
Chapter 3

Signal Model and System Definitions

A general system description and signal model definitions are needed before designing
linearization algorithms. Many of the definitions and notations included in this chapter
will be referenced later and will be applied to the formulation of the algorithms. Theoretical
analysis and characterization of the signal model is developed in order to support the
subsequent signal processing strategies. The importance and advantages of choosing OFDM
as the modulation scheme for the signal model will become more evident as the model
structure is developed within these sections.

3.1 General System Description

The general definitions regarding the generation and structure of the OFDM signal will
be of great interest in order to design the digital processing strategies for linearization
presented in this work. Therefore, a first revision of the OFDM basics can be helpful to
establish some properties that could be exploited in later chapters.

The general principles of the OFDM system have been analyzed and described
in very few comprehensive technical literature such as [8]. The numerous theoretical
aspects that a complete characterization of OFDM would imply, have not been unified
yet in a single reference, being instead inherent to a wide range of specific documents.
Besides this, in the past few years an increasing number of researchers have devoted
their efforts to mainly providing performance assessments of OFDM-based systems
reported in various technical publications. Moreover, the inner details of the OFDM
signal structure normally appear as specific contents in a variety of technical standards
available for last-generation digital communication systems [2][3][4]. However, there
exists a relative shortage of theoretical publications on some aspects of OFDM theory.
Many issues within this field still deserve further treatment. For instance, the impact
of the interaction between the D/A domains in presence of a highly non-linear channel
constitutes an interesting research topic whose detailed study could help assessing the
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32 3.1. General System Description

higher-level models in which some linearization strategies are based on. In light of
this, it is worthwhile to review the basic formulation of the OFDM signal model in
order to gain insight for the development of a more detailed discussion of the OFDM
signal model, focusing specifically on the treatment of the non-linearity problem.
Thus, along this section we shall point out some crucial formulations in order to make
the thesis self-contained in terms of the particular signal model that will apply henceforth.

3.1.1 OFDM Signal Generation

Basically, the OFDM signal is made up of a sum of N complex orthogonal subcarriers
(indexed with k = {0, 1, 2, . . . , N − 1}), each one independently modulated by using M-
QAM data dk. If we let fc be the RF carrier frequency, then one OFDM symbol with
duration T and starting at t = ts has the following passband expression in the time
domain:

s(t) =

 Re

{
N−1∑
k=0

dke
j2π(fc+

(N−1−2k)
2T

(t−ts))
}

; t ∈ [ts, ts + T ]

0 ; otherwise.
(3.1)

Nevertheless, as demonstrated in later sections, the distortion effect introduced by
RF non-linear amplifiers in a complex passband signal like (3.1), can be completely
characterized in base-band which is computationally more efficient. Therefore, we will
often concentrate our analysis on the base-band equivalent model (also called low-pass
equivalent) of the OFDM signal and its corresponding communication system represen-
tation.

Figure 3.1 shows a representation of a general OFDM system, where the modulation
and demodulation are performed as block-oriented processes that can be efficiently imple-
mented through the Fast Fourier Transform (FFT) algorithm. In this system, the incoming
M-QAM symbols are critically sampled (one sample per information symbol/subcarrier)

and grouped within the column vector dx =
[
dx[0] · · ·dx[N − 1]

]T
, thus forming the in-

formation signal blocks of length N . The symbols dx[n] are generated at a rate fs = 1/Td,
and modulate separately the N orthogonal subcarriers during the whole i-th time interval
Ii = [iT, iT + T ], defined for one OFDM symbol with period T = NTd = N/fs. Then,
the continuous time complex envelope of the base-band OFDM signal can be written for
any instant t as

bx(t) =
1√
N

N−1∑
k=0

dx(k, i)e
j2πfkt, for t ∈ Ii (3.2)
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Figure 3.1: Block diagram of the OFDM modulation stages.

where fk = k fs

N
= k

T
is the k-th subcarrier frequency, and dx(k, i) is the M-QAM

symbol modulating the k-th carrier during the whole i-th OFDM symbol interval. As
a definition of stationarity for OFDM signals, dx(k, i) are normally assumed to be
mutually independent and identically distributed symbols from an M-QAM alphabet

M =
[
(2m − 1 −

√
M) + j(2n − 1 −

√
M)
]
; (m,n) = {1, 2, . . . ,

√
M}. According to

this, and unless otherwise indicated in specific sections, we will constrain our analysis
(without loss of generality) to the first OFDM symbol, transmitted in the interval I0.
Then, from (3.2) the corresponding OFDM symbol at the critical sampling rate fs, con-

sists of the set of Td-spaced base-band signal samples bx =
[
bx[0] · · · bx[N−1]

]T
(elements

bx[n] = bx(nTd), with n = {0, . . . , N − 1}) obtained by taking the IDFT of the first in-
coming data frame dx (elements dx(k, 0) = dx[k], with k = {0, 1, . . . , N − 1}). The n-th
element in the discrete-time base-band signal vector bx is then given by

bx[n] = bx(nTd) =
1√
N

N−1∑
k=0

dx[k]e
j 2π

N
nkw [n/(N − 1)] (3.3)

where w [·] is a discrete rectangular window that is defined by

w [r] =

{
1 ; 0 ≤ r ≤ 1
0 ; otherwise.

(3.4)

Then, for the one step generation of bx, the calculation of (3.3) for (n, k) = {0, . . . , N−
1}, can be equivalently performed as the following matrix operation:

bx = FHdx (3.5)

where F is the DFT matrix whose hermitian is associated to the inverse operation IDFT.
According to (3.3) and (3.5) this DFT matrix can be defined as
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F(N×N) =
1√
N
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(3.6)

where we can easily observe the important condition:

FHF = I(N). (3.7)

Note that every column in (3.6) corresponds to a complex subcarrier with a normalized
frequency that depends on the size of the FT (N must be power of 2 in order to perform
IFFT and FFT using a radix-2 or radix-4 algorithm [8]).

To simplify the basic signal model description we assume for the moment that the
transmission block shown in figure 3.1 is characterized by a perfectly linear discrete trans-
fer function. Thus, the different transmission stages therein embedded (such as D/A-A/D
converters, filters and the non-linear HPA) shall be subsequently added and its effects
discussed in later sections to complete the real system description. Then, according to
the previous assumption, in reception, the FFT is applied to the transmitted base-band
signal samples by[m] to recover the original M-QAM data. Hence, the k-th data symbol
given to the M-QAM demodulator is obtained as follows:

dy[k] =
1√
N

N−1∑
m=0

by[m]e−j
2π
N
mk. (3.8)

The vector dy =
[
dy[0] · · ·dy[N − 1]

]T
, with the demodulated M-QAM symbols from

the respective transmitted block, can also be obtained as the FFT of the received sequence
by :

dy = Fby . (3.9)

Along with (3.1) through (3.9), we could also refer to OFDM signals in a more general
form with a pair of passband and base-band equivalent signal models in the form,

sp(t) = Re
{
bx(t)e

j2πfct
}

(3.10)

bx(t) = ux(t)e
jαx(t) (3.11)
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respectively, where ux(t) = |bx(t)| corresponds to the complex envelope of the base-band
signal. If we let (3.11) be a simplified representation of the OFDM signal in (3.2) we
have that, for large values of N (> 100) and by means of the Central Limit Theorem,
the CDF of bx(t) can be well approximated by that of a zero-mean complex Gaussian
random process with uncorrelated in-phase and in-quadrature components. Thus, the
modulus ux(t) = |bx(t)|, obtained after the IFFT and P/S conversion in the OFDM
modulator (figure 3.1), can be considered Rayleigh distributed. Additionally, the phase
information Arg{bx(t)} = αx(t) can be considered as uniformly distributed in the interval
[−π, π]. Statistical characterization of the non-linear distortion of an OFDM signal will
be addressed more in detail in a later chapter to develop a special pre-distortion scheme.

Up to this point we have considered that no aliasing is introduced along the
transmission stages. However, in real systems, operating at critical sampling rate will
produce intolerable aliasing levels, specially when samples pass through the digital-analog
converters. Moreover, spectral spreading of the base-band signal is expected due to the
nonlinear nature of the HPA. Therefore, oversampling and filtering procedures must be
suitably defined. We shall include some details regarding this after reviewing another
important parameter that must be taken under consideration: the cyclic extension.

3.1.2 Guard Time and Cyclic Extension

One of the main properties that make OFDM appealing is its efficiency in counteracting
multipath delay spread. In most OFDM applications a guard interval is inserted between
OFDM base-band signal blocks to prevent intersymbol interference (ISI). This guard time
is normally chosen larger than the expected delay spread so that multipath components
from one symbol do not interfere with the next one. The guard itself will usually consist
of a sub-set of null or zero-valued signals. However, in such cases, although ISI is already
prevented by the inter-symbol distance, inter-carrier interference (ICI) may arise causing
the subcarriers to lose orthogonality. Thence, to overcome the ICI problem, normally the
OFDM symbol is cyclically extended along the guard time, so that any subcarrier coming
from direct or delayed replicas of the signal will continue to have an integer number of
cycles within an FFT interval of duration T . This ensures the orthogonality among the
different subchannels as long as the delay remains smaller than the selected guard time.
Normally, this cyclic extension (CE) is implemented in the form of a cyclic prefix (CP)
as shown in figure 3.2, where the extended OFDM symbol interval T1 = T + TCE is
represented for only three separate subcarriers.

In figure 3.3 an example with three OFDM subcarriers is shown in order to illus-
trate how a suitable cyclic extension can help preserve orthogonality in the presence of
multipath. In this particular example, the guard time is larger than the multipath delay
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Figure 3.2: Cyclic extension and windowing for three OFDM subcarriers.

undergone by the OFDM signal. Thence, the OFDM receiver demodulates a sum of pure
tone sine waves with uniform phase offsets, according to the transmitted symbol and the
sum of their delayed replicas. Thus, during each FFT interval of duration T , the orthog-
onality between subcarriers is maintained, since no discontinuous phase transitions from
the delayed path fall within any FFT integration interval.

Figure 3.3: Three consecutive OFDM subcarriers modulated with BPSK during three symbol
intervals. The cyclic extension of T/2 prevents the effect of the two-ray multipath at the receiver.

Along with the considerations regarding the multipath delay, we must note that
the IFFT/FFT, evaluated for one OFDM symbol, will only preserve the desired
orthogonality if the convolution in time between each separated subcarrier and the
impulse response of its corresponding subchannel is cyclic rather than linear. In
other words, as well as considering multipath delay, the guard time must be chosen
larger than the maximum duration of impulse response among the N subchannels.
In terms of frequency spectrum, this means that in OFDM the ICI is avoided since
the maximum of any single subcarrier should correspond to the zero crossings of all
the other carriers as shown in the example of figure 3.4, where the central spectrum
has been highlighted to emphasize the orthogonality with respect to the other subcarriers.
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Figure 3.4: Orthogonal subcarriers spectrum.

