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Abstract
Depth Estimation refers to measuring the distance of each pixel relative
to the camera. Depth estimation is crucial for many applications, such as
scene understanding and reconstruction, robot vision, and self-driving
cars. Depth maps can be estimated using stereo or monocular images.
Depth estimation is typically performed through stereo vision follow-
ing several time-consuming stages, such as epipolar geometry, rectifica-
tion, and matching. However, predicting depth maps from single RGB
images is still challenging as object shapes are to be inferred from inten-
sity images strongly affected by viewpoint changes, texture content, and
light conditions. Additionally, the camera only captures a 2D projection
of the 3D world. While the apparent size and position of objects in the
image can change significantly based on their distance from the camera.

Stereo cameras have been deployed in systems to obtain depth map
information. Although it shows good performance, but its main draw-
back is the complex and expensive hardware setup it requires and the
time complexity, which limits its use. In turn, monocular cameras have
become simpler and cheaper; however, single images always need more
important depth map information. Many approaches to predict depth
maps from monocular images have recently been proposed, thanks to
the revolution of deep learning models. However, most of these solu-
tions result in blurry approximations of low-resolution depth maps. In
general, depth estimation requires knowing the appropriate representa-
tion methods to extract the shared features in a single RGB image and
the corresponding depth map to get the depth estimation.

Consequently, this thesis attempts to contribute into two research
lines in estimating depth maps (also known as depth images): the first
line estimates the depth based on the object present in a scene to re-
duce the complexity of the complete scene. Thus, we developed new
techniques and concepts based on traditional and deep learning meth-
ods to achieve this task. The second research line estimates the depth
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based on a complete scene from a monocular camera. We have devel-
oped more comprehensive techniques with a high precision rate and
acceptable computational timing to get more precise depth maps.

Keywords: 2D/3D Registration, Support Vector Machine, Cross-Domain,
Depth Images, Curvilinear Saliency, Deep Learning, Depth Prediction,
Pose Estimation, Generative Adversarial Networks, Monocular Depth
Map Estimation, Deep Autoencoders, Multiscale Networks, Multi-Generator,
3D CAD Models, Image Reconstruction, Image Segmentation, Image To
Image Translation, Contextual Semantic Information, Multi-Scale, Re-
fining Attention Network.
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Resum
L’estimació de profunditat fa referència a mesurar la distància de cada
píxel en relació amb la càmera. L’estimació de la profunditat és crucial
per a moltes aplicacions, com ara la comprensió i reconstrucció d’escenes,
la visió robotitzada i els cotxes autònoms. Els mapes de profunditat es
poden estimar mitjançant imatges estèreo o monoculars. L’estimació de
la profunditat es realitza normalment a través de la visió estèreo seguint
diverses etapes que requereixen temps, com ara la geometria epipolar,
la rectificació i la concordança. Tanmateix, predir mapes de profunditat
a partir d’imatges RGB individuals encara és un repte, ja que s’han de
deduir les formes dels objectes a partir d’imatges d’intensitat fortament
afectades pels canvis de punt de vista, el contingut de la textura i les
condicions de llum. A més, la càmera només captura una projecció en
2D del món 3D. Tot i que la mida aparent i la posició dels objectes a la
imatge poden variar significativament en funció de la seva distància a la
càmera.

S’ha desplegat càmeres estèreo en sistemes per obtenir informació
del mapa de profunditat. Tot i que mostra un bon rendiment, el seu prin-
cipal inconvenient és la complexa i costosa configuració del maquinari
que es requereix, així com la complexitat temporal, que limita el seu
ús. Al seu torn, les càmeres monoculars s’han tornat més senzilles i
econòmiques; tanmateix, les imatges individuals sempre necessiten in-
formació més important del mapa de profunditat. Recentment s’han
proposat molts enfocaments per predir mapes de profunditat a partir
d’imatges monoculars, gràcies a la revolució dels models d’aprenentatge
profund. Tanmateix, la majoria d’aquestes solucions donen lloc a aprox-
imacions borroses de mapes de profunditat de baixa resolució. En gen-
eral, l’estimació de profunditat requereix conèixer els mètodes de repre-
sentació adequats per extreure les característiques compartides en una
única imatge RGB i el mapa de profunditat corresponent per obtenir
l’estimació de profunditat.
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En conseqüència, aquesta tesi contribueix a dues línies de recerca en
l’estimació de mapes de profunditat (també coneguts com a imatges de
profunditat): la primera línia estima la profunditat a partir de l’objecte
present en una escena per reduir la complexitat de l’escena completa.
Així, hem desenvolupat noves tècniques i conceptes basats en mètodes
tradicionals i d’aprenentatge profund per aconseguir aquesta tasca. La
segona línia d’investigació estima la profunditat a partir d’una escena
completa obtinguda per una càmera monocular. Hem desenvolupat tèc-
niques més completes amb una alta precisió i un temps computacional
acceptable per obtenir mapes de profunditat més precisos.

Paraules clau: Registre 2D/3D, màquina de vectors de suport, do-
mini creuat, imatges de profunditat, prominència curvilínia, aprenen-
tatge profund, predicció de profunditat, estimació de postures, xarxes
adversàries generatives, estimació de mapa de profunditat monocular,
Autoencoders profunds, xarxes multi-escala, generador múltiple, mod-
els CAD 3D, reconstrucció d’imatges, segmentació d’imatges, traducció
d’imatge a imatge, informació semàntica contextual, multi-escala, xarxa
per refinar l’atenció.
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Resumen
La estimación de profundidad se refiere a medir la distancia de cada
píxel en relación con la cámara. La estimación de la profundidad es
crucial para muchas aplicaciones como la comprensión y reconstrucción
de escenas, la visión robotizada y los coches autónomos. Los mapas de
profundidad se pueden estimar mediante imágenes estéreo o monocu-
lares. La estimación de la profundidad se realiza normalmente a través
de la visión estéreo siguiendo diversas etapas que requieren tiempo,
tales como la geometría epipolar, la rectificación y la concordancia. Sin
embargo, predecir mapas de profundidad a partir de imágenes RGB in-
dividuales todavía es un reto, ya que deben deducirse las formas de los
objetos a partir de imágenes de intensidad fuertemente afectadas por
los cambios de punto de vista, el contenido de la textura y las condi-
ciones de luz. Además, la cámara sólo captura una proyección en 2D
del mundo 3D. Aunque el tamaño aparente y la posición de los objetos
en la imagen pueden variar significativamente en función de su distan-
cia a la cámara.

Se ha desplegado cámaras estéreo en sistemas para obtener informa-
ción del mapa de profundidad. Aunque muestra un buen rendimiento,
su principal inconveniente es la compleja y costosa configuración del
hardware requerido, así como la complejidad temporal, que limita su
uso. A su vez, las cámaras monoculares se han vuelto más sencillas y
económicas; sin embargo, las imágenes individuales siempre necesitan
información más importante del mapa de profundidad. Recientemente
se han propuesto muchos enfoques para predecir mapas de profundi-
dad a partir de imágenes monoculares gracias a la revolución de los
modelos de aprendizaje profundo. Sin embargo, la mayoría de estas
soluciones dan lugar a aproximaciones borrosas de mapas de profun-
didad de baja resolución. Por lo general, la estimación de profundidad
requiere conocer los métodos de representación adecuados para extraer
las características compartidas en una única imagen RGB y el mapa de
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profundidad correspondiente para obtener la estimación de profundi-
dad.

En consecuencia, esta tesis contribuye a dos líneas de investigación
en la estimación de mapas de profundidad (también conocidos como
imágenes de profundidad): la primera línea estima la profundidad a
partir del objeto presente en una escena para reducir la complejidad de
la escena completa. Así, hemos desarrollado nuevas técnicas y concep-
tos basados en métodos tradicionales y de aprendizaje profundo para
conseguir esta tarea. La segunda línea de investigación estima la profun-
didad a partir de una escena completa obtenida por una cámara monoc-
ular. Hemos desarrollado técnicas más completas con alta precisión y
un tiempo computacional aceptable para obtener mapas de profundi-
dad más precisos.

Palabras clave: Registro 2D/3D, máquina de vectores de soporte,
dominio cruzado, imágenes de profundidad, prominencia curvilínea,
aprendizaje profundo, predicción de profundidad, estimación de pos-
turas, redes adversarias generativas, estimación de mapa de profundi-
dad monocular, Autoencoders profundos, redes multiescala, generador
múltiple, modelos CAD 3D, reconstrucción de imágenes, segmentación
de imágenes, traducción de imagen a imagen, información semántica
contextual, multiescala, red para refinar la atención.
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Chapter 1

Introduction

1.1 Motivation

We can define depth estimation as a mapping from an RGB image or a
series of RGB images to a depth map or a series of depth maps. Depth
prediction estimates the distance of objects in a scene from a camera.
This is an essential problem in computer vision because depth informa-
tion is necessary for many applications, such as 3D reconstruction, scene
understanding, and object recognition.

The motivation for depth estimation comes from the fact that, in
many real-world applications, it is necessary to understand the 3D struc-
ture of a scene in order to make decisions or take action. For example,
depth information is essential in robotics for navigation and manipu-
lation tasks, such as avoiding obstacles and grasping objects. In aug-
mented and virtual reality, depth information is necessary to render re-
alistic 3D scenes and accurately track the user’s movements. In surveil-
lance and security, depth information can detect and track objects in a
scene and determine objects’ size and shape. The primary motivation
for depth estimation is to enable the development of systems and appli-
cations that can understand and interact with the 3D world more intel-
ligently and effectively.
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LiDAR is a standard method of depth estimation. Although LiDAR
hardware is expensive and susceptible to snow and rain, a less expen-
sive option is depth estimation using a stereo camera. The concept be-
hind stereo matching is generally quite simple, (Saxena, Schulte, Ng, et
al., 2007; Shamsafar et al., 2022). Suppose two collinear optical axes,
only horizontally displaced cameras, are used in this experiment. For
each pixel on the left camera frame, we can locate a corresponding pixel
on the right camera frame. We can estimate the point’s depth if we
know the separation between the point’s neighbouring pixels in the left
and right frames. The quality and computational time are trade-offs in
the traditional stereo-matching methods. Even though the fastest tech-
niques can generate a map that resembles the actual data to some ex-
tent, complicated and time-consuming procedures are almost always
required to produce an accurate and sharp disparity map. The SGBM
method makes the most sense for a real-time application because it can
quickly and accurately produce even blurry results, (Gehrig, Eberli, and
Meyer, 2009). In turn, the Graph Cut method would be the best method
for 3D mapping because it produces the sharpest results and can be pro-
cessed later, (Hong and Chen, 2004). Recently, this field has advanced
quickly thanks to the use of neural networks, which enhance the noise
and sharpness of the disparity map.

In turn, depth estimation from monocular images can be utilized to
infer 3D shapes and understand high-level scene structures that are the
basis for estimating depth maps. Deep neural networks have signifi-
cantly enhanced the performance of various computer vision tasks, in-
cluding monocular depth estimation and semantic segmentation. How-
ever, using a single image for estimating depth maps is complicated for
several reasons due to the difficulty of collecting information from a sin-
gle image, such as differences in geometry, scene texture, occlusion of
scene borders and ambiguity, (Simões et al., 2012). This yields blurring
in the objects’ boundaries and degrades the accuracy of the estimated
depth maps.
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To investigate the differences in depth perception between monoc-
ular and stereo depth estimation systems, scientists from all over the
world have conducted several studies. Most results suggest that the
most effective distance for a stereo depth estimation system is restricted
to almost 10 m, (Glennerster, Rogers, and Bradshaw, 1996; Palmisano
et al., 2010), despite efforts to use stereo depth estimation systems to
estimate depths up to hundreds of meters, but the main cause of the
limited depth range is the small baseline of stereo pairs. Human vision
follows a monocular situation beyond this point, (Glennerster, Rogers,
and Bradshaw, 1996). This information makes it clear that monocular
depth estimation systems can predict depths more accurately than hu-
mans. Some issues must be properly resolved, such as the need for a
large amount of training data and domain adaptation problems. These
tasks are highly challenging because no reliable idea can be used to infer
depth information from a monocular RGB image. Finding a relationship
between image pixels and geometric object features inside the image is
a critical concern for image scene understanding. For these reasons, this
PhD thesis focuses on making a valuable contribution to improving the
performance of the systems that use depth estimation. Our objectives
are to exploit machine learning and deep learning methods to estimate
the depth of a particular object presented in a scene and the depth of a
complete scene based on a monocular camera.

1.2 Approach

The main goal of this thesis is to develop automatic computer vision
tools for predicting precise depth maps from monocular images. This
thesis focuses on locating the important depth cues in natural images.
Most monocular depth cues only provide a local gradient of depth; thus,
to obtain a global depth prediction, local depth information from differ-
ent depth cues must be integrated and extended to the entire image do-
main. Furthermore, because other monocular depth cues may provide
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contradictory information, the integration process must include a mech-
anism to handle conflicting situations, such as scale and viewpoints vari-
ations.

Therefore, two approaches to these goals have been investigated.
The first method is object-based, which involves iteratively propagat-
ing local depth information provided by depth cues to the object located
in the entire image domain. Firstly, based on machine learning mod-
els, e.g., Support Vector Machine (SVM), we have started with the 3D
models of the objects and, based on the geometric features extracted by
curvilinear saliency descriptors, we have compared them to the entire
image to recognize the object and find the corresponding depth maps.
In order to improve monocular object depth estimation in the scene, we
exploit the current deep-learning models to estimate the objects’ depth
and viewpoint. In this case, we have proposed a large-scale approach
that focuses on finding a relationship between image pixels and object
geometric features inside the image to help the models improve the pre-
diction accuracy further and generate a more accurate dense depth im-
age. The second method estimates the depth map of a complete scene,
including different objects. It depends on an integrated approach that
preserves the discontinuities of the objects and a more accurate notion of
depth estimation requirements in the complete scene. We have delved
into state-of-the-art autoencoder networks and, more specifically, em-
ploy the multi-scale deep architecture and multi-level depth estimator.
Additionally, we have used curvilinear saliency as a multi-scale loss
function to boost the depth accuracy at object boundaries and improve
the performance of the estimated high-resolution depth maps and preser-
vation of object boundaries and small or tiny 3D structures in the entire
scene. Finally, to improve the overall performance in estimating the ob-
ject’s depth information regardless of its scale, we have used a multi-
scale feature Aggregation followed by a refinement attention network
that preserves global depth information in the combined depth scales.
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1.3 Contributions and publications

This thesis focuses on estimating depth maps from monocular images
based on the object present in a scene and the complete scene. The thesis
is divided into two research lines.

In the first line, we developed new techniques and concepts based on
hand-crafted machine learning and deep learning models for estimat-
ing a depth map of a rigid object presented in a scene. Firstly, we used
curvilinear saliency features related to curvature estimation for extract-
ing the important object shape information. We then utilised the multi-
class SVM to predict the closest depth images to the input RGB image.
Furthermore, to learn the mapping from the image domain to the depth
domain using deep learning models, we used adversarial learning to es-
timate the object’s depth presented in a scene and predict its viewpoint.
After that, in order to improve the depth predicted and fix the missing
pixels for the object, we used a multi-generative network with adversar-
ial learning and Structural Similarity (SSIM), Scale Invariant Error (SI),
and Mean Squared Error (MSE) as loss functions to improve the perfor-
mance of the developed deep model. Finally, we have used a conditional
generative adversarial network to generate an accurate depth map with
more realistic details and preserve the object boundaries.

The results of this research line have been published in the following
papers:

• Saddam Abdulwahab, Hatem A. Rashwan, Julián Cristiano, Sylvie
Chambon and Domenec Puig, “Effective 2D/3D Registration us-
ing Curvilinear Saliency Features and Multi-Class SVM”, VISI-
GRAPP (5: VISAPP) 2019: 354-361 (2019).

• Saddam Abdulwahab, Hatem A Rashwan, Miguel Ángel García,
Mohammed Jabreel, Sylvie Chambon and Domenec Puig, “Adversarial
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Learning for Depth and Viewpoint Estimation From a Single Im-
age”, IEEE Transactions on Circuits and Systems for Video Tech-
nology, Impact Factor 5.859 (Q1),2020.

• Saddam Abdulwahab, Hatem A. Rashwan, Najwa Sharaf and Domenec
Puig:, “MGNet: Depth Map Prediction from a Single Photograph
Using a Multi-Generative Network”, CCIA 2019: 356-364 (2019).

• Saddam Abdulwahab, Hatem A. Rashwan, Najwa Sharaf, Armin
MASOUMIAN and Domenec Puig:, “Promising Depth Map Pre-
diction Method from a Single Image Based on Conditional Gen-
erative Adversarial Network”, CCIA 2021: 392 (2021).

In addition, we have developed more comprehensive techniques with
a high precision rate and good computational timing for monocular
depth estimation of a complete scene in the second line. We first used a
deep autoencoder network with an HRNet semantic segmentation model
(Sun et al., 2019a) exploiting semantic features to feed the autoencoder
network with features related to the localization and boundaries of the
objects. Based on this idea, we developed a novel technique that boosts
the depth accuracy at object boundaries and predicts high-resolution
depth maps, preserving object boundaries and small 3D structures in
the input scene. This technique is based on an autoencoder network
with a multi-scale architecture, multi-level depth estimator, and curvi-
linear saliency as a loss function. Finally, to improve the prediction ac-
curacy and generate a more accurate dense depth image under different
conditions, we have proposed a novel autoencoder structure with a re-
fining attention network and multi-scale feature aggregation network.
In addition, we use a multi-scale loss function to achieve a more accu-
rate comparison and enforce the autoencoder network to generate an
accurate dense depth image.

The results of this research line have been published in the following
papers:

UNIVERSITAT ROVIRA I VIRGILI 
SUPERVISED MONOCULAR DEPTH ESTIMATION BASED ON MACHINE AND DEEP LEARNING MODELS 
Saddam Abdulwahab 



9

• Saddam Abdulwahab, Hatem A. Rashwan, Najwa Sharaf, Saif Khalid
and Domenec Puig “Deep Monocular Depth Estimation Based
on Content and Contextual Features”, MDPI-Sensors, Special Is-
sue "Image Processing and Pattern Recognition Based on Deep
Learning, Impact Factor 3.847 (Q2), (Under review).

• Saddam Abdulwahab, Hatem A Rashwan, Miguel Angel Garcia,
Armin Masoumian and Domenec Puig, “Monocular depth map
estimation based on a multi-scale deep architecture and curvi-
linear saliency feature boosting”, Neural Computing and Appli-
cations, Impact Factor 5.102 (Q2),2022/8/4 (2022).

• Saddam Abdulwahab, Hatem A Rashwan, Moumen T. El-Melegy,
Miguel Angel Garcia and Domenec Puig, “Depth-Attention Re-
finement for Multi-scale Monocular Depth Estimation”, Neuro-
computing, Impact Factor 5.779 (Q1), (to be submitted).

1.4 Thesis organization

The thesis contains four parts. Below, we briefly describe the work done
in each part:

• Part I: Introduction

– Chapter 1: Introduction
This chapter introduces depth estimation, starting with the
motivation behind the thesis and the main contributions to
improving monocular depth estimation systems.

– Chapter 2: Background
In this chapter, we describe the background of various aspects
of depth estimation from monocular images. Also, review the
methods and algorithms used. It also introduces the datasets
of monocular depth estimation and evaluation metrics used
in the thesis.
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• Part II: Depth estimation for a particular object presented in a scene

– Chapter 3: Effective 2D/3D Registration Using Curvilinear Saliency
features and Multi-Class SVM
This chapter illustrates a traditional hand-crafted 2D/3D reg-
istration method using curvilinear saliency features and multi-
class SVM to reduce the matching space between the RGB
and depth images.

– Chapter 4: Adversarial Learning for Depth and Viewpoint Esti-
mation from a Single Image
This chapter presents adversarial learning for depth and view-
point estimation from a single image to learn the mapping
from the image domain to the depth domain.

– Chapter 5: MGNet: Depth Map Prediction from a Single Photo-
graph Using a Multi-Generative Network
In this chapter, we present a multi-generative network for
depth estimation from a single image to allow the system to
generate more accurate dense depth images.

– Chapter 6: Promising Depth Map Prediction Method from a Sin-
gle Image based on Conditional Generative Adversarial Network
In this chapter, we study the influence of conditional genera-
tive networks (cGANs) on estimating depth map estimation
from a single image for indoor and outdoor scenarios.

• Part III: Depth estimation for a complete scene

– Chapter 7: Deep Monocular Depth Estimation Based on Content
and Contextual Features
In this chapter, we have used content and contextual semantic
information to boost the depth maps’ accuracy by preserving
the discontinuities of the objects in the estimated depth maps.

– Chapter 8: Monocular depth map estimation based on a multi-scale
deep architecture and curvilinear saliency feature boosting
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In this chapter, we exploit multi-scale deep architecture, curvi-
linear saliency feature, and multi-level depth estimator to es-
timate high-resolution depth maps and preserve object bound-
aries and small 3D structures in the input scene.

– Chapter 9: Depth-Attention Refinement for Multi-scale Monocu-
lar Depth Estimation
We present the depth-attention refinement for multi-scale monoc-
ular depth estimation in this chapter. To refine the final esti-
mated depth map and preserve global depth information in
the combined depth scales, we use an autoencoder network
in conjunction with a refining attention depth network and
a multi-scale Feature aggregation network. Furthermore, we
employ a multi-scale loss function to improve accuracy and
generate a more accurate dense-depth image.

• Part IV: Conclusion

– Chapter 10: Concluding remarks
In this chapter, we summarize the main concluding remarks
of the thesis and present some lines of future research.
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Chapter 2

Background

2.1 Introduction

Monocular depth estimation (MDE) estimates the depth of objects in a
scene from a single image. This is a challenging problem in computer
vision because depth information is typically lost when a single cam-
era captures an image. Inferring depth estimation from a single per-
spective is a fundamental capability of human vision, although a tough
task for computer vision. Due the appearance of an object in an image
dramatically depends on its intrinsic characteristics (e.g., texture and
colour/albedo) and extrinsic characteristics related to the acquisition
(e.g., camera pose and gamma correction conditions). The appearance of
objects significantly changes with their pose, haritaoglu1998w. Estimat-
ing a depth map from a 2D image is important in determining the 3D
pose of objects in a scene. In general, estimating a 3D pose requires the
solution of two problems: (1) generating the best depth image from a single
image, (2) estimating the correct pose of the main object in the 3D scene. There
are several different approaches to MDE, including learning-based and
geometry-based methods, (choistargan; Simões et al., 2012; Wang et al.,
2018). Learning-based methods use machine learning algorithms, such
as Convolutional Neural Networks (CNNs), to learn the relationship be-
tween the visual information in an image and the corresponding depth
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map. These methods typically require a large dataset of images and cor-
responding depth maps for training, and they can be highly effective for
estimating the depth of objects in a scene. While Geometry-based meth-
ods use geometric constraints, such as epipolar geometry, to estimate
the depth of objects in a scene. These methods do not require training
data but require additional information, such as camera parameters and
correspondences between points in the image. Geometry-based meth-
ods can effectively estimate the depth of objects in a scene. Still, they
can be sensitive to errors in the input data and assumptions about the
scene geometry.

Machine-based methods have become increasingly popular for depth
estimation due to their ability to handle complex scenes and their ro-
bustness to various lighting conditions. These methods can be broadly
classified into five categories: stereo-based methods, (Zbontar, LeCun,
et al., 2016), monocular-based methods, (Godard et al., 2019), LiDAR-
based methods, (Premebida et al., 2016), structured light-based meth-
ods, (Maimone and Fuchs, 2012) and Multi-view based methods, (Liu
et al., 2009). Each method has its advantages and limitations, and the
choice will depend on the specific application and the available hard-
ware. In recent years, with the development of deep learning, monocular-
based and stereo-based methods have achieved state-of-the-art perfor-
mance in a depth estimation tasks.

Recently, with the outstanding progress of deep learning, several
methods based on deep networks have been proposed for 3D shape
generation from a single colour image of an object, (choistargan; Wang
et al., 2018). These methods use different deep models for image-to-
image translation to learn the mappings among multiple domains, such
as Fully Convolutional Networks (FCN), (Long, Shelhamer, and Dar-
rell, 2015), U-Net networks, (Ronneberger, Fischer, and Brox, 2015), and
Generative Adversarial Networks (GAN), (Isola et al., 2017; Zhang et
al., 2018a). Furthermore, Convolutional Neural Networks are also used
for estimating 3D poses, (Ge et al., 2016; Mehta et al., 2017). Most deep
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network models for depth and viewpoint estimation are trained with
input colour images and depth images captured with depth cameras
or LiDAR sensors, (Eigen, Puhrsch, and Fergus, 2014; Ge et al., 2017).
However, LiDARs are very costly, and most depth cameras have seri-
ous limitations in real environments, such as the synchronization of the
optical and imaging elements, (Kadambi, Bhandari, and Raskar, 2014).

MDE is still challenging in computer vision tasks, such as many ap-
plications, such as augmented reality, robotics, and scene understand-
ing. The development of effective MDE algorithms continues to be an
active area of research and development.

The following sections introduce a general overview of the techniques
used to estimate depth from the monocular image. We have benefited
from all these techniques mentioned above in this thesis to start working
on new approaches to improve depth estimation systems.

2.2 Feature Extraction for Depth Estimation

Feature extraction and description are important steps in many com-
puter vision algorithms. It involves extracting information from images
or other data sources in order to represent them in a more meaning-
ful and concise way. This is often done using edge detection, colour
histograms, and texture analysis. The goal of feature extraction and de-
scription is to create a set of features that can be used to accurately and
efficiently describe the content of an image or video. These features can
then be used for object recognition, image matching, depth estimation,
and image classification. In general, feature extraction and description
is a crucial step in many computer vision algorithms, as it allows for the
efficient representation and analysis of visual data. This can have many
practical applications, such as surveillance systems, medical image anal-
ysis, and autonomous vehicles.

In this thesis, we consider different feature extraction and descrip-
tion methods that have usually been applied for depth estimation, such
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as Curvilinear Saliency Features (CS) citepzhuo2011defocus, Average
Shading Gradients (ASG), (Judd, Durand, and Adelson, 2007), Multi-
scale Curvilinear Saliency (MCS), (Rashwan et al., 2019), Multi-scale Fo-
cus Curves (MFC), (Rashwan et al., 2019), and Histogram of Curvilinear
Saliency (HCS), (Rashwan et al., 2016).

2.2.1 Curvilinear Saliency Features (CS)

Curvilinear Saliency Features (CS) proposed in (Rashwan et al., 2019)
is a representation that identifies and distinguishes between ridges and
valleys in a depth image. This representation directly relates to the dis-
continuities of the object’s geometry, and, by nature, the extracted fea-
tures are robust to texture and light changes. It is commonly used in
computer vision and robotics applications to provide important infor-
mation about the shape and structure of objects in an image. In a depth
image, ridges typically correspond to the edges or boundaries of objects,
while valleys correspond to the concave or interior regions of the objects.
A ridge and valley detector can help identify these features and provide
useful information for various applications.

In this thesis, in chapter 1 of Part II, we used a CS to find a common
representation between the 3D model and the 2D image to match them.
In addition, in Chapter 8 of Part III, we used CS as a loss function.

2.2.2 Average Shading Gradients (ASG)

Average Shading Gradients (ASG) introduced in (Plotz and Roth, 2015)
is a technique commonly used in computer vision and image processing
applications to provide important information about the structure and
shape of objects in an image. ASG involves calculating the average gra-
dient of the shading in an image, which can provide information about
the directions and intensities of the light sources in the scene. This in-
formation can help identify and distinguish between different objects in
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the image. For depth estimation, it is used to analyze the shading in-
formation in an image to infer the depth of objects in the scene. This
is typically done by calculating the average gradient of the shading in
the image and using it to estimate the direction and intensity of the light
sources in the scene to cope with the unknown lighting conditions. This
information can then be used to infer the depth of objects in the image
based on the known properties of light and how it interacts with objects
at different depths. This technique can provide important cues for other
computer vision tasks, such as object recognition and scene understand-
ing, and improve the accuracy of depth estimation algorithms.

In this thesis, in chapter 1 of Part II, we have used ASG to extract the
features from images and 3D models to find a common representation
between the 3D model and the 2D image to match them and find the
closest depth map.

2.2.3 Multi-scale Curvilinear Saliency (MCS)

Multi-scale Curvilinear Saliency (MCS) presented in (Rashwan et al.,
2018) is a computer vision algorithm that detects and highlights impor-
tant or salient regions in an RGB image. It works by applying a set of
filters at different scales (i.e., resolutions) to the input image and then
combining the resulting saliency maps to generate a final saliency map
that indicates the importance of each pixel in the image. It is based on
the idea that curvilinear structures, such as edges, corners, and lines, of-
ten characterize important visual elements in an image. The resulting
saliency maps are then combined using a weighted sum to generate a
final saliency map. In addition to detecting salient objects, MCS can also
be used to estimate the depth of each detected object.

In this thesis, in chapter 1 of Part II, we have used MCS to reduce
the influence of the texture on the intensity image and extract scale-
invariant features of an intensity image, (Rashwan et al., 2018). In turn,
in Chapter 9 of Part III, we also used MCS as a multi-scale loss function.
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2.2.4 Multi-scale Focus Curves (MFC)

Multi-scale Focus Curves (MFC) are used in computer vision to analyze
the focus information in an image. This technique is commonly used to
identify the regions of an image in focus and to measure the sharpness
and clarity of different parts of the image. In this technique, focus curves
are calculated at multiple scales, which allows for a more detailed anal-
ysis of the focus information in the image by keeping only the pixels
that have a high focus value in all the n scales when the pixel has a high
value at all scales, it is done the maximum value of the scale of blur is
taken into account to build the final multi-scale curve map. This infor-
mation can be used to help identify the regions of the image that are in
focus, as well as to get scale-invariant focus salient curves and reduce
a lot of edges belonging to texture information. It can approximate the
object shapes present in the depth images.

In this thesis, in chapter 1 of Part II, we used MFC to present the
focused features (i.e., curves) of a salient object in a scene and remove
the curves related to de-focused objects. It highlights salient features in
intensity images that are approximately similar to the detected features
in the depth images, (Rashwan et al., 2018).

2.2.5 Histogram of Curvilinear Saliency (HCS)

Histogram of Curvilinear Saliency (HCS) is a method for identifying
salient objects in images or video frames. Salient objects stand out from
their surroundings and are typically the most visually interesting or im-
portant parts of an image. HCS uses a combination of low-level visual
features such as colour, texture, edge and high-level semantic informa-
tion about the scene to identify and highlight salient objects. One key
aspect of HCS is its use of CS, which refers to the degree to which an
object’s contours or edges are curved. CS is an important visual feature
because the human visual system often uses it to identify and differen-
tiate objects. For example, a circular object will typically have more CS
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than a square object of the same size. To compute the histogram of CS,
HCS first extracts the curvilinear features of the image, such as edges
and contours, and then computes a histogram of these features. The
resulting histogram is used to identify the most salient objects in the im-
age. HCS is often used with other saliency detection methods, such as
the MCS algorithm, to improve the accuracy and robustness of salient
object detection.

In this thesis, in chapter 1 of Part II, to represent the curvilinear fea-
tures extracted from an image, we used the HCS descriptor with bins on
cells of 5 × 5 to have a robust descriptor for lighting changes and small
variations in the pose. It is one of the most beneficial features in general
object localization, (Dalal and Triggs, 2005).

2.3 Supervised Machine Learning (SML)

Machine learning, (Zhou, 2021) is a powerful tool widely used in com-
puter vision, a field of artificial intelligence that focuses on enabling
computers to understand and interpret visual information from the world
around them. Machine learning techniques are commonly used in com-
puter vision to train models that can automatically learn to recognize
and classify objects in images and videos and perform other tasks such
as object tracking, scene understanding, depth estimation, and image
segmentation. By using large datasets of labelled images and videos,
machine learning models can learn to extract useful features and pat-
terns from the data and use them to make accurate predictions about
the content of new images and videos, (Cheng et al., 2016). Moreover,
machine learning-based models can extract patterns from data, rather
than classical methods, which are time-consuming and depend on hand-
crafted features. They have been applied to solve many problems, (Bi-
ałoń, 2010). All these methods have successfully led to classification and
extraction patterns from data.
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Supervised machine learning-based methods for depth estimation
involve training a model on a dataset of input images and corresponding
depth maps. The model learns to predict the depth map for a given
input image based on the patterns and features learned from the training
data.

2.3.1 K nearest neighbours (KNN)

K nearest neighbours (KNN), (Altman, 1992) is a supervised machine
learning algorithm for classification and regression tasks. In KNN, the
model is trained on a dataset of labelled data points. The KNN algo-
rithm finds the K data points in the training set closest to the new data
point based on a distance metric such as Euclidean distance to predict a
new data point. The predicted class or value for the new data point is
then determined by a majority vote or by averaging the labels of the K
nearest neighbours.

One of the key advantages of KNN is its simplicity and flexibility, (Yao
and Ruzzo, 2006). The algorithm is easy to implement and can be used
for various tasks in computer vision, such as object recognition, image
segmentation, and scene understanding. Another advantage of KNN is
that it is a non-parametric method, which means that it does not make
any assumptions about the underlying distribution of the data. This al-
lows the algorithm to be more robust and effective in situations where
the data is complex or non-linear.

