
Chapter 5

Statistics of the Nonlinear Distortion

In this chapter, some interesting aspects on the probability distribution of the OFDM signal
and its relations with nonlinear distortion and clipping effects are reviewed. The possibility
of a CDF based estimation of the AM/AM pre-distortion characteristic is also presented
discussing the influence of the time delay in AM/PM compensation.

5.1 Simplified model including time delay

Along the previous chapters we provided a detailed signal and system model which is
needed to justify the higher level approximations used in our linearization problem and
to achieve a deeper understanding of the transmission structure under the effect of a
nonlinearity. Now, the present discussion is focused as an intermediate analytical step
between the theoretical signal models and the formulation of the linearization algorithms.
For this purpose, we review the basic model initially presented in section 3.1.1. In equation
(3.2) we defined the continuous-time OFDM symbol as

bx(t) =
1√
N

N−1∑
k=0

dx(k, i)e
j2πfkt, for t ∈ Ii

whit fk the k-th carrier frequency and dx(k, i) the M-QAM symbol modulating the k-th
carrier during the i-th OFDM symbol interval. The transmission of this base-band signal
is considered in the simplified block diagram of a generic OFDM system shown in figure
5.1 where the nonlinear distortion introduced by the HPA block in RF can be modeled in
base-band according to the memoryless I/O relations given in chapter 2. Nevertheless, the
up and down-conversion chains therein included, encompass analog pass-band filters that
introduce an important group delay at the signal which, in addition to the inherent HPA’s
memory, contributes to a total time misalignment between bx(t) and by(t). Therefore, an
effective time delay between the input bx(t) and output by(t) base-band signals must be
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Figure 5.1: (a) Simplified block diagram of the pass-band OFDM system model including
adaptive PD estimation (b) Base-band model of the HPA including memory effect.

considered and, whenever necessary, compensated to estimate the PD characteristic. Such
time delay is also registered between the discrete versions of the base-band signals, bx[n]
and by[n], available at the input and the output of DAC and ADC, respectively. This
effect is implicit to those elements within the dash-lined block in figure 5.1(a) where the
transmitter and receiver block diagram of the pass-band OFDM system is shown. Then,
in figure 5.1(b), the time delay is explicitly represented as the concentrated parameter

∆ = Ts∆int + ∆frac,

associated to the memoryless HPA model. The total time delay may be composed of
an integer and a fractional part in terms of the sampling time Ts. While the fractional
misalignment can be compensated by inserting adaptive filters or interpolators, the
integer or coarse time delay ∆int can be effectively compensated through a Time Delay
Estimation (TDE) procedure like [54],[39] or [38] for TDE and synchronization before
the pre-distortion process.

If the bandwidth of the analog up/down-conversion filters is deemed reasonably supe-
rior to the bandwidth of the OFDM signal in incorporating the significant excess side-band
components due to spectral re-growth from the PD and HPA nonlinear operations, the
final nonlinear distortion base-band model in discrete time can be approximated with the
following relationships:

by(n) = bx(n−∆) · HPA[ux(n−∆)]

= A[ux(n−∆)] ej
[
αx(n−∆)+Φ[ux(n−∆)]

]
= ux(n−∆)GAM [ux(n−∆)] ej

[
αx(n−∆)+Φ[ux(n−∆)]

]
= uy(n) e j αy(n) (5.1)
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where A[·] and Φ[·] represent the AM/AM and AM/PM distortions respectively. Hence,
in order to apply digital pre-distortion to obtain linearization, it may be necessary to
estimate ∆ to ultimately find a discrete inverse multiplicative function HPA−1[·] such
that, bx(n−∆) = by(n) · HPA−1[uy(n)].

5.2 Statistics of distortion and clipping effect

From section 2.2.1, equations (2.30) and (2.31), we have the expressions for the direct and
inverse AM/AM characteristic of the Saleh model respectively given by

A[ux] =
A2
sαaux

A2
s + u2

x

and

A−1[u] =
αaA

2
s

2u

[
1−

√
1−

(
2u

αaAs

)2
]

where it is important to note again that this theoretical inversion remains valid only
within the interval [ 0 ≤ u ≤ αaAs/2 ] that defines the under-saturation input-output
dynamic range of the HPA. Recall that this range was previously normalized to [0, 1]
when the HPA model for simulations was presented in chapter 2.2.