In many OFDM designs, a guard interval approximately between 10% to 25% of the
original symbol duration is employed [52]. In a HIPERLAN standard [4], for example,
a cyclic prefix of duration 0.8µS (or optionally 0.4µS) is copied from a 3.2µS useful
symbol part to obtain a 4.0µS total symbol interval . Thus, the cyclic extension must
not be understood as an exact periodic extension (PE). However, after removing the
cyclic prefix from the received OFDM block, the N samples of the original symbol can
be considered a basic periodic block, extracted from a virtual sequence of samples b̃x[n]
which is infinite and periodic. Thence, hereafter to refer to the cyclically extended version
of any signal vector x, we will use the notation x. We define the length of the discrete
CE (in number of samples) as the integer NCE. Thus, at critical sampling rate we have
that T1 = T NCE

N
.

The samples of the cyclically extended OFDM symbol in discrete-time are described
from (3.3) by including a simple extension of the discrete window w [·],

bx[n] =
1√
N

N−1∑
k=0

dx[k]e
j 2π

N
nkw [n/(N +NCE − 1)] . (3.12)

Alternatively, we define the CE operation over the input vector bx as

bx = Pηbx (3.13)

where the CE operator Pη depends on the relation η = NCE

N
which defines the following

partitioned matrix:
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Pη =



0(NCE×N∆) I(NCE)

I(N)


(3.14)

where N > NCE and N∆ = N − NCE . Hence, in (3.13) this matrix adds the last NCE

samples of the original signal vector of length N to the front of the extended symbol, thus
forming the cyclic prefix. Note that, in general, the dimensions of Pη will depend on the
length of the vector to be extended. As we show in the next section, this will depend on
whether the CE process takes place before (as in figure 3.1) or after signal oversampling.

3.1.3 Oversampling

In the previous expressions, the indexing of the elements from time-dependent vectors
(for instance, n in bx[n]) and the discrete-time evaluation using (nTs) = [n] coincide
in denoting critical sampling at Nyquist rate. However, since oversampling should take
place according to transmission hardware requirements, we must introduce the notation
x[n/L] to refer in general to the oversampling of the signal x[n] by a factor L. Similarly,
for the oversampled version of any vector x we will use the notation xL.

In the system shown previously in figure 3.1, the modulation stages operate at the
critical sampling rate fs = N/T . The corresponding transmission chain, including post-
extension oversampling, is shown in figure 3.5 where an L-rate interpolator block is in-
cluded to produce the cyclically extended and oversampled signal bxL which is then D/A
converted, filtered and transmitted in RF. At this point we must recall that the effect
of these transmission blocks (filters and D/A converters) will be discussed later, so that
they are still assumed to perform ideally.

The time-domain interpolation shown in figure 3.5 normally consists on two steps:
the insertion of (L − 1) zeros after each sample in the original sequence, and then a
lowpass filtering of the resulting extended sequence. Thus, the vector at the output of
the interpolator filter contains the unmodified original samples with (L− 1) interpolated
values in between. Regardless of the cyclical extension, it is assumed that the spectrum
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Figure 3.5: Transmission stages for figure 3.1, including oversampling by L.

of a well interpolated sequence bxL is almost identical to the spectrum that would result
from sampling the original signal bx at an L-times higher sampling rate. In practice, an
oversampled version of (3.3) can be obtained more efficiently through a frequency-domain
interpolation, which can be implemented by zero padding the IFFT as shown in figure
3.6. This operation is expressed as follows:

bx[ n
L

] =
1√
N

N−1∑
k=0

dx[k]e
j 2π

NL
nkw [n/(NL− 1)] (3.15)

=
1√
N

N
2
−1∑

k=0

dx[k]e
j 2π

NL
nk +

NL−1∑
k=NL−N

2

dx[k −N(L− 1)]ej
2π
NL

nk

w [
n

(NL− 1)
](3.16)

= IDFT
[
dx[0] . . . dx[N/2− 1] 0 . . . 0︸ ︷︷ ︸

N(L−1)

dx[N/2] . . . dx[N − 1]
]

= IDFT
(
dxzp

)
(3.17)

thus, the oversampled OFDM symbol vector bxL =
[
bx[

0
L
] · · · bx[NL−1

L
]
]T

is given by

bxL = FHdxzp. (3.18)

Note that the size of the FFT matrix, defined in (3.6), must depend on the length of the
vectors involved in each transformation. According to this, in (3.18) the matrix dimensions
correspond to (NL × NL). At the increased sampling rate fos = Lfs, the length of the
discrete CE is now NLce = NCEL samples, while its equivalent time-domain span is still
TCE = NCE

T
N

. Then, the oversampled version of the cyclically extended symbol in (3.12)
is obtained with
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bx[n/L] =
1√
N

N−1∑
k=0

dx[k]e
j 2π

NL
nkw [n/ (L(N +NCE)− 1)]. (3.19)

Equivalently, using the CE operator defined in (3.14), the corresponding output vector
for transmission can be expressed as

bxL = PηF
Hdxzp (3.20)

where the extention ratio is specifically η = NLce

NL
. This leads to larger CE matrix dimen-

sions but maintains the relative value of the CE over the oversampled signal vector length.

Once these basic topics concerning the signal generation have been described, we will
focus our attention on reviewing some important aspects on the frequency-domain repre-
sentation of the signal and the nonlinear distortion phenomenon. According to classical
modeling rules, the superposition principle does not hold for nonlinear systems and there-
fore the nonlinear part of such systems is expected to be simulated only in time domain.
However, the particular OFDM signal structure strongly suggests that the analysis of fre-
quency domain approaches is necessary to deduce and support system modeling criteria
and to expand our viewpoints in the search for new digital processing solutions.
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3.2 Analysis of the Frequency Domain Representa-

tion of the Signal

In this section we analyze some details on the frequency-domain representation of the
signal model previously presented. The aim is to take advantage of the particular OFDM
signal structure, to analytically describe the effect of nonlinear distortion and to find
suitable conditions for its compensation. Since digital pre-distortion is expected to perform
in discrete time-frequency domain, aspects like invertibility conditions and discrete repre-
sentation of analog stages should be also discussed in this first approach. Complementary
with the general Volterra Series Model (time domain), which is presented in section 2.1,
here we also derive the formulation of an analytical model for the characterization of
nonlinear distortion using a multidimensional frequency-convolution based expansion.

3.2.1 Analog Spectral Representation

According to the general definitions given in section 3.1.1, each independent OFDM
symbol must contain a combination of pure-tone complex subcarriers located at fk =
{0, 1

T
, 2
T
, . . . , (N−1)

T
}. Letting the symbol bx extend far beyond the period T , so as to pro-

duce a periodic signal, provides an ideal analog generation of a permanent OFDM symbol.
Such periodic extention of the signal will be denoted as b̃x(t). In frequency domain this
simplified model can be expressed in the form

X̃(f) =

N−1∑
k=0

dk δ

(
f − k

T

)
; 0 ≤ k ≤ N − 1 (3.21)

where dk are the complex coefficients M-QAM (included as dx[k] in eq.(3.3)) that convey
the amplitude and phase information that modulates each subcarrier within one OFDM
symbol. In general, we will consider that in one extended OFDM symbol, the subcarriers
are windowed (multiplied) in continuous time with a unitary amplitude rectangular pulse
w(t/Tp) of duration Tp which is defined by

w(t/Tp) =

{
1 ; 0 ≤ t ≤ Tp
0 ; otherwise

(3.22)

as we similarly defined for discrete time in equation (3.4). The frequency spectrum for
this continuous time unitary rectangular pulse is given by its Fourier Transform

W (f) = Tp
sin(πTpf)

πTpf
e−jTpπf = Tp sinc(Tpf)e−jTpπf (3.23)
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where the phase term e−jTpπf becomes null if the pulse is centered at the interval t =
±Tp/2. Using (3.23), the spectrumX(f) of a single OFDM symbol for a given interval Ii =
[iTp, iTp + Tp], can be expressed in a simplified way as the frequency-domain convolution
between the window W (f) and the group of N Dirac pulses (OFDM subcarriers),

X(f) = W (f) ∗
N−1∑
k=0

dk δ

(
f − k

T

)
=

N−1∑
k=0

dk W

(
f − k

T

)

= Tp

N−1∑
k=0

dk sinc

(
Tp

(
f − k

T

))
e−jTpπ(f− k

T ). (3.24)
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Figure 3.7: Frequency domain equivalent for the time windowing of OFDM subcarriers given by
the convolution of deltas located at fk and the FT of a square window of duration Tp. The dotted
plot on the left shows the adequate frequency spacing relation (T = Tp) to obtain orthogonality

This operation is represented in figure 3.7 only in terms of amplitude spectrum and
considering dk as constant amplitude modulation data (QAM). From this figure, we can
easily observe that only for windows of duration Tp = {T, 2T, 3T, . . .}, –which is called
a “periodic extension” (PE) of the symbol–, the evaluation of (3.24) will result in a
well distributed pattern of orthogonal subcarriers. This dependence of the orthogonality
between spectra from the FFT window length is shown in figure 3.8 for two different values
of Tp (see also figure 3.2 where the case Tp = T appears as a dotted line). Note that in
figures 3.7 and 3.8 the phase shifting term e−jTpπf associated to each ‘sinc’ spectrum is
not beign considered, so that only amplitude spectrums are represented.

The definition of one independent OFDM symbol implies that the subcarriers should
be declared null when out of the corresponding interval of duration T . Nevertheless,
in practice the system will transmit the cyclically extended symbol bx where these
N components are no longer orthogonal, although they remain centered at the same
frequencies fk as shown in figure 3.8b. Therefore, in the reception branch, the samples
of the cyclic extension (CE) must be discarded to re-create the original OFDM symbol,
thus obtaining a periodic-like signal block (integer number of cycles for each subcarrier)
for the FFT to process. Furthermore, windowing the received frame by T is required
to restore the orthogonality between subcarriers before demodulation. Nevertheless,
removing the CE (along with the use of a guard time which is discussed later) implies a
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Figure 3.8: Comparison between OFDM spectra using two different values for the window that
define the FFT interval. (a)using Tp = T results in orthogonality (b)using Tp > T the subcarriers
are no longer orthogonal.

certain cost in terms of SNR. Thus, processing the CE leads to a better spectral efficiency
but at the cost of an increased processing complexity.

Up to this point, we have characterized the undistorted input to the HPA. The
next important step is to describe the changes undergone by the signal spectrum
when it is distorted with a nonlinear device. Therefore, in the next subsection, the
input-output relationship of a simple memoryless non-linear HPA is analyzed through an
analog frequency domain approach based on an analytical spectral representation of the
nonlinear distortion effects.

3.2.2 Spectral Modeling of the Non-Linear Transference

We are now concerned with the frequency domain representation of the nonlinear
distortion. This first analog scheme aims to characterize the effect of the HPA over
the OFDM signal spectrum, which is intended to help develop an equivalent discrete
representation in later sections.

The basic representations of the OFDM signal given by (3.21) and (3.24) are well suited
analog expressions for our analytical modeling purposes. Nevertheless, we shall start with
a more general expression for the same input base-band signal and its corresponding
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spectrum,

bx(t)
FT←→ X(f) =

∫ ∞

−∞
bx(t)e

−j2πftdt.

Along with this, the inverse FTs of bx(t) and its complex conjugated are respectively

bx(t) =

∫ ∞

−∞
X(f)ej2πftdf

b∗x(t) =

∫ ∞

−∞
X∗(−f)ej2πftdf

while the squared modulus of the signal has the following correspondence:

u2
x(t) = bx(t) b

∗
x(t) = |bx(t)|2 FT←→ X(f) ∗X∗(−f) = rxx(f)

where rxx(f) corresponds to the autocorrelation of the signal spectrum X(f).