However, KNN also has some limitations. One of the main draw-
backs of the algorithm is that it can be computationally expensive, espe-
cially when dealing with large datasets, (Maillo et al., 2017). In addition,
KNN can be sensitive to the choice of K, and selecting the optimal value
of K can be challenging in some situations. Finally, KNN can be sensitive
to the presence of noisy or outlier data points in the training set, which
can affect the accuracy of the predictions. Overall, KNN is a useful and
effective tool for many tasks in computer vision, but it is important to
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consider its strengths and limitations in any particular application care-
fully.

KKN-based methods are effective in handling textureless and repet-
itive regions and have been used in various applications, such as stereo
and 3D reconstruction from single images. For instance, the authors of
(Scharstein and Szeliski, 2003) proposed a method called High-Accuracy
Stereo Depth Maps Using Structured Light, which uses a combination
of SIFT features and an RBF kernel-based distance metric to estimate
depth. In turn, (Karsch, Liu, and Kang, 2012) presented a Depth Trans-
fer for a Single Image Depth Estimation method, which uses a combina-
tion of SURF features and RBF kernel-based distance metric to estimate
depth from a single image.

In this thesis, in chapter 1 of Part II, we used KNN to estimate a
group of depth images close to the input RGB image.

2.3.2 Support Vector Machine (SVM)

Support Vector Machine (SVM), (Noble, 2006) is a supervised machine
learning algorithm commonly used in computer vision. SVM is a pow-
erful tool for classification and regression tasks. It has been widely used
in various applications within computer vision, such as object recogni-
tion, image segmentation, and scene understanding. In SVM, a hyper-
plane is trained to separate different data classes in a high-dimensional
space. This allows the SVM to make highly accurate predictions about
the class of a new data point based on its position relative to the hy-
perplane. SVM is particularly effective in tasks where the data is not
linearly separable. It can be used in combination with other techniques
to improve the accuracy of computer vision algorithms.

One of the key advantages of SVM is its ability to handle non-linear
and complex data, (Zareef et al., 2020). Unlike other algorithms that
assume the data is linearly separable, SVM can find non-linear decision
boundaries that can accurately separate the different data classes. This
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makes SVM particularly effective for tasks where the data is not linearly
separable, such as in many applications in computer vision. In addition,
SVM is a robust algorithm that is not sensitive to noise or outliers in the
training data.

However, SVM also has some limitations. One of the main draw-
backs of the algorithm is that it can be computationally expensive, es-
pecially when dealing with large datasets, (Syarif, Prugel-Bennett, and
Wills, 2016). In addition, SVM can be sensitive to the choice of kernel
function and other hyperparameters, and selecting the optimal values
for these parameters can be challenging in some situations. Finally, SVM
can have difficulty with high-dimensional data. Since the number of di-
mensions in the data increases, the algorithm’s computational complex-
ity also increases exponentially. Overall, SVM is a powerful and effective
tool for many tasks in computer vision, but it is important to consider
its strengths and limitations in any particular application carefully.

SVM is a supervised learning algorithm that has been used with
other techniques to improve the performance of depth estimation al-
gorithms such as (Chen, Li, and Xu, 2014; Liu et al., 2013). In (Liu et
al., 2013), the authors used a set of hand-crafted features and an SVM
regressor to estimate the depth map from a single image. They also em-
ployed a Markov Random Field (MRF) model to refine the estimated
depth map.

In this thesis, in chapter 1 of Part II, we used the multi-class SVM to
estimate a group of depth images close to the input intensity image.

2.4 Deep Learning (DL)

Deep learning is a type of machine learning widely used in computer
vision, (Voulodimos et al., 2018), a subfield of artificial intelligence that
focuses on enabling computers to understand and interpret visual infor-
mation from the world around them. In computer vision, deep learning
algorithms can train models that can automatically learn to recognize
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and classify objects in images and videos and perform other tasks such
as object tracking, scene understanding, and image segmentation.

Deep learning algorithms are particularly well-suited for tasks in
computer vision because they can automatically learn to extract and
identify relevant features from the data, (Sarker, 2021). This is partic-
ularly important in computer vision, where the data is often complex
and high-dimensional, and traditional feature extraction and engineer-
ing methods can be difficult to apply. By using large datasets of labelled
images and videos, deep learning models can learn to extract useful fea-
tures and patterns from the data and use them to make accurate predic-
tions about the content of new images and videos.

One of the key advantages of deep learning in computer vision is its
ability to handle complex and variable data, (Voulodimos et al., 2018).
Unlike other algorithms that require manual feature engineering and a
fixed set of rules, deep learning algorithms can automatically learn to
adapt to different data types and capture complex patterns and rela-
tionships. Also, it is highly effective for depth estimation in computer
vision. This is because deep learning algorithms can automatically learn
to extract and identify relevant features from the data, which can be used
to make accurate predictions about the depth of objects in an image.
In addition, deep learning algorithms can handle complex and variable
data, which is important in depth estimation, where the appearance of
objects can vary greatly depending on factors such as lighting, pose, and
viewpoint.

However, deep learning also has some limitations for depth estima-
tion in computer vision. One of the main drawbacks of deep learning
algorithms is that they require large amounts of labelled training data,
which can be difficult and expensive to obtain, (Najafabadi et al., 2015).
In addition, deep learning algorithms can be prone to overfitting the
training data, reducing their generalization ability and making them less
accurate on new or unseen data. Finally, deep learning algorithms can
be computationally expensive, requiring specialized hardware such as
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GPUs to run efficiently, (Chetlur et al., 2014). Overall, deep learning is a
powerful and effective tool for depth estimation in computer vision, but
it is important to consider its strengths and limitations in any particular
application carefully.

2.4.1 Convolutional Neural Networks (CNN)

Convolutional Neural Network (CNN), (O’Shea and Nash, 2015) is a
type of DL algorithm commonly used in computer vision. CNNs are a
particular neural network designed to operate on two-dimensional spa-
tial data, such as images. CNNs are composed of multiple layers of in-
terconnected neurons organized into three-dimensional volumes. Each
layer in a CNN applies a set of filters to the input data, which detects
specific patterns or features in the data. The outputs of the filters are
then combined and passed to the next layer in the network, where the
process is repeated.

One of the key advantages of CNNs is their ability to automatically
learn hierarchical representations of the data, (Jing et al., 2017). This
means that the filters in each layer of the network learn to detect increas-
ingly complex and abstract patterns in the data as the data propagates
through the network. This allows CNNs to learn rich and highly infor-
mative representations of the data, which can be used to make accurate
predictions about the content of images and videos.

CNNs have been widely used in various applications in computer
vision, (O’Mahony et al., 2019), such as object recognition, image seg-
mentation, and scene understanding. They have also been used in other
fields, such as natural language processing and speech recognition. How-
ever, CNNs also have some limitations, such as the need for large amounts
of labelled training data and the potential for overfitting the training
data. CNNs are a powerful and effective tool for many tasks in com-
puter vision. One of the most popular deep neural networks ((LeCun
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Figure 2.1: Convolutional Neural Network.

et al., 1989)) is a convolutional neural network based on common ma-
trix multiplication position convolution in at least one of its initial or
hidden layers and spatial information between pixels in a given image.
Therefore, the main component of CNN is explained below in Figure
2.1. Finally, CNN’s are a very important part of many computer vi-
sion applications, especially when large datasets have been made avail-
able such as ImageNet. To be more specific ImageNet datasets, with
millions of labelled images and abundant computing resources, have
enabled researchers to revive CNNs. Convolutional Neural Network
(CNN/ConvNet) is a class of deep neural networks commonly applied
to analyze visual images using a special technique called convolution.
A convolution in mathematics is now an arithmetic operation on two
functions that produces a third function that expresses how the shape
of one is modified by the other. Whereas, ConvNet reduces images to a
form that is easy to manipulate without losing the critical features for a
good prediction.
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2.4.1.1 Convolutional layer

A convolutional layer, (O’Shea and Nash, 2015) is a key component of
CNNs, and they are typically stacked. It is a type of layer in a Convo-
lutional Neural Network (CNN) that detect specific patterns or features
in the input data. In a CNN, each convolutional layer applies a set of
filters to the input data, which extract local features from the data. The
outputs of the filters are then combined and passed to the next layer in
the network, where the process is repeated. Each filter in a convolu-
tional layer has a small receptive field, the area of the input data that the
filter uses to detect patterns. The filters are typically applied to the in-
put data in a sliding window fashion, where the filters are moved over
the input data in small increments to cover the entire spatial extent of
the data. The output of the convolutional layer is a three-dimensional
volume, where the size of the volume is determined by the size of the
filters, stride, and padding applied to the input data. The filters in a
convolutional layer are typically learned during training, using a pro-
cess known as backpropagation. This allows the filters to automatically
learn to detect the data’s most informative and discriminative patterns.
The learned filters can then extract features from new input data and
make predictions about the content of images and videos. In Figure 2.2,
we show the Convolution operation.

Assume that the symbol l denotes the convolutional layer. After-
wards, the input of the layer l consists of the m(l−1)

1 feature, which was
extracted from the previous convolutional layer from each of size m(l−1)

2 ×
m(l−1)

3 . The CNN can directly accept the images I as an input if l = 1,
which includes one or more colour channels. The results of each layer
l include m(l)

1 feature maps of size m(l)
2 × m(l)

3 . Therefore, the i feature
map of the neural network layer l, represented by Y(l)

i , calculated by

Y(l)
i = B(l)

i +
m(l−1)

1

∑
j=1

K(l)
i, j ∗ Y(l−1)

j (2.1)
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Figure 2.2: Convolution operation.

Here, B(l)
i represents a bias matrix and K(l)

i, j is denoted by the size

of the filter of 2h(l)1 + 1 × 2h(l)2 +1 associated with the jth feature map in
layer (l1) with the ith feature map in layer l. As we stated earlier, m(l)

2

and m(l)
3 are determined by boundary impacts. The discrete convolution

can only be applied in the actual area of the input feature maps of the
pixels. Therefore, feature maps of the output can be defined as:

m(l)
2 = m(l−1)

2 − 2h(l)1 andm(l)
3 = m(l−1)

3 − 2h(l)2 (2.2)

From an image pixel, each input feature maps Y(l)
i in layer l involves

the m(l)
2 .m(l)

3 parts designed in a two-dimensional pattern. The part at
position (r,s) calculates the output

(
Y(l)

i

)
=

(
B(l)

i

)
r,s

+
m(l−1)

1

∑
j=1

(
K(l)

i, j ∗ Y(l−1)
j

)
r,s

(2.3)

=
(

B(l)
i

)
r,s

+
m(l−1)

1

∑
j=1

h(l)1

∑
u=−h(l)1

h(l)2

∑
v=−h(l)2

(
K(l)

i, j

)
u,v

(
Y(l−1)

j

)
r+u,s+v

(2.4)
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The trainable weights of the network can be found in the filters K(l)
i, j and

the bias matrices B(l)
i .

2.4.1.2 Pooling

Pooling is a technique used in Convolutional Neural Networks (CNNs)
to reduce the spatial size of the data and to introduce spatial invariance.
Pooling is typically applied to the output of a convolutional layer, where
it is used to down-sample the spatial dimensions of the data. This re-
duces the computational complexity of the network and makes it more
robust to small translations and deformations in the input data, (Shi, Xu,
and Li, 2017).

Several different types of pooling, (Akhtar and Ragavendran, 2020)
are commonly used in CNNs, including max pooling, average pooling,
and sum pooling. The maximum value in each pooling window is re-
tained in max pooling, and all other values are set to zero. This has the
effect of retaining only the most dominant feature in each pooling win-
dow. In average pooling, the average value in each pooling window
is retained, which has the effect of smoothing the data and reducing
noise. In sum pooling, the sum of all values in each pooling window is
retained, which has the effect of retaining all features in the data.

Pooling is typically applied after each convolutional layer in a CNN.
This allows the network to learn hierarchical representations of the data,
where each layer learns to detect increasingly complex and abstract pat-
terns. Pooling also allows the network to be more robust to small trans-
lations and deformations in the input data, which is important for object
recognition, where the position and orientation of objects can vary in the
input data. Overall, pooling is an important component of CNNs and is
widely used in a variety of applications on the computer. In Figure 2.3,
we show How Max pooling works in CNN.
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Figure 2.3: Max Pooling Operation.

2.4.1.3 Dropout

Dropout is a regularization technique commonly used in Convolutional
Neural Networks (CNNs) to prevent overfitting to the training data.
Overfitting occurs when a model performs well on the training data but
poorly on new or unseen data, (Gal and Ghahramani, 2016). Dropout
can happen when the model is too complex and has too many free pa-
rameters, which allows it to fit the training data too closely. It is a sim-
ple and effective way to combat overfitting in CNNs, (Xu et al., 2019). It
works by randomly dropping out, or setting to zero, a subset of the neu-
rons in the network during training. Dropout reduces the complexity of
the network and forces the remaining neurons to learn more robust and
generalized representations of the data. As a result, the network is less
likely to overfit the training data and is more likely to perform well on
new or unseen data. It is typically applied to the fully-connected lay-
ers of a CNN, which are the most prone to overfitting. Dropout is used
with a certain probability, such as 0.5, which means that, on average,
half of the neurons in the layer will be dropped out during each training
iteration.
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In this thesis, we have used dropout in our models due has the ef-
fect of reducing the complexity of the network and regularizing its be-
haviour. In addition, it is a simple and effective way to improve the gen-
eralization ability of a CNN. It is widely used in various applications in
computer vision, and it has been shown to improve the performance of
many models. However, it is crucial to carefully tune the dropout prob-
ability and other hyperparameters to achieve the best results. In Figure
2.4, we show how CNN works with and without dropouts during train-
ing.

Layer L+1

layer L

neural network using Dropoutstandard neural network model

Figure 2.4: How CNN works with and without dropout during training.

2.4.2 Autoencoder Networks

The Autoencoder network is a type of deep learning algorithm com-
monly used for tasks such as depth estimation in computer vision, (Kramer,
1991). Autoencoder networks are composed of two main components:
an encoder and a decoder. The encoder is a neural network that com-
presses the input data into a lower-dimensional representation known
as the latent space. The decoder is another neural network that recon-
structs the input data from the latent space. It is typically trained using
a supervised learning approach, (Ng et al., 2011), where the network is
trained on a large dataset of images and corresponding depth maps. The
network is trained to minimize the error between the predicted depth
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map and the ground truth depth map for each image in the training set.
This allows the network to learn the relationship between the visual in-
formation in the image and the corresponding depth map.

Autoencoder Networks are highly effective for depth estimation in
computer vision, (Yusiong and Naval, 2019). This is because the encoder-
decoder architecture allows the network to learn a compact and infor-
mative representation of the data, which can be used to make accu-
rate predictions about the depth of objects in an image. In addition,
the encoder-decoder architecture allows the network to be flexible and
adaptable to different types of input data, which is important for depth
estimation tasks. These models are usually trained by minimizing a re-
construction loss function that measures the difference between the re-
constructed output and its ground truth. Recently, autoencoders have
been applied to many vision-related problems, such as image recon-
struction, (Zheng and Peng, 2018), image registration, (Blendowski, Bouteldja,
and Heinrich, 2020), image segmentation, (Ben Abdallah et al., 2018),
Human health posture, (Luo et al., 2020). Thus, they are also advan-
tageous for depth map estimation. In addition, they have been used
with great success for both supervised and unsupervised tasks, such
as, (Garg et al., 2016; Wofk et al., 2019; PUIG, 2019). The main advan-
tage of autoencoders is that they provide a deep model directly based
on the input data rather than on predefined filters. Besides, they reduce
the dimensionality of the data used for training. Figure 2.5 shows how
autoencoders work with convolution neural networks. Figure 2.5 shows
how autoencoders work with convolution neural networks.

In this thesis, all deep learning proposed models are based on an
autoencoder network due plays a fundamental role in image-to-image
translation and other related tasks. Specifically, in our work, we have
used it to estimate the depth of domain B from the monocular image of
domain A.
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Figure 2.5: Autoencoder network with convolution neural network.

2.4.2.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a type of deep learning
algorithm proposed by Goodfellow et al., (Goodfellow et al., 2014), used
for generating synthetic data. GANs have two main components: a gen-
erator network and a discriminator network. The generator network is
trained to generate synthetic data similar to the training data, while the
discriminator network is trained to differentiate between real and syn-
thetic data.

The training process for a GAN involves an adversarial game be-
tween the generator and discriminator networks. The generator net-
work is trained to generate synthetic data similar to the training data,
while the discriminator network is trained to differentiate between real
and synthetic data. The generator network is then trained to fool the
discriminator network, while the discriminator network is trained to be-
come more accurate at detecting synthetic data. This process continues
until the generator network can generate synthetic data that is indistin-
guishable from real data, and the discriminator network cannot differ-
entiate between real and synthetic data, (Wang et al., 2017).

GANs are highly effective for generating synthetic data in various
applications, such as image generation, text generation, and audio gen-
eration. They are particularly useful for tasks with a large amount of
training data available, but it is difficult or impossible to collect more
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data. GANs can also augment the training data for other machine learn-
ing models, (Tanaka and Aranha, 2019), improving their performance
and generalization ability. However, GANs also have some limitations,
(Kazeminia et al., 2020), such as the potential for mode collapse, where
the generator network only generates a limited subset of the possible
outputs. Overall, it can be trained to generate synthetic depth maps
similar to the ground truth depth maps in the training data. The gen-
erated depth maps can augment the training data for other depth es-
timation algorithms, improving their performance and generalization
ability, (Emami et al., 2018). GANs are effective in generating synthetic
depth maps that are similar to real depth maps, and they can be used to
improve the performance of other depth estimation algorithms. How-
ever, GANs also have some limitations, such as the potential for mode
collapse, where the generator network only generates a limited subset
of the possible outputs, (Kazeminia et al., 2020). In Figure 2.6, we show
how Generative Adversarial Networks work.

In this thesis, in chapter 2 of Part II, we used a GAN network, which
successfully led to the estimation of transformation networks from one
domain to another. With GANs, the models could generate more accu-
rate dense depth images from a single 2D colour image of an object.
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Figure 2.6: Generative Adversarial Networks.
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2.4.2.2 Conditional Generative Adversarial Networks (cGANs)

Conditional Generative Adversarial Networks (cGANs) are a variant of
Generative Adversarial Networks (GANs) that can generate data condi-
tioned on a specific input. In a cGAN, the generator network is trained
to generate synthetic data conditioned on a given input, such as an im-
age or a text description. This allows the cGAN to generate data tailored
to the specific input, which can improve the quality and relevance of the
generated data, (Heirendt et al., 2019).

To train a cGAN, a dataset of pairs of inputs and outputs is collected,
where the inputs are the conditioning variables and the outputs are the
data to be generated. For example, in the case of image generation, the
inputs could be images, and the outputs could be corresponding syn-
thetic images, (Miyato and Koyama, 2018). The cGAN is then trained
on this dataset using an adversarial game between the generator and
discriminator networks. The generator network is trained to generate
synthetic data similar to the training data, while the discriminator net-
work is trained to differentiate between real and synthetic data.

Once the cGAN has been trained, it can be used to generate synthetic
data that is conditioned on a specific input. This allows the cGAN to
generate relevant and tailored data to the specific input, which can im-
prove the quality and relevance of the generated data. cGANs are effec-
tive for various tasks, (Isola et al., 2017), such as image generation, depth
estimation, image segmentation, text generation, and audio generation.
However, cGANs also have some limitations, such as the potential for
mode collapse, where the generator network only generates a limited
subset of the possible outputs. Figure 2.7 shows how the Conditional
Generative Adversarial Network works.

In this thesis, in chapter 2 of Part II, we used a cGAN network, which
allows the network to generate data tailored to the condition of a given
input. This approach aims to train the generator to generate samples
very close to the real ones. The samples have to be in the depth image
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domain, which improves the quality of the generated depth from an
object’s single 2D colour image.
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Figure 2.7: Conditional Generative Adversarial Networks.

2.4.2.3 Semantic Segmentation Preserving Depth Discontinues

Semantic segmentation assigns a class label to each pixel in an image,
where the class labels represent the image’s semantic content. For ex-
ample, in a scene containing buildings, cars, and people, semantic seg-
mentation algorithms would assign a class label of "building" to pixels
that correspond to buildings, a class label of "car" to pixels that corre-
spond to cars, and a class label of "person" to pixels that correspond to
people. Semantic segmentation and depth estimation are related prob-
lems in computer vision. Semantic segmentation involves assigning a
class label to each pixel in an image, where the class labels represent
the image’s semantic content. Depth estimation involves estimating the
depth of objects in a scene. Both of these tasks are important for un-
derstanding the 3D structure of a scene and the spatial layout of objects
in the scene. Most curricula in recent years have focused on the idea
of adapting semantic segmentation with depth estimation, (Nekrasov
et al., 2019; Zhang et al., 2018c; Mousavian, Pirsiavash, and Košecká,
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2016) because it solves the problem of integrating information from var-
ious spatial scales, which in turn achieves a balance between local and
global information because of its great importance in achieving Good
pixel-level resolution and resolution of local ambiguity in the image by
incorporating information from the local and global context into the im-
age. On the other hand, semantic segmentation and depth information
are intrinsically linked as they almost have the same information for the
objects in the image, as both pieces of information must be considered
in an integrated way to succeed in challenging applications, such as au-
tonomous navigation applications, (Shah, Khawad, and Krishna, 2016),
which need a three-dimensional reconstruction of the scene as well as se-
mantic information to ensure that the customer device has sufficient in-
formation available to conduct navigation securely and independently.
Therefore, addressing depth estimation and semantic segmentation in
a unified framework is particularly interesting. Specifically, the idea of
integrating depth estimation and semantic segmentation into a single
structure is driven by the fact that both segmentation information and
depth maps represent landscape geometric information. In this case,
feature extractors can be better trained due to their rich foreknowledge.
In Figure 2.8, we show how Semantic Segmentation Network works.

In this thesis, in chapter 1 of Part III, we have benefited from all meth-
ods mentioned above to enrich the features of the content with contex-
tual semantic information, boost the depth prediction accuracy regard-
ing the objects’ boundaries, and maintain high-level representations of
small objects.
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DecoderEncoder
Input image Output image

Figure 2.8: Semantic Segmentation Network.

2.5 Viewpoint Estimation (VE)

Viewpoint estimation estimates the position and orientation of a camera
relative to a scene. This is an important problem in computer vision be-
cause the viewpoint of a camera can affect the appearance of objects in
a scene and the spatial layout of the scene. Accurate viewpoint estima-
tion can enable various applications, such as augmented reality, robot
navigation, and 3D reconstruction.

There are several different approaches to viewpoint estimation, such
as (Su et al., 2015; Mahendran et al., 2018; Tulsiani and Malik, 2015;
Mousavian et al., 2017; Grabner, Roth, and Lepetit, 2018; Nath Kundu,
Ganeshan, and Venkatesh Babu, 2018), including geometry-based meth-
ods and learning-based methods. Geometry-based methods use geo-
metric constraints, such as epipolar geometry and structure from mo-
tion, to estimate the viewpoint of a camera. These methods typically re-
quire additional information, such as correspondences between points
in the image and known 3D scene geometry, and they can be sensitive
to errors in the input data.

In some cases, depth information can improve viewpoint estimation
and vice versa, (Mori et al., 2009). For example, depth information can
provide additional constraints on the possible viewpoints of a camera,
and it can help to disambiguate between different possible viewpoints.
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Similarly, the estimated viewpoint of a camera can provide additional
constraints on the possible depths of objects in a scene, and it can help
to improve the accuracy of depth estimates. Therefore, viewpoint and
depth estimation can be considered complementary tasks in computer
vision, (Wu et al., 2019), and they can improve the accuracy and robust-
ness of 3D scene understanding algorithms.

In this thesis, in chapter 2 of Part II, we have used a viewpoint es-
timation network to solve the correct orientation problem for the depth
generated, which appears when we train the model.

2.6 Datasets

In this thesis, we applied different experiments with public indoor and
outdoor datasets for depth estimation from monocular images. The
used datasets such as (PASCAL3D+, (Xiang, Mottaghi, and Savarese,
2014), NYU Depth-v2, (Silberman et al., 2012), Make3d, (Saxena, Sun,
and Ng, 2008), SUN RGB-D, (Song, Lichtenberg, and Xiao, 2015) ), are
the standard ones used in related work so that we can compare the per-
formance of the proposed methods to the state-of-the-art.

2.6.1 PASCAL3D+ dataset

PASCAL3D+ dataset, (Xiang, Mottaghi, and Savarese, 2014), which con-
tains 12 object categories. Every object category contains ten or more
3D models and more than 1, 000 real images related to the category. All
those images are captured under different lighting, background com-
plexity and contrast conditions. The dataset has both RGB images and
3D models. We used the 3D models to render corresponding depth im-
ages for the RGB images in order to train the models. We then rendered a
depth image from a 3D model corresponding to each real image accord-
ing to the viewpoints specified in the dataset. We randomly split the
images in every category into 70% for the training set and 30% for the
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testing set. In order to increase the number of training samples. We ren-
dered depth images for all the tested 3D models using the MATLAB 3D
Model Renderer 1 from multiple viewpoints by changing azimuth and
elevation angles, as well as the distance between the camera and the 3D
model. Figure 2.9 shows some examples from the NYU PASCAL3D+
dataset.

Figure 2.9: Examples of Input images and ground-truth depth maps
with the PASCAL3D+ dataset: colour images (Row 1), and ground-truth
depth maps (Row 2).

2.6.2 NYU Depth-v2 dataset

NYU Depth-v2, (Silberman et al., 2012) is a public dataset that provides
colour images and depth maps for different indoor scenes captured at
a resolution of 640 × 480 pixels, (Silberman et al., 2012). The dataset
contains raw frames captured by scanning various indoor scenes with a
Microsoft Kinect: 120K frames for training and 654 for testing, (Eigen,
Puhrsch, and Fergus, 2014). We trained our network models on a subset
of Depth-v2 containing 50, 000 images as proposed in, (Alhashim and
Wonka, 2018). We resized all colour images from 640 × 480 to 480 × 360
to feed the network. The depth maps have an upper bound of 10 meters.
Figure 2.10 shows some examples from the NYU Depth-v2 dataset.

1https://www.openu.ac.il/home/hassner/projects/poses/
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Figure 2.10: Examples of Input images and ground-truth depth maps
with the NYU Depth-v2 dataset: colour images (Row 1), and ground-
truth depth maps (Row 2).

2.6.3 SUN RGB-D dataset

SUN RGB-D is a public indoor scene dataset, (Song, Lichtenberg, and
Xiao, 2015) with 10K training and 5050 test images with high scene di-
versity collected with four different sensors at a resolution of 730 × 530.
This dataset is only for evaluation. We do not train on this dataset. We
cross-evaluate our NYU pre-trained model on the official test set of 5050
images without further fine-tuning. We resize all images from 730× 530
to 480 × 360 as inputs to the network, and the depth maps have an up-
per bound of 10 meters. Figure 2.11 shows some examples from the SUN
RGB-D dataset.

2.6.4 Make3d dataset

Make3D is a public outdoor dataset, (Saxena, Sun, and Ng, 2008) with
400 training and 134 test images captured through a custom-built 3D
scanner. The resolution of the ground-truth depth map is limited to
305 × 55 pixels, whereas the original size of the RGB images is 2, 272 ×
1, 704 pixels. To increase the number of training samples, we resized
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Figure 2.11: Examples of Input images and ground-truth depth maps
with the SUN RGB-D dataset: colour images (Row 1), and ground-truth
depth maps (Row 2).

all images to 460 × 345 to feed the network. Figure 2.12 shows some
examples from the Make3D dataset.

Figure 2.12: Examples of Input images and ground-truth depth maps
with the Make3D dataset: colour images (Row 1), and ground-truth
depth maps (Row 2).
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2.7 Metrics for Evaluating Performance

Evaluating results quantitatively is important for benchmarking perfor-
mance and comparing existing solutions. In this section, we present the
common metrics used for evaluating the performance of our models in
this thesis.

The precision rate refers to the ratio of true positives to the sum of
false positives and true positives, which have been used to compute the
precision rate of the registration process between input intensity images
and the rendered depth images of each category, computed as (2.5):

Precision =
TP

(TP + FP)
, (2.5)

Where TP is the number of true positive samples, and FP is the number
of False positive samples.

The median error (MedErr) is a widely used metric that is robust to
measure the median geodesic distance between the predicted pose and
the ground-truth pose (in degree), computed as (2.6):

MedErr = median (|predicted value − true value|) (2.6)

Accuracy at γ, which measures the % of images where the geodesic
distance between the predicted pose and the ground-truth pose is less
than γ (in radian). We denote this metric by Accγ where γ is the thresh-
old. We use γ = π/6, computed as (2.7):

Accα =
1
N

N

∑
i=1

∣∣predicted valuei − true valuei
∣∣× biasi (2.7)

Root Mean Square Error (RMSE), which provides a quantitative mea-
sure of per-pixel error, computed as (2.8):

RMSE =

√
1
n ∑

i∈T
(Bpred(i) − Bgt(i))

2, (2.8)
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where Bgt(i) is the real depth of pixel i, Bpred(i) is the associated pre-
dicted depth, T is the set of valid pixels (i.e., both the ground-truth and
predicted depth pixels that do not have depth values equal to zero or
non-black regions and n is the cardinality of T.

The average relative error (rel), which is defined as the ratio of the
absolute error of the measurement to the actual measurement and de-
termines the magnitude of the absolute error in terms of the actual size
of the measurement, is computed as (2.9):

rel =
1

wh

w

∑
x=1

h

∑
y=1

|B(x, y)− B̂(x, y)|
B(x, y)

, (2.9)

Log base 10 log10, which is also known as the common logarithm or
decadic logarithm, computed as (2.10):

log10 =
1

wh

w

∑
x=1

h

∑
y=1

|log10B(x, y)− log10B̂(x, y)|. (2.10)

The threshold accuracy measure is a measure that assesses the accu-
racy of the proposed model to estimate errors under a given threshold,
serving as an indication of how often our estimate is correct. The thresh-
old accuracy measure from, (Liu, Shen, and Lin, 2015) is essentially the
expectation that the depth value error of a given pixel in T is lower than
a threshold thrZ, computed as (2.11):

δZ = EB[ F(max(
B(x, y)
B̂(x, y)

,
B̂(x, y)
B(x, y)

) < thrZ)] , (2.11)

where F(·) is an indicator function that yields 1 if the condition in its ar-
gument is satisfied and 0 otherwise. We set thr = 1.25, and Z ∈ {1, 2, 3}.

Intersection Over Union (IOU) measure, also referred to as the Jac-
card index, which specifies the amount of overlap between the predicted
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and ground truth bounding box, computed as (2.12):

IoU =
TP

TP + FP + FN
, (2.12)

where TP indicates the number of pixels whose estimated depth coin-
cides with the real depth, FP indicates the opposite, and FN indicates
the number of pixels where the real depth has no predicted depth.

Dice score measure, which computes the ratio between the amount
of intersection and the total number of pixels in both the predicted b̂ and
the real depth b, computed as (2.13):

Dice =
2|b̂ ∩ b|
|b̂|+ |b|

=
2TP

2TP + FP + FN
. (2.13)

2.8 Chapter summary

This chapter introduced background concepts related to the thesis, such
as feature extraction and description, machine learning, deep learning
and its role in depth estimation, autoencoder networks, Generative Ad-
versarial Networks, Semantic Segmentation Networks, and MDE. It also
provides an overview of image datasets used in this thesis for the two
tasks, depth estimation for the object in the scene and depth estimation
for the complete scene. Finally, the evaluation metrics are commonly
used for depth estimation for the two lines. In the next section, we will
introduce all contributions to the depth estimation of the object located
in the scene based on Traditional Methods with SVM and Deep Learning
Models with Adversarial Learning.
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Part II

Depth estimation for an
object presented in a scene
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Chapter 3

Effective 2D/3D
Registration Using
Curvilinear Saliency
Features and Multi-Class
SVM

3.1 Introduction

This chapter will focus on a 2D/3D registration framework based on a
multi-class Support Vector Machine (SVM). Various object registration
tasks and computer vision applications such as human pose estimation,
face identification and robotics use 2D intensity images as input. Re-
cently, 3D geometries have also become available and popular. Accord-
ingly, benefiting both modalities, 2D/3D matching has become neces-
sary.

The 2D/3D registration is the problem of finding the transformation
and rotation of objects by matching their 3D models with 2D images.
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The matching of a 2D image to a 3D model is considered a difficult task
since the appearance of an object dramatically depends on its intrinsic
characteristics (e.g., texture and colour/albedo) and extrinsic character-
istics related to the acquisition (e.g., the camera pose and the lighting
conditions). The 2D/3D matching problem is mainly about answering
two main questions. (1) What is the appropriate representation method that
can be used for extracting features in both 2D and 3D data? (2) how to match
entities between the two modalities in this common representation?

corresponding
depth image 

SVM

Matching
(RANSAC)

3D model

Photograph

Cluster i
Pr

ed
ic

tio
n

Tr
ai
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ng

Test

Figure 3.1: General overview of the proposed 2D/3D registration algo-
rithm.