According to the typical hypothesis of statistical independence, the complex symbols
dx(k) in (3.2) are considered mutually independent and identically distributed (i.i.d.)
symbols for any time interval. A complementary assumption is that the signal power is
uniformly distributed over the N OFDM sub-carriers using the same QAM constellation
for each one of them. Thence, for large values of N (> 30) and by means of the Central
Limit Theorem, the CDF of bx(t) can be well approximated by that of a two-dimensional
complex Gaussian random process, with zero-mean and variance 2σ2. Consequently, the
envelope of this signal ux(t) = |bx(t)| can be considered as Rayleigh distributed and,
since the in-phase and in-quadrature components are uncorrelated, the phase information
Arg{bx(t)} = αx(t) is uniformly distributed in the interval [−π, π]. The theoretic PDF-
CDF pair for the Rayleigh distribution of the input modulus ux(t) is given by

pRayl(u) =
u

σ2
exp{− u2

2σ2
} (5.2)

FRayl(u) = 1− exp{− u2

2σ2
} (5.3)

with mean µRayl = σ
√

π
2

and variance σ2
Rayl = 4−π

2
σ2. The corresponding theoretical

inverse for the distribution function in (5.3) can be easily calculated as

F−1
Rayl(u) = σ

√
2 ln

(
1

1− u

)
. (5.4)
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Figure 5.2: Input-to-output alteration of a Rayleigh distribution (σ = 0.2) due to the AM/AM
non-linear distortion introduced by the normalized Saleh model of HPA.

Then, according to the analytical correspondence defined in (2.31), the PDF of the
distorted data at the output of the HPA can be expressed as follows:

pdist(u) =
pRayl

(
A−1[u]

)
Ȧ
[
A−1[u]

] (5.5)

where Ȧ[·] stands for the derivative of the AM/AM transfer characteristic (2.26) with
respect to ux. This function is given by

Ȧ[u] =
∂A[u]

∂u
= αaA

2
s

[
A2
s − u

(A2
s + u2)2

]
. (5.6)

Since the transfer AM/AM curve tends to concentrate the output probability density
in zones where the gradient of A[u] tends to lower values, Ȧ[·] operates as a scaling
factor to redistribute the PDF preserving the same total probability, so that FRayl(∞) =
Fdist(∞) = 1. Then, the output CDF can be obtained as the integral of pdist(u) or by
direct replacement of (2.31) into (5.3), i.e. Fdist(u) = FRayl(A

−1[u]), where no scaling will
be necessary. In figure (5.2) these analytical relationships are graphically shown for this
particular case, where Rayleigh distributed samples of the input signal amplitude ux(t)
are highly AM/AM distorted using (2.26). Since, from (5.3) we have that FRayl(5σ) =
0.9999963, letting σ = 0.2 almost every signal sample at the input distribution will be
located within the normalized dynamic range [0, 1]. Therefore a good condition for digital
data treatment when dealing with Rayleigh distributed OFDM sampled data would be
to require that the input signal power with respect to the saturation input amplitude
satisfy As ≤ 5σ. For practical applications, regarding the limited (and non-linear) dynamic
response of A/D and D/A converters, it is a common practice to use 3σ ≤ As ≤ 6σ for
OFDM signals with M-QAM modulated subcarriers.
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Figure 5.3: Ideally pre-distorted HPA characteristics.

5.2.1 Clipping characterization

From the discussion presented in section 2.2.2 we have established that, even if the
ideal pre-distorter is applied, whenever the signal envelope distribution has a non-null
probability for inputs exceeding the saturation point, it will not be possible to avoid
the non-recoverable distortions due to the amplitude limiting behaviour of the linearized
HPA [55]. Indeed, the only manner to preclude clipping degradation is to restrict almost
100% of the signal probability density to be within the valid input range [0, Asat]. In
practice, when dealing with a distribution with a large peak-to-mean ratio, as is the
case of the Rayleigh distribution, this restriction means a severe reduction of the input
power and consequently an important efficiency loss for the HPA operation. Therefore, it
is important to quantify the relations between the statistical distribution of the OFDM
signal and the expected power losses and noise due to the clipping effect in order to
properly asses the final results of any linearization scheme. The theoretical relations
presented in this section are intended to provide insight to some of the expectable system
degradations in the upcoming algorithm simulations.

Assuming the ideal pre-distorter has been achieved, the linearized combination
PD+HPA will behave as the ideal unitary gain amplitude limiter device (AM/AM clipper)
shown in figure 5.3. This ideal AM/AM limiter characteristic is defined by

C(u) =

{
u ; 0 ≤ u < Asat
Asat ; u ≥ Asat.

