
Chapter 4

Signal and System Model with
Non-Linear Distortion

In the previous chapter a complete base-band signal model was presented for the exact
discrete representation of the OFDM system considering a completely linear transference.
Along with this, and independently, an analog base-band model was established to charac-
terize the non-linear HPA complex gain based on a series of q-order autocorrelations of
the base-band input signal. Now, the main objective is to insert the non-linear effect into
the discrete model of the transmission chain, reviewing at each step the spectral evolution
of the transmitted OFDM symbol and focusing on the conditions for its final recovery at
the receiver end.

4.1 Equivalent Framing Structures for Reception

In the chapter 3 the auxiliary signal frame b̃x(t) defined in (3.69) and represented in
figure 3.17(d) was found to be helpful in formulating the discrete model that we finally
expressed through the elements of the transference matrix S. The resulting expressions,
obtained using such auxiliary (virtual) signal structure, are particularly well suited to
evaluate the analog HPA output characteristics (distorted spectrum) rather than the
end-to-end transmission of the M-QAM data. Therefore, the model previously developed
must be assessed in terms of the exact discrete description provided for the analog stages
of the transmission process. The exactitude of this linear discrete model was further
verified when the diagonality of the matrix S was demonstrated in the section 3.4,
appendix 3.C. Although the final expression to calculate the elements of S proved to be
surprisingly intuitive –the elements of the main diagonal correspond to the channel profile
in frequency–, the demonstration procedure resulted quite long. Now, in this chapter,
we will be interested in establishing a ‘reception model’ to include the effect of the HPA
nonlinearity. Since in this case the analysis focuses on the final recovery of the M-QAM
base-band information instead of the analog channel implications, an alternative and
simpler reasoning can be employed to explain the absence of ICI and, consequently, the
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Figure 4.1: Equivalence in the definition of different frames for transmission when the CE is
discarded in reception by applying the window wT over the periodic extension of the OFDM
symbol b̃x(t) and over the signal y2(t) considering cyclic extension and guard time as defined in
(3.76).

diagonality of the matrix S that describes such transference. This alternative reasoning
is based on the fact that, when the CE is discarded at the reception end, the signal fed

into the demodulator is the same whether we use the auxiliary signal b̃x(t) or the basic

periodic extension of the original symbol b̃x(t) for transmission. This is illustrated in
figure 4.11 where the crossed regions representing the time dispersion effect of the filters
are marked to show that this equivalence is not valid (due to ISI appearance) when
different symbols [S0, S1, . . . , Sm] without guard time are considered instead of the virtual
periodic extension of a single symbol S0. In the case of a real scenario, a stream with
the changing symbols will be transmitted. Nevertheless, the OFDM framing structure is
defined so that the receiver observes only a window of duration T for each symbol, where
no interference is present from contiguous symbols due to the adequate use of the guard
time and cyclic extension. Then, if the transmission process is modeled using the periodic
discrete sequence b̃x[n] defined in (3.52), the frequency domain discrete representation of
the transmission process will consider only the evolution of linear spectrums as it was
shown in figure 3.15 (left branch), where we have periodic signals at each point of the
analog chain up to the reception end at which the one-symbol length window wT [n] is
applied. In such case, previous to the reception windowing, the effect of the filters and the
D/A conversion can be modeled as an exact scaling by H(f) of the spectral components
of the discrete and periodic FT of the input signal which is given by (3.55) and (3.56).

1Recall that continuous-time windows and signal frames are suitably defined starting at t = Ts/2 to
avoid discontinuities to coincide with discrete sampling times.