Many approaches have been proposed to extract features from 2D
and 3D representations. For 3D models, many possible ways are used to
represent them. To name a few, synthetic images, (Campbell and Flynn,
2001; Choy et al., 2015) of a 3D model were rendered. Silhouettes ex-
tracted from rendered images are then matched to ones extracted from
the intensity images. However, these methods did not consider most
occluding contours useful for accurate pose estimation. In addition, the
silhouettes extracted from the image background can badly affect the fi-
nal matching. More recently, (Plötz and Roth, 2017) proposed average
shading gradients (ASG), where the gradient normals of all lighting di-
rections were averaged to cope with the unknown lighting of the query
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image. The advantage of ASG is that it expresses the 3D model shape re-
gardless of either colours or texture. Image gradients are then matched
with ASG images. However, image gradients are still affected by image
textures and backgrounds. Other works are proposed in (Rashwan et
al., 2016; Rashwan et al., 2018). A collection of rendered images of the
3D models (i.e., depth images) from different viewpoints were used to
detect curvilinear features with common definitions between depth and
intensity images. Furthermore, the authors in (Rashwan et al., 2018)
proposed three main steps. First, the ridges and valleys of depth im-
ages rendered from the 3D model were detected. In order to cope with
the texture and background in 2D images, the features were extracted
by a multiscale scheme and were then refined by only keeping in-focus
features. The final step is to determine the correct 3D pose using a re-
peatable K-NN registration algorithm (i.e., instance-based learning) un-
til finding the closest view. However, the K-NN algorithm is a simple
machine learning algorithm and a very exhausting process, as well as it
is only approximated locally.

Consequently, this work proposes an automatic 2D/3D registration
approach reducing the matching space and compensating for the disad-
vantages of rendering a large number of depth images. That is done by
clustering the features extracted from all rendered images into N clus-
ters using a Rule-based Clustering Algorithm (CRA). The Histogram of
Curviness Saliency (HCS) is computed for each depth image per clus-
ter. A multi-class SVM is then trained with the features of each cluster
for assigning a 2D real image to the closest depth images. Finally, the
closest view is refined by the RANdom SAmple Consensus (RANSAC)
algorithm, (Fischler and Bolles, 1987) by matching the input image to
the depth images of the predicted class. Figure 3.1 shows the overview
of the proposed 2D/3D registration method.

In summary, the contributions of this work are the followings:

• updating a robust feature extraction method based on curvilinear
saliency proposed in, (Rashwan et al., 2018) for both 2D and 3D
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representations.

• clustering the features of the rendered depth images of a 3D model
into K clusters using CRA.

• cross-domain classification based on a multi-class SVM for assign-
ing a query intensity image to a class of the closest depth images.

• Determining the closest view using the RANSAC algorithm.

This chapter is structured as follows: SubSection 3.2 explains related
works, and the proposed methodology is detailed in SubSection 3.3. In
addition, the experiments and the results are shown in SubSection 3.4.
Finally, the Chapter summary is discussed in SubSection 3.5.
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Figure 3.2: Registering a 2D image to a 3D model using a collection of
depth images rendered from a 3D model from different viewpoints, and
then extracting the curvilinear features of both depth and intensity im-
ages and, after that, clustering the features of depth images to k clus-
ters using Clustering Rule-based Algorithm. Training a multi-class SVM
with the features of each cluster. Predicting the closest class to the curvi-
linear features extracted with the query image. Finally, refining and ver-
ifying the final viewpoint using RANSAC.
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3.2 Related Works

The problem of automatically aligning 2D intensity images with a 3D
model has been recently investigated in depth. In the general case, the
proposed solution will be image-to-model registration to estimate the
3D pose of the object. For various registration methods, the 3D mod-
els have been represented differently (e.g., depth or synthetic images),
and then the features extracted from the query and rendered images are
matched. In (Sattler, Leibe, and Kobbelt, 2011; Lee et al., 2013), cor-
respondences were obtained by matching SIFT feature descriptors be-
tween SIFT points extracted from the colour images and the 3D mod-
els. However, establishing reliable correspondences may be difficult
since the features in 2D and 3D are not always similar, particularly be-
cause of the variability of the illumination conditions during the 2D
and 3D acquisitions. Other methods relying on higher-level features,
such as lines, (Xu et al., 2017a), planes, (Tamaazousti et al., 2011), build-
ing bounding boxes, (Liu and Stamos, 2005) and Skyline-based meth-
ods, (Ramalingam et al., 2009) have generally been suitable for Manhat-
tan World scenes and hence applicable only in such environments.

Recently, the histogram of gradients, HOG, detector, (Aubry et al.,
2014; Lim, Khosla, and Torralba, 2014) or its fast version proposed, (Choy
et al., 2015) have also been used to extract the features from rendering
views and real images. These approaches have not evaluated the re-
peatability between the correspondences detected in an intensity image
and those detected in rendered images. In turn, 3D corner points have
been detected in (Plötz and Roth, 2017) using the 3D Harris detector,
and the rendering ASG images have been generated for each detected
point. Similarly, 2D corner pixels are detected in multiscale for a query
image. Then, the gradients computed for patches around each pixel
are matched with the database containing ASG images using the HOG
descriptor. This method still relies on extracting gradients of intensity
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images affected by textures and backgrounds yielding erroneous corre-
spondences.

Finally, in (Rashwan et al., 2018), the authors proposed structural
cues (e.g., curvilinear shapes) based on curvilinear saliency, which is
more robust to intensity, colour, and pose variations. Both outer and in-
ner (self-occluding) contours are represented in these features. To merge
in the same descriptor curvilinear saliency values and curvature orien-
tation, the histogram of the curvilinear saliency (HCS) descriptor is pro-
posed to describe the object shape properly.

3.3 Methodology

This section explains the main steps of the proposed scheme, the tools
and resources used in this work, the features used to represent the 3D
models and 2D images, and the proposed machine learning method.
Figure 5.1 shows the graphical description of the system. It contains
two main modules. The first is the SVM as a classifier, trained on a large
set of features extracted from rendered depth images to assign a query
2D image to a group of depth images. In subsection 3.4.1, we explain
how we trained the SVM. The second module finds the closest rendered
depth image that matches a query 2D image to the predicted depth im-
ages by using RANSAC to find the final viewpoint. This module is de-
scribed in subsection 3.4.2.

3.3.1 Labeling depth images based on CRA

Unlike the work proposed in (Su et al., 2015) by rendering images of
the 3D models based on varying only the Azimuth angle, we represent
every 3D model by a set of depth images generated from various camera
locations distributed on concentric spheres encapsulating by sampling
elevation and azimuth angles, as well as the distance from the camera
to the object. We rendered these depth images of 3D models available
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in the online 3D model repository, PASCAL3D+, (Xiang, Mottaghi, and
Savarese, 2014).

To reduce the space of matching between a single intensity image
and a thousand(s) of depth images, the rendered depth images are clus-
tered into a set of groups. Each cluster contains a set of depth images
belonging to a range of viewpoints. To assign each depth image to a
certain cluster, we defined a set of rules based on the azimuth, elevation
angles, and distance.

These rules are designed carefully to ensure that all the samples in
one category are inside a specific range of viewpoints. Algorithm 1
shows the proposed rules based on the maximum and minimum val-
ues of azimuth and elevation angles of rendering (i.e., Amax, Amin, Emax

and Emin, respectively), in addition to the maximum and minimum val-
ues of the distance of the camera to the 3D object (i.e., Dmin and Dmax).
In addition, Table 3.1 shows the clustering rules with C = 9 used in this
work.

Algorithm 1 CRA used for clustering the depth images based on (az-
imuth, elevation and distance) to G groups.
dataset K of clusters Input: Amax,Amin,Emax,Emin, Dmax,Dmin,K
Initialization:
a=(Amax - Amin) / C
e=(Emax - Emin) / C

while (i=1) <= C do (AS ∈ [Amin + (i − 1)× a + 1, Amin + i × a])
(ES ∈ [Emin + (i − 1)× e + 1, Emin + i × e])
(DS ∈ [Dmin, Dmax])
category=i
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Table 3.1: CRA with C = 9 clusters of depth images considering Amax =
180o and Amin = 0o, Emax = 90o and Emin = −90o, Dmax = 15 m and
Dmin = 0.0 m

Rule Category
(AS ∈ [0, 20] ∧ ES ∈ [−90,−70] ∧ DS ∈ [0, 15]) 1
(AS ∈ [21, 40] ∧ ES ∈ [−69,−50] ∧ DS ∈ [0, 15]) 2
(AS ∈ [41, 60] ∧ ES ∈ [−49,−30] ∧ DS ∈ [0, 15]) 3
(AS ∈ [61, 80] ∧ ES ∈ [−29,−10] ∧ DS ∈ [0, 15]) 4
(AS ∈ [81, 100] ∧ ES ∈ [−9, 10] ∧ DS ∈ [0, 15]) 5
(AS ∈ [101, 120] ∧ ES ∈ [11, 30] ∧ DS ∈ [0, 15]) 6
(AS ∈ [121, 140] ∧ ES ∈ [31, 50] ∧ DS ∈ [0, 15]) 7
(AS ∈ [141, 160] ∧ ES ∈ [51, 70] ∧ DS ∈ [0, 15]) 8
(AS ∈ [161, 180] ∧ ES ∈ [71, 90] ∧ DS ∈ [0, 15]) 9

3.3.2 Feature extraction and description

In order to obtain a common representation related to the curvature esti-
mation between the 3D model and the 2D image to match them properly,
this work uses the Curvilinear Saliency (CS) proposed, (Rashwan et al.,
2018) to extract features of rendered depth images. CS extracts saliency
features in one scale, and it can be defined as:

CS = 4 ∥∇Z∥2 (κ̄2 − K) (3.1)

where ∇Z = [Zx, Zy]⊤ is the first derivative of a depth image, κ̄ is the
mean curvature and K its Gaussian curvature.

In addition, to reduce the influence of the texture on the intensity im-
ages, we also use the curvilinear saliency computation with a multi-scale
scheme (i.e., Multi-scale Curvilinear Saliency (MCS) proposed in, (Rash-
wan et al., 2018)) to extract scale-invariant features of an intensity image.
The curvilinear saliency of an intensity image at i scale can be defined
as:

CSi = α((I2
ix
+ I2

iy)), (3.2)

where Iix , Iiy is the first derivative of an intensity image at scale i.
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Furthermore, to reduce the effect of the background in colour im-
ages, Multi-scale Focus Curves features (MFC) proposed in (Rashwan et
al., 2018) are then used. MFC presents the focused features (i.e., curves)
of a salient object in a scene and removes the curves related to de-focused
objects. The MFC features highlight salient features in intensity images
that are approximately similar to the detected features in the depth im-
ages. This can be done by computing the ratio between every two con-
secutive scales of the curvilinear saliency scales Ri as:

Ri =
CSi+1

CSi
, (3.3)

given the maximum value Ri in each scale level, the blur amount si at a
scale can be calculated:

si =
σi√

Ri − 1
, (3.4)

where σi is the standard deviation of the re-blur Gaussian at a scale.
When a pixel of si has a high value at all scales, the maximum value of
the blur amount si is used to build the final MFC features:

MFC =
1

arg maxi (si)
. (3.5)

The Histogram of curvilinear saliency (HCS) is computed to repre-
sent the curvilinear features extracted. HCS is similar to the Histogram
of Gradients (HOG), which is robust to lighting changes and small varia-
tions in the pose. In HCS, the orientation of the curvilinear features (i.e.,
CS, MCS or MFC) in local cells are binned into histograms to represent
an image or a sub-image. HCS has been proven to be one of the most
beneficial features in general object localization. In our experiments, we
compute histograms with 9 bins on cells of 5 × 5.
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3.3.3 SVM Classifier

The 2D/3D matching in this work will be achieved as a multi-class su-
pervised classification problem based on a support vector machine (SVM).
In particular, a multi-class SVM is trained for features extracted from
depth images related to a cluster. A one-versus-all training approach is
applied. Thus, during the offline training stage, the SVM is trained with
the feature vectors extracted from a set of depth images that belong to
a cluster. In turn, during the online classification stage, an input feature
vector extracted from a query intensity image is used for finding the cor-
responding class with the largest output probability following a winner-
takes-all strategy. The experimental results conducted in this work have
yielded the best classification results by using non-linear SVM with a
kernel based on a Gaussian radial basis function (RBF) (γ = 0.2) and
soft margin parameter (C = 1). In addition, the mapping kernel RBF is
defined as:

K(xi, xj) = exp(−γ∥xi − xj∥2), (3.6)

where γ = 1/2σ2, ∥xi − xj∥2 is the squared Euclidean distance be-
tween the two feature vectors xi and xj, and σ is a free parameter of the
standard deviation.

Our classification problem can be considered a cross-domain classifi-
cation. Since the training and the validation sets are related to a domain
generated from the features extracted from depth images, the testing
domain is the features extracted from 2D intensity images.

The first step to train a multi-class classifier such as SVM is to define a
set of features from the input images in dense real-valued vectors using
the HCS descriptor. As we explained in the aforementioned subsection,
we used the Curvilinear Saliency Features (CS), (Rashwan et al., 2018) to
extract the features of the training and the validation sets (i.e., rendered
depth images), in turn, the Multi-Scale Curvilinear Saliency (MCS) or
Multi-Focus Curves (MFC), (Rashwan et al., 2018) are used to extract
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the features of the testing set (intensity images). Once we get all the
samples for each cluster, the features of each depth image are used for
the SVM as a class to train on. Then, the pre-trained model is used for
the online classification of an intensity image to assign it to a group of
depth images.

3.3.4 Matching

In order to estimate the final camera pose (i.e., azimuth, elevation and
distance) of an input image relative to a 3D model, a 2D image will be
matched to depth images belonging to the predicted class provided by
the SVM.

We sampled the curvilinear features of the input image and all depth
images related to the predicted class to a set of key points. Matching be-
tween the features represented by HCS for both real and depth images
is then performed. RANSAC is finally used to refine the closest view
and estimate the final pose. As proposed in (Plotz and Roth, 2015), in
each iteration of the inner RANSAC loop, we sample 6 correspondences
to estimate both the extrinsic and intrinsic parameters of the camera us-
ing the direct linear transformation algorithm, (Hartley and Zisserman,
2003). Few iterations of RANSAC (i.e., 20 iterations in this work) are suf-
ficient to find a good refinement. The refinement of coarse poses from a
“true” correspondence will usually converge to poses near the ground
truth.

3.4 Experiment and Results

This section describes the experiments performed to evaluate the pro-
posed model, including a description of the experimental setup and the
analysis of the outcomes. In Part I, chapter 2, we have mentioned the
dataset and the evaluation metrics used in these experiments.
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3.4.1 Results and Discussion

In this work, in all experiments, we tested the features extracted from
real images against the features extracted from 3D models. For each cat-
egory of the PASCAL3D+ dataset, we computed the precision rate for
detecting the correct views after using the two aforementioned meth-
ods for the 3D model representation (i.e., CS and ASG) against the two
techniques for the intensity image representation (i.e., MCS and MFC).
That generates four variations of features used in the evaluation, such as
MCS/CS, MCS+MFC/CS, MCS/ASG and MCS+MFC/ASG. Some ex-
amples of the PASCAL3D+ dataset with CS, MCS and MFC features are
shown in Figure 3.3.

Firstly, we tested the effect of dividing the image (i.e., colour or depth)
into several cells with a specific size for describing an image on the accu-
racy of the proposed 2D/3D registration. Thus, we computed the preci-
sion rate of the registration process between input intensity images and
the rendered depth images of each category of the PASCAL3D+ dataset
with different cell sizes, i.e., 3× 3, 5× 5 and 7× 7 of the HCS descriptor.
Quantitative results with the average precision rate over the five cate-
gories of PASCAL3D+ are shown in Table 3.2. As shown, the HCS+MFC
with a cell size 5 × 5 yielded the highest average precision with the four
variations of features. Therefore, we recommended the HCS descriptor
with a 5 × 5 cell size for representing an image (depth or intensity).

Methods MCS+MFC/CS + SVM MCS/CS + SVM MCS+MFC/ASG + SVM MCS/ASG + SVM
HCS 3 × 3 0.65 0.53 0.56 0.53
HCS 5 × 5 0.88 0.84 0.84 0.79
HCS 7 × 7 0.77 0.73 0.72 0.66

Table 3.2: Average Precision rates of the five categories of PASCAL3D+
with different cell sizes of the HCS descriptor.

Table 3.3 shows the effect of four different representations of inten-
sity images and 3D models (i.e., MCS+MFC/CS, MCS/CS, MCS+MFC/ASG
and MCS/ASG) and the classifiers (i.e., KNN and SVM), on the average
precision rate of the closest group. With all categories of PASCAL3D+,
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Figure 3.3: intensity images (row 1), MCS resulting with 4 scales (row 2),
MCS+MFC with 4 scales (row 3), CS (row 4) and depth images (row 5).
As it is shown, the curvilinear saliency provided features closer to the
features extracted from depth images.
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the performance of the proposed model with SVM yielded better results
than the model with KNN. In addition, for instance, with the category
of AEROPLANE and based on the representation of MCS+MFC/CS, the
average precision rate with the SVM was increased by 11% more than
the KNN. In turn, with the TRAIN category, SVM yielded an improve-
ment of only 2%. The model with SVM as a classifier improved the
average precision rate of 6% with all categories of the PASCAL3D+.

For the features extracted from intensity images, the image repre-
sentation MCS+MFC with both representations of 3D models CS and
ASG yielded a high precision rate compared to the image representation
MCS. In addition, the 3D model representation CS provided a higher
precision rate than ASG. More precisely, MCS+MFC/CS with the SVM
obtained an average precision of around 88% with all categories of PAS-
CAL3D+. In addition, MCS+MFC/ASG with the SVM provided an av-
erage precision of about 83%. In turn, MCS/CS with the SVM yielded
an average precision of around 83% and 80% with MCS/ASG. Accord-
ing to Table 3.3, the proposed model with MFC as an intensity image
representation, CS as a 3D model representation and SVM as a classifier
performed better regarding the average precision rate compared to the
other variations models. We consider the above results to be promising,
as they are quite close to the labelling of PASCAL3D+. Three exam-
ples of the final registration based on MCS+MFC/CS and with SVM are
shown in Figure 3.4.

MCS+MFC/CS MCS/CS MCS+MFC/ASG MCS/ASGMethods SVM KNN SVM KNN SVM KNN SVM KNN
aere 0.93 0.85 0.85 0.83 0.91 0.84 0.81 0.80
bus 0.92 0.87 0.84 0.82 0.83 0.82 0.80 0.80
car 0.92 0.86 0.87 0.85 0.89 0.86 0.85 0.83
sofa 0.75 0.85 0.73 0.81 0.68 0.81 0.72 0.72
train 0.88 0.87 0.87 0.86 0.85 0.81 0.82 0.82
mean 0.88 0.86 0.83 0.83 0.83 0.83 0.80 0.79

Table 3.3: Precision of pose estimation CS, ASG against MCS+MFC,
MCS using SVM and KNN.
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Figure 3.4: Three examples of the proposed 2D/3D registration model
with the Pascal3D+ dataset, query intensity images (row 1), the resulting
final depth images (row 2) and the composite image from the intensity
and resulted in the depth image (row 3). As shown, even if the 3D model
does not have the same detailed shape, the registration can be achieved
properly.

For viewpoint evaluation, we compare three methods using the same
dataset, PASCAL3D+. A recent work has been proposed in (Tulsiani and
Malik, 2015), which introduced to a CNN architecture to predict view-
point, and combines multiscale appearance with a viewpoint-conditioned
likelihood to predict key points to capture the finer details to detect the
bound box of the objects correctly. In addition, our model was compared
with the work proposed in (Szeto and Corso, 2017), which presented
a deep model based on CNN for monocular viewpoint estimation by
using human key points information at inference time to estimate the
viewpoint of an object more accurately. Furthermore, we compared our
model to the method introduced in (Su et al., 2015) that rendered mil-
lions of synthetic images from 3D models under varying illumination,
lishownghting and backgrounds and then used them to train a CNN
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aera bus car sofa train mean
Accπ/6 , (Su et al., 2015) 0.74 0.91 0.88 0.90 0.86 0.86

Accπ/6 , (Tulsiani and Malik, 2015) 0.81 0.98 0.89 0.82 0.80 0.86
Accπ/6 (, (Szeto and Corso, 2017) KPC Only) N/A 0.91 0.86 N/A N/A 0.89
Accπ/6 (, (Szeto and Corso, 2017) KPM Only) N/A 0.91 0.82 N/A N/A 0.87
Accπ/6 (, (Szeto and Corso, 2017) Full Model) N/A 0.97 0.90 N/A N/A 0.94

Accπ/6 (Our Model) 0.93 0.92 0.92 0.75 0.88 0.88

Table 3.4: Viewpoint estimation with ground truth bounding box. Eval-
uation metrics are defined in , (Tulsiani and Malik, 2015), where Accπ/6
measures accuracy (the higher the better). N/A means that the tested
work did not show the results with these categories.

model for viewpoint estimation of real images. We used the same met-
rics Accπ/6 as in (Tulsiani and Malik, 2015); for more details of the met-
ric definition, please refer to (Tulsiani and Malik, 2015). Quantitative
results are shown in Table 9.3. We show the final results of finer view-
point estimation that used the SVM classifier with HCS and RANSAC
to refine the final 3D pose. Our model yielded the best average accuracy
among all tested methods with 88%. The works proposed in (Su et al.,
2015; Tulsiani and Malik, 2015) yielded an acceptable accuracy of 86%.
These methods have rendered millions of synthetic images to train their
deep models. Note that the authors of (Szeto and Corso, 2017) have
shown only the results of two categories. Thus, the average accuracy
was computed for these two categories. The proposed model achieved
a high accuracy with the AEROPLANE and CAR categories since MFC
can provide adequate shape features for such objects. Moreover, real
images used in testing always contain simple backgrounds. However,
the SOFA category did not provide high accuracy since most of the 3D
models of SOFA have a similar shape. In addition, real images have
more complex backgrounds than other categories.

The proposed model was implemented using MATLAB on a 64-bit
CPU with 3.40 GHz, 16 GB memory, and NVIDIA GTX 1070 GPU. In
Figure 3.5, the complexity of the computational time of each task of
the proposed method, i.e., rendering, depth feature extraction, training
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SVM, image feature extraction (MFC, MCS, CS), online SVM prediction
and RANSAC, is shown as a Pie chart. As shown, the most execution
time, which is about 76% of the total time, is related to off-line tasks, such
as rendering, depth features extraction and training SVM. In turn, to
predict the final viewpoint, which means the online prediction, the other
three tasks (i.e., feature extraction of an image, online SVM prediction
and RANSAC) take around 24% of the total computational time.

Figure 3.5: The percentage of the time consuming with each subsystem
of the proposed approach.

3.5 Chapter summary

In this chapter, we have proposed an automatic 2D/3D registration ap-
proach to compensate for the disadvantages of rendering a large num-
ber of images of 3D models by reducing the matching space between
the 2D intensity and 3D depth images. The technics that used for the
proposed method are Curvilinear Saliency (CS), Multi-scale curvilinear
saliency (MCS), Multi-scale Focus Curves (MFC), Multi-class SVM, and
RANSAC algorithm. The proposed algorithm yielded promising results
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with a high precision rate and acceptable computational timing. In the
next chapter, we exploit the availability of training data. We propose an
adversarial learning model to estimate the depth of the object present
in a scene to learn the mapping from the image domain to the depth
domain.
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Chapter 4

Adversarial Learning for
Depth and Viewpoint
Estimation from a Single
Image

4.1 Introduction

In this chapter, we move to depth estimation for an object presented in
the scene using deep learning models with Adversarial Learning. Iden-
tifying objects and, more generally, understanding the scene of an input
image is a challenging goal in computer vision. It is useful for many
applications, such as face recognition, video surveillance and robotics.
Inferring 3D shapes and pose from a single perspective is a fundamental
capability of human vision, although a tough task for computer vision.
The appearance of an object in an image dramatically depends on its
intrinsic characteristics (e.g., texture and colour/albedo) and extrinsic
characteristics related to the acquisition (e.g., camera pose and gamma
correction conditions). The appearance of objects significantly changes
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with their pose, (Haritaoglu, Harwood, and Davis, 1998). Estimating a
depth map from a 2D image is an important step in order to determine
the 3D pose of the objects present in a scene. In general, estimating a 3D
pose requires the solution of two problems: (1) generating the best depth
image from a single image, (2) estimating the correct pose of the main object in
the 3D scene.

Depth ImageGθA

VPNet

ViewPoint
(303.1,-25.1,7.5)

Image

ViewPoint
(299.4,-22.7,7.0)

RecDGAN 

Figure 4.1: Proposed framework for simultaneous depth and 3D view-
point estimation (Azimuth, Elevation, Distance), in the test stage.

Recently, many researchers exploited deep learning techniques to de-
velop methods for 3D shape generation from a single colour image(Fan,
Su, and Guibas, 2017). For instance, the authors in (Choi et al., 2018)
proposed to solve the problem of a depth map prediction from a single
image using multi-scale convolutional architecture. With the outstand-
ing progress of deep learning, several methods based on deep networks
have been proposed for 3D shape generation from a single colour image
of an object, (Choi et al., 2018; Wang et al., 2018). These methods use
different deep models for image-to-image translation to learn the map-
pings among multiple domains, such as Fully Convolutional Networks
(FCN), (Long, Shelhamer, and Darrell, 2015), U-Net networks, (Ron-
neberger, Fischer, and Brox, 2015), and Generative Adversarial Networks
(GAN), (Isola et al., 2017; Zhang et al., 2018a).

Furthermore, Convolutional Neural Networks are also used for es-
timating 3D poses, (Ge et al., 2016; Mehta et al., 2017). Most deep net-
work models for depth and viewpoint estimation are trained with input
colour images and depth images captured with depth cameras or LiDAR
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sensors, (Eigen, Puhrsch, and Fergus, 2014; Ge et al., 2017). However,
LiDARs are very costly, and most depth cameras have serious limita-
tions in real environments, such as the synchronization of the optical
and imaging elements, (Kadambi, Bhandari, and Raskar, 2014).

In addition, in (CS Kumar, Bhandarkar, and Prasad, 2018), they pre-
sented a technique for monocular reconstruction, the depth map and
pose prediction from input monocular video sequences, using adver-
sarial learning. They proposed a generative adversarial network (GAN)
that consists of two networks, the generator and the discriminator. GAN
can learn improved reconstruction models with flexible loss functions
using generic semi-supervised or unsupervised datasets. The genera-
tor function in the proposed GAN learns to synthesize neighbouring
images to predict a depth map. In contrast, the discriminator function
learns the distribution of monocular images to classify the synthesized
images’ authenticity correctly. And they used the reconstruction loss
function to assist the generator function in training well and competing
against the discriminator function to trick the discriminator into work-
ing against the generator and, at the same time, indirectly minimizing
the same objective as that of the generator.

Consequently, we have used Adversarial Learning for Depth and
Viewpoint Estimation from a Single Image. In this work, we propose
to use a GAN network, a cutting-edge technique for image-to-image
translation, as the baseline network for predicting a depth image from a
single colour image. However, with the lack of annotated training data
for depth images of objects and 3D poses, we propose a cross-domain
training model, (Tao et al., 2018). In particular, we use 3D CAD mod-
els for rendering depth images from different viewpoints. The obtained
depth images and pose information train the proposed network. Conse-
quently, the proposed model consists of two successive networks. The
first network (RecDGAN) estimates a depth image from the input im-
age. This network embodies two generators and one discriminator. The
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first generator learns to map the RGB image domain into the depth do-
main. In order to enforce that the generated depth image be an image-
based representation of the input RGB image, the second generator re-
constructs the original RGB image from the generated depth image by
using a reconstruction loss function, (Kim et al., 2017). A discriminator
is trained with a GAN loss to make the generated depth image closer to
the depth domain. In turn, the second network (VPNet) is a regression
CNN network that predicts the 3D pose of the main object depicted in
the input image (i.e., elevation and azimuth angles along with the dis-
tance from the camera to the object). The two networks are integrated
into a single pipeline to solve the two problems of depth and pose esti-
mation. To the best of our knowledge, this work is the first attempt to
use a cross-domain training deep network model to estimate the depth
and 3D pose of the main object depicted in a 2D image. The main con-
tributions of this work are the following:

• The design of a GAN network with a loss function for feature
matching allows the system to generate a dense depth image from
a single 2D colour image of an object.

• A novel regression network to predict the 3D pose from the gener-
ated depth image.

• The integration of the two networks into a single pipeline to solve
the problems of generating a depth image and estimating the 3D
pose from a single colour image.

This chapter is organized as follows. Section 2 describes the related
work in this field. Section 3 describes the proposed methodologies. Sec-
tion 4 describes experimental results and the obtained performance. Fi-
nally, Section 5 concludes the chapter summary of this work.
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4.2 Related work

This section presents a quick review of previous works on depth and 3D
pose estimation from a single image using classical computer vision and
deep learning techniques.

4.2.1 Depth Estimation

This subsection focuses on accurate methods to solve the depth esti-
mation problem. The work presented in (Jiang et al., 2005) proposes
a fully automatic 2D-to-3D integrated face reconstruction approach to
reconstruct a personalized 3D face model from a single frontal face im-
age with a neutral expression and normal gamma correction. The re-
constructed 3D faces are then used for face recognition. However, this
method cannot effectively improve the recognition performance of near-
profile views due to the unreliable synthesis of the profile virtual views.
This indicates that the facial features on the frontal views are not associ-
ated with the height information of face shapes, (Zhao et al., 2003).

In (Harman et al., 2002), the proposed model takes a pixel from an
original image as a sample point and estimates the depth of the other
pixels. This model cannot accurately extract global structure from a sin-
gle image due to the limitations of only processing local information.
Saxena et al., (Saxena, Chung, and Ng, 2006) developed a discrimina-
tively trained Markov Random Field (MRF) model for depth estimation
from single monocular images. This model uses monocular cues at mul-
tiple spatial scales and incorporates interaction terms that model rela-
tive depths at different scales. In addition to a Gaussian MRF model,
they also presented a Laplacian MRF model in which Maximum a Pos-
teriori (MAP) inference can be made efficiently using linear program-
ming. However, the system relies on the horizontal alignment of im-
ages and suffers in less controlled settings. In (Saxena, Sun, and Ng,
2008), Make3D is proposed to generate a 3D model from a single image.
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However, the system performs poorly in uncontrolled settings due to
its dependence on the horizontal alignment of images. Using a Markov
stochastic model, (Clayden, 2012) utilizes colour, texture and other vi-
sual cues at multiple scales to build the relationship between image
patches and adjacent depth map spots to calculate the depth map corre-
sponding to the original image.

With the significant progress of deep learning models, several ap-
proaches based on deep networks have been proposed to predict depth
maps from a single image. In particular„ (Li et al., 2015) presents a
framework for depth and surface normal estimation from single monoc-
ular images. It consists of a regression stage using a deep CNN model
to learn the mapping from multi-scale image patches to depth or surface
normal values at the super-pixel level (the SLIC algorithm, (Achanta et
al., 2012) is used to obtain the super-pixels). They then refine the es-
timated super-pixel depth or surface normal to the pixel level by ex-
ploiting the potentials on the depth or surface normal map, which in-
clude a data term, a smoothness term among super-pixels and an auto-
regression term characterizing the local structure of the estimation map.
In (Eigen, Puhrsch, and Fergus, 2014), an approach is presented for esti-
mating depth from a single image by combining information from both
global and local views. They use two deep networks: one that esti-
mates the global depth structure and predicts the depth of the scene at
a global level and another that takes the first network output as addi-
tional first-layer image features to edit the global prediction to incorpo-
rate finer-scale details. Moreover, they apply a scale-invariant error to
measure depth relations rather than scale. Furthermore, the network is
trained using a loss function that explicitly accounts for depth relations
between pixel locations and the point-wise error. However, the system
suffers from low performance in estimating the surface depths. Further-
more, in, (Liu, Shen, and Lin, 2015), a three-layer CNN trained with a
per-pixel Euclidean loss is presented to transform the given colour im-
age to a geometrically meaningful output image. Besides, this method
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uses Conditional Random Fields (CRF) as a loss layer to enforce local
consistency in the output image.

Finally, a depth generative adversarial network (DepthGAN) has been
proposed in (Zhang et al., 2018b) by using the advantage of a Fully Con-
volutional Residual Network (FCRN) and combining it with a GAN net-
work. The authors also present a new loss function that includes a scale-
invariant (SI) error for solving the scale invariance problem that arises
when predicting depth from a single image. Moreover, they use a struc-
tural similarity (SSIM) loss function to derive both the relative and the
absolute distances of objects based on the textural structure in the scene.

