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Abstract 

Deciphering the mechanisms of human declarative memory is one of the main 

goals of neuroscience. Theoretical models such as Standard Consolidation Theory 

(Alvarez and Squire, 1994) and the Multiple Trace Theory (Nadel et al., 2000) have 

led the memory research field for the last two decades. However, with recent advances 

in research, the highly dynamic nature of memory systems seems to be oversimplified 

by these classic theoretical models, especially in the context of answering how 

memories may be formed as the experience unfolds and why specific episodes after 

only one-time exposure can be remembered over a long period but others not. 

It has been reported in recent memory studies the existence of an immediate post-

stimulus activity in the hippocampus following the detection of an event boundary and 

its predictive role in subsequent memory performance (Ben-Yakov and Dudai, 2011). 

It is well accepted that encoding of cohesive episodes requires integration of 

information that is likely to engage offline processes, which in rodents are mainly 

supported by mechanisms that enable replay of the sequential reactivation of 

hippocampal place cells that represent previously experienced trajectories. According 

to the latest evidence from human studies, this brain activity time-locked to the offset 

of the event boundary might reflect a rapid memory reactivation of the just-encoded 

sequence episode as such memory reactivation showed high neural similarity with 

neural activity elicited during the previous episode encoding phase (Sols et al. 2017; 

Silva et al., 2019).  

Here, aiming to advance the understanding of why, when, and how immediate 

post-encoding memory reactivation in humans may be associated with memory 

formation, we conducted three EEG studies to explore its defining neural features that 

support the rapid transformation from experience to memory representation once the 

end of the event is conceived, a mechanism that we believe might contain the key to 

understand the human memory systems. 

In Study 1, we first explored the specific post-encoding neural signature that 

promotes the rapid - ‘one-shot’ - learning of an unfolding episodic event. We 



 xii 

speculated that such a process could be achieved by reactivating the neural patterns 

elicited during initial encoding to stabilise the memory trace beyond the past learning 

experience. Using a sequential encoding paradigm, we identified the neural trace of 

memory reactivation of novel episodic picture sequences elicited particularly at the 

episode offset after the event sequences were completed. And importantly, the degree 

of the elicited neural reactivation was predictive of memory recollection of an encoded 

episode. Moreover, memory reactivation was only present at the offset of sequences 

that could be perceived as meaningful episodes.  

We then took a further step to explore the representational nature of this episodic 

immediate offset-locked neural activity supporting the recollection of the just encoded 

experience. In Study 2, participants encoded trial-unique combinations of face-object-

scene picture triplet sequences to be subsequently recalled in a test. We successfully 

replicated the elicitation of the post-encoding neural reactivation mechanism at the 

event offset period and its functional role in promoting the event episode memory 

formation. Then using a pattern classifier, we discovered that rapid offset-locked 

signals triggered reactivation of a detailed representation of the elements of a just-

encoded experience to be bound as a cohesive episodic memory in the long term. 

Finally, we explored whether and how the congruence of an upcoming element 

within an unfolding event would influence rapid memory reactivation and shape long-

term memory. In Study 3, participants encoded episodic naturalistic sequences 

depicting everyday activities followed by a target object image. We found that the 

perceived incongruence triggered stronger neural reactivation of the preceding event 

sequences, though they were less accurate to be remembered. In two follow-up 

behavioural experiments, we further found that the increase in accuracy in recognition 

memory for the congruent object was also accompanied by a decreased detailed item 

representation but a stronger association between the object and the preceding 

context. 

Our results from the three studies suggested that the post-encoding reactivation 

represents a crucial mechanism for promoting the rapid formation of unique and 

meaningful episodes; its elicitation triggers the reinstatement of a detailed 

representation of experience-specific episodic elements to be bound as a cohesive 
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memory trace; and it relies on a flexible mechanism sensitive to the top-down 

expectancy driven by context congruence.  

Altogether, these findings shed light on the neural mechanisms that support the 

rapid learning of novel episodic events that unfold over time and advance the 

understanding of immediate post-encoding memory reactivation in humans that 

serves to transform experiences into long-term memory representations. 
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Resumen 

Descifrar los mecanismos de la memoria declarativa humana es uno de los 

principales objetivos de la neurociencia. Modelos teóricos como la Teoría de la 

Consolidación Estándar (Standard Consolidation Theory, Álvarez y Squire, 1994) y la 

Teoría de la Huella de Memoria Múltiple (Multiple Trace Theory, Nadel et al., 2000) 

han liderado el campo de investigación de la memoria durante las últimas dos 

décadas. Sin embargo, los avances recientes en la investigación sugieren que estos 

modelos teóricos clásicos parecen estar simplificando en exceso la naturaleza 

altamente dinámica de los sistemas de memoria. Especialmente al tratar de responder 

cómo se pueden formar los recuerdos a medida que se desarrolla la experiencia, así 

como por qué ciertos episodios pueden ser recordados durante un largo período 

después de una sola exposición, pero otros no. 

En estudios de memoria recientes se ha detectado la existencia de una actividad 

post-estímulo en el hipocampo. Dicha actividad aparece inmediatamente tras la 

detección de un límite de evento jugando un papel predictivo en el rendimiento de la 

memoria posterior (Ben-Yakov y Dudai, 2011). Es comúnmente aceptado que la 

codificación de episodios cohesivos requiere la integración de información que 

probablemente involucre procesos offline. En roedores, estos procesos están 

apoyados principalmente por mecanismos que permiten la reproducción de la 

reactivación secuencial de las células de lugar del hipocampo, representando 

trayectorias previamente experimentadas. De acuerdo con la evidencia más reciente 

en estudios con humanos, esta actividad cerebral anclada en la ventana temporal que 

sigue al límite del evento podría reflejar una rápida reactivación de la memoria del 

episodio recién codificado. Este fenómeno se daría a cabo ya que dicha reactivación 

de la memoria muestra una gran similitud con la actividad neural provocada durante 

la fase de codificación del episodio anterior. (Sols et al. 2017; Silva et al., 2019). 

Con el objetivo de avanzar el conocimiento de por qué, cuándo y cómo la 

reactivación de la memoria posterior a la codificación en humanos puede estar 

asociada con la formación de la memoria, llevamos a cabo tres estudios de EEG para 
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explorar sus características neurales definitorias que apoyan la rápida transformación 

de la experiencia a la representación de la memoria una vez concebido el final del 

evento, el mecanismo que creemos que podría contener la clave para comprender los 

sistemas de la memoria humana. 

En el Estudio 1, primero exploramos la propiedad neural posterior a la codificación 

que promueve el aprendizaje rápido -"de una sola vez"- de un evento episódico en 

desarrollo. Especulamos que dicho proceso podría lograrse reactivando los patrones 

neurales provocados durante la codificación inicial para estabilizar la traza de la 

memoria más allá de la experiencia de aprendizaje. Usando un paradigma de 

codificación secuencial, identificamos el rastro neural de la reactivación de la memoria 

de nuevas secuencias de imágenes episódicas provocadas particularmente en la 

ventana de tiempo posterior a la finalización de las secuencias de eventos. Sin 

embargo, lo más importante fue que el grado de reactivación neural provocada predijo 

el posterior recuerdo de la memoria de un episodio codificado. Además, la 

reactivación de la memoria solo estuvo presente al final de aquellas secuencias que 

podrían percibirse como episodios con sentido. 

Luego dimos un paso más para explorar la naturaleza representacional de esta 

actividad neural anclada al límite de evento que apoya el recuerdo de la experiencia 

recién codificada. En el Estudio 2, los participantes codificaron combinaciones únicas 

de secuencias de tríadas formadas por imágenes de rostros-objetos-escenas para 

recordarlas posteriormente en una prueba. Reproducimos con éxito la elicitación del 

mecanismo de reactivación neural posterior a la codificación seguido al límite del 

evento y su papel funcional en la promoción de la formación de la memoria del 

episodio. Luego, utilizando un clasificador de patrones, descubrimos que las señales 

rápidas ancladas al límite del evento desencadenaron la reactivación de una 

representación detallada de los elementos de una experiencia recién codificada para 

unirse como una memoria episódica cohesiva a largo plazo. 

Finalmente, exploramos si y cómo la congruencia de un elemento próximo dentro 

de un evento en desarrollo influiría en la reactivación rápida de la memoria y formaría 

la memoria a largo plazo. En el Estudio 3, los participantes codificaron secuencias 

episódicas naturalísticas que representan actividades cotidianas, seguidas de una 

imagen de un objeto. Descubrimos que la incongruencia percibida desencadenó una 
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reactivación neural más fuerte de las secuencias de eventos anteriores, aunque la 

probabilidad de ser recordadas era menor. En dos experimentos conductuales de 

seguimiento, encontramos además que el aumento en la precisión en la memoria de 

reconocimiento para el objeto congruente también estuvo acompañado por una 

representación menos detallada del elemento, pero una asociación más fuerte entre 

el objeto y el contexto anterior. 

Nuestros resultados de los tres estudios sugirieron que la reactivación posterior a 

la codificación representa un mecanismo crucial para promover la formación rápida 

de episodios únicos y con significado; su elicitación desencadena el restablecimiento 

de una representación detallada de elementos episódicos específicos de la 

experiencia para unirlos como una traza de memoria cohesivo; y se basa en un 

mecanismo flexible y sensible a la expectativa de control arriba-abajo (top-down 

control) impulsada por la congruencia del contexto. 

En conjunto, estos hallazgos ayudan a esclarecer los mecanismos neurales que 

apoyan el aprendizaje rápido de nuevos eventos episódicos que se desarrollan con el 

tiempo y contribuyen al avance del conocimiento de la reactivación inmediata de la 

memoria posterior a la codificación en humanos que sirve para transformar 

experiencias en representaciones de memoria a largo plazo. 
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Chapter 1. Introduction 

 

 

 

 

 

1.1. Historical background of memory studies 

Human memory is a broad term. Even limiting its definition to a specific cognitive 

process, memory still seems to be a somewhat subjective concept that refers to a 

particular ability of living entities. One can intuitively describe memory as the feeling 

of being immersed in the past events of one´s own, the vivid mental image of one´s 

dearest friends, or even the capacity to remember a certain number of new words in 

a short time when learning a new language. Despite the discrepancy in one´s own 

vision to the question ‘What is memory?’, there is a converging point on agreeing that 

all those subjective feelings that are termed as part of memory ability represent the 

core part of being a human. Throughout history, many great minds have been amazed 

by the flexible yet complex nature of memory and pondered the essence of memory 

as a subject of study. The way they framed the questions and the approaches they 

adopted gradually contributed to parsing the generic thinking about the term ‘Memory’ 

into more fine-grained multidisciplinary lines of research with distinct conceptual and 

methodological perspectives. 
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One of the earliest reflections on memory can be traced back to Aristotle’s book On 

Memory and Reminiscence. From a philosophical perspective, he defined memory as, 

different from perception or conception, a state or affection of the two conditioned by 

a lapse of time. He believed that the mind is like an unscribed tablet (blank slate) with 

memory analogous to the written marks on it. Much later in the 18th century, English 

philosopher David Hartley built on the concept of the mind as a ‘blank slate’ and further 

extended it to the idea of linking the phenomena of perceptions to their physical entity 

in the brain. In his proposal, perceptions are caused by the vibration of small particles 

in the nerves. These variations fainted and left similar traces in the brain, which 

generates the sensation of memory. The connection between physiological and 

psychological facts emerged. However, it was only until the end of the 19th century 

that Ebbinghaus first showed that it was possible to study memory experimentally 

(Ebbinghaus, 1885). His method of simplifying experimental situations was later 

advanced with more sophisticated control of factors and conditions, leading to a direct 

interpretation of the association between stimuli and response. Building on the 

advances in behavioural methods, with later development of Gestalt psychology and 

Neurology, memory studies, among other mental operations, had gradually shifted to 

be studied as an internalised operation which requires a deep understanding of its 

biological foundation. 

Donald Hebb, possibly inspired by the neuron morphology discovered by Ramón y 

Cajal, proposed in 1949 that learning is supported biologically by long-term synaptic 

changes between neurons. Hebb´s model (Hebb, 1949), recited widely in nowadays´ 

textbooks as "cells that fire together wire together", for the first time bridged the 

psychology and biology and opened up a new perspective to bridge memory, as 

elusive as might be the term at the time, to a neural activity with tangible traces in the 

brain.          

Theoretical breakthroughs in science are generally initiated from advances in 

methods development and new technology. In the field of memory studies, there were 

specific historical points where the emergence of new technologies overturned the 

course of the discipline and laid down the tool base to make the brain mechanisms 

‘observable’. For example, in 1929, German psychiatrist Hans Berger first introduced 

a new technique for measuring electrical current in the human brain, which he named 
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electroencephalogram recordings. After nearly 100 years, electroencephalography 

(EEG) remains one of the most effective imaging techniques widely used by 

neuroscientists. It is a non-invasive technique that directly measures the brain's 

activity that results from neuronal firing by recording the summed electrical activity of 

many neurons at the scalp. Its high temporal resolution makes it an optimal tool to 

infer underlying neural mechanisms under experimental control on a millisecond-by-

millisecond basis. 

The scientific field of cognitive neuroscience got its name in the late 1970s. 

Leveraged by the new theoretical and methodological approaches, it targeted directly 

to unveil the physiological foundations behind the complex cognitive mechanisms. As 

one of the central topics in the nascent field, memory studies started to focus on the 

neural substrates underlining distinct memory processes. The modern era of memory 

research commenced. 

1.2. Episodic Memory 

In 1953, a 27-year-old young man with the initials HM underwent a neural surgery 

in an attempt to alleviate the severe seizure he had suffered since childhood. After 

successful resection of the bilateral Medial Temporal Lobe (MTL), the seizures got 

controlled. However, there was an unexpected and devastating outcome of the 

operation. He became severely amnesic. During the rest of his life, he lost the ability 

to generate new memories. The case of patient HM, with the real name Henry 

Molaison, revealed after his death in 2008, revolutionised the science of memory with 

valuable insights that allowed countless upcoming studies to explore the distinct 

segments of memory processes and the neural circuits underlie them. Suzanne Corkin, 

the leading scientist investigating the case, wrote in her book in memories of Henry 

Molaison: 

 Henry was famous, but did not know it. His striking condition had made him the subject of 
scientific research and public fascination. For decades, I received requests from the media to 
interview and videotape him. Each time I told him how special he was, he could momentarily 
grasp, but not retain, what I had said. […] He would have been proud to know how much his 
tragedy has benefited science and medicine. (Corkin, 2013. p xv-xvi).  

HM´s deficits in memory are centred in declarative memory, the ability to state what 

they know and remember explicitly. However, he showed intact capacity in non-
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declarative memory, the ability to acquire new motor skills or perform the learnt ones 

with no recollection of the learning experiences (Scoville & Milner, 1957; Cohen & 

Squire, 1980). Further, the specificity of HM´s impairment was prominent even within 

the range of declarative memory. He could somehow recall details from events 

experienced remotely in the past and retrieve remote semantic memory. The deficit 

was especially evident when facing the new learning experiences. 

The concept of episodic memory was expounded later by Tulving in 1972. He 

emphasised the critical distinction between knowing and remembering. While the 

former refers to the semantic knowledge or facts about the world, the latter represents 

memory about personally experienced unique episodes (Tulving, 1972). His 

taxonomic distinction between episodic and semantic memory laid the conceptual 

foundation for subsequent memory studies on the two parallel yet dependent 

information processing systems. The concept carried over gradually in later studies to 

subordinate stages of processing, from how memories were acquired (encoding), 

organised and stored (consolidation) to how memories can be afterwards recollected 

(retrieval). 

Hallmarks of episodic memory can be intuitively conceived from a subjective point 

of view. As vivid as they might feel, they are however not a literal record of one’s 

experiences (Conway, 2009). Conway summarised systematically nine properties of 

episodic memory: 

1. Contain summary records of sensory-perceptual-conceptual-affective processing.  

2. Retain patterns of activation/inhibition over long periods.  

3. Often represented in the form of (visual) images.  

4. They always have a perspective (field or observer).  

5. Represent short time slices of experience.  

6. They are represented on a temporal dimension roughly in order of occurrence.  

7. They are subject to rapid forgetting.  

8. They make autobiographical remembering specific.  

9. They are recollectively experienced when accessed. (Conway, 2009) 

As we can see, although these properties resonate easily as they can be intuitively 

deduced at a conceptual level, questions such as: how is episodic memory 

represented in the brain? Or, how can it be acquired, stored and retrieved? may not 
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have a trivial answer. Exploring these questions requires a deep understanding of the 

underlying mechanisms, structurally and functionally, to which the methodological 

approaches are not always straightforward enough to build a direct link. Since the first 

study by Ebbinghaus (1885) with a simple form of stimuli such as lists of words or 

pictures, memory studies have been expanding the scope of focus with more flexible 

experimental designs to pinpoint the targeted process. In terms of episodic memory, 

studies have explored more sophisticated stimuli and test measures to restore 

ecological validity. And thanks to the rapid advances in neurophysiological and 

neuroimaging techniques, behavioural outcomes under new episodic memory 

measures can be attributed to their neural underpinnings. Together, they have helped 

deconstruct the complex episodic memory formation processes into finer-grained 

structural and functional components. However, accumulating empirical evidence 

gradually showed that the memory system is somewhat flexible and adaptive to the 

richness of highly dynamic spatial-temporal features contained in the events we 

experience daily. It came to be noticed that when exploring the human episodic 

memory, the aspect of ‘episodic’ might weigh just as much as that of ‘memory’. In other 

words, studies need to take into account that an event or an episode is not only 

comprised of a piling up of external stimuli, such that the formation of episodic memory 

can be treated as a simple accumulation of information processing at different stages. 

But instead, the properties of memory activities need to be further explored within the 

context of unfolding experience, under the constraints of its intrinsic dynamic nature. 

Understanding the mechanisms of these activities might be the only path to unveil the 

fundamental yet elusive question: how does an episode become an episodic memory, 

and what are the relevant mechanisms that determine whether or not an episode could 

be remembered in the long term. 

1.3. Event 

Let´s take a moment to mentally simulate a regular day for Mr. D. He wakes up in 

the early morning like usual. After a quick breakfast at home, he heads for the office 

by metro. His workplace is a half-hour travel distance from home, and he usually 

browses the phone to spend his time. His job consists of providing after-sales service 

for the company's products, which requires him to attend to the incoming calls most of 
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the time. He has lunch with some colleagues in his group in the restaurant under the 

company building they used to go to, chat over work-related topics and novelty in each 

other´s life. He continues the work over the afternoon until all things on the agenda 

clear out. After leaving work, he goes to catch up with one of his old college friends in 

a bar. He walks back home after a cup of drink. As tedious as the day might be, there 

are still several moments that he can vividly remember when asked about by others 

or ponder on by himself. The memory of those moments might stick with him for a 

considerable amount of time or even for the rest of his life. However, when recalling 

these moments, he might be surprised by the fact that he appears to ‘jump in’ one 

scene by another with no apparent feeling of transition in the middle. He might 

remember walking on the road, sitting in the office, or drinking in the bar. Still, those 

scenes are represented in a discreet manner with a minimised sensation of continuity 

as they should have been since the experience of the physical world contains no break 

in time. As a matter of fact, even by describing it from a third-person perspective, the 

narrative itself turns out to be segmented, in a similar form of self-reported recall. As 

we can see, this partitioning sensation of activity consists of one of the most intriguing 

phenomena when thinking about memory: there exists a transition from the continuous 

day-to-day experience to the discrete memory pieces or segments represented in our 

brains.    

1.3.1. An event and its context 

How do we segment the unfolding experience into event segments, and when does 

this transition happen? To answer these questions, the first step is to determine what 

an event consists of. Following the formal definition of the term ‘event’ by Zacks and 

Tversky: "a segment of time at a given location that is conceived by an observer to 

have a beginning and an end" (Zacks and Tversky, 2001, p. 17), the event represents 

a specific chunk of time embedded in the continuous stream of life with a various 

temporal length ranging from seconds to hours and days or even longer. Events might 

be directed to a specific goal (e.g., writing an article; or playing football) or simply 

display natural occurrences (e.g., an earthquake) (Zack et al., 2007). However, under 

the context of memory studies, the events we focus on here will be centred on those 

that contain cognitive activities anchored in the first-person´s perspective. 
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A typical event contains various features that are usually associated with each 

other. The list could include an animated agent, often human, a place or series of sites 

where the event takes place and objects. The link connecting these features creates 

a common context for one specific event. However, even under restrictive laboratory 

settings, context remains a vague and elusive term in memory research, as it could 

refer to anything represented in the participant´s brain during the experiment (Manning 

et al., 2015). Smith and Vela (2001) reviewed studies of incidental environmental 

context-dependent memory in humans and found reliable context effects generated 

by various types of experimental settings, ranging from features of the stimuli such as 

the colour and the spatial information to the external environment or even thoughts 

about encoded items. Therefore, instead of defining context by the type of information, 

Howard and Kahana (2002) focused specifically on the time scale of information 

representation. The Temporal Context Model (TCM) was thus proposed to describe 

how temporal flow is embedded in the context and how it may alter the memory 

performance at the behavioural level.  

TCM poses two different yet interconnected layers of computational elements. The 

item layer refers to the specific encoded stimuli, and the context layer represents the 

series of encountered stimuli over the temporal flow. A simplified example was 

described in Manning et al. (2015) in the case of learning a list of words (Figure 1.1). 

The encoding of the word ‘dog’ is represented both at the item layer and context layer. 

Fast activation of representation at the item layer becomes associated with the current 

state of the context layer. At the same time, the context layer gets updated with the 

new input item. However, the context layer carries information of all learnt items, and 

computationally speaking, it is formed by a running average of all previous states. This 

relatively slow update in the context layer thus creates an evolving context drift over 

time, continuously interacting with new inputs from the item layer. 
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Figure 1.1. The Temporal Context Model (TCM). The Temporal Context Model (TCM). The 
item layer contains the sensory representations of the words to be encoded (marked as 
circles). When an item is studied (in the current example, the fourth word ‘dog’ in the list), 
the specific item representation is activated (coloured in deep blue) while the rest items are 
silent (coloured in white). The representations in the context layer reflect a running average 
of item-layer activation, with the darkness of the colour standing for the weight of each 
representation. The current context state contains activation representations of all studied 
words in the list with a graded increase in strength over proximity. The arrows indicate an 
interaction between the two layers. (Figure adapted from Manning et al., 2015) 
 
 

Based on TCM, two well-known behavioural phenomena in memory research, 

namely the recency effect (Murdock, 1962) and the contiguity effect (Kahana, 1996), 

can be explained by the temporal position of encoded information at the context layer. 

The recency effect refers to cognitive bias in which those items, ideas, or arguments 

that came last are remembered more clearly than those that came at the beginning. 

TCM attributes the recency effect to the fact that the context at the end of item 

encoding assimilates more to the context of a test. Thus, the items associated with the 

end of the context can be more easily retrieved than those learnt at the beginning. The 

contiguity effect describes the stimuli initially encoded close in time become 

associated with each other. Later on, they are more likely to be activated together 

during recall. According to TCM, the contiguity effect rises when retrieving one item 

activates its contextual feature, probing the memory for more items associated with 

the same context. 

1.3.2. Brain representing event context  

An essential step in evaluating the validity of a theoretical model for a specific 

cognitive system consists in identifying the neural mechanisms underlying the 
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proposed processes. Many recent studies, leveraged by neuroimaging techniques, 

have been devoted to tracing the neural signatures supporting how the event is 

perceived and segmented from the stream of stimuli, aiming ultimately at revealing the 

underlined neural processes of the formation of memory from continuous experiences. 

To approach these questions, many studies focused their first step on exploring how 

the contextual information is represented in the brain and what neural mechanism 

tracks its changes over time. Studies have especially pinpointed the functional 

involvement of the Prefrontal cortex (PFC) as well as several regions in MTL 

(Especially the hippocampus (HPC)) in such processes. 

Prefrontal cortex   

As reviewed by Polyn and Kahana (2008), several properties make PFC a suitable 

candidate for tacking the representation of contextual information: neural activity 

patterns were found stable in PFC (Postle, 2006); it has been shown to be functionally 

involved in the formation of context (Brave et al., 2001); also, it was shown to possess 

the ability to selectively update activity patterns by the task demands (Frank et al., 

2001). Furthermore, it has been proposed a systematic organisation of 

representations across diverse areas in PFC for flexible information integration and 

generation of novel predictions (O’Reilly, 2010), thereby suggesting its functional role 

in providing a cognitive map of task space (Saez et al. 2015; Wilson et al. 2014). For 

example, Jenkins and Ranganath (2010) reported trial-to-trial changes in multivoxel 

activation patterns of rostrolateral PFC predicted successful encoding of temporal 

context, suggesting its direct involvement in the representation of time-varying 

contextual states in a manner similar to that proposed by TCM. Moreover, concordant 

with the drifting nature of encoding context, a recent study in Macaques (Cowley et al., 

2020) showed that a natural drift in perceptual behaviour, such as fluctuations in pupil 

diameter and hit rate, is accompanied by a slow drift in the spiking rate of neurons in 

multiple brain areas, including V4 and PFC. The slow drift in neuronal activity did not 

modify the sensory stimulus encoding itself. Instead, it represented the internal states 

that contribute to the decision-making process. 

On the other side, converging evidence was reported from lesion studies where 

damage in PFC disrupted episodic memory measured by tests of recognition and 

recall (Wheeler et al., 1995; Nolde et al., 1998), as well as the recollection of context 
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in which memory was initially encoded (Duarte et al., 2005). Altogether, these shreds 

of evidence imply the functional involvement of PFC in context representation and 

tracing facing the encoding of the unfolding environment. 

Hippocampus 

Hippocampus has been widely proposed to be linked to context-dependent 

learning, but theories diverged in its specific functional implication in the process (Fuhs 

and Touretzky, 2007; Hasselmo and Eichenbaum, 2005; Hirsh, 1974; Howard et al., 

2005; Jarrard, 1993; Nadel, 1995; Nadel and MacDonald, 1980; O’Keefe and Nadel, 

1978; Rudy and O’Reilly, 1999; Staresina, and Davachi 2008). The common putative 

role of the hippocampus lies in its crucial function in binding elements of our 

experience with contextual information (Davachi, 2006; Diana et al., 2007; 

Eichenbaum et al., 2007; Ranganath, 2010). Early work by O’Keefe and Nadel (1978) 

first linked the neural activity in MTL to spatial context representation. In their model, 

the core function of the hippocampus is to encode and maintain the spatial maps of 

the environment. This view has been updated over the years. Nowadays, the 

hippocampus has mainly been proposed to have a prominent role in relational learning, 

including integrating stimulus elements with a corresponding context (Cohen and 

Eichenbaum, 1995; Eichenbaum, 2004). Furthermore, studies have shown that the 

hippocampus also can be sensitive to context drifting. For example, evidence from 

rodents demonstrated that neural patterns in the hippocampus could evolve gradually 

over time. In a study conducted by Manns and colleagues (2007), hippocampal activity 

drifted over time in correspondence with the odours across lists, even when there was 

no requirement to remember the odours from one list to the next. Other studies also 

showed that hippocampal ensembles gradually changed neural patterns during spatial 

navigation tasks, even in the absence of explicit spatial memory tasks (Hyman et al., 

2012; Mankin et al., 2012). Such neural drift in the hippocampus thus suggests a 

neural representation for temporal information embedded in the context, enabling a 

contextual separation over a larger timescale.   
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1.4. From continuous experience to episodes  

As discussed, TCM focuses on time-stamping the drift of an event context and 

linking the variance in behavioural memory performance to the temporal evolution in 

a context. However, what is the driving factors that lead the context to drift? According 

to TCM, context drift, instead of a random process, is caused by changes in features 

associated with encoded stimuli. Such changes can be induced by the external 

environment. A simple example could be walking into another room, the changes in 

the brightness, the colour of the wall paint, the layout of furniture etc., all together 

inform the perceptual systems that it is time to update novel information to the yet 

upholding context representation. However, the drift of a context can also be driven 

by the intrinsic flow of mental states under stable external features. One could sit in 

the office the whole day in a changeless environment while spending the morning 

focusing on work and the afternoon eager to go home. The gradual drift of internal 

state may lead to conceiving the daily experience separately as a productive morning 

mode and an irritable afternoon mode. As we can see here, context drift is a relatively 

common outcome driven by a variety form of causes. Instead of being limited to a 

passive or automatic process, it can be internally generated to adapt sensitively to 

one´s top-down goals (Dubrow et al., 2017).  

