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Abstract

In recent times, the acoustic black hole (ABH) effect has been studied for
noise control in ducts, while it originates for structural waves propagating in
beams and plates. The comprehension of an ABH can be tackled by different
methods: mathematical and analytical techniques, transfer matrix method
(TMM) and finite element method (FEM) simulations, alongside with exper-
iments.
In this thesis, the three aforementioned methods are considered. A new theo-
retical framework, based on Gaussian discretization of the variational formu-
lation of Helmholtz equation is proposed. The problem considered involves
a rigid residual surface at the termination of the ABH and the proposed ap-
proach allows to compute the ABH modes through an eigenvalue problem.
Therefore, this theoretical approach is validated against FEM results, show-
ing a very strong agreement. Then, the transfer matrix method is introduced
and applied to the ABH problem. It is shown that the TMM solution for-
mally tends to the solution of the ABH equation in the limit cases of number
of rings tending to infinity. In order to do that, the concept of a metama-
terial is used and the analogy between an acoustic wave propagating in an
ABH and a wave propagating in a duct filled with a metafluid with particular
physical properties is discussed. Finally, some preliminary FEM results are
obtained and discussed. The influence of many parameters, such as number
of rings and ABH order, on the ABH performance, expressed in terms of its
reflection coefficient, is discussed. FEM results are the most expensive (as for
computational cost) and closest to reality. In fact, FEM allows to visualize
and understand the physics inside the ABH termination.
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Resum

En els últims anys, s’ha estudiat l’efecte dels forats negres acústics (ABHs)
per tal de controlar el soroll en conductes, tot i que originàriament es van de-
senvolupar per la propagació d’ones estructurals en bigues i plaques. Un ABH
es pot caracteritzar de diferents maneres: per mitjà de tècniques matemàtiques
anaĺıtiques, amb el mètode de les matrius de transferència (TMM) o amb el
mètode numèric dels elements finits (FEM), conjuntament amb experiments.
En aquesta tesi es consideren els tres mètodes esmentats. Es proposa un nou
marc teòric, basat en la discretització de la formulació variacional de l’equació
de Helmholtz fent servir funcions de base Gaussianes. El problema considerat
inclou una superf́ıcie residual ŕıgida a la terminació de l’ABH i l’enfocament
proposat permet calcular els modes de l’ABH a partir d’un problema de val-
ors propis. Aquest enfocament semi-anaĺıtic s’ha validat amb simulacions
FEM i el grau de similitud és molt notable. A continuació, s’ha introdüıt el
mètode de les matrius de transferència i s’ha aplicat al problema dels ABHs.
Es demostra que la solució TMM tendeix formalment a la solució de l’equació
de l’ABH en el cas ĺımit en què el nombre d’anells tendeix a infinit. A tal
efecte s’utilitza el concepte de metamaterial i es discuteix l’analogia entre
una ona acústica que es propaga en un ABH i una ona que es propaga en un
conducte ple d’un metafluid amb propietats f́ısiques particulars. Finalment,
s’obtenen i es discuteixen alguns resultats preliminars dels ABH obtinguts
amb FEM. S’analitza la influència de diferents paràmetres, com el nombre
d’anells i l’ordre de l’ABH en el coeficient de reflexió de l’ABH. Els resultats
FEM són els més costosos (pel que fa al cost computacional) i els més propers
a la realitat. De fet, el FEM permet visualitzar i entendre millor la f́ısica a
l’interior de la terminació ABH.
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Resumen

En los últimos años, se ha estudiado el efecto de los agujeros negros acústicos
(ABHs) para controlar el ruido en conductos, aunque originariamente se
desarrollaron para la propagación de ondas estructurales en vigas y pla-
cas. Un ABH puede caracterizarse de diferentes formas: mediante técnicas
matemáticas anaĺıticas, con el método de las matrices de transferencia (TMM)
o con el método numérico de los elementos finitos (FEM), a la vez que con
experimentos. En esta tesis se consideran los tres métodos citados. Se pro-
pone un nuevo marco teórico, basado en la discretización de la formulación
variacional de la ecuación de Helmholtz utilizando funciones de base Gaus-
sianas. El problema considerado incluye una superficie residual ŕıgida en la
terminación del ABH y el enfoque propuesto permite calcular los modos del
ABH a partir de un problema de valores propios. Este enfoque semianaĺıtico
se ha validado con simulaciones FEM y el grado de similitud es muy notable.
A continuación, se ha introducido el método de las matrices de transferencia
y se ha aplicado al problema de los ABHs. Se demuestra que la solución
TMM tiende formalmente a la solución de la ecuación del ABH en el caso
ĺımite en el que el número de anillos tiende a infinito. A tal efecto se utiliza
el concepto de metamaterial y se discute la analoǵıa entre una onda acústica
que se propaga en un ABH y una onda que se propaga en un conducto lleno de
un metafluido con propiedades f́ısicas particulares. Por último, se obtienen y
se discuten algunos resultados preliminares de los ABHs obtenidos con FEM.
Se analiza la influencia de distintos parámetros, como el número de anillos y
el orden del ABH en el coeficiente de reflexión del ABH. Los resultados FEM
son los más costosos (con respecto al coste computacional) y los más cercanos
a la realidad. De hecho, el FEM permite visualizar y entender mejor la f́ısica
en el interior de la terminación ABH.
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Chapter 1

Introduction

1.1 Motivation and scope

The acoustic black hole (ABH) effect has gained many attention in the past
two decades, although the pioneering works with its original theory dates
back to the late 80s. Such an effect can be applied both to structural waves,
for vibration reduction, and to acoustic waves, for sound control. The most
interesting aspect of the ABH problem is that it is a mathematical, physical
and engineering challenge simultaneously. Moreover, many resolution meth-
ods are available and can be used to tackle this problem, such as analytical,
semi-analytical and numerical (like the Transfer Function Method and the
Finite Element Method) methods. Approaching the ABH problem with any
of these methods carries its advantages and its drawbacks. In fact, the an-
alytical approach to the ABH problem is crucial to understand theoretical
limitations, although it relies on many simplifications and assumptions that
cannot be fulfilled in reality. The numerical study of this problem through
TMM (Transfer Matrix Method) will be addressed, because it is much less
computationally expensive and it allows to quickly analyze and study many
configurations. In those analyses, many parameters such as number and
thickness of rings, distance between rings, inner radius law and material
properties can be studied and compared, so that only selected promising
configuration can be furthered analyzed. But, the TMM will not allow to
gain insights on the physics of the ABH and on the behavior of the cavities
during the absorption process. Finally, the ABHs will be studied through
FEM (Finite Element Method), which gives results much closer to the real
design and helps in the comprehension of the physics of this phenomenon,
although it has a high complexity and depends on many parameters. Above
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all, the key aspect is the connection between results achieved through differ-
ent methods.
It is at the aim of this work to contribute to the analytical and numerical
characterization of an Acoustic Black Hole.

1.2 State of the art

1.2.1 ABH - Fundamental principle

The achievement of an efficient passive structural vibration control is a well-
known challenge in mechanical engineering. While composite materials have
been a first approach to this problem, later the concept of ”metamaterial”
started to be explored. A metamaterial consists in a material whose prop-
erties cannot be found in nature. Those physical properties, in fact, are
achieved via strategic geometry placed in a convenient way. Finally, the con-
sideration of acoustic black holes (ABHs), which are traps for flexural elastic
waves, is also a recent endeavor.
The initial formulation of the concept of an ABH can be found in (Mironov,
1988), which is considered as the pioneering work of the whole research field.
There, the propagation of flexural waves in a plate having a wedge whose
thickness is decreasing by following a power-law (see Fig. 1.1(a)) is studied.
By following an analytical approach, it was showed for the first time that a
non-reflecting termination can be achieved, under the assumption of a van-
ishing wedge thickness. In this ideal case, in fact, the velocity of the incoming
flexural wave is progressively diminishing to zero, so that the tip of the wedge
will never be reached (the needed time will tend to infinity) and the wave
will remain trapped inside the wedge, resulting in a perfect absorption. In
(Mironov and Pislyakov, 2002) the same idea has been extended to the case
of an acoustic tube with an axially varying wall impedance (see Fig. 1.1(b)).
Later, the same concept of retarding structure was extended in (Krylov, 2007)
to the context of plates, by the insertion of axisymmetric circular pits with
power-law varying thickness (see Fig. 1.1(c)). The mentioned circular pits
are playing the same role as the wedges in plates: they can slow down and
trap flexural waves. It has to be underlined that the properties of such struc-
tures led Krylov to coin the term ”acoustic black hole”. Strictly speaking,
it would be convenient to make a distinction between ”Vibration Acoustic
Black Holes”, i.e the ones developed in the context of structural dynam-
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(a) (b)

(c)

Figure 1.1: (a) A beam with a wedge whose thickness is exponentially decreasing (Pelat et
al., 2020), (b) The two-dimensional view of an ABH termination for the case of a duct made
of rings whose radii decrease by following a power-law (adapted from Deng, 2020) and (c) a
two-dimensional circular ABH inserted in a plate (Pelat et al., 2020).

ics, and ”Sonic (acoustic) Black Holes” (SBH), which deals with acoustic
ducts equipped with varying area terminations (as proposed in Mironov and
Pislyakov, 2020). In any case, the more general expression ABH is very com-
mon and recognized by the scientific community to refer to power-law type
absorbers and it will be used throughout the thesis.
Beyond the designs represented in Fig. 1.1 (that are: wedge, duct termination
and circular), others have been proposed such as circular bar (Kralovic and
Krylov, 2007; Kalkowski et al., 2017; Zeng et al., 2019), double-leaf (Tang
and Cheng, 2017; Zhou et al., 2017), spiral (Lee and Jeon, 2017; Park et
al., 2019), curved (Deng et al., 2020), rectangular (Bowyer and Krylov, 2016;
O’Boy and Krylov, 2016) and annular (Deng et al., 2019).
Several review articles on ABHs can be found in literature (see e.g., Krylov,
2014; Pelat et al., 2020).
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1.2.2 ABH for beams and plates

One-dimensional ABHs

First of all, the case of ideal zero-reflection wedges is considered. In this
context, a flexural wave propagating in a beam decreases its velocity when
it enters into a wedge with a decreasing thickness. Therefore, a retarding
structure can be achieved if the wedge thickness decreases smoothly to zero,
resulting in an infinite time for the wave to reach its end. Such structure was
originally proposed in (Mironov, 1988) and it was implemented in a tapered
beam of power law profile whose thickness variation is given by h(x) = ϵxm,
where m is a real constant defining the ABH order, x stands for the ax-
ial coordinate along the wedge and ϵ is the so-called smoothness constant.
In (Krylov, 1990) a quadratic profile was, the choice being motivated by
a smoothness condition that needs to be satisfied. In a general case, the
equation of motion for a flexural wave reads as

−ρL(x)ω2w(x) +
∂2

∂x2
D(x)

∂2w(x)

∂x2
= 0, (1.1)

where w(x) is the beam flexural displacement, ω the angular frequency, ρL(x)
the linear mass density and D(x) the bending stiffness. Eq. (1.1) can be
solved via the Wentzel, Kramers and Brillouin (WKB) method, that provides
analytical solutions with different orders of approximation (Karlos et al.,
2019). The first-order WKB approximation provides the variation of the
local phase velocity and it is observed that it tends to zero when the thickness
tends to zero as well. Namely, the local phase velocity cϕ(x) and wavenumber
k(x) can be written as

cϕ(x) =

(
Eω2

12ρ(1− ν2)

)1/4√
h(x), (1.2)

k(x) =
ω

cϕ(x)
=

(
12ρ(1− ν2)

E

)1/4√
ω

h(x)
, (1.3)

where E stands for the Young’s modulus, ν for the Poisson’s ratio and ρ for
the density of the material, and the local group velocity is cgr(x) = 2cϕ(x).
If the power-law h(x) = ϵxm is substituted into Eq. (1.2) and Eq. (1.3), one
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can get the following proportionality relationships for the phase velocity and
the wavenumber respectively,

cϕ(x) ∝ ϵ
1
2x

m
2 , (1.4)

k(x) ∝ ϵ−
1
2x−

m
2 . (1.5)

It can be observed that for m ≥ 2 the wave speed tends to zero and the
wavenumber goes to infinity at x = 0. Consequently, the wave would stay
trapped inside the wedge and no reflection would occur since the travel time
of a wave packet from a starting point to the wedge tip tends to infinity when
the wave is approaching the tip. This mechanism implies that the energy ac-
cumulates inside the wedge and tends to infinity at its tip, which therefore
turns out to be a point of singularity (see Fig. 1.2(a)). However, in practical
structures it is not possible to build a wedge with zero residual thickness and
a residual thickness needs to be introduced.

(a)

(b)

Figure 1.2: (a) Ideal ABH where the vibration energy concentrates at the end of the wedge
(adapted from Zhao and Prasad, 2019), (b) practical realization of an ABH, where the
power-law profile is truncated and an aborbing layer (in green) is added.

This fact establishes the difference between an ideal and a realistic imple-
mentation of the ABH and will have a strong impact on its performance. As
an example, while an ideal ABH would result in perfect absorption (that is,
zero reflection), a residual tip thickness equal to 0.1% can generate a reflec-
tion of 70% of the incoming wave (Mironov, 1988). Moreover, the case of an
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ideal ABH was first studied with the first order approximation of the WKB
(Wentzel, Kramers, and Brillouin) method, known as the geometrical acous-
tic approach, and a zero reflection coefficient was obtained (Krylov, 1990).
Considering the intrinsic limitations of the ideal ABH, practical wedges with
damping layers applied to tapered wedges in order to mitigate the effects
produced by the finite residual thickness (see Fig. 1.2(b)) have been explored
(Krylov, 2004; Krylov and Tilman, 2004). Hereafter, the thickness of the
added layer is considered thin with respect to the plate thickness and this
leads to a simplification of the Ross-Ungar-Kerwin model (Ross et al., 1959),
used to describe sandwich structures. The viscoelastic layer turns out to be
very effective in the reduction of the reflection coefficient even for the case
of a truncated profile. In fact, in (Ji et al., 2018) the incident and the re-
flected waves have been visualized separately with a laser scanning technique
and the influence of the damping layer on the reflection process has been
clarified (see Fig. 1.3). In Fig. 1.3(a) the incident wave is visualized in the
time-space domain (t,x) and, in Fig. 1.3(b) the corresponding reflected wave
is shown. In this case, damping layer is not considered and, therefore, it can
be observed roughly the same amount of incident and reflected waves. In
Fig. 1.3(c) and Fig. 1.3(d) the same visualization is presented, but with the
addition of a damping layer. It is easy to notice that the damping layer plays
a fundamental role in the absorption process, since the energy dissipation is
much higher than the previous case.
Moreover, by applying a higher-order WKB model, it has been found in
(Karlos et al., 2019) that the reflection coefficient is the result not only of the
effect of the truncation thickness, but also of the thickness mismatch at the
junction of the host structure with the ABH wedge.
Finally, in (Tang and Cheng, 2017) locally resonant band gaps in a beam
with multiple ABHs are observed. A new type of beam structure, equipped
with two double-leaf acoustic black hole indentations, is proposed (see, Tang
and Cheng, 2017c).

Two-dimensional ABHs

Due to the required boundary conditions, manufacturing an ABH at the edge
of a structure is not a viable option. Therefore, the natural two-dimensional
extension of the one-dimensional ABH arises and consists in an axisymmet-
ric indentation with a radial power-law profile embedded in a thin plate.
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(a) (b)

(c) (d)

Figure 1.3: (a) Incident and (b) reflected wave without damping layer and (c) incident and
(d) reflected wave with damping layer. The comparison between (b) and (d) shows that
the reflected wave is much smaller when the damping layer is considered, as the energy
dissipation is higher (from Ji et al., 2018).

This structure has been proposed in (Krylov, 2007) and a first experimental
demonstration of a 2D ABH can be found in (Georgiev et al., 2011). Since
then, many different geometrical designs have been proposed, such as 2D
ABH with a central hole, a central plateau or a central added mass. In 2D
circular ABHs, the focusing and lensing effects have been studied numerically
(Climente et al., 2014) and shown experimentally (Yan et al., 2016). Follow-
ing the analogy with the 1D ABH, the effect of 2D circular ABHs on flexural
waves propagation in the high frequency regime has been studied using geo-
metrical acoustic theory (Lomonosov et al., 2016; Yan et al., 2016). In (Tang
and Cheng, 2019), by extending the design for the one-dimensional case, a
new ABH design to generate directional band gaps for flexural waves was
proposed, consisting of plates with periodically arranged tunneled double-
leaf ABH. In (Tang and Cheng, 2020) this design is showed to achieve sound
reduction at low frequencies without adding damping treatment.
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1.2.3 ABH for duct terminations

In literature, most of the research has been dedicated to ABHs in beams and
plates, while the fundamental theoretical principles of ABHs in ducts were
formulated in (Mironov and Pislyakov, 2002). The retarding structure pro-
posed to achieve an ABH effect is a termination of the cylindrical waveguide
made of rings with power-law decreasing radii separated by air cavities (see
Fig. 1.4).
Therefore, the walls have a variable admittance that, with the assumption of
lumped-elements, reads as

Y = −jk0Y0
R2 − r2

2r
, (1.6)

where j is the imaginary unit, k0 the wavenumber, Y0 the characteristic admit-
tance, R the duct radius and r the rings inner radius. The linear power-law
has been considered for the computation of the inner radii of the rings, that
is

r(x) = R
(x
L

)m
, (1.7)

where R is the radius of the duct, L is the length of the retarding structure
and m = 1. It is worth to observe that r(L) = R and r(0) = 0. For this
case, it has been proved that the time taken for a wave to propagate into the
retarding structure would tend to infinity. In fact, the physical phenomenon
under consideration is the wave propagation in an axisymmetric waveguide
with varying cross section A(x) and wall admittance Y (x), which can be
modelled with a generalized Webster equation for the acoustic pressure p(x),

d2p

dx2
+

dp

dx

d(lnA)

dx
+ p
[
k20 + jZ0k0

2Y

r

]
= 0. (1.8)

Eq. (1.8) is the starting point to derive two important results. First, by
inserting Eq. (1.6) and Eq. (1.7), the equation will be referred to as ”ABH
equation” can be written, namely

d2p

dx2
+

2m

x

dp

dx
+
(k0Lm

xm

)2
= 0. (1.9)

Here,m is the order of the ABH. Therefore, equations for linear and quadratic
configurations can be easily retrieved by substituting m = 1 or m = 2 respec-
tively into Eq. (1.9). Second, it can be shown that the linear ABH follows
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(a)

(b)

(c)

Figure 1.4: (a) Two-dimensional view of an incident wave travelling in a duct with an ABH
termination made by rings separated by air cavitites (adapted from (Guasch et al., 2017),
(b) 3-D view of a duct (in grey) equipped with an ABH termination (in blue), (c) The ABH
termination made of rings, separated by air cavities, whose inner radii decrease by following
a power law is showed.

the acoustic black hole definition. In fact, from Eq. (1.8) and considering
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Eq. (1.7) with m = 1, an expression for the wavenumber can be derived,

k(x) =
1

x

√
k20L

2 − 1. (1.10)

Making use of this expression for the wavenumber, phase velocity cph, group
velocity cg and the propagation time T inside the ABH structure (from x =
−L to x1 = −l) can be computed,

cph =
ω

k
= − ω√

k20L
2 − 1

x, (1.11)

cg = −c
2
√
k20L

2 − 1

L2ω
x, (1.12)

T =

∫ x1

−L

dx

cg
=

L2ω

c2
√
k20L

2 − 1
ln
(L
l

)
. (1.13)

For x → 0, which means approaching the ABH end, the wavenumber tends
to infinity and, consequently, both velocities tend to zero. Moreover, for
x1 = −l → 0, the propagation time tends to infinity. Therefore, it can be
concluded that the structure taken into consideration behaves as an acoustic
black hole, but, similarly to the case of ABHs for beams and plates, a small
imperfection l needs to be introduced at the end of the ABH termination.
This consideration will mark the difference between ideal ABHs and more re-
alistic ones. Moreover, in (Mironov and Pislyakov, 2002) an overall reduction
of the reflection coefficient is observed for a linear ABH and an exact solution
is derived for this case. Finally, the above results have been derived for the
quadratic case in (Guasch et al., 2017). In this work it has been proven that,
for m = 2 in Eq. (1.9), the group velocity tends to zero and the propagation
time tends to infinity.