4.2.2 Viewpoint Estimation

This subsection overviews the most effective methods to solve the view-
point estimation problem. In (Plötz and Roth, 2017), average shading
gradients (ASG) are proposed. The gradient normals of all lighting di-
rections are averaged to cope with the unknown lighting of the query
image. The main advantage of ASG is to ignore colour and texture in
the expression of the 3D model shape. Image gradients are then matched
with ASG images to estimate a 3D pose. Unfortunately, image gradients
are still affected by image textures and backgrounds. Following a dif-
ferent approach, in (Rashwan et al., 2016; Rashwan et al., 2019; Abdul-
wahab. et al., 2019), a collection of depth images of 3D models rendered
from different viewpoints is used to detect curvilinear features. The au-
thors in (Rashwan et al., 2019; Abdulwahab. et al., 2019) propose three
main steps. First, the ridges and valleys of the depth images rendered
from the 3D model are detected. In order to cope with the texture and
background in the 2D images, curvilinear features are extracted with a
multiscale scheme. These features are then refined by only keeping in-
focus features. The final step determines the correct 3D pose using a
repeatable K-NN, (Rashwan et al., 2019) and SVM, (Abdulwahab. et al.,
2019) in the registration algorithm (i.e., instance-based learning) until
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finding the closest view. In (Eigen and Fergus, 2015), the authors pro-
pose a network for depth prediction that uses a sequence of three scales
to generate features and capture image details. They make a consistent
global prediction and then utilize it with iterative local refinements. In
that way, the local networks are aware of their location within the global
scene and use this information in their refined predictions. Moreover,
they upsample the refined predictions to a higher resolution.

Our network for viewpoint estimation used to help the generator
generate the correct direction for the depth is inspired by recent works,
(Tulsiani and Malik, 2015; Mahendran et al., 2018) to learn how to pre-
dict the viewpoints based on a CNN. In (Tulsiani and Malik, 2015), the
authors introduced a deep model based on CNN for monocular view-
point estimation by using key-point information provided by humans
at inference time to estimate the viewpoint of an object accurately. Their
work aims to capture the relation between viewpoints of objects and
key points for specific objects. They exploited this relationship and re-
fined an existing coarse pose estimation using keypoint predictions. But
post-refinement processes are still required to compensate for the accu-
racy sacrificed by the discretization. In (Tulsiani and Malik, 2015), the
pose estimation problem was designed as a classification method. Al-
ternatively, the problem has recently been modelled and solved by re-
gression deep neural networks. In (Mahendran et al., 2018), the authors
proposed a CNN-based approach for monocular viewpoint estimation
based on the structure of the viewpoint space when designing regres-
sion losses and non-linear activation functions. This approach is more
advantageous to handle the challenging case of nearly symmetric ob-
jects. Also, they used a data augmentation strategy designed to capture
perturbations in the viewpoint space.

Other researchers have also successfully used deep learning to solve
the pose estimation problem. However, with the lack of data during
training, the solution is taking advantage of CAD models and addi-
tional annotations to generate more training data. For instance, (Su et al.,
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2015) rendered millions of synthetic images from 3D models and then
used them to train a CNN model for viewpoint estimation of real im-
ages. However, our model does not require using all these data sources.
To mitigate the low amount of data, we render depth images from 3D
models based on the viewpoints of real images. We then apply data
augmentation techniques to all generated images to increase the num-
ber of training samples under different conditions. This generates new
realistic data from real images and 3D models.

In (Zimmermann and Brox, 2017), a deep CNN performs full 3D
hand pose estimation from single colour images. This approach consists
of three deep networks. The first network applies segmentation to local-
ize the hand in the image. Based on that, the second network localizes
hand key points in the 2D images. The third network finally derives the
3D hand pose from the 2D key points. Although this approach uses a
large synthetic dataset, its performance seems mostly limited by the lack
of an annotated large-scale dataset with real-world images and different
pose statistics.

Recently, the authors of (Nath Kundu, Ganeshan, and Venkatesh
Babu, 2018) proposed a method for estimating the pose of an object from
a single image using multiple-viewpoint correspondence based on CNN
networks. Initially, they find a consistent local feature description of the
object’s parts in the input RGB image. After that, they use these descrip-
tors along with the key points obtained from the renders of a fixed 3D
template model to create basic depth maps of a particular monochrome
real image. Finally, a pose estimation network predicts the 3D pose of
the object using these correspondence maps. In (Gao and Yuille, 2019),
the authors proposed a method for estimating 3D structures and cam-
era projection using symmetry and/or Manhattan structure cues from
a single image or multiple images in the same category. They recover
the camera projection from a single image using the Manhattan struc-
ture. They also use multiple images to exploit symmetry without requir-
ing the Manhattan structure for 3D reconstruction since the Manhattan
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structure can be hard to observe from a single image due to occlusion.
In (Mousavian et al., 2017), a method for 3D object detection and pose

estimation from a single image was proposed using a deep CNN and
Geometry. To estimate the full 3D pose and dimensions of an object sur-
rounded by a 2D bounding box, they used a discrete-continuous CNN
architecture with a loss function for orientation prediction and a prac-
tical choice of box dimensions as regression parameters. The method
estimates the 3D bounding boxes without additional 3D shape models
or sampling strategies with complex pre-processing pipelines. Although
this method properly estimates object orientation and localizes the ob-
jects in 3D from an image, it depends on different geometric constraints,
such as shape priors or occlusion patterns, to infer 3D bounding boxes.
In turn, in (Grabner, Roth, and Lepetit, 2018), another method was in-
troduced for retrieving 3D models of objects in the wild. This approach
consists of two networks. The first network estimates the 3D pose of an
object, and the second network uses synthetic depth images rendered
from 3D models based on the 3D pose estimated from the first network
in order to retrieve 3D models that accurately represent the geometry of
objects present in RGB images. This is done by comparing the learned
image descriptors of RGB images against those of the rendered depth
images using a CNN-based multi-view metric learning approach.

In this section, we summarize state of the art for depth and 3D pose
estimation from a single image through classical computer vision tech-
niques and deep learning techniques.

The approaches based on deep learning yield the most accurate re-
sults. Thus, we propose a method based on a deep model, RecDGAN,
to obtain a single image’s depth and 3D pose.
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4.3 Proposed Methodologies

The proposed model is based on two different generators coupled to-
gether. Each generator can map from one domain to another. In partic-
ular, the first generator learns to map from an RGB image to a depth im-
age. The latter is forced to be an image-based representation of the input
RGB image by reconstructing the same RGB image through the second
generator. A feature-matching loss is used as a reconstruction loss func-
tion. During training, the depth image estimated by the first generator
is compared to a depth image generated after rendering a synthetic 3D
model through a discriminator network. With the two losses, each gen-
erator in the proposed model can learn the mapping from the input to
the output domain and discover relations between them. The generated
depth image is also fed into a regression CNN network that estimates
the 3D pose of the main object depicted in the depth image.

In this work, we propose considering depth image estimation as an
image-to-image translation task as proposed in (Kim et al., 2017; Zhu
et al., 2017). In (Zhu et al., 2017), there are two generators and one dis-
criminator, whereas in (Kim et al., 2017), there are two generators and
two discriminators. In our model, we apply two generators and one
discriminator in addition to a regression CNN network that predicts the
3D pose of the main object depicted in the input image (i.e., elevation
and azimuth angles along with the distance from the camera to the ob-
ject). The viewpoint estimation network will help the generator find
the object’s correct orientation. In addition, we use a multi-scale feature
matching loss function based on CNN to improve the performance of
the generators. It makes the generated depth image closer to the depth
map domain and the reconstructed image closer to the real image.

This section describes the proposed system and its training proce-
dure. 8.2 shows the architecture of the proposed system. It comprises
two main sub-models: a depth generator based on a Generative Adver-
sarial Network (GAN) and a viewpoint estimator from the generated
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depth image based on a CNN.
We formulate the problem in subsection A. The remaining subsec-

tions explain each part of the proposed model in detail.

4.3.1 Problem Formulation

Let A ∈ A be a 2D colour image. The problem of generating its cor-
responding depth image, B ∈ B, can be formally defined as a func-
tion f : A → B that maps elements from domain A to elements in
its co-domain B. Similarly, we can formally define the problem of es-
timating the viewpoint of a 2D image as a function g : A → R3 that
takes as input a 2D colour image and predicts three viewpoint values,
namely: azimuth, elevation and distance. We introduce a multi-task
deep learning-based system to solve the two sub-problems mentioned
above. Specifically, The proposed system consists of two generators,
GθA(A) and GθB(B̂), a discriminator DθD (α), and a viewpoint estimator
VθV (B̂), where B̂ is the depth image generated by GθA and α ∈ {B × B̂}.
A feature matcher f mrecogan(A, Â) is used to compare the image re-
constructed by GθB , Â = GθB(B̂), with the input colour image A. The
next subsections explain in detail the architecture of our system, its sub-
models, and the training procedure.

4.3.2 Generative adversarial networks (GANs)

The generative adversarial network framework is a supervised deep
learning model proposed by Goodfellow et al., (Goodfellow et al., 2014),
originally focusing on image generation and manipulation tasks for train-
ing an image synthesis model aiming at the generation of artistic im-
ages. It is implemented by two neural networks: a generator and a
discriminator. Many variants based on GANs have already been de-
veloped, (Chang et al., 2015; Yu et al., 2017). They have been applied to
practical image generation problems, (Brock et al., 2016; Ledig et al.,
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Figure 4.2: Proposed RecDGAN system to generate depth images and
3D poses from 2D colour images. Details about GθA , GθB and DθD are
given in section 3.2. VPNet and Feature Matching Loss are detailed in
sections 3.3 and 3.4, respectively.
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2017; Sønderby et al., 2016). Recently, conditional GANs, an exten-
sion of GANs, have shown great success in using conditional adver-
sarial networks to learn the loss function for image-to-image translation
tasks, (Isola et al., 2017; Zhu et al., 2017). All these methods have suc-
cessfully led to the estimation of transformation networks from one im-
age domain to another.

In the present work, generator GθA takes a real input colour image
and maps it to a depth image, while generator GθB takes the depth im-
age generated by GθA and maps it to a colour image. The input of the
discriminator DθD is a depth image rendered from a training dataset
and the depth image predicted by GθA . DθD estimates the probability
that both depth images are similar. The discriminator network of the
GAN assesses whether the predicted depth image is likely to belong to
the depth image domain.

4.3.2.1 Generative Networks:

This subsection describes the generative neural networks GθA and GθB .
Both have identical structures. GθA learns the mapping from an input
colour image to its corresponding depth image. The input of GθA is a 2D
colour image, A, and it generates a depth image, B̂, which is then fed
to GθB to estimate a 2D colour image Â = GθB(GθA(A)), where Â is a
reconstruction of the original 2D image A. We use a loss function based
on feature matching to compare the two images, which is explained in
detail in Section 3.4. The objective loss function of the generator is:

Lrcon(θA, θB, A) = EA∈A,Â=GθB
(GθA

(A))[∆(A, Â)], (4.1)

where θA and θB are the parameters of the two generators and ∆ is a
measure of discrepancy between the two images.
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Figure 4.3: Architecture of the generator network.

The architecture of our generative network is shown in Figure 8.3. It
consists of an encoder and a decoder. Inspired in, (Kim et al., 2017), the
encoder of each generator is composed of five convolution layers with
4 × 4 filters, stride 2 and padding 1. Each convolution layer is followed
by batch normalization (BN) except for Cn1, and by LeakyReLU, (Liu,
Shen, and Lin, 2015; Maas, Hannun, and Ng, 2013). In turn, the decoder
part is composed of five deconvolution layers with a filter size of 4 × 4,
stride 2 and padding 1. Each layer is followed by ReLU and BN except
for Dn5, which applies a sigmoid. The output is a depth image of size
64 × 64 × 1. An example of the features extracted and generated by the
generator layers is shown in Figure 8.4.

Input
Conv 2 Conv 3

Conv 4 Dconv 1
Dconv 3Dconv 2

PredictDconv 4Conv 1

Encoder Decoder

Figure 4.4: Features extracted by each layer of the generator network.
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4.3.2.2 Discriminator Network:

The generator GθA aims to yield depth images belonging to domain B.
To model this additional constraint, we train a discriminator to deter-
mine whether the depth images estimated by the generator GθA are real
depth images.

The architecture of the discriminator is shown in Figure 8.5. It con-
sists of an encoder identical to the one of the generator, followed by an
output logistic unit.

Ldis(θD|θA, B, A) = −EB[log(pD(B))], (4.2)

where pD represents the prediction entropy of the discriminator with
the real depth B belonging to the domain B, i.e. B ∈ B. θA and θD are
the parameters of the first generator and discriminator, respectively.
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Figure 4.5: Architecture of the discriminator network.

The prediction cross-entropy of the discriminator with the estimated
depth image, B̂ = GθA(A), can be defined as:

Ladv(θA, A|θD) = −EA∈A[log(1 − pD(GθA(A))]. (4.3)

The optimizer will fit D to maximize the loss values for real depth im-
ages rendered from 3D CAD models (by minimizing log(pD(B))) and
to minimize the loss values for estimated depth images (by minimizing
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log(1− pD(GθA(A))). The generator and discriminator networks are op-
timized concurrently, one optimization step for both networks at each
iteration, where GθA tries to generate an accurate depth estimation and
D learns how to discriminate between the synthetic and the real depth
maps.

Thus, the adversarial loss used for training the model is:

Lgan(θA, θD, A, B) = Ldis(θD|θA, B, A)

+Ladv(θA, A|θD).
(4.4)

GAN can often be defined as a minimax game in which the generator
wants to minimize Lgan while the discriminator wants to maximize it.

4.3.2.3 Viewpoint Estimation Network:

The second goal of our system is to use the generated depth image of an
object to estimate its correct viewpoint. The motivation for estimating
the 3D pose of a single depth image is that depth measurement avoids
the ambiguity caused by perspective projection in 2D images. In addi-
tion, depth images are invariant to lighting conditions. To do so, we
train a regression neural network, VPNet, to estimate the viewpoint
from the depth image generated by GθA . The architecture of VPNet is
shown in Figure 8.6. Again, it consists of an encoder identical to the
discriminator and the generator followed by a linear layer of three units.
VPNet is trained to minimize the following loss function:

Lvp(θV , V, A|θA) =

E(v,A)∈(V,A)[∆v(v, v̂ = VPNet(GθA(A)))],
(4.5)

where v is the real 3D pose, v̂ is the estimated one, ∆V is a measure of
the difference between the real value and the estimated value, and θV

is the set of parameters of the viewpoint estimator. We use the mean
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square error as the difference measure ∆v between two 3D poses. For
more details, see the supplementary materials.
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Figure 4.6: Architecture of the viewpoint estimator network.

4.3.2.4 Loss Function for Feature Matching:

The proposed loss function for feature matching depends on the fea-
tures extracted from both the input real image A and the reconstructed
image Â from GθB , by taking into account colour and texture. The usual
comparison functions, such as the L1 or L2 norms, as proposed in the
cycleGAN network, (Kim et al., 2017), are not effective in order to mea-
sure similarity between two images. In addition, in a normal GAN, the
discriminator and generator are always in a tug of war to undercut each
other. Mode collapse and gradient diminishing are often explained as
an imbalance between the discriminator and the generator.

Thus, adding a new discriminator will increase the model complex-
ity and may also overfit the generator network. Therefore, we use fea-
ture matching based on CNN inspired in, (Kim et al., 2017) by replacing
the L1-norm with a feature-matching network in order to achieve a more
accurate comparison of the input and reconstructed images. In particu-
lar, we compare the multi-scale features extracted from different CNN
layers of the input RGB image with the corresponding ones extracted
from the RGB image generated by GθB , and then the network attempts
to minimize the difference between the corresponding features. Indeed,
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replacing the L1-norm with a feature-matching loss causes training to be
more stable and converge faster.
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MSE	Loss

Reconstructed
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Generator GθB

Conv1 Conv2 Conv3 Conv4

MSE	Loss

Conv5
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Figure 4.7: Feature matching loss architecture.

We use a CNN of five layers. To calculate the similarity between
the two input images, the feature matching loss (Lrecon) is based on the
features extracted per layer from the input real image A and the ones
from the reconstructed image Â. The aggregated loss function Lrecon is
computed between A and Â as:

Lrecon(A, Â|θB) =
1
N

N

∑
i=1

f (ALsi(i) − ÂLsr(i)), (4.6)

where N is the number of layers (N is empirically set to 5 in this work), f
is the MSE error, ALsi(i) is a loss layer of the features from the real image
and ÂLsr(i) is a loss layer of the features from the estimated image.

4.3.3 Final Objective Function

The final objective function for this work, i.e. the training loss of our
learning algorithm, is defined as:
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L(θA, θB, θD, θV , A, B, Â, V) =

λgan[Lgan(θA, θD, A, B)]+

λvp[Lvp(θV , V, A|θA)]+

λrecon[Lrecon(A, Â|θB)],

(4.7)

where λgan, λvp and λrecon are hyper-parameters weighing the impor-
tance of the discriminator loss, adversarial loss, view-point loss and the
loss function for feature matching. In our model, λgan=λvp=λrecon = 1
yields the best accuracy for 3D pose estimation.

4.4 Experiments and Results

This section describes the experiments performed to evaluate the pro-
posed model in this chapter. In Part I, chapter 2, we have mentioned
the PASCAL3D+, (Xiang, Mottaghi, and Savarese, 2014) dataset and the
evaluation metrics used in these experiments.

4.4.1 Data Augmentation

In this work, We applied data augmentation techniques to the images
in the PASCAL 3D+ dataset to increase the number of training samples
under different conditions. Figure 8.10 shows the transformations ap-
plied to every input image and the corresponding rendered depth im-
age. See Table 6.3.3 for more details. We rendered depth images for all
the tested 3D models using the MATLAB 3D Model Renderer 1 from
multiple viewpoints by changing azimuth and elevation angles, as well
as the distance between the camera and the 3D model. They were used
to increase the diversity of the training dataset further.

1https://www.openu.ac.il/home/hassner/projects/poses/
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• Scale: Every input image and its corresponding rendered depth
image were randomly scaled by S ∈ [0.5,3].

• Rotation: Every input image and its corresponding rendered depth
image were randomly rotated by R ∈ [-10,10] degrees.

• Gamma Correction: The gamma correction of each input RGB im-
age was randomly varied by I ∈ [0.6,2].

After applying data augmentation to the real and corresponding depth
images and using them as inputs to the model during the training pro-
cess, we found that the efficiency of the network significantly improved
compared to the model trained without data augmentation, even though
they represented scenes were slightly warped since they were close rep-
resentations of the real images under different conditions.
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Figure 4.8: Transformations (Scale, Rotation and Gamma correction) ap-
plied to every real image and its corresponding rendered depth image.

4.4.2 Parameter settings

In this work, by using data augmentation, we trained both the GAN and
VPNet networks. We used the Adam optimizer, (Kingma and Ba, 2014)
with β1 = 0.5, β2 = 0.999 and an initial learning rate of 0.0002. A batch
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size of 200 and 2, 000 epochs yielded the best combination. All exper-
iments were run on a 64-bit Core I7-6700, 3.40GHz CPU with 16GB of
memory and one NVIDIA GTX 1080 GPU on Ubuntu 16.04 and the Py-
Torch, (Paszke et al., 2017) deep learning framework. The computational
time of the proposed method for the training process takes around 2.16
minutes for each epoch with a batch size of 64. In turn, the online es-
timation of depth maps and viewpoints has a performance of around 3
images per second.

4.4.3 Results and Discussion

In this work, we have compared the proposed model with six alternative
methods using the PASCAL3D+ dataset: (Su et al., 2015; Mahendran
et al., 2018; Tulsiani and Malik, 2015; Mousavian et al., 2017; Grabner,
Roth, and Lepetit, 2018; Nath Kundu, Ganeshan, and Venkatesh Babu,
2018).

In Table 4.2, we show the viewpoint evaluation measures for all cat-
egories of PASCAL3D+ and the different tested methods. The perfor-
mance of the proposed model with GAN yielded results comparable
to the alternative models. However, the accuracy of our system was
superior for nine categories of PASCAL3D+: aero, with an improve-
ment of 3%; boat, with a significant improvement of 11%; bottle and
car, with a 1% improvement; chair and train, with a 5% improvement;
table and mbike, with a significant improvement of 10% and 7%, respec-
tively. However, the model proposed in (Mahendran et al., 2018) yielded
the best accuracy for sofa and TV, with an improvement of 7% and 3%
better than the proposed model, respectively. For the bus category, the
model presented in (Tulsiani and Malik, 2015) yielded an accuracy 2%
higher than the proposed model. In turn, (Su et al., 2015; Mousavian
et al., 2017) yielded an accuracy 4% higher than our results for the bike
category. Globally, the proposed model yields the best mean accuracy of
89.75% among the five tested methods. In, (Nath Kundu, Ganeshan, and

UNIVERSITAT ROVIRA I VIRGILI 
SUPERVISED MONOCULAR DEPTH ESTIMATION BASED ON MACHINE AND DEEP LEARNING MODELS 
Saddam Abdulwahab 



87

Table 4.2: Comparison of the proposed model with current state-of-
the-art algorithms for 3D pose estimation from 2D images in the PAS-
CAL3D+ dataset under different measures. Lower is better for MedErr,
and higher is better for Accuracy. The best results are highlighted in
bold.
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Table 4.3: Results for depth image estimation from 2D colour images on
the PASCAL3D+ dataset under different measures with (a) GAN pro-
posed in, (Goodfellow et al., 2014), (b) GAN with a reconstruction loss
proposed in, (Kim et al., 2017) and (c) the proposed model. Lower is
better for the RMSE metric, and higher is better for the other measures.
The best results are highlighted in bold.
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Venkatesh Babu, 2018), the authors provided the pose estimation results
for only three categories (i.e., chair, table and sofa). For the chair cate-
gory, our proposed model outperformed the method in, (Nath Kundu,
Ganeshan, and Venkatesh Babu, 2018) with an improvement of 3.5%
in MedErr, but, (Nath Kundu, Ganeshan, and Venkatesh Babu, 2018)
yielded better MedErr for the table category.

Regarding the median error and supporting the accuracy results, Ta-
ble 4.4.2 shows that the proposed model yielded the lowest median er-
ror for seven categories (aero, bottle, bus, car, chair, mbike, and train) of
PASCAL3D+. In addition, the proposed model yielded the lowest mean
error among all tested methods.

Our method does not yield good results for the tv and sofa cate-
gories, with MedErr of 19.4 and 12.8, due to the geometric shape of these
two objects. The network sometimes conflicts, especially in estimating
the correct value of the azimuth. For instance, in the example shown
in Figure 8.11, the network can correctly estimate the depth image and
the distance between the camera and the object with an error of 0.17.
However, the azimuth estimation has an error of around 30 degrees,
although the estimated viewpoint is very close to the real one.

In turn, the boxplot in Figure 4.10 shows the accuracy values for
all testing samples of the 12 categories of PASCAL3D+. For bottle and
mbike, the proposed model yields a small range of values. Alternatively,
the aero and boat categories yield a wider range of accuracy values with
fewer outliers. Moreover, the table and tv categories provide more than
10 outliers in the results.

As for the evaluation of the predicted depth images, we have com-
puted the RMSE, threshold δZ, Dice score and IOU measures. In Table
4.4.2, we show the different evaluation measures for the predicted depth
images corresponding to the 12 categories of the PASCAL3D+ dataset.
We have used cross-domain training to predict every depth image from
a single 2D colour image. As far as we know, no alternative methods use
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(5.5,-6.9,4.01)(5.5,-6.9,4.01)

Input image Ground truth Prediction

(35,3.69,3.84)

(55.8,19.2,7.68)(55.8,19.2,7.68) (13.4,5.9,9.03)

Figure 4.9: Examples of the pose estimation conflict between the views
of TV and SOFA.

aero bike boat bottle bus car chair table mbike sofa train tv

0

0.2

0.4

0.6

0.8

1

Figure 4.10: Boxplot of accuracy rate for the 12 categories in PAS-
CAL3D+ with the proposed model. Blue boxes indicate the interquartile
range (Q3-Q1) of the distribution of the metrics. The red line inside each
box represents the median value. The whiskers extend 1.5 times the
length of Q1 and Q3, and (+) indicates outlier values, i.e. metrics out of
the whiskers.

the PASCAL3D+ dataset for training a cross-domain model that gener-
ates depth images. Thus, we evaluate the results with two different ver-
sions of GAN and the proposed model. The first version is the GAN
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model proposed in (Goodfellow et al., 2014). The second version is the
GAN model with a reconstruction loss based on the L1-norm proposed
in (Kim et al., 2017). Our model achieved the best mean results for the 12
categories with the four measures used in the evaluation. It achieved an
average IOU score of 61% and a Dice score of 73%. In turn, the RMSE er-
ror with the proposed model is 0.19. With δZ = 1.25, the accuracy rate is
68%, while with δZ = 1.253, the accuracy rate is increased by 16%. That
shows the effect of feature matching on improving the performance of
the estimation of depth images. However, the other two tested methods
provided results better than our model for mbike, sofa, train and tv.

For a qualitative assessment, Figure 8.7 shows how the proposed
model can learn the features of the input images to generate the final
depth images and viewpoints. The figure shows the output of the pro-
posed model for different epochs. In addition, the performance of the
proposed model for the 12 categories of PASCAL3D+ is shown in Fig-
ure 8.8. We show the depth image generated from a single real image
against the real depth images rendered from the corresponding 3D mod-
els. We also show the three components of the estimated viewpoint and
its ground truth. These examples show that the proposed model can
predict a depth image from the features of a single colour image. In ad-
dition, the model can remove the image background when generating
depth images. Furthermore, the estimated viewpoints are very close to
the reference ones in PASCAL3D+.
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(g)(a) (b) (c)

(50.7,-10.4,3.9)

(d) (e) (f)

(81.8,-2.8,4.4)(50.7,-10.4,3.9) (205.4,-2.9,6.07) (179.1,-7.3,4.4) (50.09,-3.9,4.6) (57.3,-12.4,3.7)

(48.2,15.01,5.3) (63.01,7.4,8.2)(48.2,15.01,5.3) (146.4,5.9,5.5) (59.6,6.5,7.05) (61.5,14.3,7.05) (51.1,13.5,5.3)

(0,32.7,9.3) (48.4,30.8,8.08)(0,32.7,9.3) (109.2,16.6,7.6) (89.8,19.5,8.1) (26.8,24.9,6.3) (10.6,30.5,11.1)

(324.2,9.7,9.7) (324.2,9.7,9.7) (262.9,15.7,8.1) (230.5,20.1,7.4) (246.9,17.9,6.4) (305.6,13.4,7.2) (317.5,8.54,8.1)VP :

VP :

VP :

VP :

Figure 4.11: Example of depth predictions with our model. In each row,
we show (a) input image, (b) ground truth, (c) output at epoch 100, (d)
output at epoch 400, (e) output at epoch 1000, (f) output at epoch 1500,
(g) output at epoch 2000 (final generated depth image). All images with
the corresponding estimated viewpoints (VP), including (Azimuth and
Elevation angles and Distance between object and camera). More results
with the proposed model are given in the supplementary material.

BicycleBoatAero
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(12.1,0.3,1.3) (98.8,17.8,6.6)(329.5,1.0,5.0) (14.3,-1.4,4.1)

Figure 4.12: Input images with the labelled viewpoints and correspond-
ing depth images rendered from the associated 3D models of all cate-
gories of PASCAL 3D+, and generated depth images with the estimated
viewpoints. The supplementary material of (Abdulwahab et al., 2020)
gives more details about the proposed model’s performance.
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4.5 Chapter summary

In this chapter, we have introduced a cross-domain deep model for depth
estimation for the object in the scene. We have designed a deep model
based on two successive networks: a Generative Adversarial Network
(RecDGAN) for predicting the depth images and a regression CNN net-
work for estimating the viewpoint (VPnet), which corrects the orienta-
tion problem for the depth generated. The RecDGAN network consists
of four sub-networks: two generators, one discriminator, and a CNN
network for feature matching between the reconstructed colour image
and the input image. The second work is a multi-generative network.
Besides, we combined SI and SSIM and adversarial learning to optimize
the training model. During the training, we used the 3D CAD mod-
els corresponding to objects appearing in real images to render depth
images used as ground truth. The proposed model is evaluated on the
PASCAL 3D+ dataset. The experimental results show that the proposed
model improves compared to the state-of-the-art models. In the next
part, we will use a multi-generative network with adversarial learning
to improve the depth predicted and fix the missing pixels for the object.
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Chapter 5

MGNet: Depth Map
Prediction from a Single
Photograph Using a
Multi-Generative Network

5.1 Introduction

In this chapter, based on the previous work, we have developed a novel
technique based on a multi-generator network (MGN) to translate from
an image domain to a depth domain. Recently, (Grabner, Roth, and Lep-
etit, 2018) proposed a method for retrieving 3D models of objects in the
wild. This approach consists of two networks. The first one estimates
the 3D pose of an object. In turn, the second network uses synthetic
depth images rendered from 3D models with the 3D pose estimated
from the first network in order to retrieve 3D models that accurately
represent the geometry of objects in the RGB images. For achieving
that, the authors compared the learned image descriptors of RGB im-
ages with those depth images rendered using a CNN-based multi-view
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metric learning approach.
In addition, in (CS Kumar, Bhandarkar, and Prasad, 2018), they pre-

sented a technique for monocular reconstruction, the depth map and
pose prediction from input monocular video sequences, using adver-
sarial learning. They proposed a generative adversarial network (GAN)
that consists of two networks, the generator and the discriminator. GAN
can learn improved reconstruction models with flexible loss functions
using generic semi-supervised or unsupervised datasets. The genera-
tor function in the proposed GAN learns to synthesize neighbouring
images to predict a depth map. In contrast, the discriminator function
learns the distribution of monocular images to classify the synthesized
images’ authenticity correctly. And they used the reconstruction loss
function to assist the generator function in training well and competing
against the discriminator function to trick the discriminator into work-
ing against the generator and, at the same time, indirectly minimise the
same objective as that of the generator.

In this work, we propose to use a multi-generator network (MGN) to
translate from an image domain to a depth domain. Our model is based
on the idea of the GAN network. However, our model used the idea of
MGN to improve the estimating depth map from a single image, in addi-
tion to one discriminator to assess if the predicted image is likely similar
to the ground-truth depth. In the first generator, we make a coarse pre-
diction based on the entire image area, then the second generator is to
produce predictions closer to the depth map, by incorporating the entire
image along with the depth map generated by the first generator. Then
in the final generator of our model, we concatenate the second generator
outputs with an entire image to generate the final depth map.

Moreover, our model can be also trained to optimize the Structural
Similarity (SSIM), and Scale Invariant Error (SI) proposed in (Choi et
al., 2018), which presents better performance than the simpler Mean
Squared Error (MSE). Thus, the main contributions of this work are the
following:
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• We design a GAN framework based on MGN allowing the system
to generate a more accurate dense depth image from a single 2D
colour image of an object.

• We used a loss function including the scale-invariant error for solv-
ing the scale invariance problem that arises when predicting depth
from a single image.

• We used a structural similarity (SSIM) loss function to deduce both
the relative and the absolute distances of objects based on the tex-
tural structure of the object.

This chapter is organized as follows. Section 2 describes the pro-
posed methodology to predict a depth image using MGN. In turn, Sec-
tion 3 describes experimental results and the obtained performance. Fi-
nally, Section 4 concludes the chapter summary of this work.

5.2 Proposed Methodology

This section explains the proposed scheme, the tools, and the resources
being used in this work. We formulate the problem in subsection 2.1.
The remaining subsections explain each part of the proposed model in
detail.

5.2.1 Problem Definition

Let a ∈ A be a 2D colour image, the problem of generating its corre-
sponding depth image, b ∈ B, can be defined formally as a function
f : A → B maps elements from domain A to elements in its co-domain
B. In this work, we propose a multi-generator network to solve the de-
fined problem. Specifically, our system composes of three generators G1,
G2 and G3, and one discriminator D. Become b̂ ∈ B when the b̂ is the
depth image generated by G3. The next subsections explain in detail the
architecture of our system, its sub-models and the training procedure.
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5.2.2 Model Architecture

The model based on MGN consists of three successive generator net-
works. The output of each generator is fed to the next generator net-
work. We make a coarse prediction of the corresponding depth image in
the first generator. The second generator improves the predicted depth
by concatenating the input colour image with the first generated depth
image. In turn, the final generator is used for generating the final depth
map from the input image and the second generated depth image. By
using a discriminator network, the depth image estimated by the final
generator is compared to a depth image rendered from a synthetic 3D
model of the object appearing in the input image. By combing SSIM and
SI as a loss function, each generator in the proposed model will be able
to learn the depth from its input domain to the output domain and dis-
cover relations between them. Figure 5.1 shows the architecture of the
proposed system.

Depth Image 3D model

D

1: Real ? 0: Fake?

Input Image

concat

G1

concat

G2

G3 Generated
Image

Rendering

Figure 5.1: Proposed MGN deep model to generate a depth image from
a single 2D image.
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5.2.3 Generator Networks

This subsection describes the generative networks, where the generator
network is based on encoding and decoding layers. The encoder and
decoder consist of 8 convolutional layers. The function of the encoders
network is to extract features from the input 2D colour image by con-
volutional filters with down-sampling, in turn, the decoders utilized the
deconvolution filters with up-sampling the feature maps to predict the
depth map. Each (de)convolutional layer is followed by batch normal-
ization (BN). We used the LeakyRelu activation function with a slope
of 0.2 at the end of each (de)convolutional layer. The size of each spa-
tial filter in each convolution and deconvolution is 3 × 3 to down- and
up-sample the feature maps size with a stride 2× 2. At the last convolu-
tional layer in encoders, the Tanh activation function is used. In the last
layer of the decoders, we used a sigmoid activation function.

