
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en



Microscopic description
of dielectric thermal transport

with memory and nonlocal effects
Ph.D. thesis

Lluc Sendra Molins

Directors:

Dr. Francesc Xavier Álvarez Calafell

Dr. Juan Camacho Castro

January, 2023

Universitat Autònoma de Barcelona

Physics Department

Physics Ph.D. programme



Als iaios.
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terra?»
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Al fons, una mica allunyada de la resta, hi havia una petita sala. De dins, en sortia

olor de castanyes i moniatos, de canelons i carn d’olla. S’hi va acostar. Va girar el pom i hi

va entrar: l’accent era obert. Assegudes al voltant d’una taula hi havia nou lletres. No

sabia per què, el seu pensament les havia col·locat apartades en aquella estança. O potser
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cadira, es va asseure amb elles i va agafar una castanya. Mentre la feia saltar d’una mà

a l’altra per no cremar-se, desistint de pelar-la durant uns instant, se li va dibuixar un

somriure.
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Abstract

This thesis provides a new formalism to solve thephononBoltzmann transport equation for

finite Knudsen numbers that supplies a hydrodynamic heat transport equation, the Guyer-

Krumhansl equation, similar to the Navier-Stokes equation for general semiconductors.

This generalization of Fourier’s law is obtained in general cases, from systems dominated

by momentum-preserving normal collisions, as is well known, to kinetic materials

dominated by resistive collisions, where it captures nonlocal effects. The key feature of our

framework is to assume that the nonequilibriumphonon distribution function is described

in terms of the heat flux and its first derivatives. We obtain explicit expressions for the

nonequilibrium phonon distribution and for the geometry-independent macroscopic

parameters as a function of phononproperties that can be calculated fromfirst principles.

This formalism is validated from two different perspectives: theoretical and experi-

mental. From the theoretical perspective, we recover two well-known results in thermal

transport. First, we obtain Fourier’s law with a general collisions operator. Second, we

exactly recover the original results for the Guyer and Krumhansl equation, where it is

used that normal collisions dominate. From an experimental point of view, the ab initio
model predictions agree with a wide range of experiments in silicon and germanium,

considering different geometries, temperatures, sizes, or time-dependent and indepen-

dent situations. Furthermore, in contrast to approaches directly based on the Boltzmann

transport equation, the hydrodynamic equation can be solved in arbitrary geometries,

thus providing a powerful tool for nanoscale heat modeling at a low computational

cost.

Finally, this formalism opens the door to improving its applicability to larger

Knudsen numbers by including higher-order derivatives or using effective parameters in

the description.
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Introduction 1

Nowadays, most of the devices used in our daily life have

components based on semiconductors. These materials are

used for many applications, going from transistors to photo-

voltaic or thermoelectric energy sources [1, 2]. Accordingly,

the number of transistors in a microprocessor chip has been

predicted to be doubled every two years since the 1960s. This

exponential behavior is known as Moore’s law [3]. However,

in recent years, this growth has been limited because of the

inefficient thermal response of the current nanostructured

devices of silicon [4]. The actual needs of the electronic de-

vices and the improvement of the fabrication techniques

result in a high density of electronic components in the chips.

These cannot efficiently evacuate the heat, and the device is

overheated [5]. This limitation is reached because the typical

sizes of these devices have reached the characteristic size of

the heat carriers in a semiconductor: the phonons [6]. Then,

the size and geometry of the system play a central role in

heat transport at these scales.

Heat propagation in solids is due to the atom vibrations

and their interactions. This mechanism is correct in principle.

Nevertheless, due to the large number of implied particles, it

is impossible to study a realistic situation by understanding

them individually. Besides that, the heat transport theory

was developed by replacing this individual model with a

collective oscillations model, where the energy of the solid is

distributed to the normal modes of vibration of the whole

crystal. Each normal mode can be understood as a wave.

The quanta of this lattice vibrational field are referred to as



1 Introduction 2

a phonon [7]. The theory around these quasi-particles was

developed to simplify thermal transport [7, 8].

Historically, the macroscopic theory to model the behav-

ior of phonons in dielectrics is Fourier’s law. It was proposed

by Joseph Fourier 200 years ago [9], and it predicts that heat

is moving diffusively to the lower-temperature positions:

®@(®A, C) = −� ®∇)(®A, C), (1.1)

where � is the thermal conductivity, )(®A, C) is the local tem-

perature, and ®@(®A, C) is the heat flux. Combining Fourier’s law

with energy conservation provides the well-known diffusion

equation for heat. The heat flux can be expressed in terms

of phonon properties as ®@(®A, C) ≡
∫
~$�®E� 5�(®A, C)3�. The �

sub-index denotes the mode of the phonon with a certain

wavevector and branch. $� is the frequency of the �-mode

and ®E� is the group velocity defined as ®E� ≡ %$�
%: , with :

the wavevector. Finally, 5�(®A, C) is the phonon population of

the �-mode. For the seek of simplicity, from now on, the

spatial and temporal dependence of the variables will not be

explicitly written (®@(®A, C) = ®@, )(®A, C) = ), 5�(®A, C) = 5�, ...).

Since Fourier’s law predicts a diffusive behavior, it oc-

curs that it does not take into account the interaction of the

phononswith the boundaries. In the last decade, the improve-

ment of experimental techniques has allowed observing the

thermal response of nanostructured devices [10–21]. At large

scales, boundaries have no relevant effect. However, a heat

flux reduction appears when system sizes of the order of

the characteristic sizes of phonons are reached. This phe-

nomenon is observed, for example, in thin films of silicon,

where a transition from Fourier’s law to a reduced heat flux

is experimentally demonstrated [22–25].

The primary tool of the field to understand this non-

Fourier behavior is the Boltzmann transport equation (BTE)

[26], which was derived for phonons by Peierls [8]:

% 5�
%C
+ ®E� · ®∇ 5� = �( 5�). (1.2)

The left-hand side of Equation (1.2) is called the drift operator

�( 5�) and contains the phonon velocity ®E�. The right-hand
side is the collision operator �( 5�), which accounts for the

collisions of phonons among them and with other elements,

such as impurities or crystal defects. This operator is generally

a nonlinear function of phonon population, making it very
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difficult to handle. Fortunately, many situations address

small temperature variations so that it can be linearized

[7, 8], and Equation (1.2) becomes a linear equation of 5�.

This linearity allows for building a Hilbert space for the

solutions, which will be very useful. From now on, when the

BTE is referred to, the linearized version of Equation (1.2) is

considered. The BTE is an equation that gives information

about the phonon population and relates it with its temporal

and spatial derivatives. Solving this equation analytically is

not possible except under some approximations (for example,

Callaway’s approximations [27–29] or the Relaxation Time

Approximation (RTA) [30–36],whichwill be shown in Section

2.2).

Due to its complexity, large efforts have been made

to solve it. Several numerical approaches have been tried

to do it in the last years, taking advantage of the recent

computational improvements. Some have done it by directly

solving the equation for simple geometries [35–44] or using

Monte Carlo simulations to reproduce it [45–50]. Despite

these advances, the computational cost, the complexity of

the collision operator, and the difficulty in implementing

physical boundary conditions require alternative approaches

to solve the problem in complex geometries.

Accordingly, several theories have been developed in

recent years to simplify the problem. Some address it by us-

ing effective thermal conductivities or boundary resistances

in Fourier’s law [14, 16, 18]. Other models are based on sup-

pressing the contribution of specific phonon modes to the

thermal properties of the system. Usually, the suppressed

phonons are those with a mean free path (MFP) smaller than

the experimental size of the system [13, 14, 18, 51]. These

models are developed for some particular cases and are not

predictive for complex geometries.

Nevertheless, under some situations, the non-Fourier

behavior is associated with phonon hydrodynamics [28, 29,

36, 42, 43, 52–67]. This phenomenon is usually connected

with phonon collisions of the material, as follows. In a molec-

ular flow, all collisions conserve momentum. However, for

phonon flow, it may occur that phonon-phonon collisions

do not conserve it. Then, the collisions are classified into

two kinds: momentum-preserving collisions, named normal

collisions; and momentum-destroying ones, named resistive

collisions. Figure 1.1 shows that for normal collisions, the re-

sulting wavevector of the generated phonon is the sum of the
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colliding phonons. However, the resulting wavevector does

not conserve momentum for the Umklapp (intrinsic resistive

collisions) or the impurity scattering, which are resistive. In

particular, for the Umklapp case, the propagation direction

is reversed, thus causing thermal resistance.

Figure 1.1: Schematic representa-

tion of the (a) normal, (b) Umk-

lapp, and (c) impurity scatter-

ings in the reciprocal space. The

hexagon represents the first Bril-

louin zone, and the q denotes the

wavevector. Image extracted from
[68].

Hydrodynamic heat transport is expected to occur when

normal collisions dominate in front of resistive collisions,

i.e., when the crystal momentum is conserved. The name

hydrodynamic is due to the analogy with fluids, and this is

also the reason why usually the dominance of normal colli-

sions is required: in fluid dynamics, the collisions between

particles conserve momentum. When momentum is essen-

tially conserved, the heat flux profile resembles the velocity

profile in fluids, recovering Poiseuille-like flow, as seen in

Figure 1.2. The collective (or Ziman) regime is where normal

collisions dominate. The conditions for this regime are rare

to be satisfied. On the one hand, when the temperature is

decreased, the resistive collisions are suppressed; on the

other hand, it also occurs that there are not enough normal

collisions. These narrow conditions have made historically

considering hydrodynamic phonon transport not relevant

for practical applications [68].

Figure 1.2: Heat flux profile of (a)

hydrodynamic and (b) diffusive

regimes. The hydrodynamic flux

profile recovers the Poiseuille-like

shape obtained in fluids with the

Navier-Stokes equation. Image ex-
tracted from [54].

Some models predicting hydrodynamic thermal trans-

port have been developed in the collective regime. One of

the most relevant is the generalization of Fourier’s law pro-

posed in [43] considering the theory of relaxons [41]. This

theory introduces a basis for the BTE’s solutions determined

by the collision operator’s eigenvectors [41, 69]. Therefore,

the BTE is expressed with the relaxons’ basis instead of the
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phonons’ basis, which are the eigenstates of the drift operator.

This generalization of Fourier’s law predicts the emergence

of hydrodynamic phenomena, like nonlocal and memory

effects. However, these are only predicted in materials like

graphite or diamond, where normal collisions dominate. The

presence of hydrodynamic effects in materials like silicon

or germanium, where resistive collisions are dominant, is

absent in this theory.

Guyer and Krumhansl, in 1966, derived a different equa-

tion, the so-called Guyer-Krumhansl equation (GKE), which

predicts nonlocal and memory effects for materials where

normal collisions dominate [52], as in the relaxons develop-

ment. In this case, the collision operator is separated into the

normal and the resistive collision operator. Then, the BTE is

expressed in terms of the basis that diagonalizes the normal

collision operator. Thus, it naturally imposes conservation

laws like energy and momentum. The resulting equation, the

GKE, is

®@ = −� ®∇) − �
%®@
%C
+ ℓ 2

(
∇2®@ + 2

®∇
(
®∇ · ®@

))
. (1.3)

where � is the thermal conductivity, � is the heat flux re-

laxation time, and ℓ is the nonlocal length. This equation is

a generalization of Fourier’s law since it includes memory

(�%C®@) and nonlocal (ℓ 2(∇2®@ + 2
®∇®∇ · ®@)) effects.

Let us note the similarity of Equation (1.3) with the

Navier-Stokes equation (NSE) for fluids. As in the NSE, the

nonlocal effects introduce a viscous-like term that reduces

the heat flux near the boundaries. This effect occurs when

characteristic sizes of an experiment are reduced to the order

of the nonlocal length. Nevertheless, when we consider large

sizes, nonlocal effects are negligible, and in a stationary

situation, the GKE recovers Fourier’s law, as is expected.

As mentioned, these two models [43, 52] do not predict

hydrodynamic effects for resistive-dominated (or kinetic)

materials. Remarkably, this is at odds with recent experimen-

tal results, where non-Fourier behavior observed in kinetic

materials can be explained using the GKE, such as in InGaAs

[58], silicon [57, 59, 62–65, 67, 70], or germanium [66]. There-

fore, in contrast to what is expected, these kinetic materials

obey the hydrodynamic equation (Equation (1.3)).

To explain this inconsistency, thekinetic-collectivemodel

(KCM), developed by Álvarez and colleagues [71–73], aims

to generalize the GKE for kinetic materials. This is achieved
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by obtaining microscopic expressions for the parameters of

Equation (1.3) in both the kinetic and collective limits and

interpolating them to obtain the parameters in general situa-

tions. Themain drawback of thismodel is that the parameters

are not directly obtained from the BTE. However, they are

predictive for a wide range of kinetic materials [58, 59, 62–67,

70]. This predictability allows concluding that the GKE (or

hydrodynamic equation) is applicable for materials with no

normal collision dominance, in contrast to common belief.

This Ph.D. thesis is motivated by the need to derive

the GKE from the BTE for general semiconductors and ki-

netic materials in particular. This would provide microscopic

formulations for the hydrodynamic behavior observed in

kinetic materials, in contrast to previous formalisms, where

hydrodynamic thermal transport is obtained only for col-

lective materials [43, 52, 74]. Furthermore, it would allow

connecting the mesoscopic description with the microscopic

description since the BTE is solved and, thus, the distribu-

tion function of the phonons. Besides, the expressions for

the parameters would be obtained from first principles. In

addition, using the kinetic theory from the BTE would also

provide consistent boundary conditions for describing the

system’s thermal behavior.

The tradition of the Statistical Physics group of the Uni-

versitat Autònoma de Barcelona inspires the perspective to

address this thermal transport problem in this thesis. This

group, led by David Jou, developed the Extended irreversible

thermodynamics (EIT) theory [75]. This theory aims to sim-

plify transport processes by using mesoscopic descriptions

of the system but guaranteeing fundamental properties, such

as energy conservation or the second principle of thermo-

dynamics. Keeping this in mind, the derivation of the GKE

proposed in this thesis tries to match the mesoscopic and

kinetic points of view.

The thesis is organized as follows. Chapter 2 introduces

themost relevant theories to address phonon hydrodynamics

in the thermal transport field. We also present some theoreti-

cal background needed to understand the rest of the thesis

chapters. In Chapter 3, we develop the Flux derivatives for-

malism (FDF), which is the main contribution of the present

thesis to the thermal transport field. Through the FDF, we

present the derivation of the GKE for general semiconductors

with the corresponding expressions for the transport coef-

ficients, which can be calculated using ab initio techniques.
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In Chapter 4, we apply the FDF to the collective limit and

compare its results with previous ones and, in particular,

recover the original results by Guyer and Krumhansl [52]. In

Chapter 5, we apply the FDF to the kinetic (when resistive

collisions dominate) and intermediate regimes using the

RTA and Callaway’s approximation, respectively. In Chapter

6, we provide experimental comparison of the GKE with

the obtained ab initio parameters. This includes different

materials (such as silicon or germanium), different tempera-

tures (from 15 K to room temperature), different geometries

(films, circular or linear heaters, confined nanostructures...),

and stationary and non-stationary situations. In Chapter 7,

FDF’s limitations are analyzed, and a model’s improvement

is developed to extend the predictability. Finally, Chapter 8

is devoted to conclusions.
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This chapter summarizes a general view of the most relevant

contributions in thermal transport related to our work. The

objective is to provide a general framework to understand

our research.

Historically, heat transport was described by Fourier’s

law. This empiric law relates the heat flux ®@ with the local

temperature) through spatial variation (Equation (1.1)). This

equation is still used in numerous situations to describe

the thermal evolution of solids, combined with the energy

conservation equation

�E
%)

%C
+ ®∇ · ®@ = 0, (2.1)

being �E the specific heat of the material.

At the nanoscale or with reduced time scales, this set of

equations, using bulk thermal conductivity, has been widely

demonstrated to fail in dielectrics: it reveals non-Fourier

behavior in kinetic materials, where resistive collisions are

dominant, like InGaAs and silicon [13, 15, 18, 22, 25, 58, 63,

65–67, 76] or in collective materials, where normal collisions

are dominant [28, 36, 42, 54, 55, 60, 61, 77].

However, on many occasions, these experiments are

characterized in terms of Fourier’s law by introducing ef-

fective parameters, like effective thermal conductivities or

effective thermal boundary resistances (TBR), to quantify the

deviations from Fourier’s law [11, 14, 16, 18, 21, 78]. Much

theoretical effort to interpret these experiments consists of

suppressing the contribution to the thermal conductivity
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of phonons with a mean free path (MFP) larger than some

characteristic system size [13, 14, 18, 51, 79, 80]. Other ap-

proaches address the study of non-Fourier effects through

the linearized phonon BTE [8, 35, 41].

All these theoretical models are based on the phonon de-

scription of the thermal transport and the BTE (which will be

discussed in Section 2.1). In addition, some efforts have been

made to simulate real solids with molecular dynamics, i.e.,

through atomic motion [81–89]. However, the computational

cost of "fully" simulating the material is incompatible with

current device sizes and geometries. Therefore, it is helpful

to introduce the phonon description [8, 90].

As introduced in Chapter 1, a phonon is a quasi-particle

obtained from the solution of the expansion of the Hamilto-

nian of the atoms of the periodic lattice. This quantization

of the energy vibrations in terms of phonons is due to the

translational symmetry of the lattice. In this framework, the

described solid can be interpreted as a gas of phonons with

its corresponding energy ~$� andmomentum ~®:, where
®: is

the wavevector of the �-mode. The sub-index � denotes the

wavevector and the phonon branch. The nonlinear part of the

Hamiltonian accounts for the interaction between different

modes, which, in terms of phonons, means that phonons

collide among them. When the collisions are fully random,

Fourier’s law is recovered. The number of phonons 5� of a

given �-mode at a given position and time is described by

the BTE.

This chapter, where some of the methods to describe

thermal transport with phonons are presented, is organized

as follows: Section 2.1 analyzes the BTE. Section 2.2 intro-

duces the most relevant solutions of the BTE related to our

work. Finally, in Section 2.3, some of the most relevant ap-

proximation methods to close the solution of the BTE are

discussed.

2.1 Boltzmann transport equation
In terms of phonons, the picture of the thermal transport is

complete when the distribution function of the phonons 5�,

i.e., the number of phonons of the �-mode, is fully charac-

terized. When the system is in equilibrium, meaning that no

external field or temperature gradient is imposed, the distri-

bution function is the Bose-Einstein distribution 5� = 5
4@

� [7,



2 Thermal transport 10

91]

5
4@

� ≡
1

4
~$�
:�) − 1

, (2.2)

being ~ and :� the reduced Planck’s constant and Boltz-

mann’s constant, respectively. Equation (2.2) is fully de-

scribed with a single scalar thermodynamic magnitude, the

local temperature ), that characterizes the system when it is

in equilibrium.

Out of equilibrium, the phonon distribution evolves

through different mechanisms according to the BTE. Peierls

introduced this equation in 1929 [8] by adapting to phonons

the equations first derived for gases by Boltzmann in 1892

[26]. The two distinct mechanisms are, on the one hand, the

drift of the distribution due to phonon motion (drift operator

of the BTE). On the other hand, the collisions of the phonons

with other phonons or particles (collisions operator). They

result in the BTE introduced in Chapter 1, and we rewrite it

here for this chapter to be self-contained:

% 5�
%C
+ ®E� · ®∇ 5� = �( 5�). (2.3)

One of the biggest difficulties of solving the BTE is that

the collisions operator �( 5�) is a non-linear function of 5�,

as mentioned in Chapter 1. For illustration, the simple case

(and, in general, more representative) is shown, where the

three-phonon interaction is considered:

�( 5�) =
1

(2�)3
∫ ∫ [(

5� 5�′(1 + 5�′′) − (1 + 5�)(1 + 5�′) 5�′′
)
Ω�′′

�,�′

+ 1

2

(
5�(1 + 5�′)(1 + 5�′′) − (1 + 5�) 5�′ 5�′′

)
Ω

�′,�′′

�

]
3�′3�′′,

(2.4)

where Ω�′′

�,�′ is the scattering rate between two incident

phonons � and �′ resulting in an outgoing phonon �′′, and
Ω

�′,�′′

� is the scattering rate between one incident phonon �
resulting in two outgoing phonons�′ and�′′. For a schematic

representation, see Figure 2.1. Typically, to describe thermal

transport, it is sufficient to consider three-phonon interac-

tions, which is the case considered in this thesis. Neverthe-

less, recent studies pointed out the need to include four-

phonon interactions in some materials, like boron arsenide,
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under certain non-equilibrium conditions [92, 93]. Apart

from phonon-phonon interactions, the collision operator also

includes collisions due to defects, impurities, and isotopic

dispersion.

Figure 2.1: Schematic of three-

phonon scattering. The red-

ingoing phonon (�) results in the

black-outgoing phonons (�′ and
�′′). Image extracted from [94].

Because of the complexity of the BTE, some simplifying

assumptions are employed to address its solution. The first

one is its linearization, described below.

2.1.1 Linearized BTE
Let us consider a small perturbation from the equilibrium

distribution function,

Δ 5� = 5� − 5 4@� , (2.5)

proportional to a certain thermodynamic perturbation, like

®∇). The perturbation can be expressed in terms of the func-

tion )� defined as

Δ 5� =
5
4@

� ( 5
4@

� + 1)
:�)

)� , (2.6)

where )� accounts for the deviation from equilibrium. Intro-

ducing Equations (2.5) and (2.6) in the scattering operator

(Equation (2.4)) and keeping up to the first order in )�, one

gets the next equation after some algebra [90]:

�( 5�) =
∫ ∫ (

)� − )�′ − )�′′
)
%�,�′,�′′

3�′3�′′

(2�)3 , (2.7)

where %�,�′,�′′ is the equilibrium transition rate. This operator,

in addition to the linear drift operator �, makes the BTE

linear in Δ 5�, which allows applying the methods of linear

differential equations. In particular, �( 5�) can be expressed



2 Thermal transport 12

in a matrix form:

�( 5�) = −
∑
�′
Ω��′Δ 5� , (2.8)

withΩ��′ the so-called collision matrix. Then, the BTE can

be written as

Df = Cf. (2.9)

2.2 BTE solutions
As mentioned in Chapter 1, solving this equation analytically

is only possible if some approximations are made. In this sec-

tion, some of the more relevant BTE solutions are presented,

going from simple approximations, like the RTA, to more

complex derivations, like the one leading to the GKE.

2.2.1 Relaxation Time Approximation
As seen in Equation (2.8), the collision operator is a matrix

with non-diagonal terms. To simplify this collisions operator,

the most typical approximation is the RTA, which considers

that the rate at which the �-mode decays does not depend

on the non-equilibrium situation of the other modes. Then,

the collision matrix becomes diagonal and can be expressed

as

�( 5�) = −
5� − 5 4@�
��

, (2.10)

where �� is the relaxation time of the �-mode [95].

For validating this approximation, an expression for

the thermal conductivity can be obtained to compare with

the experimental one. As a first approximation, the distri-

bution function is assumed to depend on the equilibrium

distribution function plus a term that depends on the temper-

ature gradient, 5� = 5
4@

� + ®
� · ®∇), where ®
� is an unknown

parameter. By considering a stationary situationwith a homo-

geneous gradient of the temperature, one can easily obtain

®
� = −��
% 5

4@

�
%) ®E� and the thermal conductivity obtained by

simply applying the definition of the heat flux, which in

terms of phonons reads ®@ ≡
∫
~$�®E� 5�3�. For an isotropic

material, the thermal conductivity is

� =
1

3
�E

〈
E2

���
〉
, (2.11)
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wherewehavedefined the average 〈G�〉 ≡
∫
~$�

% 5
4@

�
%) G�3�/�E

and 3 is the material dimension (for example, 3 = 3 for sil-

icon, germanium or diamond, and 3 = 2 for graphene).

The specific heat is defined as �E ≡
∫
~$�

% 5
4@

�
%) 3�. Figure 2.2

shows the results for the RTA thermal conductivity (Equation

(2.11)) for different materials obtained with ab initio calcula-
tions, i.e., using phonon dispersion relations and scattering

times obtained from atomic simulations (see Appendix A for

details).
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Figure 2.2: Thermal conductivity

values under the RTA for differ-

ent materials for a range of tem-

peratures. Triangles represent the

experimental values [96–98]. The

ab initio calculations are described
in Appendix A.

As seen in Equation (2.10), the RTA assumes that colli-

sions relax the distribution to the equilibrium distribution

function, which is at odds with some conservation laws. En-

ergy conservation requires

∫
~$��( 5�)3� = 0, which is not

generally guaranteed by Equation (2.10). Then, additional

constraints must be added to fulfill this thermodynamic

property [32, 35]. In addition, it is well known that normal

collisions conserve the crystal momentum, and the collisions

operator of the RTA can not guarantee this conservation law.

To solve this problem, Callaway [27] proposed a modification

of the RTA collisions operator, which is presented in the next

section.