1.2.4 Resolution methods

Semi-analytical methods

The study of plates with ABH needs rapid and precise methods to analyze
their behavior, which depends on many parameters such as the shape and size
of the indentations. Many analytical methods (see Huang et al., 2018; Li and
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Ding, 2019; Georgiev et al., 2011) rely on very strong simplifications, such
as the consideration of semi-infinite structures. A semi-analytical method,
considering realistic configuration made of finite structures with embedded
ABHs and viscoelastic layers, was addressed for beams in (Tang et al., 2016;
Tang and Cheng, 2017b). In these works, the Rayleigh-Ritz method has
been used with Mexican hat wavelets to expand the flexural displacement
field. In (O’Boy and Krylov, 2016), the Rayleigh-Ritz framework has been
applied with the use of trigonometric functions to expand the ABH plate
bending displacements; this choice limited the extension of this analysis to
high frequencies. In (Ma et al., 2018), the performance at high frequencies
was improved by using 2D-Daubechies wavelets, which unfortunately cannot
be expressed in closed form, since recursive formulas are needed. Moreover,
both Mexican hat and Daubechies wavelets are pron to singularities in the
mass matrix, that needs to be addressed with special numerical methods.
In order to avoid these numerical problems, the Gaussian expansion method
(GEM) can be used to expand the bending variational field for beams. Ex-
pansions with Gaussian functions have been widely used in nuclear physics
(see e.g., Hiyama et al., 2003; Nakada, 2006), quantum chemistry (Baccarelli
et al., 2007) and also in acoustics (Cervenka and Bednaŕık, 2013). In (Deng
et al., 2019b), one dimensional Gaussians have been used to explore the ben-
efits of passive constrained layers in ABH beams. This approach has been
extended to two dimensions in (Deng et al., 2019). Moreover, in (Deng et al.,
2021) the GEM is extended to deal with ABH phononic crystals on infinite
plates.

The Transfer Matrix Method

The Transfer Matrix Method (TMM) has been widely used in many research
fields in acoustics. It is historically linked to the study of mufflers (Mun-
jal, 1987), but it has been applied also to the design of musical instruments
(see e.g., Plitnik and Strong, 1979; Caussé et al., 1984) and to articulatory
speech synthesis (see Sondhi and Schroeter, 1987). In fact, the performance
of a muffler can be obtained in terms of transfer matrix of the entire system.
Transformation of classic state variables p and v (pressure and velocity) can
be obtained via a transfer matrix (Munjal, 1987; Mechel, 2002). The down-
stream state variables (see index d in Fig. 1.5) can be related to the upstream
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Figure 1.5: The basic setup for the application of the Transfer Matrix Method (TMM).
The state variables vd and pd can be related to vu and pu by a matrix multiplication (figure
inspired from (Mechel, 2002)).

ones (index u) via a matrix multiplication,(
pd
vd

)
= T

(
pu
vu

)
, (1.14)

where T is the transfer matrix characterizing the element in Fig. 1.5. In
(Mechel, 2002) many expression of transfer matrices are provided for differ-
ent cases, such as sudden area changes, conical tubes and perforated ducts.
In (Wang and Norris, 1995; Vemula et al., 1996), exact solutions for the es-
timation of the wave field inside a medium, modeled as an inhomogeneous
structural waveguide, were obtained by using the transfer matrix method.
In (Li and Ding, 2018), the TMM has been applied to analyze the con-
centration of bending strain energy and kinetic energy of a one-dimensional
wedge-shaped ABH beam. In (Li and Ding, 2019) the TMM is used to ana-
lyze the sound radiation of an ABH beam with a wedge-shaped edge, whose
tip is truncated at a particular thickness.

The application of the TMM to an ABH in duct terminations is fairly new
and it was initially explored in (Guasch et al., 2017). In the cited work, ring
plus cavity ensembles are considered as one element and acoustic pressure
and velocity at the beginning and at the end of this structure are linked via
a transfer matrix. The considered matrix is the results of a multiplication of
three matrices taking into account the propagation in the ring, in the cavity
and the influence of the cavity represented as a lumped element. By multi-
plying all the matrices corresponding to every ring plus cavity ensemble, the
general behavior of the retarding structure can be computed. The influence
of many parameters like the number of rings (see Fig. 1.6(a) and 1.6(b)) on
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(a) (b)

(c) (d)

Figure 1.6: Influence of the number of rings on the reflection coefficient for linear (a) and
quadratic (b) ABHs. Influence of damping with complex sound speed on the reflection
coefficient for linear (c) and quadratic (d) cases ( adapted from Guasch et al., 2017).

the reflection coefficient of the ABH can be studied and the importance of
damping in the absorption process is observed (Fig. 1.6(c) and 1.6(d)). More-
over, analytical expressions for reflection coefficients for linear and quadratic
cases are provided, see also Section 3.4.

The Finite Element Method

The Finite Element Method (FEM) has been traditionally used to study the
ABH effect in beams and plates and to make comparisons with experimen-
tal and analytical results. Finite element analysis have been carried out to
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study two dimensional ABH with damping layers (see, Conlon et al., 2015;
Feurtado and Conlon, 2016), periodic plates with tunneled ABHs (Tang and
Cheng, 2019). In (Feurtado and Conlon, 2015), numerical models are applied
to investigate reflection from ABHs in beams and it is showed that the reflec-
tion coefficient of bending waves follows the same behavior of the normalized
wavenumber variation (which in this thesis will be referred to as smoothness
condition, see Chapter 3 for more details). In (Hook et al., 2019) a finite
element model is developed to study the influence of many geometrical pa-
rameters on the reflection coefficient of a beam.
The finite element method has not been used very extensively to solve the
ABH problem for acoustic waves in duct terminations. Very recently, some
works have addressed this topic. In (Cervenka and Bednaŕık, 2022) the lin-
earized Navier-Stokes equation (LNSE) are solved with FEM, taking into ac-
count thermoviscous losses, which allows a better understanding of the ABH
effect. In fact, with the comparison between Fig. 1.7(a) and 1.7(b) it is showed
that LNSE results are much more sensitive than the Helmholtz equation ones
to geometrical parameters of the ABH. Therefore, LNSE should be used for
quantitative studies of ABHs in ducts, which could lead to parametrical op-
timization. Moreover, in (Mousavi et al., 2022) it is showed that pressure
distribution inside ABH cavities is not uniform, leading to the appearance
of cavity resonances. In addition, the roles of different loss mechanisms are
analyzed (see Fig. 1.7(c) and 1.7(d)).
In Chapter 4, the Finite Element Method will be used to solve the wave equa-
tion in mixed form for waves propagating in a circular duct with an ABH
termination at its end (Fig. 1.8). As previously commented, this will per-
mits to obtain results much closer to the reality and to visualize the pressure
distribution inside the duct. Moreover, the reflection coefficient of many dif-
ferent ABH terminations (influence of power-law profile, number of rings and
absorption coefficient at walls will be considered) will be computed, thanks
to a numerical adaptation of the two-microphone transfer function (TMTF)
method (see Arnela and Guasch, 2013).
Finally, some remarks need to be made about numerical issues related to
FEM. It is well-known that the standard Galerkin approach to solve partial
differential equations may undergo numerical instabilities. For example, the
Galerkin weak form of the Helmholtz equation suffers from the so-called pol-
lution error due to the fact that it becomes non-positive definite for large
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(a) (b)

(c) (d)

Figure 1.7: Comparison between reflection coefficients computed via Linearized Navier-
Stokes Equations (LNSE) or Helmholtz Equation (HE) for a cavity width of 0.25m (a) and
0.75m (b) (Cervenka and Bednaŕık, 2022). The normalized power loss of all loss mechanisms
(c) and magnitude of the reflection coefficient for two cases: only visco-thermal losses con-
sidered and layer of melamine foam added at the end of each cavity (outer tube) (Mousavi
et al., 2022).

wavenumbers, while the wave equation in mixed form must be stabilized to
use equal interpolation for both, the acoustic pressure and particle velocity
(see Codina, 2008). In the past decades, several numerical strategies have
been proposed and used to overcome these numerical instabilities. A ma-
jor progress was the development of stabilized finite element methods based
on the subgrid scale approach (Hughes, 1995; Hughes et al., 1998). This
method consists in splitting the problem unknowns into a large scale that
can be solved by the finite element mesh, and a fine scale (the subgrid scale,
or subscale) that can be modeled. Applications of this stabilizing technique
with subgrid scales for the Navier-Stokes equations can be found e.g., in (Co-
dina, 2002; Codina et al., 2007; Bazilevs et al., 2007). Moreover, the wave
equation and the convected wave equation with applications to aeroacoustics
have been solved through stabilized finite element method with subscales (see
e.g., Codina, 2008; Guasch and Codina, 2007). Finally, the same stabiliza-
tion technique has been applied in acoustics for diphthongs production (see
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(a) t = 0.0025 s

(b) t = 0.005 s

(c) t = 0.0075 s

(d) t = 0.0125 s

Figure 1.8: Wave propagation and pressure distribution inside ABH cavities along time.
Reflection can be appreciated in yellow in (d). See Chapter 4 for more details.

Guasch et al., 2014; Guasch et al., 2016; Arnela, 2015). Stabilization will be
used throughout Chapter 4 whenever necessary.

1.2.5 Experimental results

The goal of the first experimental studies of the ABH effect in beams was
the measurements of point mobility and the comparison between structures
with and without ABHs. In (Krylov and Winward, 2007), a steel plate
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with a quadratic wedge is considered and differences between undamped and
damped (via a strip of absorbing layer covering one edge) configurations are
analyzed.

(a) (b)

(c)

Figure 1.9: (a) A rectangular plate with a power-lae profiled wedge, (b) practical realization
of a quadratic ABH for a duct termination, (c) plate with a two-dimensional ABH realized
through a circular indentation with a power-law profile.

In (Georgiev et al., 2011; Bowyer et al., 2013) the same comparison is carried
out for tapered indentations of power-law profile, whose center was covered
by a small quantity of absorbing material
Analytical and numerical methods described in previous sections are devoted
to a better comprehension of the ABH effect for acoustic waves in ducts. In
fact, with a good knowledge of the phenomenon, some particular and concrete
configuration can be selected for manufacturing and experimental studies.
The first experiments for ABHs in duct terminations were carried out in (El
Ouahabi et al., 2015; El Ouahabi et al., 2015b). Here, linear and quadratic
ABH termination were considered and their performance is studied by experi-
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mental measures of the reflection coefficient with the two microphone transfer
function method. Moreover, damping materials are placed at the end of the
waveguide, with the purpose of mitigating the effect of the truncation of the
power-law profile. This choice was made by following analogous methods
for structural ABHs, which consist in adding damping material at the thin
part of the domain to reduce the truncation error. Quite surprisingly, it was
found that the addition of damping has very little effect on the calculated
reflection coefficients, while both configurations showed an agreement with
the theory provided in (Mironov and Pislyakov, 2002) (see Fig. 1.10(a) and
1.10(b)). In (Mironov and Pislyakov, 2020) an experimental study showed
that adding different damping materials to the last cavities has an influence
on the reflection coefficients only at low frequencies (see Fig. 1.10(c) and
1.10(d)). In (Mi et al., 2021), experimental results of a quadratic ABH based
on the impedance tube measurement are presented and it is showed that both
sound reflection and transmission are reduced (see Fig. 1.10(e) and 1.10(f)).
Moreover, in (Bravo and Maury, 2023) a duct silencer is optimized with the
achievement of the acoustic black hole effect and this can inspire new muf-
flers designs. Finally, in (Umnova, 2023) it is shown that ABHs with graded
properties can be described as multi-resonant absorbers and a satisfactory
agreement between semi-analytical, FEM and experimental results is found.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.10: (a) Experimental setup and (b) corresponding results for a quadratic ABH
whose last ring holes are covered by different materials (El Ouahabi et al., 2015), (c) ex-
perimental setup and (d) corresponding result for a quadratic ABH whose last cavities are
filled with materials with increasing density (Mironov and Pislyakov, 2020), (e) experimental
setup and (f) corresponding results for an open-end ABH (Mi et al., 2021).

1.3 Aims of the thesis

The main purpose of this thesis is to provide a semi-analytical and a nu-
merical characterization of acoustic black holes in duct terminations. As
for the semi-analytical part, an expansion in terms of Gaussian functions is
used to solve the Helmholtz equation. Moreover, the concept of metafluid

34



will be used to prove the converge of analytical solutions to the numerical
solutions. The numerical part of the work will be carried out through very
different method: the Transfer Matrix Method, for characterizing ABHs with
low computational cost and comparing with analytical results, and the Fi-
nite Element Method, which allows to simulate and the to visualize waves
propagation inside the ABH in a more precise way.

The specific main goals of this work can be listed as follows:

1. Propose a theoretical framework to study the performance of theoretical
ABHs via the variational formulation of the problem and its solution
through Gaussian basis expansion of the unknown.

2. Analyze the performance of the theoretical ABH.

3. Show with a rigorous proof that the transfer matrix solution is consistent
and formally tends to the solution of the continuous problem.

4. Study the effect of many parameters (i.e number of rings and absorp-
tion at walls) on the ABH performance, represented by the reflection
coefficient computed via FEM results.

5. Provide a preliminary explanation of the role of ABH cavities in the
absorption process.

These objectives are organized as described in the following Section 1.4.

1.4 Thesis organization

This thesis is organized as follows:

• In Chapter 2 a theoretical framework to analyze the performance of
ABHs is presented through a Gaussian discretization of the variational
formulation of the ABH problem. The solutions obtained with the pro-
posed strategy are validated against FEM results. Finally, alternative
ABH profiles to the power-law are studied.

• In Chapter 3 it is proved that the TMM solutions tend to the solution
of the differential ABH equation, for an ABH of any order, when the
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number of rings and cavities goes to infinity. This will be done by recur-
ring to the concept of a metafluid and by identifying an analogy with
the ABH configuration. Finally, numerical results comparing analytical
and TMM reflection coefficients are presented

• In Chapter 4 preliminary FEM results of the ABH effect in duct termi-
nations are presented. The performance of different ABHs is evaluated
with the calculation of the corresponding reflection coefficient, which is
computed by means of a numerical adaptation of the two-microphone
transfer function method (TMTF). Finally, many numerical results show
the influence on the ABH performance of many parameters such as num-
ber of rings, ABH order, and absorption at walls.

Conclusions and future research lines are finally exposed in Chapter 5.
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Chapter 2

Solution and analysis of theoretical
acoustic black holes in duct
terminations by Gaussian functions

In this chapter a rigorous analysis of theoretical black holes in duct ter-
mination will be presented. The acoustic black hole (ABH) made of rings
separated by cavities whose inner radii decrease by following a power-law
will be considered. Therefore, the singularity at the ABH termination will be
removed by considering a rigid residual surface, analogously to the residual
thickness usually considered for ABHs in beams and plates. As a first step
of the theoretical framework proposed, the generalized Webster equation for
the acoustic pressure inside the ABH will be transformed into a Helmholtz
equation with spatially varying wavenumber. Then, the variational formu-
lation of the Helmholtz equation will be derived and solved by expanding
the unknown scaled pressure with a basis of Gaussian functions. With the
same method, an eigenvalue problem that provides the ABHs modes will be
presented. The modal decomposition will show that the ABH modes are
very sensitive to changes in the residual radius and damping, clarifying the
occurrence of oscillations in the reflection coefficient and input admittance
at different frequencies. The results obtained with the aforementioned the-
oretical approach will be validated against FEM results and an extensive
parametric analysis of the reflection coefficient will be carried out. Finally,
alternative profiles to power law will be investigated and reflection coefficients
values similar to the classical ABH will be showed.

Concerning implementation aspects, the FEM model considered in this chap-
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ter has been built using the Comsol 1D Pressure Acoustic module.

This chapter is mainly based on the following works:

• Jie Deng, Oriol Guasch and Davide Ghilardi (2023), ”Solution and anal-
ysis of theoretical sonic black holes in duct terminations”, Journal of
Sound and Vibration, Submitted.

• Jie Deng, Oriol Guasch and Davide Ghilardi (2023), ”Gaussian series for
sonic black holes in duct terminations”, Forum Acusticum 2023, Sub-
mitted.

2.1 Introduction

Aerial acoustic black holes (ABHs), simply known as ABHs in duct termi-
nations, were proposed in (Mironov and Pislyakov, 2002), several years after
their equivalents for beams and plates (see Mironov 1988; Pelat et al., 2020).
While various designs for the latter have been proposed, only a few ABHs
have been developed to date. The most well-known of these is the design sug-
gested in (Mironov and Pislyakov, 2002), which comprises a series of rings
separated by air cavities, with an inner radius profile that decays according
to a power-law. In the case of a large number of rings and small cavities,
wave propagation inside the ABH can be described by a generalized Webster
equation, and thermoviscous losses can be considered by means of a complex
speed of sound. As an acoustic wave enters an ABH, it slows down, while
its amplitude grows and its wavelength decreases towards the termination
of the ABH. Analytically, it has been shown that for an ideal linear ABH
(Mironov and Pislyakov, 2002) and a quadratic one (Guasch et al., 2017), a
wave travelling within the ABH will never reach its end, and therefore, no
reflection can take place. Recently, the classical ring-cavity ABH design has
inspired new slow-sound designs consisting of truss lattices that can be built
using additive manufacturing techniques (Chua et al., 2023). Alternatively,
one might take advantage of the fact that the generalized Webster equation
governing acoustic plane wave propagation in the ring/cavity ABH is iden-
tical to the wave equation for a metafluid with a power-law varying density
(Guasch et al., 2020). An ABH based on this equivalence was recently tested
in (Mironov and Pislyakov, 2020). It is important to differentiate between

38



theoretical or ideal ABHs, which can typically be described using partial dif-
ferential equations at the continuum level, and their practical realizations.
While most research has focused on the latter, this chapter specifically ad-
dresses the former, as it has been done in (Karlos et al., 2019; Lee and Jeon,
2019) for ABH beams. In fact, exploring a deeper understanding of theoreti-
cal ABHs could aid in their designs for practical applications. To improve our
comprehension of theoretical ABHs, the generalized Webster equation gov-
erning acoustic wave propagation inside the ABH will be transformed into
a Helmholtz equation with spatially varying wavenumber for a new locally
scaled pressure (Guasch et al., 2020; Robins, 1991; Brekhovskikh, 2012). It
is worth noting that the ABH in (Mironov and Pislyakov, 2002) exhibits a
singularity at the origin (that is, its termination). In that pioneering work, a
length imperfection was introduced to terminate the waveguide before reach-
ing the origin of the ABH. However, in this chapter, the problem is formulated
more naturally by considering a rigid residual surface (with a corresponding
residual radius) at the termination point of the ABH. This approach will be
shown to be analogous to the use of residual thickness in ABH beams and
plates (Krylov and Tilman, 2004; Krylov, 2004; O’Boy and Krylov, 2011;
Deng et al., 2019; Deng et al., 2019b). In order to solve the Helmholtz
equation with spatially varying wavenumber, a high-order WKB (Wentzel,
Kramers and Brillouin) expansion could be used, as done in (Karlos et al.,
2019). But, dealing with high-order terms of the WKB expansion can be
difficult to handle, because eventually the series tends to diverge. Another
suitable option could be the more robust Bremmer series for the equation at
hand (Bremmer, 1951; Bellman and Kalaba, 1959; Atkinson, 1960; Doc et
al., 2016). Nevertheless, this case requires the evaluation of nontrivial numer-
ical integrals to derive the terms of the series and the imposition of complex
boundary conditions on it. Hence, a simpler method to solve the Helmholtz
equation has been chosen. Initially, its variational formulation is derived and
the relevant boundary conditions are imposed, which include zero acoustic
particle velocity at the residual surface and pressure and velocity continuity at
the entrance of the ABH. Then, a Gaussian functions basis is used to expand
the scaled pressure, which becomes more refined as it approaches the end of
the ABH. Substituting this into the weak form results in an algebraic system
to calculate the expansion coefficients. Also, a similar approach is followed to
derive an eigenvalue problem for computing the ABH modes. Thereafter, the
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suggested theoretical approach is validated against FEM simulations. Vari-
ous aspects of the ABH are analyzed, beginning with the changes in sound
speed and wavenumber within it, for both normal and scaled pressure (which
is the normal acoustic pressure multiplied by the square root of the section
of the waveguide, a change of variable that will be crucial for following de-
velopments). Then, a modal analysis is performed to observe how the mode
shapes and their concentration within the ABH are influenced by damping
and the residual radius. This analysis provides insights into the formation
and disappearance of peaks and dips in input impedance and reflection coef-
ficient of the ABH, which can be helpful for the design process. Lastly, beside
the power-law, other options for the ABH profile are investigated: analyti-
cal functions such as power-cosine, exponential and Gaussian profiles will be
considered, as was done for beams in (Karlos et al., 2019).
This chapter is organized as follows. In Section 2.2 the theoretical framework
is presented and several steps are followed. The Helmholtz equation for the
scaled pressure is derived and the ABH problem is formulated. The varia-
tional formulation of the problem is presented, the discretization is carried
out by introducing the Gaussian basis and the discrete variational form of
the equation is derived. Then, Section 2.2 concludes with introducing the
eigenvalue problem that permits to compute the ABH modes and to perform
a modal expansion of the acoustic pressure. In Section 2.3, numerical results
are presented. First, the proposed solution strategy is validated against FEM
simulations. Second, the variations of the speed of sound and the wavenum-
ber inside the ABH are shown and a modal decomposition for the acoustic
pressure is introduced. Third, an analysis of the influence of various pa-
rameters on the reflection coefficient and input admittance is performed and
alternative profiles are discussed. Conclusions finally close the chapter in
Section 2.4.