The generator learns the mapping from an input colour image to the
corresponding depth image. The input to G1 is a 2D colour image, a, and
it generates a depth image, b̂. It is then incorporating the entire image
along with the depth map generated by the G1 and then fed to G2 to pro-
duce predictions closer to the depth map, b̂, which is then concatenated
with the input image. Then it feds to G3 to estimate the depth map. In
addition, to assess the performance for optimizing the training of the
network with respect to the structural similarity between the depth im-
age and ground truth, we tried to use two loss functions: the first one is
a SI error as a training loss. SI is defined as follows:

lsi(b̂, b) =
1
n ∑

i
di

2 − λ

n2 (∑
i

di)
2 (5.1)

where di = (logb̂ − logb) and λ = 1. b̂ is mean the output of the
network and b is mean the ground truth from 3D model.

The second one is a structural similarity (SSIM) error as a training
loss, which has been shown to be consistent with the image similarity
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between the predicted and ground truth image. The SSIM loss can be
expressed as follows:

SSIM(b̂, b) =
(2ub̂ub + c1)(2σb̂b + c2)

(u2
b̂
+ u2

b + c1)(σ
2
b̂
+ σ2

b + c2)
(5.2)

where, b̂ is the mean of b̂, σ
b̂

is the standard deviations of b̂, b is the
mean of b, σb is the standard deviations of b, σb̂b is the covariance of b̂
and b, c1 = 0.012 , c2 = 0.032, respectively. We compute the loss between
predict depth map b̂ and ground truth depth b. The loss function for
SSIM can be defined as follow:

lssim(b̂, b) =
1
n

n

∑
p=1

1 − SSIM(b̂, b) (5.3)

The generator G is trained to maximize the output of the discrimina-
tor with the generated depth image. Thus, the adversarial loss used for
training the model is:

lgan(b̂, b) = lsi(b̂, b) + lssim(b̂, b) (5.4)

5.2.4 Discriminator Networks

This subsection describes the discriminator networks. The idea of our
approach is to train the generator to generate samples very close to the
real samples and the samples have to be in the depth image domain.
To model this additional constraint, we train a discriminator neural net-
work D to distinguish between a real depth image and one estimated
by the final generator G3. where the discriminator consists of five con-
volutional layers. Each convolution layer used a 3 × 3 spatial filter with
a stride 2 × 2. The first layer of the discriminator generates 64 feature
maps extracted from the input image. In turn, the second and third
layers produce 128 and 256 feature maps respectively. The fourth layer
generates 512 feature maps with a 64 × 64 output size.
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The discriminator is trained to predict whether the input is a real-
depth image, by minimizing the following binary cross entropy (BCE)
loss:

ℓDis(a, b) = −Eb̂b[log(D(b)) + log(1 − D(G(a))] (5.5)

5.2.5 Total Loss

The final objective function, i.e. the training loss, at one iteration of our
learning algorithm is defined as:

L(G, D, a, b, b̂) =

λgan[Lgan(G, a, b, b̂)]+

λDis[LDis(D, a, b̂)],

(5.6)

where λgan and λDis are hyper-parameters weighting the importance
of the discriminator loss, and adversarial loss functions. In our model,
we set λgan=λDis=1.

5.3 Experiments and Results

This section describes the experiments performed to evaluate the pro-
posed model in this chapter. In Part I, chapter 2, we have mentioned
the PASCAL3D+, (Xiang, Mottaghi, and Savarese, 2014) dataset and the
evaluation metrics used in these experiments.

5.3.1 Parameter settings

We train a framework for 2D to 3D depth prediction based on MGN.
The whole framework has two different stages: one for training and an-
other for testing. During training, we used the Adam optimizer with
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β1 = 0.5, β2 = 0.999 and an initial learning rate =0.0002. A batch size of
20 and 2000 epochs yielded the best combination. The generator stage
of the trained GAN automatically obtains a depth image for the pixels
that are supposed to correspond to the area of the object contained in
the input image, while ignoring the pixels corresponding to other ob-
jects. The input is reshaped to 64 × 64 pixels. Besides, we have used a
discriminator, D, to compare the output of the final generator network,
with their corresponding ground truth depth image. We also used the
SI and SSIM loss function to improve learning, which helps the model
deduce the close depth map of objects based on the object shape. For all
these experiments, we used a 64-bit I7-6700, 3.40GHz CPU with 16GB
of memory and one NVIDIA GTX 1080 GPU on Ubuntu 16.04. We used
Pytorch, a deep learning framework proposed in (Paszke et al., 2017).

5.3.2 Results and Discussion

In all experiments, we tested the depth map prediction from real im-
ages against the corresponding depth map from 3D models. For each
category of the PASCAL3D+ dataset. In Table 9.1, we show the differ-
ent evaluation metrics, the RMSE error, IOU measure, and Dice score,
for the predicted depth images corresponding to the 4 categories of the
PASCAL3D+ dataset. We compared our model based on MGN to GAN
proposed in (Kim et al., 2017), and GAN with a reconstruction loss pro-
posed in (Isola et al., 2017). Our model achieves an average IOU score
of 75% with an improvement of 5% and 3% better than GAN and GAN
with loss reconstruction, respectively. Also, it achieved an improvement
of 3% 1% in a Dice score compared to the two tested methods. However,
with the RMSE, the Standard GAN yields the best RMSE error, (RMSE
= 0.15), among the three methods, since it depends on the MSE error as
a loss function. Since our model based on SSIM and SI as a loss func-
tion improves the IoU and Dice measures rather than the RMSE error.

UNIVERSITAT ROVIRA I VIRGILI 
SUPERVISED MONOCULAR DEPTH ESTIMATION BASED ON MACHINE AND DEEP LEARNING MODELS 
Saddam Abdulwahab 



103

We consider the results shown in Table 9.1 promising, as they are quite
close to the ground truth of PASCAL3D+.

For a qualitative assessment, Figure 5.2 shows how the proposed sys-
tem can learn the features of the input images to generate the final depth
images. The figure shows the output of the proposed model for the four
categories of PASCAL 3D+. We show then the depth image generated
from a single real image against the ground truth of the depth images
rendered from the corresponding 3D models. As shown, the proposed
model properly estimates the features of a single image to predict the
corresponding depth image. In addition, the model is able to remove
the background when generating the depth images, since it is trained
with depth images rendered from 3D CAD models. Furthermore, the
estimated viewpoints are very close to the reference ones in PASCAL
3D+.

TvBottle Bus Sofa
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Figure 5.2: Input images and corresponding depth images rendered
from the associated 3D CAD models of four categories of PASCAL 3D+,
and generated depth images with our model.
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Table 5.1: Results for estimating depth images from 2D images on the
PASCAL3D+ dataset under different metrics with (a) GAN proposed
in (Kim et al., 2017), (b) GAN with a reconstruction loss proposed
in (Isola et al., 2017) and (c) our proposed model. Lower is better for
the RMSE metric, and higher is better for the other metrics. The best
results are highlighted in bold.

Gan Model GAN with a Recon loss Our Model
IoU Dice RMSE IoU Dice RMSE IoU Dice RMSE

bottle 0.80 0.87 0.14 0.79 0.88 0.17 0.85 0.91 0.20
bus 0.62 0.76 0.16 0.67 0.79 0.17 0.70 0.82 0.15
sofa 0.61 0.75 0.15 0.63 0.76 0.18 0.60 0.73 0.19
tv 0.78 0.87 0.15 0.80 0.89 0.16 0.83 0.90 0.17

average 0.70 0.81 0.15 0.72 0.83 0.17 0.75 0.84 0.18

5.4 Chapter summary

In this chapter, we have introduced a deep learning model based on a
multi-generative network. Besides, we combined SI and SSIM, in ad-
dition to adversarial learning to optimize the training model. During
the training, we used the 3D CAD models corresponding to objects ap-
pearing in real images in order to render depth images used as a ground
truth. The proposed model is evaluated on the PASCAL 3D+ dataset.
The experimental results show that the proposed model improves com-
pared to the state-of-the-art models. In the next chapter, we will move to
a deep model based on cGANs to allow the system to generate a dense
depth image.
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Chapter 6

Promising Depth Map
Prediction Method from a
Single Image based on
Conditional Generative
Adversarial Network

6.1 Introduction

In this chapter, with the appearance of the Conditional Generative Ad-
versarial Network, which had a major role in expanding this work, we
took advantage of this network and applied it to predict depth images
for indoor and outdoor scenarios. This work is close in spirit to that
of (Eigen, Puhrsch, and Fergus, 2014; PUIG, 2019; Abdulwahab et al.,
2020) in the sense that we also use a deep learning approach to retrieve
depth maps from a single image. Our method is a promising method
since it can be applied to predict depth images for indoor and outdoor
scenarios. Besides, it can be used as a co-representation method to be
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applied to predict the pose estimation from a single RGB image. Fur-
thermore, it produces promising results with a high precision rate and
an acceptable computational cost. In this work, we propose to use an
autoencoder network as a generator based on UNet and UNet++ mod-
els, (Ronneberger, Fischer, and Brox, 2015; Zhou et al., 2018b). In par-
ticular, a cutting-edge technique for image transformation as a baseline
network for predicting a depth image from a single colour image. How-
ever, with the lack of annotated training data for depth images of objects,
we use 3D CAD models for rendering depth images from different view-
points. The obtained depth images are used to train the autoencoder
network. The proposed model consists of two successive networks. The
first network is depth estimation which learns to map the RGB image
domain into the depth image domain. In order to enforce the generator
to generate a depth close to the ground truth, we propose a second net-
work a discriminator network that helps the first network by compar-
ing the ground truth and generated depth images. The two networks
are integrated into a single pipeline to solve the problem of depth image
estimation. Figure 6.1 shows the proposed framework for depth esti-
mation from a single image using a Conditional Generative Adversarial
Network. To the best of our knowledge, this work is the first attempt to
use a cGAN network for depth estimation purposes. Consequently, the
main contributions of this work are the following:

• We propose an autoencoder segmentation network as a generator
that can predict a depth image from a single 2D colour image of an
object.

• We propose a discriminator network to achieve a more accurate
comparison of the ground truth and generated depth to enforce the
autoencoder network to generate an accurate dense depth image.

• The integration of the two networks into a single pipeline to solve
the problems of generating a depth image from a single colour im-
age.
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This chapter is organized as follows. Section 2 describes the pro-
posed methodology to estimate a depth image using segmentation. Sec-
tion 3 describes experimental results. Finally, Section 4 concludes the
chapter summary of this work.

6.2 Proposed Methodology

This section explains the proposed scheme, the tools, and the resources
being used in this work. We formulate the problem in subsection 2.1.
The remaining subsections explain each part of the proposed model in
detail.

6.2.1 Problem Formulation

Let a ∈ A be a 2D colour image, and the problem of generating its cor-
responding depth image, b ∈ B, can be defined formally as a function
f : A → B maps elements from domain A to ones in its co-domain B.
Figure 6.1 shows the graphical description of the system. It contains two
main modules. The first one is a depth generator G based on an autoen-
coder segmentation Network, and the second one is the discriminator
network D based on a CNN.

6.2.2 Generator Network

Two main variations of our autoencoder segmentation network are pro-
posed in this work as a generator network. Both of them are encoder-
decoder neural network architectures. The first network is UNet, (Ron-
neberger, Fischer, and Brox, 2015), it involves convolution layers, and
it does not include a fully connected layer that is demanding on a large
amount of data. This network is simple, efficient, and easily used. It con-
sists of two parts: the first one is an encoder that obtains different image
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Figure 6.1: General overview of the proposed depth estimation model.

feature levels continuously sampled through multiple convolution lay-
ers. Also, we tested the UNet++, (Zhou et al., 2018b), which consists of a
series of nested dense convolutional blocks, as an encoder to choose the
best between UNet and UNet++ networks

The second one is a decoder that performs multi-layer deconvolution
on the top-level feature map and combines different feature levels in the
down-sampling process to restore the feature map to the original input
image size and completes the end-to-end depth estimation task from the
input image. Besides, it uses the skip connection operation to connect
each pair of down-sampling layers and the up-sampling layer, which
makes the spatial information directly applied to much deeper layers
and a more accurate segmentation result.

The generator G learns the mapping from an input colour image to
the corresponding depth image. The input to the segmentation network
is a 2D colour image, a, and it generates a depth image, b̂.

In order to optimize the structural similarity between the depth im-
age and ground truth, we use two loss functions: the first one is a MSE
loss function based on feature matching that can be defined as follows
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(6.1):

Lgan(a, b, G(a)) =
1
n

n

∑
i∈T

f (b̂(i) − b(i))
2, (6.1)

where a is the input 2D colour image, G is a generator network, f is the
MSE error, b(i) is the real depth of pixel i, b̂(i) is the associated predicted
depth by generator network, T is the set of valid pixels (i.e., both the
ground-truth and predicted depth pixels that do not have depth values
equal to zero or non-black regions as shown in Figure 8.3 and n is the
cardinality of T.

6.2.3 Discriminator Network

The generator network generates depth images b that belong to domain
B from the domain A of colour images. To model this additional con-
straint, we proposed a discriminator network that is composed of five
convolution layers with 4× 4 filters, stride 2 and padding 1. Each convo-
lution layer is followed by batch normalization (BN) except for the first
convolutional layer Cn1 followed by an output logistic unit LeakyReLU,
(Liu, Shen, and Lin, 2015; Maas, Hannun, and Ng, 2013). The idea of
our approach is to train the generator to generate samples very close
to the real samples and the samples have to be in the depth image do-
main. To model this additional constraint, we train a discriminator neu-
ral network D to distinguish between a real sample consisting of (in-
put colour image and real depth image rendered from 3D CAD mod-
els) and a fake sample consisting of(input image and generated depth
image from the generator G). The discriminator network D is used to
determine whether the depth images estimated by the generator G are
comparable to depth images or not.

In addition, it provides a second loss measure, along with the recon-
struction error of the generated depth map, that is useful for training
an accurate generator to generate a dense depth image and minimize
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the difference between the corresponding features and avoid the over-
fitting and make the training more stable and converge faster. The dis-
criminator is trained by minimizing the following binary cross-entropy
(BCE) loss is defined as follows (6.2):

ℓDis(D, a, b, b̂) = −Eab̂b[log(D(a, b)) + log(1 − D(a, b̂)] (6.2)

6.2.4 Total Loss

The final objective function, i.e. the training loss, at one iteration of our
learning algorithm is defined as:

L(G, D, a, b, b̂) = ℓgan(G, D, a, G(a)) + ℓDis(D, a, b, b̂) (6.3)

This loss L(G, D, a, b, b̂) is efficiently integrated into the back-propagation
for the generator network through ADAM optimization.

6.3 Experiment and Results

This section describes the experiments performed to evaluate the pro-
posed model in this chapter. In Part I, chapter 2, we have mentioned
the PASCAL3D+, (Xiang, Mottaghi, and Savarese, 2014) dataset and the
evaluation metrics used in these experiments.

6.3.1 Data Augmentation (DA)

In this work, to increase the number of training samples, we apply data
augmentation (DA) techniques Shown in Figure 6.2 that shows the trans-
formations applied to every input image and the corresponding depth
images. Thus, each category has more than 10, 000 images for training
the model. After applying data augmentation to the real colour images
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and corresponding depth ones, and using them as inputs to the model
for the training process, we found that the efficiency of the network sig-
nificantly improved due to exposing the model to more difficult samples
and samples under different conditions.

Figure 6.2: Transformations (flipping, blurring, noise, and rotation) are
applied to every real image and its corresponding rendered depth image
in all transformations, except blurring and noise, we apply them for the
real image only.

6.3.2 Parameter settings

In this work, We used the Adam optimizer, (Kingma and Ba, 2014) with
β1 = 0.5, β2 = 0.999 and an initial learning rate of 0.0001. A batch size of
4 with 1000 epochs yielded the best combination. The input images are
reshaped to 128 × 128 pixels and normalised through divided by 255.
For all these experiments, we used a 64-bit I7-6700, 3.40GHz CPU with
16GB of memory and one NVIDIA GTX 1080 GPU on Ubuntu 16.04.
We used the Pytorch, (Paszke et al., 2017) deep learning framework.
The computational time of the proposed method for the training pro-
cess takes around 1.2 minutes for each epoch with a batch size of 4. In
turn, the online estimation of depth maps has a performance of around
7 images per second.
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6.3.3 Results and Discussion

In this work, we have compared the proposed model with three alter-
native methods using the PASCAL3D+ dataset, (Goodfellow et al., 2014;
Kim et al., 2017; Abdulwahab et al., 2020). In Table 6.3.3, we show the
four evaluation measures for the predicted depth images corresponding
to the 12 categories of the PASCAL3D+ dataset. We evaluate the results
with three different versions of GAN and our proposed model. The first
version is the GAN model proposed in (Goodfellow et al., 2014). The
second version is the GAN model with a reconstruction loss based on
the L1-norm proposed in (Kim et al., 2017). The third version is the ad-
versarial learning model proposed in (Abdulwahab et al., 2020). Our
model achieved the best mean results for the 12 categories with the four
measures used in the evaluation. It achieved an average IOU score of
64% and a Dice score of 75.8%. In turn, the RMSE error with the pro-
posed model is 0.18. With δZ = 1.25, the accuracy rate is 76.5%, while
with δZ = 1.253, the accuracy rate is increased by 3%. That shows the
effect of discriminator and feature matching on improving the perfor-
mance of the estimation of depth images. However, the other three
tested methods provided results better than our model for bike, and bot-
tle.

For a qualitative assessment, Figure 6.3 shows how the proposed
model can generate depth images that are very close to the ground truth.
The figure shows the output of the proposed model for different cate-
gories of PASCAL 3D+.

In addition, the performance of the proposed model for some of the
categories of PASCAL 3D+ is shown in Figure 6.4. We show the depth
image generated against the real depth images rendered from the cor-
responding 3D models. Besides, we show composite images from the
colour and the generated depth image in (rows 1 and 2). These exam-
ples show that the proposed model can predict a proper depth image
with the object’s pose in colour images.
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Table 6.1: Results for depth image estimation from 2D colour images
on the PASCAL3D+ dataset under different measures with (a) GAN
proposed in, (Goodfellow et al., 2014), (b) GAN with a reconstruction
loss proposed in, (Kim et al., 2017), (c) Adversarial Learning proposed
in, (Abdulwahab et al., 2020) and (d) the proposed model. Lower is bet-
ter for the RMSE metric, and higher is better for the other measures. The
best results are highlighted in bold.
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Figure 6.3: Intensity images (row 1), resulting depth images (row 2),
Ground-truth depth images (row 3).

Figure 6.4: We show some correct and erroneous predictions given by
our final method compared to the ground truth. As shown, in the
first six columns, we show the correct prediction, and in the last four-
columns, we show the error prediction. Intensity images (row 1), re-
sulting depth images (row 2), Ground-truth depth images (row 3), and
composite images from the intensity and resulting depth images (row
4).

6.4 Chapter summary

In this chapter, we have introduced a novel cross-domain deep model
for estimating a depth image of the main object depicted in a 2D colour
image. We have designed a deep model based on two deep networks.
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The first network is an autoencoder segmentation network, called a gen-
erator. The generator network maps the colour image to a depth image.
The second network is a discriminator network to achieve more com-
parison and allows the system to generate a dense depth image. During
training, the proposed model in the first network is fed with a single
2D image for the object, and the corresponding depth image is rendered
from a 3D model of the same object. Both the input colour image and
the depth image generated by the generator network are fed into the
discriminator to make a more accurate comparison to the ground truth
images to help in generating a more precise depth image. The proposed
model is evaluated on the PASCAL 3D+ dataset. The experimental re-
sults show that the proposed model yields an improvement compared
to the state-of-the-art models. In the next section, we will expand this
work to depth estimation for the complete scene instead of depth esti-
mation for the object in the scene, by using more comprehensive tech-
niques with a high precision rate and good computational timing. Depth
estimation for the complete scene can be useful for tasks such as robot
navigation, where you need to have a detailed understanding of the en-
vironment in order to plan a safe and efficient path. Depth information
for the complete scene can also be useful for tasks such as augmented
reality, where you need to accurately place virtual objects in the real
world.
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Part III

Depth estimation for a
complete scene
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Chapter 7

Deep Monocular Depth
Estimation Based on
Content and Contextual
Features

7.1 Introduction

In this chapter, we move to monocular depth estimation for a complete
scene based on content and contextual features. Computer vision tasks
like monocular depth estimation have seen a significant performance
boost due to deep neural networks. Deep neural networks also signifi-
cantly improve semantic segmentation techniques. Thus, by localizing
the objects and detecting their boundaries, monocular depth estimation
can considerably benefit from semantic data to estimate depth more pre-
cisely. Therefore, focusing on the contextual information in input images
might be advantageous for practical monocular depth estimation.
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Figure 7.1: Comparison of estimated depth maps with our model with
the NYU Depth-v2 dataset: (Row 1) Input images, (Row 2) ground truth
depth images, and (Row 3) resulting depth images.

In our previous work, such as (Abdulwahab et al., 2020; Abdulwa-
hab et al., 2022), we have depended on the content and structure fea-
tures extracted by an autoencoder for depth estimation. However, in
this work, we aim to merge features extracted from depth information
and ones extracted from semantic context information to preserve the
object’s boundaries. Thus, we suggest using two autoencoder networks
in this work, each with an encoder and decoder. In order to extract high-
level content, context and structure features from the input images, the
first encoder network is trained from scratch. To preserve the disconti-
nuities of the objects, we add contextual semantic features to the high-
level features extracted by the first encoder using a pre-trained encoder
network of the semantic segmentation model introduced in (Zhou et al.,
2018a). The extracted contents and contextual semantic features will be
concatenated and fed into the decoder network to create the depth map
and preserve object discontinuities. The following are the main contri-
butions of this chapter:

• Proposing a deep autoencoder network based on Squeeze-and-
Excitation Networks (SENets) presented in (Hu, Shen, and Sun,
2018) that proposed Convolutional Neural Networks (CNNs) blocks,
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which improves channel interdependencies at almost no additional
computational cost. That allows the proposed network to extract
precise contents and structure information from monocular im-
ages.

• Exploiting a well-known semantic segmentation model, HRNet-
V2, proposed in (Sun et al., 2019b) to enrich the contents features
with contextual semantic information and to boost the depth pre-
diction accuracy regarding the objects’ boundaries and maintain
high-level representations of small objects.

• Integrating the two autoencoders into a single framework to ac-
curately predict high-resolution depth maps from monocular im-
ages.

Figure8.2 shows the proposed monocular depth estimation.
The rest of the work is structured as follows. The related work is

summarized in Section 2. The proposed methodology for monocular
depth estimation is described in Section 3. The experimental findings
and performance are shown in Section 4. Section 5 concludes the chapter
summary of this work.

7.2 Related works

One of the key objectives of computer vision is to estimate the depth
map from monocular, stereo, or multi-view images. We concentrate on
monocular depth estimation in this work. The ability to predict depth
images from a single image has received much attention over the years
and has been approached from various angles. Here, we focus on the
achievements of recent years. In (Eigen, Puhrsch, and Fergus, 2014),
the authors presented a method for estimating depth maps from a sin-
gle RGB image using a multi-scale deep convolutional neural network
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(CNN). The proposed method is based on the idea that an image’s ge-
ometric and photometric constraints can be used to infer depth. The
authors use a CNN to extract features from the image at multiple scales
to achieve this. These features are then used to predict the depth map at
the corresponding scale. The final depth map is obtained by combining
the predictions from all scales using a weighted combination. Similarly,
the authors of the work presented in (Li et al., 2015) proposed a method
for estimating depth and surface normals from a single image. The net-
work proposed in (Li et al., 2015) includes a regression stage that uses
a deep CNN model to learn a mapping from multi-scale image patches
to depth or surface normals values at the super-pixel level, which is ob-
tained using the SLIC algorithm introduced in, (Achanta et al., 2012).
They converted the estimated super-pixel depth and surface normal to
the pixel level by using potentials on the depth or surface normal maps,
such as a data term, a smoothness term, and an auto-regression term
characterizing the local structure of the estimated map. In turn, the
authors of the work presented in (Long et al., 2021) proposed a novel
method for depth estimation from a single image. The method proposed
in (Long et al., 2021) uses a CNN to predict depth from an RGB image
and then refines the depth predictions with an adaptive surface normal
constraint. The normal surface constraint is computed by estimating the
scene’s surface normals using the predicted depth map and comparing
them to the surface normals estimated from the RGB image. The differ-
ence between these two estimates is then used to fine-tune the predicted
depth map, yielding more accurate depth predictions.

In addition, the authors of (Kopf, Rong, and Huang, 2021) intro-
duced an algorithm for estimating consistent dense depth maps using
a CNN trained with geometric optimization for estimating smooth cam-
era paths and precise and reliable depth reconstruction. In (Alhashim
and Wonka, 2018), the authors presented a DenseDepth network, a deep
neural network that uses transfer learning to predict the depth value
from the colour image directly. To create a high-resolution depth map,
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they used the pre-trained DenseNet backbone, (Huang et al., 2017) along
with bilinear up-sampling and skip connections on the decoder. While
(Abdulwahab et al., 2020) developed a deep learning model that con-
sists of two successive deep neural networks to estimate the depth of
the main object presented in a single image. A dense depth map of a
given colour image is estimated by the first network based on the Gen-
erative Neural Network (GAN). The estimated depth map is then used
to train a convolutional neural network (CNN) to predict the 3D pose of
the object.

Recently, the authors of (Bhat, Alhashim, and Wonka, 2021) sug-
gested a brand-new component for a transformer-based depth estima-
tion architecture called AdaBins. The depth range is divided into bins
by the AdaBins block, and the centre value of each bin is adaptively
estimated for each image. After that, linear combinations of the bin cen-
tres are used to estimate the final depth values. In, (Li et al., 2022), the
authors presented a BinsFormer method to estimate depth from monoc-
ular Images. Their model uses a transformer module to predict bins in a
set-to-set manner, a per-pixel module to estimate high-resolution pixel-
wise representations, and a depth estimation module to combine this in-
formation to predict final depth maps. The two methods, as mentioned
above, achieved new state-of-the-art results, but it is computationally
expensive, and the training settings for transformer-based models re-
quire high resources. Moreover, these models do not perform more gen-
eralisation than the other deep learning models of depth estimation.

All the methods mentioned above focus on simply extracting the im-
age’s structure and content that cause blurring of the expected depth
images. As a result, we can take advantage of the contextual semantic
data that semantic segmentation models may gather. Therefore, we need
to benefit from contextual semantic information that semantic segmen-
tation models can extract. There are small trials for leveraging the se-
mantic features to enhance depth estimation since information exchange
between tasks has significant advantages, such as (Kim et al., 2020). The
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model suggested by (Kim et al., 2020) included a multi-scale skip con-
nection with self-attentive modules to highlight the feature maps from
the various objects during the decoding stage. In, (Gao et al., 2022),
the authors provided a useful framework for enhancing depth predic-
tion accuracy when depth prediction and semantic labelling tasks are
learned together. They created a feature-sharing module to combine dis-
criminative features from various tasks, which helped the network com-
prehend the scene’s context and use correlated features to produce more
precise predictions. To increase the accuracy of the results generated by
a deep CNN, the authors of (Mousavian, Pirsiavash, and Košecká, 2016)
trained a single network for both semantic and depth prediction. A fully
connected conditional random field (CRF), which captures the contex-
tual information, is coupled with the CNN to refine the estimated depth
map. Additionally, many multi-task methods use semantic data to close
the gap between the two tasks (i.e., depth estimation and semantic seg-
mentation), e.g., (Valdez-Rodríguez et al., 2022; Klingner et al., 2020; Jiao
et al., 2018). These methods enhanced the depth features by sharing the
content and context information between the two tasks. Consequently,
this work attempts to present a deep learning network that can combine
contextual and content information to predict more accurate depth esti-
mation from a single image, maintaining object discontinuities and the
details of multi-scale objects in the scene.

7.3 Proposed Methodology

As shown in Figure 8.2, the proposed model is based on two parallel
networks—every network works as an autoencoder that can map be-
tween different domains. In particular, the first autoencoder network is
learned to map from an RGB image to a depth image. The second one
learns the multi-scale semantic features of the input image by classify-
ing the image’s structural elements. We employ the HRNet-V2 network
as the pre-trained model for the second autoencoder. The HRNET-V2
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Figure 7.2: General overview of the proposed depth estimation model.

maintains high-resolution representations by connecting high-to-low-
resolution convolutions in parallel and carrying out numerous multi-
scale fusions across parallel convolutions. To reconstruct the original
final depth map, a decoder network will be fed the concatenation of the
features extracted by the two encoders. In order to optimize the net-
work, the final estimated depth image is compared to a ground-truth
depth image during the training stage using different loss functions il-
lustrated in the following subsections.

7.3.1 Problem Formulation

Let a ∈ A be a 2D image. The problem of generating the correspond-
ing depth image, binB, is formally defined as a function f : A → B
that maps elements from the domain A to elements in the co-domain B.
Our proposed model consists of three consequent networks, Content En-
coder E1(A), Semantic Encoder E2(A), and Decoder D(Â), where Â is
the combined features generated by EC and ES. The B is the final depth
image of the last layer of the decoder, DE. In ( 7.1, 7.2, 7.3, 9.2, and 7.5),
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we explain the operation of the model’s workflow with the training and
testing stages.

F1 = E1(A), (7.1)

where the F1 is the features extracted from the E1 encoder part in the
autoencoder network, and A is the input image.

F2 = E2(A), (7.2)

where the F2 is the contextual information extracted from the E2 encoder
part in the HRNet-v2 network, and A is the input image.

F = F1 ⊕ F2, (7.3)

where the F (or Â) is the concatenate of the features extracted in (7.1)
and the contextual information that has been extracted in (7.2).

R = D(F), (7.4)

where the R is the feature maps extracted from the D decoder part in the
autoencoder network, and F is the concatenate of the features computed
in (7.3).

Output = DE(R), (7.5)

where the Output is the final depth map extracted from the DE depth
estimation layer in the network, and R is the feature maps extracted in
equation 9.2.

7.3.2 Network Architecture

The entire network comprises two networks, as shown in Figure 8.2:
an autoencoder is used to extract structure and content features, and
another is used to extract semantic features.
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7.3.2.1 Content Encoder:

An RGB image a is fed into the encoder E1, which converts it into a
state with a fixed shape that represents the features of the content and
structure. The second component is a decoder that maps the encoded
high-level features to a depth image. The input RGB image is encoded
into a feature vector through the use of the SENet-154, (Hu, Shen, and
Sun, 2018) network, which was previously trained on ImageNet, (Deng
et al., 2009). Our encoder consists of the first four blocks of SENet, and
we used the size of the input RGB images of 360 × 480 as shown in Fig-
ure 8.2. The first two layers downsample the original size of the input
images to the quarter, producing 128 and 256 feature maps, respectively.
The third block generates 512 feature maps with a size of 45 × 60. The
final size of the high-level feature maps is 23 × 30 × 1024. To cope with
overfitting, our model used a dropout with a ratio of 0.2 and a Label-
smoothing regularisation proposed in, (Szegedy et al., 2016) during the
training stage. Likewise, to ensure consistency between training and
testing, we froze the parameters of all Batch Normalization (BN) layers.
In Figure 7.3-left, we show each layer’s input and output sizes for the
network in the encoder layers.

7.3.2.2 Semantic Encoder:

For extracting the semantic features, we use the encoder E2 as a pre-train
model. The encoder network is based on a high-resolution representa-
tion network, "HRNet-V2", a recently proposed model in, (Sun et al.,
2019b) that can maintain high-resolution representations of multi-scale
objects throughout feature extraction throughout the model without the
traditional bottleneck design. The HRNet-V2 performs at the cutting
edge on various pixel labelling tasks. To achieve robust feature represen-
tations with minimal overhead, the HRNet-V2 model explores the repre-
sentations from all high-to-low-resolution parallel convolutions instead
of just the high-resolution representations. The HRNet-v2 network has
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four stages in total. There are high-resolution convolutions in the first
stage. The second, third, and fourth stages are composed of repeating
modularized multi-resolution blocks. A group of multi-resolution con-
volutions makes up a multi-resolution block. The convolution group,
which divides the input channels into various groups of channels and
conducts a regular convolution over each group over various spatial
resolutions separately, is the foundation for the multi-resolution group
convolution. It is comparable to the regular convolution’s multi-branch
full-connection method. A regular convolution can be split into several
smaller convolutions, as stated in, (Zhang et al., 2017). Both the input
channels and the output channels are split up into a set of groups. Each
connection between the input and output subsets is a complete convolu-
tion. Several 2-stride 3× 3 convolutions are used in, (Sun et al., 2019a) to
achieve the resolution reduction. Bilinear up-sampling is used in, (Sun
et al., 2019a) to implement the resolution increase. We display the in-
put and output sizes for each scale in the semantic encoder built on the
HRNet-V2 network in Figuree 7.3-right.

