + a∗i ) (2.13)

where ai = aI + jaQ , ai ∈ C ∀ i = 1, . . . , m.

The expansion of (2.13) results in a summation of 2m terms. Each term thereof corre-
sponds to a product of the m different complex values ai (i = {1, . . . , m}) where, in turn,
each element of such product can assume one of two states: ai or a∗i . For example, we can
observe the expansion of (2.13) for m = 3:
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3∏
i=1

(ai + a∗i ) = a1a2a3 + a1a2a
∗
3 + a1a

∗
2a3 + a1a

∗
2a

∗
3 +

0 0 0 0 0 1 0 1 0 0 1 1

a∗1a2a3 + a∗1a2a
∗
3 + a∗1a

∗
2a3 + a∗1a

∗
2a

∗
3

1 0 0 1 0 1 1 1 0 1 1 1 (2.14)

where a binary code is assigned to each term to make combinatorial relations more
evident. Thence, for any m, the resulting 2m summation terms will span all the different
“binary” combinations of “�” (≤ m) conjugated elements a∗i multiplied by “(m − �)”
non-conjugated elements ai′, with i �= i′. Hence, the 2m terms of the expansion can be
grouped into (m + 1) sub-groups of C(m,�) summation terms each, where C(m,�) accounts
for the number of terms having � conjugated multiplicative elements in any order, in
other words, C(m,�) =

(
m
�

)
= m!

�!(m−�)! for � = {0, . . . , m}. Thus, for the previous example

shown in (2.14) we have that: {C(3,0) = 1, C(3,1) = 3, C(3,2) = 3, C(3,3) = 1}.

Thence, substituting (2.12) into (2.9), we obtain

y(t)= h0+

n∑
m=1

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
m−times

hm(τ1, . . . , τm)

(
ux(t)

2

)m m∑
�=0

C(m,�)∑
�′=1

ej
[(
m−2�

)(
ωct+αx(t)

)
+ωcΘ(�,�′)

]
dτΠ

m

(2.15)

where, for the sake of brevity, the product
∏m

i=1 dτm is referred to as dτΠ
m henceforth.

Then, given the different m + 1 values of (m − 2�) in the exponent of (2.15), we will be
interested in filtering only the significant components from the corresponding harmonic
sequence. These spectral components are those centered around ±wc and form the so
called “first” or “principal zone” output y1(t) of the non-linear system. This partial signal
y1(t) can be obtained from (2.15) by taking (m − 2�) = ±1 or, equivalently, � = m∓1

2
.

Therefore, we will consider only odd values of m, which is a valid constraint since only
odd power nonlinearity terms contribute to the first or principal zone output of a non-
linear bandpass system [44]. As in the Taylor series approximation, the even-order terms
of a nonlinear model generate spectral components that are at least ωc away from the
center passband frequency. This fact can also be applied to the VSM structure whence
the first-zone output of the HPA can be “filtered” out from (2.15) resulting in

y1(t)=

n∑
m=1

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
m−times

hm(τ1, . . . , τm)

(
ux(t)

2

)m ∑
�= m∓1

2

C(m,�)∑
�′=1

ej
[(
m−2�

)(
ωct+αx(t)

)
+ωcΘ(�,�′)

]
︸ ︷︷ ︸

filtered terms

dτΠ
m

(2.16)
where m = 1, 3, 5, 7, . . . , n (odd). Since the index � takes only two values, henceforth we
will declare C(m,�) as dependent only on m. Moreover, the resulting number of additive
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terms C(m) within the sub-groups, with � = m∓1
2

conjugated multiplicative elements, is
the same in both cases,

C(m) =

(
m
m∓1

2

)
=

m!