2.2 Theoretical framework

2.2.1 Generalized Webster equation in waveguides as a Helmholtz
equation in an inhomogeneous medium

Prior to formulating and solving the exact problem of a wave travelling in
a radially symmetric duct, impinging on and propagating inside an acous-
tic black hole (ABH) retarding guide, some preliminary results need to be
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derived and presented. Firstly, it is necessary to show that the generalized
Webster equation, which describes the propagation of plane waves in a waveg-
uide of varying radius and wall impedance (not necessarily an ABH), can be
expressed as a problem of wave propagation in an inhomogeneous medium,
characterized by a Helmholtz-type equation with spatially varying wavenum-
ber. It has to be noted that since the irreducible form of the equations will be
taken into account, the time dependent term exp(jωt) will be omitted in all
expressions. The starting point is the generalized Webster equation (Eq. (4)
in (Mironov and Pislyakov, 2002)), for the case of plane wave propagation
in a radially symmetric waveguide with section S(x), local radius r(x), and
wall impedance Y (x). The equation reads,

d2p̂

dx2
+

d

dx

(
lnS

)dp̂
dx

+
[
k20 + jZ0

2Y

r
k0

]
p̂ = 0, (2.1)

where p̂(x) stands for the acoustic pressure, k0 = ω/c0 for the wavenumber, ω
is the radial frequency, c0 the speed of sound and j =

√
−1. Z0 = ρ0c0 is the

air characteristic impedance with ρ0 denoting the air density. The complex
wavenumber kY (x), dependent on the impedance Y (x), is defined such that

k2Y ≡ k20 + jZ0
2Y

r
k0 (2.2)

and some slight manipulations allow to rewrite Eq. (2.1) as

d2p̂

dx2
+
S ′

S

dp̂

dx
+ k2Y p̂ = 0, (2.3)

where, for brevity, this notation is introduced: S ′ ≡ dS/dx. Taking into
account that S(S−1)′ = −S ′S−1 and introducing the change of variables
ϕ = S1/2p̂, Eq. (2.1) can be transformed into

−d2ϕ

dx2
− κ2(x)ϕ = 0, (2.4)

which is a Helmholtz equation for the locally scaled acoustic pressure ϕ with
spatially varying squared wavenumber given by,

κ2 = k2Y − 1

2

S ′′

S
+

1

4

S ′2

S2
. (2.5)

It has to be noted that, if the waveguide walls are rigid (i.e., Y = 0), k2Y = k20
and Eq. (2.1), Eq. (2.3) and Eq. (2.4) provide the original Webster equation.
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Also, if the waveguide has constant section (i.e., S ′ = 0) then κ2 = k2Y = k20
and the standard Helmholtz equation is recovered. Moreover, it needs to be
underlined that Eq. (2.4) with wavenumber in Eq. (2.5) is very general and
it can be applied to solve the generalized Webster equation in many different
circumstances, when proper specification of the boundary conditions (BCs)
and waveguide geometry are provided. However, in the following formulation
ABHs will be considered and some simplifications for the wavenumber κ2(x)
in Eq. (2.5) introduced. First, the lumped formula proposed for the wall
admittance Y (x) in (Mironov, 2002) (see also Guasch et al., 2017) will be
used,

Y (x) = −j
k0
Z0

R2 − r2

2r
, (2.6)

which corresponds to the ideal realization of an ABH consisting of a large
number of rings and cavities, when the thicknesses of the inner rings is neg-
ligible compared to that of the air cavities. Inserting Eq. (2.6) into Eq. (2.2)
leads to a simplification of k2Y to

k2Y = k20
R2

r2
. (2.7)

On the other hand, the assumption of radial symmetry implies S(x) = πr(x)2.
The first and second derivatives of S(x) are given by S ′ = 2πrr′ and S ′′ =
2π(r′)2+2πrr′′. Substituting these expressions, together with Eq. (2.7), into
Eq. (2.5), leads to

κ2 = k20
R2

r2
− r′′

r
, (2.8)

which is a significant simplification of Eq. (2.5).

2.2.2 Formulation of the acoustic black hole problem in a finite
duct termination

Now, attention is given to the problem of having an ABH with radial sym-
metry at the end of a uniform duct (see Fig. 2.1). To keep the notation used
in previous works (see Mironov and Pislyakov, 2002; Guasch et al., 2017;
Guasch et al., 2020), an incident plane wave that enters an ABH of length
L and cross section S(x) from the left is considered. The acoustic pressure
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Figure 2.1: Schematic of the ABH problem. A wave propagating inside the uniform duct
impinges on an ABH of length L, which is characterized by a small reflection coefficient R
with corresponding inlet admittance YL. The wave within the ABH slows down, while its
amplitude grows and its wavelength diminishes as it approaches the termination of the ABH.
The profile of the ABH is defined by its radius r(x), which varies from that of the uniform
duct at the input, R, to the residual r0. The residual cross-section S0 = πr20 is considered to
be perfectly rigid. The ABH has a wall admittance Y (x).

distribution inside the ABH and the reflection coefficient, R, at its entrance
(among other issues to be detailed in subsequent sections) are the magnitudes
of interest. For brevity, the notation SL ≡ S(−L) is introduced to denote the
constant cross section of the uniform duct in front of the ABH and R ≡ r(−L)
to denote its radius. Likewise, S0 ≡ S(0) is the residual cross section at the
ABH termination and r0 ≡ r(0) its corresponding residual radius.
The problem to be addressed can be formulated as finding ϕ(x) such that,

− d2ϕ

dx2
− k20ϕ = 0, ∀x ∈ (−∞,−L] (2.9a)

− d2ϕ

dx2
− κ2(x)ϕ = 0, ∀x ∈ [−L, 0] (2.9b)

where κ2(x) is given by Eq. (2.8). The solution to Eq. (2.9a) is

ϕ(x) = e−jk0x +Rejk0x ∀x ∈ (−∞,−L], (2.10)

where R is the unknown reflection coefficient at x = −L. Eqs. (2.9a)
and (2.9b) must be complemented with a boundary condition at x = 0 (we
assume S0 to be perfectly rigid) and continuity conditions for the acoustic
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pressure and particle velocity at x = −L. The imposition of a rigid wall at
x = 0 implies dp̂(0)/dx = 0, so that

dϕ

dx
(0)− S ′

2S
(0)ϕ(0) = 0. (2.11)

On the other hand, the pressure and velocity continuity at x = −L requires,
respectively,

ϕ(−L) = ejk0L +Re−jk0L, (2.12a)

d

dx
ϕ(−L)− S ′

2S
(−L)ϕ(−L) = −jk0

(
ejk0L −Re−jk0L

)
. (2.12b)

In order to find the solution to Eq. (2.9b), its variational formulation will
be derived and then solved by means of a basis of Gaussian functions. As
a concluding remark for this section, it has to be noted that Eq. (2.3) is
singular at x = 0 for an ideal ABH for which S(0) = 0. In (Mironov and
Pislyakov, 2002) this singularity was avoided by introducing a small length
imperfection l so that the ABH ends slightly before reaching the origin. In
the current formulation, this problem is avoided in a more natural way by
assuming a rigid residual cross-section S(0) = S0 at x = 0, with residual
radius r0. The effects of r0 on the ABH performance will be discussed in
detail in later sections.

2.2.3 Variational formulation of the Helmholtz equation for the
scaled pressure inside a ABH

The usual technique to find a variational form for Eq. (2.9b) consists in mul-
tiplying the equation by a test function ψ∗(x) (where ∗ denotes complex
conjugate) and integrating over the domain [−L, 0]. Then the term contain-
ing the second derivative of the unknown scaled acoustic pressure ϕ(x) is
integrated by parts and this allows one to arrive at,∫ 0

−L

dψ∗

dx

dϕ

dx
dx−

∫ 0

−L

κ2(x)ψ∗ϕdx− ψ∗dϕ

dx

∣∣∣0
−L

= 0. (2.13)

With respect to the boundary conditions in the third term, Eq. (2.11) implies
that

dϕ

dx
(0) =

S ′

2S
(0)ϕ(0), (2.14)
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while Eq. (2.12a) can be solved for R, i.e.,

R = ejk0Lϕ(−L)− e2jk0L, (2.15)

and substitute it into Eq. (2.12b) to get

dϕ

dx
(−L) = jk0[ϕ(−L)− 2ejk0L] +

S ′

2S
(−L)ϕ(−L). (2.16)

Inserting dϕ
dx(0) and

dϕ
dx(−L) in Eq. (2.13) provides the final expression for the

variational form of the problem,∫ 0

−L

dψ∗

dx

dϕ

dx
dx−

∫ 0

−L

κ2(x)ψ∗ϕdx+ jk0ψ
∗(−L)ϕ(−L)+

S ′

2S
(−L)ψ∗(−L)ϕ(−L)− S ′

2S
(0)ψ∗(0)ϕ(0)

= 2jk0e
jk0Lψ∗(−L). (2.17)

2.2.4 Gaussian expansion of the locally scaled acoustic pressure
and test function

Now, Eq. (2.17) will be discretized and solved by expanding the unknown
locally scaled pressure ϕ(x) and the test function ψ∗(x) in terms of Gaussian
functions like in (Deng, 2019; Deng, 2019a), but with some variations detailed
below. The procedure for ϕ(x) will be developed, as the one for ψ∗(x) will
be the same. Consider

ϕ(x) =
n∑

i=1

aiφi(x), (2.18)

where ai are coefficients to be determined and φi(x) are the Gaussian func-
tions of compact support in a domain Ωi, given by

φi(x) =

{
exp

{
− [2j(xi)(x−xi)]

2

2

}
∀x ∈ Ωi = [−8σi, 8σi],

0 ∀x ∈ (−∞,−8σi) ∪ (8σi,+∞).
(2.19)

Note that φi(x) has unit amplitude, is centered at xi (which can be identified
as a translating parameter) and has standard deviation σi = 1/2j(xi). Here
j(xi) is identified as the scaling parameter which depends on xi to guarantee
a higher accuracy of ϕ(x) (this was not contemplated in the Gaussian basis of
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Figure 2.2: Gaussian basis functions distributed along the ABH termination.

(Deng, 2019a)). Given that the wavelength of the wave propagating inside an
ABH decreases when approaching the termination (see Fig. 2.2) it is conve-
nient that the Gaussian functions become sharper there. To be specific, Ωi/2
must be less than the local wavelength, λ(xi) = 2π/k(xi), (i.e., Ωi ≤ λ(xi)),
which implies j(xi) ≥ 2 + log2[k(xi)/π]. In the standard wavelet transform,
the scaling parameter j, not to be confused with the imaginary unit j, is
constant and is defined such that the distance between the centers of two
successive wavelets satisfies the relation xi+1 − xi = −1/2j. In the current
case, we keep the similar condition xi+1 − xi = −α/2j(xi) where α ∈ (0, 1] is
a safety coefficient that improves the stability of the method and, as already
mentioned, j is no longer constant but depends on xi. Therefore, to build the
basis of Gaussian functions for the ABH the following procedure is used. By
starting from the ABH termination, the first Gaussian is centered at x1 = 0
and prescribe j(x1) considering the condition induced by the local wavenum-
ber, k(x1), introduced above. The second function of the basis is chosen to
have its center at x2 = x1−∆x1, with ∆x1 = α/2j(x1). The third Gaussian is
located at x3 = x2−∆x2 with ∆x2 = α/2j(x2) and so on. In general, the i+1
Gaussian φi+1(x) will be centered at xi+1 = xi − ∆xi, with ∆xi = α/2j(xi).
The iteration ends when xi < −L. To complete the basis for proper resolu-
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tion at the end points, x = {−L, 0}, the first and last Gaussians are repeated
four times with constant translation and scaling parameters. The final basis
is represented in Fig. 2.2. For the developments in the following sections it is
advisable to arrange all the unknown coefficients ai in a single vector A and
all the Gaussian basis functions φi(x) in a vector φ, so that Eq. (2.18) can
be rewritten in a compact form as

ϕ(x) = φ⊤(x)A. (2.20)

2.2.5 Discretization and solution of the variational problem in
terms of Gaussian functions

Consider the expansions ϕ(x) = φ⊤(x)A and ψ∗(x) = [φ⊤(x)B]H = BHφ,
where H denotes the Hermitian. Substitution into Eq. (2.17) provides the
quadratic form,

BH

[∫ 0

−L

dφ

dx

dφ⊤

dx
dx

]
A−BH

[∫ 0

−L

κ2(x)φφ⊤dx

]
A

+BH

[
jk0φ(−L)φ⊤(−L) + S ′

2S
(−L)φ(−L)φ⊤(−L)− S ′

2S
(0)φ(0)φ⊤(0)

]
A

= 2jk0e
jk0LBHφ(−L), (2.21)

and dropping BH the algebraic matrix system is obtained,

(K −M +CBC)A = F , (2.22)

where the subscript BC stands for ”boundary conditions”.
The matrices M , K and CBC are given by

K :=

∫ 0

−L

dφ

dx

dφ⊤

dx
dx, (2.23a)

M :=

∫ 0

−L

κ2(x)φφ⊤dx, (2.23b)

CBC := j
ω

c0
φ(−L)φ⊤(−L) + S ′

2S
(−L)φ(−L)φ⊤(−L)− S ′

2S
(0)φ(0)φ⊤(0)

=: jωCBCI +CBCII, (2.23c)

where CBCI and CBCII have been defined for convenience in subsequent de-
velopments. The force vector F in Eq. (2.22) is

F := 2jk0e
jk0Lφ(−L). (2.23d)
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The solution of Eq. (2.22) provides the coefficient vector A from which the
scaled pressure ϕ(x) = φ⊤(x)A inside the ABH can be calculated, as well
as the acoustic pressure p̂(x) = S−1/2(x)φ⊤(x)A. In what follows, the above
procedure of computing ϕ(x) and p̂(x) will be referred to as the Gaussian
expansion method (GEM).

2.2.6 Quadratic eigenvalue problem and modal participation fac-
tors for the forced problem

In addition to solving the ABH problem defined in Eq. (2.17), finding the
pressure modes within the ABH is also very interesting. To do so, the vari-
ational form in Eq. (2.17) can be rearranged into an eigenvalue problem.
By separating κ2(x) in Eq. (2.8) into its frequency-containing component
ω2R2/c20r

2 and its non-frequency-containing component r′′/r, Eq. (2.17) can
be rewritten as,

− ω2R
2

c20

∫ 0

−L

1

r2
ψ∗ϕdx+ jω

1

c0
ψ∗(−L)ϕ(−L) +

∫ 0

−L

r′′

r
ψ∗ϕdx+

∫ 0

−L

dψ∗

dx

dϕ

dx
dx

+
S ′

2S
(−L)ψ∗(−L)ϕ(−L)− S ′

2S
(0)ψ∗(0)ϕ(0) = 2jk0e

jk0Lψ∗(−L). (2.24)

Taking ϕ(x) = φ⊤(x)A and ψ∗(x) = BHφ its matrix counterpart is obtained,(
−ω2MI + jωCBCI +MII +K +CBCII

)
A = F , (2.25)

with

MI :=
R2

c20

∫ 0

−L

1

r2
φφ⊤dx, (2.26a)

MII :=

∫ 0

−L

r′′

r
φφ⊤dx. (2.26b)

From Eq. (2.25) it becomes evident that CBCI plays the role of a damping
matrix, which accounts for reflected waves leaving the ABH and propagating
to the left of the uniform duct. On the other hand, the force term supplies
the incident wave on the ABH, as seen from Eq. (2.10). By setting F = 0
in Eq. (2.25) a quadratic eigenvalue problem is obtained (see, Tisseur and
Meerbergen, 2001), which can be solved via linearization by introducing the
first-order derivatives of A as independent variables or by an iterative ap-
proach such as Newton’s eigenvalue iteration method (see, Singh and Ram,
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2002; Deng et al., 2023). The solution to the eigenvalue problem will provide
the modal matrix of eigenvectors P and the matrix of eigenvalues Λ.