7.3.2.3 Decoder:

The decoder D network comprises four deconvolution layers in total.
Starting from the concatenation of the output of the content encoder
and the output of the last layer from the encoder network of the se-
mantic segmentation network, we perform a 1× 1 deconvolution. Next,
three 3 × 3 deconvolutions were added, with output filters set to have
half the number of input filters. The feature maps are extended using
an up-sampling block composed of a 2x2 bilinear up-sampling between
the first three deconvolutions, (Lehtinen et al., 2018). Except for the final
layer, every layer of the decoder is followed by a leaky ReLU activation
function with alpha = 0.2, (Maas, Hannun, and Ng, 2013). In turn, a
ReLU activation follows the final layer block. The output of the previ-
ous layer of the decoder with the output of the encoder’s corresponding
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layers for a skip connection and a coarser depth map produced by the
depth estimator layer are concatenated as the input to the next deconvo-
lution. The final layer is a depth estimator for the finest depth map DE
with a size of 240 × 180 × 1. Figure 7.3-left shows the input and output
sizes for the network’s decoder layers.

a)  Encoder (E1), Decoder (D), and depth
estimation layer (DE) in the autoencode network.

b)  Encoder part (E2) of the HRNet-V2 
Network.
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Figure 7.3: (a) Input and output sizes of each layer in the encoders E1,
and decoder D parts for autoencoder network. (b) Input and output
sizes of each scale in the encoder part E2 of the HRNet-V2 Network.
Colours correspond to the colours used in Figure 8.2

7.3.3 Loss Functions

Similar to (Alhashim and Wonka, 2018), we formulate our monocular
depth estimation problem as the minimization of a reprojection error be-
tween the estimated depth B̂(x, y) and the ground-truth B(x, y) at train-
ing time. Our objective loss function composes of three loss functions.
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We formulate our monocular depth estimation problem as minimis-
ing a reprojection error between the estimated depth (x, y) and the ground-
truth B(x, y) at training time, similar to (Alhashim and Wonka, 2018).
Three loss functions are used to build our objective loss function.

The point-wise L1 − norm defined on the depth values is the first
content loss LL1 that can be defined as follows:+

LL1(B, B̂) =
1

wh
(

w

∑
x=1

h

∑
y=1

|B(x, y)− B̂(x, y)|), (7.6)

where w and h are the width and height of the ground-truth depth.
The expected perceptual quality of digital images is assessed using

the structural similarity index measure (SSIM) loss index. The SSIM loss
function is a complete reference metric used to assess the accuracy of
depth images generated compared to the corresponding ground truth.
The SSIM index LSSIM can be defined as:

LSSIM(B, B̂) =
1
2
(1 −

(2µB̂µB + c1)(2σB̂B + c2)

(µ2
B̂
+ µ2

B + c1)(σ
2
B̂
+ σ2

B + c2)
), (7.7)

where µB̂ is the mean of B̂, σB̂ is the standard deviations of B̂, µB is the
mean of B, σB is the standard deviations of B, σB̂B is the covariance of B̂,
c1 = 0.012 , c2 = 0.032, respectively.

The Mean Square Error (MSE) is the third loss function (LMSE), which
can be defined as:

LMSE(B, B̂) =
1

wh
(

w

∑
x=1

h

∑
y=1

(B(x, y)− B̂(x, y))2). (7.8)

Our final objective function used for training the proposed model,
L(B, B̂), including the three mentioned loss functions, can be defined as
follows:
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L(B, B̂) = αLL1(B, B̂) + βLSSIM(B, B̂) + γLMSE(B, B̂), (7.9)

where α, β and γ are weighting factors empirically set to 0.2, 0.5 and 0.3,
respectively.

7.4 Experiments and Results

This section outlines the experiments conducted to assess the devel-
oped model and the evaluation metrics applied to quantify the model’s
performance. In Part I, chapter 2, we have explained the NYU Depth-
v2, (Silberman et al., 2012) and SUN RGB-D, (Song, Lichtenberg, and
Xiao, 2015) datasets, in addition to the evaluation metrics used in these
experiments.

7.4.1 Parameter settings

We used the ADAM optimizer introduced in, (Kingma and Ba, 2014)
to train our model with parameters of beta1 = 0.5, beta2 = 0.999, and
an initial learning rate of 0.0001. The optimal combination was with a
batch size of 2 and 15 epochs. The PyTorch, (Paszke et al., 2017) deep
learning framework was used to run all experiments on a 64-bit Core
i7-6700, 3.40 GHz CPU with 16 GB of memory, and an NVIDIA GTX
1080 GPU under Ubuntu 16.04. The proposed model’s computational
cost for the training process is about 2.5 hours per epoch with a 2 batch
size. The performance of the online depth map estimation is around
0.028 seconds.
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7.4.2 Results and Discussion

7.4.2.1 Ablation study

First of all, we performed an ablation study on our proposed model on
the NYU Depth-v2 dataset under various measures to demonstrate the
effects of different improvements in the baseline auto-encoder model:

1. Baseline that has one autoencoder network as proposed in(Alhashim
and Wonka, 2018) with the point-wise L1norm and SSIM losses.

2. Baseline with skip connection: applying skip connection to the au-
toencoder network by feeding the features maps extracted by the
encoder layers to the corresponding decoder layers.

3. Proposed model: The Baseline with skip connection and the fea-
ture extracted by the encoder of the semantic segmentation au-
toencoder.

In Table 7.1, quantitative results with NYU Depth-v2 are shown. The
proposed model’s performance yielded better results than its variations
in terms of accuracy of δZ, RMS, Rel and log10 errors. Besides, the accu-
racy δZ1.25 improved by 1.03%, and Rel error improved by 0.02% com-
pared to the second-best results of the Baseline with the skip connection
model. Compared to the baseline method, merging the semantic fea-
tures with the content features yields a significant improvement with δZ

of 2%. Also, in Figure 7.4, we give examples of estimated depth ob-
tained from the NYU Depth-v2 testing set. More precisely, the accuracy
and error percentage between our model and the rest models in the ab-
lation study.

For evaluating the generalization of the proposed model, in Table 7.2,
we show the quantitative results of the ablation study with the SUN
RGB-D dataset. The proposed model’s performance yielded better re-
sults than its variations in terms of accuracy of δZ, RMS, Rel and log10
errors. The accuracy δZ1.25 improved by 1.1%, and Rel error improved
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Table 7.1: Quantitative results of the ablation study on the NYU Depth-
v2 dataset.

Method Accuracy: higher is better lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

Baseline Model 0.833 0.969 0.9928 0.14 0.532 0.056
Baseline with skip connection Model 0.842 0.971 0.9931 0.148 0.525 0.054

Our model 0.8523 0.974 0.9935 0.121 0.523 0.0527

Figure 7.4: The accuracy and the three error measures of the three vari-
ations of our model with the NYU Depth-v2 dataset (green); baseline
(blue), and baseline with skip connection (orange).

by 0.05% compared to the second-best results of the Baseline with the
skip connection model. Compared to the baseline method, merging the
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semantic features with the content features yields a significant improve-
ment with δZ of 1.7%. Thus, merging the content features with the con-
textual features yields more accurate depth estimation.

Table 7.2: Quantitative results of the ablation study on the SUN RGB-D
dataset without fine-tuning.

Method Accuracy: higher is better lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

Baseline Model 0.82 0.945 0.972 0.144 0.46 0.066
Baseline with skip connection Model 0.826 0.948 0.973 0.141 0.46 0.064

Our model 0.837 0.950 0.974 0.136 0.45 0.062

To more thoroughly assess the proposed model’s effectiveness, we
randomly selected images from the NYU Depth-v2 test set to demon-
strate the proposed model’s ability to estimate accurate depth maps (see
Fig. 8.4). It is worth noting that our model can generate depth maps
that include details that the baseline models do not include. By integrat-
ing two autoencoders for depth estimation and semantic segmentation,
the model learned the correct cardinality (i.e., objects) inside the images.
Our model can generally estimate correct depth values for small objects
presented in the scene (see Fig. 8.4-Column 1) and far away from the
camera (see Fig. 8.4-Column 2). It can also properly detect the disconti-
nuities of the objects, even for objects whose colours are similar to those
of the background (see Fig. 8.4-Column 3).

In general, our model can estimate correct depth values for objects
that are small (see Column 1) and for objects that are far away from the
camera (see Column 2), as well as the proposed model can also detect
the boundaries between objects whose colour is similar to the one of the
background (see Column3).

To generalize the proposed model’s performance on a concrete case,
we tested it with the SUN RGB-D dataset without fine-tuning. We ran-
domly selected some images from the dataset to demonstrate the pro-
posed model’s ability to estimate depth maps and compare the results
to the baseline and baseline with skip connection models. (see Fig. 7.6).
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Again, our proposal can preserve the discontinuities of the objects, even
for small objects.

Figure 7.5: Examples from the test NYU Depth-v2 dataset of depth es-
timate with Baseline and baseline with skip connection and our model.
For each image, we show (row 1) the input image, (row 2) the ground
truth, (row 3) the output for the Baseline model, (row 4) the output for
the Baseline with skip connection, (row5 ) the final estimate depth im-
age with our model.
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Figure 7.6: Examples from the test SUN RGB-D dataset of depth estimate
with Baseline and baseline with skip connection and our model. For
each image, we show (row 1) the input image, (row 2) the ground truth,
(row 3) the output for the Baseline model, (row 4) the output for the
Baseline with skip connection, (row5 ) the final estimated depth image
with our model.
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7.4.2.2 Performance Analysis

Secondly, we compared the proposed model with four methods of the
state of the art, (Hao et al., 2018; Ramamonjisoa et al., 2021; Alhashim
and Wonka, 2018; Tang et al., 2021). We show evaluation measures on
NYU Depth-v2 with the four tested approaches and the proposed model
in Table 8.2. The proposed model outperformed the four methods in
terms of the three measures (δZ of a threshold of 1.25, 1.252 and 1.252,
and rel and the log10 error). δZ of a threshold of 1.25 with our model was
improved by 0.72% compared to, (Ramamonjisoa et al., 2021), the best
second method. In turn, with δZ of 1.252, (Alhashim and Wonka, 2018),
our method achieved an improvement of 0.7% compared to the other
three methods. Besides, our model reduces the rel error by 0.02% com-
pared to, (Alhashim and Wonka, 2018), the best second method. Addi-
tionally, the proposed method improves the log10 error by 0.004% com-
pared to, (Alhashim and Wonka, 2018), the best second method. The
model proposed in, (Alhashim and Wonka, 2018) yielded the best accu-
racy for the (RMS) error that is a bit higher than our proposed model
with a difference of 0.057%.

Table 7.3: Quantitative results of the proposed model and four depth
estimation methods on the NYU Depth v2 dataset.

Method Accuracy: higher is better lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

Hao et al., (Hao et al., 2018) 0.841 0.966 0.991 0.127 0.555 0.053
Ramamonjisoa et al., (Ramamonjisoa et al., 2021) 0.8451 0.9681 0.9917 0.1258 0.551 0.054

Alhashim et al., (Alhashim and Wonka, 2018) 0.846 0.97 0.99 0.123 0.465 0.053
Tang et al., (Tang et al., 2021) 0.826 0.963 0.992 0.132 0.579 0.056

Our model 0.8523 0.974 0.9935 0.121 0.523 0.0527

Table 7.4 is shown the evaluation measures with the SUN RGB-D
dataset with the proposed model and five state-of-the-art monocular
depth estimation models, (Chen, Chen, and Zha, 2019; Yin et al., 2019;
Lee et al., 2019; Bhat, Alhashim, and Wonka, 2021; Li et al., 2022). The
significant improvement in most of the metrics in Table 7.4 indicates
an outstanding generalization of the proposed model. The proposed
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model was superior in terms of deltaZ(thr = 1.25), rel, rms, and log10.
deltaZ(thr = 1.25) achieving an improvement of 3.2% compared to sec-
ond best model, (Li et al., 2022). (Li et al., 2022) yields an improvement
in deltaZ(thr = 1.252) and deltaZ(thr = 1.253) of 1.3% and 1.6%, re-
spectively, compared to our model. Furthermore, with the relerror, our
proposed model yields an improvement of 0.007% compared to the best
second method, (Li et al., 2022). In turn, the model presented in, (Li et
al., 2022) yielded the lowest error rates of RMS and log10, which is a bit
lower than our proposed model with differences of 0.001%, and 0.029%,
respectively. However, our method provided the best accuracy in most
measures compared to the second-best model. Notice that the second-
best model is trained on an input image size more significant than our
model, with a batch size of 16, compared to our model with 2 batch sizes
only.

Finally, we demonstrate some of the outcomes from the SUN RGB-
D dataset in Table 7.4. More specifically, the results show how our
model can deliver outcomes comparable to those of cutting-edge mod-
els. Our model provided the best deltaZ(thr = 1.25) and the lowest
rel rate among the eight methods. In turn, the BinFormer model pro-
posed in (Li et al., 2022) provided the best results with deltaZ(thr =

1.252), deltaZ(thr = 1.253), RMS and log10. It is not worth saying
that deltaZ(thr = 1.25) is more a restricted measure than deltaZ(thr =

1.252)anddeltaZ(thr = 1.253). The BinFormer model also depended on
different transformers modules that are more complex than CNNs. Fur-
thermore, in contrast to our model’s standard loss functions, the Bin-
Former relied on the SILog error metric introduced by (Eigen, Puhrsch,
and Fergus, 2014) to measure the relationship between points in the
scene regardless of the absolute global scale, helping detect accurate
depth maps.
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Table 7.4: Results of model trained on the NYU-Depth-v2 dataset and
tested on the SUN RGB-D dataset, (Song, Lichtenberg, and Xiao, 2015)
without fine-tuning.

Method Encoder Accuracy: higher is better lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

Chen et al., (Chen, Chen, and Zha, 2019) SENet-154 0.757 0.943 0.984 0.166 0.494 0.071
Yin et al., (Yin et al., 2019) ResNeXt-101 0.696 0.912 0.973 0.183 0.541 0.082

BTS., (Lee et al., 2019) DenseNet-161 0.740 0.933 0.980 0.172 0.515 0.075
Adabins., (Bhat, Alhashim, and Wonka, 2021) E-B5+Mini-ViT 0.771 0.944 0.983 0.159 0.476 0.068

BinsFormer., (Li et al., 2022) ResNet-18 0.738 0.935 0.982 0.175 0.504 0.074
BinsFormer., (Li et al., 2022) Swin-Tiny 0.760 0.945 0.985 0.162 0.478 0.069
BinsFormer., (Li et al., 2022) Swin-Large 0.805 0.963 0.990 0.143 0.421 0.061

Our model SENet-154 0.837 0.950 0.974 0.136 0.45 0.062

Figure 7.7: (row 1) Input images, (row 2) ground truth depth, and (row
3) resulting depth images with the NYU Depth-v2 dataset.
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Figure 7.8: (row 1) Input images, (row 2) ground truth depth, and (row
3) resulting depth images with the SUN RGB-D dataset.

In Figures 8.3 and 7.8, With the NYU Depth-v2 and SUN RGB-D
datasets, we show examples of input, ground truth depth, and gener-
ated depth images. As demonstrated, our model can predict a depth
image very close to the reference ones while preserving the objects’ dis-
continuities and small details. Our model keeps the outline of the ob-
jects in the scenes so that they can be recognized directly from the depth
maps. In contrast, object outlines appear crumbled in the depth maps
generated by other tested techniques.
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7.5 Chapter summary

In this chapter, we have introduced a deep autoencoder model for pre-
dicting precise depth maps from monocular images. We exploited con-
textual semantic information extracted by a pre-trained semantic seg-
mentation network to preserve the objects’ discontinuities in the depth
maps. The features extracted by the depth encoder are combined with
the features extracted by the second semantic segmentation encoder and
fed into the decoder network to reconstruct the depth images. The model
performance was evaluated on the publicly NYU Depth v2 and SUN
RGB-D datasets, yielding promising results with a high precision rate
and an acceptable computational cost for predicting depth images from
monocular images. In the next chapter, we will use multi-scale deep
architecture and curvilinear saliency feature boosting to estimate high-
resolution depth maps and preservation of object boundaries and small
3D structures in the input scene.
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Chapter 8

Monocular depth map
estimation based on a
multi-scale deep
architecture and curvilinear
saliency feature boosting

8.1 Introduction

In this chapter, we availed of the curvilinear saliency presented in chap-
ter 3 as a loss function and the autoencoder model presented in chap-
ter 7 in addition to multi-scale deep architecture, we have developed
a novel autoencoder technique based on a multi-scale deep architec-
ture and curvilinear saliency feature. Recently, with the outstanding
progress of deep learning, several methods based on deep networks
have been proposed for 3D shape generation from a single colour image
of an object (Choi et al., 2018). Different deep models are typically used
for image-to-image translation in order to learn the mapping among
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multiple domains, such as Fully Convolutional Networks (FCN), (Long,
Shelhamer, and Darrell, 2015), U-Net networks, (Ronneberger, Fischer,
and Brox, 2015), and Generative Adversarial Networks (GAN), (Xu, Zhu,
and Wang, 2020), (Sun et al., 2021; Sun et al., 2021).

Ground Truth Our ModelInput Image

Figure 8.1: Comparison of estimated depth maps: input RGB images,
ground-truth depth maps, estimated depth maps with the proposed
model.

Feature aggregation is beneficial to generate more accurate depth
maps by integrating into a single feature map the response maps ob-
tained at different scales. Various feature aggregation approaches have
been proposed, such as the method presented in, (Wiles et al., 2020). It
applies a feature pyramid to aggregate multiple-scale features through
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a fusion network. The latter can integrate the features extracted by sev-
eral encoder layers through adaptive fusion mechanisms that aggregate
coarse depth maps in order to predict fine depth maps. In, (Wu et al.,
2022), the authors introduce the side prediction aggregation method for
fast monocular depth-map estimation. The proposed network enhances
the embedding of scene structural information from low-level to high-
level layers. They apply continuous spatial refinement loss at multiple
resolutions to improve the accuracy of their prediction model. Besides,
the proposed model can further perform adversarial learning at multi-
ple resolutions with minor additional computation. In (Jun et al., 2021),
the authors address the problem of monocular human depth estimation
via pose estimation. They use PoseNet and DepthNet to estimate key-
point heat maps and depth maps, respectively. They introduce a feature
blending block to make the networks learn to predict depths more ac-
curately by adding the pose information extracted by PoseNet and the
features extracted by DepthNet into the next layer of DepthNet.

The present work proposes an autoencoder network, a cutting-edge
technique for image-to-image translation, as a baseline network for pre-
dicting a depth map from a single colour image. Our work is close in
spirit to that of (Alhashim and Wonka, 2018; Lin et al., 2020) in the sense
that we also use a deep-learning approach to estimate depth maps from
a single image. The proposed model is based on an autoencoder net-
work with skip connections, a multi-level depth estimator included in
the decoder network, and a loss function based on Curvilinear Saliency
(CS), (Rashwan et al., 2018). All those components are integrated into a
single pipeline to estimate depth maps from a monocular camera. Our
method is promising since it can estimate depth maps for both indoor
and outdoor scenarios. In addition, it yields results with a high precision
rate and an acceptable computational cost compared to the state-of-the-
art. Our results show that the proposed model yields high-resolution
depth maps that preserve object boundaries and small details with high
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accuracy. Figure 8.2 shows the proposed depth map estimation frame-
work. The main contributions of this work are:

• We propose a deep autoencoder for depth estimation based on
the SENet-154 network introduced in, (Hu, Shen, and Sun, 2018).
Thus, the encoder’s backbone is SENet, which integrates Squeeze
and Excitation (SE) blocks into the ResNeXt-152 network presented
in, (Xie et al., 2017). The ResNeXt-152 used in this work was de-
fined with cardinality 64 and bottleneck width 4D. SENet helps
the autoencoder to exploit the split-transform-merge strategy by
aggregating a set of transformations applied to the input features.
Moreover, the representational power of the autoencoder is im-
proved by performing dynamic channel-wise feature recalibration
through SE blocks.

• We propose the integration of a depth-map predictor at every layer
of the decoder network in order to refine the final estimated depth
map by preserving global information present in the coarse fea-
ture maps as well as detailed local information contained in the
fine feature maps. Corresponding feature maps from the encoder
are concatenated in the decoder with the up-sampled depth pre-
dictions and the deconvolution of the feature maps fed by the pre-
vious decoder layers.

• We propose Curvilinear Saliency (CS), a curvature estimator in-
troduced in, (Rashwan et al., 2018), as a loss function to enhance
depth map edges.

The rest of the work is organized as follows. Section 2 summarizes
the related work. Section 3 details the proposed method to estimate
depth maps from single colour images. Section 4 describes the network
training procedure: section 5 presents experimental results and the ob-
tained performance. Finally, Section 6 concludes the chapter summary
of this work.
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8.2 Related Works

This section briefly reviews previous work related to monocular depth
map estimation through classical computer vision and deep learning,
autoencoder networks and curvilinear saliency.

8.2.1 Depth Map Estimation

Depth map estimation from a single RGB image is challenging due to
the limited availability of information and inherent ambiguity.

The problem has attracted a lot of attention over the past years, lead-
ing to a wide variety of approaches. Many of those solutions are based
on classical computer vision. For example, (Pirvu et al., 2021) proposes
a method for metric depth estimation for UAVs by combining computer
vision and odometry with unsupervised machine learning. In turn, (Schon-
berger and Frahm, 2016) applies traditional Structure from Motion (SfM)
in order to reconstruct the 3D structure of the scene and estimate the
camera motion from potentially extensive image collections even cover-
ing whole cities. These classic methods apply a relatively long sequence
of stages. They start with the registration of consecutive images by find-
ing correspondences between geometric features extracted from them
through well-known techniques such as (Lowe, 2004). These methods
model hand-crafted features to infer depth information, but those fea-
tures lack generality across different real-world scenes. Hence, classical
approaches have considerable difficulty in yielding reasonable accuracy.

Given the significant progress of deep learning, several approaches
based on deep networks have successfully been proposed to predict
depth maps from single images. For instance, (Wiles et al., 2020) intro-
duced SynSin, an end-to-end model to perform single image view syn-
thesis. The authors used the well-known UNet network model, (Ron-
neberger, Fischer, and Brox, 2015), with eight down-sampling and up-
sampling layers followed by a sigmoid layer and a renormalization step
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to yield a final predicted depth map. However, this may fail to pre-
serve the scene’s structure accurately. In, (Li et al., 2015), the authors
presented a framework for depth and surface normal estimation from a
single image. It consists of a regression stage using a deep CNN model
to learn the mapping from multi-scale image patches to depth or surface
normal values at the super-pixel level. The SLIC algorithm proposed
in, (Achanta et al., 2012) was used to obtain the super-pixels. (Achanta
et al., 2012) then refined the estimated super-pixel depth or surface nor-
mal to the pixel level by exploiting the potentials on the depth or surface
normal maps. It considers a data term, a smoothness term among super-
pixels and an auto-regression term characterizing the local structure of
the estimated depth map. A three-layer CNN network trained with a
per-pixel Euclidean loss was presented in (Liu, Shen, and Lin, 2015) to
transform the given colour image into a geometrically meaningful out-
put image. In addition, this method uses Conditional Random Fields
(CRF) as a loss layer to enforce local consistency in the output image.

Recently, by benefitting from the capability to capture context in-
formation, the model proposed in, (Ling, Zhang, and Chen, 2021) ap-
plies an end-to-end unsupervised deep learning framework based on an
encoder-decoder network for monocular depth-map estimation. That
method integrates attention blocks to explore more general contextual
information among the feature volumes, as well as a multi-wrap loss
function to further improve the original disparity estimation from the
network. Alternatively, in, (Ji et al., 2019), the authors propose a semi-
supervised method that combines the advantages of both supervised
and self-supervised approaches. That method addresses the problem
of monocular depth-map estimation by using a small number of image
depth pairs. They apply a generator and two discriminators. The gener-
ator network estimates depth, whereas the two discriminator networks
inspect the estimated depth-image pair and depth, respectively. Al-
though the detection performance of salient objects from a single colour
image is improved, it is still challenging to yield satisfactory results
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for images with cluttered backgrounds. Unfortunately, semi-supervised
training does not always guarantee good performance, as these net-
works are unable to correct their bias and require additional domain
information, such as camera focal length and sensor data. In, (Shen et
al., 2021), a novel regularizer loss function for monocular depth-map es-
timation is proposed. It is adaptively learned by a tiny CNN Regularizer
Net in an adversarial way. It could further replace the hand-crafted gra-
dient loss and normal loss functions. Although the method preserves far
richer geometric details and more accurate object boundaries, it still re-
quires a long time to converge and sometimes presents instability prob-
lems during the adversarial training process. In our previous work (Ab-
dulwahab et al., 2020), we proposed a deep learning model to estimate a
depth map of an object depicted in a single image. That map is then used
for predicting the 3D pose of the object. The proposed model consists of
two subsequent autoencoder networks based on a Generative Adver-
sarial Neural network (GAN). The main disadvantage of this model is
that it assumes a cross-domain training procedure for 3D CAD models
of objects appearing in real photographs, not for the complete scene.

In turn„ (Fu et al., 2018) developed a deep ordinal regression net-
work for monocular depth estimation by training the network with an
ordinary regression loss. A multi-scale network structure was adopted
to avoid unnecessary spatial pooling and capture multi-scale informa-
tion in parallel. However, this method produces sharp discontinuities in
the object shapes. In, (Hao et al., 2018), the authors proposed a monocu-
lar depth map estimation method based on two stages: a dense feature
extractor and a depth map generator. The first stage extracts feature
from the input image while keeping dense feature maps. An attention
mechanism was integrated into the depth map generator to fuse multi-
scale feature maps. Although this model can preserve the structural
details of the scene depth, it still lacks precision for complex objects.
Finally, new proposals have emerged for depth map estimation from a
single image based on CNNs, (Alhashim and Wonka, 2018; Laina et al.,
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2016). In particular, (Laina et al., 2016) introduced a residual network to
solve the problem of estimating the depth map from a given single RGB
image. They also introduced the reverse Huber loss and newly designed
up-sampling modules. The model is composed of a single architecture
trained end-to-end.

The aforementioned deep-learning approaches have been proven to
yield the most accurate results. In this line, we propose a method based
on a deep network model for estimating depth maps from single colour
images. Our model differs from previous work in that it successfully
keeps the scene’s structure for both indoor and outdoor scenarios, show-
ing significant performance in the preservation of the boundaries and
small structures of objects.

8.2.2 Autoencoder Networks

Autoencoders play a fundamental role in deep learning for image-to-
image translation and other related tasks. They learn to map data from a
domain A to a domain B. These models are usually trained by minimiz-
ing a reconstruction loss function that measures the difference between
the reconstructed output and its ground truth. Recently, autoencoders
have been applied to many vision-related problems, such as image re-
construction, (Zheng and Peng, 2018), image registration, (Blendowski,
Bouteldja, and Heinrich, 2020), image segmentation, (Ben Abdallah et
al., 2018), Human health posture, (Luo et al., 2020). Thus, they are also
advantageous for depth map estimation. In addition, they have been
used with great success for both supervised and unsupervised tasks,
such as (Garg et al., 2016; Abdulwahab et al., 2020; Wofk et al., 2019; Ab-
dulwahab et al., 2019). The main advantage of autoencoders is that they
provide a deep model directly based on the input data rather than on
predefined filters. Besides, they reduce the dimensionality of the data
used for training.
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We apply an autoencoder network for depth map estimation as shown
in Figure 8.2. It is based on the SE-ResNet model (Figure 8.3) to capture
latent spatial structures of the input images for both the training and
inference models.

8.2.3 Curvilinear Saliency

A depth map is an image that represents information about the distance
between the 3D surfaces present in a scene and the camera. The quality
of a depth map must be assessed based on geometrical cues extracted
from it. Most approaches, (Kostadinov and Ivanovski, 2012; Godard,
Mac Aodha, and Brostow, 2017) compare the gradients of their estimated
depth maps with the ground truth through a loss function in order to
train their deep models. However, using such gradients as a quality
measure is not accurate enough (Rashwan et al., 2016; Rashwan et al.,
2019; Abdulwahab. et al., 2019). Indeed, it is essential to detect valleys
and ridges related to curvature measurements where the camera and the
light source are in the same (or opposite) direction. Those features have
the advantage of representing both the outer and inner (self-occluding)
contours of the scene objects, which are useful for estimating the pose
and viewpoint.

Consequently, robust valley and ridge detectors can improve the train-
ing process of deep models aimed at depth map estimation. In previous
work, we proposed the Curvilinear Saliency (CS) detector (Rashwan et
al., 2016; Rashwan et al., 2019) for extracting the surface discontinuities
of the objects in a scene. It extracts geometrical features that are robust
to light and viewpoint changes. We apply CS features through a loss
function in order to improve the network’s performance by boosting the
depth estimation accuracy under the extrinsic characteristics associated
with the colour image acquisition, such as the camera pose and light
conditions.
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8.3 Proposed Methodology
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Figure 8.2: Overview of the proposed deep network model.

This section describes the main stages of the proposed method to es-
timate a depth map from a single RGB image, as well as the tools and
resources used in this work. Figure 8.2 shows an overview of the pro-
posed network model. Its main component is an autoencoder network
with skip connections that applies a multi-level depth predictor in the
decoder. The performance of the autoencoder is improved by applying
a loss function based on CS features. We formulate the problem in sub-
section A. In the remaining subsections, we detail the proposed method.

8.3.1 Problem Formulation

Let A ∈ A be a 2D colour image. The problem of generating its corre-
sponding depth map, B ∈ B, can be formally stated as the definition of
a function f : A → B that maps elements from domain A to elements in
its co-domain B. We introduce an efficient deep learning-based system
for depth map estimation from a single RGB image. Specifically, we pro-
pose an autoencoder network that consists of two consecutive networks:
an encoder and a decoder. The decoder D estimates a depth map B̂ from
the latent representation generated by the encoder E when applied to
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the given colour image A: B̂ = D(E(A)). A loss function CS(B, B̂) is
used to compare the estimated depth map B̂ with the ground truth B.
The next subsections describe the architecture of our proposed system
in detail.

Residual

+

X

ResNet Module

X̂
Global pooling

FC

ReLU

Residual

+

X

SE-ResNet Module

X̂

FC

Sigmoid

Scale

H x W x C

1 x 1 x C

1 x 1 x 

1 x 1 x 

1 x 1 x C

1 x 1 x C

H x W x C

H x W x C

r
C

r
C

Figure 8.3: Scheme of SE-ResNet modules, (Hu, Shen, and Sun, 2018).
Reduction ratio r set to 16.

8.3.2 Network Architecture

Figure 8.2 shows an overview of our autoencoder network for depth
map estimation. It is composed of an encoder and a decoder. The en-
coder is fed with an RGB image and transforms it into a latent represen-
tation of high-level features. The decoder then maps that latent repre-
sentation to a depth map.

8.3.2.1 Encoder

Inspired by, (Alhashim and Wonka, 2018), the input RGB image is en-
coded into a latent representation by applying the first four blocks of
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the SENet-154 network, (Hu, Shen, and Sun, 2018) pre-trained on Im-
ageNet, (Deng et al., 2009). SENet-154 applies a multi-scale and multi-
crop fusion strategy for extracting rich high-level features from the input
images. It integrates Squeeze-and-Excitation (SE) blocks into a modi-
fied version of ResNeXt-152, which is an extension of the ResNeXt-101
model by following the block stacking of ResNet-152. Figure 8.3 shows
the structure of a single SE block integrated into the ResNet residual
block. ResNeXt derives from ResNet by aggregating the output of multi-
ple bottleneck residual blocks defined in a low-dimensional embedding
(1×1 and 3 × 3 convolutions are applied to 4 instead of 64 channels), as
shown in Figure 8.4. The main parameters of ResNeXt are 1) the number
of aggregated residual blocks, referred to as cardinality, and 2) the num-
ber of channels processed in each residual block, referred to as depth
(see Figure 8.4). In this work, we set cardinality to 64 and depth to 4.
Higher cardinality yields a more accurate representation of the input
images and raises accuracy, as explained in, (Hu, Shen, and Sun, 2018).

256, 1x1, 64

64, 3x3, 64

64, 1x1, 256

+

256-d in

256-d out

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

+

total 64 
paths
......

+

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256-d in

256-d out

Figure 8.4: Left: bottleneck residual block of ResNet, (He et al., 2016).
Right: residual block of ResNeXt with cardinality 64, depth 4, and
roughly the same complexity, (Hu, Shen, and Sun, 2018). Every layer
is depicted as (# in channels, filter size, # out channels).
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The proposed encoder is fed with input RGB images of 480 × 360
(width × height) pixels (see Figure 8.2). Its first convolutional block gen-
erates 128 feature maps (channels) of size 240 × 180. In turn, the second
block outputs 256 feature maps of size 120 × 90. The third block gener-
ates 512 feature maps of size 60 × 45. Finally, the last block gives 1024
coarse-level feature maps of size 30× 23, which constitute the encoder’s
latent representation.

8.3.2.2 Decoder

The decoder network consists of four convolutional blocks as shown in
Figure 8.2. The first block applies a 3× 3 convolution with stride 1 to the
channels generated by the encoder network in order to project the high-
level features extracted by the encoder across channels. The resulting
feature map is fed into a Multi-level Depth Map Estimator (MDE) de-
scribed in the following subsection, which predicts a coarse depth map
of size 23 × 23 × 1. That depth map is concatenated with the feature
map generated by the initial convolution. The result is upsampled to
the spatial resolution of the next decoder’s block through 2 × 2 bilin-
ear upsampling, (Lehtinen et al., 2018). The upsampled feature map is
concatenated with the output features of the corresponding block from
the encoder (skip connection) before feeding it to the next convolutional
block.