In accordance with these definitions, a reasonable choice is to consider that the HPA’s
base-band nonlinearity can be modeled as an amplitude-dependent multiplicative gain
according to

G(u2
x(t)) =

∞∑
q=0

gqu
2q
x (t) (3.25)

where the functional dependence of the gain model is restricted to even powers of ux(t).
This is rather logical since we normally intend to provide an input-output model for the
first zone output of the HPA 1. This means that only odd power nonlinear terms should
be contained in the series model of the nonlinear HPA output which is given by,

by(t) = bx(t)
∞∑
q=0

gqu
2q
x (t) (3.26)

where, recalling that by(t) = ux(t)e
jαx(t), it becomes clear that (3.26) contains only

odd-power components.

The evaluation of the time-frequency correspondence for a given set of even powers
of the base-band envelope u2q

x (t) for q = {1, 2, 3, . . .}, leads us to the following recursive
definition:

1Components of the normalized output spectrum for the interval ω = [0, 2π].
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u2
x(t)

FT←→ X(f) ∗X∗(−f) = r
(1)
xx (f)

u4
x(t)

FT←→ r
(1)
xx (f) ∗ r(1)

xx (f) ≡ r
(2)
xx (f)

u6
x(t)

FT←→ r
(2)
xx (f) ∗ r(1)

xx (f) ≡ r
(3)
xx (f)

...
...

...

u2q
x (t)

FT←→ r
(q−1)
xx (f) ∗ r(1)

xx (f) ≡ r
(q)
xx (f)

(3.27)

which is completed by defining r
(0)
xx (f) = 1. Then, from (3.26) we can express the PSD for

the base-band output of the HPA as,

Y (f) = X(f) ∗
∞∑
q=0

gqr
(q)
xx (f). (3.28)

Here, the nonlinear distortion is expressed in frequency domain as the convolution
of the input signal spectrum X(f) with the infinite summation of q-order spectral au-
tocorrelations, each one associated with a complex coefficient gq that act like weights
for intermodulation products. To express the first-order spectral autocorrelation, we use
(3.24) obtaining

r(1)
xx (f) = X(f) ∗X∗(−f) =

N−1∑
k=0

dkW

(
f − k

T

)
∗
N−1∑
k′=0

dk′W
∗
(
−f +

k′

T

)
. (3.29)

Now, since from (3.23) we can observe that the window spectrum exhibits hermitian
symmetry

W ∗(−f) = Tp sinc(−Tpf)ejTpπ(−f) = Tp sinc(Tpf)e−jTpπf = W (f), (3.30)

equation (3.29) becomes

r(1)
xx (f) =

∑
k,k′︸︷︷︸

N2elements

dkd
∗
k′W

(
f − k

T

)
∗W

(
f − k′

T

)
. (3.31)

For further simplification, note that the convolution of the frequency shifted windows
spectra in (3.31), which will be denoted as rww(f, k, k′), can be reduced as follows:

rww(f, k, k′) = W

(
f − k

T

)
∗W

(
f − k′

T

)
= W

(
f
)
∗W

(
f − k + k′

T

)
= T 2

p

∫ ∞

−∞
sinc

(
Tpτ
)
e−jTpπτ sinc

(
Tp(f −

k + k′

T
− τ)

)
e−jTpπ(f− k+k′

T
−τ)dτ

= T 2
p e

−jTpπ(f− k+k′
T

)

∫ ∞

−∞
sinc

(
Tpτ

)
sinc

(
Tp(f −

k + k′

T
− τ)

)
dτ

(3.32)
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and introducing the change of variable ψ = Tpτ ,we have

rww(f, k, k′) = Tp e
−jTpπ(f− k+k′

T
)

∫ ∞

−∞
sinc

(
ψ
)
sinc

(
Tp(f −

k + k′

T
)− ψ

)
dψ

= Tp e
−jTpπ(f− k+k′

T
) sinc

(
Tp(f −

k + k′

T
)
)

= W

(
f − k + k′

T

)
. (3.33)

Thence, using (3.33) in (3.31) yields

r(1)
xx (f) =

∑
k,k′

dkd
∗
k′W

(
f − k + k′

T

)
. (3.34)

By introducing a new variable δ = k + k′ in this last expression, we can rewrite it as

r(1)
xx (f) =

2N−2∑
δ=0

[ ∑
k+k′=δ

dkd
∗
k′

]
W

(
f − δ

T

)
(3.35)

where the summation term in square brackets corresponds to a discrete convolution of
the subcarriers information (M-QAM), i.e., the sum of possible intermodulation products
associated to the same phase shift δ/T . This term can be suitably redefined as

Dδ =
∑

k+k′=δ

dkd
∗
k′ ; for δ = {0, 1, 2, 3, . . . , 2N − 3, 2N − 2}. (3.36)

Extending the evaluation of (3.36) for all the different values of δ we have,

D0 = d0d
∗
0

D1 = d0d
∗
1 + d1d

∗
0

D2 = d0d
∗
2 + d1d

∗
1 + d2d

∗
0

D3 = d0a
∗
3 + d1a

∗
2 + d2d

∗
1 + d3d

∗
0

...
DN−1 = d0d

∗
N−1 + d1d

∗
N−2 + d2d

∗
N−3 + . . . + dN−2d

∗
1 + dN−1d

∗
0


(3.37)

DN = d1d
∗
N−1 + d2d

∗
N−2 + d3d

∗
N−3 + . . . + dN−2d

∗
2 + dN−1d

∗
1

DN+1 = d2d
∗
N−1 + d3d

∗
N−2 + . . . + dN−2d

∗
3 + dN−1d

∗
2

...
D2N−3 = dN−2d

∗
N−1 + dN−1d

∗
N−2

D2N−2 = dN−1d
∗
N−1.


(3.38)
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From (3.37) and (3.38) we can extract two different recursion rules that define the
computation of Dδ in (3.36) as the following piece-wise equation:

Dδ =



δ∑
�=0

d� d
∗
δ−� ; for 0 ≤ δ ≤ N − 1

N−1∑
�=δ−(N−1)

d� d
∗
δ−� ; for N ≤ δ ≤ 2N − 2.

(3.39)

0 1 2 3 N-2 N-1

0 0 1 2 3 N-1

1 1 2 3

2 2 3 4

3 3

N-2 2(N-2) 2N-3

N-1 N-1 2N-3 2(N-1)


�

k

k’

2(N
-1)+1

4(N-1)+1

8(N
-1)+1

16(N-1)+1

( a ) ( b )

Figure 3.9: (a) Square array with all possible combinations for k+k′. The size (N ×N) defines
2(N − 1) + 1 equipotential lines across the main diagonal for q=1.(b) The recursion analysis
defines 2q(N − 1) + 1 equipotential lines (values for δq) when q = {1, 2, 4, 8, 16, . . . , 2n}.

This compact expression helps us evaluate the spectral autocorrelation included in
(3.28) for different values of q so that we may search for a single expression for r

(q)
xx (f).

Thus, for q = 1 we have,

r(1)
xx (f) =

2N−2∑
δ1=0

D
(1)
δ1
W (f − δ1

T
) (3.40)

where D
(1)
δ1

is calculated using (3.39). The reason for the super index is to specify the
order q, likewise we include the sub index in δ1 = k + k′. Additionally, since k and k′ in
(3.35) could take any values within the range {0, . . . , N − 1}, we show in figure (3.9) a
graphical representation spanning all the combinatorial results for the sum k + k′ which
could be helpful in establishing the recursive relationship we are looking for. Then, for
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q = 2,

r(2)
xx (f) = r(1)

xx (f) ∗ r(1)
xx (f) =

2N−2∑
δ1=0

D
(1)
δ1
W (f − δ1

T
) ∗

2N−2∑
δ′1=0

D
(1)
δ′1
W (f − δ′1

T
)

=

2(2N−2)∑
δ2=0

∑
δ1+δ′1=δ2

[D
(1)
δ1
D

(1)
δ′1

] W (f − δ2
T

) =

2(2N−2)∑
δ2=0

D
(1)
δ2
W (f − δ2

T
) (3.41)

and similarly,

r(4)
xx (f) = r(2)

xx (f) ∗ r(2)
xx (f) =

2(2N−2)∑
δ2=0

D
(2)
δ2
W (f − δ2

T
) ∗

2(2N−2)∑
δ′2=0

D
(2)
δ′2
W (f − δ′2

T
)

=

4(2N−2)∑
δ4=0

∑
δ2+δ′2=δ4

[D
(2)
δ2
D

(2)
δ′2

] W (f − δ4
T

) =

4(2N−2)∑
δ4=0

D
(4)
δ4
W (f − δ4

T
). (3.42)

The recursion rule to obtain Dδq , when q = {1, 2, 4, 8, 16, . . . , 2n}, can be expressed in
the following constrained form:

D
(q)
δq

=


δq∑

δq′=0

D
(q′)
δq′

D
(q′)
δq−δq′ ; for 0 ≤ δq ≤ q(N − 1)

q(N−1)∑
δq′=δq−q(N−1)

D
(q′)
δq′

D
(q′)
δq−δq′ ; for q(N − 1) + 1 ≤ δq ≤ 2q(N − 1)

(3.43)

where is important to note that q′ = q/2. This expression is only suited for those q that are
powers of two. Thus, using (3.43), the analytical expression of the spectral autocorrelation
can be expressed as

r(q)
xx (f) = r

( q
2
)

xx (f) ∗ r( q
2
)

xx (f) =

q(2N−2)∑
δq=0

D
(q)
δq
W (f − δq

T
) (3.44)

for any q = 2n, with n = {1, 2, 3, 4, . . .}. In order to make (3.44) extensive for any
q = {1, 2, 3, 4, 5, 6, 7, 8, . . .}, we resort to a decomposition of the q-order autocorrelation
into a multi-convolution of 2n-order autocorrelations through the identity

r(q)
xx = r(2PQ)

xx ∗ · · · ∗ r(2P3)
xx ∗ r(2P2)

xx ∗ r(2P1)
xx ∗ r(2P0)

xx ;
∑

p=(P0,...,PQ)

2p = q (3.45)
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which simply corresponds to the binary decomposition of the exponent q.

The analog representation of the signal spectrum and the characteristics of its non-
linear transference are just a theoretical basis for the following analysis since in practice
any PD process will perform in discrete domain. Moreover, discrete representation
parameters shall be determined so as to ensure reliability and accuracy in the discrete
equivalent representation of analog stages within the transmission chain.
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3.3 Schemes for Discrete Domain Representation

In this section a number of aspects concerning the discrete representation of the system
and the signal model are reviewed. As previously seen, the OFDM system is character-
ized by an hybrid time-frequency structure where the HPA’s nonlinear distortion and its
linearization stages are expected to perform in discrete domain. Therefore, the following
analysis will be particularly focused on the discrete representation of the analog stages
involved in the signal transmission process. For this purpose, we develop here a purely de-
terministic treatment, where the analysis is limited to the transmission of a single OFDM
symbol and/or its various extensions. We aim to characterize the signal evolution through
the processing chain and provide a suitable description of how the M-QAM symbols are
transmitted on the multi-carrier pattern support.