(5.7)

where Asat is the maximum output amplitude allowed. Along with this, the AM/PM
characteristic of the linearized combination will be considered ideal, that is, it does not
introduce any phase modifications to the input base-band signal bin = uejφ, for any value
of the modulus u = |bin|.
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Figure 5.4: Rayleigh distributions with different mean power and their clipping probabilities.

The input and output signals of an ideal limiter are typically considered to define the
input and output back-off for an HPA operation as follows:

IBOdB = 10 log10

(
Pmax

P in

)
(5.8)

OBOdB = 10 log10

(
Pmax

P out

)
(5.9)

where Pmax is the maximum output power that, in this case, has been normalized by
the input saturation power so that Pmax = A2

sat = 1. The mean input power defined
for the Rayleigh distribution in (5.2) is P in = 2σ2. Thence, the IBO can be expressed
alternatively1 as

IBO =
A2
sat

2σ2
(5.10)

IBOdB = 10 log10

(
A2
sat

2σ2

)
. (5.11)

Using the definition of the Rayleigh CDF given in (5.3), the probability of saturation
of the OFDM base-band signal envelope, expressed as the random variable u, can be
calculated as

psat = p(u ≥ Asat) = 1− FRayl(Asat) = e−
A2

sat
2σ2 = e−IBO. (5.12)

1The related parameters IBO (ratio) and IBOdB (ratio in dB) will appear conveniently included in
some equations. Note that their numerical values are not equivalent for calculations.
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In figure 5.4, given the normalized saturation level Asat = 1, we show the Rayleigh PDFs
for different levels of IBO, indicating the probability of saturation (psat · 100%) for each
case. Assuming that there are no power losses due to temperature dissipation, signal
insertion and so on, the total mean input power P in can be divided at the output of the
limiter (PD+HPA) into two portions which are expressed as

P in = P lin + P clip. (5.13)

Here P lin corresponds to the power of the portion of signal which is linearly transferred
(non-clipped) to the output, while P clip expresses the mean power of that portion of the
input signal which will undergo clipping after passing through the linear limiter. This
value can be calculated using (5.2) as

P clip =

∫ ∞

Asat

u2pRayl(u)du

=

∫ ∞

Asat

u3

σ2
e−

u2

2σ2

= (A2
sat + 2σ2)e−

A2
sat

2σ2 . (5.14)

Now, under a worst case criterion, the clipping effect may introduce a critical distortion
level making the transmitted information associated to the clipped portion of the signal
unrecoverable. Thus we can define a signal-to-clipped-noise ratio as a measure of the
extreme clipping degradation in terms of the IBO. This parameter is calculated as

SNRclip = 10 log10

(
P in

P clip

)

= −10 log10

(A2
sat + 2σ2)e−

A2
sat

2σ2

2σ2


= −10 log10

(
e−

A2
sat

2σ2

(
1 +

A2
sat

2σ2

))
= −10 log10

(
e−IBO(1 + IBO)

)
. (5.15)

In figure 5.5 we show a depiction of the relation expressed in (5.15) but showing the
dependence of SNRclip with respect to the IBOdB. This can be used as a reference if, for
example, we require the clipped power to be 60dB below the mean input power, then we
have to set an IBO > 12dB (actually ≥ 12.246dB).

The separation of power terms in equation (5.13) establishes that after clipping an
efficiency degradation is introduced in terms of the output power. Such degradation can
be observed through the difference between IBO and OBO. For this purpose, let us first
consider that the power of the non-clipped portion of the signal at the output of the
limiter is given by
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Figure 5.5: Relation between the Signal-to-clipped-noise ratio SNRclip and IBOdB .

P lin = P inF (Asat) = 2σ2(1− e−
A2

sat
2σ2 ) = P in(1− e−IBO). (5.16)

Then, we can formulate the following relations that define the OBO:

OBOdB = 10 log10

(
Pmax

P lin

)
= 10 log10(Pmax)− 10 log10(Pout)

= 10 log10(Pmax)− 10 log10

(
P in(1− e−IBO)

)
= 10 log10

(
Pmax

P in

)
− 10 log10

(
1− e−IBO

)
= IBOdB − 10 log10

(
1− e−IBO

)
(5.17)

Thus, with the relations above, we can evaluate the OBO as a parameter dependent
from the IBO. This dependence is shown in figure 5.6 where we can observe that for small
values of IBO, which implies high probability of saturation, the OBO curve tends to
OBO ≈ 0 while, for IBO values greater than 10dB, which implies a very low saturation
probability, the IBO and OBO values tend to be equal and hence the system degradation
due to clipping can be neglected in the performance assessment of the linearizer.

