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Abstract

Background: This work investigated different methods based on machine learning
bio-sounds analysis for the automatic identification of different conditions. Con-
cretely, we conducted three studies to investigated the automatic identification of
bulbar involvement in patients with amyotrophic lateral sclerosis (ALS) through voice
analysis. Additionally, a study to detect COVID-19 positive cases through the auto-
matic identification of COVID-19 coughs was performed.

The Northeast Amyotrophic Lateral Sclerosis Consortium (NEALS) bulbar sub-
committee released a recent statement regarding the need for objective-based ap-
proaches to diagnose bulbar involvement in ALS patients. Bulbar involvement is a
term used in ALS that refers to motor neuron impairment in the corticobulbar area
of the brainstem which leads to a dysfunction of speech and swallowing. One of
the earliest symptoms of bulbar involvement is voice deterioration, characterised by
grossly defective articulation, extremely slow laborious speech, marked hypernasality
and severe harshness. Bulbar involvement requires well-timed and carefully coordi-
nated interventions. So, early detection is crucial to improving the quality of life and
lengthening the life expectancy of those ALS patients who present this dysfunction.
Recently, research efforts have focused on voice analysis to capture this dysfunction.

Analogously, easy detection of COVID-19 is a challenge. Quick biological tests do
not give enough accuracy. Success in the fight against new outbreaks depends not
only on the efficiency of the tests used, but also on the cost, time elapsed and the
number of tests that can be done massively. Our proposal provides a solution to this



challenge.

Methods: Three studies have been developed for the automated detection of bulbar
involvement in patients with amyotrophic lateral sclerosis by machine learning and
bio-sounds analysis.

The first study consisted of a methodology for diagnosing bulbar involvement
efficiently through the acoustic parameters of uttered vowels in Spanish. The method
focused on the extraction of features from the phonatory subsystem—jitter, shimmer,
harmonics-to-noise ratio, and pitch—from the utterance of the five Spanish vowels.
Then, we used various supervised classification algorithms, preceded by principal
component analysis of the features obtained.

In the second study, we designed a new methodology for the automatic detection
of bulbar involvement based on the phonatory subsystem and time-frequency char-
acteristics. The methodology focused on providing a set of 50 phonatory subsystem
and time-frequency features to detect this deficiency in males and females from the
utterance of the five Spanish vowels. Then, multivariant analysis of variance was
used to select the statistically significant features, and the most common supervised
classifications models in clinical diagnosis were fitted to analyze their performance.

The third study consisted of providing a new methodology to automatically detect
this dysfunction at early stages of the disease. The methodology focused on the
creation of a voice fingerprint consisted of a pattern generated from the quasi-periodic
components of a steady portion of the five Spanish vowels and from the computation
of the five principal and independent components of this pattern. Then a set of
statistically significant features were obtained and the most common supervised and
semi-supervised classification models were implemented.

Additionally, a forth and last study was performed to design a freely available,
quick and efficient methodology for the automatic detection of COVID-19 in raw audio
files. The methodology was based on automated extraction of time-frequency cough
features and selection of the more significant ones to be used to diagnose COVID-19
using a supervised machine-learning algorithm.

Results: In the first study, support vector machines performed better (Accuracy
95.8%) than the models analyzed in the related work. We also show how the model
can improve human diagnosis, which can often misdiagnose bulbar involvement.

In the second study, we obtained a set of statistically significant features for males
and females to capture this dysfunction. To date, the Accuracy obtained (98.01% for
females and 96.10% for males both obtained with random forest), outperformed the
models of our first study and those models found in the literature.

In the third study, random forest obtained the best accuracy (93.5%) when com-
pared controls and ALS patients with bulbar involvement and support vector ma-
chines obtained 91.0% of Accuracy with 100.0% of Specificity when comparing di-
rectly ALS patients with and without bulbar involvement. Our model provided al-
ternative annotation of bulbar and no bulbar subjects by means of semi-supervised



machine-learning algorithms that improved even more the performance of our pro-
posal.

In the fourth study, random forest has performed better to detect COVID-19
positive coughs than the other models analyzed. An Accuracy close to 90% was
obtained.

Conclusions: The results obtained are very encouraging and demonstrate the effi-
ciency and applicability of the machine learning bio-sounds analysis for the automated
detection of certain conditions. It may be an appropriate tool to help in the diagnosis
of ALS by multidisciplinary clinical teams, in particular to improve the diagnosis of
bulbar involvement. It could also be useful to help for an early response to further
COVID-19 outbreaks or other pandemics that may arise in the future.

The first study show how the model can improve human diagnosis, which can
often misdiagnose bulbar involvement.

Adding time-frequency features to more classical phonatory-subsystem features
increase the prediction capabilities of the machine learning models to detect bulbar
involvement. Studying men and women separately has given additional success.

The results obtained to improve the annotation of ALS patients in whom bulbar
involvement was not detected yet by using current subjective approaches are very
encouraging and demonstrate the efficiency and applicability of the methodology pre-
sented. It may be an appropriate tool for screening bulbar involvement in early stages
of the disease.

Finally, the fourth study demonstrates the feasibility of the automatic diagnose
of COVID-19 from coughs, and its applicability to detecting new outbreaks.

Resum

Introducció: En aquesta recerca hem investigat diferents mètodes d’aprenentatge
automàtic basats en l’anàlisi de bio-sons per a la identificació automàtica de diferents
malalties. Concretament, vam realitzar tres estudis per investigar la identificació
automàtica de l’afectació bulbar en pacients amb esclerosi lateral amiotrófica (ELA)
mitjançant anàlisis de veu. Adicionalment, es va realitzar un estudi per detectar casos
positius de COVID-19 mitjançant la identificació automàtica de tos COVID-19.

El subcomitè bulbar del Northeast Amyotrophic Lateral Sclerosis Consortium
(NEALS) va publicar una declaració recent sobre la necessitat d’enfocaments basats
en paràmetres objectius per diagnosticar l’afectació bulbar en pacients amb ELA.
L’afectació bulbar és un terme que s’utilitza en l’ELA que fa referència al deteriora-
ment de les neurones motores a la zona corticobulbar del tronc cerebral que provoca
una disfunció de la parla i de la deglució. Un dels primers śımptomes d’afectació
bulbar és el deteriorament de la veu, caracteritzat per una articulació greument defec-
tuosa, parla laboriosa i extremadament lenta, hipernasalitat marcada i aspror severa.
L’afectació bulbar requereix intervencions ben coordinades i ben temporitzades. Per
tant, la detecció precoç és crucial per millorar la qualitat de vida i allargar l’esperança



de vida dels pacients amb ELA. Recentment, els esforços de recerca s’han centrat en
l’anàlisi de la veu per captar aquesta disfunció.

De manera anàloga, la fàcil detecció de la COVID-19 és un repte. Les proves
biológiques no són prou precises. L’èxit en la lluita contra nous brots depèn no només
de l’eficiència de les proves utilitzades, sinó també del cost, del temps transcorregut
i del nombre de proves que es poden fer massivament. La nostra proposta dona una
solució a aquest repte.

Mètodes: S’han desenvolupat tres estudis per a la detecció automatitzada de l’afectació
bulbar en pacients amb ELA mitjançant models d’aprenentatge automàtic i l’anàlisi
de bio-sons.

El primer estudi va consistir en desenvolupar una metodologia per diagnosticar
eficaçment l’afectació bulbar a través dels paràmetres acústics de les vocals pronun-
ciades en castellà. El mètode es va centrar en l’extracció de caracteŕıstiques del
subsistema fonatori: fluctuació, brillantor, relació harmònica-soroll i to, a partir de la
pronunciació de les cinc vocals espanyoles. A continuació, vam utilitzar diversos al-
gorismes de classificació supervisats, precedits per l’anàlisi de components principals
de les caracteŕıstiques obtingudes.

En el segon estudi, vam dissenyar una nova metodologia per a la detecció au-
tomàtica de l’afectació bulbar basada en caracteŕıstiques del subsistema fonatori i
de temps-freqüència. La metodologia es va centrar en proporcionar un conjunt de
50 caractaŕıstiques per detectar aquesta deficiència en homes i dones a partir de la
pronunciació de les cinc vocals espanyoles. A continuació, es va utilitzar l’anàlisi
multivariant de la variança per seleccionar les caracteŕıstiques estad́ısticament signi-
ficatives i es van ajustar els models de classificacions supervisades més habituals en
el diagnòstic cĺınic per analitzar el seu rendiment.

El tercer estudi va consistir en proporcionar una nova metodologia per detectar
automàticament aquesta disfunció en les primeres etapes de la malaltia. La metodolo-
gia es va centrar en la creació d’una empremta digital de la veu basada en un patró
generat a partir dels components quasi periòdics d’una porció constant de cadas-
cuna de les cinc vocals espanyoles i del càlcul dels cinc components principals i in-
dependents d’aquest patró. Després es van obtenir un conjunt de caracteŕıstiques
estad́ısticament significatives i es van implementar els models de classificació super-
visats i semi-supervisats més comuns.

A més, es va realitzar un quart i darrer estudi per dissenyar una metodologia
ràpida i eficient de lliure disposició per a la detecció automàtica de la COVID-19 en
fitxers d’àudio en brut. La metodologia es va basar en l’extracció automàtica de les
caracteŕıstiques temps-freqüència de la tos i de la selecció d’aquelles més significa-
tives per diagnosticar la COVID-19 mitjançant algoritmes d’aprenentatge automàtic
supervisat.

Resultats: En el primer estudi, les support vector machines van tenir un rendiment
millor (Precisió 95,8 %) que els models analitzats en la literatura. També mostrem
com el model pot millorar el diagnòstic humà, que sovint pot cometre errors en el



diagnòstic de l’afectació bulbar.

En el segon estudi, vam obtenir un conjunt de caracteŕıstiques estad́ısticament
significatives per a homes i dones per captar aquesta disfunció. La precisió obtinguda
(98,01 % amb random forest per a les dones i 96,10 % amb random forest per als
homes), va superar els resultats dels models del nostre primer estudi i la dels models
trobats, fins ara, a la literatura.

En el tercer estudi, el model random forest va obtenir la millor Precisió (93,5%).
A més, comparant directament pacients amb ELA amb i sense aquesta disfunció, les
support vector machines van obtenir un 91, 0% de precisió i un 100, 0% de Especifici-
tat. El nostre model va proporcionar una anotació alternativa de subjectes bulbars i
no bulbars mitjançant algoritmes d’aprenentatge automàtic semi-supervisat que van
millorar encara més el rendiment de la nostra proposta.

En el quart estudi, el model random forest va obtenir un millor rendiment en la
detecció de la tos de la COVID-19 que la resta de models analitzats. Es va obtenir
una Precisió propera al 90%.

Conclusions: Els resultats obtinguts són molt encoratjadors i demostren l’eficiència
i l’aplicabilitat de models d’aprenentatge automàtic i de l’anàlisi de bio-sons per a la
detecció automatitzada de determinades malalties.

Pot ser una eina adequada per als equips cĺınics multidisciplinaris per ajudar en
el diagnòstic de l’ELA, en particular per millorar el diagnòstic d’afectació bulbar.
També pot ser útil per ajudar a donar una resposta ràpida enfront d’altres brots de
la COVID-19 o d’altres pandèmies que puguin sorgir en el futur.

El primer estudi mostra com el model pot millorar el diagnòstic humà, que sovint
pot cometre errors en el diagnòstic de l’afectació bulbar.

Afegint caracteŕıstiques de temps-freqüència a les caracteŕıstiques més clàssiques
obtingudes del subsistema fonador augmenten la capacitat de predicció dels models
d’aprenentatge automàtic per detectar l’afectació bulbar. Estudiar homes i dones per
separat ha proporcionat una millora addicional.

Els resultats obtinguts per millorar l’anotació de pacients amb ELA en els quals
encara no s’havia detectat afectació bulbar mitjançant l’ús dels enfocaments sub-
jectius actuals són molt encoratjadors i demostren l’eficiència i l’aplicabilitat de la
metodologia presentada. Pot ser una eina adequada per al cribratge de l’afectació
bulbar en les primeres etapes de la malaltia.

Finalment, el quart estudi demostra la viabilitat del diagnòstic automàtic de
COVID-19 a partir de la tos i la seva aplicabilitat a la detecció de nous brots.

Resumen

Introducción: En este trabajo se han investigado diferentes métodos basados en
modelos de aprendizaje automático y en el análisis de bio-sonidos para la identifi-
cación automática de diferentes enfermedades. Concretamente, realizamos tres estu-
dios para investigar la identificación automática de la afectación bulbar en pacientes



con esclerosis lateral amiotrófica (ELA) a través del análisis de la voz. Además, se re-
alizó un estudio para detectar casos positivos de COVID-19 mediante la identificación
automática de tos de la COVID-19.

El subcomité bulbar del Northeast Amyotrophic Lateral Sclerosis Consortium
(NEALS) publicó una declaración reciente sobre la necesidad de enfoques basados
en parámetros objetivos para diagnosticar la afectación bulbar en pacientes con ELA.
La afectación bulbar es un término utilizado en la ELA que se refiere al deterioro de
las neuronas motoras en el área corticobulbar del tronco encefálico que conduce a una
disfunción del habla y la deglución. Uno de los primeros śıntomas de la afectación
bulbar es el deterioro de la voz, caracterizado por una articulación muy defectu-
osa, habla extremadamente lenta y laboriosa, hipernasalidad marcada y aspereza
severa. La afectación bulbar requiere intervenciones oportunas y cuidadosamente co-
ordinadas. Por tanto, la detección precoz es fundamental para mejorar la calidad
de vida y alargar la esperanza de vida de aquellos pacientes con ELA que presentan
esta disfunción. Recientemente, los esfuerzos de investigación se han centrado en el
análisis de la voz para capturar esta disfunción.

De manera análoga, la fácil detección de la COVID-19 es un desaf́ıo. Las pruebas
biológicas rápidas no son suficientemente precisas. El éxito en la lucha contra nuevos
brotes depende no solo de la eficiencia de las pruebas utilizadas, sino también del
coste, el tiempo transcurrido y la cantidad de pruebas que se pueden realizar de
forma masiva. Nuestra propuesta brinda una solución a este desaf́ıo.

Métodos: Se han llevado a cabo tres estudios para la detección automática de la
afectación bulbar en pacientes con esclerosis lateral amiotrófica mediante análisis de
bio-sonidos por aprendizaje automático.

El primer estudio consistió en desarrollar una metodoloǵıa para diagnosticar la
afectación bulbar de manera eficiente a través de los parámetros acústicos de las
vocales pronunciadas en español.

El método se centró en la extracción de caracteŕısticas del subsistema fonatorio
(jitter, shimmer, relación de armónicos a ruido y tono) a través de la pronunciación
de las cinco vocales españolas. Luego, utilizamos varios algoritmos de clasificación su-
pervisados, precedidos por el análisis de componentes principales de las caracteŕısticas
obtenidas.

En el segundo estudio, diseñamos una nueva metodoloǵıa para la detección au-
tomática de afectación bulbar basada en caracteŕısticas del subsistema fonatorio y
de tiempo-frecuencia. La metodoloǵıa se centró en proporcionar un conjunto de 50
caracteŕısticas para detectar esta deficiencia en hombres y mujeres a partir de la pro-
nunciación de las cinco vocales españolas. Luego, se utilizó el análisis multivariante
de la varianza para seleccionar las caracteŕısticas estad́ısticamente significativas, y se
ajustaron los modelos de clasificación supervisados más utilizados en el diagnóstico
cĺınico para analizar su rendimiento.

El tercer estudio consistió en aportar una nueva metodoloǵıa para detectar de
forma automática esta disfunción en etapas tempranas de la enfermedad. La meto-
doloǵıa se centró en la creación de una huella de voz calculada en base a un patrón



generado a partir de los componentes cuasi periódicos de una porción constante de
cada una de las cinco vocales españolas y del cálculo de los cinco componentes princi-
pales e independientes de este patrón. Luego se obtuvo un conjunto de caracteŕısticas
estad́ısticamente significativas y se implementaron los modelos de clasificación super-
visados y semi-supervisados más comunes.

Adicionalmente, se realizó un cuarto y último estudio para diseñar una metodo-
loǵıa de acceso libre, rápida y eficiente para la detección automática de la COVID-19
en archivos de audio sin procesar. La metodoloǵıa se basó en la extracción automa-
tizada de caracteŕısticas tiempo-frecuencia de la tos y de la selección de aquellas más
importantes para diagnosticar la COVID-19 mediante un algoritmo de aprendizaje
automático supervisado.

Resultados: En el primer estudio, los modelos basados en support vector machines
funcionaron mejor (Precisión 95,8%) que los modelos analizados en la literatura.
También mostramos cómo el modelo puede mejorar el diagnóstico humano, que a
menudo puede cometer errores en el diagnóstico de la afectación bulbar.

En el segundo estudio, obtuvimos un conjunto de caracteŕısticas estad́ısticamente
significativas para hombres y mujeres para capturar esta disfunción. Hasta la fecha,
la Precisión obtenida (98,01 % con modelos random forest para el caso de las mujeres
y 96,10 % con random forest para el de los hombres) superó los modelos de nuestro
primer estudio y los modelos encontrados en la literatura.

En el tercer estudio, random forest obtuvo la mejor Precisión (93.5%) cuando se
compararon controles y pacientes con ELA con afectación bulbar. Además, compara-
ndo directamente pacientes con ELA con y sin esta disfunción, las support vector
machines obtuvieron un 91.0% de Precisión y un 100.0% de Especificidad. Nuestro
modelo proporcionó una anotación alternativa de sujetos bulbar y no bulbar mediante
algoritmos de aprendizaje automático semi-supervisados que mejoraron aún más el
rendimiento de nuestra propuesta.

En el cuarto estudio, los random forest tuvieron un mejor desempeño para detectar
la tos de la COVID-19 que los otros modelos analizados. Se obtuvo una Precisión
cercana al 90%.

Conclusiones: Los resultados obtenidos son muy alentadores y demuestran la efi-
cacia y aplicabilidad de métodos basados en modelos de aprendizaje automático y
en el análisis de bio-sonidos para la detección automatizada de determinadas enfer-
medades.

Estos métodos pueden ser una herramienta adecuada para ayudar a los equipos
cĺınicos multidisciplinares en el diagnóstico de la ELA, en particular para mejorar el
diagnóstico de la afectación bulbar. También podŕıan ser útiles para ayudar a dar
una respuesta rápida frente a los brotes de COVID-19 u otras pandemias que puedan
surgir en el futuro.

El primer estudio muestra cómo el modelo puede mejorar el diagnóstico humano,
que a menudo puede cometer errores a la hora de diagnosticar la afectación bulbar.

Añadir caracteŕısticas de tiempo-frecuencia a caracteŕısticas más clásicas como las



mencionadas del subsistema fonatorio aumenta las capacidades de predicción de los
modelos de aprendizaje automático para detectar la afectación bulbar. El estudio de
hombres y mujeres como grupos separados ha proporcionado una mejora adicional en
el rendimiento de los modelos.

Los resultados obtenidos para mejorar la anotación de los pacientes con ELA en los
que aún no se detectó afectación bulbar mediante el uso de los enfoques subjetivos ac-
tuales son muy alentadores y demuestran la eficacia y aplicabilidad de la metodoloǵıa
presentada. Puede ser una herramienta adecuada para detectar la afectación bulbar
en las primeras etapas de la enfermedad.

Finalmente, el cuarto estudio demuestra la viabilidad del diagnóstico automático
de la COVID-19 a través de la tos y su aplicabilidad para detectar nuevos brotes.
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Chapter 1

Introduction and scope of the

research

This work investigated different methods based on machine learning and bio-sound

analysis such as voice and coughs for the automatic identification of different condi-

tions.

Concretely, we investigated the automatic identification of bulbar involvement in

patients with amyotrophic lateral sclerosis (ALS) through voice analysis and COron-

aVIrus Disease of 2019 (COVID-19) positive cases through the automatic identifica-

tion of COVID-19 coughs.

Firstly, the background and the context of the addressed problems are presented,

both for the detection of the bulbar involvement in ALS patients and for the detection

of cough of COVID-19.

Then, the related work in machine learning and voice analysis in ALS patients

and in machine-learning tools to detect COVID-19 based on the sound of voices, and

the sounds we make when we breathe or cough is reviewed.

Later on, the objectives and the main contributions of this thesis are introduced.

Subsequently, a summary of the main methodologies developed in this thesis is

presented. Basically, it consists of the three types of analysis which were performed in

this work to obtain the features (phonatori subsystem, time-frequency representation,

and pattern analysis). Next, the feature analysis and feature extraction techniques
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studied are presented and the visualization tools used for exploring the features.

Then, the machine-learning algorithms used are explained, as well as the corpus

and datasets employed both for ALS and COVID-19 for the experimentation.

Finally, the publications obtained in the thesis and the 3-month doctoral stay

which took place at the Computer Science department of the University of Tallinn

are presented.

1.1 Background

1.1.1 Detecting bulbar involvement in ALS patients

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an irregu-

lar and asymmetric progression. This is characterized by a progressive loss of both

upper and lower motor neurons leading to muscular atrophy, paralysis and death,

mainly from respiratory failure. The life expectancy of these patients from the onset

of symptoms is from 3 to 5 years. ALS produces muscular weakness and difficulties

of mobilization, communication, feeding and breathing, creating a great dependence

of the patient on caregivers and relatives and generating significant social costs. Cur-

rently, there is no cure for ALS, although early detection can slow progress [1].

The disease is referred to as spinal ALS (80% of cases) when the first symptoms

appear in the arms and legs (limb or spinal onset), and bulbar ALS (20% of cases)

when it begins in cranial nerve nuclei (bulbar onset). The patients with the latter

form tend to have a shorter life span because of the critical nature of bulbar muscle

function responsible for speech and swallowing. The first bulbar symptoms appear at

the beginning of the disease in bulbar ALS, but may appear in later stages of spinal

ALS. Early identification of bulbar involvement is critical for improving diagnosis

and prognosis and may be the key to slowing the disease effectively. However, its

diagnosis is challenging due to the difficulties of assessing this impairment through

subjective measures. There is no standardised diagnostic procedure for assessing bul-

bar dysfunction yet and new methodologies based on objective measures are needed
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[2].

1.1.2 Detecting COVID-19 cough

Meanwhile we conducted the ALS project, the COVID-19 pandemic abruptly burst in

our daily-life, and the scientific community focused their efforts to fight against this

pandemic. As we considered that the bio-sounds analysis could be applied to detect

other conditions, and with the aim to provide new hints to fight against COVID-

19 pandemic, we performed a study to detect COVID-19 positive cases from the

automatic identification of COVID-19 coughs.

COVID-19, caused by the Severe Acute Respiratory Syndrome (SARS-CoV2)

virus, was announced as a global pandemic on February 11, 2020 by the World

Health Organisation (WHO). By mid-February, 2021, one year after the beginning

of the COVID-19 pandemic, over 108 million confirmed cases of COVID-19 had been

reported worldwide, with almost 2,400,000 deaths [3]. During this time, it has been

demonstrated that COVID-19 outbreaks are very hard to contain with current test-

ing approaches unless region-wide confinement measures are sustained. This is partly

because of the limitations of current viral and serological tests and the lack of com-

plementary pre-screening methods [4].

According to the WHO-China Joint Mission report (COVID-19) [5], typical signs

and symptoms of COVID-19 are fever (87.9%), dry cough (67.7%), fatigue (38.1%),

sputum production (33.4%), shortness of breath (18.6%), sore throat (13.9%), head-

ache (13.6%), myalgia or arthralgia (14.8%), chills (11.4%), nausea or vomiting

(5.0%), nasal congestion (4.8%), diarrhoea (3.7%), hemoptysis (0.9%), and conjunc-

tival congestion (0.8%).

Several researchers have proposed methods for identifying cough sounds from au-

dio recordings [6, 7]. Automatic cough classification is an active research area in which

several researchers have proposed methods for identifying a wide range of respiratory

diseases and types of coughs (namely dry and wet coughs) through cough analysis

and machine-learning algorithms [8, 9].
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1.2 Related Work

1.2.1 Related Work in machine learning and voice analysis

in ALS patients

Table 1.1 summarizes the most recently published work related to machine learning

and voice analysis in ALS patients.

Citation: Connaghan et al [10], 2019.

Purpose/Thesis: Addressed the utility of Beiwe smartphone-based digital pheno-

typing to identify and track speech decline in ALS.

Data Collection: 12 participants with ALS used the Beiwe app weekly to record

reading passages and self-report (ALSFRS-R) ratings of bulbar (speech) function.

Methodology: Speaking rate and pause variables were automatically extracted from

recordings offline. Speech function measures at baseline were significantly different

for participants with and without bulbar symptoms.

Outcomes: They observed that the rate of decline of all measured speech functions

was greater for participants with bulbar symptoms.

Citation: Lee et al [11], 2019.

Purpose/Thesis: Investigate vowel-specific intelligibility and acoustic patterns of

individuals with different severities of dysarthria secondary to ALS.

Data Collection: 23 individuals with dysarthria secondary to ALS and 22 typically

aging individuals participated as speakers.

Methodology: For vowel-specific intelligibility data, 135 listeners participated in the

study. Vowel-specific intelligibility, intrinsic vowel duration, 1st and 2nd formants (F1

and F2), vowel inherent spectral change (VISC), and absolute VISC were examined.

Outcomes: A significant interaction

between severity group and the vowel-specific intelligibility pattern as well as F1, F2

VISC, and absolute F2 VISC was observed.

Citation: Chiaramonte et al [12], 2019.
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Purpose/Thesis: Examine the role of different specialists in the diagnosis of ALS,

to understand changes in verbal expression and phonation, respiratory dynamics and

swallowing that occurred rapidly over a short period of time.

Data Collection: 22 patients with bulbar ALS

Methodology: Voice assessment, ears, nose and throat (ENT) evaluation, Multi-

Dimensional Voice Program (MDVP), spectrogram, electroglottography, fiberoptic

endoscopic evaluation of swallowing were performed for each patient.

Outcomes: In the early stage of the disease, the oral tract and velopharyngeal port

were involved. Values of MDVP were altered. Spectrogram showed an additional

formant, due to nasal resonance. Electroglottography showed periodic oscillation of

the vocal folds only during short vocal cycle.

Citation: Suhas et al [13], 2019.

Purpose/Thesis: Speech based automatic classification of patients with ALS and

healthy subjects.

Data Collection: 25 ALS patients and 25 healthy subjects.

Methodology: Sustained phoneme production (PHON), diadochokinetic task

(DDK) and spontaneous speech (SPON) were used as speech tasks. Support vec-

tor machines (SVM) and deep neural networks (DNNs) were used as classifiers and

suprasegmental features based on mel frequency cepstral coefficients (MFCCs) were

considered.