H f( )D/A A/Dx n[ ] y n[ ]

h t( ) IIR
x t( ) y t( )

h n[ ]x n[ ] y n[ ]

H e( )
j2 f� n

Analog waveforms DiscreteDiscrete
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equivalent model

Band-limited
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1
fn

X e( )
j2 f� n

Band-limited ( continuous and
periodic discrete spectrum )

1
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Y e( )
j2 f� n

f
BB-

Band-limited
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(NO ALIASING)

H f( )D/A A/Dx n[ ] y n[ ]

h t( ) FIR
x t( ) y t( )

?

Analog waveforms DiscreteDiscrete
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F.T.

Reconstruction filter embedded
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F.T.
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Processing Memory
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Processing Bandwidth
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Figure 3.10: Contrasted approaches to obtain a discrete equivalent model.
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3.3.1 Preliminary discussion

In figure 3.10 we represent two different approaches that can be considered as counter-
parts for a preliminary discussion on how to define our discrete modeling scenario. The
objective here can be stated in general as the development of an equivalent discrete
model to faithfully represent the analog transference of a discrete input x[n] through
an analog channel H(f) and finally obtain the discrete output y[n]. The function H(f)
can be defined so as to represent the combined frequency response of several stages in
the chain (such as filters and channel selectivity) in a single linear time-invariant (LTI)
analog subsystem. Under these conditions, however, a modeling problem will arise with
the eventual inclusion of nonlinear blocks in the chain. One of these nonlinearities is
the HPA itself, which is placed among analog stages although it is ultimately modeled
in discrete domain, and another such nonlinearity is the PD processor, which will be
included before the D/A conversion at the transmitter.

For LTI systems the common approach for the discrete representation of the trans-
mission process, involving the signal model and equivalent system representation, is to
consider a band-limited process (figure 3.10(a)) where the FT of the continuous signal
is strictly conditioned to be X(f) = 0 for |f | > B at every point within the chain.
Along with this, assuming that each analog subsystem is also band-limited and with the
sampling rate fs fulfiling the sampling theorem requirements (i.e. Nyquist sampling at
fs ≥ 2B), signal reconstruction can be performed without any aliasing. The D/A con-
version is thus based on ideal interpolation of the samples using ‘sinc’ functions, which is
equivalent to restoring the continuous signal through ideal low-pass filtering. Note that
such filter should have an infinite impulse response such as h(t) = (sin(2πBt))/(2πBt).
Thence, two critical limiting factors for the applicability of this band-limited assumptions
can be pointed out:

• The band-limited frecuency response of analog stages is associated with an impulse
response of infinite duration. Then, to convert the analog transference y(t) = h(t) ∗
x(t) =

∫∞
−∞ h(τ)x(t − τ)dτ to its eventual discrete equivalent model, a discrete

convolution y[n] = h[n] ∗ x[n] =
∑+∞

m=−∞ h[m]x[n −m] must be performed with an
infinite duration h[n]. Then, the infinite summation can be circumvented by using
circular convolution if the input x[n] is periodic.

• A band-limited model is inadequate to include nonlinearities. Any subsystem
including nonlinearities introduces an important spectral regrowth (SR) and its
output will theoretically have an infinite bandwidth. Thence, discarding the out-of-
band information would critically affect signal reconstruction and the linearization
process since the pre-distorted signal spectrum conveys useful information in
components that are far beyond the bandwidth of the original signal.

This latter drawback may be sufficient for us to consider the time-limited approach of
figure 3.10(b) more adequate than the former band-limited assumptions. Nevertheless, it
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is also worthy to consider that a normal practice in simulating communication systems is
the use of a single sampling frequency for the whole chain. In such conditions the sampling
rate should be determined with regard to the subsystem having the largest bandwidth.
Thus, any subsystem including nonlinearities will be highly related to the determination
of this equivalent maximum bandwidth and thence to the sampling rate associated to the
system. Then, we can note that processing of strictly band-limited signals will require
careful attention with the “processing bandwidth” as the critical parameter for modeling.
Higher sampling frequencies are normally a stringent factor regarding real systems
limitations. In contrast, when no bandwidth constraint is defined for the signal model
and system design, the “processing memory” becomes the new critical parameter. Thus, a
reliable discrete representation can be achieved with lower sampling frequency values with
respect to the main band of the signal whenever the processing memory is larger than the
limited time-span assumed for the system. Hence, since the processing memory is a less
limited resource than the operating frequency for real implementations, the time-limited
approach seems to be the reasonable choice for modeling the transference of a signal with
well-defined time characteristics and including nonlinear effects. Some crucial comments
regarding figure 3.10(b), where the time-limited approach is represented, are the following:

• Using this approach, the time-limited impulse response h(t) associated with an
infinite bandwidth for H(f), could be represented through a discrete equivalent
model where the interpolation of sequences can now be performed in frequency
domain using ‘sinc’ functions.

• According to the time-limited assumption, the input and output signals at H(f)
are theoretically of infinite frequency span. This unlimited bandwidth, considered
at the input of the A/D block, implies that the discrete output sequence y[n] will
incorporate aliasing components that shall be identified in the model.

• Additionally, any nonlinear block added to the linear chain will introduce an
infinite number of spectral components. In particular, if the input signal x[n] is
a pre-distorted signal, it will present a widely spread frequency distribution with
infinite spectral components. Then, the reconstruction filter embedded in the D/A
converter must also be considered non-bandlimited.

Thus, using this second approach a theoretical equivalent discrete model can be
found, which is in fact the aim of this section. However, it is evident that none of these
two approaches could be efficiently implemented for modeling real systems, unless some
restrictions are applied. The duality of the modeling criterion shall be solved through
a trade off between time (processing memory) and bandwidth restrictions (processing
bandwidth) in order to reduce simulation complexity at the lowest cost in parameter
accuracy.
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Figure 3.11: (a) Samples of the OFDM symbol with cyclic extension (b) periodically extended
discrete signal (c) original OFDM symbol with the N M-QAM data samples.

3.3.2 Time–Frequency definitions and discrete signal structure.

From the deterministic structure of the analog input spectrum to the HPA, previously
given in (3.24), the information that completely defines the base-band input signal and
its spectrum is contained in the set of M-QAM data dx. This suggests the formulation of
a suitable equivalent discrete model that encompasses all the stages in the transmission
chain up to the demodulation of the base band information at the receiving end. The
general scheme for discrete time-frequency representation will first be discussed and then
an exact equivalent discrete model for signal transmission will be presented.

To start, it is convenient to recall the different versions of the signal that we have
defined and mentioned up to this point (see figure 3.11):

bx the available originally sampled symbol with length N ,

bx the cyclically extended symbol with length N +NCE , and

b̃x(t) the periodic extension of the OFDM symbol also denoted b̃x[n].

A scheme of these related signal definitions is shown in figure 3.11. A more complete
scheme appears in a later discussion, including a new auxiliar signal frame and windowing
definitions. The goal will be to find a suitable discrete spectral representation of bx
taking into account a minimum sampling criterion (sampling theorem) so that the D/A
reconstruction and filtering processes are not affected by the discrete windowing of the
signal.

Let us consider first the FT for the original OFDM symbol bx =
[
bx[0] · · · bx[N−1]

]T
,
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Figure 3.12: (a) Sample set in discrete time and (b) amplitude spectrum for the sampled
rectangular window of height 1 with N = 10 and (c)with N + NCE = 12. The dots show the
discretized spectra whose samples are in both cases separated by ∆ω = 2π

N . Note that, unlike
the spectrum in (b), for the extended window with length N + NCE = 12, the sampling points
at ω = k 2π

N �= 2πm do not coincide with the nulls in (c).

whose elements were defined in (3.3). By definition of the FT of a discrete sequence, we
have

X(ejω) = F(bx) =
∞∑

n=−∞
bx[n]e−jnω =

N−1∑
n=0

bx[n]e−jnω (3.46)

where the parameter

ω = 2π
f

fs
= 2πfn (3.47)

is the normalized angular frequency with respect to the sampling rate fs = 1/Ts. This
frequency normalization will apply henceforth to refer to the dependence of the FT of
discrete signals on the complex variable ejω. Unless otherwise stated, it will be assumed
that the signal samples of the base-band signal are acquired at fd = 1/Td, i.e., the same
generation rate of the M-QAM data at the modulator (no oversampling).

The sampled version of a single OFDM symbol bx can be obtained from the peri-
odic signal b̃x(t) whose spectrum, as seen previously in (3.21), consists of N pure tone
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Figure 3.13: OFDM spectrum for a discrete window of length 2N and using twice the critical
sampling rate.

subcarriers (analog deltas). Hence, we consider the windowing transform pair

bx = b̃x[n] wd[n]
FT←→ X(f) = X̃(ej2πfn) �Wd(e

j2πfn) (3.48)

where the periodically extended OFDM signal is time-limited with the Ts-sampled rect-
angular window wd(nTs) = wd[n] of duration T = NTs, shown in figure 3.12(a). The FT
of this discrete window is in turn given by

Wd(e
jω) =

sin(Nω/2)

sin(ω/2)
e−jω

(N−1)
2 (3.49)

which is a continuous and periodic spectrum with a period of 2π with respect to the
normalized frecuency ω. Therefore, the FT in (3.46) will correspond to a continuous and
periodic spectrum, equivalent to the superposition of an infinite number of replica of the
OFDM base-band spectrum (N subcarriers) in shifted placements, each separated by
the sampling frequency. An example of this is shown in figure 3.13 for a discrete window
with length 2N and using twice the critical sampling rate.

As shown in figure 3.12(b), the discrete window spectrum can be discretized by taking
frequency samples at the critical rate ωk = 2πk

N
with |k| = {0, 1, 2, . . .}, whence we obtain

a discrete linear spectrum that presents null values except for the frequencies |ωk| =
{0, 2π, 4π, . . .}. This sampled version of the discrete window spectrum in (3.49) can also
be expressed using the corresponding DFT,

Wd[k] =
sin(πk)

sin(πk/N)
e−jπk

(N−1)
N . (3.50)

The extended discrete window and its corresponding spectrum are also shown in figure
3.12 for an extended length N1 = N +NCE, where for simplicity we choose N = 10 and
NCE = 2. Then, an extended window w1[n], of duration N1, is applied over the virtual

periodic sequence b̃x[n] (see figure 3.11) to extract the extended symbol

bx = b̃x[n] w1[n].
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Thence, the spectrum of the CE OFDM symbol shown in figure 3.11(a) could be
obtained as,

X(ejω) = X̃(ejω) �W1(e
jω) =

1

2π

∫ π

−π
X̃(ejω

′
)W1(e

j(ω−ω′))dω′ (3.51)

where � denotes a circular convolution and X̃(ejω) is the FT (periodic) of b̃x[n]. Although
the CE of an OFDM symbol, as described in previous sections, does not constitute by
definition a periodic extension, the samples of the CE can be considered as a part of it.
Thus, any N consecutive samples within the extended symbol bx could be considered as
one periodic block extracted from the virtual periodic base-band signal shown in figure
3.11(b). Similarly, to define b̃x[n] from the sequence bx of length N , we define a periodical
extension of this latter according to,

b̃x[n] =
+∞∑

m=−∞
bx[n−mN ] = bx[n] ∗

+∞∑
m=−∞

δ[n−mN ] (3.52)

so that b̃x[n] = b̃x[n±mN ] for any ±m integer. Note that the train of discrete-time deltas
included in (3.52) corresponds to the following definition:

t[n] =
+∞∑

m=−∞
δ[n−mN ] =

{
1 ; n = mN
0 ; otherwise.

