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Resum 

L'estadística espacial es basa tradicionalment en models estacionaris com els camps de Matérn. 
Tot i això, l'aplicació de models estacionaris a regions espacials complexes que tenen barreres 
físiques com illes o àrees costaneres pot resultar en un suavitzat inadequat d'aquestes regions. A 
més, en moltes aplicacions ambientals, com a sistemes de rierols o xarxes de carreteres urbanes, 
és essencial definir models estadístics en xarxes lineals. 

La tesi de recerca actual explora els beneficis i les limitacions de les aproximacions de Laplace 
imbricades integrades (INLA) juntament amb l'equació diferencial parcial estocàstica tradicional 
(SPDE) per al modelatge espaciotemporal bayesià. L'estudi se centra en regions espacials 
distribuïdes complexes que tenen barreres físiques, així com en xarxes lineals com les xarxes de 
carreteres urbanes. 

La motivació darrere de l'article de recerca inicial és dissenyar una aplicació per monitoritzar la 
dinàmica de la pandèmia de COVID-19 en un context espaitemporal a la regió de Catalunya, 
Espanya. En aquest cas, hem utilitzat INLA-SPDE, però en regió espacial contínua. Els dos 
articles següents van involucrar l'ús de triangulació de xarxa explícita per explorar i analitzar 
l'ocurrència d'accidents de trànsit a les xarxes vials urbanes al Regne Unit i Espanya. Vam 
proposar el nou concepte de triangulació espacial restringida a xarxes lineals. Però les regions 
frontereres complexes creen estructures espacials fictícies que donen com a resultat 
dependències espacials artificials. Als següents articles proposats, hem explorat estratègies 
computacionals alternatives per dissenyar models de barrera no estacionaris. Inicialment, hem 
utilitzat el model de barrera per analitzar la variació espacial del risc de tsunami a la República 
de Maldives. Després implementem models de barrera a xarxes lineals. Però en tots dos casos, 
els límits es troben dins del domini espacial d'interès, cosa que impedeix que es redueixin els 
efectes dels límits alts. L'article final proposat presenta una estratègia nova per utilitzar mètriques 
no euclidianes en estructures gràfiques, com a alternativa a la metodologia de distància 
euclidiana convencional. En aquest cas, és un desafiament trobar classes flexibles de funcions 
que siguin definides positives per formular camps gaussians en gràfics mètrics. Utilitzant el 
concepte esmentat, s'ha desenvolupat una nova categoria de processos gaussians en gràfics 
mètrics compactes. Els camps de Whittle-Matérn emprats en aquest enfocament es defineixen 
mitjançant un SPDE fraccionari en un gràfic mètric. Els camps proposats són una extensió 
natural dels camps gaussians amb funcions de covariància de Matérn en dominis euclidians a 
configuracions gràfiques mètriques no euclidianes. 

S'ha fet servir un període de deu anys (2010-2019) de registres diaris d'accidents de trànsit de 
Barcelona, Espanya, per avaluar els tres models esmentats anteriorment. En comparar el 
rendiment del model, utilitzant mètriques d'avaluació, observem que l'SPDE fraccional proposat 
al model de gràfic de mètriques supera la triangulació de xarxa i els models de barrera. A causa 
d'aquesta flexibilitat, es pot aplicar a una àmplia gamma de problemes ambientals, especialment 
aquells que involucren regions espacials complexes o distribuïdes, com ara illes, xarxes de 
carreteres o àrees delimitades per límits. 
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Resumen 

La estadística espacial se basa tradicionalmente en modelos estacionarios como los campos de 
Matérn. Sin embargo, la aplicación de modelos estacionarios a regiones espaciales complejas que 
tienen barreras físicas como islas o áreas costeras puede resultar en un suavizado inadecuado de 
tales regiones. Además, en muchas aplicaciones ambientales, como sistemas de arroyos o redes 
de carreteras urbanas, es esencial definir modelos estadísticos en redes lineales. 

La tesis de investigación actual explora los beneficios y las limitaciones de las aproximaciones 
de Laplace anidadas integradas (INLA) junto con la ecuación diferencial parcial estocástica 
tradicional (SPDE) para el modelado espaciotemporal bayesiano. El estudio se centra en regiones 
espaciales distribuidas complejas que tienen barreras físicas, así como en redes lineales como las 
redes de carreteras urbanas. 

La motivación detrás del artículo de investigación inicial es diseñar una aplicación para 
monitorear la dinámica de la pandemia de COVID-19 en un contexto espaciotemporal en la 
región de Cataluña, España. En este caso, hemos utilizado INLA-SPDE pero en región espacial 
continua. Los siguientes dos artículos involucraron el uso de triangulación de red explícita para 
explorar y analizar la ocurrencia de accidentes de tráfico en las redes viales urbanas en el Reino 
Unido y España. Propusimos el novedoso concepto de triangulación espacial restringida a redes 
lineales. Pero las regiones fronterizas complejas crean estructuras espaciales ficticias que dan 
como resultado dependencias espaciales artificiales. En los siguientes artículos propuestos, 
hemos explorado estrategias computacionales alternativas para diseñar modelos de barrera no 
estacionarios. Inicialmente, hemos utilizado el modelo de barrera para analizar la variación 
espacial del riesgo de tsunami en la República de Maldivas. Luego implementamos modelos de 
barrera en redes lineales. Pero en ambos casos, los límites se encuentran dentro del dominio 
espacial de interés, lo que impide que se reduzcan los efectos de los límites altos. El artículo final 
propuesto presenta una estrategia novedosa para utilizar métricas no euclidianas en estructuras 
gráficas, como alternativa a la metodología de distancia euclidiana convencional. En este caso, es 
un desafío encontrar clases flexibles de funciones que sean definidas positivas para formular 
campos gaussianos en gráficos métricos. Utilizando el concepto mencionado, se ha desarrollado 
una nueva categoría de procesos gaussianos en gráficos métricos compactos. Los campos de 
Whittle-Matérn empleados en este enfoque se definen a través de un SPDE fraccionario en un 
gráfico métrico. Los campos propuestos son una extensión natural de los campos gaussianos con 
funciones de covarianza de Matérn en dominios euclidianos a configuraciones gráficas métricas 
no euclidianas. 

Se ha utilizado un período de diez años (2010-2019) de registros diarios de accidentes de tráfico 
de Barcelona, España, para evaluar los tres modelos mencionados anteriormente. Al comparar el 
rendimiento del modelo, utilizando métricas de evaluación, observamos que el SPDE fraccional 
propuesto en el modelo de gráfico de métricas supera la triangulación de red y los modelos de 
barrera. Debido a esta flexibilidad, se puede aplicar a una amplia gama de problemas 
ambientales, especialmente aquellos que involucran regiones espaciales complejas o distribuidas, 
como islas, redes de carreteras o áreas delimitadas por límites. 



XVIII 
 

 
  



XIX 
 

Abstract 

Spatial statistics is traditionally based on stationary models like Matérn fields. However, 
applying stationary models to complex spatial regions having physical barriers like islands or 
coastal areas can result in inappropriate smoothing of such regions. Additionally, in many 
environmental applications such as stream systems or urban road networks, it is essential to 
define statistical models on linear networks.  

The current research thesis explores the benefits and limitations of integrated nested Laplace 
approximations (INLA) along with traditional stochastic partial differential equation (SPDE) for 
Bayesian spatiotemporal modeling. The study focuses on complex distributed spatial regions 
having physical barriers, as well as linear networks like urban road networks.  

The motivation behind the initial research article is to design an application to monitor the 
dynamics of COVID-19 pandemic in a spatiotemporal context in the region of Catalonia, Spain. 
In this case, we have used INLA-SPDE but in continuous spatial region. The following two 
articles involved utilizing explicit network triangulation to explore and analyse the occurrences 
of traffic accidents on urban road networks in UK and Spain. We proposed the novel concept of 
spatial triangulation restricted to linear networks. But complex boundary regions create fictitious 
spatial structures resulting in artificial spatial dependencies. In the following proposed articles, 
we have explored alternative computational strategies to design nonstationary barrier models. 
Initially, we have used barrier model to analyse spatial variation of tsunami risk in the Republic 
of Maldives. Then we implemented barrier models on linear networks. But in both cases, 
boundaries lie within the spatial domain of interest, preventing the high boundary effects from 
being reduced. The final proposed article presents a novel strategy for utilizing non-Euclidean 
metric on graph structures, as an alternative to the conventional Euclidean distance methodology.  
In this case, it is challenging to find flexible classes of functions that are positive definite to 
formulate Gaussian fields on metric graphs. Utilizing the mentioned concept, a novel category of 
Gaussian processes has been developed on compact metric graphs. The Whittle-Matérn fields 
employed in this approach are defined through a fractional SPDE on a metric graph. The 
proposed fields are a natural extension of Gaussian fields with Matérn covariance functions on 
Euclidean domains to non-Euclidean metric graph settings.  

A ten-year period (2010-2019) of daily traffic-accident records from Barcelona, Spain have been 
used to evaluate the three models referred above. While comparing model performance using 
evaluation metrics, we observed that the proposed fractional SPDE on metric graph model 
outperform network triangulation and barrier models. Due to this flexibility, it can be applied to 
a wide range of environmental issues, especially those involving complex or distributed spatial 
regions, such as islands, road networks, or areas demarcated by boundaries. 
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1. INTRODUCTION 

1.1  Background 

Spatiotemporal events refer to phenomena that occur in both space and time, meaning they have 
a location and a specific time of occurrence. These events can range from natural phenomena, 
such as the movement of weather patterns or the migration of animals, to human-made events, 
such as the movement of vehicles in a city or the spread of a disease. Understanding 
spatiotemporal events is important in various fields, including geography, environmental science, 
epidemiology, urban planning, and others for predicting and controlling their outcomes, 
identifying patterns, and informing decision-making. One of the most significant advantages of 
studying spatiotemporal events is that it enables the identification of complex patterns that are 
not evident when analyzing data in space or time alone. For example, in epidemiology, analyzing 
the spatiotemporal spread of a disease can help to identify areas at high risk and inform targeted 
interventions to control the outbreak. In urban planning, studying traffic patterns can inform the 
design of transportation systems and improve traffic flow.  

The analysis of spatiotemporal events involves the use of various techniques to examine the 
patterns and relationships between spatial and temporal components of the event. These 
techniques include visualization, clustering, and regression analysis, among others. It is difficult 
to determine the first research work on spatiotemporal analysis, as the concept has been explored 
by various scholars over time. However, the formal development of spatiotemporal analysis as a 
distinct field of study began in the mid-20th century, with the development of new technologies 
such as geographic information systems (GIS) and remote sensing. One of the pioneers in 
spatiotemporal analysis is Waldo Tobler, who proposed the concept of "first law of geography" 
in 1970, which states that "everything is related to everything else, but near things are more 
related than distant things" (Tobler, 1970). Tobler also developed the idea of GIS, which are 
computer-based tools for storing, manipulating, and analyzing spatial data. The research work by 
Tobler (1970) to model urban growth using computer simulations, with a focus on 
spatiotemporal patterns is considered as one of the pioneering efforts in this domain. One of the 
earliest applications of spatiotemporal analysis was in the field of meteorology, where 
researchers used spatial and temporal data to study weather patterns and make forecasts (Glahn 
and Lowry, 1972). This approach represented a significant advance over earlier methods, which 
relied primarily on manual analysis of meteorological data. It also provides a useful historical 
perspective on the early applications of spatiotemporal analysis in meteorology. In the 1970s and 
1980s, the development of GIS technology and the availability of satellite imagery led to the 
rapid growth of spatiotemporal analysis in fields such as environmental science and urban 
planning. GIS allowed researchers to integrate spatial and temporal data from a variety of 
sources and analyze the relationships between environmental factors and land use patterns. Early 
in 1981, Burrough in his study introduced a methodology for identifying and modeling the 
spatial dependence between observations. The author proposed using a spatial autocorrelation 
function to identify the spatial interaction models. Zirschky (1985) demonstrated the use of 
geostatistical methods like kriging for spatial interpolation, to estimate the yield at unsampled 
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locations in agricultural field trials. An interesting research work by Opensaw (1984) highlighted 
the issue of spatial scale in analyses and the potential effect of diverse geographic units on 
outcomes. This problem is particularly relevant to spatiotemporal analysis since patterns can 
differ depending on the temporal and spatial resolution of the data. Another key figure in the 
history of spatiotemporal analysis is Michael Goodchild, who is often credited with coining the 
term geographic information science (GIScience) in the 1990s (Goodchild, 1991). His work 
focused on developing new methods for analyzing spatial data, including spatial statistics and 
spatial modeling. Following the trend, Later in 1995, Bailey and Gatrell provided a 
comprehensive overview of spatiotemporal analysis methods, including exploratory data 
analysis, visualization, and spatial statistics. Remote sensing, GIS, and availability of open data 
have a significant impact on spatiotemporal modeling, enabling researchers to integrate and 
analyze spatial and temporal data at a high resolution (Gitelson et al., 2002; An et al., 2018; 
Singh 2019; Comber and Wulder, 2019; Song et al., 2019; Muhammad et al., 2022; 
Apostolopoulos et al., 2022). It was stated early in 2009 by Elith and Leathwick, that "analysis of 
spatiotemporal data is a rapidly developing field, with new statistical models and techniques 
appearing regularly, and it presents some of the most challenging problems in modern statistics." 
Overall, literature shows that, spatiotemporal analysis is a rapidly evolving field that seeks to 
integrate spatial and temporal information to better understand the dynamics of natural and 
human systems. One of the most notable recent advances in spatiotemporal analysis is the 
development of big data technologies, which have made it possible to analyze massive amounts 
of spatial and temporal data (Li et al., 2017; Wang et al., 2019; Zhou et al., 2021). This has led to 
new opportunities for understanding and modeling complex spatiotemporal processes, such as 
climate change, disease outbreaks, and urban growth.  

1.2  Application of Spatiotemporal Analysis 

Spatiotemporal analysis is an essential tool for understanding complex systems and processes 
that involve both space and time. Its applications are vast and wide-ranging, and it is becoming 
increasingly important in fields as diverse as healthcare, environmental science, urban planning, 
and transportation. 

1.2.1 Climate and Meteorology 

The application of spatiotemporal analysis has displayed considerable potential in advancing our 
understanding of weather patterns and climate change within the field of meteorology and 
climate science. Such research works have led to a better understanding of the relationships 
between climate variables over space and time, and the identification of the potential impacts of 
climate change. A crucial use of spatiotemporal analysis in this field is in the enhancement of 
weather and climate models. Kumari et al. (2021) conducted a study that applied spatiotemporal 
analysis to enhance the precision of rainfall forecasts in a regional climate model. 
Correspondingly, in the United States of America (USA), the National Climate Assessment 
Report (2014) utilized spatiotemporal analysis to assess the impacts of climate change on various 
sectors in the country, including agriculture, water resources, and human health. Another 
important area of research in this domain has been the development of high-resolution climate 
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models that can simulate the complex interactions between the atmosphere, oceans, and land 
surface. These models can be used to make more accurate climate projections and to investigate 
the potential impacts of climate change on the region. For example, a study published in 2018 
used a high-resolution climate model to project changes in precipitation patterns in Europe under 
different climate scenarios (Mizuta et al., 2018). Other studies that have investigated the 
application of spatiotemporal modeling in meteorology and climate science include (Handcock 
and Wallis, 1994; Compo et al., 2011; Guo et al., 2019; Lin et al., 2020; Chaudhuri et al., 2021; 
Wang et al., 2022). One area where spatiotemporal analysis has been extensively utilized is in 
assessing the impacts of climate change on agriculture.  For example, a study by Lobell et al. 
(2011) used spatiotemporal analysis to investigate the relationship between temperature and 
maize yield in the United States. Similar study to assess the vulnerability of wheat production to 
climate change in Europe have been conducted by Senapati et al. (2021). In addition, 
spatiotemporal analysis has been employed to evaluate the effectiveness of adaptation measures 
in the agricultural sector. For example, a study by Carr et al. (2022) used spatiotemporal analysis 
to assess the impact of different adaptation strategies on crop production in west African nations.  

1.2.2 Ecology and Environmental Management 

Similar applications are observable in the domain of environmental management to study the 
dynamics and patterns of environmental variables and their interactions with ecological systems. 
It covers a wide range of research works such as monitoring land-use change (Wrenn et al., 
2014; Wang et al., 2018)., natural resource management (Gruijter et al., 2006; Meseguer Costa et 
al., 2016; Paradinas et al., 2017) and biodiversity conservation (Adler and Lauenroth, 2003; Yi et 
al., 2018; Varga et al., 2019). Other relevant research works include urban and regional planning 
(Bird et al., 2014; Zeng et al., 2015; Wang et al., 2021), marine ecosystem-based management 
(Dunn et al., 2011; Grüss et al., 2018) and others related to forest fire management (Juan et al., 
2012; Serra et al., 2012; Serra et al., 2014a; Serra et al., 2014b; Díaz‐Avalos and Juan, 2022). 
Literature shows that spatiotemporal analysis has a significant impact on environmental 
management due to its ability to provide a comprehensive understanding of environmental 
systems and interactions between environmental factors and ecosystems. It allows for the 
identification of critical areas for conservation and restoration. This can aid in the identification 
and monitoring of environmental changes over time. This information can be used to evaluate 
the effectiveness of management strategies, assess the impacts of climate change, and inform 
policy decisions related to environmental management. 

1.2.3 Epidemiology and Health 

The application of spatiotemporal analysis in epidemiology and health has been gaining 
increasing attention over the past decade. It helps the researchers to examine the spatial and 
temporal patterns of diseases and health outcomes (Cromley and McLafferty, 2012; Juan et al., 
2017). By analyzing spatiotemporal patterns of disease outbreaks and related determinants 
researchers can identify areas of high risk and track the spread of the disease. One area where 
spatiotemporal analysis has been applied in epidemiology and health is in the study of infectious 
diseases. For example, spatiotemporal modeling has been used to examine the transmission 
dynamics of infectious diseases such as malaria, dengue fever, Ebola and Severe Acute 
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Respiratory Syndrome (SARS) (Yu et al., 2004; Hsieh and Ma, 2009; Bhatt et al., 2013; Faye et 
al., 2015). Spatiotemporal analysis has also been used to identify hotspots of disease 
transmission and to understand the impact of socioeconomic factors on public health in different 
spatial regions (Borrell et al., 2010; Gotsens et al., 2013; Borrell et al., 2014; Hoffmann et al., 
2014; Marí-Dell’olmo et al., 2015; Maynou et al., 2015; Maynou-Pujolràs et al., 2016a; Maynou-
Pujolràs et al., 2016b; Maynou and Saez, 2016; Povedano et al., 2018; Saez et al., 2018; ). In 
addition, spatiotemporal analysis has been applied in infectious disease control for animal health 
(Allepuz et al., 2010; Allepuz et al., 2010; Allepuz et al., 2011). For example, spatiotemporal 
analysis has been used to study the distribution of cancer and other chronic diseases (Saurina et 
al., 2010; Puigpinós-Riera et al., 2011; Saez et al., 2013; Renart-Vicens et al., 2014; Aguilar-
Palacio et al., 2017; Barceló et al., 2021). Spatiotemporal analysis has also been used to examine 
the relationship between environmental factors and health outcomes, such as air pollution and 
asthma (Barceló et al., 2009; Blangiardo et al., 2016; Bennett et al., 2019; Saez and López-
Casasnovas, 2019). Studies used spatiotemporal models to investigate the inequalities in suicide 
mortality rates and the economic recession in England (Saurina et al., 2013) and Catalonia, Spain 
(Saurina et al., 2015). 
During the recent COVID-19 pandemic, spatiotemporal analysis has been extensively utilized to 
detect and examine patterns and trends in the transmission of the disease (Al-Kindi et al., 2020; 
Gross et al., 2020; Shariati et al., 2020; Niraula et al., 2022), investigate the impact of covariates 
(Briz-Redón and Serrano-Aroca, 2020; Díaz-Avalos et al., 2020; Chaudhuri et al., 2022a), and 
analyze the dynamics of COVID-19 both prior to and subsequent to the development of 
vaccinations (Grauer et al., 2020; Kraemer et al., 2021; Franch‐Pardo et al., 2021; Zapata-
Cachafeiro et al., 2022).  
Thus, by combining spatial and temporal information, researchers can identify hotspots and high-
risk areas for various health outcomes, including infectious diseases, chronic diseases, and 
environmental exposures and can develop targeted interventions and policies to improve public 
health. 

1.2.4 Urban Issues 

Spatiotemporal analysis has become increasingly important in analyzing urban issues and 
informing urban planning and policy decisions. It allows researchers to study how urban areas 
change over time and space and can provide valuable insights into patterns of urban growth and 
development, as well as the social, economic, and environmental factors that shape them 
(Braulio-Gonzalo et al., 2016; Bovea et al., 2018a; Bovea et al., 2018b; Braulio-Gonzalo et al., 
2021a; Braulio-Gonzalo et al., 2021b; Juan et al., 2022). It also allows researchers to combine 
and analyze different types of data related to specific locations and time periods, such as 
population density, land use, transportation, and environmental factors. 

1.2.5 Crime and Antisocial Activities 

Spatiotemporal analysis has become increasingly important in analyzing urban issues, such as 
crime. Crime patterns are not random in space and time but are influenced by various factors 
such as social, economic, and environmental conditions. Spatiotemporal analysis techniques can 
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help to identify spatial and temporal patterns in crime that are useful for developing crime 
prevention strategies, allocation of police resources, and urban planning. Numerous studies have 
applied spatiotemporal analysis to crime in urban areas (Cusimano et al., 2010; Irvin-Erickson et 
al., 2015; Rummens et al., 2017; Quick et al., 2019; Zhuang and Mateu, 2019; Boqué et al., 
2022; Serra et al., 2022; Vlad et al., 2023). For example, Schutte and Breetzke (2018) found that 
the relationship between weather conditions and crime varies depending on the type of crime and 
geographic location. Similarly, Valente (2019) examined the spatial and temporal distribution of 
violent crimes in a state capital of Brazil. Their study found that homicide rates exhibit 
significant spatiotemporal clustering, and that high homicide rates are associated with social and 
economic deprivation, racial segregation, and drug markets. In the same year, Hu et al. (2018) 
proposed spatial scan statistic for crime, which involves the detection of high-risk areas for crime 
through the identification of clusters or hotspots of crime incidents. The method takes into 
account both the spatial and temporal dimensions of the data, which allows for the identification 
of hotspots that are significant over both space and time. Study by Harries (2006) identify crime 
concentrations in Baltimore City and explored the motivation behind crime incidents by 
analyzing the spatiotemporal patterns of specific crime types. The paper by Mata et al. (2016) 
proposes an approach to generate safe routes in mobile devices by integrating crowd-sensed and 
official crime data using a semantic processing technique and a Bayes algorithm. The approach 
is aimed at providing estimations defined by crime rates and uses a geospatial repository to store 
crime event data in Mexico City. Thus, the application of spatiotemporal analysis to crime in 
urban areas has provided valuable insights into the spatial and temporal patterns of crime, and 
the factors that influence crime rates. By identifying high-risk areas and times, policymakers and 
law enforcement officials can develop targeted interventions to prevent crime and improve the 
safety and well-being of urban residents (Davis et al., 2005; Frazier et al., 2013; Rummens et al., 
2017; Morris et al., 2019; Contreras and Hipp, 2020; Ceccato et al., 2022). 

1.2.6 Traffic Accidents and Transport Management 

Similar to crime, the distribution of traffic accidents in urban areas is also spatiotemporal. The 
spatiotemporal analysis of traffic accidents involves the use of spatial and temporal data to 
identify patterns and relationships in traffic accidents, with the goal of predicting and avoiding 
future accidents. A number of research studies in this domain have shown promising results in 
improving road safety and reducing traffic accident costs (Plug et al., 2011; Prasannakumar et 
al., 2011; Wang et al., 2013; Kaygisiz et al., 2015; Liu and Sharma, 2017; Liu and Sharma, 2018; 
Mahata et al., 2019; Chaudhuri et al., 2022b, Chaudhuri et al., 2023). By understanding the 
spatiotemporal patterns of traffic accidents, transportation planners and policymakers can 
implement targeted interventions such as road design improvements, traffic calming measures, 
and enhanced enforcement strategies to reduce the frequency and severity of accidents. 
Another application of spatiotemporal analysis in handling urban challenges is in transportation 
planning. By analyzing the spatiotemporal patterns of traffic congestion, researchers can identify 
bottlenecks and areas of high demand. This information can be used to optimize the design of 
transportation networks and improve the flow of traffic. Literature shows the effectiveness of 
spatiotemporal modeling in managing traffic congestion in urban environments (Wang et al., 
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2013; Duan et al., 2018; Tascikaraoglu, 2018; Zhang et al., 2019; Niu et al., 2019; Afrin and 
Yodo, 2021; Zeng et al., 2022). 

1.2.7 Air Pollution and Health 

Air pollution is a major concern in urban areas due to its adverse effects on human health and the 
environment. In recent years, spatiotemporal analysis has been widely used in urban pollution 
modeling to assess the distribution and concentration of air pollutants over space and time. The 
spatiotemporal distribution of air pollution has been studied in many urban areas. For example, 
spatio-temporal modelling of air pollution by Lindström et al. (2014) is a popular research work 
in this domain. In another study Lertxundi-Manterola and Saez (2009) modeled nitrogen dioxide 
(NO2) and fine particulate matter (PM10) air pollution in the metropolitan areas of Barcelona 
and Bilbao, Spain. A study by Paoletti et al. (2014) shows that ozone levels in European and 
USA cities are increasing more than at rural sites but they pointed out that the peak values are 
having a decreasing trend. Literature shows several research works to investigate the distribution 
and concentration of air pollutants in urban areas, identify major sources of pollution, and model 
the impact of mitigation strategies on air quality (Barceló et al., 2009; Yanosky et al., 2014; 
Barceló et al., 2016; Vicente et al., 2018; Trilles et al., 2019; Vicente et al., 2019; Saez et al., 
2020; Mota-Bertran et al., 2021; Trilles et al., 2021; Dimakopoulou et al., 2022; Saez and 
Barceló, 2022). 

1.2.8 Disaster Prevention and Management 

Analyzing and understanding the spatial and temporal aspects of natural hazards and disasters 
has become increasingly important with the advent of spatiotemporal analysis. Some common 
applications in disaster management include, hazard mapping and risk assessment, damage 
assessment and emergency response efforts. Studies demonstrate varied use of spatiotemporal 
analysis in hazard mapping and risk assessment, from landslides (Lateltin et al., 2005; Bednarik 
et al., 2012; Yang et al., 2015; Nahayo et al., 2019) to floods (Di Baldassarre et al., 2009; 
Hagemeier-Klose et al., 2009; Dottori et al., 2016; Franci et al., 2016; Popa et al., 2019; Ha et al., 
2023), across different geographic regions. Different research studies show that spatiotemporal 
analysis can be helpful in assessing damage caused by natural hazards such as cyclones, 
landslides, and earthquakes (Kiremidjian and Shah, 1997; Stein et al., 2012; Poompavai and 
Ramalingam, 2013; Giardini et al., 2018; Sahoo et al., 2018; Quesada-Román et al., 2022;  
Sreejaya et al., 2022). Other studies that have investigated the impacts of spatiotemporal analysis 
in emergency response management after natural hazards include (Huang and Xiao, 2015; Wang 
et al., 2016; Han et al., 2019; Karimiziarani et al., 2022). 

After analyzing the discussions, it can be scientifically affirmed that the application of 
spatiotemporal analysis has proven to be a valuable tool across diverse fields such as 
meteorology, ecology and environmental management, epidemiology and public health, urban 
issues encompassing crime, pollution, and traffic, as well as disaster prevention and 
management. This approach aids in the identification and analysis of spatial and temporal 
patterns of phenomena, providing insights for informed decision-making processes. 
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2. RATIONALE 

 
The integrated nested Laplace approximations (INLA) along with stochastic partial differential 
equation (SPDE) methodology is a powerful statistical modeling tool that combines two effective 
techniques: INLA, a rapid and precise Bayesian inference method, and SPDE, a flexible and 
scalable method for spatial modeling, providing significant advantages over other methods. To 
utilize INLA-SPDE for spatiotemporal modeling, the first essential step is to construct an SPDE 
triangulation or mesh over the spatial study area. 

Literature shows, for continuous spatial regions, traditional SPDE triangulation process is 
typically suitable and effective. However, in case of complex land structures like coastal areas or 
distributed islands, or in case of study areas separated by physical barriers like roads or, water 
bodies, conventional SPDE triangulation processes can be inadequate. This is because these 
methods inappropriately smooth over physical barriers and can lead to unrealistic assumptions. 

Moreover, it has been observed that conventional INLA-SPDE techniques are frequently used to 
model spatiotemporal events that are strictly confined to linear networks like traffic accidents or 
street crimes. Although creating a mesh for the entire region facilitates fitting the INLA model, 
predicting events using this approach can be problematic. This is because the observed events are 
discrete spatial points that are precisely located on the road network. Models that are fitted using 
a region mesh cover the entire study area, which can lead to predicted events appearing in areas 
without road networks, resulting in unrealistic predictions. 

As a result, traditional SPDE triangulation methods for spatiotemporal modeling may not be 
appropriate for all types of spatial regions. Therefore, there is a need for more precise and 
scientifically sound approaches that can account for physical barriers such as coastlines and 
accurately forecast events on linear networks while minimizing or eliminating boundary effects 
in complex spatial regions. Unfortunately, to date, there are limited scientific publications on this 
topic, emphasizing the need for further research to develop and evaluate innovative techniques. 
Additional research is necessary to devise and assess advanced techniques that can enhance the 
accuracy and precision of the INLA-SPDE methodology in modeling spatiotemporal events in 
complex land structures having physical barriers and on linear networks. 
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3. OBJECTIVES 

 
Traditionally, spatial statistics has relied on stationary models such as Matérn fields. However, 
these models may not be appropriate for analyzing complex spatial regions that have physical 
barriers like islands or coastal areas, as they can lead to inappropriate smoothing of these 
regions. Furthermore, in many environmental applications such as stream systems or urban road 
networks, it is necessary to develop statistical models specifically designed for linear networks. 
Concerning the challenges associated with modeling complex distributed spatial regions, 
particularly coastal areas and islands, as well as linear networks, it is evident that a novel and 
comprehensive modeling approach is required to address these issues. This may entail enhancing 
and refining the SPDE triangulation approach, particularly with regards to linear networks, or 
developing a generalized approach to model spatial and spatiotemporal events within complex 
land structures.  
Thus, the principal objective of the current thesis is two-fold: 

1. On one side we seek to establish a modeling framework for investigating spatiotemporal 
phenomena in complex spatial regions with physical barriers. 
 

2. Secondly, we aim to develop an innovative and realistic computational strategy for 
constructing spatial triangulations that are constrained to linear network topologies. 

 This framework will allow us to explore options such as nonstationary barrier models, as well as 
to investigate the potential benefits of alternative models, such as graph models, for enhancing 
the efficiency of our analyses. 
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4. METHODOLOGY 

4.1  Statistical Methods for Spatiotemporal Analysis 

The diverse studies reported in the preceding section establishes the fact that, understanding and 
analyzing spatiotemporal events is important because it allows us to gain insight into the 
dynamic behavior of complex systems and develop predictive models that can inform decision-
making in many scientific fields. Overall, these works (and many others) contributed to the 
development of spatiotemporal analysis as a distinct area of research. One of the key benefits of 
spatiotemporal analysis is the ability to identify patterns and trends in data that may be difficult 
or impossible to detect using other methods. For example, in ecology, spatiotemporal analysis 
can be used to track the movements of animals, monitor changes in biodiversity, and identify the 
impact of climate change on ecosystems. In epidemiology, spatiotemporal analysis can be used 
to identify clusters of disease outbreaks and track the spread of infectious diseases. Another 
benefit of spatiotemporal analysis is the ability to develop predictive models that can inform 
decision-making. Moreover, in urban planning, spatiotemporal analysis can be used to 
understand population dynamics, track the development of urban sprawl. Similarly, can be 
implemented to develop models that predict the impact of different development scenarios on 
traffic congestion, air quality, and other environmental factors. The development of new methods 
and the availability of large datasets will continue to advance spatiotemporal analysis and its 
applications in the future. 
Thus, exploring spatiotemporal events and their analysis are important in various fields and can 
provide valuable insights into the underlying processes that drive these events. Some of the key 
tools used in spatiotemporal analysis include GIS, remote sensing, spatial statistics, and spatial 
modeling. Statistical methods are commonly used to analyze and understand spatiotemporal 
events and phenomena. The analysis requires the use of a range of statistical methods that 
account for both spatial and temporal dimensions of the data. These methods can help identify 
patterns and relationships in the data and can be used to make predictions about future events. 
Statistical methods frequently employed in spatiotemporal analysis can be classified into several 
categories based on their purpose and application such as, exploratory analysis, interpolation 
methods, regression methods, cluster analysis, geostatistics, time series analysis, principal 
component analysis (PCA), spatial point pattern analysis, generalized linear model (GLM). 
These classifications are not mutually exclusive, and some methods can belong to multiple 
categories. The choice of method will depend on the research question, data type, spatial and 
temporal scales, and available computational resources. 

4.2  Overview of Bayesian Inference 

With Bayesian analysis, it is possible to use models that are flexible enough to accommodate 
non-linear associations and data that is not normally distributed. The statistical framework 
provides a way to estimate model parameters and predict values at unsampled locations. The 
methodology involves specifying prior distributions for the model parameters, fitting the model 
using Bayesian inference, and making posterior inferences, which can provide more intuitive and 
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interpretable results than frequentist 𝑝-values. It is particularly useful for spatiotemporal 
modeling because it can handle the complex interactions between space and time which can be 
difficult to model using traditional statistical methods. Moreover, it is not restricted to normally 
distributed data, making it applicable in a wide range of fields. It can handle a large number of 
covariates and allows for the inclusion of new covariates at a later stage. Furthermore, it is 
possible to analyze the significance level of each covariate, which enhances its usefulness in 
statistical modeling. Additionally, Bayesian inference allows us to quantify uncertainty and make 
probabilistic statements about the parameters of interest in a statistical model (Moraga, 2019).  
Bayesian models also allow incorporation of prior knowledge and uncertainty into the analysis. 
Bayesian inference is based on Bayes' theorem, which relates the conditional probabilities of the 
data given the parameters (the likelihood function) and the prior probabilities of the parameters. 
The posterior probability distribution of the parameters is then computed using Bayes' theorem. 
Mathematically, Bayes' theorem can be expressed as follows: 

p(θ | y) =
p(y | θ)p(θ)

p(y)
 

where 𝑝(θ|𝑦) is the posterior distribution of the parameters θ (that take values in a parametric 
space (Θ) ) given the observed data 𝑦, p(𝑦|θ) is the likelihood function, which represents the 
probability of the observed data given the parameters, 𝑝(θ) is the prior distribution of the 
parameters, which represents our beliefs about the parameters before observing the data, and 
𝑝(𝑦) is the marginal likelihood, which is the probability of the observed data averaged over all 
possible values of the parameters. The marginal likelihood is equal to 

∫ 𝑝( 𝑦 ∣∣ θ ) 𝑝(θ)𝑑θ
Θ

 

which make it difficult to calculate. The posterior distribution 𝑝(θ|y) is usually a complex, 
multi-dimensional distribution that can be difficult to calculate for many models since the 
marginal likelihood 𝑝(𝑦) is often hard to estimate. As a result, the posterior distribution is often 
estimated without computing the marginal likelihood. This is why Bayes’ theorem is often 
written in the proportional form: 

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) 

where the posterior distribution is proportional to the product of the likelihood function and prior 
distribution (Gomez-Rubio, 2020). If the posterior distribution cannot be obtained in a closed 
form, alternative methods must be used to estimate or sample from it. In such cases, the Ergodic 
theorem can be applied to estimate moments and other relevant quantities using a sample from 
the posterior. (Brooks et al., 2011). Computational techniques generally focus on estimating the 
integrals that arise in Bayesian inference. For example, the posterior mean of parameter θ𝑖 (with 
values in the parameter space (Θ) is computed as:  

∫ 𝜃𝑖 𝑝( 𝜃𝑖 ∣∣ y )𝑑𝜃𝑖
Θ𝑖
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Distribution  p(θi|y) is the marginal posterior distribution of univariate parameter  θ𝑖. Similar 
integrals can be used to compute various other moments, including the posterior variance. To 
approximate these integrals, numerical integration methods and the Laplace approximation 
(Tierney and Kadane, 1986) are considered appropriate techniques. Thus, the posterior 
distribution provides a complete summary of the uncertainty about the parameters, given the 
observed data. It can be used to estimate the values of the parameters, make predictions about 
new data, and quantify the uncertainty in these estimates and predictions. In Bayesian inference, 
we update our beliefs about the parameters based on the observed data, by computing the 
posterior distribution. This requires specifying a prior distribution for the parameters, which 
reflects our beliefs about the parameters before observing the data. It is worthy to mention that 
the choice of prior distribution can have a significant impact on the posterior distribution, 
particularly for small or sparse data sets (Coles and Powell, 1996).  
In spatiotemporal modeling, Bayesian inference is particularly useful because it allows to 
estimate the parameters of a model while taking into account uncertainty in the data. By 
incorporating prior knowledge or beliefs, we can also make better use of limited data and 
improve the accuracy of our estimates. In addition, Bayesian approaches are capable of handling 
complex models that are difficult to fit using classical methods such as repeated measures, 
missing data, and multivariate data (Hanson and Branscum, 2006). 
One significant drawback of Bayesian inference is it requires the specification of prior 
distributions for all model parameters. Choosing appropriate prior distributions can be 
challenging, and the results can be sensitive to the choice of priors. Moreover, though Bayesian 
analysis offers the advantage of flexible models for non-linear relationships and non-normal 
data, one of its challenges is the computation of the posterior distribution. This distribution 
reflects our level of uncertainty regarding the parameters based on the available data and can be 
either intractable or difficult to calculate. This has led to the development of several 
computational methods for approximating the posterior distribution. Two popular methods for 
approximating the posterior distribution are Markov chain Monte Carlo (MCMC) and Laplace 
approximation (Moraga, 2019). MCMC is a simulation-based approach that uses a Markov chain 
to sample from the posterior distribution. Laplace approximation, on the other hand, is a 
deterministic method that approximates the posterior distribution with a Gaussian distribution 
centered around the mode of the posterior.  

4.3  Markov Chain Monte Carlo (MCMC) 

MCMC methods are often used in Bayesian analysis to estimate the posterior distribution of 
model parameters. It is a powerful statistical method used for Bayesian inference in complex 
models that are difficult or impossible to analyze analytically. Bayesian analysis involves the use 
of prior knowledge to update beliefs about the probability of a hypothesis given the data. MCMC 
methods allow for the simulation of samples from the posterior distribution of the model 
parameters using Markov chains and are widely used in spatiotemporal analysis for modeling 
complex processes that vary in space and time (Geweke, 1992; Gilks et al. 1996; Brooks et al. 
2011). MCMC methods rely on the use of Markov chains to simulate samples from the posterior 
distribution of the model parameters. A Markov chain is a sequence of random variables, where 
each variable depends only on the previous variable in the sequence (Gomez-Rubio, 2020). The 
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Markov chain is constructed so that its equilibrium distribution is the target posterior distribution 
of interest. The chain is started at some initial value, and then moves from one state to the next 
according to a transition probability distribution. The transition probability distribution is 
designed so that the Markov chain is reversible and satisfies the detailed balance condition 
(Blangiardo et al., 2013). A Markov chain is a sequence of random variables that follows the 
Markov property, which states that the probability of moving to a new state depends only on the 
current state, and not on any previous states. Mathematically, it can be expressed as: 

𝑃( 𝑋𝑡+1 ∣∣ 𝑋𝑡 , 𝑋𝑡−1, … , 𝑋0 ) = 𝑃( 𝑋𝑡+1 ∣∣ 𝑋𝑡 ) 

where 𝑋𝑡 is the state at time 𝑡, and 𝑋𝑡+1 is the state at time 𝑡 + 1. The MCMC algorithm involves 
generating a Markov chain of parameter values that converge to the target posterior distribution. 
The algorithm starts with an initial value of the parameters, and then proposes a new value from 
a proposal distribution. The proposed value is then accepted or rejected based on its probability, 
which is calculated using the acceptance ratio. Mathematically, the acceptance ratio is given by: 

𝑚𝑖𝑛 (1,
𝑃(𝐷|𝜃′) ⋅ 𝑃(𝜃′)

𝑃(𝐷|𝜃) ⋅ 𝑃(𝜃)
) 

where θ is the current parameter value, θ′ is the proposed parameter value, 𝑃(𝐷|θ) is the 
likelihood of the data given the current parameter value, 𝑃(θ) is the prior distribution of the 
parameter, 𝑃(𝐷|θ′) is the likelihood of the data given the proposed parameter value, and P(θ′) is 
the prior distribution of the proposed parameter value. The MCMC algorithm is designed to 
generate a Markov chain that converges to the target posterior distribution. Convergence is 
typically assessed by monitoring the autocorrelation of the chain, which is a measure of how 
closely the values of the chain are related to each other. A well-converged Markov chain will 
have low autocorrelation and will produce accurate estimates of the posterior distribution 
(Cowles and Carlin, 1996).  
In summary, the MCMC methodology for Bayesian inference involves generating a Markov 
chain of parameter values that converge to the target posterior distribution, by proposing new 
parameter values and accepting or rejecting them based on their probability. MCMC methods 
have become a standard tool in Bayesian analysis for spatiotemporal analysis because they allow 
for the incorporation of spatial and temporal dependence in models, while providing a flexible 
framework for estimating parameters and making predictions. Several studies have implemented 
MCMC-based spatiotemporal models to understand various environmental and ecological 
phenomena. For example, Wikle et al. (1998) discuss the use of hierarchical Bayesian models for 
analyzing spatiotemporal data. The paper presents an overview of the theory and implementation 
of hierarchical Bayesian models, with a particular emphasis on using MCMC algorithms in a 
Bayesian framework for parameter estimation. A second study conducted by Wikle in 2003 
explores the application of hierarchical Bayesian models in predicting the spread of ecological 
processes with a focus on using MCMC. Literature shows similar applications in ecological 
modeling, climate modeling, environmental risk assessment, biodiversity and conservation and 
in other socio-economic issues (Malve et al., 2007; Gallagher et al., 2009; de Figueiredo et al., 
2019; Wang et al., 2022). Interestingly, urban planning and management require informed 
decision-making under uncertainty, making Bayesian inference a natural fit for urban 
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applications. In that context, MCMC has been applied in various areas such as transportation 
modeling, urban planning and urban growth modeling (Brooks et al., 2011; Gielen et al., 2018; 
Mustafa et al., 2021), crime analysis (Hubin and Storvik, 2018; Bresson et al., 2021) and 
modeling urban air pollution and effects on public health (Brooks et al., 2011; Zakaria and Noor, 
2018; Zhu et al., 2021). MCMC provides a flexible framework for Bayesian inference, allowing 
the incorporation of complex models and the propagation of uncertainties through these models. 
Moreover, MCMC is a powerful tool that can make probabilistic predictions and handle 
uncertainty, which is particularly valuable in epidemiology where data are often incomplete or 
uncertain (Cauchemez et al., 2004 ; Hamra et al., 2013; Shim et al., 2019; Safford et al., 2021).  

4.3.1 Challenges in MCMC 

Based on the preceding discussions, it can be asserted that MCMC using Bayesian inference is 
beneficial in spatiotemporal modeling, but it also has certain drawbacks and challenges. One of 
the primary issues with MCMC in spatiotemporal modeling is that it can be computationally 
intensive and time-consuming, especially when dealing with large datasets or complex models 
(Rue et al., 2009; Blangiardo and Cameletti, 2015). Another challenge is that selecting 
appropriate priors and tuning the MCMC algorithm can be difficult, which can lead to biased or 
inefficient estimates. Additionally, MCMC can struggle to handle non-linear and non-Gaussian 
models, which are common in spatiotemporal modeling (Gomez-Rubio, 2020). These issues 
need to be carefully considered when using MCMC in spatiotemporal modeling. 
Recent advances in computing technology and real-time data collection have led to an increase in 
the complexity and amount of spatiotemporal data available for analysis. MCMC methods 
require repeated sampling from a complex distribution, which can be computationally expensive, 
particularly for large datasets. The increase in the amount and complexity of spatiotemporal data 
has created a big challenge for researchers and analysts who wish to use MCMC methods for 
modeling and inference. The large number of parameters and the high dimensionality of the data 
can cause the Markov chains to mix slowly, leading to a long computational time to generate a 
sufficient number of samples for accurate inference. Additionally, the high correlation between 
neighboring data points in spatiotemporal data can also slow down the convergence of the 
Markov chains (Rue et al., 2009; Gómez-Rubio et al., 2014; Zhang et al., 2016). To address 
these challenges, researchers have developed a range of techniques to make MCMC methods 
more computationally efficient for spatiotemporal data. Some of these techniques include 
parallel computing, which involves distributing the computation across multiple processors to 
speed up the sampling process (Wikle, 2003). Other approaches include using more efficient 
algorithms specifically designed for spatiotemporal data. In the following section we will discuss 
in detail about a novel algorithm that uses integrated nested Laplace approximations (INLA) for 
Bayesian spatiotemporal modeling (Rue et al., 2009).  