The next two convolutional blocks apply two consecutive 3 × 3 con-
volutions with output channels set to half the number of input chan-
nels in order to improve the representation of the input feature map.
A LeakyReLU activation function, (Maas, Hannun, and Ng, 2013) with
α = 0.2 is applied to the output of the second convolution for speeding
up the training process. The feature map generated by every activa-
tion function is concatenated with the output of its corresponding MDE
layer to predict a finer multi-scale depth map. The resulting feature map
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is rescaled using 2 × 2 bilinear upsampling and then concatenated with
the features from the corresponding encoder block.

The last convolutional block of the decoder generates the final depth
map. Similarly to the previous decoder’s blocks, it consists of two con-
secutive 3 × 3 convolutions with output channels set to half the number
of input channels, followed by a LeakyReLU with α = 0.2. A 1 × 1 con-
volution is applied for adapting the filter space dimensionality to the
size of the required depth maps. A 2 × 2 bilinear upsampling is then
applied for upscaling the feature maps. The output of the decoder net-
work is a depth map of size 240 × 180 for NYU Depth-v2 and 86 × 115
for Make3D.

8.3.2.3 Multi-level Depth Map Estimator

In order to learn the scale-aware depth map context by leveraging context-
aware spatial features extracted at different scales, Multi-level Depth
map Estimators (MDEs) are applied within the decoder as shown in
Figure 8.2. MDEs help preserve object structure detail and thus yield
crisp boundaries, especially in complex environments. In particular, an
MDE layer is included in the first three convolutional blocks of the de-
coder. The MDE in the first decoder’s block is fed with the output of its
1 × 1 convolutional layer, whereas the next two MDEs are fed with the
result of their respective LeakyReLU functions. An MDE consists of a
1 × 1 convolution with a single channel followed by a ReLU activation
function. The output of every MDE is concatenated with its input fea-
ture map and then rescaled through 2 × 2 bilinear upsampling prior to
feeding the result into the next decoder’s block.
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8.4 Network Training

The majority of depth-map estimation methods compare the depth maps
they generate with their corresponding ground truth by means of differ-
entiation operators that approximate the local 2D gradients, such as the
Sobel filter. Alternatively, we propose the use of the Curvilinear Saliency
(CS) described in the previous section in order to highlight the geometry
of objects with disregard for texture and light changes. In particular, the
proposed autoencoder has been trained by aggregating two loss func-
tions: the CS loss and the content loss. The CS loss accounts for the
dissimilarity between the curvilinear features of both the estimated B
and real (ground-truth) B̂ depth maps. In turn, the content loss follows
a classical approach in which the estimated depth maps are compared
with their corresponding ground truth in an element-wise fashion.

8.4.1 Curvilinear Saliency Loss

The proposed CS loss function compares the curvilinear saliency of both
the estimated and ground-truth depth maps. CS features, (Rashwan et
al., 2018) allow us to approximate the curvatures of depth maps, being
able to assess the quality of the generated estimations in terms of repre-
sentation fidelity of surface edges and discontinuities. The features ex-
tracted by CS have several advantages, especially when extracting the
local structure of the points of interest. In addition, these features are
invariant to viewpoint changes and transformations that do not change
the shape of the surface. CS depends on the principal curvatures, which
are decisive parameters that fully describe a local surface shape. CS pro-
vides a unified way of treating ellipses and hyperbolas with real conics,
concave, convex, saddle-shaped and parabolic. The CS loss thus be-
haves as an edge-aware error function.

A depth map (also known as depth image) B(x, y) associates every
element (x, y) with a z-coordinate (depth) related to the distance from a
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certain 3D surface point to the camera coordinate frame. Let D be the 3D
surface represented in B(x, y). Every 3D point D ∈ D can be defined as:
D = [x, y, B(x, y)]. CS aims at detecting local surface discontinuities by
means of the maximum principal curvature (κ1) in one direction and the
minimum principal curvature (κ2) in the orthogonal direction. CS uses
the difference between both principal curvatures (κ1 − κ2) to represent
the ridges and valleys present in the depth maps. Let N̂(x, y) be the unit
normal vector of D at point D:

N̂ = Dx × Dy = α

[
∇B

1

]
,

where the gradient of B at D is ∇B = [Bx, By]T , and α = 1/
√

1 + ||∇B||2.
Since the two columns of the Jacobian matrix JD of D are Dx = [1, 0, Bx]T ,
and Dy = [0, 1, By]T , the first fundamental form of D at D can be com-
puted as:

ID = I2×2 +∇B∇BT ,

where I2×2 is the 2 × 2 identity matrix.
In turn, the second fundamental form of D at D can be obtained as:

IID = αHB,

where HB is the Hessian of B, which represents the second-order partial
derivatives of B along the x and y directions.

As explained in, (Rashwan et al., 2018), the principal curvatures of
D at D, {κ1, κ2}, correspond to the eigenvalues of M = I−1

D IID:

M =

[
(B2

y + 1)Bxx − BxByBxy (B2
y + 1)Bxy − BxByByy

(B2
x + 1)Bxy − BxByBxx (B2

x + 1)Byy − BxByBxy

]
.

Let λ1 and λ2 be the eigenvalues of M obtained as:

λ± =
1
2
[−trace(M)±

√
trace2(M) + 4 det(M)],
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where trace is the sum of elements in the main diagonal of M, det is the
determinant of M, and λ1 = λ+, λ2 = λ−. Finally, CS is defined as:

CS = κ1 − κ2 = (λ1 − λ2)||∇B||.

For every depth map we can generate a CS image as shown in Figure
8.5. The CS loss function between the estimated depth map B̂ and its
ground-truth B is defined as the mean squared error of their respective
CS images:

LCS(B, B̂) =
1

wh

w

∑
x=1

h

∑
y=1

[CSB(x, y)− CSB̂(x, y)]2,

where w and h are the width and height of the depth maps, respectively.

Figure 8.5: colour images (Row 1), associated depth images (Row 2) and
their corresponding CS images (Row 3).

UNIVERSITAT ROVIRA I VIRGILI 
SUPERVISED MONOCULAR DEPTH ESTIMATION BASED ON MACHINE AND DEEP LEARNING MODELS 
Saddam Abdulwahab 



160

8.4.2 Content Loss

The content loss measures the similarity between the shape of the es-
timated depth map B̂ and its ground truth B by means of three sepa-
rate loss functions that are added together. The first loss function is the
point-wise L1-norm defined on the depth values:

LL1(B, B̂) =
1

wh

w

∑
x=1

h

∑
y=1

|B(x, y)− B̂(x, y)|.

The second loss function is the structural similarity index measure
(SSIM). It is a method for predicting the perceived quality of digital im-
ages by measuring the similarity between them. In this case, the SSIM
index is computed between B and B̂:

LSSIM(B, B̂) =
1 − (2µB̂µB+c1)(2σB̂B+c2)

(µ2
B̂
+µ2

B+c1)(σ
2
B̂
+σ2

B+c2)

2
,

where µB̂ and σB̂ are the mean and standard deviation of B̂, respectively,
µB and σµB are the mean and standard deviation of B, respectively, σB̂B
is the covariance of B̂, c1 = 0.012 and c2 = 0.032.

The third loss function is the Mean Squared Error (MSE) between B
and B̂:

LMSE(B, B̂) =
w

∑
x=1

h

∑
y=1

(B(x, y)− B̂(x, y))2

wh
.

8.4.3 Final Objective Loss

The final training loss L(B, B̂) of the proposed autoencoder is defined
as a weighted average of the CS loss and the three loss functions that
define the content loss:

L(B, B̂) = λLCS(B, B̂) + (1− λ)(LL1(B, B̂) + LSSIM(B, B̂) + LMSE(B, B̂)),

where λ is a weighting factor set to 0.5 in this work.
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8.5 Experiments and Results

This section describes the experiments performed to evaluate the pro-
posed model in this chapter. In Part I, chapter 2, we have mentioned the
NYU Depth-v2, (Silberman et al., 2012) and Make3D, (Saxena, Sun, and
Ng, 2008) dataset and the evaluation metrics used in these experiments.

8.5.1 Data Augmentation

We applied the following data augmentation techniques to the images
contained in the Make3D dataset to increase the number of training sam-
ples under different conditions and hence increase the diversity of the
training dataset:

• Scale: Every input image and its corresponding depth map were
randomly scaled by S ∈ [0.5,1.7].

• Rotation: Every input image and its corresponding depth map
were rotated by R ∈ [-60,-45,-30,30,45,60] degrees.

• Gamma Correction: The gamma correction of each input RGB im-
age was randomly varied by G ∈ [1,2.8].

• Flipping: Every input image and its corresponding depth map
were flipped by F ∈ [-1,0,1].

• Translation: Every input image and its corresponding depth map
were translated by T ∈ [-6,-4,-2,2,4,6] pixels.

Although the represented scenes were slightly warped after apply-
ing those data augmentation techniques, we observed that the efficiency
of the network significantly improved compared to the model trained
without data augmentation.
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8.5.2 Parameter settings

Our network model was trained by applying the Adam optimizer, (Kingma
and Ba, 2014) with β1 = 0.5, β2 = 0.999 and an initial learning rate
of 0.0001. The latter was reduced by 10% every 3 epochs for the NYU
Depth-v2 dataset. For Make3D, we did not reduce the learning rate dur-
ing training. The best accuracy was attained after 15 epochs. All exper-
iments were run on a 64-bit Core I7-6700, 3.40GHz CPU with 16GB of
RAM and an NVIDIA GTX 1080 GPU on Ubuntu 16.04 and the PyTorch
deep learning framework, (Paszke et al., 2017). The training process of
the proposed model took around 3 hours per epoch with a batch size of 2
for NYU Depth-v2, and around 45 minutes per epoch with a batch size
of 4 for Make3D. In turn, the online estimation of depth maps during
the testing run at around 20,6 milliseconds per image for NYU Depth-
v2, and around 35 milliseconds per image for Make3D.

8.5.3 Results and Discussion

8.5.3.1 Ablation Study

Firstly, we performed an ablation study in order to assess the impact of
different stages of the proposed autoencoder. The following configura-
tions were considered:

• (Baseline: BL) Basic autoencoder with three content loss functions:
point-wise L1 loss (LL1), mean squared error loss (LMSE), and struc-
tural similarity index measure loss (LSSIM).

• (BLSC) BL model with skip connections from the encoder layers to
the corresponding decoder layers.

• (BLSC+MDE) BLSC model with a multi-scale depth-map estima-
tor.

• (BLSC+CS) BLSC model with CS loss.
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• (BLSC+MDE+CS) BLSC model with multi-scale depth-map esti-
mator and CS loss.

Table 8.1: Quantitative results of the ablation study for depth-map es-
timation from colour images with the NYU Depth-v2 dataset for dif-
ferent evaluation measures: BL, BLSC, BLSC+MDE, BLSC+CS, and
BLSC+MDE+CS configurations.

Method Accuracy: higher is better Error: lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

BL 0.833 0.969 0.9928 0.14 0.532 0.056
BLSC 0.842 0.971 0.9931 0.128 0.525 0.054

BLSC+MDE 0.854 0.97 0.991 0.123 0.538 0.531
BLSC+CS 0.8531 0.973 0.993 0.123 0.529 0.527

BLSC+MDE+CS 0.8591 0.973 0.9932 0.119 0.52 0.051

Table 9.1 shows the quantitative results of the ablation study for NYU
Depth-v2. The performance of the proposed model (BLSC+MDE+CS)
yielded the best results among other variations of the proposed model
in terms of δZ, as well as rms, rel, and log10 errors. The accuracy of
δZ(thr = 1.25) improved by around 2.5% compared to the baseline
model (BL). As for the rel error, the proposed model yielded a significant
improvement of 0.021 compared to BL. Adding multi-scale depth-map
estimation (MDE) to the baseline model improved the accuracy by 2.1%
and reduced the rel error by 12%. In turn, applying CS loss also yielded
a significant accuracy improvement and a considerable reduction in the
rel error compared to BL, with 2% and 12% differences, respectively.

Table 8.2 shows the quantitative results of the same ablation study
for Make3D. The proposed model BLSC+MDE+CS yielded the lowest
errors among the other tested configurations in terms of the rms, rel,
and log10 errors.

8.5.3.2 Performance Analysis

Secondly, we compared the proposed model against six alternative mod-
els from the state-of-the-art, (Fu et al., 2018; Laina et al., 2016; Hao et al.,
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Table 8.2: Quantitative results of the ablation study for different config-
urations on Make3D.

Method Error: lower is better
rel↓ rms↓ log10 ↓

BL 0.254 7.11 0.126
BLSC 0.212 6.85 0.117

BLSC+MDE 0.207 6.76 0.107
BLSC+CS 0.201 6.71 0.104

BLSC+MDE+CS 0.195 6.522 0.091

2018; Ramamonjisoa et al., 2021; Alhashim and Wonka, 2018; Tang et al.,
2021). In Table 8.3, we show evaluation measures on NYU Depth-v2
for the seven tested approaches. The accuracy of our proposed model
was superior for δZ(thr = 1.25), δZ(thr = 1.252) and the log10 error.
δZ(thr = 1.25) shows an improvement of 0.5% compared to, (Laina et
al., 2016), the best second method. With respect to δZ(thr = 1.252), our
model and (Alhashim and Wonka, 2018) yielded an improvement of 1%
compared to the other five methods. The model proposed in, (Alhashim
and Wonka, 2018) gave the best accuracy for both δZ(thr = 1.253) and
rms, but with a difference against our proposed model of just 0.0004%
and 0.055%, respectively. However, we can note that our model pro-
vided the best accuracy for δZ(thr = 1.25), which is the most restrictive
threshold. In addition, our model scored the second lowest log10 error
(0.119), only behind the model proposed in, (Fu et al., 2018), which had
the best rel error with a difference of only 0.004%. However, the pro-
posed model outperformed the model in, (Fu et al., 2018) in terms of the
other four evaluation measures.

In Figure 8.6, we show qualitative results on the NYU Depth-v2 dataset
for the proposed model (BLSC+MDE+CS) and two state-of-the-art monoc-
ular depth-map estimation methods introduced in, (Alhashim and Wonka,
2018) and, (Ramamonjisoa et al., 2021). Our model is able to estimate
more accurate depth maps that are very close to the ground truth and
that preserve the small details of the depicted objects. In fact, our model
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Table 8.3: Results for depth-map estimation from colour images with
the NYU Depth v2 dataset for different measures and state-of-the-art
methods. The last row shows the results obtained with our proposed
model.

Method Accuracy: higher is better Error: lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

Fu et al., (Fu et al., 2018) 0.828 0.965 0.992 0.115 0.509 0.051
Laina et al., (Laina et al., 2016) 0.853 0.965 0.991 0.121 0.592 0.052

Hao et al., (Hao et al., 2018) 0.841 0.966 0.991 0.127 0.555 0.053
Ramamonjisoa et al., (Ramamonjisoa et al., 2021) 0.8451 0.9681 0.9917 0.1258 0.551 0.054

Alhashim et al., (Alhashim and Wonka, 2018) 0.846 0.974 0.994 0.123 0.465 0.053
Tang et al., (Tang et al., 2021) 0.826 0.963 0.992 0.132 0.579 0.056

Our model 0.8591 0.9733 0.9932 0.119 0.52 0.051

preserves the outline of the objects present in the scenes in such a way
that those objects can be directly recognized from the depth maps. In
contrast, object outlines appear crumbled in the depth maps generated
by the other methods.

One of the main strengths of the proposed method is to use CS as
a feature extractor, as it is based on the principal curvatures. CS is re-
sponsible for increasing the ability of the model to learn under different
conditions, such as (distance, illumination, and colour). Thanks to CS,
the model learned the correct cardinality (i.e., object boundaries) inside
the images. Of course, no trained model will generate results better than
the ground truth that it attempts to mimic. The trained model can learn
from different examples in the dataset, including correct examples of
the objects, to improve its performance. For instance, with the NYU
Depth v2 dataset, Figure 8.7 shows some of the correct examples that
intervene in the training process: column 1 shows the objects that are
close to the camera, column 2 shows the objects that are far away from
the camera, column 3 shows the objects affected by strong illumination,
and column 4 shows the objects whose colour is similar to the one of the
background. Based on these examples, our model can learn to predict
depth even with noisy ground truth in some examples.

To assess the overall improvement on the NYU Depth-v2 dataset, in
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Figure 8.6: Input images, ground-truth depth maps and estimated depth
maps with the NYU Depth-v2 dataset: colour images (Row 1), ground-
truth depth maps (Row 2), depth maps generated by Alhashim et
al., (Alhashim and Wonka, 2018) (Row 3), depth maps generated by Ra-
mamonjisoa et al., (Ramamonjisoa et al., 2021) (Row 4), and depth maps
generated by our model (BLSC+MDE+CS) (Row 5).

Figure 8.8, we show some examples that contain geometrically rich ar-
eas. The red box shows the selected geometrically rich areas of the scene
and the corresponding estimated depth images. As expected, our depth-
map estimation model is able to predict accurate depth with sharp ob-
ject boundaries. In addition, in order to show quantitative results, we
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Figure 8.7: Some correct examples of the NYU Depth v2 dataset under
different conditions: (Column 1) objects that are close to the camera,
(Column 2) objects that are far away from the camera, (Column 3) objects
affected by strong illumination, and (Column 4) objects whose colour is
similar to the one of the background.

compute the evaluation measures (rel, rms, log10, Accuracyδ) for the ex-
amples of rich areas shown in Figure 8.8, as shown in 8.4. Notably, these
results support the ones presented in Table 8.3.

Figure 8.8: Exmaples of geometrically rich areas selected from f the NYU
Depth v2 test set: (Row 1) shows the original Image, (Row 2) shows the
ground-truth depth maps, (Row 3) shows the estimated depth Image.
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Table 8.4: Results of the four selected geometrically rich areas shown in
Fig.8.8.

# Accuracy: higher is better Error: lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

1 0.9098 0.9548 0.9754 0.121 0.527 0.0525
2 0.8372 0.9169 0.9645 0.132 0.543 0.0537
3 0.9405 0.9950 0.9990 0.116 0.523 0.0521
4 0.8980 0.9354 0.9698 0.129 0.532 0.0528

Average 0.896375 0.950525 0.977175 0.1245 0.53125 0.052775

As for the Make3D dataset, we also compared the proposed model
with six alternative methods, (Karsch, Liu, and Kang, 2012; Godard,
Mac Aodha, and Brostow, 2017; Liu, Shen, and Lin, 2015; Li et al., 2015;
Kuznietsov, Stuckler, and Leibe, 2017; Tang et al., 2021). Table 8.5 shows
the obtained evaluation measures for the seven tested methods. In this
case, the proposed model performed similarly to the alternative mod-
els. However, our model gave the lowest error for both rel and rms:
rel shows an improvement of 0.081% with respect to the other methods,
whereas rms shows a significant improvement of 0.468%. However, the
model proposed in, (Tang et al., 2021) had the lowest error for log10, al-
though with an insignificant improvement of 0.005% with respect to our
model. In conclusion, our model outperformed the tested models with
significant improvements or achieved very similar results on the two
datasets.
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Figure 8.9: Input images, ground-truth depth maps and estimated depth
maps with the Make3D dataset: colour images (Row 1), ground-truth
depth maps (Row 2), depth maps generated by Liu et al., (Liu, Shen,
and Lin, 2015) (Row 3), depth maps generated by Kevin et al., (Karsch,
Liu, and Kang, 2014) (Row 4), and depth maps generated by our model
(Row 5).
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Table 8.5: Results for depth-map estimation from colour images with
the Make3D dataset for different measures and state-of-the-art methods.
The last row shows the results obtained with our proposed model. Error:
lower is better.

Method Error: lower is better
rel↓ rms↓ log10 ↓

Kevin et al., (Karsch, Liu, and Kang, 2014) 0.361 15.1 0.148
Godard et al., (Godard, Mac Aodha, and Brostow, 2017) 0.443 11.513 0.156

Liu et al., (Liu, Shen, and Lin, 2015) 0.314 8.60 0.119
Liu et al., (Li et al., 2015) 0.278 7.19 0.092

Kuznietsov et al., (Kuznietsov, Stuckler, and Leibe, 2017) 0.421 8.24 0.190
Tang et al., (Tang et al., 2021) 0.276 6.99 0.086

Our model 0.195 6.522 0.091

For a qualitative assessment of the Make3D dataset, Figure 8.9 shows
the depth maps estimated from monocular colour images by our pro-
posed model and other state-of-the-art methods, such as (Liu, Shen, and
Lin, 2015) and, (Karsch, Liu, and Kang, 2014). The depth maps gener-
ated by our model are depicted in Row 5. The four examples shown in
Figure 8.9 agree with the results obtained for the NYU Depth-v2 dataset
(Figure 8.6). Indeed, the proposed model can estimate more accurate
depth maps than the other tested models for outdoor scenes even under
different illumination conditions.

To further assess the performance of the proposed model, we ran-
domly selected images from the NYU Depth-v2 and Make3D test sub-
sets in order to show the ability of the proposed model to estimate ac-
curate depth maps (see Figure 8.10 and Figure 8.11). Notice that our
model can produce accurate results with high-quality depth maps. For
instance, regarding NYU Depth-v2, Figure 8.10 shows that our model
can generate depth maps not only better than the other methods but
also capture some details that are not even present in the ground truth.
For instance, the example shown in Figure 8.10-(Column 3) depicts some
baskets on the floor that appear blurred in the ground truth. However,
they are shown in detail in the depth maps generated by our model. In
general, our model can estimate correct depth values for objects that are
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close to the camera (see Column 1), for objects that are far away from
the camera (see Column 2), as well as for objects affected by strong il-
lumination (see Column 3). The model can also detect the boundaries
between objects whose colour is similar to the one in the background
(see Column 4).

Additional results with the Make3D dataset shown in Figure 8.11
indicate that our model can estimate correct depth values for buildings
that are far away from the camera (see Column1), as well as for trees that
are close to the camera (see Column 2). Moreover, the model is robust
to shadows (see Column 3) and distinguishes objects that have the same
colour and are close to each other (see Column 4).

All in all, the depth maps generated by our proposed model(BLSC
+MDE+CS) keep the boundaries and details of the objects present in the
scene. That preservation of shape discontinuities is likely to be benefi-
cial for generating more accurate semantic maps and for improving the
visual odometry of autonomous vehicles. Furthermore, the previous re-
sults show that our model can be trained even with noisy ground-truth
depth maps. Another remarkable point is the fact that the proposed
model achieves these promising results without applying any refine-
ment steps.
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Figure 8.10: Qualitative analysis of the proposed model with the NYU
Depth-v2 dataset: colour images (Row 1), ground-truth depth maps
(Row 2), depth maps estimated by Alhashim et al., (Alhashim and
Wonka, 2018) (Row 3), depth maps estimated by Ramamonjisoa et
al., (Ramamonjisoa et al., 2021) (Row 4), and depth maps estimated by
our model (Row 5).
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Figure 8.11: Qualitative analysis of the proposed model with the
Make3D dataset: colour images (Row 1), ground-truth depth maps
(Row 2), and estimated depth maps (Row 3).

8.6 Chapter summary

In this chapter, we have introduced a deep network model for estimat-
ing a high-resolution depth map from a single colour image. The pro-
posed model is based on an autoencoder network with skip connections
between the corresponding layers of its encoder and decoder branches.
For estimating accurate depth maps, we have proposed the introduction
of multi-scale depth-map estimation layers in the decoder branch. More-
over, the application of the Curvilinear Saliency (CS) as a loss function
during the training process has also been proposed to enhance depth-
map edges. The model performance was evaluated on the publicly NYU
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Depth v2, and Make3D datasets, yielding promising results with a high
precision rate and an acceptable computational cost for predicting depth
images from monocular images. In the next chapter, we exploit the re-
fining network and multi-scale loss function to improve the prediction
accuracy and generate a more accurate dense depth image under differ-
ent conditions and achieve a more accurate comparison.
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Chapter 9

Depth-Attention
Refinement for Multi-scale
Monocular Depth
Estimation

9.1 Introduction

This chapter proposes an Autoencoder with a Multi-Scale Feature Ag-
gregation and a Refining Attention Network. The proposed model uses
a Multi-Scale Feature Aggregation network to improve its overall per-
formance and estimate the objects’ depth regardless of their scale and
viewpoints. We also utilize a multi-scale loss function, which combines
the information from different intermediate layers of the decoder part to
achieve a more accurate comparison of the ground truth and estimated
depth images in order to get a more precise dense depth image. These
depth scales outputs are combined across the refining network to refine
the final estimated depth map by focusing on the image regions that
contain detailed depth information of the combined depth scales. We
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also present a refinement network that explicitly exploits all available in-
formation during the downsampling process and extracted multi-scale
features to enable high-resolution prediction. The deeper decoding lay-
ers that capture high-level depth features can be refined directly with
fine-grained features from previous convolutions.

Recently, the advancement of deep neural networks has made it pos-
sible to easily infer accurate depth information from a single image (Eigen,
Puhrsch, and Fergus, 2014; Xu et al., 2017b; Liu et al., 2019a). Monocular
depth estimation systems can predict depth better than humans. Some
issues, such as the need for a large amount of training data and domain
adaptation, exist and must be addressed appropriately (Masoumian et
al., 2022). Furthermore, research indicates that industrial companies are
looking to reduce costs while improving the performance of such sys-
tems. Although many methods for estimating depth from a single im-
age have been proposed, there is still room for improvement in accuracy,
robustness, and reducing the complexity of the proposed models.

Nonetheless, while the depth maps are fairly reliable overall, the es-
timates around object discontinuities are far from satisfactory (Simsar
et al., 2022). Furthermore, the depth information of small and tiny ob-
jects is incorrectly estimated. This is because the convolutional opera-
tor naturally aggregates features across object discontinuities, resulting
in smooth transitions rather than sharp edges (Simsar et al., 2022). To
address this issue, we propose a novel deep-learning model explicitly
designed to exploit feature aggregation at different image scales. In ad-
dition, we propose using an attention module to provide an additional
focus on objects noting their specific importance in the scene in order to
obtain more precise depth maps.

Consequently, this work proposes an approach that uses an Autoen-
coder with a Multi-Scale Feature Aggregation and Refining Attention
Network. It highlights the sights necessary to improve the prediction ac-
curacy and generate a more accurate dense depth image under different
conditions for depth estimation from the complete scene. Our approach
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Figure 9.1: Schematic illustration of the whole framework.

could be an extension of the works proposed in (Ji et al., 2022; Aich et al.,
2021; Lee et al., 2019), which are identical to how we utilize the Multi-
Scale Feature Aggregation and Refining Attention Depth Network to
generate depth maps from monocular images. The proposed model is
an autoencoder network incorporating a Multi-Scale Feature Aggrega-
tion network, a Refining Attention Depth network, and a multi-scale
loss function. These elements have been combined in a single pipeline
to accurately generate dense depth maps from a single camera. Our
approach focuses on estimating the depth information of the object re-
gardless of its scale in order to get a depth map robust to changes in
scale or viewpoint. Our model can also estimate depth maps for in-
door and outdoor environments. Furthermore, it produces results with
high precision and a reasonable computational cost compared to current
state-of-the-art methods. Figure 9.1 shows an overview of the proposed
network model. The main contributions of this work can be summa-
rized as follows:
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• Developing a deep learning approach that uses an Autoencoder
network, composed of an encoder and decoder networks, with a
Multi-Scale Feature Aggregation and Refining Attention Network
to refine the final estimated depth map and preserve global depth
information in the combined depth scales.

• Combining the depth scales outputs across the Multi-Scale Feature
Aggregation network improves the model’s overall performance
in estimating the object depth information regardless of its scale
and helps the model be more robust to changes in scale or view-
point. The higher-resolution features can be combined with the
lower-resolution initial depth image, allowing the proposed model
to learn the context in both the image and depth domains.

• Apply the Refining Attention Network for the outputs obtained
from the Multi-Scale Feature Aggregation network to focus on dense
depth regions of the Monocular image and refine the details of the
depth map in those regions.

• Using a multi-scale loss function to train the proposed model. Dif-
ferent depth scales from each block in the decoder network will
accurately compare multi-scale ground truth to multi-scale esti-
mated depth images to enforce the autoencoder network to gener-
ate an actual dense depth image.

The rest of this chapter is structured as follows. The related work
is summarized in Section 2. The proposed methodology for depth esti-
mation is described in Section 3. The experimental findings and perfor-
mance are shown in Section 4. Section 5 concludes this chapter.

9.2 Related work

This section presents an overview of the current research on depth esti-
mation, multi-scale networks, and refining attention networks.
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9.2.1 Depth Estimation

Recently, there has been a growing interest in monocular depth estima-
tion due to its potential applications in fields such as autonomous driv-
ing and robotics. However, determining depth information from a sin-
gle image can be challenging as it needs the stereo visual cues provided
by multiple cameras. Monocular depth estimation methods use deep
learning techniques, such as convolutional neural networks (CNNs), to
learn how to map from the image and depth domains. Various papers
have proposed these methods, such as (Jung et al., 2017; Wofk et al.,
2019).

In (Jung et al., 2017), the authors of this paper proposed a generative
adversarial model for estimating depth from a single monocular image.
The model includes a two-stage convolutional network as a generator
to predict global and local structures of the depth image. The training
is based on an adversarial discriminator which differentiates between
real and generated depth images. The model allows for more accurate
and structure-preserving depth prediction from a single image. Also,
in (Moukari et al., 2018), the authors proposed using multi-scale infor-
mation to determine depth from single images. Four CNN architectures
incorporating multi-scale features are studied and compared to a single-
scale method. The results reveal that incorporating multi-scale features
increases the accuracy, and the quality of the depth maps is improved.
In turn, in (Abdulwahab et al., 2020), the authors proposed a deep learn-
ing model to estimate depth maps of objects in single images, which are
then used to predict the 3D pose of the object. The proposed model
comprises two autoencoder networks based on a Generative Adversar-
ial Neural network (GAN). A limitation of this model is that it assumes a
cross-domain training procedure for 3D CAD models of objects appear-
ing in real photographs rather than for the complete scene.
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Some works try to improve model performance by capturing cross-
task contexts, as in dense prediction. In (Wang and Piao, 2023), the pa-
per presents a new depth estimation model that utilizes semantic seg-
mentation to estimate depth from monocular images. The model cre-
ates a shared parameter structure that combines semantic segmenta-
tion and depth information and uses it as a guide to assist depth ac-
quisition. It also employs a multi-scale feature fusion module to merge
feature information from multiple layers of a neural network to pro-
duce high-resolution feature maps, improving the depth image’s quality
by enhancing the semantic segmentation model. Likewise, the authors
in (Zhang et al., 2023) presented a Multi-Task Learning model that com-
bines the advantages of deformable CNNs and query-based Transform-
ers for dense prediction. The model has a simple and effective encoder-
decoder architecture that comprises a deformable mixer encoder and
a task-aware transformer decoder. The deformable mixer encoder em-
ploys a channel-aware mixing operator for communication among dif-
ferent channels and a spatial-aware deformable operator for efficient
sampling of more informative spatial locations. The task-aware trans-
former decoder comprises a task interaction block that captures task in-
teraction features via self-attention and a task query block that leverages
the information to generate task-specific features through a query-based
Transformer for corresponding task predictions.

9.2.2 Multi-scale Networks

Multi-scale networks have been widely used in image analysis. These
networks are designed to capture fine and coarse details of an image
by processing the image at multiple scales. The multi-scale information
is then used to estimate the critical features in the images. Regarding
depth estimation, the multi-scale approach is motivated by the fact that
the depth of an object in an image can vary at different scales, and a
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single-scale network may only capture some of the necessary depth in-
formation.

Recently, multi-scale networks have been proven effective in various
monocular depth estimation methods, such as (Ji et al., 2022; Lee et al.,
2019; Abdulwahab et al., 2022). Lee et al., 2019 proposed a supervised
monocular depth estimation network, which employs a new architec-
ture that includes local planar guidance layers. These layers establish an
explicit link between internal feature maps and the desired depth pre-
diction, improving the network training. The layers are incorporated at
multiple stages during the decoding phase of the network. In turn, Ji
et al., 2022 proposed a recurrent attention network for multi-scale depth
estimation using RGB-D saliency detection. Their method uses residual
connections to extract and combine information from RGB and depth
streams for improved results. They also use depth cues and multi-scale
contextual features to locate salient objects. They also use a recurrent
attention module for more accurate saliency results and cascaded hier-
archical feature fusion to improve the overall performance. The authors
of Abdulwahab et al., 2022 employed Multi-level Depth map Estimators
in the decoder part to learn scale-aware depth map context by utilizing
context-aware features extracted from different scales. This approach
helps maintain object structure detail and generates sharp boundaries,
particularly in complex environments.