1.4.1. Changes in context have an impact on memory  

There is a common phenomenon that many people report to have encountered in 

their daily life: sometimes, right after we get into another room, generally at the 

moment of passing through the door, we suddenly forget the initial purpose of going 

to that room. It seems that the sudden change of environment somehow interrupts the 

maintenance of our goal-directed memory. And instead of a gradual shift in 

environmental features, this ‘passing through the door’ moment represents more of an 

abrupt change of context rather than a relatively slow drift. In 2006, Radvansky and 

Copeland (2006) first explored this phenomenon in laboratory settings. They 

investigated the ability of people to retrieve information about objects while moving 

them through rooms in a virtual space. The results showed that information about the 

associated object was less accessible when there was a spatial shift (i.e., change of 
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rooms), which was indicated by a longer reaction time to the memory probe of the 

object and a higher error rate. The authors thus concluded the findings on the 

disruption of processing caused by spatial shifts. Indeed, if the memory system is 

highly susceptible to the context, as both theoretical models (Howard and Kahana, 

2002) and empirical findings (O’ Reilly and Rudy, 2001) suggested, it should not be 

surprising the fluctuation in contextual information may have an impact on the memory 

encoding of all associated items in that context. Such implications should be directly 

reflected at the behavioural level. Several upcoming studies further confirmed that the 

impaired memory caused by context drift could be replicated using various types of 

shifts in contextual features beyond spatial cues. A study by Swallow and colleagues 

(Swallow et al., 2009) used video clips to induce the contextual information for memory 

encoding of the containing objects. The transition from one video clip to another 

created a shift in context. They found that event boundaries, the moments when the 

situation is inferred to have changed, altered the accessibility of recently encountered 

objects, which can be reflected by a poorer ability to recognise its perceptual features. 

Ezzyat and Davachi replicated the effect with narratives containing context shifts 

marked by temporal event boundary cues in the form of text (Ezzyat and Davachi, 

2011). They found that participants’ long-term associative memory for information 

spanned across adjacent events was lower than their memory for information within 

the same event. 

Accumulating evidence showed that the encoding of stimuli is sensitive to their 

context, and changes in the context can induce a direct disturbance in memory-related 

performance. However, changes in the context do not always happen passively and 

gradually, as proposed by TCM. As seen in the studies mentioned above, context can 

shift abruptly and may be sensitive to top-down goals. Also, changes in the context 

can be induced by the manipulation of various types of stimulus (e.g., text, audio-visual, 

spatial), depending on the particular task environment. Altogether, it suggests that 

contextual drift is an active process (Dubrow et al., 2017). And more importantly, 

diverging in its driving factors, contextual shift concords with the same ethological 

consequence: we conceive an end of the previous event at the same time the next 

one commences, with an emerged boundary in time cutting off the string of the 

continuous stream of mental state. So, under the continuously unfolding context, what 

actually leads our brain to decide the moment of ‘closing’ on the current context 
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representation, wrapping up the past event as a whole, and start tracking the 

upcoming event?  

1.4.2. Event boundaries and prediction error 

As the experience unfolds, different neural states following the gradual drift in the 

context could lead identical stimuli to be perceived differently at different times (Polyn 

et al., 2009; Howard and Kahana, 2002). This process may further elicit the formation 

of event boundaries that the memory system may use to parse the continuous ongoing 

stream of experience into episodic segments (Polyn et al., 2009). Zacks and 

colleagues attributed the detection of event boundaries as transient errors in 

predictions, which refers to a mismatch between the inferred or expected upcoming 

situation and the actual outcome (Zacks et al., 2007, 2011; Reynolds et al., 2007). 

This prediction error may guide the process of segmenting continuous experience into 

meaningful chunks of events which construct the basis for memory formation. The 

Event segmentation theory (EST) (Figure 1.2) proposed a hierarchical information-

processing system to account for how the brain deals with the transition from 

continuous experience encoding to discrete event representations. The core process 

of such transition relies on a ‘gating mechanism’ that tracks the stability of contextual 

consistency and guides the re-organisation of context representations when updates 

are necessary. Such updates can happen in either a bottom-up or top-down manner. 

When the influence of the pathway from sensory input and perceptual representations 

to the event models increases as a prediction error of the current environment appears, 

the gating mechanism responds to it by resetting the context representation and 

leading the event model to a new state. In a similar way, top-down processing, driven 

by the input from event schemata, which are described as semantic representations 

extracted from previous experience, can also guide the update of the event model.  
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Figure 1.2. Schematic depiction of the event segmentation model. The arrows indicate the 
flow of information. The entrance of information from sensory inputs to event models is gated. 
Once there is a mismatch between predicted inputs and actual sensory input, a prediction 
error is generated. The detection of error lead event models to reset and get updated with 
new sensory inputs. Event schemata, the semantic representations extracted from 
experience, can also modulate event models by top-down control. (Figure adapted from 
Zacks et al., 2007). 
 
 

Reynolds and colleagues (2007) brought up five features of the hypothesised 

relationship between prediction error and event perception:    

1. Prediction error is greater during event boundaries relative to time points within an event. 

2. Stable contextual information improves the prediction of event sequences.  

3. A network can use gating signals occurring at event boundaries to learn and update internal 
context representations that reflect event knowledge.  

4. A network can use gating signals based on prediction error to reliably update internal 
context representations that carry event information and facilitate subsequent prediction. 

5. A network can use gating signals based on prediction error to learn internal context 
representations for events. 

These features highlighted the bottom-up influence in event perception particularly, 

outlining how a mismatch in perceptual input can appropriately update event 

representations, and brought valuable insights for empirical studies. Also, event 

models in EST are considered a working memory representation, supported at the 

neural level by simple transit activation with no permanent changes in synaptic weights. 

At the systems level, the temporary property of EST assimilates the concept of 

episodic buffer proposed by Baddeley (2000). In doing so, the model emphasised a 

working mechanism that keeps track of the processing of information from various 

sources, a prerequisite stage for memory formation in the long term. 
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Neural trace supporting the process from event segmentation to event update was 

reported in a recent study, where prediction errors were shown to disrupt hippocampal 

representations and lead to an update of episodic memory representations (Sinclair et 

al., 2021). While participants watched familiar video clips, the authors inserted 

interruptions before the expected endings to generate mnemonic prediction errors. 

Data from fMRI showed that the hippocampus elicited stable activity patterns as video 

narratives unfolded, suggesting a neural tracking of the ongoing contextual information. 

However, prediction errors disrupted these sustained representations and, at the same 

time, promoted the memory strength, both immediately and in the long-term (i.e., after 

a 1-day delay), which was reflected by the number of recalled details in the video. The 

author thus concluded that prediction error could guide memory update and prompt 

the hippocampus to stop tracing the ongoing prediction.  

Similar to EST, a recent theory attributes the detection of prediction error to being 

driven by latent cause inference (Gershman and Niv, 2010, 2012; Gershman et al., 

2010). According to the theory, people constantly infer the state of the world (i.e., the 

latent or hidden cause) based on observation statistics. In an example of a student 

sitting in the classroom, the external stimuli (e.g., desks, blackboard, the teacher, etc.) 

are associated with the inferred latent cause (e.g., an ongoing course). Discrepancy 

rises when the current sensory input no longer fits with the inferred situation (e.g., 

some students come in with birthday cake and candles in hand). In turn, this can 

generate large prediction errors urging the system to infer the new latent cause (e.g., 

a surprise party). Consequently, tracing the previous experience stops, and a new 

state commences with a distinct underlying latent cause. 

However, an event segmentation mechanism gated only by perceptually driven 

prediction errors is suboptimal since the perceptual changes in the environment are 

not always relevant or meaningful (O’Reilly, 2013). In line with this reasoning, a recent 

study showed that the boundary-induced memory effects appeared when the 

environment was stable, but such effects disappeared when changes frequently 

occurred (Siefke et al., 2019). These results indicated that the detection of prediction 

error alone might not be sufficient to drive event segmentation since its influence on 

the inference about the situation can be flexibly adjusted to the stationarity of the 

environment (Behrens et al., 2007, Nassar et al., 2010, 2012). In addition, the partition 



 16 

of continuous experience into smaller temporal units does not always happen due to 

external changes in the environment. For example, it has been shown that event 

representation can be generated and shaped following community structure (i.e., 

clusters of stimuli), where transition probabilities between stimuli (the basis of 

uncertainty and surprise) are uniform (Schapiro et al., 2013). It is possible, then, that 

event segmentation can be goal-directed or inference-based (Hard et al., 2011). This 

brings up the necessity to explore event segmentation as a dynamic mechanism, 

taking into account that boundaries can be conceived even when external changes 

are predictable (Shin and DuBrow, 2021). 

1.4.3. Event segmentation in the brain  

How does the neuroimaging data support the event segmentation model? The 

question can be further parsed into two subparts. The first consists of exploring ‘event’ 

representation: how the brain represents the hierarchical and structured properties of 

an unfolding event. And the second focuses on understanding the ‘segmentation’ 

mechanism. 

Research using continuous streams of stimuli (movies, videoclips) has been 

recently adopted, given its advantages in preserving the temporal dynamics of the 

stimuli with abundant details and the experimental control (i.e., comparable across 

participants). A study conducted by Hasson and colleagues (2004) reported a shared 

(i.e., across-participants) large extent of the human cortex stereotypically responsive 

to naturalistic audio-visual stimuli, suggesting an intrinsic cortical specialisation 

sensitive to the processing of the context of a realistic environment. The fine-organised 

hierarchy of such cortical specialisation was further explored in a later fMRI study 

(Hasson et al., 2008). By examining the neural activity while participants viewed silent 

movie clips, the authors found that early visual regions (primary visual cortex and the 

motion-sensitive area MT+) responded consistently for short timescales information 

processing regardless of disruptions in temporal structure, whereas higher-association 

regions (e.g., superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), 

the temporal-parietal junction (TPJ), and frontal eye field (FEF)) were associated to 

integrative processes that took long period.  
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To examine the neural underpinnings induced by the detection of event boundaries, 

Zacks et al. (2001) applied an fMRI scan to participants while viewing movies of 

everyday activities (e.g., making a bed, doing the dishes, etc.). Movies were watched 

twice. Participants viewed it passively the first time, and the second time, they were 

requested to press a button to indicate where they felt an event boundary occurred. 

An increase in neural activity at these event boundaries was found in the posterior 

cortex, including the occipital/temporal junction and Brodmann’s areas. Similar 

increases at event boundaries in these regions were also present during passive 

viewing. At the same time, the magnitude of increase in these regions was greater for 

coarse-event boundaries (larger temporal units) than for fine-event boundaries 

(smaller temporal units). Altogether, the results suggested the existence of a specific 

neural response at event boundaries, sensitive also to the temporal hierarchy of the 

event structure.  

Exploration of the two subparts of the question, namely how we first trace and then 

segment events, converged in a recent study by Baldassano and colleagues (2017). 

Using an fMRI data-driven approach, signals elicited during stimuli encoding were 

submitted to the Hidden Markov Model (HMM) to infer the current processing state. 

Such a state represents a limited time window where the neural pattern of the region 

remains relatively stable, suggesting the processing of the same piece of information. 

With changes in contextual information over time, pattern alternation in the fMRI 

signatures then leads the model to automatically identify event boundaries where the 

neural stability gets interrupted and updated. Based on the outputs of the HMM, the 

results first demonstrated that the topology of whole-brain neural activity for event 

processing showed a hierarchical property, with a shorter state in timescale at sensory 

regions and more extended events in high-order areas (including angular gyrus and 

posterior medial cortex), as well as a nested boundary structure from low to high 

processing layer (i.e., boundary a given layer was present at lower layer but not vice 

versa). In addition, these fMRI-inferred long event boundaries are closely related to 

human-annotated event boundaries. The results all suggested a brain-wide neural 

trace sensitive to parsing the ongoing experience into event segments. 

Altogether, both theoretical models and empirical neuroimaging data exploring the 

event segmentation mechanism converged on proposing that the segmentation of 
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ongoing experience is an efficient way to process the online information 

simultaneously across different hierarchical levels; at the same time, it can also help 

to reconstruct the perceived information for better long-term storage with the 

strengthened association. In line with this argumentation, further studies showed that 

items within and across event boundaries elicited distinct physiological and 

behavioural patterns: items within the events were strongly connected in memory 

(Speer and Zacks, 2005; Ezzyat and Davachi, 2011), preserved better the temporal 

order of episodic sequences (DuBrow and Davachi, 2013, 2014, 2016; Horner et al., 

2016; Heusser et al., 2018), and also elicited similar neural patterns when compared 

to items across events (Chen et al. 2017).  

Thus, the extensive physiological consequences observed at event boundaries do 

not only reflect the outcomes of the processing of ongoing experiences but also imply 

that the event segmentation mechanism has a functional role in organising memory 

for past experiences, contributing to the transformation from episode to memory. In 

other words, the event segmentation mechanism may not only be relevant for the way 

we perceive the world but also for how it is represented and persisted in the long term. 

1.5. Transforming a perceived event into an episodic 

memory unit 

As discussed in the previous section, human brain is actively engaged in tracing 

and segmenting continuous experience into meaningful units. Recent literature 

suggests this segmentation process also has a functional role in forming solid memory 

traces for segmented events for an extended period. To understand how this 

transformation is conducted, say, from a newly segmented episodic unit to a long-

lasting memory representation, we should first explore the biological basis of memory 

storage in the brain and then the neural mechanisms engaged in strengthening the 

newly formed storage after the initial encoding experience.  
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1.5.1. Neurobiological models of episodic memory  

The idea of linking memory with a physical entity in the brain originates from Semon 

in 1904, who introduced the term “engram” to describe the neural substrate supporting 

memory storage (Semon, 1923). This concept emphasises the possible existence of 

a group of neurons that encode and store specific experiences (i.e., episodic memory) 

(Tonegawa et al., 2015). Although it is commonly agreed that a memory trace 

implicates widely distributed brain circuits with no simple form of point-to-point unit-

based storage, searching for an engram remains an exciting research topic. 

Converging evidence from rodents and humans showed the critical role of the 

hippocampal formation in episodic memory (Scoville and Milner, 1957; Tulving, 1983; 

Nadel and Moscovitch, 1997; Aggleton and Brown, 1999; Lisman, 1999; Redish, 1999). 

At the anatomical level, hippocampal formation includes the hippocampus (CA fields), 

subiculum, dentate gyrus and the surrounding regions, including the entorhinal cortex, 

presubiculum, and parasubiculum (Andersen et al., 2006). One key structural feature 

of the hippocampus consists of its complex neuron circuits distinctive from regions of 

neocortical whose connections are largely reciprocal (Felleman and Van Essen, 1991). 

Certain parts of connections in the hippocampus are however unidirectional. For 

example, the perforant path, the primary hippocampal input source, consists of a one-

way projection from the entorhinal cortex to the dentate gyrus (DG). Moreover, within 

the hippocampus, granule cells in the dentate gyrus project through mossy fibres to 

CA3 pyramidal cells, which the latter further projects to the CA1 regions via Shaffer 

collaterals. All these projections constrain a one-directional flow of processing with no 

backward projection. The neocortical input into the hippocampus gets back to the 

entorhinal cortex from direct and indirect projection (intermediated by the subiculum) 

from CA1 after the aforementioned intrinsic circuit. Such unique structural morphology 

in the hippocampus, known as the tri-synaptic pathway, highlights the hippocampal 

circuitry formed by DG (synapse 1) to CA3 (synapse 2) and then to CA1 (synapse 3) 

(Andersen et al., 1971), lays as the biological basis supports the functional architecture 

of hippocampus network responsible for learning and memory.  

One of the most influential models of memory systems, the Hippocampus indexing 

theory, states that the functional role of the hippocampus is to store a map or index of 
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cortical regions activated by the encoding experience (Teyler and DiScenna, 1986; 

Teyler and Rudy, 2007). Such index represents the stored spatiotemporally patterns 

of an experience in the hippocampus that indicates the location as well as the temporal 

sequencing of the cortical neuronal ensembles that encoded the initial experience 

(Figure 1.3a). Therefore, the formation of a memory trace relies, in its essence, on 

establishing such a link between certain ensembles of hippocampal neurons and a 

specific cortical activity pattern (Figure 1.3b). Once the memory trace is established, 

partial activation of the cortical regions is sufficient to trigger the activation of the 

corresponding hippocampal neuron ensembles (Figure 1.3c), which, in turn, activates 

(‘completes’) the rest of the cortical neurons that encoded the entire memory trace 

(Figure 1.3d). Reactivation of these cortical regions in the originally encoded temporal 

sequence thus resembles the initial encoding experience. Biologically, a memory 

index represents an elicited neocortical-to-hippocampal neural pathways that can be 

established via Long-Term Potentiation (LTP). It is prone to be strengthened by 

repetitive reactivations or to gradually decay over time, leading to remembering or 

forgetting at the behavioural level (Teyler and DiScenna, 1986).  

 

 
Figure 1.3. Schematic representation of Hippocampus indexing theory. The blue panels 
represent the cortical regions, and the yellow panels represent the hippocampus. (a), 
Different encoding experiences can be represented at the cortical level by specific spatial-
temporal neuronal activity patterns, and particular hippocampal neuron ensembles can 
register such patterns in the form of an index. (b), Memory trace is represented by 
hippocampal neurons indexing the cortical neuronal activity pattern. (c), Activation of partial 
neurons from the memory trace triggers its index in the hippocampus. (d), The back 
projections from the hippocampus index to cortical regions enable retrieval of the whole 
memory representation. (Figure adapted from Teyler and Rudy, 2007)   
 
 

The concept of ‘indexing’ emphasises the coordinating role of the hippocampus with 

no intervention or modification to the intracortical connections. This requires the 

hippocampus to be able to integrate cross-modal information from the neocortex (NC) 

and to rapidly accomplish the associative process. The physiological property of the 
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hippocampus has been shown to meet up with such functional demands: CA3 is 

heavily innervated by collaterals of their own axons (Ishizuka et al., 1990; Li et al., 

1994), so the activation of a small group of neurons can trigger population activities 

(Miles and Wong, 1983; Fujisawa et al., 2006). Such recurrent connections have been 

proposed to support an associative synaptic network generally linked to processes of 

completion and recall of stored information (McNaughton and Morris, 1987). 

Consequently, a partial cue of a particular episode leads to the activation of the index 

that further triggers the activity pattern in the rest of the engaged neocortical regions, 

completing the reconstruction of the retrieval of the whole episode; Also, NMDA 

receptors, which play a crucial role in LTP and memory (Morris, 2003), abundantly 

exist at associational synapses in CA3 regions (Jonas et al., 1993). They are primarily 

implied in paired-associate learning (Rajji et al., 2006), recall of associative memory 

(Nakazawa et al., 2002), and, most importantly, in the rapid acquisition and storage of 

information even from a novel one-time experience (Nakazawa et al., 2003). 

Leveraging the distinctive physiological features in the hippocampus and NC as well 

as their reciprocal connections, the Complementary Learning System (CLS) 

(McClelland et al., 1995) proposed a complementary relationship between the two 

systems. According to CLS, the neocortical system relies on slow learning of 

distributed representations to infer statistical regularities of the environment, while the 

hippocampal system can rapidly encode the specifics of individual experiences to 

construct pattern-separated representations (McClelland et al., 1995; O'Reilly and 

Norman, 2002; O’Reilly et al., 2014; Kumaran et al., 2016). Memory-related behaviour 

relies on the joint contribution of the two systems with varying weight assigned to the 

extracted associative pairs (i.e., knowledge about the facts) and individual context-

based experience (i.e., incidental episodic memories) (Kumaran et al., 2016). However, 

challenges to the dichotomic model arose recently from empirical studies. The original 

proposal of a slow-learning neocortical system emphasises its advantage in 

generating statistical regularities and is thus resistant to catastrophic interference. 

Recent studies have shown that it is not necessarily the case when newly encoded 

information is congruent with the existing knowledge structure (Tse et al., 2007, 2011; 

Brodt et al., 2018), suggesting a more flexible system memory consolidation 

mechanism than initially hypothesised. At the same time, the hippocampus has been 

proposed to support generalisation achieved by its recurrent activation (Eichenbaum, 
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2004; Zeithamova et al., 2012; Kumaran and McClelland, 2012), expanding its 

originally envisaged role to inferential reasoning across individual existing memories. 

Together, it highlights the necessity to revise the dynamic nature of the memory 

formation mechanism with flexible experimental paradigms.   

1.5.2. Memory consolidation after learning  

Like an old Chinese proverb says: “Awkward at first but skilful later on”, it’s only 

logical to think that a one-time exposure to the new information may not be enough to 

establish a stable memory trace. Newly formed memory must go through a particular 

process to be stored in a more consolidated format. The original concept of 

consolidation is generally credited to German experimental psychologists Georg Elias 

Müller and his student Alfons Pilzecker. They proposed that learning does not permit 

an instantaneous and long-lasting memory formation, which instead takes time to be 

fixed. As a result, memory remains vulnerable and prone to changes for a certain 

period after acquisition (Lechner et al., 1999). The claim is consistent with evidence 

from patients as well as healthy participants where such post-encoding vulnerability of 

memory can extend over the course of weeks or even years (Duncan 1949; Russel 

and Nathan 1946; Squire et al. 1975), such that premorbid memory loss centred 

majorly in recently acquired information while sparing the ones learnt remotely 

(Hodges, 1994; Squire and Alvarez, 1995), a phenomenon denoted as temporally 

graded retrograde amnesia. The term consolidation has been constantly refined over 

the years. Nowadays, it is generally described as the progressive post-encoding 

stabilisation of long-term memory (Dudai, 2004). It contains two types of processes 

with respective neurobiological underpinnings, namely synaptic consolidation and 

system consolidation. The former refers to a relatively rapid process that takes place 

within the first minutes to hours after encoding experience, which is underlined at the 

molecular and cellular level by changes at local nodes of neurons. The latter 

represents the reorganisation of memory representation over a long period during 

which the involving neural circuits at the encoding stage spread to new locations in the 

brain, establishing a new dependence network for that memory trace.    

Inspired firstly by retrograde amnesia patients, accumulative empirical evidence 

concluded that the memory consolidation process relies on the critical role of MTL 
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(especially the hippocamps) and NC. However, divergence appeared when it came to 

modelling the functional dynamics of the involved brain circuits to explain the changes 

in memory organisation in the brain over time. An influential model, the Standard 

Consolidation Theory (Zola-Morgan and Squire, 1990; Squire and Alvarez, 1995; 

Milner et al., 1998), posited HPC´s involvement in episodic memory formation is limited 

to the initial stage of learning and from beyond one week after, memory can be 

gradually ´transferred´ to NC. After the establishment of cortical-cortical connections, 

memory became hippocampus-independent for permanent storage (Dudai, 2004). 

Later empirical findings challenged the model by showing HPC´s ubiquitous 

involvement in remote autobiographical memory retrieval (Nadel and Moscovitch, 

1997). The Multiple Trace Theory (Nadel and Moscovitch, 1997; Nadel et al., 2000) 

was then proposed to stress the dependency of episodic memory on HPC even in the 

long term. The model, which was built on hippocampal function offered by the 

Cognitive Map Theory (O’Keefe & Nadel, 1978) and the Component Process Model 

(Moscovitch, 1992), further described the retrieval of contextual details embedded in 

the episodic memory, though it might diminish over time, will always reply on 

hippocampal complex (Nadel et al., 2007). Both models posit that NC gradually 

integrates knowledge representation (e.g., over days and weeks) while HPC rapidly 

acquires new episodes online. 

The aforementioned classic models of episodic memory formation stressed the 

existence of the post-learning consolidation process that permits the encoded 

experience to be transformed into a long-persistent memory representation. However, 

at that time, there was still a paucity of understanding when and how the 

transformation process was completed at the neural level (Frankland and Bontempi, 

2005). Studies in the last decade have made a substantial contribution toward this 

direction. 

1.5.3. Memory consolidation via neural reactivation 

A crucial step for memory formation consists in understating how an experience-

induced mental representation becomes a stable neural trace. A widely held view is 

that part of the transformation process is achieved by synaptic modifications to the 

neural circuits via recurrent reactivations (Dudai et al., 2015). Memory reactivation 
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refers to the repeated activation of the original neural pattern beyond its direct 

experience. The primary role of neural reactivation consists in stabilising the newly 

formed synaptic strength to be resistant to future modification or interference. In the 

current section, we will focus on the offline memory consolidation process via neural 

reactivation at distinct post-learning temporal stages, from sleep to awake period at 

resting, and finally to the recently discovered immediate moment after learning. 

1.5.3.1. Neural reactivation during sleep 

The benefit of sleep for memory enhancement has been long recognised. One of 

the earliest studies by Jenkins and Dallenbach (1924) showed that recall performance 

of an encoded list of syllables was better after time that included asleep than awake. 

However, it was not until recently that neural reactivation was hypothesised as a 

crucial process underlying such behavioural outcomes (Diekelmann and Born, 2010; 

Dudai, 2012; Lewis and Durrant, 2011). It has been proposed that sleep contains the 

optimal time window where neural activation patterns induced during the daytime get 

revoked. Such reactivation can alter structural or chemical changes at synapses. Thus 

certain newly established synaptic connections become strengthened/re-organised 

while others are weakened/eliminated, leading to a subsequent memory boost or loss 

at the behavioural level. To confirm such a casual effect relationship, empirical studies 

have explored the neural patterns that get reactivated and wherein the brain such 

reactivation takes place. 

In rodents, inspired by the cognitive map theory developed by O’Keefe and Nadel 

(1978), early studies explored the trace of neural reactivation in the hippocampus 

during slow-wave sleep (SWS) after performing simple spatial navigation tasks (e.g., 

maze exploration). Leveraging the possibility of direct invasive recordings of neuronal 

activity, neural reactivation of a memory trace has been detected in hippocampal cells 

in several manners, including measuring the changes in firing rates of individual cells 

(Pavlides and Winson, 1989), correlating firing patterns of multiple cells between 

encoding and sleep stage (Wilson and McNaughton, 1994), as well as evaluating the 

amount of explained variance in the correlation patterns of firing during sleep 

(Kudrimoti et al., 1999). In humans, studies bridging neural reactivation and sleep 

consolidation used data from MEG/EEG (Piantoni et al., 2015; Schönauer et al., 2017; 

Schreiner et al., 2021), fMRI (Bergmann et al., 2012; Sterpenich et al., 2021) and 
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intracranial recordings with epileptic patients (Zhang et al., 2018). These studies 

focused on registering the neural activity of population neurons in various locations in 

the brain during the sleep stage. It was used to compare with stimulus-specific patterns 

elicited during the encoding stage. Neural reactivation can then be inferred based on 

pattern classification or similarity between neural patterns extracted from the two 

states. For example, Schreiner et al. (2021) showed that category-specific multivariate 

neural patterns of scalp EEG elicited during associative learning tasks were 

reactivated at the post-learning nap stage and that such reactivation was time-locked 

to the up-states of slow oscillations and sleep spindles, a neural signature of synaptic 

plasticity underlying the formation of memories at cortical networks (for a review, see 

Klinzing et al., 2019). The reactivation strength further predicted the level of 

subsequent memory performance, indicating a direct functional link between sleep 

neural reactivation and memory consolidation at the behavioural level. 

Another important aspect of neural reactivation during sleep is that its trace has 

been identified, mostly in rodent studies, across distributed brain areas and not limited 

to the hippocampus. The regions range from cortical (Peyrache et al., 2009; Wilber et 

al., 2017) to several subcortical brain areas, including the entorhinal cortex (O’Neill et 

al., 2017), ventral striatum (Lansink et al., 2009) and the Ventral Tegmental Area 

(Valdés et al., 2015). Though hippocampal reactivation has been shown to occur in 

coordination with neuronal firing in these areas (Ji and Wilson, 2017; Lansink et al., 

2009; Qin et al., 1997), it has also been reported the occurrence of neural reactivation 

independent of hippocampal neuronal activity, for example in entorhinal cortex (O’Neill 

et al., 2017).   