If the scaled pressure ϕ(x) is needed to be expressed in terms of the modes
of the system under an external force excitation like F = 2jk0e

jk0Lφ(−L), the
next procedure can be followed. Take A = Pξ, where ξ is a vector whose
entries are the modal participation factors and insert it into Eq. (2.25). Then
pre-multiply by P H on the left-hand side of the equation to get

P H
(
−ω2MI + jωCBCI +MII +K +CBCII

)
Pξ = P HF . (2.27)

Solving Eq. (2.27) the modal participation vector ξ is obtained and finally,
from Eq. (2.20), ϕ(x) can be expanded as

ϕ(x) = φ(x)⊤A = φ(x)⊤Pξ. (2.28)

In Eq. (2.28), ϕ(x) is expressed as the superposition of all system modes.
The contribution of each particular mode to ϕ(x) is given by,

ϕi(x) = φ(x)⊤Piξi, (2.29)

where ϕi(x) is the scaled sound pressure due to the i-th mode, Pi is the i-th
modal vector and ξi the i-th modal participation factor. The total scaled
pressure is given by the sum of all ϕi(x), i.e., by Eq. (2.28). Reverting from
scaled pressure to acoustic pressure, the modal decomposition and contribu-
tions are obtained,

p̂(x) = S(x)−1/2φ(x)⊤Pξ, (2.30a)

p̂i(x) = S(x)−1/2φ(x)⊤Piξi. (2.30b)

2.3 Simulation results

2.3.1 Validation with FEM: a quadratic ABH

In this section, the theoretical approaches presented in the previous sections
will be validated by comparing them with finite element simulations, before
analyzing the behavior of theoretical ABHs. For this purpose a quadratic
ABH (see e.g., Guasch et al., 2017; Guasch et al., 2020) is considered, which
has a radius that follows the parabolic profile

r(x) =
R− r0
L2

x2 + r0, (2.31)
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Figure 2.3: Real part of acoustic pressure, Re(p̂), computed with the FEM and GEM at (a)
100 Hz, (b) 200 Hz, (c) 300 Hz, and (d) 400 Hz. The pressure has been normalized to unity
at the ABH termination x = 0 to facilitate comparisons.

so that,

S(x) = πr(x)2 = π
(R− r0)

2

L4
x4 + 2π

R− r0
L2

r0x
2 + πr20. (2.32)

It can easily be checked that S(x = −L) = πR2 ≡ SL and that S(x =
0) = πr20 ≡ s0. For the case r0 = 0 the ideal ABH waveguide profile in
(Mironov and Pislyakov, 2002) of radius r(x) = (R/L2)x2 and cross-section
S(x) = (πR2/L4)x4 is recovered.
In what concerns the wavenumber κ, from Eqs. (2.8) and (2.31) it can be
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written,

κ2 =
k20L

4[(
1− r0

R

)
x2 + r0

RL
2
]2 − 2

x2 + r0
R−r0

L2
. (2.33)

In the ideal case of r0 = 0 or if (r0/R) ≪ 1 this expression becomes

κ2 =
k20L

4

x4
− 2

x2
, (2.34)

which is nothing but Eq. (18) in (Guasch et al., 2020) with m = 2.
In all computations it is considered an ABH of length L = 0.5 m, input
radius R = 0.23 m and residual radius r0 = 0.01 m. The sound speed is
c0 = ca(1 + jη) with ca = 343 m/s and η = 0.05. The consideration of a
complex speed of sound consists in a rough approximation to thermoviscous
losses. The cutoff frequency of the tube is fc = 1.84ca/2πR = 445 Hz,
beyond which non-plane waves can propagate. Therefore the analysis will
be restricted to the frequency range [0, 400] Hz. For the simulations, and as
follows from Eq. (2.10), an incident wave exp(−jk0x) impinging on the ABH
input is considered.
A total of n = 45 Gaussian functions have been used for the expansion in
Eq. (2.20) and subsequent calculations (37 of them inside the ABH and 8
additional ones for the boundaries, see Fig. 2.2). The FEM model has been
built using the Comsol 1D Pressure Acoustic module, with the mesh size
decreasing from 0.002 m at the ABH input to 0.0001 m at the termination,

51



-0.5 -0.4 -0.3 -0.2 -0.1 0.0
0

200 300 Hz

400 Hz

400

600

800

1000

1200

100 H
z

200 Hz 100 Hz

20
0 H

z

30
0 

H
z

40
0 

H
z

|c
κ|

 (
m

/s
)

x (m)

 
 
 
 

0

30

60

90

120

150

180

|κ
| (

1/
m

)

a b

-0.5 -0.4 -0.3 -0.2 -0.1 0.0
0

100

200

300

400

40
0 

H
z

30
0 

H
z

20
0 

Hz
100 Hz

c Y
 (

m
/s

)

x (m)

 

0

30

60

90

120

150

180

k 
(1

/m
)

Figure 2.5: (a) Sound speed cY (x) = c0r(x)/R and wavenumber k(x) = k0R/r(x) for acoustic
pressure waves p̂ propagating within the ABH. (b) |cκ(x)| and |κ(x)| for scaled pressure waves
ϕ propagating inside the ABH.

resulting in a total of 1100 line elements. To simulate a half free space, a
perfectly matched layer (PML) is prescribed at the left end of the uniform
duct. For validation purposes, only the results within the ABH, which is the
region of interest, will be presented.
In Fig. 2.3, the distribution of the real part of the acoustic pressure, Re(p̂) =
S−1/2Re(ϕ), is plotted inside the ABH for four different frequencies of the
input wave, namely, 100 Hz, 200 Hz, 300 Hz and 400 Hz. It has to be noted
that the pressure has been normalized to unity in the ABH termination to
facilitate comparison between figures. One initial observation is how the ABH
effect takes place. As the wave approaches x = 0 the amplitude grows and
the wavelength decreases as expected (Mironov and Pislyakov, 2002; Guasch
et al., 2017; Mousavi et al., 2022). This becomes very evident for the higher
frequencies in Figs. 2.3c and 2.3d. Most importantly for this section, a perfect
match between the GEM results and the FEM ones is observed. The same
degree of agreement between FEM and GEM is found for the absolute value
of the ABH reflection coefficient |R| in Fig. 2.4. The influence of several
parameters on |R| and its relation with the admittance will be consequently
addressed in Section 2.3.4.

2.3.2 Sound speed and wavenumber within the ABH

As explained in the Introduction, when an acoustic wave enters a ABH its
amplitude increases while its wavelength diminishes when approaching the
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Figure 2.6: Mode shapes for (a) r0 = 0.01 m and (b) r0 = 0.001 m. For both cases we have
considered damping with η = 0.05.

termination, as already observed in Fig. 2.3. At the same time, the wave
sound speed slows down. As was demonstrated in (Mironov and Pislyakov,
2002) for a linear ABH and in (Guasch et al., 2017) for a quadratic one, in the
ideal case of a zero residual radius, the sound speed would become zero at the
ABH termination; this means that the wave would take an infinite amount
of time to reach x = 0 and no reflection would occur. However, if r0 ̸= 0, the
effective sound speed c(x) will decrease along the ABH but differ from zero
at x = 0. Therefore, it is interesting to show how c(x) and the wavenumber
can vary within the ABH for the example presented in the previous section.
In Fig. 2.5a, the sound speed cY = c0r(x)/R of an acoustic wave satisfying
Eq. (2.1) for the acoustic pressure p̂ and the problem at hand is plotted. This
is obtained from the wavenumber kY = k0R/r(x) in Eq. (2.2), which is also
shown in the same figure. The sound speed does not depend on the frequency
of the incident wave and is modified from its initial value of c0 = 343 m/s
at the entrance of the ABH to ∼ 25 m/s at its termination, by a decreasing
factor r(x)/R. The opposite trend is observed in the wavenumber, which
increases towards the end of the ABH due to being corrected by the inverse
factor R/r(x). Also, the higher the frequency the higher it is k because of
their direct proportion, as k0 = ω/c0 indicates.
The absolute value of the wavenumber for the scaled pressure ϕ, i.e., κ(x)
given by the square root of Eq. (2.5) and of Eq. (2.33) for the current example,
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along with its corresponding sound speed, cκ, have been plotted in Fig. 2.5b.
Its behaviour is somewhat more complicated than in the previous case. The
main difference is that, while |κ(x)| closely resembles kY (x) in Fig. 2.5a, the
absolute value of the sound speed, |cκ(x)| is now frequency dependent. At the
ABH entrance |cκ(x)| is larger for higher frequencies, but at the termination
of the ABH all curves tend to the same value. At low frequencies κ(x) can
become purely imaginary, which is the reason for the peak of the 100 Hz
curve in Fig. 2.5b.

2.3.3 Modal decomposition

The method described in Section 2.2.6 can be used to compute the modes
for the quadratic ABH. In Fig. 2.6 the modal shapes are plotted for two dif-
ferent values of the residual radius, namely r0 = 0.01 m and r0 = 0.001 m.
By considering Fig. 2.6a, (r0 = 0.01 m) it can be observed that the acoustic
pressure distribution of the first mode (apart from the rigid body mode at
0 Hz) is almost constant within the ABH until x = −0.2 m where it starts to
grow reaching its maximum at the ABH termination (note that once again
the pressure has been normalized to 1 at x = 0 for ease of comparisons). As
the modal order increases, the number of peaks grows, as one would expect,
but they remain primarily concentrated at the end of the ABH.
If the residual radius is reduced by a factor of 10, i.e. r0 = 0.001 (meaning
that the residual surface is reduced by a factor of 100) the ABH modes be-
come notably affected. First, and as it can be seen from Fig. 2.6b, the number
of modes in the frequency range of interest, [0, 400] Hz, increases significantly.
Furthermore, as the modal order grows, the number of peaks and dips of the
modes, as well as their amplitude, augment, and they progressively approach
the ABH termination. Comparing Figs. 2.6a and 2.6b, it is already evident
that the residual radius will have a critical impact on the performance of the
ABH.
In Fig. 2.7 the modal decomposition of the real part of the acoustic pressure
at x = −L according to Eqs. (2.30a)-(2.30b) and as a function of frequency
is presented and two cases are considered. In the first the residual radius
is taken as r0 = 0.01 m and two different scenarios are considered: with a
real sound speed (by considering η = 0 in c0 = ca(1 + jη), see Fig. 2.7a)
and with a complex sound speed, (by taking η = 0.05, see Fig. 2.7b). The
second case presents the same results but for r0 = 0.001 m (see Figs. 2.7c
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Figure 2.7: Black line: real part of the sound pressure at x = −L, Re[p̂(−L)]. Colored lines:
modal contributions to Re[p̂(−L)]. (a) r0 = 0.01 m and η = 0, (b) r0 = 0.01 m and η = 0.05,
(c) r0 = 0.001 m and η = 0, (d) r0 = 0.001 m and η = 0.05.

and 2.7d). The black curves in all subfigures are showing the real part of
the acoustic pressure at the ABH entrance, i.e., Re[p̂(−L)], while the col-
ored ones correspond to individual mode contributions. Note that the higher
order modes do not contribute at low frequencies while lower order modes
have non-negligible values at the higher-frequencies. As seen in Fig. 2.7a,
the acoustic pressure decays with frequency but exhibits strong oscillations
of similar amplitude for the entire frequency range. When damping is in-
troduced, the peaks of the high-frequency contributions become smoothed
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resulting in smaller fluctuations at these frequencies (see Fig. 2.7b). This
effect becomes drastic when the residual radius is reduced to r0 = 0.001 m.
On the one hand, it is observed that the larger number of modes already
reported in Fig. 2.6b significantly increases the number of peaks and dips of
Re[p̂(−L)] (compare Fig. 2.7c with Fig. 2.7a). On the other hand, damping
has a marked effect on these modes. Their amplitude decreases strongly and,
as a consequence, almost no fluctuation is observed beyond ∼ 200 Hz. As
will be explained in the next section, the same behavior will be observed for
the reflection coefficient and the input impedance of the ABH.

2.3.4 Reflection coefficient and admittance at the ABH entrance

The most relevant parameter associated to an ABH is its reflection coefficient.
In this section its dependence on several parameters, as well as that of its ad-
mittance, will be studied. The normalized impedance at the ABH entrance is
given by the quotient between the acoustic pressure and the acoustic particle
velocity so that ZL ≡ Zn(−L) = j(Z0k0)

−1p̂(−L)/ d
dx p̂(−L), while the nor-

malized admittance is defined as YL = Z−1
L . From Eqs. (2.12a) and (2.12b)

it is easily seen that

R = ej2k0L
[
ZL − 1

ZL + 1

]
= ej2k0L

[
1− YL
YL + 1

]
. (2.35)

From the knowledge of any of the three parameters, R, ZL or YL the other
two can be computed.

2.3.4.1 Influence of the residual radius, the damping and the ABH order on
the reflection coefficient

In this section, it is analyzed the influence of several parameters on the re-
flection coefficient of an ideal ABH with a power-law profile radius,

r(x) =
R− r0
Lm

|x|m + r0, (2.36)

where m is the order of the ABH.
In Fig. 2.8 the values m = 2 (quadratic ABH) and η = 0.05 are considered,
and the impact of the residual radius is analyzed. As already noticed in the
modal analysis of the previous section, it is very significant. Three values of
r0 are considered, namely r0 = {0.01, 0.001, 0.0001} m. The absolute value
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of the reflection coefficient |R| shows the trend already observed in Fig. 2.6
for the real part of the pressure at x = −L. For large r0, |R| exhibits
large peaks and dips. Their number increases for decreasing r0, whereas
their values become negligible at higher frequencies because damping is very
effective in dissipating the energy of the higher order modes (see Fig. 2.8a).
The residual radius for ABHs in ducts plays a very similar role to that of

57



the residual thickness in ABHs in beams and plates (Krylov and Tilman,
2004; Krylov, 2004; O’Boy and Krylov, 2011; Deng et al., 2019; Deng et al.,
2019a). The lower its value, the more effective the ABH effect. In Fig. 2.8b,
the distribution of the real pressure within the ABH at the frequency of
344.8 Hz, which corresponds to the minimum highlighted in Fig. 2.8a, is
plotted. At this particular frequency the reflection coefficient is smaller for
r0 = 0.01 m due to specific cancellation effects between modes, than for
smaller values of r0. This is reflected in Fig. 2.8a where it can be seen that
the amplitude of the oscillations for r0 = 0.01 m rapidly diminishes when
approaching the ABH termination, where the pressure has zero value, which
is not the case for r0 = 0.001 m.
In Fig. 2.9, the effects of the viscothermal losses, represented by η, on the
quadratic ABH for a fixed residual radius of r0 = 0.001 m are analyzed. The
values η = {0.1, 0.05, 0.01} are examined. The red curve corresponding to
η = 0.05 is that already shown in Fig. 2.8a. If η is reduced to 0.01 the
amplitude of the oscillations sharply grows over the whole frequency range
(see green curve in Fig. 2.9a). However, it has to be noted that since r0 is
kept as constant, the number of oscillations is also constant for the three
curves in the figure. If the damping is increased to 0.1 the oscillations of
|R| disappear at high frequencies, but their average value becomes larger.
This is not the case if η is fixed and r0 diminishes (compare Fig. 2.8a with
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Fig. 2.9a). The real pressure inside the ABH is plotted for the three values
of η at the dip of 383.2 Hz in Fig. 2.9b. It is clearly seen how the amplitude
of the oscillations decrease for larger values of η within the ABH, the effect
being very remarkable as long as the termination of the ABH is approached.

The effects of varying the ABH order, m (see Eq.(2.36)), on |R| for fixed
r0 = 0.001 m and η = 0.05 are presented in Fig. 2.10. The most evident
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effect in Fig. 2.10a is that a certain balance must be found between the
number of oscillations of |R| and its mean value. For example, for m = 1
(linear ABH) the oscillations are very large, while for m = 4 they are almost
non-existent (except for very low frequencies). However, the average value of
|R| for m = 4 is considerable at all frequencies. A good trade-off seems to
be provided by the quadratic case (m = 2), see the red curve in Fig. 2.10a.
Again, the distribution of the real pressure at a dip of |R| in this case 364 Hz
for m = 1 is shown (see Fig. 2.10b). A clear pattern can be identified in
the figure. For large values of m, the impinging waves encounter a steeper
obstacle in front of them, which prevents a smooth impedance matching and
favours reflection. The radius of the ABH profile for m = 4 approaches
the residual one sooner than for m = 3, 2, 1 and, consequently, the pressure
amplitude decreases farther from the ABH termination for m = 4 than for
smaller values of m. An ABH of higher-order needs a longer length L for a
better impedance matching of the incident wave. This is shown in Fig. 2.11,
where |R| is presented for two quadratic ABHs with lengths L = {0.25, 0.5}m
and two quartic (m = 4) ABHs with L = {0.5, 1} m. As can be seen, the
reflection coefficient for the quartic ABH of length L = 0.5 m is close to that
of the quadratic ABH with L = 0.25 m, but does not exhibit oscillations.
Similarly, |R| for the quartic ABH with L = 1 m is on average similar to the
quadratic one, again with much less oscillations.

2.3.4.2 Influence of the residual radius and damping on the admittance

As shown in Eq. (2.35) the reflection coefficient R, the normalized impedance
ZL and the admittance YL at the ABH inlet are directly related. To complete
the results for R presented in the previous section, it is worth taking a look
at the behaviour of YL.
In Fig. 2.12 the dependence of YL on frequency is plotted for different values
of r0 and η. If the residual radius r0 is kept fixed and η increases, the
strong peaks of the brown curve in the figure decrease significantly, the effect
being more marked at higher frequencies. For fixed η, the high-frequency
peaks disappear completely if r0 decreases. This is in full agreement with the
previous results for R, and can be explained by the distribution of modes
within the ABH and the effect of damping on them.
In Fig. 2.13 results for Y depending on frequency and the location inside the
ABH are presented for four different combinations of (r0, η), namely (r0, η) =
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Figure 2.13: ABH admittance depending on frequency and location within the ABH for
varying residual radius r0 and damping η. (a) r0 = 0.01 m and η = 0. (b) r0 = 0.01 m and
η = 0.05. (c) r0 = 0.001 m and η = 0.05. (d) r0 = 0.0001 m and η = 0.05.

{(0.01, 0), (0.01, 0.05), (0.001, 0.05), (0.0001, 0.05)}. Note that a vertical cut
at x = −L = −0.5 m in each of the subfigures in Fig. 2.13 would correspond
to the curves in Fig. 2.12. However, no peaks are visible because of the
color scale used for the figures, as the admittance at the ABH termination is
much higher than at its input. In Fig. 2.13a, the same peaks already found
in Fig. 2.12 (brown curve) appear all along the ABH with some amplitude
variations and with much higher values when approaching the termination
at x = 0. These peaks become strongly attenuated and their width widens
when damping is introduced (see Fig. 2.13b, where the color scale has been
reduced by two orders of magnitude to facilitate comparison with Fig. 2.13a).
Decreasing the residual radius r0 to 0.001 m raises the number of peaks, as
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Figure 2.14: (a) Power-cosine profiles and (b) corresponding reflection coefficients for differ-
ent values of m.
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Figure 2.15: (a) Exponential profiles and (b) corresponding reflection coefficient for different
values of β.

already observed in previous figures, increases their amplitude near the ABH
termination at low frequencies and suppresses the peaks for higher frequencies
(compare Fig. 2.13c with Fig. 2.13b). The effect is more pronounced the
smaller the residual radius (see Fig. 2.13d).
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2.3.5 Alternative ABH profiles to the power-law: power-cosine,
exponential and Gaussian.