Finally, another relevant measure must be formulated analytically given its utility in
linearization assessment and also to avoid confusion in interpreting the power parameters
included up to this point. In an ideal linear transference with no AM/PM distortion and
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Figure 5.6: Output back-off in dependence of Input back-off in dB.

where the AM/AM clipping of the input signal envelope to a given Asat, as expressed in
(5.7), is the only source of input-to-output error, the resulting clipping error signal

ec = (u− C(u))ejφ (5.18)

with φ the undistorted input phase, is a measure of the maximum correction limit that
can be achieved by means of a pre-distortion linearizer which cannot counteract clipping
distortions over saturation. Therefore, after some calculations shown in appendix 5.A, the
mean power of the cliiping error signal in (5.18) can be expressed as

PEclip = 2σ2e−
A2

sat
2σ2 − σ

√
2πAsat erfc

(
Asat

σ
√

2

)
(5.19)

for the particular case when the linear clipper input is driven with a signal with Rayleigh
distributed envelope of variance 2σ2. This measure, for a given Asat, is a function of the
input power and, therefore, can be also expressed as a function of IBO

PEclip =
A2
sat

IBO
e−IBO −

√
π

IBO
A2
sat erfc

(√
IBO

)
. (5.20)

Then, with the mean input power defined for the Rayleigh distribution as P in = 2σ2

and using (5.19) we can finally express the ratio

(PEclip/P in)[dB] = 10 log

(
PEclip

P in

)
(5.21)
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to the input power as a function of IBO. The input signal has Rayleigh distributed envelope and
is applied to the ideal limiter specified in equation (5.7).

which is the lower bound expressing the minimum level of error signal power normalized
to the input power of an input with Rayleigh distributed amplitude, in presence of a linear
clipper with the maximum output power defined by A2

sat. In figure 5.7 we depict this im-
portant relation that will be used later for reference to evaluate the PD simulation results.
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5.3 CDF based Pre-distortion

This section shows the relationships that govern the estimation of the direct and inverse
characteristic of the HPA in terms of the cumulative density functions (CDF) of the signals
bx[n] and by[n]. The application of Ordered Statistics based estimation is well established
for AM/AM identification and it is shown that a joint estimation of the Pre-Distortion
characteristic and Time Delay ∆ is required when considering the AM/PM effect.

From equations (5.1) we have the AM/AM and AM/PM correspondences given by

uy(n) = A(ux[n−∆]) (5.22)

αy(n) = αx[n−∆] + Φ[ux [n−∆]] . (5.23)

The aim here is to determine the relationship between these correspondences and the
changes in the statistical distribution of the signal from the input to the output of the
nonlinearity.

5.3.1 Identification of AM/AM Pre-Distortion

From equation (5.22), we can define the probability density function of ux(n − ∆) and
uy(n) as pin(ux) and pout(uy), respectively. Note that in terms of the PDF, the parameter
∆ is irrelevant. Then, we have that the input and distorted densities fulfil∫ ux

0

pin(u)du =

∫ A[ux]

0

pout(u)du (5.24)∫ uy

0

pout(u)du =

∫ G−1[uy]

0

pin(u)du. (5.25)

Then, assuming perfect reciprocity of the normalized non-linear direct and inverse
AM/AM transfer characteristics within the interval [0, 1], we have that A−1[uy] = ux. By
applying the integral definition of CDFs and denoting them as F , with Fin(0) = Fout(0) =
0 (because u ≥ 0 by definition), we can express (5.24) and (5.25) with the corresponding
distribution functions

Fin(ux) = Fout(G[ux]) (5.26)

Fout(uy) = Fin(G
−1[uy]). (5.27)

Having the input and output modulus ux and uy normalized to the same dynamic range
[0, 1], it is possible to obtain from (5.26) and (5.27), without loss of generality, the following
set of common variable expressions:

A[u] = F−1
out

(
Fin(u)

)
(5.28)

A−1[u] = F−1
in

(
Fout(u)

)
(5.29)
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where the direct and inverse AM/AM non-linear characteristics A[u] and A−1[u] are finally
expressed in terms of the input and output CDFs of the modulus. Hence, any procedure
preserving the CDF information, such as the use of Order Statistics of the modulus,
is capable of estimating the AM/AM PD characteristic. Note that, for this purpose,
knowledge of ∆ is clearly superfluous.

