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ABBREVIATION INDEX 

ALI: air-liquid interface 

AHI: apnea-hypopnea index 

AQP: aquaporin 5 

ARDS: acute respiratory distress syndrome 

ATI: alveolar type I 

ATII: alveolar type II 

CCSP: club cell secretory protein 

COPD: chronic obstructive pulmonary disease 

CPAP: continuous positive airway pressure 

DAD: diffuse alveolar damage 

DAMPs: damage-associated molecular patterns 

ECM: extracellular matrix 

EHS: Engelbreth-Holm-Swarm 

FA: focal adhesion 

FAK: focal adhesion kinase 
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GAG: glycosaminoglycan 

GelMA: gelatin methacryloyl 

IH: intermittent hypoxia 

IL-6: interleukin-6 

IL-8: interleukin-8 

KGF: keratinocyte growth factor 

LINC: linkers of the nucleus and the cytoskeleton 



  

LMSC: lung mesenchymal stromal cells 

LPS: lipopolysaccharide 

MMPs: matrix metalloproteinases 

MSC: mesenchymal stromal cells 

NCP: nuclear pore complex 

NLRs: NOD-like receptors 

NF-κβ: nuclear factor-κβ 

OS: overlap syndrome 

OSA: obstructive sleep apnea 

PAMPs: pathogen-associated molecular pattern molecule 

PDMS: polydimethylsiloxane 

PDPN: podoplanin 

PEEP: positive end-expiratory pressure 

PHD: prolyl hydroxylase 

PRR: pattern-recognition receptors 

ROCK: Rho-kinase 

ROS: reactive oxygen species 

SCGB: secretoglobin 

SH: sustained hypoxia 

SF: stress fiber 

SPC: surfactant protein C 

SPB: surfactant protein B 

TIMPs: tissue inhibitors of metalloproteinases 

TLR: toll-like receptors 



  

TNF-α: tumor necrosis factor-α 

YAP: yes associated protein 
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1. Respiratory physiology 

Lungs are complex organs with a structure composed of ≈300 million alveoli and an alveolar area of 

140 m2 responsible for gas exchange 1. To accomplish this function, they need to meet a series of 

characteristics: specific location of different cell types specialized in certain functions, and composition 

and structure presenting mechanical characteristics allowing them to endure the tensile forces 

originated by breathing. Moreover, to ensure the correct gas exchange, the alveoli are surrounded 

by a capillary network. 2 

 

1.1 Lung extracellular composition 

In addition to cells, all organs present an acellular component, the extracellular matrix (ECM). It is 

mainly formed by fibrous proteins, glycoproteins, and proteoglycans, and it presents a unique and 

dynamic composition that varies depending on the tissue, the characteristics of the individual, and 

other physiological circumstances. Besides, the ECM can present two different structural functions. 

On one hand, basement membranes, composed of the basal lamina (mainly formed by glycoproteins) 

and the reticular lamina (mainly formed by collagen), can be found underneath the cells or covering 

nerves, organs, and muscles. On the other hand, interstitial matrices are composed of different 

proteins forming a fibrillar meshwork that gives structural support and interconnects different cell 

types conferring cohesiveness (Figure 1) 3,4. 

The ECM plays an important structural and biological role in tissues. It provides physical support to 

the cells and participates in the physical separation of organs and tissues. Also, it is a reservoir for 

secreted proteins (growth factors, ECM modifying enzymes, and ECM associated proteins). 

Moreover, ECM interacts with cells, thus participating in the biophysical and biochemical cell signaling. 

In the specific case of the lung, the extracellular matrix composition is responsible for the biophysical 

characteristics that allow them to constantly stretch and recoil for breathing. Although the lung ECM 

contains hundreds of components, most of them can be classified into structural proteins (collagen 

and elastin), glycoproteins, and carbohydrates (glycosaminoglycans (GAGs) and proteoglycans) 

(Figure 1). 3 
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Figure 1. Composition of the lung extracellular matrix and its interaction among them and with the intersticial 

cells. Image from Wijsman et al. 2021.5 

 

- Structural proteins. The two main structural proteins in the lung are collagen and elastin.3 

The most abundant one is collagen, which gives mechanical support to the tissue for withstanding 

tensile forces6. Collagen is usually found forming fibers, but it can be also found forming sheets as a 

part of the basement membranes.7 The elastic properties of the ECM are mainly provided by another 

protein, elastin, due to its characteristic composition: the increased number of hydrophobic regions 

are hidden in the inner part of the protein in its quaternary composition. When mechanical loads 

are applied, these regions are exposed to the aqueous medium, and when they disappear, elastin 

recovers its globular conformation.8 

- Glycoproteins. These proteins act as intermediaries binding proteins from the ECM among 

them or with the cells, contributing to forming the ECM cohesive network. Some glycoproteins, like 

fibrillin, also contribute to lung elasticity by covering the external part of the elastic fibers.9 The two 

main glycoproteins are laminin and fibronectin. Laminin is one of the most important components 

of the basal lamina, which is the specialized ECM layer below the epithelial and the endothelial cells 

separating them from the connective tissue, acting as a barrier. In addition to its structural role, laminin 

is a bridge between cells and other ECM components, influencing cell behavior and differentiation.10 

Fibronectin is a large glycoprotein that maintains ECM consistency by connecting different 
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components and regulates cell adhesion, migration, and differentiation through the binding of cells to 

other proteins. 7 

- Glycosaminoglycans. They are polysaccharides whose main functions are to help maintain 

the hydration in the tissues due to their negative charge, provide resistance to mechanical loads, and 

participate in cell signaling. Some of the processes they are implicated in are wound repair, 

proliferation, cell growth regulation, and cell adhesion. Often, glycosaminoglycans are covalently 

bonded to polypeptides, which are known as proteoglycans.11  

As said before, ECM is a dynamic evolving system, that can adapt to different physiological conditions. 

There are some proteins specialized in the ECM remodeling to keep homeostasis: matricellular 

proteins, metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs).12 

Matricellular proteins are dynamically expressed and maturate and coordinate the flow of information 

between cells and their environment by sequestering growth factors and binding ions, inhibiting the 

proteases by direct binding, activating cytokines, etc. Also, they induce the detachment of the cells 

from the ECM. Their abundance in the ECM is dynamic, increasing during remodeling processes as a 

response to an injury, and during development.13 Metalloproteinases are a family of extracellular 

enzymes with proteolytic activity. Some of them are constitutively expressed but others are 

synthesized only under disease or remodeling situations. They play a key role in some important 

processes for the lung as remodeling, branching morphogenesis,14 cell migration,15 repair, matrix 

turnover,16,17 and host defense against pathogens.18 

 

1.2 Biomechanical properties of the extracellular matrix 

Topography and stiffness are the main biomechanical properties of the ECM impacting the lung tissue 

behavior. The stiffness of a tissue is a measure of the resistance to deformation when external forces 

are applied. It depends on the ECM composition, the degree of crosslinking of the fibers, and the 

interstitial fluids. The topography consists of the structural characteristics (architecture, geometry, 

size, and organization) of the tissue from the nanoscale to the macro-scale level. 19 

Several investigations 20,21,22 about how biomechanical properties influence cell behavior in vitro have 

been made since this phenomenon was first reported in 1911 by Harrison23 when studying the 

growth of embryonic cells on spider web fibers. He showed that topography influenced the 

morphogenesis and migration of cells. More recent works have also associated topography with cell 
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behavior as cells tend to align their cytoplasms in parallel to the pattern of the surface they grow on, 

24,21,25 and also influences their differentiation abilities26.  and migration velocity. 24,21. Also, stiffness has 

been related to cell behavior, showing improved cell adhesion to the surface when the stiffness 

increases, with the consequent increase in cell spreading and size of focal adhesions. 27,28 It also has 

consequences on the migration ability 29,30,31  and cell identity as it can promote differentiation. 32,33,29 

The concentration of ligands has also been linked to the formation of FAs, 34,35 influencing the 

spreading, proliferation, or differentiation22,36. Increased stiffness goes usually together with an 

increase in ligand concentration, which makes it difficult to understand the independent contribution 

of both factors. However, the effects of stiffness alone have also been reported. 37,38 

 

 

Figure 2. Signal mechanotransduction from the ECM to the nuclei through the formation of the focal adhesion 

complexes and the formation of the actin fibers. Image from Shams et al 2017. 39 

 

Cells interact with the ECM by establishing adhesion protein complexes known as focal adhesions 

(FAs), formed mainly by integrins and a complex of proteins like vinculin, talin, focal adhesion kinases 

(FAK), and paxillin. Integrins are dimeric transmembrane proteins whose extracellular part interacts 

with the ECM and its intracellular part interacts with the complex of proteins that interplay with the 

cell cytoskeleton (figure 2) 40 41. The formation of the FAs is a complex and dynamic process where42 

the Rho family of GTPases plays an important role, being Rac implicated in early events of focal 

complex formation, while Rho is related to the maturation of the focal adhesion. 43–45 Rho, and more 

importantly, its effector Rho Kinase (ROCK), are involved in the formation of stress fibers that takes 

place during the maturation of FAs through the regulation of the myosin light chain phosphorylation, 
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which promotes the bundling of the actin filaments into stress fibers and also increases myosin 

ATPase activity leading to myosin contractility (Figure 3) 46,47. They are responsible to link the FAs to 

the cytoskeleton (comprised of microtubules, actin fibers, and intermediate filaments) to directly 

transmit the mechanical force of the ECM to the nucleus through the LINC (linkers of the nucleus 

and the cytoskeleton) complexes (Figure 2).48–51,39 

 

Figure 3. Integrin-mediated focal adhesions recognition of the ECM and activation of the signaling cascade that 

leads to actomyosin deposition. The formation of F-actin favors thanks to the LINC proteins the YAP 

translocation into the nuclei resulting in the transcriptionally active YAP/TAZ. Adapted from Totaro et al 

2018.52 

As a result of the integrin-mediated ECM sensing, cells experience changes in their cytoskeleton 

through which it transmits the signal from the extracellular matrix to the nucleus, activating or 

inhibiting transcription factors, in a similar way that the chemical response can be triggered by the 

activation of signaling pathways and messengers in the cells. 53 One of the important transcription 

factors is the Yes-associated protein (YAP), which can translocate to the nucleus where it acts as a 

transcription factor through the nuclear pore complexes (NCP) due to the role of the actomyosin 
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fibers in modifying the nucleus shape after sensing the extracellular stiffness through the FAs (Figure 

3) 52,54.   

Through these responses, cells establish a dynamic interaction with the ECM: cells can modify or 

remodel the ECM (e.g secretion of metalloproteinases, collagen…), and they are affected by the 

properties of the matrix, which play a role in several important cellular processes. 55,56,57,58 

 

1.3 Lung cell populations 

Two parts can be distinguished in the mammal respiratory system: the conducting zone, which is 

formed by the trachea, bronchi, and bronchioles and transports the air, and the respiratory zone, 

which consists of the bronchioles, alveolar ducts, and alveoli, and is in charge of the gas exchange 59. 

The respiratory organs are formed by epithelial cells derived from embryonic endoderm, 

neuroectoderm, and mesoderm that cover from the trachea to the alveoli, including the bronchi and 

bronchioles,60 but also present other cell types all over the different regions like endothelial, mainly 

forming the walls of the capillaries that cover the alveoli, and mesenchymal cells, fibroblasts, and 

myofibroblasts, found in the interstitium 61,62. The distribution of the different epithelial cells is different 

according to the location (figure 4). The trachea is composed of a pseudostratified epithelium 

specialized in warming and filtering the air obtained from the external environment and avoiding the 

entrance of dust and bacteria to the gas exchange area. Throughout all the airways can be found 

multiciliated cells which are specialized in the mucociliary clearance and basal cells that can give rise 

to all cell types within the airways. In the upper airway, there are also goblet cells, the main producers 

of mucins. As the airway becomes more distal, the epithelium becomes columnar, and goblet cells 

decrease in number, increasing neuroendocrine cells and club cells, involved in the response of lungs 

to the environment, and in the secretion of the secretoglobins and surfactant proteins, respectively 

63,61. Finally, alveoli are formed by type I and type II alveolar epithelial cells. Alveolar type I (ATI) are 

squamous cells juxtaposed to the microvascular endothelial cells that surround the alveoli, so they 

can perform efficient gas exchange. They are specialized cells that don’t present self-renewal ability 

and they compose 95% of the alveolar epithelium. Alveolar type II (ATII) are cuboidal cells that 

synthesize surfactant protein C to reduce the surface tension of the alveoli. They can act as a self-

renewing stromal cell-like population that can also give rise to ATI cells 64.  
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Figure 4. Cell type distribution from the proximal parts of the airways to the alveoli. Airways are formed by a 

pseudostratified epithelium including goblet, ciliated, club, neuroendocrine and basal cells. Alveoli are formed 

by a single layer of ATI and ATII cells. Beneath them, there can be found mesenchymal alveolar cell. Based on 

images from Bennet et al 2021 and Basil et al. 2020.65,61  

Since the respiratory epithelium is exposed to an external source of pathogens and possibly toxic 

substances, there is a population of lung-resident mesenchymal stromal cells (LMSCs) whose function 

is to differentiate into several types of cells, contributing to the homeostasis and regeneration of the 

lung after injury 66. They are cells with fibroblast-like morphology with multi-lineage differentiation 

capacity and specific surface markers (+CD105,+CD90, +CD73, -CD45, -CD34/CD11b, -

CD79α/CD79) 67,68. They have immunosuppressive abilities 69,70, and the ability to differentiate to 

other lung cell types as shown by their ability to secrete Club cell secretory protein and aquaporin-

5 under certain conditions 71. These cells play an important role in the distal epithelium, where are 

found in close association with ATII cells, to contribute to the epithelium repair after damage, 

supporting cell growth, self-renewal, and differentiation 71,66,61. 

 

 

1.4 Cyclic stretch 

Lungs are organs subjected constantly to cyclic stretch at a frequency of 10 – 20 breathings per 

minute (0.16 – 0.33 Hz) in the case of adult humans 72. These mechanical strains are key to biological 

function and are affected by spatially and temporary nonuniform loading and boundary conditions. 
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Gas exchange takes place in complex octahedron-shaped structures, with an approximate 100 µm 

diameter: the alveoli. They are composed of an air contact epithelial layer and endothelial cell line 

capillaries, separated by the extracellular matrix proteins (basement membrane). Those three 

components form a barrier that allows for effective gas exchange and prevents fluid leakage in the 

airspace73. Lungs are composed of between 200 and 300 million alveoli which suppose a surface of 

140 m2, which can increase when they inflate, thanks to their elastic properties.1 Estimating the 

alveolar area is complicated due to the dependence on whether measurements are taken on inflation 

or deflation, the method of fixation, or the amount of surfactant 74. The transpulmonary pressure 

(PT), which is the difference between the alveolar pressure and the pleural pressure, determines the 

volume of the lung. The stresses provoked by the PT are transmitted to the air spaces through the 

tissue attachments and distend them, avoiding alveolar collapse.  After the contraction of the 

diaphragm and the expansion of the chest wall, the alveolar pressure decreases below the 

atmospheric pressure, provoking the air entering the lung. The expiration is a passive process, where 

the elastic chest wall returns to its resting position increasing the alveolar pressure over the 

atmospheric pressure, and thus, the air is expired (Figure 5 A-C).73 

Therefore, lung cells are constantly subjected to a cyclic mechanical stimulation that plays an 

important role in tissue regeneration75 and cell death 76,77, permeability78, and migration79. Also, stretch 

is essential in organ formation and development due to its involvement in the maturation of fetal 

lung muscles and epithelial cells. Different studies have related lung stretch to increased secretion of 

surfactant protein C during the episodic breathing movements in fetal lung development 80,81, the 

lung movement after birth, and as a consequence of mechanical ventilation 82.  Cells sense the stretch 

through the FAs, as explained previously, and can activate important pathways such as the MAPK 

signaling pathway 83,84. This pathway can be involved in the increased secretion of inflammatory 

cytokines, as several authors have claimed.85 Like the effect of stiff substrates, cyclic stretch also 

provokes the formation of stress fibers and larger FAs. In fact, the subjection of cyclic stretch to cells 

cultured on soft substrates promotes similar results that stiff substrates in terms of focal adhesions 

and actin cytoskeleton remodeling 86. 
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Figure 5. (A) Intrapleural pressure is the result of two opposing forces: elastic tissue and alveolar fluid surface 

tension pulls the lungs inwards, and the thoracic wall pulls the lungs outwards. The outward pull is slightly 

superior to the inward pull, maintaining the alveoli open. Upon the contraction of the diaphragm and the 

expansion of the chest, alveolar pressure decreases below atmospheric pressure and air goes inside the lungs. 

During the expiration process, the lung returns to its initial volume thanks to the elastic and recoil properties 

of the lung ECM in a passive process. (B) Alveolar structure formed by different type of cells. The arrows 

indicate the alveolar pressures (PALV). (C) P-V curve showing the hysteresis occurring in the respiration process. 

It is explained by the great intermolecular forces of the molecules lining the alveoli that must be broken in 

order to fill it with air. Image from Roan and Waters 2011. 73 

 

1.5 Lung immune homeostasis 

The lungs are constantly exposed to possible aggressions from the environment as the inhaled air 

can contain dust, microorganisms, and toxic substances. For that reason, they count on several 

defense mechanisms. One of them is the tight impermeable barrier that the epithelial cells of the 

respiratory tract form, which are bound together by tight junctions 87. These cells present different 

mechanisms as the presence of vili and the secretion of mucus to perform the mucociliary clearance 

in the upper airway 88. Some cells can secrete surfactant proteins A and D which play an important 

role in the immune response. 89,90,91. 

Airway epithelial cells can sense and respond to inhaled antigens through the recognition of 

pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) 
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by a conserved set of pattern-recognition receptors (PRRs). The PRRs can be classified into toll-like 

receptors (TLR) and NOD-like receptors (NLRs) 92–94. As a response to a pathogenic infection, after 

its recognition through the PRRs, epithelial cells can secrete a wide range of damage-associated 

molecular patterns proinflammatory cytokines and chemokines as TNF-α 95, IL-1β 96, IL-6 97, IL-8, 

IFN-ɣ 98, MCP-1 99, TGF-β 100, GM-CSF 101 and CXCL5 102. In addition, the epithelium can secrete also 

anti-inflammatory cytokines such as IL-10 to avoid excessive pro-inflammatory responses 103. Apart 

from cytokines, epithelial cells can also protect the respiratory tract from external aggressions 

through the release of antimicrobial peptides known as defensins, which can directly kill bacteria, 

viruses, fungi, and protozoa, and inactivate toxins 104–106. Both cytokines and defensins can act as 

chemotactic agents for other immune cells such as monocytes, macrophages, T-cells, and dendritic 

cells 107,108. 

However, epithelial cells are not the only lung cell type capable of responding to pathogens through 

the secretion of cytokines. The aforementioned mesenchymal stromal cells actively participate in 

cytokine and chemokine production as a response to lung damage as in vivo and in vitro studies have 

shown109,110,69. Also, in the homeostatic lung, macrophages can be found in the interstitium (interstitial 

macrophages) and also in the alveoli (alveolar macrophages), in charge of phagocyting the inhaled 

microorganisms and also secreting cytokines. 

Briefly, the more relevant functions of the main involved cytokines are: 

- IL-1β: it induces the production of other cytokines. Its main functions are to promote ATII 

proliferation and to increase spreading and migration on the edge of wounds, favoring the 

epithelial repair. 111 It is an early response cytokine and its expression has a role in the 

development of lung injury. 112 It is a biomarker of bad prognosis in ARDS patients 113. 

- TNF-α: it is one of the most important pleiotropic cytokines (cytokines able to exert many 

different types of responses, often on different cell types). Similar to IL-1β, it induces the 

production of other cytokines and can promote alveolar epithelial repair. It also activates the 

expression of adhesion molecules and stimulates growth 114,111. Its release in inflammatory 

processes is related to vascular endothelial damage, destruction of the barrier function, and 

reduction of antioxidants. 115 

- IL-6: it’s a pleiotropic cytokine that induces an inflammatory cascade reaction. It has been 

associated with a bad prognosis in ARDS patients, as it is a predictor of the severity of lung 

injury related to the CT (computerized tomography) score, and PaO2/FiO2 ratio. 116–118 Its 
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presence usually decreases over time during patients’ recovery but it increases before 

worsening and before respiratory failure. 117 It is also associated with a COPD severe 

phenotype. 108 

- IL-8: its main function acts as a chemoattractant for different immune cells, especially 

neutrophils, 119 and also acts as an angiogenic factor. 120 Its murine counterpart is known as 

MIP-2. Like IL-6, it is associated with a COPD severe phenotype. 108 

- IL-10: it is a potent anti-inflammatory cytokine that is constitutively expressed in the alveoli 

and not only mediates the inhibition of other pro-inflammatory cytokines but also inhibits 

antigen-presenting function 121,122,123. It is known to present a release peak at day 1 in ARDS 

patients and decreases over time 124. Its reduction has been associated with increased 

mortality in ARDS patients 125. 

- IFN-ɣ:  it orchestrates early inflammatory events, enhancing immune-mediated injury in acute 

lung injury. Its main function is to activate macrophages upon viral or bacterial infection. 126 

 

2 Respiratory diseases 

2.1 Obstructive Sleep Apnea 

Obstructive Sleep Apnea (OSA) is a chronic condition characterized by recurrent episodes of apnea 

or hypopnea, due to the complete or partial obstruction of the upper airway, respectively, during 

sleep. This respiratory cessation results in arousal from sleep and hypoxia and reoxygenation cycles, 

leading to its two major pathological traits: sleep fragmentation and intermittent hypoxia 127. People 

suffering from this pathology frequently present some symptoms derived from nocturnal sleep 

fragmentation, such as diurnal sleepiness or fatigue. 128 The apnea-hypopnea index (AHI), measured 

by polysomnography, represents the average number of apneic events experienced each hour during 

sleep. AHI is a diagnostic index for determining the presence and severity of OSA.  According to it, 

OSA can be classified as mild (AHI between 5 and 14), moderate (AHI between 15 and 29), and 

severe (≥ 30). For determining OSA severity it is also useful to calculate the time that the saturation 

of the oxyhemoglobin in the blood is under 90%, which is known as T90. 129 

The first-line treatment is the loss of body weight to reduce fat deposition around the neck and the 

abdomen which can cause a decrease in the pharynx lumen, and an increase in abdominal pressure. 

130 For the most severe cases, therapy with continuous positive airway pressure (CPAP) is chosen. 
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They can be combined with other treatments like antihypertensives.  Alternatively to CPAP, there is 

the option of mandibular advancement devices, which keep the upper airway open to avoid collapse. 

131 Surgically, OSA patients can be treated by enlarging the oropharyngeal airway or by maxillofacial 

surgery. 132 

The pathogenesis of OSA is multifactorial, complex and incompletely understood.133 The reduced 

intrathoracic pressures and the activation of the sympathetic nervous system, combined with the 

relaxation of the throat muscles during sleep give rise to episodes of OSA. Anatomically, several 

factors can increase the collapsibility of the upper airway: 1) alteration of soft tissue structures, 2) 

abnormal craniofacial structures (retroposed mandibles, inferiorly placed hyoid bones) and 3) an 

excess of fat deposition. Also, the lack of pharyngeal protective reflex during sleep and the reduced 

neuromuscular compensation contribute to increasing pharyngeal collapsibility. 134 

The hypoxic-reoxygenation episodes derived from the upper airway occlusion during sleep followed 

by the awakening of the patient can generate the liberation of many inflammatory mediators135 and 

reactive oxygen species (ROS)136 due to mitochondrial dysfunction, the activation of the NADPH 

synthase and the impairment of the nitric oxide synthase (NOS)137,138. All these alterations, give rise 

to the existence of comorbidities, mainly cardiovascular139,140 or cerebrovascular diseases139,141, 

metabolic dysregulations142,143 and lung cancer.144,145 Actually, several clinical trials associate the 

preexistence of OSA with a higher risk of developing lung cancer. 146–148,149,150 The higher OSA 

prevalence in newly diagnosed lung cancer patients supported this relationship 151.  OSA severity is 

associated also with increased mortality risk in patients with III-IV lung cancer stage. Interestingly, 

higher values of AHI are related not only to increased mortality but also to increased HIF-1α 

expression in the tumors of those patients, which is commonly used as a cancer prognosis marker 

152,153154155. HIF-1 α has been related to tumor progression and resistance to therapy under both 

sustained and intermittent hypoxia 152,153,154,156. In vitro and in vivo experiments have been performed 

to elucidate the mechanisms linking hypoxia and the increased incidence and/or malignancy of lung 

cancer. Experiments performed in mice showed that IH increases tumor growth and invasiveness.157 

Some of the mechanisms underlying the increased malignancy as a consequence of IH could be the 

increased ROS produced by the hypoxic-reoxygenation cycles,145 the release of exosomes promoting 

tumor invasion and metastasis,158 and a shift to M2 phenotypes of the macrophages 159,157.  However, 

despite all the knowledge and clinical improvements, sometimes the prognostic expectations do not 
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meet the reality 160. This fact could be explained by the different mutations in each specific kind of 

cancer, 161 leading to a lack of agreement in the management of lung cancer. 162,163 

Cancer is not a homogeneous disease, hence we can find different histological types of cancer. 

Traditionally lung cancer was classified into two main divisions: small cell lung cancer (15%) and non-

small cell lung cancer (85%). Due to the high heterogeneity within the second group, it has been 

subclassified according to its histology: adenocarcinoma, squamous carcinoma, and large cell 

carcinoma. 164 Despite the link between OSA and lung cancer has been widely observed, little is 

known about how hypoxia could affect the different histological lung cancer cells and if the effect of 

hypoxemia derived from OSA is to accelerate the cancer progression or increase the cancer 

incidence. 

 

2.2 Chronic Obstructive Pulmonary Disease 

Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease characterized by airflow 

limitation caused by abnormalities in the airways and/or the alveoli. It is usually accompanied by an 

inflammatory response, caused by the exposure to noxious particles. The disease is characterized by 

(1) oxidative stress, caused by activated inflammatory cells and noxious particles; (2) a 

protease/antiprotease imbalance, in part due to the excessive release of proteases by inflammatory 

and epithelial cells, leading to a destruction of the parenchyma; (3) and fibrosis, that can be developed 

by the inflammation together with small injuries.165 Emphysema and chronic bronchitis are two 

diseases classically associated with COPD. Emphysema is the destruction of the air sacs and loss of 

lung parenchyma leading to a blunted blood oxygenation and a loss of flexibility and lung compliance, 

and its appearance is favored by all the main features of COPD previously mentioned (excess of 

proteases, inflammation, fibrosis, and oxidative stress).166 Chronic bronchitis involves inflammation of 

the airways, mucus hypersecretion, and ciliary dysfunction.167 Therefore, there are two main clinical 

phenotypes of the disease: one characterized by small airway disease (airflow obstruction 

phenotype), and the other with increased alveolar space destruction (emphysematous phenotype). 

Both, emphysema and chronic bronchitis, lead to air trapping, progressive airflow obstruction, and 

loss of elasticity due to an increase in the resistance of airflow and the compliance of the lungs. The 

consequence is the appearance of hypoxia and hypoxemia, leading to low exercise tolerance and 

low skeletal muscle function.168,165 The principal contributor to hypoxemia is ventilation/perfusion 

mismatch (V/Q ratio), as a result of airflow limitation and emphysematous destruction of the lung 
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capillary bed.169 COPD patients with a predominant airflow obstruction phenotype will present a 

low V/Q ratio due to poor ventilation169 and, on the contrary, the emphysematous phenotype will 

be characterized by a high V/Q ratio. 170 

As mentioned, the inhaled noxious particles (from tobacco smoke or pollutants) play a very 

important role in the development of this disease. When in contact with inhaled toxins, small airways 

cells produce an inflammatory response. When COPD develops, this physiological response is 

amplified, with a consequent release of inflammatory cells and inflammatory mediators 171,172. These 

inflammatory cells are a source of oxygen and nitrogen reactive species that increase the oxidative 

stress created by tobacco exposure 173,171. This can favor inflammatory cells to release proteases 

(metalloproteinases) and the inactivation of antiproteases due to oxidation, creating an imbalance 

and favoring the destruction of the extracellular matrix that characterizes the emphysema 174,175.  