To conclude this study on the behaviour of ideal ABHs, alternative waveguide
profiles to the power-law one of Eq. (2.36) will be analyzed, taking inspiration
from those tested for ABH beam wedges in (Karlos et al., 2019). In particular,
the following options for the monotonically decreasing radius of the waveguide
are considered,

• The power cosine profile: r(x) = (R − r0)
[
1− cosm(πx2L)

]
+ r0, with

m ≥ 1,

• The exponential profile: r(x) = R−r0
1−eβL

(1− e−βx) + r0, with β > 0,

• The Gaussian profile: r(x) = R−r0
1−e−γL2 (1− e−γx2

) + r0, with γ > 0

In all the simulations the same values for R and L as in preceding sections
are taken, and a damping of η = 0.05 and a residual radius of r0 = 0.001 m
are considered.
In Fig. 2.14a power-cosine profiles for the waveguide radius r(x) of orders
m = 1, 2, 3, 4 are shown. It has to be noted that if a first order Taylor expan-
sion for the cosine at x = 0 for m = 1 is performed, a quadratic power-law
ABH with an effective length L′ = 2

√
2L/π ≃ 0.9L is recovered, so the two

cases should behave very similarly. In fact, this is confirmed in Fig. 2.14b,
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Figure 2.16: (a) Gaussian profiles and (b) corresponding reflection coefficients for different
values of γ.
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where |R| for the four power-cosine cases is plotted. It can be seen that the
green curve corresponding tom = 1 closely resembles the red one in Fig. 2.10.
As for the rest of the orders, it is observed from Fig. 2.14a that the higher
the m the steeper the profile and, therefore, the worse the |R| in Fig. 2.14b.
The situation is analogous to power-law profiles but with inverse concavity.
The results for the exponential case are plotted in Fig. 2.15 for the expo-
nents β = {0.08, 0.4, 2, 10}. A first order Taylor expansion at x = 0 directly
results in the radius of a linear ABH (Eq. (2.36) with m = 1). Looking at
Fig. 2.15a it can be realised that the profiles do not change significantly for
β = {0.08, 0.4} and that to obtain a steep profile it is necessary to have
β = 10. The curves for |R| in Fig. 2.15b reveal that for β = {0.08, 0.4} the
reflection coefficient is similar to that of a linear ABH (see the green curve
in Fig. 2.10), while for β = 10, |R| is closer to those found for higher-order
power-law profiles (see the blue line in Fig. 2.10), but with stronger oscilla-
tions at low frequencies and higher average value over the whole frequency
range (at least for the tested case).
In Fig. 2.16, the performance of the Gaussian profiles with γ = {0.08, 0.4, 2, 10}
(i.e., the same values tested for β in the exponential case of Fig. 2.15) are
presented. A Taylor expansion at x = 0 shows now that the quadratic ABH
is recovered for γ = 1. Indeed, it is observed in Fig. 2.16a that the profiles do
not change significantly from each other for γ = {0.08, 0.4, 2}. Their respec-
tive reflection coefficients in Fig. 2.16b are similar to that of the quadratic
ABH in Fig. 2.10, while for γ = 10 we have much more oscillations across
the whole spectrum, yet a smaller average value at high frequencies.
From Figs. 2.14b-2.16b it is clear that, with accurate design, low-order cosine-
power and Gaussian profiles could produce reflection coefficients as good as
the power law ones. This is true at least for short ABHs where Taylor ex-
pansions of the profiles give very similar geometries.

2.4 Conclusions

This chapter proposes a theoretical framework for analyzing the performance
of theoretical ABHs. The first step involves transforming the generalized
Webster equation for acoustic wave propagation inside the ABH into a Helmholtz
equation with spatially varying wavenumber for a locally scaled pressure.
The variational formulation of this equation is introduced and solved using a
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Gaussian basis to expand the unknown scaled pressure. The basis of Gaus-
sian functions is refined near the ABH termination to better capture the
wavelength decrease and amplitude increase produced by the ABH effect.
A quadratic eigenvalue problem is derived by splitting the wavenumber of
the weak form of the Helmholtz equation into its frequency-dependent and
non-frequency-dependent parts. This allows to compute the eigenmodes of
the ABH and to decompose the scaled acoustic pressure in terms of them.
Moreover, a thorough analysis of the theoretical ABH is provided. It is shown
that the speed of sound slows down inside the ABH, and the wavenumber is
frequency-dependent and increases towards the ABH termination. The modal
analysis of the ABH reveals that the mode shapes are strongly affected by the
residual radius, with smaller residual radii resulting in a greater number of
modes and higher frequency modes concentrated near the ABH end. Damp-
ing has a strong impact on the modes, and decreasing the residual radius
suppresses high-frequency peaks and dips. Overall, long, high-order ABHs
are found to achieve nearly oscillation-free reflection coefficients. Finally,
alternative ABH profiles are explored, including power cosine, exponential,
and Gaussian profiles. The results show that reflection coefficients similar
to the power-law ones can be obtained with appropriate choice of order and
exponent values.
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Chapter 3

The Transfer Matrix Method applied
to acoustic black hole duct
terminations

The aim of this chapter is to prove that the Transfer Matrix Method (TMM),
widely used in many areas of acoustics and science, can be used consistently
to solve the ABH equation for duct terminations. By making a comparison
with the theoretical framework exposed in Chapter 2, the TMM will rely on
further assumptions, which will make its study more complex but, on the
other side, closer to a real setup. In fact, one of the purposes of using the
TMM is to analyze a finite realization of an ABH, that is with a finite and
limited number of rings and cavities, which will be important from a man-
ufacturing point of view. Moreover, the TMM is very performant for the
quick analysis of many different configurations, obtained by letting param-
eters varying their values; once promising configurations are identified with
the TMM, other methods more computationally expensive can be used to
carry out a more detailed analysis. For the purpose of demonstrating the
TMM consistency, the ABH equation in a duct termination will be showed
to be equivalent to the equation describing wave propagation in a metafluid
with layers whose density changes along with the position. Finally, it will be
proved that, when the number of layers tends to infinity, the TMM solution
for the metafluid case tends to the solution of the continuous problem.

Concerning development aspects, all the analytical calculations of this chap-
ter have been done firstly by hand and then double-checked via numeric sym-
bolic calculation using PARI-GP (https://pari.math.u-bordeaux.fr/).
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Moreover, the calculation of the reflection coefficient for many different con-
figurations has been implemented within an internal Matlab code.

This chapter is mainly based on the following work:

• Oriol Guasch, Patricia Sánchez-Mart́ın and Davide Ghilardi (2020), ”Ap-
plication of the transfer matrix approximation for wave propagation in a
metafluid representing an acoustic black hole duct termination”, Applied
Mathematical Modelling, 77, pp. 1881-1893.

3.1 Introduction

As explained in the introductory chapter, most research in the field of acous-
tic black holes has been devoted to structural ABHs, by considering flexural
waves propagating in beams or plates. In (Mironov, 1988), which is consid-
ered as the pioneer work of the field, a beam equipped with a wedge whose
thickness decreases following a power law was considered and it was showed
that a wave propagating in such a wedge would progressively be absorbed.
For an ideal case of a beam with zero end thickness, the wave would never
reach the end of the wedge and perfect absorption would be achieved. Never-
theless, for practical ABH realization, a small truncation in the wedge profile
needs to be introduced, which causes detrimental effects on the ABH perfor-
mance. However, it has been showed that the ABH effect can be achieved
also for the case of acoustic waves propagating in ducts (see e.g., Mironov
and Pislyakov, 2002). In the aforementioned work, the design of a retarding
structure made of separated cavities and rings with power-law decaying inner
radii was proposed. Moreover, a one-dimensional differential equation that
describes the wave propagation inside the ABH was derived. Years later, lin-
ear and quadratic ABHs were built and experimental measurements reported,
not fully clarifying the efficiency of absorption materials in such retarding
structure (see e.g., El Ouahabi et al., 2015; El Ouahabi et al., 2015b; Mi et
al., 2021). Then, it has been proposed to use the transfer matrix method
(TMM) to analyze finite realizations of ABHs, particularly useful from a
practical manufacturing point of view, since the number of rings and cavities
should be rather reduced (see e.g., Guasch et al., 2017). Finally, in (Bravo
and Maury, 2023), the TMM is used to model the acoustic performance of a
widely-opened ABH and thermoviscous losses are taken into account; a good
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agreement with FEM and experimental results is found.
In this chapter, it will be proved that the TMM solutions tend to the so-
lution of the differential ABH equation, for an ABH of any order n ≥ 1,
when the number of rings and cavities goes to infinity. In fact, although
the TMM is widely used in may research field, no attention has been put
on the limit behavior of the TMM when the number of the required layers
tends to infinity (that is, their thickness tends to zero). First, the derivation
of the ABH equation will be reviewed in Section 3.2 and a one-dimensional
wave equation for inhomogeneous fluids with varying density will be intro-
duced as well. Furthermore, an introduction to the classical transfer matrix
method (TMM) and its application to the retarding structure context will
be provided. Then, in Section 3.3, the metafluid analogy, the smoothness
condition and the TMM approximation for the metafluid will be introduced.
The metafluid analogy will consist in the equivalence of three equations: the
governing equation of an acoustic wave propagating inside a duct with in-
ner radius decreasing to zero by following a power law, the equation of wave
propagation in a duct filled with a metafluid with power-law increasing den-
sity and a Helmholtz equation for a wave with spatially varying wavenumber.
This will be a key element for the demonstration of the consistency of the
TMM solution, that will be consequently addressed. It will be showed that
the TMM solution formally tends to the solution of the ABH equation, mak-
ing use of the metafluid analogy. In fact, this is the main result of this chapter
and the main contribution of the related work. In Section 3.4, the analytical
expressions of reflection coefficients for linear and quadratic cases will be in-
troduced. Finally, numerical results comparing the analytical and the TMM
reflection coefficients will be presented and discussed. It is showed that the
analytical solution tends to the numerical one when increasing the number of
layers of the metafluid. Moreover, the quadratic ABH performs better than
the linear one, because its convergence is faster and its stability with respect
to the small truncation that needs to be introduced is much higher.
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Figure 3.1: Sketch of a cylindrical duct with an ABH termination where a quarter of the
cylinder has been removed in order to show the inner ABH structure made of rings and
cavities.

3.2 Governing differential equations and TMM approx-

imation

3.2.1 Governing equation for the ABH in a duct termination

As mentioned in the Introduction, a duct with circular cross-section and
a termination consisting of a retarding structure that produces the ABH
effect for plane wave propagation are considered. The retarding structure
of length L is made of a set of rigid rings, separated by air cavities, whose
inner radii r(x) decrease by following a power-law decay. Throughout the
development of our formulation, x denotes the longitudinal axis coordinate
with the origin placed at the end of the duct termination (see Figure 3.1).
Therefore, the ABH is comprised between x = −L (where the wave enters
the retarding structure) and x = 0 (duct end). Considering the limit case of a
very high number of ring-cavity ensembles, such system can be described by
the continuity and momentum equations for a isentropic wave propagation
in an axisymmetric duct of varying cross section S(x) = πr2(x) and wall
admittance Y (x). These equations are (see Mironov and Pislyakov, 2002),

∂ρ

∂t
+
∂(ρu)

∂x
+ ρu

1

S

∂S

∂x
+

2ρY p

r
= 0, (3.1a)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0, (3.1b)
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where ρ(x, t) denotes the air density, p(x, t) the air pressure and u(x, t) the
velocity. For small acoustic perturbations, it can be considered ρ(x, t) =
ρ0 + ρ′(x, t), ρ0 standing for the mean air density, p(x, t) = p0 + p′(x, t), p0
being the ambient pressure and u(x, t) = u′(x, t), meaning that zero mean
air velocity inside the duct is taken into account. Therefore, p0 and ρ0 are
the mean values, while the prime terms ρ′(x, t), p′(x, t) and u′(x, t) are the
small perturbations considered. Since the case of isentropic wave propagation
inside the duct is contemplated, the density and pressure fluctuations are
related through p′(x, t) = c20ρ

′(x, t), where c0 denotes the sound speed. After
the linearization of equations (3.1), taking the difference between the time
derivative of (3.1a) and the space derivative of (3.1b), one arrives at,

1

c20

∂2p′

∂t2
+

2ρ0Y

r

∂p′

∂t
− ∂2p′

∂x2
+

[
S(x)

∂

∂x

( 1

S(x)

)]∂p′
∂x

= 0, (3.2)

which is a generalization of the Webster’s wave equation for the case of non-
rigid duct walls. Considering a harmonic time dependence for p, that is
p(x, t) = p̂(x)e−jωt, it is possible to rewrite (3.2) in the frequency domain as,

−∂
2p̂

∂x2
−
[
k20 + jZ0

2Y

r
k0

]
p̂+

[
S(x)

∂

∂x

( 1

S(x)

)]∂p̂
∂x

= 0, (3.3)

where k0 = ω/c0 is the wavenumber, ω being the radial frequency and Z0 =
ρ0c0 the air characteristic impedance.
The power-law decay for the inner radius r(x) of the rings composing the
retarding structure, slightly mentioned at the beginning of the section, is
introduced

r(x) =
R

Lm
|x|m , (3.4)

where m is a real number that is referred to as order of the ABH. It is to be
noted that r(−L) = R (corresponding to the entrance of the retarding struc-
ture) and r(0) = 0 (corresponding to the end of the retarding structure and
of the duct): while a wave propagates from the beginning to the end of the
ABH, the inner radii of the rings are decreasing and, consequently, the areas
of the annulus increase. Furthermore, in order to achieve the ABH effect, the
wall admittance Y (x) needs to show a dependence on r(x). In (Mironov and
Pislyakov, 2002) it is implicitly supposed that if only the air cavities thick-
ness is considered, while neglecting the inner rings ones, a continuous wall
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admittance can be built as a limit case of a TMM cavity lumped admittance,

Y (x) = −j
k0
Z0

R2 − r2

2r
. (3.5)

Finally, substituting (3.4) and (3.5) in (3.3), and by considering S = πr2, the
ABH governing equation is obtained

∂2p̂

∂x2
+

2m

x

∂p̂

∂x
+

(
k0L

m

xm

)2

p̂ = 0. (3.6)

The equation (3.6) is the general equation of an ABH of order m. In partic-
ular, especially in Chapter 4, it will be given attention and detailed consid-
eration to the specific cases where m = 1

∂2p

∂x2
+

2

x

∂p

∂x
+

(
k20L

2

x2

)
p = 0, (3.7)

and where m = 2
∂2p

∂x2
+

4

x

∂p

∂x
+

(
k20L

4

x4

)
p = 0, (3.8)

that will be respectively referred to as linear ABH and quadratic ABH.

3.2.2 Governing equation of plane waves in a duct filled with a
non-homogeneous fluid

The plane wave propagation in a duct filled with a non-homogeneous fluid
with varying density is considered. The one-dimensional continuity and mo-
mentum equations of the fluid are

∂ρ

∂t
+
∂(ρu)

∂x
= 0, (3.9a)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0, (3.9b)

where ρ(x, t), p(x, t) and u(x, t) respectively stand for the air density, pressure
and velocity. The state equation is given by (see, Bergmann, 1946; Climente,
2015)

∂p

∂t
− Bs

ρ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0, (3.10)
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where the flow compressibility Bs(x) depending only on the position x is
assumed. The combination of (3.9a) and (3.10) leads to

∂p

∂t
+Bs

∂u

∂x
= 0. (3.11)

Once again, small perturbations ρ(x, t) = ρ0 + ρ′(x, t), p(x, t) = p0 + p′(x, t)
and u(x, t) = u′(x, t) (zero mean fluid velocity inside the duct) are considered
in (3.9b) and (3.10). After linearization, we can write

∂p′

∂t
+Bs(x)

∂u′

∂x
= 0, (3.12a)

ρs(x)
∂u′

∂t
+
∂p′

∂x
= 0. (3.12b)

Finally, a wave equation can be written by taking the difference between the
partial time derivative of (3.12a) and the spatial derivative of Bs(x) times
(3.12b). After some simple mathematical manipulations this can be expressed
as

ρs(x)
∂2p′

∂t2
−Bs(x)

∂2p′

∂x2
+

[
Bs(x)

ρs(x)

∂ρs(x)

∂x

]
∂p′

∂x
= 0. (3.13)

Introducing the definition of the space dependent wave speed as cs(x) :=
[Bs(x)/ρs(x)]

1/2, (3.13) can be rewritten in the following way

1

c2s(x)

∂2p′

∂t2
− ∂2p′

∂x2
+

[
1

ρs(x)

∂ρs(x)

∂x

]
∂p′

∂x
= 0. (3.14)

Eq. (3.14) describes the one-dimensional wave propagation in a non-homogeneous
medium and it can be expressed in the frequency domain as

−∂
2p̂

∂x2
− k2s(x)p̂+

[
1

ρs(x)

∂ρs(x)

∂x

]
∂p̂

∂x
= 0, (3.15)

where ks(x) := ω/cs(x) is the space dependent wave number.

3.2.3 The Transfer Matrix Method (TMM) for ABHs

As it has been mentioned in the Introduction, the Transfer Matrix Method
(TMM) is commonly used to analyze wave propagation through multilayered
media. In fact, when trying to perform a practical realization of an ABH,
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many limitations rise up. These are related to the number and size of rings
and cavities, as well as their thickness, their profile and the material used
to build the structure. By utilizing the TMM, it is possible to identify the
parameters that offer the most promising ABH configurations, which can be
further analyzed through more detailed numerical simulations. Nonetheless,

Figure 3.2: Sketch of a cavity plus ring ensemble (Guasch et al, 2017).

the classical TMM for acoustic filters can provide a reliable model to describe
the behavior of linear and quadratic retarding structures in a way closer to
reality than the analytical one. To this purpose, the ABH structure can be
thought as a set of ring plus cavity ensembles, that is nothing but two cylin-
drical ducts, one of them with a decreasing radius (see Figure 3.2). The TMM
allows one to relate the state vector for the acoustic pressure and acoustic
particle velocity at a point xm in the waveguide, namely (pm, vm)

T, with the
state vector at any other point inside the duct. Nevertheless, the acoustic
volume velocity um is being considered instead of the particle velocity vm
because this will allow us to use transfer matrices with easier expressions.
This will be beneficial for the formulation, but it will not affect the results,
since it is always possible to switch between um and vm simply by considering
the expression um = Smvm, where Sm stands for the section of the waveguide
at the location xm. By referring to Figure 3.2, the state vector (pi+2, ui+2)

T

at xi+2 (end of the inner ring edge) can be related to (pi+1, ui+1)
T at xi+1

(beginning of the inner ring edge) by means of a propagation transfer ma-
trix Tring

i+1 . Analogously, the acoustic pressure and acoustic volume velocity
(pi+1, ui+1)

T at xi+1, which also corresponds to the end of the lateral cavity,
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can be related to those at its beginning, (pi, ui)
T, through another transfer

matrix Tcav
i . Tcav

i takes into account three different effects. First, the influ-
ence of the cavity itself, which can be represented as a lumped element with
transfer matrix Tlm

i . Second, the change of section between the beginning
and the end of the cavity which, by considering the acoustic volume velocity,
is intrinsically considered. Third, its finite width, which can be included by
means of a propagating matrix, Tp

i . This whole formulation, including ex-
plicit expressions for the aforementioned matrices Tring

i+1 , T
p
i and Tlm

i , reads
as it follows (see Guasch et al, 2017),

(
pi+2

ui+2

)
= Tring

i+1

(
pi+1

ui+1

)
= Tring

i+1T
cav
i

(
pi
ui

)
= Tring

i+1T
p
iT

lm
i

(
pi
ui

)
=

(
cos(k0hr) j Z0

Si+1
sin(k0hr)

jSi+1

Z0
sin(k0hr) cos(k0hr)

)(
cos(k0hi) j Z0

Si+1
sin(k0hi)

jSi+1

Z0
sin(k0hi) cos(k0hi)

)
(

1 0
Y cav
i 1

)(
pi
ui

)
=

=

(
cos[k0(hr + hi)] + jZ0Y

cav
i

Si+1
sin[k0(hr + hi)] j Z0

Si+1
sin[k0(hr + hi)]

jSi+1

Z0
sin[k0(hr + hi)] + Y cav

i cos[k0(hr + hi)] Y cav
i cos[k0(hr + hi)]

)(
pi
ui

)
≡ Trc

i+1

(
pi
ui

)
(3.16)

where the last line contains the definition of the matrix Trc
i+1 that charac-

terizes the effect of the ring plus cavity ensemble on the propagation of the
acoustic pressure and the acoustic volume velocity. In (3.16), hi = |xi+1−xi|
represents the cavity width and hr = |xi+2 − xi+1| the ring thickness, which
in the formulation is assumed to be constant for all rings. It has to be noted
that, in the limit case of a negligible thickness, that is hr ≈ 0, Tring

i+1 reduces
to the identity matrix and, consequently, the ring has no influence on the be-
havior of the retarding structure. Moreover, Si+1 = πri+1, where ri+1 stands
for the inner radius of the ring at xi+1, and the admittance Yi of the cavity
is approximated as

Y cav
i = j

k0
Z0
Vi . (3.17)
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The variable Vi is the volume of the truncated cone which extends from xi to
xi+1 (see Figure 3.2)

Vi = πhi

[
R2 − 1

3

(
r2i+1 + r2i + ri+1ri

)]
, (3.18)

whose inner surface is given by

Scon
i = π(ri+1 + ri)