Outcomes: The best classification Accuracy of 92.2% is obtained using a high quality

microphone.

Citation: Garcia-Gancedo et al [14], 2019.

Purpose/Thesis: Investigate the feasibility of a novel digital platform for remote

data collection of multiple symptoms including digital speech characteristics to ex-

plore the impact of the devices on patients’ everyday life.

Data Collection: 25 patients with ALS in an observational clinical trial setting.
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Methodology: Patients attended a clinical site visit every 3 months to perform

activity reference tasks while wearing a sensor, to conduct digital speech tests and

for conventional ALS monitoring. In addition, patients wore the sensor in their daily

life for approximately 3 days every month for the duration of the study.

Outcomes: The platform can measure physical activity in patients with ALS in their

home environment; patients used the equipment successfully, and it was generally well

tolerated. Good-quality in-clinic speech data were successfully captured for analysis

at home.

Citation: Gutz et al [15], 2019.

Purpose/Thesis: Machine learning approach to detect ALS prior to the onset of

overt speech symptoms.

Data Collection: 123 participants who were stratified by sex and into three groups:

healthy controls, ALS symptomatic, and ALS presymptomatic.

Methodology: They compared models trained on three group pairs (symptomatic-

control, presymptomatic-control, and all ALS-control participants). Using acoustic

features obtained with the OpenSMILE ComParE13 configuration, they tested several

feature filtering techniques. machine learning classification was achieved using an

SVM model and leave-one-out cross-validation.

Outcomes: The most successful model, which was trained on symptomatic-control

data, yielded an Area Under the Curve (AUC)=0.99 for females and AUC=0.91

for males. Models trained on all ALS-control participants had high diagnostic ac-

curacy for classifying symptomatic and presymptomatic ALS participants (females:

AUC=0.85; males: AUC=0.91).

Citation: Vashkevich et al [16], 2019.

Purpose/Thesis: Verify the suitability of the sustain vowel phonation test for au-

tomatic detection of patients with ALS

Data Collection: 15 ALS patients with signs of bulbar dysfunction and 39 healthy

speakers.

Methodology: They developed a procedure for separation of voice signal into fun-

damental periods for calculation of perturbation measurements.
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Outcomes: Linear discriminant analysis (LDA) attained 90.7% Accuracy with 86.7%

Sensitivity and 92.2% Specificity.

Citation: Wang et al [17], 2018.

Purpose/Thesis: This research aimed to automatically predict intelligible speaking

rate for individuals with ALS based on speech acoustic and articulatory samples.

Data Collection: 12 participants with ALS and 2 control subjects produced a total

of 1831 phrases.

Methodology: Northern Digital Inc.(NDI) Wave system was used to collect tongue

and lip movement and acoustic data synchronously. A machine-learning algorithm

(i.e. SVM) was used to predict intelligible speaking rate (speech intelligibility · speak-

ing rate) from acoustic and articulatory features of the recorded samples.

Outcomes: The results revealed that the proposed analyses predicted the intelligible

speaking rate of the participant with reasonably high accuracy by extracting the

acoustic and/or articulatory features from one short speech sample.

Citation: Norel et al [18], 2018.

Purpose/Thesis: Identification of acoustic speech features in naturalistic contexts

which characterize disease progression and development of machine models which can

recognize the presence and severity of the disease.

Data Collection: Prize4Life Israel dataset. The dataset was generated using the

ALS Mobile Analyzer.

Methodology: The subjects were evaluated subjects using a variety of frequency,

spectral, and voice quality features.

Outcomes: Classification via leave-five-subjects-out cross-validation resulted in an

Accuracy of 79% (61% chance) for males and 83% (52% chance) for females.

Citation: An et al [19], 2018.

Purpose/Thesis: Explore the feasibility of automatic detection of patients with

ALS at an early stage from highly intelligible speech

Data Collection: 13 newly diagnosed patients with ALS and 13 age and gender-

matched healthy controls.
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Methodology: Convolutional Neural Networks (CNNs), including time-domain

CNN and frequency domain CNN, were used to classify the intelligible speech pro-

duced by patients with ALS and those by healthy individuals.

Outcomes: The best result was obtained by frequency-CNN (76.9% Sensitivity and

92.3% Specificity). Results demonstrated the possibility of early detection of ALS

from intelligible speech signals.

Citation: Spangler et al [20], 2017.

Purpose/Thesis: Fully automated approach of detecting dysarthria in ALS pa-

tients.

Data Collection: 49 ALS patients and 34 healthy speakers.

Methodology: The proposed method used novel features based on fractal analysis.

Acoustic and associated articulatory recordings of a standard speech diagnostic task,

the diadochokinetic test (DDK), were used for classification.

Outcomes: Overall results obtained 90.2% accuracy with 94.2% sensitivity and

85.1% specificity.

Citation: Shellikeri et al [21], 2016.

Purpose/Thesis: Identify the effects of ALS on tongue and jaw control, both cross-

sectionally and longitudinally. The data were examined in the context of their utility

as a diagnostic marker of bulbar disease.

Data Collection: Cross-sectional data: 33 ALS individuals, 13 controls longitudinal

data: 10 ALS individuals.

Methodology: Tongue and jaw movements were recorded using a three-dimensional

electromagnetic articulography system during the production of the sentence Buy

Bobby a puppy. The movements were examined for evidence of changes in size,

speed, and duration and with respect to disease severity and time in the study.
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Outcomes: Maximum speed of tongue movements and movement durations were

significantly different only at an advanced stage of bulbar ALS compared with the

healthy control group. The longitudinal analysis revealed a reduction in tongue move-

ment size and speed with time at early stages of disease, which was not seen cross-

sectionally.

Citation: Horwitz-Martin et al [22], 2016.

Purpose/Thesis: Identify acoustic features that aid in predicting intelligibility loss

and speaking rate decline in individuals with ALS.

Data Collection: Longitudinal data from 123 subjects with ALS.

Methodology: Features were derived from statistics of the first (F1) and second

(F2) formant frequency trajectories and their first and second derivatives.

Outcomes: F2 features, particularly mean F2 speed and a novel feature, mean

F2 acceleration, were most strongly correlated with intelligibility and speaking rate,

respectively.

Citation: Rong et al [23], 2016.

Purpose/Thesis: Determine the mechanisms of speech intelligibility impairment

due to neurologic impairments.

Data Collection: 66 individuals diagnosed with ALS were studied longitudinally.

Methodology: The disease-related changes in articulatory, resonatory, phonatory,

and respiratory subsystems were quantified using multiple instrumental measures.

Outcomes: Declines in maximum performance tasks such as the alternating motion

rate preceded declines in intelligibility, thus serving as early predictors of bulbar

dysfunction.

Citation: Tomik et al [24], 2015.

Purpose/Thesis: Analyze the phonatory function of the larynx in ALS patients.

Data Collection: 17 patients with ALS. Examinations were performed three times

at 6-month intervals.
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Methodology: They were evaluated with subjective perceptual voice assessment

(including the grade, roughness, breathiness, asthenia, strain (GRBAS) scale), video-

laryngostroboscopy including voice range and maximum phonation time (MPT), and

objective acoustic voice analysis evaluation of jitter, shimmer, mean fundamental

frequency, and harmonics-to-noise ratio (HNR)).

Outcomes: Analysis of voice qualities among patients with ALS allows for the detec-

tion of various abnormalities associated with the natural progression of the disease.

Table 1.1: Related work. Machine learning and voice analysis in ALS patients.

Previous voice and speech production studies reveal significant differences in spe-

cific acoustic parameters in ALS patients. Carpenter et al. [25] studied the articu-

latory subsystem of individuals with ALS and found different involvement of articu-

lators, i.e. tongue function was more involved than jaw function. In recent studies,

Shellikeri et al. [21] found that the maximum speed of tongue movements and move-

ment durations were only significantly different at an advanced stage of bulbar ALS

compared with the healthy control group and Connaghan et al. [10] used a smart-

phone app to identify and track speech decline. Lee et al [11], obtained acoustic

patterns of vowels in relation to the severity of dysarthria in ALS patients.

Other works such as [12, 17, 20, 22, 24, 26, 27] demonstrated the efficiency of

features obtained from the phonatory subsystem in detecting early deterioration in

ALS. Studies such as [12, 24, 26] demonstrated significant differences between jitter,

shimmer and HNR in ALS patients. Alternative approaches used formant trajectories

to classify the ALS condition [22], correlating formants with articulatory patterns [27],

fractal jitter [20], MFCCs [13] or combining acoustic and motion-related features [17].

Other related studies such as Frid et al. [28] used speech formants and their ratios to

diagnose neurological disorders. Teixeira et al. [29] and Mekyska et al. [30] suggested

jitter, shimmer and HNR as good parameters to be used in intelligent diagnosis

systems for dysphonia pathologies.

Besides that, time-frequency representations (TFR) are broadly applied to the

detection of several conditions [31, 32, 33, 34] and was recently used to detect patho-
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logical changes in the voice signals [35]. TFR enables the evolution of the periodicity

and frequency components with time to be observed, allowing the analysis of non-

stationary signals, such as voice signals [36]. Quasi-periodic waveform analysis has

been applied in several clinical applications such as heartbeat detection, cardiopul-

monary modeling and intrinsic brain activity detection [37, 38]. Garcia-Gancedo et al.

[14] demonstrated the feasibility of a novel digital platform for remote data collection

of digital speech characteristics among others parameters from ALS patients.

Concerning machine learning, classification models are widely used to test the

performance of acoustic parameters in the analysis of pathological voices. R. Norel

et al. [18] identified acoustic speech features in naturalistic contexts and machine-

learning models developed for recognizing the presence and severity of ALS using a

variety of frequency, spectral, and voice quality features. Wang et al. [17] explored the

classification of the ALS condition using the same features with SVM and neuronal

networks (NNs) classifiers. Rong et al. [23] used SVM with two feature selection

techniques (decision tree and gradient boosting) to predict the intelligible speaking

rate from speech acoustic and articulatory samples. Suhas et al. [13] implemented

SVM and DNNs for automatic classification by using MFCCs. An et al. [19] used

CNNs to classify the intelligible speech produced by patients with ALS compared with

healthy individuals. Gutz et al. [15] merged SVM and feature filtering techniques

(SelectKBest). In addition, Vashkevich et. al [16] used LDA to verify the suitability

of the sustain vowel phonation test for automatic detection of patients with ALS.

1.2.2 Related work in machine learning and cough analysis

in COVID-19.

Dry cough sound analysis has proven successful in diagnosing respiratory conditions

like pertussis [8], asthma, and pneumonia [9].

Cough detection is an active research area in which several researchers have pro-

posed methods for identifying cough sounds from audio recordings [8]. Martinek et

al. [6] reported good results distinguishing between voluntary cough sound and speech.
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However, their method was subject-dependent. They argued that cough sound would

have a higher degree of irregularity compared with speech. They computed the sam-

ple entropy [39]. This is a measure of the irregularity and unpredictability of the

signal. Therefore, it is higher for noisy signals compared to periodic oscillations.

Barry et al. [40] used digital signal processing to calculate characteristic spectral

coefficients of sound events, which are then classified into cough and non-cough events

by the use of a probabilistic neural network (PNN). Such parameters as the total

number of coughs and cough frequency as a function of time were obtained from the

results of the audio processing.

Swarnkar et al. [41] used other spectral features such as formant frequencies, kur-

tosis, and B-score together with MFCCsfeatures for cough detection. These were fed

into a neural network. Matos et al. [42] used thirteen MFCCs which were classified

using a Hidden Markov Model (HMM). Liu et al. [43] proposed a feature extraction

method called Gammatone Cepstral Coefficient (GMCC) with SVM classification.

They showed that together GMCC and MFCC surpassed MFCC used alone. Lucio

et al. [44] extracted 79 MFCC and Fast Fourier Transform (FFT) coefficients and

used k-Nearest Neighbor (kNN) for classification.

Several algorithms for automatic cough classification have been published to iden-

tify various cough types. Chatrzarrin et al. [7] studied the different phases of dry and

wet coughs and found the second phase of dry coughs to have lower energy compared

to wet coughs. They also noted that, during this phase, most of the signal power

is contained between 0-750 Hz in the case of wet coughs and 1500-2250 Hz in the

case of dry coughs. Using a simple thresholding method, they successfully identified

14 wet and dry coughs with 100% Accuracy. Swarnkar et al. [41] used a Logistic

Regression (LR) to discriminate between dry and wet coughs from pediatric patients

with different respiratory illnesses. B–score, non-Gaussianity, formant frequencies,

kurtosis, zero crossing rate and MFCCs were used as features. Kosasih et al. [45]

used MFCCs, non–Gaussianity index and wavelet features with a LR classifier to dif-

ferentiate between pneumonia and non–pneumonia cough sounds. Parker et al. [46]

used 13 MFCCs features and the energy level to detect pertussis cough from sounds
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available on the Internet. NNs, random forest (RF) and kNN classifiers were used.

Various studies have begun to work on the design of machine-learning tools to

detect COVID-19 cough [47, 48, 49, 50, 51, 52, 53, 54, 55] as complementary pre-

screening method (see Table 1.2).

Citation: Feng et al [55], 2021

Purpose/Thesis: Developping a method for the automatic diagnosis of COVID-19

by detecting cough during recorded conversations.

Data Collection: They used Coswara [56] and Virufy [57] datasets.

Methodology: Their method was composed of five modules: sound extraction,

sound feature extraction, cough detection, cough classification, and COVID-19 diag-

nosis. The method extracted relevant features from the audio signal and then used

machine-learning and deep learning models to make the prediction.

Outcomes: Overall Accuracies of 81.25% (AUC of 0.79) were obtained.

Citation: Pahar et al [51], 2021

Purpose/Thesis: Machine learning based COVID-19 cough classifier which can

discriminate COVID-19 positive coughs from both COVID-19 negative and healthy

coughs recorded on a smartphone.

Data Collection: They used the publicly available Coswara dataset [56]

Methodology: Dataset skew was addressed by applying the synthetic minority over-

sampling technique (SMOTE). A leave-p-out cross-validation scheme was used to

train and evaluate seven machine-learning classifiers: LR, kNN, SVM, multilayer

perceptron (MLP), CNNs, long short-term memory (LSTM) and a residual-based

neural network architecture (Resnet50)

Outcomes: Resnet50 classifier was best able to discriminate between the COVID-19

positive and the healthy coughs with an AUC of 0.98. An LSTM classifier was best

able to discriminate between the COVID-19 positive and COVID-19 negative coughs,

with an AUC of 0.94 after selecting the best 13 features from a sequential forward

selection (SFS).

Citation: Vrindavanam et al [53], 2021
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Purpose/Thesis: Contactless detection of COVID-19 patients by analyzing their

respective cough audio samples.

Data Collection: 86 cough audios, sampled at 44 kHz out of which 54 COVID-19

positive cough audio samples and 32 healthy individuals cough audio samples.

Methodology: 65 features were extracted using librosa [58] and implemented three

machine-learning classifiers consisted of LR, SVM and RF.

Outcomes: RF obtained the best Accuracy (83.9%) with a Sensitivity of 81.2% and

a Precision of 76.9%.

Citation: Laguarta et al [47], 2020

Purpose/Thesis: They hypothesized that COVID-19 subjects, especially including

asymptomatics, could be accurately discriminated only from a forced-cough cell phone

recording using Artificial Intelligence.

Data Collection: They built a data collection pipeline of COVID-19 cough record-

ings through a website (opensigma.mit.edu) between April and May 2020 and created

an audio COVID-19 cough dataset with 5,320 subjects.

Methodology: MFCCs of coughs were inputted into a CNN made up of one Poisson

biomarker layer and 3 pre-trained ResNet50’s in parallel. Transfer learning was used

to learn biomarker features on larger datasets.

Outcomes: When validated with subjects diagnosed using an official test, the model

achieves COVID-19 Sensitivity of 98.5% with a Specificity of 94.2% (AUC: 0.97). For

asymptomatic subjects it achieves Sensitivity of 100% with a Specificity of 83.2%

Citation: Brown et al [52], 2020

Purpose/Thesis: Data analysis over a large-scale crowdsourced dataset of respira-

tory sounds collected to aid diagnosis of COVID-19.

Data Collection: 141 cough and breathing samples from COVID-19 patients. 298

non-COVID-19 samples. 32 non-COVID-19 samples from subjects who presented

cough as a symptom.
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Methodology: Handcrafted features were extracted covering frequency-based, struc-

tural, statistical and temporal attributes. Features were also obtained though transfer

learning from VGGish. They tested the performance of LR, Gradient Boosting Trees

(GBTs) and SVM classifiers.

Outcomes: The preliminary results of the models achieved an AUC of above 80%.

Citation: Imram et al [50], 2020

Purpose/Thesis: Develop and test an Artificial Intelligence-powered screening so-

lution for COVID-19 infection to be deployable via a smartphone app.

Data Collection: 96 bronchitis cough samples; 130 pertussis cough samples; 70

COVID-19 cough samples; and 247 normal cough samples.

Methodology: They investigated the distinctness of alterations in the respiratory

system induced by COVID-19 infection when compared to other respiratory infec-

tions. They exploited transfer learning and classical machine-learning approaches.

Outcomes: Overall, the models used achieved 90% of Accuracy.

Table 1.2: Related work. Machine-learning tools to detect COVID-19 cough.

These are based on the analysis of the sound of voices, and the sounds we make

when we breath or cough and which change when our respiratory system is af-

fected. These changes range from coarse, clearly audible changes, to minute changes

(called micro signatures) that are inaudible to the untrained listener, but nevertheless

present [48]. These works have been performed in own datasets and no idenfication of

the main features has been performed. We are also interested in the automatic identi-

fication of COVID-19 cough from any raw audio recording. Overall, finding a general

method and the main cough features from audio records for diagnosing COVID-19 is a

challenge. The difficulty is to find good machine-learning features. Some works in the

literature, as we have mentioned before, advocate some features, but in the particular

case of COVID-19, it remains to be seen which properties, brands, signs (that is, fea-

tures) are those that uniquely identify COVID-19. So, the big challenge is to identify

the best features that discriminate the COVID-19 cough. In addition, we want to
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find the group of features with better performance for each type of experiment, as for

example, comparing COVID-19 and pertussis coughs.

1.3 Objectives and contributions

1.3.1 Objectives and contributions for the automatic identi-

fication of bulbar involvement in ALS patients

Three different studies have been conducted.

In the first study, we suggested that the acoustic parameters obtained through

automated signal analysis from a steady portion of sustained vowels may be used

efficiently as predictors for early detection of bulbar involvement in ALS patients.

The study focused on the extraction of features from the phonatory subsystem: jitter,

shimmer, HNR and pitch, from the utterance of each Spanish vowel. The features

chosen for analysis were selected to provide information regarding changes in the vocal

signal believed to reflect physiologic changes of the vocal folds. For that purpose, the

main objectives (and contributions) of this research were:

1. To design a methodology for diagnosing bulbar involvement efficiently through

the acoustic parameters of uttered vowels in Spanish.

2. To demonstrate the better performance of automated diagnosis of bulbar in-

volvement compared with human diagnosis.

In a second study, we used TFR to obtain additional features. Starting from

our previous study [59], we used the phonatory subsystem features obtained in the

previous work and added time-frequency features to improve the performance of the

classification models for early detection of bulbar involvement in ALS. To that end,

the main objectives (and contributions) of this research were:

1. To design a new methodology for automatic detection of bulbar involvement in

males and females based on phonatory subsystem and time-frequency features;
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2. To obtain a set of statistically significant features for diagnosing bulbar involve-

ment efficiently.

3. To analyze the performance of the most common supervised classification mod-

els to improve the bulbar involvement diagnosis.

Alternatively, in the third study, we conjectured that the diagnosis of ALS patients

with bulbar dysfunction would greatly benefit from the creation of a voice fingerprint

able to detect bulbar dysfunction in ALS before the first symptoms can be detected

by the human hearing. This could be effectively done by means of the analysis of

a pattern generated from the quasi-periodic waveform produced by the vocal folds

when a vowel is elicited. Furthermore, performance could increase by correcting the

bias as well as enlarging the corpus upsampling it [60], and relabeling bulbar and

non-bulbar ALS patients by using semi-supervised classifiers, as was pointed out in

[61, 62].

Our objective (and contribution) of this study was creating a machine-learning

model obtained by applying supervised and unsupervised classifiers and upsampling

to improve the corpus for diagnosing bulbar dysfunction by the creation of a voice

fingerprint consisting of a pattern generated from the quasi-periodic components of

a steady portion of the five Spanish vowels, and the five principal and independent

components of this pattern. This model should be behaving properly with small and

usually, badly annotated corpus, the kind of corpus associated to rare diseases (i.e.

ALS with bulbar involvement).

1.3.2 Objectives and contributions for the automatic identi-

fication of COVID-19 cough

The goal was to develop a pre-screening method that could lead to automated iden-

tification of COVID-19 through the analysis of cough TFR with similar performance

presented in [47, 48, 49, 50, 51, 52, 53, 54, 55]. TFR permit the evolution of the

periodicity and frequency components over time to be observed, allowing the anal-

ysis of non-stationary signals. Moreover, this representation, which maintains the
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time dependence of signal features, gives the possibility of introducing more related

features than traditional analysis. This way, we go a step further by finding the set

of time-frequency features that could allow COVID-19 coughs to be distinguished

from other cough patterns and validate it as a more generic proposal by applying our

method to various datasets from different sources.

Prior to performing the TFR analysis, the YAMNet [63] deep neuronal network

was used for the automatic identification of cough sounds in raw audio files. Then, a

TFR analysis of a Choi-Williams distribution (CWD) was carried out in the cough-

samples automatically identified to obtain discriminatory features for an automated

diagnosis of COVID-19. 39 features were extracted and the sets which showed better

performance at discriminating COVID-19 cough were selected. For that purpose, the

main objectives (and contributions) of this research were:

1. To design a free, quick and efficient methodology for the automatic detection of

COVID-19 in raw audio files based on the time-frequency analysis of the cough.

2. To obtain the time-frequency discriminatory features leading to automated iden-

tification of COVID-19.

3. To find an optimal supervised machine-learning algorithm to diagnose COVID-

19 from the cough features found.

1.4 Bio-sounds Analysis

Different sounds exist in Spanish language (namely vocalic, diphthongs, occlusives,

fricatives, affricates and sonorants). Sounds are different from each other depending

on their geometry, physical, articulatory and acoustic characteristics. Vowels are

generated by the vibration of the vocal cords (also known as vocal folds) in the

glottic area. During their production, articulatory and larynx regions are involved.

The flow of air from the lungs crosses the supraglottic cavities and passes through

the mouth, which functions as a resonance chamber, with minimal obstruction and

without audible friction. Acoustically, vowel sounds are made up of a complex periodic

32



waveform, whose profile is recurrent at regular time intervals. This periodic waveform

experiences the phenomenon of resonance when it crosses the supraglottic cavities and

some of its harmonics are amplified.

Table 1.3 summarizes the geometry, physical, articulatory and acoustic character-

istics and acoustic analysis associated to vocalic sounds.

Sounds/

Geometry

Articula-

tory Char-

acteristics

Acoustic Characteristics Acoustic Analysis

a[-

consonant]

[+sonorant]

[dorsal]AR:

[+low]

[+retracted]

[+voicing]LR

[+continuous]

LOW and

CENTRAL

palatal

vowel. The

tongue is

located in

the lower

part of the

oral cavity.

Complex periodic sound

wave. Recurrent profile

at regular time intervals.

Amplification of some of

its HARMONICS when

it crosses the supraglottic

cavities (RESONANCE).

F1 and F2 are very close,

but they differ significantly

from those the back vow-

els because they are in

higher frequencies range in

the spectrum (MEDIUM

VOWEL). Mean values of

F1 (753 Hz) and F2 (1260

Hz).

Fundamental frequency (F0): Vi-

bration frequency of the vocal

folds. Variations of F0 may in-

dicate changes in the opening of

the glottis and modifications in the

rigidity of the mucosa of the vocal

folds. Oral opening: the more open

the vowel, the higher the frequency

of F1. Tongue position: Posterior

position for vowel a. The more

anterior the vowel articulation the

higher F2.
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e

[-consonant]

[+sonorant]

[dorsal]AR:

[-high] and

[-low]

[-retracted]

[+voicing]LR

[+continuous]

MEDIUM

and AN-

TERIOR

palatal

vowel. The

tongue ap-

proaches

the anterior

part of the

palate and,

therefore,

the reso-

nance cavity

is small.

Complex periodic sound

wave. Amplification of some

of its HARMONICS when

it crosses the supraglottic

cavities (RESONANCE).

High F2 values and very

different from F1 (HIGH-

PITCHED). Mean values

of F1 (465 Hz) and F2

(1780 Hz). Anterior vowels

are high-pitched. They

are clearly different from

posteriors and low-pitched

vowels.

Fundamental frequency (F0): Vi-

bration frequency of the vocal

folds. Variations of F0 may in-

dicate changes in the opening of

the glottis and modifications in the

rigidity of the mucosa of the vo-

cal folds. Oral opening: the more

open the vowel, the higher the fre-

quency of F1. Tongue position:

Approaches the front of the palate.

The more anterior the vowel artic-

ulation the higher F2.

i

[-consonant]

[+sonorant]

[dorsal]AR:

[+high]

[-retracted]

[+voicing]LR

[+continuous]

HIGH and

ANTERIOR

(PALATAL)

Vowel. The

tongue,

higher than

in vowel

e pronun-

ciation,

approaches

the anterior

part of the

palate.

Complex periodic sound

wave. Amplification of some

of its HARMONICS when

it crosses the supraglottic

cavities (RESONANCE).

High F2 values and very

different from F1 (HIGH-

PITCHED). Mean values

of F1 (298 Hz) and F2

(2188 Hz). Anterior vowels

are high-pitched. They

are clearly different from

posteriors and low-pitched

vowels.

Fundamental frequency (F0): Vi-

bration frequency of the vocal

folds. Variations of F0 may in-

dicate changes in the opening of

the glottis and modifications in the

rigidity of the mucosa of the vo-

cal folds. Oral opening: the more

open the vowel, the higher the fre-

quency of F1. Tongue position:

Approaches the anterior part of the

palate higher than in e. The more

anterior the vowel articulation the

higher F2.
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o

[-consonant]

[+sonorant]

[labial]AR:

[+rounded]

[dorsal]AR:

[-high] and

[-low] [+re-

tracted]

[+voicing]LR

[+continuous]

MEDIUM

and BACK

velar Vowel.

The tongue

approaches

the palate in

the posterior

area of the

oral cavity.

A wide and

long reso-

nance cavity

is configured

with a severe

timbre.