Due to the inflammation and fibrosis, patients with COPD usually present gas trapping leading to 

lung hyperinflation, which translates into the reduction of FEV1 (forced expiratory volume in 1 

second) and FEV1/FVC (forced expiratory volume in 1 second/ forced vital capacity). This 

hyperinflation reduces inspiratory capacity, which limits the exercise capacity of the patient176. Also, 

gas exchange can be impaired in these patients due to the damage in the parenchyma, and together 

with the air trapping, can produce hypercapnia.177 Mucus hypersecretion, occasionally accompanied 

by cough, is another symptom that some COPD patients present. It is due to the enlargement of 

the submucosal glands and the increase in the number of goblet cells. 178 

The diagnosis of a COPD patient should be done by studying the clinical history (infections during 

childhood, presence of comorbidities like asthma, or family history of COPD), followed by a physical 

examination.  Physical examination includes the detection of crackles or wheezing through 

auscultation, evidence of fatigue, or weight loss. Finally, the confirmation of the diagnosis should be 

done with spirometry. 179 The main treatment for COPD is the use of bronchodilators, which effect 

is the widening of the airways, reducing the hyperinflation at rest and during exercise.180 

Hypoxemia derived from COPD has been associated with several deleterious effects on the 

organism. As in OSA, there is an increase in oxidative stress by the secretion of ROS and increased 

NADPH oxidase function. Also, there is vasoconstriction derived from hypoxia due to the increased 

depolarization of pulmonary arterial smooth muscle cells, the impairment of the nitric oxide synthase, 

and the increase in vasoconstrictor mediators.181 In COPD patients is usual to find an increased 
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release of inflammatory mediators causing systemic inflammation. All these characteristics are usually 

translated into the comorbidity of other pathologies like atherosclerosis and other cardiovascular 

diseases,182,183 pulmonary hypertension,184 skeletal muscle dysfunction185, neurocognitive 

dysfunction,186 and lung cancer.187 In the case of lung cancer, there is increasing evidence that COPD 

patients are more likely to develop lung cancer (a 5-fold increase) than the general population188. 

Several clinical trials concluded that the presence of COPD increased the risk of developing lung 

cancer in both smokers and non-smokers 189,187,190,191. Furthermore, the corticosteroids administered 

to COPD patients could increase lung cancer incidence.192 The tight relationship between both 

diseases can be due to the fact that they share common pathogenic pathways 193,194. The main event 

underlying this link is mainly the high oxidative stress that COPD patients present, which can promote 

DNA damage195,196 and the release of inflammatory mediators,172 both inductors of carcinogenesis 

197,198. Also, some genetic mutations and polymorphisms predispose patients to suffer from both 

COPD and lung cancer.199,200 Importantly, tobacco consumption can also trigger both diseases, due 

to the accumulation of toxicants in the airway. 201,202 

 

2.3 Overlap syndrome 

COPD and OSA are both highly prevalent, and thus the coexistence of both disorders is often 

referred to as the overlap syndrome (OS). The incidence of OS is not well known because it can be 

underdiagnosed but some studies reveal a higher prevalence than would be expected by coincidence 

203. As explained previously, COPD patients have low oxygen levels due to the ventilation/perfusion 

(V/Q) mismatch resulting from progressive airflow limitation and emphysematous destruction of the 

pulmonary capillary bed.204  During the night, this condition can become more serious due to the 

relaxation of the intercostal muscles and reduced chest wall mobility.205 When it appears with 

concomitant OSA, the apnea episodes worsen the hypoxic level, having systemic consequences. The 

maintained hypoxia combined with the episodes of intermittent hypoxia in these patients increases 

the release of reactive oxygen species (ROS) and inflammatory mediators such as C-reactive protein, 

IL-6, NF-κβ, TNF-α, and IL-8. 206207 As both OSA and COPD are independently associated with an 

increased risk of suffering lung cancer, it is expected that the overlap of both diseases also gives rise 

to an increase in lung cancer risk. 190,191,144,150 Several comorbidities have been associated with the 

overlap syndrome, however, data about its prevalence among the lung cancer population is missing 

208. 
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2.4 Acute Respiratory Distress Syndrome 

Acute Respiratory Distress Syndrome is a life-threatening condition that was first described in 1967 

as a conjunction of acute hypoxemia, reduced lung compliance, noncardiogenic pulmonary edema, 

difficulties in breathing, and the need for positive-pressures ventilation.209 It is a highly prevalent 

disease with high mortality rates: the prevalence of this disease in the intensive care admissions is 

between 10-15%, of which 80% need mechanical ventilation. Among these patients, 30% had mild 

ARDS, 47% had moderate ARDS, and 23% had severe ARDS.210 The high heterogeneity in patients’ 

symptoms made the establishment of a proper definition difficult but the most accurate one was 

made in 2012, considering physiological and epidemiological data as well as clinical trials. This new 

definition, known as the Berlin definition,211 considers ARDS patients to be those experiencing 

hypoxemia within 1 week of a known clinical insult or new or worsening respiratory symptoms, with 

bilateral opacities, or lobar/lung collapse.  Also, it includes those patients that experience respiratory 

failure that is not fully explained by the cardiac failure of fluid overload. The value obtained by doing 

the ratio between the arterial oxygen pressure (PaO2) and the inspired fraction of oxygen (FiO2), is 

a useful measurement for assessing the severity of the disease. It can be classified as mild (PaO2/FiO2 

= 201-300 mmHg), moderate (PaO2/FiO2 = 101-200 mmHg), and severe (PaO2/FiO2 ≤ 100 

mmHg).211 

ARDS is the result of a wide spectrum of different risk factors that can have a pulmonary origin 

(direct lung insult as infection by bacteria, virus, fungi, or parasites; thoracic surgery; toxic gases 

inhalation; smoking; lung contusion…) or an extrapulmonary origin (indirect lung insult as non-

pulmonary sepsis, blood transfusions, pancreatitis, drugs consumption…) 212,213. All these insults can 

damage lung endothelial and epithelial cells causing diffuse alveolar damage (DAD). Epithelial cells are 

common to suffer sublethal injury due to for instance the bacterial pore-forming toxins, lytic viral 

infections, or high tidal volumes during mechanical ventilation. Inflammatory signals produced by 

pathogenic microorganisms also promote endothelial activation and can increase the permeability of 

the endothelium to allow leukocytes to travel to the wounded area. Furthermore, during this process 

of infection, pathogens and their toxins can produce cell-cell adhesion damage and endothelial cell 

apoptosis. The increased permeability and the endothelial disruption caused during the inflammatory 

process results in fluid leakage to the interstitium, which can infiltrate the alveoli through the damaged 

alveolar barrier. The resulting accumulation of fluid, proteins, neutrophils, and red blood cells inside 

the alveoli, is known as edema, which is the main hallmark of ARDS (figure 6). 214,,215,216. ARDS can be 
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divided into two stages according to the course of the disease: the early and the late phases. The 

early phase occurs within hours from the insult and is characterized by the secretion of inflammatory 

cytokines (IL-6, IL-1β, IL-8, IL-10, IFN-ɣ, TNF-α, IL-18). It is in this early phase when DAD and edema 

take place, with the flooding of the alveolar space and the loss of alveolar epithelial cells. The late 

phase is characterized by the proliferation of fibroblasts and ATII cells, the increased deposition of 

the ECM, and vasculogenesis. 217,126,218 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic drawing of the mechanism of ARDS occurring in the alveoli. In the left part of the image, 

it is represented a healthy alveolus whereas in the right part there is a damaged alveolus. Adapted from Chen 

et al. 2020. 219 

 

In addition to cell damage, ARDS-related infections have other effects such as mitochondrial 

dysfunction that results in hypercapnia, and alterations in the extracellular matrix, such as an increase 

in rigidity which decreases the compliance of the lungs. Also, the damage in the epithelium can result 

in an impairment in surfactant production, leading to the alveoli collapse. Altogether, combined with 

the cell damage, produces a ventilation-to-perfusion mismatch and an increased pulmonary dead 
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space caused by impaired excretion of carbon dioxide. The final physiological consequences are 

translated into increased hypercapnia and hypoxemia. 220,221 

Most patients coincide with the feeling of short breath as the main symptom. Also, they usually 

present an elevated respiratory rate and tachycardia and need to make efforts to breathe. The main 

method to diagnose ARDS is image-based diagnosis. A chest radiograph can help to visualize lung 

edema 217.  

Increasing interest in this syndrome has been developed in the past two years since ARDS is a major 

complication derived from infection by the highly contagious severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) 

pandemic. It has caused over 6 million deaths worldwide and more than 510 million infections, causing 

a global healthcare crisis.  222,223 

ARDS patients’ management is focused on the treatment of infections, respiratory support, and 

conservative fluid strategies. In moderate and severe ARDS cases, patients are subjected to 

mechanical ventilation with low tidal volumes and PEEP (positive end-expiratory pressure) ranging 

from 5 to 20 cmH2O. 224 Severe ARDS patients with high transpulmonary pressures are treated with 

neuromuscular blockade to avoid patient-ventilator desynchrony that can increase mechanical lung 

injury. 225 For patients with mild ARDS, noninvasive respiratory support can replace mechanical 

ventilation to avoid the associated risks.215 When patients do not show improvement in their 

symptoms, rescue therapies need to be applied. These therapies consist of the extracorporeal either 

oxygenation or elimination of CO2 from blood using a membrane through which the blood is 

circulated. 226,227 As pharmacological treatments, glucocorticoids have been employed to improve the 

inflammatory state and inhaled vasodilators to improve the ventilation-perfusion matching. However, 

the benefits of both treatments in terms of survival have not been demonstrated. 228–230 In the last 

50 years, only a few new drugs to treat respiratory diseases such as ARDS were subjected to clinical 

trial studies.231 These discouraging data are explained by the fact that between 80-90% of researched 

drugs fail before they are even tested in clinical trials, and almost 50% of experimental drugs fail in 

Phase III trials. 232 Moreover, most traditional culture methods for modeling the disease in vitro are 

unrealistic, making more difficult the translation of the results to in vivo models. So, there is an urgent 

need to develop in vitro models to represent the physiological characteristics of the respiratory 

diseases, in this case, ARDS, to accelerate drug discovery and increase the success rate of the drugs 

that get to be tested in the clinical trials.  
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3 Main features in respiratory disease in vitro experimental models 

Several efforts have been made by several research groups to better recreate in vitro the above-

mentioned respiratory diseases. In this section, a succinct description of the main advances for in 

vitro mimicking the main typical characteristics of the lungs, such as the oxygenation patterns, cyclic 

stretch, interaction among cells, the use of scaffolds composed of extracellular matrix proteins, and 

the advances in the design of lung-on-a-chip devices for this purpose. 

 

3.1 Hypoxic patterns 

Cells and tissues in living organisms are exposed to oxygen pressures ranging from 1% to 6%. 233 

Lung alveolar cells, however, are constantly exposed to ~13% (~100 mmHg) of oxygen pressure, 

which is the concentration of O2 in the air that reaches the alveoli.19 Nevertheless, most experiments 

are carried out under stable conditions of temperature (37 ºC), humidity, and atmospheric air 

enriched with 5% of CO2. The volume fraction of oxygen in the incubator is approximately 18.6% 

(135.2 mmHg), attending to the fraction displaced by the added CO2 (5%) and by the partial pressure 

of the evaporated water. 234 This supposes a hyperoxic environment for cell culture that can 

contribute to obtaining different results derived from non-physioxic conditions235. In addition, some 

diseases can promote a decrease in the oxygen levels 236,237,237 or even promote a dynamic scenario 

in terms of oxygen availability. 238 

For studying cell behavior under different oxygen conditions, hypoxic incubators can be used. 239,240 

However, this approach presents some limitations as (1) the slow diffusion of gas through the culture 

medium, which can be even slower than the oxygen consumption in highly active metabolic cells 

leading to non-controlled hypoxic conditions, and (2) the impossibility of subjecting the cells to rapid 

hypoxic cycles to mimic OSA disease. Another option to subject cells to hypoxia is the use of hypoxia 

mimetics in the culture media. These are compounds that produce a hypoxic-like response in the 

cell due to the inhibition of the HIF-prolyl hydroxylases (PHDs), which are essential for HIF-1a 

degradation. CoCl2 is the most widely used and it acts through the competition with the Fe2+ ions 

necessary for the enzymatic activity of the PHDs. 241 These two aforementioned methods can be 

used for studying the effect of continuous hypoxia, 239,240,242 but none of them are optimal for the 

study of the effects of intermittent hypoxia mimicking OSA, due to the need for rapid oxygen 



  

29 
 

variations that can be sensed by the cells. In the field of microfluidics, several devices have been 

created for studying the effect of the oxygen gradients, using PDMS chips with microchannels that 

act as a gas mixer243,244 or that introduce the use of oxygen scavengers245. For studying the effect of 

intermittent hypoxia, several approaches have been addressed, from the use of an oxygenated 

medium to the fabrication of custom-made devices. Different studies subjected different types of 

cells (cancer cells or macrophages) to intermittent hypoxic patterns with the use of medium 

previously equilibrated to the desired oxygen concentration, using gas equilibrators246 or oxygenated 

medium reservoirs.247 These systems could rapidly subject cells to alternate oxygenation patterns, 

being able to represent severe cases of OSA. However, they had the problem that cells were also 

subjected to shear stress, which may not be a representative cue of their physiological environment. 

Oppegard et al. 248 designed a PDMS device that adapted to a Boyden chamber so cell migration and 

invasion could be studied under intermittent hypoxia. However, this device was employed for 

studying cells in the context of cancer and could not be used for studying intermittent hypoxia 

corresponding to OSA due to the long equilibration times that it presents (20 minutes). PDMS has 

been widely used to achieve rapid swaps in oxygen concentrations compatible with the study of IH 

occurring in OSA. Polak et al used culture plates with permeable PMDS membrane underneath, and 

10-minute cycles of different hypoxic patterns were employed to study the effect of IH on insulin 

secretion. 249 Campillo et al designed two different models of custom-made devices. The first of them, 

permitted the study of the effects of IH combined with different stretching patterns, corresponding 

to either the cardiac frequency or the respiratory frequency. 250 The second one was employed for 

the study of the effect of different amplitudes and frequencies corresponding to different IH patterns 

in OSA. 251 Due to the elevated number of comorbidities that OSA presents, the use of these devices 

to explore the relationship among the different diseases is really attractive. However, only a few of 

them were used to study these relationships in the case of cardiovascular diseases,251 metabolic 

dysregulations,249 and cancer.247 Of these three studies, the one investigating the effect of hypoxia in 

cancer cells used non-realistic and exaggerated ranges of hypoxia, with cycles varying from 5% to 

20%. Attending to the fact that the higher oxygen pressure is found in the arterial blood and 

corresponds to 13%, there is a lack of information on how cancer cells can react to intermittent 

oxygen patterns representing those occurring in intermittent hypoxia. 

 

 



  

30 
 

3.2 Cyclic stretch 

Mechanical stretch has many biological effects on lung function at the cell level but also at the organ 

level. It has been linked to important processes such as fetal lung growth, surfactant secretion and 

metabolism, cell proliferation and apoptosis, ECM and cytoskeleton turnover, alveolar-capillary 

permeability, and release of mediators. 76,252,253,81,80  

In vitro stretch models have been used to study different types of cells due to the implication of 

stretch in different organs of the body, like the heart, the lungs, the intestines, the bladder, or the 

skeletal muscle contraction. For that reason, there is a need for adjusting the amplitude and frequency 

of strain to the parameters that best mimic the object of study, as well as for deciding if the stretch 

is applied uniaxial, biaxial, or equiaxially. 254 

One of the first studies performed with stretch was in 1979 on the development of skeletal myotubes 

in myoblasts from embryonic chickens subjected to mechanical stretch. The cells were cultured on a 

membrane within an expansible frame that allowed for longitudinal stretch.255 In the area of 

respiratory physiology, one of the first studies performed employing stretch was published in 1990 

by Wirtz and coworkers, where authors applied hydrostatic pressure under the membranes where 

cells were cultured for stretching them256 to study the expression of surfactant proteins, which was 

seen to be associated with an increase in cytosolic Ca2+.  However, the main limitation of this 

pioneering study was the impossibility of subjecting cells to cyclic stretch.  

Gutierrez et al used similar devices for studying the effect of stretch in the differentiation of ATII 

cells. They observed a significant increase in cells expressing ATI markers together with a decrease 

in cells expressing ATII markers when subjected to a single strain of 21%.257 Later on, the static stretch 

was related to the consequent small GTPases and Rho signaling pathway activation to an increased 

formation of actin stress fibers and eventually ATII-ATI transdifferentiation.258 Recent studies obtained 

similar results regarding the activation of the Rho pathway and its relationship with ATII 

transdifferentiation through the activation of YAP/TAZ.253 In this latter study, the authors showed 

the relationship between the Rho-mediated YAP/TAZ activation and the increase in ATI cell 

population both in vivo (by mice fetus tracheal occlusion) and ex vivo (by introducing an agarose 

volume superior to total lung capacity). 

In the ARDS context, most of the studies performed were addressed to investigate the effect of 

mechanical ventilation on certain cell damage, usually induced by the use of a lipopolysaccharide 
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bacteriotoxin (LPS) challenge. For doing so, different magnitudes of cyclic stretch (from 5% to 30%) 

and frequencies (from 0.1 Hz to 0.5 Hz) were applied to different cell lines including alveolar cells, 

bronchial cells, macrophages, and fibroblasts. From these experiments, it was derived that the cyclic 

stretch alkalinized the media favoring the proliferation of bacteria related to ventilator-associated 

pneumonia259 and also induced the secretion of inflammatory cytokines260,261. This increase in 

cytokines seems to be related to the increase in oxidative stress due to mitochondrial ROS 

production.260 The development of fibrosis associated with the mechanical ventilation was also 

studied as the increased ECM deposition in the fibroblast culture at high magnitudes of a stretch 

compared to lower magnitudes, relating these data with the protective ventilation.262  All these studies 

give interesting data on how lung cells behave under the combined stimuli of LPS hit and cyclic stretch. 

However, none of them has considered the fact that under physiological conditions, alveolar cells 

experience a strain similar to that applied to represent mechanical ventilation. For that reason, it is 

important to include cyclic stretch as a parameter in in vitro models of lung pathologies such as 

ARDS. Moreover, devices to perform stretch should be combinable with the induction of different 

oxygenation patterns to fully represent the environment. 

 

3.3 Extracellular matrix 

Given the relevance of ECM in cell behavior, it is important to introduce the use of scaffolds with a 

similar composition and topography as the native tissue in the in vitro cultures to obtain more 

representative results of what is happening in vivo. 254 This is interesting for studying not only the 

response of cells as they establish interactions with the substrate, but also it would open the door 

to three-dimensional culturing, especially for stromal cells. For that reason, hydrogels, which are highly 

hydrated polymeric materials that try to resemble the physical and/or biochemical characteristics of 

the ECM, are gaining popularity for cell culture. They are used for 3D culturing and have the 

advantage that can be easily tuned to modify some of their physicochemical characteristics to 

adequate them for a particular study. 263,264,265 Hydrogels can be composed of polysaccharides, (e.g. 

alginate, carrageenan, agarose, or chitosan) 263,266–268 proteins, 269,270 or a complex amalgam of proteins 

derived from decellularized tissues. 271,272 Polysaccharides have been used in the encapsulation of cells 

but also in the fabrication of hydrogel as a culture scaffold and as a vehicle for cell therapy or drug 

treatments 273,274275,276,277,278. However, despite their high biocompatibility and low immunogenicity, 

their biochemical composition is very different from the ECM one. To make non-physiologic 
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polymers a more idoneous culture scaffold, polysaccharides can be mixed with proteins as the 

mixture between agarose and collagen I in the case of alginate for increasing the number of adhesion 

motifs,279 the modification of the mechanical properties and water holding capacity of agarose 

hydrogels with the addition of polydopamine,280 or the chitosan hydrogel by its mixture with 

collagen.281 Protein-based polymers have been extensively used and their importance resides in their 

ability to resemble physiologic scenarios based on their biocompatibility, the cell adhesion ability they 

present, and their presence in the extracellular matrix.282,283 Among protein-based hydrogels, the 

most commonly used has been type I collagen, mainly because of its ease of obtaining284 from 

different sources like bovine, porcine285 or rat286. Some studies performed with the use of collagen 

hydrogels showed that the environment where cells are cultured on is essential in cell survival, in 

carrying out specific functions of a certain cell type, and even in their identity in the case of 

mesenchymal stromal cells, and that cells showed different behavior according to the different 

properties of the hydrogels in terms of biomechanical properties. 264,287,270,288,270. Mesenchymal stromal 

cells have shown increased differentiation capacity in those environments more similar to their in 

vivo niche, as in the case of osteogenic differentiation in cells cultured in collagen hydrogels containing 

basic fibroblast growth factor 264 or chondrogenic differentiation in those cells cultured in collagen II 

hydrogel versus other cultures employing collagen I or alginate 287.  

In recent years, methods for producing hydrogels from the ECM have appeared. Great advances 

have been made in the field of tissular bioengineering since the first ECM-derived hydrogel was 

fabricated 289. As the composition and the organization of the extracellular matrix varies among 

tissues, there are ECM-derived hydrogels fabricated from different sources. (e.g. skin, heart, lungs, 

kidney…)271,272,290,291. The interest in ECM-derived hydrogels resides in their potential to affect cellular 

behavior, even though the mechanisms through which they act are not completely understood. It 

seems that they can be releasing bound growth factors, cytokines, and chemokines and that they 

expose bioactive motifs and cryptic peptides which the cells can interact with 292–295. The protocol to 

fabricate ECM-derived hydrogels is performed with decellularized organs obtained with a protocol 

consisting of different detergents. After that, the sample is freeze-dried and milled. Once the 

decellularized ECM powder is obtained, it is subjected to two important steps. The first one consists 

of the solubilization of ECM proteins into monomeric components and the second one consists of 

the spontaneous rearrangement of the monomeric components into a homogeneous gel by 

controlling the pH and the temperature. For achieving the first step, it is fundamental to digest the 

ECM proteins after powdering them with pepsin obtained from porcine gastric mucose. Several 
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protocols can be found in the literature about the diluent used for such reaction. 296,297,289,272 The 

parameters (pH, temperature, salt concentration) at which the hydrogel polymerizes can be modified 

to change its mechanical properties.296 Like collagen hydrogels, lung ECM-derived hydrogels are 

compatible with 3D-cultured cells, showing attachment, proliferation abilities and viability.272 

Furthermore, mechanical properties of tissue-derived hydrogels can affect to the gene expression of 

the cells cultured inside, like in the higher collagen I and α-smooth muscle actin expression in the case 

of myofibroblast cultured in stiff hydrogels compared to soft ones.298 

The use of hydrogels in the culture of alveolar epithelial cells was first employed by Shannon 299 when 

studying the increase in the secretion of surfactant proteins of alveolar cells cultured on EHS 

hydrogels, in which the main composition was a mixture of proteins, mainly laminin, type IV collagen, 

heparan sulfate proteoglycan, and entactin. This result was very important due to the limited ability 

of alveolar type II cells to secrete surfactants with increasing culture times, related to the ATII-to-ATI 

transdifferentiation. However, the cells grew forming aggregates and were not able to create a 

monolayer, dampening the secretion of surfactant proteins.32 Due to the number of emerging 

hydrogels from different origins, it seems a promising field to investigate improvements in the alveolar 

cell culture. Nevertheless, not many different substrates have been tested. Some studies with the use 

of lung-derived hydrogels showed the suitability of this kind of substrate for the culture of induced 

pluripotent stem cells-derived ATII cells 300,301 or for lung cancer cells culturing 302. In addition, it is an 

adequate tool for studying cancer invasion or resistance to therapy 302,303. Hydrogels are especially 

useful for the study of the interaction of cells due to the possibility of establishing cocultures by 

culturing cells inside and on top of them. The different uses of the hydrogels (e.g. cocultures, 

combination with other stimuli) are addressed in the next sections. 

 

3.4 Cocultures 

For in vitro representing the cell lung physiology is not only important the composition of the scaffold 

they are seeded on or in, but also the interfaces that are present in the culture. In the lung, it can be 

found the interaction of different tissues and also different media. For that reason, compartmentalized 

lung-on-a-chip devices with porous membranes have been developed allowing for the culture of 

different types of cells (cocultures) and different interfaces (air-liquid interface (ALI) culture). The use 

of cocultures is very relevant for studying infections such as the ones causing ARDS, as the alveolo-
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capillary barrier can be represented. An example of this sort of model is the epithelial-endothelial 

(A549 or H441 - HPMEC) coculture established at different sides of a porous membrane, followed 

by an inflammatory hit caused by the addition of TNF-α. 304  

The use of transwells is useful to work with cocultures due to the existence of two different 

compartments that are connected. This tool can be used to make either submerged cocultures by 

adding medium to the cells on the plate and to the cells inside the transwell, or ALI cocultures, by 

adding medium just in the inferior compartment. Coculture of primary alveolar or bronchial cells 

with smooth muscle cells was subjected to TGF-β and the study of the barrier integrity, the transport 

of drugs, and the pharmacological response was performed. 305 For instance, the coculture of A549 

with macrophages inside a transwell has been employed for studying the inflammation produced by 

air contaminant particles measured as the secretion of proinflammatory mediators, cytotoxicity, and 

ROS. 306     

A highly advanced coculture model has recently combined the presence of three cell types in the 

same microfluidic device: epithelial cells, endothelial cells, and fibroblasts. For doing so, the authors 

distributed the cells in three different channels: the first one was cultured with epithelial cells, which 

were subjected to airflow after the confluence was achieved, the middle was cultured with fibroblasts, 

and the last one where the endothelial cells were cultured that were subjected to liquid flow. 65  

 

3.5 Advanced models 

In respiratory diseases such as ARDS, the organism responds with a highly coordinated multistep 

inflammatory cascade, that includes the interaction of different cell types among other factors. For 

that reason, the development of devices that allow the integration of different stimuli is fundamental 

in the study of these diseases. With this objective, cocultures have been added to compartmentalized 

lung-on-a-chip devices, to create more realistic models.307,308,309 Some devices combine stretch and 

coculture of different cell types to represent a realistic culture. For example, one of the first models 

representing the alveolo-capillary barrier was composed of a compartmentalized PDMS stretching 

device containing a coculture of human alveolar and epithelial cells at opposites faces of a porous 

PDMS membrane.310 Stucki et al. created an epithelial-endothelial coculture separated by a porous 

membrane that can be subjected to three-dimensional cyclic stretch with the use of an in vivo-

inspired micro-diaphragm.311 Other authors represented the cocultures in a more physiological 
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environment with the use of 3D hydrogels. Humayun et al. cocultured airway epithelial cells separated 

from smooth muscle cells by a thin layer of lamina propria composed of collagen I and Matrigel. 307 

Other models have been developed to include these three parameters: stretch, coculture, and 

hydrogels. Zamprogno et al fabricated a model to represent the alveolar epithelial-endothelial barrier 

through a stretchable device consisting of a thin membrane composed by a mixture of elastin and 

collagen that substituted the typical PDMS membrane. Primary alveolar epithelial cells (formed by 

ATI and ATII cells) were cultured on one side, and primary lung endothelial cells on the other side. 