1.5.3.2. Neural reactivation at wakefulness 

The consolidation process may not be limited to sleep states. Using multiple single-

unit recordings of hippocampal neuronal activity, Foster and Wilson (2006) found 

evidence for neural reactivation in rodents during awake periods immediately after the 

spatial navigation experience. Such reactivation entails a sequential increase in firing 

rates of hippocampal place cells that indexed the initial position encoding in space. 

Similarly, Diba and Buzsáki (2007) showed sequential reactivation of hippocampal 

cells in rodents at the beginning and end of a running lap session, respectively, in a 

forward and a reverse replay manner. The directionality of the sequential reactivation 
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has been proposed to be behaviourally relevant. A reverse reactivation occurs typically 

at the end of a trajectory when rats reach the reward point, suggesting a mechanism 

to reinforce the link between newly acquired memory traces with positive feedback. 

Forward reactivation instead occurs preferentially before the start of spatial navigation, 

indicating a preparation mechanism for trajectory planning (Carr et al., 2011). 

Moreover, neural reactivation of past experiences has also been found to be elicited 

frequently during resting periods while awake (Karlsson and Frank, 2009), suggesting 

a link between just encoded information and consolidation (Figure 1.4). Also, it has 

been reported that neural reactivation occurs in a time-comprised format by a factor 

of 5 to 20 (O’Neill et al., 2010; Ji and Wilson, 2007). These time-compressed replays 

stand for the fact that while the firing sequence of the neurons encoding the initial 

experience is preserved (either in a forward or backward manner), the firing rate of 

these neurons increases and the pattern persists for a shorter duration, as found 

during sleep stage (Euston et al., 2007) as well as wakefulness (Foster and Wilson, 

2006; Diba and Buzsáki, 2007 ).  

 
 
Figure 1.4. Awake replay in rodents. Local field potential (LTP) comprises neuronal activities 
of the place cells. During spatial navigation, place cells sequentially activate to encode the 
current position of the rodent. After the completion of the trajectory, a sequential neuronal 
pattern can be later reactivated reversely during the resting period while the rodent stays 
awake. Such reactivation happens in a temporally-compressed manner and is functionally 
linked to promoting the learnt experience (i.e., the memory of the trajectory) in the long term. 
(Figure adapted from Carr et al., 2011) 
 

In humans, it has been found that the learning experience can induce an offline 

activity during the post-learning rest. Such activity is related to task performance in the 

form of a re-emergence of brain activity elicited during the learning phase (Peigneux 
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et al., 2006). Other studies showed a post-learning increase in brain connectivity 

between task-relevant brain regions and the hippocampus (Tambini et al., 2010). 

These studies have been interpreted in line with the rodent findings, by which rapid 

memory consolidation processed may be induced right after a learning experience in 

humans too. More direct evidence came from a study by Staresina and colleagues 

(2013). Applying pattern similarity analysis on fMRI signal showed spontaneous neural 

reactivation during the delay period after the associative learning task in both the 

entorhinal and retrosplenial cortex. Such neural reactivation was shown to be event-

specific, and the frequency of its occurrence during the delay period determined later 

successful recollection. The converging evidence suggests a plausible sign for 

memory consolidation during wakefulness after the initial learning experience. This 

can be functionally achieved by reactivating the neural pattern elicited during the 

learning phase.   

1.5.3.3. Rapid post-encoding neural reactivation 

As mentioned in Section 4, the brain actively segments the continuous experience 

into smaller chunks, guided by the detection of event boundaries and the event 

segmentation mechanism also contributes to how we organise the past experiences 

and transform them into episodic memory representations (Baldassano et al., 2017; 

Chen et al., 2017; DuBrow and Davachi, 2013, 2014, 2016; Horner et al., 2016; 

Heusser et al., 2018). A question yet to be explored is to delineate the exact neural 

mechanism engaged in promoting the memory strength in the long term once an event 

boundary is detected.  

A direct link between immediate post-encoding neural activity and memory 

promotion was reported by Ben-Yakov and Dudai (2011). Using fMRI, they found 

increased neural activity in participants time-locked to the offset of short narrative 

audio-visual movie clips. The magnitude of the neural activity is predictive of the 

subsequent memory of the gist of the movie clips, and such memory-predictive activity 

engages several brain regions, most prominently the bilateral hippocampus and the 

bilateral caudate nucleus. Previous studies mainly had attributed the post-encoding 

activity, especially in MTL, to a carry-over effect from working memory (WM) 

maintenance (Ranganath and D’Esposito, 2001; Schon et al., 2004; Nichols et al., 

2006; Olsen et al., 2009), it was the first time a direct link between offline neural 
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processes with episodic encoding in humans was supported. The finding paved the 

way for upcoming human neuroimaging studies examining memory formation during 

a continuous stream of stimuli, such as naturalistic video clips, and results have 

gradually shown a memory-related post-encoding increase in a distributed network of 

brain regions (Ben-Yakov et al., 2013; Ben-Yakov and Henson, 2018; Baldassano et 

al., 2017). These neural activities time-locked the offset of learning experience have 

been proposed to be the signature of the early step or the initiation of the memory 

consolidation process (Dudai et al., 2015). 

With the implementation of multivariate pattern analysis, a previous study 

conducted by our lab (Sols et al., 2017) found a rapid memory reactivation mechanism 

preferentially elicited during the context shifts (i.e., event boundary) of the event 

sequence encoding. Such memory reactivation is supported by a similar neural 

activation pattern of EEG signals resembling the encoding experience, with the degree 

of similarity predicting participants’ ability to later remember associative information 

from within the prior event. This neural reactivation mechanism at the event boundary 

and its functional implication in memory formation was later replicated by another 

study using a naturalistic stimulus (Silva et al., 2019). In this study, the neural pattern 

at event transition during movie watching, operationalised as transition points in the 

encoding time whereby one episode ends, and a new one starts, was found to 

assimilate the neural pattern elicited during the encoding of the preceding but not the 

upcoming scene, and the strength of the indicated neural reactivation correlated with 

the recall memory of the scene in a subsequent test. These shreds of new evidence 

suggest that immediate offline reactivation plays a vital role in stabilising memory 

beyond initial learning processes. It can be elicited as a neural concomitant to the 

detection of boundary during the segmentation process of a long continuous stream 

of experience to promote the memory trace for the just-encoded episode in the long 

term. 

Building on these empirical findings, a question emerges: why would an immediate 

reactivation mechanism following an event boundary be necessary for memory 

formation? More specifically, what is the function of such a phenomenon that needs 

to be revoked at the exact time point when an episode is completed? The possible 

underlying reasons could include the following: It can strengthen the memory trace for 
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the previous episode after only one-shot exposure; it may indicate an early 

transformation process for long-term memory representation; also, it can be especially 

advantageous to avoid future interference to the upcoming unfolding experience, while 

the just ended episode can also be stored more cohesively and accurately. However, 

to date, there are scarce empirical studies in humans exploring immediate post-

learning neural reactivation, so questions regarding when this neural mechanism 

occurs, how it can be triggered and what is its representational nature and functional 

implication in episodic memory formation remain elusive. 

 

 

 

 

 

 

 

 
 

 



 30 

  



 31 

 

 

Chapter 2. Research aims 

 

 

 

 

 

 

The main goal of the current thesis is to advance the understanding of why, when, 

and how immediate post-encoding memory reactivation in humans may be associated 

to memory formation. In what follows, we argument the objectives in more detail:  

Objective 1: To examine the role of post-encoding neural reactivation for ‘one-
shot’ episodic memory formation (Study 1) 

Much work in rodents and in humans has provided evidence that offline reactivation 

plays an important role in stabilising memory beyond initial learning processes (Diba 

and Buzsáki, 2007; Karlsson and Frank, 2009; Carr et al., 2011). However, previous 

studies in humans only looked at reactivation after blocks of episodic learning 

(Staresina et al., 2013) or at transition boundary within continuous stimulus encoding 

(Baldassano et al., 2017; Silva et al., 2019), rather than after completion of a single 

episode. Thus, it remains unclear whether memory reactivation is crucial for the rapid 

- ‘one-shot’ - learning of an unfolding episodic event or merely a neural concomitant 

to event segmenting process. Here, we ask whether the reactivation of an episode 

may preferentially occur post-encoding but only when an individual perceives a 

meaningful event to be completed, i.e., once the unfolding experience can be fully 

integrated as a memory representation. We specifically explore “when” the brain binds 
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the continuous experience input into a cohesive episodic memory trace and “how” the 

brain undergoes this rapid transformation to promote the memory trace for long term.  

 

Objective 2: To explore the representational nature of post-encoding memory 
reactivation (Study 2) 

As a continuation from Study 1, we take a further step to explore the 

representational nature of this offset-locked neural activity. Having shown that it serves 

to selectively transform experiences into long-term memory representations via 

reactivating the neural pattern elicited during encoding, we further explore which sort 

of information is reactivated to the immediate offset periods: a neural 

reinstatement/maintenance of trial-specific encoding experience or/and an integrated 

representation of the encoded information to overcome the representational gaps 

between disparate perceptual representations.  

Leveraging the episodic encoding paradigm formed by trial-unique face-object-

scene picture triplet sequences and multivariate pattern analysis, we attempt to 

address this issue by examining whether episodic immediate offset-locked neural 

signature relies on the reactivation of an accurate representation of the elements 

and/or the generic categorical representations of a just-encoded episode and, whether 

this is associated to recollection from long term. 

 

Objective 3: To investigate the event representation update triggered by 
contextual incongruency (Study 3) 

Event segmentation model proposed that when the input stimulus no longer fits the 

current event representation, the detection of this prediction error triggers an update 

process to reset the event models (Zacks et al., 2007, 2011). Empirical studies have 

highlighted the rapid neural reactivation as the neural concomitant to promote the 

preceding events when a mismatch expectancy is detected within an unfolding 

episode (Sols et al., 2017; Silva et al., 2019). However, it is not clear how the two 

distinct mechanisms driven by the prediction error, namely the disruption of the 

preceding neural state and the update process, are coordinated in time. In Study 3, 
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we specifically explore whether and how congruence of an upcoming element within 

an unfolding event influences rapid memory reactivation and its impact in long term 

memory. 

We tackle this question by manipulating the item encoding following episodic 

naturalistic sequences depicting everyday activities. We explore the extent to which 

the degree of congruence of the boundary item to the preceding episodic sequences 

may interact with the neural reactivation, and also, how the elicitation of this memory 

reactivation of the preceding episodic sequences may affect the encoding of the 

current object as well as its link with previous contextual information.  
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Chapter 3. General methods 

 

 

 

 

 

 

In the current chapter, the primary analytical approaches will be described in brief. 

We included the methods shared across three studies, with specific adjustments to 

the particular experimental conditions. Please note that all methods used in each study 

will be further explained in detail in the corresponding chapter. The current chapter 

provides an overview of the general analytical approaches used in the present thesis 

to illustrate the underlying logic that bridges the experimental designs to our primary 

objectives of the studies. 

3.1. EEG data analysis  

In each study, we extracted the epochs for each encoding image. The duration of 

epochs varied as a function of the presentation length defined in each study´s 

paradigm (e.g., 2500 ms in Study 1). All epochs were baseline corrected to the pre-

stimulus interval (-100 to 0 ms). Epochs for the offset period following each encoding 

sequence were extracted in each study. In Study 1 and 2, the offset epochs 

corresponded to the post-episode offset signals presentation after each series. In 

Study 3, the offset epochs were defined as the 500 ms of object presentation at the 
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end of each encoding trial, and the 2000 ms of fixation cross followed immediately. In 

each study, offset epochs were baseline corrected to the time interval (-100 to 0 ms) 

before its onset. Epochs with maximum absolute amplitude over 100µV were 

discarded for further analysis. And for later analysis, in each study, all the epochs were 

smoothed by averaging data via a moving window of 100 ms (excluding the baseline 

period) and then down-sampled by a factor of 5.  

3.2. Representational Similarity Analysis (RSA) 

RSA was applied in all three studies. After smoothing and down-sampling the 

epochs of interest, RSA was performed at the individual level and included spatial 

features (i.e., scalp voltages from all the electrodes) (Silva et al., 2019). The degree 

of similarity between two included EEG spatial patterns was calculated and registered 

as the Pearson correlation coefficients, which are insensitive to the absolute amplitude 

and variance of the EEG response.  

To evaluate the mechanism of post-encoding neural reactivation, which can be 

indicated by a re-emergence of image encoding neural pattern elicited again at the 

offset period. In each study, RSA was conducted at a single-trial level between the 

EEG signal of each encoding image (e.g., In Study 1, the image at the 1st, 2nd, 3rd, 4th, 

5th and 6th position in a sequence) with EEG signal of the corresponding offset period. 

Point-to-point correlation values were then calculated, resulting in a 2D similarity 

matrix, where the x-axis represented the offset time points, and the y-axis represented 

the encoding time points (e.g., In Study 1, the size of the 2D similarity matrix was 

250×400, representing 2500 ms of picture encoding x 4000 ms of post-episode offset). 

The output 2D matrix represents the overall degree of neural pattern similarity between 

EEG elicited for each pair of encoding images and its corresponding sequence offset. 

The behaviourally relevant differences in the similarity value between conditions 

(e.g., high versus low memory condition in Study 1) were assessed with paired t-test 

(two-tailed) and corrected with cluster-level statistics (Section 3) and also evaluated 

through linear mixed-effect model regression analysis (Section 4) 
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3.3. Non-parametric Cluster-based Permutation Test 

To account for RSA differences between conditions, we employed a nonparametric 

statistical method (Maris & Oostenveld, 2007), which identified clusters of significant 

points on the resulting 2D similarity matrix and corrected for multiple comparison 

based on cluster-level randomisation testing. Statistics were computed on values 

between conditions for each time point, and adjacent points in the 2D matrix that 

exceeded the preset significance threshold (p < 0.05, two-tailed) were selected and 

grouped as a cluster. Within each of the identified clusters, the cluster-level statistics 

took the sum of the statistics of all included time points. This procedure was then 

repeated 1000 times. For each time, labels across conditions were randomly shuffled. 

Cluster-level statistics with the highest absolute value for each permutation were 

registered to construct a distribution under the null hypothesis. Finally, the 

nonparametric statistical test was calculated by the proportion of permuted test 

statistics that exceeded the actual observed cluster-level statistics. 

3.4. Linear Mixed-effect Model Regression analysis 

(LMM) 

To explore the direct link between the neural measures (e.g., neural similarity value) 

and the behavioural measures (e.g., memory performance) on a trial basis, we 

implemented the linear mixed-effect model regression analysis on the pattern similarity 

between encoding and offset (Study 1, 2, and 3) as well as ERPs elicited during offset 

period (Study 3).  

The formula for LMM varied across studies. However, the model was constructed 

following a similar structure and procedure. In the three studies, the neural measure 

value (e.g., similarity value or ERP amplitude) was included in the model as the 

independent variable. And following the temporal structure of the resulting neural value, 

the regression model was conducted independently on the value of each time point 

(e.g., similarity value on each time point of the 2D similarity matrix). In line with the 

specific paradigm of the study, behavioural measures were introduced into the model 

as the fixed effect factors. For example, in Study 1, the fixed effect factors included 
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the number of items correctly recalled, the index of an item´s order in each sequence, 

and the coherence rating provided by the participant to each sequence at encoding. 

The subject was included in the model as the grouping variable in all three studies, 

with random intercept and a fixed slope for each fixed effect variable. Finally, the 

statistical significance for each fixed effect variable was Bonferroni corrected with a 

thresholded alpha level (i.e., 0.05 divided by the total numbers of regression analyses). 
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4.1. Summary 

Prior animal and human work have shown that post-encoding reinstatement plays 

an important role in organising the temporal sequence of unfolding episodes in 

memory. Here, we investigated whether post-encoding reinstatement serves to 

promote the encoding of ‘one-shot’ episodic learning beyond the temporal structure in 

humans. In experiment 1, participants encoded sequences of pictures depicting 

unique and meaningful episodic-like events. We used representational similarity 

analysis on scalp electroencephalography recordings during encoding and found 

evidence of rapid picture elicited EEG patterns reinstatement at episodic offset 

(around 500 ms post-episode). Memory reinstatement was not observed between 

successive elements within an episode and the degree of memory reinstatement at 

episodic offset predicted later recall for that episode. In experiment 2, participants 

encoded a shuffled version of the picture sequences from experiment 1, rendering 

each episode meaningless to the participant but temporally structured as in 

experiment 1, and we found no evidence of memory reinstatement at episodic offset. 

These results suggest that post-encoding memory reinstatement is akin to the rapid 

formation of unique and meaningful episodes that unfold over time. 

4.2. Introduction  

In episodic encoding, an experienced event is rapidly transformed into a memory 

trace that has the potential to be consciously recollected at long-term (Tulving, 1983). 

Prior research has largely focused on examining how the brain contributes to 

successful encoding of individual trial information, such as single images (Paller and 

Wagner, 2002) or single item-context associations (Davachi, 2006). However, in 

natural settings, an episode is better characterized by a collection of successive 

elements that become contextually meaningful as they unfold over time. To be 

accessible for future retrieval, these elements have to be associatively linked into a 

bound memory trace. Discerning “when” the brain binds the continuous experience 

input into a cohesive episodic memory trace and “how” the brain undergoes this rapid 

transformation is essential to understand memory formation.  
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Human neuroimaging studies examining memory formation during a continuous 

stream of stimuli, such as naturalistic video clips, have shown that a distributed 

network of brain regions comprising the hippocampus and neocortex increased activity 

at the end of an event (Ben-Yakov et al., 2013; Ben-Yakov and Henson, 2018; 

Baldassano et al., 2017). This event offset brain signal has been shown to reflect a 

binding operation of the just encoded event elements into a specific spatio-temporal 

context (Ritchey and Cooper, 2020), which aligns well with the notion that the 

hippocampus is crucial for binding elements of our experience with contextual 

information (Davachi, 2006; Diana et al., 2007; Eichenbaum et al., 2007; Ranganath, 

2010). In real life, episodic encoding relies on the possibility to form a coherent 

memory trace that integrates the temporally evolving sequence of elements into a 

meaningful context, so that if there is a shift in contextual information this is perceived 

as the end of one episode and the beginning of another (Zacks et al., 2007). These 

episodic boundaries are thought to support the segmentation of the continuous 

experience into discrete episodes (Zacks et al., 2007) and their detection has a direct 

impact on how events are organised into meaningful units in long-term memory (Kurby 

and Zacks, 2008; Radvansky, 2012; Ezzyat and Davachi, 2011; DuBrow and Davachi, 

2013, 2014).  

Work in rodents has provided evidence that memory replay at event offset plays a 

critical role in stabilising a temporal memory organisation beyond initial learning 

processes (Foster and Wilson, 2006; Diba and Buzsáki, 2007; Karlsson and Frank, 

2008; Carr et al., 2011). In humans, rapid event offset memory reinstatement has been 

shown to be induced at the detection of context shifts during encoding of sequences 

of episodes and to predict their temporal order memory accuracy of the encoded 

sequential episodes in a later memory test (Sols et al., 2018; Silva et al., 2019). These 

findings suggest that the reactivation of an event contemporaneously with the 

experience of a subsequent adjacent event could theoretically result in the co-

activation of the past and present events, promoting the binding of sequential events 

in their temporal order. In the real world, however, the recall of encoded episodes does 

not always depend on maintaining the exact order of the sequential representations, 

which can be fragile in many situations. Instead, it has been shown that when 

individuals are asked to recall episodes encoded in naturalistic conditions, they 

structured the recall along the causal (Brownstein & Read, 2007), semantics (van 
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Kesteren et al., 2013; Baldassano et al., 2018) and the relations between the elements 

embedded in the episodes (Lee and Chen, 2021). In fact, psychological models of 

event comprehension have emphasized that as the experience unfolds, memory is 

carved by how people construct a coherent model of a situation, which consists of 

agents and objects, semantic and spatiotemporal contexts, and the relations between 

them (Radvansky and Zacks, 2011). Notably, neuroimaging studies using video clips 

involving multiple consecutive episodes have started to find evidence that brain activity 

is naturally structured into events organised along these representational dimensions 

(e.g., Baldassano et al., 2017; Bird, 2020; Reagh and Ranganath, 2021; Lee and Chen, 

2021; Heusser et al., 2021). Thus, if memory reactivation at episodic offset is an 

important neural signature of the rapid - ‘one-shot’ - learning of an unfolding realistic 

episode in humans, it is important to clarify whether it is concomitant to the encoding 

of episodes that included sequence of elements depicting coherent relations between 

them.  

To address the issue, we designed a task that required participants to encode and 

later recall sequences of pictures depicting unique episodic-like events followed by a 

delay period with no stimulus. We used representational similarity analysis of scalp 

electroencephalography (EEG) recordings during encoding and found evidence for 

memory reactivation of the sequence elements of the episode after encoding, i.e., at 

the offset of the episode, and the degree of memory reinstatement at the offset 

predicted later memory recall for the specific episode. Memory reinstatement was not 

observed between successive elements within an episode, indicating that memory 

reactivation was specifically induced once participants perceived the unfolding 

episode to be completed. In a separate experiment, we also found that offset memory 

reinstatement was not present when participants encoded sequences of pictures that 

were not perceived as meaningful episodes. These results suggest that rapid memory 

reinstatement at episodic offset may be a neural signature engaged to integrate 

elements of the unfolding experience into a coherent memory for the just encoded 

episode.  
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4.3. Materials and Methods  

4.3.1. Participants 

Participants were native Spanish speakers who were recruited for pay (10€/h). All 

participants had normal or corrected-to-normal vision and reported no history of 

medical, neurological or psychiatric disorders. Twenty-five participants (17 females, 

age range 18-29) were recruited for Experiment 1. In addition, twenty-eight new 

participants (15 females, age range 19-35) were recruited for Experiment 2. The 

sample size is based on similar studies in the literature (Ben-Yakov et al., 2013; Sols 

et al., 2018; Silva et al., 2019). Informed consent was obtained from participants in 

accordance with procedures approved by the Ethics Committee of the University of 

Barcelona.  

4.3.2. Experimental Procedure 

Both Experiments (Figure 4.1) consisted of an encoding and a retrieval phase, 

separated by a 10-15 mins-break in the middle. Task timing and visual stimulus 

presentation were under the control of commercially available software e-Prime 2.0 

(Psychology Software Tools). 

The encoding phase of Experiment 1 included 100 different sequences, each 

consisting of 6 pictures that each was presented to participants only once. All pictures 

depicted emotionally neutral events and were controlled for saliency. All sequences of 

pictures described day life routine circumstances such as go shopping, reading a book 

at home or frying an egg in the kitchen. The pictures of each of the series were related 

to each other as in a story presented chronologically ordered. The order of pictures 

within each sequence was the same across participants but the order of the sequence 

presentation was counterbalanced across participants. Prior to the Encoding phase, 

participants were taught to attend to the picture series for a subsequent cue-recalled 

test yet not to engage in active rehearsal, especially when the blue fixation cross at 

the end of the series appeared. They were informed beforehand about the format of 

the subsequent test, entailing cued-recall of the images of each series. Participants 
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were encouraged to memorise as many pictures as possible in a narrative form. The 

experiment only began when the examiner made sure that the participants fully 

understood the task. During the task, participants were encouraged to minimise eye 

movements and blinking. Each trial began with the presentation of text ‘New Episode’ 

for 2000 ms, which marked the start of a new sequence. This was followed by a fixation 

screen with a red asterisk lasting 2500 ms. Each picture was then presented 

sequentially on a white screen for 2500 ms and followed by a 1500 ms black fixation 

cross. Immediately after the presentation of the last picture in each series, a blue 

asterisk was presented on the screen, indicating a post-episode offset period of 4000 

ms during which participants were previously instructed to avoid rehearsing the just-

encoded picture sequence. The asterisk remained visible on the screen during the 

offset period. Immediately after the offset period, participants were asked to provide a 

subjective rating of coherence for the just encoded sequence. A rating scale ranged 

from 1 to 4, where 1 stood for ‘not coherent’ and 4 stood for ‘very coherent’. The next 

trial began after a fixed time interval of 2000 ms.  

 
 
Figure 4.1. The experimental design. (a), Task design in Experiment 1. During encoding, 100 
different sequences were presented only once. Each sequence included 6 different pictures that 
unfold a life-like coherent narrative episode. Each picture was presented 2.5s, followed by a 1.5s 
fixation cross. After each sequence of images, there was an offset period (4s) during which 
participants were instructed to avoid rehearsing the just-encoded picture sequence. Participants were 
asked to provide a subjective rating of episodic coherence to the just encoded sequence at the end 
of each trial. Retrieval task was conducted 10-15 minutes after encoding. During retrieval, the first 
picture of each sequence was presented for 3.5 s which was followed fixation cross, and a message 
prompted at the screen instructing to report the associated episode during encoding. Participants 
were asked to verbally report within 20 seconds their memory associated episode or to indicate 
whether no memory came up associated to that picture cue. (b), Task design in Experiment 2. 
Pictures were shuffled across sequences so that no meaningful story could be constructed after each 
sequence presentation. 60 shuffled sequence series were selected. The procedure was identical to 
Experiment 1 except two adjustments for task difficulty: 1. Time duration for the presentation of each 
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picture during encoding was increased to 3000 ms; 2. After each cued-picture recall task, participants 
were requested to perform a sequence order recognition task within 30 seconds, during which all 6 
pictures from the same sequence series (including the cue picture) were presented on the screen in 
random positions and participants were asked to type the order of them as the original sequence 
presented during encoding phase. 
 

For the retrieval phase, each trial started after the presentation of text ‘New Recall’ 

for 2000 ms on the screen. This was followed by a fixation screen with a red asterisk 

lasting 2500 ms. After the asterisk, the first picture of one sequence was presented to 

participant for 3500 ms on the screen serving as a cue to prompt the free verbal recall 

for the rest of pictures in that sequence. Participants were instructed to start the verbal 

recall once the text ‘Explain the story’ was presented on the screen following a 1000 

ms fixation cross. The verbal recall was limited to 20 seconds and participants could 

stop the recall when finished by pressing the space bar. The order of the picture cues 

was randomised before their presentation at the retrieval phase. 

In Experiment 2, we shuffled the pictures across sequences from Experiment 1 so 

that each sequence was formed by 6 pictures from different sequences. Thus, each 

sequence no longer depicted a meaningful episodic sequence. As in Experiment 1, 

the order of pictures within each sequence was kept the same across participants but 

the order of the sequence was randomised between participants. The general 

experimental settings for the encoding and retrieval phases and the instructions to 

participants were identical to Experiment 1. However, three adjustments were made: 

i) the presentation time of each picture during encoding was 3000 ms; ii) the total 

number of sequences presented to the participants was sixty; and, iii) we added an 

order recognition task after each cued-picture recall task. During the sequence order 

recognition task, all 6 pictures from the same sequence (including the cue picture) 

were presented on the screen in random positions and participants were asked to type 

the order in which they appeared in the encoding phase. Participants had 30 seconds 

to type the order of the pictures and they could skip to the next trial when finished by 

pressing the space bar. These changes were motivated by previous pilot studies with 

small sample of participants that ensured this number of sequences provided a 

balanced outcome between picture sequences whose order memory was relatively 

preserved or not. 
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4.3.3. EEG Recording 

For both Experiments, EEG was recorded using a 31-channel system at a 

sampling rate of 500 Hz, using a BrainAmp amplifier and Ag/AgCl electrodes mounted 

in an electrocap (EasyCap) located at 28 standard positions (Fp1/2, Fz, F7/8, F3/4, 

Fc1/2, Fc5/6, Cz, C3/4, T3/4, Cp1/2, Cp5/6, Pz, P3/4, T7/9, P7/8, O1/2, Oz) and at the 

left and right mastoids. An electrode placed at the lateral outer canthus of the right eye 

served as an online reference. EEG was re-referenced offline to the linked mastoids. 

Vertical eye movements were monitored with an electrode at the infraorbital ridge of 

the right eye. Electrode impedances were kept below 3 kΩ. A band-pass filter (0.1 Hz 

- 20 Hz) was implemented offline before the analysis. 