Complex periodic sound

wave. Amplification of some

of its HARMONICS when

it crosses the supraglottic

cavities (RESONANCE). F1

and F2 are very close and

they are in low frequencies

range in the spectrum (LOW

- PITCHED). Mean values

of F1 (455 Hz) and F2

(910 Hz). Back vowels are

low-pitched

Fundamental frequency (F0): Vi-

bration frequency of the vocal

folds. Variations of F0 may in-

dicate changes in the opening of

the glottis and modifications in the

rigidity of the mucosa of the vocal

folds. Oral opening: the more open

the vowel, the higher the frequency

of F1. Tongue position: Back of

the palate. The more anterior the

vowel articulation the higher F2.

Tone: Differences in tonality may

indicate changes in the structure

and tissues of the tongue and the

anterior part of the palate.

u

[-consonant]

[+sonorant]

[labial]AR:

[+rounded]

[dorsal]AR:

[+low]

[+retracted]

[+voiced]LR

[+continuous]

HIGH and

BACK (VE-

LAR) Vowel.

The tongue

approaches

the palate

in the back

area of the

oral cavity

higher than

the o vowel

with a severe

timbre.

Complex periodic sound

wave. Amplification of some

of its HARMONICS when

it crosses the supraglottic

cavities (RESONANCE). F1

y F2 are very close. They

are in low frecuency range

in the spectrum (LOW-

PITCHED). Mean values of

F1 (283 Hz) y F2 (865 Hz)

Fundamental frequency (F0): Vi-

bration frequency of the vocal

folds. Variations of F0 may in-

dicate changes in the opening of

the glottis and modifications in the

rigidity of the mucosa of the vo-

cal folds. Oral opening: the more

open the vowel, the higher the fre-

quency of F1. Tongue position:

Back of the palate and elevated.

The more anterior the vowel artic-

ulation the higher F2. Tone: Dif-

ferences in tonality may indicate

changes in the structure and tissues

of the tongue and the anterior part

of the palate.

Table 1.3: Main properties of the Spanish vowels.

Different studies such as [22, 23, 64] based on features obtained from the funda-

mental frequency of the vibration of the vocal folds suggested that these features may
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be well suited for an early detection of bulbar involvement in ALS.

Based on that, in this work, steady portions of the five Spanish vowels were

selected for analysis to provide information regarding changes in the vocal signal

which reflected physiologic changes of the vocal folds.

Features obtained from voice utterance are strongly dependant from the native

language of the speakers. To achieve accurately analysis is necessary to compare these

features from native speakers.

Other sounds like cough or breathing are not related with the native language of

the subjects. Concretely, the acoustic characteristics of coughs are more dependant

on how the respiratory system is affected.

Summarizing, in this work, to detect bulbar involvement in ALS patients, three

different types of analysis on the Spanish vowels were performed. These were: Phona-

tory subsystem analysis, Time-Frequency and Pattern analysis. Indeed, COVID-19

coughs were detected by means of Time-Frequency analysis. In this case, no distinc-

tion between languages was performed.

1.4.1 Phonatory subsystem

Jitter, shimmer, HNR and pitch are voice features from the phonatory subsystem

which can be obtained from sounds. In our case, as was explained above, from the

Spanish vowels.

Jitter is defined as the periodic variation from cycle to cycle of the fundamental

period. Patients with lack of control of the vibration of the vocal folds tend to have

higher values of jitter. Some variations of the basic Jitter feature have been computed.

These were: Jitter(absolute), Jitter(relative), Jitter(rap) and Jitter(ppq5). Their

definitions and the formulas used to obtain them are shown below.

Jitter(absolute) is the cycle-to-cycle variation of fundamental period, i.e. the

average absolute difference between consecutive periods (eq. 1.1).

Jitter(absolute) =
1

N − 1

N−1∑

i=1

|Ti − Ti−1|, (1.1)
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where Ti is the duration of the ith cycle and N is the total number of cycles.

Jitter(relative) is the average absolute difference between consecutive periods,

divided by the average period. It is expressed as a percentage (eq. 1.2).

Jitter(relative) =
1

N−1

∑N−1
i=1 |Ti − Ti−1|
1
N

∑N
i=1 Ti

× 100 (1.2)

Jitter(rap) is defined as the relative average perturbation, the average absolute

difference between a period and the average of this and its two neighbors, divided by

the average period (eq. 1.3).

Jitter(rap) =
1

N−1

∑N−1
i=1 |Ti − 1

3

∑i+1
n=i−1 Tn|

1
N

∑N
i=1 Ti

× 100 (1.3)

Jitter(ppq5) is the five-point period perturbation quotient, computed as the

average absolute difference between a period and the average of this and its four

closest neighbors, divided by the average period (eq. 1.4).

Jitter(ppq5) =
1

N−1

∑N−2
i=2 |Ti − 1

5

∑i+2
n=i−2 Tn|

1
N

∑N
i=1 Ti

× 100 (1.4)

Shimmer is defined as the fluctuation of the waveform amplitudes of consecutive

cycles of the fundamental period. A reduction of glottal resistance causes a vari-

ation in the magnitude of the glottal period correlated with breathiness and noise

emission, causing an increase in shimmer. Some variations of the basic Shimmer

feature have been computed. These were: Shimmer(dB), Shimmer(relative), Shim-

mer(apq3), Shimmer(apq5), and Shimmer(apq11). Their definitions and the formulas

used to obtain them are shown below.

Shimmer(dB) is expressed as the variability of the peak-to-peak amplitude,

defined as the difference between the maximum positive and the maximum negative

amplitude of each period, in decibels, i.e. the average absolute base-10 logarithm

of the difference between the amplitudes of consecutive periods, multiplied by 20

(eq. 1.5).
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Shimmer(dB) =
1

N − 1

N−1∑

i=1

|20 × log(
Ai+1

Ai

)|, (1.5)

where Ai is the extracted peak-to-peak amplitude data and N is the number of

extracted fundamental periods.

Shimmer(relative) is defined as the average absolute difference between the

amplitudes of consecutive periods, divided by the average amplitude, expressed as a

percentage (eq. 1.6).

Shimmer(relative) =
1

N−1

∑N−1
i=1 |Ai − Ai+1|
1
N

∑N
i=1Ai

× 100 (1.6)

Shimmer(apq3) is the three-point amplitude perturbation quotient. This is the

average absolute difference between the amplitude of a period and the average of the

amplitudes of its neighbors, divided by the average amplitude (eq. 1.7).

Shimmer(apq3) =
1

N−1

∑N−1
i=1 |Ai − ( 13

∑i+1
n=i−1 An)|

1
N

∑N
i=1 Ai

× 100 (1.7)

Shimmer(apq5) is defined as the five-point amplitude perturbation quotient, or

the average absolute difference between the amplitude of a period and the average of

the amplitudes of this and its four closest neighbors, divided by the average amplitude

(eq. 1.8).

Shimmer(apq5) =
1

N−1

∑N−2
i=2 |Ai − ( 15

∑i+2
n=i−2 An|

1
N

∑N
i=1 Ai

× 100 (1.8)

Shimmer(apq11) is expressed as the eleven-point amplitude perturbation quo-

tient, the average absolute difference between the amplitude of a period and the

average of the amplitudes of this and its ten closest neighbors, divided by the average

amplitude (eq. 1.9).

Shimmer(apq11) =
1

N−1

∑N−5
i=5 |Ai − ( 1

11

∑i+5
n=i−5 An)|

1
N

∑N
i=1 Ai

× 100 (1.9)

HNR is defined as the ratio between periodic and non-periodic components of a

speech sound. The HNR provides an indication of the overall periodicity of the voice
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signal by quantifying the ratio between the periodic (harmonic part) and aperiodic

(noise) components (see eq. 1.10):

HNR = 10 × log10
r(t = τ)

1 − r(t = τ)
, (1.10)

where r(t) is the normalized auto-correlation function, r(t = τ) is the second local

maximum of the normalized auto-correlation and τ is the period of the signal.

The pitch is the frequency at which vocal chords vibrate in voiced sounds as vow-

els. It can be computed by means of the auto-correlation method implemented in [65].

From pitch, some features as mean pitch(mean), standard deviation pitch(SD),

minimum pitch(min) and maximum pitch(max) can be obtained. See [65] for

details.

1.4.2 Time-Frequency representation

Time-frequency representation (TFR), broadly applied to detecting several malfunc-

tion conditions [31, 32, 33, 34], has been recently used to detect pathological changes

in voice signals [35]. TFR enables the evolution of the periodicity and frequency

components to be observed over time, allowing the analysis of non-stationary signals,

such as voice signals [36]. The spectrogram is the most common TFR for the analysis

of audio signals. This representation corresponds to Cohen’s class of time-frequency

energy distributions. The depiction of a spectrogram is not optimal in terms of reso-

lution quality. In general, the Cohen-class representations provide greater resolution

quality. They are all made by smoothing the Wigner distribution, which has the

finest resolution but the most detrimental interference. The smoothing functions

chosen strike a balance between resolution quality and the elimination of detrimental

interference terms.

The Wigner distribution (WD) has been used in different fields and applied to

the study of time-varying and strongly non-stationary systems. Since the energy is a

quadratic representation of the signal, the quadratic structure of the TFR is intuitive

and reasonably accepted when the TFR is interpreted as an energy distribution in
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time and frequency [66]. From all TFRs that represent energy, the WD satisfies many

desired mathematical properties. For example, the WD is always real, symmetrical

with respect to the time and frequency axes, satisfying the marginal properties and

the instantaneous frequency. Furthermore, the group delay may be obtained. Eq. 1.11

represents the WD of the signal x(t).

WD(t, f) =

∫
x(t + τ/2)x∗(t− τ/2)e−j2πfτdτ, (1.11)

where t and f represent time and frequency respectively, and x∗(t) is the conjugate

of x(t).

Basically, the WD of a real signal x(t) is calculated in a similar way to a convolu-

tion. At each particular time, the signal is overlapped by itself and inverted on the

time axis, and multiplied by itself. Finally, the Fourier transform of this product is

carried out. Note that neither will the WD be necessarily zero when x(t) nor would

the WD necessarily be zero at frequencies that do not exist in the spectrum. Evidence

of this phenomenon has been called interference terms and cross-terms. The interfer-

ence terms are undesired since they make it difficult to obtain a clear and intuitive

spectrum of the signal, as two energy regions perfectly delimited are expected to be

obtained.

The possibility of using the WD as a representation of the signal spectral den-

sity at each particular time induces the generation of another distribution from the

WD to minimise these interference terms while simultaneously maintaining certain

properties. To achieve this, the convolution of the WD can be calculated with

the Choi–Williams exponential function h(t,f) [67] (Eq. 1.12). By convolving the

Wigner distribution with the Choi–Williams exponential, the Choi–Williams distri-

bution (CWD) is obtained (Eq. 1.13).

h(t, f) =

√
4π

σc

e−4π2 (tf)2

σc , (1.12)

where σc is a scaling factor.
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CWD(t, f) =

∫∫
h(t− t′, f − f ′)WD(t′, f ′) dt′ df ′ (1.13)

CWD preserves the properties of WD [33, 67], such as the marginal properties

and instantaneous frequency. Moreover, it is able to reduce the WD interference

by estimating an adequate σc parameter. So, the CWD is a new function of the

time–frequency distribution that allows the interference terms to be minimised.

Then, in order to obtain statistical parameters, the density function CWD(f, t)

can be normalized to have an area equal to 1. So, it can be associated with a

joint probability density function CWDN(f, t) of the time and frequency variables.

Their marginal distributions, which do not contain the interference, still represent,

although in a normalised manner, the instantaneous power (Eq. 1.14) and spectral

density energy (Eq. 1.15) of the original signal.

mt(t) =

∫ ∞

−∞
CWDN(f, t)df = |x(t)|2 (1.14)

mf (f) =

∫ ∞

−∞
CWDN(f, t)dt = |X(f)|2 (1.15)

Therefore, the group delay (Eq. 1.16) and the mean frequency of the spectrum

(Eq. 1.17) can be defined as:

tg =

∫∫
tCWDN(t, f) dt df (1.16)

fm =

∫∫
fCWDN(t, f) dt df (1.17)

The joint time-frequency moments of a non-stationary signal comprise a set of

time-varying parameters that characterise the signal spectrum as it evolves over time.

They are related to the conditional temporal moments and the joint time-frequency

moments. The joint time-frequency moment is an integral function of frequency, given

time, and marginal distribution. The conditional temporal moment is an integral

function of time, given frequency, and marginal distribution. The calculation of the
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joint time-frequency moment tnfm (Eq. 1.18) is a double integral through time and

frequency [68].

⟨tnfm⟩ =

∫∫
(t− tg)

n(f − fm)mCWDN(t, f) dt df (1.18)

where n and m are the frequency and time moment orders.

The moments of the marginal density functions, that define the relationship be-

tween mt(t) and mf (f), ⟨mt(t)
nmf (f)m⟩, are given in Eq. 1.19.

⟨mt(t)
nmf (f)

m⟩ = 1

std(mt(t)n)std(mf (f)m)

∫∫
(mt(t)−mt(t)))

n(mf (f)−mf (f))
mdt df (1.19)

CWD minimises the interference. However, negative values still remain. To solve

this issue, the CWD can be reformulated as the product of its marginal distributions.

Therefore, the joint probability density distribution pD (Eq. 1.20) is obtained. This

procedure is only possible if the marginal distributions of the CWD are statistically

independent.

pD(f, t) = mf (f) ·mt(t) (1.20)

Fig. 1-1(a) corresponds to the WD of a cough sample. It shows how the interfer-

ence terms of the WD make it difficult to obtain a clear and intuitive spectrum of the

signal. The new function pD(f, t) (Fig. 1-1(c)) is equal to WD without interference

(CWD, Fig. 1-1(b))) and negative values.

Fig. 1-2(a) corresponds to a sample of the WD of vowel “a”. Fig. 1-2(b)) and

Fig. 1-2(c) represent its CWD and pD distributions respectively.

1.4.3 Pattern analysis

Quasi-periodic waveform analysis has been applied to several clinical applications

such as heartbeat detection, cardiopulmonary modeling and intrinsic brain activity

detection [37, 38]. Quasi-periodic waveform are produced by the vocal folds when a

vowel is elicited. We conjectured that the diagnosis of some conditions such as bulbar
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Figure 1-1: Time-frequency representations of a cough sample.

(a) WD. (b) CWD.

(c) pD.

involvement in ALS patients could be greatly benefit from the creation of a voice

fingerprint based on the pattern analysis of these quasi-periodic components.

A pattern generator can be developed to obtain a pattern sequence of the quasi-

periodic components of the fundamental frequency of a vowel signal x(n). This process

consist of 3 steps:

Step 1. Detrending Method

The baseline wandering of x(n), which is a low-frequency artefact present in signal

recordings, can be removed by implementing a detrending method. To obtain the

trend, a six-order low-pass butterworth filter [69] can be applied twice (forward and
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Figure 1-2: Time-frequency depictions of vowel a for the same patient.

(a) WD. (b) CWD.

(c) pD.

backward) to x(n) [70, 71]. The combined filter has zero phase distortion, a filter

transfer function equal to the squared magnitude of the implemented butterworth

filter transfer function, and a filter order that is double the order of the butterworth

filter. Then, the detrending signal xd(n) is obtained by removing the trend from x(n).

Fig. 1-3a shows x(n) and the trend of x(n) and Fig. 1-3b shows x(n) and xd(n).

Step 2. Marking the quasi-periodic components of x(n)

The spectral density |Xd(f)|2 of xd(n) (Fig. 1-4) can be obtained by means of the

discrete Fourier transform (DFT) implementing the fast Fourier transform (FFT)

algorithm. To identify the quasi-periods, the peaks of the spectral density can be
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Figure 1-3: Detrending method: Removing the trend from x(n).

(a) Obtaining the trend of x(n) (b) x(n) and xd(n)

used. To avoid noise, the three higher peaks can be selected. Finally, the quasi-

period of xd(n) can be defined as the lower spectral component of these three peaks

(fr). The number of samples of each quasi-period (nrep) can be calculated as the

nearest integer of (fs/fr), being fs the recording sampling rate.

Figure 1-4: The spectral density of xd(n).

The signal envelop, xe(n), can be obtained by computing the cumulative sum of

xd(n) and then calculating the envelope of the analytical signal [72]. Fig. 1-5 shows
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xe(n) and x(n).

Figure 1-5: The signal envelope of x(n).

To detect the starting and ending point of each quasi-period, a quasi-sinusoidal

signal, s(n), synchronised with the period of x(n) can be computed. It can be obtained

by applying a second-order butterworth pass-band filter forward and backward to

xe(n) with a cut-off frequency fc = fs/nrep Hz. From s(n), a quadratic-bipolar

signal, q(n), is generated assigning a constant -A in those samples where s(n) < 0,

and A in those where s(n) > 0. Thus, by differentiating q(n), the zero crossings of

the synchronized signal s(n) are obtained, which represent the beginning and end of

each quasi period of x(n). Fig. 1-6 illustrates this process. Fig. 1-6a shows s(n)

synchronised with the period of x(n), Fig. 1-6b represents x(n), s(n) and q(n) and

Fig. 1-6c depicts the starting and ending points detected of each quasi-period of x(n).

Step 3. Pattern function

The pattern function p(T ) (Fig. 1-7), is obtained as the average of the quasi-periods

of x(n) being T the average of the number of samples of the quasi-period of x(n).

p(T) is compared with x d(n) to improve the boundaries of each quasi-period. The
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Figure 1-6: Detecting the starting and ending point of each quasi-period of x(n).

(a) s(n) synchronised with the period of x(n) (b) x(n), s(n) and q(n)

(c) Starting and ending point of each quasi-period of x(n)
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pattern p(T) was inverted and the resulting signal is convolved with x d(n) to detect

the positions of p(T) in x d(n). The positive values of the resulting signal are taken

and the negative values are set at 0. Each quasi-period detected previously is centered

in the position where the maximums values of the convolution are found. The refined

pattern, p ref(T), is computed as the average of the quasi-periods of x d(n) with their

new boundaries established. Finally, p ref(T) is normalized to 550 samples and then

decimated to 110 samples to obtain patterns, pN(T), with the same length.

Figure 1-7: Pattern function of vowel a.

1.5 Feature selection techniques

Feature selection is the automatic selection of features that are most relevant to a

given predictive modeling problem.
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1.5.1 Multivariate analysis of variance

To select a subset of relevant features for use in the classification model construc-

tion, the multivariate analysis of variance (MANOVA), which uses the covariance

between the features in testing the statistical significance of the mean differences,

was used. This procedure make it possible to contrast the null hypothesis in the

features obtained by means of the bio-sounds analysis. The features that rejected the

null hypothesis were selected for the model construction.

The selection of the subset of relevant features for constructing the classification

models, by using MANOVA, was performed with IBM SPSS Statistics [73].

Table 1.4 shows the MANOVA performed to obtain the statistically significant

features when comparing ALS patients with bulbar involvement and controls. The

analysis was performed for males. An initial set of 35 time-frequency features was

used:

• Average instantaneous spectral energy for each frequency band (E Bn1. . . E Bn7).

• Instantaneous frequency peak for each frequency band (f Cres1 . . . f Cres7).

• Average instantaneous frequency for each frequency band (f Med1. . . f Med7).

• Spectral information for each frequency band (IE Bn1. . . IE Bn7).

7 additional features were added:

• Instantaneous (˝ t), and spectral (H f), information entropies. Furthermore,

the joint Shannon entropy (H tf) was also used.

• Kurtosis (K).

• Joint time-frequency moment ⟨tnfm⟩, where n,m=1,7,15.

From these 35 features, a set of 6 statistically significant features (p-value<0.05)

was obtained.
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Table 1.4: Significant features for males.

Feature p-value
f Cres1 0.270
f Cres2 0.046
f Cres3 0.429
f Cres4 0.357
f Cres5 0.924
f Cres6 0.046
f Cres7 0.151
Enr Bn1 0.461
Enr Bn2 0.326
Enr Bn3 0.234
Enr Bn4 0.831
Enr Bn5 0.777
Enr Bn6 0.060
Enr Bn7 0.274
f Med1 0.703
f Med2 0.001
f Med3 0.559
f Med4 0.304
f Med5 0.952
f Med6 0.008
f Med7 0.103
IE Bn1 0.614
IE Bn2 0.278
IE Bn3 0.770
IE Bn4 0.563
IE Bn5 0.694
IE Bn6 0.228
IE Bn7 0.694
H tf 0.251
H t 0.147
H f 0.152
K 0.027〈
t1f1

〉
0.002〈

t7f7
〉

0.900〈
t15f15

〉
0.870
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1.5.2 Recursive Feature Elimination

The Recursive Feature Elimination (RFE) is a recursive process that ranks features

according to some measure of their importance. At each iteration, feature importance

is measured and the less relevant one is removed. The recursion is needed because for

some measures, the relative importance of each feature can change when evaluated

over a different subset of features during the stepwise elimination process. RFE was

implemented to select the set of features which obtained the best accuracy for a given

classification model.

For example, for an automated COVID-19 cough detection when comparing COVID-

19 cough from patients tested positive and patients who presented pertussis cough

but who were COVID-19 negative, an initial set of 39 time-frequency features was

used. This set of features consisted of the same set as in the previous section but

adding 4 new time-frequency features: the average instantaneous frequency fmi(t),

and joint time-frequency moment ⟨tnfm⟩, where n,m=1,7,15.

From these 39 features, RF performed better (Accuracy = 94.81%) by previously

implementing RFE which selected a set of 16 features to fit the model. These features

were IE Bn3, Enr Bn4, Enr Bn3, IE Bn2, Enr Bn2, f Med1, IE Bn1, f Med7, f Med4,

f Cres1, Enr Bn1, IE Bn6, f Cres2, IE Bn7, f Med2, f Cres6.

The results for RF worsened if additional features were included or if any of the

selected ones were deleted.

1.6 Feature extraction techniques

Feature extraction is a process of dimensional reduction by which an initial set of

features is reduced while preserving the information in the original dataset.

1.6.1 Principal component analysis

The Principal component analysis (PCA) is a ranking feature extraction technique

used to decompose an original dataset into principal components (PCs) to obtain
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another dataset whose data is linearly independent and therefore uncorrelated. It

can be performed by means of singular value decomposition (SVD) [74].

By applying SVD to the original standardized dataset, a decomposition is obtained

X = USV ⊤ where X is the matrix of the standardized dataset, U is a unitary matrix

and S is the diagonal matrix of singular values si. PCs are given by US and V

contains the directions in this space that capture the maximal variance of the features

of the matrix X. The number of PCs obtained were the same as the original number

of features and the total variance on all the PCs were equal as the total variance

among all of the features. So, all of the information contained in the original data is

preserved.

Fig. 1-8 is an example of PCA cumulative percentage of the explained variance

of a dataset of 15 features.

Figure 1-8: Example of PCA Cumulative percentage of the explained variance.

Fig. 1-9 illustrates the pN(T ) the pattern function normalized) of the five Spanish

vowels and five PCs of this signal.
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Figure 1-9: pN(T ) of the five Spanish vowels and five PCs of pN(T ).

(a) pN (T ) of the five Spanish vowels: a (top), e, i, o, u (bottom)

(b) Principal Components of pN (T ) for the vowel “a” ordered from PC1 to PC5

53



1.6.2 Independent component analysis

Independent components analysis (ICA) is a technique of array processing and data

analysis, aiming at recovering unobserved signals from observed mixtures, exploiting

only the assumption of mutual independence between the signals. ICA is used to

reduce the dimensions of an original dataset. Unlike principal components analysis

(PCA), which assumes that the components are uncorrelated in both spatial and

temporal domains, ICA components are maximally statistically independent in only

one domain. The rationale for ICA is that a signal measured can be regarded as a

linear combination of a smaller number of independent component sources.

Fig. 1-10 shows the pN(T ) of the five Spanish vowels and five ICs of pN(T ).

1.6.3 Autoencoders

An Autoencoder [75] is a specific type of a neural network, one mainly designed to

encode the input data into a compressed and meaningful representation, and then

decode it back so that the reconstructed input is similar as possible to the original.

The Autoencoder maps the input data x to a hidden representation using the function

z = f(Px+ b) parameterised by {P, b}. f is the activation function. The hidden rep-

resentation is then mapped linearly to the output using x̂ = Wz+b′. The parameters

are optimised to minimise the mean square error of ∥x̂− x∥22 over all training points.

Figure 1-11 shows the Autoencoder architecture employed. It consists of three

modules: the encoder, the decoder and the bottleneck. The encoder is formed by an

input layer of 39 nodes and two hidden layers of 30 and 20 nodes respectively. The

bottleneck has 15 nodes and the decoder consists of two hidden layers of 20 and 30

nodes respectively and an output layer of 39 nodes. The activation function selected

was the tanh function. As the purpose of our Autoencoder was to reduce the feature

range of our original dataset, we took the compressed data contained in the bottleneck

layer. So, the 39 original features were reduced to 15.
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Figure 1-10: pN(T ) of the five Spanish vowels and five ICs of pN(T ).

(a) pN (T ) of the five Spanish vowels: a (top), e, i, o, u (bottom)

(b) Independent Components of pN (T ) for the vowel “a” ordered from IC1 to
IC5
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Figure 1-11: Autoencoder Architecture.

1.7 Principal component analysis biplot charts

From the PCA, a biplot chart can be obtained for a visual appraisal of the data. Biplot

allowed to visualize the dataset structure, identify the data variability and clustering

participants, displaying the variances and correlations of the analyzed features.

Fig. 1-12 shows a PCA biplot chart of a set of features of three different groups of

participants (Controls (C), ALS patients without bulbar involvement (NB) and ALS

patients with bulbar involvement (B)). The two axes represented the first (Dim1) and

second (Dim2) principal components of the data. The biplot uses the diagonalization

method to give a graphical display of its dimensional approximation [76, 77]. The

interpretation of the biplot involves observing the lengths and directions of the vectors

of the features, the data variability and the clusterization of the participants.

1.8 Machine-learning models

Various classification algorithms can be used to perform predictions for classification

purposes. Table 1.5 summarizes the classification models used in this thesis including

those which use supervised and semi-supervised classification training.
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Table 1.5: Classification models

Model Definition
SVM: Support
Vector Ma-
chines.

SVM is a powerful, kernel-based classification paradigm.
Support vector machines (SVMs) are particular linear classifiers
which are based on the margin maximization principle. They per-
form structural risk minimization, which improves the complexity
of the classifier with the aim of achieving excellent generalization
performance. The SVM accomplishes the classification task by con-
structing, in a higher dimensional space, the hyperplane that opti-
mally separates the data into two categories.

NN: Neuronal
Networks

NNs are networks that utilize complex mathematical models for data
processing. A neural network connects simple nodes, also known
as neurons or units. And layers of such nodes forms a network of
nodes. An array of algorithms are used to identify and recognize
relationships in data sets.