5.3.2 Identification of AM/PM Pre-Distortion

Along the same lines, the PDF of the output phase αy(n) can be obtained from equation
(5.23) as the following circular convolution operation:

pαy(αy) =

∫ +π

−π
pαx(θ)pΦ(αy − θ)dθ (5.30)

with pαx(θ) and pΦ(φ) the PDFs of the statistically independent variables αx[n] and
Φ [ux[n]] respectively. But, as the PDF of αx[n] is uniform, this results in

pαy(αy) =

∫ +π

−π

1

2π
pΦ(αy − θ)dθ =

1

2π
(5.31)

being also uniform for any Φ[·]. Hence, identification of AM/PM pre-distortion is not
possible from the phase alone. AM/PM pre-distortion can only be determined if the phase
term αx(n−∆) in (5.23) can be substracted from the phase αy(n) to preclude the circular
averaging in equation (5.31). This correspond to the straightforward identification

αy(n)− αx(n−∆) = Φ[ux(n−∆)] (5.32)

which is only possible if the time delay ∆ is known. Hence, synchronization between bx(n)
and by(n) is necessary in the presence of AM/PM distortion.

5.3.3 CDF Estimation using Order Statistics

In view of the last results, the application of Ordered Statistics to CDF estimation and
AM/AM pre-distortion is introduced in this sub-section.

When the (stationary) input probability distribution is known a priori, as in (5.3), a
simple fixed pre-distortion design can be implemented by replacing the known F−1

in (·) in
(5.29). The estimation task is thus reduced to finding the variance σ2 of the input signal
and the output CDF. Nevertheless, in a general context, no a priori knowledge on the
input and output distributions is assumed to guarantee full adaptability. Thence, for the
estimation of AM/AM pre-distortion using the general property expressed in equation
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(5.29), a frame-oriented processing algorithm can be described as follows in general terms
for any variable x:

1. A pair of input and output discrete signal vectors, xin[n] and xout[n] respectively,
are acquired at each iteration m = {1, 2, · · · }, as N -sample long data-blocks, defined
as

xin[N ](m) = [xin(1+(m−1)N), · · · , xin(mN)]
T (5.33)

xout[N ](m) = [xout(1+(m−1)N), · · · , xout(mN)]
T . (5.34)

2. The distributions F−1
in (·) and Fout(·) are estimated separately during the same m-th

interval of discrete time {1 + (m− 1)N ≤ n ≤ mN}.

3. Finally, the estimated distributions can be used according to (5.29) to interpolate
A−1[·] thus pre-distorting the input frame xin(m+ 1) at the next iteration.

In scenarios where a non-stationary input distribution is considered, the estimation
of the input and output CDFs will be used to adapt the PD characteristic at each
iteration. However, even if the input distribution is stationary, an iterative process is
suggested to update and improve the estimation of F−1

in (·) and Fout(·) thus accounting
for inputs with low probability values wich constitute an important source of errors as
will be seen in chapter 6. The length N of the information blocks required to achieve a
good linearization will depend on how the estimation of the input and output CDFs is
performed.

Order Statistics (OS) filtering [56] is an efficient means to obtain an estimation of the
inverse distribution function. Basically, it can be demonstrated that the linear combination
of a sorted data set provides, through suitable correspondences and normalizations, a
raw estimation of the percentiles that define its direct and inverse cumulative density
functions (CDF). Since in our formulation we have normalized the input-output dynamic
range so that 0 ≤ |xin| ≤ 1 and 0 ≤ |xout| ≤ 1, the base of OS estimation of the
distribution functions can be defined as a generalized property. For a N -length vector
x[N ] = [x(1) · · ·x(N)]

T , sampled from any original distribution with PDF p(x), we obtain
a sorted version x′

[N ] defined as

x′
[N ] = [x′(1) · · ·x′(N)]

T ; x′(n)≤ x′(n+1). (5.35)

Then it can be proved that ∀ n = {1, · · · , N},

x′(n) −→ F−1
( n
N

)
⇔ N →∞ (5.36)
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Figure 5.8: Order Statistics based CDF estimations using N = 10,100 and 1000 samples of a
Rayleigh distributed RV.

where the n-th term of the sorted data vector, tends to the theoretical inverse CDF
value associated to the corresponding index n normalized to the vector length. In other
words, the sorted set of signal samples x′