This hydrogel that mimics the basement membrane, was suspended on a gold hexahedral mesh, 

forming small alcoves where cells can find a similar environment to the one found in the alveoli. 312  

Lung-on-a-chip devices usually present a small geometry to try to mimic the in vivo setting. However, 

this has the inconvenience that the shape is limited to rectangular geometry, causing the cells to grow 

in 2D. 313 Recently, Huang et al. have overcome this disadvantage by doing an alveoli-on-a-chip that 

perfectly resembles the sphere geometry with a thin monolayer of epithelial cells growing on 

biodegradable gelatin methacryloyl (GelMA) hydrogels with similar stiffness to the human lungs. This 

PDMS device presented opal shape interconnected structures that stretched mimicking breathing 

motions (8% of strain) and were employed to study the matrix remodeling in the context of 

emphysema. 314 

Other investigators went a step ahead and employed the hydrogels to embed cells from the 

extracellular matrix, giving their three-dimensionality to their culture. Barkal et al, similar to 65, 

represented a tri-culture model more realistically, with the use of hydrogels. They cultured the 

fibroblasts inside the collagen-fibrinogen hydrogels that contained channels inside, which lumens were 

recovered alternatively by epithelial or endothelial cells. With this model, they studied the 

inflammatory response and the recruitment of white cells as a response to fungal infection 309. 

Similarly, Park et al placed a transwell containing epithelial cell on a decellularized sheet of extracellular 

matrix on a bioprinted device containing in different compartments fibroblasts and that fully 

represented a functional interface between the vascular network and the bronchiolar epithelium.308  
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Table 1. Summary of the main advanced models from 2010 to 2021. 
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These advanced physiomimetic models are important tools in the advance in the study of diseases 

and the research of new treatments. However, they present some limitations like the absence of 

cyclic stretch or the use of commercially available cells instead of using freshly obtained primary cells 

in most of them. All of them are performed under non-physiological oxygen concentrations 

(hyperoxia), which could be altering the cellular responses, especially in those studies where ROS 

was measured as a result of the inflammatory hit. In most of these models, there is the representation 

of the alveolo-capillary barrier, due to the importance of the study of the permeability properties. 

However, the wide majority of them do not include 3D culturing for representing the interaction of 

the stromal cells and the epithelium. However, this is especially important in the context of 

inflammation due to the immune properties of MSC. Furthermore, these models use hydrogels that 

are not derived from the extracellular matrix coming from the same organ of the cells they use 

(except 308). The use of specific-tissue derived hydrogels is an interesting tool to include in the creation 

of novel physiomimetic models to study diseases due to the accurate representation of the cellular 

environment. 
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Chapter II. 

AIMS OF THE THESIS 
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1. Aims 

1.1 General aim 

The general objective of this thesis is the development of physiomimetic models to reproduce specific 

traits of the cell environment for representing in vitro scenarios that are closer to physiological or 

pathological conditions.  

 

1.2 Specific aims 

I. To study how different oxygenation patterns representing common respiratory diseases 

affected lung cancer cell in vitro behavior in terms of proliferation and expression of 

EpCAM protein. 

II. To study the effect that the use of lung extracellular matrix-derived hydrogels as scaffold 

can exert on cell cultures. 

a. To study its effect on primary alveolar type II cells in terms of phenotype 

maintenance compared to traditional methods. 

b. To investigate its anti-inflammatory effect in an advanced physiomimetic ARDS 

model. 

III. To investigate the interactions of alveolar cells with lung mesenchymal stem cells 

(LMSCs) in an advanced inflammatory in vitro ARDS model. 

IV. To investigate the effects of physiological cyclic stretch in the inflammatory process on 

the stablished coculture for the ARDS physiomimetic model.  
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The scientific articles included in this thesis, in which the Ph.D. candidate was the first author, are 

here listed in relation to the Aims of the thesis. 

Aim I. To study how different oxygenation patterns representing common respiratory diseases 

affected lung cancer cell in vitro behavior in terms of proliferation and expression of EpCAM. 

o Marhuenda E, Campillo N, Gabasa M, Martínez-García MA, Campos-Rodríguez F, Gozal D, 

Navajas D, Alcaraz J, Farré R, Almendros I. Effects of Sustained and Intermittent Hypoxia on 

Human Lung Cancer Cells. Am J Respir Cell Mol Biol. 2019 Oct; 61(4):540-544. IF= 6.914 

Q1  

Aim IIa. To study the effect of lung extracellular matrix-derived hydrogels on primary alveolar type II 

cells in terms of phenotype maintenance compared to traditional methods. 

o Marhuenda E; Villarino A; Narciso M; Camprubí-Rimblas M; Farré R; Núria Gavara; Artigas 

A; Almendros I; Otero J. Lung Extracellular Matrix Hydrogels Enhance Preservation of Type 

II Phenotype in Primary Alveolar Epithelial Cells. Int. J. Mol. Sci. 2022, 23(9), 4888. IF = 5.924 

Q1  

Aim IIb, III, IV. To investigate the anti-inflammatory properties of lung extracellular matrix-derived 

hydrogels in an advanced physiomimetic ARDS model. To investigate the interactions of alveolar cells 

with lung mesenchymal stem cells (LMSCs) in an advanced inflammatory in vitro ARDS model.  To 

investigate the effects of physiological cyclic stretch on the coculture and its possible role in the 

inflammatory process. 

o Marhuenda E; Villarino A; Narciso M; Elowsson L; Almendros I; Westergren-Thorsson; Farré 

R; Gavara N; Otero J. Development of a Physiomimetic Model of Acute Respiratory Distress 

Syndrome by using ECM Hydrogels and Organ-on-a-chip Devices. Submitted for publication 

and under revision.  
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Effects of Sustained and Intermittent Hypoxia on
Human Lung Cancer Cells

To the Editor:

Lung cancer is the most commonly diagnosed solid malignancy and the
leading cause of mortality among all cancers (1). It is well established
that lung cancer usually coexists with chronic obstructive pulmonary
disease (COPD), as both diseases feature previous exposures to tobacco
smoke. Moreover, recent data suggest a potential link between lung
cancer and other respiratory diseases. For instance, Cabezas and
colleagues found that z50% of patients with lung cancer also suffered
from moderate to severe obstructive sleep apnea (OSA) (2), and Dreher
and colleagues described a similarly high prevalence of OSA in patients
with newly diagnosed lung cancer (3).

Tumor hypoxia has been widely associated with poor prognosis
in several types of cancer (4). Thus, episodically low systemic
oxygen levels caused by most respiratory diseases (e.g., COPD,
interstitial lung disease, asthma, OSA, and obesity hypoventilation
syndrome) could contribute to tumor progression. Indeed, lung
cancer is more aggressive in patients with COPD (5), and the
magnitude of intermittent hypoxia (IH) in OSA was recently linked
to both cancer incidence and cancer mortality (6). Interestingly,
experimental studies have described enhanced malignant

Supported in part by the Spanish Society of Pneumology and Thoracic
Surgery (595/2017), the Spanish Ministry of Economy and Competitiveness
(SAF2017-85574-R, DPI2017-83721-P, and SAF2016-79527-R), Fundació
Privada Cellex, and the National Institutes of Health (1R01HL130984).
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Figure 1. (A) A custom-made lab-on-a-chip reliably generates the different hypoxia patterns. Real-time oxygen levels were measured by introducing an
optical oxygen sensor into the cellular layer. (B) Oxygen profiles applied to lung cancer cells in comparison with sustained normoxic levels (dashed red
lines; 13% O2). Time scales in seconds. Top: sustained hypoxia mimicking a patient presenting with impaired lung function (7% O2). Center: intermittent
hypoxia mimicking severe obstructive sleep apnea (cycles of 30 s of 13% O2 followed by 30 s of 7% O2). Bottom: intermittent hypoxia mimicking the
overlap syndrome (cycles of 30 s of 7% O2 followed by 30 s of 4% O2). (C) Cellular proliferation computed as fold changes in the number of cells versus
normoxia (dashed red line). (D) Fold-change expression of epithelial cell adhesion molecule (EpCAM) for all experimental groups versus normoxia (dashed
red line). Data are presented as mean6SE. *P,0.05, **P,0.01, and ***P,0.001.
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properties of lung cancer in response to both sustained
hypoxia (SH) and IH (7–9). These observations are therefore
translationally relevant, as the high prevalence of OSA in the
general population makes its coexistence with other respiratory
diseases very probable, and the co-occurrence of these two
conditions (sometimes termed overlap syndrome) can elicit a more
severe nocturnal hypoxemia (10). However, the potential link
between hypoxia and major subtypes of lung cancer remains largely
unexplored.

In this context, we report our findings from a study
investigating the effect of different patterns of hypoxia on a panel
of cell lines harboring representative oncogenic mutations of the
most prevalent histological subtypes of non–small cell lung
cancer (adenocarcinoma and squamous cell carcinoma),
including p53 and endothelial growth factor receptor (EGFR).
Specifically, H522, H1437 (human adenocarcinoma; p53 mutant
and EGFR wild-type), H1975 (human adenocarcinoma; p53
mutant, EGFR mutant), and H520 (human squamous cell lung
cancer; p53 mutant, EGFR wild-type) cells were exposed for 48
hours to either normoxia (13% O2, which corresponds to normal
arterial blood oxygen levels), SH (7% O2, mimicking a patient
presenting with impaired lung function), or two types of IH
(oscillating between 13% and 7% to mimic moderate OSA, and
oscillating between 7% and 4%, which would correspond to the
overlap syndrome). Cells were subjected to each profile by using
a recently described lung-on-a-chip setup (11), to reproduce the
high frequency of IH (60 cycles/h) that occurs in patients with
severe OSA (12) (Figure 1). Cell proliferation and expression of
epithelial cell adhesion molecule (EpCAM), which has been
associated with lung cancer cell survival (13), were quantified by
flow cytometry. Differences between the effects induced by the
various hypoxic patterns as applied on each cancer cell type were
assessed by two-way ANOVA. In a second set of experiments
(n = 5), the protein localization of hypoxia-inducible factor 1a
(HIF-1a) to the nucleus as an indicator of its activation was
estimated by immunofluorescence as previously described (11).
Briefly, after gas exposure, cells were fixed and stained with
rabbit anti–HIF-1a (Novus Biologicals) antibody and DAPI
(Sigma-Aldrich). Five epifluorescence images were acquired
with an inverted microscope using a 203 Plan Fluor multi-
immersion objective (0.75 NA) for each experiment. The total
cellular fluorescence of HIF-1a was measured by adjusting
Huang’s thresholding to subtract the background and delimit
cells. The nuclear intensity of HIF-1a was estimated from the

nuclear outlines identified by the DAPI channel. Cytoplasmic
HIF-1a was calculated by subtracting the nuclear intensity from
the whole-cell intensity. Finally, the translocation of HIF-1a to
the nuclei was estimated as the nuclear/cytoplasmic fluorescence
intensity ratio.

Figure 1 shows that different hypoxic profiles differentially
stimulated cell proliferation in most cancer cell lines and EpCAM
expression in selected cell lines. In terms of tumor cell proliferation,
the most severe hypoxic IH pattern, corresponding to the overlap
syndrome, only enhanced the proliferation of squamous cell
carcinoma (H520) (z66%, P, 0.001), whereas the IH profile
mimicking OSA alone enhanced the tumor cell growth rate in
H520 cells (z72%, P, 0.001) and H1437 adenocarcinoma cells
(z40%, P= 0.043) compared with that observed in normoxic
control conditions. Application of SH promoted an increase in
tumor cell proliferation (z56%, P= 0.005) in only one of the
cancer cell types (H1437, adenocarcinoma). However, none of the
hypoxic profiles elicited measurable changes in the proliferative
rates of the two other adenocarcinoma cell lines (i.e., H522 and
H1975). Similarly, EpCAM showed heterogeneous responses
among the different human lung cancer cell types. As shown
in Figure 1, H522 cells increased EpCAM expression under
IH stimuli (z47%, P, 0.001, and z74%, P, 0.001 for IH
mimicking OSA and overlap syndrome, respectively). The H520
squamous cell carcinoma cell line also exhibited increased
EpCAM expression in response to SH (z20%, P = 0.014)
and IH mimicking the overlap syndrome (z20%, P = 0.021)
when compared with normoxia. However, the two other
adenocarcinoma cell lines used, H1437 and H1975, failed to
display any detectable changes in EpCAM. Thus, these results
suggest that EpCAM expression in response to hypoxic stimuli is
largely uncorrelated with both the p53/EGFR status and the
histologic subtype. The only significant changes in HIF-1a
activation were observed in H1437 and H1975 lung cancer cells:
z20% (P = 0.022) and 2.6-fold (P = 0.047) increases when cells
were exposed to IH mimicking the overlap syndrome compared
with normoxia, respectively (Table 1).

Our in vitro experiments in human lung cancer cells provide
new evidence in support of the clinical data that link lung
cancer malignancy with other respiratory diseases (5, 6). Most
importantly, our data also suggest that the response of lung
cancer cells may depend, at least in part, on the presentation of the
hypoxic stimulus (8). Moreover, these results are in accord with
previous findings that SH and IH exposures promoted different

Table 1. Nuclear/Cytoplasmic Ratio of Hypoxia-Inducible Factor 1a Fluorescence for Each Cell Line and Hypoxic Condition
Compared with 13% Normoxia

H522 H1437 H1975 H520

Mean6SE P Value Mean6SE P Value Mean6SE P Value Mean6SE P Value

13% O2 0.706 0.11 1.136 0.03 0.9160.03 2.8460.28
13–7% O2 2.636 0.86 0.098 1.386 0.10 0.059 1.2760.30 0.319 3.1860.37 0.266
7% O2 0.976 0.16 0.261 1.356 0.16 0.208 1.7260.35 0.078 2.7060.15 0.629
7–4% O2 0.926 0.06 0.090 1.366 0.09 0.022 2.3960.55 0.047 2.7860.26 0.883

P values, paired t test; n=5.
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growth rates in a murine lung Lewis carcinoma cell line (LLC1) (7).
Here, we found that the behavior of cancer cells depended on
the magnitude of hypoxia during IH oscillations (13–7% O2 vs.
7–4% O2). It is expected that different frequencies with similar
oscillations could modulate the response of lung cancer cells, as was
previously reported for melanoma (14). Furthermore, other
potential factors, such as host immunity and aging, could also
modulate the malignant properties of lung cancer cells in a specific
hypoxic environment (7, 15).

Thus, it is important to devote further efforts to identify the
target lung cancer cell types that are susceptible to hypoxia-mediated
regulation, and particularly those that are affected by profiles such as
those represented by IH. In this context, information on these
specific issues and an improved understanding of the underlying
mechanisms could potentially guide future epidemiological/clinical
studies aimed at detecting incipient relationships between lung
cancer and other respiratory diseases. Mechanistically, these
potential relationships are likely to be complex and involve specific
cancer cell mutations that are ultimately responsible for the
increased cancer progression observed in response to hypoxia.
Studying the effects of different hypoxic profiles in lung cancer could
help investigators elucidate the roles played by COPD, OSA, and
other respiratory diseases in the initiation and progression of lung
cancer, thus providing the opportunity to design novel personalized
therapies. n

Author disclosures are available with the text of this letter at
www.atsjournals.org.

Acknowledgment: The authors thank Miguel Ángel Rodrı́guez for
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Muc5b Enhances Murine Honeycomb-like
Cyst Formation

To the Editor:

Idiopathic pulmonary fibrosis (IPF) is a devastating lung
disease characterized by physiologic restriction and progressive,
ultimately fatal, respiratory failure. These functional changes
are caused by fibrotic interstitial remodeling, alveolar destruction,
and bronchiolization or “honeycombing” of the distal
airspaces. IPF affects almost 0.5% of the U.S. population
over the age of 65, and its prevalence is increasing (1). The
strongest risk predictor for developing IPF is the minor allele of
the polymorphism rs35705950, a promoter variant upstream of
the polymeric mucin MUC5B (2, 3). Variant rs35705950 is
associated with increased MUC5B expression, suggesting
that excessive MUC5B protein may play a role in the
pathobiology of IPF. MUC5B is a dominant feature of human
honeycomb cysts (HCs) (4, 5), which are composed of a
stratified columnar epithelium comprising mucus and
ciliated cells over a layer of cytokeratin 5 (KRT5)-expressing
basal cells. We hypothesized that MUC5B was involved in
HC formation.

Recently it was reported that influenza A infection
(H1N1) promotes structural remodeling consistent with HCs in
mice (6). Formation of these structures is contingent on
mobilization of progenitor “pods” of Krt5-expressing cells
(5–7). Using a previously published RNA sequencing Gene
Expression Omnibus data set (GSE83467) comparing
unstimulated murine progenitors to mobilized Krt5-
expressing cells, we found that Muc5b was upregulated in
Krt5 cells after H1N1 infection (fold change = 4.59; 95%
confidence interval, 4.58–4.60; two biological replicates).
We suspected that Muc5b might also be a feature of
murine HCs. Given our recent findings that Muc5b modulates
fibrosis in bleomycin-treated mice (8), we additionally wanted
to determine whether honeycombing could be detected
after bleomycin injury, and whether this was dependent on
Muc5b.

Mice (8–12 wk old) were exposed to H1N1 or
intratracheal bleomycin. Two models were used for
bleomycin exposure. In the single-dose model, mice were
administered 2.5 U/kg bleomycin intratracheally on day 0, and
harvested after 10 weeks. In the repeat bleomycin model, mice
were administered 2.5 U/kg, 1.25 U/kg, and 1.25 U/kg
intratracheally on days 0, 7, and 14, and harvested at 7 weeks.
For H1N1 infection, mice were intranasally administered 104 PFU
of lab-adapted influenza A H1N1 PR 8/34 (ATCC) in 20 ml of

PBS and harvested after 10 weeks unless specified otherwise.
Control studies were performed with UV-irradiated H1N1.
Mice who failed to lose .5% body weight after injury in either
model were excluded, and those who lost 20% body weight
without recovery were killed in accordance with the policies of
the University of Colorado Denver Institutional Animal
Care and Use Committee. BAL, hydroxyproline (HP),
immunohistochemical analysis, and Muc5b dot blot were
performed as described previously (9).

Mice injured with H1N1 demonstrated significant
increases in Muc5b protein over baseline 4 weeks after
infection (Figure 1A). In preliminary experiments, we were
able to identify significant bronchiolization of distal airspaces
consistent with HC formation as early as 4 weeks and as
late as 30 weeks after H1N1 infection (not shown). At 10
weeks after infection, we noted expansive areas of HCs
(Figure 1D, asterisk, top left); however, no significant
differences in fibrosis above UV controls were measured by
HP (Figure 1B) or second-harmonic two-photon microscopy
(not shown). In contrast to human IPF, the HCs
were relatively small and uniform; however like IPF they
were marked by a close association with Krt51 basal cells and
filled with copious Muc5b (Figure 1C, asterisk, top right).
Previous authors have observed mobilization of Krt5 cells
after bleomycin exposure, presaging the development of HCs
(6). Bleomycin-exposed mice also showed upregulated
Muc5b gene expression (9) and elevated airway Muc5b
(Figure 1A). We observed that bleomycin-injured mice
also had Krt5-associated cystic structures (Figure 1C,
asterisk, bottom left). These structures were full of
Muc5b, consistent with HCs (Figure 1C, asterisk, bottom
right). In contrast to the H1N1 model, however,
bleomycin-injured mice developed significant (P, 0.005)
interstitial fibrosis based on HP (Figure 1B), consistent with
published reports (8, 9).

Single-dose bleomycin injury leads to fibrosis that peaks
at 21 days and then is believed to resolve. To investigate
whether this resolution extends to HCs, we injured mice
once with bleomycin and quantified cysts after 10 weeks,
at which point total lung collagen content resolves to
baseline and is indistinguishable from saline-treated
controls (HP data not shown). We found that instead of
resolving in a manner consistent with fibrotic lung injury,
single-dose bleomycin-injured mice retained a minimal
(but detectable) fraction of HCs (Figures 1D and 1E).
We applied an unbiased point-counting approach to
estimate the volume fraction of cystic regions from thin
sections of injured mouse lung. These measurements were
also used to calculate the total lung volume using the
Cavalieri method (9). We then selected points overlying
cystic areas at random, overlaid an additional grid,
and quantified the number of cysts and number of points
per cyst. The total HC burdens of all models of lung injury
are compared in Figure 1E.

To address the role of Muc5b expression in HC
development, we determined the functional consequences
of altering Muc5b levels on HC formation in transgenic
mice. Muc5b-overexpressing mice (SFTPC-Muc5b
[referred to as SPC-Muc5b] and Scgb1a1-Muc5b

Supported by National Heart, Lung, and Blood Institute grants F32
HL134243-01A1 (J.S.K.), R01 HL080396 (C.M.E.), and R33 HL120770 and
UH3 HL123442 (D.A.S., I.V.Y., E.D., M.I.S, T.O., C.D.C., J.H., L.A.H., A.E.,
and C.E.H.).
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EXTENDED INFORMATION FOR THE THESIS REPORT 

Detailed Methods 

Chip fabrication 

The PDMS chip was composed of two different parts: the upper part, with six wells that compose 

the culture chamber, and the lower part, with also six wells, that is concentrically placed with the 

upper one, which is the gas chamber. Both are separated by a PDMS membrane permeable to gases, 

where the cells are cultured. In the center, a tube goes through both parts, which is the inlet tube 

through which the gas will go and will reach the lower part of the membrane. Each PDMS part is 

fabricated with the help of negative molds for each part that are designed with the Ultimaker Cura 

software (Ultimaker, Utrecht, Netherlands) and printed with an Ultimaker S5 3D printer (Ultimaker, 

Utrecht, Netherlands) in polycarbonate material. Detailed protocol for chip fabrication is accurately 

explained in the appendixes at the end of the thesis. 

 

Cell culture and oxygenation patterns 

Cells (300.000 cells/well) were cultured on fibronectin coated PDMS membrane with RPMI (Gibco, 

Massachusetts,U.S) medium supplemented with 5% of a mixture of penicillin, streptomycin and 

amphotericin(Gibco, Massachusetts,U.S), 10% Fetal Bovine Serum (FBS) (Gibco, Massachusetts,U.S)  

and 5% glutamine (Gibco, Massachusetts,U.S), and were exposed to the gas stimuli for 48 hours. 

Detailed methodology for coating the PDMS membrane is explained in the appendixes at the end of 

the thesis. Four different groups were studied with different gas mixtures applied with servo-

controlled gas blender (Gas Blender 100 Series, MCQ Instruments, Rome, Italy): (1) 13% O2, 5% 

CO2, 82% N2; (2) 7% O2, 5% CO2, 88% N2; (3)  cycles of 30 seconds of 13% O2, 5% CO2, 82% N2 

and 7% O2, 5% CO2, 88% N2, alternatively, and (4) cycles of 30 seconds of 7% O2, 5% CO2, 88% 

N2 and 4% O2, 5% CO2, 91% N2 alternatively. The exact mixture of gases for both continuous and 

intermittent patterns was controlled by the software Oxygen Gas Mixture Creator (MCQ 

Instruments, Rome, Italy). 
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Immunochemistry 

Immunochemistry was performed at the end-point of the experiment. Briefly, the cells were fixed in 

4% of paraformaldehyde for 15 minutes. Blocking solution was added for 45 minutes prior to the 

addition of the primary antibody Rabbit anti-HIF-1A (Novus Biologicals, Cambridge, UK), and the 

subsequent addition of the secondary anti-rabbit (goat)-Alexa 488 (Jackson ImmunoResearch 

Laboratories Inc.,West Grove, PA). The primary antibody was left overnight at 4ºC, and the 

secondary antibody was left 2h at 37ºC. Nuclear counterstain was performed with NucBlue 

(ThermoFisher, Massachusetts, US). Epifluorescence images were taken with an inverted microscope 

using a 20x Plan Fluor Multi-immersion objective (0.75 NA). Images belonging to the same run were 

obtained the same day employing the same exposure and illumination settings.  

 

Image processing 

Images were processed with ImageJ Software as previously described by Campillo 315. Briefly, three 

images per condition and run of the experiment were selected. Total fluorescence of the HIF-1A 

was measured by adjusting to an adequate threshold to subtract background and adjusting a 

watershed segmentation to delimit cells. HIF-1α nuclear fluorescence was obtained by measuring the 

fluorescence within the outlines previously selected in the DAPI channel with the pertinent threshold. 

Cytoplasmic HIF-1α fluorescence intensity was obtained by subtracting the nuclear signal to the total 

cellular signal. Results were presented as the ratio of the fluorescence in the nuclei divided by the 

fluorescence in the cytoplasm. The mean ratio of each image was calculated from that obtained from 

all the cells. Then, the result of each run of experiments was assessed by computing the mean of the 

three images. 

 

Flow cytometry assay 

Cells were detached from the PDMS membrane by incubating them with 500 µl/well of trypsin 

(Gibco, Massachusetts,U.S) for 5 minutes after washing the culture medium with PBS 1X. The 

reaction was stopped with 2 mL of culture medium. Resuspended cells were stained with 

fluorophore-conjugated EpCAM antibody (BD Bioscience, Franklin Lakes, New Jersey, U.S), and viable 

cells were selected by staining them with Fixable Viability Dye (BD Bioscience, Franklin Lakes, New 

Jersey, U.S). Finally, cells were fixed with paraformaldehyde (4%). Labeled cells were analyzed on a 
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FACS Canto II cytometer using GACS Diva 5.5 software (BD Biosciences, San Jose, CA) and analyzed 

by FlowJo software (Tree Star, San Carlos, CA). 

 

Statistics 

Data are reported as mean ± SE and statistical analysis was performed with Sigma Plot (Systat 

Software, San Jose, CA). Two-way ANOVA was employed for assessing the differences of EpCAM 

expression and proliferation among groups and Paired t-test was used for studying the HIF-1A and 

for the differences in proliferation and EpCAM expression between 13% O2 and 20% O2. 

 

 

Additional Results 

Raw data of EpCAM expression 

The absolute expression of EpCAM marker is expressed in the table below. It can be observed that 

its expression varies among the cell lines employed, independently of their histologic subtype. 

Squamous cell line H520 showed high expression and adenocarcinoma cell line H1975 showed 

almost 100% of expression. These two cell lines presented higher sensibility to hypoxia in terms of 

proliferation, indicating that EpCAM cell marker could be involved in this process.  

 

 

Table 2. Absolute values of the percentage of positive EpCAM cells obtained by flow cytometry. 

 

Differences between “traditional normoxia” and physioxia. 

In the previous experiments, the normoxia group was defined as 13% of oxygen, which corresponds 

to the concentration of oxygen at which the lung epithelium is exposed. Therefore, the normoxia 

employed in this study will correspond to the physioxia. When comparing the EpCAM expression 
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at the values that usually are considered normoxia, namely 20%, with the physioxia (13%) it can be 

observed that there are changes that reach statistical significance in one of the cell lines (H522) 

employed (table 3). These differences are bigger in cell number, showing a decrease in cell growth 

that is statistically significant in the case of H1437 and H520 (table 4). 

 

 

 

Table 3. Percentage of EpCAM positive cells assessed by flow cytometry at traditional normoxia (20% O2) 

and at physioxia (13% O2). 

 

 

 

Table 4. Cell number assessed by flow cytometry at traditional normoxia (20% O2) and at physioxia (13% 

O2). 
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Lung Extracellular Matrix Hydrogels Enhance Preservation of
Type II Phenotype in Primary Alveolar Epithelial Cells
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† These authors contributed equally to this work.

Abstract: One of the main limitations of in vitro studies on lung diseases is the difficulty of main-
taining the type II phenotype of alveolar epithelial cells in culture. This fact has previously been
related to the translocation of the mechanosensing Yes-associated protein (YAP) to the nuclei and
Rho signaling pathway. In this work, we aimed to culture and subculture primary alveolar type II
cells on extracellular matrix lung-derived hydrogels to assess their suitability for phenotype mainte-
nance. Cells cultured on lung hydrogels formed monolayers and maintained type II phenotype for a
longer time as compared with those conventionally cultured. Interestingly, cells successfully grew
when they were subsequently cultured on a dish. Moreover, cells cultured on a plate showed the
active form of the YAP protein and the formation of stress fibers and focal adhesions. The results of
chemically inhibiting the Rho pathway strongly suggest that this is one of the mechanisms by which
the hydrogel promotes type II phenotype maintenance. These results regarding protein expression
strongly suggest that the chemical and biophysical properties of the hydrogel have a considerable
impact on the transition from ATII to ATI phenotypes. In conclusion, culturing primary alveolar
epithelial cells on lung ECM-derived hydrogels may facilitate the prolonged culturing of these cells,
and thus help in the research on lung diseases.