4.4  Integrated Nested Laplace Approximations (INLA) 

INLA is a statistical methodology that is specifically designed for modeling latent Gaussian 
models, which are an extensive and versatile class of models that include linear mixed, spatial, 
and spatio-temporal models. Due to this versatility, INLA has been successfully applied in a 
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diverse range of fields, such as Paul et al. (2010), Martino et al. (2011), Roos and Held (2011), 
Schrödle and Held (2011), Li et al. (2012), Riebler et al. (2012), Ruiz-Cárdenas et al. (2012). 
This popular computational method has been developed as a computationally efficient alternative 
to MCMC (Rue et al., 2009). The approach combines the advantages of two existing Bayesian 
computation methods, MCMC and Laplace approximation and provide fast and accurate 
estimates of posterior distributions in complex hierarchical models. In particular, they focus on 
estimating the posterior marginals of the model parameters. Hence, instead of estimating a 
complex multivariate joint posterior distribution they focus on obtaining approximations to 
simple univariate posterior distributions (Gomez-Rubio, 2020).  
The integrated nested Laplace approximation method enables the use of approximate Bayesian 
inference in latent Gaussian models, including generalized linear mixed models, as well as 
spatial and spatio-temporal models. Based on the computational properties, INLA focus on latent 
Gaussian Markov random field (GMRF) models (Rue et al., 2009; Krainski et al., 2018). This 
covers a wide range of models as reported by Rue et al. (2017) and Bakka et al. (2018).  
Prior to delving into the details of the INLA methodology, it is necessary to first provide an 
overview of the concept of GMRF. In practice, it is crucial for the latent field to be both 
Gaussian and a sparse GMRF (Rue and Held, 2005; Held and Rue, 2010). A GMRF is a 
Gaussian model with additional conditional independence properties, such that 𝑥𝑖 and 𝑥𝑗 are 
conditionally independent given the remaining elements 𝑥𝑖𝑗 for a subset of pairs {𝑖, 𝑗}. A 
common example is the first-order auto-regressive model, 

𝑥𝑡 = ϕ𝑥𝑡−1 + ϵ𝑡 ,  𝑡 = 1,  2, … , m, 

with ϕ is a constant that determines the relationship between 𝑥𝑡 and 𝑥𝑡−1 and Gaussian 
innovations ϵ. Although the resulting covariance matrix is dense, the precision matrix is 
tridiagonal and can be factorized in 𝑂(𝑚) time, which provides a significant computational 
advantage (Rue and Held, 2005). 
In general, the computational cost of using GMRFs depends on the sparsity pattern in the 
precision matrix. For models with a spatial structure, the cost is 𝑂(𝑚3/2) paired with a 
𝑂(𝑚 log(𝑚)) memory requirement (Rue and Held, 2005). This reduction in both computational 
and memory requirements make it feasible to run larger models using GMRFs. 

In particular, the models are defined by the equations: 

𝑦𝑖 ∣ 𝒙, 𝜽 ∼ π(𝑦𝑖|𝑥𝑖 , 𝜽), 𝑖 = 1, … , 𝑛, 

𝒙 ∣ 𝜽 ∼ 𝑁(𝝁(𝜽),  𝑸(𝜽)−𝟏), 

𝜽 ∼ 𝜋(𝜽) 

where 𝑦 = (𝑦1, … , 𝑦𝑛) is the observed data, 𝒙 is a Gaussian field, and 𝜽 are hyperparameters. 
The mean of the latent Gaussian field 𝑥 is given by 𝝁(𝜽)and the precision matrix (i.e., the 
inverse of the covariance matrix) is given by 𝑸(𝜽). The observed data 𝒚 and the Gaussian field 𝒙 
can both be high-dimensional. As approximations are computed using numerical integration over 
the hyperparameter space, it is essential to limit the size of the hyperparameter vector 𝜽 to 
generate fast inferences (Rue et al., 2009). In several cases, the observations 𝑦𝑖, are part of an 
exponential family whose mean is given by 𝜇𝑖 = 𝑔−1(𝜂𝑖).  
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The linear predictor 𝜂𝑖 accounts for the effects of different covariates in an additive manner 
 

                          ηi = α + ∑ βkzki
nβ

k=1
+ ∑ f (j)(uji)

nf
j=1         …………..  (1) 

Here, 𝛼 is a scalar representing the intercept, the linear impact of the covariates 𝑧𝑘i on the 
response is captured by the coefficients 𝛽𝑘, and 𝑓(𝑗)(⋅)  are a set of random effects defined in 
terms of some covariates 𝑢𝑗i. The term nβ is usually specified prior to model fitting and reflects 
the number of predictor variables included in the model and 𝑛𝑓 represents the number of 
covariates. This approach allows for the inclusion of various types of models due to the 
flexibility of the f (𝑗) functions, which can take different forms including spatial and spatio-
temporal models (Moraga, 2019). 
INLA employs a hybrid approach that involves analytical approximations and numerical 
algorithms for sparse matrices in order to approximate the posterior distributions using closed-
form expressions. These approximated posteriors can subsequently undergo post-processing to 
compute relevant quantities such as posterior expectations and quantiles. Specifically, consider 
the vector of latent Gaussian variables, where 𝜽 denotes the vector of hyperparameters that may 
not follow a Gaussian distribution. This strategy enables quicker inference and sidesteps issues 
related to sample convergence and mixing, making it feasible to fit large datasets and investigate 
different models (Rue et al., 2009). It produces fast and precise approximations to the posterior 
marginals of the components of the latent Gaussian variables represented as:  

π(𝑥𝑖|𝑦), i = 1, … , n, 

also, for the posterior marginals for the hyperparameters of the Gaussian latent model 

π(θ𝑗|𝒚), j = 1, … , dim(𝜽) 

The posterior marginals of each element 𝑥𝑖 of the latent field 𝑥 are  

π(𝑥𝑖|𝒚) = ∫ π(𝑥𝑖|𝜽, 𝒚)π(𝜽|𝒚)𝑑𝜽 

and the posterior marginals for the hyperparameters can be represented as 

π(𝜃𝑗|𝒚) = ∫ π(𝜽|𝒚)𝑑𝜽−𝑗 

The nested formulation is employed to estimate the posterior distribution 𝜋(𝑥𝑖|𝒚) by combining 
analytical approximations of the full conditionals 𝜋(𝑥𝑖|𝜽, 𝒚) and 𝜋(𝜽|𝒚) with numerical 
integration routines for integrating out θ.  
Similarly, the approximation of 𝜋(𝜃𝑗|𝒚) is achieved by approximating 𝜋(𝜽|𝒚) and integrating 
out 𝜽−𝑗. Specifically, the Gaussian approximation for the posterior distribution of the latent field, 
πG̃(𝒙|𝛉, 𝒚), evaluated at the posterior mode, 𝒙 ∗ (𝜽) = arg max𝒙 π𝐺(𝒙|𝜽, 𝒚), is used to estimate 
the posterior density of the hyperparameters (Rue et al., 2009; Lindgren and Rue, 2015; Rue et 
al., 2017)  
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π̃(𝜽|𝒚) ∝
π(𝒙, 𝜽, 𝒚)

π�̃�(𝒙|𝜽, 𝒚)
|

𝒙=𝒙∗(𝜽)

 

Then, INLA constructs the following nested approximations: 

π̃(𝑥𝑖|𝒚) = ∫ π̃(𝑥𝑖|𝜽, 𝒚)π̃(𝜽|𝒚)𝑑𝜽 , 

π̃(θ𝑗|𝒚) = ∫ π̃(𝜽|𝒚)𝑑𝜽−𝑗 

Finally, these approximations can be integrated numerically with respect to 𝜃  

π̃(𝑥𝑖|𝒚) = ∑ π̃(𝑥𝑖|𝜽𝒌, 𝒚)π̃(𝜽𝒌|𝒚)

𝑘

× 𝚫𝑘 , 

�̃�(𝜃𝑗|𝒚) = ∑ �̃�(𝜽𝒍
∗|𝑦)

𝑙

× 𝚫𝑙
∗ 

where, 𝚫𝑘(𝚫𝑙
∗) denotes the area weight corresponding to 𝜽𝒌(𝛉𝒍

∗). The approximations for the 
posterior marginals for the 𝑥𝑖 's conditioned on selected values of 𝜽𝒌, π̃(𝑥𝑖|𝜽𝒌, 𝒚), can be 
computed in different ways such as, using a Gaussian, a Laplace, or a simplified Laplace 
approximation. The simplest and fastest solution is to use a Gaussian approximation derived 
from π�̃�(𝒙|𝜽, 𝒚) (Rue et al., 2009). 
From the above discussions, we can summarize that, INLA combines analytical approximations 
with numerical integration to obtain approximations of the posterior distributions of the latent 
Gaussian variables x and hyperparameters θ, which are computed by integrating out the 
hyperparameters from the full conditional posterior distributions of the latent Gaussian variables. 
The posterior marginals are then integrated numerically with respect to the hyperparameters to 
compute posterior expectations and quantiles. The nested formulation of the approximations 
allows for accurate and efficient estimation of the posterior distributions of the latent Gaussian 
variables and hyperparameters (Rue et al., 2009; Rue et al., 2017). Specific advantages of INLA 
can be reported as, INLA can handle complex hierarchical models with many levels of nesting, 
which are common in spatiotemporal modeling. This is because INLA approximates the 
posterior distribution of the model parameters using a Laplace approximation, which provides a 
computationally efficient way to integrate out the latent variables in the model. Secondly, it 
allows inclusion of spatial and temporal dependencies in the model using random effects. This 
allows for the modeling of non-stationary spatial and temporal processes, which is important in 
many applications such as disease mapping, environmental monitoring, and climate modeling. 
Finally, INLA can handle missing data and irregularly spaced data, which are common in 
spatiotemporal data sets. This is because INLA uses a GMRF representation of the spatial and 
temporal random effects, which allows for the efficient computation of the likelihood and 
posterior distribution even when the data is incomplete or irregularly spaced. 
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4.4.1 Overview of R-INLA Package 

The R-INLA is an R package (Lindgren and Rue, 2015) used to implement approximate 
Bayesian inference using the INLA approach. INLA website (http://www.r-inla.org) provides 
instructions on extensive documentation, examples, a discussion forum, and other resources that 
cover the theory and applications of INLA.  
In order to utilize INLA for model fitting, there are two necessary steps. First, we must construct 
the linear predictor of the model as a formula object in R. Then, we call the inla() function while 
specifying the formula, the family, the data, and other options to run the model. Running the 
inla() function generates an object that encompasses information about the fitted model, such as 
various summaries and the posterior marginals of parameters, linear predictors, and fitted values. 
To further process these posteriors, R-INLA offers a range of functions. The library includes a 
list of priors. By default, the intercept of the model is assigned a Gaussian prior with mean and 
precision equal to 0. The rest of the fixed effects are assigned Gaussian priors with mean equal to 
0 and precision equal to 0.001 (Lindgren and Rue, 2015; Rue et al., 2017). It is possible to 
modify the values of these priors by utilizing the control.fixed parameter in inla(). This involves 
assigning a list that contains the mean and precision values of the Gaussian distributions 
(Moraga, 2019). Simpson et al. (2017) proposed a method for constructing priors by penalizing 
model component complexity, which has been used in INLA-SPDE models. The R-INLA 
package offers a valuable framework for constructing priors as penalized complexity (PC) priors. 
These priors can be applied to individual components of a model, providing a flexible expansion 
of a simple and easily understood base model. PC priors are designed to penalize deviations from 
the base model, thereby controlling the degree of flexibility in the model and reducing over-
fitting, leading to improved predictive performance. The PC priors are determined by a single 
parameter that regulates the level of flexibility in the model. These priors are specified by setting 
values (𝑈, 𝛼) so that, 

𝑃(𝑇(ξ) > 𝑈) = α 

where 𝑇(𝜉) represents an interpretable transformation of the flexibility parameter 𝜉, 𝑈 is an 
upper bound that specifies a tail event, and 𝛼 is the probability of this event (Rue et al., 2009; 
Blangiardo and Cameletti, 2015). The package also includes estimates of different criteria to 
evaluate and compare Bayesian models, such as the model deviance information criterion (DIC) 
(Spiegelhalter et al., 2002), the Watanabe-Akaike information criterion (WAIC) (Watanabe and 
Opper, 2010), the marginal likelihood, and the conditional predictive ordinates (CPO) (Held et 
al., 2010). 

4.5  Spatial Data 

Spatial data can be mathematically represented as realizations of a stochastic process that is 
indexed by space. In particular, spatial data can be represented as a set of observations: 

Y(s) ≡ y(s), s ∈ 𝐷 

where 𝐷 is a fixed subset of 𝑅𝑑 and 𝑑 = 2 in this case. Following the specifications by Cressie 
(1993), Banerjee et al. (2004) and Gelfand et al. (2010), the spatial data is conventionally 
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classified into three principal domains, which are distinguished based on the nature of the 
problem and the data involved: areal or lattice data, point-referenced or, geostatistical data, and 
spatial point patterns. The observations can be thought of as a collection of n measurements, 𝑦 =

𝑦(𝑠1), … , 𝑦(𝑠𝑛), where the set (𝑠1, … , 𝑠𝑛) denotes the spatial units where the measurements were 
obtained. Depending on whether 𝐷 is a continuous surface or a countable collection of 𝑑-
dimensional spatial units, the problem can be specified as a spatially continuous or discrete 
random process, respectively (Gelfand et al., 2010).  

4.5.1 Areal Data 

Area or lattice data refers to a type of spatial data where a random aggregate value, denoted as 
𝑦(𝑠), is associated with a well-defined areal unit s in a countable collection of d-dimensional 
spatial units. Examples of areal data might include the number of crimes reported in each 
neighborhood, the percentage of a population that is vaccinated in each county, or the incidence 
rate of a particular disease in each state. Areal data can be regular or irregular, depending on the 
shape and size of the geographic units. Regular lattice data is characterized by a fixed grid of 
equally sized cells, while irregular lattice data has cells of varying shapes and sizes. The main 
goal of analyzing area or lattice data is often to smooth or map an outcome over a study area. 

 
Source: Blangiardo and Cameletti (2015) 

Figure 1: Realizations of areal data 

regular lattice (left) and irregular lattice (right)  

Figure 1 shows two realizations of an areal process, where the left panel displays the proportion 
of children with respiratory illness in regular lattice and the right panel displays the standardized 
morbidity ratio of lung cancer in 44 London wards and representing irregular lattice structure. 
The figure and data presented in Figure 1 is obtained from Blangiardo and Cameletti (2015) and 
reproduced for this study. Higher tone of colors indicate higher proportion of respiratory illness 
in left panel and higher standardized morbidity ratio in right panel of Figure 1. 
While dealing with area level data, the problem can be reformulated based on the neighborhood 
structure. The notation (𝑠1, … , 𝑠𝑛) can be simplified to (1, … , 𝑛) by numbering the areas from 
1 𝑡𝑜 𝑛. The neighbors of an area 𝑖 are defined as the areas that share borders with it, including 
first-order neighbors (i.e., directly adjacent areas) and second-order neighbors (i.e., areas 
adjacent to the first-order neighbors). This is illustrated in Figure 2. 
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Source: Blangiardo and Cameletti (2015) 

Figure 2: Neighborhood structure in areal data 

first-order neighbors (left), first- and second-order neighbors (right) 

 

Assuming the Markovian property, which states that the parameter θ𝑖 for the 𝑖-th area is 
independent of all other parameters given its set of neighbors 𝑁(𝑖), then  

θ𝑖 ∐ θ−𝑖 ∣ θ𝑁(𝑖) 

where, θ−𝑖 denotes all elements in θ except 𝑖-th element. This is known as the local Markov 
property. On the other hand, for any pair of elements (𝑖, 𝑗) in θ the nonzero pattern in the 
precision matrix is given by the neighborhood structure of the process, known as the pairwise 
Markov property and represented as: 

θ𝑖 ∐ θ𝑗 ∣ θ−𝑖𝑗 ⟺ 𝑄𝑖𝑗 = 0 

As a result, 𝑄𝑖𝑗 ≠ 0 only if j ∈ {i, 𝑁(𝑖)} which is again a GMRF (Rue and Held, 2005). It is 
worthy to note that, the independence of θ𝑖 from θ𝑗 is now not only conditional to the 
hyperparameters but also to the set of neighbors and we can specify the precision matrix as a 
function of the structure matrix 𝑹 as: 

𝑄 =  τ 𝑹 

where, (𝑅𝑖𝑗 = 𝒩𝒾 if 𝑖 =  𝑗), (𝑅𝑖𝑗 = 1 if 𝑖 ∼  𝑗) and (𝑅𝑖𝑗 = 0) otherwise. Here, 𝑖 ∼ 𝑗 indicates 
that 𝑖 and 𝑗 are neighbors (Rue and Martino, 2007; Rue et al., 2017). 

4.5.2 Geostatistical data 

Point-referenced or geostatistical data is a type of spatial data where a random outcome, denoted 
as 𝑦(𝑠), is associated with a specific location 𝑠 in a fixed domain 𝐷. The location s is typically a 
two-dimensional vector with latitude and longitude but may also include altitude. The data are 
represented by a collection of observations 𝑦 = (𝑦(𝑠1), … , 𝑦(𝑠𝑛)), where the set (𝑠1, … , 𝑠𝑛) 
indicates the locations at which the measurements are taken. The main goal of analyzing 
geostatistical data is to predict the outcome at unobserved locations in 𝐷. An example of 
geostatistical data is depicted in Figure 3. The data set named meuse, it includes measurements 
of four heavy metals in the topsoil of a floodplain along the river Meuse, in west Europe. The 
distribution of heavy metals appears to be influenced by the transportation of polluted sediment 
by the river, with the majority of deposition occurring near the riverbank and in areas with low 
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elevation. Figure 3 shows zinc measurements at 155 locations near the river. Higher color tone 
indicates higher metal concentrations (ppm). Burrough and McDonnell in 1998 introduced this 
data (Burrough and McDonnell, 1998). This data was originally introduced by The figure and 
data presented in Figure 3 are obtained from Blangiardo and Cameletti (2015) and reproduced 
for this study. 
Geostatistics is a statistical method used to analyze continuous processes in space. It involves 
estimation of variables of interest over a study region, based on observations made at a finite 
number of points. The geostatistical process is often represented as a continuous stochastic 
process 𝑦(𝑥) with 𝑥 ∈ 𝐷, where 𝐷 is the study region. The Gaussian Process (GP) is a 
commonly used model for this process, assuming the stochastic process follows a Gaussian 
distribution. 

 
Source: Blangiardo and Cameletti (2015) 

Figure 3: Example of geostatistical data 

The GP is often assumed to be stationary and isotropic, simplifying modeling by assuming that 
the covariance between two points only depends on their relative distance, rather than their 
actual positions. This method is useful for understanding the spatial distribution of various 
variables, such as temperature or pollutants in the air, and has a wide range of applications in 
fields such as environmental science and geology (Cressie, 2015). 

4.5.3 Spatial Point Patterns 

Spatial point patterns refer to a type of spatial data where the measurement 𝑦(𝑠) represents the 
occurrence or not of an event, and the locations themselves are random. The spatial domain D is 
a set of points in 𝑅𝑑 where events have occurred, such as the locations of trees of a species in a 
forest or addresses of persons with a particular disease. In this case, while locations s ∈ 𝑅𝑑 are 
random, the measurement 𝑦(𝑠) takes 0 or 1 values, depending on whether the event has occurred 
or not. If additional covariate information is available, it is called a marked point pattern process. 
The main goal of analyzing spatial point patterns is to evaluate possible clustering or inhibition 
behavior between observations. This type of data is beyond the scope of the current research 
thesis. 
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4.6  Extended Geostatistical Paradigm 

The problem of dealing with exposure and health outcome data recorded at disparate spatial 
scales is known as the modifiable areal unit problem (MAUP) in geography, and as spatial 
misalignment in the statistical literature (Diggle et al., 2013). This problem has been addressed in 
the epidemiological setting by several authors. Mugglin et al. (2000) proposed a solution based 
on creating a single, finer partition that includes all nonzero intersections of subregions, where 
disease counts, and covariate information are recorded on different partitions. Best et al. (2000) 
assumed that covariate information on a risk factor of interest is available throughout the region 
of interest, and derived the distribution of observed counts from an underlying Cox process. 
Kelsall and Wakefield (2002) used a similar approach, except that they used a log-Gaussian 
latent stochastic process rather than a gamma random field. Low-rank models, such as the class 
of Gaussian predictive process models proposed by Banerjee et al. (2008) and further developed 
by Finley et al. (2009), can be used to simplify the technical and computational issues that arise 
when handling spatial integrals of stochastic processes. Gelfand (2012) provided a useful 
summary of this and related work. 
All of these approaches can be included in a single modeling framework for multiple exposures 
and disease risk by considering them as a set of spatially continuous processes, irrespective of 
the spatial resolution at which data elements are recorded. A model for the spatial association 
between disease risk, 𝑅(𝑥), and 𝑚 exposures 𝑇𝑘(𝑥): 𝑘 = 1, … , 𝑚 can be obtained by treating 
individual case-locations as a log Gaussian Cox process (LGCP) with intensity represented as 

𝑅(𝑥) = 𝑒𝑥𝑝 𝛼 + ∑(𝑘 = 1)𝑝𝛽𝑘 𝑇𝑘(𝑥) + 𝑆(𝑥) 

where 𝑆(𝑥) denotes stochastic variation in risk that is not captured by the 𝑝 covariate processes 
𝑇𝑘(𝑥). 
Let us consider, health outcome data are available in the form of area-level counts, 𝑌𝑖: 𝑖 =

1, … , 𝑛, in subregions 𝐴𝑖, while exposure data are collections of unbiased estimates, 𝑈𝑖k, of the 
𝑇𝑘(𝑥) at corresponding locations 𝑥𝑖k: i = 1, … , 𝑚𝑘. Consider, further that the 𝑈𝑖k are 
conditionally independent, with 𝑈𝑖k ∣ 𝑇𝑘(. ) ∼ 𝑁(𝑇𝑘(𝑥𝑖𝑘), τ𝑘

2), the processes 𝑇𝑘(. ) are jointly 
Gaussian, and the process 𝑆(. ) is also Gaussian and independent of the 𝑇𝑘(. ). One possible 
inferential goal is to evaluate the predictive distribution of the risk surface 𝑅(. ) given the data 
𝑌𝑖: 𝑖 = 1, … , 𝑚 and 𝑈𝑖k: i = 1, … , 𝑚𝑘; k = 1, … , p (Diggle et al., 2013). Using a simple and easily 
understandable way of expressing the concept and setting aside the matter of estimating 
parameters for the moment, the necessary forecasted distribution is denoted as [𝑆, 𝑇|𝑈, 𝑌]. The 
joint distribution of 𝑆, 𝑇, 𝑈, and 𝑌 factorizes as 

[𝑆, 𝑇, 𝑈, 𝑌] = [𝑆][𝑇][𝑈|𝑇][𝑌|𝑆, 𝑇] ……… (2) 

where [𝑆] and [𝑇] are multivariate Gaussian densities, [𝑈|𝑇] is a product of univariate Gaussian 
densities, and [𝑌|𝑆, 𝑇] is a product of Poisson probability distributions having means 𝜇𝑖 =

∫(𝐴𝑖)𝑅(𝑥)𝑑𝑥. The process of sampling from predictive distributions can be carried out using 
MCMC algorithms. In Bayesian parameter estimation, a suitable joint prior for the model 
parameters is augmented with the likelihood function (Equation 2) before designing the MCMC 
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algorithm. In this regard, Diggle et al. (2013) discusses two conventional methods for analyzing 
data from each subject as a time-sequence of binary responses with explanatory variables: 
generalized estimating equations (Liang and Zeger, 1986) and generalized linear mixed models 
(Breslow and Clayton, 1993). However, the article proposes an alternative modeling framework 
for multiple exposures and disease risk by treating them as spatially continuous processes. A 
model for the spatial association between disease risk and exposures can be obtained by treating 
individual case-locations as an LGCP with intensity. The LGCPs include time-constant and time-
varying covariates, as well as a spatio-temporally continuous Gaussian process. The goal is to 
evaluate the predictive distribution of the risk surface given the data on health outcome and 
exposure, which can be carried out using MCMC algorithms. 
The traditional approach in geostatistics is to use observations at a finite number of locations to 
estimate the parameters of a spatial model that can be used to predict values at unsampled 
locations. But Diggle et al. (2013) in this study propose that geostatistics is a suitable framework 
for addressing scientific problems that involve spatially continuous processes with spatially 
discrete observations at a finite number of locations. They suggest that geostatistics should be 
defined by the class of scientific problems that it addresses, rather than by specific models or 
data formats. This approach allows for a more flexible and adaptive use of geostatistical methods 
to address diverse scientific questions. This establishes the extended geostatistical paradigm. 

4.7  Spatial and Spatiotemporal Modeling 

The use of spatial data in inferential processes requires taking into account the spatial trend, 
which can provide valuable insights and neglecting it may lead to biased estimates. Bayesian 
approach is effective in handling such data and has been used in various applications like 
ecology, environmental studies, and infectious diseases. The selection of appropriate models 
depends on the nature of the data, such as aggregated counts, continuous underlying processes, 
or point locations. The hierarchical structure can be extended to account for similarities based on 
neighborhood or distance, and INLA approach can handle the computational challenges 
associated with the added complexity of spatial structure (Blangiardo et al., 2013; Bivand et al., 
2015). 
In order to construct a spatial model within the Bayesian framework, the first step is to specify a 
probability distribution for the observed data. Typically, a distribution from the Exponential 
family is selected, with parameters θ that account for spatial correlation. To simplify the 
notation, the subscript 𝑖 is used to refer to a generic spatial point or region, rather than an 
indicator 𝑠𝑖. While dealing with geostatistical data, the parameters are expressed as a latent 
stationary Gaussian field (GF) which is a function of hyper-parameters ψ and associated with a 
prior distribution 𝑝(ψ) (Blangiardo et al., 2013). This assumption implies that the multivariate 
normal distribution of 𝜃, with mean µ = (µ1, … , µ𝑛)′ and a spatially structured covariance matrix 
Σ, whose generic element is expressed as 

Σ𝑖𝑗 = 𝐶𝑜𝑣(θ𝑖 , θ𝑗) = σ𝑐
2𝐶(Δ𝑖𝑗) 

Here, σ𝑐
2 is the variance component for 𝑖, 𝑗  =  1,   … , 𝑛. 
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4.7.1 Modeling for Areal Data 

INLA can be used to fit a range of spatial models for areal or lattice data, including spatial 
regression and spatial autoregressive models. INLA provides estimates of the posterior 
distribution of the model parameters, as well as estimates of the posterior predictive distribution, 
which can be used to make predictions for new data. 

For example, the spatial regression model for areal data using INLA can be written as: 

𝑦𝑖 = 𝑋𝑖β + 𝑢𝑖 + 𝑒𝑖 

where 𝑦𝑖 is the value of the response variable at location 𝑖, 𝑋𝑖 is a matrix of covariates, beta is a 
vector of coefficients, 𝑢𝑖 is a spatially correlated random effect, and 𝑒𝑖 is a spatially uncorrelated 
error term. The spatially correlated random effect, 𝑢𝑖, is modeled as a GMRF, which is a discrete 
approximation of a continuous spatial process (Banerjee, Carlin, and Gelfand, 2014). Lattice data 
are rarely observed in regular grid. For example, administrative boundaries usually lead to an 
irregular lattice. For irregular lattice data, INLA can be used to fit a spatially varying coefficient 
(SVC) model. The SVC model can be written as: 

𝑦𝑖 = 𝑋𝑖β + sum(𝑤𝑖𝑗𝑢𝑗) + 𝑒𝑖 

where 𝑤𝑖𝑗 is the weight between location 𝑖 and location 𝑗, 𝑢𝑗 is the spatially correlated random 
effect at location 𝑗, and the sum is taken over all neighboring locations. The weights can be 
determined based on the distance between the cells, or on some other measure of spatial 
similarity. Literature shows the use of spatial modeling for areal or lattice data. For example, Rue 
et al. (2009) provide a comprehensive overview of the INLA method and its application to 
spatial modeling. They describe the use of INLA for spatial regression analysis, which can be 
used to model the relationship between a response variable and a set of covariates, while 
accounting for spatial correlation among the observations. In addition, Bivand et al. (2013) give 
a summary of spatial modeling methods using areal data examples. While Baddeley et al. (2015) 
primarily discusses point pattern data analysis, they also cover areal data and spatial regression 
models. As a showcase example for regular lattice we demonstrate the use of the bei dataset from 
R-package spatstat (Baddeley et al., 2015), which contains the spatial coordinates of 3605 trees 
in a tropical rainforest. Typically, two regions are considered as neighbors if they share a 
common boundary, which may consist of a single point (queen adjacency) or a segment of at 
least some length (rook adjacency). Left panel of Figure 4 provides a visual representation of this 
concept for the present dataset. In case of regular lattice data, Simpson et al. (2017) applied 
Bayesian hierarchical model using INLA to model spatiotemporal trends in groundwater quality 
in Ireland. Similar work by Shaddick et al. (2018) analyze regular lattice data of air pollution 
levels in the UK.  
On the other hand, Gelfand (2012) provide a comprehensive overview of spatial statistics, with a 
focus on irregular lattice data analysis. They demonstrate the use of INLA for modeling complex 
spatial structures, including non-stationary and anisotropic effects. The authors emphasize the 
importance of model selection and validation in spatial modeling and provide a framework for 
evaluating model performance. Martinez-Beneito et al. (2017) demonstrated the flexibility and 

https://becarioprecario.bitbucket.io/inla-gitbook/ch-spatial.html#ref-Banerjeeetal:2014
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computational efficiency of INLA for handling irregular lattice data to model spatiotemporal 
variation in mortality rates in Valencia, Spain. To illustrate the concept of irregular lattice, we 
use the administrative boundaries of the boston dataset, which is available in R-package spData 
and contains housing values recorded for census tracts in Boston (Harrison and Rubinfeld, 1978). 
By default, a binary adjacency matrix is generated, such that two regions are considered 
neighbors only if they share at least one point along their common boundary (queen adjacency). 
Right panel of Figure 4 displays the census tracts in the boston dataset and the corresponding 
adjacency matrix. 
In this context, it is worthy to mention about Besag-York-Mollié (BYM) model (Besag et al., 
1991). It is a widely used spatial statistical model in areal spatial modeling. It is commonly used 
to model the spatial dependence in disease mapping, ecological modeling, and other spatial data 
applications. 

 
Source: Blangiardo and Cameletti (2015) 

Figure 4: Regular and irregular lattice 

queen versus rook adjacency (left), irregular lattice: census tracts in the boston dataset and corresponding 

adjacency matrix (right) 

The BYM model assumes that the observed variable of interest in each areal unit is a 
combination of two components: a spatially structured component, which captures the spatial 
dependence among the units, and a random noise component, which accounts for the 
unexplained variation. The spatial structure is modeled using a conditional autoregressive (CAR) 
prior, which assumes that the observed variable in each unit is dependent on the values of the 
same variable in neighboring units.  
Mathematically, 

𝑌 =  𝑋𝛽 +  𝑍𝑢 +  𝜀 

where 𝑌 is a vector of the observed variable of interest, 𝑋 is a design matrix of fixed effects, 𝛽 is 
a vector of fixed effect coefficients, 𝑍 is a matrix that links the spatial structure of the data to the 
latent variable 𝑢, and 𝜀 is a vector of independent and identically distributed errors. 
INLA provides an efficient and accurate method for Bayesian inference in the BYM model, by 
approximating the posterior distribution of the latent variable u using a combination of Gaussian 
quadrature and Laplace approximation techniques (Bakka et al., 2019). This allows for fast and 
accurate estimation of the model parameters, including the spatial dependence parameter and the 
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overall variance. BYM model can be used in regular lattice data as well as in irregular areal data. 
In regular lattice data, the lattice structure can be explicitly incorporated into the model by 
specifying a neighborhood structure among the lattice cells. For example, in a two-dimensional 
regular lattice, the neighborhood structure can be defined based on the spatial proximity of the 
cells, such that each cell is connected to its immediate neighbors (e.g., the four adjacent cells in a 
square lattice or the six adjacent cells in a hexagonal lattice) as shown in Figure 4 (left). This 
neighborhood structure can be used to specify the spatial dependence structure of the data in the 
BYM model, by specifying a CAR prior on the latent variables. The BYM model with a CAR 
prior can be fitted to regular lattice data using the INLA method, which provides fast and 
accurate estimation of the model parameters (Riebler et al., 2016). The resulting estimates can be 
used to quantify the spatial dependence in the data and to make predictions at unsampled 
locations within the lattice (Bivand et al., 2015). Analyzing data on an irregular lattice presents 
additional challenges compared to analyzing data on a regular lattice, as the relationships 
between neighboring locations are not as straightforward (Bivand et al., 2017). Several studies in 
irregular lattice region using BYM are reported by Blangiardo and Cameletti, (2015) and 
Moraga, (2019).  
Spatial analyses of aggregated data can be subject to two main problems: the misaligned data 
problem (MIDP) and the modifiable areal unit problem (MAUP). MIDP occurs when spatial 
data are analyzed at a different scale than that at which they were originally collected, leading to 
potential issues in the accuracy of spatial distribution and relationships among variables 
(Banerjee et al., 2014). MAUP refers to the variability in conclusions that can arise when the 
same underlying data is aggregated to different spatial scales or formations of areas, leading to 
the aggregation and zoning effects (Openshaw, 1984). Ecological studies, which are often based 
on aggregated data, can be particularly vulnerable to the ecological inference problem, which can 
be viewed as a special case of MAUP. Ecological bias, which can be caused by both the 
aggregation and specification effects, can lead to inaccurate conclusions when analyzing 
variables at the aggregated level (Gotway and Young, 2002). 

4.7.2 Spatiotemporal Modeling 

It is possible to expand the idea of spatial process to incorporate the dimension of time, resulting 
in a spatio-temporal framework.  
Thus, a continuously indexed spatial process (random field) changing in time is denoted by 

Y(s, t) ≡ {y(s, t), (s′, t′) ∈ D ⊆ R2 × R} 

and are observed at n spatial locations or areas and at T time points. These observations are 
utilized for inferring information about the process and making predictions at specific locations. 
Typically, a Gaussian field (GF) is utilized, which is entirely determined by its mean and spatio-
temporal covariance function Cov(y(s, t), y(s′, t′)) = σ2C((s, t), (s′, t′)), defined for each (s, t) 
and (s´, t´) in R2 × R. Additionally, the process exhibits second-order stationarity if its mean 
remains constant and the spatiotemporal covariance function depends on the locations and time 
points only through the spatial distance vector h = (s − s′) ∈ R2 and the temporal lag l =
(t − t′) ∈ R (Gelfand et al. 2010; Blangiardo and Cameletti, 2015). Although a GF can be easily 
defined based on its first and second moments, its practical implementation is hindered by the 
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big n problem (Banerjee et al. 2008), particularly when dealing with large spatiotemporal 
datasets. This issue relates to the significant computational costs involved in performing linear 
algebra operations required for model fitting, spatial interpolation, and prediction. These 
computations necessitate the manipulation of dense covariance matrices, which are constructed 
using the spatio-temporal covariance function 𝜎2𝐶(·,·) and have dimensions equivalent to the 
number of observations across all spatial locations and time points (Balangiardo and Cameletti, 
2015).  
In the context of spatio-temporal geostatistical data (Gelfand et al., 2010), a valid spatio-
temporal covariance function is needed, which can be represented as Cov(θit, θju) =

σC
2  (si, sj; t, u)where stationarity is assumed in space and time. This means that the space-time 

covariance function can be expressed as a function of the spatial Euclidean distance ∆ij and the 
temporal lag Λ𝑡𝑢  = |𝑡 − 𝑢|. Valid non-separable space-time covariance functions are available 
in Cressie and Huang (1999) and Gneiting (2002). However, non-separable models can be 
computationally complex, and for this reason, some simplifications are made in practice. One 
approach is to assume separability, where the space-time covariance function is the sum or 
product of purely spatial and purely temporal terms, such as Cov(θit, θju) = σC

2  C1(Δ𝑖𝑗) C2(Λtu), 
as described in Gneiting et al. (2006). Another approach is to assume constant spatial correlation 
in time, leading to a space-time covariance function that is purely spatial when 𝑡  =  𝑢, i.e. 
𝐶𝑜𝑣(θ𝑖𝑡 , θ𝑗𝑢) = σ𝐶

2  𝐶∆𝑖𝑗, and zero otherwise. In this case, temporal evolution can be introduced 
by assuming that the spatial process evolves over time according to autoregressive dynamics, as 
described in Harvill (2010). 
Similar approaches can be applied to area level data. The GMRF framework can be extended to 
include a precision matrix defined in terms of time, assuming a neighborhood structure. If a 
space-time interaction is included, the precision can be obtained through the Kronecker product 
of the precision matrices for the space and time effects interacting, as explained in Knorr-Held 
(2000). We report that, GMRFs are a useful class of statistical models for spatial and 
spatiotemporal data that exhibit spatial or temporal correlation. The basic idea behind GMRF in 
spatiotemporal modeling is to represent the random variables as a multivariate Gaussian 
distribution, where the mean and covariance matrix are defined based on the spatiotemporal 
structure of the data. The covariance matrix is typically sparse, reflecting the fact that variables 
that are further apart in space or time are less correlated. The spatiotemporal structure of the data 
is represented by a graph structure, which is used to define the covariance matrix. In the case of 
spatial data, the graph is typically represented by a lattice or network of neighboring locations. In 
the case of spatiotemporal data, the graph may include both spatial and temporal neighbors, and 
the conditional independence structure may depend on both spatial and temporal distances. The 
edges between nodes represent the dependencies between the variables at those locations. In the 
context of spatiotemporal modeling, the GMRF is used to model the spatial and temporal random 
effects in a way that allows for efficient computation of the likelihood and posterior distribution. 
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4.8  Stochastic Partial Differential Equation (SPDE) Approach for 

Geostatistical Data 

The f (j) terms in Equation 1 in many models are often modeled using Gaussian Markov Random 
Fields (GMRFs), which have a range of applications, such as modeling smooth effects, random 
effects, measurement errors, and temporal dependencies (Rue and Held, 2005). GMRF models 
also exist for spatial dependence, including areal data, where models such as the CAR or BYM 
models have been proposed (Besag et al., 1991). The SPDE approach can be used for continuous 
spatial dependence by creating an approximation of the Matérn covariance field through 
stochastic partial differential equations (Lindgren et al., 2011; Rue et al., 2009). GMRFs are 
Gaussian models that have Markov properties, which are related to the precision matrix's non-
zero structure. If two elements of the field are conditionally independent given all others, the 
corresponding entry of the precision matrix is zero. In practice, choosing GMRF priors for f (j), 
induces sparsity in the precision matrix 𝑄(𝜃) (Rue and Held, 2005).  
Lindgren et al. (2011) proposed the SPDE method, which involves using a discretely indexed 
spatial random process (i.e., a GMRF) to represent a continuous spatial process (i.e., a GF). This 
method is based on the use of a linear fractional stochastic partial differential equation (SPDE)  

(𝑘2 − Δ)α/2(τξ(𝑠)) = W(𝑠) 

where 𝑠 ∈ 𝑅𝑑, 𝑘 >  0 is the scale parameter, Δ is the Laplacian, α controls the smoothness, τ 
controls the variance and W(𝑠) is a Gaussian spatial white noise process. The exact and 
stationary solution to this SPDE is the stationary GF ξ(𝑠) with Matérn covariance function given 
by  

𝐶𝑜𝑣 (𝜉(𝑠𝑖),  𝜉(𝑠𝑗))   = 𝐶𝑜𝑣(𝜉𝑖 , 𝜉𝑗)  =  
𝜎2

𝛤(𝜆) 2(𝜆−1) 
(𝜅 ∥ 𝑠𝑖 − 𝑠𝑗 ∥)

𝜆
 𝐾𝜆(𝜅 ∥ 𝑠𝑖 − 𝑠𝑗 ∥) 

Here, ∥ 𝑠𝑖 − 𝑠𝑗 ∥ is the Euclidean distance between two generic locations 𝑠𝑖 , 𝑠𝑗 ∈ 𝑅𝑑  and σ2 is the 
marginal variance. The modified Bessel function of second kind and order  λ >  0 is denoted by 
 𝐾𝜆 (Abramowitz and Stegun, 1972). It measures the degree of smoothness of the process and is 
usually kept fixed. On the other hand, 𝑘 >  0 is the scaling parameter related to range 𝑟. The 
range is defined as the distance at which the spatial correlation becomes very low, close to 0.1. 

Mathematically, range  𝑟 is expressed as 𝑟 =
√8𝜆

𝜅
 (Lindgren et al., 2011). The relationship 

between the Matérn parameters and SPDE can be expressed mathematically using the 
smoothness parameter λ and the marginal variance σ2 as: 

λ =  α −  d/2 

σ2 =
Γ(λ)

Γ(α)(4π)𝑑/2κ2λτ2
 

As in this case, s ∈ 𝑅2 (d = 2) then the equations modified to: 

λ =  α −  1 
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σ2 =
Γ(λ)

Γ(α)(4π)κ2λτ2
 

Corresponding to smoothness parameter α =  2 when  λ =  1 the range and the variance are 

represented by 𝑟 =
√8

𝜅
 and 𝜎2 =

1

(4𝜋𝜅2𝜏2)
 respectively. The solution to SPDE represented by the 

stationary and isotropic Matérn GF ξ(𝑠) can be approximated using the finite element method 
through a basis function representation defined on a triangulation of the domain 𝐷: 

                                    ξ(𝑠) = ∑ φ𝑔 (𝑠)ξ�̃�
𝐺
𝑔=1           ………………………… (3) 

where  𝜑𝑔 is the set of basis functions, 𝐺 is the total number of vertices of the triangulation and 
𝜉�̃� are zero mean Gaussian distributed weights. To achieve a Markovian framework, localized 
basis functions are selected, which exhibit a piecewise linear nature within each triangular 
region. Specifically, φ𝑔 assumes a value of 1 at vertex 𝑔 and 0 at all other vertices. For α  =  2 
using Neumann boundary conditions the precision matrix Q for Gaussian weight vector ξ ̃ =

{ξ1̃, … , ξG̃} is expressed as:  

Q = τ2(κ4𝐶 + 2κ2𝐺 + 𝐺(𝐶)−1𝐺) 

Here, 𝐶 and 𝐺 are the diagonal and sparse matrix respectively. The generic element of 𝐶 is 
represented as 𝐶𝑖𝑖 = ∫ φ𝑖(𝑠)𝑑𝑠 and for sparse matrix 𝐺 is 𝐺𝑖𝑗 = ∫ ∇φi(s)∇φj(s)ds where ∇ is 
the gradient. It is worthy mention that, the elements of the precision matrix Q depend on τ and κ. 
Additionally, 𝑄 is sparse which makes ξ a GMRF with distribution N(0, 𝑄−1) and it represents 
the approximated solution to the SPDE in a stochastically weak sense. 

Mesh Construction 

As mentioned in the beginning of this section, the SPDE approach is based on a triangulation of 
the spatial domain. The triangulation or the SPDE-mesh is an important component of the INLA-
SPDE approach. Specifically, it is essential to establish a mesh across the study area, and it will 
be used to compute the approximation to the solution (i.e., the spatial process). In this method, 
the SPDE is used to model the spatial variation of the random field, and the triangular mesh is 
used to discretize the spatial domain (Krainski et al., 2018). The goal is to obtain a sparse linear 
system that can be solved to obtain the values of the random field over the mesh. 
The process of triangulation involves dividing the spatial domain into a group of triangles that do 
not overlap with each other. Any two triangles meet in at most a common edge or corner. It is 
worthy to note that when defining the mesh, there is a balance to strike between the accuracy of 
the GMRF representation and computational expenses. Both factors rely on the number of 
vertices used in the triangulation. In other words, as the number of mesh triangles increases, the 
GF approximation becomes more precise but also incurs higher computational costs. Krainski et 
al. (2018) provide a comprehensive description of SPDE models using SPDE triangulation, in 
this context, we will provide an overview of the various steps necessary to fit these models.  
As the initial step, it is necessary to establish the limit or boundary of the study area. To 
accomplish this, the borders of the study region are estimated from the spatial shapefile of the 
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region or, individual pixels of the dataset will be merged to form a unified region, which will 
serve as a reasonable estimate of the boundary. Next, the set of basis functions will be 
determined by defining a two-dimensional mesh using the function inla.mesh.2d() from the R-
INLA package (R-INLA Project, 2020).  
 