2.2.2 Callaway’s approximation
As mentioned above, the RTA assumes that the collisions

relax the distribution function to the equilibrium distribution

function, and does not guarantee the momentum conser-

vation of the normal collisions. Callaway [27] proposed

modifying the RTA to incorporate this effect of the normal

collisions.
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The key point of this new collisions operator is to assume

that normal collisions relax the distribution function to the

displaced distribution function [7, 99]:

5 3� ≡
1

4
~($�−®:·®D)

:�) − 1

, (2.12)

where ®D is the so-called phonon drift velocity. This distribu-

tion function, in the absence of resistive collisions and station-

ary and homogeneous situations, is the distribution function

that maximizes the entropy, keeping momentum constant

[90, 100]. When the drift velocity is small,
®: · ®D � ~$�, the

displaced distribution function can be linearized:

5 3� ≈ 5
4@

� +
)

$�

% 5
4@

�

%)
®: · ®D. (2.13)

Then, considering that normal collisions relax the distri-

bution function to the displaced distribution function and

that resistive collisions relax the distribution function to the

equilibrium one, Callaway [27] proposed the next collisions

operator:

�( 5�) = −
5� − 5 4@�
�',�

−
5� − 5 3�
�#,�

, (2.14)

where �',� and �#,� are the resistive and normal relaxation

times of the �-mode, respectively.

The drift velocity ®D is unknown at this point. In order

to determine it, the momentum conservation for normal

collisions is imposed,∫
~®:�

5� − 5 3�
�#,�

3� = 0. (2.15)

Through this imposition, it can be seen that the drift velocity

depends on the distribution function. In the original work,

Callaway assumes that the distribution function depends

on the temperature gradient, implying that the drift veloc-

ity is proportional to it. However, this dependence on the

temperature gradient is not the general case.

However, when considering Callaway’s approximation,
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the resulting thermal conductivity is

� =
1

3
�E

©­­­­«
〈
E2

���
〉
+

〈
E�
E?,�

��
�#,�

〉
2〈

1

E2

?,�

��
�',��#,�

〉 ª®®®®¬
, (2.16)

where phase velocity of the �-mode is defined as E?,� ≡ $�
: ,

and �� is defined as �−1

� ≡ �−1

',�+�
−1

#,�.Notice that the obtained

thermal conductivity is the RTA (Equation (2.11)) plus an

additional term. If this additional term is small enough, the

RTA should be a good approximation, corresponding to

when resistive collisions dominate (i.e., �',� � �#,�). For the
cases where normal collisions dominate (i.e., �',� � �#,�),
the additional term is the relevant one.

Figure 2.3 compares the thermal conductivity under

Callaway’s approximation and the RTA. As is expected, when

considering materials where normal collisions are important,

the difference between the RTA conductivity and Callaway’s

is larger.
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Figure 2.3: Thermal conductivity

for Callaway’s model (solid lines)

and RTA (dashed lines) for dif-

ferent materials (diamond, ger-

manium, silicon, graphene, and

BAs) for a range of temperatures

from 70 K to 500 K. For materials

where resistive collisions domi-

nate (silicon or germanium), the

difference between the RTA and

the Callaway’s approximation is

smaller than in materials where

normal collisions dominate (dia-

mond, graphene, or BAs). The ab
initio calculations are described in

Appendix A.

Callaway’s approximation gives a physical insight into

intermediate regimes between kinetic and collective ones.

However, a refined method to capture this transition is pre-

sented below.

2.2.3 Iterative solution
The iterative solution [37, 38, 101–103] was proposed to

obtain the distribution function of the phonons and the

thermal conductivity using the full-matrix collisions operator.

It allows the incorporation of thematrix’s non-diagonal terms
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and naturally introduces the redistribution between different

phonon modes.

This method is based on numerical iterative processes.

Then, the collisions operator (Equation (2.7)) is

�( 5�)(8+1) =

∫ ∫ (
)(8)� − )

(8)
�′ − )

(8)
�′′

)
%�,�′,�′′

3�′3�′′

(2�)3 ,

(2.17)

where 8 denotes the iteration. The zeroth iteration (8 = 0) is

assumed to be the RTA solution ()(8)�′ = )(8)�′′ = 0 because it

is assumed that all the modes, except for the �-mode, are in

equilibrium).

In [37], they derive Fourier’s law with a distribution

function of the form 5� = 5
4@

� + ®
� · ®∇), with ®
� as a weight

function determined iteratively through this equation:

�( ®
�) =
% 5

4@

�

%)
®E�. (2.18)

The expression for the thermal conductivity, once ®
� is

obtained, is � = 1

3

∫
~$�E�
�3� for isotropic materials.

2.2.4 Guyer-Krumhansl’s derivation
So far, the solutions of the BTE presented in this section

(Section 2.2) are based on obtaining the phonon distribution

function. These are performed under a uniform temperature

gradient, resulting in Fourier’s law. The derivations’ physical

insight is incorporated into the BTE itself and the correspond-

ing collision operator (for instance, RTA, Callaway or iterative

collisions operator). Nevertheless, these derivations may not

guarantee some relevant conservation laws, as is the case of

the RTA or Callaway’s approximation, where energy is not

generally conserved, so some additional constraints must be

imposed [32, 35].

From another perspective, Guyer and Krumhansl de-

rived, in 1966, a hydrodynamic heat transport equation [52,

74]. Themain difference between this approach and the previ-

ously presented ones is that Guyer and Krumhansl naturally

impose the conservation law’s through their mesoscopic vari-

ables, for instance, the energy and the momentum for normal

collisions, and then do not require additional constraints.

One of the key points of Guyer and Krumhansl’s deriva-

tion is the separation of the collisions operator between the

conserving momentum collisions (normal collisions, #) and
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non-conserving momentum collisions (resistive collisions,

'), resulting in

�( 5�) = #( 5�) + '( 5�). (2.19)

In particular, the original work assumes that normal col-

lisions dominate over resistive collisions (#( 5�) � '( 5�)).
Another approximation is considered: a single branch Debye

approximation, meaning that E� = E = constant.

Its solution is based on developing a solution of the BTE

for isotropic materials in terms of the eigenvectors of the

symmetrized #-operator (see Appendix B). This operator

must conserve energy and crystal momentum, meaning that

there are four independent distribution functions with a

null eigenvector: the zeroth-order element, |0〉, related to the

deviation of energy with respect to the equilibrium energy,

and three first-order elements, |1, 8〉, related to the crystal

momentum of the system in the three spatial directions,

8 = G, H, I. Then, an arbitrary deviation from the equilibrium

distribution function, Δ 5� ≡ 5� − 5 4@� , can be written as

Δ 5� = 00 |0〉 +
∑


=G,H,I

01,
 |1, 
〉 + 02 |2〉 , (2.20)

where 08(®A, C) are the occupation numbers in this new basis

and |2〉 represent all the eigenvectors apart from the zeroth

and first orders. Coefficients 08 are related to macroscopic

variables: 00 ∝ Δ4, where 4 is the phonon energy, and ®01 ∝ ®@.
In terms of this basis, defined in [52], the BTE can be rewritten

as follows(
0 0 0

0 '11 '12

0 '21 #22 + '22

)
·
(
00

a1

a2

)

=

(
�00 �10 0

�10 �11 �12

0 �21 �22

)
·
(
00

a1

a2

)
, (2.21)

where D is the drift operator, and -8 9 are the components

of operator - on the |:〉-basis. As mentioned above, from

the perspective of the mesoscopic variables 08 , it is easy to

guarantee the conservation laws of the collisions operator just

by introducing null components into the collisions matrix.

The first row of Equation (2.21) is the energy conserva-

tion equation, that is, Equation (2.1). The following equation
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is obtained by combining the second and the third rows:

�11a1 + �1000 =(
'11 − ('12 − �12) (#22 + '22 − �22)−1 ('21 − �21)

)
a1.

(2.22)

This result is a general transport equation. Nevertheless,

Guyer and Krumhansl derived its solution when normal col-

lisions dominate. To obtain the final expression for the GKE,

some identifications of the collisions operator, developed in

[52], are done:

#22 →
1

�#
, (2.23a)

'11 → 〈1| �'(@)−1 |1〉 , (2.23b)

'22 ≈ '11, (2.23c)

(
R−1

)
11
→ 〈1| �'(@) |1〉 , (2.23d)

where �# and �' are the normal and resistive relaxation times,

respectively. By combining these equations with Equation

(2.22), one can obtain GKE (Equation (1.3)), which we rewrite

here completeness:

®@ + �
%®@
%C

= −� ®∇) + ℓ 2

(
∇2 + 2

®∇( ®∇ · ®@)
)

(2.24)

This equation resembles the NSE for fluids, which is why it

is named the hydrodynamic equation.
Let us analyze the different parameters appearing in

this equation. The thermal conductivity is

� =
1

3

�EE
2 (Σ�� + (1 − Σ)� ) , (2.25)

where it has beendefined the collective time�� ≡ 〈1| �−1

'
|1〉−1

,

the kinetic time � ≡ 〈1| �' |1〉, and the Σ is defined as

Σ ≡ 1

1 + �#
� 

. (2.26)

As expected, thisΣparameter switches between the collective

thermal conductivity (when Σ = 1, i.e., normal collisions

dominate) and the kinetic thermal conductivity (whenΣ = 0,

i.e., resistive collisions dominate).
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This expression properly includes the role of normal

collisions, in contrast to RTA, where they are dealt with as

resistive ones. Notice that even though normal collisions do

not directly contribute to thermal conductivity (for '→ 0we

have �→∞), their influence modifies it [90]. In the kinetic

regime (' � #), this expression considers that phonons

relax independently to the equilibrium, as assumed in the

RTA (see Section 2.2.1). In the collective regime, where it

is fulfilled that

〈
�−1

',�

〉
� $ �

〈
�−1

#,�

〉
, many normal colli-

sions occur before a resistive collision, thus redistributing

the crystal momentum. Hence, the distribution relaxes col-

lectively, characterized by a single collective timescale. Guyer

and Krumhansl do not present numerical predictions for

this expression of the thermal conductivity (Equation (2.25)).

However, it has been validated for a wide range of tem-

peratures, materials, and experiments using first principle

calculations in [73].

Guyer and Krumhansl also obtained expressions for the

nonlocal length ℓ and the heat flux relaxation time � in the

collective regime since the derivation of the original work

[52] was done in this regime. For these two parameters, the

following expressions are obtained:

ℓ 2 =
1

5

E2�#�� , (2.27a)

� = �� . (2.27b)

As mentioned above, the GKE was first derived in the collec-

tive regime [52] because of its analogy with fluid collisions.

This has led to the common belief that normal collisions

must dominate for thermal transport to be described by a

hydrodynamic equation such as the GKE. However, in recent

years, some works derived the GKE in the kinetic limit by

assuming identical branches, the Debye approximation, and

a mode-independent relaxation time [57, 104–106]. Unfor-

tunately, it results in non-predictive formalisms. KCM was

proposed to solve this problem.

2.2.5 Kinetic-Collective Model (KCM)
For stationary situations and uniform temperature gradi-

ents, Guyer and Krumhansl obtain a thermal conductivity

that interpolates between the kinetic and collective limits

(Equation (2.25)). The KCM, developed by Álvarez and col-
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leagues [71–73], takes this idea for the thermal conductivity

and extrapolates it to the ℓ parameter of the GKE. The re-

sulting parameters for the GKE can describe a wide range

of experiments and situations in silicon [58, 59, 62, 63, 65,

67] and consequently support both: the equation and the

parameters.

The KCM assumes that the relaxation time of a given

�-mode is a linear combination of the collective relaxation

time �� of the whole modes and the kinetic relaxation time

of the given mode � ,�, which is the resistive relaxation time,

with the same interpolating parameter Σ that is used in the

interpolation of the thermal conductivity:

� �",� = Σ�� + (1 − Σ)� ,�. (2.28)

Then, normal collisions contribute to redistributing the

phonon population by increasing the mean free path of

the high-frequency phonons and reducing the low-frequency

ones, as observed in Figure 2.4.

Figure 2.4: MFPs as a function of

the frequency of the phonons for

silicon at room temperature. In

green, the kinetic MFP (just con-

sidering the resistive relaxation

time) is represented; in red, the

collective one; in blue, the lin-

ear combination (effective MFP),

which is the one proposed by

the KCM. Normal collisions re-

distribute the population to in-

crease the MFP of high-frequency

phonons and reduce the MFP of

the low-frequency ones. Image ex-
tracted from [73].

Theprocedure is the same for themesoscopicparameters

� and ℓ . In fact, for the thermal conductivity, it is used the

expression obtained by Guyer and Krumhansl [52], Equation

(2.25), with excellent results for a wide range of temperatures

and materials [58, 59, 62, 73], as shown in Figure 2.5.

The main innovation of KCM is the statement that there

are nonlocal effects even in the kinetic limit. Once again, the

nonlocal length ℓ is calculated through interpolation between

the kinetic and the collective limit:

ℓ 2 = Σℓ 2

� + (1 − Σ)ℓ
2

 , (2.29)

where ℓ� is the nonlocal length in the collective limit, which
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Figure 2.5: Thermal conductivity

obtained with the KCM for dia-

mond, silicon, germanium, and

gallium arsenide for different tem-

peratures. The obtained thermal

conductivities are compared to

experimental data. Image extracted
from [73].

is the one proposed by Guyer and Krumhansl in [52], and ℓ 
is the nonlocal length in the kinetic limit [73]. As mentioned

above, the values of the nonlocal length obtained through

ab initio techniques combined with the thermal conductiv-

ity have been demonstrated to reproduce a wide range of

experiments with different materials [58, 59, 62, 63, 65, 67].

2.3 Approximation methods
The previously introduced approaches, except for Guyer and

Krumhansl’s, focused on obtaining thermal conductivity.

Thus, its applicability is limited to infinite crystals, where

there are no boundary effects. This is the case, for example,

of homogeneous perturbations like a constant temperature

gradient. Two standard methods were originally proposed,

aiming to refine the treatment of the BTE to capture the

failure of Fourier’s law: the Chapman-Enskogg (CE) method

[107] and Grad’s method [108].

These methods are based on obtaining the nonequilib-

rium distribution function and the transport equations under

certain assumptions, providing a closeddescription of the sys-

tem. As in the case of Guyer and Krumhansl’s derivation [52],

one of the main advantages of these methods is the capability

to guarantee the conservation laws (energy conservation,

momentum conservation of the normal collisions...).

The main difference between CE and Grad’s methods

is the expansion variables of the distribution function. The

first one is based on expanding the distribution function in

terms of the Knudsen number, which is the ratio between

an intrinsic length of the material and a characteristic length

of the experiment. This method recovers Fourier’s law for
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small Knudsen numbers, but it yields unstable equations

like Burnett ones for higher-order expansion. On the other

side, Grad’s moments method is based on expanding the

distribution function in terms of the polynomials of the

microscopic variables with coefficients which aremoments of

the distribution. This method provides hyperbolic transport

equations yielding discontinuities that are not observed. In

the last decades, the regularized moment method [57, 109]

has been developed to solve this issue, which yields parabolic

equations and prevents these discontinuities.

Unfortunately, this is obtained under very strong as-

sumptions, such as a single linear (Debye) branch and a RTA

with the same relaxation time (gray model). In [57], this

method is used to derive the GKE assuming an expansion

around the displaced distribution function (Equation (2.12)).

In summary, all the derivations of the GKE from the BTE as-

sume the collective limit, except for the regularized method,

which considers quite unrealistic assumptions but might ap-

ply to the kinetic limit. However, this drawback prevents any

comparison with experiments. Then, in the literature, there

is no microscopic derivation of the GKE for kinetic materials

under realistic assumptions. Therefore, there is a gap be-

tween theoretical models and experimental evidence, which

shows that the GKE properly describes several experiments

in kinetic materials like silicon.

The goal of this thesis is to fill this gap. To this end, in

the next chapter, we present a new method to solve the BTE,

the flux derivatives formalism (FDF). It provides a mixed

approach between Grad’s method and Chapman-Enskog

derivation, similar to the regularized one, but extended to

a general collisions operator. This allows deriving the GKE

for general collisions operator, dispersion relations, and a

number of branches. The method yields specific expressions

for the transport coefficients, which can be calculated ab initio
and be directly compared to experiments.
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This chapter presents a formalism, valid for moderate Knud-

sen numbers, to derive, from an ansatz of the phonon distri-

bution function, a complete set of equations (i.e., the phonon

distribution function, the heat-transport equations, and its

corresponding boundary conditions) that are consistent with

the assumption. This formalism, named the Flux derivatives

formalism (FDF) [70], is inspired by the philosophy of EIT,

which stresses the importance of the choice of the macro-

scopic variables describing the non-equilibrium state. In this

sense, all the results presented in the chapter can be obtained

with the complete collision operator or any approximation

to it (for example, the RTA or Callaway’s model).

The choice of the ansatz for the distribution function can

be interpreted as an expansion of appropriate mesoscopic

variables. Typically, as considered in Broido et al. work, the

expansion consisted of a perturbation of the temperature gra-

dient [27, 37, 110] or, when collectivematerials are considered,

it consists of the displaced distribution function [43, 52, 57,

69, 74, 104–106, 111–113]. These expansions implicitly assume

that these mesoscopic variables (the temperature gradient

and the drifting velocity, respectively) are representative of

the description of the physical situation. Nevertheless, when

characteristic times or sizes of the system are very small,

it is reasonable to consider that higher-order expansion is

required to describe the physical situation properly.

This higher-order mathematical expansion has a subse-

quent consequence in the physical interpretation. In analogy

to the EIT [75], by introducing a mesoscopic variable into the
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distribution function, we assume it is a slow variable. This

means that its destruction is slow enough to be considered a

fundamental variable to characterize the system and evolves

independently of the other considered variables.

In practice, this implies that, depending on the de-

scribed physical situation, the distribution function has to

be expanded with a certain number of mesoscopic variables.

As already said, the formalism presented here connects a

distribution function with the transport equations and the

boundary conditions. So, when choosing the mesoscopic

variables to describe the system, the transport equations and

the boundary conditions are fully determined. This "triangle"

in Figure 3.1 (the distribution function, the transport equa-

tions, and the boundary conditions), which is self-consistent,

is one of the strongest points of this formalism.

Figure 3.1: Triangle with the

phonon distribution function,

transport equations, and bound-

ary conditions. FDF provides con-

sistent expressions of these three

magnitudes.

Notice that it is emphasized the importance of the non-

equilibrium situation to characterize the system properly.

This formalism is not restricted to certain materials. At odds

with the common belief, for example, this formalism recovers

a GKE for kinetic materials like silicon or germanium with

predictive parameters [70].

The chapter is organized as follows: Section 3.1 gives a

general perspective of the formalism. In Section 3.2, a deriva-

tion of Fourier’s law with the present formalism is presented,

and we strictly recover the thermal conductivity of previous

literature [37] as a first check of the formalism. In Section

3.3, a derivation of the GKE with the general collisions oper-

ator is shown. In Section 3.4, the corresponding boundary

conditions for the GKE are derived from its microscopic ex-

pressions. Finally, Section 3.5 is devoted to presenting some

conclusions about the formalism.

3.1 General procedure
From a microscopic point of view, thermal transport is well

characterized by the linearized BTE. Nevertheless, this equa-
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tion is difficult to solve both analytically and computationally

for the complex geometries usually found in engineering ap-

plications. To optimize the solution, in classical kinetic theory,

two well-known methods are used to obtain macroscopic

equations from the BTE: the Chapman-Enskog (CE) method

[107] and the Grad’s moment method [108], presented in Sec-

tion 2.3. They provide their microscopic counterpart in the

form of microscopic expressions for the transport coefficients

appearing therein and the non-equilibrium distribution func-

tion.

CE method uses the first moments of the distribution as

independent variables, which for heat transport is reduced

to the temperature ). As a result, the phonon distribution

and the macroscopic equations depend on the temperature

and its gradients. It is based on an expansion in the Knud-

sen number and produces Fourier’s law to first order and

Burnett and super-Burnett equations at higher orders [109].

On the other hand, Grad’s method assumes as independent

variables themoments of the distribution, which includes the

temperature, as in CE, but also the heat flux and, eventually,

higher-order fluxes. The distribution function depends on

these variables but not on their derivatives. Beyond Fourier,

the macroscopic equations produced by both methods dis-

play some shortcomings, such as the instability of transient

solutions in Burnett and super-Burnett equations, or the

discontinuity of some properties in Grad’s equations due to

their hyperbolic character, added to the difficulty of posing

proper boundary conditions for higher derivatives or higher

moments, respectively [109].

The formalism presented here, the FDF, uses a mixed

approach of CE and Grad methods. The key point is to

extend the set of independent mesoscopic variables to the

heat flux and its derivatives, both in space and time. The

results are similar to those found in the regularized moment

method under simplifying assumptions, such as a single

dispersionless branch under RTA for a single relaxation time

(gray model) [114]. Furthermore, we will consider isotropic

materials for the seek of simplicity, but it can be extended to

anisotropic materials.

The first step of the formalism is to project the BTE

into thermodynamic variables to obtain simpler equations

that can be compared to experimental results. Typically, the

projections are the energy and the crystalline momentum

of the BTE (see Appendix C for a physical argument). With
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these two projections, the following equations are obtained:

%4

%C
+ ®∇ · ®@ = 0, (3.1a)

%®?
%C
+ ®∇ ·

=

Π =

∫
~®:��( 5�)3�, (3.1b)

where 4 ≡
∫
~$� 5�3� is the energy density, ®@ is the heat

flux, ®? ≡
∫
~®:� 5�3� is the crystal-momentum density and

=

Π ≡
∫
~®:�®E� 5�3� is the flux of the crystal momentum.

These equations describe the conservation of energy and the

balance of the quasimomentum.

To close the system and solve it, one needs to relate ®? and
=

Π to the energy density and the heat flux. This relation can

be easily obtained by introducing the phonon distribution

function to the latter expressions for ®? and

=

Π. The issue is to

obtain a solution for this distribution.

In this formalism, the distribution function is assumed

to depend on a certain number of mesoscopic variables

(such as temperature, heat flux, its derivatives. . . ). Under

the non-equilibrium situation described, these variables are

assumed to describe the phonon population properly. Then,

the distribution function is

5� = 5
4@

� +
∑
8

0�,8&8 , (3.2)

where &8 are the known mesoscopic variables and 0�,8 are

unknown coefficients that only depend on the phonon mode

�. When 0�,8 are determined, the phonon distribution func-

tion is also determined, and then, the system is solved from

a microscopic (Equation (3.2)) and a mesoscopic (Equations

(3.1a) and (3.1b)) perspective. To determine the 0�,8 , we follow

a set of steps. First, Equation (3.2) is introduced into Equa-

tions (3.1a) and (3.1b). The resulting equations give a relation

between the mesoscopic quantities present in the ansatz for

the distribution function. These are the transport equations

that can be solved to describe the system macroscopically.

Then, Equation (3.2) is introduced into theBTE, resulting
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in

% 5
4@

�

%)

%)

%C
+

∑
8

0�,8
%&8

%C

+
% 5

4@

�

%)
®E� · ®∇) +

∑
8

0�,8®E� · ®∇&8 =
∑
8

�(0�,8)&8 .

(3.3)

After that, the two transport equations (Equations (3.1a)

and (3.1b)) are substituted into Equation (3.3) to reduce the

degrees of freedom and obtain an equationwith independent

macroscopic variables.

Nevertheless, some higher-order derivatives appear in

Equation (3.3) that can not be equated to the rest of the

terms of the BTE (%C&8 ≠ & 9 or
®∇&8 ≠ & 9). We consider

that these terms can be neglected for small enough Knudsen

numbers, resulting in an equation with independent macro-

scopic variables. This is one of the main assumptions of our

formalism.

Finally, for the equation to be satisfied, the coefficients of

the (independent) macroscopic variables should be identical,

and all the 0�,8 coefficients are well determined. This implies

that the distribution function is determined, and Equations

(3.1a) and (3.1b) can also be obtained. Then, the system is

closed with the microscopic and mesoscopic descriptions.

Thus the BTE is solved.

3.2 Fourier’s law derivation
This section provides a derivation of Fourier’s law using the

previous formalism. In this case, we consider a stationary

situationwith a uniform temperature gradient. The proposed

distribution function is a perturbation in the heat flux

5� = 5
4@

� + ®�� · ®@, (3.4)

where ®�� is an unknown �-mode dependent coefficient. In

this situation, ®�� plays the role of 0�,8 and ®@ of&8 in Equation

(3.3). The underlying assumption in this ansatz is that the

heat flux is a slow magnitude in the system, and it is enough

to describe the distribution function.