Keywords: extracellular matrix; hydrogels; alveolar cells; type II phenotype; YAP

1. Introduction

The fundamental questions on the precise mechanisms underlying alveolar epithelial
cells (AECs) damage and epithelium repair in relevant diseases, such as acute respiratory
distress syndrome or chronic obstructive pulmonary disease, are still unsolved. Although
it is well-known that the alveolar epithelium is repaired by the proliferation of type II AECs
(ATIIs), which differentiate into type I phenotype cells (ATIs), the involved mechanisms
are still poorly understood [1]. In fact, a limitation hampering translational studies in lung
diseases is the difficulty of maintaining the type II phenotype of primary AECs in vitro.
Indeed, it is widely known that ATII-to-ATI transdifferentiation occurs very quickly in vitro;
thus, primary type II AECs neither adequately proliferate, nor can be subcultured under
conventional culture conditions [2].

To extend the maintenance of the type II AECs proliferative phenotype in vitro, it
was proposed to coat the culture plates with hydrogels, such as Matrigel, resembling the
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extracellular matrix (ECM) [3]. Moreover, pioneering studies on subculturing strategies for
primary ATII cells [4] employed inhibitors of Rho kinases, as the connection between the
activation of the Rho pathway and cell mechanosensing of the ECM is well-established [5].
However, although the relationship between ATII phenotype maintenance in vitro and
culturing cells on ECM-like substrates was proposed three decades ago [6], the problem
remains open, probably because no hydrogels derived from lung ECM were available.

Interestingly, based on an initial report for obtaining hydrogels from the ECM of decel-
lularized lungs [7], we have recently described a procedure for preparing such hydrogels by
exclusively using lung ECM, with no need to add potentially toxic external cross-linkers [8].
If used as a culture substrate, this hydrogel, which realistically mimics the native lung
ECM, could be particularly well-suited for providing a physiomimetic microenvironment
to primary AECs. Therefore, we hypothesized that a lung ECM-based hydrogel would slow
down the ATII-to-ATI transdifferentiation mediated by the inhibition of the Rho pathway,
resulting in a decrease in F-actin polymerization and the formation of focal adhesions, as
well as nuclear YAP activation [9–11].

2. Results
2.1. Primary Alveolar Epithelial Cells Form Monolayers on Lung-Derived Hydrogels

Isolated AECs were grown either in lung-derived hydrogels or plates for four days.
Cells were able to form a monolayer on a lung-derived hydrogel, as shown in bright-field
images in Figure 1. Differences in the morphology of the cells as a function of the substrate
were also noticeable as shown by confocal images in Figure 2. Throughout the culture, cells
on plates started to show a more flattened shape as well as larger cytoplasms (cells cultured
on plates presented, in general, sizes about 5 times larger than cells cultured on hydrogels),
and the presence of vacuoles was noticeable. On the contrary, AECs cultured on hydrogels
showed cuboidal shapes, and even their microvilli, a phenotypical characteristic of ATII
cells [12], could be distinguished. Cells cultured on plates formed monolayers faster (day
3 vs. day 4).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 11 
 

 

To extend the maintenance of the type II AECs proliferative phenotype in vitro, it 
was proposed to coat the culture plates with hydrogels, such as Matrigel, resembling the 
extracellular matrix (ECM) [3]. Moreover, pioneering studies on subculturing strategies 
for primary ATII cells [4] employed inhibitors of Rho kinases, as the connection between 
the activation of the Rho pathway and cell mechanosensing of the ECM is 
well-established [5]. However, although the relationship between ATII phenotype 
maintenance in vitro and culturing cells on ECM-like substrates was proposed three 
decades ago [6], the problem remains open, probably because no hydrogels derived from 
lung ECM were available. 

Interestingly, based on an initial report for obtaining hydrogels from the ECM of 
decellularized lungs [7], we have recently described a procedure for preparing such hy-
drogels by exclusively using lung ECM, with no need to add potentially toxic external 
cross-linkers [8]. If used as a culture substrate, this hydrogel, which realistically mimics 
the native lung ECM, could be particularly well-suited for providing a physiomimetic 
microenvironment to primary AECs. Therefore, we hypothesized that a lung ECM-based 
hydrogel would slow down the ATII-to-ATI transdifferentiation mediated by the inhibi-
tion of the Rho pathway, resulting in a decrease in F-actin polymerization and the for-
mation of focal adhesions, as well as nuclear YAP activation [9–11]. 

2. Results 
2.1. Primary Alveolar Epithelial Cells Form Monolayers on Lung-Derived Hydrogels 

Isolated AECs were grown either in lung-derived hydrogels or plates for four days. 
Cells were able to form a monolayer on a lung-derived hydrogel, as shown in bright-field 
images in Figure 1. Differences in the morphology of the cells as a function of the sub-
strate were also noticeable as shown by confocal images in Figure 2. Throughout the 
culture, cells on plates started to show a more flattened shape as well as larger cyto-
plasms (cells cultured on plates presented, in general, sizes about 5 times larger than cells 
cultured on hydrogels), and the presence of vacuoles was noticeable. On the contrary, 
AECs cultured on hydrogels showed cuboidal shapes, and even their microvilli, a phe-
notypical characteristic of ATII cells [12], could be distinguished. Cells cultured on plates 
formed monolayers faster (day 3 vs. day 4). 

 
Figure 1. Rat primary alveolar cells were cultured either on porcine lung-derived hydrogel (A) or 
on a plate (B). Bright field images were taken every 24 h from day 1. 

Figure 1. Rat primary alveolar cells were cultured either on porcine lung-derived hydrogel (A) or on
a plate (B). Bright field images were taken every 24 h from day 1.
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out and wider cytoplasm can be observed showing increased size. 
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tured on plates, where the expression of pdpn and aqp5 increased with time (classical ATI 
markers). These results show that the ATII phenotype and gene expression levels were 
maintained for longer in lung-derived hydrogels. The results from immunostaining are 
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culture time affected cells differently depending on the substrate they were cultured on. 
Indeed, cells cultured on lung hydrogel were able to maintain the SPC expression over 
time, whereas cells cultured on a plate rapidly lost this ability. 

Figure 2. Three-dimensional representation of primary alveolar type II cells cultured for three days
on hydrogel (A) and on a plate (B). Nuclei are stained in blue and actin cytoskeleton in red. In the
case of the hydrogel-cultured cell, it can be distinguished by a cuboidal morphology and the presence
of microvilli, indicated by arrows. In the case of the cell cultured on a plate, a more spread out and
wider cytoplasm can be observed showing increased size.

2.2. Culture of Alveolar Epithelial Cells on Lung-Derived Hydrogels Preserves the Expression of
Type II Markers for Longer Periods

The results of the genetic expression of ATI and ATII typical markers (from day 2 to
5) are shown in Figure 3A. The gene expression of sftpc and sftpb decreased over time.
There was a significant increase in ATII markers (surfactant proteins B and C) at earlier
times (day 2 and day 3) in cells cultured on lung-derived hydrogels. There was no increase
in ATI markers over time in cells cultured on hydrogels, in contrast to cells cultured on
plates, where the expression of pdpn and aqp5 increased with time (classical ATI markers).
These results show that the ATII phenotype and gene expression levels were maintained
for longer in lung-derived hydrogels. The results from immunostaining are shown in
Figure 3B–E, revealing that the differential expression of surfactant protein C caused by
the substrate was noticeable not only at the gene expression level, but also at the protein
level. SPC expression was higher in cells cultured on lung hydrogels compared to that of
cells cultured on a plate, as shown by the immunostainings. Furthermore, culture time
affected cells differently depending on the substrate they were cultured on. Indeed, cells
cultured on lung hydrogel were able to maintain the SPC expression over time, whereas
cells cultured on a plate rapidly lost this ability.
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Figure 3. ATII cells were cultured either on hydrogel (HG) or a tissue culture plate (TCP). ATII 
typical marker surfactant proteins C (sftpc) and B (sftpb) and ATI typical marker aquaporin 5 (aqp5), 
Figure 3. ATII cells were cultured either on hydrogel (HG) or a tissue culture plate (TCP). ATII
typical marker surfactant proteins C (sftpc) and B (sftpb) and ATI typical marker aquaporin 5 (aqp5),
podoplanin (pdpn) were studied at different time points (from day 2 to day 5) by qPCR (A). Relative
gene expression is shown. Expression of surfactant protein C (SPC) was studied using immunofluo-
rescence on ATII cells cultured on hydrogel at day 2 (B) and day 4 (D) and on a plate at day 2 (C) and
day 4 (E). * p < 0.05, *** p < 0.001.
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2.3. Culture of Primary Alveolar Epithelial Cells in Lung-Derived Hydrogels Inhibits Type
II-to-Type I Transdifferentiation by Altering the Hippo/Rho Pathway

Since YAP is a key mechanotransduction protein, its expression was studied in cells
cultured on hydrogels or plates for three days (Figure 4A,B). In cells cultured on hydrogels,
the YAP protein was located mainly in the cytoplasm, which indicates that it was being
phosphorylated and subsequently degraded. In contrast, in cells cultured on plates, nuclear
active YAP was observed. Specifically, there was a two-fold increase in the amount of
nuclear YAP when cells were cultured on a plate compared to that of cells cultured on
hydrogels, indicating a higher transcriptional activity in the first group (Figure 4C).
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Figure 4. Alveolar type II cells were cultured on hydrogel (A) or on a plate (B) and stained for
YAP protein (green). YAP nuclear and cytoplasmic expressions were quantified and expressed as
the nuclei/cytoplasm fluorescence ratio in both conditions hydrogel (HG) and tissue culture plate
(TCP) (C), *** p < 0.001.

Owing to the role of focal adhesions (FAs) and the actin cytoskeleton in sensing
extracellular matrix cues and transmitting them to the cell, the expressions of actin and
paxillin, which is one of the proteins comprising FAs, were studied. Both were reported
to be implicated in the hippo pathway, by inhibiting it and promoting the YAP nuclear
expression. In cells cultured for three days on lung-derived hydrogels, a poor focal adhesion
assembly was observed by the paxillin immunostaining. Moreover, no stress fibers were
formed as indicated by the phalloidin staining (Figure 5A). On the contrary, in cells that
were cultured for three days on a plate, assembled paxillin and stress fibers were clearly
observed (Figure 5B). The role of Rho, which is involved in the maturation of focal adhesions
and YAP regulation [13,14] was studied by the use of the ROCK inhibitor (Y27632). The
results show that it could play a role in the maintenance of the ATII phenotype, as reflected
by an increase in SPC in conventional culture (p = 0.02) (Figure 5D) together with a decrease
in focal adhesion size (p = 0.001) (Figure 5D), suggesting that the use of HGs as a substrate
for AECs culture could be inhibiting the Rho pathway, and thus allowing for type II
phenotype maintenance.
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Figure 5. Representative images of focal adhesions (FAs) in cells cultured on hydrogels (A) and plate
(B). Red: phalloidin, green: paxillin, blue: nuclei. Quantification of the FA length (C) and the intensity
of surfactant protein C (SPC) of alveolar type II cultured on hydrogels for 3 days with (Y27632) and
without (CTRL) the addition of the ROCK inhibitor (D), * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Primary Alveolar Epithelial Cells Cultured on Lung-Derived Hydrogels Can Be Subcultured

The potential ability to subculture primary ATII cells was studied. Cells were cultured
for 3 days on lung hydrogels and, after that time, lung-derived hydrogels were digested
with collagenase, and cells were seeded again on plates. Sixteen hours later, they were
immunostained for typical epithelial (EpCAM) and ATII (SFTPC) markers (Figure 6).
Subcultured cells were positive for both, EpCAM and SFTPC markers. These results
indicate that lung-derived hydrogels allow for primary AECs subculture.
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3. Discussion

We have provided evidence that using lung-derived ECM hydrogels as a culture
substrate allows the maintenance of the type II phenotype in primary AECs to be enhanced.
Moreover, our results for YAP and when using ROCK inhibitors on cells cultured on
lung hydrogels, which preserve several proteins from their native organs [7], suggest that
the biophysical properties of the hydrogel have a high impact on cell mechanosensing
pathways, thereby playing a role in the maintenance of type II phenotype. This first-time
study culturing cells on lung ECM-derived hydrogels, which was carried out in rat primary
AECs as a proof of concept, opens the door for further research in primary human AECs,
with a potential future impact on cell therapies for diseases such as pulmonary fibrosis and
acute lung injury [15,16].

Similar results to those obtained in the present study were provided by Shannon
and coworkers [6], who conducted the first study showing the importance of the protein
content of the substrate in the maintenance of ATII morphology and phenotype. The main
limitation of that first study was the inability of the cells to form a monolayer, which is
easily accomplished in our lung-derived hydrogel. Since then, efforts have been made to
improve the ability to maintain the ATII phenotype, which has only been achieved by media
supplementation [3,17–19]. Both the biochemical and physical properties of the substrate
are involved in cell behavior. It is worth noting that cells formed a monolayer slower in
hydrogels than on plates, which could be due to the fact that cells proliferate quicker on
the plate or that the ATII-to-ATI transdifferentiation allows for a faster substrate coverage,
as ATI cells are much larger in size. In view of the differing stiffness of the hydrogels when
compared to the culture plate and the cuboidal morphology of the cells, differences in
their cytoskeleton distribution and the formation of focal adhesions, which are key points
in the crosstalk of cell-ECM, were expected. Cells cultured on hydrogels showed shorter
focal adhesions that correlated with a decreased YAP translocation to the nuclei. YAP is
an important transcription factor that is implied in the regulation of several genes, and it
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is reported to be associated with inflammatory and epithelial damage situations in vivo
where the ATII-to-ATI transdifferentiation is required [20,21]. In this case, YAP nuclear
location of cells cultured on a plate could be triggering the differentiation in the ATI cell
population. As Rho is implicated in the maturation of focal adhesions [14], and previous
authors have pointed to it as a key factor in the transdifferentiation process [4,22], its role
was studied. The determination of the individual contribution of different Rho proteins
would be highly interesting. However, as it would be complex [14], we studied this effect
through its inhibition using Y27632. The obtained results support the implication of Rho in
the ATII phenotype, as its inhibition produced an increase in SPC and decrease in FAs only
in cells cultured on a plate. The origin of this inhibition of the Rho pathway, although out
of the scope of the present work, is probably related to the complex molecular composition
of lung-derived hydrogels and their biomechanical properties.

Primary ATII cells have previously been subcultured [4] by coculturing them with
fibroblasts as feeder cells and with the addition of the Rho inhibitors. The role of fibroblasts
in maintaining the ATII phenotype is not exactly known but it could be that they work as
a source of the keratinocyte growth factor (KGF). The addition of KGF has been used by
other authors to increase the phenotypic features of ATII cells [3,19], and in turn, to inhibit
Rho kinases, which are shown to play a key role in the ATII-to-ATI transdifferentiation [22].
In our case, the use of lung-derived hydrogels as substrates for culturing allows these
cells to be subcultured without the of use of additional chemicals or cocultures. Therefore,
culturing primary alveolar epithelial cells on lung ECM-derived hydrogels may facilitate
the prolonged culturing of these cells, and thus help in the research of lung diseases.
However, more research should be carried out regarding the number of possible passages,
especially considering that factors different from the ATI-to-ATII transdifferentiation would
limit the time that these primary cells could be maintained in vitro. Further research is
also needed to determine which components of ECM-derived hydrogels have more impact
on the maintenance of the type II phenotype in vitro. As the extracellular matrix used to
produce hydrogels in the present work was obtained from lung tissue, it is expected that
some key biochemical and biophysical factors specific to the lung are being preserved in
the process of hydrogel production. The identification of these factors, although out of the
scope of the present work, would allow the development of novel optimized scaffolds for
the in vitro culture of pulmonary cells.

4. Materials and Methods

Unless otherwise specified, all reagents were purchased from ThermoFisher Scientific
(Waltham, MA, USA) or Sigma-Aldrich (Saint Louis, MO, USA).

4.1. Decellularized Lung Extracellular Matrix Hydrogels Preparation

Lung-derived hydrogels were prepared by following a previously described proto-
col [23]. Briefly, porcine lungs were decellularized by consecutive perfusion of the following
reagents through the vasculature and the airways: 0.1% Triton X-100 and 2% SDC for 24 h
at 4 ◦C, and NaCl 1 M and DNase solution for 1 h at 4 ◦C. Three washes of miliQ water
were performed between consecutive reagent perfusion, and a last wash of PBS 1X was
carried out. Decellularized lungs were cut into small pieces, freeze-dried (Telstar Lyoquest-
55 Plus, Terrassa, Spain) and milled in liquid N2 (SPEX SamplePrep, Metuchen, NJ, USA).
The obtained powder was resuspended at 20 mg/mL in 0.01 M HCl and pepsin digested
at a 1/10 proportion under magnetic stirring at room temperature for 16 h. To produce
hydrogels, the digested solution was pH-adjusted to 7.4 ± 0.4 by using 0.1 M NaOH and
incubated at 37 ◦C for 20 min.

4.2. Primary Alveolar Epithelial Cells Isolation

The procedure was approved by the Ethical Board for Animal Research of the Uni-
versity of Barcelona, in compliance with regional, national and European regulations. Rat
lungs were obtained from 180–250 g Sprague Dawley male rats. The animals were intraperi-
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toneally anesthetized with 1 g/kg urethane and euthanized by exsanguination. AECs
were isolated following a protocol described in [24]. Briefly, lungs were perfused with
saline through the pulmonary artery and were resected en bloc. Three bronchioalveolar
lavages were performed with 10 mL of PBS 1X to remove alveolar macrophages. Then,
lungs were digested with 50 mL of 0.25% of trypsin through the airways for 30 min, cut into
small pieces, and digested in a 100 units/mL DNase solution. The resulting suspension
was filtered through a 100 µm and a 40 µm mesh and centrifuged through a Percoll (GE
HealthCare, Chicago, IL, USA) gradient at 500× g for 20 min. The band containing ATII
cells was recovered and digested using 20 units/mL of DNase. The resulting solution was
centrifuged for 15 min at 500× g, and the pellet was resuspended in DCCM-1 (Biological
Industries, Kibbutz Beit Haemek, Israel) medium and cultured for 1 h. Subsequently,
medium containing ATII non-adherent cells was recovered and centrifuged for 10 min at
800× g. Cells were finally counted and seeded either on 24-well culture plates or on top of
lung-ECM hydrogels.

4.3. Rho Kinase Inhibition Assay

For the inhibition of the Rho pathway, Y27638 (10 µM) was added to the medium for
24 h.

4.4. Reverse Transcription qPCR

For studying the expression of ATI and ATII markers, cells were cultured either
on plastic or lung-derived hydrogels for different times, and RNA was subsequently
extracted from samples by employing the RNeasy kit (Qiagen, Hilden, Germany). The
cDNA was obtained by a reverse transcription-polymerase chain reaction (TaqMan Reverse
Transcription Reagents, Invitrogen, Waltman, MA, USA) according to the manufacturer’s
instructions. The expression level of surfactant protein C (sftpc), surfactant protein B (sftpb),
aquaporin 5 (aqp5) and podoplanin (pdpn) was studied using the Taqman Fast Advanced
Master Mix and the TaqMan Gene Expression Assays in a StepOnePlus thermocycler
(Applied Biosystems, Waltham, MA, USA). The expression level of genes was normalized
to the constitutively expressed gene PPIA and calculated using the 2−∆∆Ct method [25].

4.5. Immunohistochemistry and Image Processing

For immunohistochemistry experiments, cells were fixed with 4% paraformaldehyde
for 30 min. Primary antibodies were incubated overnight, and secondary antibodies
were incubated for 2 h at 37 ◦C. Nuclei were stained with Hoechst 33342. To avoid
unspecific binding, especially in the hydrogel samples, a blocking buffer consisting of
2% BSA (Thermo Fisher, MA, USA) diluted in PBS 1X (Gibco, MA, USA) was employed
for 40 min. Primary antibodies employed were rabbit anti-SFTPC (Invitrogen, Waltman,
MA, USA), mouse anti-YAP (Santa Cruz Biotechnology, Dallas, TX, USA) and EpCAM
(Miltenyi, Bergisch Gladbach, Germany). Secondary antibodies used were goat anti-rabbit
cy5 (Abcam, Cambridge, UK) and goat anti-mouse Alexa Fluor 488 (Abcam, Cambridge,
UK). Images were acquired with a Nikon Confocal Eclipse Ti microscope using a 20 × Plan
Fluor Multi-immersion objective (0.75 NA) in the case of the SFTPC, EpCAM and YAP
staining with a 10× objective (0.3 NA) for the bright field images, and a 100× objective
(1.45 NA) for the paxillin and actin images. Nuclear images were obtained at 450 nm when
illuminating the sample at 408 nm. Samples were excited at 488 nm and acquired at 515 nm
for YAP, EpCAM and Paxillin images, and excited at 543.5 nm and acquired at 605 nm for
SFTPC and actin stains.

For the analysis of YAP images, five images per condition were randomly selected and
analyzed using a blind procedure with ImageJ Software. Quantification of the ratio nuclear
fluorescence/cytoplasmic fluorescence was assessed following a previously described
procedure [26] with slight modifications. To calculate the total cell fluorescence, a triangle
threshold was employed, and the integrated fluorescence was calculated in the YAP channel.
For calculating the YAP nuclear fluorescence, the perimeter of the nuclei was delimited by
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the Huang threshold in the DAPI channel. After that, the resulting mask was redirected
to the YAP channel and the integrated intensity contained in the nuclear perimeter was
obtained. To calculate the cytoplasmic fluorescence, the differences in the intensities in the
total cell and in the nuclei were calculated.

For focal adhesion length measurements, five representative adhesions per cell in
paxillin stainings at the cell edge were manually quantified with Image J Software.

4.6. Statistical Analysis

Data are expressed as mean ± SE unless stated otherwise. Statistical analysis was
performed with Graphpad Prism software. Differences in ATI/ATII markers gene ex-
pression and YAP nuclear/cytoplasmic expression were analyzed using paired t-test. A
p-value < 0.05 was considered significant.
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Abstract 18 

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, 19 

being characterized by a highly aberrant inflammatory response. Pre-clinical models to study the 20 

effect of cell therapy and anti-inflammatory treatments have not been able to give a comprehensive 21 

understanding of the disease due to its high complexity. In this work, we present a novel 22 

physiomimetic in vitro model for Acute Respiratory Distress Syndrome based on the use of lung 23 

extracellular matrix-derived hydrogels and organ-on-a-chip devices. Primary alveolar epithelial cells 24 

were cultured on top hydrogels fabricated of previously decellularized lung tissue, containing 25 

primary lung mesenchymal stromal cells until forming monolayers. Then, cyclic stretch was applied 26 

to mimic breathing, and inflammatory response was induced by using a bacteriotoxin hit. Having 27 

mimicked the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory 28 

drug (i.e dexamethasone) by the study of secretion of the most relevant inflammatory cytokines. To 29 

better identify key players in our model, the impact of the individual factors (cyclic stretch, 30 

decellularized lung hydrogel scaffold and the presence of mesenchymal stromal cells) was studied 31 

separately. Results showed that the developed advanced physiomimetic model presented a more 32 

reduced inflammatory response than traditional models, which is in line with what is expected from 33 

the response commonly observed in patients. Further, from the different stimuli, it was observed that 34 

the use of extracellular matrix hydrogels obtained from decellularized lungs had the greatest impact 35 



ARDS-on-a-chip 

 
2 

on the change of the inflammatory response. The developed model opens then the door for further in 36 

vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the 37 

test of different drugs or the use of cell therapy.   38 

1 Introduction 39 

Acute Respiratory Distress Syndrome (ARDS), commonly caused by bacterial or viral pneumonia 40 

(Matthay et al. 2019), is characterized by lung parenchymal damage from increased endothelial and 41 

epithelial permeability (non-cardiogenic pulmonary edema) (Staub 1981). ARDS mortality is 42 

approximately 25-40% and the only treatment is primarily supportive with lung-protective ventilation 43 

(Brower et al. 2000). Major efforts in the medical community are focused mostly on the prevention 44 

of the injury (Yadav, Thompson, and Gajic 2017)  since, although numerous pharmacologic 45 

strategies have been successful in animal studies, few trials have shown a clinical benefit in terms of 46 

mortality (Ballard-Croft et al. 2012). On the other hand, cell therapies based on the use of 47 

mesenchymal stromal cells (MSCs) have started to show certain efficacy although the mechanisms 48 

involved in the processes are still to be determined (Laffey and Matthay 2017). Moreover, during the 49 

COVID-19 pandemic, ARDS has been reported as a common complication that dramatically 50 

increased the mortality of patients (Wu et al. 2020). The aberrant inflammatory response of these 51 

patients (which is known as the cytokine storm) has been correlated with the severity of the disease 52 

and has become one of the main therapeutic targets (L.D. Chen et al. 2020). Nevertheless, neither in 53 

vitro nor in vivo available models realistically recreate the complex pathophysiology of ARDS 54 

(Huppert and Matthay 2017). Therefore, there is an urgent need to develop models with higher 55 

physiological relevance to understand the inflammatory processes related to ARDS, the impact of 56 

cell therapy (Nonaka et al. 2020), and the use of anti-inflammatory drugs (Trivedi, Verma, and 57 

Kumar 2020). Conventional ARDS in vitro models mainly consist of the application of an 58 

inflammatory hit (usually by the use of a bacteriotoxin) to a monolayer of pulmonary epithelial or 59 

endothelial cells (Cabrera-Benítez et al. 2016). The problem with these conventional models is that 60 

they do not fully mimic the complex three-dimensional microarchitecture or the extracellular matrix 61 

(Burgess et al. 2016) (ECM) stiffness experienced by cells in vivo. Moreover, lung cells in vivo are 62 

subjected to mechanobiological signals such as those induced by the cyclic stretch associated with 63 

breathing or mechanical ventilation.  64 

Two different technologies have recently gained popularity for creating physiomimetic models to 65 

recreate the ECM (Busch, Lorenzana, and Ryan 2021) and the mechanobiological signals in vitro: 3D 66 

cell cultures (Habanjar et al. 2021) and organ-on-a-chip devices (Mertz, Ahmed, and Takayama 67 

2018; Benam, Burgess, and Stewart 2021). Indeed, it has been shown that lung ECM can be obtained 68 

from the decellularization of the native tissues with detergents and enzymes (Nonaka et al. 2014), and 69 

then pulverized and reconstituted in form of hydrogels suitable for 3D cell culture (Pati and Cho 70 

2017). On the other hand, organ-on-a-chip devices (Bassi et al. 2021) try to recreate the physical 71 

microenvironment of living organs in vitro. In the specific case of a lung-on-a-chip, devices with 72 

control over the cyclic stretch and oxygenation have been developed (Campillo et al. 2016; D. Huh et 73 

al. 2013). In the present work, the aim was to merge these two frontier technologies (3D ECM 74 

hydrogels and lung-on-a-chip-devices) to develop an advanced physiomimetic in vitro model of 75 

ARDS for the study of inflammatory processes and how they are related to MSCs therapies. Using 76 

such advanced model, we have tested the individual contribution of cyclic stretch and lung ECM, and 77 

the effect of lung-resident MSCs to the secretion of inflammation-related cytokines after bacterial 78 

lipopolysaccharide (LPS) challenge, as well as the effect of treatment with an anti-inflammatory drug 79 

(dexamethasone).   80 
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2 Materials and Methods 81 

All the reagents were obtained from Sigma Aldrich, Missouri, USA unless otherwise specified. 82 

2.1 Decellularized extracellular matrix hydrogels 83 

Lung hydrogels were developed from porcine lungs by following the protocol described in (Falcones 84 

et al. 2021). Briefly, porcine lungs were decellularized by perfusion through the trachea and the 85 

vasculature 0.1% with Triton X-100 and 2% of sodium deoxycholate for 24 hours each, and DNase 86 

and 1M NaCl for one hour each. Decellularized lungs were afterward frozen at -80 °C, freeze-dried 87 