[N ] can be considered as an estimate of the

percentile curve of the underlying inverse distribution F−1(x), provided that the number
of estimated percentile points is equal to the number of elements in the sorted vector.
Hence, under the assumption that the data is acquired as a sequence of i.i.d. samples of
a random variable x, the one-to-one mapping (n/N) �→ x′(n) converges towards F−1(x)

for large N . The reciprocal mapping x′(n) �→ (n/N) converges in turn towards F (x). In
spite of the apparent simplicity of this relationship some aspects require a review for
their correct application in estimation. To provide an idea of the coarse correspondence
defined in (5.36), we illustrate in figure 5.8 the resulting approach for three different
sample data vector lengths. In the figure, the direct and inverse CDFs can be easily
observed by simply swapping the axes. The values therein used were sampled from a
normalized Rayleigh distributed signal with σ = 0.2.

From the example in figure 5.8 we can observe that the approximation of the distri-
bution function (amplitude vs. cumulative probability) corresponds to a single-valued
assignment. However, the approximation of the inverse distribution function (cumulative
probability v/s amplitude) which is the displayed axis position in the figure, can be a
non-unique assignment. Thus, for a finite N -sample sorted set, when x′(n) = x′(n+1) we

have that F (x′(n)) = F (x′(n+1)) and therefore, P ≤ N coordinated points can be defined
for the approximation of direct and inverse CDFs.

In general, the PDF of an ordered statistic set from N independent identically dis-
tributed samples of a random variable is defined as ([57] chap.8)
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Figure 5.9: PDFs of OS percentile estimation for r = 2, 10, 20, · · · , 100 using a vector of length
N=101 sampled from a Rayleigh distribution pRayl(x).

pr(x)=
N !

(r − 1)!(N − r)!F
r−1
x (x)

[
1−Fx(x)

]N−r
px(x) (5.37)

where px(x) and Fx(x) are the parental PDF and CDF according to which the samples
in the N-sample long vector x[N ] are theoretically distributed. Since the rank index r is
an integer value from 1 to N , we can obtain the PDF for the estimation of N different
percentiles given by p = 100(r/N). An illustrative example is shown in figure (5.9) which
uses a sorted set of N=101 samples of a Rayleigh distributed signal with σ = 0.2. Since
N=101 the rank index r in (5.37) indicates directly the estimated percentile p such that
the 50% cumulative probability correspond to r = 51. According to the Rayleigh PDF and
CDF distributions, shown in figure (5.2), it can be observed that the estimation of those
percentiles further away from the zone in which the probability density is highly concen-
trated are more strongly biased (this affects the pre-distortion of the low probability range
of the input data). In turn, the highlighted PDF therein shown for the estimation of the
percentile 50 behaves symmetrically and features low variance around its corresponding
theoretical value F−1

Rayl(0.5) = σ
√

ln 4 = 0.2355. A more detailed study of the raw OS
percentile estimation performance can be found in [58]. In the scope of our applications, a
sufficient reference on the accuracy of the OS based estimation of the CDF and its inverse
can be established by observing the MSE

E(N) =
1

N

N∑
n=1

∣∣∣F−1
( n
N

)
− x′(n)

∣∣∣2 (5.38)

resulting from the OS based estimation of the inverse distribution function in (5.4) with
respect to the sorted vector of length N applied for the approximation. The results for the
evaluation of this average error are shown in the upper part of figure 5.10 where we can
observe, for instance, that the length N = 1000, previously used in figure 5.8, provides a
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Figure 5.10: Upper: Mean Square Error for the estimation of the inverse CDF Rayleigh as
a function of the length N of the Order Statistics vector. Lower: The average complexity
O(N log2 N) of a Quick Sort type algorithm for the tested range of sorting lengths.

good fitting level (E ≈ 10−4) with respect to the theoretical curve. Along with this, and
since the feasibility of any real time application will depend also on the computational
complexity of each implemented solution, in the lower part of figure 5.10 we included a
depiction of the average complexity order, expressed in terms of the number of operations
required to achieve a totally sorted record of length N . In this case, we applied a routine
based on the C.A.R. Hoares’s Quick Sort algorithm which is one of the most efficient
sorting algorithms presenting an average complexity of the order O(N log2N) and is
adequate for our OS estimation purposes [59][60].