(3.53)

whose respective FT F(t[n]) can be alternatively expressed by

Tδ(e
j2πfn) =

1

N

+∞∑
k=−∞

δ(fn −
k

N
) =

2π

N

+∞∑
k=−∞

δ(ω − 2π
k

N
) =

1

T

+∞∑
k=−∞

δ(fnfs −
k

T
). (3.54)

Thus, with the PE defined through the convolution in (3.52), bx becomes the sampled

periodic signal b̃x[n] whose corresponding spectrum

X̃(ejω) =

∞∑
n=−∞

b̃x[n]e−jnω = X(ejω)Tδ(e
jω)

= X(ej2πfn)
1

N

+∞∑
k=−∞

δ(fn −
k

N
) = X(ej2π

f
fs )

1

N

+∞∑
k=−∞

δ(
f

fs
− k

N
) (3.55)

is clearly periodic and discrete. Therefore, the FT of the CE symbol, X(ejω), can be
completely characterized over the interval ω = [0, 2π] in discrete frequency domain by
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suitably defining the DFT X[k] of N samples from one period of the signal. The discrete
equivalent for the spectrum in (3.55) is then

X̃(ejω) =
2π√
N

+∞∑
k=−∞

X[k]δ(ω − 2π
k

N
) (3.56)

where

X[k] =
1√
N

N−1∑
n=0

bx[n]e−j2π
k
N
n (3.57)

are the coefficients obtained with the DFT of the signal bx, associated to the unitary
area analog deltas of its harmonic composition.

Then, given the discrete periodicity of the spectrum in (3.56) we can reevaluate (3.51)
obtaining

X(ejω) = X̃(ejω) �W1(e
jω)

=
2π√
N

+∞∑
k=−∞

X[k]δ(ω − 2π
k

N
) �W1(e

jω)

=
2π√
N

+∞∑
k=−∞

X[k]W1(e
j(ω−2π k

N
)). (3.58)

The spectrum in (3.58) can be sampled in frequency at, say, ωk0 = 2π k0
N

, thus we can
rewrite (3.58) as

X(ejωk0 )|
ωk0

=2π
k0
N

=
2π√
N

+∞∑
k=−∞

X[k]W1(e
j(ωk0

−2π k
N

)). (3.59)

In this last expression we must observe that the condition

W1(e
j(ωk0

−2π k
N

)) = 0 ; k0 �= k

is not always true if N1 > N . It follows from this that the observed spectral values for
each ωk0 = 2π k0

N
will contain the data X[k0] of the corresponding sampled subcarrier,

but additionally will present the ICI from the tails of the remaining subcarriers because
they are no longer orthogonal as long as an extended length N1 > N has been applied
for windowing. A simplified graphical example of this effect is shown in figure 3.14 for
two adjacent subcarriers.

The ICI appearance described previously is just one of the critical aspects concerning
the formulation of our discrete model. Basically, before introducing or testing any nonlin-
ear block (HPA and linearization devices) we expect to provide a complete and accurate
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Figure 3.14: Sampled spectra at wk0 = ko
πTs
T for two adjacent subcarriers (a) using an N -lenght

discrete window (b) using the CE discrete window of lenght N + NCP .

discrete model of a completely linear transmission chain. To achieve this, several impor-
tant details with regard to the D/A conversion and signal propagation aspects must be
carefully reviewed.

Note that from (3.47), in a normalized spectrum, the frequency allocation for the
group of deltas that represent the N subcarriers of the base-band OFDM signal in (3.21)
will be in general given by ωk = 2πk Ts

T
, with k = {0, . . . , N − 1}. Thus, if the critical

sampling rate fs = N/T is considered, the N subcarriers will be centered at ωk = 2πk
N

which means that the N subcarriers will span the entire normalized frequency range
[0, 2π]. Thus, according to the samlping theorem, the minimum sampling rate must be
twice the bandwidth occupied by the N subcarriers of the OFDM signal, this is the
Nyquist sampling rate given by fs = 2N

T
.

3.3.3 D/A Conversion

In figure 3.15 two parallel chains are presented in a descriptive scheme where the left-hand
branch is concerned with the transmission process of the virtual periodic signal b̃x[n] while
the right-hand branch represents the equivalent process for the real extended symbol bx.

At the virtual branch, the D/A converter model can be conveniently split into two
parts. First, a delta functions generator (DG) with a sampling frequency matching the ra-
tio of the incoming sample stream fs = 1/Ts is applied. The analog impulses are weighted
with each sample of the signal so that the signal at the output of the DG (marked with



Chapter 3. Signal Model and System Definitions 59

b nx[ ]~
X( )e

j2 f� n

Periodic (virtual) Extended (real)

~
b nx[ ] X( )e

j2 f� n



Generator

�( )t

Model
HPA



Generator

H0( )f

HPA

A

B

C

Periodic digital sincs

H f0( )

A1

B1

C1

w n
1
[ ] W e1( )

j2 f� n

Discrete window ( )N N N1 = + CE

Periodic analog deltas

�1

�2

H fA( ) H fA( )

Figure 3.15: Equivalent transmission chains.

A in the figure) is expressed as

b̃Ax (t) =

+∞∑
m=−∞

b̃x[m]δ(t−mTs) (3.60)

which is now an analog periodic signal whose FT is also periodic and can be expressed as

X̃A(f) = X̃(f) ∗ 1

Ts

+∞∑
m=−∞

δ(f −mfs). (3.61)

This device is then followed by a filter with rectangular (time-limited) impulse response
of duration Ts that acts as a zero-order hold for each sample. Centered at the origin, the
holding pulse is defined by

ΠTs(t) =

{
1 ; −Ts

2
≤ t < Ts

2

0 ; otherwise
(3.62)

whose corresponding spectrum is

PTs(f) = Ts
sin(πfTs)

πfTs
= Tssinc(fTs). (3.63)

The position of the delta function associated to each sample must coincide with the

rising flank of its corresponding holding pulse. Therefore, the shifted pulse ΠTs

(
t− Ts

2

)
will
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Figure 3.16: (a) Periodic spectrum at the output of the delta functions generator (b) the
spectrum is no longer periodic after filtering with PTs(f)

be applied in combination with the weighted train of deltas from (3.60), thus producing
an output at point B equal to

b̃Bx (t) = ΠTs

(
t− Ts

2

)
∗ b̃Ax (t) (3.64)

=

+∞∑
m=−∞

b̃x[m]ΠTs

(
t− Ts

2
−mTs

)
. (3.65)

The frequency domain equivalent for b̃Bx (t) can be obtained through the convolution
between the spectrum of the first holding pulse, which is centered at t = Ts/2, and the
periodic spectrum given in (3.61). This results in a non-periodic spectrum, as shown in
figure 3.16, that can be calculated using (3.61) and (3.63) as follows:

X̃B(f) = X̃A(f)PTs(f)e−j2πf
Ts
2 (3.66)

where the phase shifting factor corresponds to a Ts/2 time shifting of the holding pulse.

After the sample and hold stages, the signal must be lowpass filtered with the
reconstruction filter H0(f) before the HPA. At this point, it is a desirable condition,
in light of the nonlinear distortion model presented in section 3.2.2, that the output
spectrum of H0(f) be a general linear combination of orthogonal ‘sinc’ functions. This is
because the multiconvolution of such functions becomes a single ‘sinc’ which could yield
important simplifications for the formulation of the final analytical model.

Nature of H0(f)

In general, there exist two different options to define the reconstruction filter. On one
hand we could consider the ‘bandlimited approach’. This is done by letting the frequency
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profile of H0(f) be an ideal rectangular function presenting an infinite duration impulse
response h0(t). On the other hand, we have the ‘limited time’ approach, where the impulse
response of the filter h0(t) is considered time-limited to a durationDH . Thus, the frequency
equivalent of the filter can be expressed as a combination of ‘sinc’ functions which is
suitable for modeling purposes.

The bandlimited approach can be characterized, for instance, by a Whittacker recon-
struction procedure [53] where, according to the sampling theorem, a lowpass square filter
with the transfer function

Hw(f) =

{
T ; − π

T
≤ 2πf ≤ π

T

0 ; otherwise

is defined to reconstruct the signal x(t) from a set of N samples x[n]. In this expression
1/T is the highest sampled signal frequency. Through this approach, the reconstructed
version of the signal is obtained as

x̂(t) =
N−1∑
n=0

x[n]
sin[(π/T )(t− nT )]

(π/T )(t− nT )
. (3.67)

This sum in (3.67), called the Witthacker’s cardinal function, is a general theoretic
expression for reconstruction whose implementation is not possible due to the infinite
duration of the components within the summation in (3.67). Besides this, a major
disadvantage of the bandlimited filtering is that higher frequency components are
completely eliminated. This is specially acute if we consider that much of the information
of the pre-distorted signal will be contained in the tails of the regrown spectrum since
the PD is a nonlinear operation.

Another example, this time for limited time filtering, can be the H(s) = N(s)
D(s)

filter
structures given by a quotient of terms, in the Laplace transform domain, that determine
the zeros/poles of the frequency response. When seen in time domain, the Laplace terms
of such transfer functions become a combination of exponential terms (partial fraction
expansions) that decrease quickly enough to be considered zero beyond a certain lapse of
time. Butterworth filters are characterized by a smooth power gain characteristic which
exhibit maximum flatness in the passband along with a cutoff transition whose sharpness
depends on the number of poles of its transfer function.

Regarding these two possible approaches for the definition of the filter H(f), a
trade-off will arise between cutoff sharpness and the duration of the time impulse
response of the filter. Then, the two main parameters involved are,

- Dx = Duration of the windowed symbol in time.
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- Dh = Duration of the impulse response of the filter H0(f).

From equation (3.55) we know that X̃(f) is discrete and periodic. Then according to

(3.61) the spectrum X̃A(f) at the input of H(f) is periodic and contains a combination of
analog deltas instead of samples at f = k

NTs
. A general expression for the input of H0(f),

at the point B, is given by,

X̃B(f) =

+∞∑
k=−∞

dk sinc

[
Dx(f −

k

Dx
)

]
ejDxπ(f− k

Dx
).

While, in general, any filter with a time-limited impulse response h0(t) corresponds to
an unlimited bandwidth frequency response that can be expressed in the form,

H0(f) =
+∞∑

k′=−∞
Hk′sinc

[
f − k′/Dh

1/Dh

]
.

Hence, the filtering operation could be expressed as a linear combination of the result-
ing product of sincs,

Ỹ C(f) = X̃B(f)H0(f)

=

+∞∑
k=−∞

+∞∑
k′=−∞

dkHk′ sinc

[
Dx(f −

k

Dx
)

]
sinc

[
f − k′/Dh

1/Dh

]
ejDxπ(f− k

Dx
)

which will likely lead us to intractable expressions without a closed form to decribe the
input to the HPA.