(Telstar Lyoquest-55 Plus, Terrassa, Spain) and milled in liquid N2 (SPEX SamplePrep, New Jersey, 88 

USA) to obtain a fine powder. The resulting ECM powder was digested at a concentration of 20 89 

mg/mL in HCl 0.01 M with porcine gastric mucosa pepsin at a 10:1 concentration at room 90 

temperature for 16 hours. To produce the hydrogels, the digested solution was pH-adjusted to 7.4 ± 91 

0.4 by using 0.1 M NaOH and incubated at 37 °C for 20 minutes. 92 

2.2 Lung-on-a-chip devices fabrication  93 

The designed lung-on-a-chip devices were composed of 3 parts containing 6 holes, each one located 94 

concentrically to conform to the wells (Figure 1). A video with detailed instructions for fabricating a 95 

similar chip is open-source available in the supplementary materialof (23). The upper part of the 96 

device, which was separated from the other two parts by a 380 µm thick gas permeable 97 

polydimethylsiloxane (PDMS) membrane (Gel-Pak, Hayward, CA, USA), was the culture chamber 98 

(cells and culture medium). The two other parts had channels in their lower part to allow for gas 99 

efflux (gas chamber). Gas entered the chip through a small tube inserted in a central tiny hole that 100 

perforates the culture chamber and the first part of the gas chamber. The air was distributed through 101 

the radial channels of the middle PDMS piece (upper part of the gas chamber) and diffused to the 102 

cells through the lower part of the membrane. Gas exited the chip through the radial channels of the 103 

lower PDMS piece (lower part of the gas chamber), coming back to the center of the chip, where gas 104 

found an exit through the perforated petri dish where the chip was located (Figure 1) . 105 

Once the gas had abandoned the chip, it was conducted through a tube to a proportional valve that 106 

opened and closed at 0.2 Hz frequency (mimicking the human physiological breathing rate). When 107 

the valve became closed, the flexible PDMS membrane deflected until reaching a surface strain of up 108 

to 10%. The pressure inside the system was alleviated by a leakage, that consisted of a small diameter 109 

tube (ID = 0.56 mm) (Cole Parmer, Illinois, USA) placed between the outlet of the chip and the 110 

proportional valve. The length of the leakage tube was individually adjusted for each fabricated chip 111 

to obtain the desired strain for a given pressure.  112 

To fabricate the devices, negative molds of the parts were designed with the Ultimaker Cura software 113 

(Ultimaker, Utrecht, Netherlands) and printed with an Ultimaker S5 3D printer (Ultimaker, Utrecht, 114 

Netherlands) in polycarbonate material. PDMS prepolymer was mixed in a proportion 10:1 with the 115 

curing agent (Sylgard 184 kit, Dow Corning, MI) and poured into the previously printed molds. The 116 

resulting mixture was degassed in a bell jar vacuum desiccator (Kartell Labware, Noviglio, Italy) for 117 

45 minutes and then placed in an oven (Selecta, Barcelona, Spain) for 2 hours at 65 °C. PDMS parts 118 

were carefully removed from the molds and the middle and the upper parts were perforated in the 119 

center with an awl for further introduction of the inlet tube. The middle and lower parts were bonded 120 

together concentrically after the activation of their surfaces with a hand-held corona (Electro Technic 121 

Products, Chicago, IL) at proximity (~5mm) for one minute at the highest voltage. PDMS membrane 122 

was also treated with the corona and attached to the already formed gas chamber, as previously 123 

https://www.frontiersin.org/articles/10.3389/fonc.2019.00043/full#supplementary-material
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indicated. The upper part (culture chamber) was attached to the PDMS membrane surface by using 124 

non-polymerized PDMS and then placed in the oven for 60 minutes at 65°C. In the meantime, a 60 125 

cm2 petri dish (Techno Plastic Products AG, Trasadingen, Switzerland) was perforated in the center 126 

with a driller (1 cm diameter). The PDMS chip was then placed on the perforated petri dish and 127 

adhered by using non-polymerized PDMS. A 1.06 mm (ID) inlet tube (Cole Parmer, Illinois, USA) 128 

was inserted in the central hole and sealed with non-polymerized PDMS. The whole assembled chip 129 

was placed in the oven for 60 minutes at 65°C. Lastly a polycarbonate 3D-printed funnel-like piece 130 

was attached with glue to the lower part of the petri dish to connect the outlet tube. 131 

PDMS membranes of the devices fabricated for 3D cell culture were treated for proper adhesion of 132 

the hydrogels. Briefly, PDMS membranes were activated by introducing the chips in a plasma 133 

cleaner (PDC-002, Harrick Scientific Products Inc., Pleasantville, NY) for 2 minutes at maximum 134 

voltage and then introduced in the culture hood under the UV light for 10 minutes to sterilize the 135 

surface. APTES 10% was then added for 1 hour and 5mM genipin (Challenge Bio Products Co, 136 

Taiwan) for 45 minutes. After each reagent, 3 PBS 1X washes of 5 minutes each were made. Finally, 137 

the chip was left to dry overnight. 138 

2.3 Experimental setup and devices calibration and characterization 139 

2.3.1 Experimental setup 140 

To support the specific gas mixture to the cultured cells, servo-controlled gas blenders (McQ, 141 

Virginia, USA) controlled by the Software Gas Mixture Creator (McQ, Virginia, USA) were 142 

employed. Previously humidified air went inside the chip through the inlet tube and distributed 143 

through the channels to reach the PDMS membranes where the cells were cultured. Then, the gas 144 

abandoned the chip through the outlet tube. After removing the humidity of the air, the conducting 145 

tube was connected to a valve for stretch amplitude and frequency control by using an incorporated 146 

pressure sensor (176PC14HD2, Honeywell, New Jersey, USA).  147 

2.3.2 Measurement of oxygen diffusion through 3D hydrogels 148 

All the measurements were acquired inside a cell incubator, at 100% humidity and 37°C. Prior the 149 

measurements, chips were ventilated with 100% N2 for 30 minutes to displace the existent O2 in the 150 

hydrogel. An optical fiber oxygen sensor (Pyroscience, Aachen, Germany) was calibrated following 151 

the manufacturer’s instructions and attached to a specifically designed holder that allowed for 152 

micrometric-resolution vertical positioning. Measurements were performed with the sensor tip 153 

introduced 300 µm in the hydrogel. The gas mixture was changed to room air (20% O2 and 80% N2), 154 

to measure the oxygen diffusion time through the hydrogel. Measurements were repeated for 155 

different distances (100 µm steps) (Colom et al. 2014) and the diffusion time constant τ was 156 

calculated. 157 

2.3.3 Membrane and hydrogels strain calibration and characterization 158 

The membrane deformation was calculated by modeling it as a spherical cup shape, where linear 159 

strain varies slightly across the membrane but circumferential strain decreases parabolically to zero at 160 

the clamped edge (Campillo et al. 2016). The membrane experiences an equibiaxial linear strain (ε) 161 

that can be calculated as follows: the vertical deflection of the spherical cap (h) was calculated by the 162 

difference in height assessed with phase-contrast imaging using a confocal microscope with a 163 

motorized 10x objective, while the radius (r) was known from chip design. The strain of the 164 

membrane was calibrated for different gas pressures by using equation 1:  165 
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𝜀 =
2

3
(
ℎ

𝑟
)
2

      (1) 166 

To assess that the stretch of the membrane was transmitted to the cells through the hydrogels, the 167 

latter were coated with 2 µm-diameter fluorescent carboxylated beads (Invitrogen, Oregon, USA). 168 

Epifluorescence images were taken at different pressures with the 10x objective, and the 169 

displacement of the beads was computed by ImageJ as described in (Campillo et al. 2016). 170 

2.4 Cells isolation and culture protocols 171 

Primary lung mesenchymal stromal cells (LMSCs) and type 2 alveolar epithelial cells (ATIIs) were 172 

isolated from ~180-250 g male Sprague-Dawley rats by following protocols described in (da Silva 173 

Meirelles, Chagastelles, and Nardi 2006) and  (Guillamat-Prats et al. 2020) respectively, which were 174 

approved by the Ethical Committee for Animal Research of the University of Barcelona. 175 

For LMSCs extraction, rats were anesthetized with 1g/kg urethane and euthanized by exsanguination 176 

through abdominal aorta excision. Lungs were perfused with 50 mL of PBS 1X through the right 177 

ventricle of the beating heart after cutting the left atrium. Lungs were excised en bloc with the heart. 178 

Lungs were sectioned into small pieces and digested in 10 mL of 250 U / mL collagenase (Gibco, 179 

Massachusetts, USA) solution prepared in DMEM with 10% HEPES for 1 h at 37 °C under agitation. 180 

The resulting solution was filtered by a 250 µm mesh and then centrifuged at 400 g for 10 minutes 181 

(Rotina 380R, Hettich, Tuttlingen, Germany). The obtained pellet was resuspended in red blood cell 182 

lysis buffer (RBC) (BioLegend, San Diego, CA, USA) and was incubated at 4 °C for 7 minutes. 183 

After that time, the reaction was stopped by adding PBS 1x. Finally, cells were centrifuged at 350 g 184 

for 5 minutes and cultured in T-75 flasks for expansion. LMSCs up to passage 7 were used for the 185 

experiments.  186 

For ATIIs extraction, lungs were perfused with saline through the pulmonary artery and were 187 

resected en bloc. Five bronchioalveolar lavages were performed with 10 mL of PBS 1X to remove 188 

the alveolar macrophages. Then, the lungs were digested with 50 mL of 0.25% of trypsin through the 189 

airways for 30 minutes. Lungs were cut into small pieces, digested in a 100 units/mL DNase, and 190 

filtered through a 100 µm and a 40 µm mesh. The filtered suspension was centrifuged through a 191 

percoll (GE HealthCare, Illinois, USA) gradient at 500 g for 20 minutes. The band containing the 192 

ATIIs was recovered and digested by using DNase (20 units / mL). The solution was centrifuged for 193 

15 minutes at 500 g. Then, the pellet was resuspended in DCCM-1 (Biological Industries, Kibbutz 194 

Beit Haemek, Israel) medium and cultured for 1 hour. After that time, the medium containing ATII 195 

non-adherent cells was recovered and centrifuged for 10 minutes at 800 g. Cells were counted, 196 

seeded in the lung-on-a-chip devices and cultured in supplemented DCCM-1 medium (1% penicillin, 197 

streptomycin and amphotericin, 1% glutamine and 10% FBS). 198 

2.5 Acute Respiratory Distress Syndrome-on-a-chip model 199 

For the 3D culture, 3·105 cells/mL of LMSC were resuspended in 500 µL of lung ECM pregel before 200 

jellification. Then, hydrogels were formed by placing the chips in the incubator for 20 minutes before 201 

adding 500 µl of supplemented DCCM-1. ATII cells were then cultured at a density of 106 cells/well. 202 

All the experiments were performed at physiological oxygen levels (13%). 203 

A description of the experimental groups is shown in Figure 3: three groups were cultured in each 204 

device (co-culture of ATIIs and L-MSCs in 3D hydrogels, ATIIs cultured on top of hydrogels and 205 

ATII cultured over the membrane). Half of the devices were subjected to cyclic stretch and half of 206 
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the devices were subjected to an LPS inflammatory hit (L2630 from Escherichia Coli, 1 µg / mL). 207 

Groups with co-cultures and cyclic stretch are referred to as ‘advanced physiomimetic model’ (AM) 208 

while 2D cultures of ATIIs will be referred to as ‘traditional model’ (TM). Cells were cultured under 209 

stretch for a total of 72 hours (static conditions were maintained for the stretch controls groups), and 210 

the LPS hit was applied for 16 hours. At the end of the experiment, the supernatants were collected 211 

for subsequent analysis. In the experiments involving the effect of an anti-inflammatory drug, 100 212 

nM of dexamethasone was added for 32 hours.  213 

2.6 Multiplex ELISA Analysis 214 

ProcartaPlex Multiplex Immunoassays of the collected supernatants were performed according to the 215 

manufacturer's instructions (ThermoFisher, Massachusetts, USA) for the following cytokines: 216 

macrophage inflammatory protein-2 (MIP-2), interleukins 1-beta, 6, and 10 (IL-1β, IL-6, IL-10), 217 

gamma interferon (INF-γ), alpha tumor necrosis factor (TNF-α), and vascular endothelial growth 218 

factor (VEGF). Data were acquired with the Magpix (Luminex, Texas, USA) and processed using the 219 

ProcartaPlex Analysis App Software (ThermoFisher, Massachusetts, USA). 220 

2.7 Immunohistochemistry 221 

For the immunofluorescence experiments, cells were fixed with 4% paraformaldehyde for 30 222 

minutes. Primary antibodies were incubated overnight, and secondary antibodies were incubated for 223 

2 hours at 37 °C. Nuclei were stained with Hoechst 33342 (ThermoFisher, Massachusetts, USA). To 224 

avoid unspecific binding, especially in the hydrogels, a blocking buffer consisting of 2% BSA 225 

(ThermoFisher, Massachusetts, USA) diluted in PBS 1X (Gibco, Massachusetts, USA) was 226 

employed for 40 minutes, and after the primary antibody incubation, three washes of 5 minutes under 227 

orbital agitation were made. The primary antibodies employed were rabbit anti-EpCAM, and mouse 228 

anti-Vimentin, and the secondary antibody were goat anti-rabbit cy5 and goat anti-mouse Alexa 229 

Fluor 488. All antibodies were purchased from Abcam (Cambridge, UK). Images were taken with 230 

Nikon Confocal Eclipse Ti using a 20X Plan Fluor Multi-immersion objective (0.75 NA). Samples 231 

were excited at 488 nm and acquired at 515 nm, for Vimentin images, and excited at 543.5 nm and 232 

acquired at 605 nm for EpCAM staining. Nuclear images were obtained at 450 nm when illuminating 233 

the sample at 408 nm 234 

2.8 Statistical analysis 235 

Data are expressed as mean ± SE. Statistical analysis was performed with Prism software (GraphPad 236 

Software, California, US). Differences in cytokine expression were studied using Student’s t-test, 237 

except in those cases where they did not follow a normal distribution, where a Mann-Whitney test 238 

was performed instead. Normal distribution of the samples was calculated by using a Kolmogorov-239 

Smirnov test. Differences were considered significant for p-values < 0.05. 240 

3 Results 241 

3.1 Lung-on-a-chip device characterization 242 

Three-dimensional images of the ATIIs monolayer on top of the ECM hydrogels with LMSCs 243 

cultured inside (Advanced model if stretched) are shown in Figure 4A. The efficient oxygen 244 

diffusion through the hydrogel when changing from 0% O2 to 20% O2 is shown in Figure 4B, where 245 

measurements were taken at different depths inside the hydrogel and compared with those acquired 246 

without hydrogel (culture medium) to study whether O2 was able to diffuse through the whole 247 
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thickness. Measurements acquired with the fibre optic oxygen sensor showed that the time constant τ 248 

for the non-hydrogel measurement (just diffusion in the PDMS membrane) was ≈10 s, being 249 

increased by 40% for 300-200 µm depths and by 80% for 100 µm depth. This indicates that the lung-250 

derived hydrogels present a coefficient of diffusion for O2 that is quite similar to that of water, 251 

indicting that these hydrogels aresuitable compatible with the three-dimensional culture and the 252 

precise control of oxygen partial pressure (Farré et al. 2018).  Figure 4C, shows the measured strain 253 

experienced by the PDMS membrane when compared with the actual strain measured at the surface 254 

of the hydrogels calculated by the displacement of the attached fluorescent microbeads. It was 255 

observed that the strain applied to the flexible membrane was transmitted to the attached hydrogel 3D 256 

structures following a linear relationship with the applied pressure. 257 

3.2 Response of the developed advanced physiomimetic model to the inflammatory hit 258 

The developed advanced model was subjected to an LPS endotoxin hit and the release of 259 

inflammatory mediators was studied. LMSCs were cultured three-dimensionally while ATII were 260 

cultured on the top of the hydrogel forming a monolayer, and cyclic stretch was applied. ELISA 261 

results obtained on the secretion of cytokines for the advanced model developed when LPS endotoxin 262 

was added to the cultures are shown in Figure 5. The inflammatory hit produced a statistically 263 

significant increase in the secretion of inflammation-related cytokines IL-10 (8-fold; p = 0.003), IL-6 264 

(2-fold; p = 0.02), IL-1β (10-fold; p = 0.0081) and TNF-α (3.5-fold; p = 0.0023) while no statistical 265 

difference was found in the secretion of VEGF, MIP-2α and IFN-γ. 266 

Differences in the inflammatory response of the developed advanced model, when compared to the 267 

traditional 2D culture model are shown in Figure 6. Results are expressed as the ratio of the cytokines 268 

secreted with and without LPS within each group (TM or AM) to compare how both models are 269 

responsive. For all the measured cytokines, the response of the advanced model to the inflammatory 270 

hit was lower than in the traditional model; statistically significant differences were found for IL-10 271 

(4-fold-fold; p = 0.015), IL-6 (29.5-fold-fold p = 0.024), MIP-2α (2.4-fold p = 0.0022), and TNF-α 272 

(6.5-fold-fold; p = 0.0014). 273 

3.3 Effects of 3D culture of mesenchymal stromal cells in hydrogels and cyclic stretch 274 

To study the effect of cyclic stretch alone in the physiomimetic model, four different groups were 275 

compared (with and without CS, each of which with and without LPS). Results in Figure 7 show the 276 

ratio of the amount of cytokines secreted with and without LPS either in the presence or absence of 277 

cyclic stretch. Cyclic stretch showed no impact on the response of the advanced physiomimetic 278 

model to the inflammatory hit (Figure 7). However, when studying the effect of CS in the absence of 279 

LPS, a statistically significant increase in the secretion of VEGF and a decrease in the secretion of 280 

IFN-γ (2-fold p = 0.046; 2-fold/0.55-fold, p = 0.02 respectively, data not shown) was observed when 281 

cyclic stretch was applied. 282 

The contribution of the lung hydrogel and the embedded LMSCs after application of the LPS hit was 283 

studied in three groups, as shown in Figure 8: (1) ATII on PDMS under cyclic stretch (AM – HG – 284 

LMSCs), (2) ATII on hydrogel under cyclic stretch (AM – LMSCs), and (3) ATII-LMSCs coculture 285 

in hydrogel subjected to cyclic stretch (AM). The effect of hydrogel significantly attenuated the 286 

secretion of all the cytokines but VEGF in response to the LPS endotoxin, showing inflammatory-287 

suppressive properties. On the other hand, the presence of LMSCs significantly over-attenuated the 288 

secretion of IL-6 (7-fold; p = 0.0098) and promoted IFN-ɣ secretion (1.7-fold p = 0.032).  289 

3.4 Response to dexamethasone 290 
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Results on the secretion of cytokines when dexamethasone was added to the developed advanced 291 

model are shown in Figure 9. The treatment induced a trend to recover the levels of cytokine 292 

expression observed before the inflammatory hit in TNF-α and IFN-ɣ, and a significant decrease of 293 

secretion of IL-10 (3.7-fold decrease, p = 0.0014) and IL-1β (3.2-fold decrease p=0.0407).  294 

4 Discussion 295 

Experimental in vitro models of severe respiratory diseases such as ARDS are important to better 296 

understand the basic pathophysiologic mechanisms involved and the potential effects of drug 297 

treatments. However, the conventional model based on cells cultured on a plate is an extreme 298 

simplification of the microenvironment experienced by cells in vivo and has shown its limitations 299 

when trying to mimic in vivo results. Therefore, there is nowadays an urgent need for improved 300 

models which are more realistic in reproducing the physical, chemical and biological conditions of 301 

cells in the lung. The work presented herein shows the feasibility of developing a physiomimetic 302 

model for in vitro ARDS studies by the combined use of organ-on-a-chip technologies and ECM-303 

derived hydrogels for 3D cell culture. Specifically, the response of the developed model to an 304 

endotoxin-mediated inflammatory hit showed marked differences compared to the traditional plastic-305 

based 2D models, the latter apparently overestimating the cytokine response. In this context, the 306 

advanced model (3D architecture with biophysical stimuli) described herein is a novel contribution to 307 

setting more physiomimetic approaches for studying the mechanisms of ARDS and of potential 308 

treatments.  309 

The developed model overcomes previous limitations of in vitro studies on ARDS by recreating a 310 

physiomimetic environment and by using epithelial and stromal cells in co-culture. Device molds 311 

were fast prototyped by 3D printing, hence the dimensions of the devices can be easily modified 312 

depending on the requirements of each study. The developed chips were compatible with optical 313 

microscopy, which eased the calibration of the membrane stretch as a function of the applied 314 

pressure. This aspect opens the door for future studies incorporating real-time imaging of the cultured 315 

cells in the experiments. We incorporated 3D cultures into the lung-on-a-chip devices developed by 316 

attaching cell-laden ECM hydrogels to the PDMS stretchable membrane previously treated with 317 

APTES and genipin. No detachment of the hydrogels from the membrane was observed during the 318 

experiments. Still, there was an open question for lung-derived ECM hydrogels for organ-on-a-chip 319 

devices regarding oxygen diffusivity and stretch transmission from the device to the 3D scaffold 320 

(Otero et al. 2021). Oxygen was expected to diffuse quickly in the hydrogels as they are composed 321 

mainly of water, and results obtained in the experiments conducted here confirmed that hypothesis. 322 

The diffusion of oxygen have been shown to highly impact cell response (E. Marhuenda et al. 2019), 323 

thus results obtained in our experiments demonstrate the suitability of their use of three-dimensional 324 

culturing. Regarding the transmission of the stretch from the membrane to the hydrogel we observed 325 

that it was correctly transmitted to the 3D hydrogel by measuring distances between beads, a method 326 

adapted from 2D cultures stretch calibration (Trepat et al. 2004). Nevertheless, it should be noted that 327 

changing the geometries and the mechanical properties of the hydrogels could modify this stretch 328 

transmission, especially if the hydrogels were softer (as they usually are when using lower ECM 329 

powder concentrations in their preparation) (Pouliot et al. 2016; de Hilster et al. 2020; Martinez-330 

Garcia et al. 2021). In our case, the results showed that in the developed physiomimetic model the 3D 331 

co-cultures were oxygenated and stretched similarly as in traditional 2D cultures. In this way, the 332 

analysis of the contribution of the 3D microarchitecture can be more robustly analyzed from the 333 

conducted experiments (Nonaka et al. 2016). 334 
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The present study was conducted with freshly isolated rat alveolar cells and primary rat lung 335 

mesenchymal stromal cells. The use of primary cells is highly advantageous in comparison to 336 

previous works where cancer cell lines or immortalized ATIIs that have lost some of their typical 337 

characteristics were employed (X.X. Chen et al. 2019; Abate et al. 2010; Willis et al. 2005). The 338 

possibility of using primary ATIIs was eased by the employment of lung derived hydrogels, which 339 

are more suitable substrates for cell culture than culture plates, allowing alveolar cells not only to 340 

form monolayers but also to maintain the secretion of surfactant B and C proteins for longer times 341 

(Esther Marhuenda et al. 2022), which is of high importance when studying ARDS (S. Wang, Li, et 342 

al. 2021). The results obtained using primary alveolar cells are expected to be more easily 343 

translational than those using A549 cells (X.X. Chen et al. 2019), which are usually used as a 344 

surrogate of ATIIs in in vitro studies. Also, all the experiments shown herein were performed at 345 

physiological oxygen concentrations (13%) (Wild et al. 2005; Brahimi-Horn and Pouysségur 2007), 346 

avoiding that cells were subjected to the typical hyperoxic conditions in traditional culture settings 347 

(20% oxygen), which can induce the secretion of oxygen reactive species (Stuart et al. 2018) thereby 348 

potentially altering the inflammatory response to LPS challenge and to drug treatment. 349 

Results on the inflammatory response of the developed advanced physiomimetic model to a 350 

traditional inflammatory hit (i.e. LPS) modeling ARDS were in line with what has been observed in 351 

previous in vitro and in vivo studies (J.W. Huh et al. 2018; Voiriot et al. 2017; J. Li et al. 2020; 352 

Cabrera-Benítez et al. 2016; Peñuelas et al. 2013). As expected, the inflammatory response observed 353 

in the developed advanced model was attenuated with respect to the traditional one, indicating that 354 

the presence of LMSCs and the incorporation of different biophysical stimuli are playing a protective 355 

role in the response to an endotoxin hit. The overresponse observed in traditional models can be then 356 

explained by the fact that cells are cultured on petri dishes, which have very different physical 357 

properties and biochemical environment than the model developed herein. Interestingly, the fact that 358 

our model is less sensitive to the LPS hit could ease the development of future studies with different 359 

endotoxin doses with the aim to model different degrees of disease severity.  360 

By separately studying the contribution of the different stimuli, very interesting data were obtained 361 

regarding the decreased responsiveness to the inflammatory challenge. No significant differences 362 

were observed in the secretion of cytokines by the effect of cyclic stretch alone. This could be due to 363 

the fact that the impact of cyclic stretch in a physiomimetic model is moderated and shielded by the 364 

rest of the factors present in the advanced model. The anti-inflammatory effect of cyclic stretch has 365 

been previously reported (Fang et al. 2018) in a much more responsive model, and this is what was 366 

also observed in our control experiments in 2D. It has been also reported to impact cell fate in 367 

alveolar and mesenchymal cells (Heise et al. 2011). On the other hand, culturing cells in lung ECM-368 

derived hydrogels was the factor having major importance in the attenuation of the inflammatory 369 

response in the developed model. Culturing cells using a substrate with lung parenchyma-like 370 

stiffness (Falcones et al. 2021) and a more physiomimetic and complex biochemical composition 371 

seem to offer primary alveolar cells and lung mesenchymal stromal cells a protective environment 372 

that attenuated the inflammatory response. On the other hand, the LMSCs played an important role in 373 

the inflammatory context, due to the cytokine secretion themselves, but also to the interaction with 374 

the epithelial monolayer. As previously reported (X.X. Chen et al. 2019), the presence of LMSCs in 375 

the model altered the inflammatory response but, interestingly, the results showed that the effect of 376 

lung hydrogel itself has a much greater impact that the presence of LMSCs.  377 

The main problem in correlating the cytokine expression from results obtained in vitro and in vivo, is 378 

the fact that most in vitro cultures are performed under quite unrealistic conditions, attending to the 379 

complex physiological biochemical and biophysical environment and more importantly, to the 380 
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interactions of different cell types (J. Li et al. 2020; Cabrera-Benítez et al. 2016). The expression of 381 

IL-10, IL-8 (its murine counterpart is MIP-2α), and IL-6 have a high clinical significance in ARDS 382 

patients, as high values of these cytokines are clearly related with the severity of the disease. IL-6 has 383 

special interest due to the link between its increase and a fatal prognosis, being related to the 384 

increased lung compliance, the altered levels of Pao2/Fio2, and the need of mechanical ventilation (J. 385 

Wang, Yang, et al. 2021; Stukas et al. 2020). Nowadays, the lack of a gold-standard treatment for the 386 

ARDS patients is a matter of concern. Glucocorticoids such as dexamethasone are often used to 387 

improve ARDS patients’ outcomes, but there is still controversy about its benefits in all patients, 388 

mainly towing to the heterogeneity in the population receiving the treatment. For example, only 389 

severe cases of disease caused by COVID benefited from short-term low-dose treatment (Sterne et al. 390 

2020; van Paassen et al. 2020). In addition, it is broadly accepted that MSCs present 391 

immunomodulatory properties, and as such, they have been proposed as a therapy for ARDS 392 

(Guillamat-Prats et al. 2020; Liu et al. 2020). However, little is known about how the presence of 393 

dexamethasone can modify these immunomodulatory properties. Results presented herein, although 394 

limited, suggest that the effect of drugs such as dexamethasone should be better studied in vitro by 395 

using physiomimetic models like the developed in the present work. Studies with dexamethasone-396 

treated epithelial cells in much more responsive 2D models showed a decrease in the 397 

proinflammatory cytokines (Y. Chen et al. 2021; Patil et al. 2018), but the results presented in this 398 

work are the first ones conducted in a 3D model with a more physiological responsiveness to the LPS 399 

hit. Regarding MSCs, results are more controversial: while some in vitro studies have shown a 400 

decrease in cytokines and chemokines secreted by cytokine-stimulated LMSCs under dexamethasone 401 

effects (Wallace et al. 2001; Kim, Cheng, and Kim 1999), in vivo studies point that dexamethasone 402 

could be abrogating the anti-inflammatory effect of MSC (X. Chen et al. 2014; D. Wang et al. 2018). 403 

This impairment of the LMSC anti-inflammatory properties by dexamethasone could explain why in 404 

the developed model a drastic decrease in the proinflammatory cytokines was not observed: while 405 

dexamethasone was decreasing the secretion of proinflammatory cytokines by epithelial cells, it 406 

could be impairing the anti-inflammatory properties of LMSCs. Therefore, the levels of cytokines 407 

measured in the advanced model may be the result of a balance, showing a scenario much more 408 

similar to what is occurring in vivo, which was the major aim of the developed physiomimetic model 409 

for ARDS. The results obtained here were more aligned with some in vivo studies performed in rats, 410 

where LPS showed an increase in the cytokine expression while the treatment with dexamethasone 411 

decreased these levels, but not completely recovering the levels prior the LPS hit (Qin and Qiu 2019; 412 

L. Li, Whiteman, and Moore 2009). 413 

In conclusion, this work suggests that the developed physiomimetic model of ARDS-on-a-chip 414 

responds to an LPS challenge and partially recovers the secretion of cytokines after anti-415 

inflammatory drug treatment. Thus, this novel model opens the door for further in vitro research on 416 

the development of different therapeutic strategies for ARDS treatment. Although it is impossible 417 

that any in vitro model fully mimics the inflammatory process occurring in the lungs during ARDS, 418 

the advanced model describes herein is a step forward. The model allows for studying how alveolar 419 

epithelial cells respond to an inflammatory stimulus and how the resident lung mesenchymal stromal 420 

cells can play a role in it. Moreover, it is a versatile model facilitating that different cell types could 421 

be included to further studying crosstalk mechanisms among the different players involved in the 422 

inflammatory process of ARDS. Interestingly, the possibilities in tuning the model  makes it suitable 423 

for expanding its use to study in detail respiratory diseases other than ARDS, including applications 424 

in high-throughput drug testing for new treatment developments. 425 
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Figure Captions  

 

Figure 1. Chip design. Dimensions and different parts of the chip can be observed in this 3D representation. The upper 

part forming the culture chamber and the two lower parts forming the gas chamber can be easily distinguished, separated 

by the PDMS membrane. 