𝑐𝑜𝑜𝑟𝑑𝑠 < −𝑎𝑠. 𝑚𝑎𝑡𝑟𝑖𝑥(𝑆𝑃𝐷𝐸𝑡𝑜𝑦[, 1: 2]) 

𝑚𝑒𝑠ℎ0 < −𝑖𝑛𝑙𝑎. 𝑚𝑒𝑠ℎ. 2𝑑(𝑙𝑜𝑐 = 𝑐𝑜𝑜𝑟𝑑𝑠, 𝑚𝑎𝑥. 𝑒𝑑𝑔𝑒 = 0.1) 

𝑚𝑒𝑠ℎ1 < −𝑖𝑛𝑙𝑎. 𝑚𝑒𝑠ℎ. 2𝑑(𝑙𝑜𝑐 = 𝑐𝑜𝑜𝑟𝑑𝑠, 𝑚𝑎𝑥. 𝑒𝑑𝑔𝑒 = 𝑐(0.1,0.1)) 

𝑚𝑒𝑠ℎ2 < −𝑖𝑛𝑙𝑎. 𝑚𝑒𝑠ℎ. 2𝑑(𝑙𝑜𝑐 = 𝑐𝑜𝑜𝑟𝑑𝑠, 𝑚𝑎𝑥. 𝑒𝑑𝑔𝑒 = 𝑐(0.1,0.2)) 

 
Source: Blangiardo and Cameletti (2015) 

Figure 5: Three triangulations for the SPDEtoy dataset 

Mesh0 (top left), Mesh1 (top right), and Mesh2 (bottom) 

 

The function requires input related to the spatial domain, which can be specified either by 
relevant spatial points (not necessarily where observations are available) or the domain extent, 
using the loc or loc.domain arguments, respectively. It is not compulsory to the locations of 
observations into the mesh. Instead, the loc.domain option allows for the provision of a point 
location matrix to specify the domain extension. The max.edge argument is also mandatory and 
represents the maximum allowable length of the triangle edge. When a vector of two values is 
provided, the spatial domain is divided into an inner and an outer area, and the triangle resolution 
for each is specified by max.edge. Higher values of max.edge result in lower resolution but 
greater accuracy. This domain extension can help avoid boundary effects associated with the 
SPDE approach, which includes an increase in variance near the boundary due to the Neumann 
boundary conditions used in R-INLA. Lindgren and Rue (2015) suggest extending the domain by 
a distance at least equal to the range 𝑟 to avoid boundary effects. For example, SPDEtoy from R-
INLA dataset (Rue et al., 2009) is triangulated using three different sets of parameters to create 
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three distinct meshes. The coordinates of the data locations are included as vertices in all three 
triangulations using the loc parameter, while different values for max.edge are used. 
Figure 5 displays the resulting meshes. Black points denote the observation locations. Mesh0, 
which specifies only one max.edge value, does not exhibit an outer extension of the domain. A 
thick line separates the outer offset from the inner offset and the boundary of the study region. 
Mesh1 and Mesh2, on the other hand, both extend outside of the original domain. Mesh2 has a 
larger max.edge value, resulting in larger triangles and reduced accuracy. This approach allows 
for the extension of the original spatial domain to avoid boundary effects without significantly 
increasing computational costs. The inla.mesh.2d function provides an optional offset argument, 
which allows for the specification of the degree to which the domain is to be extended in the 
inner and outer regions. Another optional argument is cutoff, which prevents the creation of 
excessive small triangles in the vicinity of clustered data locations. By default, cut off value is set 
to 0. Thus, the process to discretize the spatial domain D into a mesh of triangles is achieved. 
The vertices of the triangles are referred to as nodes, and the edges of the triangles are referred as 
edges. 
The next step is to build the projector matrix. Following basis function Equation 3 the linear 
predictor (ηi) can be expressed as: 

ηi = b0 + ∑ φ𝑔(𝑠𝑖)ξ�̃�

𝐺

𝑔=1

 

where, b0 is the intercept, φ𝑔 (𝑠𝑖) is the value of the 𝑔-th basis function at 𝑠𝑖. This equation can 
be further generalized, and the linear predictor can be mathematically represented as: 

ηi = b0 + ∑ Aigξ�̃�

𝐺

𝑔=1

 

Here, Aig  =  φ𝑔(𝑠𝑖) is the generic element of the sparse matrix (A) which maps the GMRF ξ̃ 
from the 𝐺 mesh vertices to the 𝑛 observed locations. The R-INLA function inla.spde.make.A 
creates the sparse weight matrix 𝐴 by identifying the data locations in the mesh and organizing 
the corresponding values of the basis functions (Blangiardo and Cameletti, 2015). The dimension 
of the resulting matrix 𝐴 can be determined by multiplying the number of data locations by the 
number of mesh nodes. It is important to highlight that the meshes created by including 
observation locations as mesh vertices, the projector matrix in this case has one non-zero vale 
(equal to 1) for each row. On the other hand, each spatial location is placed within a triangle 
defined by three vertices, resulting in a projector matrix characterized by three non-zero elements 
for each row, with a sum equal to 1 (i.e., ∑ Aig

𝐺
𝑔=1 =  1). Additionally, there are some columns 

with zero values corresponding to vertices not connected to points. All these simplify the 
computation of the estimates of the random effect at any given point because its estimate will be 
a linear combination of only three functions in the basis (Krainski et al., 2018). Thus, in this step 
inla.spde.make.A function is used to create the projector matrix 𝐴 to map the projection of the 
SPDE to the observed points.  
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The final important step establishes the framework to estimate the model parameters using the 
triangulation and the projector matrix that have already been created and choosing the default 
prior specification for SPDE parameters provided by R-INLA package. First of all, a Matérn 
SPDE object is created using inla.spde2.matern function and another function 
inla.spde.make.index generates a necessary list of named index vectors for the SPDE model.  
All these steps define how the solution to the SPDE that defined the spatial process with a 
Matérn covariance is computed using R-INLA package. The resulting solution will be used to 
define the spatial random effect using the function in the INLA model formula. When using a 
SPDE, the data passed to inla() must be in a particular format, which is provided by the 
inla.stack function. This function organizes data in a list format with named elements including a 
list of data vectors, a list of projector matrices, a list of effects (e.g., the SPDE index) or 
predictors, and a label for the data group usually denoted by tag (Krainski et al., 2018).  
This is in brief the technical procedure to fit a model with an intercept and covariate(s) along 
with a spatial random effect defined with an SPDE object. However, since we are studying a 
continuous spatial process, it is important to estimate the variable of interest and the underlying 
spatial effect in the study region. To achieve this, we can define another set of data for 
prediction. The standard approach for making predictions is to add fake data rows containing the 
covariates and location we wish to predict, but with Not Available (NA) in place of response 
variable values (Krainski et al., 2018; Gomez-Rubio, 2020). Additionally, a different projector 
matrix will be necessary to map the estimates of the spatial process to the prediction points. We 
can utilize the function inla.spde.make.A, similar to before, by utilizing the points on the grid. In 
this case a new distinct tag should be assigned to enable identification of this specific portion of 
the data within the stack, facilitating the retrieval of the fitted values and other relevant quantities 
at the grid points.  Subsequently, the two data stacks can be integrated into a unified object using 
inla.stack function once again. This resultant object will then be utilized as the input for the inla 
function during model fitting. To specify the model that will be fitted, the 𝑓() function must be 
utilized to incorporate spatial effects. The index that was previously created with 
inla.spde.make.index, will be passed as an argument to this function. Additionally, the model 
will be of the spde type, requiring the combination of the data passed to the function inla() with 
SPDE definition for spatial model fitting. This can be accomplished by means of the 
inla.stack.data function. Moreover, control.predictor argument will necessitate the usage of 
inla.stack.A to combine the projector matrix for the entire dataset (model fitting and prediction) 
in the combined stack (Krainski et al., 2018; Gomez-Rubio, 2020).  
Finally, the posterior summaries of spatial parameters can be obtained by using the function 
inla.spde2.result, which efficiently extracts relevant information from the output list. This 
function further facilitates the transformation of internal parameter scales, offering posterior 
distributions for nominal variance (σ2) and nominal range (𝑟), along with internal results for 
θ1 = 𝑙𝑜𝑔(τ) and θ2 = 𝑙𝑜𝑔(κ) (Krainski et al., 2018). It is noteworthy to indicate that the use of 
the inlabru package (Bachl et al. 2019) can streamline the process of defining and fitting the 
model. Additionally, the interactive function meshbuilder within the INLA package can aid in 
defining and evaluating the suitability of a mesh (Krainski et al., 2018). 
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4.8.1 Application of INLA-SPDE in Spatial and Spatiotemporal Modeling 

The INLA-SPDE methodology has proven to be a powerful tool in statistical modeling due to its 
many advantages over other techniques. It provides low computation time, making it an 
attractive option for large datasets. Additionally, as the basic logic is Bayesian inference, it does 
not require only normally distributed data, enabling its application in a vast domain of fields. The 
methodology also allows for the implementation of both spatial and temporal effects, as well as 
the analysis of their significance in the model. INLA-SPDE permits the integration of a 
substantially high number of covariates and can also accommodate new covariates at a later stage 
of the process. Moreover, the level of significance for each covariate can be analyzed, which 
further strengthens its utility in statistical modeling.  
Thus, INLA-SPDE combines the benefits of two powerful techniques: INLA, a fast and accurate 
Bayesian inference method, and SPDE, a flexible and scalable method for spatial modeling 
(Lindgren et al., 2011; Blangiardo et al., 2013; Blangiardo and Cameletti, 2015; Lindgren and 
Rue, 2015; Rue et al. 2017; Moraga 2019; Varga et al., 2019; Gomez-Rubio, 2020; Verdoy 
2020). INLA-SPDE is particularly useful for spatiotemporal modeling in a range of fields, 
including meteorology, ecology and environmental science, epidemiology and public health, 
urban issues like, crime analysis, traffic management, traffic accidents, air pollution and its 
impact, disaster prevention and management, among others. A study by Bakka et al. 2018 review 
some recent publications that showcase the versatility and effectiveness of INLA-SPDE in these 
domains. In the study they highlight about the use of spatial models applied in several high-
impact studies. For example, Jousimo et al. (2014) studied the effects of fragmentation on 
infectious disease dynamics, and Bhatt et al. (2015) assessed the effectiveness of malaria control 
efforts in Africa, while Golding et al. (2017) modeled mortality rates across various age groups 
in multiple countries. Additionally, Shaddick et al. (2018) estimated global exposure to PM2.5, 
which was utilized in the Global Burden of Disease study (Gakidou et al., 2017) and the World 
Health Organization's evaluation of health risks associated with air pollution (World Health 
Organization, 2016). Huang et al. (2017) compared spatial models in R-INLA with REML-LMM 
to perform environmental mapping of soil. Etxeberria et al. (2017) modeled pancreatic cancer 
mortality in Spain using a spatial gender-age-period-cohort model. In addition, Pereira et al. 
(2017) developed a spatial model of unemployment. Mejia et al. (2020) computed probabilistic 
activation regions in cortical surface fMRI data. Similar studies highlight the versatility and 
utility of spatial modeling in ecological and environmental research (Juan et al., 2012; Serra et 
al., 2014b; Rutten et al., 2017; Moraga et al., 2017; Gortázar et al., 2017; López-Abente et al., 
2018; Barceló et al., 2021; Niekerk et al., 2021; Wright et al., 2021; Saez and Barceló, 2022). 
Other examples depict the applications in spatial econometrics (Bivand, Gómez-Rubio, and Rue, 
2014; Gómez-Rubio, Bivand, and Rue, 2014; Gómez-Rubio, Bivand, and Rue, 2015). In their 
recent paper, Lindgren et al. (2022) present a comprehensive compilation of publications that 
employ the INLA-SPDE approach for modeling Gaussian and non-Gaussian fields in diverse 
fields, such as health, engineering, environmetrics, econometrics, urban planning, pollution, and 
several others. The paper sheds light on the wide range of applications of SPDEs in various 
disciplines and highlights their potential as a versatile tool for spatial statistical inference and 
prediction. 
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4.9  Challenges in Traditional SPDE Triangulation Approach 

4.9.1 Complex Distributed Spatial Regions 

To gain a deeper understanding of the issues and challenges in this domain and to determine 
whether they are unique to INLA-SPDE, we conducted a preliminary investigation using 
geospatial data without utilizing the INLA-SPDE approach. Specifically, we utilized spatial 
interpolation techniques such as kriging to analyze the complex island structure of the Maldives 
and explore the precise climate patterns within the nation (Chaudhuri et al., 2021a).  
It is worthy to note that, from the left panel of Figure 6 it seems that atolls with enclosed lagoon 
and land on reefs are continuous land structure. But each atoll is originally a collection of 
number of distributed islands as depicted in the same figure right panel. The complex spatial 
structure of the study region motivated us to conduct research in this area, providing a unique 
opportunity to explore the performance of other spatial statistical techniques, such as kriging. 
 

 
Source: Chaudhuri et al. (2021) 

Figure 6: Example of complex spatial region 

atoll with both lagoon and reef areas (left) with only land on reefs areas (right) 

The methodology used in the study involved an exploratory data analysis followed by 
geostatistical techniques of kriging to estimate and predict the spatial variability of 
meteorological variables throughout the nation. The study uses a set of observations of a spatial 
attribute to predict values for other locations using a linear regression estimate. The error 
variance in this expression is minimized under the constraint of unbiasedness. The study utilizes 
the geostatistical technique of kriging by employing variograms to describe spatial variation in 
terms of size and general shape. The best variogram model for the data used in the study is found 
to be the spherical model (Nouck, 2019), which is defined by a range, prior variance, and nugget 
effect. The study highlights the limited literature on the application of geostatistical tools like 
kriging in complex island structures and suggests that an increase in the number of 
meteorological stations could improve the kriging performance and help in precise prediction. 
Several studies show the application of kriging in complex coastal regions or, in dispersed 
islands (Irl t al., 2015; McKenzie et al., 2021). 
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From a scientific perspective, our interest lies in investigating how similar research studies 
utilizing INLA-SPDE have been carried out to model complex land structures in coastal regions 
and islands. Current literature shows that even for complex and distributed spatial regions, 
researchers have utilized a traditional continuous region concept to design the SPDE 
triangulation. This approach involves generating an SPDE mesh for the entire study region, 
despite the presence of physical barriers that make the study area complex and distributed. For 
example, Lezama-Ochoa et al. (2020) used this approach to predict the occurrence of spinetail 
devil ray species in the eastern Pacific Ocean. Bi et al. (2021) conducted a similar study to 
estimate seabird bycatch variations in the mid-Atlantic bight and northeast coast, and Cosandey-
Godin et al. (2014) applied this approach to analyze spatiotemporal patterns of accidental 
bycatch in fisheries located in the Baffin Bay of the Atlantic Ocean. 
In our review of the literature, we have found several studies that have used the same approach to 
model complex land structures. For example, Crespo et al. (2019) studied flood protection 
ecosystem services in the coast of Puerto Rico, Myer et al. (2017) used a spatiotemporal model 
to examine the ecological and sociological factors that predict the presence of West Nile virus in 
mosquitoes in Suffolk County, New York, Paradinas et al. (2015) employed a spatiotemporal 
approach to validate persistence areas and identify fish nurseries in the western Mediterranean 
Sea, and Silva et al. (2011) estimated the potential distribution of invasive and native trees in the 
Azores islands, Portugal. We aim to build upon these studies and further explore the application 
of INLA-SPDE in complex land structures, particularly in coastal regions and islands. 
Another serious concern to model observations in complex island structures is the anomaly 
related to the polygon structure of the coastlines. Coastlines are often considered as fractal 
structure, in the sense that any finite approximation will not be accurate (Bakka et al., 2019). For 
the same coastline polygons, different researchers may use varying approximations which can 
lead to conflicting interpretations and predictions. In that case, the model loses its scientific 
credibility. It is worthy to mention that a stationary model cannot be aware of the coastline 
structure and will inappropriately smooth over the features.  In spatial modeling, classical 
models become unrealistic when they fail to account for holes or physical barriers in the 
landscape. This can lead to further unrealistic assumptions. 

4.9.2 Modeling on Linear Networks  

Recent research has highlighted the growing trend of using point pattern techniques to model 
spatiotemporal events on linear networks. In this regard, to investigate the impact of 
spatiotemporal modeling on linear networks we conducted a study titled On the Trend Detection 
of Time-Ordered Intensity Images of Point Processes on Linear Networks (Chaudhuri et al., 
2021b). Our study focused on the application of spatial point processes on linear networks to 
analyze time-ordered point patterns in traffic accidents and street crime analysis. To identify 
potential monotonic trends, we used the Mann-Kendall trend test (Mann 1945; Kendall 1948) 
and applied the analysis to monthly time-ordered point patterns of fatal traffic accidents and 
street crimes in London from January 2013 to December 2017. 
However, when modeling random spatial events like crime or traffic accidents, it is a common 
practice to aggregate data for data protection and security reasons. Aggregation can be performed 
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in both spatial and temporal dimensions, but it is not necessarily related to statistical or 
numerical methodologies (Miaou et al., 1992; Abdel-Aty et al., 2000; Khattak et al., 2021). A 
common approach is to divide the spatiotemporal region into regular grids and count the number 
of events in each subregion. In the case of events on linear networks, such as road networks, 
analyzing individual road segments is a common practice. We found it interesting and more real-
time applicable to model spatial events as aggregated values (using Poisson, binomial, or binary 
logistic models) on linear networks. This approach is particularly important for predictive 
modeling, where authorities and policy makers may need to identify risk factors related to road 
safety and criminal activities by predicting the exact number of incidences on a particular street 
or individual segments of a street (Weisburd et al., 2009; Hadayeghi et al., 2010; Santhosh et al., 
2020). Count data has been widely used to estimate risk factors in such cases. 
Based on our analysis of spatiotemporal events such as traffic accidents, street crimes, and issues 
in water and electric connection networks in cities that occur exclusively on linear networks, it 
has been observed that conventional INLA-SPDE techniques are frequently used to model these 
events, despite the fact that they are strictly confined to linear networks. When applying the 
INLA-SPDE method to linear networks, creating a triangulation for the entire region enables 
fitting of the INLA model in the study area. However, a significant problem arises while 
predicting events, as the observed events are discrete spatial points located precisely on the road 
network, whereas models fitted with a region mesh cover the entire study area. This implies that 
the locations of predicted events can be placed in any area with or without road networks, which 
is not realistic. Traditional methods of model prediction using a region mesh are, therefore, not 
appropriate in this context from a scientific perspective. 
To address this issue, we propose the use of alternative modeling techniques, such as network-
based spatial statistical models, that are specifically designed to analyze events on linear 
networks. These models take into account the unique characteristics of linear networks and are 
capable of accurately predicting events at discrete spatial points located precisely on the road 
network. By incorporating the spatial structure of the linear network into the modeling process, 
these models can provide more realistic and accurate predictions of events on the network.  
Designing the INLA-SPDE triangulation specifically on road networks can offer several 
advantages for modeling random spatial events like crime or traffic accidents. One of the 
primary advantages of this approach is improved computational efficiency. By focusing the 
triangulation specifically on the road network, researchers can limit the number of nodes and 
edges that need to be modeled, reducing the computational burden associated with modeling data 
over an entire study area. Another advantage of designing the triangulation specifically on road 
networks is the potential for more precise modeling of spatial relationships along the road 
network. In contexts like traffic accidents or crime hotspots, spatial relationships along the road 
network are often critical for understanding patterns and trends in the data. By designing the 
triangulation specifically on the road network, researchers can more accurately capture these 
relationships, potentially leading to more accurate and informative models. Additionally, 
designing the triangulation specifically on road networks can help to reduce bias and improve the 
accuracy of the resulting models. By focusing on the road network, researchers can more 
effectively control for confounding variables that may be present in other areas of the study 
region, leading to more precise and accurate estimates of the relationships between variables. 
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While there are several potential advantages to design the INLA-SPDE triangulation specifically 
on road networks for modeling random spatial events like crime or traffic accidents, it is 
important to carefully consider the potential limitations and trade-offs associated with this 
approach. 

4.10 Proposed Methodologies 

In this section we discuss about the potential solutions that we have proposed and are presently 
developing to address the challenges to model spatiotemporal events on linear networks and on 
complex spatial structures like coastal areas or, islands. These solutions are grounded in 
scientific principles and methods and are designed to offer effective and robust approaches to 
address the identified issues. Additionally, we will analyze the related limitations and trade-offs 
of the suggested methodologies. This evaluation will enable us to gain a more comprehensive 
understanding of the strengths and weaknesses of each approach and make informed decisions 
about their suitability for different research applications. 
In all the projects of the thesis, R programming language (version R 4.0.4 to R 4.2.2) has been 
used for statistical computing and graphical analysis. All computations are conducted on a quad-
core Intel i7-4790 (3.60 GHz) processor with 32GB (DDR3-1600) RAM. 

4.10.1  Network Triangulation 

We introduced the novel concept of designing SPDE triangulation precisely on road networks. 
Our process involves several steps: first, we create a buffer region for each road segment, 
ensuring that the width of the buffer is selected to include the maximum number of points within 
a standard buffer area for all road segments. Next, we construct a clipped buffer polygon 
comprising only the area covered by the road network, and then apply SPDE triangulation on the 
clipped polygon to construct the SPDE Network Mesh. 
We examined traffic accident locations on a road network in an urban environment and noted 
that many events were located away from road segments. Left panel of Figure 7 depicts a sample 
of traffic accident locations (marked as red points) on a sample road network. We note that many 
events are located away from the road segments.  

 
Source: Chaudhuri et al. (2022b) 

Figure 7: Traffic accident locations on buffered road segments 

without buffer (left), with buffer (right) 
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Source: Chaudhuri et al. (2022b) 

Figure 8: Clipped polygon of buffered road segments 

Initially, the buffer width is selected in such a manner to get maximum points within a standard 
buffer area for all road segments. We found that a common buffer width for all road segments 
was the most effective in achieving this. In Figure 7 (right panel) we show the built buffers on 
the same road network with 20 meters. We merged individual buffer segments into a single 
polygon clipped within a bounding box covering the study area. 
Figure 8 illustrates the clipped polygon of the buffered segments in grey. According to Verdoy 
(2021), the best fitting mesh should have enough vertices for effective prediction, but the number 
should be within a limit to have control over computational time. With this concept we have 
fine-tuned the inla.mesh.2d function in R-INLA to control the largest allowed triangle edge 
length (max.edge) and minimum allowed distance between points (cutoff), regulating the number 
of vertices in the SPDE mesh to identify the best fitted mesh. 
Figure 9 in the left panel depicts the SPDE triangulation for the entire study area while the right 
panel depicts the proposed network mesh, in both cases the accident events are highlighted in red 
as depicted in Chaudhuri et al., 2022b. 

 
Source: Chaudhuri et al. (2022b) 

Figure 9: SPDE triangulation for entire study area and network mesh (London, UK) 

After aggregating and counting accident events within the buffer area of each road segment, we 
use the centroid of each segment as initial triangulation nodes applied on the clipped polygon. 
This approach allows us to analyze accident risk factors in each road segment and generate risk 
maps that provide information on safe routes between source and destination points. Our 
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approach, introduced in the publication titled Spatio-Temporal Modeling of Traffic Accidents 
Incidence on Urban Road Networks Based on An Explicit Network Triangulation, is a novelty in 
estimating the spatial autocorrelation of traffic accidents restricted to the linear network 
(Chaudhuri et al., 2022b). The resulting risk maps can be useful for accident prevention and 
multi-disciplinary road safety measures. 
We conducted similar research work titled Spatiotemporal Modeling of Traffic Risk Mapping: A 
Study of Urban Road Networks in Barcelona, Spain that analyzed ten years of traffic accident 
data to investigate spatial and temporal variation in accidents and related injuries (Chaudhuri et 
al., 2023).  Our proposed spatiotemporal model enabled us to predict the number of injuries that 
might occur on individual road segments. Figure 10 in the left panel depicts the SPDE 
triangulation for the entire study area while the right panel depicts the proposed network mesh, in 
both cases the accident events are highlighted in red as depicted in Chaudhuri et al., 2023. 

 
Source: Chaudhuri et al. (2023) 

Figure 10: SPDE triangulation for entire study area and network mesh (Barcelona, Spain) 

To generate a predicted risk map for the entire road network, we used Bayesian methodology 
with INLA and SPDE. In contrast to traditional SPDE triangulations on entire region, our study 
applied the INLA-SPDE modeling approach to selected areas, specifically on road networks. The 
resulting risk maps can serve as a baseline for identifying safe routes within a spatiotemporal 
context. Moreover, this methodology can be adapted and applied to enhanced INLA-SPDE 
modeling precisely on road networks. The novelty of our study lies in the introduction of SPDE 
network triangulation to estimate the spatial auto-correlation of discrete events. By doing so, we 
took a new step in INLA-SPDE modeling to perform spatiotemporal predictive analysis only on 
selected areas (in this case, road networks). Our study contributes to the relatively small amount 
of literature on spatiotemporal analysis using INLA-SPDE of spatial events precisely on road 
networks. The methodology is dynamic and can be adapted and applied to other locations 
globally. 
However, while using network triangulation for modeling spatial relationships can be effective in 
capturing relationships along the road network, there are some potential limitations and trade-
offs that should be considered. For instance, the approach may not be able to capture important 
spatial relationships outside of the road network, particularly in contexts where traffic accidents 
can occur in adjacent areas or neighborhoods. Furthermore, accurately modeling spatial 
relationships along the road network can be challenging in areas with complex road networks or 
where the network is subject to frequent changes or updates, which may require frequent updates 
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to the triangulation to accurately capture changes in the road network. Another significant 
limitation we observed in the proposed methodology is the boundary effect, which can lead to 
biased estimates and prediction errors near the boundary if the mesh does not cover the entire 
domain. In the following section, we provide a brief discussion of the potential causes and 
effects of the observed boundary effects in our two publications proposing the novel concept of 
SPDE network triangulation. 

 Discussion on Boundary Effects 

Spatial Gaussian fields (SGFs) are commonly utilized as model components in the construction 
of spatial or spatio-temporal models for various applications, including the Generalized Additive 
Model (GAM) framework, to represent the residual spatial structure resulting from unmeasured 
spatial covariates, spatial aggregation, and spatial noise. The use of a buffer road network in 
current studies adds complexity to the boundary regions, which can influence the spatial effect of 
the model. Krainski et al. (2018) propose creating a mesh to represent the spatial process as the 
first step in fitting a SPDE model. Building an SPDE mesh for a continuous region is relatively 
straightforward, but the creation of an SPDE network mesh requires fine-tuning to identify the 
best fit values for minimum allowed distance between vertices and maximum permissible 
triangle edge length for the inner (and outer) regions. Careful selection of additional points 
around the boundary or outer extension is also necessary. As a general rule, the variance near the 
boundary is inflated by a factor of two along straight boundaries and by a factor of four near 
right-angled corners (Lindgren and Rue, 2015). The complex boundary region of the buffer road 
network with several right-angled corners makes the process critical. The boundaries in the 
proposed mesh are located inside the mesh and not outside, as in a standard mesh, which creates 
fictitious spatial structures. Due to the complex boundary nature, it is necessary to reduce the 
high boundary effect that may cause a variance twice or four times as great at the border as 
within the domain (Lindgren et al., 2011; Lindgren and Rue, 2015). Although the residual 
diagnostics and predicted risk maps produced by the model match the original observed records, 
the correlation values of the model indicate the need for improvement.  
In addition, we recommend that researchers in this field carefully consider the assumptions and 
limitations of various modeling techniques before selecting the most appropriate one for their 
specific research question. It is crucial to choose a method that is well-suited to the unique 
characteristics of the spatiotemporal events being studied and can provide dependable and 
accurate predictions of these events on the linear network. Furthermore, for a more detailed 
understanding of the model performance, it may be advantageous to further analyze the model 
fitting phase using INLA-SPDE with a diverse set of spatial and temporal covariates, spatial and 
temporal structures, and space-time interactions. Researchers should thoroughly assess the 
computational efficiency, precision, and accuracy of this approach against the potential 
limitations associated with capturing essential spatial relationships outside of the road network or 
accurately modeling spatial relationships along the network. 

4.10.2  Barrier Model 

Spatial models often assume isotropy and stationarity, implying that spatial dependence is 
direction invariant and uniform throughout the study area. However, these assumptions are 
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violated when dispersal barriers are present in the form of geographical features or disease 
control interventions.  
In response to this problem, Bakka et al. (2019) introduced the Barrier model as a new approach 
for modeling complex spatial regions. Unlike existing methods that rely on the shortest distance 
around physical barriers or boundary conditions, the Barrier model is based on the Matérn 
correlation viewed as a collection of paths through a simultaneous autoregressive (SAR) model. 
By manipulating local dependencies, the model can effectively cut off paths that cross physical 
barriers. To ensure that the new SAR model is well-behaved, the researchers formulated it as a 
SPDE, which can be discretized to represent a Gaussian field with a sparse precision matrix that 
is always positive definite. One of the principal advantages of the barrier model is that the 
computational cost is the same as for the stationary models. 

4.10.3  Application of Barrier Model in Disjoint Spatial Regions 

In general, SPDE triangulations that assume stationarity and isotropy, where the autocorrelation 
between two locations depends only on their Euclidean distance. However, when modeling 
events on dispersed island structures, physical barriers such as coastlines, road networks, power 
lines, categorical health sectors, and different land uses can pose a problem. To handle the 
coastline problem, several studies have proposed solutions, such as computing the shortest 
distance in water (Wang, 2007; ScottHayward, 2014, Miller, 2014), defining boundary 
conditions using a smoothing penalty together with Neumann boundary condition (Ramsay, 
2002), or using the Dirichlet boundary condition (Wood et al., 2008; Sangalli et al., 2013). 
However, these methods may not be suitable for complex archipelago structures with physical 
barriers. To handle nonstationary and anisotropic spatial processes in such cases, Bakka et al. 
(2019) proposed a finite element method-based approach that uses a system of two SPDEs. The 
example of an archipelago on the south-west coast of Finland is used to motivate the need for 
non-stationary SGFs in cases with physical barriers. A system of two SPDEs is presented in this 
case, one for the barrier area, and the other for the remaining area. The solution to the system is a 
nonstationary spatial effect, denoted by 𝑢(𝑠). The stochastic differential equations for the system 
are: 

𝑢(𝑠) − ∇.
𝑟𝑏

2

8
∇𝑢(𝑠) = 𝑟𝑏√

π

2
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where 𝑢(𝑠) is the spatial effect, Ω𝑏 is the barrier area, and Ω𝑛 is the remaining area, and their 
disjoint union gives the whole study area Ω. Variables 𝑟 and 𝑟𝑏 represent the ranges for the 
remaining and barrier areas, respectively, σ𝑢 is the marginal standard deviation. ∇ is the gradient 
operator and is equal to ( ∂

∂𝑥
,

∂

∂𝑦
), and 𝑊(𝑠) stands for white noise. The barrier model is based on 

viewing the Matérn correlation as a collection of paths through a SAR model, rather than as a 
correlation function on the shortest distance between two points (Bakka et al., 2019). The local 
dependencies are manipulated to cut off paths crossing the physical barriers. In the next step, the 
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new SAR model is formulated to SPDE format to represent the Gaussian field, with a sparse 
precision matrix that is automatically positive definite.  
A recent scientific study conducted by Cendoya et al. (2021) has investigated the impact of 
different types of barriers on the spatial distribution of Xylella fastidiosa, a plant pathogenic 
bacterium, in a demarcated area in Alicante, Spain. The study utilizes occurrence data from 
official surveys conducted in 2018 and employed four spatial Bayesian hierarchical models. The 
first model represents a scenario without any control interventions or geographical features, 
whereas the second model incorporates mountains as physical barriers. The third and fourth 
models includes continuous and discontinuous perimeter interventions, respectively, as physical 
barriers surrounding the infested area. It is important to note that these barriers are assumed to be 
completely impermeable, implying that they do not allow infected vectors or propagating plant 
material to pass through. To perform inference and prediction, the study utilizes INLA-SPDE 
approach. Overall, the findings of the study sheds light on the effectiveness of barrier model in 
complex spatial regions having physical barriers.  
We observed that classical stationary models in spatial statistics often assume isotropy and 
stationarity. It causes inappropriate smoothing over features having boundaries, holes, or 
physical barriers. Despite this, nonstationary models like barrier model have been little explored 
in the context of spatial and spatiotemporal modeling in complex spatial regions. We are 
currently working on a similar topic titled A Nonstationary Approach with Barriers: Modeling 
Spatial Dependencies of Natural Hazards in Islands (under review). The principal objective of 
the current study is to evaluate the influence of barrier models compared to classical stationary 
models using tsunami data from the island nation of Maldives. For seven atolls across the nation, 
we have applied three distinct meshes, two stationary and one that corresponds the barrier 
concept. The results show that when assessing the spatial variance of tsunami incidence at the 
island scale, the barrier model outperforms the other two models. Moreover, it has the same 
computational cost as the stationary models, which facilitates to explore nonstationary spatial 
models in complex land structures. In the broader picture, this research work contributes to the 
relatively new field of barrier models as well as to initiate and develop scientific research works 
on the unique island nation of Maldives. A recent study by Li et al. (2023) proposes the multi-
barriers model as an extension to the barrier model for characterizing areas of interest with 
multiple obstacles. The model divides the area of interest into general and obstacle regions and 
uses Gaussian random fields and SPDEs to construct continuous Gaussian fields. INLA is 
employed to calculate the posterior mean and parameters for spatial regression. Real data sets of 
burglaries in a certain area are used to compare the performance of the stationary Gaussian 
model, barrier model and Multi-Barriers Model. The comparison results suggest that the three 
models achieve similar performance in the posterior mean and posterior distribution of the 
parameters, as well as the deviance information criteria (DIC) value. However, the Multi-
Barriers Model can better interpret the spatial model established based on the spatial data of the 
research areas with multiple types of obstacles, and it is closer to reality. 

4.10.4  Application of Barrier Model on Linear Network 

Another study by Dawkins et al. (2021) demonstrates novel approach for personalized decision-
making for air quality using Bayesian methods. A hierarchical spatiotemporal model is 
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developed for city air quality that incorporates buildings as physical barriers and covariate 
information. High-resolution PM2.5 data is used to train the model, which is then fit using R-
INLA for computation at operational timescales. A method is proposed for eliciting multi-
attribute utility for individual journeys within a city, providing Bayes-optimal journey decision 
support. The methodology is demonstrated using air quality data and a set of journeys in 
Brisbane city centre, Australia. Although the barrier model was not designed specifically for 
linear road networks, the study by Dawkins et al. (2021) inspired to take a similar approach to 
model traffic accidents by utilizing a barrier model in a linear network topology. In their study, 
Bakka et al. (2019), considered water body as normal terrain and distinct coastlines and 
boundaries are used as physical barriers. In contrast, in our study, we have defined polygons of 
individual road segments with a buffer as our study area and the remaining land areas that do not 
include roads serve as the physical barriers.  

 

Figure 11: Barrier objects 

Barrier object (left), barrier object with event locations highlighted as red points (right) 

The creation of the clipped buffer region and aggregation of the number of minor injuries (which 
serve as the response variable in the model) at the centroids of each road segment have been 
accomplished using the same approach outlined in Section 4.10.1.  

 

Figure 12: Mesh with barrier object 
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Figure 11 (left panel) depicts the barrier object where, region in grey indicates the physical 
barrier and white area indicates the buffered road segments combined together as clipped 
polygon where the spatial dependency will be analysed.  
The right panel of Figure 11 is the same barrier object with the locations of events (here traffic 
accidents) highlighted in red. SPDE Triangulation is designed using barrier model where clipped 
polygon is considered as normal terrain and the regions without roads act as physical barriers. 
Figure 12 illustrates the triangulation along with the physical barrier in grey.   

4.10.5  Exponential Graph Model for Linear Network Problems 

Our previous articles on explicit network triangulation and ongoing research on barrier models 
for complex land structures have highlighted issues related to boundary effects, including the 
creation of artifact spatial dependencies on the boundary. In standard meshes, boundaries are 
typically outside the spatial domain of interest, allowing for identification and elimination of 
these dependencies. However, in more complex meshes like network triangulation or barrier 
models, boundaries lie within the spatial domain, making it challenging to identify and 
eliminate these dependencies. Despite these difficulties, in these works we have managed to 
identify them. However, a different approximation is needed in which the SPDE-INLA 
approximation does not cause these fictitious spatial dependencies.  
In this context, Bolin et al. (2022) presented an alternative to using the Euclidean distance by 
defining similar models with a non-Euclidean metric on a graph. It presents a novel class of 
Gaussian processes, called Whittle-Matérn fields (Whittle, 1963), which are defined on compact 
metric graphs such as street or river networks. However, it can be challenging to find a class of 
positive definite functions suitable for creating Gaussian fields on metric graphs when using a 
non-Euclidean metric. It is also difficult to apply the SPDE approach to metric graphs as it is 
uncertain how to define the differential operator and what kind of covariance functions would 
result. The study proposes a novel approach of a new and valid differentiable Gaussian field on 
general compact metric graphs. 
We are currently working on that approach. These models are an extension of Gaussian fields 
with Matérn covariance functions on Euclidean domains to the non-Euclidean metric graph 
setting and are constructed via a fractional stochastic partial differential equation on the graph. 
The study establishes the existence of these processes and their sample path regularity 
properties, including differentiable Gaussian processes. It also shows that a model subclass 
contains processes with Markov properties and provide a computationally efficient method for 
evaluating their finite dimensional distributions (Bolin et al., 2020; Bolin et al., 2022). The 
proposed models can be used for statistical inference without the need for any approximations, 
and can derive several statistical properties, including consistency of maximum likelihood 
estimators and asymptotic optimality properties of linear prediction based on the model with 
mis-specified parameters. 
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Figure 13: Graph data structure of traffic accident (Barcelona, Spain) 

In the current study we have used the traffic accident dataset of Barcelona city, from January 
2010 to December 2019. The selected time frame was chosen in order to minimize bias in the 
analysis of traffic accident data. This decision is based on the fact that the COVID-19 pandemic 
has a significant impact on traffic patterns and behavior, which could skew the results of an 
analysis that includes data from the next few years. By excluding this period, we can more 
accurately capture the underlying trends and patterns in traffic accidents. The Barcelona city 
road network along with traffic accident locations are converted into a two-dimensional graph. 
Figure 13 shows the graph structure where, individual accident locations, start and end points of 
each road segments and the intersecting points of road segments are depicted as the nodes (or, 
vertices) and the connecting road segments for the nodes are represented as the edges. 
Euclidean distances between each node have been calculated and used in the exponential graph 
model. 
We have introduced the Gaussian Whittle-Matérn random fields on metric graphs and have 
provided a comprehensive characterization of their regularity properties and statistical 
properties (Bolin et al., 2020). We argue that this class of models is a natural choice for 
applications where Gaussian random fields are needed to model data on metric graphs. Of 
particular importance here are the Markov cases (Bolin et al., 2020; Bolin et al., 2022). We 
derived explicit densities for the finite dimensional distributions in the exponential case 𝜈 =  1, 
where we can note that the model has a conditional autoregressive structure of the precision 
matrix (Besag, 1974). 
For the differentiable cases, such as 𝜈 =  2, we derived a semi-explicit precision matrix 
formulated in terms of conditioning on vertex conditions. In both cases, we obtain sparse 
precision matrices that facilitate the use in real applications to big datasets via computationally 
efficient implementations based on sparse matrices (Rue and Held, 2005). There are several 
extensions that can be considered to this work. The most interesting in the applied direction is 
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to use the models in log-Gaussian Cox processes to model count data on networks, where it is 
likely that most applications of this work can be found. For example, log-Gaussian Cox 
processes on linear networks can be suitable for modeling crimes in cities or accidents on road 
networks or to identify faults in complex water pipeline system or, electrical connections in 
buildings (Bolin et al., 2020; Bolin et al., 2022). Another interesting extension is to consider 
Type-G extensions of the Gaussian Whittle–Matérn fields similarly to the Type-G random 
fields in (Bolin and Wallin, 2020). An interesting property in such a construction is that the 
process on each edge could be represented as a subordinated Gaussian process (Bolin et al., 
2020; Bolin et al., 2022). One of the interesting outputs of this study will be the implementation 
of exponential graph model as a plugin in the INLA package to execute spatiotemporal 
modeling precisely for complex linear networks. Details about Gaussian Whittle-Matérn 
random fields on metric graphs have been discussed in Section 5.5. 
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5. Results 

 
In this chapter, we highlight a collection of publications that showcase original contributions to 
the field of spatiotemporal modeling in complex spatial regions. These works represent 
advancement in our understanding of this research domain. These publications deepen our 
understanding of the underlying phenomena and pave the way for further research and 
innovation in this area. 
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Abstract: Background: The principal objective of this paper is to introduce an online interactive
application that helps in real-time monitoring of the COVID-19 pandemic in Catalonia, Spain (Pan-
demonCAT). Methods: This application is designed as a collection of user-friendly dashboards
using open-source R software supported by the Shiny package. Results: PandemonCAT reports
accumulated weekly updates of COVID-19 dynamics in a geospatial interactive platform for indi-
vidual basic health areas (ABSs) of Catalonia. It also shows on a georeferenced map the evolution
of vaccination campaigns representing the share of population with either one or two shots of the
vaccine, for populations of different age groups. In addition, the application reports information
about environmental and socioeconomic variables and also provides an interactive interface to visu-
alize monthly public mobility before, during, and after the lockdown phases. Finally, we report the
smoothed standardized COVID-19 infected cases and mortality rates on maps of basic health areas
ABSs and regions of Catalonia. These smoothed rates allow the user to explore geographic patterns
in incidence and mortality rates. The visualization of the variables that could have some influence
on the spatiotemporal dynamics of the pandemic is demonstrated. Conclusions: We believe the
addition of these new dimensions, which is the key innovation of our project, will improve the current
understanding of the spread and the impact of COVID-19 in the community. This application can be
used as an open tool for consultation by the public of Catalonia and Spain in general. It could also
have implications in facilitating the visualization of public health data, allowing timely interpretation
due to the unpredictable nature of the pandemic.

Keywords: COVID-19; mobility; spatiotemporal; shiny

1. Introduction

Catalonia, the second most populous autonomous community in Spain with 7.6 mil-
lion inhabitants (Figure 1), as of 10 January 2022, has been the first most affected by the
COVID-19 pandemic (the Madrid region being the second most affected), by number of
cases (1,333,517 cases, 18.61% of all cases in Spain, 17,625 cases per 100,000 inhabitants,
compared to 15,132 cases per 100,000 in Spain), and the second by number of deaths
(16,144 deaths, 17.95% of all deaths in Spain, 213 deaths per 100,000 inhabitants, compared
to 190 deaths per 100,000 in Spain) [1,2]. The geographical distribution of the spread of
the pandemic has not been spatially homogeneous in the Catalan territory and important
differences at the small-area level have been observed.
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geographical unit through which primary health care services are coordinated in [4]. Gen-
eral practitioners, pediatricians, dentists, nurses and nursing assistants, social workers, 
and administrative support professionals make up each ABS’s Primary Care Team. In the 
343 ABSs in Catalonia, with populations ranging from 371 to 72,321 people (mean 20,266 
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Q3 3752.54) [3]. 
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in real-time monitoring of the COVID-19 pandemic in Catalonia, Spain. Since the outbreak 
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in the domain of monitoring and modeling the dynamics of COVID-19. Throughout the 
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Figure 1. Geographic location of 343 ABSs of Catalonia.

Catalonia is basically an urban region. Sixty percent of the population resides in
23 cities with more than 50,000 inhabitants, and 52% in 14 cities with more than 100,000 in-
habitants [3]. These include the second-largest city in Spain, Barcelona, and 36 adjacent
municipalities making up the Barcelona Metropolitan Area.

The administrative aggregation levels in Catalonia are the following, from highest to
lowest: autonomous community (Catalonia), 42 ‘comarcas’ (county-like regions, hereafter
referred to as regions), and 947 municipalities. In addition, the health aggregation levels are
the following, from highest to lowest: autonomous community, 9 health regions, 20 health
sectors, and 343 health basic areas (ABS, for their acronym in the Catalan language).

According to the definition by Catalan health planning, an ABS is defined as the
basic geographical unit through which primary health care services are coordinated in [4].
General practitioners, pediatricians, dentists, nurses and nursing assistants, social work-
ers, and administrative support professionals make up each ABS’s Primary Care Team.
In the 343 ABSs in Catalonia, with populations ranging from 371 to 72,321 people (mean
20,266 inhabitants, standard deviation 13,391, median 18,457 inhabitants, first quartile
Q1—10,554, third quartile Q3—27,529), the population density per square kilometer ranges
from 0.31–34,590.58 (mean 3486.36, standard deviation 6719.23, median 309.18, Q1 44.83,
Q3 3752.54) [3].

Our objective in this paper is to introduce an online interactive application that helps
in real-time monitoring of the COVID-19 pandemic in Catalonia, Spain. Since the outbreak
of the pandemic, real-time interactive web applications have gained attention, especially in
the domain of monitoring and modeling the dynamics of COVID-19. Throughout the globe
several Shiny dashboards are currently deployed and managed by individuals, as well as
government health organizations. Mukhtar et al. in their recent study explored and ana-
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lyzed a series of novel and interesting web-based applications that have been specifically
developed during the pandemic that can act as tools for the health professional community
to help in advancing their analysis and research [5]. For example, Fernandez-Lozano
et al. created an interactive dashboard to visualize all data related to the pandemic (cases,
hospitalizations, and deaths) and its temporal evolution [6]. However, their tool does
not display estimates or other variables (environmental, vaccine status, etc.). The app
created by Galván-Tejada et al. offers greater interactivity and completeness than the
former but falls short of reporting updated vaccination data as well as other variables,
even though they provide valuable demographic information on top of a very thorough
analysis of the pandemic in Mexico [7]. Another useful online web application for updated
country-specific analysis and visualization is “COVID19-World” by Tebé et al. used for
basic epidemiological surveillance covering time trends and projections, population fa-
tality rate, case fatality rate, and basic reproduction number [8]. Wissel et al. developed
“COVID-19 Watcher”, a similar web resource that displays COVID-19 data from every
county and 188 metropolitan areas in the United States [9]. It provides the rankings of
the worst-affected areas along with auto-generating plots depicting temporal changes
in testing capacity, cases, and deaths. It is important to mention the “covid19.Explorer”
R package and web application by Revell that has been designed to explore and analyze
United States COVID-19 infection, death, and relative risk for different age groups with
emphasis on geographic progress of the pandemic and effectiveness of lockdowns [10].
A similar interactive Python-based analytical tool to compare data and monitor trends
across geographical areas related to the COVID-19 pandemic across counties in the United
States and worldwide was developed by Zohner et al. [11]. “Mortality Tracker” is another
interesting in-browser application developed by Almeida et al. mainly focused on the
visualization of public time series of COVID-19 mortality in the United States [12]. It was
developed in response to requests by epidemiologists to access the effect of COVID-19 on
other causes of death by comparing 2020 real time values with observations from the same
week in the previous 5 years, thus facilitating modeling of the interdependence between
its causes. The literature shows a similar web application named “COVID19-Tracker” for
Spain developed by Tobías et al. [13]. It produces daily updated data visualization and
analysis of the COVID-19 diagnosed cases, and mortality in Spain. It also explores several
analyses to estimate the case fatality rate, assessing the impact of lockdown measures on
incident data patterns, estimating infection time and the fundamental reproduction number,
and analyzing the mortality excess. An attempt at real-time statistical analysis in a user-
friendly dashboard for researchers as well as the general public is made by Salehi et al. [14].
It includes two mathematical methods (pandemic logistic and Gompertz growth models) to
predict the dynamics of COVID-19, as well as the Moran’s index metric, which provides a
geographical perspective via heat maps and can help in the identification of latent reactions
and behavioral patterns. Literature shows similar applications being implemented and
maintained by researchers from various domains and different countries [15–18].

All these apps for respective regions systematically produce daily updated COVID-19
data visualizations and analysis. But a robust app with a combination of relevant socioe-
conomic and environmental risk factors and their interrelation with the dynamics of the
pandemic has been less explored. Thus, this complete project represents eight interactive
dashboards which collectively enable monitoring of the pandemic in Catalonia (Pande-
monCAT) and explore environmental and socioeconomic factors in the spatiotemporal
evolution of the pandemic.