Finally, it is noteworthy to mention that the D/A conversion process, performed
along the left branch in figure 3.15, has the advantage that the resulting spectrum at A,
B and C will contain only analog deltas since the blocks at every step deal with periodic
signals. Therefore, filtering with H0(f) corresponds in this case to a simple area-scaling
of the analog deltas that compose the spectrum at B according to the frequency mask
of the filter. In contrast, the same filtering with H0(f) has more modeling complexities
when it is carried out over the spectral components of the real extended signal at the
right branch (continuous sincs). The sidelobe tails of a sinc frequency pattern, obtained
as the FT of a rectangular pulse, present a slow decaying profile which may lead to high
levels of intercarrier interference (ICI) and broadly affect the bandwidth of interest. If the
frequency response of the filter is assumed to vary slowly with respect to the subcarrier
bandwidth, then the filtering selectivity could be approximated as a constant gain for
each component and we can consider simple component scaling for the model. However,
when the filter gain varies significantly within the subchannel bandwidth, filtering forces
the spectral components to loose its original symmetry so they can no longer be treated
as sinc frequency patterns. This negative effect will be specially acute for modeling
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purposes for the cases when the signal spectrum contains non-orthogonal sincs. Thence,
modeling the transmission process for the real available sampled signal will require the
formulation of an exact equivalent discrete model where the influence of any approx-
imation or constraint in the sense of D/A compatibilities can be quantified and controlled.
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3.4 Exact Equivalent Discrete Model for Transmis-

sion

In order to develop a reliable theoretical model for the precise assessment and correction
of the nonlinear transference of an OFDM signal, we must reduce to a minimum the
approximations carried out in the modeling of those system components not involved
in the nonlinear distortion effect itself. This will allow us to quantify the ICI and
other mismatching effects at the receiving end as well as at each stage within the chain
independently from the inherent sources of impairment due to the structure of the OFDM
system. Thus, the aim of this new section is the formulation of an exact equivalent
discrete model for the transmission chain, including those stages we have been reviewing
and the final reception of the signal, namely: IFFT modulation, cyclic prefix addition,
digital to analog conversion, channel propagation effects, analog to digital conversion
and, finally, FFT demodulation of the M-QAM information.

Under the single assumption of a time-limited impulse response channel, we aim to
establish an end-to-end transmission model. Therefore, without loss of generality, the
channel frequency response and the rectangular (zero-order hold) and reconstruction
filters H0(f) defined for D/A conversion, can all be merged into a single frequency
response H(f).

According to the model previously presented in figure 3.15, we consider first the basic
expression for the FT at the output of the delta generator:

X̃A(f) =

+∞∑
m=−∞

dm δ
(
f − m

T

)
(3.68)

where dm are the M-QAM data over the m-th subcarrier. After DG, dm is a periodic
sequence with dm = dm+kN , which is in accordance with the PE defined in (3.52) for N
subcarriers as well.

As we have seen previously in section 3.2.1 for analog continuous OFDM signals,
the use of the CE causes the subcarriers to lose orthogonality between them. Therefore,
direct use of such signals will make more difficult the modeling of filtering operation with
H(f), whose main complexity in such a case is expressing the product of non-orthogonal
sincs. The modeling solution is then shown in figure 3.17(d)2 where a new periodic input

b̃x is suitably defined considering the CE as well as the guard time TG as part of a
periodic block of duration T2 = T + TCE + TG. The CE and the GT are chosen so that

2The schemes in the figure are valid to proportionally represent sample frames as well as continuous
time signals.
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TG ≥ TCE ≥ Th, with Th being the duration of the channel impulse response. Then, in the
figure, T2 = T + 2Th is shown to be the minimum time window necessary to contain the
CE OFDM symbol avoiding interference from neighbouring symbols. The new auxiliary
signal is then defined as,

b̃x =

+∞∑
�=−∞

bx(t− � T2)w1(t− � T2)

=
+∞∑
�=−∞

b̃x(t− � T2)w1(t− � T2) =
+∞∑

m2=−∞
cm2e

j2π
m2
T2
t

(3.69)

with w1(t) = ΠT1

(
t− T1

2
+ Ts

2

)
the rectangular window of duration T1 = T + TCE (ex-

tended symbol duration), which is shown in figure 3.17(h). The Fourier series coefficients
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cm2 , included in (3.69), also define the corresponding FT of the auxiliary signal as follows:

X̃(f) =
+∞∑

m2=−∞
cm2δ

(
f − m2

T2

)
. (3.70)

For the calculation of the coefficients cm2 , a basic signal block for (3.69) can be de-
fined. Recalling the model in figure 3.15, such basic block is the signal at A1, that is,
at the output of the DG on the left branch. Nevertheless, an equivalent signal could be
obtained through the discrete-analog windowing equivalence shown in figure 3.18. Thence,
windowing the analog periodic DG output b̃Ax (t) with the one-symbol+CE long window
w1(t), we have

bx(t) = b̃Ax (t)w1(t)
FT←→ X(f) = X̃A(f) ∗W1(f) (3.71)

where it is important to note that the components of the FT of this basic signal,

X(f) =

+∞∑
m=−∞

dmW1

(
f − m

T

)
, (3.72)

are non-orthogonal sincs (section 3.2.1) given the extended duration of the window w1(t).
Then, since the coefficients cm2 of the Fourier Series expansion can be expressed in terms
of the FT of the basic signal as

cm2 =
1

T2
X

(
m2

T2

)
(3.73)

we have, substituting in (3.72), the final discrete expression for the new information
coefficients,

cm2 =
1

T2

+∞∑
m=−∞

dmW1

(
m2

T2
− m

T

)
. (3.74)
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These coefficients are relevant since they will contain a combination of the original
M-QAM symbols dm that, given (3.74) and the FT of the time window, can be seen as
the interpolation of such symbols in frequency by means of a set of sinc functions. At
this point we can suppose the periodicity of the coefficients cm2 which is demonstrated
in later expressions.

From (3.70) and (3.74) we obtain

X̃(f) =
+∞∑

m2=−∞

(
1

T2

+∞∑
m=−∞

dmW1

(
m2

T2
− m

T

))
δ

(
f − m2

T2

)
. (3.75)

Then, as shown in figure 3.17(h), along with the filtering with H(f), an additional window
w2 of duration T2 = T + TCE + TG can be applied without modifying the signal structure
defined in (3.69). In such case, the filter output y2(t) will also be limited in time to T2

and admits two equivalent ways for its evaluation. In time domain this is given by

y2(t) =
(
w2(t)̃bx(t)

)
∗ h(t) =

(
b̃x(t) ∗ h(t)

)
w2(t) (3.76)

and expressed in frequency domain

Y2(f) =
(
W2(f) ∗ X̃(f)

)
H(f) = X̃2(f)H(f) (3.77)

=
(
X̃(f)H(f)

)
∗W2(f) = Y1(f) ∗W2(f). (3.78)

These are the two alternative and equivalent ways to place the analog window w2(t)
that we consider in figure 3.18(b). Then, in particular, the evaluation of (3.78) using (3.70)
yields

Y2(f) =

(
+∞∑

m2=−∞

[
cm2H

(
m2

T2

)]
δ

(
f − m2

T2

))
∗W2(f) (3.79)

=
+∞∑

m2=−∞
gm2W2

(
f − m2

T2

)
(3.80)

where we define gm2 = cm2H
(
m2

T2

)
as the coefficients to express the filter output on a new

base, such that the set of windows W2

(
f − m2

T2

)
associated to these coefficients is now

an orthogonal pattern of sincs. The orthogonality between them make the components
in (3.80) sufficient to precisely describe the spectrum Y2(f) at the input of the HPA,
even if discarding any assumption on the variation of H(f) with respect to the subcarrier
bandwidth. This latter requires that the frequency spectrum be sampled at least with a
step ∆f = 1/T2 < 1/T .
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It is important here to remark on the first relation between the originally transmitted
M-QAM symbols dm and the final coefficients gm2 . Using (3.74), we can express

gm2 = H

(
m2

T2

)
1

T2

+∞∑
m=−∞

dmW1

(
m2

T2

− m

T

)
(3.81)

and, replacing in (3.80), Y2(f) in extension gives

Y2(f) =
+∞∑

m2=−∞
H

(
m2

T2

)
1

T2

+∞∑
m=−∞

dmW1

(
m2

T2
− m

T

)
W2

(
f − m2

T2

)
. (3.82)

Let us now consider a perfectly linear transference of the signal, i.e., an ideal cancel-
lation of the nonlinear effect of the HPA. In reception, the signal is windowed by wT (t)
(figure3.17(f)) being expressed as

yT (t) = y2(t)wT (t)
FT←→ YT (f) = Y2(f) ∗WT (f). (3.83)

This windowing operation restores the orthogonality for the N original subcarriers
and is assumed to be synchronous in order to avoid any intersymbol interference (ISI)
from the time response associated to the filtering operation. This is shown in figure
3.17(e) and (f) for the critical case when the total impulse response equals the guard time.

After sampling yT (t) with fs = N
T

, we have a periodic spectrum YT (ej2πfn) = Ỹ (fn)
that can be expressed applying the sampling theorem as

YT (ej2πfn) = Ỹ (fn) =
1

Ts

+∞∑
k=−∞

YT
(
f − kfs

)
=

1

Ts

+∞∑
k=−∞

YT
(
(fn − k)fs

)
(3.84)

with fn = f
fs

the normalized frequency. This equivalence can be further developed resort-

ing to the specific formulation of the sampling theorem shown in the appendix (3.A) for
analog and discrete sincs. Therein we show that

W̃ (fn) =
1

Ts

+∞∑
m=−∞

W
(
(fn −m)fs

)
(3.85)

where W̃ (fn) is the FT of the sampled version of a continuous equivalent rectangular
window whose FT is in turn W (f). Then, from (3.83) and (3.80) we obtain,

YT (f) =
+∞∑

m2=−∞
gm2W2

(
f − m2

T2

)
∗WT (f) =

+∞∑
m2=−∞

gm2WT

(
f − m2

T2

)
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and using (3.84),

ỸT (fn) =
1

Ts

+∞∑
k=−∞

+∞∑
m2=−∞

gm2WT

(
(fn − k)

N

T
− m2

T2

)

=
1

Ts

+∞∑
m2=−∞

gm2

+∞∑
k=−∞

WT

(
(fn − k)

N

T
− m2

T2

)

=
1

Ts

+∞∑
m2=−∞

gm2

+∞∑
k=−∞

WT

[((
fn −

T

T2

m2

N

)
− k

)
N

T

]

=
+∞∑

m2=−∞
gm2W̃T

(
fn −

T

T2

m2

N

)
(3.86)

where W̃T corresponds to a discrete periodic equivalent spectrum for the sampled version
3 of wT (t). Let us now introduce a hypothesis of periodicity that can be useful to express
(3.86) in a more compact form containing only finite summations. This is done by using
the index m2 = m′

2 +N2m
′′
2 with 0 ≤ m′

2 ≤ (N2 − 1) and −∞ < m′′
2 < +∞. Then (3.86)

becomes

ỸT (fn) =
N2−1∑
m′

2=0

+∞∑
m′′

2=−∞
gm′

2+N2m′′
2
W̃T

(
fn −

T

T2

(m′
2 +N2m

′′
2

N

))
and since N

T
= N2

T2
, with W̃T periodic with period 1 in fn, we have

ỸT (fn) =

N2−1∑
m′

2=0

[ +∞∑
m′′

2=−∞
gm′

2+N2m′′
2︸ ︷︷ ︸

γm′
2

]
W̃T

(
fn −

T

T2

m′
2

N

)
. (3.87)