 

 

 

Figure 2. Experimental setup. The drawing shows how the air path from the gas blender, controlled by the software, to 

the valve, through the chip and the two water traps to initially humidify and finally de-humidify the gas. Cyclic stretch-

generating pressure is measured along the experiment with the pressure sensor, the signal transductor and the 

oscilloscope. 
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Figure 3. Four different experimental groups were designed. In every chip, three different cultures were performed: 

ATII-LMSC cocultured with/out 3D-cultured LMSC and an ATII monolayer on the hydrogels; ATII single culture 

monolayer on the hydrogel; and single culture ATII monolayer on the PDMS membrane. In every run of experiments, 

four chips were used, each of which was subjected to different conditions: static group, static group with an LPS hit, 

cyclic stretch group, and cyclic stretch group with an LPS hit. 

 

 

Figure 4. (A) Confocal images of the alveolar monolayer on top of the ECM hydrogels with LMSCs cultured inside. 

Alveolar cells (red) are stained for EpCAM and MSCs (green) are stained for vimentin (B) Oxygen diffusion 

measurements at different depths of the hydrogel and liquid medium (No HG). (C) Measured deformation of the 

membrane and the attached hydrogel at different pressures. 
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Figure 5. Response to LPS endotoxin of the developed advanced model (3D cultured LMSC in lung hydrogel with ATII 

cultured on top, subjected to cyclic stretch – Advanced Model).  

 

 

 

Figure 6. Different magnitude response of the advanced model (ATII cultured on hydrogels with 3D-cultured LMSC 

inside) compared to a traditional 2D culture model (ATII cell cultured on PDMS). Results were expressed as the ratio of 

cytokines expressed with/out the LPS hit, for either the traditional model or the advanced model. 
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Figure 7. Effect of cyclic stretch. No statistical difference was observed in the secretion of inflammatory cytokines. 

 

 

 

Figure 8. Effect of LMSC and hydrogel on the secretion of cytokines. Three groups were studied: ATII on PDMS with 

cyclic stretch (AM-HG-LMSC), ATII on hydrogel with cyclic stretch (AM-LMSC), and ATII on hydrogel with 3D 

LMSC cultured inside in the presence of cyclic stretch (AM). 
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Figure 9. Anti-inflammatory effects of dexamethasone were studied in the advanced model. There was observed a 

general trend in recovering the expression levels observed before the inflammatory hit, which were statistically 

significant in the case of IL-10 and IL-1β. 



  

77 
 

 

 

 

 

 

 

 

 

 

Chapter VII. 

RESULTS SUMMARY 

  



  

78 
 

RESULTS SUMMARY 

Three different research articles have been included in this thesis. The general goal of them was to 

study respiratory diseases in vitro in an optimized physiomimetical way. In the first work of the thesis, 

cancer cells were cultured on a custom-made PDMS device that allowed us to subject them to 

different oxygen concentrations, mimicking those present in the lungs of patients with different 

respiratory diseases like OSA (13% - 7% O2), COPD (7% O2), or the OS (7%-4% O2). The second 

part was focused on the construction of a physiomimetic ARDS in vitro model. 

The first study showed that response to hypoxia was very heterogeneous among the cell types 

studied. Results showed that only two cell lines were responsive to hypoxia in terms of proliferation. 

H1437 increased their proliferation by a ~56% (p=0.005) under sustained hypoxia and by a ~40% 

(p=0.043) under mild intermittent hypoxia, while H520 increased it by ~66% (p<0.001) and a ~72% 

(p<0.001) under severe and mild intermittent hypoxia respectively. Similarly, the response in terms 

of EpCAM expression, which has been related to a worse prognosis in several types of cancer, was 

heterogeneous. H522 showed increased EpCAM expression under intermittent hypoxia, both under 

the severe stimuli (~74% p<0.001) and the mild one (by ~47%, p<0.001). The squamous cell line, in 

contrast, increased its expression under sustained hypoxia (by ~20%, p=0.014) and under severe 

intermittent hypoxia (by ~20%, p=0.021). 

Trying to relate these results with the expression of hypoxia-inducible factor 1α (HIF-1α), we 

performed immunostainings and calculated the ratio of nuclear expression / cytoplasmic expression. 

Only H1437 and H1975 expressed increased (HIF-1α) (1.15-fold change p= 0.022 and 2.6-fold 

change p=0.047, respectively) in the group subjected to severe intermittent hypoxia. Interestingly, 

H520 do not show any significant increase in (HIF-1α) due to its constitutive expression. 

Although it was not the scope of the study, differences in terms of EpCAM expression and in terms 

of proliferation when cultured under traditional normoxia (20%) or physioxia (13%) were observed. 

Specifically, EpCAM was overexpressed (1.6-fold; p = 0.0009) in H522 cells when cultured at 20% 

O2 compared to 13% O2. In the case of H1437, cells  showed an increase in proliferation (1.5-fold; 

p = 0.0187) when cultured under 20% O2 indicating that the oxygen excess influences the 

proliferation and the expression of EpCAM in some cell lines. 

Before performing the lung-on-a-chip experiment, the hydrogel on the primary alveolar type II cells 

phenotype was studied. To this end, cells were cultured on lung-derived hydrogels, and typical ATI 
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and ATII cell markers were studied. Cells cultured on hydrogels showed higher expression of ATII 

typical markers at 48 hours and at 72 hours according to qPCR studies and immunostainings. Also, 

confocal images showed that cells presented cuboidal morphology on lung hydrogel whereas its 

morphology was more flattened when cultured on plate. These results could be indicating that 

hydrogels provide more long-lasting maintenance of the ATII phenotype than traditional culture 

methods. Moreover, as the formation of focal adhesions and stress fibers are fundamental to the 

sensing of the ECM, immunostaining of paxillin and actin showed that cells cultured on lung hydrogel 

showed less and shorter FAs together with fewer stress fibers, indicating that mechanotransduction 

processes may be taking place. In keeping with these results, YAP presented lower (~0.4-fold; 

p<0.0001) nuclear translocation in hydrogel cultures. To investigate the possible link of these results 

with the Rho pathway, a Rho inhibitor (Y27632) was used. As a result of the inhibition of the Rho 

pathway, cells cultured on plate increased the synthesis of surfactant protein C (1.16-fold; p = 0.0258) 

together with a decrease in FAs length (0.73-fold; p = 0.014), whereas this effect cannot be seen in 

cells cultured on hydrogel. This could indicate that cells cultured on hydrogel already have the Rho 

pathway inactivated by the hydrogel. Finally, cells cultured on hydrogel showed the ability to be 

subcultured from hydrogel to plate, maintaining the ATII markers. 

For implementing the ARDS in vitro model, primary alveolar type II (ATII) cells and lung mesenchymal 

stem cells were extracted from rat lungs and cocultured (2D culture for ATII and 3D culture for 

MSC) on lung-derived hydrogels that were placed on a chip subjected to cyclic stretch (frequency = 

0.2 Hz), at 13% O2. Oxygen was correctly transmitted through the hydrogels as the time constant 

for the oxygen diffusion increased by ~40% when the oxygen was measured 200-300 µm deep in 

the hydrogel, and an ~80% at 100 µm deep, showing results very similar to water diffusion. The 

stretch was also correctly transmitted through the hydrogels as shown by the displacement of 

fluorescent beads attached to the surface of the hydrogel.  An LPS endotoxin hit was added to 

simulate lung inflammation occurring in several respiratory diseases, such as, for instance, ARDS. 

Cytokine expression was measured by multiplex ELISA assay.  Results showed that LPS produced an 

increase in IL-10 (8-fold; p = 0.003), IL-6 (2-fold; p = 0.02), IL-1β (10-fold; p = 0.0081) and TNF-α 

(3.5-fold; p = 0.0023) cytokines. Cyclic stretch did not show any remarkable increase or decrease in 

the cytokines of our model. When comparing the effect of the cytokines produced by LPS in the 

physiomimetic model and in the traditional model (single culture of ATII on culture plate) we 

observed that the physiomimetic model showed a lower response to LPS, especially remarkable in 

IL-10 (4-fold; p = 0.015), IL-6 (29.5-fold; p = 0.024), MIP-2α (2.4-fold; p = 0.0022), and TNF-α (6.5-
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fold; p = 0.0014). This effect can be explained by the effect of the hydrogel and the coculture of 

mesenchymal stem cells, that showed to decrease the secretion of IL-10 (3-fold, p =0.007 and 2.5-

fold, p = 0.017compared to hydrogel with and without LMSC, respectively), MIP-2α (2.4-fold, p = 

0.0004, and 2-fold, p = 0.0011, compared to hydrogel with and without LMSC, respectively), IL-6 

(31-fold p= 0.0098, and 4.3-fold, p = 0.031 compared to hydrogel with and without LMSC, 

respectively), IFN-ɣ (1.8-fold, p = 0.032, and 3-fold, p = 0.0031) compared to hydrogel with and 

without LMSC, respectively), and TNF-α (10-fold, p = 0.011, and 6.5-fold, p = 0.015), compared to 

hydrogel with and without LMSC, respectively). Moreover, the LMSC per se also caused a decrease 

in the cytokines secretion, which is statistically significant in the case of IL-6, by decreasing 7-fold in 

the group with the LMSC when compared to the group with hydrogel. 
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Chapter VIII. 

DISCUSSION 
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In living organisms, cells live and interact with a specific environment, different for each tissue. Cells 

establish complex crosstalk with the environment which is crucial for their physiological behavior.4 In 

several pathologies, the environment experiences changes which can contribute to the course of the 

disease. In the specific case of the lung, the environment is formed by proteins which give the organ 

biophysical properties or elasticity and recoil necessary to perform its function.3 Conventional lung 

in vitro models, which are based on traditional cell culture methods, are highly limited to studying the 

critical factors that contribute to recreating the lung microenvironment (e.g. oxygen patterns, 

mechanical stimulation through the cyclic stretch, the interaction of different types of cells within the 

culture or the presence of a complex scaffold composed by proteins with realistic mechanical 

properties). Due to these limitations, the results obtained from in vitro experiments are very difficult 

to translate to the in vivo behavior of the different respiratory diseases. This is an important issue 

that is favoring the existent lack of correlation from pre-clinical to clinical trials in the study of several 

lung pathologies. In this thesis, microenvironmental aspects of the lung cell niche have been 

reproduced as closely as novel technologies (organ-on-a-chip and extracellular matrix hydrogels) 

allow, to develop more realistic physiomimetic in vitro models to study respiratory diseases. 

The first chapter of the thesis explores the effect of different oxygenation patterns in the growth of 

four different cell lines of lung cancer. Hypoxia is one of the hallmarks of solid tumors and it has 

implications for resistance to drugs and tumor development as it alters gene expression,316,317 

produces angiogenesis,318 and favors malignant progression through epithelial-mesenchymal 

transition.152,153 Some respiratory pathologies are characterized by lower oxygen availability which has 

been associated with a higher incidence of lung cancer. Despite this correlation has been widely 

observed in clinical trials, 319,150,320,321  it is not clear how different oxygenation patterns derived from 

these respiratory diseases can modulate cancer malignancy. In the present thesis, four different cancer 

cell lines representing the two more common histological subtypes were chosen to study if there 

was a homogeneous response inside each histological subtype or a relationship with the main driver 

mutations and its response to hypoxia. We employed 13% O2 as the normoxic (physioxic) group 

which is much more realistic than the 21% used in previous studies. Different tissues are subjected 

to different oxygen tensions, being the most highly oxygenated the lungs reaching as much as 13%322. 

Therefore, the proliferation of cancer cells and the expression of EpCAM cell marker as a poor 

prognosis marker was studied in cancer cells subjected to realistic oxygen pressures, representing 

different pathological conditions. 
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EpCAM is a cell adhesion protein expressed by most epithelial cells and the corresponding tumor 

cells. Actually, it is one the most highly and frequently expressed tumor-associated antigens, and it is 

found in a wide range of epithelial cancers, including lung cancer. 323,324,325.  EpCAM is involved in 

adhesion, differentiation and cell proliferation,326,327 and its overexpression has been associated to 

cancer malignancy. 328,329 The results showed how H520 and H522 experienced an increase in 

EpCAM expression when subjected to some of the hypoxic stimuli. From these cell lines, only H520 

showed an increase in proliferation. This could indicate an absence of a relationship between both 

factors. However, when paying attention to the absolute data, it can be observed that the cell lines 

with higher values in EpCAM (H1437, where almost 100% of cells were expressing EpCAM in 

physioxia, and H520, where ~75% of cells were expressing EpCAM in physioxia) are the most 

responsive to hypoxia in terms of proliferation. 

HIF-1α is a hypoxia-inducible factor that acts as a transcription factor, and it is involved in the 

adaptative response to hypoxia. It is ubiquitously expressed in all cell types, and in the presence of 

oxygen, it is rapidly hydroxylated and degraded. In the absence of oxygen, it is translocated to the 

nuclei where it acts activating hundreds of target genes.330 Its response usually confers to the cell 

survival advantages in hypoxic environments, as HIFs are related to tumor progression, invasion, 

angiogenesis, metastasis, and resistance to therapy. 152,153,154 However, its expression has also been 

related to decreased proliferation.331–333 Our results showed that HIF-1α is significantly increased only 

in the cell group subjected to the most severe intermittent hypoxia, which is the one that reaches 

the lowest oxygen tensions among all the groups. The cell lines that are affected by this increase are 

H1437 and H1975. However, H1975 does not show a statistically significant increase in proliferation, 

while H1437 group subjected to the most severe intermittent hypoxia is the only one that does not 

show an increase in proliferation. Therefore, our results do not show a link between the higher 

nuclear activity of HIF-1α and proliferation rates. Moreover, in the case of the squamous cell line 

H520, it is observed a high ratio nuclei/cytoplasm in all the groups, indicating a HIF-1α constitutively 

active. This is not an isolated case, since it is common to find dysregulated pathways in cancer cells 

that confers them some survival and adaptative advantages. 334 This increased activity of HIF-1α in 

H520 neither can be related to the increase in proliferation of the intermittent hypoxic groups due 

to the lack of differences in HIF-1α translocation among the different hypoxic stimuli applied. 

Attending to the higher proliferation of these cells and H1437 cells under hypoxia, we could think 

that there can be other mechanisms involved in the increased proliferation as a result of the hypoxia 

apart from HIF-1α.  
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Other in vitro studies using hypoxia, however, employed one or two cell lines to extrapolate the 

observed behavior to the whole histologic subtype.335 Our results suggest that these kinds of 

generalizations may not be accurate in attending to the great variability among cancer cell lines, even 

within a certain histologic subtype. Moreover, most studies compared the hypoxic stimuli with a non-

physiologic normoxic group, using 20% oxygen.335–337 Such high oxygen values should be considered 

hyperoxia and can be promoting changes that do not replicate real normoxic processes. However, 

a limitation of the study is that the cells used were commercially available cell lines. This limits the 

translation of the results, and also the response to hypoxia is expected to be lower than those cells 

isolated from heterogeneous tumors can show. Studies are showing that cells isolated from a hypoxic 

environment had a higher response to hypoxia than those that were subjected to a hypoxic 

environment directly. 338 

Our results showed that the response of lung cancer cells to a hypoxic environment strongly depends 

on each cell type. In particular, some cell lines seem to be more sensitive to chronic and intermittent 

hypoxia increasing their proliferation. Furthermore, the expression of EpCAM is upregulated by SH 

and IH conditions in some types of lung cancer cells. Derived from the present study, it can be 

extracted that lung cancer cells' behavior is hardly predictable and respond mainly to specific 

mutations of each cell line. Despite this study did not show a clear correlation between histological 

subtype and increased lung malignancy as a response to the hypoxic stimuli, more studies should be 

made in the direction of the individualization of patient treatment, especially in such heterogeneous 

disease like cancer. 

Another key factor in cell behavior is the material where they are cultured. As the physical properties 

of traditional plastic substrates (usually coated with certain proteins or peptides to facilitate integrin-

mediated adhesions) are highly non-physiologic, different natural or synthetic biocompatible scaffolds 

have been used for the 2D or 3D cultures. These novel scaffolds resembling the mechanics or the 

biochemical properties of tissues and organs have shown important advantages compared to 

traditional culture methods. 287,339,340,341 In the case of primary alveolar cells, this has special relevance 

as they have the limitation of the rapid transdifferentiation towards a non-proliferative phenotype 

when cultured in vitro.342,343 One of the first studies trying to overcome this limitation was performed 

by Shannon and coworkers,299 who cultured alveolar cells on substrates derived from the basement 

membrane from the Engelbreth-Holm-Swarm (EHS) tumor. They observed an increased 

transcription and secretion of surfactant proteins A and B, and a discrete increase in the secretion of 

surfactant protein C. However, the main limitation of this study was the inability of the cells to form 
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a monolayer together with a limited proliferation capacity.344345  In the second chapter of the present 

thesis, the effect of culturing primary alveolar epithelial cells on porcine lung-derived hydrogels346 was 

studied. The effects of culturing these cells on the scaffolds developed by Falcones and coworkers 

(including the Ph.D candidate of the present thesis) were similar to those obtained by Shannon: cells 

maintained the expression of type II phenotype-specific markers (SPC and SPB) for longer times than 

cells cultured on plates, as shown by qPCR and immunofluorescence staining. There were also 

differences in type I phenotype-related markers, which were observed to increase in cells cultured 

on plates, especially as the culture time increased: while the expression of aqp5 was lost over time 

in both substrates (although in the hydrogel was lost earlier), pdpn was maintained in cells cultured 

on hydrogels but it increased on cells cultured on a plate, thus indicating a transdifferentiation process 

towards the type I phenotype. Interestingly, unlike alveolar epithelial cells cultured on EHS hydrogels, 

cells cultured on lung-derived hydrogel were able to form monolayers, which is a great advance in 

comparison with the previous studies, mainly because the apical part of the cells won’t be oriented 

towards inside the lumen, but towards the medium, and surfactant proteins can be released easily.344 

The mechanisms involved in ATII-to-ATI differentiation remain obscure as it seems that different 

cellular pathways are implicated in phenotype changes. Previous works have related specific effects 

to some proteins that compounded the EHS hydrogel. For instance, in studies conducted with 

hepatocytes, has been reported that type I collagen can promote the stabilization of preexisting 

mRNA, and proteoglycans and glycosaminoglycans are involved in supporting normal levels of tissue-

specific gene transcription 347,348,349. This is of special relevance in the developed physiomimetic model 

in the present thesis due to the composition of the lung ECM-derived hydrogels. Moreover, it is likely 

that the mechanical properties of these hydrogels also play a fundamental role in cell fate, so ATII 

phenotype maintenance is due to a combination of diverse factors. Plates coated with proteins that 

composed EHS hydrogels did not exert the same effect on alveolar cells phenotype as the EHS 

hydrogels,299 so the composition is not the only factor. On the other hand, the mechanical cues 

provided by a three-dimensional substrate alone did not provide such benefits, as Matrigel showed 

improved growth of ATII cells compared to growth factor reduced Matrigel even in presence of 

keratinocyte growth factor (KGF),350 which is known to impact in the conservation of the type II 

phenotype.351,342 In all these above studies, scientists hypothesized that the preservation of the 

cuboidal shape of the alveolar cells is essential for them to keep the type II phenotype. The main 

reason is that shape would be related to the establishment of focal adhesions and the distribution of 

the cytoskeleton.299 The results presented herein especially support this hypothesis by showing a 
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decreased formation of stress fibers and the formation of shorter focal adhesions in cells cultured 

on hydrogels, which could be related to the transmission of the mechanical forces to the cells and 

could have consequences on the preservation of their cuboidal morphology. Our results also showed 

that the culture of ATII cells on hydrogels, provided higher ability to keep their surfactant secretion 

together with the changes in morphology and cytoskeleton. Furthermore, these cells showed a 

decreased YAP translocation to the nuclei compared to their plate-culture counterparts. Several 

authors have related the cell geometry, which is also associated the F-actin expression, to the YAP 

activity: more spread cells present higher F-actin expression and a more active YAP. These authors 

also observed higher proliferation rates. 352,353 In vivo experiments provided strong evidence that 

involves YAP in the transdifferentiation process. Situations where lungs are subjected to mechanical 

stresses and damage where the repopulation of the epithelia is needed such as pneumonectomy 

354,253, bacterial infection355,356 or static stretch 258,354,253 have shown to promote the ATII to ATI cell 

differentiation together with an increase the YAP nuclear activation. In our results, YAP showed 

higher transcriptional activity in the cells cultured on plates, where they also presented more spread 

morphology and more decreased ATII cell markers and increased ATI markers. This is coincident 

with the bigger focal adhesions and increased F-actin fibers. Actually, some authors found that the 

inhibition of F-actin by capping and severing proteins inhibits YAP translocation to the nuclei, 353,357,352, 

358 and interestingly, similar results have been obtained through the inhibition of Rho. 357,352 

Conversely, constitutive expression of RhoA of transfected cells, induced not only higher values of 

YAP and TAZ mRNA expression, but also higher nuclei translocation.359 The link between the 

expression of SPC and the Rho pathway has been supported by Foster et al. They observed in vitro 

a relationship between the increase of stress fibers, which results from the activation of the Rho-

GTP/ROCK pathway, and the type II-type I phenotype transdifferentiation. 258  To check if the Rho 

pathway had an impact on the ATII phenotype in our experiments, a Rho inhibitor was used. It has 

been commonly employed in the literature to study the numerous implications of the Rho 

pathway.253,360,357,258 In our studies, it impacted the length of focal adhesions formed (immunostained 

by paxillin) and the secretion of SPC as quantified from immunostaining experiments, confirming its 

involvement in phenotype maintenance. These latter results confirmed previous qualitative 

immunostaining results and qPCR analysis, showing that surfactant protein C was more highly 

expressed in cells cultured on hydrogels. The effect of the Rho inhibitor on cells cultured on hydrogels 

barely presented any effect in terms of SPC expression or focal adhesion length. On the contrary, in 

cells cultured on plates, results when inhibiting Rho were more similar to ones obtained when cells 
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were cultured on the hydrogels: there was an increase of SPC expression and a decrease on the 

length of the focal adhesions formed by the cells. Similar results have been reported in vivo and in 

vitro relating the inhibition of the Rho pathway with a decreased ATII to ATI differentiation. 253,258 

Taking all together, our results indicate that the lung-derived hydrogel we employed is a potential 

better scaffold to culture primary alveolar epithelial cells attending to the increased maintenance of 

ATII phenotype as shown by its cuboidal morphology and its higher SPC secretion. This improvement 

in ATII phenotype seems to be orchestrated by the partial inhibition of the Rho pathway the hydrogel 

is producing in the cells.   

How to perform serial subculture of primary alveolar epithelial cells is still an issue that remains to 

be elucidated. As of today, the most advanced system to subculture these cells was developed by 

Bove et al. 343 consisting in the coculture with feeder cells (fibroblasts, that were likely secreting KGF), 

in the presence of ROCK inhibitor. However, it was observed an increase of ATI cell markers upon 

subculturing and the arrest of the proliferation. In contrast, when using lung ECM-derived hydrogels, 

we observed that cells kept their key markers upon subculture, but as they were cultured on tissue 

culture plastic they eventually lose their typical markers too. Nevertheless, further investigations are 

needed to increase the adhesion of the cells on the hydrogels, which is currently the main limitation 

in terms of subculturing the cells. 

ATIIs can respond to infections or injuries and release cytokines and chemokines that recruit 

leukocytes to the sites of damage and activate these cells to generate an immune response.361,362 In 

the third part of the thesis, we developed a physiomimetic ARDS model incorporating ATIIs and 

LMSCs. For doing so, a custom-made PDMS device was fabricated for studying the inflammatory 

process. An ATII-LMCS coculture was established on lung-derived hydrogels, subjected to cyclic 

stretch, and to simulate the characteristic inflammation of ARDS, a lipopolysaccharide hit was added 

to the culture medium. Representative cytokines secreted to the medium were measured with 

multiplex ELISA. 