This is a multicenter project, led by the Research Group on Statistics, Econometrics
and Health (GRECS) of the University of Girona, Spain, in which the Andalusian School
of Public Health (EASP) (Granada, Spain) and the University of Granada also participate.
The aim of the PandemonCAT project is to provide a web application that allows the
monitoring of the COVID-19 pandemic in Catalonia. Its results include, in addition to
vaccination, the results of diagnostic tests, transmission (reproductive number), hospital-
ization, ICU admissions, and the number of deaths. It also provides a visualization of
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those variables that could influence the spatiotemporal dynamics of the pandemic. Thus,
in an interactive interface, the environmental variables (air pollutants and meteorological
variables), the socio-economic variables, the points of interest where there may be a greater
risk and the data of public mobility are shown.

The principal aim of the project is to provide a web application that allows the monitor-
ing of the COVID-19 pandemic in Catalonia. Its results include, in addition to vaccination,
the results of diagnostic tests, transmission (reproductive number), hospitalization, ICU ad-
missions, and the number of deaths. It also provides a visualization of those variables that
could influence the spatiotemporal dynamics of the pandemic. Thus, in an interactive inter-
face, environmental variables (air pollutants and meteorological variables), socioeconomic
variables, points of interest where there may be a greater risk, and data of public mobility
are shown. The interactive web application reports a comprehensive list of all key variables
with respect to the disease: new cases, hospitalizations, ICU’s, and deaths. We have also
depicted the vaccination flow (both first and second doses) for different age groups of the
population in individual health zones of the community. Finally, we report the smoothed
standardized COVID-19 infected cases and mortality rates on maps of ABSs and regions of
Catalonia. Table A1 in Appendix A reports information about individual dashboards of the
application along with respective components and brief descriptions.

The rest of the article is organized as follows. In Section 2 we present an overview
of the methodology followed to design PandemonCAT. The subsections report detailed
descriptions of individual components of the complete methodology. Section 3 is devoted
to presenting the results of individual components of PandemonCAT. In Section 4 we briefly
discuss possible implications in other fields of study, as well as enhancements that may
be implemented to further develop the current study. The article ends with a conclusion
in Section 5.

2. Methods

PandemonCAT has been developed in the RStudio Shiny framework [19]. The appli-
cation uses R packages to execute all analysis and plots internally. The key R packages
used in the tool implementation include dplyr [20] and tidyverse [21] for data management.
Packages like rgdal [22], sf [23], raster [24], maptools [25], and flowmap.blue [26] are used
for spatial data analysis and visualizations. Interactive charts are generated with plotly
package [27], while static graphical displays are designed using ggplot2 package [28].
Leaflet [29] along with leafpop [30] packages are used to generate interactive geospatial
maps. The Shiny package [19] with Shiny flexdashboard [31] and rmarkdown [32] are
used extensively for application enhancement and implementation as interactive web apps
directly from R.

Figure 2 depicts the workflow diagram of the PandemonCAT application. Since
1 January 2020, we have retrieved, and curated data and it is being updated weekly with
the new data reported by different data sources. The raw data accessed from multiple
open data sources (referred in Section 2.1) are initially cleaned and preprocessed to ensure
consistency and reliability. To speed up the analysis and visualization process, initial data
wrangling techniques such as merging multiple heterogeneous data sources and discarding
redundant variables and duplicate observations are performed. We automated the weekly
data wrangling process because the raw datasets are extremely large and unstructured.
The local databases are updated automatically every week in the dedicated cloud server.
Section 2.2 provides a complete outline of the data remediation process. In the next phase,
spatial, temporal, and spatiotemporal analysis are performed on the periodically updated
datasets. All the analyses have been carried out using R version 4.0.1 [33]. The results
of these analyses are displayed in interactive Shiny dashboards. Finally, all these dash-
boards are combined as a single application with brief information about each dashboard
and individual access links. The integrated application runs on shared cloud servers
shinyapps.io [34] that are operated by RStudio [35]. The site is maintained by the Research
Group on Statistics, Econometrics and Health (GRECS), at the University of Girona, Spain.
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2.1. Data Collection

All data displayed in PandemonCAT comes directly from official government sources.
Specifically, we leverage the existence of open datasets as part of the increasing effort of
the government to become more transparent. Early on during the COVID-19 pandemic,
new datasets were created and shared, starting with the spatiotemporal incidence of
both the number of cases and deaths by region and health zones (ABS). The existence of
daily counts per day and geographic delimitation made a spatiotemporal representation
possible. Unlike many autonomous communities, which only shared aggregated data (i.e.,
total counts per region, without the temporal evolution), Catalonia stood out in this regard
and made apps such as PandemonCAT possible early on.

As the lockdown was ending (June 2020), more datasets were readily available such
as the number of tests performed, the number of hospitalized, ICU and in the beginning
of 2021, the number of vaccinated individuals. This allowed PandemonCAT to add all
relevant variables to be displayed in our visualizations.

The current project uses daily updates from the following open COVID-19 datasets:
Number of:
Cases per ABS
Hospitalizations (and hospitalized) per region
ICU per region
Test per ABS
Vaccinated individuals per ABS
Official data sources are as follows:
General link with all the open datasets provided from the government: https://analis

i.transparenciacatalunya.cat/ (accessed on 11 April 2022).
Regions: https://analisi.transparenciacatalunya.cat/api/views/c7sd-zy9j/rows.cs

v?accessType=DOWNLOAD&sorting=true (accessed on 11 April 2022).
ABS:
https://analisi.transparenciacatalunya.cat/api/views/xuwf-dxjd/rows.csv?accessTy

pe=DOWNLOAD&sorting=true (accessed on 11 April 2022).
Digitized cartography of the ABS:
Department de Salut. Cartography
https://salutweb.gencat.cat/ca/el_departament/estadistiques_sanitaries/cartografia

/ (accessed on 11 April 2022)
Vaccine:
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https://analisi.transparenciacatalunya.cat/api/views/tp23-dey4/rows.csv?accessTy
pe=DOWNLOAD&sorting=true (accessed on 11 April 2022).

Regarding the meteorological and air pollutant variables, the same official government
datasets have been used. Due to their nature, they are not updated daily. Data shown in
PandemonCAT is limited to the 2020 period, coinciding with the onset of the pandemic.

Meteorological variables:
METEOCAT, Generalitat de Catalunya, Meteorological data from XEMA
https://analisi.transparenciacatalunya.cat/Medi-Ambient/Dades-meteorol-giques-de

-la-XEMA/nzvn-apee (accessed on 11 April 2022).
Air pollution:
https://analisi.transparenciacatalunya.cat/en/Medi-Ambient/Qualitat-de-l-aire-als-

punts-de-mesurament-autom-t/tasf-thgu (accessed on 11 April 2022).
Socioeconomic variables:
We have used various sources for the socioeconomic variables: total population,

percentage of population 65 years or more, percentage of population 0–25 years, and per-
centage of foreigners in 2020 from countries with medium and low human development
index [2,36]

https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254
736177012&menu=resultados&secc=1254736195461&idp=1254734710990#!tabs-125473619
5557 (accessed on 11 April 2022).

Average income per person (in Euros):
Average of the years 2015, 2016, 2017 and 2018 [37]
https://www.ine.es/en/experimental/atlas/exp_atlas_tab_en.htm (accessed on 11

April 2022).
Unemployment rate [38]:
http://www.ine.es/censos2011_datos/cen11_datos_resultados_seccen.htm (accessed

on 11 April 2022).
As in the case of pollutants, the data is limited to 2020, unless otherwise stated (for

example, average income per person and unemployment rate).

2.2. Data Settings

Open data is an excellent source of information; however, raw data cannot be directly
represented to convey important information regarding the state of the pandemic. Specifi-
cally, all figures need to be adjusted by population size (i.e., representing figures by 100,000
inhabitants). This adjustment is made possible due to the existence of updated demographic
datasets with a low level of aggregation (for both regions and ABSs). The combination of
both datasets (mainly thanks to the dplyr package [20] in R) has allowed us to create the
following variables, which are the absolute reference for assessing the pandemic:

Weekly cases per 100,000 inhabitants: New cases adjusted for population on a 7-day
window period. A new case is defined as those people who have received at least one
positive PCR or antigenic test result during that period. The new case is allocated to the
place of residence of such a person. That is if a person is registered to live in Barcelona,
for instance, but gets a positive result from a hospital in other municipality, the new case is
attributed to Barcelona.

Empiric 7-day Rt: indicates the rate of change of the new cases and is calculated as the
ratio of the cumulative sum of weekly cases between t and t − 5.

Weekly tests per 100,000 inhabitants: PCR and antigenic tests performed on a 7-day
period, adjusted for population, regardless of their results.

Weekly deaths per 100,000 inhabitants: new deaths attributed to COVID-19, adjusted
for population, on a 7-day period.

Currently hospitalized per 100,000 inhabitants: number of people currently hospital-
ized due to COVID-19, adjusted for population.

Currently ICU per 100,000 inhabitants: number of people currently in intensive care
unit (ICU) due to COVID-19, adjusted for population.
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On the vaccination front, the same procedure of adjusting by population is performed
at the health zone level. This has proved to be critical, especially since the inter-health zone
population differences are large (and thus, absolute numbers don’t give an accurate picture
of the progress of the vaccination campaign).

2.3. Spatial Prediction of Air Pollutant Levels

In this section we provide the spatial predictions of the levels of atmospheric pollutants
for each ABS in Catalonia. The problem is that the air pollution monitoring stations
are not distributed homogeneously throughout the territory of Catalonia, but rather are
concentrated, mainly in the Barcelona region. Therefore, we follow our previous work [39].

Specifically, our objective there was to perform spatial predictions of air pollution
levels using a hierarchical Bayesian spatiotemporal model [39,40] that allowed us to perform
the predictions in an effective way and with very few computational costs [39]. We used
the Stochastic Partial Differential Equations (SPDE) representation [41] of the integrated
nested Laplace approximations (INLA) approach [42,43] to spatially predict, in the territory
of Catalonia, the levels of the four pollutants for which there is the most evidence of an
adverse health effect: coarse particles, nitrogen dioxide, ozone, and carbon monoxide
(pollutants of interest) [39]. We performed the spatial predictions at a point level (defined
by its UTM coordinates), allowing them to be aggregated later in any spatial unit required
(ABSs in our case). We were especially interested in the long-term exposure to air pollutants.
That is, by living in a certain area an individual is exposed to a mix of pollutants that have
lasting effects on their health.

We obtained information on the levels of air pollutants for 2011–2020 from the 143 mon-
itoring stations from the Catalan Network for Pollution Control and Prevention (XVPCA)
(open data) [44], located throughout Catalonia and that were active during that period.
The pollutants we were interested in for making spatial predictions were coarse particles,
those with a diameter of 10 µm (µm) or less (PM10), nitrogen dioxide (NO2), ozone (O3)
(all of them expressed as µm/m3) and carbon monoxide, CO (all of them expressed as
mg/m3) (air pollutants of interest, hereinafter). However, the monitoring stations also
measured other pollutants: fine particles, those with a diameter of 2.5 µm or less (PM2.5),
nitrogen monoxide (NO), sulphur dioxide (SO2), benzene (C6H6), hydrogen sulphide (H2S),
dichloride (Cl2), and heavy metals (mercury, arsenic, nickel, cadmium, and lead).

We specified a hierarchical spatiotemporal model:

Z(si, t) = Y(si, t) + ε(si, t)

where i denotes the air pollution monitoring station where the pollutant was observed; t is
the time unit; si the location of the station; Y(., .) the spatiotemporal process, the realization
of which corresponds to the pollutant measurements (at station i and time unit t); and
ε(., .) the measurement error defined by a Gaussian white-noise process (i.e., spatially and
temporally uncorrelated).

The spatiotemporal process, Y(., .), is a spatiotemporal Gaussian field that changes in
time according to an autoregressive of order one (AR(1)).

The measurement equation was specified as:

y(si, t) = µ(si, t) + η(si, t)

where µ(.,.), denotes a large scale component and η(.,.) the realization of a spatiotemporal
process, specified as,

η(si, t) = φη(si, t− 1) + ω(si, t) where |φ| < 1.

ω(si, t), which was assumed to be a zero mean Gaussian and a Matérn covariance function:

Cov
(
η(si, t), η

(
s′i, t

))
=

σ2

2ν−1Γ(ν)
(
κ‖si − s′i‖

)ν Kν

(
κ‖si − s′i‖

)
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where Kν is the modified Bessel function of the second type and order ν > 0, ν is a parameter
controlling the smoothness of the GF, σ2 is the variance, and κ > 0 is a scaling parameter
related to the range, ρ, the distance to which the spatial correlation becomes small.

The linear predictor of the GLMM specification of the large-scale component, µ(., .) was,

µi,t = β0 +
14

∑
j=1

β j pollutantj,it + β15altitudei + β16areai + ηi + Si + τmonth

We included as covariates: (1) pollutant: the pollutants of interest other than the
pollutant for which the spatial prediction was made and, second, the rest of the pollutants
that are measured in each monitoring station (i.e., PM2.5, NO, SO2, C6H6, H2S, Cl2, mercury,
arsenic, nickel, cadmium, and lead); (2) altitude: the altitude of the air pollution monitoring
station; and (3) area: the area of the ABS. On the other hand, including random effects,
we controlled for heterogeneity (those unobservable factors that could be associated with
the levels of the pollutant) ηi (unstructured random effect indexed on the ABS), spatial
dependence (that is, the existence of geographic patterns), Si (structured random effect
according a Matérn); and temporal dependence (trend and seasonality), τyear and τmonth,
respectively (structured random effects indexed on year and month, respectively).

2.4. Smoothing of the Rates of the Outcomes from COVID-19

The simplest disease (or mortality) maps represent the cases or deaths observed in each
geographic area. However, any interpretation of the geographical structure of the cases is
limited by the lack of information on the spatial distribution of the population that could be
‘at risk’ and, consequently, has generated these observed cases. Therefore, the representation
of rates that allow incorporating the effect of the population at risk is preferred, instead of
representing gross cases. However, the direct use of crude rates does not allow comparison
between different areas, since the differences observed between them may be due to risk
factors that have not been considered, such as age. One measure that considers the age
structure is the age-standardized rate. There are two methods for age standardization,
which are known as direct and indirect standardization. In the representation of disease
maps, the use of the indirect method is preferred, which consists of comparing the observed
cases of the disease in an area with the expected cases if the risks for each age group were
the same as in a certain area reference population. The observed/expected ratio is called
the standardized incidence (or mortality) rate (SIR or SMR), which is nothing more than an
estimator of the relative risk of the area, that is, of the risk of illness (or death) in relation to
the reference group [45,46].

SIRs (or SMRs), even though they have been widely used, have some limitations.
They depend to a great extent on the population size, since the variance of the standardized
rates is inversely proportional to the expected values; thus, areas with little population
will present estimators with great variability. In this sense, the extreme standardized rates
and, therefore, dominant in the apparent geographic pattern, are those estimated with the
least precision in areas with few cases. In addition, the variability of the observed cases is
usually much greater than expected, producing what is called ‘extra variability’. In fact,
when spatial data are available it is important to distinguish two sources of extra variation.
In the first place, the most important source is usually the so-called ‘spatial dependence’,
which is a consequence of the correlation of the spatial unit with neighboring spatial
units, generally those that are geographically contiguous. Thus, the standardized rates of
contiguous, or close, areas are more similar than the standardized rates of spatially distant
areas. Part of this dependency is not really a structural dependency but is mainly due to
the existence of uncontrolled variables, i.e., those not included in the analysis. Regarding
the second source, the existence of extra independent and spatially unrelated variation,
called ‘heterogeneity’, due to unobserved variables without spatial structure that could
influence the risk must be assumed [45,46].
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To solve the problems derived from the direct use of SIRs (or SMRs), several al-
ternatives have been proposed to “smooth” them, that is, to reduce the extra variation.
Specifically, to estimate disease risks it is preferable to use models (known as ‘disease
mapping models’) since they allow incorporating explanatory variables and borrowing
information from neighboring areas to improve local estimators, smoothing the extreme
values because of small sample sizes [45,46].

Here, to smooth the SIRs, we used a log Gaussian Cox (LGCP) model. The LGCP
model is the analogue of the Gaussian linear model used for geostatistical data when
data is modelled in the form of point processes. However, this model is currently being
used to approximate spatial data of any type (that is, areal data, geostatistical data, and
point processes) [47].

First, we assessed the existence of a geographic pattern, as well as clusters of cases in
the incidence and mortality of COVID-10. To do this, we specified an LGCP, in which we
did not include explanatory variables but only random effects that captured: (1) individual
heterogeneity not spatially structured, that is, it collects those unobservable confounders
associated with each ABS that do not vary over time; (2) the time trend of the risk (in
a non-linear way); and (3) the spatial dependence. In our case, the LGCP model had
three peculiarities. First, we included as an offset (denominator) the expected number of
cases and deaths from COVID-19 in the ABS. In this way we smoothed the SIRs. Second,
since there were ABSs that some weeks did not have any cases or deaths, we allowed
the dependent variables to have an excess of zeros, assuming that they are distributed
according to a negative binomial. Third, in addition to controlling for heterogeneity, spatial
dependence, and temporal dependence using random effects, we allowed the spatial
pattern of incidence and mortality to vary over time, including a random effect for the
interaction between the spatial and the temporal components [48].

Second, in the previous model we included those variables that could have explained
the risk of incidence and mortality and, therefore, also the possible geographic patterns
and the existence of clusters, if any. As explanatory variables we included socioeconomic
variables net income per person (average 2015 to 2018), unemployment rate, population
density, percentage of the population aged 65 years or more (average 2015 to 2018), per-
centage of slums (with surface area smaller than 40 m2), and percentage of residents born
in low-income countries); meteorological variables (net effective temperature—a thermal
index that combines temperature, relative humidity and wind speed—and atmospheric
pressure); long-term exposure (from 2009 to 2019) to air pollutants (PM10, NO2, and O3);
mobility variables (exits, entrances, and internal movements) and the accumulated weekly
percentage of those vaccinated with two doses. All variables were included at the ABS level.
The socioeconomic variables (except for density) were collected at the census tract level
and for this reason the values for each ABS were obtained by means of a weighted average
of the census tracts contained in them, using the ABS population as weights. The values
of the meteorological variables and atmospheric pollutants in each ABS were spatially
predicted using a hierarchical Bayesian spatiotemporal model. With the exception of the
accumulated percentage of those vaccinated with two doses, the rest of the time-dependent
variables, that is, for which we had weekly values (meteorological, atmospheric pollutants,
and mobility) were included in the model as the average of the values of the previous two
weeks (since their effect on incidence and mortality, if any, was not immediate). Finally,
we allowed the relationship between incidence and mortality and the explanatory variables
to be non-linear.

3. Results

The spatiotemporal and visual analytics capabilities included in PandemonCAT can
be useful to explore associations and trends among meteorological and air quality variables
and COVID-19 indicators, with a layer of socioeconomic and public mobility information.
The app demonstrates visualization of these variables that could have some influence on
the spatiotemporal dynamics of the pandemic. We believe the addition of these new dimen-
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sions, which is the key innovation of our project, will improve the current understanding
of the spread and impact of COVID-19.

The application can be accessed online (https://www.udg.edu/pandemoncat, (ac-
cessed on 11 April 2022)). The application is a dynamic and interactive dashboard, as illus-
trated in Figure 3, which allows the user to get an overview of the entire application and
its different modules. The user can get detailed information and links for the component
modules by clicking on individual tabs.
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Figure 4 shows the information tab for one component module of PandemonCAT.
It provides an outline concept of the particular dashboard and its unique functionalities
along with data type and sources. It also provides the weblink of the component module
as highlighted in Figure 4.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 4. Dashboard for component module of PandemonCAT. 

In the following sections we demonstrate the characteristics of individual compo-
nents of PandemonCAT through various figures supported by relevant functional expla-
nations. 

3.1. COVID-19 Dynamics 
The “COVID-19 Dynamics” app depicts the principal parameters to track the 

COVID-19 pandemic in Catalonia (Figure 5). In the first section, we present a spatiotem-
poral map at the ABS level which is the lowest administrative aggregation level for data 
collection from official open data portals. The interactive map has the option to display 
the results categorized by the parameters, namely, empirical 7-day reproductive number 
and weekly records per 100,000 inhabitants for infected cases, tests performed, and deaths. 
Moreover, it also provides options to check the currently hospitalized and intensive care 
unit (ICU) patients per 100,000 inhabitants for individual ABSs. Details of these variables 
are discussed in Section 2.2. The app also provides the option to select any particular date 
starting from 20 March 2020 to explore spatial distribution of any variables mentioned 
above. In the next section, a time plot for each of the same variables is available to review 
its evolution for individual ABS compared with Catalonia as a whole. In this section, the 
user will have the option to select a particular time period mentioning a start and end 
date. It is worth noting that, though the majority of the populations are between 20,000 
and 40,000, there exists a particular heterogeneity in the population size of each ABS. This 
fact may be relevant since outliers are more often found in ABSs with low populations 
that experience serious outbreaks. Figure 5 (left) depicts the parameter options to control 
the spatiotemporal visualizations. Right (top) map shows the spatial variation of weekly 
infected cases per 100,000 population for a particular selected date in different ABSs of 
Catalonia. While the plot on right (bottom) presents the temporal trend of the same vari-
able for a particular ABS compared with the entirety of Catalonia for a selected range of 
time. In both map and linear plots, the user can get detailed information for any spatial 
and temporal resolution with a click (as shown on the map pop-up information window). 

Figure 4. Dashboard for component module of PandemonCAT.

57

https://www.udg.edu/pandemoncat


Int. J. Environ. Res. Public Health 2022, 19, 4783 11 of 22

In the following sections we demonstrate the characteristics of individual components
of PandemonCAT through various figures supported by relevant functional explanations.

3.1. COVID-19 Dynamics

The “COVID-19 Dynamics” app depicts the principal parameters to track the COVID-19
pandemic in Catalonia (Figure 5). In the first section, we present a spatiotemporal map
at the ABS level which is the lowest administrative aggregation level for data collection
from official open data portals. The interactive map has the option to display the results
categorized by the parameters, namely, empirical 7-day reproductive number and weekly
records per 100,000 inhabitants for infected cases, tests performed, and deaths. Moreover,
it also provides options to check the currently hospitalized and intensive care unit (ICU)
patients per 100,000 inhabitants for individual ABSs. Details of these variables are discussed
in Section 2.2. The app also provides the option to select any particular date starting from
20 March 2020 to explore spatial distribution of any variables mentioned above. In the next
section, a time plot for each of the same variables is available to review its evolution for
individual ABS compared with Catalonia as a whole. In this section, the user will have the
option to select a particular time period mentioning a start and end date. It is worth noting
that, though the majority of the populations are between 20,000 and 40,000, there exists
a particular heterogeneity in the population size of each ABS. This fact may be relevant
since outliers are more often found in ABSs with low populations that experience serious
outbreaks. Figure 5 (left) depicts the parameter options to control the spatiotemporal
visualizations. Right (top) map shows the spatial variation of weekly infected cases per
100,000 population for a particular selected date in different ABSs of Catalonia. While the
plot on right (bottom) presents the temporal trend of the same variable for a particular
ABS compared with the entirety of Catalonia for a selected range of time. In both map and
linear plots, the user can get detailed information for any spatial and temporal resolution
with a click (as shown on the map pop-up information window).
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3.2. Vaccine Rates

The “Vaccination” app displays the progress being made in the vaccination campaign
against COVID-19 in Catalonia (Figure 6).
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Figure 6. The dashboard of PandemonCAT enables analysis of the spatiotemporal dynamics of
COVID-19 vaccination in Catalonia.

In the first section, we present a spatiotemporal map at the ABSs level representing the
share of population with either one or two doses of all types of vaccine, for both cumulative
and the weekly proportion. In addition to the overall share of population, specific shares
per age group can also be explored. The age groups are all 10-year periods, except for “80
or above” and “0 to 19” years old. In the second section, a time plot of the same variables
is available to monitor its evolution. The plot for Catalonia is also displayed to provide
some context for the specific ABS plot. Note that, similar issues related to outliers found
in ABSs with low populations (also mentioned in Section 3.1) can be observed due to
heterogeneity in the population size of each ABS. Figure 6 (left) depicts the parameter
options to control the spatiotemporal visualizations. Right (top) map shows the spatial
variation of cumulative vaccination for the population of all age groups on a particular
selected date in different ABSs of Catalonia. This map depicts the distribution for all types
of vaccines for first dose only. While the plot on the right (bottom) presents the temporal
trend of the same variable for a particular ABS compared with the entire Catalonia. In both
map and linear plots, the user can get detailed information for any spatial and temporal
resolution with a click (as shown on the map pop-up information window).

3.3. Meteorological Variables

The “Meteorological” app displays daily average records of six meteorological compo-
nents for individual weather stations in Catalonia (Figure 7). The six components included
in the current project are atmospheric pressure, precipitation, relative humidity, solar irra-
diance, temperature, and wind velocity.
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Figure 7. Dashboard of PandemonCAT displaying daily average records of meteorological compo-
nents from different weather stations in Catalonia.

In the first section, we present the spatial distribution of daily average meteorological
records from 75 weather stations located in different ABSs of Catalonia. The second section
depicts a smoothed scatter plot of average monthly records of individual meteorological
components for all ABSs of Catalonia. Figure 7 (left) shows the option to select the type of
meteorological components and the date slider. The right section top of Figure 7 presents
the map of Catalonia with the locations of individual weather stations. Clicking on any
station displays detailed values of the weather component on the selected day for that
particular station. A smoothed scatter plot is displayed below.

3.4. Air Pollutants

This app focuses specifically on the daily average concentration of coarse particles
(PM10), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) recorded at 75 pol-
lution monitoring stations in the region (Figure 8).
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In the first map we report the daily average concentration of air pollutants for the
pollution monitoring stations distributed over individual ABSs of Catalonia. The smoothed
scatter plot below displays the overall behavior as a monthly average of individual air
pollutants for all ABSs of Catalonia. The second map for all ABSs depicts the average
annual prediction for a given air pollutant concentration. The prediction map provides
an option to select any year between 2011 and 2020, inclusive. Figure 8 (left) shows the
options to select the type of air pollutants and the date slider along with the variations of
selected pollutants for different pollution recording stations. Below it displays a smoothed
scatter plot. Figure 8 (right) presents the spatial distribution of average annual prediction
for the average annual concentration of a selected pollutant and for a selected year.

3.5. Socioeconomic Variables

The first section of this app reports the spatial distribution of variables such as income
per capita, percentage of population (65 or more), percentage of population (0–25), percent-
age of foreign population, and unemployment rate (Figure 9). The spatial resolution of the
variables is ABSs of Catalonia and it reflects substantial inequalities across regions.
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The second map displays the geographic locations of points of interest (POIs), weather
stations and pollution recording stations in an interactive map interface (Figure 10). POIs are
potential COVID-19 contamination hotspots like restaurants, night clubs, bars, and other
similar public aggregation hotspots. Figure 9 displays the spatial distribution of total popu-
lation in the 343 ABSs of Catalonia. The map depicts a wide heterogeneity of population in
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the entire region. On the other hand, Figure 10 displays clustered POIs distributed over the
entire study region.
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3.6. Public Mobility

In Catalonia during late February 2020 and early March 2020, there were no strong
actions or precautions taken by the government warning of the seriousness of the pandemic.
Community transmission started in mid-February and by 13 March, confirmed cases of
COVID-19 had been recorded in almost all the 343 ABSs of the region. This led to the
implementation of nation-wide lockdown in Spain on 14 March 2020 which was also
effective in Catalonia. The lockdown continued for more than 3 months. In the beginning
of June 2020 with a gradually decreasing trend in the number of infected and deaths,
the government started lifting some restrictions and relaxing the lockdown to some extent.
Leveraging the recently available public mobility open data, in the Public Mobility tab we
are able to provide exact figures for every municipality in Catalonia, including long trips
and shorter ones (such as the daily commute to work).

This new dimension is key for understanding and quantifying the impact of non-
pharmaceutical interventions (NPIs) throughout the pandemic. Never before has an open
dataset provided so much insight into the daily mobility of the population, and thanks to
it, we can easily spot the stay-at-home period of March–April 2020 in comparison with the
following months, proving once again the high degree of compliance with that specific
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NPI (Figure 11). The dynamic flow map in Figure 11 represents average inter- and intra-
ABS public mobility during October 2020. The user has the option to select the months
from March to November 2020 which covers all the phases—before, during, and after the
lockdown period.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 17 of 23 
 

 

Leveraging the recently available public mobility open data, in the Public Mobility tab we 
are able to provide exact figures for every municipality in Catalonia, including long trips 
and shorter ones (such as the daily commute to work). 

This new dimension is key for understanding and quantifying the impact of non-
pharmaceutical interventions (NPIs) throughout the pandemic. Never before has an open 
dataset provided so much insight into the daily mobility of the population, and thanks to 
it, we can easily spot the stay-at-home period of March–April 2020 in comparison with the 
following months, proving once again the high degree of compliance with that specific 
NPI (Figure 11). The dynamic flow map in Figure 11 represents average inter- and intra-
ABS public mobility during October 2020. The user has the option to select the months 
from March to November 2020 which covers all the phases—before, during, and after the 
lockdown period. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Dashboard of PandemonCAT to visualize inter- and intra-ABS monthly public mobility. 

3.7. Smoothing 
We show the weekly smoothed standardized incidence (positive cases) and mortality 

rates by COVID-19 on maps of Catalonia by ABS and region (Figure 12). These smoothed 
rates allow the user to glimpse the existence of geographic patterns in incidence and mor-
tality. 

Figure 11. Dashboard of PandemonCAT to visualize inter- and intra-ABS monthly public mobility.

3.7. Smoothing

We show the weekly smoothed standardized incidence (positive cases) and mortality rates
by COVID-19 on maps of Catalonia by ABS and region (Figure 12). These smoothed rates allow
the user to glimpse the existence of geographic patterns in incidence and mortality.
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Those ABSs with smoothed rates higher than unity have a risk of incidence higher than
expected and those with smoothed rates lower than the unit, a lower risk than expected.

63



Int. J. Environ. Res. Public Health 2022, 19, 4783 17 of 22

To help evaluate the existence of agglomerations of excess cases (i.e., clusters), we also
show the ‘exceedance probability’, which is the probability that the smoothed rate is above 1.
Those ABSs or regions with a probability greater than 80% can be classified as high risk (of
incidence or mortality) and those with a probability less than 20% of low risk.

We show smoothed rates without including explanatory variables and adjusting
for various explanatory variables. In the latter case, including only vaccination (weekly
accumulated percentage of people vaccinated with the two doses) and including vacci-
nation, socioeconomic and environmental variables (meteorological and air pollutants),
and mobility.

3.7.1. Weekly Positive Cases

Those ABSs with smoothed rates higher than unity have a risk of incidence higher than
expected and those with smoothed rates lower than the unit, a lower risk than expected.
For example, a smoothed incidence rate equal to 1.5 means that in that ABS there were 50%
more cases than expected (according to the age and sex structure of the ABS).

Regarding the probabilities of exceedance, those ABSs with a probability greater than
80% can be classified as high risk of incidence and those with a probability less than 20% of
low risk.

3.7.2. Weekly Deaths

The smoothed rates allow the user to view geographic patterns in mortality. For exam-
ple, regions with a smoothed mortality rate equal to 1.2 means that the number of deaths
from COVID-19 was 20% higher than expected.

Regarding the probabilities of exceedance, those regions with a probability greater
than 80% can be classified as high risk of mortality and those with a probability less than
20%, as low risk.

4. Discussion

It is important for the health professionals and policymakers to have access to the
most relevant, reliable, and real-time information that can be used in their day-to-day tasks
of COVID-19 research and analysis.

In this context, all apps referred to in Section 1 produce daily updated COVID-19 data
visualizations and analyses. The results of our current study illustrate that, PandemonCAT
is a novel interactive web application which acts as a collective monitoring package for daily
COVID-19 updates along with regional vaccination flow and several environmental and
socioeconomic variables that could have some influence on the spatiotemporal dynamics
of the pandemic. The app explores variables such as meteorological and air pollution
variables, population by age group, unemployment rate, income per capita, and others in a
geospatial interface. It also provides an interactive interface to visualize public mobility
before, during, and after the lockdown phases in the community. The visualization of these
variables could have some influence on the spatiotemporal dynamics of the pandemic.

On the other hand, linking the pandemic severity with environmental factors such as
air pollution, we find the article from Martorell-Marugán et al. which may be the closest to
our study in that regard [49]. Combining great visualization capabilities with sound and
rigorous statistical analysis of the possible contributing factors of the pandemic goes hand
in hand with our aim. We tried to take it a step forward, albeit limiting it to Catalonia due
to data availability, and relate many other relevant variables that enrich the overall picture.
Related to the social contact data sharing initiative, an interactive tool (SOCRATES) to assess
mitigation strategies for COVID-19 was developed by Willem et al. [50]. It implements
location-specific physical distancing measures (e.g., schools or at work) and captures their
impact on the transmission dynamics.

To the best of our knowledge, this is the most complete, open, and free source of
public health information regarding the pandemic and its possible contributing factors in
Catalonia. Many other applications have been developed throughout this period; however,
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none offer the end user the option to explore with a single click other key variables such as
social mobility, meteorological and air pollution statistics. Another unique aspect of the
current application is the level of spatial resolution. Limited online applications provide
dynamic spatial resolution up to the level of ABSs. In addition, it is the only interactive
application which provides a visualization of human mobility and highlights its influence
on the transmission of COVID-19 for individual ABSs and regions of Catalonia. To explore
the link between COVID-19 transmission and air pollution, PandemonCAT is one of the
few online applications to provide spatial predictions of pollutants for the entire time frame
which covers all the phases before, during, and after the lockdown periods. We also report
that, to the best of our knowledge, no other application provides dynamic, smoothed,
standardized COVID-19 infected cases and mortality rates. These smoothed rates allow
the user to explore the existence of geographic patterns in incidence and mortality rates.
Moreover, the datasets used as input for the application are collected from official open
data portals. This makes the data collection process smoother and on the other hand
allows additional individuals to analyze and interpret the data, making it transparent and
reproducible. The entire application can be easily replicated using open data from any
other region or country.

Although the sources of our data are very complete and informative, there are several
limitations, which are common to many countries. First and foremost, during the first
COVID-19 wave, testing for the disease was very limited, making it hard to estimate the
true number of infected during that period. Data on hospitalizations and deaths was also
constrained by the testing capacity, but it did so to a lesser degree since they were greatly
prioritized. This fact is emphasized as total COVID-19 deaths in Catalonia account for
almost all the excess deaths for the first epidemic wave.

However, this limitation became virtually eliminated during the month of July 2020,
when the testing capacity was greatly expanded. This is reflected by much lower positive
rates, even when the next several waves were at their highest, and by a much lower share
of cases that ended up in hospitalization or death.

Another limitation is the lack of distinction between the type of vaccine being admin-
istered to the population. We do have information available regarding the total numbers
administered for each manufacturer (either Pfizer/BioNTech, ModeRNA, Janssen or As-
traZeneca), but given that it’s likely that each vaccine offers a different protection profile,
especially with the expected waning immunity, we may have a certain degree of hetero-
geneity among the fully vaccinated cohort.

5. Conclusions

The complex nature of the COVID-19 epidemic and its dynamics of spread and
transmission in the global population demands that researchers and health professionals
embrace a multidisciplinary approach in addressing the challenges raised by the pandemic.
Thus, it is essential to have efficient web-based applications or, portals that can provide
the most relevant, reliable, and up-to-date information with a single click. In this context,
the dynamic web-application we have developed offers a tool to scientists and others in
the broader community to visualize the spatiotemporal trends of COVID-19 and enables
comparisons at the ABS level in Catalonia, Spain. The features we incorporated in our open-
source web application provide a comprehensive picture of public mobility, environmental,
and other socioeconomic aspects that may have an impact on the spatiotemporal dynamics
of the pandemic. The visualization of spatial predictions of pollutants related to COVID-19
is another novel feature of PandemonCAT. Finally, the interactive functionality to depict
dynamic, smoothed, standardized COVID-19 infected cases and mortality rates help in
providing an insight for the policymakers in developing public health strategies and control
measures related to the ongoing pandemic.
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Appendix A

Table A1. Description of PandemonCAT component apps.

App Name Components Description

COVID-19 Dynamics

Weekly
Cases per 100,000 inhabitants,

Empiric 7-day Rt,
Weekly Tests per 100,000 inhabitants,

Weekly Deaths per 100,000 inhabitants,
Currently hospitalized per 100,000

inhabitants,
Currently ICU per 100,000 inhabitants

(Both spatial and linear plots)

Displays the main parameters to track
the COVID-19 pandemic in Catalonia.

Vaccination Flow

Cumulative vaccination percentage
Weekly vaccination percentage

(Both spatial and linear plots and for
different age groups)

Displays the progress being made in the
vaccination campaign against COVID-19

in Catalonia.

Meteorological

Daily records of
temperature,

atmospheric pressure,
precipitation,

relative humidity,
solar irradiance,
wind velocity

Displays information of meteorological
components of individual weather

stations for 2020.

Air Pollutants

Daily records of concentration for
ozone,

carbon monoxide,
nitrogen dioxide,

PM10
Daily records of concentration for

ozone,
carbon monoxide,
nitrogen dioxide,

PM10 for the years 2011 to 2020,
both included.

Displays the concentration of ozone,
carbon monoxide, nitrogen dioxide and
PM10 available from several pollution

monitoring stations for 2020.
Second map displays the spatial

prediction for each Basic Health Areas
(ABSs) for the above-mentioned

variables for the years 2011 to 2020,
both included.
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Table A1. Cont.

App Name Components Description

Socioeconomic

Total population
Income per capita,

Percentage of population (65 or more),
Percentage of population (0–25),
Percentage of foreign population,

Unemployment rate
Locations of

Point of Interest,
Weather stations,

Pollution monitoring stations

Displays spatial distribution of
socioeconomic components like

population, unemployment rate etc.
for 2019.

Displays “Point of Interest” defined as
restaurants, night clubs, bars,

among others, whereas MET stations
locate all weather and pollution

monitoring stations across the region.

Public Mobility Monthly intra and inter ABSs’ public
mobility.

Displays inter and intra ABSs’ monthly
public mobility before, during and after

lockdown phases in Catalonia.

Smoothing COVID-19
Outcomes

Weekly
Smoothed incidence rates
Smoothed mortality rates

Displays weekly smoothed standardized
incidence (positive cases) and mortality

rates by COVID-19 by ABSs and
comarcas of Catalonia.

Smoothing Methods
Smoothing methods

Smoothing standardized incidence and
mortality rates

Reports about the Bayesian
spatiotemporal model used in the

smoothing process.
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ABSTRACT
Traffic deaths and injuries are one of the major global public health
concerns. The present study considers accident records in an urban
environment to explore and analyze spatial and temporal in the
incidence of road traffic accidents. We propose a spatio-temporal
model to provide predictions of the number of traffic collisions on
any given road segment, to further generate a risk map of the entire
road network. A Bayesian methodology using Integrated nested
Laplace approximations with stochastic partial differential equations
(SPDE) has been applied in the modeling process. As a novelty, we
have introduced SPDE network triangulation to estimate the spa-
tial autocorrelation restricted to the linear network. The resulting risk
mapsprovide information to identify safe routesbetween source and
destination points, and can be useful for accident prevention and
multi-disciplinary road safety measures.
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1. Introduction

Road traffic collisions is one of the serious issues in the modern world. According to 2018
global status report on road safety by the World Health Organisation, approximately 1.35
million people die each year as a result of traffic collisions [74]. The rate of occurrence
along with severity of traffic crashes are the principal indicators of urban road safety mea-
sures [74]. Literature suggests that factors such as road infrastructure or types of roads
(highways, double or, single carriage tracks) play a vital role in road safety measures [18].
Indeed, uncontrolled vehicle speed or street junctions without traffic signals increase acci-
dent risk [10], but temporal factors (time of the day or weekend nights) also act as decisive
aspects in the count and impact of accidents [20,33]. Identifying such significant elements
has been a central focus of research in the domain of road safety. Available map appli-
cations offered by larger corporations, such as Google Maps or collaborative geospatial
projects (for example, OpenStreetMap (OSM)) can provide information about the fastest
(shortest) route from source to destination points. The existing applications can suggest,
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however, the shortest route without considering likely risk factors. Multi-disciplinary pre-
dictor aspects are not implemented inmost of these applications. According toWilliamson
and Feyer [76], a particular road can be safe during mid-day, but the same road might
not be safe during office hours. Relevant spatio-temporal factors play a significant role in
identifying safe roads [52]. Traffic components such as street light, road type, or speed lim-
its act as significant factors in determining safe routes [12,44]. Thus, a multi-disciplinary
approach is essential to explore spatio-temporal effects on road collisions. Identifying
significant components [19,60] while performing spatio-temporal modeling of traffic acci-
dents [30,78] have gained an increasing interest in the domain of road safety management.
Research works by [5,6,44] made notable contributions in identifying significant factors
influencing traffic collisions. Bhawkar [8] explored and analyzed the leading factors caus-
ing road accidents on the streets of UK. Shahid et al. [63] mentioned that the causes of
traffic collisions can be broadly classified into spatial and temporal components. A series
of studies [3,20,26,62] analyze historic data to identify risk factors and assess likelihoods
of crash-related events to categorize spatio-temporal factors affecting traffic accidents.
These factors are considered as significant predictors in statistical analysis and prediction
modeling.

Several statistical techniques such as Poisson model variations [13,37,42,49], negative
binomial error structure [53], logistic [28] and linear regressions [1] have been applied to
analyze spatial variability of traffic accidents. In this regard,Wang et al. [72]while analyzing
factors influencing traffic accident frequencies on urban roads, mentioned that accidents
occurring at different locations are related. It supports spatial autocorrelation of traffic acci-
dent events. Spatial methods are able to incorporate geographical correlation in the model
fitting process and, in most of the cases, spatial methods outperform the non-spatial mod-
els [23,77]. In this line, a number of research works [27,29,30,35] suggest that stochastic
spatial processes are one of the most appealing analytical tools to analyze the spatial and
spatio-temporal distribution of traffic collisions. Karaganis and Mimis [29] used spatial
point processes to evaluate the probability of traffic accident occurrence on the national
roads of Greece. In this context, statistical inference comes along with Bayesian methodol-
ogy. Cantillo et al. [12] used a combined GIS-empirical Bayesian approach in modeling
traffic accidents on the urban roads of Colombia. A space-time multivariate Bayesian
model was designed by Boulieri et al. [21] used Bayesian spatial modeling with INLA in
predicting road traffic accidents based on unmeasured information at road segment lev-
els. The use of INLA-SPDE for spatial data is now quite well established in a number of
disciplines with a large number of contributions [7,25,70] and in particular the references
therein. However, in the context to traffic accident event modeling, there are limited con-
tributions implementing Bayesian methodology with INLA-SPDE approach. In addition,
if we consider events with a network support, see [14,45,46] for a nice overview of spatial
and spatio-temporal point pattern analysis on linear networks, then Bayesianmethodology
on road networks using INLA-SPDE is even far under explored.

The aim of this paper is two-fold. On one side we provide a modeling framework to
explore and analyze the spatial and temporal variation in the incidence of road traffic
accidents on individual road segments. The second aim roots in providing an advanced
and realistic computational strategy to create the spatial triangulation restricted only onto
the network topology. In this context, we propose the novel concept of multi-disciplinary
road-safety analysis by introducing spatio-temporal riskmodeling of traffic accidents using
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Bayesianmethodology restricted entirely onto the road network. Ourmodel acts as a com-
prehensive scoring system that can predict a risk index over individual road segments
generating a categorized risk map of the entire road network. The study is conducted on
five years road traffic accidents data from the city of London, UK. R programming lan-
guage (version R 4.0.4) has been used for statistical computing and graphical analysis. All
computations are conducted on a quad-core Intel i7-4790 (3.60GHz) processor with 32GB
(DDR3-1600) RAM.

The rest of the paper is organized as follows. Section 2 presents the OSM street net-
work data and provides some insights of the spatial distribution of traffic accidents in the
city of London, UK. A description of the spatio-temporal modeling framework comes in
Section 3. The design of the risk map algorithm is discussed in Section 3.2. Section 4 is
devoted to present the results of model prediction and risk map analysis. Some discussion
and concluding remarks come in Section 5.

2. Data settings

The Department for Transport of the Government of UK publishes road casualty statis-
tics twice a year. Detailed data about the circumstances of road accidents on public roads
reported to the police, and the corresponding casualties, are recorded using the STATS19
accident reporting form. The complete data set since 1979 is available in the UK Govern-
ment open data repository [69]. The data is free and available under theOpen Government
Licence v3.0 for public sector information. The dataset used in this paper contains detailed
information of traffic accidents for five years, from January 2013 to December 2017, that
have occurred in the city of London, UK. The city has an area of 2.90 km2, comprises six
Lower Layer Super Output Area (LSOA) with an approximate population of around 90,000
citizens. The area is an important local district that contains the historic center and the
primary Central Business District (CBD) of London.

According to Prasannakumar [52] the number of traffic collisions in each road seg-
ment plays a key role in designing predictive models that can reflect the influence of
spatio-temporal factors on traffic accidents. The original traffic accidents dataset retrieved
from [69] has records of daily accidents with geographical coordinates of individual occur-
rence. But one of the principal objectives of the current study is to measure the risk factor
of individual road segments in the study area. As a result, we have applied up-scalingmeth-
ods on both temporal and spatial resolutions. To identify the risk status of respective road
segments rather than checking individual locations of accidents, the spatial resolution has
been up-scaled to road networks, and the temporal unit is considered as month, to avoid
having extreme number of zero-counts per segment. Thus, our target variable is the total
number of accidents occurring in each road segment per month, from 2013 to 2017. An
individual year will have 12 × 1406 = 16872 events, where 1406 is the number of road
segments in the entire study area. This results in 5 × 16872 = 84360 events for five years of
the study period on all road segments.Wenote that in 98%of the cases, we have nomonthly
traffic accidents on any road segment, and only 2% shows monthly accident records rang-
ing from 1 to 4. Figure 1(left) illustrates the frequency distribution of instances with no
accidents (depicted as zero) and more than one accident, and Figure 1(right) depicts the
frequency distribution of only non-zero instances.
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Figure 1. Frequency distribution of monthly instances with (left) no accidents (depicted as zero) and
other values, and (right) only non-zero instances on all road segments in the study area.