(m−1
2

)!(m+1
2

)!
. (2.17)

Additionally, and resorting to the example shown in (2.14), we can easily find that
each term taken from one �-indexed sub-group is complementary to a term in another
(m− �)-indexed sub-group. Specifically, this property applies to terms with a symmetric
distance with respect to the center of the expanded summation. Consequently, according
to the complementarity between the central sub-groups in (2.16), it is noteworthy that

Θ
(m+ 1

2
, �′
)

= −Θ
(m− 1

2
, �′
)

; 1 ≤ �′ ≤ C(m) (2.18)

which allow us to rewrite the braketed (filtered) terms in (2.16) in the form

C(m)∑
�′=1

ej[ωct+αx(t)+ωcΘ(m+1
2
,�′)]+ e−j[ωct+αx(t)+ωcΘ(m+1

2
,�′)] (2.19)

or, equivalently,

2Re
{ C(m)∑
�′=1

ej[ωct+αx(t)+ωcΘ(m+1
2
,�′)]
}
. (2.20)

Finally, the bandpass equivalent for the first-zone output of the non-linear model can
be expressed as

y1(t)= Re

[
n∑

m=1

{[∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
m−times

2hm(τ1, . . . , τm)

C(m)∑
�′=1

ejωcΘ(m+1
2
,�′)dτΠ

m

](
ux(t)

2

)m}
ejαx(t)ejωct

]

(2.21)

which is a functional structure of the form

y1(t)= Re

[{
n∑

m=1

Km ·
(
ux(t)

2

)m}
ejαx(t)ejωct

]
(2.22)

where the power terms
(ux(t)

2

)m
account for the AM/AM distortion of the model while the

factors

Km =

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
m−times

2hm(τ1, . . . , τm)

C(m)∑
�′=1

ejωcΘ(m+1
2
,�′)dτΠ

m (2.23)
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are the complex parameters whose modulus |Km|, along with the power terms of ux(t),
are also involved in the total AM/AM non-linear distortion of the system. In turn, only
the phase component is responsible for the AM/PM distortion over the phase αx(t) of
the base-band input signal. Thus, from the non-linear model obtained and expressed in
(2.21) to (2.23), we can remark the following:

1. The AM/AM distortion of the model depends only on the variations of the base-
band input modulus ux(t).

2. The structure of AM/PM distortion is determined by the parameter Θ(m+1
2
, �′).

3. The AM/PM distortion will depend on the carrier frequency fc and will be affected
by significant variations of its value.

The last item suggests an additional analysis of the AM/PM distortion dependence
on carrier frequency variations. For convenience, we first rewrite the expression in (2.23)
for the terms Km, including the carrier frequency variation ∆ωc. This is accomplished by
resorting to the definition of Θ(�, �′) in terms of the summation

∑m
i=1(±)τi:

Km = 2

C(m)∑
�′=1

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
m−times

hm(τ1, . . . , τm)

m∏
i=1

e(±)j(ωc+∆ωc)τidτΠ
m. (2.24)

In addition to the narrow-band approximations defined in (2.6), we can make the
assumption that ∆fc · Ti � 1, so that,

e(±)j(ωc+∆ωc)τi ∼ e(±)jωcτi(1 + j∆ωcTi). (2.25)

According to this, the dependence of the AM/PM distortion will be approximately
linear with respect to small variations of the carrier frequency.

In spite of its generality in developing theoretical analysis, the Volterra Series are said
to be impractical for most but very few real time applications in which the complexity
and cost can be justified. Model designs for practical applications are normally formulated
by resorting to the discrete form of the VS [46] [47]. The discrete expressions are suitably
simplified by limiting the number of summation terms involved thus providing a P -th
order model, sufficiently accurate with regard to the modeling requirements. Basically, as
the order of the VSM increases, it will have the same general limitations as the Taylor Se-
ries classical approach. Some of these major limitations and impairments of the VSMs are:
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• Complex procedures and lengthy measurements are needed to identify the Volterra
Kernels.

• The truncation of the series to any P -th order must be justified according to the
memory limitation or a priori knowledge of the system.

• Due to its power series character, the VS expansion may converge for only a limited
range of input amplitudes.

For these reasons, many researchers have developed higher level models that are read-
ily computable input-to-output characterizations of the nonlinear HPAs. Some of these
models even include frequency-dependent extensions that have been developed resorting
to experimental data and implicitly assuming the approximation of linear dependence
between AM/PM distortion and the carrier frequency variations expressed in (2.25).