The next step is introducing it into Equations (3.1a) and

(3.1b). Moreover, as we consider a stationary situation, the
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resulting equations are

®∇ · ®@ = 0, (3.5a)

∫
~®:�

% 5
4@

�

%)
®E�3� · ®∇) +

∫
~®:�®E� ®��3� :

®∇®@

=

∫
~®:��(®��)3� · ®@. (3.5b)

In the previous equation, we use that �( 5�) = −
∑

�′Ω��′Δ 5�
(Equation (2.8)). An isotropic material is considered to sim-

plify the calculations. With this consideration, the following

general relation is obtained (see Appendix D for the deriva-

tion) ∫
��®E�®E�3� =

1

3

∫
��E

2

�3� 1, (3.6)

where �� is a scalar that depends on the �-mode, 1 is the

identity matrix, and 3 is the dimension of the material (3 = 3

for general materials like silicon, germanium. . . and 3 = 2

for 2-D materials like graphene). Furthermore, by isotropy,

the integral

∫
~®:�®E� ®��3� vanishes, and we finally obtain

1

3

∫
~:�

% 5
4@

�

%)
E�3� ®∇) =

1

3

∫
~:��(��)3� ®@, (3.7)

where we have used that any vector can be decomposed

on ®G� = G�Ê�, and Ê� is the unitary vector of ®E�. Defining

thermal conductivity as

� ≡ −
∫
~:�

% 5
4@

�
%) E�3�∫

~:��(��)3�
, (3.8)

Fourier’s law is recovered

®@ = −� ®∇). (3.9)

To fully characterize Fourier’s law, thermal conductivity

has to be determined. To do so, we use the BTE itself. Since a

stationary situation is considered, Equation (3.4) introduced

into the BTE gives

% 5
4@

�

%)
®E� · ®∇) + ®E� ®�� :

®∇®@ = �(®��) · ®@. (3.10)
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We reduce the degrees of freedom of this equation intro-

ducing the transport equation (Equation (3.9)) into Equation

(3.10). Then, when considering a uniform temperature gradi-

ent, one obtains the following equation for ®��

�(®��) = −
1

�

% 5
4@

�

%)
®E�. (3.11)

Then, we have two unknown variables: ®�� and �. By defining

®
� ≡ −�®��, Equation (3.11) becomes

�( ®
�) =
% 5

4@

�

%)
®E� (3.12)

This result is strictly the same one obtained in [37], where it

is considered an expansion as 5� = 5
4@

� + ®
� · ®∇), and they

obtain Equation (3.12). ®
� can be solved for general collisions

operators through iterative methods [37, 54] or with other

collisions operator like the RTA or Callaway’s model (see

Chapter 5).

In order to obtain ®�� and � from ®
�, a consistency

relation is imposed. This consistency relation comes from

the definition of the heat flux applied to the ansatz for the

distribution function ®@ =
∫
~$�®E� ®��3� · ®@, which gives

1

3

∫
~$�E���3� = 1. (3.13)

Since ®�� = − ®
�� , Equation (3.13) yields the following expres-

sion for thermal conductivity

� = −1

3

∫
~$�E�
�3�, (3.14)

which is also the expression found by Broido [37]. The knowl-

edge of ®
� and � determines ®��. Then, both the microscopic

and the mesoscopic descriptions are complete.

To conclude this section, we would like to remark that it

is enough to perturb the distribution function with the heat

flux (or the gradient of temperature that, in this situation, is

equivalent) to derive Fourier’s law. When a more complex

physical situation is described, it seems reasonable that a

more complex distribution function is needed, as we explain

in the next section.
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3.3 Derivation of the
Guyer-Krumhansl’s equation

In the present section, we derive the GKE for general semi-

conductors for moderate Knudsen numbers. As mentioned

in Section 3.1, the choice of the distribution function di-

rectly implies the resulting transport equation. Moreover, the

choice of the distribution function depends on the physical

non-equilibrium situation to be described.

Since the derivation of Fourier’s law requires an expan-

sion of the distribution function on the heat flux (Equation

(3.4)), the next expansion may include the heat flux and its

first derivatives. As mentioned in Section 3.1, this assump-

tion implies that the heat flux and its first derivatives slowly

evolve and are relevant enough to characterize the system.

Then, we assume the following distribution function:

5� = 5
4@

� + ®�� · ®@ + ®�� ·
%®@
%C
+

=

�� :
®∇®@, (3.15)

where ®�� and ®�� are vectors, and

=

�� is a tensor, all depend-

ing on the �-mode, and they are unknown. In an isotropic

material, a rank 2 tensor can be written as

=

�� =
=

�1,� +
=

�2,�

with

=

�1,� ≡ 61,�Ê�Ê� and

=

�2,� ≡ 62,�1, where 61,� and 62,�

are unknown scalars that depend on the �-mode.

Then, the distribution function is introduced into Equa-

tions (3.1a) and (3.1b) to obtain the transport equation, and

the resulting equations are ∫
~$�

% 5
4@

�

%)
3�

%)

%C
+

+
(

1

3

∫
~$�61,�3� +

∫
~$�62,�3�

)
%®∇ · ®@
%C
+ ®∇ · ®@ = 0

(3.16)
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1

3

∫
~:���3�

%®@
%C
+ 1

3

∫
~:���3�

%2®@
%C2
+

+1

3

∫
~:�

% 5
4@

�

%)
E�3�®∇) +

1

3(3 + 2)

∫
~:�E�61,�3�∇2®@+

+
(

2

3(3 + 2)

∫
~:�E�61,�3� +

1

3

∫
~:�E�62,�

)
®∇(®∇ · ®@) =

=
1

3

∫
~:��(��)3�®@ +

1

3

∫
~:��(��)3�

%®@
%C
.

(3.17)

In these expressions, for isotropic materials, we have used

the following relation (see Appendix D for the derivation):∫
��

E�,8E�, 9E�,:E�,;

E4

�

3�

=
1

3(3 + 2)(�8 9�:; + �8:�:; + �8;� 9:)
∫

��3�.

(3.18)

Equations (3.16) and (3.17), then, are rewritten as

�E
%)

%C
− �4

%®∇ · ®@
%C
+ ®∇ · ®@ = 0, (3.19a)

®@ + �
%®@
%C
+ �2

?

%2®@
%C2

= −� ®∇) + ℓ 2

(
∇2®@ + 
′®∇(®∇ · ®@)

)
. (3.19b)

These equations are the energy conservation and the GKE,

respectively. Then, the GKE is derived, for the first time, for a

general collisions operator, which ranges from the collective

to the kinetic regimes [70].

In these expressions, we have defined that

�4 ≡ −
(

1

3

∫
~$�61,�3� +

∫
~$�62,�3�

)
, (3.20a)

� ≡
∫
~:��(��)3� −

∫
~:���3�∫

~:��(��)3�
, (3.20b)

�2

? ≡ −
∫
~:���3�∫

~:��(��)3�
, (3.20c)

� ≡ −
∫
~:�

% 5
4@

�
%) E�3�∫

~:��(��)3�
, (3.20d)
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ℓ 2 ≡ 1

3 + 2

∫
~:�E�61,�3�∫
~:��(��)3�

, (3.20e)


′ ≡ 2 + (3 + 2)
∫
~:�E�62,�3�∫
~:�E�61,�3�

. (3.20f)

So far, the expressions for the mesoscopic parameters

have been obtained, but to fully characterize them, it is neces-

sary to complete the microscopic description, i.e., obtaining

®��, ®��, and
=

��. With this aim, Equation (3.15) is introduced

into the BTE, and Equations (3.19a) and (3.19b) are used to

reduce the number of independent macroscopic quantities.

The obtained equation is

% 5
4@

�

%)

(
�4
�E

%®∇ · ®@
%C
− 1

�E
®∇ · ®@

)
+

+®�� ·
%®@
%C
+ ®�� ·

%2®@
%C2
+

=

�� :

%®∇®@
%C
+

+
% 5

4@

�

%)
®E� ·

(
− 1

�
®@ − �

�

%®@
%C
−
�2

?

�

%2®@
%C2

)
+

+
% 5

4@

�

%)
®E� ·

ℓ 2

�
(∇2®@ + 
′®∇(®∇ · ®@))+

+®E� ®�� :
®∇®@ + ®E� ®�� :

%®∇®@
%C

=

= �(®��) · ®@ + �( ®��) ·
%®@
%C
+ �(

=

��) :
®∇®@.

(3.21)

In this equation, some mesoscopic variables are not present

in the distribution function (Equation (3.15)), but the higher-

order derivatives can be neglected for moderate spatial and

temporal variations (%C ®∇ · ®@, %C ®∇®@, %2

C2
®@, ∇2®@ and

®∇(®∇ · ®@)).
Then, all mesoscopic quantities in Equation (3.21) are inde-

pendent variables, and the equation can only be satisfied if

their coefficients are equal:

�(®��) = −
1

�

% 5
4@

�

%)
®E� , (3.22a)

�( ®��) = ®�� −
�
�

% 5
4@

�

%)
®E� , (3.22b)

�(61,�) = ��E� , (3.22c)
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�(62,�) = −
1

�E

% 5
4@

�

%)
. (3.22d)

These equations can be solved for a given collision operator,

and then the microscopic solution is completed. Notice that

Equation (3.22a) is the same result as obtained in Fourier’s

derivation (Equation (3.11)).

To obtain the heat flux relaxation time �, in analogy to

the consistency relation used for the thermal conductivity

(Equation (3.13)), we have used a second consistency relation

(obtained again from the microscopic expression for the heat

flux ®@ ≡
∫
~$�®E� 5�3�):∫

~$�E���3� = 0. (3.23)

Finally, let us note that, in contrast to the present formal-

ism, Guyer and Krumhansl [52] do not supply an explicit

expression for the distribution function.

At this point, we want to explore some relevant aspects

of the obtained equations in this GKE derivation.

3.3.1 Energy conservation
It is important to remark that the proposed distribution

function conserves energy for general collision operators:∫
~$��( 5�)3� =

∫
~$��(

=

��)3� :
®∇®@ =(

1

3

∫
~$�E���3� −

1

�E

∫
~$�

% 5
4@

�

%)
3�

)
®∇ · ®@ =0,

(3.24)

where the first equality comes from isotropy, and the last

equality follows from the consistency relation Equation (3.13).

This energy conservation contrasts with the RTA and Call-

away’s approaches, where, as mentioned above, energy con-

servation states additional conditions to the formalism [32,

35].

3.3.2 Non-equilibrium temperature
Typically, the energy conservation equation is of the form of

�E%C) + ®∇ · ®@ = 0 instead of Equation (3.19a). Nevertheless,

the local equilibrium temperature is usually defined as )′

satisfying that 4 = 44@()′), with 44@ ≡
∫
~$� 5

4@

� 3� [43, 46,
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52, 112]. Using the distribution function of Equation (3.15),

we obtain the following expression for the energy,

4 = 44@()) − �4 ®∇ · ®@ = 44@()′). (3.25)

If we assume that )′ � )0, with )0 the reference temperature

of the whole system, the energy can be linearized 4()′) =
44@()0) + �E()′ − )0). Then, Equation (3.25) yields %C) =

%C)′ + �4
�E
%C ®∇ · ®@ and

®∇) = ®∇)′ + �4
�E
®∇(®∇ · ®@) Notice that,

in a stationary situation, ) = )′ (see Equation (3.25)). If

we substitute previous relations into Equations (3.19a) and

(3.19b), we obtain that

�E
%)′

%C
+ ®∇ · ®@ = 0, (3.26a)

®@ + �
%®@
%C

= −� ®∇)′ + ℓ 2

(
∇2®@ + 
 ®∇(®∇ · ®@)

)
, (3.26b)

where it has been defined that


 ≡ 
′ − ��4
�Eℓ 2

, (3.27)

and we have used that �2

?
%2®@
%C2 can be neglected, as discussed

in the next section. Now, Equation (3.26a) has the expected

form for energy conservation. Actually, this set of equations

(Equations (3.26a) and (3.26b)), along with the boundary

conditions that will be derived in Section 3.4, is what we

solve to reproduce experiments. Then, we assume that the

temperature measured in experiments is the local equilib-

rium temperature )′. We will provide experimental evidence

supporting these expressions in Chapter 6.

The distribution function is written in terms of the heat

flux ®@ (and its first derivatives) and the local temperature

). Nevertheless, the transport equations, Equations (3.26a)

and (3.26b), are written in terms of )′ instead of ). We also

express the phonon distribution function in terms of )′,
obtaining the following expression:

5� = 5
4@

� ()
′) + ®�� · ®@ + ®�� ·

%®@
%C

+
(
=

�� −
1

�E

% 5
4@

�

%)

∫
~$�

=

��3�

)
:
®∇®@, (3.28)

where it has been used that

∫
~$�

=

��3� = −�41. By writing
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the distribution function in this form, it is trivial to see that

the definition of the energy results in 4 = 44@()′), which

resembles a consistency relation, as in the heat flux case,

because the energy projection of the distribution function is

an identity.

3.3.3 �? on Debye’s approximation with
identical branches and memory effects

A comment on �2

? time is necessary at this point. This parame-

ter is related to the difference between the crystal momentum

®? and the heat flux ®@. It appears because, even though consis-

tency relations impose

∫
~$�®E� ®��3� = 0 (Equation (3.23)),

it is not necessary that

∫
~®:� ®��3� = 0. These two integrals

only will be identical when Debye’s approximation with

identical branches is considered. Under this situation, �2

? = 0

(see Equations (3.20c)), and the typical GKE [52] is recovered.

These are precisely the assumptions made in the Guyer and

Krumhansl papers [52, 74]. Then, �2

? is related to how far

the material is from Debye’s approximation with identical

branches. In general, as it is numerically shown in Figure 5.2,

�? is found to be an order of magnitude smaller than � for

materials like silicon, germanium, and diamond, meaning

that �2

?
%2®@
%C2 can be neglected as compared to �

%®@
%C except in

extreme non-equilibrium situations. By considering that this

is the case, from now on we will neglect this term and obtain

the exact GKE for the heat flux.

3.3.4 Debye’s approximation and nonlocality
When Debye’s approximation is considered (it is not neces-

sary that all the branches are identical), 
 does not depend

on the material. Its value is


 =
3 − 2

3
. (3.29)

This result can be easily obtained from the general collision

operator value obtained in Section 3.3.2 (Equation (3.27)).

When considering the Debye approximation, the group ve-

locity is E� =
$�
: , and by using this relation, Equation (3.29)

is obtained.

This expression for 
 has some implications. Firstly, in a

three-dimensions material (3 = 3), 
 = 1/3, obtaining that
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®@ + �
%®@
%C

= −� ®∇) + ℓ 2

(
∇2®@ + 1

3

®∇(®∇ · ®@)
)
. (3.30)

This result for 
 is obtained in [57] and is at odds with the

originalwork ofGuyer andKrumhansl [52], but it agreeswith

[104, 112]. Hardy and Albers explained that this discrepancy

is due to an approximation made in [52].

The second remarkable result is thatwhena two-dimensions

material is considered (3 = 2), like graphene, 
 = 0, obtaining

that

®@ + �
%®@
%C

= −� ®∇) + ℓ 2∇2®@. (3.31)

Finally, when considering a one-dimension material, since

∇2®@ = ®∇(®∇ · ®@) and 
 = −1, the nonlocal effects are canceled,

and the resulting equation is

®@ + �
%®@
%C

= −� ®∇). (3.32)

3.4 Boundary conditions
This section provides a general procedure to derive boundary

conditions for any transport equation, particularly for the

GKE. One of the main problems in solving the BTE is to

impose the boundary conditions for each phonon [31, 46, 115,

116]. Here, simple boundary conditions are derived in terms

of the mesoscopic variables appearing on the ansatz of the

phonon distribution function.

As pointed out in [57], the two main implications of

the boundary conditions in the hydrodynamic equation are

a heat-flux retardant in the tangential component (Section

3.4.1) and a temperature jumpwhen an interface between two

materials is considered (Section 3.4.2). These two implications

are consequences of the choice of the phonon distribution

function. We will use the distribution function of Equation

(3.15) to be consistent with the GKE derivation.

The present derivation is based on the derivation in

[57]. Nevertheless, here is the first time that the temperature

jump for a general collisions operator and without Debye’s

approximation is presented since, in [57, 63], the derivation

is under a graymodel and using Debye’s approximation with

identical phonon branches. The main idea is based on the

principle of classic kinetic theory [108, 117]: the boundary

condition for a given macroscopic variable is related to the
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balance of its flux at the boundary. We will designate )�

as the microscopic variable, which is integrated to obtain

the conserved macroscopic magnitude. Then, the resulting

equation is∫
Ω

®E�)� 5�3� =

∫
Ω−
®E�)� 5

−
� 3� +

∫
Ω+
®E�)� 5

+
� 3� (3.33)

with Ω denoting the whole phonon space and Ω− (Ω+)
denoting the phonon space where Ê� · =̂ < 0 (Ê� · =̂ > 0),

which are the ingoing (outgoing) to the surface phonons,

with =̂ the unitary and normal-to-the-boundary vector. 5 −�
( 5 +� ) is the distribution function of the ingoing (outgoing)

phonons.

Reasonably, the ingoing distribution function is the

“bulk” distribution function 5 −� = 5� (Equation (3.15)). An-

other important assumption is that the outgoing distribution

function 5 +� is a linear combination of a specularly reflected

ingoing distribution function and a diffusively reflected dis-

tribution:

5 +� = (1 − B) 5 4@� ()F) + B 5
−
� (Ê� · =̂ → −Ê� · =̂). (3.34)

In the previous relation, there are two new parameters. The

first one is )F , which is the temperature of the “wall”. This

temperature is an instrumental parameter used to derive the

boundary conditions, but it has no physical meaning and

will not appear in the resulting expression. It is assumed that

the phonons are emitted at this temperature when diffusive

scattering occurs.

The other new parameter is the specularity B. The spec-

ularity refers to which amount of phonons have been spec-

ularly reflected. When B → 0, all the phonons have been

diffusively reflected; on the other hand, when B → 1, all

the phonons have been specularly reflected. If we consider a

mode-independent B parameter, as it is the case of Equation

(3.34), the value is obtained by a comparison between the

wavelength of the phonons and the average height of the

roughness defects � [22, 62, 90]

B =

∫
~$�

% 5
4@

�
%) 4

−�(2�®:�·=̂)23�

�E
. (3.35)

Typically, this parameter tends to vanish B → 0 since

the wavelengths of the phonons are much smaller than
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the characteristic sizes of the roughness (for silicon, for

example, is of the order of tenths of Angstroms for these

experiments: [22–24, 76]). To get an insight, for silicon at room

temperature, when a characteristic roughness of � ≈ 0.2=<

is considered, the specularity coefficient is of the order of

B ≈ 0.3, meaning that most of the phonons are diffusively

reflected. Nevertheless, this section considers a general case

where B can be any value between 0 and 1.

3.4.1 Perpendicular heat-flux boundary
condition. The temperature jump

In this section, the perpendicular to the surface heat flux at

the boundary is derived. First, the most intuitive part is that

insulation is imposed at the free surface [62],

®@ · =̂ = 0. (3.36)

Nevertheless, thematerial is not isolatedwhen there is no free

surface. In this case, the continuity of the normal component

of the heat flux is imposed,

®@ · =̂ = ®@" · =̂ , (3.37)

where the sub-index " denotes the other material of the

interface. In general, thismaterial is ametal in our simulations

[63–67] (see Chapter 6 for further details).

Furthermore, we will use Equation (3.33) to fully char-

acterize Equation (3.37). Since the energy is a conserved

magnitude, it is used )� = ~$� in Equation (3.33) and it is

considered the normal-to-the-surface component of the flux

∫
Ω

~$�E�,= 5�3� =

∫
Ω−

~$�E�,= 5
−
� 3� +

∫
Ω+

~$�E�,= 5
+
� 3�,

(3.38)

where the sub-index = denotes the normal component. This

equation is applied to the semiconductor, characterized by

the distribution function of Equation (3.15). By putting it into

Equation (3.38), using the consistency relations (Equations

(3.13) and (3.23)), and isolating

∫
Ω+

~$�®E�,= 5 4@� ()F)3�, it is
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obtained that ∫
Ω+

~$�®E�,= 5 4@� ()F)3� =

1

2

1 + B
1 − B @=

+
∫
Ω+

~$�E�,= 5
4@

� 3� +
∫
Ω+

~$�E�,=�1,�,AA3�
%@A
%A

+
∫
Ω+

~$�E�,=�1,�,==3�
%@=
%=
+

∫
Ω+

~$�E�,=62,�3�®∇ · ®@,

(3.39)

where the sub-index A denotes the tangential component.

Since the equilibrium distribution function can be expressed

as 5
4@

� ()) = 5
4@

� ()0) +
% 5

4@

�
%) () −)0), the previous equation can

be expressed as

)F − ) =
1

2

∫
Ω+

~$�E�,=
% 5

4@

�
%) 3�

1 + B
1 − B @=

+
∫
Ω+

~$�E�,=�1,�,AA3�∫
Ω+

~$�E�,=
% 5

4@

�
%) 3�

%@A
%A
+

∫
Ω+

~$�E�,=�1,�,==3�∫
Ω+

~$�E�,=
% 5

4@

�
%) 3�

%@=
%=

+
∫
Ω+

~$�E�,=62,�3�∫
Ω+

~$�E�,=
% 5

4@

�
%) 3�

®∇ · ®@.

(3.40)

The same procedure is done in the “metal” interface, but

a different distribution function is considered in this case.

Since metal is well-characterized by Fourier’s law (which

is dominated by electrons) [62, 64–66], it is enough to use

Equation (3.4) to describe it, i.e., consider that the distribution

function of the metal only depends on the heat flux, as

explained in Section 3.2. Then, by using Equation (3.38) in

the metal, we obtain the final expression for this boundary

condition:

)F − )" = − 1

2

∫
Ω+

~$"
� E

"
�,=

% 5
4@,"

�
%) 3�

1 + B
1 − B @= , (3.41)

assuming that the specularity B is the same at both sides of

the interface. Then, by isolating the instrumental temperature
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)F and equaling both equations, it is obtained

)−)" = −1

2

�(Γ−1+Γ−1

" )®@ ·=̂+Γ
−1

(
=
" :
®∇®@ − � ®∇ · ®@

)
, (3.42)

where the next coefficients are defined

� ≡ 1 + B
1 − B , (3.43a)

Γ ≡
∫
Ω+

~$�E�,=
% 5

4@

�

%)
3�, (3.43b)

=
" ≡ −

∫
Ω+

~$�E�,=
=

�1,�3�, (3.43c)

� ≡
∫
Ω+

~$�E�,=62,�3�. (3.43d)

This result, known as temperature jump, is the same as the

one obtained in [57] in steady-state or what we obtained in

[63], but in both cases, it is used in a gray model. Notice

that the term (Γ−1 + Γ−1

"
)/2 is the typical result of the Diffuse

Mismatch Model (DMM) or the Kapitza resistance [118, 119].

Nevertheless, this term assumes a perfect contact (i.e., on

all surfaces, both materials are in contact). Therefore, it can

be considered as a lower bound. The boundary resistance

for a real interface is larger, even being of the same order.

In [63], we obtained that Γ−1

4G? = 2.71Γ−1
, where Γ−1

4G? is the

experimental value.

The additional terms of Equation (3.42) (Γ−1
=
" :
®∇®@ and

Γ−1� ®∇ · ®@) are related to the system’s nonlocality. Actually,

=
"

and � are lengths. Equations (3.43c) and (3.43d) are presented

under the RTA to get a physical insight

=
" = 3

〈
E�,=®E�®E��2

�

〉
+〈

E2

���
〉 , (3.44a)

� = 〈E�,=��〉+ , (3.44b)

where it has been defined that 〈G�〉+ ≡
∫
Ω+

~$�
% 5

4@

�
%) G�3�/�E .

We found that these two terms generally do not have any rele-

vant contribution [63–66]. We only expect a significant effect

when extreme non-equilibrium situations are considered.
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3.4.2 Tangential heat-flux boundary condition.
The slip-boundary condition

As mentioned in Section 3.3, the GKE is analogous to the

NSE, specifically, the ℓ 2(∇2+
 ®∇· ®@) terms in Equation (3.26b)

and the viscous terms of the NSE. Thus, concepts such as

friction and vorticity become relevant [59]. Then, in analogy

with the flow of rarefied gases with large Knudsen numbers,

a slip boundary condition is expected [120].

The slip boundary condition is naturally derived when

applying Equation (3.33), considering the heat flux as a

conserved magnitude,∫
Ω

~$�®E�®E� 5�3� =
∫
Ω−

~$�®E�®E� 5 −� 3�+
∫
Ω+

~$�®E�®E� 5 +� 3�,
(3.45)

with the distribution function of Equation (3.15), as presented

in [57, 62] for a single Debye branch (E� = E = constant) and

a single phonon relaxation time (�� = � = constant). In this

case, with a procedure completely analogous to the previous

section, it is obtained that

@A = �ℓ
(
∇=@A + ∇A@=

)
, (3.46)

which is the slip boundary condition obtained in [57, 62],

but also considering the normal-to-the-surface components

since we are not considering a free surface. For a free surface,

we recover exactly the results in [57, 62].

3.5 Conclusions
As a summary of the chapter, we have obtained on micro-

scopic grounds that, beyond Fourier, the next approximation

of heat transport in general non-metallic substances is the

hydrodynamic equation (GKE), which recovers Fourier at

large scales. In contrast to general belief, it includes kinetic

materials like silicon and fills the gap between extensive

nanoscale experiments in kinetic substances andmicroscopic

theory. This framework can be applied to materials both in

the limit dominated by normal scattering and in the inter-

mediate regime when normal and resistive collisions are

relevant and where this formalism may shed light on the

interpretation of experiments.