Figure 2. OSM street network with locations of traffic accident (2013–2015) highlighted in gray.

The roadnetwork is accessed fromOSMrepository usingRpackageosmdata [51].OSM
data is free and licensed under theOpen Data Commons Open Database License (ODbL) by
the OpenStreetMap Foundation. The OSM street network is illustrated in Figure 2, noting
thatOSMhighway categories such as unclassified, bus_guideway, raceway, path and bridle-
way are not included. Figure 2(right) also depicts individual accident locations (highlighted
in red) over 1406 road segments in the OSM network.

We report that in the model fitting process we have used three covariates such as road
type, road surface and months of a year. According to Transport for London [69], road
surface has five unique categories such as dry, wet, snow, frost and flood (where surface
water is over 3 cm deep). On the other hand, road types are roundabout, one way street,
dual carriageway, single carriageway and slip road. The variable month ranges from 1 to
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12. All three covariates are used as factors in the model. We note that for model fitting we
have used traffic accident records for three years (January 2013 to December 2015) have
been used while the records of following two years (January 2016 to December 2017) have
been used for prediction purposes.

3. Spatio-temporal modeling

Random spatial events, such as traffic accidents, form irregularly scattered point patterns
over regions of interest. In these cases, spatio-temporal point process models are use-
ful tools to perform focused statistical analysis [27,29,35]. Moreover, we can consider
that these events exist on a linear network, and we can find recent literature [21,45,46]
on spatio-temporal point processes over networks that are able to identify spatial auto-
correlations and interactions between points in the pattern. In this context, it is shown that
the occurrence of traffic accidents depend on spatio-temporal interacting and triggering
factors [34].

By aggregating data from locations to counts of events per segment, we open the door to
consider Poisson regressionmodels in combinationwith a Bayesian framework for the pre-
diction of traffic accidents on individual road segments. A Bayesian approach withMarkov
Chain Monte Carlo (MCMC) simulation methods can be used to fit generalized linear
mixed models (GLMM) [75]. MCMCmethods provide multivariate distributions that can
estimate the joint posterior distribution. As mentioned in Section 1, for latent Gaussian
models and models having a large number of geo-locations, the performance of MCMC
methods drops substantially [57,66,68]. As an alternative and computationally faster solu-
tion, prediction of marginal distributions by using a Laplace approximation for integrals
was introduced by Rue et al. [57] with the integrated nested Laplace approximation (INLA)
method. It focuses on models that can be expressed as latent Gaussian Markov random
fields (GMRF) [56].

We indeed follow this approach combining a spatio-temporal Poisson regression
method within a Bayesian framework using INLA and SPDE. In particular, let Yit and Eit
be the observed and expected number of road traffic accidents on the i-th road segment
and at the t-th month, t = 1, . . . ,T. We assume that conditional on the relative risk, ρit ,
the number of observed events follows a Poisson distribution

Yit|ρit ∼ Po(λit = Eitρit)

where the log-risk is modeled as

log(ρit) = β0 + ZT
i βi + ξi + ζt + εi + δit (1)

Here, ξi and ζt account for the spatially and temporally structured random effects, respec-
tively, δit represents spatio-temporal interaction between the two structured effects, and
εi stands for an unstructured zero mean Gaussian random effect and logGamma precision
parameters 0.5 and 0.01, defined as penalized complexity (PC) priors [65].Zi represents the
spatial covariates. We assigned a vague prior to the vector of coefficients β = (β0, . . . ,βp)

which is a zero mean Gaussian distribution with precision 0.001. All parameters associ-
ated to log-precisions are assigned inverse Gamma distributions with parameters equal
to 1 and 0.00005. In the current study, we have chosen to provide default prior distri-
butions for all parameters in R-INLA. These have been chosen partly based on priors
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commonly used in the literature [9,41,47,58]. We report that our results are robust against
other alternative priors, as we run several cases with different priors obtaining the same
results.

Description of the dataset in Section 2 suggests the current model can have problems of
instability, especially with spatial random effects, which would be exacerbated due to zero
inflation. Apart from the baseline Poisson model, both zero-inflated Poisson (ZIP) and
Poisson hurdlemodels can be formulated for zero inflated discrete distributions. They pro-
videmixtures of a Poisson and Bernoulli probabilitymass function to allowmore flexibility
in modeling the probability of a zero outcome [2]. According to Lambert [31], ZIP models
add additional probabilitymass to the outcomeof zero. Poisson hurdlemodels, on the other
hand, are characterized as pure mixtures of zero and non-zero outcomes [24,55,61]. In a
ZIPmodel, the response variable isYit = 0 with probabilityπ , and Po(λit)with probability
1 − π . In particular,

Yit =
⎧⎨
⎩
0 with prob π + (1 − π)e−λit

k with prob (1 − π)
λkite

−λit

k!
, k ≥ 1

On the other hand, a Poisson hurdle model indicates that Yit = 0 with probability π , and
a truncated Poisson distribution with parameter λit with probability 1 − π . Thus, we have

Yit =
⎧⎨
⎩
0 with probability π

k with probability
(1 − π)

1 − e−λ

(
λkite

−λit

k!

)
, k ≥ 1

In themodel fitting process, we have explored three different distributions discussed above
to fit the model in Equation (1). To compute the joint posterior distribution of the model
parameters, we use an INLA-SPDE method, as introduced by Lindgren et al. [32]. SPDE
consists in representing a continuous spatial process, such a Gaussian field (GF), using
a discretely indexed spatial random process such as a Gaussian Markov random field
(GMRF). In particular, the spatial random process ξ , here represented by ξ() to explicitly
denote dependence on the spatial field, follows a zero-mean Gaussian process withMatérn
covariance function represented as

Cov(ξ(xi), ξ(xj)) = σ 2

2ν−1�(ν)
(κ||xi − xj||)νKν(κ||xi − xj||) (2)

where Kν(.) is the modified Bessel function of second order, and ν > 0 and κ > 0 are
the smoothness and scaling parameters, respectively. INLA approach constructs a Matérn
SPDE model, with spatial range r and standard deviation parameter σ .

The parameterized model we follow is of the form

(κ2 − �)(α/2)(τS(x)) = W(x)

where � = ∑d
i=1

∂2

∂x2i
is the Laplacian operator, α = (ν + d/2) is the smoothness param-

eter, τ is inversely proportional to σ , W(x) is a spatial white noise and κ > 0 is the
scale parameter, related to range r, defined as the distance at which the spatial correlation
becomes negligible. For each ν, we have r = √

8ν/κ , with r corresponding to the distance
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where the spatial correlation is close to 0.1. Note that we have d = 2 for a two-dimensional
process, and we fix ν = 1, so that α = 2 in our case [9].

INLA-SPDE requires a triangulation or mesh structure to interpolate discrete event
locations to estimate a continuous process in space [59]. We use centroids of each road
segment as the target locations over which we build the mesh. A detailed description
of building a Delaunay’s triangulation with emphasis on a network mesh is shown in
Section 3.1. Centroids of individual road segments and triangulations in the mesh are
used to generate the projection matrix. Now we use inla.spde2.pcmatern function from R-
INLA package to build SPDEmodel and specify PC priors for the parameters of theMatérn
field. The parameters prior.range and prior.sigma control the joint prior on range and stan-
dard deviation of the spatial field [64,65]. According to Bakka et al. [7], the range value
is selected based on the spatial distribution of event locations in the study area. In the
current study, due to the proximity of accident locations we have decided to use a prior
P(r < 0.01) = 0.01, which means that the probability that the range is less than 10 meters
is very small. Parameter σ denotes the variability of the data. We specify the prior for this
parameter as P(σ > 1) = 0.01.

On the other hand, the temporal random effect (ζt) is assumed to be a smoothed
function, in particular a random walk of order one (RW1) [57]. Using the specifications
discussed above, we design a set of models for three distributions such as Poisson, Pois-
son hurdle and ZIP. Each of these models are explored having different combinations
of three covariates (mentioned in Section 2) and several choices amongst PC priors and
default priors for the parameters to create a SPDE model object in case of a Matérn field.
Details of each model are shown in Table 1 in Appendix. As reported in Equation (1),
we have also introduced a spatio-temporal interaction effect as an independent unob-
served term for each combination of region and period (i, t), thus without any structure
δit ∼ Normal(0, 1/τδ). However, if spatial and temporal main effects are present in the
model, then this interaction only implies independence in the deviations from them.
Note that it is a global space-time heterogeneity effect, and it is usually modeled as white
noise [36]. See also Blangiardo andCameletti [9]. Thus, a second set ofmodels are designed
using the three distribution types with all three covariates included in each case but with
the choice of spatio-temporal interaction and PC priors. A summary of the considered
competing models is depicted in Table 2 in Appendix.

As we have a battery of competing models, we compare them using the deviance infor-
mation criterion (DIC) [67], which is a Bayesian model comparison criterion, represented
as

DIC = goodness of fit + complexity = D(θ) + 2pD

where D(θ) is the deviance evaluated at the posterior mean of the parameters, and
pD denotes the effective number of parameters, which measures the complexity of the
model [67]. When the model is true, D(θ) should be approximately equal to the effective
degrees of freedom, n − pD. DIC may underpenalize complex models with many random
effects.

An alternative is the Watanabe Akaike information criterion (WAIC) which follows a
more strict Bayesian approach to construct a criterion [73]. Gelman et al. [22] claim that
WAIC is more preferable over DIC. Likewise DIC, WAIC estimates the effective number
of parameters to adjust over-fitting. pWAIC is similar to pD in the original DIC. Gelman
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Figure 3. Selected region mesh with non-convex hull boundary.

et al. [22] scales the WAIC of Watanabe [73] by a factor of 2 so that it is comparable
to AIC and DIC. WAIC is then reported as −2(lppd − pWAIC) where lppd is the log
pointwise predictive density and pWAIC is the effective number of parameters. Therefore,
the lowest values of DIC and WAIC suggest the best model. A high number of parame-
ters means more complexity. The best models are those with a high level of complexity
and a high goodness-of-fit. In general, we choose that model showing lower DIC and
WAIC.

3.1. SPDE triangulation design

Due to the densely distributed nature of the road segments in the study area, initially a
continuous spatial structure is chosen for modeling, and triangulation is carried out on the
entire study area. Triangle size is generated using a combination ofmaximumedge and cut-
off. The size controls how precisely the equations will be tailored by the data. Using smaller
triangles increases precision but also exponentially increases computational time [70]. The
best fitting mesh should have enough vertices for effective prediction, but the number
should be within a limit to have control over the computational time. Following this princi-
ple, a series of meshes with varied range in the number of vertices are created. Finally, the
best fitting mesh without offset value and having non-convex hull boundary is selected.
The number of vertices in the selected mesh is 1526. Figure 3 depicts the selected mesh
with the locations of traffic accidents (in red) during the time period of January 2013 to
December 2017.

SPDE network triangulation: The mesh created for the entire region can be used to fit
INLAmodel in the study area. Prediction involves projecting fitted model into the mesh at
precise spatial locations. However, while fitting the mesh (as depicted in Figure 3) a prob-
lem appears. The sampled traffic accidents are discrete spatial points located precisely on
the road networks, but models fitted with a regionmesh cover the entire study area. There-
fore, the predicted locations of traffic accident can be placed in any area with or without
road networks. It is not realistic that the model prediction provides results in locations
without road network where there is no chance of traffic accidents to occur. Thus, the
traditional methods of model prediction using a region mesh are not useful. We need to
introduce the novel idea of designing SPDE triangulation precisely on road networks. The
process is executed following sequential steps where a buffer region for each road segment
is initially created, next a clipped buffer polygon is constructed which comprises only the
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Figure 4. Traffic accident locations on road segments Without buffer (left), and With buffer (right).

area covered by the road network, and finally SPDE triangulation is applied on the clipped
polygon to construct the SPDE Network Mesh. Each step of the network triangulation
process is discussed in brief as follows.

Access OSM network: OSM road network for the study region is accessed using R
package osmdata [51].

Buffer for each road segment: A report by the National Academies of Sciences, Engi-
neering, and Medicine (USA) on quality and accuracy of positional data in transporta-
tion [48] highlighted accuracy and reliability issues of positional data in transportation
researchworks. There are instanceswhere recorded data entries invariably introduce errors
in both geometric and contextual attributes [43]. This happens also with our road traffic
accident data when being positioned over the extracted OSM road network. Figure 4(left)
depicts a sample of traffic accident locations (marked as red points) on the OSM road net-
work. We note that many events are located away from the road segments. Initially, the
buffer width is selected in such a manner to get maximum points within a standard buffer
area for all road segments.We report that theGPS error is very similar for all road segments
irrespective of their individual width. Thus, a common selected buffer width for all road
segments served the best to get maximum points within buffer area. So, we check out with
different buffer widths common for all the road segments. We have used several buffers
widths, and selected a 20 meters buffer as the optimal one where the maximum points lie
within buffer regions for each road segments. In Figure 4(right) we show the built buffers
using the function geo_buffer from R package stplanr [38]. OSM road network with 20
meters added buffer is depicted in Figure 5(left).

Create Clipped Buffer Polygon: Individual buffer segments are merged and converted
into a single polygon clippedwithin a bounding box covering the study area. Figure 5(right)
illustrates the clipped polygon of the buffered segments.

Apply network triangulation: As we need to analyze accident risk factor in each road
segment, events within the buffer area of individual road segments are aggregated and
counted. Then, the centroid of each segment is used as initial triangulation nodes applied
on the clipped polygon. In relation to Delaunay’s triangulation, it is worthy mentioning
about the choice of buffer size and relevant parameters used to design SPDE mesh. Func-
tion inla.mesh.2d in R-INLA provides control for the largest allowed triangle edge length
(max.edge) and minimum allowed distance between points (cutoff ). The number of ver-
tices in the SPDE mesh is regulated by both of these, as well as the boundary region of the
study area. We report two issues while using buffer width proportional to street widths.

79



10 S. CHAUDHURI ET AL.

Figure 5. (Left) OSM road network with a 20m buffer; (Right) Clipped polygon of buffered segments.

As mentioned in the previous section, erroneous GPS locations of accident sites leads to
the first issue. In case of narrow streets, substantial numbers of accident points are found
to be located outside the buffer area. The second issue is that when the buffer width goes
below a threshold value, the entire structure of the mesh gets distorted. In contrast, if the
buffer width is particularly large, owing to close proximity of road segments, two or more
segments merge into one. This is not realistic in nature, especially while calculating the
accident risk on individual road segments.

Thus, to avoid these technical issues we have identified a common threshold value for
the buffer width for all road segments irrespective of their individual widths. According
to Verdoy [70], we need to balance between number of vertices used to build the triangu-
lated mesh and computational cost. The best fitting mesh should have enough vertices for
effective prediction, but the number should be within a limit to have control over computa-
tional time. With this concept we have fine tunedmax.edge and cutoff values with several
models to identify the best fitted mesh. A series of SPDE-mesh are generated, and the best
fitting mesh projected only on the road network, as illustrated in Figure 6, is selected. The
number of vertices for the final selected mesh is 12666. Figure 6 depicts the network mesh
together with 84360 accident events.

3.2. Riskmap design

We discuss here how to build traffic accident risk maps onto the network structure coming
from the fitted Poisson model. Coming from the predicted monthly accident occurrences
on individual road segments, we build a Risk Score (Rscore ). Initially, the raw risk score for
any road segment is equal to the sum of the total number of expected monthly accident
counts for that segment. Then, we design a dynamic normalization technique to convert
this raw risk into categorical values defining what we call a Risk Index. Finally, the normal-
ized risk indices are adapted to design the risk map over the entire road network. These
steps are detailed as follows.

In the current study, we have calculated the raw risk score for a road segment as the
sum of monthly accident counts on that segment. Literature on road safety suggests that a
predefined category range has to be decided before modeling any risk map [16]. Thus, we
consider some sort of dynamic normalization technique for the raw risk scores. Initially,
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Figure 6. Selected network mesh with added traffic accident locations.

Table 1. Normalization for risk index values.

Normalize condition Risk index Safety measure

Segment having zero Rscore 0 Low risk
Rscore < Rrange 0 Low risk
Rrange ≤ Rscore < 2 × Rrange 1 Low-medium risk
2 × Rrange ≤ Rscore < 3 × Rrange 2 Medium risk
3 × Rrange ≤ Rscore < 4 × Rrange 3 Medium-high risk
4 × Rrange ≤ Rscore 4 High risk

the risk range is calculated as follows

Rrange = (max .Rscore − min .Rscore)
no. of risk categories

(3)

Next, we have used Rrange to calculate the normalized values. As a relevant example,
the values depicted in Table 1 show that the number of categories in the normalized
scale is the same as the proposed number of risk categories. We note that the proposed
dynamic normalization technique can be applied to similar risk index scales in road safety
management.

We also highlight that the safety measure mentioned in Table 1 follows the European
Road Assessment Programme (EuroRAP) standard to create the risk ratings of the motor-
ways and other national roads in Europe [54]. The risk index algorithm implemented here
has intended to categorize road segments based on the traffic accident records in each
segment. As a result, segments having higher accident counts are categorized as accident-
prone or high risk roads. A similar methodology can be adapted in other traffic risk
modeling algorithms. The Risk index values of individual road segments are adapted to
design final risk maps.
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4. Results

This section presents results of the analysis and methodological approach developed in
Section 3. In particular, we provide results on model fitting and prediction together with
risk maps of accidents.

4.1. Model fitting

The proposed model, mentioned in Equation (1) has been fitted to the accident datasets
for the years 2013 to 2015. The remaining accident records of 2016 and 2017 have been
used for prediction purpose. R-INLA package [41] is used to fit all models mentioned
in Section 3, by adapting and modifying existing coding for space-time analysis [79].
All models are executed separately for the same data set (January 2013 to December
2015).

Deviance information criterion (DIC) and the Watanabe-Akaike information criterion
(WAIC) are used to assess the performance of the models, and to select the best fitting
model by balancing model accuracy against complexity [67]. Models having smaller DIC
value, in spite of the added complexity, provide a more appropriate fit to the sampled
data [9]. Summary results (DIC and WAIC) related to goodness-of-fit for all the fitted
models are reported inTable 1 andTable 2 inAppendix.Wenote that, in each case, the com-
putational time of non-interactive spatio-temporalmodels are found to be substantially low
compared to the other interactive counterparts.

DIC values shown in Table 2 indicate that Poisson models (M1 to M4) provide the
largest DIC values, while, in contrast, Poisson hurdle and ZIP show much better perfor-
mances. Moreover, the zero-inflatedmodels without spatio-temporal interaction (M5,M7,
M9 andM11) provide a better fit than the corresponding spatio-temporal interactive pairs
(M6, M8, M10 and M12). The values reported in Table 2 indicate that for model M7, DIC
(9464.48) and WAIC (9471.32) are substantially lower compared to others.

Thus, to model the spatio-temporal structure of traffic accidents on London road net-
works, the Poisson hurdlemodel without a spatio-temporal interaction term is selected.We
report that model M7 considers spatial and temporal effects together with three covariates
(month, road type and surface) mentioned in Section 2. In each case, the models pro-
vide larger DIC and WAIC values when the covariates are not considered (see Table 1

Table 2. Competing models with DIC and WAIC values.

Model DIC WAIC

M1: Poisson 44137.41 44132.59
M2: Poisson 47251.88 47243.16
M3: Poisson 43433.75 43427.04
M4: Poisson 44041.93 44056.08

M5: Poisson hurdle 9571.01 9570.31
M6: Poisson hurdle 9932.40 9920.95
M7: Poisson hurdle 9464.48 9471.32
M8: Poisson hurdle 9490.83 9493.05

M9: Zero inflated Poisson 9683.70 9686.07
M10: Zero inflated Poisson 9896.62 9890.19
M11: Zero inflated Poisson 9491.44 9482.10
M12: Zero inflated Poisson 9511.15 9568.80

82



JOURNAL OF APPLIED STATISTICS 13

Figure 7. Marginal posterior distributions of covariate coefficients.

in Appendix). Additionally, the models perform better when PC priors are applied for
the parameters to create the SPDE model object in case of Matérn model. As a note,
in the current study, regardless of distribution type, the models show a better fit with
the inclusion of all three covariates and PC priors under the case of no spatio-temporal
interaction.

The posterior distribution of fixed and random effects included in the model are
depicted in Figures 7 and 8. In particular, Figure 7 shows the marginal posterior dis-
tributions of all fixed effects related to covariates road type, road surface and month,
confirming the Gaussian distribution centered at zero. Additionally, Table 3 in Appendix
depicts the coefficients and credibility intervals of all fixed effects. We note that the covari-
ate road type has no influence in our model. The positive mean values for the covariate
road surface indicate positive influence in the model. However, in case of the month vari-
able, only July shows positive significance while all other months have no influence in the
model. In Section 5, we further detail the influence of variables on the model in further
details.

Figure 8 depicts the marginal posterior mean of the spatial ξi and temporal ζt random
effects. The horizontal axis of Figure 8 (top) represents 12666 triangulation nodes of SPDE
network mesh used in the model. A stronger spatial effect is observed on the nodes of tri-
angles on the road segments having higher accident counts (highlighted in Figure 6 as dark
red patches). Similarly, Figure 8 (bottom) exhibits the variation of the marginal posterior
mean of the temporal random effects over the 36 months for the model fitting years (2013
to 2015).

We finally note that spatial effect parameters κ and τ have mean values 162.53 and
0.2804 as depicted in Figure 9 that shows the marginal posterior distributions of the two
hyperparameters for the spatial random field. Using κ and τ we can get the value of spatial
range r = 0.0174 km or 17.4m.
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Figure 8. Top: marginal posterior mean of the spatial random effect ξ(.); Bottom: marginal posterior
mean of the temporal random effect ζt .

Figure 9. Marginal posterior distributions of hyperparameters κ and τ for the spatial random field ξ(.).
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Figure 10. Residual (observed minus predicted) plots for: (Left) 2016; (Right) 2017.

Figure 11. Year 2016: (Left) Risk map; (Right) Original data of traffic accidents.

Figure 12. Year 2017: (Left) Risk map; (Right) Original data of traffic accidents.

4.2. Model prediction

Using the fitted model, we can analyze goodness-of-fit of the model by considering predic-
tion over unsampled locations [79]. This prediction involves projecting the fitted model
into the mesh at each road segments.

The proposedmodel is tested using test years (2016 and 2017) combined with the entire
model fitting that used the years 2013 to 2015. From the final predicted result for both test
years, we extract monthly predicted values for individual years. In each case, we calcu-
late corresponding residuals of these predictions (observed minus predicted). Figure 10(a
,b) depict such residuals; we note the residuals are generally close to zero and have no
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Figure 13. Identified zones having consistent risk value for (Left) 2016 and (Right) 2017.

Figure 14. Highlighted streets with upward trend toward higher risk between 2016 (left) and 2017
(right).

particular structure. Root mean square error (RMSE) value acts as an indicator to assess
the performance of a fitted model. We obtained RMSE = 0.0135 for 2016, and RMSE
= 0.0121 for 2017, which are similar and particularly small. Further discussion on model
performance is reviewed in Section 5.

4.3. Riskmap

We calculate the risk index for individual road segments following the indications in
Section 3.2, and using the safetymeasure scale shown in Table 1. The normalized risk index
values are calculated using the predicted values for years 2016 and 2017. The risk maps are
visualized in an interactive geospatial platform using R packagemapview [4]. Figure 11(a)
illustrates the risk map for 2016 and corresponding original traffic accident locations are
depicted in Figure 11(b). Similar results for 2017 are presented in Figure 12(a ,b). The color
scale (0 through 4) used in eachmap follows the same safety measure scale used in Table 1.

The predicted risk maps are visually compared with original traffic accidents records
during the same time span. Some interesting observations are noted. For both years, most
of the roads in the outskirts of the city are predicted to be relatively safe than the city cen-
ter. Indeed, during these years, roads near the city center are predicted with medium to
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high risk levels. Figure 13 highlights three consistent risk zones for both years. The left-
most highlighted area being outside the city center shows a steady low risk zone.While the
other two highlighted zones represent consistent high risk roads. The identified zones show
similar trends when we compare with original accident records during 2016 and 2017.

Wenote some interesting annual variations in particular road segments identified by our
model predictions. If we look at Figure 14, with some streets highlighted by white circles,
we see that the predictions from 2016 to 2017 are following an upward trend toward a
higher risk. Indeed, the number of accidents in these streets increased from one year to the
next.

5. Conclusions and discussion

The current study presents a spatio-temporal model predicting the occurrence of traffic
accidents in an urban environment. The model is used to create dynamic risk maps for a
road network. To balance computation time and accuracy, the present research work took
advantage of the spatio-temporal nature of the data, and used Bayesian methodology by
including INLA and SPDE in the modeling process.

Literature [11,39,40] suggests that model fitting using diverse subset combinations of
variables provides opportunities to improve prediction accuracy. In the proposed model,
we have included three covariates (see Section 2). Out of them, except variables road sur-
face and one of themonths (see Table 3 inAppendix) have no influence on themodel. Thus,
future research works can explain some of the noted variations on improving prediction
accuracy by careful inclusion of significant exogenous variables related to traffic flow, traffic
control and temporal variables such as time of accident occurrence. Furthermore, studies
like [17,50] suggest future research works in exploring reliable and large training data set
that can improve the performance of the proposed model.

In recent years, spatio-temporal modeling of road traffic accidents and riskmapping has
gained attention, especially in the domain of multi-dimensional road safety management.
Besides, travel risk maps are gaining popularity among business travellers, tourists and
emergency service providers. Results and findings of the current study illustrate that the
proposedmodel can generate predicted risk maps of the entire road network for any urban
study area. In this sense, it is dynamic in nature. Themodel is flexible and general, and thus
can be adapted to similar problems. It can handle different types of covariates in space or
time, spatial and temporal structures and space-time interactions. The predicted riskmaps
of traffic accidents is one of our interesting outcomes.We can produce the road safety index
of all road segments, including small details of each junctions or sharp turnings. In our
particular problem, we can point to which elements authorities can take dedicated actions
to control and reduce traffic accidents as our model identifies significant elements that
can be controlled and modified by humans. This means we provide a real, pragmatic and
realistic element for institutions to take actions on reducing the risk of traffic accidents.

Moreover, identification of potentially dangerous roads and regions can act as baseline
information for geospatial analysis on road safety. The results can have strategic applica-
tions in developing GIS analytical tools to identify and depict possible safe routes. As the
risk map provides information about the entire road network, it can be flexible enough to
generate possible alternative safe route(s) between any source and destinations pairs.
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Another important use of the model is analyzing the change and trend pattern of traf-
fic accidents. We can find some literature suggesting this line of research in the city of
London [8,15,71], and similar works in other countries [5,34]. As depicted in Figure 14,
identification of gradual changes in risk values and their potential factors, are of interest
for future research works on change point detection.

Consequently, the novelty of the study is the introduction of SPDE network triangula-
tion or SPDE network mesh to estimate the spatial auto-correlation of discrete events. As
such, it took a new step in INLA-SPDE modeling to perform spatio-temporal predictive
analysis only on selected areas (specifically for road networks), instead of performing on
entire continuous region. In a broader picture, the study contributes to the relatively small
amount of literature on spatio-temporal analysis using INLA-SPDE of spatial events pre-
cisely on road networks. The methodology is dynamic and can be adapted and applied to
other locations globally.
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a b s t r a c t

Accidents on the road have always been a major concern in
modern society. According to the World Health Organization,
globally road traffic collisions are one of the leading and fastest
growing causes of disability and death. The present research
work is conducted on ten years of traffic accident data in an
urban environment to explore and analyze spatial and temporal
variation in the accidents and related injuries. The proposed
spatiotemporal model can make predictions regarding the num-
ber of injuries incurred on individual road segments. Bayesian
methodology using Integrated Nested Laplace Approximation
(INLA) with Stochastic Partial Differential Equations (SPDE) has
been applied to generate a predicted risk map for the entire
road network. The current study introduces INLA- SPDE modeling
to perform spatiotemporal predictive analysis on selected areas,
precisely on road networks instead of traditional continuous
regions. Additionally, the result risk maps act as a baseline
to identify the safe routes in a spatiotemporal context. The
methodology can be adapted and applied to enhanced INLA-SPDE
modeling of spatial point processes precisely on road networks.
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1. Introduction

With the growth of population and economic development, the process of urbanization is
accelerating, and the number of vehicles in urban cities is increasing. In recent years, road traffic
collisions have become a major concern in modern society. According to 2018 global status report
on road safety by the World Health Organisation, every year, around 1.2 million people die on
the world’s roadways, with another 20 to 50 million suffering non-fatal injuries. Traffic accident
is declared as one of the leading causes of death for people of all ages (WHO, 2019). Literature
suggests road infrastructure and uncontrolled vehicle speed increase accident risk (Briz-Redó et al.,
2019). Additionally, temporal factors (time of the day or weekend nights) act as decisive aspects in
the number and impact of accidents (Farmer, 2005; Liu and Sharma, 2017).

In the field of road safety, identifying relevant factors and spatio-temporal modeling of traffic
accidents have been a major focus of research (Williamson and Feyer, 1995; Prasannakumar et al.,
2011; Zhong-xiang et al., 2014; Cantillo et al., 2016; Khulbe and Sourav, 2019). A series of studies
(Jegede, 1988; Farmer, 2005; Aghajani et al., 2017; Shafabakhsh et al., 2017) have been conducted
to explore historical data in order to identify risk factors and assess the likelihoods of crash-
related events in order to categorize spatiotemporal factors influencing traffic accidents. Research in
suitable statistical methodologies to analyze traffic accident data is a fundamental line of research in
the field of traffic safety analysis. We can focus on detecting areas with a high accident concentration
(hot spot detection methods) and focus on modeling traffic accident risk (expressed by raw accident
counts or accident rates) depending on a set of predictive covariates. In statistical analysis and
prediction modeling, these factors are regarded as significant predictors.

Accessible, and sustainable transport systems in cities are a core target of 2030 sustainable de-
velopment goals (SDGs) adopted by the United Nations (UNDP, 2021). Thus, there is an opportunity
to apply advanced computational techniques to the problem of road safety and traffic management.
Various models and techniques have been developed and explored in this domain (Karaganis and
Mimis, 2006; Pulugurtha and Sambhara, 2011; Castro et al., 2012; Boulieri et al., 2016; Khulbe
and Sourav, 2019). Analyzing traffic safety performance by understanding crash fatality rates
and influencing factors is essential for developing well-informed policies and designing effective
countermeasures. Understanding the causes of the crashes, identifying appropriate solutions, and,
proactively adopting or using them helps improve traffic safety. Studies like, Xu and Huang (2015),
Guo et al. (2018) and Wang et al. (2019), highlight the existence of spatial autocorrelation of traffic
accident events. In this line to analyze spatial and spatio-temporal distribution of traffic collisions,
statistical inference comes along with Bayesian methodology. Boulieri et al. (2016) designed a
space–time multivariate Bayesian model to analyze road traffic accidents by severity in different
cities of the UK. A Bayesian approach with Markov chain Monte Carlo (MCMC) simulation methods
has traditionally been used to fit generalized linear mixed models (GLMM) in a spatial context
(Wikle et al., 1998). However, the computation time for MCMC models is considerably high for
big datasets (Rue et al., 2009; Smedt et al., 2015). As recommended by Rue et al. (2009), while
processing spatial data we can utilize integrated nested Laplace approximations (INLA) in conjunc-
tion with SPDE to balance speed and accuracy of the models. But, in the context to traffic accident
event modeling, there are limited contributions using INLA-SPDE approach. Recently, Galgamuwa
et al. (2019) used Bayesian spatial modeling with INLA in predicting road traffic accidents based on
unmeasured information at road segment levels. Similar study by Chaudhuri et al. (2022) explores
spatiotemporal modeling of traffic accidents on the road network of London, UK based on an explicit
network triangulation using INLA-SPDE.

The aim of this paper is to propose a multi-disciplinary road-safety analysis technique by
introducing spatio-temporal modeling of traffic accidents using Bayesian methodology restricted
entirely on to the road network. We introduce an advance and realistic computational strategy
to construct spatial triangulation restricted only onto the network topology. The proposed model
can predict a risk index over individual road segments generating a categorized risk map of the
entire road network. The study is conducted on ten years road traffic accidents data from the city
of Barcelona, Spain. R (version R 4.1.2) programming language (R. Core Team, 2021) has been used
for statistical computing and graphical analysis. All computations were conducted on a quad-core
Intel i9-4790 (3.60 GHz) processor with 32 GB (DDR3-1333/1600) RAM.
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Fig. 1. Location of Barcelona city and road network of the study area. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The rest of the paper is organized as follows. Section 2 presents the methods adopted in the
current study. The beginning of the section reports about the study area and data settings along with
official sources of data. A description of the spatio-temporal modeling framework with emphasis
on SPDE triangulation designed precisely on road network is discussed in Section 2.2. Section 3
is devoted to present the results of model prediction and risk map analysis. Some discussions are
highlighted in Section 4. The paper ends with some concluding remarks in Section 5.

2. Methods

2.1. Data settings

Barcelona is the largest and the capital city of the community of Catalonia, Spain. This second
most populous municipality of Spain is located on the coast of northeastern of the country. Fig. 1
shows the location of Barcelona city, and the boundary of the municipality highlighted in red.
According to Barcelona’s city hall open data service (Open Data BCN) (OpenDataBCN, 2021), the
city has a population of 1.6 million and approximately 15,748 inhabitants per square km. Besides
being one of the major cultural, economic, and financial center, Barcelona is also a transport hub
for entire southwestern Europe. The city municipality maintains an extensive motorway network.

In the current study, we have considered a small area (4.4 square km) from the central part
of Barcelona consisting of 2058 road segments as depicted in Fig. 1 inside the black circle. The
road network is also accessed from Open Data BCN repository. The police department in the city
maintains records of traffic accidents. Detailed records about the circumstances of road accidents
on public roads, corresponding casualties and injuries are managed and published annually by Open
Data BCN. The data is free and available under the Creative Commons Attribution 4.0 for public sector
information. During the period of January 2010 to December 2019 the study area has records of

3

96



S. Chaudhuri, M. Saez, D. Varga et al. Spatial Statistics 53 (2023) 100722

11,067 traffic accidents. Fig. A.8 in the Appendix shows the road networks in the study area with
traffic accident locations highlighted in red.

Five datasets from Open Data BCN have been accessed for the study, which are referred to
the accident itself and interrelated by a record code from 2010 to 2019. The recorded common
attributes are unique event id, district and neighborhood, location postal address and geographical
coordinates, occurrence day and time, kind of day (working or holiday). Each of dataset contain
the following temporal variables: year, month, and time of accident. Related to spatial variables
we made few changes. In raw dataset, individual accident locations in most cases are not located
exactly on the road segment. We have shifted individual locations to the nearest road segments.
In addition, we calculated the on road network distance of nearest bus stop, municipality market,
restaurant, school, street market for each accident locations. These distances are used as spatial
covariates in the dataset. We report that the traffic intensity records for each road segment are
collected from TomTom Traffic Stats (TomTom, 2021).

It is noteworthy to mention that values of traffic intensity for individual road segments is not
directly available from TomTom dataset. We used three variables to calculate the traffic intensity
such as, road length ranging from 3.69 to 186.25 meter, road type (values 1 to 7, higher the value
less the traffic) and road speed limit (18 to 80 km per hour) where roads having 30, 35 and 50 km
per hour cover 21%, 28% and 35% of the total. Our proposed formula to calculate the traffic intensity
is:

Traffic Intensity = (Speed Limit/Type of Road) ∗ ln(Road Length)

where, ln stands for natural logarithm that is log to the base of e. Fig. A.9 in the Appendix depicts
the calculated traffic intensity for individual road segments of the study area.

We are using the road length in natural logarithm (ln) scale to reduce the range of road length
values. Other variables available in the dataset are number of victims, vehicles involved, minor
and major injured persons, and number of casualties for each accident records. We have used the
number of minor injured person as the response variable in our models. Traffic accidents recorded
with only one minor injury comprises the maximum percentage of records (74.8.76%) followed by
two minor injuries (15.42%), and 3 or more minor injuries (3.42%). The record shows 6.4% of the
accidents are without having any minor injuries. We note that most accidents (99.85%) are having
no causality. The number of traffic accidents documented in each of the study years (2010–2019) is
similar, with the highest number (1270) recorded in 2016 and the lowest number (847) recorded in
2011. In case of monthly records for the entire study period, January records the minimum accident
counts (846) and July has the maximum value (1023). It is worth noting that, almost 50% of all
accidents occur during office hours, which are from 8 a.m. to 11 a.m. and from 3 p.m. to 6 p.m.

2.2. Statistical analysis

Random spatial events, such as traffic accidents, form irregularly scattered point patterns over
regions of interest. Literature shows, spatio-temporal point process models are useful tools for
performing focused statistical analysis (Karaganis and Mimis, 2006; Loo et al., 2011; Juan et al.,
2012). In this context, Liu et al. (2017) propose that the occurrence of traffic accidents depend
on spatio-temporal interacting and triggering factors (Liu et al., 2017). Moreover, we can find
recent studies (Galgamuwa et al., 2019; Moradi and Mateu, 2019; Chaudhuri et al., 2021) on
spatio-temporal point processes over networks that are able to identify spatial autocorrelations
and interactions between points in the pattern. We open the door to consider binomial regression
models in combination with a Bayesian framework for the prediction of traffic accidents on indi-
vidual road segments by aggregating data for the occurrence of accident injuries per road segment
given the total traffic intensity. We have used a computationally faster solution for prediction of the
marginal distributions for latent Gaussian models and models with a large number of geo-locations
by using a Laplace approximation for the integrals with the integrated nested Laplace approximation
(INLA) method. (Rue et al., 2009). It focuses on models that can be expressed as latent Gaussian
Markov random fields (GMRF) (Rue and Held, 2005). We follow this approach combining a spatio-
temporal binomial regression method within a Bayesian framework using INLA and stochastic
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partial differential equation (SPDE). In particular, specification of the binomial distribution in INLA
for responses y = 0, 1, 2, . . . , n is represented as

Prob (y) =

(
n
y

)
py (1 − p)(n−y) (1)

where, n is the number of trials and p is the probability of success in each trial (Rue et al., 2009).
The mean and variance of y are respectively µ = np and σ 2

= np (1 − p) and the probability p
is linked to the linear predictor by

p(η) =
exp(η)

1 + exp(η)
For the current study, let Yit be the observed number of minor injuries in road traffic accidents
on the ith road segment and at the tth day, t = 1, . . . , T . The average daily traffic intensity for
individual road segment is represented by Nit . We assume that conditional on the relative risk, ρit ,
the number of observed events follows a binomial distribution

Yit |ρit ∼ Binomial (Nitρit)

where the log-risk is modeled as

logit (ρit) = β0 + ZT
i βi + S (xi) + δt + ϵi (2)

Here, S (xi) and δt account for the spatially and temporally structured random effects, respectively
and ϵi stands for an unstructured zero mean Gaussian random effect and logbeta precision param-
eters 0.5 and 0.01, defined as penalized complexity priors (Simpson et al., 2017). Zi represents
all covariates included in the model. We assigned a vague prior to the vector of coefficients
β =

(
β0, . . . , βp

)
which is a zero mean Gaussian distribution with precision 0.001. All parameters

associated to log-precisions are assigned inverse Gamma distributions with parameters equal to 1
and 0.00005.

To compute the joint posterior distribution of the model parameters, we use an INLA-SPDE
method, as introduced by Lindgren et al. (2011). SPDE consists in representing a continuous spatial
process, such a Gaussian field (GF), using a discretely indexed spatial random process such as a
Gaussian Markov random field (GMRF). In particular, the spatial random process represented by S
(.) explicitly denote dependence on the spatial field, follows a zero-mean Gaussian process with
Matérn covariance function represented as

Cov(S(xi), S(xj)) =
σ 2

2ν−1Γ (ν)
(κ∥xi − xj∥)νKν(κ∥xi − xj∥) (3)

where Kν (.) is the modified Bessel function of second order, and ν > 0 and κ > 0 are the smoothness
and scaling parameters, respectively. INLA approach constructs Matérn SPDE model, with spatial
range r and standard deviation parameter σ . The parameterized model we follow is of the form

(k2 − ∆)(α/2)(τS(x)) = W (x)

where ∆ =
∑d

i=1
∂2

∂x2i
is the Laplacian operator, α = (ν + d/2) is the smoothness parameter, τ is

inversely proportional to σ and W (x) is a spatial white noise and κ > 0 is the scale parameter,
related to range r , defined as the distance at which the spatial correlation becomes small. For each
ν, empirically derived definition r =

√
8ν/κ with r corresponding to the distance where the spatial

correlation is close to 0.1 (Blangiardo and Cameletti, 2015). Note that we have d = 2 for a two-
dimensional process, and we fix ν = 1, so that α = 2 in our case. We report that, heterogeneity,
unobserved factors specific to each accident, although invariant over time, were captured by an
identical and independently distributed random effect of zero mean and constant variance.

The temporal random effect (δt ) is assumed to be a smoothed function, in particular a random
walk of order one (RW1) (Rue et al., 2009). On the other hand, INLA-SPDE requires a triangulation
or mesh structure to interpolate discrete event locations to estimate a continuous process in space
(Rue et al., 2017). We use the centroids of each road segment as the target locations over which we
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Fig. 2. Region mesh with non-convex hull boundary in blue and data locations highlighted as red points. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

build the mesh. A detailed description of building a Delaunay’s triangulation with emphasis on a
network mesh is shown in Section 2.2. Centroids of individual road segments and the triangulations
in the mesh are used to generate the projection matrix. We assign penalized complexity priors for
the parameters to create INLA-SPDE model object for the Matérn model (Simpson et al., 2017). In the
parametrization process we set prior according to hyperparameters for range as prior.range (0.01,
0.01) and standard deviation as prior.sigma (1, 0.1).

SPDE network triangulation:
To begin, we use the traditional SPDE method to triangulate the entire study area by considering

the boundary for continuous spatial structure. According to Verdoy (2019), the best fitting mesh
should have enough vertices for effective prediction, but the number should be within a limit to
have control over the computational time. Following this principle, from a battery of meshes the
best fitting mesh is selected having 2352 vertices. Fig. 2 depicts region SPDE mesh with 11,067
traffic accident locations highlighted as red points.

While fitting the mesh (as depicted in Fig. 2) a problem appears. Although the sampled traffic
accidents are discrete spatial sites situated exclusively on the road networks, the models fitted with
the mesh span the entire study area. So, it is not realistic and ambiguous for the model prediction to
provide results in areas without a road network where traffic accidents are unlikely to occur. This
leads to the motivation of designing SPDE triangulation precisely on road networks. The technique
is carried out in three steps: first, a buffer region is generated for each road segment, then a clipped
buffer polygon is created that only includes the area covered by the road network, and finally, SPDE
triangulation is applied to the clipped polygon to create SPDE Network Mesh. We use R package rgeos
(Bivand et al., 2017) to build buffers for individual road segment. While selecting the buffer size we
need to balance between number of vertices used to build the triangulated mesh and computational
cost (Krainski et al., 2018; Verdoy, 2019). We tested several buffers before deciding on a 15 meters
buffer as the optimal one. In the next step, we merge individual buffer segments and convert them
into a single polygon clipped within a bounding box covering the study area. The clipped polygon
of the buffered segments is depicted in Fig. A.10, with accident locations highlighted as red points.

In the final step of building the proposed network mesh we use the centroids of each segment as
initial Delaunay’s triangulation nodes on the clipped polygon. Fig. 3 depicts the SPDE mesh precisely
created on the road network, with accident locations highlighted in red.

Risk map design:
In this section we discuss about the process of designing the traffic accident risk map for the

entire road network of the study area. The predicted daily number of minor injuries on individual
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Fig. 3. Network mesh with data locations highlighted in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

road segment obtained using the binomial model has been considered as the initial Risk Score
(Rscore) on that particular segment for that day. According to the literature on road safety before
modeling any risk map, a predetermined category range must be determine (Curran-Everett, 2013).
Keeping this in mind, we follow the European Road Assessment Programme (EuroRAP) standard to
create the risk ratings of the motorways and other national roads in Europe (‘Risk mapping for the
TEN-T in Croatia, Greece, Italy and Spain: Update’, 2016). We implement these 0 to 4 categorical
values ranging from low risk to high risk defining what we call a Risk Index. We thus consider a
normalization for the raw risk scores following a dynamic normalization technique. Initially, the
risk range (Rrange) is calculated as

Rrange =
(max.Rscore − min.Rscore)
no. of risk categories

Next, we use Rrange and Rscore values in the proposed metric system to calculate the normalized
risk index categories. As a relevant example in Table 1, we depict the values of categories in the
normalized scale considered as the proposed risk categories to design the traffic risk map. We note
that the metric system can be replicated using any other alternative risk index.

We depict an example of how risk index values are calculated using the proposed normalizing
metric reported in Table 1. Consider the following scenario: a user wants to calculate the risk index
for a specific road segment where four minor injury cases from traffic accidents have been recorded
on a given day. So, the Rscore of that segment is 4. Based on the traffic accident records for all the
road segments on that particular day, assume that the maximum Rscore is 15 and the minimum
Rscore is 0. In the present study, five risk categories have already been considered (i.e., the risk index
values 0–4). Using Equation 4, we can calculate Rrange is 3. Now, we can report that the risk index
for the example road segment will match with the second normalize condition, indicating that it
is a low–medium risk road segment with risk index value 1 for that particular day considered in
the example. In this process, on the same day different segments can have diverse set of risk index
values depending on their individual Rscore. Alternatively, the risk index value for the same segment
can vary on different days and months.