2.2 High Level HPA Model for Simulations

There are two different technologies for HPAs commonly used in microwave systems,
namely: the traveling-wave tube (TWT) amplifiers and GaAs FET based amplifiers. In
particular, the TWT HPAs are known to be more nonlinear than the GaAs FET HPAs
and more nonlinear than the Solid State Power Amplifiers (SSPA) in general. Differences
are more acute when comparing the AM/PM conversion curves rather than the AM/AM
responses [1]. The AM/PM nonlinear conversion of TWTs has been quantified to be
nearly 10 times worse than in solid state devices. This severe difference is due to the
physics of how the nonlinearity is generated in each device. In the case of TWTs, the
AM/PM distortions are caused by mismatches between the microwave phase velocity and
the velocity of the electron flux. The ability of electrons to follow the phase variations
in the traveling wave slows down as part of their energy is transferred to the wave
amplification [48]. A detailed study of the different high level models proposed for
representing the nonlinear behaviour of the HPAs falls beyond the scope of this study.
Therefore, let us refer to [49] and [44] (chap.2.11) where relevant HPA modeling schemes
are analyzed to a larger extent. Among the models available, here we will concentrate
in describing the well-known Saleh Model for TWT memoryless HPAs, which is in fact
the most commonly used in the literature and thence will be applied later in our PD
algorithms evaluation.
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2.2.1 The Memoryless Saleh Model for TWT HPAs

It is important to remark at this point, that any linearization algorithm to be described
in the forthcoming chapters shall be developed under the perspective of its general ap-
plicability and independently from the specific nonlinear model. Nevertheless, for the
non-linear distortion of the base-band signal to be applied in the simulations, we se-
lect the widely accepted Saleh model [9] for memoryless Traveling Wave Tube Amplifiers
(TWTA). Comparatively, Saleh’s model introduces more significant AM/PM distortion
than most Solid State Power Amplifiers (SSPA) models available [50] [51]. The purpose
is hence to provide more stringent conditions to evaluate the linearizing techniques and
algorithm performance. Equations (2.26) and (2.27) define this base-band model of HPA
as two modulus-dependent transfer functions given by

A[ux] =
αaux

1 + βau2
x

(2.26)

Φ[ux] =
αΦu

2
x

1 + βΦu2
x

(2.27)

where A[ux] and Φ[ux] are the corresponding AM/AM and AM/PM characteristics
respectively, both dependent exclusively on ux, which is the input modulus to the HPA.

In the expressions above, we choose to set the small-signal gain term to αa = 2,
while βa = βΦ = 1 and αΦ = π/3, so that the input saturation voltage As = 1/

√
βa,

and the maximum output amplitude Amax = max{A[ux]} = αaAs/2, are both
normalized to 1. Hence, the phase displacement at the saturation point will be
Φsat = Φ[ 1/

√
βa ] = π/6 [rad] = 30o. The corresponding AM/AM and AM/PM curves

so scaled are depicted in figure (2.1). These settings are equivalent to the normalization
of the input and output signals at the HPA with respect to the corresponding satu-
ration amplitudes, which is useful to represent the amplifier featuring unitary gain at
saturation. This normalized characteristics will apply henceforth in our PD implementa-
tions and therefore the perfect linear HPA response will be given by the identity function 1.

In the ongoing definitions we use the same base-band signal model defined in (2.3) but
now we skip the time dependence for the sake of simplicity. Thus, for the input signal to
the HPA,

bx = uxe
jαx , (2.28)

the respective distorted output –assuming memoryless operation– is expressed as

by = A [ux] e
j(αx+Φ[ux]) (2.29)

where the input-output functional relation of the HPA has been defined as a transfer
function. An alternative expression for the AM/AM distortion in (2.26), convenient for