Another important point of the formalism is the proper

derivation of the boundary conditions using kinetic theory.
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With them, the distribution function and the transport equa-

tions, we have a complete picture of the thermal transport

going from a microscopic to a macroscopic perspective.

Furthermore, the FDF recovers Fourier’s law when con-

sidering a uniform
®∇) and a stationary situation, with the

same results as found through previous methods [37]. Thus,

we have validated the formalism for a known situation.

Finally, the main feature of FDF is its mathematical

simplicity. With ab initio expressions for all the parame-

ters, it results in a predictive model for a wide range of

non-equilibrium situations. The equations used to solve

the system (Equations (3.26a) and (3.26b) combined with

the boundary conditions) can be implemented with finite

element methods, and computational costs of this imple-

mentation are much smaller than the computational cost of

directly solving the BTE.
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The GKE was derived for general collisions operator, disper-

sion relations, and branches in the previous chapter. Never-

theless, it was originally derived by Guyer and Krumhansl

in the collective regime, i.e., when # � ', and assuming

a single branch and Debye approximation [52, 74]. In this

regime, normal collisions strongly correlate the evolution of

the populations of different phonon modes. This implies, for

example, that RTA does not apply since phonon modes do

not evolve independently: a detailed study of this limit re-

quires including the off-diagonal terms in the linear collision

operator � [52, 69].

In this chapter, we apply FDF to the collective limit [121],

which allows us to recover Guyer and Krumhansl results

under their assumptions and generalize them to several

branches and general dispersion relations. The recovery of

these results through this entirely different method supports

the FDF.

In addition, we obtain a refined expression for the

phonon distribution function in this regime. Typically, when

normal collisions dominate, it is considered that the distri-

bution function is the displaced one [7, 43, 52, 57, 69, 74, 106,

111–113], which, as mentioned, describes a collective motion

of phonons that seem to move at the same drift velocity ®D.
Our phonon distribution function differs from the displaced

one because of the non-null coefficients accounting for the

memory and nonlocal effects (i.e., ®�� and

=

�� of Equation

(3.15) in the collective limit are not zero). Even though these

coefficients may be small, they are necessary for a consistent
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and complete description of the collective limit, as will be

seen in Section 4.1. This generalization of the phonon dis-

tribution function in the collective limit will also allow us

to solve a long-standing issue about the velocity of second

sound in this limit.

The chapter is organized as follows: in Section 4.1, we

derive the phonon distribution function in the collective limit.

In Section 4.2, we use the distribution function to obtain the

transport coefficients in this regime. Finally, in Section 4.3, we

analyze the second-sound velocity in collective materials.

4.1 Non-equilibrium distribution
function

The objective of this section is to derive the phonon distribu-

tion function in the collective limit. According to FDF, if the

phonon distribution function is simply the displaced one, it

would not generate nonlocal effects. This is because they are

related to the first derivatives of the heat flux appearing on

the distribution function. In that case, the results would be

analogous to the ones obtained in Section 3.2, where Fourier’s

law is recovered.

FDF postulates that the distribution function depends

on the heat flux and its derivatives as given by Equation (3.15),

with the weight functions being the solutions of Equations

(3.22a)-(3.22d). To determine these weights in the collective

limit, we will use that, in the limit where resistive collisions

are absent, in stationary and homogeneous situations, the

solution of the BTE is the displaced (or drifting) Bose-Einstein

distribution [90, 99] (Equation (2.13)), as mentioned above.

On the other hand, under stationary and homogeneous

conditions, the ansatz of Equation (3.15) simplifies to 5� =

5
4@

� + ®�� · ®@. This has the same form as Equation (2.13). This

yields the heat flux ®@ ∝ ®D, which allows identifying ®�� in the

collective limit as

®�2>;� =
3

�E

〈
E�
E?,�

〉 ®:
$�

%) 5
4@

� . (4.1)

Notice that this equation is applied to systems of different

dimensions 3 and, in particular, to 2D materials (3 = 2) like

graphene, where normal collisions are dominant [54].

The other weight functions can be evaluated by taking
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into account that in the limit # � ', one can approximate

the collision operator acting on function G� as �(G�) '
#(G�) ' − G�

�#,�
, with �#,� the relaxation time for the normal

scattering of the �-mode and G� = ®��, 61,�, and 62,�. Let

us note, however, that this does not apply to ®�2>;� since #

conserves momentum, and then #(®�2>;� ) = #( 5 3� ) = 0. By

using Equations (3.22b)-(3.22d), one has

®�� = �#,�

(
�
�

% 5
4@

�

%)
®E� − ®�2>;�

)
+ � ®�2>;� (4.2a)

=

�1,� = −�#,� ®�2>;� ®E� (4.2b)

62,� =
�#,�
�E

% 5
4@

�

%)
. (4.2c)

The last term in Equation (4.2a) is introduced because the

integration of ®�� in this limit is determined aside from a

function proportional to ®�2>;� because #(®�2>;� ) = 0. Transport

coefficients � and � are determined below (Section 4.2), and

coefficient � is subsequently obtained by the constraint of

Equation (3.23). All weights are thus specified.

Wenowcompare these results toGuyer andKrumhansl’s

[52] (developed in Section 2.2.4) to remark on the differences

between the two formalisms. In their derivation, the au-

thors expressed the distribution function in terms of the

eigenvectors of the symmetrized normal scattering operator.

Since only two of these eigenvectors are known (the ones

related to the energy and crystal momentum), they could

only find explicit expressions for the first terms of the expan-

sion. This gives the displaced distribution Equation (2.13)

or, equivalently, 5
4@

� + ®�� · ®@, but not the higher order terms.

Our formalism, instead, provides higher order corrections in

terms of the flux derivatives, Equation (3.15), with explicit

expressions for the weights. One might think that these cor-

rections, which are of order �#,�, are small and could be

neglected. Instead, let us stress that they are necessary for a

consistent and complete description of the collective limit, as

previously mentioned, like thermal viscosity or the proper

definition of second sound velocity.
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4.2 Transport coefficients
Our purpose now is to evaluate the transport coefficients

by introducing the weights calculated above in the general

expressions of the formalism, Equations (3.20a)-(3.20f), and

compare them to previous work.

As we commented previously, since crystal momentum

is conserved in normal collisions, i.e.,

∫
~®:�#( 5�)3� = 0,

below, we use that

∫
~®:��(G�)3� =

∫
~®:�'(G�)3�, for any

weight function component G�.

4.2.1 Relaxation time, �
The general expression for �, Equation (3.20b), gives in the

collective regime

� =

∫
~:�'(�2>;� )3� −

∫
~:��2>;� 3�∫

~:�'(�2>;� )3�
. (4.3)

Since in this regime ' → 0, one has

∫
~:�'(��)3� �∫

~:���3�, and the heat flux relaxation time is

� = −
∫
~:��2>;� 3�∫

~:�'(�2>;� )3�
≡ −'∗−1

11
, (4.4)

which is an average resistive scattering rate. The notation

'∗
11

follows the original one by Guyer and Krumhansl [52]

since it can be seen that the quotient in Equation (4.4) can

be written as '∗
11
≡< 1G |R∗ |1G>, i.e., the component of the

symmetrized Resistive collision operator R∗ projected to the

normalized eigenvector |1G> of the symmetrized Normal

scattering operator N∗ (see Appendix B for the definitions

of symmetrized operators and eigenvectors of N∗). This is
also the result found by Guyer and Krumhansl. When one

approximates ' ' − 1

�',�
, then � =< 1G | 1

�',�
|1G>−1

, which is

the most common expression used for the relaxation time in

the collective limit [52, 54, 74].
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4.2.2 Thermal conductivity, �
The general expression for the thermal conductivity (Equa-

tion (3.20d)) yields

� = −
∫
~:�E�%)5

4@

� 3�∫
~:�'(�2>;� )3�

, (4.5)

and using expression Equation (4.4) for � and Equation (4.1)

for �2>;� it can be rewritten as

� =
1

3
�E

〈
E�

E?,�

〉
2 〈
E−2

?,�

〉−1

�. (4.6)

This is the general expression for the thermal conductivity

in the collective limit for arbitrary dimensions.

Furthermore, suppose one considers the Debye approx-

imation and a single phonon branch with velocity E in 3D,

as assumed in the original work of Guyer and Krumhansl.

Then, one has � = 1

3
�EE

2�, which is the result obtained in

[52].

4.2.3 Non-local length, ℓ
Introducing Equation (4.2b) into Equation (3.20e) yields

ℓ 2 = − 1

3 + 2

∫
~:�E2

��
2>;
� �#,�3�∫

~:�'(�2>;� )3�
. (4.7)

By using Equation (4.4), it can be written in terms of eigen-

vectors |1G> as

ℓ 2 =<1G |E2

H�#,� |1G> �. (4.8)

Interestingly, this result agrees with [29], obtained using

Callaway’smodel. The latter expressionprovidesmicroscopic

insight into the physical meaning of ℓ and the difference

between the NSE and the GKE. In fluids, particles conserve

momentum, while resistive scattering does not, and as we

discuss below, this is responsible for a characteristic length ℓ

in phonons.

According to the GKE, the thermal viscous diffusivity is

given by � = ℓ 2/�. Equation (4.8) sets that � is simply given

by an average on E2

H�# , which reflects the physical origin of

the diffusion of heat flux andmomentum in this limit, namely

normal scattering. In contrast to fluids, where momentum
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is conserved, resistive collisions destroy momentum so that

it diffuses only a finite time of order �. This results in a

transport equation for phonons characterized by the length

diffused by momentum before being destroyed, which is

approximately �� = ℓ 2
.

In terms of averages, in 3 dimensions the nonlocal length

writes as

ℓ 2 =
1

3 + 2

〈
E2

�

E2

?,�

�#

〉 〈
E−2

?,�

〉−1

�. (4.9)

A single Debye branch in 3D yields ℓ 2 = 1

5
E2 〈�#,�〉 �, as

obtained by Guyer and Krumhansl [52, 74].

4.2.4 Time parameter �4
Substituting Equations (4.2b) and (4.2c) in Equation (3.20a)

gives

�4 =

〈
E�
E?,�

�#,�
〉
−

〈
E�
E?,�

〉
〈�#,�〉〈

E�
E?,�

〉 . (4.10)

One finds that in the Debye approximation, �4 = 0 and

generally it is of order 〈�#,�〉. Consequently, condition () −
)′)/) = $�4Δ)/) � 1 is safely satisfied for $ 〈�#,�〉 < 1,

which is already a condition for the collective regime.Namely,

the timescale of experiments must be larger than normal

scattering times [69, 74, 112].

4.2.5 
-parameter
In 3 dimensions, one has


 = 2 − 3 + 2

3

〈
E�
E?,�

�#,�
〉〈

E2

�

E2

?,�
�#,�

〉 〈
E�

E?,�

〉
− ��4
�Eℓ 2

. (4.11)

In Debye approximation, one gets 
 = 3−2

3 , as mentioned in

Section 3.3.2, which is a different result from the Guyer and

Krumhansl work, where they obtain 
 = 2 [52].

4.2.6 Time parameter �?
According to Equation (3.20c), �? directly vanishes for iden-

tical Debye branches because of constraint Equation (3.23),
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in agreement with Guyer and Krumhansl. For general dis-

persion relations, it can be written as �2

? = �̃#� by defining

�̃# =

∫
~�2>;� :�3�∫
~:��2>;� 3�

. (4.12)

The latter is a difference of two averages of �#,�, so �̃# is

of order 〈�#,�〉 (indeed smaller). Then, the quotient of the

second and first-time derivative terms in Equation (3.26b) is

$�2

?/� ≈ $ 〈�#〉. This is much smaller than 1 in the collective

limit, so the second time derivative can be neglected, and

one recovers the GKE.

4.3 Second-sound velocity in the
collective limit

Second sound is the propagation of heat in the form of waves,

as first sound is the wave propagation of momentum or

density disturbances. These waves have been experimentally

observed in some solids at cryogenic temperatures [122–124]

and more recently in graphite below 200 K [61, 125]. In these

cases, normal collisions dominate, which is the expected

regime for second sound to be detected [69, 74]. Recently,

however, we have observed second sound in germanium at

room temperature [66], where resistive collisions are very

important. Despite this, in this section, we focus on second

sound in the collective limit.

Quite surprisingly, in this limit, two expressions for the

velocity of second sound have been used in the literature

[28, 54, 55, 69] coming each from different approximations

of the BTE, the so-called drifting and driftless approxima-

tions. Remarkably, they lead to different results, and the

differences are especially important in low-dimensional ma-

terials. We are thus faced with two different predictions for

the same experimental situation, i.e., the speed of second

sound in the collective limit. It is thus both theoretically and

experimentally relevant to solve this conflict.

In this section, we will show that a proper analysis of

the BTE predicts just a single velocity for second sound in

the collective limit, thus solving the conundrum [121]. In

the following, it is presented the derivations leading to the

drifting and driftless expressions for the second sound speed,

and then shows how the FDF solves the paradox.

Drifting and driftless approximations use the energy
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conservation equation and assume that the phonon distri-

bution function tends to the displaced distribution in the

limit of negligible resistive scattering. The conflict comes

from two possibilities of projecting the BTE to obtain macro-

scopic equations: either on the crystal momentum (drifting

approximation) or the heat flux (driftless approximation) [55,

69].

4.3.1 Drifting approximation
In this limit, crystal momentum is conserved, so the BTE

leads to the following balance for energy and momentum

%4

%C
+ ®∇ · ®@ = 0 (4.13a)

%®?
%C
+ ®∇ ·

=

Π = 0. (4.13b)

Introducing the displaced distribution (Equation (2.12)) in

the 4, ®@, ®?, and
=

Π expressions yields

�E
%)

%C
+ )
3
�E

〈
E�

E?,�

〉
®∇ · ®D = 0 (4.14a)

)

3
�E

〈
1

E2

?,�

〉
%®D
%C
+ 1

3
�E

〈
E�

E?,�

〉
®∇) = 0. (4.14b)

The combination of these equations supplies a wave equation

for temperature (and for the drift velocity) with propagation

speed

E2

3A8 5 C
=

1

3

〈
E�
E?,�

〉
2〈

1

E2

?,�

〉 (4.15)

The Debye approximation in 3 dimensions yields

E2

3A8 5 C
=

1

3

〈
1

E2

?,�

〉−1

. (4.16)

For identical branches, it gives E2

3A8 5 C
= E2/3, with E the first

sound velocity [52, 69].
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4.3.2 Driftless approximation
If instead of projecting the BTE on the quasimomentum, one

projects it on the heat flux, one gets a balance for the heat

flux

%®@
%C
+ ®∇ ·

=

& =

∫
~$�®E�#( 5�)3�, (4.17)

with

=

& =
∫
~$�®E�®E� 5�3� the flux of the heat flux. For

the displaced distribution, the right-hand side of Equation

(4.17) vanishes since #( 5 3� ) is identically null. Combining

the previous equation with the energy conservation yields

a wave equation for temperature, but now with a different

velocity

E2

3;4BB
=

1

3

〈
E2

�

〉
. (4.18)

In [69], this expression for the second sound velocity is

derived without assuming that the distribution function is

the drifting one, thus the name of driftless velocity. InDebye’s

approximation, it yields in 3 dimensions,

E2

3;4BB
=

1

3

〈
E2

�,?

〉
, (4.19)

which is different from Equation (4.16) except for identical

branches [69].

Figure 4.1 highlights the differences between drifting

and driftless velocities for graphene obtained from Equations

(4.15) and (4.18), which differ in a factor of around 2 as found

for carbon nanotubes [55].

Figure 4.1: Second sound veloci-

ties for graphene for drifting (red

solid line) and driftless (blue solid

line) expressions at different tem-

peratures. The drifting results are

compared with the results in [54]

(red dashed line) and the drift-

less results with the results in [28]

(blue dashed line). Image extracted
from [121].
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4.3.3 Flux derivatives formalism
In our framework, the heat flux obeys the GKE. In the ideal

collective limit, where resistive scattering can be neglected

(�→∞) and �# → 0, it reduces to

�
%®@
%C
+ � ®∇)′ = 0. (4.20)

Combinedwith energy conservation, it yields a thermalwave

equation with a second sound velocity given by

E2

(( =
�
�E�

. (4.21)

Using the expression for � in the previous section (Equation

(4.6)), one finds

E(( = E3A8 5 C . (4.22)

Then, the FDF supplies the drifting second sound velocity in

the collective limit.

This is the same result as with the direct numerical

solution of the BTE: for graphene ribbons obtains a velocity

for second sound in the collective limit which coincides with

the drifting velocity [126].

Then, we show how our formalism [121] allows un-

derstanding: i) why the driftless approximation supplies a

wrong prediction; and ii) that a proper analysis of the heat

flux projection also predicts for the second-sound speed the

drifting (not driftless) velocity.

In the driftless derivation, the right-hand side of Equa-

tion (4.17) identically vanishes so that the heat flux is con-

served. This result is a bit surprising because a normal

collision conserves quasimomentum ~®: but not the heat flux
~$�®E�. For instance, in a three-phonon normal collision, one

generally has $1
®E1 + $®E2 ≠ $3

®E3. Two conditions are neces-

sary for equality to hold generally: linear dispersion relations

(Debye approximation) and identical branches. Aside from

this particular case, the energy flux generally changes direc-

tion after a normal collision. This feature has been noticed

previously and led the authors of [55] to prefer the drifting

velocity to the driftless solution in their analysis.

Let us note, however, that the no conservation of ~$�®E�
in collisions is not necessarily in contradiction with that the

integral

∫
~$�®E�#( 5�)3� vanishes, i.e., the sum of heat flux

variations for all collisions in a given position could still be

zero so that the total heat flux ®@ would still be a conserved
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macroscopic quantity. This apparently improbable situation

is actually what happens for homogeneous and stationary

cases, as shown by Peierls [127], since then the solution of the

BTE is the displaced distribution and #( 5 3� ) = 0; in this case,

a uniform heat flux is maintained without a temperature

gradient [90].

The key issue in our study [121] is whether the heat flux

®@ is conserved in unsteady and inhomogeneous situations,

such as in wave propagation. Our formalism sheds light on

this point. According to the FDF, the distribution function is

given by Equation (3.15), so the heat source term in Equation

(4.17) yields∫
~$�®E�#(®��)3� · ®@ +

∫
~$�®E�#( ®��)3� ·

%®@
%C
. (4.23)

The term in

=

�� vanishes by symmetry in isotropic sys-

tems. In the collective limit, the first term vanishes because

#(®�2>;� ) ∝ #( 5
3
� ) = 0, as in the driftless derivation. However,

the last term survives, and, as a result, the heat flux is not
generally conserved in unsteady situations, at variance with

the driftless derivation. This explains why this approach pro-

vides wrong predictions for the velocity of second sound.

There is yet to be seen whether the inclusion of the

source term in the heat flux equation solves the conflict,

i.e., whether the heat flux projection predicts for second

sound the drifting velocity obtained through the momentum

projection. The source term can be easily evaluated with

the help of the general equation for �( ®��), Equation (3.22b),

which yields∫
~$�®E��( ®��)3� = I − �

�

∫
~$�®E�®E�

% 5
4@

�

%)
, (4.24)

where constraint for ®��, Equation (3.13), has been used. Intro-

ducing the non-equilibrium phonon distribution, Equation

(3.15), in the expression for the flux of the heat flux,

=

&, can be

approximated in this (collective and infinite medium) limit

to the local equilibrium one up to terms of order $��#,�. The
Flux derivatives formalism thus gives the balance equation

of the heat flux

%®@
%C
+ 1

3
�E

〈
E2

�

〉 ®∇) = (
1 − �

3�
�E

〈
E2

�

〉) %®@
%C
. (4.25)
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Remarkably, terms cancel out, and one is left with Equation

(4.20). We thus recover a wave equation with the drifting
speed for second sound, in agreement with the drifting

derivation as consistency is required.

4.3.4 Discussion
The derivation above shows that the origin of the error in

the driftless derivation was to assume that the displaced

distribution was a good approximation for the distribution

function in the collective limit. It is the inclusion of the term

in %®@/%C in the distribution function that allows solving

the inconsistency. This underlines the pertinence of using

this macroscopic quantity as an independent variable in the

nonequilibrium phonon distribution, as assumed in the FDF.

Indeed, both the driftless and drifting derivations above

assume the displaced phonon distribution. Despite this is

not correct in unsteady or inhomogeneous situations in none

of these cases. Nevertheless, the drifting derivation provides

good results because momentum conservation in normal

collision gets rid of the term in heat flux time derivative,

in contrast to what happens when projecting on the energy

flux.

Interestingly, we have obtained a closed expression for

the source term in the heat flux balance equation, Equa-

tion (4.25). It shows that when resistive scattering can be

neglected, the heat flux is a conserved quantity in stationary

situations, not only for the homogeneous case, as studied by

Peierls, but also for inhomogeneous ones, as in stationary

Poiseuille flow, where ®@ is only destroyed at boundaries. In

unsteady situations, it is helpful to write the source term as

(1−E2

3;4BB
/E2

3A8 5 C
)%®@/%C. Since both velocities are generally dif-

ferent, the source termdoes not vanish, and ®@ is not conserved.
Nevertheless, it becomes null for linear dispersion and iden-

tical branches, in agreement with the conservation of ~$®E
in each collision discussed above. Typically, E3;4BB > E3A8 5 C
(see for instance Equations (4.16) and (4.19), or [55]) so that

the prefactor of %®@/%C is negative. Notice however that the

source term has not a definite sign. In a thermal wave, for

instance, %®@/%C changes the sign and the source term with

it. Accordingly, at any point in space, the heat flux is created

and destroyed periodically by normal collisions. Thus, the

effect of normal collisions is not to destroy heat flux but to

introduce a delay in the heat flux.
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Let us finally comment that Hardy introduced the drift-

less second sound velocity by assuming a general odd per-

turbation describing situations not restricted to the collective

limit [69]. Then the phonon distribution is not necessarily the

displaced one, thus the name driftless second sound. Hardy

considered a RTA model (therefore out from the collective

limit) with a constant relaxation time in his heuristic deriva-

tion. Our model also yields the driftless second sound speed

under these approximations since, in RTA, � = 1

3�E
〈
E2

�

〉
�.

However, ourmodel is not restricted to these approximations,

and it generally sets E2

((
= �

�E�
.

Finally, we present some conclusions. First, we have

applied FDF to the collective limit [121].When considering the

approximationsdonebyGuyer andKrumhansl in the original

work [52], we recover the same results but extend them

to general dispersion relations. Thus, we have theoretical

support of the FDF in the collective limit. Furthermore, we

have demonstrated the need to include the first derivatives

of the heat flux in the phonon distribution function. This

allows the conciliation of the drifting and driftless velocities,

and concludes that the displaced distribution function is

insufficient to completely describe systems in the collective

limit.



Kinetic limit and
intermediate regimes 5

The primary motivation of this thesis was to provide a

theoretical foundation for the GKE in kinetic materials like

silicon. In Chapter 3, we have provided a derivation of the

GKE for the general collisions operator. In this chapter, we

will apply these results to the RTA [70] and Callaway’s

approximation.

As mentioned in Section 2.2.1, RTA is a paradigmatic

example of kinetic materials, and also, with this approxima-

tion, we obtain the GKE with relevant nonlocal effects. This

is at odds with a recent macroscopic model obtained from

the BTE [43], where they obtain negligible viscous effects

for kinetic materials. Furthermore, the simplicity of the RTA

will allow us to obtain explicit equations for the transport

parameters and, then, to obtain a physical interpretation of

its expressions. Thus, we will also provide numerical values

for all these parameters using ab initio techniques. This will

check the validity of the FDF and its GKE derivation in

materials where resistive collisions dominate.

We will also apply the FDF to Callaway’s approxima-

tion. The objective is to obtain expressions for the transition

between kinetic and collective materials and recover the ex-

pressions of the RTA and the collective cases in the limits to

validate it.

The chapter is organized as follows: in Section 5.1, we

will derive the GKE for kinetic materials, and in Section

5.2, we will do it under Callaway’s approximation. In both

cases, we will provide explicit expressions for the phonon

distribution function, the transport parameters, and their
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values through ab initio techniques.

5.1 Kinetic limit: the Relaxation Time
Approximation solution

In Section 3.3, we have derived the GKE with a general lin-

earized collisions operator for moderate Knudsen numbers.

This means that, in contrast to common belief, the hydrody-

namic equation is recovered, whatever the collision operator

it is. Thus, also, in the kinetic limit, where resistive collisions

dominate, the GKE is predicted, and it is not necessary that

normal collisions dominate.

In the present section, a paradigmatic example of the

kinetic limit, the RTA [35], is used to obtain the GKE with

explicit expressions for the distribution function and the

transport parameters [70]. This limit has proved to compare

well with experimental thermal conductivities in bulk silicon

and germanium in a wide temperature range [95], which is

of great interest in technological applications. In Appendix

E, we present an alternative derivation of this kinetic limit

with the same results as in the present RTA derivation.