5.3.4 CDF based digital pre-distortion

The simplest way to apply digital pre-distortion can now be described using Order
Statistics estimation of CDFs:

Step 1: The amplitude values from the sorted vector x′
in[N ] are distributed along the vertical

axis as presented in figure 5.8. The resulting is an estimate of F−1
in (x), whose input

variable x is the normalized index (n/N) and its output is the corresponding ampli-

tude value x′in(n). Thus we obtain an estimated F̂−1
in (·) for the composition expressed

in (5.29). Such estimation correspond to the set of coordinates

F̂
−1

in[N ] =
[
(1/N, x′in(1)) · · · (N/N, x′in(N))

]
. (5.39)
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Step 2: The sorted vector of distorted samples x′
out[N ] returns N percentile values which are

distributed this time throughout the horizontal axis (as opposed to figure 5.8). The

resulting function is the estimated F̂out(x) constructed from the coordinate set

F̂ out[N ] =
[
(x′out(1), 1/N) · · · (x′out(N), N/N)

]
. (5.40)

Step 3: The final estimated pre-distortion curve is obtained through the composition of the
two previous estimates. Thus, pre-distortion is equivalent to the linear interpolation

of the input data with these sorted vectors. The composition F̂
−1

in[N ]

(
F̂ out[N ](·)

)
gives

a new set of coordinates defining an inverse for the non-linear transfer function
xout = A[xin] as follows:

Â−1
[N ′] =

[
(x′out(1), x

′
in(1)) · · · (x′out(N ′), x

′
in(N ′))

]T
(5.41)

where N ′ ≤ N refers to an eventual decreased length due to the reduction of
repeated coordinates (x′out(n), x

′
in(n)) = (x′out(n+1), x

′
in(n+1)), since they constitute

nuisance information for the composition of an interpolation curve.

Regarding the composition of A−1[·] expressed in (5.29), we can observe that the
main advantage of an OS based AM/AM pre-distortion is that it does not require the
time delay estimation when it is defined through the separate estimation of the input and
output CDFs. However, in the relatively simplistic formulation above, the assumption of a
perfect time alignment is desirable to achieve a good estimation of the PD characteristic.
This means that the construction in (5.41) is the simple input-induced sampling of the
HPA in base-band and hence, resorting to such statistical identification theory seems
unreasonable since it involves a penalty in computational burden. This is, quoting a
previously received (and very welcomed) criticism, analogous to “shooting a mosquito
with a cannon ball”. Nevertheless, this drawback disappears when we consider estimating
the statistical distributions separately using independent data sets from the input and
output of the HPA, and then perform the composition in (5.29). One alternative is to
take the CDF estimations obtained by means of OS and perform a regression of the
N ′ coordinates (which are excessive for interpolation) to a reduced set of, say, 32 or

64 coordinates to describe F̂−1
in (·) and F̂out(·). Another alternative to estimate these

significant distributions is the use of the so-called Soft Histogram (SH) technique [61],
which is based on information distribution methods and fuzzy bounded intervals for the
histogram. However, when using alternatively the OS or SH methods, two comparative
disadvantages arise. In SH the accuracy of the estimated curve is highly affected when
some histogram intervals are poorly activated, therefore the number of bins and their
width must be adaptive to the data density, which is computationally more complex
compared to the self-adaptive property of the OS. Besides this, the SH implementation
requires larger sample vectors than OS to achieve similar CDF estimation performance.
Anyway, regardless of the chosen CDF estimation technique, the composition of the
inverse AM/AM function results independent from the time delays between input and
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output data. Additionally, as will be seen in the next chapter, the suitable use of
OS can provide a rapid means to establish good initial conditions for the coefficients
that approach the PD characteristics in a more complete and accurate adaptive PD
algorithm. Given such benefits, in some cases, the “OS cannon ball” may become justified.

Considering the correspondences shown in equations (5.22) and (5.23), for the appli-
cation of (5.41) in AM/AM PD, we can assume availability of N-sample long vectors ux

and uy with the modulus of input and distorted sampled signals respectively. The sam-
ples in these vectors are related through the non-linear distortion defined in (5.1). Then,
assuming ∆ = 0 for simplicity and replacing the general notation in (5.41), we have

Â
−1

[N ′] =
[
(u′y(1), u

′
x(1)) · · · (u′y(N ′), x

′
x(N ′))

]
(5.42)

with Â−1(u) the estimated inverse AM/AM function of the HPA. This PD is equivalent
to linear interpolation of the data through the coordinate set in (5.42). Unlike the former,
AM/PM PD is applied as an additive pre-correction term over the input phase αx(n) such
that,