4.3.4. Verbal recall analysis  

During the retrieval phase of Experiment 1 & 2, participants were asked to verbally 

recall in the form of a “narrative” as many pictures as possible within each sequence 

corresponding to the cue. Free verbal recall of each trial was recorded through an 

audio recorder and the audio files were later analysed by a native Spanish speaker in 

the laboratory. Within each retrieval trial, a picture was considered as successfully 

retrieved when the precise details of the picture were described, or its core feature 

was mentioned during recall. Memory for each sequence was then quantified by the 

number of pictures (excluding the cue) correctly recalled.  

4.3.5. Sequence order analysis 

For Experiment 1, the order of the verbally recalled items in each trial was 

analysed. A trial was considered in-order when all recalled items followed the same 

sequential order as the encoding sequence. For Experiment 2, the temporal order 

memory for picture sequences recognition was compared to the true order of the 

sequence, and the result for each trial was coded as the maximum number of pictures 

(including the cue) correctly ordered in a row.  
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4.3.6. EEG data analysis 

For each participant, we first used EEG data of the encoding phase to extract 

epochs for each item within the sequence, namely an EEG epoch for the 1st, 2nd, 

3rd ,4th ,5th and 6th picture. Each epoch had a duration of 2500 ms and was baseline 

corrected to the pre-stimulus interval (-100 to 0 ms). We then extracted epochs for the 

post-episode offset signals after each sequence with duration of 4000 ms and baseline 

corrected to the time interval (-100 to 0 ms) before its onset. Finally, we repeated the 

procedure to extract epochs for the post-item offset of 1500 ms (with baseline 

corrected to -100 to 0 ms), that corresponded to the inter-stimulus interval separating 

each item presentation during episodic sequence encoding phase.  

4.3.7. Time-resolved Representational Similarity Analysis 

(RSA) 

For RSA, each EEG epoch data was smoothed by averaging data via a moving 

window of 100 ms throughout the EEG epoch (excluding the baseline period) and then 

down-sampled by a factor of 5. RSA was performed at individual level and included 

spatial features (i.e., scalp voltages from all the 28 electrodes) (Silva et al., 2019). The 

similarity analysis was calculated using Pearson correlation coefficients, which are 

insensitive to the absolute amplitude and variance of the EEG response. 

For both Experiment 1 & 2, we conducted a trial-based RSA between the EEG 

signal elicited by each encoding item (1st, 2nd, 3rd ,4th ,5th and 6th) and the EEG signal 

elicited during immediate post-episode offset. After data smoothing and down-

sampling, EEG epoch data for each item encoding contained 250 time points (given 

the 500 Hz EEG recording sampling rate) covering the 2500 ms of item picture 

presentation, and EEG data for each post-episode offset contained 400 time points, 

equivalent to 4000 ms. Point-to-point correlation values were then calculated, resulting 

in a single trial 2D similarity matrix with the size of 250×400, where the x-axis 

represented the offset time points and the y-axis represented the encoding time points. 

A trial-based RSA was computed between EEG patterns elicited by the encoding of 

1st to 4th and 1st to 5th picture and the EEG patterns elicited at the immediate post-4th 
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and post-5th picture ISI interval (i.e., 1500 ms), respectively. More concretely, we 

conducted RSA between EEG signal elicited at post-stimulus period after the 4th item 

and EEG patterns triggered during the encoding of each of the preceding 1st, 2nd, 3rd 

and 4th items. Then we repeated the same RSA but between EEG signal elicited at 

post-stimulus period after the 5th item and EEG patterns triggered during the encoding 

of each of the preceding 1st, 2nd, 3rd, 4th and 5th items. This resulted in 9 similarity 

matrices in total for each participant. The resulting similarity matrices were then 

averaged which resulted in a single 2D matrix with size of 250×150 (i.e., 2500 ms of 

picture encoding x 1500 ms of post-stimulus offset or ISI), depicting the overall degree 

of similarity between EEG patterns elicited during item encoding and post-item offset.  

4.3.8. Nonparametric Cluster-Based Permutation Test 

To account for RSA differences between conditions, we employed a 

nonparametric statistical method (Maris & Oostenveld, 2007), which identifies clusters 

of significant points on the resulting 2D similarity matrix and corrects for multiple 

comparison based on cluster-level randomisation testing to control the family-wise 

error rate. Statistics were computed on values between conditions for each time point, 

and based on adjacency in the 2D matrix, adjacent points that passed the significance 

threshold (p < 0.05, two-tailed) were selected and grouped together as a cluster. The 

cluster-level statistics were then calculated by summing up the statistics of all time 

points within in each identified cluster. The procedure was then repeated 1000 times 

with randomly shuffled labels across conditions to simulate the null hypothesis. For 

each permutation, the cluster-level statistics with highest absolute value was 

registered to construct a distribution of the cluster-level statistics under the null 

hypothesis. The nonparametric statistical test was calculated by the proportion of 

permuted test statistics that exceeded the true observed cluster-level statistics. 

4.3.9. Bayes Factor statistical analysis 

To further evaluate the power of the RSA effects that could be observed between 

conditions, we implemented the Bayes Factor statistical analysis (Kass & Raftery. 

1995) in the point-to-point 2D similarity matrix. Bayes Factor was computed using 

Matlab Toolbox (Bart Krekelberg (2021). bayesFactor. 
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https://github.com/klabhub/bayesFactor) on RSA values between conditions for each 

point of the resulting 2D similarity matrix (250×400). A Bayer Factor greater than 10 

indicates strong evidence for difference between conditions comparing to the null 

hypothesis. 

4.3.10. Linear-mixed effect model 

To investigate the relationship between EEG similarity values and behavioural 

memory on a trial basis we implemented a Linear Mixed Effect Model (LMM), which 

accounts for intra- and inter-individual variances. This analysis would also allow 

scrutinize the extent to which possible differences in EEG similarity results when 

comparing High and Low accuracy trials observed with a median-split approach 

described above were independent on the partitioning trial strategy implemented at 

subject level. Thus, we specified in our LMM the correlation values for one specific 

point on the resulting 2D similarity matrix as the dependent variable and included the 

following factors as fixed effect variables: the number of items correctly recalled (which 

ranged from 0 to 5, without counting the picture cue present at the recall task); the 

index of an item´s order in each sequence (1st, 2nd, 3rd ,4th ,5th and 6th), and the 

coherence rating provided by the participant to each sequence at encoding (which 

ranged from 1 to 4). Participant number was introduced into the model as the grouping 

variable, with random intercept and a fixed slope for each of the fixed-effect variables. 

To balance the requirement for computational power and signal to noise ratio, we 

further smoothed the resulting 2D similarity matrix for each item-offset pair by 

averaging over a moving window of 200 ms and then down-sampled by the factor of 

5, both smoothing and down-sampling were conducted 2-dimensionally across the x 

and y axes. We applied the model fitting analysis independently for each position on 

the resulting 2D similarity matrix (50×80), then returned the 2D statistics map of the 

same size for each fixed-effect variable. Here to control for multi-comparison problem, 

the nonparametric cluster-based permutation test cannot be applied because each 

permutation represents a sample from the null distribution, which is not the case in 

LMM where it contains a covariance structure induced by multiple levels of relatedness 

among the individuals. Therefore, we implemented a Bonferroni correction to the 

statistical threshold to correct for the multiple comparison problem in the resulting 
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statistical maps for each fixed-effect variable. Thus, the resulting statistical map was 

thresholded with an adjusted alpha level of α = 1.25×10-5 (0.05/4000). 

4.4. Results 

4.4.1. Experiment 1: Meaningful episodic sequence 

encoding 

4.4.1.1. Free recall for meaningful episodes 

In Experiment 1, participants were able to recall on average 2.32 items (SD = 

0.456) in each series out of the total possible 5 items included in episodic sequence. 

Participants tended to recall encoded sequences in the form of “narrative” (e.g., “this 

is a party, there are balloons, the cake, and after the cake a piñata is broken and a gift 

comes out, but I don't remember what it was") and we counted the number of picture 

items included in their recall. The mean percentage of trials across participants that 

successfully recalled 0,1,2,3,4 and 5 items after the retrieval cue were respectively 

24.89% (SD = 9.34%), 8.65% (SD = 3.41%), 14.14% (SD = 4.94%), 24% (SD = 5.68%), 

18.91% (SD = 6.49%) and 9.41% (SD = 6.35%). A repeated-measures ANOVA 

revealed that participants’ memory recall differed as a function of number of items 

recalled following the retrieval cue (F(5,120) = 26.227, p < 0.001) (Figure 4.2a). To 

increase the signal to noise ratio, for later RSA on EEG data, we first adopted a median 

split approach to separate the trials based on the corresponding task performance. 

Sequences with 2 or fewer items recalled during the retrieval phase were labeled as 

Low memory trials and sequences with equal or more than 3 items recalled were 

labeled as High memory trials. The threshold was selected by its relatively well-

balanced separation for number of trials at subject level, as the average percentage 

of trials after the median split separation was respectively 47.64% (SD = 12.51%) for 

Low memory condition and 52.36% (SD = 12.51%) for High memory condition 

(Wilcoxon signed-rank test: z = 0.821, p = 0.412) (Figure 4.2b).  

For each participant, we then calculated recall accuracy for each of the items in 

the sequence. The results showed a gradual decrease in accuracy for items as a 
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function of their order position in the sequence during encoding: mean = 65.09% and 

SD = 10.44% for item 2, mean = 56.48% and SD = 10.92% for item 3, mean = 51.76% 

and SD = 10.43% for item 4, mean = 50.06% and SD = 11.57% for item 5 and mean 

= 42.91% and SD = 11.35% for item 6 (repeated-measures ANOVA: F(4,96) = 96.475, 

p < 0.001) (Figure 4.2c). We also assessed how well item order was preserved during 

recall by counting, for each trial sequence, the number of items recalled in correct 

order as a function of the total number of recalled items for that sequence. We found 

that participants were accurate in recalling in order the items, independent of the total 

number of items included in their recall (F(3,71) = 1.464, p = 0.231; mean = 97.17% and 

SD = 5.40% for 2 items, mean = 95.89% and SD = 5.51% for 3 items, mean = 98.79% 

and SD = 5.36% for 4 items, mean = 98.01% and SD = 3.26% for 5 items) (Figure 

4.2d).  

4.4.1.2. Subjective ratings of episodic coherence  

The coherence rating provided a subjective measure of the degree of perceived 

narrative of each sequence. Due to technical issues, data for coherence ratings of 4 

participants were not registered and they could not be included in the analysis. On 

average, for the remaining 21 participants, sequences were rated as 2.6 (SD = 0.41) 

(on a scale that ranged from 1 to 4), and the mean percentage of trials rated as 1, 2, 

3, and 4 were respectively 15.34% (SD = 13.63%), 26.79% (SD = 11.67%), 40.36% 

(SD = 17.04%) and 17.51% (SD = 14.58%) (F(3,60) = 9.889, p < 0.001) (Figure 4.2e). 

After median splitting the trials based on verbal recall performance, trials with High 

memory showed significantly higher coherence ratings (mean = 2.79, SD = 0.45) 

compared to trials with Low memory (mean = 2.40, SD = 0.45; paired Student t-test: 

t(20) = 6.166, p < 0.001, two-tailed) (Figure 4.2f).  
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Figure 4.2. Behavioural results for Experiment 1. (a), Percentage of trials at the cued recall task as 
a function of number of items recalled in each sequence. (b), Percentage of trials included in the 
High (High Mem) and Low memory (Low Mem) condition in experiment 1 after implementing the 
median-split approach. Series with at least 3 item pictures correctly retrieved after cue were counted 
as High memory trials, otherwise the series were counted as Low memory trials. (c), Percentage of 
trials as a function of the item across sequence order being recalled. (d), Percentage of trials with 
recall in-order as a function of number of items recalled. A recall trial was considered as in-order 
when its items were recalled following the same sequential order as the true sequence. (e), 
Percentage of trials as a function of the participants’ degree of subjective coherence rating. (f), Mean 
coherence rating score for trials included in the High and Low memory condition. separated by 
median-split verbal recall memory. In (a-c), bars represent the average across participants. Each 
black dot represents values for an individual participant. For all boxplots in (f), the central mark is the 
median, the edges of the box are the 25th and 75th percentiles. *p< 0.05. 
 

 

4.4.1.3. RSA between item sequence and episodic offset at 

encoding 

We first asked whether EEG patterns induced at the post-episode offset period 

correlated to EEG patterns elicited by the just encoded picture items within the 

episodic sequence, and if so, whether the magnitude of such correlation was 
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associated to memory recall at the test. To address this issue, we implemented a trial-

based RSA between EEG data elicited at picture item encoding (1st, 2nd, 3rd ,4th ,5th 

and 6th) with EEG data at the immediately following episode offset period. For each 

participant, the resulting trial-based RSA values were averaged separately according 

to two memory conditions: those associated with the participants ability to recall picture 

items with High memory (3 or more items) and those with Low memory (less than 3 

items). To account for enough number of EEG trials to be included in both conditions 

and to ensure these trials included all items (1-6) and post-episode offset EEG signal 

cleaned of artifacts, we set a post-hoc criteria to exclude participants that did not reach 

a minimum of >15% number of trials in either condition, resulting in 15 participants for 

the current analysis (Average percentage of trials remained well-balanced between 

conditions with 35.04% (SD = 8.06%) of total trials included in analysis for Low 

memory condition and 32.75% (SD = 11.29%) of total trials for High memory condition; 

Wilcoxon signed-rank test: z = 0.597, p = 0.551).  

In both High and Low memory conditions, the results of this analysis revealed an 

increase in similarity between EEG patterns induced ~400 ms – 800 ms at the post-

episode offset period and EEG signal elicited ~400 ms – 1300 ms at picture item 

sequence encoding period (Figure 4.3a). However, the nonparametric cluster-based 

permutation analysis identified one statistically significant cluster where similarity 

values were higher in the High than in the Low memory trials (p = 0.001; mean t-value 

= 3.242, peak t-value = 5.473) (Figure 4.3b). We next evaluated whether the similarity 

between item encoding and post-episode offset period was driven by EEG patterns 

elicited by specific picture items within the just encoded sequence. We extracted the 

mean similarity values within the identified cluster for each item-offset pair and 

computed a repeated-measures ANOVA with two factors: trial condition (High vs Low 

memory) and encoding item (1st, 2nd, 3rd ,4th ,5th and 6th). The results of this analysis 

showed a significant main effects for both trial condition (F[1,14] = 15.407, p = 0.002) 

and encoding item (F[5,70] = 2.677, p = 0.028), but no significant interaction (F[5,70] = 

0.315, p = 0.902). (Figure 4.3c), indicating that episodic offset increase in similarity 

was not driven by EEG patterns elicited by specific items from the encoded item 

sequence. To further evaluate the power of the effect of the difference between High 

and Low memory conditions, we calculated the Bayes Factor on similarity values of 

each point on 2D similarity matrix. The results showed strong evidence (Bayes Factor 
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greater than 10) for difference between conditions overlapping the area where 

significant higher similarity values were found on nonparametric cluster-based 

permutation analysis (Figure 4.3d). 

Having shown that neural similarity increases of the just encoded sequence 

elements was elicited at episodic offset and that it was functionally associated to later 

memory recall, we then leveraged this to explore the relationship between the 

magnitude of memory reinstatement and the numbers of items to be recalled correctly 

later. At the same time, we asked whether the observed effects could be simply 

explained by the participants´ subjective feeling of coherence of the episode, as we 

found that subjective ratings of coherence were higher for High than for Low memory 

condition. To address these issues, we applied a LMM to our trial-based RSA data 

(see Methods). Two participants from the previous RSA analysis were not included 

here due to the missing data for coherence rating, resulting in 13 participants in total 

for the LMM analysis. Given that previous median-split analysis showed an increase 

similarity magnitude associated with higher recall performance, we specifically 

focused on this trend for LMM analysis. The result revealed one time interval that 

survived the statistical threshold for the fixed effect variable total number of items 

correctly recalled (one-tailed, mean t-value = 5.032, peak t-value = 5.621, p < 1.25×10-

5, Bonferroni corrected) (Figure 4.3e). The time interval, which covered ~300 ms – 700 

ms of post-episode offset and ~300 ms – 900 ms of item encoding, indicated the region 

where the degree of neural similarity of each item elicited during post-episode offset 

was significantly positively correlated with total number of items to be recalled in the 

corresponding sequence. However, no significant point exceeding the statistical 

threshold was identified on the statistical map accounting for the variable indexing 

order position in sequence nor for the variable indexing coherence rating. 
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Figure 4.3. Neural similarity results at post-encoding period for Experiment 1. (a), Time-resolved 
degree of neural similarity between item picture encoding and post-encoding offset for events with 
High or Low memory at test. (b), Difference between similarity values for the two conditions. 
Statistically significant (p < 0.05, cluster-based permutation test) higher similarity value ~400 ms – 
800 ms at the post-episode offset period with ~400 ms – 1300 ms at item picture encoding period 
was found for events with higher recall performance (indicated by a black thick line). (c), In all boxplots 
the central mark is the median across participants, the edges of the box are the 25th and 75th 
percentiles. They depict the degree of similarity within the identified cluster for each item encoding 
with its corresponding offset period. Each black dot represents values for an individual participant. 
High memory sequence showed significantly greater similarity across encoding items. (d), Bayes 
Factor of the difference between similarity values for the two conditions. A Bayes Factor greater than 
10 indicates strong evidence for difference between High and Low memory condition. (e), t-value 
map of the variable numbers of item recalled reveals the area that exceeded the significance 
threshold after Bonferroni correction with adjusted alpha level of α = 1.25×10-5 (one-tailed). No area 
exceeding the significance threshold was found for t-value map of the variable serial position of item 
in sequence neither for that of the variable coherence rating. 
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4.4.1.4. RSA between item encoding and sequence item immediate offset 

Next, we asked whether the increases in neural similarity between EEG patterns 

elicited at item sequence encoding and encoding offset were specific to post-episode 

period, or alternatively, whether they could be also found at offset periods immediately 

following picture encoding. To address this issue, we implemented the RSA between 

EEG pattern elicited by each item in the encoding sequence and the EEG signal 

pattern induced during the immediate post-item offset period. The current analysis was 

centered in the post-item offset period after the 4th and 5th item as this represented a 

delay period, as in episodic offset period, that is preceded by the encoding of multiple 

items from a sequence but differed in that the encoding of episode is not completed 

yet. At the same time, this research strategy allowed us to implement the same median 

split analysis used in our previous analysis (i.e., whether or not at least 3 items after 

the picture cue were correctly remembered), thereby enabling the comparison of the 

RSA results from the two conditions later on. 8 out of the total 25 participants were 

excluded for this analysis due to insufficient number of clean EEG trials in either 

condition (i.e., at least 15% of total number of trials in either encoding item of either 

condition) and the remaining participants maintained the balanced separation of trials 

between conditions with 41.06% (SD = 12.89%) of total trials included in analysis for 

Low memory condition and 37.44% (SD = 9.05%) of total trials for High memory 

condition (Wilcoxon signed-rank test: z = 0.355, p = 0.722). The result of this analysis 

showed no clear increases in neural similarity in either High or Low memory conditions 

(Figure 4.4a) and that no cluster of similarity values were accounted when the two 

conditions were compared with a cluster-based permutation test (Figure 4.4b). With 

the aim to further examine that the increase in neural similarity was specific to the 

episodic offset period, we directly compared the neural similarity findings at the first 

1500 ms of the episodic offset vs at the 1500 ms of the 4th and 5th post-item offset. 

The results of this analysis confirmed a cluster of significantly higher neural similarity 

at the episodic offset condition (Figure 4.4c), thereby corroborating the notion that the 

increase in neural similarity was specific to post-episodic encoding delay period.   
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Figure 4.4. (a), Time-resolved degree of similarity between item picture encoding and 4th and 5th 
post-item following the events that were later recalled with High or Low memory. (b), Difference 
(expressed in t values, uncorrected) between similarity values for the 4th and 5th post-item High and 
Low memory conditions. No cluster indicated significantly different similarity values between 
conditions (two-tailed, p < 0.05, cluster-based permutation test). (c), Difference (expressed in t 
values, uncorrected) between similarity values for episodic offset and the 4th and 5th post-item offset 
in the High memory condition. Higher neural similarity was found during the episodic offset compared 
to item-offset. The significant cluster is indicated by a black thick line. p < 0.05, corrected with a 
cluster-based permutation test. 
 
 

4.4.2. Experiment 2: Non-meaningful episodic sequence 

encoding 

4.4.2.1. Behavioural results  

In general, participants were able to recall on average 0.14 items (SD = 0.176) out 

of the possible five (picture cue was not included in the counting) in each series. The 

mean percentage of trials across participants to successfully recall 0,1,2,3,4 and 5 

items after the cue were respectively 89.23% (SD = 11.92%), 7.98% (SD = 8.27%), 

1.96% (SD = 3.14%), 0.77% (SD = 1.84%), 0.06% (SD = 0.32%) and 0% (SD = 0%) 

(F[5,135] = 795.913, p < 0.001) (Figure 4.5a). Even though participants were unable to 

verbally recall almost any item from an encoded sequence, they showed above 

chance performance in the order item sequence recognition task.  
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Figure 4.5. Behavioural results for Experiment 2 (a), Percentage of trials separated by number of 
pictures correctly recalled after the picture. (b), A temporal order sequence recognition memory test 
was added after the cued recall task. In the recognition memory task, all 6 pictures from the sequence 
were presented in random positions at the screen, including the cue, and participants had 30 s to 
order the correct temporal structure of the encoded sequences. The figure showed percentage of 
trials separated by the sequence recognition score. The score is quantified as the maximum number 
of pictures correctly ordered consecutively in one trial. A trial with less than 2 correct pictures 
consecutively ordered following either the cue, the 2nd, the 3rd or the 4th picture (score less than 3) 
was counted as no sequence recognised. (c), Percentage of trials separated by degree of coherence 
rating. (d), Mean coherence rating score of sequences in Experiment 1 vs Experiment 2. In (a-c), 
bars represent the average across participants. Each black dot represents values for an individual 
participant. For all boxplots in (d), the central mark is the median, the edges of the box are the 25th 
and 75th percentiles. *p< 0.05.  
 
 

We analysed these data by quantifying the maximum number of pictures correctly 

ordered consecutively for each given trial sequence. A trial was considered to have 

been recognised if the participant reported at least 3 items in correct order from the 

sequence. On average, the percentage of trials to have scored less than 3, equal to 3, 

4 and 5 (i.e., all pictures in order following the cue) were respectively 49.11% (SD = 

17.31%), 21.85% (SD = 4.72%), 7.26% (SD = 3.55%) and 21.79% (SD = 17.62%) 

(F(3,81) = 39.777, p < 0.001) (Figure 4.5b). The participants provided correct order 

recognition for 50.89% (SD = 17.31%) of the trials, which is statistically significantly 

above chance (chance level = 15%, t(27) = 10.975; p < 0.001, two-tailed). Finally, the 

average coherence rating for sequences in Experiment 2 was 1.79 (SD = 0.48), and 

the mean percentage of trials rated as 1, 2, 3, and 4 were respectively 45.71% (SD = 

25.96%), 33.15% (SD = 14.20%), 17.14% (SD = 14.68%) and 3.99% (SD = 8.31%) 
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(F(3,81) = 24.108, p < 0.001) (Figure 4.5c). In general, sequences in Experiment 1 were 

rated significantly higher than sequences in Experiment 2 (t(47) = 6.164, p <0.001, two-

tailed) (Figure 4.5d), which suggested that the subjective feeling of coherence 

matched the general manipulation of the experiment.   

4.4.2.2. RSA between item sequence and episodic offset at 

encoding 

As in experiment 1, we computed a trial-based RSA between 2500 ms EEG 

patterns elicited by each sequence picture item and the corresponding EEG data 

induced at the 4000 ms episodic offset. The parameters for data smoothing and down 

sampling was kept the same as Experiment 1. For each participant, the resulting 2D 

similarity matrix was first averaged within each item-offset pair and then across pairs. 

10 out of the total 28 participants were excluded for this analysis due to insufficient 

number of clean trials for all items (at least 15% of total number of trials in each item-

offset pair). Thus, a total of 18 participants were included in the analysis. However, 

and contrary to as in experiment 1, the result of RSA for Experiment 2 did not show 

any observable neural similarity increase at the offset period (Figure 4.6a). To assess 

the extent to which neural similarity patterns seen in experiment 1 differed from those 

obtained in experiment 2, we separately compared the neural similarity values for High 

and for Low memory conditions in Experiment 1 with those obtained in Experiment 2. 

The results of these analyses revealed that neural similarity increase found at early 

offset period in experiment 1, for both High and Low memory conditions, was 

statistically different from similarity values at the offset period in experiment 2 (Figure 

4.6b). More concretely, this analysis returned one significant cluster (p = 0.022 

(corrected), mean t-value = 3.354, peak t-value = 5.059), that comprised higher neural 

similarity values for EEG data within ~400 - 1000 ms time range from post-episode 

offset period and ~200-1400 ms time range from item picture encoding from High 

memory trials in experiment 1 over trials from experiment 2. A similar cluster in its 

timing (~450 - 1000 ms of post-episode offset and ~200 - 1100 ms of item encoding) 

with significantly higher neural similarity values was found when comparing Low 

memory trials from experiment 1 with trials from experiment 2 (p = 0.026 (corrected), 

mean t-value = 2.928, peak t-value = 4.237). 
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Finally, we assessed whether the participants’ ability to preserve a temporal order 

memory, irrespective of their lack of episodic recall could still be associated to 

increases in neural similarity at the picture sequence offset period. For each individual, 

we split the encoding trials as a function of whether they were accurate in the temporal 

order recognition test (defined by trials with 3 items in correct order) and those trials 

where the participant showed poor temporal order accuracy (i.e., < 3 elements in 

correct order). In this analysis, 4 more participants were excluded due to insufficient 

number of clean EEG trials in either condition. The results of this analysis revealed no 

significant differences at cluster level (p > 0.05 two-tailed; permutation test) between 

the two conditions. 

 

Figure 4.6. Neural similarity in Experiment 2. (a), Neural similarity between item picture encoding at 
post-encoding period for Experiment 2. (b), Higher neural similarity was found during the offset period 
in High memory trials in Experiment 1 when compared to the offset period in in Experiment 2 (the 
significant cluster is indicated by a black thick line. p < 0.05, corrected with a cluster-based 
permutation test).  
 
 

4.5. Discussion 

Here, we investigated in healthy human participants whether memory 

reinstatement of a just-encoded sequence of episodic items is a mechanism 

selectively engaged to support episodic memory formation. In two separate 

experiments, we examined whether memory reinstatement at encoding offset was 

concomitant to meaningful and/or to non-meaningful sequence of episodic items. In a 

first experiment, we used representational similarity analysis of scalp EEG recordings 

during the encoding of sequences of pictures depicting unique episodic-like events 

and we found that EEG patterns elicited during picture viewing correlated with EEG 

patterns at the episode offset. The degree of episodic offset-reactivation predicted 



 61 

later memory recall of the encoded picture sequence. In a second experiment, we 

used a similar analytical approach on EEG recordings while a different set of 

participants encoded sequences of pictures that were unrelated to each other, thereby 

preserving similar temporal encoding structure on meaningless episodic sequences. 

In this experiment, we did not find evidence of post-encoding memory reactivation at 

the offset. These results suggest that post-encoding memory reinstatement is akin to 

the rapid formation of unique and meaningful episodes that unfold over time. 

Given the unfolding nature of our experience, researchers have started to focus 

the attention to brain encoding mechanisms that followed online encoding, as this may 

offer an “optimal” window whereby an unfolding episode can be registered as a bound 

representation once the ongoing inputs have concluded (Lu et al., 2020). fMRI studies 

using short videoclips (Zacks et al., 2001; Ben-Yakov et al., 2011; Ben-Yakov et al., 

2013), sequence learning tasks alternating picture categories (DuBrow and Davachi, 

2014) and, more recently, using long movie clips (Baldassano et al., 2017; Ben-Yakov 

et al., 2018) offered converging evidence that the brain is sensitive to episodic 

boundaries during encoding. In line with these findings, we recently showed that event 

boundaries, operationalized as transition points in the encoding time whereby one 

episode ends and new one starts, triggered the rapid memory reinstatement of the just 

encoded event information upon context shifts, and that the degree of memory 

reinstatement predicted the participants’ ability to preserve temporally adjacent events 

in a later test (Sols et al., 2017; Silva et al., 2019). The current results extend previous 

findings in several important ways. 