Thus, Multi-scale networks can make depth estimation more robust
and accurate, especially in challenging scenarios such as low-texture ar-
eas and reflective surfaces. Therefore, we use the advantage of the multi-
scale approach in this work to improve the model’s overall performance
in estimating the depth information of the objects regardless of its scale
and help the model be more robust to scale variations.
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9.2.3 Refining Attention Network

Refining networks have been widely used in many applications, such as
semantic segmentation, image-to-image translation and depth estima-
tion, to improve the accuracy and robustness of the predictions. These
refining networks are designed to refine the initial depth estimates ob-
tained from an autoencoder network. The refining networks can cor-
rect errors in the initial depth estimates or incorporate additional infor-
mation, such as stereo or temporal information. The refining attention
depth can be applied in different ways, such as (Lin et al., 2019; Aich
et al., 2021). Lin et al., 2019 presented a refinement network, a multi-
path refinement network that uses long-range residual connections to
enable high-resolution semantic segmentation. It allows for the refine-
ment of deeper layers, which capture high-level semantic features, by
utilizing fine-grained features from earlier convolutions. The refinement
network proposed in Lin et al., 2019 employs residual connections and
identity mapping for effective end-to-end training. Additionally, the au-
thors introduced chained residual pooling, an efficient method for cap-
turing rich background context. In this work, we exploited the Refining
networks and applied them to allow the network to focus on the most
informative regions of the image and refine the details of the depth map
in those regions. For monocular depth estimation, Aich et al., 2021 in-
troduced bidirectional attention modules that utilize the feed-forward
feature maps and incorporate the global context to filter out ambiguity.
The model addresses the limitation of effectively integrating local and
global information in convolutional neural networks. The structure of
this mechanism derives from a strong conceptual foundation of neural
machine translation that presents a lightweight mechanism for adaptive
computation control similar to the dynamic nature of recurrent neural
networks.

In turn, some works used a refinement network based on the atten-
tion mechanism that allows the network to focus on specific regions of
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the input image, which can help to improve the performance in chal-
lenging scenarios such as low-textured or uniform regions.

For instance, in (Xu et al., 2018), the authors proposed an Attentional
Generative Adversarial Network (AttnGAN) for fine-grained text-to-
image generation. It uses a novel attentional generative network to syn-
thesize fine details in specific image regions and a deep attentional mul-
timodal similarity model to compute a fine-grained image-text match-
ing loss for training the generator. Likewise, the authors in (Hao et al.,
2020) proposed the Contextual Attention Refinement Network (CAR-
Net), which uses the Contextual Attention Refinement Module (CAR-
Module) to learn an attention vector to guide the fusion of low-level
and high-level features to improve segmentation accuracy. Addition-
ally, they consider the semantic information and introduce the Semantic
Context Loss (SCLoss) into the overall loss function. Also, in (Zhang
et al., 2021), the authors introduced KRAN (Knowledge Refining Atten-
tion Network) to improve recommendation performance by exploiting
the characteristics of the Knowledge Graph. KRAN utilizes a traditional
attention mechanism for extracting more precise knowledge from the
Knowledge Graph and then employs a refining mechanism to make the
extraction more efficient. The proposed mechanism first evaluates the
relevance of an entity and its neighbouring entities in the Knowledge
Graph using attention coefficients. Then it refines these coefficients us-
ing a "richer-get-richer" principle, allowing the model to focus on highly
relevant neighbouring entities while reducing the noise caused by less
relevant ones.

Our approach combines the advantages of multi-scale networks and
refinement networks, achieving state-of-the-art further to boost the ac-
curacy of the monocular depth estimation.
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9.3 Proposed Methodology

This section lays out the main steps of the proposed model for estimat-
ing the depth using a monocular image and outlining the resources uti-
lized in the research. Figure 9.1 shows the architecture of the proposed
approach with three main sub-models: Autoencoder network (Encoder
E and Decoder D), Multi-Scale Feature Aggregation MSFA, and Refin-
ing Attention Network RAN. In addition, multi-scale loss functions ML
were used while training the model. The first section presents the prob-
lem being addressed, and the following sections detail the proposed so-
lution.

9.3.1 Problem Formulation

We can formulate the problem of depth estimation from a monocular
image as follows: Given a monocular image X ∈ X of a scene captured
by a single camera, the goal is to estimate a depth map Y ∈ Y, which
is a 2D representation of the distance of each pixel in the image to the
camera. It can be formally defined as the function f : X → Y that as-
signs elements from the domain X to elements in the co-domain Y. Our
proposed model consists of four consequent networks, Encoder E(X),
Decoder D(X̂), Multi-Scale Feature Aggregation MSFA(D(X̂)), and Re-
fining Attention Network RAN(MSFA(D(X̂))).

In ( 9.6, 9.2, 9.3, 9.4, and 9.5), we explain the operation of the model’s
workflow with the training and testing stages.

X̂ = E(X), (9.1)

where the X̂ is the features extracted from the E encoder network.

Y1 = D(X̂), (9.2)

where the Y1 is the depth map extracted from the D decoder network.
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S1, S2, S3, S4 = D1(X̂), D2(S1), D3(S2), Y1, (9.3)

where the Si is the Scale Fetures coming from decoder layers Di, and Y1

is the depth maps coming from (9.2).

M = MSFA(S1 ⊕ S2 ⊕ S3 ⊕ S4), (9.4)

where the M is the concatenate of the features extracted in (9.3).

Ŷ = RAN(M, Y), (9.5)

where the Ŷ is the final depth map extracted from RAN.

9.3.2 Model Architecture

The proposed model architecture is based on three different networks
coupled together. Each network can help the other to represent the key
features of the depth image from the input image. First, we use the
Autoencoder network to learn a representation of an image while main-
taining the important information needed by training to minimize the
difference between the estimated depth and the ground truth depth.
Second, the Multi-Scale Feature Aggregation (MSFA) network uses to
help the first network in the ability to recognize the object regardless of
its size to be more robust to changes in scale or point of view. Third,
we employed the Refining Attention Network (RAN) to focus on dense
depth regions of the Monocular image and refine the details of the depth
map in those regions. In addition, we use a multi-scale loss function,
which uses different depth scales from each block in the decoder part to
compute the loss function to achieve a more accurate comparison of the
ground truth and generated depth to enforce the autoencoder network
to generate an accurate dense depth image. This section describes the
proposed system and its training procedure. In the subsections below,
we will describe more details about the proposed networks:
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9.3.2.1 Autoencoder Network

Autoencoder networks are neural networks trained to reconstruct their
inputs. They have been used to learn compact and robust representa-
tions of images that can be used for depth estimation. Recently, there
has been a significant body of research that has used autoencoder net-
works for depth estimation.

Our autoencoder model comprises an encoder E and a decoder D.
The encoder E takes an RGB image as input and transforms it into a
fixed-shape representation of its content and structure features. The de-
coder D then maps the encoded high-level features back to a depth im-
age. The input RGB image is converted into a feature vector using the
SENet-154 (Hu, Shen, and Sun, 2018) network, which is pre-trained on
ImageNet (Deng et al., 2009). Our encoder architecture comprises the
four blocks of SENet, and the input RGB images are resized to 228× 304.
The first layer generates 256 feature maps of size 180 × 240, the second
layer generates 512 feature maps of size 90 × 120, the third block gen-
erates 1024 feature maps of size 45 × 60, and the final high-level feature
maps have dimensions of 23 × 30 × 2048. Finally, 1 × 1 convolution fol-
lows the encoder with 2048 channels followed by a Batch normalization
and ReLU activation function.

In turn, the decoder D network consists of four deconvolution layers.
We start with a 23× 30× 1024 deconvolution as the concatenation of the
output of the bottleneck. We then added three 3× 3 deconvolutions with
output filters set to half the number of input filters. Between the four
deconvolutions, an upsampling block (Lehtinen et al., 2018) composed
of a 2 × 2 bilinear upsampling is used to extend the feature maps. A
ReLU activation function follows all layers of the decoder. The input
to each deconvolution is the concatenation of the output of the previous
layer of the decoder, the outcome for the fourth layer with a size of 240×
180 × 1 on the NYU Depth v2 and SUN RGB-D datasets.

At the end of each decoder layer, in order to learn the scale-aware
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depth map context by leveraging context-aware spatial features extracted
at different scales, a multi-level depth estimator retains high-level infor-
mation extracted from coarse feature maps and detailed local informa-
tion present in fine feature maps. Multi-level Depth map Estimators
preserve object structure detail, resulting in crisp boundaries, especially
in complex environments. In particular, each scale’s output of each de-
coder layer is fed into a 3times3 convolutional layer (Abdulwahab et al.,
2022).

9.3.2.2 Multi-scale feature Aggregation Network

Aggregation features refer to combining multiple features or measure-
ments into a single feature or measurement. This can be done by taking
the features’ mean, median, or maximum value as proposed in (Li et al.,
2020). The authors introduced a new end-to-end network to estimate
depth from light field plenoptic cameras. This network is characterized
by its efficiency, effectiveness, and ability to aggregate multi-scale in-
formation. The network architecture is tailored to estimate depth from
light field plenoptic cameras. In order to enhance the model’s ability to
accurately estimate object depth regardless of scale and make it more
resilient to changes in scale or viewpoint. We have used this network
that combines the higher-resolution features with the lower-resolution
initial depth image. Figure 9.2 shows the architecture of the Multi-scale
feature Aggregation network. In particular, the MSFA network comes
after the decoder D, fed with the output scales from each block in the de-
coder after applying Upsampling for all scales. After that, we combined
the scales and followed them by 5 × 5 convolution with a 64 channels
followed by a Batch normalization and ReLU activation function. RAN
is fed with the output of MSFA.
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Figure 9.2: Multi-scale feature aggregation architecture.

9.3.2.3 Refining Attention Network

The depth image is a grey-scale image with low contrast (even with
some invisible parts). Because some objects have similar intensity and
texture with adjacent objects or backgrounds, there is usually a need to
refine the depth prediction results automatically. This paper proposes a
deep refinement network (RAN) to improve depth estimation. After es-
timating multi-scale depth features from the decoder and then the MSFA
network aggregated them, we added a refinement network to refine the
depth estimation results.

Figure9.3 shows the architecture of the Refining Attention Network.
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In particular, the RAN network comes after the Multi-scale feature Ag-
gregation Network MSFA, fed with the output from the MSFA network
(i.e., S1, S2, S3, S4) along with the coarse depth image, Y, estimated from
the last layer of the decoder. There is a flow in the aggregated features
that these features can not calculate the impact of different objects in the
scene. Therefore, we apply the coarse-to-fine strategy with supervision
to the initial depth map (i.e., Y). To clarify the attention mechanism,
we represent the pairwise relationship between the multi-scale feature
and the initial resulting depth image by finding the similarity of coarse
depth probability vectors and the features as proposed in (Ding et al.,
2021). Finally, two 5 × 5 convolutions layers with 64 channels aggregate
the feature information and generate the final depth map. Each convo-
lution layer is followed by a Batch normalization and ReLU activation
function, and finally, apply 3× 3 convolution with 1 channels to estimate
the final depth. The output of RAN is the absolute depth estimation.
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Figure 9.3: Refining attention network architecture.
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9.3.3 Loss Functions

9.3.3.1 Multi-scale loss Function

A multi-scale loss function is a loss function that takes into account mul-
tiple scales or levels of resolution when training a model. This can be
useful for tasks such as image segmentation (Xue et al., 2018; Xue, Xu,
and Huang, 2018), where the model needs to be able to identify objects
at different levels of granularity. Additionally, multi-scale loss functions
can be beneficial for tasks such as depth estimation (Liu et al., 2019b; Lin
et al., 2020) since it allows the model to predict the distance of objects in
an image from the camera at multiple scales. This is done by incorpo-
rating differences in depth at different scales into the loss function. This
work implements the multi-scale loss function by downsampling the
ground truth image and using the multi-scale estimated depth images
from each block in the decoder D network. Afterwards, we compute the
Curvilinear Saliency (CS) loss function between the multi-scale images
proposed in (Abdulwahab et al., 2022) for boosting depth estimation and
introduced in Rashwan et al., 2019. CS, a loss function related to cur-
vature estimation, is used to improve depth accuracy at object bound-
aries and the performance of the estimated high-resolution depth maps.
Thus, using CS as a multi-scale loss function helps the model learn fea-
tures at different edges in multiple scales, which is crucial for detecting
objects at different distances. In Figure 9.4, shows the architecture for
the proposed multi-scale loss function that causes training to be more
stable and minimizes the following loss function:

ML =
N

∑
i=1

CS(Si, Yi), (9.6)

where N is the number of scales (i.e., in this work, we used four scales),
the Si are the multi-scale estimated depth images from each block in the
decoder D network, and Yi are the multi-scale ground truth.
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Figure 9.4: Multi-scale loss architecture based on Curvilinear Saliency
Feature Boosting (CS), which was used in (Abdulwahab et al., 2022).

9.3.3.2 Content Loss Function

As proposed in (Abdulwahab et al., 2022), we formulate our monoc-
ular depth estimation problem as minimizing a reprojection error be-
tween the estimated depth Ŷ(i, j) (i.e., the refined depth map) and the
ground-truth Y(i, j) at training time, similar to Alhashim and Wonka,
2018. Three loss functions are used to build our objective loss function.
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The point-wise L1 − norm defined on the depth values is the first
content loss LL1 that can be defined as follows:

LL1(Y, Ŷ) =
1

wh
(

w

∑
i=1

h

∑
j=1

|Y(i, j)− Ŷ(i, j)|), (9.7)

where w and h are the width and height of the ground-truth depth and
i and j are the index of the pixel.

The structural similarity index measure (SSIM) loss index is used to
evaluate the perceived quality of digital images. The SSIM loss function
is a comprehensive reference metric used to evaluate the accuracy of
depth images generated by the model compared to the corresponding
ground truth. The SSIM index, LSSIM, can be defined as:

LSSIM(Y, Ŷ) =
1
2
(1 −

(2µŶµY + c1)(2σŶY + c2)

(µ2
Ŷ
+ µ2

Y + c1)(σ
2
Ŷ
+ σ2

Y + c2)
), (9.8)

where µŶ is the mean of Ŷ, σŶ is the standard deviations of Ŷ, µY is the
mean of Y, σY is the standard deviations of Y, σŶY is the covariance of Ŷ,
c1 = 0.012 , c2 = 0.032, respectively.

The Mean Square Error (MSE) is the third loss function (LMSE), which
can be defined as:

LMSE(Y, Ŷ) =
1

wh
(

w

∑
i=1

h

∑
j=1

(Y(i, j)− Ŷ(i, j))2). (9.9)

L(Y, Ŷ) = αLL1(Y, Ŷ) + βLSSIM(Y, Ŷ) + γLMSE(Y, Ŷ), (9.10)

where α, β and γ = 1.
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9.3.3.3 Final Loss Function

The final objective function used to train the proposed model, L(Si, Yi, Y, Ŷ),
is a combination of the two previously mentioned loss functions and can
be defined as follows:

L(Si , Yi , Y, Ŷ) = αML(Si , Yi) + βL(Y, Ŷ), (9.11)

where α and β are weighting factors empirically set to 0.6 and 0.4 respec-
tively.

9.4 Experiments and Results

This section outlines the experiments conducted to assess the developed
model in this chapter. In Part I, chapter 2, we have mentioned the NYU
Depth-v2, (Silberman et al., 2012), and SUN RGB-D, (Song, Lichtenberg,
and Xiao, 2015) dataset and the evaluation metrics applied to quantify
the model’s performance that has been used in these experiments.

9.4.1 Parameter settings

We implemented the proposed model using the Pytorch framework, (Paszke
et al., 2017) and the proposed model was trained for 20 epochs with a
batch size of 4. All experiments have been run on one GTX 1080TI GPU.
The Adam optimizer, (Kingma and Ba, 2014) with β1 = 0.5, β2 = 0.999
and utilized it with an initial learning rate of 0.0001 and reduced by 10%
for every three epochs. The pre-trained ResNet-50 and SENet-154 lay-
ers are used for the encoder. The computational time of the proposed
method for the training process takes around 1.5 hours for each epoch
with a batch size of 4. In turn, the online estimation of depth maps has
a performance of around 19,2 milliseconds per image.
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9.4.2 Results and Discussion

9.4.2.1 Ablation study

Firstly, we performed an ablation study to assess the impact of different
stages of the proposed autoencoder. The following configurations were
considered:

• (Baseline: BL) Basic autoencoder with four content loss functions:
point-wise (L1) loss, mean squared error (Lmse) loss, the logarithm
of depth errors (Ldepth) loss, and structural similarity index mea-
sure (Lssim) loss.

• (BLSC) BL model with skip connections from the encoder layers to
the corresponding decoder layers.

• (BLSC+MSFA) BLSC model with Multi-Scale Feature Aggregation
Network.

• (BLSC+RAN) BLSC model with Refining Attention Depth Net-
work.

• (BLSC+ML) BLSC model with Multi-loss Function.

• (BLSC+ML+MSFA+RAN) BLSC model with Multi-loss Function,
Multi-scale Feature Aggregation network, and Refining Attention
Network.

In Table 9.1, we show the quantitative results of the ablation study for
the NYU Depth-v2 dataset. The performance of the proposed model
(BLSC+ML+MSFA+RAN) yielded the best results among other varia-
tions of the proposed model in terms of δZ(thr = 1.25) as well as rms, rel,
and log10 errors. The accuracy of δZ(thr = 1.25) improved by around
3% compared to the baseline model (BL). Similarly, for the rel error, the
proposed model yielded a significant improvement of 0.013% compared
to the BL model. Adding Multi-Scale Feature Aggregation (MSFA) to
the baseline model improved the accuracy by 1.24% and reduced the rel
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error by 0.0041%. Also, Adding Refining Attention Network (RAN) to
the baseline model improved the accuracy by 2.04% and reduced the rel
error by 0.0067%. In turn, applying Multi-scale loss (ML) also yielded
a significant accuracy improvement and a considerable reduction in the
rel error compared to BL, with 2.11% and 0.0071% differences, respec-
tively. Also, in Figure 9.5, we provide some examples of depth estima-
tion from the NYU Depth-v2 testing set. In Figure 9.5, we compared the
final (BLSC+ML+MSFA+RAN) model’s accuracy and error rate and the
rest models in the ablation study.

Table 9.1: Quantitative results of the ablation study for depth-map
estimation from colour images with the NYU Depth-v2 dataset us-
ing SENet-154 encoder for different evaluation measures: BL, BLSC,
BLSC+RAN, BLSC+ML, and BLSC+RAN+ML configurations.

Method Accuracy: higher is better Error: lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

BL 0.8425 0.9701 0.9932 0.1260 0.540 0.0542
BLSC 0.8491 0.9712 0.9939 0.1252 0.529 0.0536

BLSC+MSFA 0.8549 0.973 0.9937 0.1219 0.524 0.052
BLSC+RAN 0.8629 0.9763 0.9940 0.1193 0.512 0.0509
BLSC+ML 0.8636 0.9753 0.9940 0.1189 0.515 0.0512

BLSC+ML+MSFA+RAN 0.8725 0.9766 0.994 0.113 0.512 0.048

9.4.2.2 Performance Analysis

Secondly, we compared the proposed model against five alternative mod-
els (Chen et al., 2022; Ramamonjisoa et al., 2021; Tang et al., 2021; Wang
and Piao, 2023; Abdulwahab et al., 2022). In Table 9.2, we show eval-
uation measures on the NYU Depth-v2 dataset for the six tested ap-
proaches. The accuracy of our proposed model was superior for δZ(thr =
1.25), δZ(thr = 1.252) and the log10 error. δZ(thr = 1.25) shows an im-
provement of 1% and δZ(thr = 1.252), an improvement of 0.33% com-
pared to (Abdulwahab et al., 2022), the best second method. Concerning
δZ(thr = 1.253), our model yielded an improvement of 0.2% compared
to the other five methods. The model proposed in (Wang and Piao, 2023)
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Figure 9.5: The accuracy and the three error measures of the six varia-
tions of our model with the NYU Depth-v2 dataset.

provided the lowest rms error rate, but with a difference to our proposed
model of only 0.027. However, we can note that our model provided the
best accuracy for δZ(thr = 1.25), δZ(thr = 1.252) and δZ(thr = 1.253),
which is the most restrictive threshold. In addition, our model scored
the lowest log10 error of (0.048%) and the rel error of (0.113%). In addi-
tion, in Figure 9.6, we provided examples of depth estimates from the
NYU Depth-v2 testing set by comparing our model’s accuracy and er-
ror rates to the state-of-the-art models showing that the proposed model
outperformed the tested five methods.

To evaluate the performance of the proposed model, we selected ran-
dom images from the NYU Depth-v2 test set to show the model’s ability
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Table 9.2: Results for depth-map estimation from colour images with
the NYU Depth v2 dataset for different measures and state-of-the-art
methods. The last row shows the results obtained with our proposed
model.

Method Accuracy: higher is better Error: lower is better
δ <1.25 ↑ δ <1.252↑ δ <1.253↑ rel↓ rms↓ log10 ↓

(Chen et al., 2022) 0.746 0.935 0.984 0.167 0.554 0.072
(Ramamonjisoa et al., 2021) 0.8451 0.9681 0.9917 0.1258 0.551 0.054

(Tang et al., 2021) 0.826 0.963 0.992 0.132 0.579 0.056
(Wang and Piao, 2023) 0.852 0.967 0.993 0.118 0.485 0.049

(Abdulwahab et al., 2022) 0.8591 0.9733 0.9932 0.119 0.520 0.051
Our model 0.8725 0.9766 0.994 0.113 0.512 0.048

to produce accurate depth maps (refer to Figure 9.7). It is worth not-
ing that the model can generate depth maps under various conditions.
The model learned to identify the correct objects within the images. The
model can generally estimate correct depth values for small objects in
the scene (refer to Figure 9.7, Row 1) and objects affected by lighting
(refer to Figure 9.7, Row 2). It can also accurately detect objects in dark
areas (refer to Figure 9.7, Row 3), even in geometrically complex areas
(refer to Figure 9.7, Row 4).

To generalize the performance of the proposed model on a concrete
case, we test our model with the SUN RGB-D dataset without fine-tuning
and compared the proposed model against five alternative models from
the state-of-the-art (Li et al., 2022; Chen, Chen, and Zha, 2019; Bhat, Al-
hashim, and Wonka, 2021; Lee et al., 2019; Yin et al., 2019). In Table
9.3, we show evaluation measures on the SUN RGB-D dataset for the six
tested approaches. The accuracy of our proposed model was superior
for δZ(thr = 1.25), rel,rms and the log10 error. δZ(thr = 1.25) shows an
improvement of 5.5% compared to (Li et al., 2022), model (Li et al., 2022)
yielded an improvement in δZ(thr = 1.252) and δZ(thr = 1.253) of 0.7%
and 1.4% respectively compared to our model and the other four meth-
ods. The model proposed with SENet-154 provided the best accuracy
for both rel,rms and log10, and with ResNet-50 also gave the best accu-
racy for δZ(thr = 1.25) and rms, with a difference against our proposed
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Table 9.3: Results for depth-map estimation from colour images with
the NYU Depth v2 dataset for train and SUN RGB-D dataset for test-
ing for different measures and state-of-the-art methods. The last two
rows show results obtained with our proposed model by ResNet-50 and
SENet-154 networks.
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Figure 9.6: The accuracy and the three error measures of the five state-
of-the-art models with our mode in the NYU Depth-v2 dataset.

model of just 2.5% and 0.136%, respectively. However, we can note that
our model provided the best accuracy for δZ(thr = 1.25), which is the
most restrictive threshold. In addition, our model scored the first low-
est rel,rms and log10 errors. Also, in Figure 9.8, we provide examples of
depth estimates from the SUN RGB-D testing set. Specifically, we com-
pare our model’s accuracy and error rate and the state-of-the-art models.
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Figure 9.7: Input images (Column 1), ground-truth depth maps (Col-
umn 2), and estimated depth maps (Column 3) with the NYU Depth-v2
dataset: an example of small objects (Row 1), an example of objects af-
fected by lighting (Row 2), an example of objects in dark areas (Row 3),
and an example of geometrically complex areas (Row 4).

To evaluate the performance of the proposed model, we selected ran-
dom images from the SUN RGB-D test set to show the model’s ability
to produce accurate depth maps (refer to Figure 9.9). It is worth not-
ing that the model can generate depth maps under various conditions.
The model learned to identify the correct objects within the images. The
model can generally estimate correct depth values for small objects in
the scene (refer to Figure 9.9, Row 1) and objects affected by lighting
(refer to Figure 9.9, Row 2). It can also accurately detect objects in dark
areas (refer to Figure 9.9, Row 3), even in geometrically complex areas
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Figure 9.8: The accuracy and the three error measures of the five state-
of-the-art models with our mode in the SUN RGB-D dataset.

(refer to Figure 9.9, Row 4).
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Figure 9.9: Input images (Column 1), ground-truth depth maps (Column
2), and estimated depth maps (Column 3) with the SUN RGB-D dataset:
an example of small objects (Row 1), an example of objects affected by
lighting (Row 2), an example of objects in dark areas (Row 3), and an
example of geometrically complex areas (Row 4).

9.5 Chapter summary

In this chapter, we have developed a deep learning approach that uses
an Autoencoder network with a Multi-Scale Feature Aggregation and
Refining Attention Network to refine the final estimated depth map and
preserve global depth information in the combined depth scales. The
proposed model uses a multi-scale loss function, which uses different
depth scales from each block in the decoder part to compare the ground
truth accurately to the generated depth map and enforce the autoen-
coder to generate a correct dense depth image. The Curvilinear Saliency
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loss is used for multi-scale loss to preserve the object boundaries in
the estimated depth. Combining the depth scales outputs through the
Multi-Scale Feature Aggregation network improves the model’s over-
all performance in estimating the object depth information regardless of
its scale and viewpoint. Afterwards, the estimated depth is refined us-
ing A refining attention network, which contains an attention module
to improve the model diversity and help generate more accurate pre-
dictions. The generated depth maps with our model have an accurate
dense depth which is helpful for semantic mapping and visual odom-
etry. The ongoing work is to develop an algorithm that combines the
camera parameters and the generated depth images to calculate an ac-
curate absolute distance applicable to autonomous vehicles to help them
safely navigate their environments. In the next section, we conclude the
thesis and present some lines of future research.
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Part IV

Concluding Remarks and
Future works
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Chapter 10

Conclusion and Future
works

10.1 Summary of Contributions

Depth estimation from a single image is one of the critical tasks in com-
puter vision owing to its application in face recognition, video surveil-
lance, and robot navigation, both for indoor and outdoor environments.
Where depth estimation has a wide range of applications in different
fields, such as Robotics, Augmented reality, Virtual reality, and Medical
imaging. Hence, this thesis aims to find new methods with high per-
formance or develop existing strategies to obtain higher performance of
depth estimates of the distance of objects in an image.

For this purpose, we used traditional supervised machine and deep
learning methods. We tackled two problems related to depth estimation
from a monocular camera, including depth estimation for an object pre-
sented in a scene introduced in Chapters 3, 4, 5 and 6 and the estimation
of depth based on a complete scene introduced in Chapters 7, 8 and 9.
Below, we summarize the main contributions of this thesis.

In Chapter 3, we successfully implemented a 2D/3D Registration
method using traditional methods with SVM for the object in the scene.
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In particular, we proposed an effective 2D/3D registration using CS fea-
tures and multi-class SVM. We used the concept of CS, related to cur-
vature estimation, to extract the shape information of both modalities.
However, matching the features extracted from an intensity image to
a thousand(s) of depth images rendered from a 3D model is exhaust-
ing. Consequently, we propose to cluster the depth images into groups
based on Clustering Rule-based Algorithm (CRA). A 2D/3D registra-
tion framework based on a multi-class Support Vector Machine (SVM)
is then used to reduce the matching space between the intensity and
depth images. SVM predicts the closest class (i.e., a set of depth images)
to the input image. Finally, the closest view is refined and verified by
using RANSAC. The proposed registration approach’s effectiveness has
been evaluated using the public PASCAL3D+ dataset. The results show
that the proposed algorithm provides high precision and less time com-
plexity.

Chapter 4 presented a monocular depth estimation method using a
deep learning model with Adversarial Learning for the object located
in the scene. More precisely, we have applied an adversarial learning
model to solve the problem of estimating a depth map from a single
image. Then, that predicted map is used for predicting the 3D pose
of the main object depicted in the image to solve the correct orienta-
tion problem for the depth generated, which appears when we train the
model. The proposed model consists of two successive neural networks.
The first network is based on a Generative Adversarial Neural network
(GAN). It estimates a dense depth map from the given colour image. A
Convolutional Neural Network (CNN) is then used to predict the 3D
pose from the generated depth map through regression.

In Chapter 5, to improve the depth predicted and fix the missing
pixels for the object, we proposed a multi-generative network, called
MGNet. The new method included a new model based on a multi-
generative network to predict a depth image from a single RGB im-
age. We train a multi-generative network with adversarial learning with
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depth images rendered of 3D CAD models corresponding to objects ap-
pearing in real images. Moreover, the model is trained to optimize the
Structural Similarity (SSIM) and Scale Invariant Error (SI). We are using
SSIM and SI as the loss function improves the performance compared to
the simpler Mean Squared Error (MSE).

Chapter 6 showed a novel deep model based on cGANs to allow the
system to generate a dense depth image. We propose a promising ap-
proach consisting of two successive networks. The first network is an
autoencoder network that maps from the RGB domain to the depth do-
main. The second network is a discriminator network that compares a
real depth image to a generated depth image to support the first net-
work to generate an accurate depth image. Our contribution is to use
3D CAD models corresponding to objects appearing in colour images to
render depth images from different viewpoints. These rendered images
are then used as ground truth to guide the autoencoder network to learn
the mapping from the image domain to the depth domain.

The proposed models in Chapters 4, 5 and 6 effectiveness have been
evaluated using the public PASCAL3D+ dataset. The proposed models
outperform state-of-the-art models by exploiting the dataset as a source
for a training dataset.

In Chapter 7, we aimed to boost the depth accuracy at object bound-
aries and improve the performance of the estimated depth maps. We
proposed an Autoencoder with contextual semantic information for depth
estimation from the complete scene. We presented a method for predict-
ing precise depth maps from monocular images based on a deep autoen-
coder network exploiting semantic features. We utilized the HRNet-v2
semantic segmentation model to feed the autoencoder network with fea-
tures related to the localization and boundaries of the objects.

Regarding Chapter 8, in order to estimate the high-resolution depth
maps and preserve small 3D structures more faithfully in a scene, we
proposed a novel technique endowed with a multi-scale architecture
and a multi-level depth estimator that preserves high-level information
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extracted from coarse feature maps and detailed local information in fine
feature maps. Also, we exploit the CS, related to curvature estimation,
as a loss function to boost the depth accuracy at object boundaries and
improve the performance of the estimated high-resolution depth maps.

Chapter 9 attempted to highlight the sights necessary to improve the
prediction accuracy and generate a more accurate dense depth image
under different conditions for depth estimation from the complete scene.
We proposed an approach that uses an Autoencoder with a multi-scale
loss function and refining attention network. In this way, the model uses
a multi-scale loss function, which uses different depth scales from each
block in the decoder part to compute the loss function to achieve a more
accurate comparison of the ground truth and generated depth to enforce
the autoencoder network to generate an accurate dense depth image.
These depth scales outputs are combined across the refining network to
refine the final estimated depth map by preserving global information in
the combined depth scales. This helps the model improve the prediction
accuracy further and generate a more accurate depth image.

We evaluate the proposed deep models in Chapters 7, 8 and 9 on
the public NYU Depth v2, SUN RGB-D, and Make3D datasets. The pro-
posed models yield superior performance on both datasets compared
to the state-of-the-art, achieving high accuracy and showing exceptional
performance in preserving object boundaries and small 3D structures.

10.2 Future Research Lines

This thesis’s work contributes to the monocular image’s depth estima-
tion. This is an exciting and important field due to its being helpful
in various applications, including robotics, augmented reality, and au-
tonomous vehicles. In these applications, estimating the distance of ob-
jects in the environment is crucial for navigation, localization, and ob-
ject recognition tasks. Additionally, depth estimation can improve the
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realism of computer graphics and create more immersive virtual real-
ity experiences. Several directions for future work have been identified
during this work. For example:

• This thesis proposed a monocular depth estimation system that
can reduce the cost of using Lidar or stereo sensors in autonomous
vehicles. However, estimated depth images provide a relative dis-
tance between the object and the camera. Hence, in our future
work, we plan to overcome this issue by developing an algorithm
that combines the camera parameters and the generated depth im-
ages in order to calculate an accurate absolute distance to be ap-
plicable in autonomous vehicles to help them safely navigate their
environments.

• Numerous speed estimation systems rely on obtrusive techniques
that demand complex installation and maintenance procedures that
impede traffic and raise acquisition and maintenance costs. An al-
ternative appears to be speed measurement from monocular videos
in this situation. However, the majority of these systems have
the drawback of requiring camera calibration, which is a neces-
sary step to convert the vehicle’s speed from pixels per frame to
some meaningful real-world unit (like km/h). Due to deep learn-
ing and autoencoder networks, future work may suggest a speed
measurement system based on monocular cameras that do not re-
quire calibration.

• It is important to note that 6D pose estimation is to detect the 6D
pose of an object, which include its location and orientation. How-
ever, it is a challenging task that depends on the quality of the
input image. It’s also affected by the scene structure, lighting and
occlusions. In this case, using depth maps can help in correctly
estimating the 6D pose of an object. Therefore, another future per-
spective work aims to use the depth estimation models proposed
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in this thesis to properly estimate the 6D pose of the objects pre-
sented in an image.

• Additionally, in future work, we intend to create a comparative
model based on monocular cameras that includes object detection
and segmentation, depth estimation, speed estimation, and 6D
pose prediction in order to obtain an inexpensive and automatic
navigation system for various applications, such as robotics and
autonomous vehicles. Such a model can enhance these systems’
ability to understand the surrounding environments, enabling them
to navigate safely, manipulate objects, and interact with humans.
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