In the developed physiomimetic model, 10% of stretch, which is among the physiological ranges (~5% 

to ~15%)310, at 0.2 Hz which is the respiratory frequency310 was used to mimic strains caused by 

breathing. The proposed model showed a lower response in terms of cytokine expression after 24 

hours of LPS hit than the traditional model. In more simple and traditional models, cells are cultured 

on a plate —in our case were cultured on PDMS due to the requirements of the experimental 

setting— usually, in the absence of cyclic stretch and at a hyperoxic oxygen concentration. Given the 
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different responses to the inflammatory hit of the two models, a detailed analysis of every factor was 

made.  After 24 hours, no significant effect of cyclic stretch was observed in terms of the expression 

of cytokines. As the effect caused by the LPS causes such a great increase in cytokine secretion, the 

effect of cyclic stretch, if any, is completely shielded by the inflammatory hit. It is also important to 

note that the stretch applied here was within the physiological range, so it is not unexpected that 

there was not a special contribution in terms of inflammation. Other studies reported an increase in 

cytokine secretion when higher strains were used. 74,363 Other authors explored the effect of variable 

strains in ATII cells and they found out that it was more effective in terms of increasing the SPC than 

cyclic strain with constant amplitude. 81 Interestingly, varying the amplitude during the cyclic stretch 

was reported to have an impact also in the inflammatory response by decreasing the release of the 

proinflammatory cytokines by ATII cells.364 Our results, however, did not show significant differences 

in terms of cytokines secretion, which confirmed what Huang et al. had previously observed in an 

advanced physiomimetic in vitro model when culturing hAECs under cyclic stretch among the 

physiological ranges in terms of strain and frequency. 314 

Another factor that could be affecting the ATII phenotype is interaction with LMSC. Several in vitro 

studies using transwells demonstrated that MSCs can exert a paracrine effect on other cells by 

secreting soluble factors to the medium 365,366,367,368. In the context of lung epithelial cells, it has been 

observed not only the anti-inflammatory effect of MSC, 369,69 but also the repair of injured cells as 

shown by the decrease of permeability has been reported. 370MSCs exerted all these effects on the 

other cells by the secretion of several factors such as cytokines or KGF, which also play a role in the 

infections by favoring bacterial clearance.370 Moreover, KGF has been used previously to promote 

the maintenance of ATII phenotype. 343,371,372 Given the inflammatory nature of ARDS, the study in 

the third part of the present thesis focused on the effect of LMSC-ATII interaction and its impact on 

inflammation-related cytokine secretion. In agreement with the literature, we observed a tendency 

in the decrease of cytokines when LMSC were present. However, the presence in the model of 

hydrogel acting as another potent anti-inflammatory factor shielded part of these results. Actually, 

only the secretion of IL-6 cytokine was statistically decreased by the presence of LMSCs. Conversely, 

the presence of IFN-ɣ in the medium tended to increase with the presence of LMSCs. Despite of 

the accepted anti-inflammatory nature of MSC, it has been reported that they can secrete cytokines 

classically considered as pro-inflammatory as IFN-ɣ, TNF-α, IL-1β.373 The element with greater impact 

in the decrease of the inflammatory response in the advanced model was the lung-derived hydrogel 

used as a scaffold for the culture of the cells. It had great relevance in the physiomimetic cultures 
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because, as observed, lung-derived hydrogels not only favored the maintenance of the type II 

phenotype in alveolar epithelial cells, but also prevented the exaggerated response to an inflammatory 

stimulus observed in conventional 2D models in plates. The main hypothesis here is that hydrogels 

represent a way of culturing cells much more similar to the physiological environment in terms of 

biochemical composition and mechanical properties. So, it was expected that cells cultured on lung-

derived hydrogels that are exposed to an LPS hit were less susceptible to it than cells that are cultured 

on a stiff plastic culture plates. This is of especial relevance in primary cells that are subjected to a 

stressful isolation process such as the ones used in the present works. Furthermore, lung-dervied 

hydrogels are composed mainly by collagens and other structural proteins, glycoproteins and 

glycosaminoglycans272 but they also contain bioactive peptides resulting from the enzymatic process 

during the fabrication of the hydrogel, which are known as matrikines. 374 They can play an important 

role in processes like cancer, 375,376 inflammation, 377,378 or fibrosis 379. Also, growth factors and other 

small molecules that are expected to be participating in the cell signaling.  

ARDS is a serious disease that lacks standardized treatment and the results that are given by the 

clinical trial regarding the use of corticosteroids are often contradictory. 380,381 The ARDS model 

presented in this thesis has several advantages over the 2D single-cell culture model so its use for 

studying the effect of drugs in the resolution of the disease is promising. For that reason, we used it 

for studying the effect of dexamethasone, a commonly used anti-inflammatory drug. It was observed 

that the addition of dexamethasone produced an overall decrease in cytokine secretion, despite it is 

not significant in all of them. Several in vivo studies showed similar results. 382,383 The anti-inflammatory 

effect of dexamethasone is widely accepted in the epithelial cells, 384385 but controversial results have 

been obtained when it comes to studying its effects on MSC, as some in vivo results showed how 

the treatment with dexamethasone and cell therapy with MSC as a treatment for ARDS did not have 

synergistic nor summative effects. 386,387 It is also important to consider the effect of dexamethasone 

on cell types other than epithelial, as during lung damage different kinds of pulmonary cells are 

implicated in the process of repairing and resolving the inflammation. MSCs have an important role 

in this scenario,69,367 thus it is important to study how a given drug affects its immunomodulatory 

properties. The study presented in this thesis encompassed the global effect of dexamethasone on 

the epithelial and mesenchymal cells, including the interactions among them. 

As most of the traditional culture-based models do not replicate the key biological aspects of the 

human lungs and do not reflect the responses that cells have in vivo, there is a trend of increasing 

the number of studies performed in more physiomimetic in vitro models. However, completely 
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mimicking the physiological environment is still a challenge. Oxygen level is the most widely wrongly 

used parameter as the vast majority of the studies are performed under actual hyperoxic conditions 

(20% O2). As it has been shown in this thesis, cells cultured under oxygen levels that are usually 

employed (20 %) show different behavior when compared to realistic normoxic oxygen levels (13 

%). In an attempt to include the cell interactions in the results, cocultures have been performed, 

especially those combining alveolar cells and endothelial cells, in order to represent the alveolo-

capillary barrier 313304. Others have represented the interaction between alveoli and parenchymal cells 

305. Cocultures are interesting to study the inflammatory processes that occur in some respiratory 

diseases because cell interaction and paracrine signaling are important in inflammatory processes. 

Usually, the inflammatory hit is assessed with the use of bacteria, 388,309 LPS, 313,389 or the addition of 

pro-inflammatory cytokines 304,369.  Another commonly represented stimuli that it has been reported 

to participate in the inflammatory process is a cyclic stretch 364,74. Several commercially available cell-

stretching devices have been launched to the market, 390,391 providing a high number of possibilities 

for studying the different effects of this stimulus on several cell cultures. However, these devices 

present certain limitations since they are built to work in a specific range of stimulation parameters 

(waveform, frequency, and amplitude). Besides, they cannot be easily modified to incorporate new 

parameters, as they do not allow performing compartmentalized cultures for using different cells, 

nor they do not allow for the oxygen concentration modulation. For that reason, custom-made 

devices have been developed in the field of respiratory diseases, integrating cyclic stretch and 

cocultures to study inflammatory processes. 388,311. Both studies388,311 realistically represent the 

alveolo-capillary barrier but they fail to represent realistic interfaces that can be achieved by the use 

of hydrogels. From all the studies found in the literature that are performed with the use of hydrogels, 

we should remark on the one performed by Barkal and coworkers309 where they studied the 

interaction of three cell types each of which was cultured in the pertinent interface: stromal cells 

were 3D-cultured within the hydrogel, alveolar cells were cultured in the air-liquid interface, and 

endothelial cells were submerged. However, this model could be improved by the addition of cyclic 

stretch and the presence of shear stress in the endothelial culture by circularizing the medium. Other 

authors employed hydrogels to represent the alveolar environment. 312,392,307,313 However, none of 

them obtained the ECM from decellularized organs, meaning that their hydrogels did not represent 

the biochemical composition of the lung. Moreover, they were only employed as a scaffold to culture 

cells on, but none of them were used for studying the interactions between stromal cells and epithelial 

cells.  
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Most of the previous studies in the field presented the limitation of using commercially-available 

immortalized cell lines 309,304 or even A549. 304,259,306,69,385 Primary alveolar epithelial cells exhibit limited 

proliferation ability and cannot be expanded by a standard passaging strategy. 393 This aspect together 

with the costly isolation protocols makes it a great deal for researchers to choose the use of 

commercially available cells.  However, they do not fully represent the features of the cells found in 

vivo. More importantly, most of the current protocols for immortalizing the cells are based on viral 

vectors, which can cause the induction of proinflammatory responses, so results obtained using 

immortalized cell lines are not fully trustworthy, especially in the field of the inflammatory diseases 

393. Cell lines behave differently from primary cells as shown by studies performed by Wang 394, where 

they found differences in cell morphology and the formation of tight junctions and cilia between 

immortalized and primary swine tracheal cells. In the specific case of A549, which is usually the 

surrogate for ATII cells, they present several characteristics that prove the differences between them. 

They do not express some of the characteristic ATII markers as surfactant proteins C  395,396 and A,395 

phosphatase alkaline activity 396 or ALP. 397,396 They also present altered architecture and barrier 

properties398 with a decrease in transepithelial resistance.397 Attending to their tumorigenic origin, 

they also present an altered metabolism, giving different responses than primary cells to stimuli 393,399. 

So even if a model accurately represents environmental factors such as stretch or cell interactions, 

results are hard to translate to an in vivo scenario if they are not obtained with primarily isolated 

cells. Our experiments tried to be as representative of the real scenario as possible, for that reason, 

we tried to get rid of confounding factors that could affect the results. 

The main limitation of the studies performed in this thesis is the use of cells and ECM derived from 

animal sources. The next step would be to build the ARDS model with cells coming from human 

lungs cultured on hydrogels derived from human lungs. This would give more clinically interesting 

data and could be useful for drug testing. Also, it is interesting to find out if the behavior of human 

ATII cells is the same as rat ATII cells when cultured on hydrogels in terms of phenotype maintenance. 

Another future perspective is to improve cell adhesion to the hydrogels for improving the yield of 

the subculture process. For doing that, two different approaches can be followed: the stiffness can 

be increased (always among the physiological parameters) by increasing the concentration of the 

hydrogel or the surface can be added with laminin or other proteins. After these modifications, the 

preservation of the ATII phenotype should be confirmed. Moreover, more experiments can be done 

trying to elucidate which is the mechanism through which porcine lung-derived hydrogels favor the 

preservation of the ATII phenotype.  
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The presented ARDS model exhibits a complex environment for culturing cells with several stimuli 

taking place at the same time. For that reason, and given the already studied effect of the hydrogel 

in the ATII phenotype, it could be interesting to evaluate other factors that could be also playing a 

part. Variable stretch, as well as the coculture of ATII with fibroblasts, seems to increase the secretion 

of SPC. Given that evidence, it is worthy to study the effect of the combination of physiological cyclic 

stretch and the presence of lung-derived hydrogel as well as the possible role of MSC in ATII 

phenotype maintenance. In the case of the lung cancer study, the technology used in this work could 

be applied to cells derived from patient biopsies so the behavior of a certain tumor could be 

predicted and would help the individualized treatment of each patient. 

The work presented in this thesis contributes to the increasingly more valued field of physiomimetic 

modeling, in which pathologies are studied in the most realistic possible manner. These approaches 

allow a faster and more efficient translation of results from in vitro research to the clinical setting.  
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Chapter IX. 

CONCLUSIONS 
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I. Lung cancer cells responded in a very heterogeneous way to the hypoxic stimuli 

independently of the histologic subtype to which they belonged, as evidenced by the 

culture in a custom-made PDMS chip to perform different oxygenation patterns 

mimicking respiratory diseases (COPD, OSA, and OS). 

a. Different oxygenation patterns have different effects on lung cancer cells 

proliferation: sustained hypoxia increases proliferation in H1437 cells, mild 

intermittent hypoxia in H1437 and H520, and severe intermittent hypoxia in H520. 

b. EpCAM expression is also altered under mild intermittent hypoxia in the case of 

H522, H522, under severe intermittent hypoxia in the case of H520 and H522, and 

under sustained hypoxia in the case of H520.  

c. Culturing cells under hyperoxic conditions (20% O2) can induce altered growth and 

expression of cell markers in comparison to physioxic conditions (13% O2). 

II. Lung extracellular matrix-derived hydrogels can be used as scaffold for culturing primary 

alveolar type II cells under more physiomimetic conditions. 

a. Alveolar cells are able to create a monolayer on lung-derived hydrogels. 

b. Alveolar cells can maintain the phenotype for longer periods of time when cultured 

on lung-derived hydrogels compared to tissue culture plates shown by the cuboidal 

shape and the secretion of surfactant protein C. 

c. Rho pathway seems to be implied in the ATII-to-ATI transdifferentiation process. 

Hydrogels inhibit the Rho pathway, thus favoring longer maintenance of ATII 

phenotype. 

III. A novel physiomimetic in vitro model for studying ARDS involving hydrogels, cyclic 

stretch, cocultures, and an inflammatory hit has been validated. 

a. The cyclic stretch and the oxygen concentration are correctly transmitted to the 

3D cocultures 

b. The new physiomimetic model is less responsive to the inflammation than traditional 

cultures, so it resembles more accurately what happens in vivo. 

c. The use of hydrogels as a scaffold for culturing cells exerts anti-inflammatory 

properties on the epithelial-mesenchymal coculture 

d. Lung mesenchymal cells exert a moderate anti-inflammatory role. 

e. Dexamethasone exerts an anti-inflammatory role in the inflammatory context of 

the new physiomimetic model. 
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APPENDIX A: FABRICATION AND CALIBRATION OF CHIPS 

The use of chips for culturing cells has been a basic tool in the accomplishment of this thesis. The 

main advantage of this type of culture is that allows to subject the cells to certain gas concentrations 

and to a cyclic stretch like that occurring in the lungs. In the figure 1, we can observe the two models 

employed. 

The static chip is composed of two parts: the upper part is the culture chamber, and the lower part 

is gas chamber. They are separated by a 380 µm thick PDMS membrane permeable to gases. The air 

goes inside the chip through the inlet tube (ID = 1.06 mm), it distributes radially through the channels, 

becomes in contact with the membrane -and therefore with the cells- in the gas chamber, and leaves 

the device through the channels that connect the air chamber with the exterior.  

 

Figure 1. Three-dimensional representation of the static chip (A) is formed by two PDMS parts separated by 

the PDMS membrane. The stretching chip (B) is formed by three parts and the PDMS membrane separating 

the upper one from the other two. 

 

The stretching chip is composed of three parts. The upper part, like in the static chip, composes the 

culture chamber, where cells are cultured, and the middle and the lower part compose the gas 

chamber. It also has an inlet tube and an outlet tube in order to control the flow of the air that 

abandons the chip. 

 

1. Fabrication of chips for culturing cells at different oxygenation patterns 

or oxygenation patterns and stretch 

 

MATERIALS 

Reagents 
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• Polydimethylsiloxane (PDMS) (Dow 

Corning, Sylgard 184 kit, cat. no. 

01064291) 

• Ethanol 70% (Sigma Aldrich, Misuri) 

 

Equipment 

• Spoon (DD BioLab, cat. no. 

442195) 

• Plastic Pasteur pipette 

• Weighing scale (PCE Instruments, 

Germany, PCE-BSH-6000) 

• Ultimaker S5 3D printer (Ultimaker, 

Utrecht, Netherlands) 

• Oven (Selecta, cat. no.2000200) 

• Desiccator (Dynalab, NY, cat. no. 

243045) 

• Hand-held corona treater (Electro 

Technic Products, BD-20AC 

model) 

• 200 µl pipette tips (Eppendorf, cat. 

no 4130075) 

• Weighing boats (VWR International, 

cat. no. 611-0094) 

• Scalpel (Swann Morton, cat. no. 

0206) 

• Tweezers (VWR International, cat. 

no. 232-0111)  

• Gel-Pak membranes (Gel-Pak, cat. 

no. PF-40x40-0065-X4) 

• Punch (Harris Uni-Core) 

• Petri dish (TPP, Switzerland, cat. no. 

93100) 

• Tube ID = 1.06mm; OD = 1.67 mm 

(Cole Parmer, cat. no. 06417-41) 

• Drill (Dormer, cat. no.  A100 1.0 )

 

 

PROCEDURE 

A) Design and fabrication of the molds to create the PDMS pieces. 

In order to construct the chips, the first step is to design a mold with the negative shape of the parts 

needed to build the chip. For doing that, the Ultimaker Cura software is employed. The parts are 

printed with the Ultimaker 3D printer in polylactic acid (PLA).  

For the stretching chip, an additional part should be printed. It is a funnel-like piece that will be placed 

in the bottom part of the petri dish where the chip is adhered. Its function is to allow the connection 

of a tube to the chip outlet to release the air.  

 

B) Construction of the chip. 

The construction of the static and stretching chip is mainly the same. There are some steps (7, 14) 

that only take place in the stretching chip. 

1. The desired amount of polydimethylsiloxane is poured into a weighting boat and add the 

curing agent in a proportion 1/10 (w/w). 

2. Mix it vigorously with the help of a plastic Pasteur pipette. CAUTION: the mixture obtained 

should be homogeneous to allow a correct polymerization. 

3. Once it is well mixed, the weighting boats are placed in the desiccator to remove the 

bubbles for around 30 minutes. 
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4. The mixture is poured into the printed PLA molds and placed again in the desiccator 

for another 30 minutes. 

5. The molds containing the PDMS are placed in the oven for 2 hours at 60 °C. 

6. They are removed from the molds with the help of a spatula. NOTE: 70% ethanol can 

be added to make the detachment easier. 

7. This step is only applicable to the stretching chip. Before attaching the lower and the 

middle part together to form the gas chamber, the middle part must be pierced with a 

punch in the center. The surface of the lower part (with the channels upside down) 

and the surface of the middle part are treated for two minutes each with the hand-

held corona. Afterward, they are attached together so that the wells of both parts 

coincide perfectly. All the edge is sealed with non-polymerized PDMS and allowed to 

polymerize for 30 minutes at 60 °C. NOTE: to improve the adherence of both parts, 

put some weight on them for 15 minutes approximately, prior the edge sealing.   

8. The commercial PDMS membranes are protected between two pieces of plastic. The 

thinner one is removed so the PDMS membrane is exposed. Treat the surface with the 

hand-held corona for two minutes. 

9. The surface of the gas chamber (composed by the lower part in the case of the static 

chip and by the lower and the middle part in the stretching chip) is also treated for 2 

minutes with the hand-held Corona. After that, it is placed over the already treated 

PDMS membrane and pressure is made to ensure the correct adhesion of the whole 

surface.  

10. All the perimeter of the PDMS part attached to the membrane is sealed with non-

polymerized PDMS with the help of a 200 µL pipette tip and placed in the oven at 60 

°C for 30 minutes. 

11. With the help of a scalpel, the remaining parts of the PDMS membrane are removed. 

The membrane and the lower part attached to it are pulled apart from the PDMS 

membrane protective plastic.  

12. The surface of the upper part is covered with non-polymerized PDMS and placed 

carefully on the membrane attached to the lower part, making the wells of the upper 

and lower part coincide. NOTE: the amount of non-polymerized PDMS should be 

enough to adhere the two parts correctly but not too much because the membrane 

inside the wells could result “flood”. 
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13. Both chambers are pierced with a punch in the case of the static chip. In the case of 

the stretching chip, the culture chamber is pierced making the new hole coincide with 

the one made previously in the step 7. 

14. Next, chip will be adhered to a petri dish. For the stretching-chip, a 1 cm diameter hole 

should be previously done in the middle of the petri dish. 

15. The lower part of the chip is covered with non-polymerized PDMS and placed over a 

petri dish and let it 30 minutes at 60°C 

16. 10 cm of tube (1.06 mm ID x 1.68 mm OD) are introduced in the pierced chip and 

the hole is sealed with non-polymerized PDMS and let it 30 minutes at 60°C 

17. The lid of the petri dish is pierced with drill to let the tube out. 

 

 

2. Assessment of gas equilibrium kinetics  

Once the chips are fabricated, they must be verified for correct oxygen diffusion, especially in the 

static chip, where rapid changes in the PO2 are required. For assessing this issue, a fiber-optic oxygen 

meter is employed. This sensor, which is based on the REDFLASH technology, has an ultra-fast 

response time (< 0.3 s), allowing to perform the measurements of the hypoxia and reoxygenation 

cycles in an accurate way. The REDFLASH indicator is placed on the sensor tip, which is excitable at 

610-630 nm (orange-red light) and has an oxygen-dependent emission at 760-790 nm (near-

infrared). In an oxygenated environment, oxygen molecules will collide with the sensor tip and quench 

the emission of luminescence, while in an anoxic environment, the emission of the fluorescence in 

the near-infrared (NIR) will reach the maximum (figure 2). The phase shift between the orange-red 

light and the NIR fluorescence is measured by the Profix Software and converted into oxygen units 

according to the Stern-Volmer theory. Also, precise temperature compensation is performed using 

an external temperature sensor for correct measurement and conversion to oxygen units.  
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Figure 2.  Optical fiber oxygen sensor and its measuring principle. The REDFLASH dye is excited by the red 

light and its emission is detected by the infrared detector (A). The resulting REDFLASH emission is quenched 

by the oxygen molecules in the sample, so the emission is indirectly proportional to the oxygen concentration. 

(B) 

 

 

MATERIALS 

Reagents 

• Distilled water 

• MilliQ water 

• PBS 1X (Gibco, Massachusetts, cat. 

no. 10010-015) 

• Sodium Hydroxide (Sigma, cat no 

1310-73-2) 

• Sodium Ascorbate (Sigma, cat no 

134-03-2) 

 

Equipment 

• Fiber-optic oxygen meter, FireSting-

O2 (PyroScience, cat. no. FSO2-x)  

• Profix software (PyroScience) 

• Retractable needle-type optical 

oxygen sensor (PyroScience, cat. no. 

OX50) 

• Submersible temperature sensor 

(PyroScience, cat. no. TSUB21) 

• Laptop computer 

• Z micromanipulator (Thorlabs Inc., 

cat. no. MT1/M) 

• MCQ Gas Mixture Creator 

Software (MCQ Instruments) 

• Gas Blender mixer (MCQ 

Instruments, Gas blender 100 Series 

model) 

• Pressurized N2, O2 and CO2 sources 

• 50 ml falcon tube (Corning, cat. no. 

352070) 

• Weighting boats (VWR 

International, cat. no. 611-0094) 

• 100 ml Erlenmeyers (VWR, cat. no. 

214-1156) 

• 100-1000 µl micropipette 

• 1000 µl pipette tips (Eppendorf, cat. 

no. 4130135) 

• Precision balance scale (PCE 

Instruments, Germany, PCE-BSK 

310) 

• Spoon (DD BioLab, cat. no. 

442195) 

• Vortex (Scientific Industries, Vortex 

Genie 2 model) 

 

Reagent Setup 

• Sodium hydroxide and sodium 

ascorbate solution (0.1 M): using two 

weighting boats, weight 0.2 g of 

NaOH and 1 g of sodium ascorbate. 

Transfer both of them to a 50 mL 

conical tube and add 50 mL of miliQ 

water. Vortex vigorously until 

obtaining a homogeneous solution. 

• Oxygenated water: employing a gas 

blender and the MCQ Gas Mixer 

Software, bubble milliQ water 
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contained in an Erlenmeyer flask 

with a gas mixture containing 20% 

O2 and 0% CO2 at the maximum 

flow provided by the device (400 

mL/min) for 10 minutes. 

 

 

PROCEDURE 

1. Before performing the oxygen measurements in the chips, the calibration of the oxygen 

probe should be carried out.  

1.1 Connect the FireSting-O2 oxygen sensor and the optical temperature sensor to 

their connectors in the FireSting-O2 device after removing the protective caps. 

1.2 Connect the FireSting-O2 read-out device with the USB cable to the computer and 

run the Profix Software.  

1.3 Introduce the Sensor Settings (sensor code, oxygen unit and temperature 

compensation). 

1.4 Select the 2-point sensor calibration in aqueous samples. For setting the 20% O2 

point a water solution previously bubbled with 20% O2 and 0% CO2 is employed. 

For setting the point at 0% of O2, a 0.1 M sodium hydroxide and sodium ascorbate 

solution is employed. CAUTION: it is photosensitive, protect it from light to avoid the 

degradation of the components. 

1.5 Protective cap should be removed from the oxygen sensor prior to introduction in 

the solution. The probe should be ejected and completely introduced into the 

sodium sulfate solution, together with the temperature sensor. Wait until the 

oxygen measurement is stable and select “Set 0%”. NOTE: For ensuring a correct 

calibration, before setting both points, the temperature sensor measurement must 

be stable too and no bubbles should be in the solution. 

1.6 Repeat the previous step with the oxygenated solution this time. Once the 

measurement is stable, press “Set air” button. 

1.7 For finishing the calibration, select “Finish”. 

2. Open the N2, CO2 and O2 sources, connect the gas blender to the computer with the 

USB cable and switch on the computer and the device. 

3. Connect the outlet from the gas blender device to the chip inlet tube employing an 

ID=1.67 mm diameter flexible tube. 

4. Using the MCQ Gas Mixture Creator Software select the desired concentration of gases 

(13% O2, 5% CO2 and 82% N2 or 7% O2 and 5% CO2 and 88% N2) or design a program 
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to reproduce the oxygenation-deoxygenation cycles (swings every 30 seconds from 

13% O2, 5% CO2, 82% N2 to 7% O2, 5% CO2, 88% N2, or swings every 30 seconds 

from 7% O2, 5% CO2, 88% N2 to 4% O2, 5% CO2, 92% N2). 

5. Place the oxygen probe in a holder that allows micromanipulation on Z axis. 

6. Cover the wells with 1 mL of PBS 1X. 

7. Extract the retractable tip from the oxygen sensor, and place it carefully, with the help 

of the micromanipulator on the surface of the PDMS membrane. Place the temperature 

probe inside the well. 

8. The measurement will take place when pressing the buttons “Measurement start” and 

“Log to file” in the Profix Software 

 

3. Assessment of membrane strain 

The design of the stretch chip and the elastic properties of the PDMS membrane, allows it to deflect 

and subject the cells seeded on the surface of the membrane to strain. As previously explained, it is 

composed by the culture chamber (upper part) and the gas chamber (middle and lower part), and 

an inlet tube, through which the desired gas mixture from the gas blenders goes inside the device, 

and an outlet tube, that will be connected to a proportional valve that opens and closes every 5 

seconds (0.2 Hz), which is the physiological breathing frequency. Placed just before the valve, a tube 

with a small diameter can be found. It works as a leakage, releasing part of the air in the system when 

the valve is closed. That way, the pressure inside the system can be modulated by increasing the size 

of the tube (the resistance will increase so less air will be able to abandon the system and the pressure 

will increase) or decreasing it (the resistance will decrease, and the air will be able to leave the system 

more easily). Before going inside the chip, with the aim of humidifying the air, it will go inside a water 

trap (50 mL falcon tube with an inlet tube that is submerged in water and an outlet tube that will be 

in contact with the air chamber inside the falcon). Also, when abandoning the chip, the air will find 

another water trap in this case for getting rid of all the humidity before arriving to the small tube 

working as leakage and the valve (figure 3). CAUTION: If there is some humidity in the air, the water 

will condensate inside the tubes when abandoning the incubator due to the change of temperature 

and can block the way out. In that case, the pressure in the system will increase and the previously 

set values of strain will change.  

Connected between the water trap to dry the air and the leakage, there is a pressure transductor 

connected to an oscilloscope to measure the pressure of the system. 
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The itinerary that the air follows is: 

1. The gas mixture coming from the gas blender gets humid in the water trap inside the 

incubator. 

2. Humid air goes inside the chip through the inlet tube. 

3. It expands radially through the channels of the middle part. 

4. It gets in contact with the inferior part of the membrane in the gas chamber and inflates 

it (if the valve is closed) or not (if the valve is opened).  

5. It leaves the gas chamber through the channels of the lower part. 

6. It leaves the chip through the outlet tube. 

7. It gets dry in the water trap outside the incubator. 

8. When the valve is opened, it leaves the system through the open valve. 

9. When the valve is closed, it leaves the system through the resistance, causing the stretch 

of the membrane.  

 
 

Figure 3. Experimental setup. The drawing shows how the air path from the gas blender, controlled by the 

software, to the valve, through the chip and the two water traps to initially humidify and finally de-humidify the 

gas. Cyclic stretch-generating pressure is measured along the experiment with the pressure sensor, the signal 

transductor and the oscilloscope 

 

 

4. Calibration of stretching-chips 
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The stretch of the membranes of the chips depends on the pressure inside the system, which can 

be modulated in two different ways: by changing the length of the leakage or by increasing the airflow. 

In this case, every chip should be connected to the same airflow (180 mL/min), so the length of the 

leakage is adjusted for them to experience a 10% of surface strain.  

The strain of the membrane can be calculated with the formula below, where h is the height of the 

strained membrane (calculated as the difference in the z position between the relaxed position of 

the membrane and the deflected one), and r is the radius of the well. 

 

𝜀 =
2

3
· (

ℎ

𝑟
)

2

   

 

 

APPENDIX B: ISOLATION OF PRIMARY LUNG CELLS 

1. Isolation of alveolar type II cells 

Alveolar type II cells are the most abundant type of cells that forms the alveoli. The study of their 

behavior is crucial for the understanding of the development of many respiratory diseases. However, 

these cells present an important limitation which is the impossibility of subculturing them. For that 

reason, the number of studies in the literature employing primary ATII are limited. Here I explain the 

process to isolate primary ATII that is required in order to carry out every replicate of the ARDS 

model. 