Chapter 4. Signal and System Model with Non-Linear Distortion 87

~
b nx[ ] 
 Gen. HPA A/DH f0( )

Analog
windowing

H1( )f

H fA( ) DFTH f2( )

X
( )f X2( )f Y f’T ( )

w t
T
( )D/A

x2( )tX1( )fx1( )t Z f( )z t( )

h�( )t

X t
( )

y
T
( )t y

T
[ ]n

y n’T [ ]

f ( . )IDFT

~
b nx[ ]

( [ ] )d m

h n1[ ]
~

~g n[ ]

DFT

g m[ ]

Phase
shift

Y k’T [ ]

h n2[ ]
~

~

b n[ ]1

~ ~
� [ ]n ~

( [ ] )b m1

b m1[ ] G m[ ]*

( [ ] )g m

d m[ ]
~

( [ ] )� m

Figure 4.2: Upper: Transmission chain introducing nonlinearity. Lower: Equivalent processing
chain when h2[n] = δ[n].

Under these conditions, the analysis of the end-to-end transference does not include
intermediate windowing which is equivalent to removing W̃1(·) from equation (3.100).
This reduces the dependence of S in one dimension and leads again to the diagonality of
the transference matrix.

The foregoing remarks show that for developing a general discrete reception model
describing the recovery of an OFDM symbol S0, it is possible to consider the transmission
of a periodic stream2 consisting of repetitions of S0. Therefore, the signal model that will
apply in the following derivations is the periodic stream shown in figure 4.1(b) whose char-
acteristics, as will become clear during the model formulation, yield simpler mathematical
developments.

4.2 Signal Model for the Non-linear Processing

Chain

4.2.1 Non Linear System Structure and Definitions

Throughout this chapter we will consider the new system structure shown in figure
4.2. The processing chain therein illustrated contains all the linear processing blocks
described up to this point but now incorporating the non-linear block that introduces

2Periodic sequences in time or frequency domain as well as periodic extensions of time limited sequences
will be herein denoted with the symbol ∼ on top.



88 4.2. Signal Model for the Non-linear Processing Chain

the effect of the HPA. The aim is to include all the effects associated with D/A and A/D
conversions, filtering, amplifier operation (spectral regrowth) and sampling rate (aliasing)
into a base-band exact equivalent discrete model that incorporates the theoretically
infinite analog bandwidth of the process.

Among other differences, unlike the linear case described in section 3.4, the presence of
the HPA in the non linear chain does not allow all the analog filtering stages and channel
responses to be merged into a single H(f). Therefore, the notation along the process-
ing chain shall be redefined3 whenever necessary regarding the new resulting structure.
Let us first consider the discrete input sequence b̃x[n], generated by the discrete OFDM
modulator and previously defined in (3.52), which is here redefined as

b̃x[n] =

N−1∑
m=0

d̃N [m]ej2π
m
N
n (4.1)

where d̃N [m] is the periodic extension (with period N) of the input data vector d[m]
defined by

d̃N [m] =

+∞∑
k=−∞

d[m− kN ] = d[m] ∗
+∞∑

k=−∞
δ[m− kN ]. (4.2)

Thus, the FT of the discrete and periodic sequence b̃x[n] can be expressed as

X(ej2πfn) =
+∞∑

n=−∞
b̃x[n]e−j2πfnn

=

+∞∑
m=−∞

d̃N [m]δ
(
fn −

m

N

)
(4.3)

where the M-QAM symbols d[m] modulating the N subcarriers are contained in their

N -periodic extension d̃N [m]. In this case, as represented in figure 4.2, the D/A conversion
is modeled as a delta generator (DG) plus a rectangular (time-limited) impulse response
filter, or aperture filter HA(f). With fs = 1/Ts, the sampling frequency for the D/A
converter, the FT at the output of the DG is denoted as

Xδ(f) = F
(
x̃δ(t)

)
=

1

Ts

+∞∑
m=−∞

d̃N [m]δ
(
f − m

T

)
. (4.4)

Then, since the inherent filter HA(f) of the D/A converter and the global response
H0(f) associated to the up-conversion stages are both previous to the HPA, they can be
combined in a single response H1(f) = HA(f)H0(f). Hence, the spectrum at the input of
the base-band HPA model is

3Samples in time domain are indexed with [n] while samples in frequency domain use the index [m].
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X1(f) = H1(f)Xδ(f)

=
1

Ts

+∞∑
m=−∞

d̃N [m]H1

(m
T

)
δ
(
f − m

T

)
(4.5)

=
1

Ts

+∞∑
m=−∞

b1[m]δ
(
f − m

T

)
(4.6)

where, for notation convenience, the spectral coefficients b1[m] observed at the HPA input
were defined as,

b1[m] = d̃N [m]H1

(m
T

)
. (4.7)

Note that b1[m] is not a periodic set according to the spectrum representation used in
chapter 3 in the left branch of figure 3.15.