LDA: Linear
Discriminant
Analysis

LDA estimates the mean and variance in the training set and com-
puted the covariance matrix to capture the covariance between the
groups to make predictions by estimating the probability that the
test set belonged to each of the groups.

LR: Logistic Re-
gression

LR uses a Gaussian generalized linear model for binomial distribu-
tions. A logit link function is used to model the probability of “suc-
cess”. The purpose of the logit link is to take a linear combination
of the covariate values and convert those values into a probability
scale.

NaB: Naive
Bayes

NaBs models used Bayes’ theorem for classification purposes

RF: Random
Forest

RF classifier is a combination of tree predictors. Each decision tree
performed the classification independently and RF computed each
tree predictor classification as one “vote”. The majority of the votes
computed by all of the tree predictors decided the overall RF pre-
diction.

S4VM: Safe
Semi-supervised
SupportVector
Machine

S4VM is a semi-supervised classification model which returns pre-
dicted labels for unlabeled instances. It randomly generates multiple
low-density separators and merges their predictions by solving a lin-
ear programming problem meant to penalize the cost of decreasing
the performance of the classifier, compared to the supervised SVM.
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Figure 1-12: PCA biplot chart representing the variance of Dim1 and Dim2 in C, NB
and B groups.

In addition to traditional SVM [13, 15, 17, 18, 23], NN [13, 17, 19] and LDA

[16], LR is one of the most frequently used model for classification purposes [78, 79],

RF [80] is an ensemble method in machine-learning which involves construction of

multiple tree predictors that are classic predictive analytic algorithms [23], and Näıve

Bayes (NaB) is still a relevant topic [81] and is based on applying Bayes’ theorem.

Additionally, semi-supervised models such as the Safe Semi-supervised Support
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Vector Machine (S4VM) can be used to curate the datasets. It predicts labels for

unlabeled instances.

1.9 Performance metrics

There are four possible results in the classification task: If the sample is positive and

it is classified as positive, it is counted as a true positive (TP) and when classified

as negative, it is considered a false negative (FN). If the sample is negative and is

classified as negative or positive, it is considered a true negative (TN) or false positive

(FP) respectively.

Based on that, the Accuracy, Sensitivity (also known as recall), Specificity, Pre-

cision and F-score metrics [82] are the most relevant metrics used to evaluate the

performance of the classification models. The AUC is also useful.

• Accuracy (Eq. 1.21). Ratio between the correctly classified samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(1.21)

• Sensitivity (Eq. 1.22). Proportion of correctly classified positive samples com-

pared to the total number of positive samples.

Sensitivity =
TP

TP + FN
(1.22)

• Specificity (Eq. 1.23). Proportion of correctly classified negative samples com-

pared to the total number of negative samples.

Specificity =
TN

TN + FP
(1.23)

• Precision (Eq. 1.24). Proportion of positive samples that were correctly clas-

sified compared to the total number of positive predicted samples.
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Precision =
TP

FP + TP
(1.24)

• F-score (Eq. 1.25). Harmonic mean of the precision and sensitivity.

F-score =
2 · Precision ·Recall

Precision + Recall
=

2 · TP
2 · TP + FP + FN

(1.25)

• AUC (Eq. 1.26). The Receiver operating characteristics (ROC) curve is a

two-dimensional graph in which Sensitivity is plotted on the y-axis and 1 −
Specificity is plotted on the x-axis. The points of the curve are obtained by

sweeping the classification threshold from the most positive classification value

to the most negative. The AUC score is a scalar value that measures the area

under the ROC curve and is always bounded between 0..1.

AUC =
1

mn

m∑

i=1

n∑

j=1

1pi>pj , (1.26)

where i runs over all m samples with true label positive, and j runs over all n

samples with true label negative; pi and pj denote the probability score assigned

by the classifier to sample i and j, respectively.

1.10 Datasets

1.10.1 ALS Dataset

The study was approved by the Research Ethics Committee for Biomedical Research

Projects (CEIm) at the Bellvitge University Hospital in Barcelona. 45 ALS partici-

pants (26 males and 19 females) aged from 37 to 84 (M = 60.31 years, SD = 11.74

years) and 18 control subjects (9 males and 9 females) aged from 21 to 68 (M = 45.2

years, SD = 12.2 years) took part in this transversal study. All ALS participants

were diagnosed by a neurologist. Bulbar involvement was diagnosed by following

subjective clinical approaches [83] and the neurologist made the diagnosis of whether
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an ALS patient had bulbar involvement. Among all ALS participants, 5 reported

bulbar onset and 40 spinal onset, but, at the time of the study, 14 of them presented

bulbar symptoms. Summarizing, of the 63 participants, 14 were ALS participants

diagnosed with bulbar involvement, 31 were ALS participants that did not present

this dysfunction and 18 were control subjects. The severity of ALS and its bulbar

presentation also varied among participants, as assessed by the ALS Functional Rat-

ing Scale-Revised (ALSFRS-R). The ALSFRS-R score (0-48) was obtained from 12

survey questions that assess the degree of functional impairment with the score of

each question ranging from 4 – least impaired to 0 – most impaired. The scores of

the 45 participants in this study ranged from 6 to 46, with a mean of 31.38, SD of

8.67 and 3 reported as not available.

1.10.2 COVID-19 Datasets

This section describes the data collection framework used in this work. It consisted

of the COVID-19 dataset the University of Lleida collected for this study which

was approved by the Research Ethics Committee for Biomedical Research Projects

(CEIm) at the University Hospital Arnau de Vilanova of Lleida, and three additional

existing publicly available COVID-19 datasets, namely University of Cambridge [84],

Coswara [56] and Virufy [57] datasets. Additionally, the Pertussis dataset [8], which

includes recordings of patients with pertussis cough, was also used.

University of Lleida (UdL) Dataset

Approved by the Research Ethics Committee for Biomedical Research Projects (CEIm)

at the University Hospital Arnau de Vilanova of Lleida, we began an initiative con-

sisting of a website for recording cough samples (https://covid.udl.cat) for COVID-19

cough discrimination. We collected variable length cough audio recordings (3 cough

samples per subject on average) accompanied by a set of 3 questions related to the

diagnosis of the disease and general subject information: age, sex; COVID-19 posi-

tive by antigen or PCR test; and diagnosed with a neurological or chronic respiratory
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disease. At the time of this study, 52 subjects registered their coughs, with 49 being

tested COVID-19 positive and 3 negative.

University of Cambridge (UC) Dataset

For this study, we used the publicly available University of Cambridge Dataset [52]

consisting of 142 subjects tested COVID-19 positive, and 137 healthy without symp-

toms and 53 healthy subjects who presented cough symptoms.

Coswara Dataset

The Coswara project [56] includes vowel records of 1,107 healthy, 107 COVID-19 pos-

itive subjects and 48 subjects who reported other non-COVID respiratory conditions.

These conditions were not specified at the time of this study.

Virufy Dataset

The data collected in the Virufy project can be freely downloaded from a github

website [57]. The dataset is made up of 73 cough recordings from healthy subjects

and 48 from COVID-19 positive subjects. All participants were given PCR tests

before the coughs were obtained.

Pertussis Dataset

This dataset [8] includes 20 recordings of patients with pertussis cough. It was used

to compare the patterns of COVID-19 coughs with the patterns of pertussis cough.

At the time of this study, the demographic data of the patients whose pertussis cough

was recorded was not available.

1.11 Publications

The following publications in research journals are derived from the work in this

thesis:
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• Alberto Tena, Francesc Claria, Francesc Solsona, Einar Meister, Mònica Povedano.

Detection of Bulbar Involvement in Patients With Amyotrophic Lateral Sclero-

sis by Machine Learning Voice Analysis: Diagnostic Decision Support Develop-

ment Study. JMIR Medical Informatics 9(3):e21331. 2021. doi:10.2196/21331.

• Alberto Tena, Francesc Clarià, Francesc Solsona. Automated detection of

COVID-19 cough. Biomedical Signal Processing and Control, Volume 71(A):

103175. 2022. doi:10.1016/j.bspc.2021.103175.

• Alberto Tena, Francesc Clarià, Francesc Solsona, Mònica Povedano. Detecting

Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on

Phonatory and Time-Frequency Features. Sensors 22(3):1137. 2022.

doi.org/10.3390/s22031137.

• Voice Fingerprint and Machine Learning Models for Early Detection of Bul-

bar Dysfunction in ALS. Submitted to the journal Artificial Intelligence in

Medicine.

In addition, as a consequence of the collaboration done with other researchers

during my PhD, I have co-authored an additional paper (not included in this thesis):

• Marc Pifarré, Alberto Tena, Francisco Clarià, Francesc Solsona, Jordi Vilaplana,

Arnau Benavides, Lluis Mas, Francesc Abella. A Machine-Learning Model for

Lung Age Forecasting by Analyzing Exhalations. Sensors 22(3):1106. 2022.

doi.org/10.3390/s22031106.

1.12 Three-month doctoral stay

During the course of the present thesis, I spent a three-month doctoral stay at TalTech

the Tallinn University of Technology. My supervisor was Prof. Einar Meister from

the Department of Software Science.

The research activities done at the Laboratory of Language Technology consisted

of developing a consistent ALS Corpus from the audios recorded. The work included
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tasks of segmentation and label properly all the sounds registered. Then, feature

extraction algorithms were developed by using PRAAT [65] which is a free computer

software package for speech analysis in phonetics. The analysis of the features ob-

tained was performed to decide which kinds of analysis and which sort of models were

the most appropriated to distinguish bulbar involvement in ALS patients considering

the ALS corpus available.

The first article of this thesis is the result of this stay:

• Alberto Tena, Francesc Claria, Francesc Solsona, Einar Meister, Mònica Povedano.

Detection of Bulbar Involvement in Patients With Amyotrophic Lateral Sclero-

sis by Machine Learning Voice Analysis: Diagnostic Decision Support Develop-

ment Study. JMIR Med Inform 9(3):e21331. 2021. doi:10.2196/21331.
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Chapter 2

Papers

2.1 Paper 1: Detection of Bulbar Involvement in

Patients With Amyotrophic Lateral Sclerosis

by Machine Learning Voice Analysis: Diag-

nostic Decision Support Development Study

• Alberto Tena, Francesc Clarià, Francesc Solsona, Einar Meister, Mònica Povedano.

Detection of Bulbar Involvement in Patients With Amyotrophic Lateral Sclerosis

by Machine Learning Voice Analysis: Diagnostic Decision Support Development

Study. JMIR Med Inform 9(3):e21331. 2021. doi:10.2196/21331.

Abstract

This paper suggested that the acoustic parameters obtained through automated signal

analysis from a steady portion of sustained vowels may be used efficiently as predictors

for the early detection of bulbar involvement in patients with ALS. For that purpose,

the main objectives (and contributions) of this research were:

• To design a methodology for diagnosing bulbar involvement efficiently through

the acoustic parameters of uttered vowels in Spanish.
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• To demonstrate that the performance of the automated diagnosis of bulbar

involvement is superior to human diagnosis.

To fulfill these objectives, 45 Spanish patients with ALS and 18 control subjects took

part in the study. They were recruited by a neurologist, and the five Spanish vowel

segments were elicited from each participant.

The study focused on the extraction of features from the phonatory subsys-

tem—jitter, shimmer, harmonics-to-noise ratio, and pitch—from the utterance of

the five Spanish vowels. Then, various supervised classification algorithms were used,

preceded by principal component analysis of the features obtained.

Support vector machines performed better (accuracy 95.8%) than the models an-

alyzed in the literature. It was also proved how the model can improve human diag-

nosis, which can often misdiagnose bulbar involvement.

66



Original Paper

Detection of Bulbar Involvement in Patients With Amyotrophic
Lateral Sclerosis by Machine Learning Voice Analysis: Diagnostic
Decision Support Development Study

Alberto Tena1, MSc; Francec Claria2, PhD; Francesc Solsona2, PhD; Einar Meister3, PhD; Monica Povedano4, PhD
1Information and Communication Technologies Group, International Centre for Numerical Methods in Engineering, Barcelona, Spain
2Department of Computer Science, Universitat de Lleida, Lleida, Spain
3Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
4Motoneuron Functional Unit, Hospital Universitari de Bellvitge, Barcelona, Spain

Corresponding Author:
Francesc Solsona, PhD
Department of Computer Science
Universitat de Lleida
Jaume II, 69
Lleida
Spain
Phone: 34 973702735
Email: francesc.solsona@udl.cat

Abstract

Background: Bulbar involvement is a term used in amyotrophic lateral sclerosis (ALS) that refers to motor neuron impairment
in the corticobulbar area of the brainstem, which produces a dysfunction of speech and swallowing. One of the earliest symptoms
of bulbar involvement is voice deterioration characterized by grossly defective articulation; extremely slow, laborious speech;
marked hypernasality; and severe harshness. Bulbar involvement requires well-timed and carefully coordinated interventions.
Therefore, early detection is crucial to improving the quality of life and lengthening the life expectancy of patients with ALS
who present with this dysfunction. Recent research efforts have focused on voice analysis to capture bulbar involvement.

Objective: The main objective of this paper was (1) to design a methodology for diagnosing bulbar involvement efficiently
through the acoustic parameters of uttered vowels in Spanish, and (2) to demonstrate that the performance of the automated
diagnosis of bulbar involvement is superior to human diagnosis.

Methods: The study focused on the extraction of features from the phonatory subsystem—jitter, shimmer, harmonics-to-noise
ratio, and pitch—from the utterance of the five Spanish vowels. Then, we used various supervised classification algorithms,
preceded by principal component analysis of the features obtained.

Results: To date, support vector machines have performed better (accuracy 95.8%) than the models analyzed in the related
work. We also show how the model can improve human diagnosis, which can often misdiagnose bulbar involvement.

Conclusions: The results obtained are very encouraging and demonstrate the efficiency and applicability of the automated
model presented in this paper. It may be an appropriate tool to help in the diagnosis of ALS by multidisciplinary clinical teams,
in particular to improve the diagnosis of bulbar involvement.

(JMIR Med Inform 2021;9(3):e21331) doi: 10.2196/21331

KEYWORDS

amyotrophic lateral sclerosis; bulbar involvement; voice; diagnosis; machine learning

Introduction

Background
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease with an irregular and asymmetric progression,

characterized by a progressive loss of both upper and lower
motor neurons that leads to muscular atrophy, paralysis, and
death, mainly from respiratory failure. The life expectancy of
patients with ALS is between 3 and 5 years from the onset of
symptoms. ALS produces muscular weakness and difficulties
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of mobility, communication, feeding, and breathing, making
the patient heavily dependent on caregivers and relatives and
generating significant social costs. Currently, there is no cure
for ALS, but early detection can slow the disease progression
[1].

The disease is referred to as spinal ALS when the first symptoms
appear in the arms and legs (limb or spinal onset; 80% of cases)
and bulbar ALS when it begins in cranial nerve nuclei (bulbar
onset; 20% of cases). Patients with the latter form tend to have
a shorter life span because of the critical nature of the bulbar
muscle function that is responsible for speech and swallowing.
However, 80% of all patients with ALS experience dysarthria,
or unclear, difficult articulation of speech [2]. On average,
speech remains adequate for approximately 18 months after the
first bulbar symptoms appear [3]. These symptoms usually
become noticeable at the beginning of the disease in bulbar ALS
or in later stages of spinal ALS. Early identification of bulbar
involvement in people with ALS is critical for improving
diagnosis and prognosis and may be the key to effectively
slowing progression of the disease. However, there are no
standardized diagnostic procedures for assessing bulbar
dysfunction in ALS.

Speech impairment may begin up to 3 years prior to diagnosis
of ALS [3], and as ALS progresses over time there is significant
deterioration in speech [4]. Individuals with ALS with severe
dysarthria present specific speech production characteristics
[5-7]. However, it is possible to detect early, often imperceptible,
changes in speech and voice through objective measurements,
as suggested in previous works [8-11]. The authors concluded
that phonatory features may be well suited to early ALS
detection.

Related Work
Previous speech production studies have revealed significant
differences in specific acoustic parameters in patients with ALS.
Carpenter et al [7] studied the articulatory subsystem of
individuals with ALS and found different involvement of
articulators—that is, the tongue function was more involved
than the jaw function. In a recent study, Shellikeri et al [5] found
that the maximum speed of tongue movements and their duration
were only significantly different at an advanced stage of bulbar
ALS compared with the healthy control group. Connaghan et
al [12] used a smartphone app to identify and track speech
decline. Lee et al [6] obtained acoustic patterns for vowels in
relation to the severity of the dysarthria in patients with ALS.

Other works have demonstrated the efficiency of features
obtained from the phonatory subsystem for detecting early
deterioration in ALS [8-11,13-15]. Studies have shown
significant differences between jitter, shimmer, and the
harmonics-to-noise ratio (HNR) in patients with ALS [8,10,11].
More specifically, Silbergleit et al [8] obtained these features
from a steady portion of sustained vowels that provided
information regarding changes in the vocal signal that are
believed to reflect physiologic changes of the vocal folds.
Alternative approaches used formant trajectories to classify the
ALS condition [13], correlating formants with articulatory
patterns [14], fractal jitter [15], Mel Frequency Cepstral
Coefficients (MFCCs) [16], or combined acoustic and

motion-related features [9] at the expense of introducing more
invasive measurements to obtain data. Besides, the findings
revealed significant differences in motion-related features only
at an advanced stage of bulbar ALS.

Other related studies, such as one by Frid et al [17], used speech
formants and their ratios to diagnose neurological disorders.
Teixeira et al [18] and Mekyska et al [19] suggested jitter,
shimmer, and HNR as good parameters to be used in intelligent
diagnosis systems for dysphonia pathologies.

Garcia-Gancedo et al [20] demonstrated the feasibility of a novel
digital platform for remote data collection of digital speech
characteristics, among other parameters, from patients with
ALS.

In the literature, classification models are widely used to test
the performance of acoustic parameters in the analysis of
pathological voices. Norel et al [21] identified acoustic speech
features in naturalistic contexts and machine learning models
developed for recognizing the presence and severity of ALS
using a variety of frequency, spectral, and voice quality features.
Wang et al [9] explored the classification of the ALS condition
using the same features with support vector machine (SVM)
and neuronal network (NN) classifiers. Rong et al [22] used
SVMs with two feature selection techniques (decision tree and
gradient boosting) to predict the intelligible speaking rate from
speech acoustic and articulatory samples.

Suhas et al [16] implemented SVMs and deep neuronal networks
(DNNs) for automatic classification by using MFCCs. An et al
[23] used convolutional neuronal networks (CNNs) to compare
the intelligible speech produced by patients with ALS to that
of healthy individuals. Gutz et al [24] merged SVM and feature
filtering techniques (SelectKBest). In addition, Vashkevich et
al [25] used linear discriminant analysis (LDA) to verify the
suitability of the sustain vowel phonation test for automatic
detection of patients with ALS.

Among feature extraction techniques, principal component
analysis (PCA) [26] shows good performance in a wide range
of domains [27,28]. Although PCA is an unsupervised technique,
it can efficiently complement a supervised classifier in order to
achieve the objective of the system. In fact, any classifier can
be used in conjunction with PCA because it does not make any
kind of assumption about the subsequent classification model.

Hypothesis
Based on previous works, our paper suggests that the acoustic
parameters obtained through automated signal analysis from a
steady portion of sustained vowels may be used efficiently as
predictors for the early detection of bulbar involvement in
patients with ALS. For that purpose, the main objectives (and
contributions) of this research were (1) to design a methodology
for diagnosing bulbar involvement efficiently through the
acoustic parameters of uttered vowels in Spanish; and (2) to
demonstrate that the performance of the automated diagnosis
of bulbar involvement is superior to human diagnosis.

To fulfill these objectives, 45 Spanish patients with ALS and
18 control subjects took part in the study. They were recruited
by a neurologist, and the five Spanish vowel segments were
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elicited from each participant. The study focused on the
extraction of features from the phonatory subsystem—jitter,
shimmer, HNR, and pitch—from the utterance of each Spanish
vowel.

Once the features were obtained, we used various classification
algorithms to perform predictions based on supervised
classification. In addition to traditional SVMs [9,16,21,22,24],
NNs [9,16,23], and LDA [25], we used logistic regression (LR),
which is one of the most frequently used models for
classification purposes [29,30]; random forest (RF) [31], which
is an ensemble method in machine learning that involves the
construction of multiple tree predictors that are classic predictive
analytic algorithms [22]; and naïve Bayes (NaB), which is still
a relevant topic [32] and is based on applying Bayes’ theorem.

Prior to feeding the models, PCA was applied to the features
obtained due to the good performance observed of this technique
in a wide range of domains.

Methods

Participants
The study was approved by the Research Ethics Committee for
Biomedical Research Projects (CEIm) at the Bellvitge University
Hospital in Barcelona, Spain. A total of 45 participants with
ALS (26 males and 19 females) aged from 37 to 84 (mean 57.8,
SD 11.8) years and 18 control subjects (9 males and 9 females)
aged from 21 to 68 (mean 45.2, SD 12.2) years took part in this
transversal study. All participants with ALS were diagnosed by
a neurologist.

Bulbar involvement was diagnosed by following subjective
clinical approaches [33], and the neurologist made the diagnosis
of whether a patient with ALS had bulbar involvement. Of the
45 participants with ALS, 5 reported bulbar onset and 40
reported spinal onset, but at the time of the study 14 of them
presented bulbar symptoms.

To summarize, of the 63 participants in the study, 14 were
diagnosed with ALS with bulbar involvement (3 males and 11
females; aged from 38 to 84 years, mean 56.8 years, SD 12.3
years); 31 were diagnosed with ALS but did not display this
dysfunction (23 males and 8 females, aged from 37 to 81 years,
mean 58.3 years, SD 11.7 years); and 18 were control subjects
(9 males and 9 females; aged from 21 to 68 years, mean 45.2
years, SD 12.2 years).

The severity of ALS and its bulbar presentation also varied
among participants, as assessed by the ALS Functional Rating
Scale-Revised (ALSFRS-R). The ALSFRS-R score (0-48) was
obtained from 12 survey questions that assess the degree of
functional impairment, with the score of each question ranging
from 4 (least impaired) to 0 (most impaired). The scores of the
45 participants in this study ranged from 6 to 46 (mean 31.3,
SD 8.6; 3 patients’scores were reported as not available). Within
the subgroups, the scores of patients diagnosed with bulbar
involvement ranged from 6 to 46 (mean 23.1, SD 9.8), and the
scores of participants with ALS who did not present this
dysfunction ranged from 17 to 46 (mean 30.2, SD 8.0; 3
patients’ scores reported as not available).

The main clinical records of the participants with ALS are
summarized in Multimedia Appendix 1.

Vowel Recording
The Spanish phonological system includes five vowel
segments—a, e, i, o, and u. These were obtained and analyzed
from each patient with ALS and each control participant, all of
whom were Spanish speakers.

Sustained samples of the Spanish vowels a, e, i, o, and u were
elicited under medium vocal loudness conditions for 3-4 s. The
recordings were made in a regular hospital room using a USB
GXT 252 Emita Streaming Microphone (Trust International
BV) connected to a laptop. The speech signals were recorded
at a sampling rate of 44.100 Hz and 32-bit quantization using
Audicity, an open-source application [34].

Feature Extraction
Each individual phonation was cut out and anonymously labeled.
The boundaries of the speech segments were determined with
an oscillogram and a spectrogram using the Praat manual [35]
and were audibly checked. The starting point of the boundaries
was established as the onset of the periodic energy in the
waveform observed in the oscillogram and checked by the
apparition of the formants in the spectrogram. The end point
was established as the end of the periodic oscillation when a
marked decrease in amplitude in the periodic energy was
observed. It was also identified by the disappearance of the
waveform in the oscillogram and the formants in the
spectrogram.

Acoustic analysis was done by taking into account the following
features: jitter, shimmer, HNR, and pitch. Once the phonations
of each participant had been segmented, the parameters were
obtained from each vowel through the standard methods used
in Praat [35]; they are explained in detail in this section and
consist of a short-term spectral analysis and an autocorrelation
method for periodicity detection.

Jitter and shimmer are acoustic characteristics of voice signals.
Jitter is defined as the periodic variation from cycle to cycle of
the fundamental period, and shimmer is defined as the
fluctuation of the waveform amplitudes of consecutive cycles.
Patients with lack of control of the vibration of the vocal folds
tend to have higher values of jitter. A reduction of glottal
resistance causes a variation in the magnitude of the glottal
period correlated with breathiness and noise emission, causing
an increase in shimmer [18].

To compute jitter parameters, some optional parameters in Praat
were established. Period floor and period ceiling, defined as the
minimum and maximum durations of the cycles of the waveform
that were considered for the analysis, were set at 0.002 s and
0.025 s, respectively. The maximum period factor—the largest
possible difference between two consecutive cycles—was set
at 1.3. This means that if the period factor—the ratio of the
duration of two consecutive cycles—was greater than 1.3, this
pair of cycles was not considered in the computation of jitter.

The methods used to determine shimmer were almost identical
to those used to determine jitter, the main difference being that
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jitter considers periods and shimmer takes into account the
maximum peak amplitude of the signal.

Once the previous parameters had been established, jitter and
shimmer were obtained by the formulas shown below [35].

Jitter(absolute) is the cycle-to-cycle variation of the fundamental
period (ie, the average absolute difference between consecutive
periods):

where Ti is the duration of the ith cycle and N is the total number
of cycles. If Ti or Ti-1 is outside the floor and ceiling periods,

or if or is greater than the maximum period factor, the

term is not counted in the sum, and N is lowered by 1
(if N ends up being less than 2, the result of the computation
becomes “undefined”).

Jitter(relative) is the average absolute difference between
consecutive periods divided by the average period. It is
expressed as a percentage:

Jitter(rap) is defined as the relative average perturbation—the
average absolute difference between a period and the average
of this and its two neighbors, divided by the average period:

Jitter(ppq5) is the five-point period perturbation quotient,
computed as the average absolute difference between a period
and the average of this and its four closest neighbors, divided
by the average period:

Shimmer(dB) is expressed as the variability of the peak-to-peak
amplitude, defined as the difference between the maximum
positive and the maximum negative amplitude of each period
in decibels (ie, the average absolute base-10 logarithm of the
difference between the amplitudes of consecutive periods,
multiplied by 20:

Where Ai is the extracted peak-to-peak amplitude data and N is
the number of extracted fundamental periods.