To do so, results in Section 3.3 for the general collisions

operator are used in the RTA, which is the collisions operator

in Equation (2.10). Then, the complete distribution function

is obtained by using Equations (3.22a)-(3.22d):

5� = 5
4@

� +
��
�

% 5
4@

�

%)
®E� · ®@ +

��(� − ��)
�

% 5
4@

�

%)
®E� ·

%®@
%C

−
�2

�

�

% 5
4@

�

%)
®E�®E� :

®∇®@ + ��
�E

% 5
4@

�

%)
®∇ · ®@.

(5.1)

To our knowledge, this expression is the first simple ex-

pression for the phonon distribution under unsteady inho-

mogeneous conditions in terms of first-principle quantities

[70]. Interestingly, when considering a mode-independent

relaxation time (�� = �0 = constant) and identical Debye

branches (E� = E = constant), Equation (5.1) yields the dis-

tribution function obtained in [57] through a regularized

Grad’s method.

The transport parameters are also directly obtained

when an explicit expression for the collision operator is

assumed. In this case, using Equations (3.20a)-(3.20f) and
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Equation (3.27), we obtain:

� =

〈
E2

��
2

�

〉〈
E2

���
〉 , (5.2a)

�2

? =

〈
E2

��
2

�

〉 〈
E�
E?,�

��
〉

〈
E2

���
〉 〈

E�
E?,�

〉 −
〈
E�
E?,�

�2

�

〉〈
E�
E?,�

〉 , (5.2b)

� =
1

3
�E

〈
E2

���
〉
, (5.2c)

ℓ 2 =
1

3 + 2

〈
E�
E?,�

E2

��
2

�

〉〈
E�
E?,�

〉 , (5.2d)


 = 2−3 + 2

3

〈
E2

���
〉 〈

E�
E?,�

��
〉〈

E�
E?,�

E2

��
2

�

〉
−3 + 2

3

〈
E�
E?,�

〉 (〈
E2

��
2

�

〉
−

〈
E2

���
〉
〈��〉

)〈
E�
E?,�

E2

��
2

�

〉 , (5.2e)

From these equations, there are some points to remark

on. First, the expected thermal conductivity under the RTA

is recovered. Second, the nonlocal length ℓ is an average

of the phonon MFPs. This implies that even in the kinetic

regime, the nonlocal length can play an important role in the

description of the system. In the Debye approximation with a

mode-independent relaxation time, it yields ℓ 2 = Λ2/(3 + 2),
with Λ the mode-independent MFP, as found by Guo and

Wang [57]. The values for different materials of the nonlocal

length using Equation (5.2d) are plotted in Figure 5.1. The

results are very similar to the KCM prediction.

Another remarkable result comes from the heat-flux re-

laxation time. Usually, � is considered as �� ≡ 3�/(�E
〈
E2

�

〉
),

which is the time appearing on the thermal conductivity.

This expression, under the RTA, gives �� =
〈
E2

���
〉
/
〈
E2

�

〉
.

The present result (Equation (5.2a)) is substantially different.

A numerical comparison between � and �� will be seen in

Appendix A, where it is observed that � � ��, which implies

thatmemory effects appear at larger time scales than typically

expected. Furthermore, it also can be observed that �2 � �2

? ,
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the RTA for differentmaterials (di-
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70 K to 500 K. Silicon is compared
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Appendix A.

which means that, in general, the contribution of �2

?
%2®@
%C2 is

negligible. A comparison of � and �? and the 
 parameter,

using ab initio calculations, is in Figure 5.2.
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Figure 5.2: Heat flux relaxation

time �, �? , and the 
 parameter

under the RTA for different mate-

rials (diamond, germanium, and

silicon) for a range of tempera-

tures from 70 K to 500 K. The

value of �? is an order of magni-

tude lower than �. The ab initio
calculations are described in Ap-

pendix A.

In conclusion, we have demonstrated that the GKE can

be derived in the kinetic limit, in contrast to the common

belief: the transport parameters related to the nonlocal and

memory effects are non-negligible. For example, as shown in

Figure 5.1, the nonlocal length is of the order of hundreds of

nanometers at room temperature. Then, when experimental

sizes reduce to the order of microns, we can observe these

effects. Extensive experimental validation in kinetic materials

of these parameters will be shown in Chapter 6.

Nevertheless, the results obtained in the present section

are not valid for materials where normal collisions play an

important role. Contrarily, in Chapter 4, we have provided

the derivation in the collective limit. Thus, we have both

limits. To obtain a transition between them, we will apply

Callaway’s collisions operator in the next section. This will



5 Kinetic limit and intermediate regimes 60

allow us to obtain physical insight into intermediate regimes

and observe the contribution of normal collisions to the

parameters of the GKE and the distribution function.

5.2 Intermediate regimes: the
Callaway’s solution

The GKE was first derived in the collective limit [52] (Chap-

ter 4), and we have derived it in the kinetic limit [70] (in

the previous section). Nevertheless, there is no derivation

for intermediate regimes, apart from the general collisions

operator, which can not provide explicit expressions for the

parameters or the distribution function. In this section, we

will use Callaway’s collisions operator to capture the effects

of the normal collisions for those materials where there is no

clear dominance of normal nor resistive collisions. Then, we

provide a physical insight into the interplay between these

scatterings, and thus, we obtain an interpolation between

kinetic and collective regimes.

To do so, we will use FDF following some of the steps

presented in the original work of Callaway [27]. The collisions

operator proposed, already presented in Equation (2.14) and

rewritten here to be more clear, is

�( 5�) = −
5� − 5 4@�
�',�

−
5� − 5 3�
�#,�

. (5.3)

For instance, the drift velocity ®D appearing on the displaced

distribution function 5 3� is obtained by imposing that the

normal collisions conserve the momentum (Equation (2.15)),

as in Section 2.2.2. Then, the drift velocity is

®D = 3

�E)

〈
1

E2

?,�

〉 ∫
~®:�

5�

�#,�
3�. (5.4)

From this equation, there is an important conclusion. Equa-

tion (5.4) shows that the drift velocity depends on the distri-

bution function through its integration. This means that the

drift velocity has different values depending on the ansatz

for the distribution function 5�. Actually, in the original work

by Callaway [27], it is assumed that the distribution function

is proportional to the temperature gradient
®∇), and then

also the drift velocity is proportional to it. However, this is
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not the general case.

Another important conclusion can be extracted from

the collisions operator, which can be written as follows by

substituting the expression for the displaced distribution

function (Equation (2.13)) into Equation (5.3)

�( 5�) = −
5� − 5 4@�
��

+ )

E�E?,��#,�

% 5
4@

�

%)
®E� · ®D. (5.5)

Then, Callaway’s collisions operator can be decomposed

into an RTA-like collisions operator plus a second term that

depends on the drift velocity. This means that when the RTA-

like collisions operator part dominates, the results presented

in Section 5.1 should be recovered.

Notice that so far, there is no assumption on the distribu-

tion function 5�. Nevertheless, in this section, the ansatz for

the distribution function considered is Equation (3.15), which

depends on the heat flux and its first derivatives, and then,

the corresponding drift velocity is (using Equation (5.4))

®D = 1

)

(
�®@ + �

%®@
%C

)
, (5.6)

where it has been defined that

� ≡ 1

�E

〈
E2

?,��#,�
〉 ∫

~:
��
�#,�

3�, (5.7a)

� ≡ 1

�E

〈
E2

?,��#,�
〉 ∫

~:
��
�#,�

3�, (5.7b)

being �� and �� the weights appearing on the phonon dis-

tribution function (Equation (3.15)). Then, the displaced

distribution function is

5 3� = 5
4@

� +
�

$�

% 5
4@

�

%)
®: · ®@ + �

$�

% 5
4@

�

%)
®: ·

%®@
%C
. (5.8)

As already mentioned, the displaced distribution function

depends on the ansatz for the distribution function. In the

present case, the drift velocity depends on the heat flux

and its temporal derivative. When considering a stationary

situation with a uniform temperature gradient, Equation

(5.6) recovers the typical result presented in [27], where the

drift velocity is proportional to the temperature gradient.

Following the procedure in Section 3.3, all the transport
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coefficients can be obtained. First, we recover the typical

expression for Callaway’s thermal conductivity (Equation

(2.16)). As pointed out in Section 2.2.2, in kinetic materials,

it is expected that the thermal conductivity of the RTA part

is a good approximation. However, in collective materials,

the perturbation due to Callaway’s approximation is more

relevant or even dominant. A similar analysis can be done for

the other transport parameters, like the heat-flux relaxation

time � and the nonlocal length ℓ :

� =

〈
��

�',��#,�

〉 〈
�2

�

〉
+ 2

〈
��
�#,�

〉 〈
�2

�
�#,�

〉
+

〈
��

�#,�

〉
2

〈
�2

�
�2

#,�

〉
〈

��
�',��#,�

〉〈
��

�',��#,�

〉
〈��〉 +

〈
��
�#,�

〉
2

, (5.9a)

ℓ 2 =
1

3 + 2

E2

(〈
�2

�

〉
+

〈
��
�#,�

〉 〈
�2

�

�#,�

〉)
, (5.9b)

where, for the seek of simplicity, the presented expressions

are under Debye’s approximation and a single branch (E� =

E = constant), as also will be for the following expressions

for �? and 
. The general expressions for a general dispersion
relation are presented in Appendix F. For both cases, the

nonlocal length ℓ and the heat flux relaxation time � have

terms that differ from the RTA expressions. When materials

with an important contribution of normal collisions are

considered, these terms should become relevant. However,

this only happens for very collective materials, like graphene.

For other normal-dominated materials, like Diamond or BAs,

these terms’ contribution is negligible, as will be shown in

Figures 5.3 and 5.4.

The expressions for the other parameters appearing on

the GKE are

�? = 0, (5.10a)


 =
3 − 2

3
. (5.10b)

These two last expressions recover the expected results de-

rived for a general collisions operator under Debye’s approx-

imation and a single branch (see Sections 3.3.3 and 3.3.4).

From a microscopic point of view, the distribution func-

tion in Callaway’s approximation is described by the weights
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®��, ®�� and

=

�� (see Equation (3.15))

®�� =
(
1 + �′ 1

E�E?,�

1

�#,�

)
��
�

% 5
4@

�

%)
®E� , (5.11a)

®�� =
��(� − ��)

�

% 5
4@

�

%)
®E�

+ 1

E�E?,�

1

�#,�

(
�′ − �′

� − ��

)
��(� − ��)

�

% 5
4@

�

%)
®E� , (5.11b)

=

�� = −
(
1 + �′ 1

E�E?,�

1

�#,�

)
�2

�

�

% 5
4@

�

%)
®E�®E� +

��
�E

% 5
4@

�

%)
1,

(5.11c)

where it has been defined that

�′ ≡

〈
E�
E?

��
�#

〉〈
1

E2

?

��
�'�#

〉 , (5.12a)

�′ ≡

〈
E�
E?

�2

�
�#

〉
+ �′

〈
1

E2

?

�2

�

�2

#

〉
〈

1

E2

?

��
�'�#

〉 . (5.12b)

Notice that all these weights are the RTA values obtained in

Section 5.1 with a correction, which will be dominant when

�#,� � �',�. The results for the thermal conductivity are

shown in Figure 2.3, where a difference between Callaway’s

approximation and RTA is observed for collective materials.

For the case of the nonlocal length, the effect of Callaway’s

approximation is negligible except for graphene, as can be

observed in Figure 5.3.

For the rest of the second-order or hydrodynamic pa-

rameters (heat flux relaxation time � and 
 parameter), both

models (RTA and Callaway) provide similar behavior, as can

be seen in Figure 5.4.

A possible explanation for this negligible effect can be

the following: the difference between RTA and Callaway’s

approximation is that the normal collisions relax to a function

that conserves momentum (displaced distribution function),

that, in general, is strongly related to the heat flux. The hydro-

dynamic parameters (nonlocal length, heat flux relaxation

time, and 
-parameter) are related to higher orders of the
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Figure 5.3: Nonlocal length in

Callaway’s model compared to

the RTA for different materials

(diamond, germanium, silicon,

graphene, and BAs) ranging tem-

peratures from 70 K to 500 K. Ex-

cept for graphene, which is a col-

lective material, the RTA does not

differ fromCallaway’s approxima-

tion. The ab initio calculations are
described in Appendix A.

distribution function (
®∇®@ or %C®@), and, for these cases, the

relaxation time is equivalent to the RTA. This can be seen in

Equation (5.5), where the first term is completely equivalent

to the RTA, thus affecting flux derivatives terms in the distri-

bution function. The second part of this equation only affects

the distribution-function terms that can be projected to the

crystal momentum, and thus it does not affect the terms of

the heat-flux derivatives.

These are the results ofCallaway’s approximation,which

gives a transition between the kinetic and collective regimes.

As it is expected, the corresponding collective (�#,� � �',�)
and kinetic (�#,� � �',�) limits recover the results of the RTA

presented in Section 5.1 and the collective ones presented in

Chapter 4, respectively.

Now, a comment on �? is in order. This parameter is

shown in Figure 5.4. The results using Callaway or RTA

are very similar for kinetic materials and �? is an order

of magnitude smaller than the heat-flux relaxation time

(�? � �). Nevertheless, when we use Callaway’s collisions

operator for collective materials like BAs or graphene, �2

? is

negative (�2

? < 0) and of the order of the heat flux relaxation

time (or even larger for the case of graphene), |�2

? | ∼ �2
. This

is an unphysical result. As mentioned in Section 4.2.6, in

the collective limit, this parameter is of the order of 〈�#,�〉,
which has to be very small. This is not consistent with the

results presented in this section.

A possible explanation for this inconsistency is the

use of Callaway’s collisions operator. As mentioned above,

Callaway’s and RTA results are very similar for the second-

order parameters. This is also the case with �2

? . Since BAs and

graphene are collective materials, one may assume that the
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Figure 5.4: Heat flux relaxation

time �, �? , and the 
 parameter

under Callaway’s approximation

compared to the RTA for differ-

ent materials (diamond, germa-

nium, silicon, graphene, and BAs)

for a range of temperatures from

70 K to 500 K. As in the nonlocal

length case (see Figure 5.3), except

for graphene and BAs, which are

collective materials, the RTA does

not differ fromCallaway’s approx-

imation. The ab initio calculations
are described in Appendix A.

typical collisions operator for kinetic materials, the RTA, can

lead to some problems and, thus, Callaway’s approximation

can lead to it. Furthermore, in the originalwork [27], Callaway

presented the model as a phenomenological model. This may

imply some incoherent results, as mentioned by Guyer and

Krumhansl in [74], where it is said that Callaway’s model is

only valid in the limits (where �',� � �#,� or �',� � �#,�),
and the intermediate regimes (that is the case of graphene

and BAs since RTA andCallaway’s contributions are relevant)

can lead to erroneous conclusions.

Finally, we can extract some conclusions. We have de-

rived the GKE for kinetic materials using the RTA [70] and

for intermediate regimes using Callaway’s approximation.

The results under RTA, with a nonlocal length of ∼ 200 nm

for silicon at room temperature, show that nonlocal effects

are present in kinetic materials. This is at odds with other

formalisms predicting negligible silicon viscous effects [43].

To check the validity of the results of the FDF, in the next

chapter, we will compare the predictions of the GKE using
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the ab initiowith a wide range of experiments in silicon and

germanium.

Moreover, we have provided an explicit expression for

the phonon distribution function, which is the first time to

our knowledge that a simple expression under unsteady inho-

mogeneous conditions in terms of first-principles quantities

was obtained.



Experimental support of
the FDF 6

In Chapter 3, the FDF is presented as a formalism that

yields the GKE by assuming that the phonon distribution

function depends on certain mesoscopic variables: the heat

flux, and its first derivatives [70]. The present chapter aims to

demonstrate the applicability of this equation with ab initio
parameters through multiple experimental evidence. This

evidence is presented in a wide range of situations, going

from stationary to time-dependent situations, with different

sizes or geometries, materials, and temperatures [14, 22, 23,

58, 64–67, 76, 128–130].

The experiments in this chapter and their modeliza-

tion have been performed in collaboration with numerous

research groups. In particular, the linear and circular heat

source experiments (Section 6.1.2) were performed by Pro-

fessor Shakouri’s group at the Brick Nanotechnology Centre

(University of Purdue). The heater grating experiments (Sec-

tion 6.1.3) were performed by Professor Murnane’s group

at the University of Colorado at Boulder. The observation

of second sound and the FDTR in germanium experiments

(Sections 6.1.4 and 6.2.1) were performed by Reparaz’s group

at Institut de Ciència de Materials de Barcelona (ICMAB).

The analytical solutions of the GKE of the FDTR experiment

(Section 6.1.4) were performed by Professor Myers’ group

at Centre de Recerca Matemàtica (CRM). Finally, the mod-

elization of all these experiments through the finite element

method (FEM) was performed by Dr. Beardo from our group,

which was the main contribution of his Ph.D. thesis [131].

My primary contribution in this chapter, which aims to
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explain the numerous experiments where FDF predictions

have been used, is to supply the ab initio values of the FDF

and to participate in the modelization performed by Dr.

Beardo.

The GKE, combined with the energy conservation and

the corresponding boundary conditions, is implemented

with COMSOL Multiphysics, a program that uses the FEM.

This is done using the Galerkin method implementation

[132] and its resulting weak form (see [62, 131] for further

details). The easy implementation with the FEM is one of

the main powers of the GKE since it extremely reduces the

computational cost when simulating complex geometries,

compared with the full BTE. Furthermore, the solution of the

system provides temperature, heat flux, and its derivatives,

which allows obtaining the phonon distribution function,

using Equation (3.15), and thus solving the BTE from a

microscopic point of view. Then, we will also analyze the

presented experiments from that perspective.

The sections of this chapter present different experimen-

tal situations, all supporting the FDF. Section 6.1 presents ex-

periments where the set-up’s characteristic size or geometry

is modified to observe the nonlocal effects (both in stationary

and non-stationary situations). In Section 6.2, the effects of

memory in non-stationary experiments are presented. In

Section 6.3, an experiment of time-domain thermoreflectance

(TDTR) is shown. Finally, Section 6.4 presents conclusions

about comparing the FDF with experiments.

6.1 Nonlocal effects in silicon
As already mentioned, Fourier’s law traditionally modeled

heat transport in semiconductors, which does not predict any

size effect. When large sizes are considered, above hundreds

of microns [22, 23, 76], Fourier’s law description is valid since

the characteristic length of the heat carriers, the phonons,

is smaller than this length. Fourier’s law fails to predict the

results when the length is reduced to sizes of the order of

the MFPs of the phonons [11, 18, 58]. In general, to explain

these phenomena, it is used an effective Fourier’s law with a

reduced thermal conductivity [13, 14, 16, 133] or a TBR that

depends on the size [11, 18, 21]. In terms of effective thermal

conductivity, the underlying assumption is to consider that

phonons with a MFP larger than the system size do not

contribute to heat transport. This assumption results in an
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effective thermal conductivity where the effects start at the

order of 10 microns for silicon at room temperature [22, 23,

76, 114] because the size of the larger MFPs of the phonons is

reached. Then, this implies a multiscale effect since there is

not a single size scale that characterizes the system.

However, as mentioned in previous chapters, the GKE

predicts hydrodynamic effects. Usually, the most important

effect of this model is the one predicted by the nonlocal

length ℓ (see Equation (3.19b)), which implies single-scale

effects compared with the previously mentioned multiscale

effective thermal conductivity.

This nonlocal length, which is of the order of hundreds

of nanometers (for silicon at room temperature is ℓ ≈ 195

nm [70]), is related to the correlation of the phonons in the

region determined by this length. The fact that this length

is the only size that characterizes the thermal description

of the system, instead of the multiscale behavior, relies on

the following physical assumption introduced in Chapter 3

[70].

The thermal description of the system depends on the

physical situation. When the spatial flux variation is impor-

tant enough, the distribution functionmust depend explicitly

on it, i.e., the gradient of the heat flux
®∇®@, resulting in Equa-

tion (3.15) (

%®@
%C is also included in the mentioned equation

since the temporal derivative of the heat flux is also consid-

ered to be relevant, but in this section, we are focused on

size effects). The higher-order perturbations of the distribu-

tion function (for instance, terms of the order of
®∇®∇®@) are

considered not to be excited because of the physical situa-

tion, or if they are excited, they are assumed to decay with

time much shorter than the other excitations. This results

in a distribution function that easily recovers the GKE, with

a single spatial scale. These nonlocal effects are modeled

with a Laplacian of the heat flux (∇2®@), which can be consid-

ered a generalization of Fourier’s law. This term reduces the

heat flux near the boundaries and, consequently, effectively

reduces the thermal conductivity.

The nonlocal effects are experimentally confirmed in

different situations. In the present section, we observe the

effects of reducing the characteristic sizes of the set-up, which

are fully captured by the GKE. Section 6.1.1 reproduces the

experimental thermal conductivity of silicon thin films for

different sizes and temperatures. Furthermore, we present

a microscopic description of the system according to FDF.
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In Section 6.1.2, we perform a similar analysis as in the case

of the thin film but consider linear and circular heaters. In

Sections 6.1.3 and 6.1.4, the nonlocal effects of time-dependent

experiments are studied. The first considers an initial pulse

in a nanostructured transducer on top of a semiconductor.

The second considers a FDTR experiment. In all these cases,

except for the thin films, there are interfaces between the

heaters (or an oxide layer in the FDTR experiment) and

the semiconductor. Our boundary conditions will efficiently

reproduce the contactwith ab initioparameters. This contrasts

with other formalisms, which use boundary resistance as a

fitting parameter [11, 14, 16, 18, 21, 78].

6.1.1 Thin films
Thin films are one of the most paradigmatic and simpler

situations where the size effects are observed in thermal

transport. From a physical point of view, this setup is relevant

because it can discern between a multiscale or single scale

(like the GKE) behavior of heat.When a temperature gradient

is imposed, the heat flow is different depending on the size

of the film (when the characteristic sizes are reduced to

the order of microns or nanometers [22–24, 128, 134, 135]).

This effect can be seen in the measured effective thermal

conductivity.

The GKE interpretation of this phenomenon is that the

heat flux is reduced near the boundaries of the thin film. The

boundary conditions obtained in the FDF (see Section 3.4 for

details) predict a slip boundary condition for a free surface

(Equation (3.46))which imposes that theflux in the tangential-

to-the-surface direction depends on its spatial variation in

the normal direction. This condition implies that the heat flux

resembles the Poiseuille velocity profile in fluids because of

the viscosity, but the heat flux is not null at the boundary. This

analogy is more accurate for normal-collision-dominating

materials becausephononmomentum is onlydestroyedat the

boundaries since intrinsic collisions conserve it. Nevertheless,

for materials where resistive collisions play an important

role, this analogy can be understood as the momentum

conservation within the region near the boundary because

of the absence of resistive collisions.

Macroscopically, this effect is a consequence of the non-

local length. The heat flux at the surface can not immediately

relax in the heat flux inside the semiconductor, and it requires
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a distance of the order of ℓ to transit between the one imposed

in the boundary and the one inside the semiconductor.

In Figure 6.1, an example of the effects of this boundary in

a thin film is depicted. As can be seen, Fourier’s law predicts

a plane flux profile, whereas the GKE reduces the heat flux

near the surface in a region of the order of the nonlocal length

ℓ . When a large thin film is considered (F � ℓ , whereF is the

width of the thin film), the effects of the heat flux reduction in

this region are negligible since this region is small compared

with the width of the film, and the bulk thermal conductivity

is recovered. Nevertheless, when we reduce the width of the

thin film to the order of the nonlocal length, F ∼ ℓ , the heat
flux reduction is comparable to the total heat flux, meaning

that the effective thermal conductivity of the thin film is

reduced.

Figure 6.1: Heat flux profile of a

thin film for a given width (in this

case, a F = 3�< silicon thin film

at ) = 300 ). The black dashed

line represents Fourier’s law pre-

diction, the solid blue line rep-

resents the GKE prediction with

a completely diffusive boundary

(� = 1), and the blue dotted line

represents the GKE prediction

with a non-completely diffusive

boundary (� = 2). As it can be

seen, the reduction of the heat

flux near the boundaries occurs

in a region of the order of the non-

local length ℓ (indicated in red in

the figure) in contrast to Fourier’s

law, where no reduction occurs.

Image extracted from [62].

The GKE, the boundary effects, and their implications

can be validated by comparing them to experimental results.

We compare our predictionwith experimentalmeasurements

[22, 23, 76] of the effective thermal conductivity for silicon

thin films of different sizes and temperatures [62]. The results

are presented in Figure 6.2: the GKE prediction is in good

agreement with experimental measurements. At this point,

it is important to remark that all the parameters appearing

on the GKE are ab initio parameters, meaning that the model

is completely predictive. This result also allows discerning

between a single scale or a multiscale behavior since it can

be explained with a single-scale equation, the GKE (a deeper

explanation of this result is presented in Section 6.1.1.1).
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Figure 6.2: Normalized effective

thermal conductivities for silicon

thin films: (a) at 300 K and dif-

ferent sizes. The vertical line is at

2ℓ size, the limit of the applica-

bility region; (b) at different tem-

peratures for widths of 420 nm

(blue), 1600 nm (red), and 3000

nm (blue). The horizontal line rep-

resents the normalized effective

thermal conductivity for a film of

F = 2ℓ , where it is expected to

fail the model. In both figures, (a)

and (b), the solid line represents

the GKE prediction, and triangles

represent the experimental values.