If memory reactivation at episodic offset serves to promote the encoding of unique 

events into memory, we reasoned, then, it should be observable at the end of an 

episode and not contemporarily to the beginning of another episodic input. Our results 

from experiment 1 showed that this is the case, as EEG patterns elicited during 

sequence encoding correlated to EEG patterns at immediate offset periods that did 

not contain any stimuli input. Importantly, memory reinstatement was not observed in 

transition points between pictures of an episode. These findings lend support to the 

notion that memory reinstatement does not merely reflect an ongoing mechanism that 

links items associated during encoding. Instead, it suggests that episodic offset 
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memory reactivation is a specific neural signature induced once an individual 

perceives an unfolding episode concluded.  

We also found that post-encoding memory reinstatement followed the encoding of 

picture sequences that were perceived by individuals as depicting a meaningful 

episode (i.e., Experiment 1) but not after the encoding of sequences of pictures that 

were unrelated to each other (i.e., Experiment 2). Why would post-encoding 

reactivation be important for the formation of memories of meaningful episodes? 

Previous research has shown that the recall of life-like episodes is organised along 

representational dimensions beyond their temporal structure, such as the causal 

(Brownstein & Read, 2007), semantic (van Kesteren et al., 2013; Baldassano et al., 

2018) and the relations between the elements embedded in the episodes (Lee and 

Chen, 2021). This research aligns well to psychological research that emphasized that 

memory is carved by how people construct a high-order model of the ongoing 

experience and that the detection of an episodic boundary triggers a set of neural and 

cognitive processes that would allow the integration of the just-encoded episodic 

model in memory (Radvansky and Zacks, 2011). Importantly, for this resulting model 

to be effectively recalled later, it should include several components that vary in the 

representational hierarchy: from object features to semantics (Radvansky and Zacks, 

2011). Recent fMRI research has provided evidence that such representational 

structure is well reflected along cortical hierarchy during online encoding of realistic 

stream of stimuli (e.g., Baldassano et al., 2017; Bird, 2020; Reagh and Ranganath, 

2021; Lee and Chen, 2021; Heusser et al., 2021) and that such cortical patterns are 

coupled to hippocampal activity at the detection of high-order event boundaries during 

encoding to account for later recall (Baldassano et al., 2017). Our current findings 

contribute to this literature by indicating that memory reactivation is a neural signature 

by which this high order episodic models can be stored rapidly at episodic encoding 

offset.   

The fact that memory reactivation was found during a delay period immediately 

following encoding can be seen as a reflection of a mechanism inherently linked to the 

working memory (WM) maintenance of the encoded sequence of pictures. However, 

several observations in our results suggest the reinstatement at the episode offset 

cannot be explained solely by WM processes. First, post-encoding memory 
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reinstatement predicted participants’ ability to recollect the episodic picture content in 

a later test but not their subjective rating of coherence that immediately followed the 

delay period. Should post-encoding memory reinstatement be a mechanism 

supporting WM maintenance we would expect it to be at least partially associated with 

the individual’s ability to evaluate the episodic coherence of the encoded picture 

sequence after the delay period. Second, post-encoding memory reinstatement in our 

study was circumscribed to the beginning but not throughout the post-encoding delay 

period. Studies investigating the neural substrates of WM have shown that delay 

maintenance is associated with a sustained increase in activation of neocortical 

structures (Fuster and Alexander, 1971). Should post-encoding memory reinstatement 

be associated with the sustained increase neural activity during the delay we would 

expect it to be observed over extended portions of the offset delay period and not only 

at the beginning of it. More recently, it has been argued that such above-threshold 

delay-period activity may support functions other than information storage per se 

(D’Esposito and Postle, 2015) and the existence of other neural coding mechanisms 

such as “activity-silent” states (Stokes, 2015) and dynamic coding schemes (Liu et al., 

2020). However, these neural representational formats are still susceptible to be 

identified with the implementation of multivariate decoding approaches, such as the 

one implemented in the current design, thereby rendering unlikely they were 

unobservable throughout the delay period in our study. Third, recent findings from 

direct recordings at hippocampal and neocortical regions in epileptic human patients 

showed that the hippocampus marks the conversion from external (perceptual) to 

internal (mnemonic) representations by signalling cortical reinstatement at ∼500 ms 

after the onset of a retrieval cue (Treder et al., 2021). Our study showing that memory 

reinstatement detected from scalp EEG signal emerged transient and of a relatively 

brief duration at ∼500 ms at post-episodic encoding period may result from a switch 

from perception to memory process during encoding itself which would help bind the 

unfolding information into a memory episodic unit. 

A pressing question derived from the findings of our second experiment is why 

post-encoding memory reactivation was absent when participants encoded 

sequences of pictures depicting unrelated content. Though the statistical absence of 

an effect cannot guarantee the absence of the effect, our results lend support to the 

notion that that post-encoding reactivation strength may not be an automatic 
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mechanism that links items associated during encoding. Instead, it suggests that it 

contributes to the integration of event components into long-term memory once an 

individual perceives a meaningful episode is concluded. Previous fMRI research has 

highlighted that the primary role of hippocampal offset signal in reflecting binding 

operations of stimuli that just co-occurred within the same spatial-temporal context 

(Staresina and Davachi, 2009; Ritchey and Cooper, 2020). Similarly, fMRI studies 

(Baldassano et al., 2017) and electroencephalographic recordings from implanted 

electrodes in epileptic patients (Michelmann et al., 2021) revealed that the degree to 

which offset hippocampal activity couples with cortical patterns of activity during a 

continuous stream of stimuli predicts pattern reinstatement during later recall, thereby 

indicating that the hippocampus may be responsible for binding cortical 

representations into a memory trace online during encoding (McClelland et al., 1995; 

Norman and O’Reilly, 2003; Moscovitch et al., 2005).  

Single-cell recordings from the rodent hippocampus during navigational tasks 

have shown that neural replay can be observed after the first lap on a novel track 

(Foster and Wilson, 2006). More strikingly, this research has shown that post-encoding 

replay may preserve the temporal structure of the encoded event sequence in a 

compressed time-manner (Csicsvari et al., 2007; Diba & Buzsaki 2007; Foster & 

Wilson 2006; Gupta et al., 2010; Karlsson and Frank, 2009), thereby suggesting that 

awake neural replay after single-shot learning may reflect the encoding of a model of 

the experience in long-term memory (Foster, 2017). Our findings based on scalp EEG 

recordings are blind to whether memory reinstatement at episodic offset period relies 

on memory replay of a temporally preserved structure of the encoded sequence. 

Future studies using brain acquisition approaches more sensitive to hippocampal 

activity, such as MEG (e.g., Liu et al., 2019) or intracortical recordings directly from 

the human hippocampus (e.g., Vaz et al., 2020) may help disambiguate whether the 

compressed episodic offset memory reinstatement preserves a temporal structure of 

an encoded sequence episode.  

To conclude, we have shown that episodic offset memory reinstatement is 

selectively engaged to support successful encoding of sequential picture series with a 

coherent structure. These results shed light on the neural mechanisms that support 

the rapid learning of novel episodes that unfold over time in humans and how they 
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serve to selectively transform experiences into long-term memory representations that 

can be later recalled.  
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5.1. Summary 

In episodic encoding, the unfolding experience is rapidly transformed into a 

memory representation that binds separate episodic elements into an integrated 

episodic form so that it can be later recollected. Here, we examined whether this 

memory transformation occurs rapidly once the encoded episode is completed via a 

replay-like neural mechanism. We asked participants to encode trial-unique 

combinations of face-object-scene picture triplets that were subsequently recalled in 

a test. We used representational similarity analysis of scalp electroencephalography 

(EEG) recordings during encoding, and we found evidence for memory reactivation of 

the just encoded episodic elements after encoding, i.e., at the offset following each 

triplet presentation. Neural patterns associated with face-object-scene categories 

were obtained from a different set of images and applied to EEG signals to index the 

magnitude of pattern discriminability across image categories during sequence 

encoding and at the offset period. We found that the degree of category discriminability 

decreased as a function of item order in the sequence, indicating the gradual 

integration of items' categories from the sequence during online encoding. However, 

we found a smaller degree of category discriminability at offset period presentation 

(i.e., at 500 ms at offset period) for sequences that would be later recollected 

compared to those that would be forgotten. Given the temporal overlap of the increase 

in neural similarity and the decrease in picture category separability measures, and 

the specificity of the effects in relation to memory performance, we conclude rapid 

memory reactivation at episodic offset supports an early stage of transformation of the 

encoded elements within the events into a unique and bound memory trace. 

5.2. Introduction 

In natural settings, experience unfolds over time, yet when we echo the past, we 

remember our experience as a collection of distinct and cohesive events. A current 

hallmark in the research field is to understand how learning systems operate to rapidly 

transform the ongoing experience into separate and unified memory traces that can 

be fully recollected later.  
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Traditionally, human episodic memory research answered this question by 

focusing on experiments using simple, well-controlled stimuli (e.g., images or words), 

and analysing the neural underpinnings that predicted their successful retrieval during 

the online encoding (i.e., when stimuli to be remembered were present) (Paller and 

Wagner, 2002). This research offered valuable insights into the interactive nature of 

the hippocampal-neocortical learning system (Eichenbaum, 2000; McClelland et al., 

1995; Squire, 1992), their chronometry (Staresina and Wimber, 2019) and the 

mechanisms that guide the transformation of perceptual inputs into a memory trace in 

the long term (Lee et al., 2022). Recently, however, researchers have started to study 

memory in more naturalistic situations, for example, while volunteers watch a movie. 

These studies complemented results from traditional experiments by showing that 

episodic encoding occurs selectively over time. For example, results from fMRI 

(Baldassano et al., 2017; Ben-Yakov et al., 2013; Ben-Yakov and Henson, 2018) or 

single-neuron activity recordings from epileptic patients (Zheng et al., 2022) studies 

suggest that episodic encoding occurs preferentially offline, at the ends of events. 

These results align well with previous findings that showed that successful encoding 

of an unfolding sequence of items is guided by hippocampal-cortical signalling at event 

boundaries when there is a contextual shift of an unfolding sequence episode (Dubrow 

and Davachi, 2014; Clewet et al., 2019). This boundary-locked response predicts 

subsequent memory performance for the just-completed event (Ben-Yakov and Dudai, 

2011; Baldassano et al., 2017), leading researchers to conclude that it is a neural 

signature of episodic encoding of the just-completed event.  

An important question that remains unresolved relates to the representational 

nature of this episodic immediate offset-locked neural activity supporting the 

recollection of the just encoded experience. One plausible explanation, inspired by 

animal literature (Duba and Buzsáki, 2017) and supported by recent scalp 

electrophysiological findings in humans (Sols et al., 2018; Silva et al., 2019; Wu et al., 

2021), would be that the completion of an encoded sequential event triggered the 

reactivation of the just-encoded episodic elements. The possibility of episodic offset-

locked neural reactivation taking place is mechanistically attractive because of several 

reasons. It would bring the possibility to rapidly implement identified neural processes 

of memory formation and consolidation (Dudai et al., 2015) and adjust them to the 

dynamical timing of the episodes’ start and end in naturalistic experiences. It would 
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support the notion that encoding-retrieval processes can rapidly intertwin during the 

awake experience (Hasselmo, 2003), thereby indicating that retrieval-like operations 

are engaged throughout the encoding experience enabling the integration of novel and 

past memory traces (Griffith and Fuentemilla, 2019). It would enable the rapid storage 

of the just-encoded elements accurately and cohesively by minimising the possible 

interference driven by the continual encoding of the ongoing experience. Alternatively, 

post-encoding neural reactivation may promote the rapid transformation of the just 

encoded event into an integrated form, whereby the distinct elements within the event 

are bound together in long-term memory as a unified memory trace akin to a rapid 

memory consolidation process (e.g., Liu et al., 2021). In the current study, we 

attempted to arbitrate around this latter issue by examining whether episodic 

immediate offset-locked neural signature promotes the reactivation of an accurate 

representation of the specific elements of a just-encoded episode or, alternatively, 

whether it aids an early stage of memory transformation of the encoded event into a 

bound representation to achieve long term memory recollection. 

We recorded scalp EEG signal while participants encoded trial-unique 

combinations of face-object-scene picture triplet sequences to be subsequently 

recalled in a test. We used time-resolved representational similarity analysis in 

combination with a novel pattern classification analysis to quantify the degree of fidelity 

of an EEG signal to a general picture category representation (faces vs objects vs 

scenes). We applied these analyses during the encoding and episodic offset period. 

We found an increase in neural similarity between neural signals elicited at ∼ 400 ms 

during sequence encoding and at episodic offset. We also found that the degree of 

trial-based neural similarity at episodic offset was greater for the recollected triplet 

episodes than those forgotten. Interestingly, neural signals elicited during picture 

encoding and at the early stages of the offset period, at ∼ 400 ms, resembled general 

category picture representations. However, the degree of category representation at 

the offset, but not during picture encoding, was lower for later recollected than 

forgotten triplet episodes. The increase in trial-based similarity measures and the 

picture category pattern separation at the offset period for recollected episodes 

suggest that rapid offset-locked signals trigger a reactivation of a bound representation 

of the elements of a just-encoded experience. 
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5.3. Materials and Methods  

5.3.1. Participants 

Thirty-two native Spanish speakers were recruited for the current experiment and 

compensated by 10 €/hour for their participation. All participants had a normal or 

corrected-to-normal vision and reported no medical, neurological or psychiatric 

disorders history. Two participants were excluded from the study due to technical 

problems during the EEG recordings. Data from 30 participants (17 females; age 

range 18 - 32 years, M = 23.77, SD = 4.38) were analysed. Informed consent was 

obtained from all participants in accordance with procedures approved by the Ethics 

Committee of the University of Barcelona. 

5.3.2. Stimuli  

The experimental design included 312 images (350×350 pixels each): 104 images 

of famous faces (52 male and 52 female), 104 images of famous places, and 104 

object images. Famous face and scene images were selected from a larger sample of 

the image database consisting of 284 and 184 pictures of each category, respectively. 

The selection was carried out by a separate sample of 10 Spanish university students 

(5 females; age range 21-39 years) who rated their familiarity with each image on a 

scale from 1 to 4 (1: Not recognised; 2: Familiar; 3: Recognised but don´t know the 

name; 4: Know the name). The final set of 104 face and place images were those that 

received the highest mean score by 10 external raters (mean score equal to or higher 

than 3.44 for male, 2.89 for female and 2 for places). The 104 objects were selected 

from available object picture databases and covered 6 categories (clothing, food, tools, 

transport, work and leisure). For each participant, 60 images (20 object images, 20 

face images of famous people and 20 images of famous places) were randomly 

selected for the Localizer phase. Among the 312 images, 60 (20 object images, 20 

face images of famous people and 20 images of famous places) were randomly 

selected for the localisation block. For the main task, 36 images (12 object images, 12 

face images and 12 place images) were used for example trials and the rest 216 
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images (72 object images, 72 face images and 72 place images) were used for the 

encoding trials, this separation was kept the same across participants. 

5.3.3. Experimental design 

The experiment consisted of the localiser phase and the task phase. In the 

localisation phase, 60 images (20 faces, 20 scenes and 20 objects) were presented in 

random order to participants. Each trial started with a 1000 ms fixation cross, followed 

by a 2500 ms image presentation. Then, a text displayed on the screen indicated the 

need of the participants to inform the category of the just presented image (Figure 5.1). 

Participants had a maximum of 10 seconds to respond. The next trial started 

immediately once a response was given or passed the maximum time limit. There was 

a brief break between every 20 trials where participants could briefly rest and decide 

to continue whenever they felt ready. 

 
 
Figure 5.1. Experimental design. For the localisation task, 60 different images from 3 categories 
(face, place, and object, 20 each) were presented 2.5s on the screen. Participants were asked to 
indicate the image category within a maximum of 10s after its presentation. Each block started the 
with encoding phase, where 12 trials of triplets, each consisting of image of an object, a famous 
face, and a famous place, with fixed category order, were presented to participants. Participants 
were encouraged to construct stories using the three elements for later memory test. Each image 
was presented on the screen for 2.5s following 1s of fixation cross. A blue asterisk appeared at 
the end of each triplet for 3.5s, then participants needed to rate the sense of difficulty for story 
construction. Two example encoding trials were presented at the beginning of each encoding 
phase. For the Psychomotor vigilance task, participants were instructed to pay attention to the 
centre of the screen waiting to react on the onset of a text timer by pressing the ‘Space’ button. 
After a random interval between 5s to 15s, text timer started counting in the middle of the red 
square indicating the real passing time in milliseconds. Once the button was pressed, the timer 
stopped with the presentation of the final reaction time for 2s. Then the text was cleared, and the 
new trial started. There were in total 12 trials with no pause in the middle. Retrieval phase began 
after the PVT task. There were 12 recall trials, each of which used the first image of the previously 
presented triplets to cue the free recall of the other two images. Participants had maximumly 30s 
to verbally recall after the 2.5s of cue image presentation. One block was completed after the 
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retrieval phase, and the next block started following a brief break. The experiment consisted of 6 
blocks in total. 
 
 

The task phase started after the localiser phase. The task phase included 6 blocks, 

each of them including an encoding task, a Psychomotor vigilance task (PVT) and a 

retrieval test. Each block was independent of each other, so that picture images 

presented in one block were never shown in any other of the blocks, but the task 

instructions and their order of alternation were the same in each block. In the encoding 

task, participants were instructed to encode 12 series of three images, namely an 

object (O), a famous face (F), and a famous place (P). Participants were encouraged 

to construct stories using triplet elements in the form of a narrative (e.g., Iniesta went 

to Paris and purchased an expensive belt), and they were informed the triplet 

information would be tested later. In total, 72 triplets were randomly generated for each 

participant from 216 images (72 object images, 72 face images and 72 place images), 

and each image was used only once in the experiment. In each block, the presentation 

order of the image categories in a series was fixed (e.g., always ordered as Face-

Place-Object in one block). There are in total 6 possible presentation orders, each of 

which was used in one of the 6 blocks with no repetition and randomly generated for 

each participant. At the beginning of each block, two example trials were presented, 

indicating the order of presentation of the image categories. Participants were 

instructed to use the two example trials to rehearse the upcoming series encoding in 

the block and that the example trials would not be tested later. Each encoding trial 

began with the presentation of the text ‘New Story’ for 3000 ms, which marked the 

start of a new triplet series. Triplet images were then presented sequentially on a white 

screen for 2500 ms each after a 1000 ms black fixation cross. Immediately after the 

presentation of the last image in each triplet, a blue asterisk appeared on the screen, 

indicating a post-episode offset period of 3500 ms, during which participants were 

instructed to avoid rehearsing the just-encoded triplet series. The asterisk remained 

visible on the screen during the offset period. Participants were then asked to provide 

a degree of subjective feeling of the difficulty of constructing a coherent episode with 

the just presented triplet of images by a button press on a scale from 1 (‘very easy’) to 

4 (‘very difficult’). The next trial began immediately after a response was given, or no 

response was given after a time limit of 10 seconds. A small break of ~10 sec was 

provided after completing 6 trials.  



 74 

A block of the PVT task followed the encoding phase. In each PVT block, 

participants were instructed to pay attention to the screen’s centre and press the space 

button as quickly as possible once the timer started counting. The task commenced 

with the text presentation ‘New Task’ for 3000 ms. Then an empty red square was 

displayed at the centre of the screen following a 1000 ms fixation cross. After a random 

interval between 5 sec to 15 sec, the timer started counting in the middle of the square 

indicating the real passing time in milliseconds. The timer counted maximumly until 

3500 ms if no response was given. Once the participants pressed the button during 

the counting period, the timer stopped with the presentation of the final reaction time 

in the centre of the screen for 2000 ms. In cases where no response to the timer was 

given within the time limit, the presentation would be the final counting time of the timer 

(i.e., 3500 ms). The new PVT trial started immediately after the reaction time 

presentation. In total, 12 repetitions of response were required with no interruption in 

the middle. A block of a PVT task lasted around 3 minutes.  

The PVT task was followed by a cued-recall task. During this task, participants 

were presented with the first image of all the encoded triplets in the current block in 

random order. They were required to verbally recall the story episode containing the 

other two images associated with the cue image. Each trial began with the text ‘New 

Recall’ for 3000 ms, followed by the cue image on the screen for 2500 ms and a 1000 

ms fixation cross. Then, the text ‘Explain the story’ was displayed on the screen, which 

indicated to the participants they could start the verbal recall. The verbal recall had a 

maximum duration of 30 s, during which the text instruction remained visible on the 

screen all the time. Participants could skip to the next trial when finished with their 

recall or if they were unable to recall any associated image by pressing the space bar. 

A brief break of ~20 s separated the start of the next block. 

5.3.4. EEG recording and preprocessing 

During the experiment, EEG was recorded with a 64-channel system at a sampling 

rate of 512 Hz, using a eego™ amplifier and Ag/AgCl electrodes mounted in an 

electrocap (ANT neuro) located at 59 standard positions ((Fp1/2, AF3/4, Fz, F7/8, F5/6, 

F3/4, F1/2, FCz, FT7/8, FC5/6, FC3/4, FC1/2, Cz, T7/8, C5/C6, C3/4, C1/2, CPz, 

TP7/8, CP5/6, CP3/4, CP1/2, Pz, P7/8, P5/6, P3/4, P2/1, POz, PO7/8, PO5/6, PO3/4, 
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Oz, O1/2) and at the left and right mastoids. Horizontal and vertical eye movements 

were monitored with electrodes placed at the right temple and at the infraorbital ridge 

of the right eye. Electrode impedances were kept below 10 kΩ. EEG was re-referenced 

offline to the linked mastoids. Bad channels were interpolated, and a band-pass filter 

(0.5 Hz - 30 Hz) was implemented offline. Blinks and eye movement artifacts were 

removed with independent component analysis (ICA) before the analysis. 

5.3.5. Behavioural data analysis 

During the retrieval phase of the experiment, participants were instructed to 

verbally recall the constructed story episode associated with the picture cue. Verbal 

recall of each trial was recorded through an audio recorder, and the audio files were 

later analysed. A successful recall of the image was considered as either correctly 

mentioning the name or describing it in precise detail. Memory for each triplet was 

quantified by the number of images (excluding the cue) correctly recalled. 

5.3.6. EEG data analysis 

For each participant, we extracted epochs of EEG activity surrounding pictures 

presented in the localiser and the encoding tasks. These EEG trial epochs had a 

duration of 2500 ms (1280 data points given the 512 Hz EEG recording sampling rate), 

and they were baseline corrected to the pre-stimulus interval (-100 to 0 ms). We also 

extracted EEG epochs of 2100 ms (1024 data points) from the offset period following 

the encoding of each triplet series. EEG signal to the offset period was baseline 

corrected to the -100 to 0 ms averaged EEG activity. EEG trial epochs that exceeded 

± 100 µV were discarded for further analysis. EEG trials were then Gaussian smoothed 

by averaging data via a moving window of 100 ms (excluding the baseline period) and 

then downsampled by a factor of 5. 

5.3.7. Representational Similarity Analysis (RSA) 

RSA was performed timepoint-to-timepoint and included spatial features (i.e., scalp 

voltages from all the 28 electrodes) (Silva et al., 2019; Wu et al., 2021). The similarity 
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analysis was calculated using Pearson correlation coefficients, which are insensitive 

to the absolute amplitude and variance of the EEG response. 

We conducted a trial-based RSA between the EEG signal elicited by each 

encoding item (1st, 2nd, and 3rd, regardless of the image category) and the EEG signal 

elicited at the offset period following the encoding of the triplet series. After smoothing 

and down-sampling, EEG epoch data elicited by each picture in the triplet included 

205 sample points (given the 512 Hz EEG recording sampling rate) covering the 2000 

ms of picture presentation and EEG data from post-triplet offset contained 359 time 

points, equivalent to 3500 ms. Point-to-point correlation values were then calculated, 

resulting in a 2D similarity matrix with the size of 205×359, where the x-axis 

represented the episodic offset time points and the y-axis represented the picture 

encoding time points. The output 2D matrix depicted the overall degree of similarity 

between EEG patterns elicited by each encoding image and the subsequent post-

episodic offset interval. 

To account for RSA differences between conditions, we employed a nonparametric 

statistical method (Maris & Oostenveld, 2007), which identifies clusters of significant 

points on the resulting 2D similarity matrix and corrects for multiple comparison based 

on cluster-level randomisation testing. Statistics were computed on values between 

conditions for each time point, and adjacent points in the 2D matrix that passed the 

significance threshold (p < 0.05, two-tailed) were selected and grouped together as a 

cluster. The cluster-level statistics took the sum of the statistics of all time points within 

each identified cluster. This procedure was then repeated 1000 times with randomly 

shuffled labels across conditions. Cluster-level statistics with the highest absolute 

value for each permutation was registered to construct a distribution under the null 

hypothesis. The nonparametric statistical test was calculated by the proportion of 

permuted test statistics that exceeded the true observed cluster-level statistics. 

5.3.8. Linear Discriminant Analysis (LDA) 

To identify the multivariate pattern of brain activity for image processing of different 

categories, a Linear Discriminant Analysis (LDA) was trained and tested on the EEG 

sensor patterns of localiser trials (pre-processed signal amplitude from 59 channels). 

The classifier was trained independently per participant and at each time point during 
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localiser image presentation, then tested with a leave-one-out cross-validation 

procedure. Given that three categories were included in the current experiment (face, 

place, and object), at the training stage, the classifier was trained repetitively three 

times, including each possible pair out of the three classes. For each of the two classes, 

the classifier found the decision boundary that best separated the pattern activity. We 

then asked the classifier to estimate the unlabelled pattern of brain activity for each of 

the three decision boundaries (one for each pair of classes). The output of the classifier 

for each two trained classes at a given time point was the distance value to the 

decision boundary, which represents how probable the pattern of brain activity 

belonged to one of the two included classes, with the sign indicating the class while 

the magnitude reflecting how confidence was the classifier. The distance value for 

each pair of classes was then sigmoid transformed to get the probability of either class 

that unlabelled pattern activity belonged to (e.g., a distance value of 0 will return 50% 

for either class). After normalising and averaging values across the three possible 

pairings, the class with the highest probability was marked as the final label for the 

testing data. To access the general separability between the three classes in a 

compound measure, we defined a separability index as the sum of the absolute of the 

three distance values to each of the decision boundaries, with the assumption being 

that the greater the separability index, the higher the probability that the given activity 

pattern belonged to a specific class rather than assimilating to all three classes with 

equal distinctiveness (i.e., closer to zero).  

This training-test procedure was repeated until every single localiser trial had been 

classified. The predicted labels for all trials at every given time point were then 

compared to the true classes to assess the accuracy of the classifier across all 

localiser time.  

To evaluate how face, object and scene category representations accounted for 

EEG patterns elicited during picture encoding and at the offset period, we first 

identified the time point where the cross-validation of the classifier reached the peak 

accuracy.  Then using patterns of activity surrounding 10 time points around the peak 

(- 50 ms to 50 ms with the peak time point in the middle), we trained the classifier per 

participant with all localiser trials and predicted all sample points separately for 

encoding and offset trials. The results were then averaged across localiser time points, 
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resulting in a 1D separability index line for each trial where each sample point 

represented the encoding/offset time points.  

5.3.9. Linear-mixed effect model 

To further explore how the separability of pattern activity between picture 

categories changed along the encoding sequence and whether it is predictive for 

behavioural memory on a trial basis, we implemented a Linear Mixed Effect Model 

(LMM) on the resulting general distance value of each encoding image classified by 

patterns trained on trials from the localiser task. We further smoothed the resulting 1D 

distance value for each predicting encoding trial by averaging over a moving window 

of 100 ms, then introduced in our LMM value on each time point as the independent 

variable and both image order in triplet series (1st, 2nd, and 3rd) and recall memory 

(successfully recalled 0, 1, or 2 images following the cue) as well as the interaction of 

the two as fixed effect variables. Subject was introduced in the model as the grouping 

variable, with random intercept and a fixed slope for each fixed effect variable. The 

statistical significance was then evaluated using Bonferroni correction for each fixed 

effect variable at each timepoint thresholded with an adjusted alpha level of α = 

2.44×10-4 (0.05/205). The procedure was repeated to compare high and low memory 

conditions during offset. The output 1D distance line across offset was averaged for 

each condition across subjects. The t-statistics was then computed at each time point, 

and the significance was evaluated at the cluster level after cluster-based permutation. 