√
h2i + (ri+1 − ri)2 . (3.19)

Now, by taking the limit

lim
xi+1→xi

Y cav
i

Scon
i

= −j
k0
Z0

lim
xi+1→xi

πhi

[
R2 − 1

3

(
r2i+1 + r2i + ri+1ri

)]
π(ri+1 + ri)

√
h2i + (ri+1 − ri)2

= −j
k0
Z0

R2 − r2i
2ri
(3.20)

which is the value of the local admittance (3.5) used in the governing equation
of the ABH. In (3.17) it is implicitly assumed that k0ri ≪ 1. Taking into
account the sizes of the rings and cavities, it is also possible to consider the
approximations cos(k0hr) ∼ cos(k0hi) ∼ 1, sin(k0hr) ∼ k0hr and sin(k0hi) ∼
k0hi in (3.16).
Finally, given all the obtained results, it is straightforward to relate the state
vector at an arbitrary section xk+2 with that at xi, (k ≥ i), by means of
successive products of matrices Trc

i+1. Given the definition of the transfer
matrix,

A(k + 2, i) ≡
k∏

m=1

Trc
m+1 , (3.21)

the following can be deduced,(
pk+2

uk+2

)
= A(k + 2, i)

(
pi
ui

)
. (3.22)

This permits characterizing the whole retarding structure. In fact, if a total
number N of rings is considered, the state vector at the entrance xN = −L
of the retarding structure can be linked to that at its termination x0 = 0
through (

pN
uN

)
= A(N, 0)

(
p0
u0

)
. (3.23)
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3.3 Consistency of the TMM

3.3.1 The metafluid analogy

The ABH as a power-law density metafluid

Although apparently there is no general consensus on the definition of a meta-
material, or a metafluid, here the one presented in (Cummer et al, 2016) will
be adopted. In that work, a metafluid is defined as a fluid whose physical
properties are built on-demand and without the constraints imposed by na-
ture. This will apply to the considered study. In fact, the particular case of

Figure 3.3: Duct termination filled with metafluid whose governing equation is analogous to
that of the ABH in Figure (3.1)

a duct filled with a metafluid (so, non-existent in nature) is introduced. It
is taken into consideration a metafluid such that its density increases while
approaching the duct end by following the power law (see Figure (3.3))

ρs(x) = ρ0

(
Lm

xm

)2

. (3.24)

It is worth to be noted that the density turns out to be singular at the origin
x = 0. Next, a constant metafluid compressibility Bs(x) = B0 is assumed,
which leads to a sound speed cs(x) =

√
B0/ρ0(x). Therefore, by making use

of the power law (3.24), the squared wavenumber

k2s(x) = ω2ρs(x)

B0
=

(
k0L

m

xm

)2

, (3.25)
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is recovered, where, moreover, the relationship co =
√
B0/ρ0 has been taken

into account. Finally, with the insertion of (3.24) and (3.25) into the equation
(3.15) derived in the precedent section, the general ABH equation (3.6) is
achieved,

∂2p̂

∂x2
+

2m

x

∂p̂

∂x
+

(
k0L

m

xm

)2

p̂ = 0. (3.26)

Thanks to this finding, it can be stated that the governing equation of acoustic
wave propagation inside a duct with an inner radius decreasing to zero by
following the power law (3.4) and whose wall impedance is given by (3.5), is
exactly the same equation describing wave propagation in a metafluid with
power-law density (3.24).
On the other hand, an ad hoc change of variable is introduced in order to
express (3.26) as a Helmholtz equation with space-dependent wavenumber.

To this purpose, by considering p̂ = ρ
1/2
s ϕ in (3.15) it is obtained

∂2ϕ

∂x2
+ k2(x)ϕ = 0 , (3.27)

where the expression for the wavenumber is

k2(x) = k2s(x)−
3

4ρ2s

(∂ρs
∂x

)2
+

1

2ρs

∂2ρs
∂x2

. (3.28)

After performing the substitution of (3.24) and (3.25) into (3.28), the squared
wavenumber

k2(x) =
(k0Lm

xm

)2
+
m−m2

x2
(3.29)

is obtained. Therefore, solving the ABH (and, as derived and discussed, the
metafluid) equation (3.26) is practically the same as solving the Helmholtz
equation (3.27) for ϕ, with spatially varying wavenumber (3.29) and, then,
the acoustic pressure can be recovered from the change of variable previously
introduced, p̂ = ρ

1/2
s ϕ.

The smoothness condition for ABHs

A further aspect that has a direct impact on the performance and good
functioning of a duct ABH waveguide is now considered. Essentially, if the
ABH length L is too short and the power law decay is too steep, a wave
entering the ABH volume will not perceive a smooth matching of impedance
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and, because of the abrupt change of slope, the wave will be partially reflected
back. In other words, the ABH waveguide would not be properly functioning.
The WKB analysis in (Mironov, 1988) demands the condition

1

k2
dk

dx
≪ 1 (3.30)

to be considered. Inserting (3.29) into (3.30), results in

k20L
2m

x2m
≫ m2

x2
(3.31)

When x = L, which is the most critical case, the smoothness condition implies
k0L≫ m. Such a condition states the logical fact that, in order to get a good
impedance matching, the termination length L must be large if the order m
of the ABH is high, and vice versa.
As seen, in the case of acoustic wave propagation in an ABH duct termination,
the smoothness condition is dictated by the condition required for applying
the WKB approximation to the problem (see, Mironov and Pislyakov, 2002).
Those are summarized in the fulfillment of

|k| ≫ 1

x
. (3.32)

From (3.29), the wavenuber k is given by

k(x) = (−1)m
Lm

xm

√
k20 −

m2x2m−2

L2m
, (3.33)

which, once inserted in (3.32), yields

k20L
2m

x2m
≫ m2 + 1

x2
. (3.34)

This expression is a slightly more restrictive condition than (3.31). For the
proof purpose, a weaker requirement than (3.31) or (3.34) is enough, namely

k20L
2m

x2m
≫ m2 −m

x2
. (3.35)

This will become clear in the Section 3.3.3 devoted to the demonstration.
Condition (3.35) will be very useful to perform some approximations and
make algebraic calculations easier.
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3.3.2 The TMM for multilayered media

As mentioned in the Introduction, the TMM is widely used in many areas of
physics to study, analyze and simulate the propagation of waves through mul-
tilayered media. Therefore, the TMM is an optimum candidate to analyze the
performance of the ABH waveguides. However, in many applications of the
TMM, the propagation medium exhibits constant physical properties within
clearly distinct regions. On the contrary, in the considered case, the physical
properties are gradually changing by following a continuous variation. In the
next Section it will be proved that such an homogenization process is possible
and that the TMM solution of an ABH satisfies a differential equation like
(3.6), in the limit of increasing the number of rings-cavity ensembles.
The purpose is to solve the Helmholtz equation (3.27) with varying wavenum-
ber (3.29) making use of the TMM. The region of increasing density is in-
cluded between x = −L and x = 0 and divided into N layers of width L/N
and constant physical parameters, as depicted in Figure 3.4. Therefore, the
n-th layer is centered at xn and has constant density ρn, speed of sound cn
and characteristic impedance zn = ρncn. In what follows, the approximate
value of any function g(x) at xn will be indicated as gn ≈ g(xn). By following
the hypotheses and assumptions above, the propagating waves in a layer n
will satisfy a standard Helmholtz equation with fixed wavenumber kn. The
solution inside the layer will combine planar incident waves ϕin and reflected
waves ϕir, whose expressions are

ϕin = Ane
j(ωt−knxn), ϕrn = Bne

j(ωt+knxn), (3.36)

and corresponding velocities ϕin/zn and −ϕrn/zn. The amplitudes (An, Bn)
T

at the n-th layer can be related to those at the (n+1)-th layer (An+1, Bn+1)
T

by imposing the continuity of ϕi, ϕr and their velocity at the boundary (see,
Carbó, 1997). The mentioned relation is accomplished through a transfer
matrix Tn such that, (

An

Bn

)
= Tn

(
An+1

Bn+1

)
, (3.37)

where Tn is defined as

Tn =
1

2zn+1

(
(zn+1 + zn)e

−j(kn+1−kn)xn (zn+1 − zn)e
j(kn+1+kn)xn

(zn+1 − zn)e
−j(kn+1+kn)xn (zn+1 + zn)e

j(kn+1−kn)xn

)
. (3.38)
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Figure 3.4: Division of the ABH termination into N layers of same width L/N and constant
density in order to apply the TMM to describe wave propagation through the metafluid.

Furthermore, a matrix T̄(n,n+m) that allows one to relate amplitudes between
arbitrary layers n and n+m can be defined as

T̄(n,n+m) ≡
m−1∏
i=0

T̄(n+i), (3.39)

from which follows (
An

Bn

)
= T̄(n,n+m)

(
An+m

Bn+m

)
. (3.40)

In particular, the amplitudes (AN , BN)
T at the duct termination (x = 0) can

be related to the amplitudes (A0, B0)
T at the entrance of the ABH waveguide

(x = −L) via(
A0

B0

)
= T̄(0,N)

(
AN

BN

)
,

(
AN

BN

)
= T̄−1

(0,N)

(
A0

B0

)
. (3.41)

3.3.3 Proof of consistency of the TMM solution

Finally, with all the hypotheses, reasoning and developments from the previ-
ous sections, the TMM solution can be proved to formally tend to the solution
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of the ABH equation. First of all, the vector ϕ̃ϕϕn for the n-th layer is defined
by omitting the factor ejωt in (3.36),

ϕ̃ϕϕn =

(
ϕin
ϕrn

)
=

(
Ane

−jknxn

Bne
jknxn

)
=

(
e−jknxn 0

0 ejknxn

)(
An

Bn

)
≡ Dn

(
An

Bn

)
. (3.42)

Now, a relation between ϕ̃ϕϕn and ϕ̃ϕϕn+1 is derived through the combination of
(3.37) and (3.42),

ϕ̃ϕϕn =

(
ϕin
ϕrn

)
= DnTnD

−1
n+1

(
ϕin+1

ϕrn+1

)
= DnTnD

−1
n+1ϕ̃ϕϕn+1 . (3.43)

Since the solution ϕn at the n-th layer consists of the summation of the
incident and the reflected waves, Equation (3.43) permits to write

ϕn = ϕin + ϕrn = (1, 1)

(
ϕin
ϕrn

)
= (1, 1)ϕ̃ϕϕn = (1, 1)DnTnD

−1
n+1ϕ̃ϕϕn+1 . (3.44)

Next, a second order finite difference scheme for the approximation of the
Helmholtz equation (3.27) at point xn−1 is considered,

ϕn − 2ϕn−1 + ϕn−2

(∆x)2
+ k2n−1ϕn−1 = 0, (3.45)

where the infinitesimal ∆x is taken to coincide with the layer width L/N .
The finite difference approximation for the second order derivative of ϕ at
xn−1, combined with (3.44), can be expressed as

∂2ϕ

∂x2

∣∣∣∣∣
n−1

≈ ϕn − 2ϕn−1 + ϕn−2

(∆x)2
= (1, 1)

ϕ̃ϕϕn − 2ϕ̃ϕϕn−1 + ϕ̃ϕϕn−2

(∆x)2
, (3.46)

while from (3.43) we derive

ϕ̃ϕϕn−1 = Dn−1Tn−1D
−1
n ϕ̃ϕϕn (3.47)

and
ϕ̃ϕϕn−2 = Dn−2Tn−2Tn−1D

−1
n ϕ̃ϕϕn (3.48)

which, once inserted into (3.46), lead to

∂2ϕ

∂x2

∣∣∣∣∣
n−1

≈ 1

(∆x)2
(1, 1)(I− 2Dn−1Tn−1D

−1
n +Dn−2Tn−2Tn−1D

−1
n )ϕ̃ϕϕn, (3.49)
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where I stands for the identity matrix. On the other hand, the second term
of the discretized Helmholtz equation (3.27) becomes,

k2(xn−1)ϕn−1 =

[(
k0L

m

xmn−1

)2

+
m−m2

x2n−1

]
(1, 1)ϕ̃ϕϕn−1 =

=

[(
k0L

m

xmn−1

)2

+
m−m2

x2n−1

]
Dn−1Tn−1D

−1
n ϕ̃ϕϕn.

(3.50)

It is already known that the finite difference solution to the Helmholtz equa-
tion (3.45) tends to the analytical one (3.27) for ∆x→ 0. Therefore, to verify
that the TMM solution also tends to the solution of the continuous problem,
(3.49) and (3.50) are substituted into (3.45) and the validity of the following
limit is verified,

lim
∆x→0

{
(1, 1)

[
1

(∆x)2
I+

(
k2n−1 −

2

(∆x)2

)
Dn−1Tn−1D

−1
n +

+
1

(∆x)2
Dn−2Tn−2Tn−1D

−1
n

]
ϕ̃ϕϕn

}
= 0.

(3.51)

The limit (3.51) can be proved through a Taylor series expansion of all the
matrix elements involved. For instance, the elements of the matrix Tn−1 can
be expanded as

T 1,1
n−1 = 1 +

2jmk0L
mxn −mxmn
2xm+1

n

∆x+

−2m2k20L
2mx2n − 2jmk0L

mxm+1
n + (m2 −m)x2mn

4x2m+2
n

(∆x)2

T 1,2
n−1 = −me(

2jSn
xn

)

2xn
∆x+

(4jm− 2jm2)k0L
mxne

( 2jSnxn
) + xmn (m

2 −m)e(
2jSn
xn

)

4xm+2
n

(∆x)2

T 2,1
n−1 = −me(−

2jSn
xn

)

2xn
∆x+

(2jm2 − 4jm)k0L
mxne

(− 2jSn
xn

) + xmn (m
2 −m)e(−

2jSn
xn

)

4xm+2
n

(∆x)2

T 2,2
n−1 = 1− 2jmk0L

mxn +mxmn
2xm+1

n

∆x+

−2m2k20L
2mx2n + 2jmk0L

mxm+1
n + (m2 −m)x2mn

4x2m+2
n

(∆x)2

(3.52)
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and those of Tn−2 become

T 1,1
n−2 = 1 +

2jmk0L
mxn −mxmn
2xm+1

n

∆x+

−2m2k20L
2mx2n + (4jm2 − 2jm)k0L

mxm+1
n + (m2 − 3m)x2mn

4x2m+2
n

(∆x)2

T 1,2
n−2 = −me(

2jSn
xn

)

2xn
∆x+

(8jm− 6jm2)k0L
mxne

( 2jSnxn
) + xmn (m

2 − 3m)e(
2jSn
xn

)

4xm+2
n

(∆x)2

T 2,1
n−2 = −me(−

2jSn
xn

)

2xn
∆x+

(6jm2 − 8jm)k0L
mxne

(− 2jSn
xn

) + xmn (m
2 − 3m)e(−

2jSn
xn

)

4xm+2
n

(∆x)2

T 2,2
n−2 = 1− 2jmk0L

mxn +mxmn
2xm+1

n

∆x+

−2m2k20L
2mx2n + (2jm− 4jm2)k0L

mxm+1
n + (m2 − 3m)x2mn

4x2m+2
n

(∆x)2

(3.53)

In such expressions, it is to be noted that the parameters Sn can be simplified
recovering the smoothness condition (3.35), that is

Sn =
√
k20L

2m + (m−m2)x2m−2
n ≈

√
k20L

2m = k0L
m. (3.54)

Moreover, for the linear case (3.49) no approximation is needed because, since
m = 1, we have m − m2 = 0. Now, the fulfillment of the limit (3.51) can
be checked. Inserting the expressions (expanded by means of Taylor series)
for all matrices T, as well as the corresponding expansions of Dn−1, Dn−2

and D−1
n requires a big amount of algebraic manipulations. These have been

mostly handmade and checked with the PARI-GP mathematical software.
The final step to conclude the demonstration consists in reverting the change
of variable ϕ = ρ

−1/2
s p̂ and checking if the TMM solution for the acoustic

pressure p̂n satisfies the ABH equation, in the limit ∆x → 0. The pressure
at the n-th layer is

p̂n = p̂in + p̂rn = ρ1/2s (xn)(ϕ
i
n + ϕrn) = ρ

1/2
0

Lm

xmn
(ϕin + ϕrn), (3.55)
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where matrix expressions analogous to (3.43), (3.47) and (3.48) for the acous-
tic pressure can be derived, namely

P̃n =

(
p̂in
p̂rn

)
= ρ1/2s (xn)

(
ϕin
ϕrn

)
=

ρ
1/2
s (xn)

ρ
1/2
s (xn+1)

DnTnD
−1
n+1

(
p̂in+1

p̂rn+1

)
=

=
xmn+1

xmn
DnTnD

−1
n+1P̃n+1,

(3.56)

P̃n−1 =
xmn
xmn−1

Dn−1Tn−1D
−1
n P̃n, (3.57)

and

P̃n−2 =
xmn−1

xmn−2

Dn−2Tn−2D
−1
n−1P̃n−1 =

xmn
xmn−2

Dn−2Tn−2Tn−1D
−1
n P̃n. (3.58)

A second order finite difference approximation for (3.6) at point xn−1 is

p̂n − 2p̂n−1 + p̂n−2

(∆x)2
+

2m

xn−1

p̂n − p̂n−2

2∆x
+

(
k0L

m

xmn−1

)2

p̂n−1 = 0. (3.59)

The first and third terms of (3.59) can be treated analogously to those of
(3.45). The second term involves the first order derivative of the pressure at
point xn−1,

∂p̂

∂x

∣∣∣∣∣
n−1

≈ p̂n − p̂n−2

2∆x
=

1

2∆x
(1, 1)Dn−2

(
D−1

n−2Dn −
xmn
xmn−2

Tn−2Tn−1

)
D−1

n P̃n.

(3.60)
In order to prove that the discretized p̂n tends to the continuous pressure p̂
of the ABH equation when ∆x→ 0, the following limit needs to hold

lim
∆x→0

{
(1, 1)

[
1

(∆x)2

(
I− 2

xmn
xmn−1

Dn−1Tn−1D
−1
n +

xmn
xmn−2

Dn−2Tn−2Tn−1D
−1
n

)
+

+
m

xn−1∆x

(
I− xmn

xmn−2

Dn−2Tn−2Tn−1D
−1
n

)
+

+
k20L

2m

x2mn−1

(
xmn
xmn−1

Dn−1Tn−1D
−1
n

)]
P̃n

}
= 0 .

(3.61)
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As explained above, the limit can be verified by means of Taylor series ex-
pansions of the elements in matrices Tn−1, Tn−2, Dn−1, Dn−2 and D−1

n . Once
again, the involved algebraic manipulations have been performed mostly by
hand and checked with the mathematical software PARI-GP (Batut et al.,
2000). The proof of the validity of the limit concludes the demonstration.