Shimmer(relative) is defined as the average absolute difference
between the amplitudes of consecutive periods, divided by the
average amplitude, expressed as a percentage:

Shimmer(apq3) is the three-point amplitude perturbation
quotient. This is the average absolute difference between the
amplitude of a period and the average of the amplitudes of its
neighbors, divided by the average amplitude:

Shimmer(apq5) is defined as the five-point amplitude
perturbation quotient, or the average absolute difference between
the amplitude of a period and the average of the amplitudes of
this and its four closest neighbors, divided by the average
amplitude:

Shimmer(apq11) is expressed as the 11-point amplitude
perturbation quotient, the average absolute difference between
the amplitude of a period and the average of the amplitudes of
this and its ten closest neighbors, divided by the average
amplitude:

The HNR provides an indication of the overall periodicity of
the voice signal by quantifying the ratio between the periodic
(harmonics) and aperiodic (noise) components. The HNR was
computed using Praat [35], based on the second maximum of
normalized autocorrelation function detection, which is used in
the following equation:

where r(t) is the normalized autocorrelation function, r(t = τ)
is the second local maximum of the normalized autocorrelation
and τ is the period of the signal.

The time step, defined as the measurement interval, was set at
0.01 s, the pitch floor at 60 Hz, the silence threshold at 0.1 (time
steps that did not contain amplitudes above this threshold,
relative to the global maximum amplitude, were considered
silent), and the number of periods per window at 4.5, as
suggested by Boersma and Weenink [35].

For the purpose of this study, the mean and standard deviation
of the HNR were used.

To obtain the pitch, the autocorrelation method implemented
in Praat [35] was used. The pitch floor for males and females
was set at 60 Hz and 100 Hz, respectively, and the pitch ceiling
for males and females was set at 300 Hz and 500 Hz,
respectively. The time step was set, according to Praat [35], at
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0.0075 s and 0.0125 s for females and males, respectively. Pitch
above pitch ceiling and below pitch floor were not estimated.
The mean and standard deviation of the pitch, as well as the
minimum and maximum pitch, were features obtained from the
pitch metric.

Textbox 1 shows the procedure, inspired by Praat [35], that was
used to obtain the features explained above. The full code is
freely available online [36].

Textbox 1. Algorithm for obtaining the features (jitter, shimmer, harmonics-to-noise ratio [HNR], and pitch) for acoustic analysis.

1. Each individual phonation of each vowel was cut out and anonymously labeled to define the boundaries of the speech segments.

2. The values for the optional paramaters for analysis were set:

• Optional parameters to obtain jitter and shimmer parameters

• pitch floor: females 100 Hz and males 60 Hz

• pitch ceiling: females 500 Hz and males 300 Hz

• period floor: 0.002 s

• period ceiling: 0.025 s

• maximum period factor: 1.3

• Optional parameters to obtain HNR

• time step: 0.01 s

• pitch floor: 60 Hz

• silence threshold: 0.1

• number of periods per windows: 4.5

• Optional parameters to obtain pitch

• pitch floor: females 100 Hz and males 60 Hz

• pitch ceiling: females 500 Hz and males 300 Hz

• time step: females 0.0075 s and males 0.0125 s

3. Compute jitter and shimmer features—jitter(absolute), jitter(relative), jitter(rap), jitter(ppq5), shimmer(dB), shimmer(relative), shimmer(apq3),
shimmer(apq5), shimmer(apq11)—using the configuration parameters established and then obtain the mean of each of these parameters for each
vowel.

4. Compute HNR using the configuration parameters established and then obtain the mean (HNR[mean]) and standard deviation (HNR[SD]) values.

5. Compute pitch using the configuration parameters established and then obtain the mean (pitch[mean]), standard deviation (pitch[SD]), minimum
(pitch[min]), and maximum (pitch[max]) values.

6. Obtain a data set with the 15 features computed.

PCA
The PCA technique [37], a ranking feature extraction approach,
was implemented in R [38] using the Stats package [38]. PCA
was used to decompose the original data set into principal
components (PCs) to obtain another data set whose data were
linearly independent and therefore uncorrelated. It was
performed by means of singular value decomposition (SVD)
[39].

Prior to applying PCA, given that the mean age of control
subjects was approximately 12 years younger than patients with
ALS, we removed the age effects by using the data from the
control subjects and applying the correction to all the
participants as in the study by Norel et al [21]. We fitted the
features extracted for healthy people and their age linearly.
Then, the “normal aging” of each single feature of each
participant was obtained by multiplying the age of the
participants by the slope parameter obtained from the linear fit.

Finally, the computed “normal aging” was removed from the
features. Afterward, a standardized data set was obtained by
subtracting the mean and centering the age-adjusted features at
0.

Then, by applying SVD to the standardized data set, a

decomposition was obtained: , where X is the matrix
of the standardized data set, U is a unitary matrix and S is the
diagonal matrix of singular values si. PCs are given by US, and
V contains the directions in this space that capture the maximal
variance of the features of the matrix X. The number of PCs
obtained was the same as the original number of features, and
the total variance of all of the PCs was equal to the total variance
among all of the features. Therefore, all of the information
contained in the original data was preserved.

From the PCA, a biplot chart was obtained for a visual appraisal
of the data [40]. The biplot chart allowed us to visualize the
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data set structure, identify the data variability and clustering
participants, and display the variances and correlations of the
analyzed features. Then, the first eight PCs that explained almost
100% of the variance were selected to fit the classification
models.

Supervised Models
The participants in this study belonged to three different groups:
the control group (n=18), patients with ALS with bulbar
involvement (n=14), and patients with ALS without bulbar

involvement (n=31). Each participant was properly labeled as
control (C) if the subject was a control participant, ALS with
bulbar (B) if the subject was a participant with ALS diagnosed
with bulbar involvement, or ALS without bulbar (NB) if the
subject was a participant with ALS without bulbar involvement.
In addition, the ALS (A) label was added to every participant
with ALS, with or without bulbar involvement.

Supervised models were built to obtain predictions by comparing
the four labeled groups between them. Textbox 2 summarizes
the procedure used to create proper classification models.

Textbox 2. Algorithm used to create the classification models.

1. Building the data set: each participant was classified as C (control), B (amyotrophic lateral sclerosis [ALS] with bulbar involvement), or NB
(ALS without bulbar involvement) according to the features extracted from the utterance of the five Spanish vowels and the categorical attributes
of the bulbar involvement.

2. "Undefined" values were found in few participants when computing the shimmer(apq11) for a specific vowel. They were handled by computing
the mean of this parameter for the other vowels uttered by the same participant.

3. The age effects were removed from the data set.

4.
The values of the features obtained from the acoustic analysis were zero centered and scaled by using the following equation: (xi – ) / σ, where

xi is the feature vector, is the mean, and σ is the standard deviation. Scaling was performed to handle highly variable magnitudes of the features
prior to computing primary component analysis (PCA).

5. The PCA was computed and a new data set was created with the first eight primary components (PCs).

6. A random seed was set to generate the same sequence of random numbers. They were used to divide the data set into chunks and randomly
permute the data set. The random seed made the experiments reproducible and the classifier models comparable.

7. A 10-fold cross-validation technique was implemented and repeated for 10 trials. The data set was divided into ten contiguous chunks of
approximately the same size. Then, 10 training-testing experiments were performed as follows: each chunk was held to test the classifier, and
we performed training on the remaining chunks, applying upsampling with replacement by making the group distributions equal; the experiments
were repeated for 10 trials, each trial starting with a random permutation of the data set.

8. Two different classification thresholds were established; 50% and 95% (more restrictive). The classification threshold is a value that dichotomizes
the result of a quantitative test to a simple binary decision by treating the values above or equal to the threshold as positive and those below as
negative.

Several supervised classification models were implemented in
R [38] to measure the classification performance. The
classification models were fitted with the first eight PCs that
explained almost 100% of the data variability. Finally, 10-fold
cross-validation was implemented in R using the caret package
[41] to draw suitable conclusions. The upsampling technique
with replacement was applied to the training data by making
the group distributions equal to deal with the unbalanced data
set, which could bias the classification models [42].

The first classifier employed was SVM, which is a powerful,
kernel-based classification paradigm. SVM was implemented
using the e1071 [43]. We used a C-support vector classification
[44] and a linear kernel that was optimized through the tune
function, assigning values of 0.0001, 0.0005, 0.001, 0.01, 0.1,
and 1 to the C parameter, which controls the trade-off between
a low training error and a low testing error. A C parameter value
of 1 gave the best performance, and thus this was the SVM
model chosen.

Next, a classical NN trained with the back propagation technique
with an adaptive learning rate was implemented using the
RSNNS package [45]. After running several trials to decide the
NN architecture, a single hidden layer with three neurons was
implemented because it showed the best performance. The

activation function (transfer function) used was the hyperbolic
tangent sigmoid function.

LDA was implemented using the MASS package [46]. It
estimated the mean and variance in the training set and
computed the covariance matrix to capture the covariance
between the groups to make predictions by estimating the
probability that the test set belonged to each of the groups.

LR was implemented by using the Gaussian generalized linear
model applying the Stats package [38] for binomial distributions.
A logit link function was used to model the probability of
“success.” The purpose of the logit link was to take a linear
combination of the covariate values and convert those values
into a probability scale.

Standard NaB based on applying Bayes’ theorem was
implemented using the e1071 package [43].

Finally, the RF classifier was implemented using the
randomForest package [47] with a forest of 500 decision tree
predictors. The optimal mtry—a parameter that indicated the
number of PCs that were randomly distributed at each decision
tree—was optimized for each classification problem by using
the train function included in the caret package [41]. Each
decision tree performed the classification independently and
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RF computed each tree predictor classification as one “vote.”
The majority of the votes computed by all of the tree predictors
decided the overall RF prediction.

The code of these implementations is freely available online
[48].

Performance Metrics
There are several metrics to evaluate classification algorithms
[49]. The analysis of such metrics and their significance must
be interpreted correctly to evaluate these algorithms.

There are four possible results in the classification task. If the
sample is positive and it is classified as positive, it is counted
as a true positive (TP), and when it is classified as negative, it
is considered a false negative (FN). If the sample is negative
and it is classified as negative or positive, it is considered a true
negative (TN) or false positive (FP), respectively. Based on
that, three performance metrics, presented below, were used to
evaluate the performance of the classification models.

• Accuracy: ratio between the correctly classified samples.

• Sensitivity: proportion of correctly classified positive
samples compared with the total number of positive
samples.

• Specificity: proportion of correctly classified negative
samples compared with the total number of negative
samples.

Finally, paired Bonferroni-corrected Student t tests [50] were
implemented to evaluate the statistical significance of the
metrics results. To reject the null hypothesis, which entails
considering that there is no difference in the performance of the
classifiers, a significance level of α=.05 was established for all
tests. The P values obtained by performing the tests with values
below α=.05 rejected the null hypothesis.

Results

First, the distributions of the features obtained were examined.
Then, the PCA was performed and the supervised models
studied were evaluated.

Data Exploration
A total of 15 features were obtained in this study. These features
were jitter(absolute), jitter(relative), jitter(rap), jitter(ppq5),
shimmer(relative), shimmer(dB), shimmer(apq3),
shimmer(apq5), shimmer(apq11), pitch(mean), pitch(SD),
pitch(min), pitch(max), HNR(mean), and HNR(SD).

Figure 1 shows the box plot of the features obtained from the
control (C) group, patients with ALS with bulbar involvement
(B), and patients with ALS without bulbar involvement (NB).
The means in the B group were higher than those in the C and
NB groups. The means in the NB group were located in the
middle of the means of the C and B groups. On the contrary,
the B group obtained the lowest values for the mean HNR(mean)
and HNR(SD). Differences in the standard deviation between
the three groups were also observed. In general, features
obtained from the B group presented the highest standard
deviations.
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Figure 1. Box plots of features by group. B: patients with amyotrophic lateral sclerosis (ALS) with bulbar involvement; C: control group; HNR:
harmonics-to-noise ratio; NB: patients with ALS without bulbar involvement.

PCA
PCA was performed using the data set that contained the 15
features extracted from all of the participants. Figure 2 shows
the associated PCA biplot chart. The two axes represent the first
(Dim1) and second (Dim2) PCs. The biplot uses the

diagonalization method to give a graphical display of its
dimensional approximation [51,52]. The interpretation of the
biplot involves observing the lengths and directions of the
vectors of the features, the data variability, and the clusterization
of the participants.
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Figure 2. Principal component analysis biplot chart representing the variance of the first (Dim1) and second (Dim2) principal components in the control
group (C), patients with amyotrophic lateral sclerosis (ALS) without bulbar involvement (NB), and patients with ALS with bulbar involvement (B).
HNR: harmonics-to-noise ratio.

It can be observed that a considerable proportion of variance
(70.1%) of the shimmer, jitter, pitch, and HNR was explained.
The relative angle between any two vector features represents
their pairwise correlation. The closer the vectors are to each
other (<90°), the higher their correlation. When vectors are
perpendicular (angles of 90° or 270°), the variables have a small
or null correlation. Angles approaching 0° or 180° (collinear

vectors) indicate a correlation of 1 or –1, respectively. Thus, in
this case, shimmer and jitter show a strong positive correlation.
Another important observation reflected in Figure 2 is the spatial
proximity of the groups in relation both to each other and to the
set of features. The projection of the B group onto the vector
for shimmer and jitter falls to the left of the vector features.
This means that subjects labelled as the B group had higher
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average values for those features than the average values of the
other groups. Conversely, the projection of the C group onto
those variables falls on the opposite side. In addition, the C and
B groups are more distant from each other when projected onto
shimmer and jitter. This indicates that shimmer and jitter
features are the most important features for the classification
of participants in the B and C groups.

The projection of subjects in the NB group requires special
attention. Although the projection of these subjects has a spatial

proximity with respect to the C group, their variability is higher,
overflowing the gray circle corresponding to the B group.

This indicates that some features, especially shimmer and jitter,
of some subjects in the NB group have similar projections to
the features of the B group.

To fit the models, as explained in detail in the next section, the
first eight PCs were selected in order to reduce the
dimensionality but preserve almost 100% of the variability as
shown in Figure 3.

Figure 3. Cumulative percentage of the explained variance using principal component analysis.

Supervised Model Evaluation
The first eight PCs were selected. Then, each classification
model was applied to these PCs. Consequently, better results
were obtained than when applying the classification models

alone. The results of the classification methods alone are not
shown because of their limited contribution to the analysis.

Tables 1 and 2 show the classification performance (accuracy,
sensitivity, and specificity metrics) of the supervised models
tested for the four cases with the classification threshold set at
50% and 95%, respectively.
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Table 1. Classification performance of the supervised models with the classification threshold set at 50%.

Classification performance (%)

C vs ALSdB vs NBC vs NBcCa vs BbModel and metrics

Random forest

90.375.591.193.6Accuracy

92.155.792.191.1Sensitivity

85.788.489.695.5Specificity

Naïve Bayes

90.375.487.991.0Accuracy

92.162.786.789.2Sensitivity

85.781.290.093.2Specificity

Logistic regression

91.170.191.493.8Accuracy

89.662.289.192.5Sensitivity

93.373.595.694.8Specificity

Linear discriminant analysis

91.671.291.694.3Accuracy

88.361.887.495.6Sensitivity

87.875.498.890.0Specificity

Neuronal network

92.270.492.594.8Accuracy

90.860.090.391.7Sensitivity

95.675.296.497.2Specificity

Support vector machine

91.669.991.595.8Accuracy

88.959.488.491.4Sensitivity

98.274.697.099.3Specificity

aC: control group.
bB: patients with amyotrophic lateral sclerosis (ALS) with bulbar involvement.
cNB: patients with ALS without bulbar involvement.
dALS: all patients with ALS.
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Table 2. Classification performance of the supervised models with the classification threshold set at 95%.

Classification performance (%)

C vs ALSdB vs NBC vs NBcCa vs BbModel and metrics

Random forest

75.168.856.158.3Accuracy

65.60.030.44.8Sensitivity

98.8100.0100.0100.0Specificity

Naïve Bayes

75.172.868.882.3Accuracy

65.615.854.664.7Sensitivity

98.898.693.396.1Specificity

Logistic regression

76.074.177.792.8Accuracy

66.416.765.184.8Sensitivity

100.0100.099.699.0Specificity

Linear discriminant analysis

71.171.770.688.1Accuracy

59.50.953.572.7Sensitivity

100.0100.0100.0100.0Specificity

Neuronal network

86.873.184.892.6Accuracy

81.620.576.183.2Sensitivity

99.896.8100.0100.0Specificity

Support vector machine

71.170.771.186.3Accuracy

59.46.154.368.8Sensitivity

100.0100.0100.0100.0Specificity

aC: control group.
bB: patients with amyotrophic lateral sclerosis (ALS) with bulbar involvement.
cNB: patients with ALS without bulbar involvement.
dALS: all patients with ALS.

In the case of the C group versus the B group, with the
classification threshold set at 50%, the results indicated that all
classifiers had a good classification performance. SVM obtained
the best accuracy (95.8%). The tests of significance, which are
reported in Multimedia Appendix 2, revealed statistically
significant differences between SVM and the other models,
with the exception of LDA, which obtained an accuracy (94.3%)
that closely approximated that of the SVM model. NN also
showed really good results (accuracy 94.8%).

Similar behavior was obtained in the C group versus the NB
group and the C group versus all patients with ALS. In these
cases, NN was the best model (92.5% for C vs NB and 92.2%
for C versus ALS). Meanwhile, generally poor performance
was obtained in the B group versus the NB group compared
with the other cases. Although RF showed the best accuracy
(75.5%), the performance of specificity and especially sensitivity
dropped dramatically in comparison with the previous cases.

In general, the model performance dropped with a 95%
threshold. In the C group versus the B group, the accuracy of
the classification models (Table 2) was worse than when the
classification threshold was set at 50%. LR shows the best
accuracy (92.8%). LDA, SVM, and NaB obtained accuracies
of 88.1%, 86.3%, and 82.3%, respectively. RF did not seem to
be a good model for this threshold, with an accuracy of 58.3%.

Lower results were obtained in the C group versus the NB group
and the C group versus the group with ALS. NN showed the
best performance, with accuracies of 84.8% and 86.8%,
respectively.

With the 95% threshold, the performance of sensitivity dropped
in all cases, especially for the B group versus the NB group,
where LR obtained the best performance with an accuracy of
74.1% but a sensitivity of 16.7%.
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Discussion

Principal Findings
This study was guided by 2 objectives: (1) to design a
methodology for diagnosing bulbar involvement efficiently
through the acoustic parameters of uttered vowels in Spanish,
and (2) to demonstrate the superior performance of automated
diagnosis of bulbar involvement compared with human
diagnosis. This was based on the accurate acoustic analysis of
the five Spanish vowel segments, which were elicited from all
participants. A total of 15 acoustic features were extracted:
jitter(absolute), jitter(relative), jitter(rap), jitter(ppq5),
shimmer(relative), shimmer(dB), shimmer(apq3),
shimmer(apq5), shimmer(apq11), pitch(mean), pitch(SD),
pitch(min), pitch(max), HNR(mean), and HNR(SD). Then, the
PCs of these features were obtained to fit the most common
supervised classification models in clinical diagnosis: SVM,
NN, LDA, LR, NaB, and RF. Finally, the performance of the
models was compared.

The study demonstrated the feasibility of automatic detection
of bulbar involvement in patients with ALS through acoustic
features obtained from vowel utterance. It also confirms that
speech impairment is one of the most important aspects for
diagnosing bulbar involvement, as was suggested by Pattee et
al [33]. Furthermore, bulbar involvement can be detected using
automatic tools before it becomes perceptible to human hearing.

Voice features extracted from the B group compared with those
features extracted from the C group showed the best
performance of the classification model for determining bulbar
involvement in patients with ALS.

Accuracy for the C group versus the B group revealed values
of 95.8% for SVM with the classification threshold established
at 50%. However, on increasing the threshold to 95%, the
accuracy values for SVM dropped (86.3%) and LR showed the
best performance (accuracy 92.8%). NN also showed a good
accuracy at 92.6%. This implies that NN and LR are more robust
for finding accuracy.

For that case, the results obtained reinforce the idea that it is
possible to diagnose bulbar involvement in patients with ALS
using supervised models and objective measures. The SVM and
LR models provided the best performance for the 50% and 95%
thresholds, respectively.

Great uncertainty was found in the analysis regarding bulbar
involvement in the NB group. The accuracy values of the C
group versus the NB group and the C group versus the group
with ALS with the classification threshold at 50% were 92.5%
and 92.2%, respectively, for NN. That reveals that the features
extracted from the NB group differed significantly from those
of the C group. Lower performance should be expected because
participants labeled as the C group and NB group should have
similar voice performance. This may indicate that some of the
participants in the NB group probably had bulbar involvement
but were not correctly diagnosed because the perturbance in
their voices could not be appreciated by the human ear.
Alternatively, it could be simply that a classification threshold
of 50% was too optimistic. With a 95% classification threshold,

lower results were obtained in the C group versus the NB group
and in the C group versus patients with ALS. NN showed the
best performance with accuracies of 84.8% and 86.8%,
respectively, for the two cases.

The performance between the B group and C group showed
better results than between the NB group and C group. Despite
this, the unexpectedly high performance of the models for the
C group versus the NB group still suggests that some
participants in the NB group could have had bulbar involvement.
Changing the classification threshold to 95% worsened the
results, especially for sensitivity, although this still remained
significant.

The case of the B group versus the NB group revealed that the
classification models did not distinguish B group and NB group
participants as well as they did with the other groups. The
accuracy with the 50% threshold showed the highest
performance for RF (75.5%), but the models showed difficulties
in identifying positive cases. That may be due to the small
difference in the variation of the data among participants in the
B and NB groups. The same occurred for the 95% threshold:
LR obtained the highest accuracy (74.1%) but a sensitivity of
only 16.7%. These values remain far from those in the case of
the C group versus the B group. These results also reinforce the
idea that participants in the NB group were misdiagnosed.

The good model performance obtained in comparing the C and
NB groups supports these findings and underscores the
importance of using objective measures for assessing bulbar
involvement. This corroborated the results obtained in the data
exploration and PCA, which were presented in the Results
section.

The projection of the NB group in the PCA biplot chart requires
special attention. Although the projection of these subjects has
a spatial proximity with regard to the C group, their variability
is higher, overflowing the circle corresponding to the B group.
This indicates that some features, especially shimmer and jitter,
of some patients in the NB group have similar projections to
those in the B group. This may reveal that these patients in the
NB group could have bulbar involvement but were not yet
correctly diagnosed because the perturbance in their voices
could still not be appreciated by human hearing.

Figure 1 also indicates that the means of the features of the
patients in the NB group were between the means of the features
of the C and B groups, thus corroborating these assumptions.

Limitations
This study has some limitations. First, using machine learning
on small sample sizes makes it difficult to fully evaluate the
significance of the findings. The sample size of this study was
heavily influenced by the fact that ALS is a rare disease. At the
time of the study, 14 of the patients with ALS presented bulbar
symptoms. The relatively small size of this group was because
ALS is a very heterogeneous disease and not all patients with
ALS present the same symptomatology. Additionally, the control
subjects were approximately 12 years younger than the patients
with ALS. Vocal quality changes with age, and comparing
younger control subjects’ vocalic sounds with those of older
participants with ALS might introduce additional variations.
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Although upsampling techniques were used in this study to
correct the bias and age adjustments have been applied to correct
the vocal quality changes due to the age difference, it would be
necessary in future studies to increase the number of
participants, especially of patients with ALS with bulbar
involvement and control participants of older ages, to draw
definitive conclusions.

Second, the variability inherent in establishing the boundaries
of the speech segments on spectrograms manually makes
replicability challenging. Speakers will differ in their production,
and even the same speaker in the same context will not produce
two completely identical utterances. In this study, the recorded
speech was processed manually in the uniform approach detailed
in the Methods section. Automatic instruments have been
developed, but unfortunately these methods are not yet accurate
enough and require manual correction.

Comparison with Prior Work
The PCA biplot charts indicated that shimmer and jitter were
the most important features for group separation in the 2-PC
model for ALS classification; however, they also revealed pitch
and HNR parameters as good variables for this purpose. These
results are consistent with those of Vashkevich et al [25], who
demonstrated significant differences in jitter and shimmer in
patients with ALS. They are also consistent with Mekyska et
al [19] and Teixeira et al [18], who mentioned pitch, jitter,
shimmer, and HNR values as the most popular features
describing pathological voices. Finally, Silbergleit et al [8]
suggested that the shimmer, jitter, and HNR parameters are
sensitive indicators of early laryngeal deterioration in ALS.

Concerning the classification models, Norel et al [21] recently
implemented SVM classifiers to recognize the presence of
speech impairment in patients with ALS. They identified
acoustic speech features in naturalistic contexts, achieving 79%
accuracy (sensitivity 78%, specificity 76%) for classification
of males and 83% accuracy (sensitivity 86%, specificity 78%)
for classification of females. The data used did not originate
from a clinical trial or contrived study nor was it collected under
laboratory conditions. Wang et al [9] implemented SVM and
NN using acoustic features and adding articulatory motion
information (from tongue and lips). When only acoustic data
were used to fit the SVM, the overall accuracy was slightly
higher than the level of chance (50%). Adding articulatory
motion information further increased the accuracy to 80.9%.
The results using NN were more promising, with accuracies of
91.7% being obtained using only acoustic features and
increasing to 96.5% with the addition of both lip and tongue
data. Adding motion measures increased the classifier accuracy
significantly at the expense of including more invasive
measurements to obtain the data. We investigated the means of
optimizing accuracy in detecting ALS bulbar involvement by
only analyzing the voices of patients. An et al [23] implemented
CNNs to classify the intelligible speech produced by patients

with ALS and healthy individuals. The experimental results
indicated a sensitivity of 76.9% and a specificity of 92.3%.
Vashkevich et al [25] performed LDA with an accuracy of
90.7% and Suhas et al [16] used DNNs based on MFCCs with
an accuracy of 92.2% for automatic detection of patients with
ALS.

Starting with the most widely used features suggested in the
literature, the classification models used in this paper to detect
bulbar involvement automatically (C group versus B group)
performed better than the ones used by other authors,
specifically the ones obtained using NN (Wang et al [9]) and
DNNs based on MCCFs (Suhas et al [16]). We obtained the
best-ever performance metrics. This suggests that decomposing
the original data set of features into PCs to obtain another data
set whose data (ie, PCs) were linearly independent and therefore
uncorrelated improves the performance of the models.

Conclusions
This paper suggests that machine learning may be an appropriate
tool to help in the diagnosis of ALS by multidisciplinary clinical
teams. In particular, it could help in the diagnosis of bulbar
involvement. This work demonstrates that an accurate analysis
of the features extracted from an acoustic analysis of the vowels
elicited from patients with ALS may be used for early detection
of bulbar involvement. This could be done automatically using
supervised classification models. Better performance was
achieved by applying PCA previously to the obtained features.
It is important to note that when classifying participants with
ALS with bulbar involvement and control subjects, the SVM
with a 50% classification threshold exceeded the performance
obtained by other authors, specifically Wang et al [9] and Suhas
et al [16].