Although the formulation of the reception model will be based on the use of periodic
signals throughout the processing chain, whenever a time-limited signal is to be recovered
at any point in the chain, a suitable analog or discrete rectangular window can be applied
using either the original or extended OFDM symbol duration (see Fig. 3.17). These rectan-
gular windows must be carefully defined, specially regarding the time-alignment necessary
to recover the symbol without interferences at the output of those blocks introducing a
memory effect. For instance, since the DG is memoryless, the time-limited extended sym-

bol at its output can be obtained as w1(t)xδ(t), using 4w1(t) = Π
(
t−T1/2+Ts/2

T1

)
. Then, at

the output of H1(f) the receiver would observe wT (t)x1(t), where the one-symbol length

window wT (t) = Π
(
t−TCE−T/2+Ts/2

T

)
takes into account the limited duration DH1 of the

time response of H1(f) with a shifting factor TCE > DH1 .

4.2.2 Spectral Modeling for the Non-linear Transference (dis-

crete equivalent)

In section 3.2.2 we developed a special power series model to represent the HPA gain. Let
us recall that in equations (3.25) and (3.26) the HPA’s base-band nonlinearity was suitably
modeled as an amplitude-dependent multiplicative gain with a functional dependence
restricted to consider only even powers of the input signal (squared modulus). Given
the modulus of the base-band input ux(t), the non-linear complex gain of the HPA was
expressed in (3.25) as

G(u2
x(t)) =

+∞∑
q=0

gqu
2q
x (t).

4Π
(

t
Tp

)
is the unit rectangular pulse on the support [−Tp/2, +Tp/2].
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Here we particularize the proposed model for periodic signals according to the as-
sumptions on the signal model previously expressed in section 4.1. In general, for periodic
signals ai(t) defined by

ai(t)
FT←→ Ai(f) =

+∞∑
k=−∞

ci[k]δ

(
f − k

T

)
, (4.8)

the product

ai(t)ai′(t)
FT←→ Ai(f) ∗ Ai′(f) =

+∞∑
k=−∞

β[k]δ

(
f − k

T

)
(4.9)

with
β[k] = ci[k] ∗ ci′[k]

also results in a T -periodic signal corresponding to the squared modulus |ai(t)|2 when
ai(t)a

∗
i′(t) is evaluated for i = i′. Thence, the squared modulus of the base-band signal at

the output of H1(f) is obtained as

|x1(t)|2 = x1(t)x
∗
1(t) = u2

1(t)
FT←→ U1(f) (4.10)

where

U1(f) = X1(f) ∗X∗
1 (−f)

=
+∞∑

k,k′=−∞
b1[k]b

∗
1[k

′]δ
(
f − k

T

)
∗ δ∗

(
−f +

k′

T

)

=

+∞∑
k,k′=−∞

b1[k]b
∗
1[k

′]δ
(
f − k

T

)
∗ δ
(
f − k′

T

)

=

+∞∑
k,k′=−∞

b1[k]b
∗
1[k

′]δ
(
f − (k + k′)

T

)

=
+∞∑

m=−∞
δ
(
f − m

T

) ∑
k+k′=m

b1[k]b
∗
1[k

′]

=

+∞∑
m=−∞

rb[m]δ
(
f − m

T

)
. (4.11)

Using k′ = m − k, the autocorrelation term rb[m] can also be expressed as the following
discrete convolution:

rb[m] =

+∞∑
k=−∞

b[k]b∗[m− k] = b1[m] ∗ b∗1[m]. (4.12)