3.4 Numerical results

3.4.1 The ABH reflection coefficient

The performance of an ABH is generally measured by means of the reflection
coefficient at its entrance x = −L. The reflection coefficient can be calculated
once the exact solution of the ABH equation (3.6), therefore to its metafluid
analogue, is known. These solutions have been respectively derived for the
linear ABHs (m = 1) and quaratic ABHs (m = 2) in (Mironov and Pislyakov,
2002; Guasch et al., 2017). The solution to the equation (3.6) for m = 1 is
given by

p(x) = C+e
α+ lnx + C−e

α− lnx (3.62)

where C+ and C− are real constants and

α± =
1

2

[
− 1±

√
1− (2k0L)2

]
. (3.63)

Besides, the solution for the case m = 2 is

p(x) =
C+

x

√
(k0L2)2 + x2 exp

{
j

[
k0L

2

x
− arctan

(
k0L

2

x

)]}

+
C−
x

√
(k0L2)2 + x2 exp

{
− j

[
k0L

2

x
− arctan

(
k0L

2

x

)]}
. (3.64)

Now, it is possible to calculate the linear and quadratic reflection coefficients
at x = −L, denoted respectively as Rlin

L and Rquad
L , in terms of those at x = 0,

Rlin
0 and Rquad

0 , by imposing the continuity of pressure and velocity at the
ABH entrance, with the use of (3.62) and (3.64), and prescribing a boundary
admittance Y0 at the ABH termination. However, since the ABH equation
is singular at the origin, a small imperfection l needs to be introduced and,
therefore, Y0, R

lin
0 and Rquad

0 are replaced by Yl, R
lin
l and Rquad

l . For the
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sake of completeness, the reflection coefficient for the linear case at the ABH
entrance is given by the expression

Rlin
L =

1 +Rlin
l + 1

jk0L
(α+ +Rlin

l α−)

1 +Rlin
l − 1

jk0L
(α+ −Rlin

l α−)
e−2jk0L, (3.65)

with the reflection coefficient at x = −l, Rlin
l , being

Rlin
l = −α+ + jk0Z0lYl

α− + jk0Z0lYl

(
l

L

)α+−α−

. (3.66)

It is worth noting that, in case a rigid end wall condition for the ABH needs
to be implemented, Yl = 0 in (3.66) has to be considered. Analogously, the
reflection coefficient for the quadratic case becomes

Rquad
L =

Rquad
l ejk0L − e−jk0L(1 + 2jk0L)

Rquad
l ejk0L(1− 2jk0L)− e−jk0L

e−2jk0L, (3.67)

where

Rquad
l =

Yl + jk0L
2

l (Yl +
L2

Z0l2
)

Yl − jk0L
2

l (Yl − L2

Z0l2
)
e−2j

k0L
2

l . (3.68)

When using the TMM approach, the expression for the reflection coefficient
at x = −L can be easily obtained from (3.41). In fact, by considering a rigid
termination, the relationship BN = −AN is obtained, from which follows,

RTMM
L =

T̄ 21
0,N − T̄ 22

0,N

T̄ 11
0,N − T̄ 12

0,N

. (3.69)

3.4.2 Numerical simulations

Now that all the formulations have been derived, few particular cases are
chosen and it is checked that the TMM reflection coefficient RTMM

L in (3.69)
tends to the exact ones, Rlin

L in (3.65) and Rquad
L in (3.67), when the number of

layers of the metafluid increases. For the simulations, a cylindrical duct with
radius R = 0.23 m and L = 0.5 m both for the linear and the quadratic cases
is considered. The cutoff frequency of the tube is fc = 1.84c0/2πR = 445
Hz, where c0 = 340 m/s stands for the speed of sound. Damping has been
introduced by consider a complex speed of sound, c0 = c0(1 + 0.05j) (see,
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(a) Linear (m = 1), L = 0.5 m, l = 5× 10−15m (b) Linear (m = 1), L = 0.5 m, l = 5× 10−5m

(c) Quadratic (m = 2), L = 0.5 m, l = 5×10−5m (d) Quadratic (m = 2), L = 0.5 m, l = 1×10−2m

Figure 3.5: Comparison between analytical and TMM reflection coefficients for the linear
(a)-(b) and quadratic (c)-(d) ABHs.

Mironov and Pislyakov, 2002; Guasch et al., 2017). In Figures 3.5(a) and
3.5(b), the analytical and TMM reflection coefficients for the linear ABH
when varying the number of TMM layers are presented. Figure 3.5(a) shows
the values of Rlin

L and RTMM
L respectively for 100, 500 and 1500 layers. As

noted, the TMM reflection coefficients tend to the analytical one, although
very slowly. It is to be observed that the TMM reflection coefficients have
been computed by assuming a very small imperfection l = 5 × 10−15 m at
the end of the ABH, which implies just a few oscillations of the analytical
solution. Moreover, the critical value for the smoothness condition (3.30)
occurs at k0l = 1, so the ABH performs well (that is, low values for the
reflection coefficient) only when passed such value. In 3.5(b) a higher value
of l = 5 × 10−5 has been considered and this highlights a very important
aspect. In fact, although the magnitude of l and its small variations can be
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neglected from a manufacturing point of view, they can extremely influence
the performance of the linear ABH. As for the second order ABHs, in 3.5(c)
it can be appreciated that the TMM solutions tend to the analytical one
much faster for the quadratic ABH than for the linear one. Moreover, the
performance of the quadratic ABH is shown to be more robust to the small
imperfection l than the linear one; for the same value used in 3.5(b), that is
l = 5× 10−5, Rquad

L does not exhibit any oscillation. The value of l needs to
be increased up to l = 1× 10−2 (see 3.5(d)) to visualize some fluctuations in
the reflection coefficient. Finally, it has to be noted that, for the quadratic
case, the critical value for the smoothness condition is k0L = 2, so a larger
length L than the linear case would be necessary to achieve a low reflection
coefficient for the same frequency.

3.5 Conclusions

The consistency of using the transfer matrix method (TMM) to simulate the
performance of acoustic black holes (ABHs) in duct terminations has been
analyzed and proved. In particular, a discrete ABH termination, that is a
retarding structure made of rings and cavities with a power-law decreasing
inner radius, has been considered and the formal convergence of its TMM
solution to the analytical one has been demonstrated. In order to do that,
some crucial conceptual steps need to be followed.
First of all, the governing equations for an ABH termination and for plane
waves in a duct filled with a non-homogeneous fluid have been introduced
and explained, followed by a revision and a contextualization of the clas-
sical TMM for acoustic filters. Second, the analogy between the discrete
ABH and a metafluid whose density increases while approaching the duct
termination has been proved. Such fact has been extremely important, be-
cause it leads to significant simplifications of the proof, while opening new
possibilities for a framework of future ABH designs. Third, the metafluid
equation has been manipulated and transformed into a Helmholtz equation
with varying wavenumber. This has strongly simplified the TMM approach
and the related calculations. In fact, this allows to consider the discretization
of the metafluid into layers with constant physical magnitudes, with planar
acoustic waves propagating in them, providing a particularly simple form for
the transfer matrices. Then, a second order finite difference approximation
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has been applied to the Helmholtz equation and the TMM solution has been
substituted in this newly discretized equation. The proof of the fulfillment
of the differential Helmholtz equation has been performed with the help of a
Taylor series expansion of all the matrix elements involved in the formulation
and with the use of the ABH smoothness condition. Finally, some numer-
ical results for the reflection coefficients of the linear and quadratic ABHs
have been presented. The simulations show that the TMM solutions tend to
the analytical ones, very slowly for the linear cases and much faster for the
quadratic ones.
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Chapter 4

Finite element simulations of the
linear and quadratic ABH in duct
terminations

In this chapter, FEM simulations will be used to further analyze ABHs in
duct terminations. While the Transfer Matrix Method (TMM) used in Chap-
ter 3 is a fast manner to analyze the qualitative behavior of ABHs, it relies
on some restrictive hypotheses. Although only wall losses will be considered
for the simulations, FEM results have a higher computational cost but they
will provide insights closer to the real phenomenon. The influence of many
parameters on the ABH performance will be analyzed and the wave propaga-
tion and absorption inside the retarding structure will be visualized. Finally,
the fundaments of the ABH behavior, that is different cavities responsible for
the absorption of certain frequency ranges, will be derived.

Concerning implementation aspects, an in-house finite element software based
on Fortran language has been used. Moreover, the generation of ABH geome-
tries, the finite element meshes and the postprocessing of simulation results
have been done using GID (http://gidhome.com/) and Matlab.

This chapter is mainly based on the following work:

• Davide Ghilardi, Marc Arnela and Oriol Guasch (2018), ”Finite element
simulations of the acoustic black hole effect in duct terminations”, Pro-
ceedings of the Noise and Vibration Emerging Methods, NOVEM2018,
Santa Eulària des Riu, Ibiza, Spain, 257, pp. 887-897.
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4.1 Introduction

The acoustic black hole (ABH) effect is a fairly new technique for sound
and vibrations control and reduction and, traditionally, it has been deeply
studied and analyzed for beams and plates. Later, Mironov and Pislyakov
(Mironov and Pislyakov, 2002) proposed a structure capable to reach that
effect, made of rings with decreasing inner radii separated by air cavities
and placed at the end of a duct. From a theoretical point of view, the
necessary time for a wave to reach the duct termination should be infinite,
so that no reflections might be expected. However, in practice, waves are
partially reflected from the ABH since many of the hypotheses of Mironov and
Pislyakov’s model cannot be fulfilled. Practical realizations of the structure
proposed in (Mironov and Pislyakov, 2002) have been built and analyzed in
(El Ouahabi et al., 2015; El Ouahabi et al., 2015b). The discrepancies found
between the manufactured prototypes and the expected theoretical behavior
lead to the use of alternative strategies and methods to study the effects
of the discretization of the continuous ABH, such as the number of rings,
their thickness, etc. In particular, the transfer matrix method (TMM) has
been used in (Guasch et al, 2016b, Guasch et al, 2017), while in (Guasch
et al, 2020) it has been shown, for any ABH of order m, that the TMM
solution recovers the analytical one when the number of rings and cavities
tends to infinity. Moreover, the TMM has also been used to analyze duct
mufflers inspired on the ABH effect (Sharma et al, 2016, Sharma et al, 2017).
Although the TMM method is a very useful tool for qualitative and fast
approaches to ABHs, it relies on some assumptions which impede to get
a deep understanding of the physics governing the ABH behavior. This is
the reason behind the choice of performing direct FEM simulations of the
acoustics inside the ABH. It has to be noted that, after the publication of the
work corresponding to the main reference of this chapter, new research arised
and explanation of observed phenomena have been provided. In particular, in
(Cervenka and Bednaŕık, 2022), thermoviscous losses are taken into account
in the FEM solution of the linearized Navier-Stokes equations. In this case,
the ABH is behaving as a rainbow trapping absorber (see Jiménez et al.,
2017). Thanks to this, the comprehension of the ABH is improved, compared
with the works based on the solution of the Helmholtz equation. Also, it
has been observed that the acoustic energy absorption is related with the
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resonance of the annular cavities between rings. Moreover, in (Mousavi et
al., 2022) it has been shown that the addition of damping material at the
end of the ABH does not imply an improvement in the absorption process,
as already observed experimentally in (El Ouahabi et al., 2015; El Ouahabi
et al., 2015b), while using thermoviscous losses in the cavities reduces the
reflection coefficient at all the frequencies. Moreover, it is showed that at
high frequencies the pressure distribution inside ABH cavities is not uniform,
meaning that cavity resonances appear. As a consequence of this, it is shown
that adding a small amount of damping material at the end of each cavity (at
the outer tube) reduces drastically the reflection coefficient at all frequencies.
In this chapter, Section 4.2 opens with the resolution of the standard wave
equation in mixed form for the cases of linear and quadratic three-dimensional
ABH geometries. The FEM simulation will allow to observe from one side
how the ABH effect works and, for the other, how waves propagate inside
the ABH. In fact, thanks to a numerical adaptation of the experimental
two-microphone transfer function method (TMTF), the reflection coefficient,
which is the key measure of an ABH performance, can be computed. Finally,
many numerical results will show the influence on the ABH performance of
parameters such as number of rings and absorption at walls, and the pressure
distribution inside the ABH.

4.2 Methodology

4.2.1 The wave equation in mixed form

Traditionally, when dealing with problems related to waves, it is common to
consider the wave equation in its irreducible form. By considering a single
scalar unknown, the acoustic pressure, p, depending on the spatial variable
x and on time t, the wave equation is

∂2p

∂t2
− c2∆p = f , (4.1)

where c is the speed of sound, f stands for the forcing term and ∆ denotes the
Laplace operator. This equation needs to be solved in a certain domain so it
has to be complemented with some boundary and initial conditions. However,
in some cases it can be useful to rewrite (4.1) in mixed form (mass and
momentum conservation equations), which means considering the solution
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for p and the acoustic velocity vector u(x, t) of the problem

µp∂tp+∇ · u = fp, (4.2a)

µu∂tu+∇p = fu, (4.2b)

where µp and µu are coefficients that have to satisfy c2 = (µpµu)
−1 and the

forcing terms fp and fu are such that µu∂tfp −∇ · fu = f .

4.2.2 Finite Element simulations

We used the stabilized FEM strategy described in (Codina, 2008; Guasch et
al., 2016) in order to solve the mixed wave equation for the acoustic pressure
p(x, t) and the acoustic particle velocity u(x, t) for waves propagating inside
a circular duct with an ABH termination at one of its end (see Figure 4.1).
The mixed wave equation has the form,

1

ρ0c20
∂tp+∇ · u = 0, (4.3a)

ρ0∂tu+∇p = 0, (4.3b)

and it has been complemented with the following boundary and initial con-
ditions:

u · n = p/Zw1
on ΓZ , t > 0, (4.3c)

u · n = p/Zw2
on ΓR, t > 0, (4.3d)

u · n = g(t) on ΓG, t > 0, (4.3e)

u · n = 0 on ΓL, t > 0, (4.3f)

p = 0, u = 0 in Ω, t = 0. (4.3g)

In Equation (4.3), n stands for the unitary vector normal to the considered
surface, ∂t represents the first partial time derivative and Ω the computa-
tional domain with boundary Γ = ΓG ∪ ΓZ ∪ ΓR ∪ ΓL (see Figure 4.1).
With respect to the boundary conditions, in Equation (4.3c)-(4.3d) the impedances
Zw1

and Zw2
are responsible for introducing losses on the walls ΓZ and ΓR,

respectively. Such magnitudes are related with the boundary admittance
coefficient µ as µ = ρ0c0/Zw. In Equation (4.3e) a particle velocity g(t) is
imposed at the duct entrance ΓG, in order to generate acoustic waves within
the tube. In particular, the following Gaussian pulse is used

ug(t) = e−[(t−Tgp)/0.29Tgp]
2

[m/s], (4.4)
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Figure 4.1: Two-dimensional view of the computational domain.

with Tgp = 0.646/fc and fc = 10 kHz. To avoid numerical errors at high
frequencies, a low-pass filter has been applied to the pulse, that carries energy
for all frequencies, limiting it to 10 kHz. It has to be noted that the model
considered in Equation (4.3) does not account for thermoviscous losses, while
in the TMM results from Chapter 3 such losses are considered by means of a
complex speed of sound. In this chapter, the only losses taken into account
are wall losses. Therefore, the results obtained with TMM in 3 and with FEM
in the current chapter cannot be directly compared since losses come from
different physical phenomena. The model expressed in Equation (4.3) could
be improved and made more complete and closer to reality by considering
other types of losses (see, Mousavi et al., 2022).

4.2.3 The two microphone transfer function method

The performance of an ABH is generally measured and expressed in terms of
its reflection coefficient. Even though analytical expressions exist for theoret-
ical models or the TMM approach, we need to compute it from the outputs
of the FEM simulations. We will do so by following the strategy contained in
(Arnela and Guasch, 2013), which adapts the experimental two-microphone
transfer function method (TMTF) to the numerical context. Essentially, the
procedure consists of a few steps. First, plane waves are generated at the
beginning of the circular duct, propagate in the duct and enter the ABH (see
Figure 4.2). In our experiments, the duct is 1.5 m long and has a radius
of R = 0.23 m, so that plane waves are guaranteed up to about the cutoff
frequency fc = 445 Hz (fc = 1.84c0/(2πR)). The ABH termination has the
same radius and a length of 0.5 m. Second, two virtual microphones are lo-
cated in the center line of the duct, at a distance of s = 0.15 m, the closer one
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Figure 4.2: Sketch of the circular duct with an ABH termination at its right end.

(i.e., microphone #1 in Figure 4.2) being at a distance of x1 = 0.5 m from
the ABH entrance. It needs to be noted that the microphone separation also
limits the application range of the TMTF for higher frequencies. In this case,
such distance gives an upper frequency limit of 1167 Hz (s = 0.5λmin), be-
yond the plane wave propagation restriction also required by this method. A
100 ms simulation is then performed to solve the mixed wave equation (4.3),
setting the speed of sound to c0 = 350 m/s and the sampling frequency to
fs = 1/∆t = 20 kHz. The computational domain is meshed by using unstruc-
tured tetrahedra, with an element size of h = 0.04 m for the impedance tube
and h = {0.01, 0.004} m for the ABH. The acoustic pressure evolution p1(t)
and p2(t) at the two points #1 and #2 (see Figure 4.2) is tracked as sound
waves propagate within the duct and the ABH. This permits to compute the
transfer function H12(f) between the two microphones as

H12(f) =
P2(f)

P1(f)
, (4.5)

with P1(f) and P2(f) standing for the Fourier transform of pressure signals
p1(t) and p2(t), respectively. The reflection coefficient R is finally obtained
as (Arnela and Guasch, 2013)

R =
H12 − e−jkzs

ejkzs −H12
ej2kzx1, (4.6)

kz standing for the complex wave number within the duct. This can be
computed from the boundary admittance coefficient µw1

imposed at the duct
walls as

kz = k0

√
1− j

2µw1

k0R
. (4.7)
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As already mentioned, a circular duct of constant radius R = 0.23 m and
length L = 1.5 m is considered. At its right end the ABH termination is
located to be analyzed. This structure has a fixed length of l = 0.5 m and
it is made of rigid rings separated by air cavities that follow a power-law
decreasing inner radius r(x) (see in Figure 4.2 a 2D section of the geometry).
Equally spaced rings of constant thickness hr = 1 mm are considered. Four
different retarding structures consisting of linear and quadratic ABHs with 20
and 40 rings each one are taken into account. Two-dimensional sections of the
tested ABHs are represented in Figure 4.3. With respect to the wall losses,
the circular duct boundary admittance coefficient µw1

is always set to µw1
=

0.005, while the boundary admittance coefficient for the ABH can be µw2
=

{0.0001, 0.0005, 0.001, 0.005}, depending on the particular case considered.
For the sake of simplicity, in the following sections µw2

will be simply denoted
by µ.

4.3 Results of the FEM simulations

4.3.1 Influence of the number of rings and of the ABH order

The performance of different ABHs is studied by computing the correspond-
ing reflection coefficient. In order to do that, the boundary admittance coeffi-
cient at ABH walls µ is fixed to the value µ = 0.0005, while other parameters,
such as the number of rings and the exponent in the power law governing
their inner radii, will vary. The influence of the number of rings on the ab-
solute value of the reflection coefficient |R| is shown in Figure 4.4. As it
can be seen in Figure 4.4(a) for the linear ABH, the case with N = 40 rings
presents lower values than the 20 rings one, especially at high frequencies.
Moreover, a higher number of rings also brings more oscillations in the |R|
value. Such remarks are also valid for the quadratic case shown in Figure
4.4(b), where it can be appreciated that this ABH has much more oscillations
than its linear counterpart (where the explanation for this phenomenon has
been already provided in Chapter 2). Additionally, the quadratic ABH is
performing better than the linear one, since it is achieving lower values for
its reflection coefficient, especially with the highest number of rings. In fact,
when increasing the number of rings, the absorption area is getting bigger,
which leads to a better ABH performance, although this could be detrimental
from the manufacturing point of view.
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(a) Linear ABH with N = 20 rings (b) Quadratic ABH with N = 20 rings

(c) Linear ABH with N = 40 rings (d) Quadratic ABH with N = 40 rings

Figure 4.3: Tested geometries: linear and quadratic ABHs with N = 20 and N = 40 rings.