5.4. Results 

5.4.1. Localisation task 

For the localisation task, 26 out of 30 participants reached 100% accuracy in 

identifying the image category, and the mean accuracy across the 30 participants was 

99.72% (SD = 0.77%). 
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5.4.2. Recall of picture triplets 

Participants were able to recall on average 1.12 pictures (SD = 0.37) following the 

cue, with the mean percentage of trials recalling 0, 1, and 2 items being respectively 

35.61% (SD = 16.41%), 16.30% (SD = 6.52%) and 48.09% (SD = 20.68%) (Figure 

5.2a). We also found that the average number of images recalled upon the picture cue 

did not vary between blocks, indicating that encoding and retrieval accuracy did not 

vary throughout the task (repeated-measures ANOVA with block number as the main 

factor: F(5,140) = 0.415, p = 0.838). However, there was a significant difference of recall 

performance depending on the category order of the triplet series. More concretely, 

we found that encoding blocks that included triplets with face as the first picture (i.e., 

Face-Place-Object or Face-Object-Place) were less accurately recalled (Face-Place-

Object: mean = 0.914, SD = 0.098; Face-Object-Place: mean = 0.905, SD = 0.082) 

than triplets from blocks where place (Pace-Face-Object: mean = 1.253, SD = 0.081; 

Pace-Object-Face: mean = 1.224, SD = 0.081) or object (Object-Face-Place: mean = 

1.213, SD = 0.081; Object-Place-Face: mean = 1.230, SD = 0.084) was presented first 

(repeated measures ANOVA: F(5,140) = 9.798, p < 0.001).  

 
 
Figure 5.2. Behavioural results. (a) Percentage of trials as a function of numbers of images correctly 
retrieved during free recall. (b) Subjective rating of the difficulty of triplet encoding separated by 
whether or not the triplet was later successfully recalled (with both images associated with the cue 
being correctly recalled). Each dot on both plots represents the value for an individual in the 
corresponding condition. Each grey line on the boxplot connects the value of an individual in two 
conditions. 
 
 

For RSA analysis, we adopted a median-split approach (Wu et al., 2021) to 

separate the trials based on whether the entire triplet images were correctly retrieved. 

Triplets with 2 images recalled after the cue were labelled as successful recall, and 
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triplets with either 1 image or no image recalled were labelled as unsuccessful recall. 

The average percentage of trials were respectively 48.09% (SD = 20.68%) for 

successful recall condition and 51.91% (SD = 20.68%) for unsuccessful recall 

condition (Wilcoxon signed-rank test: z = -0.43, p = 0.67). RSA results for successful 

and unsuccessful recall trials were then compared using a point-to-point paired t-test. 

The statistical difference between the two conditions was then assessed with a cluster-

based permutation approach. 

5.4.3. Participants’ ratings of encoding difficulty 

On average, triplets were rated as 2.24 (SD = 0.47) (on a scale that ranged from 

1: no difficulty to 4: very difficult), and the mean percentage of triplets rated as 1, 2, 3, 

and 4 were respectively 27.91% (SD = 21.73%), 33.79% (SD = 13.80%), 24.65% (SD 

= 13.13%) and 13.65% (SD = 12.03%). Based on the median-split criteria, difficulty 

ratings for trials with successful recall (mean = 2.26 and SD = 0.48), and for trials with 

unsuccessful recall (mean = 2.22 and SD = 0.51) did not differ statistically between 

each other (paired Student t-test: t(29) = 1.01, p = 0.32, two-tailed) (Figure 5.2b). 

5.4.4. RSA between item sequence and episodic offset at 

encoding 

We first examined the existence of encoding-offset neural similarity differences 

between trials that were successfully or unsuccessfully recalled. This analysis 

revealed that EEG patterns elicited during the encoding of picture triplets that were 

later recalled showed, compared to unsuccessfully recalled trials, a higher degree of 

neural similarity during the episodic offset period (Figure 5.3a and 5.3b). This result 

was 
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Figure 5.3. RSA for image encoding and its corresponding post-triplet 
offset. (a): Time-resolved degree of neural similarity between image 
encoding and post-triplet offset for trials with successful subsequent recall 
(upper) and unsuccessful recall (lower). (b): Difference between similarity 
values for the two conditions. Statistically significant (p < 0.05, cluster-
based permutation test) higher similarity value was found for trials 
successful recall centred in two areas (indicated by black contour lines. 
Pcluster1 < 0.001; Pcluster2 = 0.002 ). 
 
 

corroborated statistically with the cluster-based permutation test, which showed two 

clusters of increased neural similarity starting at ~400 ms at offset period (Cluster 1: p 

< 0.001, mean t-value = 2.98, peak t-value = 4.74; Cluster 2: p = 0.002, mean t-value 

= 3.10, peak t-value = 4.92) (Figure 5.3b).  

5.4.5. Classification accuracy and separability of picture 

category  

We adopted the LDA approach to classify and predict the image category being 

processed based on the elicited EEG pattern in the localiser task. The classifier was 
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trained independently per participant and at each time point during picture encoding, 

then tested with a leave-one-out cross-validation procedure. Two output values were 

extracted for each time of training/testing, namely the category of tested data predicted 

by the model with the highest probability among three alternatives (i.e., accuracy) and 

a general distance value (D value) of tested data to the classification plane among 

categories (i.e., separability) (Figure 5.4a).   

The results of this analysis showed that picture category could be reliably 

predicted rapidly at picture onset (i.e., ~130 ms), showing a peak classification 

accuracy at ~180 ms (t29 = 8.41, pcorr < 0.001) (Figure 5.4b). 

Expectedly, the pattern separability analysis showed similar temporal dynamics 

as the accuracy ones. More specifically, pattern separability became significant as the 

distance value increased compared to surrogate trials, with the difference emerging 

from ~170 ms. D value reached the local maximum at respectively ~180 ms (D = 6.57, 

t29 = 5.032, pcorr = 0.005) and at ~380 ms (D = 6.60, t29 = 7.25, pcorr < 0.001) (Figure 

5.4c). 
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Figure 5.4. Two Cross-validated LDA classifier output measures using localisation trials.  (a): 
Abstract illustration of the classifier output calculation. The distance value for each pair of classes 
was sigmoid transformed to get either class’s probability. The class with the highest probability after 
normalising and averaging values across three pairs was marked as the final label for the testing 
data (left). The general distance value (D value) was defined as the sum of the absolute of the three 
distance values to each of the decision boundaries (middle). Pattern examples 1 & 2 can be both 
classified accurately as ‘Face’ images. However, Pattern example 2 showed a more similar pattern 
also to the ‘Place’ and ‘Object’ category, which a smaller D value can indicate. (b): Classifier accuracy 
estimated using the leave-one-out method. Image categories can be reliably decoded compared to 
surrogate trials starting around ~130 ms after image onset, with peak value reaching ~180 ms. (c): 
Pattern separability among image categories quantified by the general distance value, which evolved 
similarly across time compared to the accuracy measure. D value reached the peak ~180 ms and 
~380 ms. In plots (b) and (c), the shaded area indicated SEM across participants, and statistical 
significance compared to surrogate trials was Bonferroni-corrected and marked in dark grey line.  
 

 

5.4.6. Gradual integration of picture category information 

during sequence encoding 

We examined whether the sequential encoding of pictures from different 

categories in the encoding task would involve a gradual integration of the just encoded 

images from the sequence and whether this process predicted memory recall. To 

address this issue, we extracted the -50 to 50 ms EEG pattern surrounding the peak 

(i.e., 180 ms; Figure 5.4b) LDA accuracy during the encoding of images in the localiser 
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task. Then, we used these EEG patterns as the training data in a new LDA and tested 

on EEG patterns elicited at each time point from each picture from the sequence on 

the encoding task.  

We then averaged across all training time points at trial-level and included the 

resulting distance value at each time point of encoding into LMM as the dependent 

variable. For each trial, the number of items recalled, the encoding order of the image 

in the triplets (i.e., 1st, 2nd and 3rd), and the interaction of the two were included in the 

model as fixed-effect variables. Subject was introduced into the model as the grouping 

variable, with random intercept and a fixed slope for each fixed-effect variable. 

This analysis showed that the D value correlated negatively with the order of 

picture in the sequence (Figure 5.5a) and that such effect emerged ~460 ms after 

picture onset and persisted until ~860 ms. However, we found that D value did not 

correlate with later picture recollection at test nor the interaction of picture order and 

memory. This suggested that the picture category integrative process takes place 

during sequence encoding and that this had no impact on the later ability of the 

participants to retrieve the sequence episode.  To control for the possibility that the 

observed effect was not merely due to a decrease in the specific category 

classification accuracy as a function of the order of the picture in the sequence, we 

extracted the mean accuracy across image order within the time window where the 

significant decrease in pattern separability was identified (Figure 5.5b). A repeated-

measure ANOVA showed significantly above-chance accuracy value (F(1,29) = 111.57, 

p < 0.001) with no main effect for image order (F(2,58) = 0.43, p = 0.65).  
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Figure 5.5. Pattern separability during image encoding predicted by LDA classifier trained on 
localisation trials. (a): Classifier predicted D value during image encoding averaged across 
participants (upper, shaded area indicated SEM across participants) with statistical significance 
Bonferroni-corrected for the main effect of image order, subsequent memory and their interaction 
(lower). Shaded grey area and light grey dash line marked the significance threshold boundaries 
(two-tailed) adjusted by Bonferroni correction. Time window where the main effect passed the 
threshold was marked in dark grey line below.  (b): Classifier accuracy averaged across the time 
window where a significant effect for image order was found. Category of image was classified 
equally accurate across image order (p = 0.65) yet significantly above chance (grey dash line) (p < 
0.001). Each black dot represents values for an individual participant. The central mark is the median, 
and the edges of the box are the 25th and 75th percentiles. (c): Abstract illustration of the speculated 
integration process. While the classifier continued to predict the image category accurately, there 
was a trend for a ‘integrated’ pattern indicated by a gradually decreased pattern separability. 
 
 

5.4.7. Picture sequence integration and memory at 

episodic offset period  

We next examined whether an integrated form of the just encoded sequence could 

predict memory for the episode right after their online encoding, that is, once the 

encoding ended, at the offset period. If this was the case, we should observe that D 

value was reduced at the offset period for successful compared to unsuccessful 

recalled picture sequences.  
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Figure 5.6. Pattern separability during post-triplet offset period predicted by LDA classifier trained on 
localisation trials. Lower distance value for trials that were later successfully emerged from ~630 ms 
at triplet offset. Shaded area indicated SEM across participants. Dark grey line marked statistical 
significance adjusted by cluster-based permutation. An abstract illustration of separability pattern for 
successfully and unsuccessfully remembered trials were included on the right. Successfully 
remembered trials showed a more reduced D value as a sign of successful integration among the 
three categorical representations. 
 
 

To address this issue, we again extracted the EEG pattern elicited during ~140 

ms - 230 ms by picture presentation in the localiser task. We applied it to each time 

point of the offset period from the encoding task. The resulting D value from the model 

was then averaged across all training timepoint. We then separated D values for 

successful and unsuccessful memory trial conditions and averaged them for each 

participant. Statistical comparisons between conditions were assessed and then 

assessed with a cluster-based permutation approach. 

Confirming our hypothesis, the results of this analysis showed significant lower D 

value for successful compared to unsuccessful recalled trials at ~630 ms to ~820 ms 

(p < 0.001, mean t-value = -2.41, peak t-value = -2.42) and at ~940 ms to ~1640 ms 

(p < 0.001, mean t-value = -2.59, peak t-value = -2.78) at offset period (Figure 5.6). 

Importantly, this time window coincided with the increased neural reactivation for 

successfully recalled triplets identified previously in the RSA, suggesting an 

overlapping functional role between post-encoding reactivation and integration. 

5.5. Discussion 

The current study asked whether the rapid neural reinstatement at the end of a 

sequence episode involves an accurate replay of the just encoded elements within the 
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episode or, alternatively, it reflects an early stage of transformation of the encoded 

information into a different form. Our findings revealed greater neural similarity for EEG 

patterns elicited during image sequence encoding at the episodic offset period for 

those episodes that were later recollected compared to those that were forgotten. In 

addition, we used a novel analytical approach that quantified the degree of fidelity of 

an EEG signal to a general picture category representation (faces vs objects vs 

scenes), and we found that the degree of picture category pattern separability at the 

offset period, but not during picture encoding, was lower for later recollected than 

forgotten triplet episodes. The increase in trial-based similarity measures and the 

picture category pattern separation at the offset period for recollected episodes 

suggest that rapid offset-locked signals trigger a reactivation of a bound representation 

of the elements of a just-encoded experience. 

Consistent with previous findings (Cichy et al., 2014; Wimmer et al., 2020; 

Jafarpour et al., 2014), we successfully identified the neural patterns associated with 

the encoding of picture categories at an early time window from image presentation 

onset). However, instead of registering only the output from the classifier, generally 

defined as the predicted class with maximal likelihood among possible alternatives, 

we used it to develop an index that quantified the classifier's ability to distinguish 

among all the possible classes in a given time point, the separability or the D index.  

In other words, the D index expresses the degree to which a tested neural pattern 

assimilated or deviated from all the possible trained categories. By extracting the D 

index during each of the pictures from the encoding triplet, we found a gradual 

decrease of pattern separability from neural patterns elicited at early temporal stages 

from the pictures sequence, being higher in the first picture and lower in the 3rd picture 

of the sequence. It is important to note that during this identified time window, the 

accuracy of the classifier to the correct category remained above chance and similar 

throughout each of the pictures from the triplet sequence. Thus, the observed gradual 

decrease in pattern separability cannot simply be attributed to a weak classification 

performance but instead indicated a gradual reduction in the specificity of activity 

patterns to a particular picture category (scene, object or face). One possible 

explanation of this finding may be attributed to an attenuated neural activity by prior 

expectation, given that participants could anticipate the category of the upcoming 

image since the order of presentation was fixed within each block. Though prior 
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studies revealed that anticipation might reduce response in neurons tuned for 

expected stimulus (Kok et al., 2012; Kumar et al., 2017), multivariate approaches have 

instead shown a 'sharpening' effect for perceptual representations in cortical regions 

due to a more selective population response (De Lange et al., 2018), resulting in a 

more accurate pattern classification (Kok et al., 2012). Our findings that the decrease 

in picture category pattern separability is taking place at around 500 ms from picture 

onset, however, may not be explained by 'sharpening' effects because they are 

thought to occur earlier in the temporal course of processing (i.e., < 400 ms from 

stimuli onset). Instead, we argue that the gradual reduction in pattern separability 

following the sequential presentation of images reflected a continuously additive 

category-specific processing, which promoted the encoding of multiple categorical 

information in parallel, supported by various overlapping cortical regions. In fact, 

different yet overlapping cortical regions (e.g., various regions on the lateral surface 

of occipitotemporal cortex) are selectively sensitive to stimuli from different categories 

when presented in isolation, including face, objects and scenes (Silson et al. 2016). In 

naturalistic scenarios, the processing of multiple categorical information embedded in 

the encoding experience takes place simultaneously, and the neural signature of such 

processes can be decoded in different cortical regions (Cooper and Ritchey, 2020). In 

the context of our study, the ongoing need to associate each appearing picture with 

the previously encoded pictures from the sequence may have promoted integrative 

processes online during the encoding of the picture. 

An interesting finding from our study is that a decrease in the degree of picture 

category pattern separability at the episodic offset, when the episode was completed, 

but not during online encoding, was in fact predictive of later episodic recollection at 

test. In addition, we found that later successfully recollected episodes showed greater 

trial-based neural similarity at an overlapping temporal window at the offset period. All 

in all, these findings suggest that successfully encoded episodic events triggered a 

rapid neural reactivation that promoted an early transformation of the encoded 

elements within the events into a unique and bound memory trace. Previous fMRI 

literature using different input types such as picture sequences (DuBrow and Davachi, 

2014), short video clips (Zacks et al., 2001; Ben-Yakov et al., 2011; Ben-Yakov et al., 

2013), and movie clips (Baldassano et al., 2017; Ben-Yakov et al., 2018) highlighted 

the sensitivity of the hippocampal-neocortical system to detect episodic offsets, 
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suggesting that the end of a long-timescale event triggers memory encoding 

processes that occur after the event has ended. fMRI representational analysis 

revealed that offset-locked pattern of neural response might reflect an updated input 

to long-term memory of multimodal, abstract representations of the features of the just 

encoded event (Baldassano et al., 2017). Our findings also align well with a recent 

study that combined direct electrophysiological recordings from human hippocampus 

and deep neural network analysis that showed that early representation transformation 

of visual picture information in the first second after stimulus offset was associated 

with better long-term memory (Liu et al., 2021).  

Rodent literature has shown that memory reply right at the end of an encoded 

event, when a trial is completed, is a core neural mechanism to aid the formation of 

long-term memories (Foster and Wilson, 2006). However, neural replay in rodents is 

not limited to playing a veridical recording of experience. Instead, it can make 

inferences - piecing together multiple past events as if building and sampling from a 

model of the world (Foster, 2017; Gupta et al., 2010; Karlsson and Frank, 2009). 

Similarly, human research has proposed that past information could be integrated with 

incoming sensory information (Eichenbaum, 2000), thereby assisting the registering 

of an interpretable and meaningful memory trace of incoming information (Stawarczyk 

et al., 2021; Chen et al., 2016; Keidel et al., 2018; Cohn-Sheehy et al., 2021). The 

notion that memory transformation takes place at early stages of encoding fits the 

observation that remembering is a reconstructive process that prioritises more 

meaningful components of an event over other, more shallow aspects (Schacter, 2012; 

Schacter et al., 2011). Our findings contribute to this literature by proposing one of the 

earliest stages whereby this memory transformation takes place is at the end of an 

encoded event through a replay-like neural mechanism. 

In conclusion, we found a gradual integration process of perceptual 

representations as encoding experience unfolded and the neural mechanisms elicited 

at episode offset period to promote the transformation of the elements of a just-

encoded event to a bound memory trace in the long term.  
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Chapter 6. Study 3 

 

 

Contextual incongruency triggers memory 
reinstatement and the disruption of neural 

stability 
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6.1. Summary  

Schemas, or internal representation models of the environment, are thought to be 

central in organising our everyday life behaviour by providing stability and 

predictiveness to the structure of the world. However, when an element from unfolding 

event mismatches the schema-derived expectations, the coherent narrative is 

interrupted, and an update to the current event model representation is required. Here, 

we asked whether the perceived incongruence of an item from an unfolding event and 

its impact on memory relied on the disruption of neural stability patterns preceded by 

the neural reactivation of the memory representations of the just encoded event. Our 

study includes data from 3 different experiments whereby participants encoded 

images of target objects preceded by trial-unique sequences of events depicting day-

to-day routine. We found that neural stability patterns gradually increased throughout 

the ongoing exposure to a schema-consistent episodic narrative, and that the brain 

stability pattern was interrupted when the encoding of an object of the event was lowly 

congruent within the ongoing schema representation. We found that the decrease in 

neural stability for low congruent items was best seen at ~1000 ms from object 

encoding onset when compared to high congruent items and that this effect was 

preceded by an enhanced N400 ERP and an increased degree of neural reactivation 

of the just encoded episode for low congruent items observed between ~200 to 1000 

ms from picture onset. Current results offer new insights into the neural mechanisms 

and their temporal orchestration that are engaged during online encoding of schema-

consistent episodic narratives and the detection of incongruencies. 

6.2. Introduction 

Experience is guided by internal representation models of the environment, or 

knowledge schemas, with an impact on perception and memory (Gilboa and Marlatte, 

2017). Schemas are thought to be central in organising our everyday life behaviour by 

providing stability and predictiveness to the structure of the world (Gershman et al., 

2014). Thus, despite the ever-changing sequence of inputs of our experience, 

schemas bring relatedness and comprehension of unfolding events by anticipating 

stereotyped or congruent-like elements to encounter next. A computational advantage 
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to the memory systems is, therefore, that schema-consistent items can be added to 

an existing schema without requiring alterations or extensions to it (McClelland et al., 

2020). Accordingly, when elements of the unfolding experience are congruent with 

expected representations from a current activated schema, they are rapidly integrated 

into the memory model of the event (McClelland et al., 2020; Tse et al., 2007, 2011). 

However, when our predictions are incorrect, we must update our internal models of 

the world to support adaptive behaviour. Yet, the neural mechanisms that support 

memory integration and updating of an unfolding event remain unclear. 

If an internal memory representation is stable over time, then some properties of 

its underlying neural implementations may also exhibit invariance during encoding. 

Indeed, neuroimaging studies in humans observed stable brain patterns of activity 

during the encoding of continuous streams of audio-visual inputs and that shifts in 

neural stability are coincident with the detection of unexpected elements in the 

unfolding stream (i.e., event boundaries) (Baldassano et al., 2017). Similarly, Sinclair 

et al. (2021) recently showed that hippocampal activation patterns stabilised during 

the encoding of a narrative episode, akin to sustained representations accumulated 

during an unfolding schema-congruent event. Intriguingly, this study also revealed that 

when the narrative was suddenly interrupted, the ongoing stability of the neural activity 

became disrupted, reflecting the need to update the sustained representation of the 

event model.  

However, the notion that the detection of incongruencies of an unfolding event 

engenders a disruption of the ongoing representation challenges a set of findings that 

found no memory disturbance or even improvement for surprising events (e.g., Greve 

et al., 2017; Greve et al., 2019; Quent et al., 2021; Frank et al., 2018, 2020; Rouhani 

et al., 2018; Chen et al., 2015; Pine et al., 2018). This literature relies on the idea that 

mnemonic prediction error enhances hippocampal biases toward encoding (Bein et al., 

2020) and that this shift in encoding strategy reflects the need to evaluate and, if 

necessary, update the representational content of the ongoing experience with the 

current incongruent event. 

How does the brain accommodate these two seemingly opposite lines of research 

evidence, namely, that mnemonic prediction errors disrupt ongoing neural 

representations of unfolding event and, at the same time, promotes the update of the 
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ongoing memory model during encoding? Here, we asked whether this process is 

supported by distinct brain mechanisms that occur rapidly (in the order of milliseconds) 

but sequentially orchestrated over time. More specifically, drawing on past theoretical 

(McClelland et al., 2020) and empirical research (Sols et al., 2017; Silva et al., 2019; 

Wu et al., 2021), we hypothesise that the subjective degree of item’s congruence with 

an unfolding experience is determined by an evaluation process guided by a rapid 

reactivation of the encoded event. The concomitant representation of the new element 

and the reactivated memory of the just encoded event would promote the effective 

and rapid assessment of the extent to which the novel element match or mismatches 

expectancies driven by the unfolding event. As a results, the brain would be able to 

either assimilate the new item with the ongoing memory representation by preserving 

a stable state of neural pattern of activity or, alternatively, disrupt it to promote their 

update. 

To test this hypothesis, we recorded scalp electrophysiological (EEG) activity while 

healthy participants encoded images of target objects preceded by trial-unique 

sequences of four pictures of events depicting an everyday life routine (Figure 6.1a). 

The sequence of pictures preceding the target object image was thought to mimic a 

realistic unfolding episodic event with the aim to provide a gradual schema consistent 

narrative that determined whether specific target objects matched or mismatched 

expected occurrences within that context. Importantly, participants were instructed to 

rate the perceived congruence of the item in relation to the previously encoded event 

sequence episode, thereby allowing us to assess the degree of perceived congruence 

of the target object for every single trial at individual level. To examine how object 

congruence shaped memory for the target object, a surprise recognition memory test 

was administered to the participants after the encoding phase. In Experiment 1, we 

first asked participants to indicate whether a label word referred to object pictures 

encoded in the previous phase, and if so, to recognise which from two very similar 

pictures was the exact one presented during the encoding phase (Figure 6.1b). This 

later test allowed assessing the extent to which encoding congruence detailed memory 

representation (e.g., Bein et al., 2020). We ran two additional follow-up behavioural 

experiments on a separate sample of participants to further scrutinise congruence-

shaped long-term memory. The two experiments consisted of a similar structure and 

materials used in Experiment 1 but differed in the format of the recognition phase. In 
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Experiment 2, we presented pictures that corresponded to the ones shown during the 

encoding phase and pictures that depicted similar objects but differed in small visual 

details (lures), thereby allowing us to assess whether possible differences in memory 

as a function of encoded congruence was independent of the format of the test (Figure 

6.1c). In Experiment 3, we asked participants to indicate whether object pictures were 

encoded together with a selected picture of the episodic sequence (Figure 6.1d). This 

test allowed examining whether the perceived congruence of the object within an 

episodic narrative influenced how the two become associated in long-term memory.  

6.3. Material and Methods 

6.3.1. Participants 

Participants were healthy college students from the University of Barcelona who 

had a normal or corrected-to-normal vision and reported no history of medical, 

neurological or psychiatric disorders. Thirty-three participants (26 females, M = 20.94 

years, SD = 3.24 years) were recruited and were paid 10€/h for their participation in 

Experiment 1. Four participants were excluded due to loss of EEG data for technical 

reasons. Thirteen (11 female, M = 22.17 years, SD = 2.33) and eighteen (16 female, 

M = 23.05 years, SD = 6.55) participants were recruited and paid 5€/hour for their 

participation in the follow up Experiment 2 and 3, respectively.  All participants signed 

informed consent, approved by the University of Barcelona Ethics Committee. 

6.3.2. Stimuli 

Experimental stimuli consisted of 160 photographs of household objects and 80 

episodic sequences, each formed by 4 photographs. There were 80 different 

household objects included, each had two slightly different versions, for a total of 160 

photographs. Episodic sequences consisted of 4 snapshots in temporal order 

depicting a person moving around and interacting with the surroundings in different 

house rooms during a short interval of time.  Each sequential episode was designed 

to match with one of the 80 household objects. The object images were taken from the 

Stark lab set of stimuli, freely available at 
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(http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/) The pictures of the 

episodic sequences did not actually contain the matching household object. Instead, 

the sequences were designed in a way that the matching object could fit in or make 

sense with the given sequence. In other words, the matching object could be expected 

to be encountered in the situation depicted in the episodic sequence. Each episodic 

sequence was designed to be congruent with its specific corresponding (congruent) 

object. 

6.3.3. Experimental design 

The experiment design of the three studies consisted of an encoding and a test 

phase. The encoding phase was the same in all three studies. Participants were 

presented in trial with an episodic sequence followed by a picture object. Participants 

were asked to rate the degree of congruence on a scale from 1 (i.e., does not fit in) to 

4 (i.e., fits in very well) of the target picture object in relation to the context formed by 

the succession of the 4 preceding episodic sequence images (Figure 6.1a). During the 

encoding phase included a total of 80 trials, each consisting of an episodic sequence 

followed by an object. Two versions of the encoding phase were constructed so that 

40 of the episodic sequence – picture objects could be perceived as high congruent 

by the participant. This yielded a total of an a priori possible 40 high and 40 low 

congruent sequence – object pairing. The order of the trials at encoding was 

randomised for each participant. 

Each trial started with the appearance of a fixation cross on the screen for a random 

duration of 2000 to 4000 ms. Afterwards, an episodic sequence consisting of four 

photographs was presented. Each of the four photographs was presented on a white 

background for 2000 ms, one at a time in temporal order, separated by the 

presentation of a fixation cross for 500 ms. After the episodic sequence was presented, 

a fixation cross appeared on the screen for 2000 to 3000 ms, separating the episodic 

sequence from the presentation of the following object. The picture of the object was 

presented on a white background for 500 ms, followed by the appearance of a fixation 

cross for 2 seconds. Finally, a screen was presented with the word ‘Congruence?’ and 

the digits ‘1-2-3-4’ below, upon which participants had to indicate, within a maximum 

of 4 seconds, the degree of congruence between the object and the just encoded 

http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/
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episodic sequence by pressing 1,2,3 or 4 in the keyboard. Participants were previously 

instructed to respond thoughtfully as fast and accurate as possible. As soon as they 

responded, a fixation cross was presented for 500 ms, and the next trial began. The 

encoding phase lasted around 30 min. After the 80 episodic sequences and objects 

were presented, the encoding phase was finished.  