In this last expression we define,

γm′
2

=
+∞∑

m′′
2=−∞

gm′
2+N2m′′

2

and substituting gm2 = cm2H
(
m2

T2

)
we obtain,

γm′
2

=

+∞∑
m′′

2=−∞
cm′

2+N2m′′
2
H

(
m′

2 +N2m
′′
2

T2

)
. (3.88)

Now, introducing the periodicity for the index m = m′ +Nm′′, with 0 ≤ m′ ≤ (N −1)
and −∞ < m′′ < +∞, we can re-express cm′

2+N2m′′
2

from (3.74) as

3In figure 3.17 the samples are defined so that they do not coincide with discontinuities at the extremes
of rectangular windows.
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cm′
2+N2m′′

2
=

1

T2

N−1∑
m′=0

+∞∑
m′′=−∞

dm′+Nm′′W1

(
m′

2 +N2m
′′
2

T2
− m′ +Nm′′

T

)
(3.89)

and since dm′ = dm′+Nm′′ with the sampling frequency given by fs = N
T

= N2

T2
, we can

write

cm′
2+N2m′′

2
=

1

T2

N−1∑
m′=0

dm′

+∞∑
m′′=−∞

W1

(
(m′′

2 −m′′)fs +
m′

2

T2
− m′

T

)

=
1

T2

N−1∑
m′=0

dm′

+∞∑
m′′=−∞

W1

((m′
2

N2
− m′

N
+m′′

2 −m′′
)
fs

)

=
Ts
T2

N−1∑
m′=0

dm′W̃1

(
m′

2

N2
− m′

N

)
= cm′

2
(3.90)

which is the demonstration of the periodicity of cm2 . Using this last result, and with the
sampling frequency given by fs = N2

T2
, the expression for the coefficients in (3.88) can be

reduced to

γm′
2

= cm′
2

+∞∑
m′′

2=−∞
H

(
m′

2 +N2m
′′
2

T2

)
= cm′

2
H̃

(
m′

2

T2

)

= cm′
2

+∞∑
m′′

2=−∞
H

[(m′
2

N2

+m′′
2

)
fs

]
= cm′

2
TsH̃

(
m′

2

N2

)
(3.91)

where now H̃
(
m′

2

N2

)
corresponds to samples (in normalized frequency) of a periodic

spectrum defined from the periodic extension of the time-limited impulse response
h(t). In figure 3.19 the periodic extension of h(t), obtained through the convolution
h(t) ∗

∑+∞
m=−∞ δ(t − mT2), is then sampled with fs = 1

Ts
= N2

T2
. This gives the peri-

odic discrete spectrum depicted in figure 3.19(D) which is equivalent to sampling the

continuous and periodic FT of h[n] at fn =
m′

2

N2
with m′

2 integer. Then, resuming the

expression for ỸT (fn) we replace this last result in (3.87) using also (3.90) and obtaining

ỸT (fn) =

N2−1∑
m′

2=0

(
T 2
s

T2
H̃

(
m′

2

N2

) N−1∑
m′=0

dm′W̃1

(
m′

2

N2
− m′

N

))
W̃T

(
fn −

T

T2

m′
2

N

)
. (3.92)

Then, from the properties of the DFT expressed in appendix 3.B we know that

ỸT (fn) =

N−1∑
k=0

YT [k]W̃T

(
fn −

k

N

)
(3.93)

YT [k] = YT (ej2πk/N) = ej2πTCEk/TYN [k] (3.94)
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Figure 3.19: Time–frequency definitions based on the impulse response of the filter h(t)

which is convenient to find a discrete version of ỸT (fn). However, (3.92) has the incon-

venience that a non-integer shift is defined for W̃T (·) since T
T2

m′
2

N
�= k

N
. This nuisance can

be circumvented by applying the following property valid for the discrete window (see
appendix 3.C again):

W̃T

(
p− r
N

)
=

N−1∑
q=0

βr(q)W̃T

(
p− q
N

)
(3.95)

whereby, with q integer, the fractional shift r = T
T2
m′

2 is sinthetized as a linear combination
of N integer shifted versions of the same window in frequency domain. Thus, using this
equivalency and substituting N2 = T2/Ts in (3.92) we obtain
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YT (ej2π
p
N ) =

N2−1∑
m′

2=0

(
Ts
N2

H̃

(
m′

2

N2

) N−1∑
m′=0

dm′W̃1

(
m′

2

N2
− m′

N

)) N−1∑
q=0

β T
T2
m′

2
(q)W̃T

(
p− q
N

)

=

N−1∑
q=0

bqW̃T

(
p− q
N

)
(3.96)

where the set of bq will represent the demodulated M-QAM symbols at the receiver. Each
component bq seen through the DFT property given in (3.93) is expressed as

bq =

N2−1∑
m′

2=0

β T
T2
m′

2
(q)

(
Ts
N2

H̃

(
m′

2

N2

) N−1∑
m′=0

dm′W̃1

(
m′

2

N2

− m′

N

))

=
Ts
N2

N−1∑
m′=0

dm′

N2−1∑
m′

2=0

β T
T2
m′

2
(q)H̃

(
m′

2

N2

)
W̃1

(
m′

2

N2
− m′

N

)
. (3.97)

Then, using T
T2

= N
N2

in the expression for βr(q) obtained in appendix 3.B, we replace

β T
T2
m′

2
(q) = βr(q) =

1

N
W̃T

(
q − r
N

)
=

1

N
W̃T

(
q

N
− m′

2

N2

)
in (3.97) and finally obtain

bq =
Ts

N ·N2

N−1∑
m′=0

dm′

N2−1∑
m′

2=0

H̃

(
m′

2

N2

)
W̃T

(
q

N
− m′

2

N2

)
W̃1

(
m′

2

N2
− m′

N

)
. (3.98)

This final equation can be expressed in vectorial notation as

by = Sdx =
N−1∑
m′=0

dm′sm′ (3.99)

where the matrix S is a (N ×N) square matrix wherein the column vectors sm′ represent
the contribution of each symbol dm′ to each of the N demodulated subcarriers at the
receiver. The elements of S are given by

[S]q,m′ =
Ts

N ·N2

N2−1∑
m′

2=0

H̃

(
m′

2

N2

)
W̃T

(
q

N
− m′

2

N2

)
W̃1

(
m′

2

N2
− m′

N

)
. (3.100)
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In the appendix 3.C we show that S is a diagonal matrix. The N elements of the main
diagonal are given by

[S]m′=q =
Ts
N
z̃[0] |m′=q= TsH [m′]. (3.101)

These elements can be seen as the DFT values of a periodic extension (with period
N) of the time-limited impulse response h[n] given by

h̃N [n] = h[n] ∗
+∞∑

m=−∞
δ[n+Nm]

where,

h̃N [n] = 0 ; for kN +NCE ≤ n < kN − 1.

Let us consider the limited duration of h(t), denoted Tc, as the coherence time that
respectively defines a coherence bandwidth Bc = 1

Tc
which leads to a minimum set of coef-

ficients sufficient to describe the frequency response of the filter. We define the minimum-
distance non-overlapping periodic extension hTc(t) and its Fourier transform, both shown
in figure 3.20(b) and (B) respectively, as follows:

hTc(t) = h(t) ∗
+∞∑

m=−∞
δ(f −mTc) FT←→ HTc(f) =

+∞∑
q=−∞

Bqδ(f −
q

Tc
)

where Bq are the areas for the infinite spectral components (analog deltas) of the non
periodic spectrum HTc(f). Note that, since the coherence bandwidth is being considered,
this spectrum is described with a minimum number of maximum spaced spectral compo-
nents. Then, if we apply a unitary window wTc(t) of duration Tc over the first period of
hTc(t), we have

h(t) = wTc(t)hTc(t)
FT←→ H(f) = WTc(f) ∗HTc(f) =

+∞∑
q=−∞

BqWTc(f −
q

Tc
)

where,

WTc(f) = Tc
sin(πTcf)

πTcf
e−jπ(Tc−Ts)f

is the FT of the continuous window wTc(t) which considers the Ts/2 shifting to avoid
discontinuities at the sample positions. Then, according to the sampling theorem, we can
construct the periodic spectrum of the equivalent sampled signal h[n] as

H(ej2πfn) =

N−1∑
n=0

h[n]e−j2πfnn =
1

Ts

+∞∑
k=−∞

H ((fn − k)fs)
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Figure 3.20: Time-frequency definitions used to define a minimum set of NCE coefficients to
identify the time-limited impulse response filter H(f), based on the coherence bandwidth Bc.

with Ts = Tc

NCE
and NCE the number of samples available for h[n]. Then, replacing H(f)

and considering samples at fn = m
N

we have

H [m] =

N−1∑
n=0

h[n]e−j2π
m
N
n =

NCE

Tc

+∞∑
k=−∞

+∞∑
q=−∞

BqWTc

(
(
m

N
− k)NCE

Tc
− q

Tc

)

=
NCE

Tc

+∞∑
q=−∞

Bq

+∞∑
k=−∞

WTc

(
(
m

N
− k)NCE

Tc
− q

Tc

)

=
NCE

Tc

+∞∑
q=−∞

Bq

+∞∑
k=−∞

WTc

(
(
m

N
− q

NCE

− k)NCE

Tc

)

=

+∞∑
q=−∞

BqW̃Tc

(
m

N
− q

NCE

)
(3.102)
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Figure 3.21: Composition of the final set of discrete sincs and its related NCE coefficients Qq′ .
The DFT values H[m] are interpolated at the frecuencies fn = m

N , with m = {0, 1, 2, . . . , N −1}.

where the sampling theorem has been applied to replace W̃Tc(fn), the corresponding FT
for the sampled version of wTc(t). The summation of these periodic spectrums for the
infinite values of Bq finally leads to a new (limited) set of coefficients Qq′ which present a
periodicity with respect to the new index q′. This is represented in figure 3.21 and allows
us to express (3.102) with the following limited summation:

H [m] =

NCE−1∑
q′=0

Qq′W̃Tc

(
m

N
− q′

NCE

)
. (3.103)

From this last expression we can conclude that, given the coherence bandwidth
Bc = 1

Tc
, the limited impulse response h(t) can be expressed with a minimum set of

NCE coefficients Qq′ , suitably defined using a sufficient sampling time Ts = Tc

NCE
.



76 3.A. Appendix:Discrete-analog windowing representation.

3.A Appendix: Equivalence of discrete and analog

‘sinc’ functions for the representation of Power

Spectral Densities
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Figure 3.22: Equivalent functions for windowing.

This appendix includes a particular case for the application of the sampling theorem.
It is shown how the spectrum resulting from taking the FT of a discrete pulse of length N ,
can be equivalently obtained through the infinite summation of analog “sinc” spectra that
correspond to the FT of a continuous time window.

Let us consider first the continuous time unitary window w(t) of duration T = NTs,
defined by

wa(t) =

{
1 ; −Ts

2
≤ t < T − Ts

2

0 ; otherwise
(3.104)

and then its equivalent discrete window

wd[n] =

{
1 ; 0 ≤ n ≤ N − 1
0 ; otherwise

(3.105)

which is defined by taking N samples of (3.104) at the sampling frequency fs = 1/Ts, so
that NTs = T . The samples are defined as to be taken at t = nTs, as shown in figure
3.22.