1For experimental input-to-output measures of HPAs, Saleh provided expressions obtained through a
minimum MSE fitting procedure for the calculation of the optimum parameters in (2.26) and (2.27).
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Figure 2.1: AM/AM and AM/PM normalized transfer characteristics of the Saleh model for
memoryless TWT HPAs.

the theoretical formulation of the pre-distortion, is obtained by replacing the saturation
input amplitude As = 1/

√
βa in the expression (2.26). This gives

A[ux] =
A2
sαaux

A2
s + u2

x

(2.30)

whence we can find a theoretical AM/AM inverse2 transfer function A−1[·] by solving
(2.30) for ux = A [A−1[ux]]. Some straightforward algebraic steps lead us to directly
obtain

A−1[u] =
αaA

2
s

2u

[
1−

√
1−

(
2u

αaAs

)2
]

(2.31)

where it is important to note that this inversion will be valid only within the interval
{ 0 ≤ u ≤ αaAs/2 }. This defines a restriction for the input range of the theoretical
AM/AM PD. However, as will be discussed later, the invertibility of the complex HPA
function will not be necessarily restricted to the same limits since they account only for
the AM/AM invertibility.

The ideal AM/PM PD characteristic related to the AM/AM theoretical inverse given
in (2.31) is much simpler to obtain but not as trivial as taking (2.27) and inverting its sign.
This becomes clearer when considering the alternative configurations shown in figure 2.2
where the same PD block, i.e., the same input-output function, is applied as a pre/post-
distorter for the linearization of the same HPA. Thus, letting Ψ[·] denote the AM/PM
characteristic of the PD block, for the case of a pre-distorter, we have

bpout = A−1[ux]e
j(αx+Ψ[ux])

by = A
[
A−1[ux]

]
ej(αx+Ψ[ux]+Φ[A−1[ux]])

2In this section the negative exponent denoting inverse functions such as A−1[·] is used only for
notation purposes and should not be interpreted as 1/A[·].
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Figure 2.2: Pre-distortion (a) and post-distortion (b) for HPA linearization.

wherein the ideal AM/PM correction requires that

Ψ[ux] = −Φ[A−1[ux]]. (2.32)

Then, for the post-distorter, we have

bpin = A[ux]e
j(αx+Φ[ux])

by = A−1
[
A[ux]

]
ej(αx+Φ[ux]+Ψ[A[ux]])

where the AM/PM correction now requires that

Ψ[A[ux]] = −Φ[ux]. (2.33)

Since in both cases we expect that bx = by, the conditions expressed in (2.32) and (2.33) are
equivalent in the sense that the inverse AM/PM of each given argument must correspond,
with opposite sign, to the HPA’s straight AM/PM characteristic with the input argument
scaled by the inverse AM/AM transfer characteristic A−1[·]. Consequently

Ψ[u] = −Φ
[
A−1[u]

]
(2.34)

is a general expression for the AM/PM pre/post-distortion function Ψ[·] that compensates
for the amplitude-to-phase distortion Φ[·] introduced by an HPA whose AM/AM nonlinear
characteristic A[·] has an exact inverse counterpart A−1[·]. Thence, with these conditions
fulfiled for the example of figure 2.2, it is true that

by = A
[
A−1[ux]

]
ej(αx+Ψ[ux]+Φ[A−1[ux]]) = A−1

[
A[ux]

]
ej(αx+Φ[ux]+Ψ[A[ux]]) = bx.

Regarding AM/AM PD, we can easily prove that the expression (2.31), found through
an ideal pre-distortion hypothesis, can be also applied as a post-distortion function fulfiling
the equivalence A−1

[
A[ux]

]
= ux. A depiction of the ideal theoretic AM/AM and AM/PM

inverse characteristics, valid for the normalized Saleh’s HPA model in the interval {0, 1},
is shown in figure 2.3. Note that the shape of the inverse AM/PM does not correspond
to −Φ[·] in accordance with our previous discussion.
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Figure 2.3: AM/AM and AM/PM theoretical pre/post-distortion characteristics for the Saleh
model.