Then, as expressed in the analog non-linear model in section 3.2.2, equations (3.26)
and (3.28), we have the HPA output given by
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z(t) = x1(t)
+∞∑
k=0

gku
2k
1 (t) (4.13)

Z(f) = X1(f) ∗
+∞∑
k=0

gkU
(k)
1 (f) (4.14)

where, in the last expression, the k-order term in frequency domain can be calculated as

U
(k)
1 (f) = U1(f) ∗ · · · ∗ U1(f)︸ ︷︷ ︸

k−times

and from (4.8),(4.9) and (4.11),

U
(k)
1 (f) =

+∞∑
m=−∞

(rb[m] ∗ · · · ∗ rb[m])δ
(
f − m

T

)
=

+∞∑
m=−∞

r
(k)
b [m]δ

(
f − m

T

)
. (4.15)

Hence, we replace (4.6) and (4.15) in (4.14) obtaining

Z(f) = X1(f) ∗
+∞∑
k=0

gk

+∞∑
m=−∞

r
(k)
b [m]δ

(
f − m

T

)
=

1

Ts

+∞∑
m′=−∞

b1[m
′]δ
(
f − m′

T

)
∗

+∞∑
k=0

+∞∑
m=−∞

gkr
(k)
b [m]δ

(
f − m

T

)
=

1

Ts

+∞∑
m=−∞

β[m]δ
(
f − m

T

)
(4.16)

where

β[m] = b1[m] ∗
+∞∑
k=0

gkr
(k)
b [m] = b1[m] ∗G[m]. (4.17)

Since the HPA distortion is a memoryless operation, the signal eventually observed at
this point by the receiver and fed to a demodulator would be wT (t)z(t).

4.2.3 Signal model from the HPA output up to DFT demodu-

lator

After passing the HPA output through the down-conversion filters, whose global response
is expressed by H2(f), the corresponding input signal x2(t) = z(t) ∗ h2(t) to the analog-
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to-digital converter (ADC) is expressed in frequency domain as

X2(f) = Z(f)H2(f)

=
1

Ts

+∞∑
m=−∞

β[m]H2

(m
T

)
δ
(
f − m

T

)
(4.18)

=
1

Ts

+∞∑
m=−∞

g[m]δ
(
f − m

T

)
(4.19)

where we have defined the spectral coefficients observed by the receiver as

g[m] = β[m]H2

(m
T

)
. (4.20)

Now, as shown in figure 4.2, the receiver observation window wT (t) is applied and the
time-limited signal yT (t) = wT (t)x2(t) is then sampled as yT [n] = yT (nTs) to construct
the received vector yT ,

yT = [yT [NCE ], · · · , yT [N +NCE − 1]]T .

Note that the correct time-alignment of the window wT (t) = Π
(
t−TCE−T/2+Ts/2

T

)
re-

quires the total impulse response of the filters to be considered so that (DH1+DH2) ≤ TCE.
Finally, the received OFDM symbol is demodulated when the receiver computes the DFT
of yT as

Y ′
T [k] =

N−1∑
n=0

yT [n+NCE ]e−j2π
k
N
n

= e−j2πNCE
k
NX2[k] (4.21)

where

X2[k] =
N−1∑
n=0

x2 (nTs) e
−j2π k

N
n. (4.22)

Then, substituting the corresponding time-domain expression (Fourier Series) of (4.19)
in (4.22), it is possible to find the relation between X2[k] and g[m] as follows:

X2[k] =

N−1∑
n=0

(
+∞∑

m=−∞
g[m]ej2π

m
N
n

)
e−j2π

k
N
n

=
+∞∑

m=−∞
g[m]

N−1∑
n=0

e−j2π
k−m

N
n

=

+∞∑
m=−∞

g[m]ŨN

(
k −m
N

)
(4.23)
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where ŨN (·) corresponds to the evaluation of the FT of the N -length discrete unitary
window described previously in appendix 3.B, equation (3.113). Hence, from the properties
shown later in appendix 4.A, the expression in (4.23) can be equivalently written as