The Fourier Transform for (3.104) is given by

Wa(f) = NTssinc(NTsf)e−j2π
(N−1)

2
Tsf = NTs

sin(πNTsf)

(πNTsf)
e−j2π

(N−1)
2

Tsf (3.106)
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while the F.T. for the discrete window in (3.105) is given by

Wd(f) =
sin(πNTsf)

sin(πTsf)
e−j2π

(N−1)
2

Tsf . (3.107)

An important and useful equivalence can be used to obtain (3.107) from a summation
of analog spectra like (3.106). This equivalence is in general expressed as follows:

Wd(f) =
1

Ts

+∞∑
m=−∞

Wa(f −mfs) (3.108)

which is an expression of the sampling theorem for this specific case. Then, by using the
definition of normalized frequency, fn = f

fs
= Tsf , the relation in (3.108) can be rewritten

as

Wd(f) = N
+∞∑

m=−∞

sin(πN(fn −m))

πN(fn −m)
e−j2π

(N−1)
2

(fn−m) (3.109)

then, from (3.107) and (3.109), we have that

sin(πNfn)

sin(πfn)
= N

+∞∑
m=−∞

sin(πN(fn −m))

πN(fn −m)
ejπ(N−1)m. (3.110)

This last relation is satisfied for any fn and, after some simple manipulations, leads
to the following corollary

1

sin(πfn)
=

1

πfn
+

2fn
π

∞∑
m=1

(−1)m

(f 2
n −m2)

(3.111)

which corresponds to a valid expansion for the cosecant for any real value of (πfn).
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3.B Appendix: DFT Properties and Fractional shift

Synthesis

The DFT operation and its inverse are respectively defined by

DFT(x[n]) = X[k] =

N−1∑
n=0

x[n]e−j2π
k
N
n

DFT−1(X[k]) = x[n] =
1

N

N−1∑
k=0

X[k]ej2π
k
N
n

.

Let the DFT for a set of N samples of an unitary window be denoted by

UN [k] = UN

(
ej2π

k
N

)
= ŨN

(
k

N

)
= DFT(1N [n]). (3.112)

Thus, with the shorthand notation Ũ( k
N

) defined above, we have

ŨN

(
k

N

)
=

N−1∑
n=0

e−j2π
k
N
n =

sin(πk)

sin(πk/N)
e−jπk

N−1
N . (3.113)

The DFT is, in general, related with the FT of the discrete signal x[n] as follows:

X(ej2πfn) =
1

N

N−1∑
k=0

X[k]UN

(
ej2π(fn− k

N
)
)

(3.114)

where the N DFT values are used as interpolation coefficients in combination with a set
of shifted base functions for interpolation which are, in this case, given by the discrete
sincs UN(·).

Thus, using (3.114), we can verify that

ŨN

(
p− r
N

)
=

1

N

N−1∑
k=0

UN [k]︸ ︷︷ ︸
ŨN( k

N )

ŨN

(
p− r
N
− k

N

)

=
1

N

N−1∑
k=0

ŨN

(
k

N

)
ŨN

(
(p− k)− r

N

)
(3.115)

and, introducing the change of variable p− k = m, we have
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=
1

N

p∑
m=p−N+1

ŨN

(
p−m
N

)
ŨN

(
m− r
N

)
and since ŨN

( ·
N

)
is periodic over N , we change the limits of the summation remaining

over one period. This gives

=

N−1∑
m=0

[
1

N
ŨN

(
m− r
N

)]
︸ ︷︷ ︸

αr(m)

ŨN

(
p−m
N

)
(3.116)

which is finally expressed as the equality

ŨN

(
p− r
N

)
=

N−1∑
m=0

αr(m)ŨN

(
p−m
N

)
. (3.117)

Since no restrictions were assumed for r, it may be any fractional value in the range
[0, 1], while 0 ≤ m ≤ N−1 is an integer. Thence, it is possible to sinthetize any fractional
delay using a combination of integer indexed delays over the same FT.

Now, using (3.113) and recalling that for synchronous reception the discrete window
wT [n] starts at TCE − Ts

2
, which is equivalent to the sample time NCE , we have

W̃T (fn) =
+∞∑

n=−∞
wT [n]e−j2πfnn =

N+NCE−1∑
n=NCE

e−j2πfnn

=
sin(πNfn)

sin(πfn)
e−j2πfn(NCE+ N−1

2
)

= ŨN(fn)e
−j2πfnNCE . (3.118)

Hence,

ŨN(fn) = W̃T (fn)e
j2πfnNCE . (3.119)

The equality in (3.117) is expressed as

W̃T

(
p− r
N

)
ej2πNCE

p−r
N =

N−1∑
m=0

αr(m)ej2πNCE
p−m

N W̃T

(
p−m
N

)
(3.120)

and

W̃T

(
p− r
N

)
=

N−1∑
m=0

αr(m)ej2πNCE
r−m

N︸ ︷︷ ︸
βr(m)

W̃T

(
p−m
N

)
(3.121)
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wherein

βr(m) = αr(m)ej2πNCE
r−m

N

=
1

N
ŨN

(
m− r
N

)
ej2πNCE

r−m
N (3.122)

obtained using the αr(m) previously defined in (3.116). Then, we use the relation in
(3.119) obtaining

βr(m) =
1

N
W̃T

(
m− r
N

)
. (3.123)

and therefrom, for the fractional index r = T
T2
m′

2 = N
N2
m′

2, we have the final expression
for βr(m):

β T
T2
m′

2
(m) =

1

N
W̃T

(
m

N
− m′

2

N2

)
(3.124)
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3.C Appendix: Diagonality of S
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Figure 3.23:

In section 3.4, the matrix S was obtained to define the transference of an N-length
vector bx containing the input M-QAM symbols, to the final output by according to:

by = Sdx =
N−1∑
m′=0

dm′sm′ (3.125)

We have the elements of this (N ×N) square matrix defined in general by:

[S]q,m′ =
Ts

N ·N2

N2−1∑
m′

2=0

H̃

(
m′

2

N2

)
W̃T

(
q

N
− m′

2

N2

)
W̃1

(
m′

2

N2
− m′

N

)
(3.126)

where H̃(fn), W̃T (fn) and W̃1(fn) are discrete FTs of the sequences h[n], wT [n] and
w1[n] respectively . All these sequences are of duration N2 and the discrete time relations
between them are shown in figure 3.23 for their respective periodic extensions with
period N2. Here the window wT (t) is defined synchronous starting at TCE for notation
simplicity.

We are now interested in determining the structure of S, in particular we expect to
demonstrate that it is a diagonal matrix, to find the expression for the elements of diag{S}.
Let us first consider that

wT [n]
FT←→ W̃T (fn) (3.127)

w∗
T [n]

FT←→ W̃ ∗
T (−fn) (3.128)

and, since for this real sequence w∗
T [n] = wT [n], we can rewrite the first expression as
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[S]q,m′ =
Ts

N ·N2

N2−1∑
m′

2=0

H̃

(
m′

2

N2

)
W̃ ∗
T

(
m′

2

N2

− q

N

)
W̃1

(
m′

2

N2

− m′

N

)
. (3.129)

In this expression, the summation index m′
2 determines that the continuous and pe-

riodic FTs are sampled within one period each. This allow us to use the associated DFT
values instead of the continuous expressions. For this purpose, the modulation property
of the DFT, usually presented for integer shifts, can be extended for a general non-integer
shift k0 in the following form:

x[n]ej2πk0n
DFT←→ X[k − k0N ]

with

X[k − k0N ] = X[k] �
sin
(
Nπ( k

N
− k0)

)
sin
(
π( k

N
− k0)

) e−jπ(
k
N
−k0)(N−1).

Here, X[k] is the DFT of a sequence x[n] with lenght N and the non-integer shift k0

is obtained as the interpolation of the DFT values using sinc functions. Then, considering
the periodic extensions of the three sequences and using the definition of the IDFT, we
apply the DFT modulation properties to derive from (3.129) a useful expression given by

z̃[n] = h̃[n] �
(
w̃T [n]ej2π

q
N
n � w̃1[n]ej2π

m′
N
n
)

(3.130)

=
1

N2

N2−1∑
m′

2=0

H [m′
2]WT

[
m′

2 −
q

N
N2

]
W1

[
m′

2 −
m′

N
N2

]
e
j2π

m′
2

N2
n

(3.131)

where evaluating
Ts
N
z̃[0] (3.132)

results in an equivalent expression for (3.129). Thence, developing the convolution at the
right hand side of (3.130), we observe

z̃[n] = h̃[n] �
(
w̃T [n]ej2π

q
N
n � w̃1[n]ej2π

m′
N
n
)

= h̃[n] �
[
N2−1∑
�=0

wT [�]ej2π
q
N
�w̃1[n− �]ej2π

m′
N

[n−�]
]

= h̃[n] �
[
N2−1∑
�=0

wT [�]w̃1[n− �]ej2π
[

m′
N
n+ q−m′

N
�
]]

=

N2−1∑
p=0

h̃[p]

N2−1∑
�=0

wT [�]w̃1[n− p− �]ej2π
[

m′
N

(n−p)+ q−m′
N

�
]

(3.133)
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and now, evaluating for n = 0,

z̃[0] =

N2−1∑
p=0

h̃[p]

N2−1∑
�=0

wT [�]w̃1[−p− �]ej2π
[

(q−m′)�−m′p
N

]

=

NCE−1∑
p=0

h̃[p]

N1−1∑
�=NCE

w̃1[−p− �]ej2π
[

(q−m′)�−m′p
N

]
(3.134)

where the limits of the inner summation have been restricted to consider only
the N = N1 − NCE non-zero elements of wT [�] (see figure where w̃T [n] = 1 for
NCE + kN2 ≤ n ≤ N1 + kN2− 1). Similarly, the limits of the outer summation have been
limited to [0, NCE] according to the finite time response defined for h[n].

Then, in (3.134) it is easy to observe that

z[0] = 0 ; for m′ �= q , (m′, q) = {1, 2, 3, . . . , N}

whence we deduce that S is a diagonal matrix. Now, for m′ = q, the expression(3.134)
becomes

z̃[0] |m′=q =

NCE−1∑
p=0

h̃[p]e−j2π
m′
N
p

N1−1∑
�=NCE

w̃1[−p− �] (3.135)

and, since
N1−1∑
�=NCE

w̃1[−p− �] = N for 0 ≤ p ≤ NCE − 1, this is reduced to

z̃[0] |m′=q = N

NCE−1∑
p=0

h̃[p]e−j2π
m′
N
p. (3.136)

Finally, since h[p] = 0 for NCE ≤ p ≤ N2 − 1, we can extend the upper limit of this
last summation to N −1 in order to evaluate the DFT of the zero padded set [h 0 ]T with
length N . Thus, (3.136) is rewritten as

z̃[0] |m′=q = N
N−1∑
p=0

h̃[p]e−j2π
p
N
m′

= NH [m′]. (3.137)

Hence, using (3.137) to evaluate (3.132), the elements of the main diagonal of S are
given by

[S]m′=q =
Ts
N
z̃[0] |m′=q= TsH [m′] (3.138)
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This is, the N elements at the main diagonal of S correspond to the DFT values of
the periodic extension (with period N) of the time-limited impulse response h[n] given by

h̃N [n] = h[n] ∗
+∞∑

m=−∞
δ[n+Nm]