αxPD(n) = αx(n)− Φ̂PD[ux(n)] (5.43)

where, from (5.32) and assuming a perfectly compensated or null delay ∆, we have

Φ̂PD[ux(n)] = Φ[ux(n)] = αy(n)− αx(n). (5.44)

Here, Φ̂PD[ux(n)] is obtained by interpolation of the elements in ux with respect to
the set of coordinate points of the AM/PM curve given by

Φ̂[N ′] =
[
(u′x(1),Φ

′
(1)) · · · (u′x(N ′),Φ

′
(N ′))

]
(5.45)

where u′x(n) and Φ′
(n) are the sorted elements from the corresponding input amplitude

and modulus-dependent phase distortion vectors. In these expressions we have assumed
perfect synchronization between the signals, however, this is a critical impairment to the
system. Some synchronization solutions to counteract this problem have been proposed
in [54][39][38].



Chapter 5. Statistics of the Nonlinear Distortion 117

5.A Appendix: Definition of a minimum error bound

for a linear clipper with a Rayleigh distributed

input
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Figure 5.11: Measure of the I/O error signal for an ideal clipper.

Let us consider the ideal linear AM/AM clipper with unitary gain defined in (5.7).
The ideal linear limiting device so defined only introduce input-to-output errors when the
envelope of the input signal exceeds Asat. Thence, with the resulting I/O error signal

ec = (u− C(u))ejφ

measured as shown in figure 5.11, we can calculate the mean power of the clipping error
signal as

PEmin =

∞∫
Asat

(u− Asat)2p(u)du (5.46)

since, during saturation, C(u) = Asat. In this integral expression, p(u) is the probability
density function of u. For this evaluation we are interested in a signal whose envelope
follows a Rayleigh distribution whose corresponding PDF and CDF expressions where
given in (5.2) and (5.3). Let us recall them here for convenience:

pRayl(u) =
u

σ2
e−

u2

2σ2

FRayl(u) = 1− e−
u2

2σ2 .

Then, developing the square in (5.46) we have

PEmin =

∞∫
Asat

(u− Asat)2p(u)du

=

∞∫
Asat

u3

σ2
e−

u2

2σ2 du− 2Asat

∞∫
Asat

u2

σ2
e−

u2

2σ2 du+ A2
sat

∞∫
Asat

u

σ2
e−

u2

2σ2 du. (5.47)
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The solution for the first integral term in (5.47) is

∞∫
Asat

u3

σ2
e−

u2

2σ2 du =

[
−(u2 + 2σ2)e−

u2

2σ2

]∞
Asat

= (A2
sat + 2σ2)e−

A2
sat

2σ2 (5.48)

while the last term simply requires the direct evaluation of the Rayleigh CDF

A2
sat

∞∫
Asat

u

σ2
e−

u2

2σ2 du = A2
sat

[
1− e−

u2

2σ2

]∞
Asat

= A2
sate

−A2
sat

2σ2 . (5.49)

The second term can be solved by applying integration by parts where, for
∫
xdy =

xy −
∫
ydx, the definitions

x = u ; dy = ue−
u2

2σ2 ⇔ y = −σ2e−
u2

2σ2

yield the equivalence

2Asat

∞∫
Asat

u2

σ2
e−

u2

2σ2 du =
2Asat
σ2

([
− σ2ue−

u2

2σ2

]∞
Asat

+ σ2

∞∫
Asat

e−
u2

2σ2 du

)

= 2Asat

(
Asate

−A2
sat

2σ2 + σ
√

2

∞∫
Asat
σ
√

2

e−ν
2

dν

)

= 2A2
sate

−A2
sat

2σ2 + σ
√

2πAsat erfc

(
Asat

σ
√

2

)
. (5.50)

Here, the change of variable ν = u
σ
√

2
is done in order to include the complementary error

function which is defined by

erfc(x) =
2√
π

∫ ∞

x

e−ν
2

dν.

Thence, through the summation of (5.48), (5.49) and (5.50) according to (5.47) we
obtain the total power of the clipping error signal as

PEmin = 2σ2e−
A2

sat
2σ2 + σ

√
2πAsat erfc

(
Asat

σ
√

2

)
.

Finally, with this result, the minimum error bound for linearization, considering only
clipping degradation for a Rayleygh distributed input signal with mean power 2σ2, can
be obtained by calculating the ratio

(PEmin/P in)[dB] = 10 log

(
PEmin

P in

)
.