4.3.2 Influence of the boundary admittance coefficient

Now, the effect of the variation of the boundary admittance coefficient µ at
ABH walls on its reflection coefficient |R| is analyzed. Four different ABHs
(linear and quadratic, both with N = 20 and N = 40 rings) are tested,
while the following values are considered µ = {0.0001, 0.0005, 0.001, 0.005}.
In Figure 4.5, |R| against frequency is plotted for all the configurations con-
sidered. As it can be observed, the boundary admittance coefficient µ plays a
fundamental role in the absorption process. In all the four cases considered,
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Figure 4.4: Influence of the number of rings on |R| for the linear (a) and quadratic (b) cases.

smaller values for the reflection coefficient are obtained when µ is increasing,
as one might expect. Besides, when µ is large enough, the oscillations in
the |R| behavior almost disappear (see the 40 rings ABHs for µ = 0.005 in
Figures 4.5(c) and 4.5(d)). Moreover, when considering low values for µ, it
can be appreciated that the quadratic cases perform better than the linear
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Figure 4.5: Influence of the boundary admittance coefficient µ on |R| for linear and quadratic
ABHs. (a) Linear ABH with N = 20 rings, (b) Quadratic ABH with N = 20 rings, (c) Linear
ABH with N = 40 rings, and (d) Quadratic ABH with N = 40 rings.

ones (regardless the number of rings). This fact becomes evident especially
at low frequencies. In conclusion, it is worth noting that, as stated in the
previous section, the higher number of rings forming the ABH corresponds to
a better performance, that is, to smaller values for the reflection coefficient
|R|.

4.3.3 Influence of the ring thickness

The case of a linear ABH with a fixed number of N = 20 rings, where the
ring thickness hr can vary and it assumes the values hr = 0.5, 1, 2, 3 mm is
considered. Analogous results can be achieved for quadratic configurations.
It can be seen in Figure 4.6 that the general performance of the ABH it is
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not affected by its ring thickness. This parameter only has an influence on
the frequency location of peaks and dips.
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Figure 4.6: Influence of the ring thickness on the reflection coefficient for the linear case with
N = 20 rings.

4.3.4 Pressure distribution inside the ABH

For this study, the configuration of a linear ABH with 20 rings and µ = 0.005
is chosen. First of all, we consider three points P1, P2 and P3 located re-
spectively at the beginning, middle and end positions of the ABH center line
(see Figure 4.7). Their coordinates are P1 = (−0.5, 0), P2 = (−0.237, 0) and
P3 = (−0.062, 0), with the origin of coordinates being located at the end of
the ABH termination. Then, the pressure is collected at such locations. In
Figure 4.8(a), the acoustic pressure evolution at the three points is depicted.
Although the initial peak is higher at P1, at the entrance of the ABH region,
than at P3, as time evolves the acoustic energy at low frequencies tends to
concentrate at the end of the ABH. This can be more evidently appreciated
by looking at the pressure spectra in Figure 4.8(b). Compared to the other
points, in fact, P3 exhibits higher pressure values in the low frequency range.
However, is is to be noted that a strong decay of the P3 spectrum is produced
at high frequencies. So, this indicates that the last rings play an important
role in the absorption of low frequency acoustic pressure, as those rings have
the largest area and the pressure field gets particularly intense there. On the
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Figure 4.7: The points P1 (in green), P2 (in red) and P3 (in black) located on the ABH
center line.

other hand, the first rings may absorb the higher frequencies. In Figure 4.9
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Figure 4.8: (a) Pressure signals measured inside the ABH at points P1 = (−0.5, 0), P2 =
(−0.237, 0) and P3 = (−0.062, 0) and (b) corresponding spectra.

it can be appreciated, through a series of snapshots, how the Gaussian pulse
gets absorbed by the ABH. While the wave is entering the retarding struc-
ture, the cavities play a fundamental role in the absorption process. On the
other hand, we can notice how a small part of the incident wave is reflected
in Figure 4.9(e) in yellow. This is not surprising and it is expected, otherwise
the ABH would be perfect with zero reflection coefficient. It is to be noted

101



that, in order to properly visualize the pressure distribution inside the duct
and the ABH, the legend scale has been modified from one figure to another.
Finally, in Figure 4.9 it can be appreciated, especially in Figure 4.9(e), that
the pressure does not distribute in a uniform way inside the cavities, as it
has been found in (Mousavi et al., 2022).

(a) t = 0.0025 s (b) t = 0.005 s

(c) t = 0.0075 s (d) t = 0.01 s

(e) t = 0.0125 s (f) t = 0.015 s

(g) t = 0.0175 s (h) t = 0.02 s

Figure 4.9: Pressure evolution at different times.

By following the same logic, several tracking points equally spaced are located
in the center line, equaling the number of cavities. So that it is possible to an-
alyze the behavior of the four ABHs by studying the acoustic pressure within
each cavity. Moreover, the boundary admittance coefficient is reduced to
µ = 0.0005 so as to better observe all resonance modes. In Figure 4.10, the
pressure spectra of all the points are plotted and compared to the reflection
coefficient, which has been scaled with a factor of 30 for visualization pur-
poses.
It looks evident, by looking at the four configurations considered, that the re-
flection coefficient does not start to oscillate until a resonance appear. With
regards to the number of rings, it seems that they to do not influence too
much the general structure of the reflection coefficient oscillations. However,
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Figure 4.10: Comparison between scaled reflection coefficient (in red) and pressure spectra
for µ = 0.0005 (a) Linear ABH with N = 20 rings, (b) Quadratic ABH with N = 20 rings,
(c) Linear ABH with N = 40 rings, and (d) Quadratic ABH with N = 40 rings.

it can be observed that increasing the number of rings leads to a higher num-
ber of resonances in the spectra. Consequently, this also increases the number
of oscillations in the reflection coefficient. In fact, in (Mousavi et al., 2022) a
relationship between the inner radius of cavities and resonance frequency is
presented.
In conclusion, it is to be underlined that Figure 4.10 reveals the essential on
how the ABH works. By looking at the spectra it can be seen that, while
all the cavities get excited at low frequencies, each spectra starts to decay,
at some particular frequency, in a sorted way. It is remarkable that the first
decaying spectra correspond to the last cavities, when the last spectrum re-
lates to the first cavity. When the incident field reaches the last cavities

103



its high frequency components have already disappeared through the excita-
tion of the resonances in all previous cavities. In fact, the ABH works as a
rainbow trapping absorber where the resonances of the cavities are the main
mechanism playing a role in the absorption process, not the ABH effect itself.

4.3.5 Influence of the ABH final wall

The boundary conditions at wall ΓL are modified in order to study its in-
fluence on the overall ABH performance. The case of a linear ABH with
20 rings and µ = 0.005 at walls is considered, while only the condition re-
garding the final wall at the end of the termination is changed. Namely, the
cases of Sommerfeld condition (µ = 1) and rigid wall (µ = 0) are considered.
The reflection coefficient for the two cases is depicted in Figure 4.11. In the
case of the Sommerfeld condition, the lower frequencies of the wave continue
propagating towards the right and they do not notice the impact of the ABH
geometry. In fact, in an extreme case the reflection coefficient would be zero
at very low frequencies while the opposite occurs if the termination is rigid.
In this last case, the low frequency wave get totally reflected as when en-
countering a rigid flat wall and the reflection coefficient is one. Therefore,
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Figure 4.11: The wall at the end of the ABH termination has an influence only at low
frequencies (the last cavities).

the two reflection coefficients differs at low frequency, while they coincide
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at middle-high frequency within the considered range. This goes inline with
the findings of (Mousavi et al., 2022). Moreover, it is to be noted that is
coherent with the results from the previous sections: since the low frequen-
cies are absorbed by the rings placed closed to the ABH termination, in this
range it becomes evident the influence of the final wall. On the contrary,
the conditions over ΓL do not affect the ABH performance at high frequency,
since they are absorbed by the rings placed at the entrance of the retarding
structure.

4.3.6 Occlusion of the first cavities

Motivated by the previous findings, a new design of the ABH termination
can be proposed. In fact, the first cavities would absorb frequencies much
higher than the cutoff frequency of the tube. Therefore, they can be oc-
cluded (see Figure 4.12) and a very similar ABH performance is obtained
(see Figure 4.13). Moreover, in the profile occluding the first cavities, it is
not necessary to put some absorption (see Figure 4.14). These results can be
very important from a manufacturing point of view.

Figure 4.12: Two different views of the same geometry: linear ABH with 16 cavities and 4
occluded.
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Figure 4.13: Comparison between reflection coefficients for configurations with 20 and 16
cavities (4 occluded), for linear (top) and quadratic (bottom) order, with µ = 0.005 (left)
and µ = 0.001 (right).

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1
ABH 20 linear, mu=0.005

f [Hz]

|R
|

 

 
16 cavities, rigid profile

16 cavities

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1
ABH 20 linear, mu=0.0005

f [Hz]

|R
|

 

 
16 cavities, rigid profile

16 cavities

Figure 4.14: Comparison between linear profile with absorption and without it. Linear ABHs
with µ = 0.005 and µ = 0.0005.
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4.4 Conclusions

Four main ABH configurations have been simulated through the Finite Ele-
ment Method. The influence of parameters, such as the number of rings and
the boundary admittance coefficient on the reflection coefficient of the ABHs
have been studied. Such quantity is a great indicator of the ABH perfor-
mance and it has been computed with a numerical adaptation of the classical
two-microphone transfer function (TMTF) method. As expected, augment-
ing the number of rings leads to an improvement of the ABH performance,
although it can be detrimental from the manufacturing point of view, and
it increases the number of oscillations in the reflection coefficient. Similarly,
increasing the boundary admittance coefficient results in higher absorption.
Moreover, pressure spectra at several points located at the center line of the
ABH have been computed and visualized. With this result, the general be-
havior of the ABH can be understood and the relationship between cavities
and range of absorbed frequencies is observed. Such behavior can be appre-
ciated also by considering different conditions at the ABH final wall (such as
Sommerfeld condition and rigid wall) and visualizing their influence on the
reflection condition. Finally, the visualization of the pressure field evolution
shows an excellent functioning of the ABH with a very small quantity of
reflected wave.
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Chapter 5

Conclusions and future work

5.1 Conclusions

This thesis has focused on the semi-analytical and numerical characterization
of acoustic black holes in duct terminations. Specific conclusions and discus-
sions have already been presented at the end of each chapter, so this section
will briefly describe the main contributions of the thesis.

These can be summarized as follows:

1. A theoretical framework for the analysis of ABHs has been pre-
sented in Chapter 2. This is achieved through the variational formulation
of the problem (a Helmholtz equation with spatial-dependent wavenum-
ber), whose solution is found using Gaussians as admissible basis func-
tions. The ABH modes are computed via an eigenvalue problem formu-
lated following a similar approach. In addition, the dependence of the
shape and distribution of the modes on the residual radius and damping
makes it possible to clarify the occurrence and disappearance of oscilla-
tions in the input admittance and reflection coefficient of the ABH at
different frequencies.

This has resulted in the publications (J2) and (C2), see Section 5.3.

The aim of these publications is to contribute to the comprehension of
the behavior of theoretical or ideal ABHs in duct terminations. In fact,
since the original proposal in (Mironov and Pislyakov, 2002), the ma-
jority of research efforts on ABHs has been devoted to their practical
realization. But, further explorations of ideal ABHs can be very impor-
tant to better understand their behavior and provide hints for industrial
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designs. While in (Mironov and Pislyakov, 2002) it was proposed to
introduce a length imperfection in order to overcome the singularity at
the ABH termination, in (J2) and (C2) a rigid residual surface is con-
sidered, which is analogous to the residual thickness for ABHs in beams
and plates (see, Krylov, 2004; Krylov and Tilman, 2004; O’Boy and
Krylov, 2011). The solution of the Helmholtz equation with spatially
varying wavenumber could be computed via a high-order WKB expan-
sion (as done in (Karlos et al., 2019) for ABHs in beams) or through
the Bremmer series for the equation (Bremmer, 1951; Atkinson, 1960;
Doc et al., 2016). However, the former implies dealing with a series that
tends to diverge, while the latter carries difficulties with the evaluation
of numerical integrals and the imposition of complex boundary condi-
tions. Those are the main reasons for the proposed approach in Chapter
2, which has been validated against FEM results.

2. A formal proof of the consistency of the TMM solution has been
presented in Chapter 3. The TMM provides a first step towards the char-
acterization of more realistic ABHs, than those analyzed in Chapter 2.
The proof relies on showing the equivalence between the governing equa-
tion of an acoustic wave propagating inside a duct with an inner radius
decreasing by according to power-law and the equation of wave propaga-
tion in a duct filled with a metafluid with power-law increasing density.
The Transfer Matrix Method (TMM) can be used to solve the latter and
it is shown that the TMM solution tends to the continuous one when
the number of metafluid layers (equivalently the number of rings and
cavities in the ABH termination) tends to infinity. Finally, the TMM is
used to compute the reflection coefficient for linear and quadratic ABH.
Their behavior and speed of convergence, depending on the small imper-
fection introduced at the end of the termination, are briefly discussed
and analyzed.

This work has been published in (J1), see Section 5.3.

The TMM is a standard method widely used in many areas of physics,
such as the study of vibrations of complex structures (Kang et al., 2016)
and articulatory speech synthesis (Sondhi and Schroeter, 1987), just to
mention a few. Generally, the main assumption consists in considering
uniform physical properties over finite layers. That is, a discretization of
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the domain is performed. Prior to the contribution provided in (J1), the
behavior of the TMM in the limit case where the discretization tends to
the continuous problem (that is, the number of layers tends to infinity
or their width vanishes) has not been explored. Although in (Guasch et
al., 2017) it was showed that the TMM can be used to study and ana-
lyzed practical realizations of ABHs in duct terminations, in (J1) it has
been proved that the TMM solution tends to the continuous one, which
certifies the validity of the method. To provide a rigorous demonstra-
tion, the concept of metafluid (Cummer et al., 2016) has been used. An
ABH based on the equivalence between the generalized Webster equa-
tion governing acoustic plane wave propagation in the ABH and the wave
equation for a metafluid with a power-law varying density was recently
experimentally tested in (Mironov and Pislyakov, 2020).

3. Preliminary FEM results for ABHs in duct terminations have
been presented in Chapter 4. This consists in solving the wave equa-
tion in mixed form in a simulated impedance tube equipped with linear
and quadratic ABHs. The reflection coefficient, that is the indicator of
the ABH performance, is computed via a numerical adaptation of the
two-microphone transfer function method (TMTF). The influence of the
ABH behavior on many parameters such as the ABH order, the number
of rings and the absorption coefficient at walls is studied. Moreover, the
general behavior of an ABH in duct terminations is understood and the
relationship between cavities and damped frequencies is described.

This work has been presented in (C1), see Section 5.3.

When (C1) was presented, to the best of authors knowledge it was the
first work applying FEM to ABHs in duct terminations. In fact, the
theory was already formulated in (Mironov and Pislyakov, 2002), first
experiments were carried out (El Ouahabi et al., 2015; El Ouahabi et
al., 2015b) and, as a consequence of the discrepancy between theoret-
ical and experimental results, methods to better understand the ABH
performance, such as the TMM (Guasch et al., 2016b; Guasch et al.,
2017), began to be investigated. While the FEM drawback is its com-
putational cost, the main advantage is that it relies on less assumptions
than semi-analytical methods and the TMM, therefore providing results
closer to reality. This allowed to visualize the wave propagation inside
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ducts equipped with an ABH, something that it was not possible in the
aforementioned works. Thereby, ABH cavities were observed to interact
with each other and to respond in different ways depending on frequen-
cies. In more recent FEM works (Cervenka and Bednaŕık, 2022) and
(Mousavi et al., 2022) an explanation of the relationship between the
absorption process in the ABH and the role played by cavity resonances
and the different types and damping is provided. This has been achieved
by simulating the linearized Navier-Stokes equations, which can take
into account visco-thermal losses naturally or by simulating modified
Helmholtz equations, respectively. These aspects were not considered in
(C1), where only the losses due to the wall boundary admittance were
taken into account.

5.2 Future work

The work contained in this thesis leaves several lines of research open for
future exploration.

• Periodic acoustic black holes in duct terminations deserve future
attention. They have been recently proposed in (Mi et al., 2022) showing
strong attenuation of the sound transmission loss in the low-frequency
range thanks to Bragg scattering in addition to the ABH effect at high
frequencies. Therefore, such configuration could serve as a broadband
absorber. Moreover, band gaps could be achieved, suggesting the idea
that periodic ABHs in ducts could be used for efficient wave filtering.
In this thesis, periodic ABHs have not been taken into account, being
a single ABH termination with a closed rigid end the subject of study.
However, the theoretical, TMM and FEM approaches in Chapters 2, 3
and 4 could be used to calculate reflection, absorption and transmission
coefficients of periodic ABHs. In fact, the TMM was used in (Mi et al.,
2022) to compare experiments with theoretical predictions.

• Improvement of the ABH performance at low frequencies. As
an alternative to periodic ABHs, in (Zhang et al., 2021) an ABH in a duct
termination is combined with micro-perforated panels (MPPs) to achieve
broadband sound absorption, including the low-frequency range. Also,
in (Liang et al., 2023) the sound absorption of ABHs with MPP is studied
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with FEM. More research in the topic needs to be done. A parametric
study could be held to find an optimal structure for sound absorption
at low frequencies. Therefore, the method used in Chapter 4 could be
a starting point to achieve this. On the one hand, the computational
domain could be equipped with micro-perforated panels. On the other
hand, a study on the position of the micro-perforation, that might be
not uniform and grouped in a localized area of the domain, could help
improving the ABH performance at low frequencies.

• Muffler’s design inspired by ABHs. In (Sharma and Umnova, 2018)
3D printed silencers based on the acoustic black hole effect have been
studied numerically and validated experimentally. Also, in (Sharma et
al., 2017) transmission loss, absorption and reflection coefficients are
analyzed for outer flare shaped mufflers. In (Bravo and Maury, 2023), a
fully-opened ABH-type silencer made up of annular cylindrical cavities is
modelled, optimized and tested to achieve full dissipation of the incident
energy over a wide frequency band. As a future work, numerical and
experimental aero-acoustic approaches should be carried out in order
to further assess how flow-induced noise will influence the ABH effect.
Moreover, other power laws for cavity radii may be explored.

• Mean flow and thermal effects. For mufflers inspired on ABHs
the effects of mean flow in the duct and also thermal effects may be
considered (see (Bravo and Maury, 2023) for initial consideration of mean
flow effects). Neither of them were considered in the TMM and FEM
simulations of Chapters 3 and 4, respectively. In (Liang et al., 2023) the
sound absorption of an ABH with micro-perforated panels is studied, but
neither mean flow or thermal effects are considered. This is important
if one thinks of practical muffler design for automotive exhaust systems,
ventilation and air-conditioned systems, etc.

• ABHs for room acoustics Another research field would be the study
of the ABH effect applied to architectural acoustics. One can imagine
to add one or several ABHs on a wall or ceiling and analyze how they
influence the acoustic parameters of the room, such as the reverberation
time. The theoretical and methodological knowledge gained in this thesis
would help to characterise how ABH parameters could influence room
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acoustics. The optimal location of the ABHs, the possibility of using
ABHs of different geometries, etc. should be studied.

5.3 Publications

Academic journals

(J2) Jie Deng, Oriol Guasch and Davide Ghilardi, ”Solution and analysis of
theoretical sonic black holes in duct terminations”, Journal of Sound
and Vibration, Submitted.

(J1) Oriol Guasch, Patricia Sánchez-Mart́ın and Davide Ghilardi, (2020) ”Ap-
plication of the transfer matrix approximation for wave propagation in a
metafluid representing an acoustic black hole duct termination”, Applied
Mathematical Modelling, 77, pp. 1881-1893.

International conferences

(C2) Jie Deng, Oriol Guasch and Davide Ghilardi, ”Gaussian series for sonic
black holes in duct terminations”, 10th Forum Acusticum 2023, Septem-
ber 11-15, Turin, Italy, Accepted.

(C1) Davide Ghilardi, Marc Arnela and Oriol Guasch, (2018) ”Finite element
simulations of the acoustic black hole effect in duct terminations”, 6th
Noise and vibration emerging methods (NOVEM2018), May 7-9, Santa
Eulària des Riu, Ibiza, Spain.
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