X2[k] = g[k] ∗ ŨN
(
k

N

)
= g̃N [k] � ŨN

(
k

N

)
(4.24)

where we use the periodic extension

g̃N [k] =
+∞∑

m′=−∞
g[k +Nm′]. (4.25)

Now, let us recall the expression (3.113) for convenience

ŨN

(
k

N

)
=

N−1∑
n=0

e−j2π
k
N
n =

sin(πk)

sin(πk/N)
e−jπk

N−1
N

and observe that ŨN
(
k
N

)
= Nδ[k], for 0 ≤ k ≤ N − 1. Hence, we obtain from (4.24) the

final relationship

X2[k] = Ng̃N [k] (4.26)

and thence (4.21) is expressed as

Y ′
T [k] = e−j2πNCE

k
NNg̃N [k]. (4.27)

The spectral coefficients g[m] at the receiver input can now be expressed using (4.17)
and (4.20) in the form

g[m] = H2[m] · (G[m] ∗ b[m])

= H2[m] ·
(
G[m] ∗ (H1[m]d̃N [m])

)
. (4.28)

When the corresponding periodic extension g̃N [m] is considered, we can verify the
following equivalences5:

5For the sake of brevity, whenever the expressions appear too long in [·], we will use the shorthand
notation x1[m] � x2[m] ≡ (x1 � x2)[m], where � stands for the product or convolution between operators.
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g̃N [m] =

+∞∑
k=−∞

H2[m+ kN ] · (G ∗ b)[m+ kN ] (4.29)

=

+∞∑
k=−∞

H2[m+ kN ]

+∞∑
�=−∞

G[�](H1 · d̃N)[m+ kN − �]

=
+∞∑
�=−∞

G[�]
+∞∑

k=−∞
H2[m+ kN ](H1 · d̃N)[m+ kN − �]

=
+∞∑
�=−∞

G[�]d̃N [m− �]
+∞∑

k=−∞
H2[m+ kN ]H1[m+ kN − �] (4.30)

=

+∞∑
�=−∞

G[�]d̃N [m− �]Γ[m, �]. (4.31)

The expression in (4.30) is obtained using d̃N [m+kN−�] = d̃N [m−�] and then, in (4.31),
the inner summation is defined as a two-variable dependent term

Γ[m, �] =

+∞∑
k=−∞

H2[m+ kN ]H1[m+ kN − �] (4.32)

which is clearly N -periodic in the variable m but not in �.

Now, by applying a polyphase decomposition of the index � in the form

� = �1 + �2N

it is possible to find an alternative expression for (4.31) obtaining

g̃N [m] =
N−1∑
�1=0

+∞∑
�2=−∞

G[�1 + �2N ]d̃N [m− �1 − �2N ]Γ[m, �1 + �2N ]

=

N−1∑
�1=0

d̃N [m− �1]
+∞∑

�2=−∞
G[�1 + �2N ]Γ[m, �1 + �2N ]

=

N−1∑
�1=0

d̃N [m− �1]Υ[m, �1]. (4.33)

Here we have redefined the two-variable dependent term as

Υ[m, �1] =
+∞∑

�2=−∞
G[�1 + �2N ]Γ[m, �1 + �2N ]
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which is now N -periodic in m and in �1. Then, we can see in (4.33) that the elements
Υ[m, �1] can be interpreted as the coefficients of a transfer (square) matrix between the

transmitted d̃N [�1] and the received g̃N [m] symbols at subcarriers �1 and m respectively.
Given the dimension of this discrete transference model in frequency domain, the corre-
sponding exact representation in time domain will involve multi-dimensional convolutions
to include the memory effects of h1[n] and h2[n]. Such complexity is reduced to a minimum
in the case when h2[n] = δ[n]. The processing chain under this restriction is represented
in the lower half of figure 4.2 and its analysis is now discussed.