Furthermore, bulbar involvement can be detected using
automatic tools before it becomes perceptible to human hearing.
The results point to the importance of obtaining objective
measures to allow an early and more accurate diagnosis, given
that humans may often misdiagnose this deficiency. This directly
addresses a recent statement released by the Northeast ALS
Consortium’s bulbar subcommittee regarding the need for
objective-based approaches [53].

Future Work
Future work is directed toward the identification of incorrectly
undiagnosed bulbar-involvement in patients with ALS. A
time-frequency representation will be used to detect possible
deviations in the voice performance of patients in the
time-frequency domain. The voice distributions of patients with
ALS diagnosed with bulbar involvement and patients with ALS
without that diagnosis will be compared in order to detect pattern
differences between these two groups. That could provide
indications to distinguish undiagnosed participants with ALS
who could be misdiagnosed. Also, an improvement in the voice
database by increasing the sample size is envisaged.
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2.2 Paper 2: Automated Detection of COVID-19

Cough

• Alberto Tena, Francesc Clarià, Francesc Solsona. Automated detection of COVID-

19 cough. Biomedical Signal Processing and Control, Volume 71(A):103175.

2022. doi:10.1016/j.bspc.2021.103175.

Abstract

In this paper, prior to performing the time-frequency representation analysis, the

YAMNet [63] deep neuronal network was used for the automatic identification of

cough sounds in raw audio files.

Then, a TFR analysis of a Choi-Williams distribution (CWD) was carried out

in the cough-samples identified to obtain discriminatory features for an automated

diagnosis of COVID-19. 39 features were extracted and the sets which showed better

performance at discriminating COVID-19 cough were selected.

The main objectives (and contributions) of this research were:

1. To design a free, quick and efficient methodology for the automatic detection

of COVID-19 in raw audio files based on the time- –frequency analysis of the

cough.

2. To obtain the time–frequency discriminatory features leading to automated

identification of COVID-19.

3. To find an optimal supervised machine-learning algorithm to diagnose COVID-

19 from the cough features found.

Random Forest performed better than the other models analysed in this study.

An accuracy close to 90% was obtained.

This study demonstrated the feasibility of the automatic diagnose of COVID-19

from coughs, and its applicability to detecting new outbreaks.
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Automated detection of COVID-19 cough 
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A B S T R A C T   

Easy detection of COVID-19 is a challenge. Quick biological tests do not give enough accuracy. Success in the 
fight against new outbreaks depends not only on the efficiency of the tests used, but also on the cost, time elapsed 
and the number of tests that can be done massively. Our proposal provides a solution to this challenge. The main 
objective is to design a freely available, quick and efficient methodology for the automatic detection of COVID-19 
in raw audio files. 

Our proposal is based on automated extraction of time–frequency cough features and selection of the more 
significant ones to be used to diagnose COVID-19 using a supervised machine-learning algorithm. 

Random Forest has performed better than the other models analysed in this study. An accuracy close to 90% 
was obtained. 

This study demonstrates the feasibility of the automatic diagnose of COVID-19 from coughs, and its appli-
cability to detecting new outbreaks.   

1. Introduction 

COVID19 (COronaVIrus Disease of 2019), caused by the Severe 
Acute Respiratory Syndrome (SARS-CoV2) virus, was announced as a 
global pandemic on February 11, 2020 by the World Health Organisa-
tion (WHO). By mid-February, 2021, one year after the beginning of the 
COVID-19 pandemic, over 108 million confirmed cases of COVID-19 had 
been reported worldwide, with almost 2,400,000 deaths [1]. 

During this time, it has been demonstrated that COVID-19 outbreaks 
are very hard to contain with current testing approaches unless region- 
wide confinement measures are sustained. This is partly because of the 
limitations of current viral and serological tests and the lack of com-
plementary pre-screening methods [2]. 

According to the WHO-China Joint Mission report (COVID-19) [3], 
typical signs and symptoms of COVID-19 are fever (87.9%), dry cough 
(67.7%), fatigue (38.1%), sputum production (33.4%), shortness of 
breath (18.6%), sore throat (13.9%), headache (13.6%), myalgia or 
arthralgia (14.8%), chills (11.4%), nausea or vomiting (5.0%), nasal 
congestion (4.8%), diarrhoea (3.7%), hemoptysis (0.9%), and conjunc-
tival congestion (0.8%). 

Several researchers have proposed methods for identifying cough 
sounds from audio recordings [4,5]. Automatic cough classification is an 
active research area in which several researchers have proposed 

methods for identifying a wide range of respiratory diseases and types of 
coughs (namely dry and wet coughs) through cough analysis and 
machine-learning algorithms [6,7]. 

Various studies have begun to work on the design of machine- 
learning tools to detect COVID-19 [8–16] as complementary pre- 
screening method. These are based on the analysis of the sound of voi-
ces, and the sounds we make when we breath or cough and which 
change when our respiratory system is affected. These changes range 
from coarse, clearly audible changes, to minute changes (called micro 
signatures) that are inaudible to the untrained listener, but nevertheless 
present [9]. These works have been performed in own datasets and no 
idenfication of the main features has been performed. We are also 
interested in the automatic identification of COVID-19 cough from any 
raw audio recording. Overall, finding a general method and the main 
cough features from audio records for diagnosing COVID-19 is a 
challenge. 

The difficulty is to find good machine-learning features. Some works 
in the literature, as we have mentioned before, advocate some features, 
but in the particular case of COVID-19, it remains to be seen which 
properties, brands, signs (that is, features) are those that uniquely 
identify COVID-19. So, the big challenge is to identify the best features 
that discriminate the COVID-19 cough. In addition, we want to find the 
group of features with better performance for each type of experiment, 

* Corresponding author. 
E-mail addresses: atena@cimne.upc.edu (A. Tena), francisco.claria@udl.cat (F. Clarià), francesc.solsona@udl.cat (F. Solsona).  
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as for example, comparing COVID-19 and pertussis coughs. 
The goal of this paper is to develop a pre-screening method that 

could lead to automated identification of COVID-19 through the analysis 
of cough time–frequency representations (TFR) with similar perfor-
mance presented in [8–16]. TFRs permit the evolution of the periodicity 
and frequency components over time to be observed, allowing the 
analysis of non-stationary signals. Moreover, this representation, which 
maintains the time dependence of signal features, gives the possibility of 
introducing more related features than traditional analysis. This way, 
we go a step further by finding the set of time–frequency features that 
could allow COVID-19 coughs to be distinguished from other cough 
patterns and validate it as a more generic proposal by applying our 
method to various datasets from different sources. 

In the present work, prior to performing the TFR analysis, the 
YAMNet [17] deep neuronal network was used for the automatic iden-
tification of cough sounds in raw audio files. Then, a TFR analysis of a 
Choi-Williams distribution (CWD) was carried out in the cough-samples 
identified to obtain discriminatory features for an automated diagnosis 
of COVID-19. 39 features were extracted and the sets which showed 
better performance at discriminating COVID-19 cough were selected. 
For that purpose, the main objectives (and contributions) of this 
research are:  

• To design a free, quick and efficient methodology for the automatic 
detection of COVID-19 in raw audio files based on the time-
–frequency analysis of the cough.  

• To obtain the time–frequency discriminatory features leading to 
automated identification of COVID-19. 

• To find an optimal supervised machine-learning algorithm to di-
agnose COVID-19 from the cough features found. 

2. Methods 

The methods presented in this section were implemented and a 
synthetic dataset based on a random sample of COVID-19 and non- 
COVID-19 coughs is freely available online [18]. It was built in R 
using the synthpop package [19]. Also, the code of the machine-learning 
models used is also provided. 

This section presents the corpus, the automatic cough identification 
process and the basis theory used to obtain the time–frequency features. 
The classification models were fitted by a set of the most important 
features, obtained by two different techniques, namely feature selection 
and feature extraction. The most popular supervised models in cough 
classification are then presented. Finally, the model’s performance 
metrics are introduced. 

2.1. Data Corpus 

This section describes the data collection framework used in this 
work. It consisted of the COVID-19 dataset the University of Lleida 
collected for this study which was approved by the Research Ethics 
Committee for Biomedical Research Projects (CEIm) at the University 
Hospital Arnau de Vilanova of Lleida, and three additional existing 
publicly available COVID-19 datasets, namely University of Cambridge 
[20], Coswara [21] and Virufy [22] datasets. Additionally, the Pertussis 
dataset [6], which includes recordings of patients with pertussis cough, 
was also used. 

Our analysis used four sets. The first set (C) consisted of subjects 
tested COVID-19 positive; the second set (N) were subjects tested 
COVID-19 negative; the third set (NC) were non-COVID subjects, but 
who had non-specified-coughs as a symptom; and the fourth set (PT) 
were non-COVID subjects but who presented pertussis cough. 

Table 1 shows the set of participants selected and Table 2 shows the 
demographic data for each group. 

2.2. Automatic Cough Identification 

Fig. 1 shows an overview of the automatic cough identification 
process developed which was inspired by [23]. 

The YAMNet deep neuronal network [17] was used for the automatic 
identification of the cough samples registered in the raw audio files. 
YAMNet classifies audio segments into sound classes described by the 
AudioSet ontology [24] employing MobileNet [25]. The MobileNet 
structure is built on depthwise separable convolutions which factorises a 
standard convolution into a depthwise and a pointwise convolution (1 x 
1 convolution kernel) [26]. Depthwise convolution applies the filter to 
each input channel, and 1 x 1 pointwise convolution is used to combine 
the outputs of the depthwise convolution. The YAMNet body architec-
ture employing MobileNet is defined in Fig. 2. 

All layers are depthwise separable convolutions except for the first 
layer, which is a standard convolution, and the last few layers which are 
pooling, fully connected layers, and a softmax layer for classification. 
Each convolution layer used ReLU as the activation function, and 
batchnorm was used for the standardised distribution of batches. The 
convolution layer structure is shown in Fig. 3. 

To obtain the input layer passed to YAMNet, the original audio 
waveforms of the raw audio files were pre-processed. They were 
resampled to 16 kHz and buffered into L overlapping segments. Each 
segment was 0.98 s and the segments were overlapped by 0.8575 s. They 
were converted to a magnitude spectrogram with 257 frequency bins 
using a one-sided short-time Fourier transform (STFT) with a 25-ms 
periodic Hann window with a 10-ms hop and a 512-point Discrete 
Fourier Transform (DFT). Then, the magnitude spectrum was passed 
through a 64-band mel-spaced filter bank and the magnitudes of each 
band were summed. The audio was represented by a 96-by-64-by-1-by-L 
array, where 96 is the number of spectrums in the mel spectrogram and 
64 is the number of mel bands. Finally, the mel spectrograms were 
converted to a log scale. The 96-by-64-by-1-by-L array of mel spectro-
grams was the input layer passed through YAMNet. The output from 
YAMNet (L-by-512 matrix) corresponds to confidence scores for each of 
the 521 sound classes over time. 

The post-processing consisted of selecting the sound regions labeled 
as “cough” for analysis. Firstly, to detect the sound event region, the 521 
confidence signals were passed through a moving mean filter with a 
window length of 7 and each signal through a moving median filter with 
a window length of 3. Although other better filters exists, combining 
mean and median filters offers good performance at reasonable 
computational costs [27]. The window length of the mean filter was 
computed as the Segment duration/Hope length − 1 where Segment_dura-
tion was the duration of the L segments (0.98 s) and Hope_length was the 
hope length between two consecutive segments (0.1225 s). The length of 
the median filter was established considering optimal computational 
costs. 

Table 1 
Corpus. UdL: University of Lleida; UC: University of Cambridge.   

UdL UC Coswara Virufy Pertussis Total 

C 49 142 107 48 0 346 
N 3 137 133 73 0 346 
NC 0 53 48 0 0 101 
PT 0 0 0 0 20 20 
Total 52 332 288 121 20 813  

Table 2 
Demographic dataset properties. NA: Data not-available.   

C N NC PT 

Males (%) 68.0 50.5 55.2 NA 
Females (%) 32.0 49.5 44.8 NA 
Age 48.9 ± 11.9  40.8 ± 9.1  44.6 ± 7.3  NA  
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Then, the confidence signals were converted into binary masks. After 
running several trials, a threshold of 0.35 was set because it showed the 
best performance at detecting “cough” samples. Any sound shorter than 
0.5 s was discarded for analysis and regions shorter than 0.25 s were 
merged. 

The identified sound regions that overlapped by 50% or more were 
consolidated into single regions. The region start time selected was the 
smallest start time and the region end time selected was the largest end 
time of all sounds in the group. 

Then, the sound regions labelled as “cough” by YAMNET were 
selected for analysis. The boundaries of these cough samples were 
selected by using the detectSpeech algorithm available in [23], 
which is based on [28] using a Hann window with 0.03⋅Sampling rate 
seconds hop. Finally, the first 600 ms of each cough sample identified 
were re-sampled at 8,820 Hz and normalised to obtain the Time-
–frequency representations and features. 

Fig. 4 illustrates the process of the automatic identification of cough 
boundaries in a raw audio file. Fig. 4a shows the sound classification 
performed by YAMNET. Fig. 4b shows the resulting audio signal after 
the selection of those audio regions labelled as “cough”. Fig. 4c shows 
the boundaries of the cough samples defined for analysis. 

2.3. Time–frequency Representation 

The Wigner distribution (WD) has been used in different fields and 
applied to the study of time-varying and strongly non-stationary sys-
tems. Since the energy is a quadratic representation of the signal, the 
quadratic structure of the time–frequency representation (TFR) is intu-
itive and reasonably accepted when the TFR is interpreted as an energy 
distribution in time and frequency [29]. From all TFRs that represent 
energy, the WD satisfies many desired mathematical properties. For 
example, the WD is always real, symmetrical with respect to the time 
and frequency axes, satisfying the marginal properties and the instan-
taneous frequency. Furthermore, the group delay may be obtained. Eq. 1 
represents the WD of the signal x(t). 

WD
(

t, f
)

=

∫

x
(

t+ τ
/

2
)

x*
(

t − τ
/

2
)

e− j2πf τdτ, (1)  

where t and f represent time and frequency respectively, and x*(t) is the 
conjugate of x(t). 

Basically, the WD of a real signal x(t) is calculated in a similar way to 
a convolution. At each particular time, the signal is overlapped by itself 
and inverted on the time axis, and multiplied by itself. Finally, the 
Fourier transform of this product is carried out. Note that neither will 
the WD be necessarily zero when x(t) nor would the WD necessarily be 
zero at frequencies that do not exist in the spectrum. Evidence of this 
phenomenon has been called interference terms and cross-terms. The 
interference terms are undesired since they make it difficult to obtain a 
clear and intuitive spectrum of the signal, as two energy regions 
perfectly delimited are expected to be obtained. 

The possibility of using the WD as a representation of the signal 
spectral density at each particular time induces the generation of 
another distribution from the WD to minimise these interference terms 
while simultaneously maintaining certain properties. To achieve this, 
we calculated the convolution of the WD of each cough sample was 
calculated with the Choi–Williams exponential function h(t,f) [30] (Eq. 
2). By convolving the Wigner distribution with the Choi–Williams 
exponential, the Choi–Williams distribution (CWD) was obtained (Eq. 
3). 

Fig. 1. Overview of the automatic cough identification process.  

Fig. 2. YAMNet Body Architecture. Conv: Convolution. dw: Depthwise. pw: Pointwise.  

Fig. 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: 
Depthwise Separable convolutions with Depthwise and Pointwise layers fol-
lowed by batchnorm and ReLU. 

A. Tena et al.                                                                                                                                                                                                                                    



Biomedical Signal Processing and Control 71 (2022) 103175

4

h

⎛

⎜
⎝t, f

⎞

⎟
⎠ =

̅̅̅̅̅
4π
σc

√

e− 4π2(tf )2
σc , (2)  

where σc is a scaling factor. 

CWD
(

t, f
)

=

∫∫

h
(

t − t′, f − f ′
)

WD
(

t′, f ′
)

dt′ df ′ (3) 

CWD preserves the properties of WD [30,31], such as the marginal 
properties and instantaneous frequency. Moreover, it is able to reduce 
the WD interference by estimating an adequate σc parameter. In this 
study, the σc parameter was established at 0.05 to eliminate the inter-
ference produced. So, the CWD is a new function of the time–frequency 
distribution that allows the interference terms to be minimised. 

Then, in order to obtain statistical parameters, the density function 
CWD(f , t) was normalised to have an area equal to 1. So, it can be 
associated with a joint probability density function CWDN(f , t) of the 
time and frequency variables. Their marginal distributions, which do not 
contain the interference, still represent, although in a normalised 
manner, the instantaneous power (Eq. 4) and and spectral density en-
ergy (Eq. 5) of the original signal. 

mt

(

t
)

=

∫ ∞

− ∞
CWDN

(

f , t
)

df = |x(t)|2 (4)  

mf

(

f
)

=

∫ ∞

− ∞
CWDN

(

f , t
)

dt = |X(f )|2 (5) 

Therefore, the group delay (Eq. 6) and the mean frequency of the 
spectrum (Eq. 7) can be defined as: 

tg =
∫∫

tCWDN

(

t, f
)

dtdf (6)  

fm =

∫∫

fCWDN

(

t, f
)

dt df (7) 

The joint time–frequency moments of a non-stationary signal 
comprise a set of time-varying parameters that characterise the signal 
spectrum as it evolves over time. They are related to the conditional 
temporal moments and the joint time–frequency moments. The joint 
time–frequency moment is an integral function of frequency, given time, 
and marginal distribution. The conditional temporal moment is an in-
tegral function of time, given frequency, and marginal distribution. The 
calculation of the joint time–frequency moment tnfm (Eq. 8) is a double 

Fig. 4. Automatic identification of cough samples in a raw audio file.  
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integral through time and frequency [32]. 

〈tnf m〉 =
∫∫
(
t − tg

)n
(f − fm)mCWDN

(

t, f
)

dt df (8)  

where n and m are the frequency and time moment orders. 
The moments of the marginal density functions, that define the 

relationship between mt(t) and mf (f),
〈
mt(t)nmf (f)m〉, are given in Eq. 9. 

〈
mt(t)nmf (f )m

〉
=

1
std
(
mt(t)n

)
std
(
mf (f )m

)

∫∫
(
mt
(
t
)
− mt(t)

)n
(
mf

(
f
)

− mf
(
f
))m

dt df (9) 

CWD minimises the interference. However, negative values still 
remain. To solve this issue, the CWD was reformulated as the product of 
its marginal distributions. Therefore, the joint probability density dis-
tribution pD (Eq. 10) was obtained. This procedure was only possible 
because the marginal distributions of the CWD were statistically inde-
pendent. To corroborate this, the moments of the CWDN from n = 1 and 
m = 1 to n = 15 and m = 15 were computed, and little covariability was 
observed. This meant that the marginal distributions could be consid-
ered statistically independent. 

pD
(
f , t
)
= mf

(
f
)
⋅mt
(
t
)

(10) 

Fig. 5(a) corresponds to the WD of a cough sample. It shows how the 
interference terms of the WD make it difficult to obtain a clear and 
intuitive spectrum of the signal. The new function pD(f , t) (Fig. 5(c)) is 
equal to WD without interference (as CWD, Fig. 5(b)) and negative 
values. 

2.4. Time–frequency features 

This section explains how a total of 39 features were obtained from 
the time frequency representation of each cough sample. 28 of them 
corresponded to the instantaneous spectral energy, instantaneous fre-
quency, instantaneous frequency peak and spectral information. These 
were obtained by dividing the spectrum (0–4,410 Hz) into 7 frequency 
bands: 1, 0–80 Hz; 2, 80–250 Hz; 3, 250–550 Hz; 4, 550–900 Hz; 5, 
900–1,500 Hz; 6, 1,500–3,000 Hz; 7, 3,000–4,410 Hz. The mean fre-
quency of the total spectrum, the joint, instantaneous and spectral 
Shannon entropies, the Kurtosis, 3 joint time–frequency moments and 3 
joint moments of the marginal signals of instantaneous power and 
spectral density were also computed. 

The instantaneous spectral energy, E(t) (Eq. 11), was calculated for 
each cough sample as the pD(f , t) integral in the frequency domain. Next, 
the instantaneous frequency, fmi(t), of the spectrum was computed [31] 
as the average frequency of the spectrum with respect to time (Eq. 12). 

E

(

t

)

=

∫ f2

f1
pD

(

f , t

)

df , (11)  

where f1 and f2 are the lower and upper frequencies of each band. 

fmi

(

t

)

=

∫ f2

f1

1
E(t)

fpD

(

f , t

)

df (12) 

The Instantaneous Frequency Peak, f Cres(t) (Eq. 13), is defined as 
the maximum frequency value at every instant. 

f Cres

(

t

)

=
1

E(t)
argmaxf

[
∏f2

f1

f ⋅pD

(

f , t

)]

(13) 

Fig. 5. Time–frequency representations of the same COVID-19 subject.  
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Then, the joint Shannon (H tf), instantaneous (H t) and spectral 
information (H f) entropies were measured by means of the Shannon 
entropy method. Shannon entropies were used to quantify the regular-
ity, uncertainty or randomness of these distributions. Entropy can ex-
press the information mean that an event provides when it takes place, 
the uncertainty about the outcome of an event and the dispersion of the 
probabilities with which the events take place. 

Therefore, to obtain the entropy measurements from the pD(f , t) and 
with the aim of having a range of values able to discriminate levels of 
spectral amplitude accurately enough, pD(f , t) was quantified with N =

2q levels and q = 20. When the joint probability density function is 
quantified (pDN(f , t)), the joint Shannon entropy (H tf), in this case in a 
range of 0 to 20 bits, can be obtained (Eq. 14). 

H tf = −

∫ ∫

log2

(

pDN

(

t, f
))

⋅pDN

(

t, f
)

dfdt (14) 

According to Eq. 10, the joint probability density distribution 
quantified (pDN(f , t)) is defined in Eq. 15. 

pDN
(
t, f
)
= mfN ⋅mtN , (15)  

where mtN(t) is the quantified instantaneous marginal obtained from the 
mt(t) and mfN(f) is the quantified frequency marginal obtained from the 
mf (f). Therefore, the joint entropy can also be expressed as in Eq. 16. 

H tf = H t+H f , (16)  

where H t (Eq. 17) and H f (Eq. 18) are the instantaneous and spectral 
entropy respectively. 

H t = −

∫

log2

(

mtN

(

t
))

⋅mtN

(

t
)

dt (17)  

H f = −

∫

log2

(

mfN

(

f
))

⋅mfN

(

f
)

df (18) 

Then, the spectral information, IE(f) (Eq. 19) is obtained. 

IE
(
f
)
= − log2

(
mfN
(
f
))

(19) 

Then, the Kurtosis (K) can be found (Eq. 20). 

K =
〈
mt(t)nmf (f )m

〉
(20)  

for n = 4 and m = 0. 
Starting from the computed parameters E(t), fm, fmi(t), f Cres(t),H tf ,

H t,H f , IE(f), 〈tnfm〉 and K, a total of 39 features were obtained. The 
averages of E(t), fmi(t), f Cres(t) and IE(t) were obtained for each of the 7 
frequency bands: 1, 0–80 Hz; 2, 80–250 Hz; 3, 250–550 Hz; 4, 550–900 
Hz; 5, 900–1,500 Hz; 6, 1,500–3,000 Hz; 7, 3,000–4,410 Hz. The joint 
time–frequency moments 〈tnfm〉 for n = 1 and m = 1, n = 7 and m = 7 
and n = 15 and m = 15, and the same joint moments of the marginal 
signals of instantaneous power and spectral density 

〈
mt(t)nmf (f)m〉, 

were considered for analysis among all the moments computed. Then, 
the 39 features obtained were coded as follows:  

• f_Cres1…f_Cres7: As the average of f_Crest(t) for each 7-bands.  
• Enr_Bn1…Enr_Bn7: As the average of E(t) for each 7-bands.  
• fm: As the value of the parameter f_m.  
• f_Med1…f_Med7: As the average of fmi(t) for each 7-bands.  
• IE_Bn1…IE_Bn7: As the average of IE(f) for each 7-bands.  
• H_tf: As the value of the parameter H_tf.  
• H_f: As the value of the parameter H_f.  
• H_t: As the value of the parameter H_t.  
• kurt_Mgt: As the value of the parameter K.  
• momC11: As the value of the n = 1 and m = 1 joint time–frequency 

moment.  
• momC77: As the value of the n = 7 and m = 7 joint time–frequency 

moment. 

• momC15: As the value of the n = 15 and m = 15 joint time-
–frequency moment.  

• momM11: As the value of the n = 1 and m = 1 joint instantaneous 
power and spectral density moment.  

• momM77: As the value of the n = 7 and m = 7 joint instantaneous 
power and spectral density moment.  

• momM15: As the value of the n = 15 and m = 15 joint instantaneous 
power and spectral density moment. 

2.5. Feature selection 

The Recursive Feature Elimination (RFE) is a recursive process that 
ranks features according to some measure of their importance. At each 
iteration, feature importance is measured and the less relevant one is 
removed. The recursion is needed because for some measures the rela-
tive importance of each feature can change when evaluated over a 
different subset of features during the stepwise elimination process. RFE 
was implemented in R by using the caret package to select the set of 
features (Si) which obtained the best accuracy for each classification 
model. Performance evaluation of each set of features was done by using 
stratified 10-fold cross-validation [33]. 

2.6. Feature extraction 

Feature extraction is a process of dimensionality reduction by which 
an initial set of features is reduced while preserving the information in 
the original dataset. An Autoencoder was implemented in R using the 
Keras package to perform this task. 

An Autoencoder is a specific type of a neural network, one mainly 
designed to encode the input data into a compressed and meaningful 
representation, and then decode it back so that the reconstructed input is 
similar as possible to the original. The Autoencoder maps the input data 
x to a hidden representation using the function z = f(Px+b) para-
meterised by {P, b}. f is the activation function. The hidden represen-
tation is then mapped linearly to the output using x̂ = Wz + b′. The 
parameters are optimised to minimise the mean square error of ‖x̂ − x‖2

2 
over all training points. 

Fig. 6 shows the Autoencoder architecture employed. It consists of 
three modules: the encoder, the decoder and the bottleneck. The 
encoder is formed by an input layer of 39 nodes and two hidden layers of 
30 and 20 nodes respectively. The bottleneck has 15 nodes and the 
decoder consists of two hidden layers of 20 and 30 nodes respectively 
and an output layer of 39 nodes. The activation function selected was the 
tanh function. As the purpose of our Autoencoder was to reduce the 
feature range of our original dataset, we took the compressed data 
contained in the bottleneck layer. So, the 39 original features were 
reduced to 15. 

2.7. Classification models 

Five groups of subjects (C, N, NC, PT and NNC) were defined for 
analysis. The C group contained COVID-19 subjects. N contained sub-
jects tested COVID-19 negative who had no cough. NC was formed of 
non-COVID-19 subjects with non-specific–cough as a symptom. PT had 
non-COVID-19 subjects with pertussis cough. Finally, the NNC group 
merged all non-COVID-19 subjects (N, NC and PT). Then, four classifi-
cation experiments were performed. These consisted of C vs. N, C vs. NC, 
C vs. PT and C vs. NNC. 