The real and imaginary parts of the direct and inverse AM/AM and AM/PM expres-
sions given in (2.26),(2.27), (2.31) and (2.34), are all depicted in figure 2.4 where it is
interesting to observe that the real part of the HPA characteristic presents a very similar
shape to the AM/AM characteristic. Both curves reach their maximum at relatively close
input amplitude points after which they decrease. However, the fact that the real-part
“saturation” is located before the HPA saturation does not imply that the HPA charac-
teristic is non-invertible after this point as it is proved by the expression (2.31). This is
an interesting aspect deserving our attention and is commented later in section 2.2.2.

In later chapters, it will be shown that for algorithm implementations a good choice
is to consider the HPA and the pre/post-distorter as complex gain functions rather than
as transfer functions. Let us denote the complex gain function of the HPA as GHPA[·].
Thence, the input-output relation at the HPA can be expressed as a multiplicative gain

bout = binGHPA[uin]

where the HPA multiplicative gain, which is also dependent on the input modulus uin =
|bin|, can be decomposed into

GHPA[uin] = GAM [uin]GPM [uin] (2.35)

GAM [uin] = A[uin]/uin =
αa

1 + βau
2
in

(2.36)

GPM [uin] = cos (Φ[uin]) + j sin (Φ[uin]) (2.37)

with Φ[·] the AM/PM characteristic previously given in (2.27). Note that GPM [·] is a
unitary operation defined to only introduce a phase rotation over the input data.

Then, denoting the corresponding theoretical pre-distortion complex gain as G−1
HPA[·],

with the AM and PM factors named G−1
AM [·] and G−1

PM [·] respectively, the output of the
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Figure 2.4: Phase and quadrature transfer curves and corresponding pre/post-distortion char-
acteristics for the Saleh model.

PD block in figure 2.2(a) will be given by

bpout = bxG
−1
HPA[ux] = bxG

−1
AM [ux]G

−1
PM [upout] (2.38)

where upout = uxG
−1
AM [ux]. The AM/AM inverse gain is expressed from equation (2.31) as

G−1
AM [ux] =

A−1[ux]

ux
=
αaA

2
s

2u2

[
1−

√
1−

(
2u

αaAs

)2
]

(2.39)

and the AM/PM multiplicative inverse factor, defined by using (2.34), is calculated as

G−1
PM [ux] = cos

(
− Φ[uxG

−1
AM [ux]]

)
+ j sin

(
Φ[uxG

−1
AM [ux]]

)
. (2.40)

Thus, in perfect linearization conditions, the output of the entire linearized chain, in
terms of multipliative gains, would be given by

by = bxG
−1
HPA[ux]GHPA[upout] (2.41)

= bxG
−1
AM [ux]G

−1
PM

[
uxG

−1
AM [ux]

]
GAM

[
uxG

−1
AM [ux]

]
GPM

[
uxG

−1
AM [ux]

]
. (2.42)

Thence, the ideal AM/AM pre/post-distortion gain should satisfy the following rela-
tion:

G−1
AM [ux] =

1

GAM

[
uxG

−1
AM [ux]

] (2.43)

where we can observe that the estimation of G−1
AM [·] is not as straightforward as obtaining

the multiplicative inverse of GAM [·] but also involves an inverse transfer identification.
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The AM/PM compensation, in this case, is in turn given by a much simpler relation. In
(2.42) the ideal AM/PM PD gain must fulfil

G−1
PM

[
uxG

−1
AM [ux]

]
= −GPM

[
uxG

−1
AM [ux]

]
(2.44)

which is a direct system identification problem, since both functions will always share
the same argument. Thence, the required AM/PM PD characteristic will be the same
correspondence shown in figure 2.3 whether we estimate the PD using gain or transfer
functions. Unlike this, in figure 2.5 we show the ideal AM/AM inverse gain character-
istic from (2.39) which completely linearizes the nonlinear model in (2.36), this is, the
multiplicative gain equivalent of (2.26).