The risk-index algorithm implemented here has intended to categorize road segments based on
the records of number of minor injuries incurred in each segment. As a result, segments having
higher minor injury counts are categorized as accident-prone or high-risk roads. Other traffic risk
modeling algorithms can use a similar concept.
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Table 1
Normalization metric for risk index values.
Normalize condition Risk index Safety measure

Rscore = 0 or Rscore < Rrange 0 Low risk
Rrange ≤ Rscore < 2 × Rrange 1 Low-medium risk
2 × Rrange ≤ Rscore < 3 × Rrange 2 Medium risk
3 × Rrange ≤ Rscore < 4 × Rrange 3 Medium-high risk
4 × Rrange ≤ Rscore 4 High risk

Table 2
Fitted model DIC, WAIC and CPO values.
Model mesh DIC WAIC CPO

Region mesh 23687.41 23674.25 0.3246
Network mesh 23654.73 23647.06 0.3243

Inference:
Inferences are made following a Bayesian perspective, using the INLA approach (Rue et al., 2009,

2017). We used priors that penalize complexity (called PC priors). These priors are robust in the
sense that they do not have an impact on the results and in addition the notion of scale determines
the magnitude of effects and simplifies interpretation of results (Simpson et al., 2017).

All analyses are carried out using the free software R (version 4.1.2) (R. Core Team, 2021), through
the INLA package (Rue et al., 2009; Lindgren, 2012; Rue et al., 2017, ‘R. INLA Project’, 2020). Maps
related to study area, Barcelona street network with accident locations and traffic intensity map
are designed using ArcGIS Desktop Soft- ware (version 10.8. Redlands) (ESRI, 2021). Other maps
to depict SPDE mesh generation technique and plotting risk maps are designed using R package
mapview (Appelhans et al., 2016).

3. Results

In this section, we present the results of the methodological approach developed in Section 2.
We provide results on model fitting, validation, and prediction along with risk maps of accidents.
The proposed model (mentioned in Eq. (2)) is fitted using both region mesh as depicted in Fig. 2
and our proposed network mesh as depicted in Fig. 3. Both models are fitted to the daily accident
records for the years 2010 to 2018. The remaining accident records of 2019 have been used to
test the fitted model. It is worthy to mention that we have executed series of similar models for
both categories of mesh, using different dimensions of SPDE meshes with different combinations of
covariates. In each case, deviance information criterion (DIC) and the Watanabe–Akaike information
criterion (WAIC) are used to assess the performance of the models, and to select the best fitting
model by balancing model accuracy against complexity (Spiegelhalter et al., 2002). Models having
smaller WAIC value, despite the added complexity, provide a more appropriate fit to sampled data
(Blangiardo and Cameletti, 2015). In Table 2 we report the summary results (DIC, WAIC and CPO)
related to goodness-of-fit along with computational time (in seconds) for only the best fitted models
from individual region mesh and network mesh categories. We note the computational time (in
seconds) of the best fit model with region mesh (336) is substantially lower compared to the best
fit model with proposed network mesh (3187). This can be explained due to higher number vertices
in network mesh (14,368) than the region mesh (2352).

DIC values shown in Table 2 indicate that the WAIC value of model with proposed network mesh
(23,647.06) is lower compared to the other. Thus, to model the spatio-temporal structure of traffic
accidents on road networks of Barcelona, the binomial model with SPDE network mesh is selected.
We additionally note that the model is best by considering random spatial and temporal effects
together with set of covariates mentioned in Section 2.1. When the covariates are not considered,
the model provided larger DIC and WAIC values.
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Fig. 4. Marginal posterior distributions of covariate coefficients.

The posterior distribution of fixed and random effects included in the model are depicted in
Figs. 4 and A.11 (in Appendix). In particular, Fig. 4 shows the marginal posterior distributions of
all fixed effects. Additionally, Table 3 depicts the coefficients and 95% of credibility intervals of all
fixed effects.

We note that six covariates, namely time of day, distances from nearest bus stop, school,
restaurant, municipality, and street markets have no influence in our model. The positive mean
values for covariates such as number of vehicles involved in accident and type of road indicate
positive influence in the model. It is worthy to note that when the number of causalities and major
injuries in individual traffic accident are high then the record of minor injuries is lower compared
to other cases, thus there exists a negative association for these two covariates in our model. The
covariate associated to number of causalities has the highest negative mean value which indicates
strong negative influence on the model. Additionally, road length and speed limit of individual road
show negative influence in our model. Indicating when the road length is high and speed limit is
also high the number of minor injuries in a collision is comparatively lower than other short roads
and low speed tracks.

Moreover, Fig. A.11 in the Appendix depicts the marginal posterior mean of spatial S (.) and
temporal δt random effects with 95% credible intervals. The horizontal axis of Fig. A.11 (top) in the
Appendix represents the 14,368 triangulation nodes of the SPDE network mesh used in the model.
A stronger and significative spatial effect is observed on the vertices of triangles on road segments
having higher traffic accident occurrence (highlighted in Fig. 3 as dark red patches). The vertices
without accident events show no spatial effect. Similarly, Fig. A.11 (bottom) in the Appendix
exhibits the variation of the marginal posterior mean of the daily temporal random effects over
the entire study period (2010 to 2019).

We finally report that the spatial effect parameters κ and τ have mean values 92.16 and 0.31 as
depicted in Fig. A.12 (in the Appendix) that shows the marginal posterior distributions of the two
hyperparameters for the spatial random field. Using τ and κ we can get the value of spatial range
r = 0.055 km or 55 m. Using the fitted model, we can analyze the goodness-of-fit of the model by
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Table 3
Marginal posterior mean and credible interval of fixed effects.
Covariate Mean Credible interval

Nearest bus stop distance 0.002 −0.001, 0.003
Nearest municipality market distance 0.002 −0.001, 0.004
Nearest restaurant distance 0.000 0.000, 0.000
Nearest school distance 0.000 0.000, 0.000
Nearest street market distance 0.003 −0.001, 0.007
Number of deaths −1.108 −1.915, −0.301
Number of major injuries −0.730 −0.906, −0.555
Number of vehicles 0.083 0.055, 0.110
Road length −0.004 −0.005, −0.004
Road speed limit −0.029 −0.032, −0.026
Road type 0.211 0.188, 0.234
Time of day 0.002 −0.001, 0.006

Fig. 5. Residual (observed minus predicted) plots.

considering prediction over unsampled locations (Zuur et al., 2017). The fitted model is projected
into the mesh at each road segment for this prediction.

The proposed model is tested using accident records for the final study year 2019 combined with
the entire model fitting 2010–2018 dataset. We compute predictions as well as their corresponding
residuals (observed minus predicted). Fig. 5 depicts such residual plots. We note the residual values
are generally close to zero and have no discernible structure.

Risk map:
We follow the risk map metrices in Section 2.2 and use safety measure scale shown in Table 1

to calculate the risk index for individual road segments. The predicted values for 2019 are used to
construct the normalized risk index values.

Fig. 6 (top) shows the location of 1209 original road accident in 2019. The corresponding
projected risk map for 2019 as a whole is shown in Fig. 6 (bottom). The color scales (0–4) used
in the risk map follow the same safety measure scale used in Table 1. A visual comparison of the
predicted risk map with the original road accident record shows that the road segment containing
the observed cluster of accidents is correctly predicted by the risk map as medium to high-risk
roads.

Similarly, roads that are predicted to have low or moderate risk are originally roads with no or
very few incidents. We report that similar results are observed while comparing the predicted risk
map for individual dates in 2019 with the corresponding original accident records.
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Fig. 6. Top: Observed traffic accident events recorded in 2019.
Bottom: Predicted risk map for 2019.

The current results show that the proposed model can produce the road safety index of all road
segments, including small details of each junction or sharp turnings. In addition, identifying po-
tentially dangerous roads can serve as baseline for geographic analysis of road safety management.
The daily predicted risk maps can have strategic applications in developing GIS analytical tools to
identify and depict possible safe routes. For example, in Fig. 7 (top) the start and destination points
of a particular user is highlighted by green and red map pins. The user can choose path B which
is considered to be shorter in length compared to path A. But in terms of safety measure the user
should opt for path A as the cumulative risk index for this path is much less compared to the shorter
path B. As the proposed dynamic risk map provides information about the entire road network, it is
flexible enough to generate possible alternative safe route(s) between any source and destinations
pairs as depicted in another similar example in Fig. 7 (bottom). In this example the length of both
the roads between source and destination points are same but in terms of risk index path B is
relatively unsafe compared to path A.
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Fig. 7. Predicted risk map baseline to identify the safe route.
Top: Example 1, Bottom: Example 2.

4. Discussion

In recent years, spatiotemporal modeling of traffic accidents and risk mapping has gained
attention, particularly in the domain of multi-dimensional road safety management. INLA-SPDE
approach involves projecting the fitted model into the mesh at precise spatial locations, in this
case the sampling points (here accidents locations) are located only on the road network. But
traditional SPDE mesh is generated for the entire study area which includes road network as well
as other regions. In that case, the output of the model may be unavoidably generalized because it
will estimate predicted values for regions where there is no chance of an incident occurring. To
avoid this ambiguity, we introduce the novel concept of designing the SPDE triangulation precisely
on the road network. As a result, instead of performing spatio-temporal predictive analysis on the
full continuous region, the proposed INLA-SPDE modeling took a new step by executing it only on
selected sections (particularly for road networks).

In this context, Chaudhuri et al. (2022) recently proposed spatiotemporal modeling of road traffic
accidents using explicit network triangulation. However, the study only used types and surfaces
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of roads as covariates in the model. Significant exogenous variables related to traffic flow, traffic
control and temporal variables such as time of accident occurrence and other spatial covariates are
ignored in the modeling process. Furthermore, no analysis to compare and identify alternative safer
roads is performed in the previous study. Whereas the results of the current study show that, when
fitted with selected covariates, the proposed model can generate predicted risk maps of the entire
road network for any urban study area. In that sense, the model proposed in this study is dynamic in
nature. Additionally, Bayesian methodology is implemented using computationally faster INLA-SPDE
approach where the number of covariates can be updated at any stage and the level of significance
for individual covariates can be analyzed for further emphasis on the selection of significant factors
causing traffic accidents.

Regarding the limitations and future works, we note that the buffer road network used in the
current study has complex boundary regions which have some influence on the spatial effect of
the model. According to Krainski et al. (2018), the first step in fitting an SPDE model is to create
a mesh to represent the spatial process. Building SPDE mesh for a continuous region is relatively
easier compared with the proposed SPDE network mesh. In the current study, fine tuning is required
to identify the best fit values for minimum allowed distance between vertices and maximum
permissible triangle edge length for the inner (and outer) regions. Moreover, additional points
around the boundary, or outer extension, must be selected with care. As a rule of thumb, the
variance near the boundary is inflated by a factor of 2 along straight boundaries and by a factor
of 4 near right-angled corners (Lindgren and Rue, 2015). The complex boundary region of the
buffer road network with several right-angled corners (as depicted in Fig. A.10) makes the process
critical. The boundaries in the proposed mesh are located inside the mesh and not outside, as in
a standard mesh and that creates fictitious spatial structures. Because of this complex boundary
nature, it is unavoidable to reduce high boundary effect that might cause a variance twice or
four times as great at the border as it is within the domain (Lindgren, 2012; Lindgren and Rue,
2015). Additionally, though the residual diagnostics and predicted risk maps produced by the model
matches with the original observed records; but the correlation values of the model indicate room
for improvement. Thus, for detailed understanding of the performance of the model, it may be
beneficial to analyze further the model fitting phase using INLA-SPDE with a diverse set of spatial
and temporal covariates, spatial and temporal structures, and space–time interactions. This paves
the way for future research works in this domain and to reduce the boundary effects in the model
results.

The final outcomes of the proposed model are predicted risk maps for the entire road network.
Thus, using these maps, the road safety index of individual road segments, including small details of
each junction point or sharp turn, can be obtained at a glance. This can act as baseline information
for geospatial analysis on road safety metrics to design strategic geographical information system
(GIS) analytical tools to identify and depict possible safe routes as depicted in Fig. 7. Similar
research work by Hannah et al. (2018) considers only spatial traffic variables like speed limits, street
junctions, and type of street. But the current study has proposed a more flexible and statistically
convincing solution by implementing both spatial and temporal covariates in the predictive model.
We note another crucial application of the model is in analyzing change and trend pattern of traffic
accidents. Fig. 6 is the combined predicted traffic risk map for all days in 2019. As mentioned
in Section 3 similar dynamic risk maps can be developed for individual months, weeks or even
days. Using these maps trends in traffic accident risk can be identified for individual roads or, road
junctions. A better understanding of these patterns may have implications for road safety measures.
Identification of gradual changes in risk patterns and related potential factors, is of interest for future
research works on change point detection.

Interestingly, the predicted risk maps can be used as an important guideline for traffic manage-
ment authorities to identify potentially dangerous roads in any urban region and can take strategic
measures and actions to prevent traffic accidents in advance. As a result, risk maps can be used
to better understand accident hotspots, improve traffic safety measures, and conceivably can have
an impact on public health by reducing traffic accidents. In addition, as the model is flexible and
general, it can be applied to a wide range of related problems. The current methodology can be
implemented for smart transportation systems by predicting traffic flow and reducing congestion
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on roads. This would enable transport authorities to better manage the traffic condition during peak
hours and would allow users to choose the best routes to their destinations. In context to smart
cities, an intelligent traffic management system based on the proposed model can feasibly control
air pollution caused by fine particulate matter emitted by transportation. It can have potential
implications to achieve air quality levels for particles in suspension in line with the guideline value
of the World Health Organization (WHO, 2019).

Consequently, we report that the proposed modeling approach could be a major step forward
in the understanding of road safety measure and can act as a baseline in strategic decision making
to control traffic collisions. The novel contribution of this work is that it is able to take advantage
of INLA-SPDE approach precisely on road network rather than for continuous region. As a result,
the model can predict risk factors for individual road segments and generate dynamic risk maps for
the entire network. In conclusion, although it may be complicated to control the boundary effect in
the complex network triangulation method, this work is able to present a model that can provide
accurate predictions of accident-prone roads and help in identifying alternate safe routes between
any source and destination pairs.

5. Conclusion

The current study implements Bayesian methodology by including INLA and SPDE to design a
dynamic spatio-temporal analysis model predicting the occurrence of traffic accidents in the city of
Barcelona, Spain. The use of SPDE network triangulation to estimate the spatial auto-correlation of
discrete events is novel in this study. The methodology used in the study is a new step to perform
spatio-temporal analysis precisely on road network and contributes to the relatively small amount
of literature in this domain. Moreover, the dynamic risk maps of traffic accidents are one of the
interesting outcomes. The risk maps can have strategic applications in road safety measures and
designing travel risk maps for tourists, corporate travelers, and emergency service providers. The
methodology to identify safe routes is dynamic and can be adapted and applied to other locations
globally. Furthermore, the current study opens future research scopes to explore the influence
of boundary effects on model performance and analyze the variation in spatial effects. We are
investigating these anomalies of the spatial impact in a subsequent study project and working on
a possible solution to the problem.
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Appendix

A.1. Data settings

See Figs. A.8 and A.9.

A.2. Methodology

See Fig. A.10.

A.3. Results

See Figs. A.11 and A.12.

Fig. A.8. Location of road network of the study area with traffic accident locations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.9. Traffic intensity on individual road segments of the study area.

Fig. A.10. Polygon of buffered road segments, red points indicate traffic accident locations on the road network. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.11. Top: Marginal posterior mean of the spatial random effect S (.).
Bottom: Marginal posterior mean of the temporal random effect δt .

Fig. A.12. Marginal posterior distributions of hyperparameters κ and τ for the spatial random field S (.).
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5.4  Natural Hazards in Islands. Nonstationary Approach with 

Barriers 

5.4.1 Introduction 

A 2019 United Nations report indicates that the world's population is expected to reach 11 billion 
by 2100 . By then, it is expected that nearly 75 percent of the population will live in urban areas. 
According to the scientific community, climate conditions would be very different from what we 
are currently experiencing. Even by 2030, there will be a 33 percent rise in the overall quantity 
of urban land in high-frequency flood zones compared to 2015 (Güneralp et al., 2015). From an 
environmental point of view, natural hazards represent a danger to ecosystems, directly affecting 
geomorphological and hydrological processes, as well as biodiversity. They also endanger 
human settlements with serious consequences for society (Zorn and Komac, 2013; Emmer, 
2018). All of these facts demonstrate how crucial it is to assess natural hazard risks with an eye 
towards the future, in order to make well-informed decisions now about the spatial planning and 
riskprevention initiatives that will influence the coming decades. International organizations, 
such as the World Bank, the European Union (EU), and the United Nations (UN), among others, 
are aware of the necessity to take into account the long-term effects of natural disasters. 
Additionally, according to the intergovernmental panel on climate change (IPCC), "successful 
risk reduction and adaptation strategies consider the dynamics of vulnerability and exposure and 
their relationships with socioeconomic processes, sustainable development, and climate change" 
(IPCC, 2021). 
A large number of existing studies in the broader literature have examined the impact of extreme 
climatic conditions on natural disasters (Sauerborn and Ebi, 2012; Phillips et al., 2015; 
Chaudhuri et al., 2021; Osberghaus and Fugger, 2022; Raju et al., 2022). As a result of 
unpredictable climate change, population growth, and increasingly urbanized societies, a better 
understanding and prediction of natural disasters has become undoubtedly important 
(SafarianZengir et al., 2019). Modeling natural disasters is crucial to characterize these 
phenomena and provide tools to overcome them. Estimating natural hazards, including spatial 
effects and local conditions, will help in management and even allow anticipation of events 
(Cutter and Finch, 2008). The 2015-2030 Sendai framework for disaster risk reduction 
recognizes this need and emphasizes the significance of having strategies in place to mitigate 
uncontrolled development in hazardous areas in order to better prepare for the disasters that our 
planet may experience in the future (UNDRR, 2015). 
Several studies attempt to model natural hazards in order to examine global risk assessments 
(Morjani et al., 2007; Serra et al., 2013; Calkin and Mentis, 2015; Riley et al., 2016; Pittore et 
al., 2017; Sarkissian et al., 2020). Some of them address propagation of tsunami and its impact 
(Sarri et al., 2012; Hayashi et al., 2013; Sugawara, 2017; Shao et al., 2019; Rezaldi et al., 2021). 
In this line, to analyse spatial distribution of regions affected by natural hazards, statistical 
inference comes along with Bayesian methodology. Generally, Bayesian statistics are utilized in 
natural hazards engineering to deal with large-scale problems that involve different types of data 
inputs and explicitly handle uncertainties (Zheng et al., 2021). For example, studies like (Gaume 
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et al., 2010; Costa and Fernandes, 2017; Han and Coulibaly, 2017; Barbetta et al., 2018; Bolle et 
al., 2018) provide comprehensive review of the applications of Bayesian statistics in flood 
assessment and monitoring. Besides, Grezio et al. (2010) have presented the challenges in 
selecting proper models to quantify the uncertainties in the maximum tsunamigenic magnitudes. 
Literature shows application of Bayesian inference in analysing probabilistic tsunami hazards 
(Knighton and Bastidas, 2015; Risi and Goda, 2017; Smit et al., 2017). 
A Bayesian approach with Markov chain Monte Carlo (MCMC) simulation methods has 
traditionally been used to fit generalized linear mixed models (GLMM) (Wikle et al., 1998). In 
this context, Shin et al. (2015) have explored the application of Bayesian MCMC method to 
estimate extreme magnitude of tsunamigenic earthquake. However, MCMC models require 
considerable computing time for large datasets (Rue et al., 2009; Smedt et al., 2015). Hence, 
instead of using MCMC, we can use Integrated Nested Laplace Approximation (INLA) 
methodology, developed by Rue et al. (2009), as it offers short computational time and is much 
easier to fit complex models (Ruiz-Cárdenas et al., 2012). As recommended by Rue et al. (2009), 
while processing spatial data we can utilize INLA in conjunction with stochastic partial 
differential equations (SPDE) to balance speed and accuracy of the models.  
 

 

Figure 14: Republic of Maldives geographical location and island structure 

However, there are limited contributions using INLASPDE approach in the context of natural 
disasters such as earthquakes or tsunamis. Recently, Wilson (2020) used Bayesian spatial 
modeling with INLA to analyse earthquake damages from geolocated cluster data. To date, no 
literature has documented applications of INLA-SPDE to tsunamis in the particular territory of 
the Maldives which involves a very advanced methodology to handle with its irregular and 
complex land structure (Riyaz and Suppasri, 2016). Analyzing tsunami propagation at the island 
scale is essential to develop well-informed policies for disaster management and to design 
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effective countermeasures. But due to the large domain and high resolution required for 
modelling, it is also challenging to study tsunami propagation across multiple atolls at the island 
scale (Rasheed et al., 2022). 
The current study is conducted to model and estimate the spatial autocorrelation of tsunami data 
in the islands of Maldives. The initial point of this work is to explore the application of SPDE 
with INLA for Maldives tsunami data (HDX, 2022), including the mesh for spatial effect. 
Maldives consists of 1200 dispersed islands on both sides of the equator. Collection of these 
islands along with lagoon and reef areas form the complex atoll system of the country as 
depicted in Figure 14. It is worthy to mention that the traditional SPDE method triangulates the 
entire study area based on continuous geographic boundaries (Krainski et al., 2018). A problem 
arises while designing the mesh for the entire country's boundary region or, for boundaries of 
individual atolls. Although the records of tsunami-affected regions are discrete spatial sites 
situated exclusively on land on reefs for individual islands, the mesh are generated for entire 
region inside the geographical boundary including the lagoon and sea surface. So, it is not 
realistic and ambiguous especially when we are interested to explore the spatial correlation of 
tsunami data precisely on the land regions. This leads to the motivation of designing SPDE 
triangulation precisely on land on reefs for individual islands. However, a stationary model 
cannot be aware of the coastline and the island boundaries and will inappropriately smooth over 
the features. In spatial modelling, classical models are unrealistic when they smooth over holes 
or physical barriers. This might result to another unrealistic assumption. In the research work by 
Bakka et al. (2019) a new nonstationary model has been constructed for INLA having syntax 
very similar to the stationary model. The model, named as barrier model is more realistic with 
both sparse data and complex barriers and computational cost is the same as for the stationary 
models (Bakka et al., 2019). To apply in complex island structures, barrier model has been 
designed considering water as normal terrain and it is aware of the distinct coastlines and 
boundaries considered as physical barriers. In the present study, we have explored the barrier 
model in a converse mode where water bodies (ocean and lagoons) act as barriers for the 
dispersed islands and natural hazards are the sample events considered precisely on the land area 
of the islands. 
The motivation of this study is two-fold. On one side we provide a modeling framework to 
explore and analyze at the island scale the spatial variation in the incidence of tsunami. In 
particular, the occurrence of tsunami is analyzed with three spatial modeling scenarios using 
mesh for entire geographical boundary of atolls, mesh precisely on land on reefs for islands in 
individual atolls and barrier models for atolls. The second aim roots in providing an advanced 
and realistic computational strategy to design and customize meshes and nonstationary barrier 
model to examine the spatial dependencies of natural hazards in complex distributed land 
structure like the islands of Maldives. It can be applied in diverse sectors where complex 
physical barriers are present in road network (Dawkins et al., 2021), disease control interventions 
(Cendoya et al., 2022) and categorical areas with different land use. 
The study is conducted on 190 records of tsunami affected islands from the year 2004. R 
(version R 4.1.2) programming language (R Core Team, 2022) has been used for statistical 
computing and graphical analysis. As part of the data cleaning process and to design some maps, 
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we have used ArcGIS Pro (version 3.0.1) (Redlands, 2022). All computations are conducted on a 
quad-core Intel i9-4790 (3.60 GHz) processor with 32 GB (DDR3-1333/1600) RAM. 

5.4.2 Data Settings 

The Republic of Maldives is located in the south-western region off the coast of India in the 
Indian Ocean. This unique island nation is one of the smallest countries in Asia having a chain of 
coral islands across an archipelago more than 800 kilometers long and 130 kilometers wide. The 
archipelago consists of about 1190 coral islands grouped into 20 natural atolls. Out of which 189 
islands are inhabited (Isles, 2022). Figure 14 illustrates the geographical location of the Maldives 
and the complex island structure for the atolls of the country. The natural hazards dataset of 
Maldives for the year 2004, contains 190 records of tsunami affected islands, all being inhabited 
islands and provides the number of direct and indirect affected people for individual island. The 
dataset is published by open data sharing platform, Humanitarian Data Exchange (HDX) 
managed by the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 
under a creative commons attribution 4.0 international license (HDX, 2022). We note that the 
shape files for atolls and islands of Maldives are also accessed from HDX open data portal for 
subnational administrative boundaries of Maldives (HDX, 2021). It is noteworthy to mention that 
natural hazards like cyclone, typhoon, storm, flood and water shortage can also be accessed from 
the same open portal. We have used tsunami data as a showcase for the current study. The 
dataset for 190 islands provides detailed information about deaths, injuries, destroyed houses, 
and also about people who were directly and indirectly affected by the tsunami.  
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Figure 15: Locations of tsunami affected islands for individual atolls of Maldives 

In order to simplify the modeling process, we have used the number of indirectly affected people 
as the response variable. According to 2012 independent evaluation report by the Asian 
Development Bank, 2004 tsunami had a devastating impact on the island nation of Maldives. 
The country experienced a disaster of national proportions, with 39 islands severely damaged 
(Asian Development Bank, 2012). Figure 15 (left) depicts the locations of tsunami affected 
islands for individual atolls of Maldives which includes enclosed lagoon or basin, fore reef, 
subtidal reef, pass reef flat and land on reefs. An interactive map of the Maldivian island 
structure and tsunami affected locations is published in an ArcGIS online map. In connection to 
this, the present study covers 12 different atolls across the entire country from north to south 
namely, Haa Alifu, Haa Dhaalu, Shaviyani, Noonu, Raa, Baa, Kaafu, Meemu, Laamu, Gaafu 
Alifu, Gaafu Dhaal and Seenu as highlighted in Figure 15 (right). The current selected atolls 
ranges the entire geographical span of the country including all 39 highly affected islands and 
covers the capital city of Male', as well as other important cities in the Maldives. Atolls having a 
substantially lower number of tsunami affected islands are not included in the present study. As 
discussed in Section 1 the atolls of Maldives are collection of disjoint islands, similarly, almost 
all the atolls are disjoint land surfaces. But some atolls such as Haa Alifu, Haa Dhaalu, Shaviyani 
and Noonu atolls in the north, in the north-west Raa and Baa atolls and in the south Gaafu Alifu 
and Gaafu Dhaal, these three regional groups share common boundaries. In the current study, 
these eight atolls, based on their common geographical boundaries are considered as three 
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distinct combined spatial regions. Details about the regional integration is depicted in Figure 19, 
20 and 21 at the end of Section 5.4.4. In the rest of the study, we have referred these three atolls 
groups as, Shaviyani group, Baa group and Gaafu Dhaal group respectively. 
 

 

Figure 16: Tsunami affected regions of Baa and Raa atolls 

boundaries of atolls (left), boundaries of land on reefs for component islands (right) 

These integrations allow us to explore a substantial number of tsunami hit islands in continuous 
spatial regions. We report that the present study examines 135 islands from 7 different atolls or 
groups of atolls as shown in Figure 15 (right). This is approximately 71 percent of the total 190 
tsunami affected islands of Maldives. Detail records of the number of affected islands and 
indirectly affected people for the selected atolls is reported in Table 1. 

Table 1: Records of tsunami effects in the selected 12 Maldivian atolls 

Atoll  Num of 
 affected islands  

 Num of indirectly 
 affected people  

Haa Alifu 14 15711 

Haa Dhaalu 13 7677 

Shaviyani 14 12305 

Noonu 13 9045 

Raa 15 13539 

Baa 13 13457 

Kaafu 9 6591 

Meemu 8 7780 

Laamu 12 7790 

Gaafu Alifu 9 6832 

Gaafu Dhaal 9 4470 
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Seenu 6 2742 

 
Figure 16 (left) shows the locations of tsunami affected regions of Baa group atolls. Figure 16 
(right) depicts detailed island distribution on reefs areas for the same. In both cases, tsunami 
affected regions are highlighted in red. We note that, all datasets used in the current study are 
collected from sources without restrictions and that have open access. 

5.4.3 Methodology 

Random spatial events generate irregularly scattered point patterns over areas of interest. In these 
cases, spatial point process models are useful tools to perform precise statistical analysis 
(Karaganis and Mimis, 2006; Loo et al., 2011; Juan et al., 2012). Moreover, we can find recent 
studies (Verdoy, 2019; Opitz et al., 2020) on spatial point processes that are able to identify 
spatial auto-correlations and interactions between points in the pattern. From Figure 16 (left) it 
seems that atolls with enclosed lagoon and land on reefs are continuous land structure. But each 
atoll is originally a collection of number of distributed islands as depicted in Figure 16 (right). 
By considering the total number of indirectly affected people from individual tsunami-hit 
islands, we open the door to consider Poisson regression models in combination with a Bayesian 
framework. Instead of using MCMC, we have used computationally faster solution for latent 
Gaussian models by using a Laplace approximation for the integrals with the INLA method (Rue 
et al., 2009). It focuses on models that can be expressed as latent Gaussian Markov random fields 
(GMRF) (Rue and Held, 2005). 

Our approach combines a spatial Poisson regression method with an INLA Bayesian framework. 
In particular, let 𝑌𝑖 and 𝐸𝑖 be the observed and expected number of indirectly affected victims of 
tsunami on the 𝑖-th island. We assume that conditional on the relative risk, 𝜌𝑖, the number of 
observed events follows a Poisson distribution: 

𝑌𝑖 ∣ 𝜌𝑖 ∼ Po (𝜆𝑖 = 𝐸𝑖𝜌𝑖) 
where the log-risk is modeled as 

log (𝜌𝑖) = 𝛽0 + 𝑍𝑖𝛽𝑖 + 𝜉𝑖 + 𝜖𝑖 

Here, 𝜉𝑖 accounts for the spatially structured random effects and 𝜖𝑖 stands for an unstructured 
zero mean Gaussian random effect and log Gamma precision parameters 0.5 and 0.01 , defined 
as penalized complexity (PC) priors (Simpson et al., 2017). 𝑍𝑖 represents the covariates. It is 
worth noting that, no covariates are included in our study. But it is possible to incorporate 
relevant covariates into similar models in future studies (Rue et al., 2009). We assigned a vague 
prior to the vector of coefficients 𝛽 = (𝛽0, … , 𝛽𝑝) which is a zero mean Gaussian distribution 
with precision 0.001. All parameters associated to log-precisions are assigned inverse Gamma 
distributions with parameters equal to 1 and 0.00005. In the current study, we have chosen to 
provide default prior distributions for all parameters in R-INLA. These have been chosen partly 
based on priors commonly used in the literature (Martins et al., 2013; Blangiardo and Cameletti, 
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2015; Rue et al., 2016; Moraga, 2019). As we run several cases with different priors, we find that 
our results are robust against other alternative priors. 
To bypass the problem of inefficiency in the estimation under a general INLA approximation, we 
have used another computationally tractable approach based on SPDE models (Lindgren et al., 
2011). On one hand, we used SPDE to transform the initial Gaussian Field (GF) with Matérn 
covariance function to a GMRF. In particular, the spatial random process 𝜉, here represented by 
𝜉(. ) explicitly denote dependence on the spatial field, follows a zero-mean Gaussian process 
with Matérn covariance function represented as 

Cov (𝜉(𝑥𝑖), 𝜉(𝑥𝑗)) =
𝜎2

2𝜈−1Γ(𝜈)
(𝜅𝑥𝑖 − 𝑥𝑗)

𝜈
𝐾𝜈(𝜅𝑥𝑖 − 𝑥𝑗) 

where 𝐾𝜈(.) is the modified Bessel function of second order, and 𝜈 > 0 and 𝜅 > 0 are the 
smoothness and scaling parameters, respectively. INLA approach constructs a Matérn SPDE 
model, with spatial range 𝑟 and standard deviation parameter 𝜎. 
The parameterized model we follow is of the form: 

(𝜅2 − Δ)(𝛼/2)(𝜏𝑆(𝑥)) = 𝑊(𝑥) 

where Δ = ∑𝑖=1
𝑑  

∂2

∂𝑥𝑖
2 is the Laplacian operator, 𝛼 = (𝜈 + 𝑑/2) is the smoothness parameter, 𝜏 is 

inversely proportional to 𝜎, 𝑊(𝑥) is a spatial white noise and 𝜅 > 0 is the scale parameter, 
related to range 𝑟, defined as the distance at which the spatial correlation becomes small. For 
each 𝜈, empirically derived definition 𝑟 = √8𝜈/𝜅 with 𝑟 corresponding to the distance where the 
spatial correlation is close to 0.1 (Blangiardo and Cameletti, 2015). Note that we have 𝑑 = 2 for 
a two-dimensional process, and we fix 𝜈 = 1, so that 𝛼 = 2 in our case. 
INLA-SPDE requires a triangulation or mesh structure to interpolate discrete event locations to 
estimate a continuous process in space (Krainski et al., 2018). In the current study, the spatial 
coordinates of each tsunami-affected island are employed as the target sites over which we 
constructed the mesh. We have designed SPDE mesh for the selected seven atoll groups. As a 
showcase, we have used Seenu atoll to discuss Delaunay's triangulation and barrier model 
techniques. Details mesh structure of stationary (for entire region and only for land on reefs) and 
non-stationary models for 7 atoll groups have been reported in Figures 22 to 28 at the end of 
Section 5.4.4. Because of the highly distributed nature of the island structure in each atoll, a 
continuous spatial structure is initially chosen for modeling, and triangulation is performed on 
the entire study area. According to Verdoy (2019), the best fitting mesh should have enough 
vertices for effective prediction, but the number should be within a limit to have control over the 
computational time. Based on this principle, a series of meshes with varying number of vertices 
are constructed. In the first case, we have ignored the internal complex island boundaries in each 
triangulation design and used the outline boundary of the entire atoll as the boundary parameter. 
Finally, from the battery of meshes, the best fitting mesh is selected.  
Figure 17 (left) depicts the selected mesh with the locations of tsunami-hit islands highlighted in 
golden yellow. The number of vertices in the selected mesh is 1189. From Figure 17 (left) it is 
obvious that the SPDE mesh is generated for the entire geographic boundary of the atoll, 
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including its lagoon and sea surface. However, the records of the tsunami-affected areas are 
limited to discrete spatial sites that are located land on reefs for individual islands. Thus, the 
traditional stationary method of SPDE triangulation using the boundary of entire region is not 
realistic. 

 

Figure 17: SPDE triangulation with tsunami affected regions 

for the entire atoll boundary (left), triangulation generated only for land on reefs (right) 

As a result, we need to design triangulation precisely using boundaries of land on reefs for 
individual islands in the atoll. Recent study by Chaudhuri et al. (2022b) explores the application 
of explicit network triangulation where SPDE mesh is restricted to linear networks rather than 
the entire study area. Using similar methodology, we designed SPDE mesh only on land or reefs 
instead of defining the entire atoll boundary. As mentioned earlier, balancing between precision 
and computation time we have fine-tuned the number of vertices to identify the best fitted mesh. 
Figure 17 (right) depicts the best fitting mesh having 427 vertices projected only on the land on 
reefs. According to Wood et al. (2008) and Bakka et al. (2019), this default method of designing 
triangulation only on the land on reefs has a serious drawback that the Neumann boundary 
condition is often unrealistic and severely impacts on the results. 

5.4.3.1 Barrier Model 

The SPDE triangulations discussed in the previous subsection assume stationarity and isotropy 
that is, the autocorrelation between two locations depends solely on the Euclidean distance. 
However, while modeling events on dispersed island structure where there are physical barriers 
or, holes in the study area, stationarity is an unrealistic assumption (Bakka et al., 2018). Similar 
coastline problems are reported by Ramsay (2002), Wood et al. (2008) and Scott-Hayward et al. 
(2014). Moreover, stopping the triangulation at the coastline imposes the Neumann boundary 
conditions, also leading to unrealistic models (Bakka et al., 2018). This issue is common while 
exploring coastline and complex island problems. Other examples of physical barriers include 
road networks, power lines, categorical health sectors and areas with different land use. To deal 
with the coastline problem, several studies proposed solution by computing the shortest distance 
in water (Wang and Ranalli, 2007; Miller and Wood, 2014; Scott-Hayward et al., 2014). Ramsay 
(2002) proposed a methodology defining boundary conditions which uses a smoothing penalty 
together with Neumann boundary condition.  
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Figure 18: Barrier object and barrier object with SPDE triangulation 

Furthermore, Wood et al. (2008) and Sangalli et al. (2013) demonstrate alternative solutions 
based on the Dirichlet boundary condition where a known value or, function is used along the 
boundary. In this line, Bakka et al. (2019) proposed an approach to handle nonstationary and 
anisotropic spatial processes with emphasis to handle complex archipelago structures in which 
the coastline is used as a physical barrier (Bakka et al., 2019). In their proposal, Bakka et al. 
(2019) approximated them using a finite element method based on the SPDE method. A system 
of two SPDEs is presented in this case, one for the barrier area, and the other for the remaining 
area.  
 
 
The following system of stochastic differential equations has a solution that is specifically a 
nonstationary spatial effect, denoted by 𝑢(𝑠). 

𝑢(𝑠) − ∇ ⋅
𝑟𝑏

2

8
∇𝑢(𝑠) = 𝑟𝑏√

𝜋

2
𝜎𝑢𝑊(𝑠), for 𝑠 ∈ Ω𝑏,

𝑢(𝑠) − ∇ ⋅
𝑟2

8
∇𝑢(𝑠) = 𝑟√

𝜋

2
𝜎𝑢𝑊(𝑠), for 𝑠 ∈ Ω𝑛,

 

where 𝑢(𝑠) is the spatial effect, Ω𝑏 the barrier area and Ω𝑛 is the remaining area and their 
disjoint union gives the whole study area Ω. Ranges for the barrier and remaining areas are 
represented by 𝑟 and 𝑟𝑏 respectively. 𝜎𝑢 is the marginal standard deviation. ∇ is equal to ( ∂

∂𝑥
,

∂

∂𝑦
) 

and 𝑊(𝑠) stands for white noise. 
It is worth noting that the barrier model is based on viewing the Matérn correlation as a 
collection of paths through a simultaneous autoregressive (SAR) model, rather than as a 
correlation function on the shortest distance between two points. The local dependencies are 
manipulated to cut off paths crossing the physical barriers. In the next step, the new SAR model 
is formulated to SPDE format to represent the Gaussian field, with a sparse precision matrix that 
is automatically positive definite (Bakka et al., 2019). 
In the study by Bakka et al. (2019), water body is considered as normal terrain and distinct 
coastlines and boundaries are used as physical barriers. In contrast, in the current study, we have 
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defined boundary polygons of individual land on reefs for each island as our study area and the 
water body acts as the physical barrier. Besides, tsunami-hit locations are the sample events 
considered precisely on the land area of the islands. Figure 18 (left) depicts the barrier object 
where the region in grey indicates the physical barrier and white area indicates the land on reefs 
where the spatial dependency will be analysed. Points in golden yellow color indicate the 
locations of tsunami-hit areas used as event locations in the model. Triangulation is designed 
using a barrier model where the land on reefs is considered as normal terrain and the water 
bodies (ocean and lagoons) act as physical barriers. Figure 18 (right) illustrates the triangulation 
along with the physical barrier in grey. In this section, we discuss Seenu atoll. The mesh 
structure of other atoll groups has been reported in Figures 22 to 28 at the end of Section 5.4.4. 

5.4.3.2 Model Fitting 

Based on the discussions in the previous subsections we designed a set of hierarchical Bayesian 
models with Poisson likelihood and priors that penalise complexity. The steps for modeling the 
application includes the spatial effect created with the mesh using the spatial locations by Matérn 
covariance, and then implementing individual mesh structure. We have also considered 
independent and identically distributed Gaussian random effect, represented as 𝑖 id in the 
modeling process.  

 

 

Table 2: Competing models with choice of SPDE mesh and iid 

Model iid  SPDE mesh 
( entire region)  

 SPDE mesh 
 (only land)   Barrier 

 model  

M1  ×   

M2   ×  

M3   ×  

M4 ×    

M5 × × ×  

M6 ×    

M7 ×    

 
In total, we have fitted 7 different models for each atoll group. Meshes used in both stationary 
and nonstationary models for individual atoll groups are reported in reported in Figures 22 to 28 
at the end of Section 5.4.4. The seven models are combinations of different types of mesh used 
along with iid random effects in both stationary and nonstationary scenarios and one model 
without any spatial effect. It is worth mentioning that no covariates are used in designing the 
models for the current study. Details of each model are shown in Table 2. 
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As we have a battery of competing models, we compare them using the deviance information 
criterion (DIC) (Spiegelhalter et al., 2002), which is a Bayesian model comparison criterion, 
represented as 

 DIC =  goodness of fit +  complexity = 𝐷(𝜃‾) + 2𝑝𝐷 

where 𝐷(𝜃‾) is the deviance evaluated at the posterior mean of the parameters, and 𝑝𝐷 denotes 
the effective number of parameters, which measures the complexity of the model (Spiegelhalter 
et al., 2002). An alternative is the Watanabe Akaike information criterion (WAIC) which follows 
a more strict Bayesian approach to construct a criterion (Watanabe, 2010). 𝑝𝑊𝐴𝐼𝐶 is similar to 
𝑝𝐷 in the original DIC (Gelman et al., 2014). The lowest values of DIC and WAIC suggest the 
best fitted model. 

5.4.4 Results and discussions 

As mentioned in the above sections we have applied different methodological approaches to 7 
atolls selected from north to south. They have their particularities and differ from one to another 
because of their shape, extension of land, and number and size of component islands. Likewise, 
the number of nodes differs from the whole region and the only land in the mesh creation. 
Specifically, the nodes in the whole region ranges from 1189 in Seenu atoll to 3001 in Gaffu 
Dhaal. On the contrary, while considering only land, the numbers are much smaller, from 427 
Seenu to 1283 Gaafu Dhaal. According to their characteristics, the mesh applied will be better or 
worst.  

 

Table 3: DIC and WAIC values according to the seven models and for the considered atolls 

Atoll Model DIC WAIC 

 M1 552.98 556.60 

 M2 3917.20 4810.94 

 M3 553.91 557.87 

Shaviyani M4 539.73 532.89 

 M5 535.86 526.98 

 M6 𝟓𝟑𝟒. 𝟗𝟎 𝟓𝟐𝟒. 𝟗𝟖 

 M7 535.41 526.42 

 M1 329.8 427.19 

 M2 4386.85 6046.55 

 M3 329.88 427.51 

Baa M4 263.83 262.44 

 M5 259.25 256.30 
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 M6 𝟐𝟓𝟗. 𝟓𝟏 𝟐𝟓𝟔. 𝟕𝟒 

 M7 259.60 257.21 

 M1 229.88 1376.15 

 M2 229.49 1375.69 

Kaafu M3 229.50 1375.57 

 M5 133.02 133.78 

 M6 131.75 132.66 

 M7 131.24 132.15 

 M1 73.46 71.42 

 M2 73.46 71.42 

Meemu M4 73.44 71.37 

 M5 73.46 71.40 

 M6 𝟕𝟑. 𝟒𝟒 𝟕𝟏. 𝟑𝟐 

 M7 73.46 71.41 

 
We have applied three different meshes to verify that. In the first one, entire region meaning that 
each territory (without distinguishing between land and water) is considered a possibility for 
modeling. The other only considers land region, taking into account only land on reefs for 
individual component islands. The third mesh corresponds to the barrier model. It distinguishes 
between different component islands with water or lagoon in between, which means it can 
analyze the atoll as a whole but distinguishes between land and water because of the boundaries 
of the land on reefs for individual component islands. These characteristics are very important to 
understand the differences in the goodness of the models. The dependent variable is always the 
indirectly affected people by the tsunami.  

Table 3: DIC and WAIC values according to the seven models and for the considered atolls (contd.) 