Using the property (4.42), the N -periodic extension of β[m] from (4.17) fulfils

β̃N [m] = b̃1N [m] � G̃N [m] = b̃1N [m] �
+∞∑
k=0

gk
(̃
r
(k)
b

)
N

[m] (4.34)

where the periodic extension of the k-order autocorrelation term can be calculated as(̃
r
(k)
b

)
N

[m] =
˜(
r
(k−1)
b

)
N

[m] �
(̃
rb
)
N

[m]. (4.35)

To define the discrete time-domain equivalent of (4.34) we let the N -point inverse
DFT of the circular convolution operators be denoted as

DFT−1
N

(
b̃1N [m]

)
= b̃1[n]

DFT−1
N

((̃
rb
)
N

[m]
)

= r̃b[n].

Hence, we obtain for DFT−1
N

(
β̃N [m]

)
the expression

β̃N [n] = b̃1N [n] · G̃N [n] = b̃1N [n] ·
+∞∑
k=0

gkr̃
(k)
b [n] = f

(
b̃1[n]

)
(4.36)

where f(·) is the HPA function. The periodicity of (4.36) suggests that the non-linearity
can be completely simulated in discrete time using the same series expansion based
model. Furthermore, evaluating this expression for only N values of b̃1N [n] will be
sufficient to completely characterize the HPA output.

The coefficients of the spectral components at the HPA input have been defined as
b1[m] = d̃N [m]H1

(
m
T

)
, where only d̃N [m] is N -periodic. Then, the periodic extension of

b1[m] is

b̃1N [m] = d̃N [m](̃H1)N

(m
T

)
(4.37)

and from (4.1) we have

DFT−1
N

(
d̃N [m]

)
=

1

N
b̃x[n].
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Respectively, for the filter H1(·) we have

DFT−1
N

(
(̃H1)N

(m
T

))
= h̃1[n].

Then, the inverse DFT for (4.37) gives

b̃[n] =
1

N
b̃x[n] � h̃1[n]. (4.38)

Hence, the final time-domain relationship for simulating the complete processing chain
can be established as

g̃[n] = h̃2[n] � f

(
1

N
b̃x[n] � h̃1[n]

)
(4.39)

only when h2[n] = δ[n].
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4.A Appendix: General Properties for Periodically

Extended Sequences

In this appendix some useful properties for circular convolutions and periodic extensions of
infinite-lenght finite-energy sequences are briefly examined. Let us denote the N-periodic
extension of the sequence x[n] as

x̃N [n] =

+∞∑
m=−∞

x[n +Nm].

Given the definition of discrete convolution,

y[n] = h[n] ∗ x[n] =

+∞∑
m=−∞

h[m]x[n −m], (4.40)

the following properties are verifiable:

ỹN [n] = h̃N [n] ∗ x[n] (4.41)

ỹN [n] = h̃N [n] � x̃N [n]. (4.42)

The first property is proved by

h̃N [n] ∗ x[n] =
+∞∑

k=−∞
h[n+ kN ] ∗ x[n]

=

+∞∑
k=−∞

y[n+ kN ] = ỹN [n]. (4.43)

The second property is proved by

h̃N [n] � x̃N [n] =
N−1∑
m=0

h̃N [m]x̃N [n−m]

=

N−1∑
m=0

+∞∑
k=−∞

h[m+ kN ]x̃N [n−m]

=

+∞∑
�=−∞

h[�]x̃N [n− �]

= h[n] ∗ x̃N [n] = ỹN [n]. (4.44)
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A third property is
˜(

x̃N [n]h[n]
)
N

[n] = x̃N [n]h̃N [n] (4.45)

and can be proved by

˜(
x̃N [n]h[n]

)
N

[n] =

+∞∑
k=−∞

x̃N [n+ kN ]h[n + kN ]

=

+∞∑
k=−∞

x̃N [n]h[n + kN ] = x̃N [n]h̃N [n]. (4.46)