An interesting alternative way of expressing the nonlinear mapping of an HPA, like
the Saleh model, is considering the AM/AM and AM/PM characteristics as part of a
parametric functionH[up] which is an equivalent nonlinear mapping in a complex cartesian
plane as exemplified in figure 2.6. While the independent variable in A[ux] and Φ[ux]
was the input modulus to the HPA, in a parametric representation it corresponds to a
nonlinear scaling P[ux] = up such that the new input parameter now corresponds to
the total distance measured along the parametric curve from the origin of the complex
plane. Thus, the output for a given up is a vector on this plane with the amplitude A[ux]
and the phase distortion Φ[ux]. In this figure we represented in a proportional scale the
parametric curves for the HPA model in (2.26) and (2.27) and for its corresponding PD
function presented in (2.31) using also (2.34). The AM/AM direct and inverse transfer
functions appear as dotted lines and are used to project the vectors over the parametric
functions since it is more intuitive than finding, for instance, P−1[0.725]. Thus, in this
example, an input vector xin = 0.95∠0o is applied to the parametric PD resulting in
the pre-distorted vector xpd = 0.725∠ − θo which is in turn applied as the input to the



Chapter 2. Non-linear models for High Power Amplifiers 27

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real part

Im
a

g
in

a
ry

p
a

rt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Sat.

Sat.

xin

x
pd

x out

0.95

0.725

��� 20.67º

�

-�

A
M

/ A
M

AM
/ AM

inverse

Complex PD

HPA

Figure 2.6: Representation of the complex HPA Saleh curve and its pre/post-distortion as
parametric I-Q curves.

parametric HPA whose output is finally the vector xout = 0.95∠θo. Clearly, the phases of
these last vectors cancel each other thus obtaining a linear unitary transference.

2.2.2 Comments on Invertibility

In the previously presented graphics we have shown the ideal pre-distortion of the Saleh’s
model HPA up to the saturation point As letting the PD response be arbitrarily defined
for inputs beyond such level. This is basically due to the limitation found in evaluating
the theoretical AM/AM inverse in (2.31). Nevertheless, the 4-parameter expressions of the
Saleh model are valid characterizations that fit the measured input-to-output response of
real TWTs that, unlike the SSPAs, present a continuous, smooth and non-constant I/O
relation in a range that exceeds the AM/AM saturation point as we observed in figure
2.1. In this sense, the nonlinear distortion introduced by an HPA can be divided into two
significant categories:

- Distortions originated by the AM/AM and AM/PM nonlinear behaviour of the HPA
for input signal values within the ‘valid’ (under-saturation) input range [0, As].
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- Distortions due to the saturation imposed by the AM/AM characteristic over the
input signal when its amplitude exceeds As.

where the former type corresponds to the portion of nonlinear effect that can be effectively
counteracted by pre-distorting the input signal through the correct inverse AM/AM and
AM/PM curves, while the second type refers to degradations that cannot be compensated
by any efficient mean. In practice, we know that the linearization of HPAs achievable with
a digital pre-distorter can be defined only within the valid input range that goes from the
zero input amplitude to the saturation point. This is logical since digital PDs are adapted
using an attenuated and down-converted observation of the real distorted signal at the
HPA’s output. Thence, a pre-distorter only introduces modifications in the low power
base-band signal samples without adding any significant extra power to the input signal
to the HPA. This means that ideally the PD will execute a suitable redistribution of the
signal energy and therefore, a spectral regrowth effect is expected to take place from the
input to the output of the PD after which it is compensated at higher power levels by the
HPA distortion.

When the AM/AM transfer (not gain) characteristic of a nonlinear device, given
by the complex function A[|x|], presents an absolute maximum As, then this maximum
determines an upper bound for the output range of the signals transmitted through
this device. In such case, we can make a general AM/AM linearization restriction by
observing there is no one-to-one pre-mapping |x| → A−1[|x|] in the input domain of this
nonlinear function, such that, A

[
A−1[x]

]
> |xmax|, since the AM/AM saturation implies

{|x|, A−1[|x|]} ∈ [|xmin|, |xmax|].