As can be seen, the prediction is

good except for low temperatures

or small sizes, where a discrep-

ancy occurs. Image reproduced from
[62].

Nevertheless, as can be seen in Figure 6.2, at certain

(low) temperatures or (small) sizes, the prediction of the

GKE differs from the experimental results. Thus, we propose

an applicability region for the model, which is phenomeno-

logically obtained by comparing the experimental values

with the prediction [62]: the predictability of the GKE is

guaranteed for a region going from an infinite film to a film

of a width twice the nonlocal length (F ≈ 2ℓ ). A reasonable

explanation for this limit recalls that the region where the

heat flux reduction occurs, which is of the order of 2ℓ (see

Figure 6.1), overlaps with the other boundary. We attribute

the model’s failure at these scales to the microscopic deriva-

tion since it is valid only for moderate Knudsen numbers.

This microscopic interpretation will be analyzed in Section

6.1.1.2. Higher-order moments or effective parameters in the

physical description of the problem must be included to

improve the predictability, as will be seen in Chapter 7.

Moreover, this description with a single characteristic

length ℓ (the GKE description) allows describing another
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kind of thin film: the holey thin film.We describe the thermal

behavior of a thin film with holes of different diameters

or periodicity [13] using exactly the same modelization pa-

rameters [62]. Notice the model’s capability, combined with

the Finite Elements implementation, to reproduce complex

geometries with a single set of equations. Even in this more

complex case, the comparison with the experimental results

is in good agreement for a wide range of temperatures, as

seen in Figure 6.3, wherewe compare two filmswith different

periodicity, sizes, and diameters of the holes.

Figure 6.3: Effective thermal con-

ductivities of silicon holey thin

films. The A (B) film, in blue (red),

represents a film of a width of

F = 4.84�< (F = 4.49�<), a pe-

riodicity of 20�< (4�<), and a

hole diameter of 11.4�< (2.8�<).

Asterisks: experimental values

[13]; solid lines: GKE prediction;

dashed lines: Fourier’s law pre-

diction. The gray zone is the pre-

dictability region, where the GKE

reproduces the experimental re-

sults. Image extracted from [62].

6.1.1.1 Single scale vs. multiscale results

As previously mentioned, some theoretical efforts have been

made to predict the effective thermal conductivity for the

nanoscale using a multiscale model. This means that thermal

transport has multiple characteristic lengths, usually related

to the MFPs of phonons. A paradigmatic example of this

situation is the RTA applied to the thin films. An exact

solution is obtained when considering an infinite thin film

using the RTA in the BTE [31]. As expected, phonons of

MFP larger than or similar to the width of the films have a

suppressed contribution to the effective thermal conductivity.

Then, the suppression of the thermal conductivity spans

several orders of magnitude because of the MFPs of the

phonons.

In contrast, the GKE predicts a single scale effect, since

the only characteristic length is the nonlocal length ℓ . For

example, for thin films, the next equation is obtained [136],

�4 5 5

�
= 1 − 2Kn

tanh

(
1

2Kn

)
1 + �tanh

(
1

2Kn

) , (6.1)
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where the Knudsen number has been defined as Kn = ℓ
F , and

� is the parameter appearing on the slip boundary condition,

that it is � = 1 for diffusive boundaries. Equation (6.1)

shows that the reduction in the effective thermal conductivity

predicted by the GKE is only associated with the ℓ .

This difference in the effective thermal conductivity

prediction allows us to experimentally discern between the

multiscale and the single-scale thermal transport behavior

in thin films. For the RTA prediction, the reduction of the

effective thermal conductivity can be seen as the width of

the film reduced to several microns since there are MFPs

of these sizes (for the silicon example at room temperature,

see Figure 2.4). However, the GKE predicts size effects when

the width reaches the order of the nonlocal length, which in

silicon at room temperature is ∼ 200 nm [70].

Figure 6.4 shows the experimental results for silicon

thin films of different sizes and temperatures [22] and they

are compared to the GKE and RTA solutions. As already

mentioned, we expect that the GKE fails to predict Knudsens

numbers above Kn > 1

2
. Then, in this figure, we have used

transparent experimental points depending on the Knudsen

to remark the points we expect to be predictive. In the

predictability region, the GKE captures more accurately size

effects in front of the RTA model. This suggests that thermal

transport in thin films has a single scale.

Figure 6.4: Effective thermal con-

ductivities for thin films com-

pared with the GKE (single scale)

and the RTA (multiscale) predic-

tions. Triangles represent the ex-

perimental results (with its trans-

parency depending on the Knud-

sen number), the solid lines repre-

sent the GKE prediction, and the

dashed line represents the RTA

prediction. In blue, the results for

a thin film of 3000 nm, in red of

1600 nm, and in orange of 420 nm.

6.1.1.2 Microscopic interpretation

To conclude the section, we will analyze the experiment from

a microscopic point of view. One of the strengths of the FDF
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is that it provides both the mesoscopic description (transport

equations) and the microscopic description (phonon distri-

bution function). Because of its simplicity, the thin film’s case

allows for obtaining analytical solutions from the GKE for the

heat flux profile and effective thermal conductivity [136]. The

expression for the effective thermal conductivity was already

shown in Equation 6.1. However, we are now interested in

the heat flux because it is the magnitude appearing on the

phonon distribution function (Equation 3.15), which is the

magnitude we will study in this section. The expression for

the heat flux is [136]

@G = �
Δ)

!

(
1 −

cosh

( H
ℓ

)
�(Kn)

)
, (6.2)

where we have assumed that the direction perpendicular to

the thin film surfaces is the H-direction, and the direction

of the
®∇) is the G-direction. Thus, the only component

of heat flux is also in the G-direction. We have also used

that the gradient of temperature is constant along all the

film,
%)
%G = −

Δ)
! , with ! the length of the film and Δ) the

temperature difference between the extremes. Finally, we

have used that Kn = ℓ
F , and we have defined that

�(Kn) ≡
(
1 + �tanh

(
1

2Kn

))
cosh

(
1

2Kn

)
, (6.3)

where � is the parameter appearing on the slip boundary

condition (Equation 3.46).

Considering a time-independent situation, the phonon

distribution function for the GKE case is (Equation 3.15)

5� = 5
4@

� + ��,G@G + 61,�
E�,GE�,H

E2

�

%@G
%H

. (6.4)

In this expression for the distribution function, we know ��,
61,�, obtained through the FDF (see Chapter 3) and the heat

flux profile (and thus its derivative), which is obtained from

Equation (6.2). Then, we can obtain the exact value for the

phonon distribution function.

Nevertheless, we can interpret the phonon distribution

function in a more intuitive form: as an effective Fourier’s

law. As we have shown in Section 3.2, we should consider

that the phonon distribution function is 5� = 5
4@

� − �®�� · ®∇)
to obtain Fourier’s law. To recover Equation (6.4), we will
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consider the same distribution function to obtain Fourier’s

law but with a modification:

5� = 5
4@

� + B����,G
Δ)

!
, (6.5)

where B� is a newunknown function that aims to capture

the non-Fourier effects predicted by the GKE, resulting in an

effective Fourier’s law with exactly the same behavior as the

GKE. To do so, we equal Equations (6.4) and (6.5), and we

obtain

B� = 1 −
cosh

(
H/F
Kn

)
�(Kn) +

Λ�,H

ℓ

sinh

(
H/F
Kn

)
�(Kn) , (6.6)

where, for the seek of simplicity, we have used the RTA values

for �� and 61,� (see Section 5.1). We have also defined the

MFP in the H-direction as Λ�,H ≡ E�,H��.
Notice that B� resembles the suppression function used

to describe some experiments, where the contribution of

some modes to the thermal conductivity is suppressed [13,

14, 18, 51, 79, 80]. However, the behavior of B� is substantially

different:

I It depends on the position of the thin film H. This

excludes formalisms where the suppression function

does not depend on the position.

I It is not necessary that 0 ≤ B� ≤ 1. One can obtain

very large or negative values when considering modes

with a largeΛ�,H . Notice that negative values for B� are

not nonphysical since the phonon distribution function

may still be positive because of the equilibrium term

5
4@

� .

I When obtaining the effective thermal conductivity by

integrating Equation (6.5) over all the phonon modes,

it does not depend on the phonon mode, even B�
does. This is because the dependence in the mode

vanishes by symmetry in an isotropic material. This

result, which may seem surprising, is intuitive since

the B� is derived to recover the GKE behavior, which

has no mode-dependence.

The conclusion is that, when we try to interpret thermal

transport in thin films with an effective Fourier’s law, we

require a complex dependence in the distribution function

with position-dependent weights to interpret the experimen-

tal results. Besides, FDF, which naturally includes the first
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derivatives, provides a simple interpretation of the phonon

distribution function.

At this point, we would like to remark that the micro-

scopic interpretation carried on in this section is not limited

to the case of thin film. When we consider other experiments,

the FEM implementation of the GKE allows obtaining the

values of the macroscopic magnitudes (temperature, heat

flux, and its first derivatives) for all the positions and times

of the experiment. Thus, we can also obtain the distribution

function for arbitrary complex situations.

6.1.2 Linear and circular heat sources
In collaboration with Brick Nanotechnology Centre (Uni-
versity of Purdue)

In the previous section, we studied the effects of reducing

the size of a silicon sample with the GKE, specifically for

a thin film. In that case, the only material to be simulated

is the semiconductor and its geometry, but no interactions

between materials are necessary. Nevertheless, there are

some situations where it is necessary to introduce different

materials and, consequently, interfaces between them. This

is the case of metallic heat sources with semiconductor

substrates, which is the situation presented in this section:

we will show the thermal process of releasing heat from a

metallic structure to a silicon substrate. The particularity of

this experiment is that two different geometries (linear and

circular heaters) with different sizes and temperatures are

compared [64, 67]. Thus, it allows to check the model by

changing the temperature, the size, or the geometry, giving

a powerful tool to validate the prediction of the FDF. Once

again, it explicitly gives non-Fourier signatures of thermal

behavior.

The experiments are performed through the thermore-

flectance imaging (TRI) technique. This novel technique is

based on the change of the incident light’s reflection coeffi-

cient due to the material’s local temperature, resulting in a

high-resolution, non-contact optical imaging technique [58,

137]. In Figure 6.5 we show an example of the output of

the TRI for two samples of the experiment. There, the high

resolution of the technique is appreciated.
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Figure 6.5: Example of the out-

put information of TRI technique.

At the bottom, the optical images

of the setup (a circular and lin-

ear heater of Au with a sensor

of a 500 nm width on top of a

silicon substrate) with its corre-

sponding thermal images. At the

top, images are extracted with the

TRI technique [64, 67]. Notice the

high-resolution of the TRI. Image
extracted from [64].

6.1.2.1 Fourier’s law’s failure

In this experiment, the non-Fourier signature is manifested

explicitly, as observed in the experiment of [58] with the same

geometry, but considering InGaAs besides silicon. With TRI,

temperature profiles are easily obtained and, thus, compared

with the corresponding model prediction. To demonstrate

the failure of Fourier’s law in this setup, we plot a comparison

of Fourier’s results and the experimental ones (Figure 6.6).

As mentioned in Chapter 2, an effective (reduced) ther-

mal conductivity is usually used to explain some results in

the thermal transport field. In that sense, in Figures 6.6.a-b,

we present an example of the temperature profile of a circular

and a linear Au heater on top of silicon using different values

of the thermal conductivity: using the bulk value, using an

effective thermal conductivity trying to fit the semiconductor

or using a thermal conductivity fitting the metal [64]. In

Figures 6.6.a-b, we can observe that Fourier’s law can not

predict the full temperature profile even using fitting param-

eters. When the semiconductor is fitted, the metal can not

be predicted, and the other way around. Furthermore, the

behavior of the fitted thermal conductivity when the size of

the heater is reduced depends on the geometry. For a linear

heater (see Figure 6.5 for the geometry), when the size of

the heater is decreased, the thermal conductivity to fit the

heater is increased, and the thermal conductivity to fit the

sensor is decreased. On the contrary, for a circular heater,

when the size of the heater is decreased, both the thermal

conductivity to fit the heater and the sensor decrease (see

Figure 6.6.c). This is a paradigmatic situation to show that

the non-Fourier behavior not only depends on the size but

also on the system’s geometry.
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Figure 6.6: Temperature profile of

an Au heater of a width of 0.5 �m
and a silicon substrate. The green

dots represent the experimental

values, the blue line represents the

prediction with the bulk thermal

conductivity, the red line repre-

sents Fourier’s prediction with a

thermal conductivity fitted to re-

produce the heater, and the green

line represents the prediction try-

ing to fit the substrate. The a) fig-

ure represents the circular geom-

etry, and the b) figure represents

the straight geometry (see Figure

6.5 to clarify the geometries). In

both cases, Fourier’s law can not

predict the full temperature pro-

file. c) Normalized fitted thermal

conductivity for heaters of differ-

ent sizes (for silicon [64] and In-

GaAs [58]). Thefitted thermal con-

ductivity depends not only on the

size but also on the system’s ge-

ometry. Image extracted from [64].
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6.1.2.2 GKE prediction

This failure of Fourier’s law can be explained the absence

of hydrodynamic effects, which are predicted by the GKE

with ab initio parameters. Furthermore, the complexity of the

geometry (circular and linear heaters) makes the analytical

solution of the BTE difficult to obtain. With the GKE, and

using FEM, we can obtain the solution for this situation

(see [64] for further details of the thermal behavior of this

experiment).

Naturally introduced by the GKE, this geometry and

size dependence allows predicting a wide range of situations.

The problem with effective Fourier’s law reported in Section

6.1.2.1 is solved through the nonlocal effects. The prediction

of the GKE reproduces the temperature profile obtained

with the TRI technique [64]. Thus, it predicts the heater

and the sensor with a single set of parameters, solving the

Fourier’s law problem presented in Figure 6.6.c. All these

predictions are shown in Figure 6.7. In this figure, Fourier’s

law and the GKE predictions converge when large sizes

are considered for both the linear and the circular heater;

and they coincide with the experimental values. This is

becausenonlocal effects are negligible for large sizes, and then

the GKE recovers Fourier’s law. Nevertheless, Fourier’s law

underpredicts the temperature profilewhen size is decreased,

while GKE recovers the experimental values.

It is worth to remark the next point: with the GKE, we

reproduce the temperature map of the whole experimental

sample. In the case of the thin film [62] (Section 6.1.1), the only

experimental output is the effective thermal conductivity,

which implies that it can be fitted with numerous methods

since there is a single experimental output. Furthermore, the

heat flux profile predicted for thin films by the GKE has no

experimental evidence. In the present section, the output

values of the experiment are the entire map of temperatures,

which has much more robustness in the model validation.

This set of experiments has a particularity with respect

to the thin film experiments (Section 6.1.1): an interface ex-

ists between two materials: the heater and the substrate. In

Section 3.4, we derived a boundary condition for the normal-

to-the-boundary heat flux using the FDF. The derivation

[63] recovers the DMM when there are no nonlocal effects

(nevertheless, when the nonlocal effects are relevant, other

terms besides the predicted by the DMM appear). This term,

implemented into the boundary conditions, is calculated
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Figure 6.7: Predicted and experimental results for linear and circular heaters for Fourier’s law and GKE. a)

and b) are the thermal images for the wire and circular geometries, respectively. The left column, c), e), and

g), represents the temperature profile of a linear heater for different sizes. The right column, d), f), and h),

represent a circular heater. There is the Fourier’s law prediction in blue, and the GKE one in red. The raw

(dashed) line represents the real predicted temperature profile. Nevertheless, thermal images must be compared

with the convoluted (solid) line, where a convolution because of the optical blurring is done (see [64] for

more information). As can be seen, the prediction of the GKE can reproduce the experimental values for both

geometries and all the sizes. Image extracted from [64].
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from ab initio and is size or geometry-independent. Never-

theless, since the DMM predicts a perfect contact, it does not

consider the interface’s experimental defects.

We use a value for the boundary resistance proportional

to the DMM result to capture these defects. We fit the value

at large scales to obtain the proportionality constant, where

Fourier’s law is predictive. Thus we do not incorporate size

effects in the boundary resistance. The results obtained are

close to the DMM. When we reduce the size of the heater,

we do not change this value. Then, we guarantee that the

boundary resistance is not a fitted value. This contrasts with

other approaches where size-dependent fitting parameters

are used to predict the interface [138].

So far, we have obtained the results presented at room

temperature [64]. Nevertheless, FDF also predicts the trans-

port parameters depending on temperature, as seen in Chap-

ter 3. Using the same samples as in the room temperature

case, we present the results in a range of temperatures going

from 100 K to room temperature [67]. Again, the predicted

results of the GKE, using completely ab initio parameters,

reproduce the experimental measurements done by TRI.

Then, combining all the results in circular and linear

heaters allows concluding that theGKEpredicts the geometry

and size effects for complex geometries and a wide range

of sizes without fitting parameters. Even more, it can be

predictable for a wide range of temperatures. An image of

this conclusion is depicted in Figure 6.8, where a transition

in size, geometry, and temperature is represented.

Figure 6.8: Representation of the

prediction power of the FDF pa-

rameters for the GKE. The GKE

(red line) reproduces the exper-

imental values of TRI (orange

squares), where Fourier’s law fails

(blue line). This can be seen for:

the same geometry and different

sizes, a) and b) figures; for the

same size and different tempera-

tures, a) and c); and for the same

size and different geometries, b)

and d) figures. At the top of each

image is shown the geometry (cir-

cular or linear), the size, the tem-

perature, and the electrical cur-

rent intensity in the heater. Image
extracted from [67].

Nevertheless, in this experiment, when we consider the
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smaller circular heater at 100 K, we fail to predict the tempera-

ture profile at points of the semiconductor close to the heater.

We attribute this limitation to the microscopic description of

the experiment. The phonon distribution function for some

modes at these points is negative, which has no physical

sense. This is because of the large gradients of the heat flux

and its effects on 5� (Equation (3.15)). This limitation is associ-

ated with the derivation through the FDF, which is bounded

to moderate Knudsen numbers.

In Chapter 7, we will microscopically analyze this be-

havior to argue the limitation of the model for this extreme

situation.

6.1.3 Heater gratings
In collaboration with Kapteyn-Murnane group (Univer-
sity of Colorado)

This section presents another situation where nonlocal ef-

fects and the GKE can explain the experimental results.

Nevertheless, in this case, the GKE is applied to describe a

time-dependent situation in contrast to previous sections of

this chapter.

The experimental setup consists of periodic 1D- and

2D-confined heat sources on top of the silicon substrate. The

experiment studies the heat dissipation from the heaters

to the semiconductor using extreme ultraviolet (EUV) scat-

terometry [11, 18, 21]. As explained in Figure 6.9, an infrared

laser is used to pump the metallic structures, and an ultra-

short EUV probe pulse is used to measure the change in the

diffraction efficiency.

Figure 6.9: Scheme of the exper-

imental setup of the EUV scat-

terometry in confined 1D and 2D

nanostructures. An infrared laser

pulse heats themetallic structures,

and an EUV probe measures the

diffraction efficiency of the sys-

tem. Heat is dissipated into the

silicon substrate. In the silicon

region near the heaters, it is ex-

pected hydrodynamic behavior.

Image extracted from [65].

The periodic structures are arranged in periodic nano-

lines (or nanodots) with different periodicity (P) between
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lines (dots) and different line (dot) sizes (L). Using finite

elements, we can implement the GKE in a time-dependent

situation to simulate this experiment, with the parameters

extracted from the FDF. The interface condition for simulat-

ing the TBR and the slip-boundary condition are used in this

situation. Moreover, we couple the thermal system with an

elastic set of equations to simulate the whole system. In this

studied case, the elastic part plays an important role since

the heat pulse dilates the system. This is one of the main

advantages of implementing the GKE using finite elements:

it can be easily coupled with other physical models.

Depending on the periodicity and the size of the nano-

line or the nanodot, it is useful to distinguish between the

effectively isolated and the close-packed situations. The first

one refers to the situation where the hydrodynamic effects

that take in the semiconductor due to one heater are not

affected by the hydrodynamic effects of the other heater.

Since the characteristic size of the hydrodynamic effects is

the nonlocal length ℓ , this situation is when the distance

between the heater is larger than twice the nonlocal length

(% − ! > 2ℓ ). This condition for the isolation of the heaters

is strongly related to the predictability region presented in

Section 6.1.1, where the distance between the two boundaries

of the thin film, , , is required to be twice the nonlocal

length (, > 2ℓ ). In Figures 6.10.a-b, we present the results in

this situation for nanolines and nanodots, respectively. This

figure distinguishes between the inertial and quasi-static

results. The quasi-static solutions capture the deformation

of the system because of the thermal expansion; hence, they

can be associated with the local temperature [21]. The inertial

solution takes into account the contribution of the oscillating

elastic waves. This last solution is the one used to compare

with the experimental results of the diffraction efficiency.

In the effectively isolated situation, both for nanolines

and nanodots, the predicted result with the GKE is excellent,

as seen in Figure 6.10. We obtain this with ab initio param-

eters, without any geometry-dependent fit parameter [65].

This contrasts with, for example, suppression-function mod-

els, which are very difficult to implement for the nanodots’

geometry [16].

For the close-packed case (% − ! < 2ℓ ), the nonlocal ef-

fects of two consecutive heaters are expected to interact since

the phonons from one heater can reach the other heater’s

phonon before scattering (remember that the nonlocal length
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Figure 6.10: Comparison between the EUV scatterometry data and the GKE prediction for the 1D and 2D-

nanostructures. Black lines represent the experimental data, the blue line is the GKE prediction, and the red

dashed line is the GKE prediction taking into account only the system’s thermal (not elastic) deformation. a) and

b) figures represent the effectively isolated situations (% − ! > 2ℓ for lines and dots, respectively, for different %
and ! combinations. c) and d) figures represent the close-packed case (% − ! < 2ℓ ), where an effective nonlocal

length is used (ℓ = %−!
2

). In all the situations, the GKE prediction is in excellent agreement with the experimental

data. Image extracted from [65].
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is related to the characteristic size of the phonons). In this sit-

uation, since the GKE is derived for finite Knudsen numbers,

the model is reasonable to fail, accordingly to the predictabil-

ity region [62]. We propose an effective model to overcome

this limitation, keeping the simplicity of the GKE. In this

case, we assume that the effective nonlocal length is ℓ = %−!
2

,

i.e., a geometry-dependent parameter that is half of the dis-

tance between heaters [65]. As seen in Figures 6.10.c-d, the

agreement with the experimental results for the close-packed

situation using this nonlocal length is excellent.

Nevertheless, we would like to point out that when

effective parameters are used, the model has reached the

limit of applicability. These situations will be discussed in

Chapter 7, where some solutions for these limits will be

presented.

6.1.3.1 Two-time scales: the two-box model

In this section, we analyze this experiment’s thermal decay

and compare it with the prediction of the GKE and Fourier’s

law. Figure 6.11.a shows the thermal decay for an isolated 250

nm line width case. Fourier’s law can only predict a single

timescale, and it results that, even in the best fit, it cannot

reproduce the thermal decay at all times: it overestimates

the thermal decay at short times and underestimates it at

large times. However, the experimental results display two

different time scales: a fast one at short times and a slow one

at longer times. Moreover, this behavior is observed in other

nanostructure sizes (see Figure 6.10), clearly concluding that

Fourier’s law cannot capture the full nanostructure relaxation

and, consequently, misses the underlying physics.

Contrarily, the GKE does predict these two-time scales.

The processes involved in this prediction are interface decay

and hydrodynamic decay. The first one is the process where

the heater releases the energy rapidly into the dam region,

which is defined as the region of the semiconductor of size !

below the heater. It plays the role of a reservoir due to the

thermal viscosity from hydrodynamic effects. Then, with a

much larger timescale, the heat is released from the dam

region to the rest of the semiconductor. These two processes

are schematically represented in Figure 6.11.b, which we

named the two-box model [65]. This model is a consequence

of the GKE, and, at short times, it predicts the temperature
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Figure 6.11: a) Experimental and

theoretical quasi-static change in

diffraction efficiency in terms of

time. The results are for an iso-

lated heater of ! = 250 nm and

% = 1000 nm. The gray line repre-

sents the experimental data, the

black line represents the experi-

mental data taking into account

only the thermal processes, the

red line represents the GKE pre-

diction, and the dashed green line

represents the best fit of Fourier’s

law. There are two experimental

timescales, which can be repro-

duced by the GKE. b) Cartoon

of the two-box model in analogy

with fluids. The two boxes repre-

sent the heater and the dam re-

gion, with the liquid as the tem-

perature. Image extracted from [65].

of the heater

)1 − )∞
2
= 014

− C
�
1 + 024

− C
�
2 , (6.7)

where )1 is the heater temperature, )∞
2

is the average sub-

strate temperature at an infinity separated from the heater

point, and 01, 02, �1 and �2 are parameters that depend on

the length and height of the heater and the rest of the pa-

rameters involving the transport equations of the heater and

the semiconductor (we provide their analytical expressions

and their corresponding derivation at [65]). Equation (6.7)

present two-time scales, as expected from the results of Figure

6.11.a.