 

MATERIALS 

Reagents 

• Urethane (Sigma, cat. no. 51-79-6) 

• DCCM-1 medium (Biological 

Industries, cat. no. 05-010-1A) 

• Penicillin/streptomycinin solution 

(Sigma, cat. no P4333) 

• Amphotericin B solution (Sigma, cat. 

no. A2942) 

• PBS 1X (Gibco, Massachusetts, cat. 

no. 10010-015) 

• Glutamine 2.5 mM (Gibco, 

Massachusetts) 

• Trypan Blue (Sigma, cat. no. T8154) 

• Fetal Bovine Serum (Gibco, cat. no. 

10270106) 

• Trypsin (Sigma, cat. no T4799) 

• DNase (Sigma, cat no 

04536282001)  

• Percoll (GE HealthCare, Illinois) 

• Phenol Red (Sigma, 143-74-8) 

• NaCl (Sigma, cat no S9888) 

• KCl (Sigma, cat no P5405) 

• CaCl2 (Sigma, cat no C1016) 

• MgSO4 (Sigma, cat no 63136) 

• KH2PO4 (Sigma, cat no P5655) 

• NaH2PO4 (Sigma, cat no 243663) 

• HEPES (Sigma, cat no 7365-45-9) 

• Glucose (Gibco, cat no G8270) 

 

Equipment 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Cell culture incubator (Thermo 

Scientific Heracell 150i CO2 

incubator) 
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• Laminar flow cabinet for cell culture 

(Scanlaf Mars Safety Class 2) 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Optical microscope (Olympus Life 

Science, CKX31 model) 

• Vortex (Scientific Industries, Vortex- 

Genie 2 model) 

• Hemocytometer (VWR, 

MARI0640011) 

• 250 ml sterile borosilicate bottle 

(VWR 590-0834) 

• 5 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 606180) 

• 10 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 607180) 

• 25 ml sterile serological pipettes 

(Greiner Bio-One, 760180) 

• Pipettor (Pipet-Aid, XP model) 

• 15 ml sterile Falcon tube (Corning, 

cat. no. 652095) 

• 0.5 ml sterile tube (Eppendorf, cat. 

no 022363611) 

• 0.5-10 µl micropipette (Eppendorf, 

cat. no. ES-10) 

• 20-200 µl micropipette (Eppendorf, 

cat. no., ES-200) 

• 100-1000 µl micropipette 

(Eppendorf, cat. no., ES-1000) 

• 10 µl pipette tips (Eppendorf, cat. 

no 0030000854) 

• 200 µl pipette tips (Eppendorf, cat. 

no 0030000897) 

• 1000 µl pipette tips (Eppendorf, cat. 

no 0030000927) 

• Magnetic stirrer (Velp Scientifica,  

MST, model 100-240 V / 50-60 Hz) 

• Precision balance scale (PCE 

Instruments, Germany, PCE-BSK 

310) 

• 23 G needle (BD, cat no 300800) 

• Scalpel (Swann Morton, cat. no. 

0206) 

• 2.5 mL syringe (BD, cat no 309658) 

• 10 mL syringe (BD, cat no 305959) 

• Suture (Silkam, cat no 0762075) 

• Petri dishes (TPP, Switzerland, cat. 

no. 93100) 

• 50 mL conical tubes (Corning, cat. 

no. 352070) 

• Sterile Pasteur pipettes (Deltalab, 

cat. no. 200006C) 

• 100 µm cell strainer (Thermo 

Scientific; 22-363-549) 

• 40 µm cell strainer (Thermo 

Scientific; 22-363-547) 

• Vacuum filters (Nalgene, cat no 

Z358207-1CS) 

 

Reagent Setup 

• Urethane 20%: weight in a scale 20 

grams of urethane. Add 100 mL of 

ultrapure distilled sterile water and 

agitate with a magnetic stirrer until 

the urethane is completely dissolved. 

• Free Ca2+ and Mg2+ solution: this 

solution is employed for preparing 

the DNase solutions. The reagents in 

the table below are weighted and 

diluted in ultrapure sterile distilled 

water. The pH is adjusted to 7.4 and 

it is filtrated and kept at room 

temperature. 

• Solution containing Ca2+ and Mg2+: 

this solution is employed for 

preparing the Trypsin solution. The 

reagents in the table below are 

weighted and diluted in ultrapure 

sterile distilled water. The pH is 

adjusted to 7.4 and it is filtrated and 

kept at room temperature. 

• Trypsin solution 0.25%: 125 mg of 

trypsin are weighted and dissolved in 

50 mL of the solution containing 

Ca2+ and Mg2+ previously prepared.  

• DNase solution (I): 6.16 mg of 

DNase are weighted and diluted in 

25 mL of the free Ca2+ and Mg2+ 

solution prepared previously. The 

final concentration is 0.24624 

mg/mL. 

• DNase solution (II): 2.5 mg of 

DNase are weighted and diluted in 

50 mL of the free Ca2+ and Mg2+ 

solution prepared previously. The 

final concentration is 0.05 mg/mL. 

• DCCM-1 complete medium: 

DCCM-1 medium is supplemented 

with a 10% FBS, 1% glutamine 2,5 
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mM and 1% of antibiotics mix 

(streptomycin, penicillin and 

amphotericin). NOTE: It is stored at 

4ºC up to a month. 

• Percoll solutions (high/low): add the 

volumes of the reagents in the table 

to create the high-concentrated 

Percoll solution and the low-

concentrated Percoll solution.  

• Phosphate Buffer Solution: this is the 

solution employed for preparing the 

Percoll gradients. The solutes in the 

table below should be weighted and 

then diluted in ultrapure distilled 

water through magnetic agitation. 

pH should be adjusted until 7.4 and 

finally, the solution is autoclaved and 

stored at 4°C. 

• 10x solution: this solution is also 

employed for preparing the Percoll 

gradients. The solutes in the table 

below should be weigthed and then 

diluted in ultrapure distilled water 

through magnetic agitation. pH 

should be adjusted until 7.4 and 

finally, the solution is filtrated and 

stored at room temperature. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Solution containing Ca2+ and Mg2+ 

NaCl 4.5 g 

CaCl2 0.24 g 

KCl 0.222 g 

MgSO4 0.12 g 

Glucose 0.63 g 

HEPES 1.432 g 

Phosphate Buffer Solution 15 mL 

H2O   500 mL 

Solution Ca2+ and Mg2+ free 

NaCl 4.5 g 

KCl 0.222 g 

Glucose 0.63 g 

HEPES 1.432 g 

Phosphate Buffer Solution 15 mL 

H2O   500 mL 

10x Solution 

NaCl 4.5 g 

KCl 0.22 g 

Glucosa 0.42 g 

KH2PO4 0.212 g 

HEPES 1.432 g 

H2O 50 mL 

Percoll Gradients 

Gradient X10 FBS H2O Percoll 

Heavy 1.5 mL 0.075 mL 3.75 mL 9.75 mL 

Light 1.5 mL 0.075 mL 9.45 mL 4.05 mL 

Phosphate Buffer Solution 

NaCl 8.72 g 

KCl 0.20 g 

KH2PO4 0.20 g 

Na2HPO4 0.15 g 

H2O  1 L 
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PROCEDURE 

1. The rat (200 grams) is anesthetized with an intraperitoneal injection of 7.5 mL/kg of 

animal weight of urethane at 20%. 

2. Check the animal reflexes by pressing with some tweezers on the feet. If it has still 

reflexes, administrate half of the previous dose and check again the reflexes after some 

minutes. 

3. It is placed in the supine position and ethanol soaked. The abdominal cavity is opened, 

and the vena cava is cut off to release the blood. CAUTION: the speed is crucial from 

this point since the heart beating is needed to perform proper perfusion of the lungs. 

4. The diaphragm is cut off and the chest cavity is opened to show the lungs and the heart. 

The right ventricle is sectioned off to introduce through the pulmonary artery a 16 G 

cannula that is connected to a saline solution dropper. 

5. A tracheotomy is performed to introduce a 14 G cannula through the trachea. 

6. While the key of the dropper is opened and the lungs are being perfused, lungs are 

inflated 5 times with 10 mL of air with a syringe through the trachea. 

7. Once lungs are free of blood, they are excised in bloc keeping the trachea. The heart 

is removed. 

8. Five bronchioalveolar lavages are performed to get rid of the alveolar macrophages. To 

do so, the lungs are fluxed with 10 mL of saline and then are placed upside down on 

an opened 50 mL conical tube with a piece of paper -bent so it looks like a W- around 

them to avoid them falling inside the tube once they are empty. 

9. Lungs are placed inside a 500 mL glass bottle containing 200 mL of PBS 1x.  A 14 G 

cannula is tightly tied to the trachea with a suture and 50 mL of trypsin solution is 

perfused by gravity for 30 minutes with a 10 mL syringe. All this process is carried out 

inside the water bath at 37°C. NOTE: the speed of the perfusion can be altered by the 

volume of the lung submerged in the PBS. The more submerged it is, the slower the 

trypsin will perfuse. 

10. Inside the laminar flow cabinet, lungs are placed on petri dishes, and non-alveolar parts 

are removed. Trypsin reaction is stopped with 5 mL of Fetal Bovine Serum (FBS). 

CAUTION: when working with more than one lung at the same time, it is important to 

make some big cuts in the lungs to allow the FBS go inside the tissue before going to 

the next step in order to avoid the over-digestion of the lungs by the trypsin. 
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11. Lobes are cut into 1 mm2 piece and are placed inside 50 mL conical tubes. DNase 

solution I is added until the total volume is 20 mL. This solution is agitating for 4 minutes 

at room temperature. 

12. The solution is strained twice consecutively, the first time with a 100 µm strainer, and 

the second one with a 40 µm strainer. 

13. Percoll gradient is prepared by placing the low-concentrated Percoll solution on the 

high-concentrated Percoll solution. NOTE: it is important to prepare the gradient in the 

very moment of using it to avoid the phases mixing. 

14. Double-filtered cell suspension is placed on the Percoll gradient NOTE: It is crucial to 

make steps 13 and 14 carefully in order to form a perfect gradient (13) and not to 

disturb it (14) 

15. Percoll gradients are centrifuged during 20 minutes at 500 G at room temperature with 

no acceleration or brake. 

16. After centrifugation, a white line is formed between the two gradients, which should 

be collected with a Pasteur pipette and placed in a conical tube. DNAse solution II 

should be added until the final volume is 40 mL. 

17. The solution is centrifuged at 500 G for 15 minutes at room temperature, with 

acceleration, and breaks at 9. 

18. Supernatant is discarded and pellet is resuspended in complete DCCM-1 medium. The 

cell suspension is placed in petri dishes for 1 hour to allow the interstitial macrophages 

to adhere to the surface. NOTE 1: if after one hour the petri dish surface is completely 

covered by cells, place the suspension in a new petri dish for an extra hour. NOTE 2: the 

presence of ciliated cells seen at the phase contrast microscope in this step is a signal 

that the extraction is made properly. 

19. Centrifuge the cell suspension at 500 G for 8 minutes at room temperature 

20. After that centrifugation, cells are ready to culture. 

 

2. Isolation of lung mesenchymal stem cells 

Mesenchymal stem cells are cells with multipotent differentiation capacity that can be isolated from 

bone marrow, adipose, and other tissues. In this case, these cells are isolated from lungs. Unlike 

ATII, they have the ability to proliferate in vitro. 

MATERIALS 

Reagents • Urethane (Sigma, cat. no. 51-79-6) 
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• DCCM-1 medium (Biological 

Industries, cat. no. 05-010-1A) 

• Penicillin/streptomycinin solution 

(Sigma, cat. no P4333) 

• Amphotericin B solution (Sigma, cat. 

no. A2942) 

• PBS 1X (Gibco, Massachusetts, cat. 

no. 10010-015) 

• Glutamine 2.5 mM (Gibco, 

Massachusetts) 

• Trypan Blue (Sigma, cat. no. T8154) 

• Fetal Bovine Serum (Gibco, cat. no. 

10270106) 

• Trypsin (Gibco, Massachusetts, cat. 

no. 25200056) 

• DMEM (Gibco, cat no 10313021)  

• Collagenase 

• HEPES (Sigma, cat no 7365-45-9) 

 

Equipment 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Cell culture incubator (Thermo 

Scientific Heracell 150i CO2 

incubator) 

• Laminar flow cabinet for cell culture 

(Scanlaf Mars Safety Class 2) 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Optical microscope (Olympus Life 

Science, CKX31 model) 

• Vortex (Scientific Industries, Vortex- 

Genie 2 model) 

• Hemocytometer (VWR, 

MARI0640011) 

• 250 ml sterile borosilicate bottle 

(VWR 590-0834) 

• 5 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 606180) 

• 10 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 607180) 

• 25 ml sterile serological pipettes 

(Greiner Bio-One, 760180) 

• Pipettor (Pipet-Aid, XP model) 

• 15 ml sterile Falcon tube (Corning, 

cat. no. 652095) 

• 0.5 ml sterile tube (Eppendorf, cat. 

no 022363611) 

• 0.5-10 µl micropipette (Eppendorf, 

cat. no. ES-10) 

• 20-200 µl micropipette (Eppendorf, 

cat. no., ES-200) 

• 100-1000 µl micropipette 

(Eppendorf, cat. no., ES-1000) 

• 10 µl pipette tips (Eppendorf, cat. 

no 0030000854) 

• 200 µl pipette tips (Eppendorf, cat. 

no 0030000897) 

• 1000 µl pipette tips (Eppendorf, cat. 

no 0030000927) 

• 18 G needle (BD, 400070) 

• 23 G needle (BD, cat no 300800) 

• 2.5 mL syringe (BD, cat no 309658) 

• 10 mL syringe (BD, cat no 305959) 

• 50 mL syringe (BD, cat no 309653) 

• Petri dishes (TPP, Switzerland, cat. 

no. 93100) 

• Scalpel (Swann Morton, cat. no. 

0206) 

• 50 mL conical tubes (Corning, cat. 

no. 352070) 

• Sterile Pasteur pipettes (Deltalab, 

cat. no. 200006C) 

• Glass Pasteur pipettes (VWR,  

Pensilvania,  cat. no. 612-3814) 

• 100 µm cell strainer (Thermo 

Scientific; 22-363-549) 

• 250 µm tissue strainers (Thermo 

Scientific; 87791) 

• 75 cm2 flasks (Techno Plastic 

Products, cat no. 90025) 

 

Reagent Setup 

• Urethane 20%: weight in a scale 20 

grams of urethane. Add 100 mL of 

ultrapure distilled sterile water and 

agitate with a magnetic stirrer until 

the urethane is completely dissolved. 

• DMEM complete medium: DMEM 

medium is supplemented with a 10% 

FBS and 1% of antibiotics mix 

(streptomycin, penicillin and 

amphotericin). NOTE: It is stored at 

4ºC up to a month. 

• Collagenase solution 250 U/mL: mix 

15 mg of collagenase in 9 mL of 

DMEM and 1 mL of HEPES. 
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• Red Blood Lysis Buffer (RBC): dilute 

1:10 the RBC in distilled water. 

 

 

PROCEDURE 

1. The rat (200 grams) is anesthetized with an intraperitoneal injection of 7.5 mL/kg of 

animal weight of urethane at 20%. 

2. Check the animal reflexes by pressing with some tweezers the feet. If it has still reflexes, 

administrate half of the previous dose and check again the reflexes after some minutes. 

3. It is placed in supine position and ethanol soaked. The abdominal cavity is opened, and 

the vena cava is cut off to release the blood. CAUTION: the speed is crucial from this 

point since it is needed the heart beating to perform a proper perfusion of the lungs. 

4. The diaphragm is cut off and the chest cavity is opened to show the lungs and the heart. 

A 19 G needle is introduced in the right ventricle and 50 mL of PBS 1X are fluxed 

inside.  

5. Once lungs are free of blood, they are excised in bloc keeping the trachea. The heart 

is removed. 

6. Lungs are cut in small pieces around 1 mm2 and the collagenase solution is added.  

7. The solution is filtrated with the tissue strainer and the reaction acts for 30 minutes at 

37ºC. 

8. After that time, the reaction is stopped with 5 mL of FBS and it is filtrated again using 

a 100 µm filter. 

9. The solution is centrifugated at 800 G for 10 minutes. 

10. The supernatant is discarded and the pellet is resuspended for 8 minutes in RBC. 

 

APPENDIX C: CELL CULTURE ON CHIPS AND ON LUNG HYDROGELS 

ADHERED TO THE CHIP SURFACE 

1. Culture of cancer cells on PDMS membranes 

MATERIALS 

Reagents 

• Trypsin (Gibco, Massachusetts, cat. 

no. 25200056) 

• Collagen (Cultrex, cat. no. 3440-

100-01) 

• Fibronectin (Sigma, 10838039001) 

• Penicillin/streptomycinin solution 

(Sigma, cat. no P4333) 

• Amphotericin B solution (Sigma, cat. 

no. A2942) 

• PBS 1X (Gibco, Massachusetts, cat. 

no. 10010-015) 

• Trypan Blue (Sigma, cat. no. T8154) 
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• RPMI medium (Thermo Fisher, cat. 

no. 21875091) 

• Fetal Bovine Serum (FBS) (Gibco, 

cat. no. 10270106) 

 

Equipment 

• Plasma Cleaner (Harrick Scientific 

Products Inc., PDC-002 model) 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Cell culture incubator (Thermo 

Scientific Heracell 150i CO2 

incubator) 

• Laminar flow cabinet for cell culture 

(Scanlaf Mars Safety Class 2) 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Optical microscope (Olympus Life 

Science, CKX31 model) 

• Vortex (Scientific Industries, Vortex- 

Genie 2 model) 

• Hemocytometer (VWR, 

MARI0640011) 

• 250 ml sterile borosilicate bottle 

(VWR 590-0834) 

• 5 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 606180) 

• 10 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 607180) 

• 25 ml sterile serological pipettes 

(Greiner Bio-One, 760180) 

• Pipettor (Pipet-Aid, XP model) 

• 15 ml sterile Falcon tube (Corning, 

cat. no. 652095) 

• 0.5 ml sterile tube (Eppendorf, cat. 

no 022363611) 

• 0.5-10 µl micropipette (Eppendorf, 

cat. no. ES-10) 

• 20-200 µl micropipette (Eppendorf, 

cat. no., ES-200) 

• 100-1000 µl micropipette 

(Eppendorf, cat. no., ES-1000) 

• 10 µl pipette tips (Eppendorf, cat. 

no 0030000854) 

• 200 µl pipette tips (Eppendorf, cat. 

no 0030000897) 

• 1000 µl pipette tips (Eppendorf, cat. 

no 0030000927) 

 

 

 

 

PROCEDURE 

Treatment of the PDMS surface 

1. PDMS surface is activated by introducing the chip in the Plasma Cleaner for 2 minutes 

at maximum voltage for making the surface hydrophilic. CAUTION: next step should 

be performed immediately to avoid the loss of the surface activation (maximum time 1 

hour) 

2. Then, the chip is introduced in the culture chamber and irradiated with UV light for 10 

minutes to accomplish sterilization. The chip should be placed near the source of the 

light (~20 cm).  

3. PDMS surface is covered with 0.1 mg/mL collagen or 0.01 mg/mL fibronectin solution, 

alternatively for 45 minutes in an incubator. During this time, the trypsinization of cancer 

cells can be performed. NOTE: make sure that the whole surface is covered by the 

coating. 
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Cell seeding 

4. Trypsinize the cancer cells (H522, H1437, H520, H1975) following the next steps: 

4.1 Remove the medium with a sterile glass Pasteur pipette. 

4.2 Add 5 mL of PBS 1x to remove the rest of the medium. 

4.3 Add 0.5 mL of Trypsin/EDTA and leave it for 5 minutes in the cell culture incubator 

4.4 Add 5 mL of culture medium to stop the reaction. CAUTION: Before stopping the 

reaction, check in the optical microscope that all the cells have detached. 

4.5 Transfer the content into a 15 mL falcon and centrifuge it at 350 G for 5 minutes. 

5. Count the cells in a hemocytometer 

5.1 Take a small aliquote of the cell suspension and dilute it in 1:1 v/v with trypan blue. 

Mix it well with micropipette. 

5.2 Place 10 µL of the solution and place it carefully in the hemocytometer chamber 

5.3 Count the cells and calculate the cell concentration. 

6. Seed the cells on the wells 

6.1 Take the chips from the incubator, aspire the fibronectin solution, and perform 

three washes with PBS 1X. CAUTION: leave the third wash to avoid the membrane 

to dry. 

6.2 Take the desired volume of the initial cell solution and place it in a 15 mL falcon. 

Dilute it with RPMI medium so the final concentration is 600.000 cells/mL 

6.3 Add 500 ul from the just prepared cell solution, so the final amount of cells in each 

well is 300.000. 

7. Leave it in the incubator overnight for cells to adhere to the surface. Next day, proceed 

to the connection to the desired gas parameters. 

 

2. Culture of cells in and on hydrogels adhered to the PDMS membranes 

MATERIALS 
Reagents 

• DCCM-1 medium (Biological 

Industries, cat. no. 05-010-1A) 

• Trypsin neutralization solution 

(Thermo Scientific, R002100) 

• Tryple trypsin (Thermo Scientific, 

12605036)  

• Penicillin/streptomycinin solution 

(Sigma, cat. no P4333) 

• Amphotericin B solution (Sigma, cat. 

no. A2942) 

• PBS 1X (Gibco, Massachusetts, cat. 

no. 10010-015) 

• Trypan Blue (Sigma, cat. no. T8154) 

• APTES (Sigma, 440140) 

• NaOH (Sigma, cat no 1310-73-2) 

• HCl (Sigma, cat no 320331) 
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Equipment 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Cell culture incubator (Thermo 

Scientific Heracell 150i CO2 

incubator) 

• Laminar flow cabinet for cell culture 

(Scanlaf Mars Safety Class 2) 

• Centrifuge (Heraeus Instruments, 

Labofuge 400R model) 

• Optical microscope (Olympus Life 

Science, CKX31 model) 

• Vortex (Scientific Industries, Vortex- 

Genie 2 model) 

• Magnetic stirrer (Velp Scientifica,  

MST, model 100-240 V / 50-60 Hz) 

• Hemocytometer (VWR, 

MARI0640011) 

• 250 ml sterile borosilicate bottle 

(VWR 590-0834) 

• 5 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 606180) 

• 10 ml sterile serological pipettes 

(Greiner Bio-One, cat. no. 607180) 

• 25 ml sterile serological pipettes 

(Greiner Bio-One, 760180) 

• Pipettor (Pipet-Aid, XP model) 

• 15 ml sterile Falcon tube (Corning, 

cat. no. 652095) 

• 0.5 ml sterile tube (Eppendorf, cat. 

no 022363611) 

• 0.5-10 µl micropipette (Eppendorf, 

cat. no. ES-10) 

• 20-200 µl micropipette (Eppendorf, 

cat. no., ES-200) 

• 100-1000 µl micropipette 

(Eppendorf, cat. no., ES-1000) 

• 10 µl pipette tips (Eppendorf, cat. 

no 0030000854) 

• 200 µl pipette tips (Eppendorf, cat. 

no 0030000897) 

• 1000 µl pipette tips (Eppendorf, cat. 

no 0030000927) 

• pH strips (Metria, cat no. CSPH-

002-001) 

 

Reagent Setup 

• APTES 10%: 10 mL of (3-

aminopropyl) triethoxysilane is 

added to 90 mL of absolute ethanol. 

• Genipin 5 mM: 25 mg/mL of stock 

solution is prepared by diluting 125 

mg of genipin in 5 mL of DMSO. 

2.5mL of this stock solution is taken 

and dissolved in 45.5 mL of PBS 1x 

 

 

 

PROCEDURE 

Treatment of the PDMS surface 

The day before the experiment, the treatment of the PDMS surface should be performed. 

1. PDMS surface is activated by introducing the chip in the Plasma Cleaner for 2 minutes 

at maximum voltage for making the surface hydrophilic. CAUTION: next step should be 

performed immediately to avoid the loss of the surface activation (maximum time 1 

hour) 

2. Then, the chip is introduced in the culture chamber and irradiated with UV light for 10 

minutes to accomplish sterilization. The chip should be placed near the source of the 

light (~20 cm).  
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3. PDMS surface is covered with APTES 10% for 1 h. After that, 3 washes of PBS 1X of 

5 minutes each are performed. Genipin 5 mM is added to the wells for 45 minutes. 

CAUTION: genipin should be protected from light exposure during the experiment and 

during its storage. The chips are left overnight to dry.  

 

 

Preparation of the pregel 

The afternoon before the experiment, the pregel must be prepared to be digested overnight. 

4. 5 mg of pepsin is weighted in a 50 mL conical tube. 

5. In the same tube, 100 mg of freezed-dried and milled lung ECM powder is weighted. 

6. 5 mL of 0.1M HCl is added. NOTE: with a sterile Pasteur pipette, flush the solution up 

and down until no clots are seen. 

7. A small magnetic stirrer is placed in the tube and is left on a magnetic agitator overnight 

at 400 rpm. 

 

Neutralization of the pregel 

To stop the enzymatic digestion and allow jellification the next steps are followed:  

8. In order to equilibrate salts concentration to a physiological level, 500 µl of PBS 10X is 

added 

9. To neutralize the solution, 250 µl of 0.2 M NaOH is added to the solution. Solution is 

vortex for a few seconds and pH is checked using pH strips. Some extra microliters of 

0.1 M NaOH can be added in order to adjust the pH to a physiological level (7.4). 

CAUTION: No more than 10 µL should be added at once. Every time a new amount of 

NaOH is added, the solution should be vortexed and pH should be checked. 

10. The neutralized solution is kept in ice to avoid jellification while LMSC are being 

trypsinized. 

 

Trypsinization of LMSC 

10. Trypsinize lung stem cells following the next steps: 

10.1 Remove the medium with a sterile glass Pasteur pipette. 

10.2 Add 5 mL of PBS 1x to remove the rest of the medium. 

10.3 Add 2 mL of Tryple Trypsin and leave it for 7 minutes in the cell culture incubator 
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10.4 Add 5 mL of TNS to stop the reaction. CAUTION: Before stopping the reaction, 

check in the optical microscope that all the cells have detached. 

10.5 Transfer the content into a 15 mL falcon and centrifuge it at 350 G for 5 minutes. 

10.6 Aspirate the TNS and resuspend the pellet in 1 mL of DCCM-1 medium. NOTE: 

pellet should be resuspended in a small volume in order to not dilute de cell 

suspension so we need a small volume to get the desired amount of cells. 

11. Count the cells in a hemocytometer 

11.1 Take a small aliquote of the cell suspension and dilute it in 1:10 v/v with trypan 

blue. Mix it well with micropipette. 

11.2 Place 10 µL of the solution and place it carefully in the hemocytometer chamber 

11.3 Count the cells and calculate the cell concentration. 

12. Take the needed volume of cell suspension to have a final concentration of 300.000 

cells/mL of hydrogel and dilute with DCCM-1 medium until having a 10% of the volume 

of hydrogel. 

 

LMSC 3D culture 

13. Add the prepared suspension of LMSC to the hydrogel 

14. With the help of the 1000 µL micropipette, homogenize the hydrogel solution. 

15. Centrifugate the cells at 400 G for 2 minutes at 4 °C. To eliminate the bubbles. 

16. Again, mix the suspension carefully this time to avoid the formation of new bubbles 

with the help of the micropipette. 

17. Three PBS 1x washes are performed to the chips that are in the incubator to wash the 

collagen coating. 

18. 300 µL of hydrogel is placed on every well. CAUTION: avoid the formation of bubbles 

when pipetting 

19. Chips are let in the incubator for 20 minutes for the hydrogel to jellify. Afterward, 500 

µL of DCCM-1 is added to each well. 
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