 
 

Figure 6.1. Encoding and recognition memory task design for Experiments 1, 2 and 3. (a) During the 
encoding phase for all experiments, participants encoded episodic sequences composed of 4 
photographs depicting a routine domestic episode. These were followed by highly congruent or low 
congruent/incongruent object pictures. Participants indicated the degree of congruence between the 
episode and the object. (b) In Experiment 1, memory for object pictures was tested by the object 
word label followed by a true and a lure item of the same object. Participants had to indicate the 
correct picture presented during the encoding phase. (c) In Experiment 2, memory for the encoded 
objects was assessed by requesting participants to discriminate whether true or lure items 
corresponded to those presented during the encoding phase. This was followed by a 
‘guess/know/remember’ task and ended with asking the participants to indicate whether the picture 
object was encoded within a congruent episodic event. (d) In Experiment 3, each object picture 
presented during the encoding phase was displayed together with one image from an episodic 
sequence. Participants were required to indicate whether the object and episodic image picture 
corresponded with the episodic + object picture presented in the same trial during the encoding 
phase. 
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The encoding phase was followed by a ~ 10 min interference task consisting of 

choosing the correct answer to simple additions and subtractions that appeared on the 

screen. Participants were told to respond as soon as possible, although no time limit 

was imposed. The distraction task ensured the participants would not rehearse the 

pictures they had previously seen. 

6.3.4. Recognition memory test 

After a break of ~10 minutes, a recognition memory test was presented 

unexpectedly to the participants in the three studies.  

In Experiment 1, the test included 160 object words and 160 object picture pairs of 

each word. Eighty words and object pictures corresponded to previously presented 

objects in the encoding phase (‘Old’), whereas the other 80 were non-related (‘New’) 

objects (Figure 6.1b). Each picture pair depicted the same object but with small 

changes in specific features between each other (e.g., orientation, colour, etc.). Each 

trial began with a fixation cross lasting from 3 to 5 seconds at random. Subsequently, 

each word was presented for a maximum of 6 seconds with a question mark below ‘?’. 

Participants were instructed to press ‘1’ on the keyboard if they considered the word 

referred to an object presented during encoding (Old) or ‘2’ if not (New). If the 

participant responded ‘Old’ to a word, then two pictures of the object word were 

presented on the screen for a maximum of 6 seconds (Figure 6.1b). Pictures were 

presented on the computer screen, with one item to the left and one to the right of 

fixation. The left/right assignment was randomly chosen on each trial. The two pictures 

from each pair were almost identical, but only one corresponded to the exact one 

presented in the encoding phase (true), whereas the other one served as a lure. For 

example, if the participant had seen the photograph of a hammer and later, during the 

test, correctly identified the word ‘hammer’ as one of the objects she saw, then two 

photographs of similar-looking hammers appeared. The participant was instructed to 

identify the picture object exactly like the one presented in the encoding phase by 

pressing 1 if it was the left photograph or 2 if it was the right one. Picture pair presented 

when a participant misclassified as ‘Old’ a new word was almost identical, though none 

of the two pictures had been seen in the encoding phase. The order of the presentation 



 99 

of word + picture pairs in the test was randomised before each participant started the 

test. The recognition memory test lasted ~20 min.  

In Experiment 2, memory for the encoded objects was assessed by requesting 

participants to recognise them throughout a set of pictures presented randomly in the 

test phase. The test included 40 target objects previously presented at encoding (True 

items) and 40 objects highly similar to the target objects presented at encoding but 

with some changes in their specific features (e.g., orientation, colour, etc.) (Lure items) 

(Figure 6.1c). In total, the recognition memory test was comprised of 80 items. 40 of 

the picture objects (20 True and 20 Lure) related to pictures encoded in high congruent 

trials, and the other 40 picture objects (20 True and 20 Lure) related to pictures 

encoded in low congruent trials at the encoding phase. Two versions of the test phase 

counterbalancing True/Lure and high/low congruency conditions were prepared and 

assigned randomly to the participant’s sample. Each trial began with a fixation cross 

lasting from 3 to 5 seconds at random. Then, one object picture remained on the 

screen for a maximum of 8 seconds with the question ‘Did this object appear before?’, 

and participants had to indicate on a keyboard whether the same item was presented 

during encoding (‘1’ – Old and ‘2’ – New). Participants were told only items the same 

as items presented during encoding were correct answers. ‘Old’ responses were 

followed first by a ‘guess/know/remember’ judgment of the picture and later by a 

question referring to the semantic context: ‘Was this object encountered in a high/low 

congruent context?’. Participants had a maximum of 8 seconds to respond to each 

question.  

In the test phase of Experiment 3, the 80 object pictures presented during the 

encoding phase were included in the test. In each trial, each object picture was 

presented together with one image from each of the episodic sequences presented at 

the encoding phase (Figure 6.1d). Participants were requested to indicate whether the 

object picture and episodic image picture matched the episodic sequence and object 

picture presented during the encoding phase. Half of the object+episode picture pairs 

presented in the test matched the encoding ones, whereas the other was randomly 

paired with each other. The total set of 80 picture pairs was constructed so that 40 old 

ones included 20 object+episode pairs encoded in the high congruency condition and 

20 in the low congruency condition. The same distribution pattern was used to 
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construct the set of object+episode new picture pairings (i.e., those that do not match 

the trials presented at encoding). Two different versions of 40 old and 40 new sets of 

picture pairings were created by controlling that in one version, a picture object was 

paired with a matched image from the encoded episodic sequence (Old) and to an 

unmatched image (New) in the other. The two versions were assigned randomly to the 

participant’s sample. Each trial began with a fixation cross lasting from 3 to 5 seconds 

at random. Then, the object and the episodic sequence picture were presented on the 

screen. Participants were instructed to answer whether both photographs had been 

presented together in the same trial during the encoding phase (by pressing ‘1’ on the 

keyboard) or not (by pressing ‘2’). Participants were asked to rate their confidence in 

their previous response from 1 (‘no confidence’) to 5 (‘absolute confidence’) with the 

same numbers on the keyboard. Object and episodic pictures were presented on the 

computer screen, with one item to the left and one to the right of fixation. The left/right 

assignment was randomly chosen on each trial. 

6.3.5. Behavioural data analyses  

Paired Student t-test was used to compare participants’ performance (measured 

in percentage) between conditions. Repeated measures ANOVA was used to 

statistically assess differences between participants’ performance when they included 

more than two variables. Statistical significance threshold was set at p < 0.05. 

6.3.6. EEG recording and preprocessing 

In study 1, EEG was recorded using a 32-channel system at a sampling rate of 500 

Hz, with an online band-pass filter set at 0.01-100 Hz, using a BrainAmp amplifier and 

tin electrodes mounted in an electrocap (Electro-Cap International) located at 29 

standard positions (Fp1/2, Fz, F7/8, F3/4, Fcz, Fc1/2, Fc5/6, Cz, C3/4, T3/4, Cp1/2, 

Cp5/6, Pz, P3/4, T5/6, Po1/2, Oz) and at the left and right mastoids. An electrode 

placed at the lateral outer canthus of the right eye served as an online reference. EEG 

was re-referenced offline to the average of all channels. Vertical eye movements were 

monitored with an electrode at the infraorbital ridge of the right eye. Electrode 

impedances were kept below 5 kΩ. EEG was low-pass filtered offline at 30 Hz. We 
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applied the Parks-McClellan Notch filter using the toolbox ERPLAB 

(http://erpinfo.org/erplab). 

For each participant, we extracted the EEG epochs for each encoding image. 

Epochs had a duration of 2000 ms for images from the episodic sequence and 2500 

ms for images of the picture object and were baseline corrected to the pre-stimulus 

interval (-100 to 0 ms). Epochs with maximum absolute amplitude over 100 µV were 

discarded for further analysis. For later analysis, all the epochs were smoothed by 

averaging data via a moving window of 100 ms (excluding the baseline period) and 

then downsampled by a factor of 5. 

6.3.7. Neural stability analysis  

To account for whether the ongoing encoding of an episodic sequence of pictures 

elicited a gradual increase in stable brain activity patterns, we implemented a 

temporally resolved similarity analysis using Pearson correlation coefficients, which 

are insensitive to the absolute amplitude and variance of the EEG response. The 

correlation analysis on EEG data was made at the individual level and to each time 

point separately and included spatial (i.e., scalp voltages from all the 29 electrodes) 

features of the resulting EEG single trials. To examine how a schema consistent 

sequence’s unfolding modulated the stabilisation of activity patterns, we correlated the 

EEG patterns of activity elicited by the 1st and the 2nd pictures and compared them to 

the correlation obtained by the 3rd and the 4th picture of the episodic sequence. This 

analysis was computed at the trial level by randomly creating pairs of correlation 

analysis from pictures from different episodic sequences. For each participant, we 

created 200 permutations of possible unique pairings, and the final cross-correlation 

output resulted from averaging the point-to-point Fisher’s z scores correlation values 

across the 200 permutations.  

A similar analysis was performed on EEG patterns elicited by picture objects. For 

each participant, we randomly created 200 sets of unique picture pairs that the 

participant rated as High congruent (i.e., rated as 1 or 2 during the encoding phase) 

or Low congruent (i.e., rated as 3 or 4 during the encoding phase).  

http://erpinfo.org/erplab
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We implemented a cluster-based permutation test to account for neural stability 

differences between picture order within the episodic sequence and between High and 

Low congruence conditions (Maris and Oostenveld, 2007). It identifies clusters of 

significant points in the resulting 1D matrix in a data-driven manner and addresses the 

multiple-comparison problem by using a nonparametric statistical method based on 

cluster-level randomisation testing to control the family-wise error rate. Statistics were 

computed for every time point, and the time points whose statistical values were larger 

than a threshold (p < 0.05, two-tail) were selected and clustered into connected sets 

based on adjacency points in the 1D matrix. The observed cluster-level statistics were 

calculated by taking the sum of the statistical values within a cluster. Then, condition 

labels were permuted 1000 times to simulate the null hypothesis, and the maximum 

cluster statistic was chosen to construct a distribution of the cluster-level statistics 

under the null hypothesis. The nonparametric statistical test was obtained by 

calculating the proportion of randomised test statistics that exceeded the observed 

cluster-level statistics. 

6.3.8. Representational Similarity Analysis (RSA) 

RSA was performed timepoint-to-timepoint at trial level and upon spatial features 

(i.e., scalp voltages from all the 29 electrodes) (Silva et al., 2017; Wu et al., 2021). 

RSA was conducted between the EEG signal of each encoding image (i.e., the image 

at 1st, 2nd, 3rd, 4th position in a sequence) with the EEG signal of the corresponding 

offset period (i.e., the matching object with the sequence and the followed fixation 

cross). Point-to-point Pearson correlation values were then calculated, resulting in a 

2D similarity matrix with the size of 200×250 (each time point represents 10 ms, given 

the 500 Hz EEG recording sampling rate and a down-sampling factor of 5). The x-axis 

of the matrix represented the object and offset time points, and the y-axis represented 

the time points of sequence picture encoding. The output 2D matrix represents the 

overall degree of neural pattern similarity between EEG elicited for each pair of 

encoding image and its corresponding sequence offset. 
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6.3.9. Linear-mixed effect model 

To further explore on the trial base how the neural pattern was associated with the 

subjective feeling of the congruence and its impact on subsequent memory of the 

object image, we applied a Linear Mixed Effect Model (LMM) on ERPs elicited during 

the offset period as well as the pattern similarity between encoding and offset.  

For offset ERPs, we first group 29 electrodes into 6 scalp regions (Figure 6.4a). To 

obtain more stable spatial patterns, border electrodes between regions were included 

in each neighbouring region (Lu et al., 2015; Sols et al., 2017). As a result, the 6 

regions were defined as the following: region 1 (Fp1, Fz, F3, F7, Fcz, Fc1, Fc5); region 

2 (Fp2, Fz, F4, Fcz, Fc2, Fc6); region 3 (Fcz, Fc1, Fc5, Cz, C3, T3, Cp1, Cp5); region 

4 (Fcz, Fc2, Fc6, Cz, C4, T4, Cp2, Cp6); region 5 (Cp1, Cp5, Pz, P3, T5, Po1, Oz); 

region 6 (Cp2, Cp6, Pz, P4, T6, Po2, Oz). The LMM was constructed separately for 

each region. ERPs voltages at each offset time point were averaged across electrodes 

within the region and then introduced in our LMM as the dependent variable. The rating 

of the object’s congruence to the sequences (on a scale of 1 to 4) and the memory for 

the object (whether the word and the image were correctly recognised during the test) 

were included in the model as fixed effect variables. Then, subject was introduced into 

the model as the grouping variable, with random intercept and a fixed slope for each 

fixed effect variable. The statistical significance was adjusted by Bonferroni correction 

for each fixed effect variable taking into account both the number of regions and the 

number of time points, resulting in a corrected alpha level of α = 3.33×10-5 

(0.05/(6*250)). 

We also applied LMM on output from RSA. We identified on the resulting 2D 

similarity matrix the time point of encoding and offset where the pattern similarity 

reached the peak value. We then averaged at a single-trial level the similarity value 

across ±50 ms (11 data points) around the peak encoding time point for each offset 

time point, resulting in a 1D similarity value with the length of 250 time points, covering 

the whole offset period. For each time point, we constructed the LMM with similarity 

value as the dependent variable. Then 3 fixed effect variables were introduced into the 

model: the image position in the sequence (1st, 2nd, 3rd, and 4th), congruence rating 

and memory for the object. Subject was included in the model as the grouping variable, 
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with random intercept and a fixed slope for each fixed effect variable. The statistical 

significance for each fixed effect variable was Bonferroni corrected with a thresholded 

alpha level of α = 2×10-4 (0.05/250). 

6.4. Results 

6.4.1. Behavioural results from Experiment 1 

In Experiment 1, the proportion of trials rated as highly congruent (‘1’ or ‘2’) was 

45.17% (SD = 8.59%) and 15.43% (SD = 6.42%), respectively, and lowly congruent 

(‘3’ or ‘4’), respectively, was 13.45% (SD = 6.36%) and 25.39% (SD = 7.47%) with the 

episode.  

In general, participants were accurate in recognising words referring to picture 

objects learnt during the encoding phase (Mean = 71.09%, SD = 12.80%; above 

chance: t(28) = 8.41, p < 0.001). They showed greater accuracy for words related to 

picture objects encoded with high (Mean = 76.07%, SD = 13.27%) than low (Mean = 

66.11%, SD = 13.89%) congruency to the episodic context during the encoding phase 

(paired t-test: t(28) = 5.89, p < 0.001) (Figure 6.2a). For those correctly recognised 

words, in the next picture recognition test, participants were accurate in correctly 

identifying the exact object picture presented in the encoding phase (Mean = 73.13%, 

SD = 8.02%; above chance: t(28) = 15.53, p < 0.001). They performed similarly for 

pictures rated as high (Mean = 74.61%, SD = 11.63%) and low (Mean = 72.61%, SD 

= 8.61%) congruency to the episodic context (paired t-test: t(28) = 0.39, p = 0.878) 

(Figure 6.2b). 

To specify the subsequent memory strength for objects, for all later analyses, we 

classified the memory performance of a trial based on whether the object image was 

correctly recognised during the test. Therefore, successful recognition of both gist 

word and object image was considered as a ‘remembered item’ condition, while either 

failing in recognition of gist word or image was considered as a ‘forgotten item’ 

condition. This separation also rendered a balanced percentage of trials across 

conditions, with 53.53% (SD = 11.43%) for ‘remembered’ condition and 46.47% (SD 

= 11.43%) for ‘forgotten’ condition (Wilcoxon signed-rank test: z = 1.74, p = 0.08). 
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Figure 6.2. Behavioural results of Experiment 1, 2 and 3. (a) Participants’ test accuracy on 
recognising the gist word separated by whether the picture object was perceived by the participant 
as highly or lowly congruent with the episodic sequence during encoding in Experiment 1. (b) 
Participants’ test accuracy on identifying the exact object picture presented in the encoding phase 
after correctly recognising the ‘Old’ gist word. The accuracy was separated by whether the picture 
object was perceived by the participant as high or low congruent with the episodic sequence during 
encoding in Experiment 1. (c) Participants’ memory accuracy (in percentage) at the recognition test 
of Experiment 2 for True (hit) and Lure (correct rejection) as a function of whether the picture object 
was perceived by the participant as high or low congruent with the episodic sequence during 
encoding. (d) Participants’ memory accuracy (in percentage) in the recognition memory test of 
Experiment 3. In all plots, dots represent values for an individual subject. * indicates p < 0.05. ‘n.s.’ 
indicates p >0.05. 
 
 

6.4.2. Behavioural results from the Experiments 2 and 3 

The results of Experiment 1 revealed that memories of objects that were perceived 

highly congruent with the episodic context were later better remembered. However, 

the results of this study relayed on a test that changed the perceptual format at test, 
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that is, objects were encoded as a picture and tested as a word at test, which lacks 

the visual details of the picture object and engenders semantic processing. A concern 

of this change could be that memory congruency benefits were to some extent 

explained by differential processes taking place during retrieval. Information that is 

highly congruent with prior knowledge is often found to be better remembered than 

low congruent information, putatively because of an increase in semantic associations 

and relational integration (Staresina et al., 2009; Atienza et al., 2011; van Kesteren et 

al., 2014; Bein et al., 2015; also see Craik and Tulving, 1975). Experiment 2 addressed 

this concern by testing object memories in the same visual format depicted at the 

encoding phase.  

In Experiment 2, the proportion of trials rated as high (‘4’) and low congruent (‘1’) 

were 50.10% (SD = 10.58%) and 42.21% (SD = 4.98%), respectively, and the average 

proportion of intermediate levels of congruency was very low (‘2’: Mean = 2.69%, SD 

= 3.42%; and ‘3’: Mean = 5%, SD = 5.68%). A comparison of the proportion of trials 

rated as high congruent (‘4’) and low congruent (‘1’) revealed they were not 

significantly different (t(12) = 2.03, p = 0.06). Given the low proportion of trials rated by 

the participants with intermediate level of congruence (i.e., < 10% on average), and to 

ensure a proper orthogonalization of possible memory effects at the test driven by 

encoding congruency, we included in the subsequent analyses trials rated as high (‘4’) 

or low congruent (‘1’) by the participants.  

In general, participants were highly accurate in recognising True Old object 

pictures that were encoded on a highly congruent (Mean = 0.99, SD = 0.01) and on a 

lowly congruent episodic context (Mean = 1, SD = 0). They also showed to be prone 

to misclassify Lure items as Old in the two encoding conditions (High congruent: Mean: 

0.48, SD = 0.23; Low congruent: Mean = 0.47, SD = 0.22). To investigate whether 

retrieval accuracy differed as a function of encoding congruency, we applied a 

repeated measures ANOVA, including picture type (True vs. Lure), congruence (High 

vs Low congruent) and subjective retrieval quality (remember vs. know/guess), as a 

within subject factors. The results confirmed that participants were more accurate in 

correctly recognising True items than rejecting Lure items as Old (main effect of picture 

type: F(1,12) = 81.76, p < 0.001) but, as expected, participants’ differed in their accuracy 

for True and Lure items as a function of whether the retrieval was catalogued as 
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‘remember’ or ‘guess/know’ (main effect of remember: F(1,12) = 7.88, p = 0.016  and an 

interaction picture type x remember: (F(1,12) = 16.97, p = 0.001). However, we did not 

find a main effect of congruence (F(1,12) = 0.35, p = 0.85) or a congruence x item type 

interaction (F(1,12) = 0.16, p = 0.67), but found a significant retrieval quality x 

congruence interaction (F(1,12) =  6.95, p = 0.02), which suggested that congruence at 

encoding may affect retrieval accuracy only for when participants were capable to 

retrieve object information as a function of the ability to retrieve their context (Figure 

6.2c). To unpack this finding, we ran separate repeated measures ANOVA, including 

item type and congruence as within subject factors, for participants’ accuracy as a 

function subjective retrieval quality. The results indicated that participants were more 

accurate in correctly identifying True items than in misclassifying as Old the Lure items 

in the remember condition (main effect of item type: F(1,12) = 103.22, p < 0.001) and 

that participants’ accuracy differed for high and low congruent encoded items (main 

effect of congruence: F(1,12) = 9.52, p = 0.009; congruence x item type interaction: F(1,12) 

= 0.44, p = 0.52). A post-hoc paired student t-test indicated higher accuracy for high 

than low congruent True items (t(12) = 2.65, p = 0.02) and a trend towards statistical 

significance for Lure items (t(12) = 2.07, p = 0.06). The ANOVA on response accuracy 

for ‘guess/know’ condition showed a similar trend directions in the effects, though none 

of the effects reached statistical significance (main effect of item type: F(1,12) = 4.17, p 

= 0.06; main effect of congruency: F(1,12) = 3.59, p = 0.08; item type x congruency 

interaction: F(1,12) = 0.78, p = 0.39). Collectively, the results of Experiment 2 replicated 

the effects observed in Experiment 1, by showing that retrieval accuracy was higher 

for items that were preceded by a high than a low congruent episodic context with the 

object. However, they also reveal that items encoded in a high congruent context are 

more prone to errors at retrieval, suggesting the possibility that the benefit of 

congruence may also come with a decreased detailed item representation in long-term 

memory.  

We next sought to examine whether the retrieval benefits of encoding congruence 

observed in Experiments 1 and 2 were also accompanied by an increased degree of 

binding of the object to the preceding episodic context. Thus, in Experiment 3, 

participants were required to judge whether pairs of pictures, including one of the 

encoded objects and one picture from the sequence episodes, were seen together or 

not during encoding. As in Experiment 1 and 2, the proportion of trials rated as high 
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(‘4’) and low congruent (‘1’) were 35.39% (SD = 12.63%) and 37.67% (SD = 10.06%), 

respectively, and the average proportion of intermediate levels of congruency was 

much lower (‘2’: Mean = 12.92%, SD = 9.97%; and ‘3’: Mean = 10.81%, SD = 5.68%). 

A comparison of the proportion of trials rated as high congruent (‘1’) and low congruent 

(‘4’) revealed they were not statistically different (t(17) = -0.85, p = 0.41). Therefore, as 

in Experiment 2, we analysed memory accuracy for items classified as ‘1’ or ‘4’ at 

encoding. The results revealed that participants were accurate in correctly identifying 

the encoded correspondence between objects and the episodic context (Mean = 0.79, 

SD = 0.12), but that the accuracy was higher (paired student t-test, t(17) = 5.59, p < 

0.001) and more confident (t(17) = 6.78, p < 0.001) when the association between the 

object and the context at encoding was high rather than low congruent (Figure 6.2d).  

6.4.3. Neural stability and episodic congruence 

We first examined whether EEG states of stability gradually increased throughout 

the encoding of a schema consistent images of the narrative sequence. Our 

hypothesis was that schema consistency for picture sequences would promote neural 

stability, and that this would be observed as a gradual increase in across item EEG 

pattern similarity (Figure 6.3a) of the EEG patterns elicited throughout the picture 

sequence. To address this issue, we calculated a time-resolved neural similarity 

analysis between EEG patterns elicited by initial (i.e., 1st and 2nd) and final (3rd and 4th) 

picture items across the sequences. Confirming our hypothesis, we found that the 3rd 

and the 4th picture elicited more stable patterns of EEG activity from 1030 ms to 2500 

ms from picture onset (Cluster statistics: p = 0.009, corrected for multiple comparisons, 

sum T-values = 259.78) (Figure 6.3b). 
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Figure 6.3. Neural stability and congruence. (a) Schematic representation of the analysis. A temporal 
cross-stimuli correlation matrix is generated from the EEG data for each participant. (b) Point-to-point 
participants’ average degree of neural stability between 1st and 2nd and 3rd and 4th picture across 
different episodic sequences. (c) Point-to-point participants’ average degree of neural stability across 
object pictures rated lowly and highly congruent with the preceding episodic event at encoding. The 
shaded area represents standard error (SEM) across subjects. The thick grey line depicts the timing 
of the significant cluster between conditions (p < 0.05, cluster-based permutation test). 
 
 

Next, we evaluated whether EEG states of stability were associated with the 

encoding of object pictures that were high or low congruent to the preceding episode. 

We hypothesised that congruency induced higher states of stability and that this 

elevated state of neural stability would be reflected as an increase in neural similarity 

upon object encoding, rendering them more similar than objects perceived as lowly 

congruent with the preceding episodic context. To address this issue, we compared 

the cross-temporal correlation analysis to EEG activity patterns from different pictures 

within each condition. We reasoned that if congruency induced patterns of neural 

stability, this should be reflected as a general persistent pattern of activity during 

encoding, independently of the depicted object. Please, note that the assignment of 

episode-object associations was counterbalanced between participants, and therefore, 

an object encoded highly congruently with an episode in one participant was encoded 

lowly congruently by another participant. The results of this analysis showed that high 

congruent items elicited more stable patterns of EEG activity than low congruent items 
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from 1036 ms to 2008 ms from picture onset (Cluster statistics: p = 0.02, corrected for 

multiple comparisons, sum T-values = 452.90) (Figure 6.3c). These results indicate 

that context-dependent neural state of stability is modulated by episodic congruency 

at encoding. 

6.4.4. N400 signals the detection of incongruent objects 

within an episodic context 

We hypothesised that the disruption of neural stability elicited by the detection of 

low congruent objects from the unfolding schema consistent episodic narrative would 

be preceded by a prediction error signal in the brain. We aimed to identify such an 

error signal in the EEG by means of a transient increase in the N400 ERP component, 

which has been widely related to incongruence detection in the literature (Kutas and 

Federmeier, 2011). To assess this issue in our data, we grouped the 29 electrodes 

into 6 regions and averaged the epochs across electrodes within each region. Then, 

we introduced the voltage value into the LMM as the dependent variable and included 

participants’ ability to correctly recognise the picture image at test congruence rating 

provided at encoding as the main fixed-effect variables. Subject was included as the 

grouping variable. This analysis was conducted for each time point and each scalp 

region separately.  

The results of the LMM analysis revealed significant effects at specific scalp 

regions and temporal points for both memory and congruence. For memory, later 

forgotten objects elicited significantly more negative ERPs amplitude at 520 ms to 870 

ms from picture onset distributed over the frontal scalp region. For congruence, we 

found more substantial negative amplitude with objects rated less congruent with the 

preceding episodic context. This effect resulted significant from 410 ms to 730 ms from 

picture onset and was distributed over frontocentral scalp regions (Figure 6.4a).  
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Figure 6.4. LMM on ERPs elicited by object pictures. 29 electrodes were grouped into 6 scalp 
regions, and boundary electrodes were included in either neighbouring region to obtain more stable 
spatial patterns. (a) t-value resulting from the LMM analysis at each region and time point as a 
function of congruence. (b) Participants’ averaged ERPs from representative region 4 (note that for 
visual illustration, trials with congruence ratings of 1 and 2 were grouped and averaged as Low 
congruence and trials with congruence ratings of 3 and 4 were grouped as High congruence). The 
shaded area represents standard error (SEM) across subjects. A black dash line on the statistical 
map marks the area where the t-statistics exceed the significance threshold (p < 0.05) with the 
alpha level adjusted with Bonferroni correction.  
 
 

6.4.5. Neural reinstatement induced by object 

incongruence 

We next sought to test that prediction error elicited by low congruent items would 

be accompanied by more robust reactivation of the just encoded episodic elements. 