From a microscopic perspective, the two-box model can

be interpreted as follows. Just below the heater, in the so-

called dam region, the flux is perpendicular to the surface

and constant throughout it. This implies that there are no flux

derivatives. For that case, the term

=

�� :
®∇®@ of the phonon

distribution function (Equation (3.15)) is negligible, and 5�

results in 5� ≈ 5 4@� + ®�� · ®@. This last shape of the distribution,
as seen in Section 3.2, is the one that recovers Fourier’s law.

This means that, from the heater to the dam region, the heat

is rapidly evacuated as Fourier and is limited by the TBR.

When we consider a point far from the heater, for in-

stance, the limiting region of the dam region, the heat flux

starts to curve. At this point,

=

�� :
®∇®@ is not negligible, andwe
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recover a GKE behavior instead of Fourier’s one observed just

below the heater. Then, hydrodynamic effects are dominant,

and evacuation is much slower, consistent with the two-box

model.

6.1.4 Frequency domain thermoreflectance
In collaborationwithCentredeRecercaMatemàtica (CRM)
and InstitutdeCiènciadeMaterialsdeBarcelona (ICMAB)

In the present section, we analyze the experiment of FDTR

[14] with FDF. This FDTR experiment consists of an oscillat-

ing laser that heats a thinmetal film on top of a substrate, and

the temperature evolution of the metal is obtained through

the FDTR techniques [10, 14, 15, 129, 139–141]. The results of

these experiments, which predict a non-Fourier behavior, are

typically interpreted as a reduction of the thermal conduc-

tivity in Fourier’s law related to the suppression of phonons

with a large MFP [14, 129]. Nevertheless, this interpretation

leads to non-physical results, as we will show in this section

[63], and we will demonstrate that the non-Fourier behav-

ior is related to phonon hydrodynamics since the GKE can

predict the experimental results.

In the FDTR experiments, the interface boundary resis-

tance (the TBR) between the metal and the substrate (see

Section 3.4.1) plays a very important role. The DMM is a

typical approach to modeling the interface, which provides

an orienting upper bound. In [14], a TBR with significantly

smaller conductance than the expected at room temperature

is used (210",/<2 in front of 723",/<2 of theDMM).

Figure 6.12 shows the effective Fourier’s law predictions in

the substrate with this TBR. The experiment outputs two ob-

servables: the phase shift ! and the oscillation amplitudeΔ).

Even with this fitted TBR, if we fit with an effective thermal

conductivity the experiment’s phase shift, the amplitude of

oscillation predictions are significantly worse, and the other

way around, as seen in Figure 6.12. This implies that, with

an effective Fourier’s law, one can not predict the physics of

the FDTR experiment even if we use effective parameters.

In the present time-dependent situation, the GKE pre-

dicts a non-Fourier behavior because of the nonlocal effects.

One may think that the memory effects �
%®@
%C should play an

important role in a FDTR experiment. However, the influence

of the TBR and the mentioned nonlocal effects eclipse them
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Figure 6.12: Failure of effective Fourier’s law in the FDTR experiment. The presented results are for a temperature

of 311 K. a) Phase shift ! and b) normalized oscillation amplitude Δ) as a function of the laser heating frequency.

Bulk Fourier’s law fails in the prediction of both experimentalmagnitudes.When an effective thermal conductivity

is used to fit the phase shift, it fails to fit the oscillation amplitude, and the other way around, as shown in c).

Image extracted from [63].

and only allow memory effects to be observed at temper-

atures below 200 K, providing very small corrections [63].

Here, we would like to mention that, due to this negligible

effect, the ab initio heat-flux relaxation time in silicon can not

be validated with this experiment, as we will point out in

Section 6.4.

Including the nonlocal effects of the GKE allows study-

ing the interface with deeper insight. In previous works,

Fourier’s law with a size-dependent TBR is used to interpret

similar experimental results [18]. The size-dependent TBR is

unnecessary in the presentmodelization case since the effects

are captured with the GKE. Then, in order to characterize the

TBR, we use the DMM. Since this model represents a lower

bound and does not consider the experimental defects of the

interface, it is reasonable to assume that the ' in the interface

(see Section 3.4.1) is proportional to the ideal situation. The

experimental results at low frequencies are used to scale this

value. Then, it results that ' = 2.71'�"" , where '�"" is

the value obtained in the ideal DMM case. As seen in Figure

6.13, this new ' (which has a temperature dependence given

by '�"") predicts all the temperatures and frequencies

without introducing parameters that depend on the situation

[63]. We want to remark that this method to obtain the TBR is

completely analogous to the one used in Section 6.1.3: we use

a value proportional to the DMM value, which is obtained

at low frequencies where Fourier’s law is valid. Thus, we

capture the experimental defects of the interface. When we

increase the frequency, we do not change the value for the

TBR. Then, it does not depend on the oscillation frequency.



6 Experimental support of the FDF 90

Figure 6.13: Phase shift ) as a

function of the heating frequency

for a) 416 K, b) 311 K, c) 154

K, and d) 81 K. In the figure

is compared the experimental

results with bulk Fourier’s law,

Fourier’s law with a fitted TBR,

and the GKE prediction (analyt-

ical and numerical (FEM) solu-

tions). Fourier’s law can not pre-

dict the results at all frequencies,

especially at low temperatures.

On the other hand, GKE predicts

it for all the frequencies with ab
initio parameters. Image extracted
from [63].

Figure 6.13 shows the GKE and Fourier’s prediction of

the FDTR experiment for different temperatures and frequen-

cies. Fourier’s law fails to predict the experimental results

as the frequency increases, while the GKE prediction repro-

duces the experiment for all the temperatures and frequencies

with ab initio parameters.

In [131], the same experiment with germanium is per-

formed, leading to the same modeling and conclusions as in

the silicon results [63].

6.2 Memory effects in germanium
In the previous section of this chapter (Section 6.1), we

analyzed the nonlocal effects of the GKE, going from time-

independent (Sections 6.1.1 and 6.1.2) to time-dependent

situations (Sections 6.1.3 and 6.1.4). This is, analyzing the ef-

fects of the ℓ 2(∇2®@+
 ®∇(®∇· ®@)) in the GKE. In these referenced

sections, there are no relevant memory effects (the effects of

the �
%®@
%C of the GKE are negligible). In the present section, we

analyze the effects of thismemory term. There is awide range

of experiments supporting the nonlocal effects (see Section

6.1). However, we only have experimental evidence for the

memory term in a semiconductor at ordinary temperatures

in germanium [66], which is developed in Section 6.2.1.
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6.2.1 Second sound: frequency domain
thermoreflectance without transducer

In collaboration with Institut de Ciència de Materials de
Barcelona (ICMAB)

Asmentioned in Section 4.3, second sound is a transport phe-

nomenon where heat is propagated as temperature waves.

The typical definition is that second sound is the regime

where the time-derivative of the heat flux is not negligible

to describe the heat transport [69, 142]. This will be the

definition used in this section, even though other authors

restricted the existence of second sound to cases where a com-

plete oscillation of temperature is observed [143]. Typically,

second sound is described with the energy conservation in

combination with the Maxwell-Cattaneo equation (MCE):

�E
%)

%C
+ ®∇ · ®@ = %, (6.8a)

®@ + �
%®@
%C

= −� ®∇), (6.8b)

where % is the power density source (see Appendix G for

a deeper insight, where we also show that the momentum

transfer from photons to phonons is generally negligible).

As previously mentioned, this phenomenon was first

theoretically predicted [69, 74, 142] and experimentally ob-

served [61, 123, 144] for the collective regime. Nevertheless,

this is not a necessary condition to observe this phenomenol-

ogy. In [69], it is defined as the drifting second sound, the case

where normal collisions dominate; and it is postulated as

the driftless second sound, the case where it is not necessary

to be in the collective regime, which is the case of study in

the present experiment since we will describe germanium

that is a kinetic material. This is not at odds with Section 4.3,

where we concluded that FDF obtains the drifting second

sound, but it was in the collective limit. However, both kinds

of second sound (drifting and driftless) should accomplish

some conditions to be observed [69]. First, the excitation

frequency 5 (related to the external heat source %) should be

large enough to unlock the time derivative of the heat flux in

Equation (6.8b):

5 � & 1. (6.9)

The second condition for observing second sound is related
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to the nonlocal effects. In [69], it is postulated that, for the

appearance of second sound, the drift operator must be

negligible in front of the collision operator, meaning that

the distribution function has no spatial variations. With

this condition, it can be demonstrated that, by using the

FDF, the MCE is recovered. Then, in conclusion, the source

term % should have an oscillating frequency 5 large enough

to accomplish both conditions. Figure 6.14 illustrates these

conditions for initial Gaussian temperature distribution.

Figure 6.14: Evolution of Gaus-

sian temperature distribution for

different times with the GKE. On

the left, the size of the system ! is

ℓ = 3!, and on the right, the size

is ! > ℓ . Second sound is only

observed when C ∼ � and ! > ℓ .
Image extracted from [131].

In the present section, we present a FDTR experiment

without a metallic transducer [66]. Besides the experiments

shown in Section 6.1.4, where the laser heats a transducer, and

the heat is released from the transducer to the semiconductor,

in this experiment, the laser directly heats the germanium

substrate. Notice that, in all the previous modeled exper-

iments reported in the present chapter, the heat source is

not in the semiconductor, and heat is introduced from the

boundary conditions. Then, it is the first experiment of this

chapter where an energy source is directly introduced in the

semiconductor.

We will predict the experimental results using the MCE

instead of the GKE [66]. This guarantees the absence of

nonlocal effects (the term ℓ 2(∇2 + 
 ®∇(®∇ · ®@)) of the GKE),

allowing the accomplishment of the necessary conditions for

the second-sound observation. As introduced in Section 6.1.3,

when the characteristic length of the experiment is reduced

to sizes below the nonlocal length, the former is effectively

reduced [65] (see Chapter 7 for a deeper insight). In this

FDTR experiment, the only characteristic size is the optical

penetration depth of the laser into the semiconductor, which

is very small compared to ℓ [66]. Thus the effective nonlocal

length should be negligible due to its reduction. Then, under

these conditions, the GKE naturally results in the MCE.

From a microscopic point of view, we interpret this

suppression of the nonlocal length as follows. Since the

optical penetration depth is much smaller than the MFPs of

thephonons, thephonondistribution functionof thesemodes
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Figure 6.15: A) Phase lag depends on the frequency for 15 K, 100 K, and 300 K. Solid lines represent the

Maxwell-Cattaneo prediction and the dashed line represents Fourier’s prediction. B) Relaxation times and

second-sound velocities at different temperatures. The dashed lines are guides to the eyes, and the solid lines are

the theoretical predictions. C) Predicted Maxwell-Cattaneo’s (solid line) spatial distribution of the temperature

field at approximately 300 MHz compared with the diffusive case (dashed line). Image extracted from [66].

can not be accommodated to this large spatial variation.

Then, it results in an effective suppression of their spatial

derivative, which can not contribute to the nonlocal length.

Consequently, the ℓ is reduced. This phenomenon is strongly

related to the limited derivation of the FDF to moderate

Knudsen numbers.

Figure 6.15.a shows the experimental results for the

phase lag at different temperatures. Fourier’s law and MCE

predict the same result for low frequencies, reproducing

the experimental result. This is because the memory term

has no significant contribution since Equation (6.9) is not

accomplished. When the frequency is increased to 5 � ∼ 1,

we observe a larger difference between Fourier’s law and

the MCE. MCE, with ab initio parameters, reproduces the

experimental results at all frequencies. Thus, second sound is

observed since the memory term has a relevant effect. More-

over, Figure 6.15.c shows the predicted spatial temperature

distribution, where damped oscillations are observed.

Finally, Figure 6.15.b compares the predicted and the

observed second-sound velocity and heat-flux relaxation

time. As mentioned in Chapter 3, typically, the heat-flux

relaxation time is considered to be �: ≡ 3�/(�E
〈
E2

�

〉
), while

the FDF predicts a different result (see Section 3.3). These

two times are generally very different: while the first one

underpredicts the memory effects, the former matches the

experimental results.
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6.3 Other experiments
The predictability power of the FDF, shown in the previous

sections of this chapter, has convinced some authors to use

the GKE with the ab initio parameters calculated in Chapter

5 [70] to model its experiments. This is the case of Xiang et

al. [130], who model a TDTR experiment in silicon. There,

they compare the output signals of the experiment with an

effective Fourier’s law with a fitted (and reduced) thermal

conductivity and the GKE predictions with bulk thermal

conductivity. They show that the GKE results in a predictive

model because it agrees with the experimental data with

bulk parameters. Contrarily, Fourier’s law requires fitting

parameters depending on the situation.

This is a remarkable result since the authors of [130] have

used our model, with the ab initio parameters [70], to predict

an experiment that is completely different from the ones

modeled by our group. Thus, another completely different

physical situation supports the applicability of the FDF.

6.4 Summary of the experimental
support of the FDF

In this chapter, we have provided experimental evidence for a

wide range of experiments for silicon and germanium. Figure

6.16 shows the experimental values for the nonlocal length

ℓ and the heat-flux relaxation time � used to reproduce the

experiments, where it is seen the predictability power of the

parameters obtained through the FDF for the GKE.

In time-dependent situations, the term 
 ®∇(®∇ · ®@) of the
GKE should, in principle, contribute to the prediction of the

experimental results. Nevertheless, as mentioned in [131], its

effects are negligible for the modeled experiments. This is

also the case of the �
%®@
%C for the FDTRwith transducer (Section

6.1.4). Then, we will not use 
 and � to validate the model in

Figure 6.16.

Finally, we would like to remark on all the experiments

described by the GKE with the FDF parameters:

I Silicon thin films going from 100K to room temperature

and sizes going from hundreds of nanometers to bulk

sizes [62]: Section 6.1.1.

I Silicon holey thin films going from 100 K to room

temperature with characteristic sizes of the order of
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Figure 6.16: Summary of the ex-

perimental parameters used to de-

scribe the different situations in

front of the predicted parameters

in solid lines. In blue, silicon ex-

periments, and in red, germanium

experiments. The top figure repre-

sents the nonlocal. The blue and

red solid lines represent the FDF

nonlocal lengths for silicon and

germanium, respectively. The blu

dashed-cross line represents the ℓ
values used in thin films [62], the

blue hexagon is the one used in

the heater gratings [65], blue tri-

angles for the circular and linear

heaters [64, 67], blue circles repre-

sent the nonlocal length used in

the FDTR for silicon [63], and the

red circle for germanium [131]. For

the case of the heat flux relaxation

time (bottom figure), the triangles

represent the value used in the

second sound in the germanium

experiment [66].

microns [62]: Section 6.1.1.

I Linear and circular heaters on top of a silicon substrate.

Temperatures range from 100 K to 300 K, and charac-

teristic sizes of the heaters are of the order of microns

[64, 67]: Section 6.1.2.

I Heater gratings: 1D- and 2D-confined heat sources on

top of a silicon substrate. Characteristic sizes are in the

range from hundreds of nanometers to microns [65]:

Section 6.1.3.

I FDTR experiments in silicon and germanium with

frequencies to hundreds of MHz and temperatures

going from tens of Kelvin to room temperature [63,

131]: Section 6.1.4.

I Observation of second sound in germanium in a FDTR

experiment with frequencies to hundreds of MHz and

temperatures going from tens of Kelvin to room tem-

perature [66]: Section 6.2.1.
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I TDTR experiment in silicon with temperatures going

from 80 K to room temperature [130]: Section 6.3.

Furthermore, since all these experiments have been

predicted with a single characteristic length, the nonlocal

length ℓ , it is reasonable to conclude that the thermal trans-

port at these scales can be reproduced with a single-scale

equation, the GKE (see Section 6.1.1.1 for an analysis of the

difference between a single-scale and a multiscale behavior

in silicon films). Moreover, the GKE’s description of these

experiments, since it resembles the NSE for fluids, suggests

that hydrodynamic heat transport can be observed in kinetic

materials.

Finally, wewould like tomention that the GKE describes

other experiments, although the parameters used are not

calculated with the FDF. This is the case, for instance, of

the InGaAs, where an experiment like the one presented in

Section 6.1.2 with linear and circular heaters is performed

[58]. Another example is the Bi2Te3, where theGKE is used to

describe an interconnected nanowire network [145]. In both

cases, the hydrodynamic equation describes the system’s

thermal behavior.

A similar example is molecular dynamics analysis. In

[146] and in [147], they use the molecular simulation to

observe, by means of the heat-flux profile, that the thermal

behavior at scales of the order of tens of nanometers is

reproduced with the GKE with effective parameters. These

results, combined with the effective values used in Section

6.1.3 for heater gratings [65], open the door to justify using

effective parameters when considering reduced length scales.

Thus, it would increase the range of applicability of the FDF

to larger Knudsen numbers.

An analysis of these phenomena out of the predictability

region, presented in Section 6.1.1 [62], is performed in the

next chapter.
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In the previous chapter, we saw that the GKE with ab initio
parameters obtained from the FDF explains a wide range of

experiments. Nevertheless, there are some situations where

themodel is not predictive. In the present chapter, we present

the model limitations reported in the different modelizations

done (Section 7.1), and we provide some effective solutions

to interpret the results (Section 7.2).

7.1 Model limitations
When sizes below twice the nonlocal length are considered,

we fail to model silicon thin films with the GKE with ab
initio parameters (Section 6.1.1) [62]. Then, we defined the

applicability region as, & 2ℓ or, by defining the Knudsen

number asKn ≡ ℓ
, , this conditionwritesKn . 1

2
.Weuse that

, is the characteristic size of the experiment, for example,

the width of the thin film, the radius of the nanowire, the

width of a heater... Figure 6.2 shows this failure when Kn > 1

2

by comparing the GKE prediction and the experimental

results.

This limitation is also present in other experiments apart

from the thin films’. In Section 6.1.3, we considered the char-

acteristic length of the experiment to be the distance between

two consecutive heaters [65]. When Kn > 1

2
, the nonlocal

length ℓ has to be modified to reproduce the experimental

results. We obtain a similar conclusion in Section 6.1.2 [67]:

the GKE does not correctly predict the temperature profile

for the lower temperature and the smaller circular heater
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case.

From the perspective of our derivation, the reason for

themodel failure is the expansion of the distribution function.

Asmentioned in Chapter 3, the derivation of the GKE is valid

for finite Knudsen numbers [70], i.e., we can not describe

extreme nonequilibrium situations.

Figure 7.1 shows microscopic evidence of this failure. A

circular heater is considered on top of a silicon substrate at 100

K. When the size of the heater is reduced, the GKE predicts

some points near the heater with temperatures below 100 K,

which is surprising. Interestingly, one can shed some light on

this issue by studying the distribution function supplied by

the FDF. When considering a point very close to the heater,

the phonon distribution function has numerous phonon

modes with a negative distribution function, with a non-

negligible contribution to thermal conductivity. However, in

the same experimental situation, the phonon distribution

function is mainly positive considering a point far from the

heater.

Figure 7.1: Phonon distribution

function for a circular heater. The

top figure (a) represents the distri-

bution function at a point far from

the heater and, then, not far from

the equilibrium distribution func-

tion. The bottom figure (b) repre-

sents a point near the heater and

then far from the equilibrium dis-

tribution function. The projected

MFP refers to E�,G��. It can be

seen that the distribution func-

tion for the predictive (a) case has

a positive distribution function

for all the phonon modes (except

for some of them that represent

less than the 5 % of the contribu-

tion to the thermal conductivity

[67]). When not in the predictive

region, numerous phonon modes

have a negative distribution func-

tion, which has no physical sense.

Image extracted from [67].

This failure of the phonondistribution function indicates

that the predicted reduced temperatures close to the heater
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are an artifact of the model. It also suggests that a refinement

of the GKE derivation through the FDF can be done.

7.2 Effective parameters modelization
To effectively overcome the limitation of the GKE to larger

Knudsen numbers (Kn > 1

2
), we propose some solutions

to improve our applicability region. These solutions use

effective parameters instead of ab initio ones. Nevertheless,

we would like to remark that a single effective parameter

is used in every situation, and the thermal conductivity is

always the bulk thermal conductivity.

7.2.1 Effective nonlocal length
In Section 6.1.3, we proposed to use an effective nonlocal

length [65]. When the distance between the heaters is re-

duced below the applicability limit, we proposed a nonlocal

length that is half of this distance (see Section 6.1.3 for the

explanation of the experimental setup). The prediction of the

GKE using this new nonlocal length matches the experimen-

tal results (see Figure 6.10). Notice that even though it is an

effective parameter, we use simple geometrical arguments.

This result, combined with the underprediction of the

thermal conductivity of the GKEwith ab initio parameters for

thin films, suggests that the viscous effects described by the

nonlocal term in these situations are overpredicted. This sup-

position is supported by molecular dynamics experiments:

in [148], they simulate through this technique an experiment

of a heater grating, as in Section 6.1.3 [65]. They observe that

when the distance between the heater lines is reduced to the

sizes of the order of the MFPs of the phonons, there is an

increase in the scattering rate between phonons. Since the

nonlocal length is related to the average MFP (see Equation

(5.2d)), when the scattering rate is increased, the phonon

relaxation time �� is decreased, and then, the ℓ is reduced.

7.2.2 Effective slip boundary condition
In the same direction as the previous section, we see in the

present one that an effective � in the slip boundary condition

can reproduce large Knudsen number situations for the

silicon thin films’ case.

To do so, it is helpful to plot the experimental results
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and the GKE prediction depending on the Knudsen number

Kn = ℓ
, , where, is the width of the thin film and ℓ is the ab

initio nonlocal length, as shown in Figure 7.2. There, all the

experimental points "collapse" in a single line. This suggests

the next conclusion: the heat transport in silicon thin films,

even at large Knudsen numbers, is characterized by a single

length scale and, furthermore, this length scale is the ab initio
nonlocal length ℓ provided by the FDF. However, the GKE

with ab initio parameters underpredicts the experimental

effective thermal conductivity for large Knudsen numbers,

i.e., out of the applicability region, as seen in Figure 7.2.

We attribute this underprediction to the overestimation of

viscous effects.
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Figure 7.2: Effective thermal con-

ductivity for silicon thin films as a

function of the Knudsen number.

The black-solid line represents

the GKE prediction with ab initio,
the black-dashed line represents

the results of Equation (7.1) (only

valid for large Knudsen numbers)

with� = 10. The gray vertical line

represents the limit of the applica-

bility region (Kn = 1

2
). Triangles

are the experimental values for

different thin film sizes [22, 23,

76].

As shown in Section 6.1.1, we have the expression for

the effective thermal conductivity predicted by the GKE for

thin films [136]: Equation (6.1). Since in this section we are

focused on large Knudsen numbers, we use this equation to

obtain the expression in the limit of Kn→∞:

�4 5 5

�
=

�

2Kn

. (7.1)

This equation shows that, by increasing the �, the ef-

fective thermal conductivity of the GKE prediction is also

increased. Using an effective � for large Knudsen numbers,

we can fit the experimental results and obtain the parameter

that characterizes the system at these scales (in Figure 7.2,

we use � = 10, which is an order of magnitude larger than

the ab initio value). Figure 7.2 shows that the bulk � repro-

duces the experimental results for the applicability region

(Kn . 1/2). Nevertheless, this figure suggests a transition

from the bulk � to the effective one when we increase the
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Knudsen number.

Finally, a comment on the difference between the GKE’s

single scale and the RTA’s multiscale is in order. In Equation

(6.1), we have observed that the multiscale behavior seems

not to reproduce the experimental results for small Knudsen

numbers (Kn . 1

2
), and the results for large Knudsen num-

bers are in the same direction. The GKE underpredicts the

effective thermal conductivity but captures the characteristic

size of the experiment. On the contrary, the RTA prediction

can not capture the behavior, as shown in Figure 7.3. This

is another probe that suggests that, even at large Knudsen

numbers, thermal transport for silicon thin films obeys a

single-scale behavior.
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The applicability of the GKE in kinetic materials like silicon,

observed in many experiments performed in the last decade,

urged for a theoretical formulation. The main conclusion of

the present thesis is that the GKE can be derived from the

BTE under quite general conditions, i.e., a general collisions

operator and arbitrary dispersion relations for moderate

Knudsen numbers. We have developed a brand-new method

for solving the BTE, the Flux derivatives formalism (FDF),

for this derivation. It provides microscopic expressions for

all the transport parameters appearing in the GKE and can

be calculated from ab initio.
The general belief in the thermal transport community

is that hydrodynamic heat transport only appears in the col-

lective limit since, in the original work, the GKE was derived

when normal collisions dominate [52]. The FDF [70, 121], pre-

sented in Chapter 3, generalizes it and, moreover, guarantees

the conservation of the energy without any assumption on

the collision operator.