Atoll Model DIC WAIC 

 M1 363.83 1809.40 

 M2 363.39 1810.52 

 M3 363.25 1810.53 

Laamu M4 141.59 137.53 

 M5 141.65 137.62 

 M6 𝟏𝟒𝟏. 𝟔𝟓 𝟏𝟑𝟕. 𝟔𝟏 

 M7 141.66 137.62 
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 M1 225.70 1708.00 

 M2 225.55 1707.99 

 M3 225.42 1708.09 

Gaa Dhalu M4 203.35 197.51 

 M5 203.43 197.65 

 M6 𝟐𝟎𝟑. 𝟒𝟑 𝟏𝟗𝟕. 𝟒𝟖 

 M7 203.43 197.61 

 M1 151.59 265.83 

Seenu M2 151.55 265.79 

 M4 78.64 76.53 

 M5 78.60 𝟕𝟔. 𝟑𝟓 

M6 78.64 76.48  

 M7 78.61 76.48 

 
We provide and discuss the results of model fittings according to the aspect of the atolls. In 
particular, we are considering three different models but combining the introduction of the iid to 
the model. Thus, we have run 5 stationary models and 2 nonstationary models. More specifically, 
the models considered are reported in Table 2. On the other hand, Table 3 shows the DIC and 
WAIC values, which are the most commonly used diagnostics for knowing the model quality in 
a Bayesian setting (Rue et al., 2009). The smaller they are, the better the model will be. In this 
case, the nonstationary model including iid (model 6) is the best under the DIC criteria for 
almost all the atolls. That is, the proposed model with the iid, fits better in most of the cases. 
However, we observe some lack of resemblance when looking at specific atolls.  
On the one hand, the Shaviyani and the Baa atolls have the same results in terms of the DIC and 
their structure is quite similar.  These two atolls are characterized because the events occur both, on the 
coastline and also in the pieces of land inside the bounder reef.  This distribution could explain why the 
model which applies SPDE, considering only the land region, doesn't work properly in these two 
cases as the mesh used doesn't take into account the space between the component islands. On 
the other hand, when applying the models on the Gaafu Dhaalu, Laamu and Kaafu atools, when 
the iid is included, no differences are observed between the stationary models and the 
nonstationary ones. Nevertheless, it is worth noting that, the barrier model, the one that we 
propose in this study, has the same DIC value as the stationary models but not worse values.  
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Figure 19: Combined spatial region for Haa Alifu, Haa Dhaalu, Shaviyani and Noonu atolls 

Therefore, the proposed model (barrier model) works well but, perhaps due to the structure of 
this atoll, the stationary models also correctly fit the locations of the tsunamis that occurred in 
these atolls, which are mainly located on the bounder reef except for a maximum of one event 
that is located in the middle part of the atoll. This structure could explain the similarities between 
the three used models because the meshes, in this case, do not fault when modeling the events in 
these atolls as they are mainly concentrated on the boundaries and so it has less importance to 
consider the atoll as a whole distinguishing land and water (barrier model). Then, when looking 
at the atoll further south (Seenu) there is a clear difference when comparing the stationary 
models with the nonstationary model, mainly when the iid is not included.  
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Figure 20: Combined spatial region for Raa and Baa atolls 

 

 

Figure 21: Combined spatial region for Gaafu Alifu and Gaafu Dhaal atolls 
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Figure 22: Mesh for Shaviyani group atolls 

 

 

 

 

Figure 23: Mesh for Baa group atolls 
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Figure 24: Mesh for Kaafu atoll 

 

 

 

 

 

Figure 25: Mesh for Meemu atoll 
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Figure 26: Mesh for Laamu atoll 

 

 

 

Figure 27: Mesh for GDhaalu group atolls 

 

 

 

Figure 28: Mesh for Seenu atoll 
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These results are surprising because the structure of the territory of this atoll and the locations of 
the events are similar to that observed in the previously mentioned atolls. The only difference is 
that the Seenu atoll presents the smallest number of tsunamis compared to the rest of the studied 
atolls and so the number of events seems to be important in terms of the model fit. Finally, the 
models applied on the Meemu atoll do not present differences between them. This atoll includes 
only a piece of land, has all the tsunami events around the bounder reef and the number of 
tsunamis is not the smallest. Therefore, in this case, again, it is not relevant to apply a mesh that 
distinguishes between boundaries and water, since there are only events in one land region. 
Therefore, the fit of the model does not vary whether the applied mesh considers the atoll as a 
whole, if it considers the component islands as individual elements, or if it is used the one 
corresponding to the barrier model. In any case, the barrier model still offers very good results 
comparing the stationary models with the nonstationary models and so, the proposed model 
seems to be a very good option when we have to deal with sparse data and complex barriers. 

The principal advantage of the barrier model is that the computational cost is the same as for the 
stationary model. In general, the model is easy to use, and can deal with both sparse data and 
very complex physical barriers. This work has some limitations. The most important one is 
related to boundary effects in the SPDE-INLA approximation. This approach creates artifact 
spatial dependencies on the boundary. In a standard mesh, as long as it is well constructed, the 
boundaries are in the outer limits of the spatial domain of interest and, therefore, those 
dependencies can be identified and eliminated. However, in a more complex mesh, such as 
barrier models, the boundaries lie within the spatial domain of interest. This fact makes it 
difficult, sometimes excessively, to identify and subsequently eliminate artifact spatial 
dependencies. Despite these difficulties, in this work we have managed to identify them. 
However, a different approximation is needed in which the SPDE-INLA approximation does not 
cause these fictitious spatial dependencies. We are working on that approach today. Second, 
these fictitious dependencies cause a very low predictive capacity of the model. This limitation 
cannot be resolved until that other approximation we are working on is achieved. 
However, this work also has its strengths. First of all, the methods we propose have the same 
computational cost as the stationary models, which simplifies their analysis. Second, the 
methodology we have proposed allows us to introduce the spatial effect in complex land 
structures. 
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5.5  Enhanced spatial modeling on linear networks using Gaussian 

Whittle-Matérn family 

 
5.5.1 Introduction 

Over the last few decades, advancements in computing and real-time data collection have 
enabled the collection of vast amounts of spatio-temporal data. As a result, statistical modeling 
of spatiotemporal data has gained more popularity and is now being utilized in various 
disciplines (Wood et al., 2004; Fuglstad and Castruccio, 2020). Applications range from the 
analysis of meteorological data, environmental data (Blangiardo et al., 2013), ecology (Zuur et 
al., 2017), and natural disasters such as forest fires (Serra et al., 2014), landslides (Lombardo et 
al., 2020), and earthquakes (Liu and Stein, 2016; Field et al., 2017). Additionally, spatiotemporal 
modeling is used in urban planning and strategic decision-making for issues such as traffic 
accidents (Prassanakumar et al., 2011; Liu and Sharma, 2018), criminal activities (Leong and 
Sung, 2015; Hossain et al., 2020), air pollution (Mota-Bertran et al., 2021, Saez and Barceló, 
2022)  and epidemiology and infectious disease dynamics (Schrödle et al., 2010; Moraga, 2019). 

Depending on the objective of the study, various types of models are used with spatial and 
spatio-temporal data. With the development of Markov chain Monte Carlo (MCMC) simulation 
methods, researchers began to deal with these types of data using Bayesian methods (Gilks and 
Robert, 1996; Robert et al., 1999). To fit generalized linear mixed models (GLMM) in a spatial 
context, a Bayesian approach with MCMC simulation methods has traditionally been used. 
However, with the increase in data size and resolution, the computational burden of MCMC has 
become a critical issue (Rue et al., 2009; Rue et al., 2009; Taylor and Diggle 2014).  

To address this issue, Rue et al. (2009), proposed significantly faster solution as integrated 
nested Laplace approximations (INLA) which focuses mainly on models that can be expressed as 
latent Gaussian Markov random fields (GMRF). Advancements in spatial statistics have made it 
possible to fit continuous spatial processes with a Matérn covariance function using INLA. 
Lindgren, Rue, and Lindström (2011) introduced a solution for the stochastic partial differential 
equation (SPDE) that provides a sparse representation of the solution fitting within the INLA 
framework. The solution for the spatial process can be represented as a sum of basis functions 
and associated coefficients, where the basis functions approximate the solution, and the 
coefficients follow a Gaussian distribution. This spatial model is implemented in INLA as the 
stochastic partial differential equation (SPDE) latent effect (Krainski et al., 2018). However, 
fitting this model with INLA requires the definition of a mesh over the study region to compute 
the approximation to the solution. Literature shows several research works where INLA along 
with SPDE construct spatio-temporal models through Kronecker products of a spatial Matérn 
model, and first- or second-order autoregressive models in time (Lindgren et al., 2015; 
Blangiardo and Cameletti, 2015; Bakka et al., 2018; Moraga, 2020; Lindgren et al., 2022). 
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5.5.1.1 Modeling on Complex Distributed Spatial Regions 

Spatial models often assume isotropy and stationarity, implying that spatial dependence is 
direction invariant and uniform throughout the study area. However, these assumptions are 
violated when physical barriers are present in the form of geographical features as in case of 
complex island structures or in case of man-made barriers like disease control interventions and 
in animal species distribution problems. In these cases, the dependency among the observations 
should not be based on the shortest Euclidean distance between the locations but should take into 
account the effect of physical barriers and smooth them (Bakka 2019).  
Traditional SPDE method triangulates the entire study area based on continuous geographic 
boundaries (Krainski et al., 2018). Problem arises in typical environmental research works such 
as modeling species distribution, where physical barriers such as mountains, roads or rivers 
could pose obstacles for the movement of species. Since propagation through those obstacles is 
not possible, spatial correlation should not follow the shortest path, but should travel around 
them. However, studies show that the meshes are usually generated for the entire study region, 
including the physical barriers. Similar approach is observed in case of complex archipelagos or 
coastlines. This approach involves generating an SPDE mesh for the entire study region, despite 
the presence of physical barriers that make the study area complex and distributed. For example, 
Lezama-Ochoa et al. (2020) used this approach to predict the occurrence of spine tail devil ray 
species in the eastern Pacific Ocean. Bi et al. (2021) conducted a similar study to estimate 
seabird bycatch variations in the mid-Atlantic bight and northeast coast, and Cosandey-Godin et 
al. (2014) applied this approach to analyze spatiotemporal patterns of accidental bycatch in 
fisheries located in the Baffin Bay of the Atlantic Ocean. In our review of the literature, we have 
found several studies that have used the same approach to model complex land structures. For 
example, R. De Jesus Crespo (2019) studied flood protection ecosystem services in the coast of 
Puerto Rico, Myer et al. (2017) used a spatiotemporal model to examine the ecological and 
sociological factors that predict the presence of West Nile virus in mosquitoes in Suffolk County, 
New York, Paradinas et al. (2015) employed a spatio-temporal approach to validate persistence 
areas and identify fish nurseries in the western Mediterranean Sea, and Lourenço et al. (2017) 
estimated the potential distribution of invasive and native trees in the Azores islands, Portugal. 
We aim to build upon these studies and further explore the application of INLA-SPDE in 
complex land structures, particularly in coastal regions and islands. 
Another serious concern to model observations in complex island structures is the anomaly 
related to the polygon structure of the coastlines. Coastlines are often considered as fractal 
structure, in the sense that any finite approximation will not be accurate (Bakka et al., 2019). For 
the same coastline polygons, different researchers may use varying approximations which can 
lead to conflicting interpretations and predictions. In that case, the model loses its scientific 
credibility. It is worthy to mention that a stationary model cannot be aware of the coastline 
structure and will inappropriately smooth over the features.  In spatial modeling, classical 
models become unrealistic when they fail to account for holes or physical barriers in the 
landscape. This can lead to further unrealistic assumptions. 
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Bakka et al. (2019) introduced the barrier model as a solution to the limitations of existing 
models. Unlike traditional models, this new model does not rely on the shortest distance around 
a physical barrier or specific boundary conditions. Instead, it provides a non-stationary Gaussian 
random field which can handle sparse data and complex barrier structures. The authors applied 
the model to study the distribution of fish larvae species in the Finnish Archipelago Sea, which 
is a particularly relevant example as the larvae live near the coast and the study area includes 
many barriers that should not be smoothed over. Additionally, the computational cost is 
comparable to that of a stationary model. In a recent study, Martínez-Minaya et al. (2019) have 
used the barrier model approach to design a Bayesian hierarchical species distribution model 
(SDM) to determine vulnerable habitats for bottlenose dolphins in the Northern Sardinia 
archipelago in Italy. Likewise, the use of barriers is also crucial in the control of infectious 
diseases. Cendoya et al. (2022) studied the impact of barriers on the spatial distribution of a 
quarantine plant pathogenic bacterium in Alicante, Spain. They compared the results of a 
traditional stationary model, a model with physical barriers, and models with both continuous 
and discontinuous perimeter barriers around the infected areas. 
The simulation study in the Archipelago (Bakka et al., 2019) and other applications demonstrate 
that while barrier models have a similar computing cost to their corresponding stationary models, 
they are more flexible and realistic when used in complex spatial regions with physical barriers. 
However, some anomalies are found when the barriers are infinitely thin, in those cases 
artificially thicker barriers, such that the width is at least a mesh triangle, can make the model 
functional. Li et al. (2023) extended the barrier model by introducing a multi-barrier model that 
can characterize areas with different types of obstacles or physical barriers. Authors compared 
stationary Gaussian model, barrier model, and proposed multi-barrier model using real burglary 
data, and the results suggest that all three models have similar performance. 

5.5.1.2 Modeling on Linear Networks 

On the other hand, in many environmental applications such as urban road networks or stream 
systems it is essential to define statistical models on linear networks. A major focus of research 
in this field has been spatiotemporal modeling of traffic accidents on urban road networks 
(Karaganis and Mimis, 2006; Castro et al., 2012; Boulieri et al., 2016; Liu et al., 2019). Studies 
like, Xu and Huang (2015), Wang et al. (2019) and Eboli et al. (2020), effectively capture the 
spatial dependence and heterogeneity in traffic accident data, improving the accuracy and 
robustness of predictions compared to traditional regression models on road networks.  Recently, 
a number of models on road safety have been proposed following Bayesian methodology. 
Cantilo et al. (2016) used a combined GIS-Empirical Bayesian approach in modeling traffic 
accidents in the urban roads of Columbia. A similar research work on urban road network of 
Florida by (Zeng and Huang, 2014) explored Bayesian spatial joint modeling of traffic crashes. 
A space-time multivariate Bayesian model was designed by (Boulieri et al., 2016) to analyze 
road traffic accidents by severity in different cities of UK. Recently, (Galgamuwa et al., 2019) 
used Bayesian spatial modeling using INLA in predicting road traffic accidents based on 
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unmeasured information at road segment levels. Due to densely distributed nature of the road 
segments, majority of these studies used continuous spatial structures and traditional spatial 
stationary models such as Matérn fields. As a result, though the sampling points (here the traffic 
accident locations) are mainly located on the road networks, the SPDE triangulations are 
designed on the entire study area, including the areas without road network. Thus, the model 
result might be unpreventably generalized as it is going to estimate predicted values for the 
regions where there is no chance of incident to occur. In this context, Chaudhuri et al. (2022b) 
recently proposed spatiotemporal modeling of road traffic accidents using explicit network 
triangulation on the road network of London, UK. In a similar study by Chaudhuri et al. (2023), 
SPDE triangulation has been designed precisely on linear road networks of Barcelona, Spain to 
generate dynamic traffic accident risk maps. The methodology used in these two studies is a 
novel approach to perform spatio-temporal analysis precisely on road network and contributes to 
the relatively small amount of literature in this domain. However, in both cases, the complex 
boundary regions of the buffer road network result in high boundary effect, that can influence the 
spatial effects of the models. This is a serious limitation of the SPDE network triangulation 
approach.  
In general, Gaussian random fields with Matérn covariance functions are a popular choice but 
they have a stationary and isotropic covariance structure. Dawkins et al. (2019) made a novel 
attempt to apply a barrier model on linear road networks. This research showed a non-stationary 
approach to accurately estimate air quality levels on the roads of Brisbane, Australia using 
Bayesian methods. The study accounted for the topographical diversity of buildings in proximity 
to city roads by employing a non-stationary barrier model that extends upon the INLA 
framework. 
On the other hand, Bolin et al. (2022) presented an alternative to using the Euclidean distance by 
defining similar models with a non-Euclidean metric on a graph. However, it can be challenging 
to find a class of positive definite functions suitable for creating Gaussian fields on metric graphs 
when using a non-Euclidean metric. It is also difficult to apply the SPDE approach to metric 
graphs as it is uncertain how to define the differential operator and what kind of covariance 
functions would result. The study proposes a novel approach of a new and valid differentiable 
Gaussian field on general compact metric graphs. 

5.5.1.3 Motivating Example 

Accessible, and sustainable transport systems in cities are a core target of 2030 sustainable 
development goals (SDGs) adopted by the United Nations (UNDP, 2021). Thus, there is an 
opportunity to apply advanced computational techniques to model the spatial variation in the 
incidence of road traffic accidents in a linear road network system to aid in accident prevention 
and multi-disciplinary road safety measures. The motivating example we have used in this paper 
is ten-years (2010-2019) of daily traffic accident records on the road networks from the central 
part of Barcelona, Spain. The network is complex enough to motivate a general solution using 
the proposed non-Euclidean metric on graph model and also compare the results with SPDE 
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network model and barrier model. Further, the study region contains the road segments which 
observe the maximum daily records of traffic accidents as well as some road segments where 
there are no records of accidents during the entire study period.  

The aim of this study is two-fold. The principal aim is to introduce a new class of Gaussian 
processes on compact metric graphs with Whittle-Matérn fields defined by a fractional SPDE on 
metric graph in R-INLA framework (Bollin et al., 2022). Secondly, to compare and contrast the 
performance of the proposed model with two other distinct approaches namely, the SPDE 
network triangulation models and barrier models on linear networks. R (version R 4.2.2) 
programming language (R Core Team, 2022) has been used for statistical computing and 
graphical analysis. All computations were conducted on a quad-core Intel i9-4790 (3.60 GHz) 
processor with 32 GB (DDR3-1333/1600) RAM. 

5.5.2 Data Settings 

Barcelona is the largest and capital city of Catalonia, Spain and is located on the northeastern 
coast of the country. With a population of 1.6 million and a density of 15,748 inhabitants per 
square km, it is the second most populous municipality in Spain (OpenDataBCN, 2021). The city 
is a major cultural, economic, and financial center, as well as a transportation hub for 
southwestern Europe with a well-developed motorway network. In this study, a small area of 4.4 
square km in the central part of the city, consisting of 2058 road segments, has been considered 
as depicted in the left panel of Figure 29 inside the black circle. The road network data has been 
obtained from the Open Data BCN repository (OpenDataBCN, 2021). The police department in 
Barcelona keeps records of traffic accidents and related casualties and injuries, which are 
annually published by Open Data BCN under the Creative Commons Attribution 4.0 for public 
sector information. The data is free and available for public sector information.  
During the period from January 2010 to December 2019, there are 11,067 recorded traffic 
accidents in the study area. The locations of these accidents are shown in red on the road network 
map in the right panel of Figure 29. The study utilized five datasets from Open Data BCN, which 
are linked by a record code from 2010 to 2019. The common characteristics recorded in the data 
consists of a unique event ID, district and neighborhood, postal address and geographical 
coordinates, and the day and time of occurrence. We included three covariates in our models: 
road length (ranging from 3.69 to 186.25 meters) with a mean of 81.61 meters, road type (values 
1 to 7, with higher values indicating lower traffic), and road speed limit (ranging from 18 to 80 
km per hour). Notably, roads with speed limits of 30, 35, and 50 km per hour accounted for 21%, 
28%, and 35% of the total sample, respectively. The datasets also include temporal variables 
such as year, month, and time of the accident. The individual accident locations are adjusted to 
the nearest road segments. 
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Figure 29: Geographical location and road network with traffic accidents in Barcelona 

The number of minor injuries has been used as the response variable in the models. Most of the 
accidents (74.76%) have only one minor injury, followed by two minor injuries (15.42%) and 3 
or more minor injuries (3.42%). There were 6.4% of accidents with no minor injuries, and 
99.85% of the accidents resulted in no casualties. The number of accidents recorded in each year 
of the study are similar, with the highest number (1270) in 2016 and the lowest number (847) in 
2011. It is worthy to mention that, in case of network mesh and barrier model the daily minor 
injuries for individual road segment have been aggregated and included in the centroid of that 
segment. This means that other temporal covariates related to each accident are not considered in 
the current study. In contrast, the proposed graph model converts road segments into the edges of 
a graph and considers accident locations, road network intersections, and the start and end nodes 
of each road segment as the vertices of the graph. In the first model, the distances to nearby 
facilities such as bus stops, municipal markets, restaurants, schools, and street markets are 
calculated from the centroid of each road segment and used as spatial covariates. But in the graph 
model, these distances are calculated from individual vertices of the graph. A detailed description 
of generating the vertices and edges of the graph is reported in Section 5.5.3.3.  

5.5.3 Methodology 

Our discussion in this section initially covers two existing models, namely network mesh and 
barrier models on linear network, and in the third subsection we define the proposed exponential 
graph model and its application to the selected dataset. 

5.5.3.1 Network triangulation 

Analysis of spatiotemporal events such as traffic accidents, street crimes, and issues in water and 
electric connection networks in cities that occur exclusively on linear networks, it has been 
observed that conventional INLA-SPDE techniques are frequently used to model these events, 
despite the fact that they are strictly confined to linear networks. When applying the INLA-
SPDE method to linear networks, creating a triangulation for the entire region enables fitting of 
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the INLA model in the study area. However, a significant problem arises while predicting events, 
as the observed events are discrete spatial points located precisely on the road network, whereas 
models fitted with a region mesh cover the entire study area. This implies that the locations of 
predicted events can be placed in any area with or without road networks, which is not realistic. 
Traditional methods of model prediction using a region mesh are, therefore, not appropriate in 
this context from a scientific perspective. 

 

Figure 30: Region mesh for Barcelona road network 

In the current study, due to close proximity of the road segments, initially a continuous spatial 
structure is selected for modeling, and triangulation is carried out on the entire study area. In this 
context, Verdoy (2019) argues that the best mesh for prediction should have a sufficient number 
of vertices for accuracy but also within a limit to reduce computational time. Following this 
principle, from a battery of meshes, the best fitted mesh is selected having 2352 vertices. Figure 
30 depicts the region SPDE mesh with 11,067 traffic accident locations highlighted as red points.  

 

Figure 31: Buffered road polygon and network mesh 

with event locations highlighted as red points 

 

However, the fitted mesh as shown in Figure 30 has a problem when it covers the entire study 
area. It is unrealistic and ambiguous for the model predictions to cover areas without a road 
network where traffic accidents are unlikely to occur. This drives the need to design the SPDE 
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triangulation precisely on road networks. The process consists of three phases: generating a 
buffer region for each road segment, creating a clipped buffer polygon that covers only the road 
network, and designing SPDE triangulation on the clipped polygon to form an SPDE network 
mesh. Choosing the buffer size requires finding a balance between the number of vertices in the 
triangulated mesh and computational cost (Krainski et al., 2018; Verdoy, 2019). After evaluating 
various buffer sizes, a 15-meter buffer has been identified to be the best option. The left panel of 
Figure 31 illustrates the 2058 road segments with a 15-meter buffer around each segment. 
Following that, we merge individual buffer segments into a single polygon clipped within a 
bounding box covering the study area. In the final step, we use the centroids of each road 
segment as the target locations over which we build the initial Delaunay's triangulation. 
It is worthy to note that, for each road segment, the total number of minor injuries has been 
aggregated daily and added at corresponding centroids as the response variable. The 
triangulation is created using the centroids. Figure 31 (right) depicts the SPDE mesh precisely 
designed on the road network, with accident locations highlighted in red. We report the number 
vertices in the network mesh is 14,368. By aggregating data from locations and converting it into 
event counts per segment, we can utilize Poisson regression models together with a Bayesian 
approach to model traffic accidents on individual road segments. In fact, we use a spatial Poisson 
regression method within a Bayesian framework using INLA and SPDE. Recent research 
conducted in the same study area and utilizing the same dataset, by Chaudhuri et al. in 2023, 
found that a network mesh model outperformed the SPDE mesh model for the entire study area. 
Therefore, in this section, we have focused solely on the more efficient network mesh model and 
compared it with the two other models discussed in following sections. 
In particular, let  Yi and 𝐸𝑖 be the observed and expected number of road traffic accidents on the 
𝑖-th road segment. We assume that conditional on the relative risk, ρ𝑖, the number of observed 
events follows a Poisson distribution: 

𝑌𝑖 | ρ𝑖 ∼ 𝑃𝑂(λ𝑖 = 𝐸𝑖ρ𝑖) 

where the log-risk is modeled as  

log(ρi) = β0 + Ziβi + S(xi) + ϵi ………………… (4) 

Here, 𝑆(𝑥𝑖) account for the spatially structured random effects, and ϵi stands for an unstructured 
zero mean Gaussian random effect and log Gamma precision parameters 0.5 and 0.01, defined as 
penalized complexity (PC) priors (Simpson et al., 2017). Zi represents the spatial covariates. We 
assigned a vague prior to the vector of coefficients β =  (β0, … , βp) which is a zero mean 
Gaussian distribution with precision 0.001. All parameters associated to log-precisions are 
assigned inverse Gamma distributions with parameters equal to 1 and 0.00005. The default prior 
distributions for all parameters in R-INLA were selected based on commonly used priors in 
previous studies (Martins et al., 2013; Blangiardo and Cameletti, 2015; Rue et al., 2016; Moraga, 
2019). We report that our results are robust against other alternative priors, as we run several 
cases with different priors obtaining the same results. 



141 
 

To compute the joint posterior distribution of the model parameters, we use an INLA-SPDE 
method, as introduced by Lindgren et al. (2011). SPDE consists in representing a continuous 
spatial process, such a Gaussian field (GF), using a discretely indexed spatial random process 
such as a Gaussian Markov random field (GMRF). In particular, the spatial random process 
(represented by S(⋅) explicitly denote dependence on the spatial field, follows a zero-mean 
Gaussian process with Matérn covariance function represented as: 

Cov (S(xi), S(xj)) =
σ2

2ν−1Γ(ν)
(κ ∥ xi − xj ∥)

ν
 Kν(κ ∥ xi − xj ∥) 

where 𝐾𝜈(. ) is the modified Bessel function of second order, and 𝜈 >  0 and 𝜅 >  0 are the 
smoothness and scaling parameters, respectively. INLA approach constructs a Matérn SPDE 
model, with spatial range 𝑟 and standard deviation parameter σ. 

The parameterized model we follow is of the form: 

(𝜅2 − Δ)(𝛼/2)(𝜏𝑆(𝑥)) = 𝑊(𝑥) 

where Δ = ∑
𝜕2

𝜕𝑥𝑖
2

𝑑
𝑖=1  is the Laplacian operator, 𝛼 = (𝜈 + 𝑑/2) is the smoothness parameter, 𝜏 is 

inversely proportional to σ, 𝑊(𝑥) is a spatial white noise and 𝜅 >  0 is the  scale parameter, 
related to range 𝑟, defined as the distance at which the spatial correlation becomes negligible. 
For each 𝜈, we have 𝑟 = √8𝜈/𝜅, with 𝑟 corresponding to the distance where the spatial 
correlation is close to 0.1. Note that we have 𝑑 = 2 for a two-dimensional process, and we fix 
𝜈 = 1, so that 𝛼 = 2 in this case (Blangiardo and Cameletti, 2015). Next, to interpolate discrete 
event locations to estimate a continuous process in space we have used the SPDE network mesh 
as depicted in the right panel of  Figure 31. The projection matrix is generated using the 
centroids of individual road segments and triangulations in the mesh. Bakka et al. (2018) suggest 
that the range value should be determined based on the spatial distribution of events in the study 
area. In the current study, due to the proximity of accident locations we have decided to use a 
prior 𝑃(𝑟 < 0.01) = 0.01, meaning that it is highly unlikely the range is less than 10 meters. 
The parameter 𝜎 represents the variability of the data and has a prior specified as 𝑃(σ > 1) =

0.01. 

5.5.3.2 Barrier model on linear network 

The SPDE triangulations discussed in the previous subsection assume stationarity and isotropy 
that is, the autocorrelation between two locations depends solely on Euclidean distance. From a 
scientific perspective, it is problematic to use the previous approach due to the inclusion of 
additional assumptions, specifically the Neumann boundary conditions. Bakka et al. (2018) 
demonstrated that incorporating these assumptions can result in inferior outcomes compared to 
stationary models. While modeling events on dispersed spatial regions where there are physical 
barriers or, holes in the study area, stationarity is an unrealistic assumption (Bakka et al., 2019). 
This issue is common while exploring complex island structures. Similar coastline problems are 
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reported by Ramsay (2002), Wood et al. (2008) and Scott-Hayward et al. (2014). To handle the 
coastline problem, several studies have proposed solutions, such as computing the shortest 
distance in water (Wang and Ranalli, 2007; ScottHayward, 2014, Miller, 2014), defining 
boundary conditions using a smoothing penalty together with Neumann boundary condition 
(Ramsay, 2002), or using the Dirichlet boundary condition (Wood et al., 2008; Sangalli et al., 
2013). However, these methods may not be suitable for complex archipelago structures with 
physical barriers. In addition to coastlines, other physical barriers include road networks, power 
lines, categorical health sectors, and areas with different land uses. Therefore, these models can 
be utilized in various domains, including geography, environmental science, and ecology, to 
examine the spread and migration of various entities, like air contamination, wildlife populations, 
and disease outbreaks. 

 

Figure 32: Barrier object and mesh with barrier object 

with event locations highlighted as red points 

Non-stationary Gaussian models with physical barriers are a type of statistical model used to 
analyze spatial data that vary over time or space and are influenced by physical or man-made 
barriers. Building on this, Bakka et al. (2019) introduced a methodology to deal with non-
stationary and anisotropic spatial processes, with a focus on addressing complex archipelago 
structures where the coastline serves as a physical barrier. In the barrier model, the presence of 
barriers is represented by a latent variable that acts as a weight or factor for the predictors. The 
barriers are modeled as smooth functions of spatial or temporal variables, and the relationship 
between the barriers and the predictors is estimated using Bayesian methods. Although the 
barrier model was not designed specifically for linear road networks, Dawkins et al. (2019) made 
an effort to apply it to such networks. Another typical example presented by Krainski et al. 
(2019) is the use of barrier models in modeling anisotropic behavior, such as the propagation of 
noise in urban areas. In this study, noise data was collected from the city of Albacete, Spain, to 
analyze noise levels in a busy area of the city center with many bars and restaurants. The goal of 
the study is to analyze the fluctuations in noise levels in the city center if local noise regulations 
are being met. In their study, the buildings are used as physical barriers and the spatial process is 
considered on the road network of the study area.  
In our current study, we have taken a similar approach to model traffic accidents by utilizing a 
barrier model in the road network of Barcelona. We have defined polygons of individual road 
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segments with a buffer as our study area and the remaining land areas that do not include roads 
serve as the physical barriers. The creation of the clipped buffer region and aggregation of the 
number of minor injuries (which serve as the response variable in the model) at the centroids of 
each road segment have been accomplished using the same approach outlined in Section 5.5.3.1. 
Similarly, the mesh for the entire study area, as shown in Figure 30, has been constructed using a 
method similar to that described in Section 5.5.3.1.  
The inla.over_sp_mesh() function is utilized to determine which mesh triangles are contained 
within a polygon, while the inla.barrier.polygon() function has been employed to obtain the 
polygon surrounding the barrier. The barrier object is depicted in the left panel of Figure 32, 
where the grey area denotes the physical barrier, and the white area represents the road buffer 
polygons where spatial dependence will be analyzed. Points in red indicate the locations of 
traffic accidents used as event locations in the model. The triangulation will be created using a 
barrier model, in which the buffered road polygon serves as the normal terrain and areas without 
roads serve as physical barriers. The resulting mesh, with the polygon surrounding the barrier, as 
obtained using the inla.barrier.polygon() function (in blue) along with the event locations (in 
red) are displayed in the right panel of Figure 32. 
As mentioned in Section 5.5.3.1, our approach involves aggregating event counts at the centroids 
of individual road segments. By using Poisson regression models and adopting a hierarchical 
Bayesian spatial model that accounts for barriers, we can model traffic accidents on individual 
road segments. Our response variable is the aggregate number of minor injuries recorded per day 
for each individual section of road. Following it, log-risk in Equation 4 can be modified to: 

log(ρi) = β0 + Ziβi + u(si) + ϵi ………………… (5) 

Here, β0 corresponds to the intercept, Zi represents the spatial covariates mentioned in Section 
5.5.2 and ϵi stands for an unstructured zero mean Gaussian random effect and log Gamma 
precision parameters 0.5 and 0.01, defined as penalized complexity (PC) priors (Simpson et al., 
2017). We assigned default priors for all fixed-effect parameters to minimize their impact on the 
posterior distribution. u(𝒔) is a non-stationary spatial random effect. Bakka et al. (2019) in their 
proposal suggested using a finite element method which is based on the SPDE approach. The 
proposed method involves a system of two SPDEs, where one is applied to the barrier region and 
the other to the rest of the area. The system of stochastic differential equations in question has a 
solution that exhibits a non-stationary spatial effect, represented as u(𝒔). The system can be 
mathematically modeled as a set of stochastic differential equations, which provide a continuous 
weak solution to the estimation problem: 

𝑢(𝑠) − ∇.
𝑟𝑏

2

8
∇𝑢(𝑠) = 𝑟𝑏√

π

2
σ𝑢𝑊(𝑠),  for 𝑠 ∈ Ω𝑏 . . . . . . . . . . . . . (6) 

and 

𝑢(𝑠) − ∇.
𝑟2

8
∇𝑢(𝑠) = 𝑟√

π

2
σ𝑢𝑊(𝑠),  for 𝑠 ∈ Ω𝑛 . . . . . . . . . . . . . (7) 
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where 𝑢(𝒔) is the spatial effect,  Ω𝑏 the barrier area and Ω𝑛 is the remaining area and their 
disjoint union gives the whole study area Ω. Ranges for the barrier and remaining areas are 
represented by 𝑟 and 𝑟𝑏 respectively. σ𝑢 is the marginal standard deviation. ∇  is equal to 
(

∂

∂𝑥
,

∂

∂𝑦
) and 𝑊(𝑠) stands for white noise. In contrast to stationary spatial effects, this method 

implies the creation of a GMRF at a local level, consisting of two governing equations - one for 
the normal area (buffered road polygon) and the other for the barrier area (areas without roads). 
The spatial effect prior is determined by two unknown hyperparameters, namely the standard 
deviation (σ𝑢) and the range in the normal area (𝑟), while the range in the barrier area (𝑟𝑏) is 
maintained at a fixed, low value. Therefore, the system in Equation 6 and 7 represents a form of 
local averaging, with dependence on nearby values. This approach ensures that when two points 
are separated by a landmass, the small range in the barrier area prevents local averaging, forcing 
dependency to focus on movement around the barrier through local averaging in the buffered 
road polygon area. The system of differential equations in Equation 6 and 7 can be solved by 
constructing a Delaunay triangulation of the study area (as shown in Figure 32) and applying the 
finite element method, as described in Bakka et al. (2019). For the two hyperparameters in the 
model that define the covariance structure of 𝑢(𝒔), PC priors were assigned following the 
parametrization outlined in Simpson et al. (2017) and Fuglstad et al. (2019). These priors are 
designed to be minimally informative and to capture the uncertainty in the model.  

5.5.3.3 Graph model on linear network 

Previous subsection on explicit network triangulation and ongoing research on barrier models 
for complex land structures have highlighted issues related to boundary effects, including the 
creation of artifact spatial dependencies on the boundary. In standard meshes, boundaries are 
typically outside the spatial domain of interest, allowing for identification and elimination of 
these dependencies. However, in more complex meshes like network triangulation or barrier 
models, boundaries lie within the spatial domain, making it challenging to identify and 
eliminate these dependencies. Despite these difficulties, in these works we have managed to 
identify them. However, a different approximation is needed in which the SPDE-INLA 
approximation does not cause these fictitious spatial dependencies.  
In this context, Bolin et al. (2022) presented an alternative to using the Euclidean distance by 
defining similar models with a non-Euclidean metric on a graph. Literature shows, statistical 
models are required to be defined on linear networks, such as connected river or street networks 
(Baddeley et al., 2017; Cronie et al., 2020). In such cases, it is necessary to define a model 
using a metric on the network rather than the Euclidean distance between points. However, 
constructing Gaussian fields over linear networks, or more generally on metric graphs, presents 
a challenge. This is due to the difficulty of finding flexible classes of functions that are positive 
definite when a non-Euclidean metric is used. While the geodesic metric, which calculates the 
shortest distance between two points, has gained much attention in research, it has been 
criticized for its unrealistic applicability to many real-world processes (Baddeley et al., 2017). 
Therefore, researchers often employ an alternative metric known as electrical resistance 
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distance (Okabe and Sugihara, 2012). Anderes et al. (2020) utilized this metric to create 
isotropic covariance functions for a specific type of metric graph with Euclidean edges. They 
demonstrated that, for graphs with Euclidean edges, it is possible to define a valid Gaussian 
field by using a Matérn type covariance function (Matérn, 1960): 

𝑟(𝑠, 𝑡) =
Γ(ν)

τ2Γ(ν + 1/2)√4πκ2ν
(κ𝑑(𝑠, 𝑡))

ν
𝐾ν(κ𝑑(𝑠, 𝑡)) . . . . . . . . . . . . . (8) 

where 𝑑(⋅,⋅) is the resistance metric, τ, κ > 0 are parameters controlling the variance and 
practical correlation range, and 0 < ν ≤ 1/2 is a parameter controlling the sample path 
regularity. The limitation of ν ≤ 1/2 means that we cannot use this approach to create 
differentiable Gaussian processes on metric graphs, even if they have Euclidean edges. Due to 
this constraint, as well as some other complex challenges in creating Gaussian fields via 
covariance functions on non-Euclidean spaces, Bolin et al. (2022) take a different approach in 
this work and focus on creating a Gaussian random field 𝑢 on a compact metric graph Γ as a 
solution to a SPDE 

(κ2 − Δ)α/2(τu) = 𝒲, 𝑜𝑛  Γ  . . . . . . . . . . . . . (9) 

where α = ν + 1/2, Δ is the Laplacian equipped with suitable boundary conditions in the 
vertices, and 𝒲 is Gaussian white noise. The advantage with this approach is that, if the solution 
exists, it automatically has a valid covariance function. The reason for considering this particular 
SPDE is that when Equation 9 is considered on 𝑅𝑑, it has Gaussian random fields with the 
covariance function (as in Equation 8) as stationary solutions (Whittle, 1963). Lindgren et al. 
(2011) proposed a technique for extending the Matérn fields to Riemannian manifolds by 
defining Whittle-Matérn fields as solutions to Equation 9 specified on the manifold. Since then, 
this method has been expanded to various scenarios (Lindgren et al., 2022), including non-
stationary (Bakka et al., 2019; Hildeman et al., 2021) and non-Gaussian (Bolin, 2014; Bolin and 
Wallin, 2020) models. 
However, one of the primary challenges of extending the SPDE approach to metric graphs is 
defining the differential operator and determining the type of covariance functions that would 
result. In this context, quantum graph theory plays a vital role (Bollin et al., 2022). A quantum 
graph is a combination of a metric graph and a differential operator, where the Laplacian is the 
most important operator (Berkolaiko and Kuchment, 2013). However, there are multiple ways to 
define the Laplacian on a metric graph due to the existence of various options for vertex 
conditions. The Laplacian can be defined as the second derivative on each edge. At the vertices, 
however, there are various options for defining the operator depending on the choice of 
boundary conditions or vertex conditions. The Kirchhoff conditions is one of the most popular 
choices. The Laplacian with these vertex conditions is often referred to as the Kirchhoff-
Laplacian. According to (Berkolaiko and Kuchment, 2013), this Laplacian is self-adjoint. This 
Laplacian is the most natural form for defining Whittle-Matérn fields on metric graphs. The 
Whittle-Matérn covariance function is a popular choice for modeling spatial dependence in 
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Gaussian processes, as it provides a flexible framework for capturing different types of spatial 
dependence. At a high level, a Gaussian Whittle-Matérn random field on a metric graph is a 
collection of random variables, one for each node on the graph, that are jointly Gaussian with a 
Whittle-Matérn covariance function (Berkolaiko and Kuchment, 2013). The covariance function 
is parameterized by two hyperparameters namely, the smoothness parameter and the range 
parameter. In the context of a metric graph, the distance matrix of the graph is used to determine 
the covariance matrix of the random field. The distance matrix gives the shortest path distances 
between all pairs of nodes on the graph, which is used to compute the Whittle-Matérn covariance 
function. In their recent study, Bollin et al. (2022) utilize quantum graph theory to define an 
operator and prove that Equation 9 has a unique solution, from which they derive sample path 
regularity properties. They demonstrate that this solution has Markov properties when 𝛼 is a 
natural number, and in such cases, they derive the finite dimensional distributions of the process 
analytically. When α =  1, the resulting process exhibits a covariance function that is similar to 
the exponential covariance function. Specifically, it corresponds to the case where ν =  1/2 in 
Equation 8, which was previously shown to be a valid covariance for metric graphs with 
Euclidean edges (Anderes et al., 2020).  

 

Figure 33: Graph data structure of the traffic accident locations as nodes and road networks as edges 

In the current study, we have implemented Whittle-Matérn fields that are defined using a 
fractional SPDE on a compact metric graph within the R-INLA interface. This implementation 
serves as a natural extension of Gaussian fields with Matérn covariance functions on Euclidean 
domains to the non-Euclidean metric graph settings. We have used the same traffic accident 
dataset of Barcelona city spanning from January 2010 to December 2019 reported in Section 
5.5.2. We focused on the number of minor injuries as the response variable for our modeling 
process. To employ a graph model, we first converted the dataset into a graph data structure that 
is compatible with the model. In this structure, we have represented individual accident 
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locations, start and end points of road segments, and intersecting points of road segments as 
nodes or vertices, while the connecting road segments for the nodes are represented as edges.  
Figure 33 depicts the resulting graph comprised of 7401 vertices and 7937 edges. It is important 
to note that we have aggregated the number of minor injuries for different time instances at the 
same location and considered it as a single vertex. Thus, in this model and also in the previous 
two models (mentioned in Section 5.5.3.1 and Section 5.5.3.2) no temporal covariates are 
considered. Moreover, we have included the start and end points of each road segment and the 
intersection points of two or more road segments as new vertices in the graph data structure. 
This process resulted in a different number of vertices and edges than the original dataset of 
2058 road segments and 11067 traffic accidents records (represented as red points) illustrated in 
the right panel of Figure 29. The vertices that have been added new to the network are assigned 
a value of zero for minor injuries. In situations where the intersection point between two road 
segments has already recorded one or more accidents throughout the entire study period, the 
total number of minor injuries is aggregated and assigned to that junction point, which is 
considered as a single vertex. On the other hand, distances to nearby facilities such as bus stops, 
municipal markets, restaurants, schools, and street markets are computed from each vertex and 
incorporated as spatial covariates in the model. Additionally, other covariates such as road 
length, road type, and road speed limit are determined for each vertex based on its position in 
the specific road segment. 

 

Figure 34: Road network conversion to graph data structure 

two road segments having one traffic accident location highlighted in red (left), same road segments with 

start and end points along with intersection point and accident location highlighted in red (right) 

As a show case example, we illustrate two road segments and a single traffic accident location 
represented by a red point (X) in the left panel of Figure 34. We introduced the start and end 
points (A, C, and D, E) of the two road segments and their intersecting point (B) as vertices. 
The connecting lines between these vertices, including the accident location, were considered as 
edges. This resulted in a graph with six vertices (A, X, B, C, D, and E) and five edges (A-X, X-
B, B-C, D-B, and B-E) as depicted in the right panel of Figure 34. In summary, we have 
converted the traffic accident dataset into a graph data structure that considers the road network 
and traffic accident locations as vertices and their connections as edges. This process resulted in 
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a graph model that differs in the number of vertices and edges from the original dataset, and no 
temporal covariates are considered in our model.  
In the next step, Euclidean distances between each vertex have been calculated and used in the 
exponential graph model. These distances are now considered as the length of each edge of the 
graph having a mean value of 10.92 meters with a maximum value of 183.29 meters. We have 
introduced the Gaussian Whittle-Matérn random fields on metric graphs and have provided a 
comprehensive characterization of their regularity properties and statistical properties (Bolin et 
al., 2020). We argue that this class of models is a natural choice for applications where 
Gaussian random fields are needed to model data on metric graphs. Of particular importance 
here are the Markov cases (Bolin et al., 2020). We derived explicit densities for the finite 
dimensional distributions in the exponential case where we can note that the model has a 
conditional autoregressive structure of the precision matrix (Besag, 1974). For the differentiable 
cases we derived a semi-explicit precision matrix formulated in terms of conditioning on vertex 
conditions. In both cases, we obtain sparse precision matrices that facilitates the use in real 
applications to big datasets via computationally efficient implementations based on sparse 
matrices (Rue and Held, 2005). Finally, while implementing it in R-INLA, a generic model is 
defined using the function inla.rgeneric.define(), which takes as input a function rmodel and 
additional variables or functions in that might be used in the rmodel. The resulting inla-rgeneric 
object can be used to define a normal model component in INLA using function f(). The 
function rmodel needs to provide the required features, including the graph, the precision 
matrix 𝑄(θ), the zero mean, the initial values of θ, the log-normalizing constant, and the log-
prior. For the proposed graph-model, two hyperparameters are used, and a good re-
parameterization is required for INLA to work well. Gaussian priors are used for both 
hyperparameters.  

5.5.4 Results and Discussion 

This section presents the findings of the analysis and methodological approach developed in 
methodology section. We have used the same dataset and compare the performance of the three 
different modeling approaches. It is worth noting that we did not consider any temporal 
covariates in any of these modeling processes. For both the network mesh model and barrier 
model, we executed batteries of similar models based on the argument values to create SPDE 
triangulation. The default prior distributions for all parameters in R-INLA are selected based on 
commonly used priors in previous studies (Blangiardo and Cameletti, 2015; Rue et al., 2017; 
Moraga, 2019). Our results indicate that our findings are robust against alternative priors, as we 
ran several cases with different priors and obtained the same results. In the case of the graph 
model, we executed several models with different log-prior probability density for the model 
parameters and ultimately selected the best fitted model. We assessed the performance of the 
models from the three different approaches using deviance information criterion (DIC) and the 
Watanabe–Akaike information criterion (WAIC), balancing model accuracy against complexity 
(Spiegelhalter et al., 2002). We have used conditional predictive ordinate (CPO) value (Gelfand 
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et al., 1992) which also acts as a selection measure; smaller value of CPO indicates a better 
prediction quality of the model. Execution time for each modeling approach has also been 
reported as a measure of comparison. In Table 4, we report the selected models with the lowest 
DIC, WAIC, CPO, and execution time for each of the three categories from their respective 
battery of models. 
 

Table 4: DIC, WAIC and CPO values of Fitted Models 

 
Network 

Mesh Model 

Barrier 

Model 

Graph 

Model 

DIC 23390.17 23390.40 15393.55 
WAIC 23382.56 23382.68 15094.93 
CPO 0.3252899 0.3252868 0.3288132 

Execution Time 

(Secs.) 