However, this restriction does not apply for the phase component of the signal since
its output range is always bounded by [−π, π] and therefore it is always possible to
invert with a PD the nonlinear phase rotation even when |Φ[|x|]| > π, as long as the
x → {A[|x|],Φ[|x|]} mapping is a well defined one-to-one correspondence. This relation
is not clearly given in the separated AM/AM and AM/PM modulus-dependent curves
which could present two or more images each for the same input amplitude |x| but
remain a single-valued I/O correspondence when they are jointly considered as the
real and imaginary components of the previously defined parametric function H[up]. In
the examples of figure 2.7, where ui denote modulus of the complex input xin, we can
distinguish between the linearization and invertibility limits of a complex non-linear
characteristic by comparing amplitude-phase transfer pairs with their corresponding
parametric representations. In the figure (a) the AM/AM curve reaches saturation after
the maximum of the AM/PM. Analytically, the inverse of each separated curve could
be well defined only up to the respective maxima Asat and Psat. However, the shaded
region that defines the operation zone where an HPA could no longer be linearized under
these conditions starts after Psat at u3. This is because the phase distortion terms for
u2 ≤ |xin| ≤ u3, which are bi-mapped in the AM/PM curve, correspond to different
images in the AM/AM curve and hence the I/O distortion mapping can be identified
without ambiguities. Indeed, this example features one-to-one assignation up → H[up]
all along the parametric curve as represented on the right. Therefore, the curve therein
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Figure 2.7: Representation of AM/AM and AM/PM characteristics as parametric I-Q curves. In
(a) the AM/AM and AM/PM curves feature independent saturation and lead to a unievaluated
parametric curve which is therefore invertible. In (b) the circles show the multievaluation of the
complex function which means that this characteristic is non-invertible. The shadowed regions
show the limit of the invertible region by means of pre-distortion.

shown is completely invertible since it is bijective in its parametric definition. In the
second example, in figure 2.7(b), it is shown how the linearizable zone is determined by
the AM/AM saturation rather than by the AM/PM maximum. Furthermore, in this
example we characterized a critical case where the AM/AM and AM/PM transfer curves
coincide in being surjective for the same values x1 and x4 in their common domain. As a
result of this, the corresponding parametric curve on the right presents a self-intersection
point and therefore it corresponds to a non-invertible function.

The algorithms for PD estimation included in this work are capable of compensating
for the AM/AM as well as the AM/PM nonlinear distortions. However, their adaptive
working principle is based only on information about the input modulus to the PD
processor which is conveyed by activation or membership functions. In later chapters
it is shown that this is enough information to achieve good linearization performance
within the under-saturation region of a nonlinear memoryless HPA. Nevertheless, other
applications (probably not involving power amplification) could require the identification
of a complex nonlinear function under and over the AM saturation. In such cases, it will
be necessary to incorporate phase-mapping information, rather than the unreferenced
phase rotation herein used, in order to perform the identification of the inverse parametric
function for its subsequent compensation. It is clear that such applications would not
be concerned with the same efficiency maximization criteria commonly used in HPA
linearization, but they will likely coincide in some error optimization strategies used in
the proposed adaptive identification algorithms.



30 2.2. High Level HPA Model for Simulations

Finally, it is worthy to note that within the range [0, As], certain difficulties in lineariz-
ing the HPA response can be expected for input values close to the saturation point where
the pre-distortion curve variations make the derivaive of A−1[·] tend to infinity. A good
approximation to the optimum PD curve in this region would imply a large number of
interpolation points to achieve enough resolution to accurately fit the ideal PD. However,
increasing the number of interpolating points along the whole curve would constitute a
very inefficient solution as it would increase drastically the computational burden. Since
this is a relevant parameter for designing an efficient solution for linearization, in the
algorithms proposed in this thesis, we will include a technique for the adaptive allocation
of a fixed number of interpolation points to be used instead of the uniform augmentation
of the resolution along the estimated curves. This technique will be shown through sim-
ulations to be an effective tool to adapt the PD in highly nonlinear regions of the gain
curve with reduced computational complexity.