To address this issue, we implemented a trial-based and temporally-resolved neural 

similarity analysis between EEG data elicited at picture object and EEG data elicited 

by each image of the preceding episodic context. The results of this approach revealed 

an increase in neural similarity between EEG patterns from ~100 ms – 700 ms at 

object picture onset and EEG patterns of activity between ~100 ms – 750 ms from the 

onset of pictures within the episodic sequence (Figure 6.5a).  
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Figure 6.5. Neural similarity between episode and object. (a) Time-resolved degree of neural 
similarity between EEG patterns elicited by picture images from the episodic sequence and EEG 
patterns elicited during the encoding of the associated picture object. Grey dash line showed the ±50 
ms time window where similarity reached the peak (190 ms - 290 ms at encoding time). (b) Neural 
similarity values for the High and Low congruence conditions averaged across participants. Shaded 
area represents SEM of the participants’ sample. (c) t-statistics from the output of LMM on similarity 
value along picture object encoding period. Grey dash line marked the one-sided significant threshold 
after Bonferroni correction. Grey shade showed the area with pcorrected > 0.05 (two-tailed).  
 

 

To assess whether the degree of neural reactivation observed during the encoding 

of picture objects was modulated by their perceived congruency with the encoding 

episodic context and their later memory accessibility at test, we ran an LMM analysis 

including neural similarity, participant congruence rating and recognition accuracy at 

test. We also included a variable accounting for the picture order of pictures in the 

episodic sequence to control for the possibility that any effect could be accounted for 

by the temporal proximity of the encoding pictures of the preceding episode with the 

picture object. To do so, we first identified on the similarity matrix the exact time point 

where the similarity value reached the peak across participants (i.e., at 240 ms from 

episodic sequence picture onset and at 220 ms from object picture onset). We then 

ran a single trial LMM analysis on the averaged similarity value ±50 ms around the 

peak (Figure 6.5b). We found that the degree of neural reactivation correlated 

negatively with the participants' ability to correctly recognise an item at test. The 

predictive negative relationship between neural reactivation and memory started to be 

significant at 270 ms from picture object onset and remained significant throughout 

almost the entire epoch until 2100 ms from the object picture onset (Figure 6.5c). In 

addition, we also found a negative correlation between neural similarity and 

congruence rating. However, the significant effects were more transient but 
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comparably distributed along with the object picture encoding epoch. Notably, the first 

significant timepoint was very early, at 190 ms from picture onset, which preceded the 

relationship effects between neural similarity and memory (Figure 6.5c). A more 

persistent negative correlation was also found later, between 490 ms – 720 ms and at 

1340 ms from picture onset. Finally, no significant point exceeded the statistical 

significance threshold for the variable picture order position, indicating that the 

significant relationship between neural similarity and memory and congruence was not 

driven by specific neural similarity measures between picture objects and pictures of 

the episode.  

6.5. Discussion 

In this study, we tested whether the perceived incongruence of an item from an 

unfolding event and its impact on memory relied on the disruption of neural stability 

patterns preceded by the neural reactivation of the memory representations of the just 

encoded event. Our findings, derived from combining behavioural data from 3 different 

experiments and the implementation of multivariate pattern analysis on EEG signal 

during encoding of one of them, confirmed our hypothesis by showing that neural 

stability patterns gradually increase throughout the ongoing exposure to a schema-

consistent episodic narrative, and that the brain stability pattern is interrupted when 

the encoding of an object of the event is lowly congruent within the ongoing schema 

representation. We found that the decrease in neural stability for low congruent items 

was best seen at ~1000 ms from object encoding onset when compared to high 

congruent items and that this effect was preceded by an enhanced N400 ERP and an 

increased degree of neural reactivation of the just encoded episode for low congruent 

items observed between ~200 to 1000 ms from picture onset. Current results offered 

new insights into the neural mechanisms and their temporal orchestration that are 

rapidly engaged during online encoding of schema-consistent episodic narratives and 

the detection of incongruencies.  

Central in our findings is that the degree of neural reactivation of the encoded 

episode by the final target object correlated negatively with the perceived congruence 

and the participant’s ability to later recognise the picture in a memory test. The notion 

that memory reactivation benefits memory formation is well established in previous 
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research. Most of it showed that the reactivation strength drives long-term memory 

formation by mimicking neural replay phenomena thought to promote rapid 

consolidation processes seen in rodent studies (i.e., Carr et al., 2011). Other studies 

have revealed that when novel encoding inputs reactivate previously encoded 

information that overlaps in content, the long-term memory representations of the two 

event contents become integrated, promoting generalisation and adaptive behaviour 

(Shohamy and Wagner, 2008; Schlichting and Preston, 2015). Though the notion that 

memory reactivation may potentially benefit memory formation, another set of findings 

described the opposite effect. These studies found that memory reactivation of 

overlapping memories may yield competition between the two, resulting in interference 

with a negative impact on memory (Kuhl et al., 2011). Our results that object 

incongruence elicited greater memory reactivation of the preceding event and that the 

degree of memory reactivation correlated negatively with memory accuracy for the 

object picture may align well with the latter view.  

An additional possible explanation for the proactive interference effect found 

between memory reactivation and incongruence detection is that surprise itself creates 

an event boundary (Antony et al., 2021), sectioning off the preceding and the current 

elements as distinct events in memory. In fact, theoretical models propose that 

mnemonic prediction errors would promote the encoding of distinct memory traces 

(McClelland et al., 1995; Love et al., 2004; Gershman et al., 2014; Frank et al., 2020). 

That is, events that violate our expectations should be allocated a unique memory 

representation distinct from other existing memories. This may facilitate memory for 

the unexpected event while mitigating interference with existing memories that may 

still be relevant. Our findings that high and low congruent items were retrieved with 

similar accuracy when memory was tested with a detailed visual representation in 

Experiment 2 and in correctly rejecting lure items in Experiment 1 would fit to this idea, 

and it would also converge with recent behavioural findings that mnemonic prediction 

errors do not increase gist-based mistakes of identifying similar lures as old (Bein et 

al., 2021).  

Our findings that surprising or unexpected elements of the unfolding experience 

elicited the rapid reinstatement of the just encoded picture sequence are in line with 

previous findings that showed that sudden shifts in an ongoing episodic context (i.e., 
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event boundaries) induce the rapid reactivation of preceding episodic information (Sols 

et al., 2017; Silva et al., 2019; Wu et al., 2021). Event boundaries are thought to 

represent moments in time whereby a continuous stream of incoming information is 

segmented into different memory units (Zack et al., 2011). In this model, the process 

of event segmentation starts when your current understanding of the world is 

destabilised by a new observation that does not fit our current expectations. Viewed 

from this perspective, high levels of surprise (defined here as a high degree of 

inconsistency of the object picture to the schema or internal model representation 

activated during the preceding episodic sequence) refers to a substantial change in 

our understanding of the current inputs from experience. This engenders additional 

resources to re-evaluate the current internal model in the face of the new observation, 

which may benefit from the greater reactivation of the memory representations to 

resolve it.  

In summary, the current study offers three novel findings. It shows that the 

detection of low congruent elements of an episodic experience elicited a rapid memory 

reactivation of the just encoded event episodic information, that this is concomitant to 

a mnemonic prediction error signal during encoding and that the result of this 

computation leverages the disruption of stable patterns of neural activity elicited during 

the schema consistent episodic event. These findings inform about the rapid but 

sequential structure of the distinct neural mechanisms supporting the detection of 

incongruencies during encoding and their consequences on memory. We speculate 

that these same processes may take place in realistic scenarios of our everyday 

experience.  
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Chapter 7. General discussion 

 

 

 

 

 

 

 

7.1. Summary of the study results 

The main objective of the three studies described in this thesis is to explore 

humans' immediate post-encoding memory reactivation mechanism and its functional 

role in episodic memory formation. The results of the three studies helped advance 

the understanding of this neural signature as an early stage of memory formation once 

an episode is perceived to end. In the followings, the main results of each study will 

be briefly outlined. 

7.1.1. Study 1: Post-encoding reactivation promotes one-

shot learning of episodes in humans 

In Study 1, participants encoded sequences of pictures depicting unique and 

meaningful episodic-like events. We applied representational similarity analysis on 

scalp electroencephalography recordings at the encoding stage and found evidence 
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of immediate post-encoding memory reactivation. The degree of memory reactivation 

predicted later recall for that episode. Importantly, memory reactivation was not 

observed between successive elements within an episode, indicating memory 

reactivation was specifically induced once participants perceived the episode to be 

complete. Finally, the memory reactivation mechanism was not present at the offset 

of sequences that were not perceived as meaningful episodes. Altogether, these 

results suggest that the post-encoding memory reactivation mechanism is akin to the 

rapid formation of unique and meaningful episodes that unfold over time. 

7.1.2. Study 2: Post-encoding reactivation binds episodic 

sequences in long-term memory 

In Study 2, we asked participants to encode trial-unique combinations of face-

object-scene picture triplets that were subsequently recalled in a test. We first 

replicated the findings in Study 1. Memory reactivation of the just encoded episodic 

elements after encoding was found at the early stage of the offset period following 

sequence encoding (i.e., at 500 ms at offset period onset), and the magnitude of 

memory reactivation at the offset predicted whether the picture triplets would be 

successfully recalled as a whole. Using a pattern classifier approach, we found that 

the degree of category feature discriminability gradually decreased as a function of 

image order in sequences, indicating the gradual integration of categorical 

representation during encoding. However, the degree of category representation at 

the offset, but not during picture encoding, was lower for later recollected than 

forgotten triplet episodes. The increase in trial-based similarity measures and the 

decreased degree of category-based neural representations at the offset period for 

recollected episodes suggest that rapid offset-locked signals trigger a reactivation of 

a detailed representation of the elements of a just-encoded experience to be bound 

as a cohesive episodic memory at the long term. 
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7.1.3. Study 3: Contextual incongruency triggers memory 

reactivation and the disruption of neural stability 

In Study 3, participants encoded images of target objects preceded by trial-unique 

sequences of events depicting day-to-day routine. In the first experiment, we found 

behavioural evidence supporting that object item congruent to the preceding episodic 

context was remembered more accurately. In the two follow-up behavioural 

experiments, we further confirmed that the increase in accuracy in recognition memory 

for the congruent object was also accompanied by a decreased detailed item 

representation, yet a stronger association between the object and context. At the 

neural level, we found that the processing of congruent objects was underlined by an 

increased state of neural stability. And importantly, compared to the incongruent items, 

such an increase was preceded by a less pronounced N400 ERP and a reduced neural 

reactivation of the preceding episode. Collectively, these results offered new insights 

into the neural mechanisms and their temporal orchestration that need to be rapidly 

engaged during online encoding of schema-consistent episodic narratives and the 

detection of incongruencies. 

7.2. Does post-encoding neural reactivation reflect 

working memory maintenance? 

Having shown the correlational relationship between post-encoding neural 

reactivation and later memory performance, a remaining question is whether the rapid 

post-encoding memory reactivation represents a carry-over effect from previous 

episode encoding or it contains a unique role in the memory formation. This question 

was first discussed in Study 1, where two main arguments were listed to favour the 

latter claim. First, the degree of memory reactivation predicted only the long-term 

memory strength of the episode but did not affect the coherence rating that 

immediately followed the offset period. Second, memory reactivation was present only 

at the early stage of the offset period within a delimited time window, while delay 

maintenance is associated with a sustained increase in activation of neocortical 
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structures (Fuster and Alexander, 1971). Here, this debate could be extended with 

further insights provided by the results in Study 2 and 3. 

With different experiment paradigms, Study 2 and 3 replicated the existence of 

rapid neural reactivation centred only at the early stage of the post-encoding period. 

However, a previous study with similar multivariate decoding approaches showed that 

working memory allowed transient information to guide upcoming behaviour by 

periodically reactivating the just-encoded representation throughout the entire 

maintenance interval (Fuentemilla et al., 2010). Such temporal nature of the putative 

mechanism supporting working memory was not observed in our results. Also, in our 

three studies, the degree of post-encoding neural reactivation was all linked directly to 

posterior memory performance, being either predictive of the memory strength for the 

preceding episode (Study 1 and 2) or the successfulness of integration of object item 

(Study 3) in the long term. This long-term impact of neural reactivation suggests a 

function beyond simple information maintenance.  

On the other side, it has been recently suggested that persistent neural activity 

might neither be necessary to maintain representations held in working memory 

(D’Esposito and Postle, 2015). This claim is also compatible with our results that a 

distinctive neural pattern was not observed during the time window where working 

memory mechanisms could take place. For example, in Study 1, picture encoding 

neural pattern was not shown to re-emerge during transition points between pictures 

of an episode. Also, in Study 3, the neural reactivation was not present following the 

image sequence presentations where there were 2 – 3s of fixation cross presentation 

before the onset of the object image.  

Putting all together, although our findings may not directly preclude the co-

existence of a working memory mechanism during the offset period, it is plausible to 

claim that the post-encoding neural reactivation mechanism observed in our results 

functions beyond a sole maintenance process for preceding information, further it 

reflects a crucial step to organise the just-encoded experience for memory formation. 
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7.3. Is the post-encoding neural reactivation an 

event boundary effect? 

Ever since the proposal of the Event Segmentation Model (Zacks et al., 2007), 

accumulating neuroimaging studies have provided consistent evidence for the 

existence of the neural mechanism triggered by event boundary and its impact on 

information processing (Baldassano et al., 2017; Brunec et al., 2018) as well as 

memory formation (DuBrow and Davachi, 2014; Liu et al., 2022). It has been shown 

to be a relevant framework to address how continuous stimuli can be chunked into 

clusters of information and transformed into event representation in memory. 

Considering the experimental paradigms adopted in our three studies, there are some 

aspects to be discussed: Is the end of sequence encoding in our studies (e.g., the 

offset fixation cross in Study 1 and 2; the final object presentation in Study 3) different 

from a classic event boundary? Is the post-encoding neural reactivation observed in 

our findings the exact mechanism as the neural activity triggered by event boundary 

reported in previous studies? (e.g., Sols et al., 2017). And finally, how do the findings 

linked to the ‘end of event sequences’ help advance our understanding of the human 

neural reactivation mechanism? 

Previous studies exploring the event boundary effect mainly manipulated the 

encoding paradigm under the continuous unfolding temporal context (e.g., sequential 

presentation of images), and an event boundary can be induced by an abrupt change 

of perceptual stimulus (Sols et al. 2017); by switching the stimulus category and task 

type (DuBrow and Davachi, 2016); or relying on the event transitions points embedded 

in more naturalistic stimulus such as movies (Baldassano et al., 2017; Ben-Yakov et 

al., 2018). In Study 1 and 2, we adopted a similar sequence encoding paradigm. 

However, we did not specifically insert any transition point to break the continuity of 

event sequences. Instead, each encoding trial contained a clear mark of starting and 

end points previously known to the participants. In this case, unlike an event boundary 

that marks a change in event context for the upcoming stimuli, the offset sign in our 

studies rather represents the endpoint of a one-shot encoding experience, analogous 

to the end of a trajectory in rodent navigation task (Diba and Buzsáki, 2007). 
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Recent studies have indeed discovered that an induced event boundary could 

efficiently trigger the neural reactivation immediately after its detection (Sols et al., 

2017; Silva et al., 2019). According to the EST, this neural signature time-locked to 

the event boundary reflects an event model update process where a mismatch, mainly 

at the perceptual level, to the current state urges the system to re-evaluate and, at the 

same time, reset the context representation and lead the event model to a new state 

(Zacks et al., 2007, 2011). Recent empirical evidence is also compatible with such a 

view by illustrating the memory-related function of neural reactivation for the 

proceeding but not the upcoming event (Silva et al., 2019). However, the two putative 

functional roles of this neural signature, namely ‘to chunk’ the ongoing stimulus and 

‘to integrate’ the previously extracted event into memory, might be overlayed in the 

same transient temporal window, making it difficult to single out and to stress the 

particular function underlying how the system achieves the ‘wrap up’ process to 

generate a concrete representation for the proceeding event. However, this is not the 

case in our studies, where the fixed single-trial structure allows us to pinpoint the exact 

mechanism of neural reactivation that particularly serves the memory formation 

process. 

Another critical aspect of the current findings is that the neural reactivation 

observed following the end of an event sequence was not triggered by abrupt changes 

in external information per se. Indeed, it has been recently suggested that an abrupt 

change in perceptual input is not necessary nor sufficient to determine how event 

representation is extracted and generated from experience (Shin and DuBrow, 2021). 

This view extended the possibility that the neural concomitant to the event boundaries 

previously reported during passive viewing task (Baldassano et al., 2017; Ben-Yakov 

and Henson, 2018; Silva et al., 2019) could be elicited independent of perceptual 

change and even when transitions are predictable. Our findings are compatible with 

such a view. In Study 1 and 2, neural reactivation was found to be endogenously 

initiated once and only at sequence offset, where the perceptual changes were 

predictable, and the end of an event was expected. Our findings thus support the 

notion that post-encoding neural reactivation reflects a natural process particularly 

engaged in memory formation rather than passively triggered by ongoing information 

processing. To take a further step, we directly manipulated the end of sequences in 

Study 3. The results consistently showed that initiation of the ‘wrap up’ process 
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awaited the completion of encoding sequences. However, how the series ended 

directly impacted how the brain ‘closed up’ the event, thus favouring the claim of neural 

reactivation as a flexible mechanism that can be manipulated by a top-down control 

over the expectancy of the event schema. 

It should be noted that current findings do not preclude the possibility that the 

neural reactivation triggered by the event boundary and the end of event encoding 

represents the same mechanism. For example, one can argue that under our 

sequential encoding paradigm of the three studies, the end of a sequence is 

essentially an event boundary in the sense that it marks the transition point from task 

encoding to the off-task period. However, we believe that the specific exploration 

centred on the end of event encoding, as implemented by our paradigms, helped 

highlight the particular functional role of neural reactivation in rapidly organising and 

strengthening the just-encoded episode and demonstrated the features of such 

mechanism to be flexible and active.  

7.4. How does the post-encoding neural reactivation 

in humans bridge with the replay mechanism found 

in rodents? 

Although exploration of neural reactivation was initially inspired by the replay 

mechanism found in rodents, up to date, there still exists interpretational gaps between 

the two presumably homologous mechanisms. The primary concern regards the 

different forms of reactivation/replay observed in humans and rodents. In the rodent 

hippocampus, neural replay has been found during the off-task period as the 

organised sequential reactivation of the place cells (Burgess and O’Keefe, 1996) that 

encode the initial location during the navigation task (Foster and Wilson, 2006; Diba 

and Buzsáki, 2007). However, in humans, the detection of neural reactivation has 

mostly relied on multivariate analytical approaches to neuroimaging data, and neural 

reactivation is generally reflected by the re-emergence of pattern activity from large-

scale brain regions (Xue, 2018). Being aware of the differences in experimental and 

analytical approaches, studies have focused on the shared properties between human 
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neural reactivation and rodent replay mechanism. Several attractive features in rodent 

replay make it plausible to be treated as the putative mechanism supporting memory 

consolidation (Tambini and Davachi, 2019). We believe our results fit with these 

features to a certain extent, thus contributing to advancing the understanding of the 

neural reactivation mechanism in humans and its role underlying the memory 

formation process. 

The first iconic feature observed in rodent neural replay consists in its temporally 

compressed format that occurs during brief (100–200 ms) sharp-wave ripple (SWR) 

events (Lee and Wilson, 2002; Foster and Wilson, 2006; Diba and Buzsáki, 2007; 

Dupret et al., 2010). Primary fMRI approaches have been able to detect neural 

reactivation for specific event patterns in the human hippocampus (Tambini and 

Davachi, 2013; Grube et al., 2016; Hermans et al., 2017), yet owing to the limited 

temporal precision, evidence for its temporal nature is still elusive. Leveraging the high 

temporal resolution of EEG, our results from three different studies are compatible with 

such feature in a way that neural reactivation has been observed centred in the narrow 

time window (e.g., ~400 ms - 800 ms) at the early stage of the post-encoding period, 

and at the same time, what has been reactivated covered the neural pattern elicited 

across the extended encoding period (e.g., ~400 ms - 1300 ms). Although it remains 

open for discussion whether cortical patterns reflect the same mechanism observed 

in the rodent hippocampus, our paradigm brings up the possibility of exploring human 

neural reactivation with fast timescale information. 

The second important feature of rodent replay lies in its high-fidelity decoding of 

prior experience, which is grounded on the precise regional specificity of data sampling 

and domain-specific experimental paradigm (i.e., constrained spatial navigation task). 

However, these prerequisites are hard to be met in human studies, given the high 

complexity of episodic memory and the constraints on measuring techniques. 

Multivariate approaches have the advantage of deciphering the nature of 

representation at different memory stages yet lack the power in content-specificity to 

illustrate what is precisely being reactivated. Although these obstacles remain present 

in our experiments, our paradigms help narrow down the alternative interpretations, 

providing the results compatible with the experience-specific nature of neural replay 

found in rodents. In the three studies, the existence and the memory-related function 
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of neural reactivation have been detected after a one-shot episodic encoding 

experience. Such necessity for trial-specific neural reactivation in memory formation 

was especially highlighted in rodent studies where replay has been shown to 

contribute to one-trial learning (Diba and Buzsáki, 2007; Carr et al., 2011). Following 

this trend, in Study 2, we further found that the increase in neural pattern similarity to 

the encoding experience at the event offset period temporally overlapped with a 

reduced decodability of categorical-feature representations, indicating that the content 

of neural reactivation might be more trial-unique or experience-specific with less 

containing generic categorical feature representations. 

Finally, rodent replay has been linked to robust hippocampus-cortical interaction, 

which has been considered the neural basis for reorganising memory representation 

across hippocampal–cortical networks (Ólafsdóttir et al., 2016; Rothschild et al., 2016). 

The neural reactivation captured at the cortical level in our data is congruent with 

recent findings in rodents where neural reply at the cortex was observed during sleep 

(Ji and Wilson, 2007) and awake period (O'Neill et al., 2017). However, owing to the 

limited spatial resolution of EEG, it is not feasible to direct link the current evidence to 

the previously reported post-encoding neural activity in the human hippocampus (e.g., 

Ben-Yakov et al., 2011), thus failing to reveal the specific cortico-hippocampal 

dynamics of the reactivation mechanism. This limitation will be further discussed in 

Section 6 of this chapter. 

Taking it all together, our paradigms and analytical approaches revealed the 

temporal and mechanistic properties of the post-encoding neural reactivation 

mechanism similar to the neural replay mechanism found in rodents, thus bridging the 

neural reactivation/replay findings in the two species. 
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7.5. Limitations and future directions 

7.5.1. Sequentiality of the post-encoding reactivation 

mechanism 

In rodents, the directionality of the sequential replay, being either forward or 

backwards, bears different functional implications. While forward replay enables to 

pre-play the future trajectory to guide memory-related decision making, backward 

replay is often observed immediately after the very first one-trial navigation experience, 

suggesting a process to promote task learning (Carr et al., 2011). 

In Study 1, 2 and 3, we speculate that within the crucial temporal window where 

the reactivation was found, the representations being reactivated should also contain 

information regarding the sequentiality. And inspired by rodent literature (Diba and 

Buzsáki, 2007; Carr et al., 2011), we expect such reactivation should be displayed in 

reverse order, as it fits with the putative role of the rapid reactivation mechanism in 

strengthening the one-shot learning experience. However, representational patterns 

captured in scalp EEG in Study 1, 2 and 3 were limited to reflect a global neural state 

engaged during encoding and offset, with their similarity bridging putative off-task 

period to the reinstatement of the encoding neural state. In other words, the neural 

patterns per se have limitations in capturing the specificity of content representation, 

thus lacking the precise decodability to disentangle the temporal dynamics of the 

fluctuation of accurate feature representations in a compressed time window (e.g., the 

early stage of the post-encoding period). 

Future studies should adopt a paradigm with finer regularities over the stimulus 

features and apply statistical approaches that combine nonlinear classification with 

linear temporal modelling (e.g., Temporally delayed linear modelling (Liu et al., 2021)) 

in search for possible sequentiality during post-encoding reactivation.  
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7.5.2. Spatial contribution to the post-encoding neural 

reactivation 

Also, the latest evidence supports that the hippocampus plays an important role in 

making a ‘switch’ from external information encoding to an internal mnemonic process 

(Treder et al., 2021). Such process is physiologically marked by a sustained increase 

in hippocampal high gamma power (55 to 110 Hz) that emerged 500 ms after cue 

onset during the memory retrieval. Consistent evidence was reported in our three 

studies where similar temporal feature in the post-encoding period was found in 

cortical regions, suggesting that the reactivation of the encoding pattern may result 

from a switch from perception to memory process so that a stable memory trace can 

be successfully generated. Indeed, it has been long proposed that the hippocampus 

engages in binding separate just-encoded episodic elements into an integrated 

memory trace. Such a process is hypothesised to be achieved by establishing a 

specific neural pathway linking cortical representations with neuronal ensembles in the 

hippocampus that store their spatiotemporal patterns (Teyler and DiScenna, 1986; 

Teyler and Rudy, 2007). However, due to the lack of spatial resolution of scalp EEG 

recordings, our results were limited in providing direct evidence of the region-specific 

contribution of the post-encoding reactivation mechanism. Thus, the crucial puzzle to 

complete the whole picture of the cortical-hippocampus dynamics supporting such 

transformation remains unknown.  

For future studies, it will be essential to evaluate how different brain regions are 

orchestrated functionally and temporally to conduct such a rapid and efficient 

reactivation process. We propose extending this research line by collecting data with 

the invasive brain mapping technique intracranial electroencephalography (iEEG). In 

collaboration with Hospital Clínic Barcelona, we have already implemented a modified 

version of the paradigm of Study 2 to start testing on drug-resistant epileptic patients 

with iEEG implantation. Data from 5 patients have been successfully recollected. Data 

with more patients and future analysis are estimated to unveil the particular transient 

and region-specific features of the post-encoding neural reactivation mechanism with 

fine-grain temporal and spatial resolution. 
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7.5.3. Endogenously elicited neural reactivation 

mechanism 

In both Study 1 and Study 3, we found evidence supporting the post-encoding 

reactivation mechanism to be a flexible process sensitive to the general context of the 

task. Its elicitation, apart from being memory relevant, was shown to be conditional to 

the global presentation paradigm of the episode. For example, we observed its 

presence only when an episode is perceived to be complete but not before (Study 1), 

and its magnitude can be manipulated by how convincible the item following the event 

sequences perceived to be an end of the episode (Study 3). 

As previously discussed, experiences could be grouped together following the 

inference-based framework so that boundaries can occur without perceptual changes 

or when transitions between events can be predicted (Shin and DuBrow, 2020). This 

brings up the possibility that not only the ‘wrap up’ process can be endogenously 

initiated once the event encoding reaches the end, but when an end is conceived 

should also be internally guided. However, in our three studies, owing to the lack of 

variability in the length of event sequences and the fixed trial structure, participants 

did not have control over the temporal property of event sequences, thus impeding a 

direct measure of such possibility. It will be interesting to specifically explore the 

interaction between a subjective decision of an episode to finish and neural 

concomitant underlying the memory formation process once it does. Future 

experiments can address this assumption by adopting a varied length of encoding 

sequence series or a self-guided learning paradigm. 
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Chapter 8. Conclusions 

 

 Neural reactivation is rapidly elicited during the post-encoding period following the 

one-shot experience of the event episode. Such reactivation can be quantified as 

an increased neural similarity of the previous encoding experience in a limited time 

window. The degree of neural reactivation is predictive memory recollection for the 

just-encoded event.  

 Memory reactivation is induced at the end of the continuous ongoing episodic 

memory encoding, once participants perceive the episode to be complete but not 

between successive elements within an episode. Also, it fails to be elicited at the 

offset of sequences that were not perceived as meaningful episodes. Together, it 

suggests post-encoding memory reactivation as a natural process selectively 

engaged in supporting memory formation for meaningful episodes. 

 Successful event encoding requires a gradual integration of disparate episodic 

elements that can be bound as a cohesive memory trace in the long term. Such 

integration can be promoted by offset-locked neural activity that triggers the 

reactivation of a detailed representation of the experience-unique episodic 

elements of the preceding encoding experience.  

 The perceived incongruence of the item within an unfolding event can disrupt the 

neural stability established throughout the ongoing exposure to a schema-

consistent episodic narrative. Such mismatch detection triggers a rapid neural 

reactivation to wrap up the just-encoded episodic events and urge the system to 

update the current state representation. 

 The temporal and representational properties of the post-encoding neural 
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reactivation mechanism are similar to those of the neural replay found in rodents, 

serving to bridge the experimental gaps between the two species and to advance 

the understanding of why, when, and how such neural signature in humans may 

be associated to memory formation. 
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