The most popular supervised models in cough classification were 
used and were implemented in R. These were Random Forest (RF), 
Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), 
Logistic Regression (LR) and Naïve Bayes (NB). The classification 
models were fitted on the one hand to the selected features obtained by 
means of RFE and, on the other hand, to the features extracted by means 
of the Autoencoder. Finally, 10-fold cross-validation [33] was 
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implemented in R using the caret package to draw suitable conclusions. 
An upsampling technique with replacement was applied to the training 
data by making the group distributions equal to deal with the unbal-
anced dataset that could bias the classification models. 

The first classifier employed was the RF. It was implemented using 
the R randomForest package with a forest of 500 decision tree pre-
dictors. The optimal number of features that were randomly distributed 
to each decision tree, was optimized for each classification problem by 
using the train function included in the R caret package. Each decision 
tree performed the classification independently and RF computed each 
tree predictor classification as one “vote”. The majority of the votes 
computed by all the tree predictors decided the overall RF prediction. 

Next, SVM, a powerful kernel-based classification paradigm, was 
implemented using the R e1071 package. A C-Support Vector Classifi-
cation [34] was used with a linear kernel that was optimised through the 
tune function, assigning values 0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 1.25, 
1.5, 1.75, 2 and 5 to the C parameter, which controls the trade-off be-
tween a low training error and a low testing error. The value of C which 
gave the best performance was chosen. 

Then, LDA was implemented using the R MASS package. This esti-
mated the mean and variance from the training set and computed the 
covariance matrix to capture the co-variance between the groups to 
make predictions by estimating the probability that the test set belongs 
to every group. 

LR was implemented by using the Gaussian generalised linear model, 
applying the R Stats package for binomial distributions. A logit link 
function was used to model the probability of “success”. The purpose of 
the logit link was to take a linear combination of the covariate values 
and convert these into a probability scale. 

Finally, standard NB based on applying Bayes’ theorem was imple-
mented using the e1071 package [35]. 

2.8. Performance metrics 

There are four possible results in the classification task: If the sample 
is positive and it is classified as positive, it is counted as a true positive 
(TP) and when classified as negative, it is considered a false negative 
(FN). If the sample is negative and is classified as negative or positive, it 
is considered a true negative (TN) or false positive (FP) respectively. Based 
on that, the Accuracy, Sensitivity (also known as recall), Specificity, 
Precision and F-score metrics ([36]) were used to evaluate the perfor-
mance of the classification models using a classification threshold of 
50%. The Area Under the Curve (AUC) was also calculated.  

• Accuracy (Eq. 21). Ratio between the correctly classified samples. 

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(21)    

• Sensitivity (Eq. 22). Proportion of correctly classified positive 
samples compared to the total number of positive samples. 

Sensitivity =
TP

TP+ FN
(22)    

• Specificity (Eq. 23). Proportion of correctly classified negative 
samples compared to the total number of negative samples. 

Specificity =
TN

TN + FP
(23)    

• Precision (Eq. 24). Proportion of positive samples that were 
correctly classified compared to the total number of positive pre-
dicted samples. 

Precision =
TP

FP+ TP
(24)    

• F-score (Eq. 25). Harmonic mean of the precision and sensitivity. 

F − score =
2⋅Precision⋅Recall
Precision+ Recall

=
2⋅TP

2⋅TP+ FP+ FN
(25)    

• AUC (Eq. 26). The Receiver operating characteristics (ROC) curve is 
a two-dimensional graph in which Sensitivity is plotted on the y-axis 
and 1 − Specificity is plotted on the x-axis. The points of the curve are 
obtained by sweeping the classification threshold from the most 
positive classification value to the most negative. The AUC score is a 
scalar value that measures the area under the ROC curve and is al-
ways bounded between 0..1. 

AUC =
1
mn

∑m

i=1

∑n

j=1
1pi>pj , (26)  

where i runs over all m samples with true label positive, and j runs 
over all n samples with true label negative; pi and pj denote the 

Fig. 6. Autoencoder Architecture.  
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probability score assigned by the classifier to sample i and j, 
respectively. 

3. Results 

Firstly, a visual appraisal of time–frequency representations of 
coughs from C, N, NC and PT subjects is presented. Then, the distribu-
tions of the features obtained for each of the five groups defined for 
analysis were explored. Finally, the four experiments defined were 
implemented and the classification models were evaluated. 

3.1. pD Representation 

Fig. 7 shows the comparison of the pD(f , t) of coughs from C, N, NC 
and PT subjects. Fig. 7(a) corresponds to a C subject who tested positive 
in a PCR. Figs. 7(b), 7(c) and 7(d) correspond to N, NC and PT subjects 
respectively. 

The visual appraisal of Fig. 7(a) shows how the energy of the pD(f , t)
is concentrated in the frequency range from 0 to 1 kHz. In Fig. 7(b), low- 
energy frequency components can be observed at higher frequencies. In 
Fig. 7(c), low-energy frequency components can be also observed at 
higher frequencies but only ranged from 0 to 2 kHz. In Fig. 7(d) energy 
components of the pD(f , t) can be observed in the frequency range from 
0 to 3 kHz although the higher amplitudes are present in frequencies 
ranging from 0 to 1 kHz. It can be observed that there are no interference 

terms in any figure. 

3.2. Data exploration 

A total of 39 time–frequency features were obtained in this study: 
f_Cres1:f_Cres7, Enr_Bn1:Enr_Bn7, f_Med1:f_Med7, IE_Bn1:IE_Bn7, H_tf, 
H_t, H_f, fm, kurt_Mgt, MomC_11, MomC_77, MomC_1515, MomM_11, 
MomM_77 and MomC_1515. 

There were remarkable differences in the mean and standard devi-
ation between the features, and more specifically, in the following fea-
tures (Fig. 8): f_Cres1, f_Cres3, Enr_Bn1, Enr_Bn2, Enr_Bn6, f_Med1, 
f_Med3, f_Med7, IE_Bn2, IE_Bn3, IE_Bn5 and IE_Bn7. 

3.3. Feature Selection, Feature Extraction and Classification Models 

The set of features which obtained the best accuracy by first applying 
RFE and then Autoencoder to each classification model were selected for 
analysis. Then, each classification model was applied to these selected 
features. 

3.3.1. RFE 
Table 3 shows the classification performance of the classification 

models fitted with the features selected by RFE tested for the 4 experi-
ments defined. 

In the first experiment, C vs. N, the results indicate that RF obtained 

Fig. 7. pD(f , t) cough representation of C, N, NC and PT subjects.  
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the best overall performance with an Accuracy= 89.79%, Sensitivity=
93.81, F-score= 92.10 and an AUC= 96.04. SVM obtained the best 
Specificity, 84.90% and the best Precision, 91.84%. 

IE_Bn7, Enr_Bn1, IE_Bn2, f_Med1, IE_Bn1 were the top five features 
obtained with RFE which fitted the model that obtained the best overall 
performance (RF). The model was also fitted with f_Med7, IE_Bn5, 
Enr_Bn6, Enr_Bn7, fm, f_Med2, Enr_Bn3, f_Cres7, Enr_Bn5, H_f, kurt_Mgt, 
Enr_Bn2, IE_Bn6, IE_Bn3, f_Med6, MomC_1515, f_Cres1, f_Med5, f_Med4, 
f_Cres2, H_t, f_Cres6, Enr_Bn4, IE_Bn4, MomC_11, f_Med3, MomC_77, 
MomM_11, f_Cres3, H_tf, f_Cres5, MomM_77, MomM_1515 and f_Cres4, 
which were the set of features selected by RFE. 

In the second experiment, C vs. NC, the results indicate that RF ob-
tained the best Accuracy= 88.79%, Specificity= 76.09%, Precision=
88.42%, F-score= 91.79% and AUC= 92.53. NB obtained the best 
Sensitivity= 95.86%. 

IE_Bn3, f_Med7, IE_Bn1, Enr_Bn2 and Enr_Bn3 were the top five 
features which fitted the model that obtained the best overall perfor-
mance (RF). The remaining features selected by REF were Enr_Bn1, 
f_Med1, Enr_Bn4, IE_Bn2, f_Cres1, IE_Bn7, f_Med2, f_Med4, Enr_Bn5, 
MomM_11, IE_Bn6, f_Cres2, H_t, f_Med6, f_Med5, IE_Bn5, f_Med3, 
Enr_Bn7, kurt_Mgt, IE_Bn4, H_f, Enr_Bn6, fm, MomM_1515, H_tf, f_Cres6, 
f_Cres7, MomM77, f_Cres3, f_Cres4, MomC_1515, f_Cres5, MomC_77 and 
MomC_11. 

In the third experiment, C vs. NNC, the results indicate that RF ob-
tained the best Accuracy= 85.53%, Sensitivity= 85.96, Specificity=
85.09, Precision= 85.14, F-score= 85.58 and AUC= 89.65. 

IE_Bn3, f_Med7, IE_Bn1, Enr_Bn2 and Enr_Bn3 were the top five 
features which fitted the model that obtained the best overall perfor-
mance (RF). The remaining features selected by REF were Enr_Bn1, 
f_Med1, Enr_Bn4, IE_Bn2, f_Cres1, IE_Bn7, f_Med2, f_Med4, Enr_Bn5, 
MomM_11, IE_Bn6, f_Cres2, H_t, f_Med6, f_Med5, IE_Bn5, f_Med3, 
Enr_Bn7, kurt_Mgt, IE_Bn4, H_f, Enr_Bn6, fm, MomM_1515, H_tf, f_Cres6, 
f_Cres7, MomM77, f_Cres3, f_Cres4, MomC_1515, f_Cres5, MomC_77 and 
MomC_11. 

In the fourth experiment, C vs. PT, the results indicate that RF ob-
tained the best Accuracy= 94.81%, Sensitivity= 98.91 and F-score=
97.00. LR and LDA obtained the best Specificity= 85.00, LR obtained the 
best Precision= 97.13 and SVM obtained the best AUC= 97.29. 

Fig. 8. Box plot of the time–frequency features obtained from C, N, NC, NNC and PT groups. Remarkable differences in the mean and standard deviation can 
be shown. 

Table 3 
Classification performance of the models fitted with the features selected pre-
viously with RFE.    

C vs. N C vs. NC C vs. NNC C vs. PT 

RF Accuracy 89.79 88.79 85.53 94.81 
Sensitivity 93.81 95.49 85.96 98.91 
Specificity 81.54 76.09 85.09 72.00 
Precision 90.97 88.42 85.14 95.20 
F-score 92.10 91.79 85.58 97.00 
AUC 96.04 92.53 89.65 95.67 

SVM Accuracy 83.23 78.33 74.55 89.49 
Sensitivity 82.57 80.22 76.79 90.65 
Specificity 84.90 74.72 72.35 83.00 
Precision 91.84 85.76 73.80 96.75 
F-score 86.79 81.59 74.97 93.58 
AUC 92.15 88.35 75.73 97.29 

LR Accuracy 80.78 75.85 73.38 89.49 
Sensitivity 79.50 77.16 74.45 90.29 
Specificity 83.41 73.37 72.33 85.00 
Precision 90.84 84.78 73.02 97.13 
F-score 84.67 80.68 73.49 93.56 
AUC 92.73 87.98 75.86 88.82 

NB Accuracy 80.78 77.86 71.96 86.41 
Sensitivity 81.65 95.86 60.79 87.92 
Specificity 78.98 43.73 82.99 78.00 
Precision 88.95 76.39 77.87 95.75 
F-score 84.94 85.01 68.09 91.57 
AUC 87.50 82.07 73.94 92.06 

LDA Accuracy 79.56 76.32 72.32 84.16 
Sensitivity 78.08 78.24 73.91 84.00 
Specificity 82.68 72.68 70.57 85.00 
Precision 90.47 84.60 71.70 96.86 
F-score 83.53 81.20 72.52 89.95 
AUC 92.69 88.38 76.04 96.71  
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IE_Bn3, Enr_Bn4, Enr_Bn3, IE_Bn2, Enr_Bn2 were the top five features 
which fitted the RF model which obtained the best overall performance. 
The remaining features selected by RFE were f_Med1, IE_Bn1, f_Med7, 
f_Med4, f_Cres1, Enr_Bn1, IE_Bn6, f_Cres2, IE_Bn7, f_Med2 and f_Cres6. 

3.3.2. Autoencoder 
Then, the classification models were fitted with 15 features extracted 

by means of the Autoencoder. Table 4 shows the classification perfor-
mance of the classification models tested for the 4 experiments defined. 

In the first experiment, C vs. N, the results indicate that RF obtained 
the best Accuracy= 83.67%, Sensitivity= 89.58, F-score= 88.04 and 
AUC= 93.56. LDA obtained the best Specificity, 84.90% and the best 
Precision, 91.13%. 

In the second experiment, C vs. NC, the results indicate that RF ob-
tained the best Accuracy= 87.73%, Sensitivity= 96.94%, Specificity=
70.25%, Precision= 86.22%, F-score= 91.21% and AUC= 90.73. 

In the third experiment, C vs. NNC, the results show that RF obtained 
the best Accuracy= 79.74%, Sensitivity= 79.70, Specificity= 79.79, 
Precision= 79.58, F-score= 79.52 and AUC= 83.57. 

In the fourth experiment, C vs. PT, the results indicate that RF ob-
tained the best Accuracy= 91.92%, Sensitivity= 97.29 and F-score=
95.32. LDA obtained the best Specificity= 83.00, SVM obtained the best 
Precision= 96.12 and LR obtained the best AUC= 95.72. 

4. Discussion 

This research directly addresses a recent statement released by the 
WHO [1] which believes in the use of rapid tests essential to control 
people infected with COVID-19. We demonstrated the feasibility of 
automatic detection of COVID-19 positives from the time–frequency 
analysis of coughs. 

The visual appraisal of the time–frequency representations 
confirmed differences in the frequency distribution of the voluntary 
coughs of the C, N, NC and PT subjects. 

The features selected by RFE to fit the models obtained better results 

on the overall performance of the models than those features extracted 
by means of the Autoencoder. Furthermore, the rank of the features 
selected by RFE which fitted the model that obtained the best perfor-
mance depended highly on the experiment done. This means that when 
comparing coughs, a good selection of the features must be chosen. 

The classification models performed better when comparing C vs. PT 
than when comparing C vs. N, C vs. NC or C vs. NNC, although a good 
performance was observed for all the experiments. In C vs. PT, the 
metrics that performed better were Accuracy = 94.81%, Sensitivity =

98.91% for RF, Precision = 97.13% for LR, F − score = 97% for RF and 
AUC = 97.29 for SVM. This experiment better detected positive COVID- 
19 coughs but did not work so well for classifying pertussis coughs 
(Specificity = 85% for LR and LDA). Instead, in the other experiments, 
the detection of positive and negative cases was more balanced. This was 
specially so in the C vs. NNC experiment, which obtained the best 
Specificity = 85.09. This experiment reflects a more real case scenario 
where COVID-19 coughs co-exist with coughs of different patterns. In 
the four classification experiments done, RF showed the best overall 
performance. 

4.1. Limitations 

Although in general, high performance was obtained in RF, its 
Specificity was not the optimal. Overall, Specificity outcomes were 
lower. That means that correctly classifying negative samples is an issue. 
This must be due to classification mistakes in the dataset. Additional 
efforts must be made to curate the corpus. Furthermore, further analyses 
comparing COVID-19 cough patterns with cough patterns from other 
conditions, such as asthma or bronchitis, are needed. 

4.2. Comparison With Prior Work 

Other existing works, such as Laguarta et al. [8], extracted MFCCs 
from cough recordings and input them into a pre-trained CNN. Their 
model achieved an AUC of 97% with a Sensitivity = 98.5% and a Speci-
ficity of 94.2%. Pahar et al. [12] presented a machine-learning based 
COVID-19 cough classifier able to discriminate COVID-19 positive 
coughs from both COVID-19 negative and healthy coughs recorded on a 
smartphone. They obtained an AUC of 98% using the Resnet50 classifier 
to discriminate between COVID-19 positive and healthy coughs, while 
an LSTM classifier was best able to discriminate between COVID-19 
positive and COVID-19 negative coughs with an AUC of 94%. Brown 
et al. [13] used coughs and breathing to understand how discernible 
COVID-19 sounds are from those in asthma or healthy controls. Their 
results showed that a simple binary machine-learning classifier are able 
to classify healthy and COVID-19 sounds correctly. Their models ach-
ieved an AUC of above 80% across all tasks. 

The RF model used in this paper performed similarly to the ones used 
by other authors (Accuracy and AUC close to, or above 90% depending 
on the experiment) although automated cough detection introduced 
some performance penalty. Additionally, our methodology allows 
coughs in samples of raw audio recordings to be detected automatically 
by using the YAMNet deep neuronal network [17]. We also found the set 
of time–frequency features that could lead to distinguishing COVID-19 
coughs from other cough patterns. In addition, the high performance 
obtained in various sampling sources (UdL, UC, Virufy and Coswara) 
validates our method as a more generic proposal. 

Newer machine-learning works have shown lower results. For 
example, an accuracy of 85.2% with RF and 70.6% with CNN, were 
obtained in [14,15] respectively. Recently [16], an accuracy of 90% was 
obtained with a recurrent neural network (RNN) by using the Coswara 
dataset. However, the accuracy dropped to 80% with Coswara and 
Virufy simultaneously. This fact demonstrates that obtaining good out-
comes when different datasets are used is a challenge. Our proposal 
behaved much better even when three additional datasets (UdL, UC and 
Pertussis) were used. 

Table 4 
Classification performance of the models fitted with the 15 features extracted by 
means of the Autoencoder.    

C vs. N C vs. NC C vs. NNC C vs. PT 

RF Accuracy 83.67 87.73 79.74 91.92 
Sensitivity 89.58 96.94 79.70 97.29 
Specificity 71.58 70.25 79.79 62.00 
Precision 86.62 86.22 79.58 93.48 
F-score 88.04 91.21 79.52 95.32 
AUC 93.56 90.73 83.57 95.01 

SVM Accuracy 79.57 71.85 68.30 81.72 
Sensitivity 77.54 72.85 67.97 81.85 
Specificity 83.79 70.03 68.61 81.00 
Precision 91.01 82.32 68.23 96.12 
F-score 83.36 77.18 68.00 88.22 
AUC 91.08 83.43 69.08 95.23 

LR Accuracy 79.21 69.97 66.60 78.98 
Sensitivity 76.99 70.16 65.84 79.17 
Specificity 83.79 69.65 67.36 78.00 
Precision 90.79 81.45 66.51 95.41 
F-score 83.04 75.29 66.11 86.16 
AUC 91.16 83.32 68.61 95.72 

NB Accuracy 76.53 73.97 70.98 84.00 
Sensitivity 73.04 80.21 72.66 86.15 
Specificity 83.80 62.18 69.32 72.00 
Precision 90.16 80.20 70.25 94.55 
F-score 80.47 80.03 71.35 90.08 
AUC 89.85 81.84 73.53 95.14 

LDA Accuracy 77.76 71.61 67.23 82.21 
Sensitivity 74.30 72.85 67.25 79.71 
Specificity 84.90 69.32 67.19 83.00 
Precision 91.13 81.92 67.00 95.73 
F-score 81.59 77.01 67.04 88.55 
AUC 91.00 82.97 68.48 95.33  
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5. Conclusions 

This study demonstrates the feasibility of the automatic detection of 
COVID-19 from coughs. Excellent results were achieved by fitting an RF 
model with the set of the time–frequency features selected by RFE for 
distinguishing COVID-19 coughs. This new methodology presented 
could lead to automatic identification of COVID-19 by using existing 
simple and portable devices. It could be the core of a pre-screening 
mobile app for use as an early response to further COVID-19 out-
breaks or other pandemics that may arise in the future. 

We will gather more quality data, especially different cough patterns 
from other conditions, and curate the actual corpus to further train, fine- 
tune, and improving performance of the models. 
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Abstract: The term “bulbar involvement” is employed in ALS to refer to deterioration of motor
neurons within the corticobulbar area of the brainstem, which results in speech and swallowing
dysfunctions. One of the primary symptoms is a deterioration of the voice. Early detection is crucial
for improving the quality of life and lifespan of ALS patients suffering from bulbar involvement.
The main objective, and the principal contribution, of this research, was to design a new method-
ology, based on the phonatory-subsystem and time-frequency characteristics for detecting bulbar
involvement automatically. This study focused on providing a set of 50 phonatory-subsystem and
time-frequency features to detect this deficiency in males and females through the utterance of the five
Spanish vowels. Multivariant Analysis of Variance was then used to select the statistically significant
features, and the most common supervised classifications models were analyzed. A set of statistically
significant features was obtained for males and females to capture this dysfunction. To date, the accu-
racy obtained (98.01% for females and 96.10% for males employing a random forest) outperformed
the models in the literature. Adding time-frequency features to more classical phonatory-subsystem
features increases the prediction capabilities of the machine-learning models for detecting bulbar
involvement. Studying men and women separately gives greater success. The proposed method can
be deployed in any kind of recording device (i.e., smartphone).

Keywords: ALS; bulbar involvement; voice; diagnosis; phonatory subsystem; time frequency; ma-
chine learning

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an irregular
and asymmetric progression, characterized by a progressive loss of both upper and lower
motor neurons and that leads to muscular atrophy, paralysis and death, mainly from
respiratory failure. The life expectancy of patients with ALS is between 3 and 5 years from
the onset of symptoms.

ALS causes muscle weakness and movement, speech, eating and respiratory imped-
iments, leaving the patient reliant on caretakers and relatives and causing considerable
social costs. Currently, there is no cure for ALS, although early detection can lead to the use
of more appropriate therapies that may slow progress [1].

When the disease starts in the arms and legs, it is called spinal ALS (limb or spinal
onset; 80% of cases), and when it starts in the cranial nerve nuclei, it is called bulbar
ALS (bulbar onset; 20%). The bulbar muscle is responsible for speech and swallowing,
so patients with the later variant have a shorter life expectancy. However, dysarthria, or
slurred or difficult speech articulation, affects 80% of all ALS patients [2]. In bulbar ALS,
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these symptoms usually appear at the onset of the disease, while in spinal ALS, they appear
later. Early detection of bulbar involvement in those with ALS is crucial for better diagnosis
and prognosis, and could be the key to effectively slowing the development of the disease.

The authors in [3–5] demonstrated that the deterioration of the bulbar muscle affected
some phonatory-subsystem features. Among these were jitter, shimmer, harmonic-to-noise
ratio (HNR), pitch, formant trajectories, correlations of formants with articulation patterns,
fractal jitter, and Mel Frequency Cepstral Coefficients. Consequently, as suggested in
previous works [6–13], imperceptible changes in speech and voice can be detected through
objective measures.

Time-frequency representation (TFR), broadly applied to detecting several condi-
tions [14–18], has been recently used to detect pathological changes in voice signals [19].
TFR enables the evolution of the periodicity and frequency components to be observed
over time, allowing the analysis of non-stationary signals, such as voice signals [20]. The
spectrogram is the most common TFR for the analysis of audio signals. This representa-
tion corresponds to Cohen’s class of time-frequency energy distributions in general. The
depiction of a spectrogram is not optimal in terms of resolution quality. There are Cohen
class representations that have greater resolution quality. They are all made by smoothing
the Wigner distribution, which has the finest resolution but the most detrimental interfer-
ence. The smoothing functions chosen strike a balance between resolution quality and the
elimination of detrimental interference terms.

The authors in [21] used TFR representations from the Cohen class for the onset
signal of the vocal fold to diagnose various phonation problems induced by pathological
alterations. To assess the voice signal, Cohen class TFRs were combined with a cone kernel
distribution to provide optimum smoothness across time. The authors demonstrated that
even minor pathogenic alterations in the vocal folds can be seen in TFR, allowing for
sensitive affection detection and diagnosis.

In ALS, voice and speech impairment can occur up to 3 years before a diagnosis [22],
and when the bulbar muscle function is damaged, voice and speech deteriorates signifi-
cantly as the disease advances [23]. Features obtained from Cohen class TFRs could aid in
the identification of bulbar involvement even earlier than human hearing can.

Centering attention on the subject at hand, R. Norel et al. [24] developed machine-
learning models that recognize the presence and severity of ALS based on a variety of
frequency, spectral, and voice quality characteristics. An et al. [25] employed Convolutional
Neural Networks to classify the intelligible speech of ALS patients compared to healthy
people. Finally, Gutz et al. [26] combined SVM and feature filtering techniques.

Based on previous works, and starting from our recent studies [6,18], our paper
suggests using phonatory-subsystem [6] and time-frequency [18] features jointly. This also
is our hypothesis and main contribution. These features, extracted from a portion of the
five Spanish vowels, could enhance the performance of the classification models for the
early detection of bulbar involvement, for which the main goals (and contributions) of this
research are:

1. To design a new methodology for the automatic detection of bulbar involvement in
males and females based on phonatory-subsystem and time-frequency features.

2. To obtain a set of statistically significant features for diagnosing bulbar involvement
efficiently.

3. To analyze the performance of the most common supervised classification models to
improve the diagnosis of bulbar involvement.

2. Methods
2.1. Participants

Of the 65 participants selected for this study, 14 of those with ALS had been diagnosed
with bulbar involvement (11 females and 3 males; mean = 56.8 years, standard deviation =
12.3 years), 33 had ALS but had not been diagnosed with bulbar involvement (8 females
and 25 males; mean = 57.6 years, standard deviation = 12.0 years) and 18 were healthy
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individuals (9 females and 9 males; mean = 45.2 years, standard deviation = 12.2 years).
The main clinical records of the ALS participants are summarized in Table 1. It can be seen
that the sample is well age-balanced.

Table 1. ALS participants clinical records. Notation: Age (in years). ALSFR-R (Rating Scale-Revised):
scores (0–48) the severity of ALS; Bulbar: Bulbar involvement; NA: Data not available.