Furthermore, the FDF not only provides the mesoscopic

equations (GKE and energy conservation equation) but also

provides a solution for the BTE consistent with them. This

solution is given by the distribution function (Equation (3.15))

and the corresponding weight functions (Equations (3.22a)-

(3.22d)). This allows having a complete description of the

system, not only from a mesoscopic point of view but also

from a microscopic one. In fact, to our knowledge, we supply

for the first time a simple expression for the phonon distribu-

tion under unsteady inhomogeneous conditions in terms of
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first-principles quantities [70].

In addition, this distribution function allows to derive

proper boundary conditions, using kinetic theory, consistent

with the mesoscopic equations (see Section 3.4). Then, this

"triangle" of the transport equations, the distribution function,

and the boundary conditionsprovide a full picture todescribe

thermal transport in general dielectrics. Moreover, the GKE

with the boundary conditions are very easy to numerically

implement with FEM. Then, it is a powerful tool to model

heat transport in dielectrics at the nanoscale.

This formalism is supported by two different perspec-

tives: theoretical and experimental. From the theoretical

perspective, we recover two well-known results in thermal

transport. First, we obtain Fourier’s law with a general col-

lisions operator (Section 3.2). Second, we exactly recover

the original results for the Guyer and Krumhansl equation,

where it is used that normal collisions dominate (Chapter 4).

Furthermore, in the collective limit, we solve a long-standing

issue on drifting and driftless second-sound velocities.

From the experimental perspective, the FDF is supported

for a wide range of situations, as shown in Chapter 6: for dif-

ferent materials (silicon and germanium), for stationary and

time-dependent situations, for different sizes (going from

hundreds of nanometers to bulk materials), different geome-

tries (thin films, linear and circular heaters, thermal gratings,

FDTR experiments...), and for different temperatures (going

from tens of Kelvin to room temperature).

This experimental validation allows us to obtain three

conclusions. First, even with an effective thermal conduc-

tivity, Fourier’s law can not predict experimental results

at nanoscale sizes, demonstrating that Fourier’s law and

its effective theories can not get all the physics beyond the

nanoscale. Second, the ab initio parameters obtained from

the FDF can reproduce quite a number of experiments when

! & 2ℓ , with ! the characteristic size of the experiment, in

consistence with our GKE derivation, thus supporting the

formalism. Third, a single scale, the nonlocal length ℓ , de-

scribes a wide range of experiments in silicon, which is a

property of the GKE. In contrast, alternative derivations of

the BTE, like RTA, predict a multiscale behavior for silicon

thin films [31]. Since the GKE describes the experiments,

we can conclude that thermal transport in silicon shows a

hydrodynamic behavior with nonlocal effects given by the

nonlocal length ℓ .
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This last conclusion is supported even in situations out

of our predictability region (when the characteristic size of

the experiment is ! & 2ℓ [62]). In Chapter 7, it is shown

that the characteristic length describing the effective thermal

conductivity of silicon thin films is the nonlocal length ℓ

even far away from the applicability region (! < 2ℓ ). There,

we can predict the experimental results by increasing the

�-parameter in the slip-boundary condition, but without

changing the transport equation: the GKE. Thus, extending

the hydrodynamic phenomena to large Knudsen numbers.

Finally, this last conclusion allows opening the study of

the FDF out of the predictability region. The refinement of

the formalism, especially by improving the derivation of the

boundary conditions with ab initio calculation, as shown in

Section 7.2, would enhance the region of applicability.





Appendix



Ab initio calculations A

The numerical values of the transport parameters presented

in this thesis are performed using a version of the code pre-

sented in [149] developed by our group. Nevertheless, the

code has been improved to implement the different expres-

sions of the transport parameters presented in Chapters 4

and 5.

The transport parameters have been calculated fromfirst

principles using the Vienna Ab initio Simulation Package

(VASP) [150–153], which implements Density Functional The-

ory (DFT). The potentials used are projected augmentedwave

(PAW) potentials under the Perdew-Burke-Ernzerhof (PBE)

framework [154, 155]. The plane wave energy cutoff used is

10 % higher than the value proposed in the pseudopotential

file. A 5x5x5 supercell created from an 8-atom cubic unit cell

is used. Phonopy package is used for harmonic calculations

[156], while for anharmonic calculations Phono3py is used

[157]. For the case of BAs, we have used the calculations

present in [158].

From the point of view of convergence, we perform a

study as a function of the grid points in thewave-vector space.

In Figure A.1, the parameters at room temperature (T=300K)

are plotted as a function of the number of grid points in the

wave-vector space. There, it can be seen that the parameters

converged. Notice that the hydrodynamic parameters (�, �? , ℓ
and 
) converge at larger meshes than the thermal conduc-

tivity. Under the RTA, this phenomenon is easily argued. The

thermal conductivity is proportional to the relaxation time

� ∝ 〈��〉 (Equation (2.11)), while the other parameters have
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a term proportional to the squared relaxation time, ∝
〈
�2

�

〉
(Equations (5.2a)-(5.2e)). This implies that phonon modes

of lower frequency $� and larger relaxation time �� have a

larger contribution, and denser meshes are required.
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A.1 Convergence of low-dimension
materials

The results presented in Section 3.3 are presented for arbi-

trary 3-dimension materials. The applicability of the results

requires that the integrals appearing therein do not diverge.

This issue is delicate in low-dimensional systems due to the

dispersion relations of flexural modes. In stress-free 2Dmate-

rials, harmonic models of flexural modes display dispersion

relations $�, 5 ;4G ∝ :2

�; as a result, the normalization constant

of vectors |)1

8
〉 yields

∫
:3

�/$
2

�3: ∝
∫

1/: 3:, which diverges

for infinite samples. This divergence led [28] to use the drift-

less expression for second sound in graphene. The coupling

of out-of-plane and in-plane modes renormalizes the disper-

sion relation of flexural modes so that at low frequencies

$�, 5 ;4G ∝ :3/2
� [159, 160] and the divergence disappears. The

renormalized dispersion relation was used in the numerical

solution of the BTE performed in [126] obtaining in the collec-

tive limit thermal waves with propagation velocity equal to

the drifting expression, in agreement with our formalism.

Nevertheless, the $� ∝ :3/2
� dependence and, in general,

dispersion relations $� ∝ :�� with � > 1 exhibit a problem

when applied to the displaced distribution in the thermo-

dynamic limit. The latter yields negative values for small

frequencies [43, 114], so the displaced distribution cannot

be a correct solution at these frequencies. This contrasts,

however, with iterative solutions of the BTE for graphene

and other 2D substances, which seem to provide displaced

distributions [28, 54]. This might be due to the finite wavevec-

tor lower bound used in the discretization of the reciprocal

space, which may not reach the region of negative values.

The question arises of which is the appropriate phonon dis-

tribution in the collective limit in this situation. Whichever it

is, substituting the corresponding ®�2>;� in the root expressions

of Section 3.3 would yield the transport coefficients. In a

recent paper [161], the authors address this issue and find

that for large 2D samples, the drift velocity is negligible, and

SS propagates with a (driftless) velocity given by E2

((
= �

��@
,

where �@ is the relaxation time of the heat flux, in agreement

with our Equation (4.21). Let us note in passing that the

latter driftless velocity does not necessarily coincide with

the classical expression of the driftless velocity, Equation

(4.18).
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Finally, under strain, dispersion relations of flexural

modes in 2Dmaterials seem to become linear at lowwavevec-

tors [162, 163] so that convergence of normalization constant is

guaranteed.However, the convergence of the thermal conduc-

tivity, in this case, is still unclear both computationally and

experimentally [114, 161, 163]. In 1D, also theoretical models

often provide divergent thermal conductivities, though the

inclusion of three-phonon scattering to second order seems

to yield finite values [114]. The latter property is required to

apply the present approach in its current form.

A.2 Relaxation times
Here, we show that the �2

?
%2®@
%C2 appearing on the GKE derived

with the FDF is much smaller than the �
%®@
%C . Thus, it can be

neglected and the GKE derived recovers the original GKE

shape [52]. This is shown in Figure A.2, where it can be seen

that � � �? . When considering an excitation of frequency $
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Figure A.2: Temperature depen-

dence of the heat flux relaxation

time �, �4 , �? and �� parameters

for diamond (yellow), germanium

(red), and silicon (blue). � and �4
are an order of magnitude larger

than �? and ��.

and the situation where $� < 1, the �2

?
%2®@
%C2 and �

%®@
%C are $

2�2

?

and $�, respectively. By comparing these two terms

$2�2

?

$� ,

one can obtain that

$2�2

?

$� = $�?
�?
� � $�? � $� < 1. Thus,

concluding that $2�2

? � $� and then �2

?
%2®@
%C2 � �

%®@
%C .

Figure A.2 also shows that the usually used relaxation

time in the Maxwell-Cattaneo equation or the GKE �� ≡
3�

�E 〈E�〉 is much shorter than the one predicted by the FDF �.
Then, memory effects appear at smaller frequencies.



Symmetrized scattering
matrix B

The linearized BTE can be symmetrized by introducing a

reference temperature)0, defining 5
0

� = 5
4@

� ()0), and rescaling

the phonon deviation from equilibrium =� = 5� − 5 0

� as

follows

=∗� =
=�√

5 0

� ( 5
0

� + 1)
. (B.1)

Then the BTE writes

%=∗�
%C
+ ®E� · ®∇=∗� = −

∑
�′
Ω∗��′=

∗
�′ , (B.2)

whereΩ∗ is the symmetric, self-adjoint, scattering operator

[52]

Ω∗��′ =

√√
5 0

�′( 5
0

�′ + 1)
5 0

� ( 5
0

� + 1)
Ω��′ . (B.3)

Analogously, one can define the symmetrized normal # ∗

and resistive '∗ scattering operators, withΩ∗ = # ∗ + '∗.
The distribution function can be expressed in terms

of the eigenvectors of the symmetrized Normal scattering

operator# ∗, which is an orthogonal basis of the phase density

space, and take advantage that four of these eigenvectors

are known, namely )0

� and )1


� (
 is the index of the spatial

component) [52]. They are related to the equilibrium and

displaced Bose-Einstein distributions, respectively, and read

)0

� = 20 ~$
√
5 0

� ( 5
0

� + 1) (B.4)
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)1


� = 21 ~:

√
5 0

� ( 5
0

� + 1), (B.5)

with 28 normalization constants so that<)0

� |)
0

�>=<)1


� |)
1


�>=

1, and the scalar product is definedas< 5 | 6>= +
∫
5 (�)6(�) 3�.

The eigenvalues of these eigenvectors are zero, which indi-

cates that they describe equilibrium states under # scatter-

ing.



Energy and momentum
projection C

In Section 3.1, we have used the projections of the BTE to

energy (Equation (3.1a)) andmomentum (Equation (3.1b)) for

the FDF. These projections can be physically argued through

the conserved magnitudes of the energy and the crystal

momentum of normal collisions, and this is what is done in

this appendix.

In general, the BTE is written as (Equation (2.3))

% 5�
%C
+ ®E� · ®∇ 5� = �( 5�). (C.1)

The collisions operator can be separated as the momentum-

conserving collisions (or normal collisions) #( 5�) and the

momentum-destroying collisions (or resistive collisions)'( 5�),
giving that �( 5�) = '( 5�) + #( 5�) without losing general-

ity.

Then, we impose the two physical conditions required:

the energy conservation of the collisions operator and the

momentum conservation of normal collisions. From the first

condition

∫
~$��( 5�)3� = 0, it is obtained that

%4

%C
+ ®∇ · ®@ = 0, (C.2)

which is Equation (3.1a). From the momentum conservation

of the normal collisions,

∫
~®:�#( 5�) = 0 it is obtained

%®?
%C
+ ®∇ ·

=

Π =

∫
~®:�'( 5�)3�. (C.3)
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Nevertheless, in principle, the preservation of momentum

in normal collisions must be guaranteed for any collisions

operator, meaning that

∫
~®:�'( 5�)3� =

∫
~®:��( 5�)3� and,

then, recovering the momentum projection used in the FDF

(Equation (3.1b)).

A comment on the RTA collision operator. These two ar-

guments to project to the energy and the momentum are

valid as long as the collision operator imposes the corre-

sponding energy and momentum conservation conditions.

As in Equation (3.24), energy conservation is guaranteed for

whatever the collision operator is.

Nevertheless, for the momentum conservation case, it

is different. The typical RTA collisions operator does not

guarantee

∫
~®:�#( 5�)3� = 0. This is because there is no im-

position in the vectorial component of the collisions operator

since

#( 5�) = −
5� − 5 4@�
�#,�

, (C.4)

which �#,� is the normal collisions time that, combined with

Mathiessen’s rule, gives the typical RTA result ��.

To give an example, the ®�� is treated. In the RTA, it is

obtained (Equation (5.1)) that

®�� =
��
�

% 5
4@

�

%)
®E� (C.5)

and #(®��) = −®��/�#,�. Then the condition for the momen-

tum conservation is

1

�

∫
~®:�

��
�#,�

% 5
4@

�

%)
®E�3� = 0, (C.6)

which gives the condition that

〈
E�
E?,�

�',�
�',�+�#,�

〉
= 0. Since all the

appearing magnitudes in the RTA are positive, this condition

cannot be accomplished, and the momentum conservation

of the normal collisions is not satisfied.



Mathematical relations D

In this appendix, some mathematical relations used in previ-

ous chapters are derived. All these mathematical relations

are derived assuming an isotropic material and assuming a

3-dimensions material.

D.1 Second-order isotropic tensor
In an isotropic material, a second-order mode-independent

tensor can be expressed as∫
��E�,8E�, 93� = �

∫
��E

2

�3� �8 9 , (D.1)

where E�,8/E� is the unitary vector of the �-mode at the

8-direction, �� is a scalar that depends on the �-mode, � is a

constant that must be determined, and �8 9 is the Kronecker
delta. If we define �8 9 ≡

∫
��E�,8E�, 93� and �′ ≡

∫
��E

2

�3�,
Equation (D.1) results in

�8 9 = ��
′�8 9 . (D.2)

From this relation, it can be obtained that �GG = ��′ and
�GH = 0. Now, let us calculate �′

�′ ≡
∫

��E
2

�3� =

∫
��

3∑
8=1

E2

�,83� =
3∑
8=1

∫
��E

2

�,83�,

(D.3)

where it has been used that E2

� =
∑3
8=1
E2

�,8 . Since an isotropic

material is considered,

∫
��E

2

�,83� =
∫
��E

2

�, 93� for what-
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ever combination of any 8 and 9, meaning that

�′ = 3

∫
��E

2

�,83� = 3

∫
��E

2

�,G3�, (D.4)

which gives that �′ = 3�GG that combined with Equation

(D.1), gives that∫
��E�,8E�, 93� =

1

3

∫
��E

2

�3��8 9 . (D.5)

D.2 Fourth-order isotropic tensor
In an isotropic material, the following fourth-order tensor

can be expressed as ∫
��E�,8E�, 9E�,:E�,;3�

= �

∫
��E

4

�3�
(
�8 9�:; + �8:� 9; + �8;� 9:

)
,

(D.6)

where �� is a scalar that depends on the �-mode and � is

a constant that must be determined. If we define �8 9:; ≡∫
��E�,8E�, 9E�,:E�,;3� and �′ ≡

∫
��E

4

�3�, Equation (D.6)

results in

�8 9:; = ��
′ (�8 9�:; + �8:� 9; + �8;� 9: ) . (D.7)

From this relation, it can be obtained that �GGGG = 3��′ and
�GGHH = ��

′
. Now, let us calculate �′

�′ ≡
∫

��E
4

�3� =

∫
��

3∑
8=1

E2

�,8

3∑
8=9

E2

�, 93�, (D.8)

where it has been used that E2

� =
∑3
8=1
E2

�,8 . The previous

expression can be written as

�′ =

∫
��

(
3∑
8=1

E4

�,8 +
3∑

8≠9=1

E2

�,8E
2

�, 9

)
3�, (D.9)

where the diagonal and non-diagonal terms have been sepa-

rated. Then, it can be seen that

�′ = 3�GGGG + (32 − 3)�GGHH . (D.10)
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But we have already seen that �GGGG = 3�GGHH , then �
′ =

33�GGHH + (32 − 3)�GGHH . This, combined with �GGHH = ��
′
,

gives the result that

�8 9:; =
1

3(3 + 2)�
′ (�8 9�:; + �8:� 9; + �8;� 9: ) . (D.11)



Alternative derivation of
the GKE in the kinetic limit E

In this appendix, the presented derivation is an alternative

derivation of the GKE in the kinetic limit, i.e., using the

RTA collisions operator. This derivation recovers exactly the

results of Section 5.1 with a different procedure.

In order to overcome the drawbacks of the macroscopic

equations obtained through the Chapman-Enskog (CE) and

Grad moment methods beyond Navier-Stokes-Fourier equa-

tions, in the last decades it has been developed the so-called

regularized moment method [109]. In this appendix, we

present a regularized moment method that provides the

same nonequilibrium distribution and macroscopic equa-

tions found in ref. [70] through the FDF.

A key difference of the present derivation with respect

to the one in ref. [57] is the nonequilibrium function that is

employed in the CE expansion. In ref. [57], the expansion

was performed around a nonequilibrium distribution found

from maximizing phonon entropy for a given energy density

and heat flux, thus obtaining a four-moment nonequilibrium

function. As in the case of the Grad moment distributions

used in the kinetic theory of gases, the latter function is

built independently of the BTE, which comes into play only

through the moment equations. In contrast, we start from a

nonequilibrium function that is close to a first-order solution

of the BTE.

The BTE with the RTA collisions operator (Equation

(2.10)),

% 5�
%C
+ ®E� · ®∇ 5� = −

5� − 5 4@�
��

, (E.1)
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is usedwith its projections onto energy and quasimomentum

(Equations (3.1a)-(3.1b)).

To first order in the Knudsen number, the CE method

yields for the distribution function the well known result

5� = 5
4@

� − ��%) 5
4@

� ®E� · ®∇), which directly supplies Fourier’s

law, ®@ = −� ®∇). Note that a CE expansion of this function

gives rise to second spatial derivatives of temperature and

then to macroscopic equations of the Burnett type, which are

unstable. Instead, we rewrite the distribution function as

5 4

� = 5
4@

� +
��
�

% 5
4@

�

%)
®E� · ®@, (E.2)

which is the four-momentdistribution function aroundwhich

we will perform the regularization. The transport equations

associated with this distribution function are obtained by

substituting it into energy and momentum projection of the

BTE (Equations (3.1a)-(3.1b)), respectively, which we write

below to simplify the present reasoning:

%4

%C
+ ®∇ · ®@ = 0, (E.3a)

%®?
%C
+ ®∇ ·

=

Π =

∫
~®:��( 5�)3�. (E.3b)

Then, one obtains:

�E
%)

%C
+ ®∇ · ®@ = 0, (E.4a)

�
%®@
%C
+ ®@ = −� ®∇), (E.4b)

with � a time parameter. Equation (E.4b) is the Maxwell-

Cattaneo equation (MCE). These two equations are the first-

order equations to be used for obtaining the next-order

ones.

The first order CE expansion around 5 4

� can be obtained

by isolating the distribution function 5� from the right-hand

side of Equation (E.1) and introducing Equations (E.2)-(E.4b)

into the perturbation [164].

5� = 5
4@

� − ��
(
% 5�
%C
+ ®E� · ®∇ 5�

) ����
5 4

�

. (E.5)

The distribution function thus obtained has the form of
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Equation (3.15) with:

®�� =
��
�

% 5
4@

�

%)
®E� , (E.6a)

®�� =
��
�
(� − ��)

% 5
4@

�

%)
®E� , (E.6b)

=

�1,� = −
�2

�

�

% 5
4@

�

%)
®E�®E� , (E.6c)

62,� =
��
�E

% 5
4@

�

%)
. (E.6d)

These expressions are the same ones supplied in Section 5.1.

This distribution reduces to the expression found by Guo

and Wang for a gray model and identical Debye branches

[57].

To obtain the transport equations associated with this

new distribution function, one has to substitute it into Equa-

tions (E.3a)-(E.3b). This directly yields equations for the

temperature and the heat flux of the form of the GKE, with

parameters appearing on the transport equations
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which are the same expressions obtained in Section 5.1.
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Under the assumptions of identical Debye branches and

mode-independent relaxation time considered in ref. [57],

one recovers the same results found therein.



Callaway’s parameters F

In Section 5.2, we have shown the values of the transport

parameters considering Debye’s approximation with a single

branch for the seek of simplicity. This appendix shows its val-

ues for general dispersion relations and number of branches.
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Remember that 
 is the one of Equation (3.27) (
 ≡ 
′− ��4
�Eℓ 2

).

The values for �′ and �′ are shown in Equations (5.12a) and

(5.12b), respectively.



Sources in the model G

In this appendix, the introduction of source terms in the

transport equations (Equations (3.19a) and (3.19b)) is derived

for a general collision operator. The procedure is completely

analogous to the one presented in Section 3.3 but introduces

into the BTE a term proportional to the introduced source.

SectionG.1 introduces a power density source into the system.

In Section G.2, a flux of momentum is introduced into the

system.

G.1 Power density source
As already mentioned, the procedure is completely analo-

gous to the one presented in Section 3.3. However, a term

proportional to the power density introduced to the system

% is included in the BTE

% 5�
%C
+ ®E� · ®∇ 5� = �( 5�) + ?�%, (G.1)

where ?� is an unknown variable that can depend on the

�-mode. This variable must satisfy that∫
~$�?�3� = 1 (G.2)

to guarantee that the density power introduced in a given

point is %. By introducing the phonon distribution function

related to the GKE (Equation (3.15)), the projection to the
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energy of the BTE results in

�E
%)

%C
− �4

%®∇ · ®@
%C
+ ®∇ · ®@ = %, (G.3)

where it has been used Equation (G.2). The projection to the

momentum recovers the expression of Equation (3.19b). By

assuming that % is an independent variable and substituting

Equations (G.3) and (3.19b) into the BTE, is obtained that
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which recovers the expressions fromEquations (3.22a)-(3.22d)

and it is also obtained the expression for ?�

?� =
1

�E

% 5
4@

�

%)
. (G.5)

This gives that, in general, the BTE is (Equation (G.1))

% 5�
%C
+ ®E� · ®∇ 5� = �( 5�) +

1

�E

% 5
4@

�

%)
%, (G.6)

which means that the energy absorption by the system is pro-

portional to the specific heat contribution of the�-mode. This

result agrees with other works, where this mode dependence

is a priori assumed [32].

G.2 Momentum rate density source
The procedure to obtain the transport equations with a

momentum rate density source is completely analogous to

the one to obtain the power density source (Section G.1). It is

considered that in the BTE, a source term of the momentum

rate density
®" is introduced

% 5�
%C
+ ®E� · ®∇ 5� = �( 5�) + ?�% + ®<� · ®", (G.7)
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where ®<� is an unknown variable that can depend on the

�-mode. This variable must satisfy, in an isotropic material,

that

1

3

∫
~:�<�3� = 1. (G.8)

This relationmust be fulfilled to guarantee that the projection

of the BTE to the momentum recovers the total momentum

rate density
®" introduced. Here we have identified the mo-

mentum with the quasi-momentum of the phonons, which

is a reasonable approximation to get a physical insight into

the momentum source.

If the distribution function considered is the one in

Equation (3.15), the projection to the energy of the BTE is

the same as in the previous section (Equation (G.3)), and the

momentum projection of the BTE is

®@ + �< ®" = −� ®∇) − �
%®@
%C
+ ℓ 2

(
∇2®@ + 
 ®∇(®∇ · ®@)

)
, (G.9)

where all the parameters are the ones obtained in Section 3.3,

and �< is defined as

�< ≡
∫
~:�<�3�∫

~:��(��)3�
. (G.10)

By assuming that
®" is an independent variable and substi-

tuting Equations (G.3) and (G.14) into the BTE, it is obtained

that (neglecting higher-order derivatives)
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which recovers the expressions fromEquations (3.22a)-(3.22d)

and Equation (G.5), and it is also obtained the expression for

®<�

®<� =
3

�E

〈
E�
E?,�

〉 % 5 4@�
%)
®E�. (G.12)



G Sources in the model 128

The parameter �< is also fully determined by

�< =
1

3

�

�E

〈
E�
E?,�

〉 . (G.13)

For example, in a FDTR considered in Section 6.2.1 [66], a

semiconductor is directly heated with amonochromatic laser.

In that case, the momentum rate density is
®" = %

2 "̂, where

2 is the speed of light, % is the power density and "̂ is the

unitary vector in the laser beam direction. Then, usually, the

resulting expression is

®@ +�<
%

2
"̂ = −� ®∇) − �

%®@
%C
+ ℓ 2

(
∇2®@ + 
 ®∇(®∇ · ®@)

)
. (G.14)

To get a physical insight into the influence of this term, we

use the reference values in the second sound experiment for

germanium (Section 4.3) [66].With these values, it is obtained

that @ ∼ 10
9�<", meaning that the transfer of momentum

due to the photons does not affect the thermal transport

since its contribution to thermal transport is various orders

of magnitude smaller than the rest of the contributions.
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