15.2 54.3 12.8 

 

Looking at the DIC values, we can see that the graph model has the lowest DIC value 
(14980.69), followed by the two other models with very similar DIC values (23390.17 for the 
network mesh model and 23390.40 for the barrier model). A lower DIC value indicates a better 
fit, so we can conclude that the graph model is the best-fitted model among the three. Similarly, 
looking at the WAIC values, we can see that the graph model has the lowest value (14943.23), 
again indicating that it is the best-fitted model. 
The difference between the WAIC values of the other two models is very small, suggesting that 
they have very similar performance in terms of fitting the data. Finally, the CPO values for all 
three models are close to each other, indicating that they all have similar predictive performance. 
Furthermore, the graph model has the shortest execution time among the three models, with an 
execution time of only 12.8 seconds. The barrier model has the longest execution time among the 
three models, taking 54.3 seconds to execute. This implies that the graph model is not only more 
accurate but also more computationally efficient than the other two models. In conclusion, the 
graph model has the best performance according to both DIC and WAIC, while all three models 
have similar predictive performance according to CPO. These results suggest that the graph 
model is the best model among the three fitted models for describing the data as well as 
computational efficiency. 
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Figure 35: Marginal posterior mean of the spatial random effect 

network mesh model (top panel), the barrier model (middle panel), and the graph model (bottom panel) 

 

 

 

 

 

Figure 36: Marginal posterior distributions of network mesh model hyperparameters 

𝛉𝟏 (left) and 𝛉𝟐 (right) 
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Figure 37: Marginal posterior distributions of barrier model hyperparameters 

𝛉𝟏 (left) and 𝛉𝟐 (right) 

 

 

 

Figure 38: Marginal posterior distributions of graph model hyperparameters 

𝛉𝟏 (left) and 𝛉𝟐 (right) 

While comparing the significance of the fixed effects for the three modeling techniques, we have 
observed that the covariates included in all models do not exhibit a statistically significant 
influence on the outcome. 
Furthermore, Figure 35 displays the marginal posterior mean of the spatial random effect for 
three different models: the network model (top panel), the barrier model (middle panel), and the 
graph model (bottom panel). The horizontal axis of Figure 35 represents the nodes or vertices 
used in each model: 14,368 triangulation nodes of the SPDE network mesh (top panel), 24,993 
nodes of the barrier model (middle panel), and 7401 vertices of the graph model (bottom panel). 
It is worth noting that the vertices of triangles located on road segments with higher traffic 
accident occurrences (represented as dark red patches in Figure 31 and Figure 32) exhibit a more 
prominent and statistically significant spatial effect. Conversely, vertices without any accident 
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events do not display any spatial effect. In the case of the graph model, the spatial effect is 
significant in all the vertices included in the modeling process.  
The Appendix includes marginal posterior distributions of model hyperparameters for three 
different models: network mesh model in Figure 36, barrier model in Figure 37, and graph model 
in Figure 38. The spatial range values for each model are reported as follows: 0.0523 Km 
(equivalent to 52.3 meters) for the network mesh model, 0.0183 Km (equivalent to 18.3 meters) 
for the barrier model, and 0.0596 Km (equivalent to 59.6 meters) for the graph model. 
Designing the INLA-SPDE triangulation specifically on road networks can offer several 
advantages for modeling random spatial events like crime or traffic accidents. One of the 
primary advantages of this approach is improved computational efficiency. By focusing the 
triangulation specifically on the road network, researchers can limit the number of nodes and 
edges that need to be modeled, reducing the computational burden associated with modeling data 
over an entire study area. Another advantage of designing the triangulation specifically on road 
networks is the potential for more precise modeling of spatial relationships along the road 
network. In contexts like traffic accidents or crime hotspots, spatial relationships along the road 
network are often critical for understanding patterns and trends in the data. By designing the 
triangulation specifically on the road network, researchers can more accurately capture these 
relationships, potentially leading to more accurate and informative models. Additionally, 
designing the triangulation specifically on road networks can help to reduce bias and improve the 
accuracy of the resulting models. By focusing on the road network, researchers can more 
effectively control for confounding variables that may be present in other areas of the study 
region, leading to more precise and accurate estimates of the relationships between variables. 
While there are several potential advantages to design the INLA-SPDE triangulation specifically 
on road networks for modeling random spatial events like crime or traffic accidents, it is 
important to carefully consider the potential limitations and trade-offs associated with this 
approach. At the same time, the principal advantage with the barrier model is that the 
computational cost is the same as for the stationary model. In general, the model is easy to use, 
and can deal with both sparse data and very complex physical barriers. 
However, while using these two techniques for modeling spatial relationships can be effective in 
capturing relationships along the road network, there are some potential limitations and trade-
offs that should be considered.  
For instance, the approach may not be able to capture important spatial relationships outside of 
the road network, particularly in contexts where traffic accidents can occur in adjacent areas or 
neighborhoods. Furthermore, accurately modeling spatial relationships along the road network 
can be challenging in areas with complex road networks or where the network is subject to 
frequent changes or updates, which may require frequent updates to the triangulation to 
accurately capture changes in the road network.  
Another significant limitation we observed in the proposed methodology is the boundary effect, 
which can lead to biased estimates and prediction errors near the boundary if the mesh does not 
cover the entire domain. Spatial Gaussian fields (SGFs) are commonly utilized as model 
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components in the construction of spatial or spatio-temporal models for various applications, 
including the Generalized Additive Model (GAM) framework, to represent the residual spatial 
structure resulting from unmeasured spatial covariates, spatial aggregation, and spatial noise. The 
use of a buffer road network in current studies adds complexity to the boundary regions, which 
can influence the spatial effect of the model. Krainski et al. (2018) propose creating a mesh to 
represent the spatial process as the first step in fitting a SPDE model. Building an SPDE mesh 
for a continuous region is relatively straightforward, but the creation of an SPDE network mesh 
requires fine-tuning to identify the best fit values for minimum allowed distance between 
vertices and maximum permissible triangle edge length for the inner (and outer) regions. Careful 
selection of additional points around the boundary or outer extension is also necessary. As a 
general rule, the variance near the boundary is inflated by a factor of two along straight 
boundaries and by a factor of four near right-angled corners (Lindgren et al., 2011; Lindgren and 
Rue, 2015). The complex boundary region of the buffer road network with several right-angled 
corners makes the process critical. The boundaries in the proposed mesh are located inside the 
mesh and not outside, as in a standard mesh, which creates fictitious spatial structures. Due to the 
complex boundary nature, it is necessary to reduce the high boundary effect that may cause a 
variance twice or four times as great at the border as within the domain (Lindgren and Rue, 
2015). Although the residual diagnostics and predicted risk maps produced by the model match 
the original observed records, the correlation values of the model indicate the need for 
improvement.  
On the other hand, the proposed construction by Bolin et al. (2022) has two significant 
advantages. Firstly, it has Markov properties, implying that the precision matrices of the finite 
dimensional distributions of the process will be sparse, which simplifies the use of the model for 
big datasets. Secondly, the model is well-defined for any compact metric graph, not just the 
subclass with Euclidean edges. Additionally, the authors derive an explicit density for the finite 
dimensional distributions of the processes for higher values of 𝛼, which is not possible using the 
corresponding Matérn covariance function to construct a valid Gaussian process in general, even 
for graphs with Euclidean edges (Anderes et al., 2020). Therefore, this construction provides a 
covariance function for differentiable random fields on compact metric graphs (Bollin et al., 
2022). 
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6. DISCUSSION 

Spatiotemporal analysis is crucial for gaining insight into the dynamic behavior of complex 
systems and developing predictive models in various scientific fields. The INLA-SPDE 
methodology has proven to be a powerful tool in statistical modeling due to its many advantages 
over other techniques. It provides low computation time, making it an attractive option for large 
datasets. Additionally, as the basic logic is Bayesian inference, it does not require only normally 
distributed data, enabling its application in a vast domain of fields. The methodology also allows 
for the implementation of both spatial and temporal effects, as well as the analysis of their 
significance in the model. INLA-SPDE permits the integration of a substantially high number of 
covariates and can also accommodate new covariates at a later stage of the process. Moreover, 
the level of significance for each covariate can be analyzed, which further strengthens its utility 
in statistical modeling. 

It is worthy to mention, that in any data analysis project, the quality and accuracy of the data is 
vital. Therefore, we spent a considerable amount of time accessing huge datasets from various 
open-source portals and ensuring that the data was accurate, complete, and reliable. Once we had 
obtained the data, we then proceeded to clean and validate it. This involved identifying and 
correcting any errors, inconsistencies, or missing values in the data. After the data cleaning and 
validation process, we moved on to performing basic exploratory analysis. This step involved 
examining the data to identify patterns, trends, and relationships between different variables. We 
used R code to perform these analyses, which allowed us to explore the data and generate 
visualizations that helped us to better understand the data quickly and efficiently. In addition to 
the data cleaning and exploratory analysis, we also performed data twining and added new 
spatial variables to the dataset. This task involved combining datasets from different sources and 
merging them into a single, unified dataset. We also incorporated new spatial variables, such as 
geographic boundaries, Euclidian distances of events from points of interests into the dataset to 
enable spatial analysis. By investing significant time and effort in data preparation and 
exploration, we were able to ensure that the subsequent analysis and inference we performed was 
based on reliable and accurate data. This approach helped us to avoid potential errors or biases 
that may have been introduced by analyzing incomplete or inaccurate data. Overall, this rigorous 
approach to data preparation and exploration was essential in enabling us to draw robust 
conclusions and make accurate predictions based on the data. 

Our research projects on the relationship between pollution and COVID-19 infection rates in 
Catalonia and some selected counties of New York utilized spatiotemporal modeling using the 
traditional SPDE triangulation technique applied for continuous spatial regions (Chaudhuri et al., 
2022a; Díaz-Avalos et al., 2020). However, during the triangulation process for the New York 
study, we encountered challenges and observed the presence of boundary effects. From a 
scientific perspective, our interest lies in investigating how similar research studies utilizing 
INLA-SPDE have been carried out to model complex land structures in coastal regions and 
islands. Current literature shows that even for complex and distributed spatial regions, 
researchers have utilized a traditional continuous region concept to design the SPDE 
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triangulation. This approach involves generating an SPDE mesh for the entire study region, 
despite the presence of physical barriers that make the study area complex and distributed.  

To address this issue, we propose the use of alternative modeling techniques, such as network-
based spatial statistical models, that are specifically designed to analyze events on linear 
networks. These models take into account the unique characteristics of linear networks and can 
accurately predict events at specific spatial points located on the road network. By incorporating 
the spatial structure of the linear network into the modeling process, these models provide more 
realistic and accurate predictions of events on the network. Using this approach allows 
researchers to focus the triangulation specifically on the road network, limiting the number of 
nodes and edges that need to be modeled and reducing the computational burden associated with 
modeling data over an entire study area. Additionally, researchers can more effectively control 
for confounding variables that may be present in other areas of the study region, leading to more 
precise and accurate estimates of the relationships between variables. In our recent research 
project Chaudhuri et al. (2022b) we proposed spatiotemporal modeling of road traffic accidents 
using explicit network triangulation on the road network of London, UK. In our following 
project Chaudhuri et al. (2023), SPDE triangulation has been designed precisely on linear road 
networks of Barcelona, Spain to generate dynamic traffic accident risk maps. The methodology 
used in these two studies is a novel approach to perform spatiotemporal analysis precisely on 
road network and contributes to the relatively small amount of literature in this domain. 
However, in both cases, the complex boundary regions of the buffer road network result in high 
boundary effect, that can influence the spatial effects of the models. This is a serious limitation 
of the SPDE network triangulation approach. Furthermore, accurately modeling spatial 
relationships along the road network can be challenging in areas with complex road networks or 
where the network is subject to frequent changes or updates, which may require frequent updates 
to the triangulation to accurately capture changes in the road network. 

The SPDE triangulations proposed in network triangulation assume stationarity and isotropy, 
meaning that the autocorrelation between two locations only depends on Euclidean distance. 
However, using this approach can be problematic because it includes additional assumptions, 
specifically the Neumann boundary conditions. Typically, spatial models assume isotropy and 
stationarity, which means that spatial dependence is uniform throughout the study area and 
direction invariant. To analyze spatial data that vary over time or space and are influenced by 
physical or man-made barriers, non-stationary Gaussian models with physical barriers are often 
used. Bakka et al. (2019) introduced a methodology to deal with non-stationary and anisotropic 
spatial processes, with a focus on complex archipelago structures where the coastline serves as a 
physical barrier. Dawkins et al. (2021) attempted to apply this barrier model to linear road 
networks, while Krainski et al. (2018) used it to model anisotropic behavior such as noise 
propagation in urban areas. In our current study, we employed a similar approach to model 
traffic accidents in the road network of Barcelona. We defined polygons of individual road 
segments with a buffer as our study area, and the remaining land areas that do not include roads 
served as the physical barriers. 
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Although using network-based spatial statistical models and triangulation techniques can be 
useful for modeling spatial relationships along road networks, there are potential limitations and 
trade-offs that need to be considered. One major limitation of the proposed methodology is the 
boundary effect, which can result in biased estimates and prediction errors near the edge of the 
domain if the mesh does not cover the entire area. SGFs are commonly used to model residual 
spatial structure resulting from unmeasured spatial covariates, spatial aggregation, and spatial 
noise in spatial or spatiotemporal models. The use of a buffer road network in the current studies 
adds complexity to the boundary regions, which can affect the spatial effect of the model. These 
challenges have motivated us to investigate the feasibility of implementing spatial modeling 
techniques in complex or distributed spatial regions, such as islands, road networks, or areas 
demarcated by boundaries. In addition, our current study paves the way for future research to 
explore the impact of boundary effects on model performance and analyze variations in spatial 
effects.  

We are currently analyzing these problems in a subsequent study and exploring potential 
solutions. In collaboration with Bolin et al. (2022), we are working on an alternative method that 
does not rely on Euclidean distance. Instead, we aim to define models with a non-Euclidean 
metric on a graph, which requires using a metric on the network rather than the Euclidean 
distance between points. However, constructing Gaussian fields over linear networks or metric 
graphs poses a challenge because finding flexible classes of functions that are positive definite 
when a non-Euclidean metric is used is difficult. We are presently working on this approach, 
which extends Gaussian fields with Matérn covariance functions on Euclidean domains to the 
non-Euclidean metric graph setting, via a fractional stochastic partial differential equation on the 
graph. The study demonstrates that these processes exist and have sample path regularity 
properties, including differentiable Gaussian processes. Additionally, the study establishes that a 
model subclass contains processes with Markov properties and provides a computationally 
efficient method for assessing their finite dimensional distributions. These proposed models can 
be utilized for statistical inference without the need for approximations, and several statistical 
properties can be derived, including consistency of maximum likelihood estimators and 
asymptotic optimality properties of linear prediction based on the model with mis-specified 
parameters. 

In the current study, we have implemented Whittle-Matérn fields that are defined using a 
fractional SPDE on a compact metric graph within the R-INLA interface and named it as graph 
model. In our recent research project, we compared the efficacy of the proposed graph model to 
two other modeling approaches - network mesh and barrier model - using the same dataset. No 
temporal covariates were included in any of the models. We evaluated the performance of the 
models using the deviance information criterion (DIC) and the Watanabe-Akaike information 
criterion (WAIC), which balance model accuracy against complexity. We also used the 
conditional predictive ordinate (CPO) value as a selection measure, with a smaller value 
indicating better prediction quality. Additionally, we measured the execution time for each 
modeling approach. The results indicated that the graph model performed the best according to 
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both DIC and WAIC. While all three models had similar predictive performance according to 
CPO, the graph model was the most efficient among the three. The results suggest that the graph 
model is the best model among the three fitted models for describing the data as well as 
computational efficiency. 

The proposed technique is more flexible and statistically convincing, and its construction of the 
graph model has two main advantages. Firstly, it has Markov properties, which means that the 
precision matrices of the process's finite dimensional distributions will be sparse. This simplifies 
the use of the model for large datasets. Secondly, the model is valid for any compact metric 
graph, not just the subclass with Euclidean edges. Additionally, the authors have derived an 
explicit density for the finite dimensional distributions of the processes for higher values of α. 
This is not possible using the corresponding Matérn covariance function to construct a valid 
Gaussian process, even for graphs with Euclidean edges. Therefore, this construction provides a 
covariance function for differentiable random fields on compact metric graphs, as described by 
Bollin et al. (2022). 

We are currently investigating the use of a graph model with a battery log-prior probability 
density for the model parameters to assess its performance under various conditions. We are 
validating and testing the model with both simulated and real-time datasets. It is important to 
note that we are combining the response variable (number of minor injuries) for different time 
instances at the same location and treating it as a single vertex in the model. We are not 
including any temporal covariates in this model. We have added start and end points of each road 
segment and intersection points of two or more road segments as new vertices in the graph data 
structure. As a result, the number of vertices and edges in the graph data structure differs from 
the original dataset of road segments and traffic accidents. We have assigned a value of zero for 
minor injuries to the newly added vertices, while for intersection points that have already 
recorded accidents, we have combined the number of minor injuries and considered it as a single 
vertex. In addition, we have incorporated spatial covariates like distances to nearby facilities as 
well as other covariates such as road length, road type, and road speed limit for each vertex 
based on its position in the specific road segment. However, we are still exploring ways to 
incorporate temporal covariates in the graph vertices. We found that the model performance 
needs improvement in predicting future events accurately on the road network, particularly for 
events like traffic accidents or street crimes where temporal covariates are significant.  

We are continuing our research to enhance the model performance in a spatiotemporal context. 
This field of spatial modeling using INLA and SPDE is particularly exciting for complex spatial 
regions that have physical barriers or linear networks such as roads or river systems. It presents 
an offers a unique opportunity for research that may lead to new avenues for investigation in the 
field. As a result, we are committed to pursue further research in this area for our thesis work. 
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7. CONCLUSIONS 

The current study discusses the challenges of using INLA and traditional SPDE method in 
implementing Bayesian spatiotemporal modeling in complex or distributed spatial regions 
demarcated by boundaries and linear networks like road networks. These challenges call for a 
comprehensive and novel approach to address them. This may involve improving the SPDE 
triangulation approach, especially for linear networks, or developing a generalized approach to 
model spatial and spatiotemporal events in complex land structures. The study proposes to 
develop an innovative and realistic computational strategy for constructing spatial triangulations 
constrained to linear network topologies. Additionally, it intends to establish a modeling 
framework to explore spatiotemporal phenomena in complex spatial regions with physical 
barriers. 

In the initial phase, the novel concept of designing the SPDE triangulation precisely on linear 
networks have been introduced. But the presence of complex boundary regions resulted in 
artificial spatial structures and dependencies leading to unavoidable boundary effects in the 
model. To address this, as an alternative computational strategy, nonstationary barrier models 
have been implemented but the boundaries remained within the spatial domain of interest, which 
hindered the reduction of high boundary effects. Finally, a new class of Gaussian processes on 
compact metric graphs, incorporating Whittle-Matérn fields defined by a fractional SPDE on a 
metric graph has been introduced. This approach extends Gaussian fields with Matérn covariance 
functions on Euclidean domains to non-Euclidean metric graph settings. The proposed technique 
uses a graph model that is more flexible and statistically convincing, with advantages of Markov 
properties and validity for any compact metric graph.  

At present, the model is equipped with spatial covariates, hence its capability to predict future 
events is suboptimal, specifically for real-time scenarios where temporal covariates can play a 
vital role. We are currently exploring the graph model with a battery of log-prior probability 
density for the model parameters and conducting validation and testing with simulated and real-
time datasets. The objective is to enhance the model performance in the spatiotemporal context, 
thereby opening up new possibilities for investigation in the field of Bayesian spatiotemporal 
modeling for complex spatial regions having physical barriers and for linear networks.  

Scientific advancements in spatiotemporal modeling in complex spatial regions and regions 
having geographical or man-made physical barriers can provide opportunities for effective 
modeling real-time events. Furthermore, the development of new statistical models and 
techniques can improve the accuracy of the predictions, leading to a range of enhanced 
applications and improved management and control of real-time environmental issues, marine 
phenomena and hazards, urban problems such as traffic accidents, traffic congestion, antisocial 
activities, and air pollution. These advancements can have a profound impact on our 
understanding of the dynamics of epidemics and other chronic and infectious diseases, enabling 
us to make strategic decisions and improve public health management. The applications of these 
developments are wide-ranging and can extend to fields such as environmental science, 
economics, epidemiology, and ecology. 
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ABSTRACT
Spatial point processes on linear networks are increasingly getting attention
in different disciplines such as traffic accidents and street crime analysis.
Dealing with a set of time-ordered point patterns on a linear network over a
period, helps in obtaining a time series of estimated intensity images. In this
article, we combine the problem of estimating the intensity and relative risk
of point patterns on linear networks with trend detection in time-ordered
observations. Taking the temporal autocorrelation between consecutive time-
ordered intensity and relative risk images into account, we make use of the
Mann–Kendall trend test to look for potential locations in the network where
the estimated intensity and/or relative risk show evidence of a monotonic
trend. The monthly time-ordered spatial point patterns of fatal traffic acci-
dents and street crimes in the city of London, UK, in the period of January
2013 to December 2017, are used as an application.
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1. Introduction

The analysis of spatial point patterns on linear networks, e.g. the location of traffic accidents or
street crimes, is increasingly receiving scientific interest. Since such locations inherently only live
on their corresponding network structure, considering such structure as the support of data
instead of a general state space might result in defining a more realistic scenario (Yamada and
Thill 2004). Nevertheless, geometrical complexities of linear networks give rise to different math-
ematical/computational challenges. Thus far, most of the attention is paid to estimating the inten-
sity function of such point processes non-parametrically (Okabe, Satoh, and Sugihara 2009;
McSwiggan, Baddeley, and Nair 2016; Moradi, 2018; Moradi, Rodriguez-Cortes, and Mateu 2018;
Moradi et al., 2019; Rakshit et al., 2019). Regarding traffic accidents or street crimes data, such
locations are usually recorded daily, and their incidence rate may be affected by external events
such as different activities of the Town-hall or the Police department, and/or environmental char-
acteristics like physical environment, weather, and so forth (Feng et al. 2016; Hipp, Kim, and
Kane 2019). The density/intensity of traffic accidents and/or street crimes may face gradual/sud-
den changes over time. For instance, new strategies to reduce the crime/accident rate in a particu-
lar area might push the corresponding intensity down at a particular area. The efficiency of such
strategies to reduce the rate of traffic accidents or street crimes might be then detectable when
having a set of time-ordered realizations of the underlying point process.

� 2021 Taylor & Francis Group, LLC

CONTACT Mehdi Moradi mehdi.moradi@unavarra.es; m2.moradi@yahoo.com Department of Statistics, Computer
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The problem of trend/change-point detection has been frequently raised within different
disciplines such as agronomy, hydrology, geology, climatology, etc. Several proposals have been
developed for detecting gradual/sudden distributional changes in time-ordered datasets including
non-parametric, parametric, and regression-based methods (Mann 1945; Kendall 1948; Cox and
Stuart 1955; Pettitt 1979; Zeileis et al. 2003; Matteson and James 2014; Grundy, Killick, and
Mihaylov 2020). A selective review of several change-point detection methods is provided by
Truong, Oudre, and Vayatis (2020). The developed proposals were initially considered for time
series, and later they are examined for time series of satellite images (Verbesselt et al. 2010;
Bullock, Woodcock, and Holden 2020; Militino, Moradi, and Ugarte 2020). In general, since time-
ordered datasets usually experience a seasonal behavior, there also exists a technique to decompose
time series into trend, seasonal, and reminder components looking for possible changes in both trend
and seasonal components individually (Verbesselt et al. 2010). Although these methods demonstrate a
reasonably high power of the test, the majority drastically suffer from a high rate of introducing false
positives when dealing with highly autocorrelated data. Several modifications have been proposed to
reduce the type I error probability of the Mann–Kendall test in the presence of temporal autocorrel-
ation (Kulkarni and von Storch 1995; Hamed and Rao 1998; Von Storch 1999; Yue et al. 2002; Yue
and Wang 2004; Hamed 2009). Nevertheless, their major drawback is to reduce the power of the test
along with reducing the type I error probability. Note that reducing the power of the test means
increasing the type II error probability. It is shown that taking a tradeoff between the type I and II
error probabilities into account, the original Mann–Kendall method might still be a reliable technique
(Militino, Moradi, and Ugarte 2020).

Although, in practice, this might often be the case to have a set of time-ordered point patterns
on a linear network, to the best of our knowledge this field has not yet benefited from trend
detection techniques. In this article, we focus on an application of trend detection in the time ser-
ies of estimated intensities and relative risk images of spatial point patterns on linear networks.
Two sets of monthly time-ordered point patterns of fatal traffic accidents and street crimes, in
the period of January 2013 to December 2017, in the city of London, UK, are used for this pur-
pose. Each point pattern represents the locations of the events in a particular month. Taking the
temporal autocorrelation degree of such time-ordered estimated intensities and relative risk
images into account, we make use of the multivariate/univariate Mann–Kendall test (Mann 1945;
Kendall 1948; Militino, Moradi, and Ugarte 2020) to look for potential locations where the esti-
mated intensity and/or relative risk show evidence of monotonic trend.

The rest of the article is organized as follows. In Sec. 2 we present the time-ordered spatial
point patterns of traffic accidents and street crimes in the city of London, UK. Section 3 provides
a summary about point processes on linear networks together with their intensity and relative
risk estimators. In Sec. 4 we briefly present some details of the Mann–Kendall trend detection
test. Section 5 is devoted to present the results of the traffic accidents and street crimes data ana-
lysis. The article ends with a summary in Sec. 6.

2. Data

In this section we present two time-ordered sets of monthly spatial point patterns of traffic acci-
dents and street crimes in the city of London, UK, from January 2013 to December 2017. The
city of London has an area of 2.90 km2, with an approximate population of 8000 people, and
comprises six lower layer super output area (LSOA). The number of people who commute into
the city daily for work exceeds 5,00,000, with over 10 million visits as tourists yearly. The area is
an important local government district of UK that contains the historic center and the primary
Central Business District (CBD) of London.

The street crime data contain 18,908 records for the study period including antisocial behavior,
bicycle theft, drug-related, public disorder and weapons, public order, robbery, shoplifting, theft
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from the person, vehicle-related crime, violence and sexual offenses, and violent crime. Antisocial
behavior comprises the maximum percentage of records (26.79%) followed by violence and sexual
offenses (19.06%), and shoplifting (16.97%). Amongst all types of crimes, only antisocial behavior,
shoplifting, vehicle-related, and drug-related crimes appeared in all months. Regarding the traffic
accident data, it contains 1678 observations all being fatal accidents having at least one causality
count. We note that most accidents (90.58%) are having only one causality. As showcases, the
locations of traffic accidents and street crimes for the year 2013 are shown in Figures 1 and 2.

We note that the road network is accessed from open street map (OSM) repository using the
R package osmdata (Padgham et al. 2017). OSM data is free and licensed under the open data
commons open database license (ODbL) by the OpenStreetMap Foundation (OSMF)1. Initially,
complete OSM street network for the entire study area has been retrieved using primary tag high-
way (used for any category of streets). Then, less important OSM highway categories such as
unclassified, bus guideway, path, raceway, escape, and bridleway are not included in the current
study. In fact, these categorizes are not used for usual traffic, and thus they do not host any
event. Both data retrieval and cleaning has been performed using the same R package osmdata.

The traffic accident dataset is published by the Department of Transports, government of UK,
under the UK government open data project2. The street crime data is provided by 43 geographic
police forces in the UK and Wales, the British Transport Police, the Police Service of Northern
Ireland and the Ministry of Justice, and the government of UK. Both the traffic accidents and
street crimes datasets are free and licensed under the Open Government License v3.0 for public
sector information, government of UK3.

3. Point processes on linear networks

Throughout the article, we consider X as a simple spatial point process on the linear network
L � R

2, which is a union of some finite number of segments li ¼ ½ui, vi� ¼ ftui þ ð1� tÞvi : 0 �

Figure 1. Monthly spatial point patterns of fatal traffic accidents in the city of London, UK, during 2013.

1https://www.openstreetmap.org/copyright
2https://data.gov.uk
3http://www.nationalarchives.gov.uk/doc/open-government-license/version/3
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t � 1g � R
2, 1 � i < 1: We do not set any restriction regarding the connectivity of the network

or the kind of intersection between different segments. The distance between any two points
u, v 2 L is denoted by dLðu, vÞ: For any subnetwork A � L, its total length is obtained by sum-
ming the length of all its corresponding segments and is denoted by jAj: For any measurable
function f : L ! ½0,1Þ, the Campbell formula states that:

E

X
x2X

f xð Þ ¼
ð
L
f uð Þk uð Þd1u,

where kð�Þ is called the intensity function of X governing its distribution over L, and d1 stands
for integration with respect to arc length. In particular,

E # A \ Xð Þ½ � ¼
ð
A
k uð Þd1u, A � L,

where #ðA \ XÞ denotes the number of points of X falling in A. If kðuÞ � k, then X is called a
homogeneous point process, otherwise it is said to be an inhomogeneous point process (Ang,
Baddeley, and Nair 2012; Baddeley, Rubak, and Turner 2015).

Due to the geometrical complexities of linear networks, estimating the intensity function kð�Þ
has been quite challenging. Nevertheless, several proposals have been developed including some
network-distance kernel-based smoothing methods (Okabe, Satoh, and Sugihara 2009;
McSwiggan, Baddeley, and Nair 2016; Moradi, 2018; Moradi, Rodriguez-Cortes, and Mateu 2018),
the two-dimensional convolution-based kernel intensity estimators (Rakshit et al. 2019), and the
resample-smoothed Voronoi intensity estimator (Moradi et al. 2019). Consider x ¼ fx1, x2, :::, xng
as a realization of point process X on L, the two-dimensional convolution-based kernel intensity
estimator, with uniform corrections, is of the form:

k̂
UðuÞ ¼ 1

cLðuÞ
Xn
i¼1

jðu� xiÞ, u 2 L, (1)

and with Jones-Diggle correction, it is given as

Figure 2. Monthly spatial point patterns of street crimes in the city of London, UK, during 2013.
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k̂
JDðuÞ ¼

Xn
i¼1

1
cLðxiÞjðu� xiÞ, u 2 L, (2)

where j is a bivariate kernel function, and

cLðuÞ ¼
ð
L
jðu� vÞd1v,

is an edge correction. The Eq. (1) is unbiased if the true intensity kð�Þ is constant, and the Eq. (2)

provides mass conservation, i.e.
Ð
Lk̂

JDðuÞd1u ¼ n: For further details regarding different statistical
properties of the Eqs. (1) and (2), and additional details of relative risk see Rakshit et al. (2019).

It is common practice to estimate the spatially-varying relative frequency of each type of
events, when there are several types of events occurring on the same network. Assume that two
realizations x and y are observed, on the same network L, from two different point processes X
and Y. The relative risk between the two types is then calculated by qðuÞ ¼ logðkXðuÞ=kYðuÞÞ, u 2
L, in which kXð�Þ and kYð�Þ stand for the intensity functions of X and Y, respectively. The litera-
ture recommends to estimate both kXð�Þ and kYð�Þ using a common bandwidth (Kelsall and
Diggle 1995; Hazelton 2008; Davies, Jones, and Hazelton 2016). Relative risk for point patterns
on linear networks is substantially discussed by Rakshit et al. (2019) and McSwiggan, Baddeley,
and Nair (2020).

4. Mann–Kendall trend detection

When dealing with observations that appear as ordered in time, a very first thing that might be
of interest is to check whether, in the distribution of data, there is any gradual/sudden departure
from its past norm. The importance of being aware of such departure, e.g. in model fitting and
prediction, has led to the development of several proposals under different settings. Amongst all,
the Mann–Kendall trend test has been one of the most frequently used trend tests in the litera-
ture (Mann 1945; Kendall 1948; Militino, Moradi, and Ugarte 2020). Generally, for trend detec-
tion methods, the null hypothesis H0 is that data is independently and randomly ordered,
whereas the alternative hypothesis H1 claims the existence of a monotonic trend. In other words,
the null hypothesis stands with no gradual change in data over time. Considering y ¼
fy1, y2, :::, ymg, 1 < m < 1, as a finite set of numerical time-ordered observations, the test statis-
tic of the univariate Mann–Kendall is given as

S ¼
Xm�1

i¼1

Xm
j¼iþ1

sgnfyj � yig, (3)

where

sgnfyj � yig ¼
1, yj � yi > 0,

0, yj � yi ¼ 0,

�1, yj � yi < 0:

8><
>:

Under the null hypothesis, the expectation and variance of Eq. (3) are E S½ � ¼ 0 and Var S½ � ¼
m m� 1ð Þ 2mþ 5ð Þ=18 subject to there being no ties. The test statistic Eq. (3) compares each data
point to all data appeared at a later time, looking for any gradual growth/shrinking in the data.
Moreover, the so-called (rank correlation) Kendall’s s is in close relation with Eq. (3), being cal-

culated as S= m
2

� �
if there is no tie in y: Note that positive/negative values of S are used as indica-

tors of upward/downward trend in y: In practice, however, the standardized test statistic

Z ¼ sgnfSg jSj � 1ð Þ� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var S½ �

p
and its corresponding approximate p value
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p ¼ 2min 0:5, P X > jZjð Þð Þ, X � N 0, 1ð Þ, (4)

are used to whether accept or reject the null hypothesis H0: In addition, a multivariate version of
the Mann–Kendall test is available for trend detection in a group of time-ordered datasets jointly.
This takes information from all individual ones, combines the information and provides a cor-
rected statistics based on the corresponding variance-covariance matrix (Libiseller and Grimvall
2002), and makes decision about the existence of trend in data without pointing to where domin-
ance occurs in case a trend is detected (Pohlert 2018). Looking at the literature, the performance
reduction of Mann–Kendall test in the presence of temporal autocorrelation has been frequently
highlighted, suffering from a high rate of false positives. The higher the degree of autocorrelation,
the higher the type I error probability (Yue et al. 2002). In order to remedy such an issue, several
modifications have been developed including pre-whitening techniques (Kulkarni and von Storch
1995; Von Storch 1999; Yue et al. 2002; Hamed, 2009) and variance correction approaches
(Hamed and Rao 1998; Yue and Wang 2004). Although these modifications generally reduce/
moderate the type I error probability of the Mann–Kendall test, they inevitably decrease the
power of the test which means increasing the type II error probability. However, in hypothesis
testing a balance between the type I and type II error probabilities is needed. Under different set-
tings, and through a comprehensive simulation study, it is shown that looking for a tradeoff
between the type I error probability and the power of the test leads to the original Mann–Kendall
test as a reliable and preferable test when data have experienced a monotonic trend (Militino,
Moradi, and Ugarte 2020).

5. Results

This section is devoted to present the results of trend detection, based on the multivariate/uni-
variate Mann–Kendall test, for the time series of estimated intensity images of fatal traffic acci-
dents and street crimes in the city of London, UK, from January 2013 to December 2017, and
also their corresponding time series of relative risk images. Prior to employ the Mann–Kendall
test, we need to estimate the intensities and relative risk images. Since we are interested in the
temporal evolution in the time series of estimated intensities of time-ordered spatial point pat-
terns, and also to avoid undesirable halo artifacts, we make use of a common bandwidth for each
time series of point patterns. Hence, for each such time series, we first select the bandwidth

Figure 3. Monthly estimated intensities of the fatal traffic accident data in the city of London, UK, in 2013.
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parameter using the Scott’s rule-of-thumb (Rakshit et al. 2019) for individual point patterns, and
then use the geometrical mean of such selected bandwidths as a common choice. In the calcula-
tion of relative risk images we use the method of Davies (2013) to employ equal bandwidths for
both the numerator and denominator for each individual risk, and again we make use of the geo-
metrical mean of the selected bandwidths as a common choice in this case.

Each time series of point patterns contain 60 monthly patterns for which the common selected
bandwidths for accidents data and street crime data are 277.19 and 179.12 m, respectively. The
considered common bandwidth for relative risk calculation is 215.95 m. Figures 3 and 4 show the
monthly estimated intensities, using the uniform edge correction, of fatal traffic accidents and
street crimes in the city of London, UK, in 2013 respectively. Clearly, the estimated intensities in
both cases vary across time, implying a change in the corresponding time of hot-spots and point-
ing to some spatial variation in the intensities. This indeed might be a sign of first-order non-sep-
arability. We did not overlay the network for a better visualization of spatial/temporal changes in
the intensity images.

Before turning to the trend detection problem, we note that for each pixel in Figures 3 and 4,
or their corresponding relative risks, there exists a time series of estimated values. We are now
interested in trend detection in such time series. Thus, we first deseason the data by creating sea-
sonal anomalies of data (Appelhans, Detsch, and Nauss 2015), and then aggregate it with factor
2. Note that aggregation might reduce the number of potential false positives by smoothing out
the estimated intensity images locally.

In order to study the existence of potential trend/change in the time series of estimated inten-
sities and their corresponding relative risk more precisely, we next call the Mann–Kendall trend
detection method. Nevertheless, being aware of the effect of temporal autocorrelation in the per-
formance of trend/change-point detection methods, we initially calculate the first lag partial auto-
correlation for the (pixel) time series of estimated intensities and relative risk images by fitting
autoregressive models to each (pixel) time series of such values. Figure 5 shows how the first lag
partial autocorrelation of such time series of images vary over the region. Amongst all, the time
series of estimated intensities of street crimes show the highest temporal autocorrelation reaching
its maximum in the center and eastern part of the network. The time series of estimated inten-
sities of traffic accidents and relative risk generally show a low degree of temporal autocorrelation
having their maximum around the central part of the region. Moreover, their spatial variation
does not necessarily follow the same distribution, e.g. a location with high temporal

Figure 4. Monthly estimated intensities of the street crime data in the city of London, UK, in 2013.
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autocorrelation in the time series of the estimated intensities of street crime does not necessarily
show a high temporal autocorrelation in the time series of the estimated intensities of fatal traffic
accidents. Looking back into the literature, areas with quite high temporal autocorrelation are vul-
nerable to introduce false positives in terms of trend/change-point detection (Serinaldi and Kilsby
2016; Militino, Moradi, and Ugarte 2020).

Turning to the trend detection problem, we first make use of the multivariate version of the
Mann–Kendall method (Pohlert 2018) to check if there is any major area showing any significant
monotonic trend that could dominate the behavior of data in question in the rest of the network.
The obtained p values of multivariate Mann–Kendall for the corresponding time series of fatal
traffic accident, street crime, and relative risk are 0.95, 3.7	 10–6, and 0.007, respectively.
Therefore, the time series of estimated intensities of traffic accident data does not show any evi-
dence of trend. Regarding the street crime data, there is a strong claim on the existence of a
monotonic trend, and the time series of the estimated relative risk images also show a monotonic
trend. Nevertheless, and in order to get an insight into where dominance occurs, we next employ
the univariate Mann–Kendall method. Figure 6 shows the detected segments/pixels/locations in
the network of the city of London, where the time series of the monthly estimated intensities of
fatal traffic accidents, street crimes, and their corresponding relative risk show a monotonic trend
in the period of January 2013 to December 2017. Apparently, the fatal traffic accident data does
not show a particular trend in the network, apart from a very small area in the center of the
southernmost street that shows a downward trend. The street crime dataset, however, generally
shows an upward trend in many of the western, central, and northeastern streets. The time series
of relative risk images shows three major areas with upward trend, in the (southern) center,
northwest, and northeast of the network.

Looking into Figures 5 and 6 simultaneously, it is seen that detected areas with significant
trend in Figure 6 somehow show a higher temporal autocorrelation than the rest of the network.
Having this said, and being conscious of the adverse effect of temporal autocorrelation on the
performance of Mann–Kendall method (Yue et al. 2002), we next aim at checking the behavior of
individual pixel time series in the detected areas in Figure 6. However, since all detected pixels
with significant trend, per each type in Figure 6, generally show similar trend, we look into their
average behavior over time. Figure 7 shows the average time series of the detected pixels in
Figure 6 in combination with their locally weighted smooth regression lines (Cleveland, Grosse,
and Shyu 2017). The monotonic trend in the behavior of time series of the estimated intensities
of street crime, and of the estimated relative risk of street crime with respect to traffic accident is
clearly visible in Figure 7. Concerning the time series of the estimated intensities of traffic acci-
dents, apparently there is a low slope downward trend from the middle of time series onwards.

In addition, we next look for trend in the monthly estimated intensity images for different
types of street crime such as antisocial behavior, shoplifting, vehicle-related, and drug-related
crimes individually. Note these are the only types of street crimes appeared in all months.
Figures 8 and 9 show their corresponding first lag partial autocorrelation and detected pixels with

Figure 5. First lag partial autocorrelation for the time series of monthly estimated intensity and relative risk images of fatal traf-
fic accident and street crime in the city of London, UK, in the period of January 2013 to December 2017.
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significant trend, respectively. It is clearly seen that these types of crimes show different behavior
over the network. Further, from Figure 9 we can see that the estimated intensity of drug-related
crimes has experienced a reduction over time in a big part of the network. Regarding other types
of crimes, there are both upward and downward detected trends in different areas, where the
major areas having upward trend belong to antisocial behavior and shoplifting, respectively. We
add that the multivariate Mann–Kendall tests also gave rise to p values 0.05, 0.01, 9.1	 10–5, and
0.55 for anticocial behavior, shoplifting, drug-related, and vehicle-related crimes, respectively.

We further check the existence of any monotonic trend in the time-ordered relative risk
images of different types of crimes with respect to each other. The multivariate Mann–Kendall
test gave rise to p values 0.03 (antisocial behavior vs. drug-related), 3.35	 10–5 (drug-related vs.
shoplifting), 0.43 (vehicle-related vs shoplifting), and 0.13 (vehicle-related vs. drug-related). We
now employ the univariate Mann–Kendall test over each pixel time series to disclose the pixels/
locations with trends. Figure 10 shows the locations where such relative risk time series have
experienced monotonic trends. We have seen that the relative risk of antisocial behavior crimes
with respect to drug-related crimes shows an increasing trend in the southeast of the network.
The majority of the eastern part of the network shows a decreasing trend for the relative risk of

Figure 6. Detected pixels with significant trend based on the univariate Mann–Kendall test, at significance level 0.05, for the
time series of monthly estimated intensity and relative risk images of fatal traffic accident and street crime in the city of London,
UK, in the period of January 2013 to December 2017. Values represent the Kendall’s s.

Figure 7. Average relative risk and estimated intensities, after aggregation and deseasoning, of the detected significant pixels
by the Mann–Kendall method, at significance level 0.05, together with their locally weighted smooth regression lines.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 9

211



drug-related crimes with respect to shoplifting. Also, the relative risk of vehicle-related crimes
versus shoplifting shows a decreasing trend in a small area in the northeast of the network,
together with an increasing trend in a few pixels in the south. Finally, the relative risk of vehicle-
related versus drug-related crimes shows an increasing trend in most of the southern part of the
network. These outputs show that the temporal changes in the relative risks between different
types of crimes clearly varies over the network, there is no overall unique behavior, and moreover
the slop of the trend varies among different risks. We did not find any significant trend for the
relative risks between other combinations of crimes. We also add the first lag partial autocorrel-
ation for the corresponding time series of the images displayed in Figure 10, in the detected pix-
els, is generally quite low with averages 0:03, 0:21, 0:28, and 0.08 for relative risks of antisocial
behavior versus drug-related, drug-related versus shoplifting, vehicle-related against shoplifting,
and vehicle-related against drug-related, respectively.

6. Summary

On the one hand, the problem of trend detection in time series has been often called within dif-
ferent fields such as remote sensing, agronomy, finance, etc, due to its important role in model
fitting and prediction. On the other hand, spatial point patterns may also appear as a time series
of realizations. However, the field of point processes has not yet benefited from trend detection
methods. In this article, we have combined the well-known trend detection problem with the
recently gained attention topic of spatial point processes on linear networks. We have focused on
the time series of monthly estimated intensities and relative risk images of fatal traffic accident
and street crime in the city of London, UK, from January 2013 to December 2017. We have
obtained the intensity and relative risk images by using the non-parametric kernel-based estima-
tor of Rakshit et al. (2019). In our results, the time series of estimated intensities has shown that,
for both datasets, they go under significant changes temporally and spatially which is a sign of
first-order non-separability (an assumption which is commonly considered when analyzing spa-
tio-temporal point patterns). The time series of estimated intensity images of traffic accident data
has not generally shown a strong evidence of trend anywhere in the network. Conversely, the

Figure 8. First lag partial autocorrelation for the time series of monthly estimated intensity images of different types of street
crime in the city of London, UK, in the period of January 2013 to December 2017.

Figure 9. Detected pixels with significant trend based on the univariate Mann–Kendall test, at significance level 0.05, for the
time series of monthly estimated intensity images of different types of street crime in the city of London, UK, in the period of
January 2013 to December 2017.
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time series of estimated intensity images of street crime, and consequently its relative risk with
respect to fatal traffic accident, however, have notably experienced a strong upward trend in
mostly western, central, and northeastern parts of the network. Further, we have seen that differ-
ent types of crimes show different behavior over the network, and consequently different behavior
in terms of upward/downward trend. Generally, we have observed that the temporal changes in
the intensity/relative risk images clearly varies over the network, and there is no overall unique
behavior. Furthermore, the relative risks between certain types of crimes experience different
types of trends over different regions in the city of London. Although the average time series of
the locations with significant monotonic trend show evidence of such detected trend, distinguish-
ing true and false positives needs further detailed research.

Regarding the limitations and future works, we note that one may estimate the intensities by
means of parametric estimation to also reveal the effect of the characteristics of network over
intensities/relative-risks such as distances to crossings, roundabouts, etc. Trend detection based
on parametric intensity/relative-risk estimation may not necessarily lead to similar results. In add-
ition, one may aim to model the time-ordered non-parametrically estimated intensities/relative-
risks values based on some given/collected covariates to disclose their effect over the evolution of
intensities/relative-risks over time. Such parametric modeling can further reveal what actually
causes the trend. Moreover, another relevant and interesting idea might be to investigate the
influence of autocorrelation, and also to detect the time index when trend starts to grow using
e.g. deep-learning-based methods such as Long-short term memory (LSTM), Recurrent Neural
Networks (RNN), and Convolutional Neural Network (CNN).

Our data and R codes, to reproduce the results, are available at https://github.com/Moradii/
trend_intensity_images. Moreover, throughout the article, we have made use of the R packages
stats (R Core Team 2020), spatstat (Baddeley and Turner 2005; Baddeley, Rubak, and Turner
2015), sparr (Davies, Marshall, and Hazelton 2018), remote (Appelhans, Detsch, and Nauss 2015),
raster (Hijmans 2019), trend (Pohlert 2018), gimms (Detsch 2018), sp (Pebesma and Bivand 2005;
Bivand, Pebesma, and Gomez-Rubio 2013), and ggplot2 (Wickham 2016).
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