Age Sex ALSFR-R Bulbar Bulbar Onset Symptoms

37 F 37 NO No Symptoms
38 M 6 YES NA
39 M 43 NO No Symptoms
41 M 34 NO No Symptoms
41 M 34 NO No Symptoms
43 F 21 YES Dysphagia
44 F 19 NO No Symptoms
48 F 36 NO No Symptoms
48 F 29 YES Dysphagia
48 M 31 NO No Symptoms
48 M 45 NO No Symptoms
49 M NA NO No Symptoms
50 M 39 NO No Symptoms
52 M 43 NO No Symptoms
52 F 27 YES Dysphagia
52 M 33 NO No Symptoms
53 F 29 YES Dysphagia/Dysarthria
55 M 26 NO No Symptoms
55 M 24 NO No Symptoms
56 M 35 NO No Symptoms
56 M 27 NO No Symptoms
58 F 46 YES Dysarthria
58 M 28 YES NA
59 F 33 YES NA
60 M 46 YES NA
63 M 22 NO No Symptoms
63 M 42 NO No Symptoms
63 M NA NO No Symptoms
65 M 24 NO No Symptoms
66 F 41 NO No Symptoms
67 M NA NO No Symptoms
67 F 33 YES Dyspnoea
68 M NA NO No Symptoms
68 F 21 NO No Symptoms
69 M 37 NO No Symptoms
70 F 28 YES Dysphagia
70 F 17 NO No Symptoms
70 M 46 NO No Symptoms
70 M 27 NO No Symptoms
70 F 23 YES Dysphagia/Dysarthria
71 M 39 NO No Symptoms
71 F 32 YES Dysphagia
72 M 30 NO No Symptoms
72 F 38 NO No Symptoms
76 F 30 NO No Symptoms
81 M 36 NO No Symptoms
81 M 28 NO No Symptoms
84 F 30 YES NA
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The ALS patients’ voices were checked by a multidisciplinary clinical team and finally
selected by a neurologist for this study.

The control subjects were recruited through personal advertisements in the hospital
facilities by the researchers involved in this study. After contacting the volunteers, they
received an information sheet explaining the procedure and goal of the study as well as the
exclusion criteria. They were interviewed through a questionnaire and those who did not
report any voice issue or relevant previous condition were selected for the study.

The control subjects were recruited through personal advertisements conducted in the
hospital facilities by the researchers involved in this study. Most of them were companions
of ALS patients. After contacting them, control subjects received an information sheet
explaining the procedures and goals of the study as well as the exclusion criteria. Control
subjects were informed that the study focused on voice analysis to distinguish bulbar
involvement in ALS patients. They were interviewed through a questionnaire. Those who
did not report any voice issue or relevant previous condition were selected for the study.
When they were eligible and still willing to participate, they were invited to come to the
hospital room where the voice samples were registered.

2.2. Vowel Recording

There are five vowel segments in the Spanish phonological system (a, e, i, o, u). These
were obtained and analyzed from each ALS patient, all of whom were Spanish speakers.

Under medium vocal loudness conditions, each participant uttered a sustained sample
of each Spanish vowel for 3–4 s. The recordings were made in a standard hospital room
using a laptop and a USB EMITA Streaming GXT 252 microphone calibrated for dBSPL.
It has a sensitivity of −35 dBSPL and a maximum sound pressure level of 135 dBSPL.
The participants sat on a chair with the microphone positioned approximately 30 centime-
ters from their mouths. The voice signals were recorded using Audacity, an open-source
application [27], at a sampling rate of 44.100 Hz and 32-bit quantization.

A visual inspection of the spectrograms of the voice signals was conducted similarly
to the procedure in [28] to analyze the signal type of the participants’ voices. Their results
suggested four voice types, of which only type 1 and type 2 were considered suitable for
perturbation analysis.

In this study, all the control subjects presented type 1 voice signals, which were
periodic without strong modulations or subharmonics. They showed multiple clearly and
nearly straight defined harmonics.

Among the 14 ALS patients with bulbar involvement, 10 patients presented type 1
voice signals, which were nearly periodic and showed some clearly defined harmonics.
However, a small amount of noise was observed in some voices (four of them). Four of
the ALS patients with bulbar involvement presented type 2 voice signals. These had some
strong modulations and subharmonics, yet still presented stable and periodic segments in
their voices.

Among the 33 ALS patients without bulbar involvement, 29 presented type 1 voice
signals, which were nearly periodic and showed multiple or at least some clearly de-
fined harmonics. Instead, four of them presented type 2 voice signals with some strong
modulations and subharmonics but still with stable and periodic segments.

It was observed that most of the information of the signal recordings was contained
in the range from 0 to 4000 Hz. Therefore, it was decided to decimate all the recording
signals sampled at 44.100 Hz using a decimated factor of 5. Signals re-sampled at 8820 Hz
were obtained.

Then, each re-sampled signal was standardized by means of the z-score technique.
The z-score measures the distance of a signal sample from the mean of the re-sampled
signal in terms of the standard deviation. The resulting standardized signal had mean 0
and standard deviation 1, and retained the shape properties of the re-sampled signal. For
the re-sampled signal with mean X and standard deviation S, the z-score of a signal sample
x was computed as:
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z =
(x− X)

S
(1)

Finally, a segment of 150 ms of each re-sampled and standardized signal (x(t)) was
chosen for analysis by tacking the midpoint at the center of the phonation.

2.3. Phonatory-Subsystem Features

A total of 15 features from the phonatory subsystem defined in [6,13] were used. They
were computed by means of the standard methods used in Praat [29] and the setting details
used were the same as in [6]. These features were:

• Fundamental period cycle-to-cycle variation (Jitter(absolute), Equation (2)).

Jitter(absolute) =
1

N − 1

N−1

∑
i=1
|Ti − Ti−1|, (2)

where N is the number of cycles and Ti the duration of the ith cycle.
• Relative period (Jitter(relative), Equation (3)).

Jitter(relative) =
1

N−1 ∑N−1
i=1 |Ti − Ti−1|
1
N ∑N

i=1 Ti
× 100 (3)

• Relative perturbation (Jitter(rap), Equation (4)).

Jitter(rap) =
1

N−1 ∑N−1
i=1 |Ti − 1

3 ∑i+1
n=i−1 Tn|

1
N ∑N

i=1 Ti
× 100 (4)

• Five-point period perturbation quotient (Jitter(ppq5), Equation (5)).

Jitter(ppq5) =
1

N−1 ∑N−2
i=2 |Ti − 1

5 ∑i+2
n=i−2 Tn|

1
N ∑N

i=1 Ti
× 100 (5)

• Variability of the peak-to-peak amplitude (Shimmer(dB), Equation (6)).

Shimmer(dB) =
1

N − 1

N−1

∑
i=1
|20× log

∣∣∣∣
(

Ai+1

Ai

)∣∣∣∣, (6)

where Ai is the extracted peak-to-peak amplitude data and N is the number of ex-
tracted fundamental periods.

• Relative amplitudes of consecutive periods (Shimmer(relative), Equation (7)).

Shimmer(relative) =
1

N−1 ∑N−1
i=1 |Ai − Ai+1|
1
N ∑N

i=1 Ai
× 100 (7)

• Three-, five- and eleven-point amplitude perturbation (Shimmer(apqP), Equation (8)).

Shimmer(apqP) =
1

N−1 ∑N−1
i=1 |Ai − ( 1

P ∑i+1
n=i−1 An)|

1
N ∑N

i=1 Ai
× 100, (8)

where P = {3, 5 and 11}.
• Mean and standard deviation (HNR(mean) and HNR(SD)) of the harmonics-to-noise-

ratio (HNR, Equation (9)).

HNR = 10× log10
r(T0)

1− r(T0)
, (9)
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where r(T0) is the second local maximum of the normalized auto-correlation function
and T0 is the period of the signal.

• Mean, standard deviation, minimum and maximum value of the pitch (pitch(mean),
pitch(SD), pitch(min) and pitch(max)). See [29] for more details about obtaining
the pitch.

2.4. Time-Frequency Features

The methods employed to obtain the time-frequency features were inspired by the
previous work, presented in [16,17], and implemented with MATLAB [30].

First, the Wigner distribution (WD) of the real signal x(t) of each voice segment was
obtained and convoluted with the Choi-Williams exponential function. The resulting
Choi-Williams distribution was normalized (CWDN( f , t)). For more details, see [18].

Then, the joint probability density distribution pD( f , t) (Equation (10)) was obtained.

pD( f , t) = mt(t) ·m f ( f ), (10)

where mt(t), instantaneous power, and m f ( f ), spectral energy density, are the marginal
density functions of CWDN( f , t).

According to Equation (10), pD can be only computed as the product of the marginal
density functions mt(t) and m f ( f ) (of CWDN) if they are statistically independent. To
corroborate this assumption, we computed the joint time-frequency moments of the CWDN
(〈tn f m〉 from n = 1 and m = 1 to n = 15 and m = 15 where n and m are the frequency and
time moment orders) of the vowels of all the participants. All of these were 0 or very close
to 0. This confirmed the statistical independence of mt(t) and m f ( f ).

pD( f , t) is completely free of interference and negative values. Thus, it is very useful
for extracting time-frequency features for classification.

Figure 1 shows the comparison of the pD( f , t) of the vowel “a” from three different
patients. Non-undesirable effects were observed in the pD( f , t). Figure 1a corresponds
to a patient without bulbar involvement. The pD( f , t) shows a voice rich in harmonics.
Figure 1b shows the pD( f , t) of the vowel “a” of a patient diagnosed with slight bulbar
involvement. Significant differences can be observed. Voice harmonics appear attenuated.
Figure 1c shows the pD( f , t) of an even more extreme case, diagnosed with severe bulbar
involvement. It can be seen that its voice harmonics appear even more attenuated.The
visual appraisal of these figures clearly shows the significant differences in the pD( f , t)
between ALS patients with and without bulbar involvement.

From the pD( f , t), a set of 30 features per vowel was obtained. Twenty-one features
were computed by dividing the spectrum (0–4410 Hz) into 7 frequency bands. These were
1, 0–80 Hz; 2, 80–250 Hz; 3, 250–550 Hz; 4, 550–900 Hz; 5, 900–1500 Hz; 6, 1500–3000 Hz;
7, 3000–4410 Hz. These bands were selected to capture the differences observed in the
time-frequency representations of the two groups of ALS patients by means of the visual
appraisal of pD( f , t) in the range of these frequency bands. These features were:

• Average instantaneous spectral energy (E(t), Equation (11)) for each frequency band
(E_Bn1. . . E_Bn7).

E(t) =
∫ f2

f1

pD( f , t)d f , (11)

where f1 and f2 are the lower and upper frequencies of each band.
• Instantaneous frequency peak ( f _Cres(t), Equation (12)) for each frequency band

(f_Cres1 . . . f_Cres7).

f _Cres(t) =
1

E(t)
argmax f

[
f2

∏
f1

f · pD( f , t)

]
(12)
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• Average instantaneous frequency ( fmi(t), Equation (13)) of the spectrum for each
frequency band (f_Med1. . . f_Med7).

fmi(t) =
∫ f2

f1

1
E(t)

f · pD( f , t)d f (13)

10 additional features were added:

• Instantaneous (H_t, Equation (14)) and spectral (H_f, Equation (15)) information
entropies. Furthermore, the joint Shannon entropy (H_tf, Equation (16)) was also used.

H_t = −
∫

log2(mtN(t)) ·mtN(t)dt, (14)

where mtN(t) is the quantified instantaneous marginal obtained from the mt(t) and
m f N( f ) is the quantified frequency marginal obtained from the m f ( f ).

H_ f = −
∫

log2(m f N( f )) ·m f N( f )d f (15)

H_t f = H_t + H_ f (16)

• Spectral information (IE(f), Equation (17)), for each frequency band (IE_Bn1. . . IE_Bn7).

IE( f ) = −log2(m f N( f )) (17)

• Kurtosis (K, Equation (18)).

K =
〈

mt(t)nm f ( f )m
〉

, (18)

where n = 4 and m = 0.
• Joint time-frequency moment (〈tn f m〉, [18,31]) where n and m (n, m = 1, 7, 15) are the

frequency and time moment orders, i.e., the following time-frequency moments were
used:

〈
t1f1〉,

〈
t7f7〉 and

〈
t15f15〉.

2.5. Feature Selection

From a total of 65 participants, 18 were labelled C (healthy group), 14 were labelled B
(ALS patients with bulbar involvement) and 33 were labelled NB (ALS patients without
bulbar involvement). Furthermore, every ALS participant was labelled A.

Accordingly, four classification problems were analyzed, males and females being
studied separately, these being C vs. B, C vs. NB, B vs. NB and C vs. A.

The Multivariant Analysis of Variance (MANOVA), which uses the covariance between
the features in testing the statistical significance of the mean differences, was performed in
IBM SPSS Statistics [32] to select a subset of relevant features for use in constructing the
classification model for these four cases. This procedure made it possible to contrast the
null hypothesis in the features obtained.

To perform this statistical analysis, it was assumed that the features had a multivariable
normal distribution, and no assumptions were made regarding the homogeneity of the
variance or the correlation between the features. A significance value of p-value < 0.05
was considered sufficient to assume the existence of feature differences between the four
groups analyzed.
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(a) (b)

(c)

Figure 1. pD( f , t) of vowel “a” for 3 different patients with bulbar involvement. The marked
difference in the graphic representation of the time-frequency between the subjects can be clearly ap-
preciated. (a) Patient pD without bulbar involvement. (b) Patient pD with slight bulbar involvement.
(c) Patient pD with severe bulbar involvement.

2.6. Classification Models

Several supervised classification models were implemented in R [33] to measure the
classification performance. These models were fitted with the features selected. These were
standardized by subtracting the mean and centered at 0. Ten-fold cross-validation was
implemented in R using the caret package to draw suitable conclusions. This consisted of
dividing the dataset into 10 contiguous chunks, each containing approximately the same
number of samples, and then performing 10 training-testing experiments as follows: for
each chunk i ∈ {1, 2, . . . , 10}, the current chunk was retained for testing the model and
training was performed on the remaining 9 chunks, recording the results. The average
performance of the 10 training-testing experiments was finally provided.

The upsampling technique with replacement was applied to the training data by
making the group distributions equal to deal with the unbalanced dataset, which could
bias the classification models [34].

The supervised models with classification thresholds of 50% were built in R [33]. In
binary classification problems, the classification threshold is a value that converts the model
prediction to positive or negative depending on whether the prediction is above or below
the threshold.

The classification algorithms used were the most popular ones in ALS: Support Vector
Machine (SVM), Neural Networks (NN), Linear Discriminant Analysis (LDA), Logistic
Regression (LR) and Random Forest (RF). For more details, see [6].
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2.7. Model Validation Metrics

There are various metrics for evaluating classification models [35]. The foremost
among these, accuracy, sensitivity and specificity, were used to evaluate the performance of
the classification models.

3. Results

First, the significant features from the four cases (C vs. B, C vs. NB, B vs. NB and C vs.
A) were selected. Then, the performance of the classification models was evaluated.

3.1. Selecting the Significant Features

From the 50 features obtained, the MANOVA analysis was applied to select those
that were statistically significant. Four comparisons were analyzed separately for males
and females: C vs. B, C vs. NB, B vs. NB and C vs. A. Features not showing statistical
significance (p-value ≥ 0.05) were discarded.

Table 2 shows the significant features obtained for males. In the C vs. B case, this was
a set of 12 statistically (half phonatory) significant features (p-value < 0.05); in C vs. NB,
there were 13 (10 of them phonatory); in B vs NB, 9 (all time-frequency); and in C vs. A, 12
(10 of which were phonatory).

For females (Table 3), in the C vs. B case, a set of 20 statistically significant features
(p-value < 0.05) was obtained (13 out of 20 were phonatory). In the C vs. NB case, a set of
10 statistically significant features was obtained (6 of them, phonatory). In the case B vs.
NB, a set of 14 statistically significant features was obtained (12 of which were phonatory).
In the C vs. A case, 20 statistically significant features were obtained (12 being phonatory).

3.2. Classification Models

The classification models were fitted with the significant features selected in Section 3.1.
Tables 4 and 5 show the classification performance for males and females, respectively. The
results are presented for the accuracy, sensitivity and specificity of the models used for the
four cases.

For males in C vs. B case, all the classifiers generally performed well. RF obtained the
best accuracy, 96.1%. For LDA and NN, accuracy was 95.0% and for SVM and LR, 93.3%
and 91.9% respectively. LR gave the best sensitivity (95.0%), and RF and LDA the best
speci f icity = 97.5%.

Similar performance was achieved in C vs. NB and C vs. A cases. In these, SVM was
the best model (an accuracy of 93.1% was reached for C vs. NB and 92.6% for C vs. A).

Otherwise, the outcomes worsened in B vs. NB compared with the other cases. Despite
RF obtained the best accuracy (91.8%), the sensitivity it achieved was the worst.

For females, in the C vs. B case, the results also indicate that the performance of all
classifiers was excellent. RF gave the best accuracy, 98.1%, sensitivity, 96.6%, and specificity,
100%.

Similar behavior was obtained in the C vs. NB and C vs. A cases. In these, RF was
also the best model (obtaining accuracy of 94.1% and 95.8% for C vs. NB and C vs. A
respectively). In both cases, LDA achieved the best specificity.

Meanwhile, the results were worse in B vs. NB compared with the other cases.
Although RF obtained the best accuracy at 84.8%, the outcomes obtained with it for specificity
and especially sensitivity were very low.

In general, the best model was RF. Special attention should be paid to female outcomes.
Poor results were obtained for both genders in the B vs. NB case.

4. Discussion
4.1. Principal Findings

The results obtained demonstrate that it is possible to diagnose bulbar involvement
using supervised gender-specific models fitted to the significant phonatory and time-
frequency features.
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Table 2. Significant Features for males.

Comparison Feature p-Value

C vs. B

shimmer(dB) 0.039
shimmer(apq11) <0.001
pitch(mean) 0.001
pitch(SD) 0.023
pitch(min) 0.016
pitch(max) <0.001
f_Cres2 0.046
f_Cres6 0.046
f_Med2 <0.001
f_Med6 0.008
K 0.027〈

t1 f 1〉 0.002

C vs. NB

jitter(relative) 0.008
shimmer(dB) 0.001
shimmer(relative) 0.008
shimmer(apq3) 0.035
shimmer(apq11) <0.001
pitch(mean) 0.001
pitch(SD) 0.002
pitch(min) 0.023
pitch(max) 0.001
HNR(mean) 0.037
IE_Bn1 0.045
H_tf 0.015
H_f 0.045

B vs. NB

f_Cres1 0.044
f_Cres2 0.028
f_Med2 <0.001
f_Med6 0.011
f_Med7 0.024
H_tf 0.009
H_f 0.009
K 0.045〈

t1 f 1〉 <0.001

C vs. A

jitter(relative) 0.009
shimmer(dB) 0.001
shimmer(relative) 0.009
shimmer(apq3) 0.044
shimmer(apq11) <0.001
pitch(mean) 0.001
pitch(SD) 0.002
pitch(min) 0.015
pitch(max) <0.001
HNR(mean) 0.046
H_tf 0.048〈

t1 f 1〉 0.034
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Table 3. Significant Features for females.

Comparison Feature p-Value

C vs. B

jitter(relative) 0.001
jitter(absolute) <0.001
jitter(rap) <0.001
jitter(ppq5) <0.001
shimmer(relative) <0.001
shimmer(dB) <0.001
shimmer(apq3) <0.001
shimmer(apq5) <0.001
shimmer(apq11) <0.001
pitch(mean) <0.001
pitch(SD) <0.001
pitch(max) <0.001
HNR(mean) <0.001
f_Cres2 0.004
f_Cres6 0.029
f_Cres7 0.020
E_Bn2 0.003
f_Med2 <0.001
f_Med6 0.013〈

t1 f 1〉 0.028

C vs. NB

jitter(absolute) <0.001
shimmer(apq11) <0.001
pitch(mean) <0.001
pitch(SD) 0.003
pitch(min) 0.008
pitch(max) <0.001
f_Cres7 0.011
E_Bn2 0.015
f_Med1 0.014〈

t7 f 7〉 0.022

B vs. NB

jitter(relative) <0.001
jitter(absolute) <0.001
jitter(rap) <0.001
jitter(ppq5) <0.001
shimmer(relative) <0.001
shimmer(dB) <0.001
shimmer(apq3) <0.001
shimmer(apq5) <0.001
shimmer(apq11) <0.001
pitch(SD) <0.001
pitch(max) 0.029
HNR(mean) <0.001
H_tf 0.026
H_f 0.048

C vs. A

jitter(relative) <0.001
jitter(rap) 0.001
jitter(ppq5) 0.004
shimmer(relative) <0.001
shimmer(dB) <0.001
shimmer(apq3) <0.001
shimmer(apq5) 0.001
shimmer(apq11) <0.001
pitch(mean) <0.001
pitch(SD) <0.001
pitch(max) <0.001
HNR(mean) 0.003
f_Cres2 0.006
f_Cres7 0.005
E_Bn2 0.003
f_Med1 0.049
f_Med2 0.001
f_Med7 0.049
H_t 0.039〈

t1 f 1〉 0.018
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In the case of B vs. C, the accuracy achieved was up to 98.1% (RF) and 96.1% (RF) for
females and males, respectively.

Lower performance was obtained in C vs. NB but this was still higher than expected.
The voice performance in C or NB should be similar. This indicates that some participants
in the NB group were probably incorrectly diagnosed. This is coherent with [6]. Similarly,
the excellent performance achieved in C vs. A suggests that some of the members of A
(14 out of 47) have bulbar involvement. Alternatively, although the most stable segments
of the voice samples were selected for analysis, many co-articulatory effects could have
influenced the results. Moreover, phonatory-subsystem features are subject to inherently
large variability, even for Cs.

On the whole, huge uncertainty was observed in the evaluation concerning bulbar
involvement among the participants in the NB group. The case of B vs. NB disclosed that
the models did not differentiate between the B and NB subject groups as well as they did
with the other groups. RF achieved the best overall performance (accuracy = 91.8%) in
males. However, the model presented problems for spotting positive cases (sensitivity =
55.0%). In females, RF achieved an accuracy of 84.8%. These values are still far from the
ones obtained in the C vs. B case. These outcomes additionally reinforce the idea that NB
subjects were misdiagnosed.

The outcomes of each comparison between groups depend on the significant features
chosen (between phonatory and time-frequency). In other words, the optimal results in
each experiment are obtained with an ad-hoc set of features. This means the differentiation
between the participants in different groups depends on different features. However,
classifiers obtained very similar results for each experiment, showing a lesser influence.

The results obtained proved that combining phonatory-subsystem and time-frequency
features improves the ability of the machine-learning models to detect bulbar involvement.
In addition, detecting bulbar involvement also depends on the ad-hoc set of significant
features found for such a case.

Table 4. Performance of male models. RF: Random Forest; LR: Logistic Regression; LDA: Linear
Discriminant Analysis; NN: Neuronal Networks; SVM: Support Vector Machines.

C vs. B C vs. NB B vs. NB C vs. A

RF
Accuracy 96.1 91.9 91.8 92.0
Sensitivity 86.1 92.1 55.0 93.8
Specificity 97.5 91.0 97.5 87.0

LR
Accuracy 91.9 89.2 88.5 91.3
Sensitivity 95.0 90.3 75.0 90.7
Specificity 92.0 86.9 89.5 94.0

LDA
Accuracy 95.0 91.1 81.3 92.0
Sensitivity 85.0 88.6 90.0 90.7
Specificity 97.5 98.0 80.5 96.0

NN
Accuracy 95.0 90.0 86.1 92.0
Sensitivity 90.0 91.3 75.0 91.5
Specificity 95.0 86.5 88.4 93.0

SVM
Accuracy 93.3 93.1 86.1 92.6
Sensitivity 85.0 91.2 85.0 90.7
Specificity 95.0 98.0 86.7 98.0

4.2. Comparison with Prior Work

This study is consistent with [6–8,36] which demonstrated that such phonatory-
subsystem features as jitter, shimmer, pitch and HNR were sensitive indicators for de-
scribing pathological voices in ALS. It is also consistent with [6] where great uncertainty
was found in the diagnosis of NBs participants.
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Table 5. Performance of female models. RF: Random Forest; LR: Logistic Regression; LDA: Linear
Discriminant Analysis; NN: Neuronal Networks; SVM: Support Vector Machines.

C vs. B C vs. NB B vs. NB C vs. A

RF
Accuracy 98.1 94.1 84.8 95.8
Sensitivity 96.6 92.5 92.3 95.8
Specificity 100 95.5 75.0 96.0

LR
Accuracy 91.4 93.0 74.7 91.3
Sensitivity 91.3 90.0 75.0 93.4
Specificity 91.5 95.5 75.0 87.0

LDA
Accuracy 93.1 90.4 72.1 90.7
Sensitivity 87.6 82.5 70.0 87.3
Specificity 86.6 97.5 75.0 98.0

NN
Accuracy 93.2 86.9 71.1 90.6
Sensitivity 93.3 85.0 72.3 93.6
Specificity 94.0 89.0 70.0 84.5

SVM
Accuracy 95.1 91.6 74.2 93.6
Sensitivity 93.3 90.0 73.6 94.7
Specificity 97.5 93.0 75.0 91.5

Besides the 15 phonatory-subsystem features obtained in [6], this study also provides
35 time-frequency features. The combination of phonatory-subsystem and time-frequency
features, after performing MANOVA for feature selection, enhanced the outcomes of [6],
which achieved the best results to date for detecting bulbar involvement in ALS using only
acoustic features, ahead of [8,13,24].

Accuracies of up to 98.1% (RF) and 96.1% (RF) for females and males respectively were
achieved when comparing the bulbar and control participants (case B vs. C). This accuracy
exceeded the one obtained in [24] with SVM (79.0%) by 17.1% for males and 15.1% for
females. The other studies found did not distinguish the classification problems by gender.
In [6], SVM obtained an accuracy of 95.8%. In [13], NN based on Mel Frequency Cepstral
Coefficients (coefficients for speech representation based on human auditory perception)
obtained 90.7%. In [8], NN based on phonatory-subsystem features obtained 91.7% and
adding motion sensors for both lip and tongue data increased the accuracy to 96.5% at the
expense of including more invasive measurements. For females, our results outperformed
those from the aforementioned studies by 2.3%, 7.4% and 6.4% respectively. For males, ours
were 0.3% above those obtained in [6] and 5.4% and 4.4% above those obtained in [8,13].

When comparing ALS patients diagnosed with bulbar involvement with those patients
in whom bulbar involvement has yet to be detected (B vs. NB), the outcomes outperformed
the ones obtained in [6]. The respective accuracy for males and females increased by 16.3%
and 9.3% with the same classifier (RF) (91.8% and 84.8% as against 75.5%). This is an
important outcome which indicates that the use of time-frequency features increases the
identification of bulbar involvement among patients with ALS.

The outcomes obtained in the C vs. NB and C vs. A cases were very similar to those
in [6], reinforcing the idea that some NBs could have bulbar involvement.

The most important gains were obtained when comparing B and NB. The selection of
the significant features for this comparison improved the outcomes. Thus, involvements
(i.e., bulbar) could be detected through a separate, and more closely adjusted, set of features.
Consequently, by increasing the identification of particular features, treatment could be
better customized for each ALS patient.

In addition, only studies showing C vs. B have been presented in the literature (except
in [6]). No attempts to distinguish other subjects have been made to date. We highlight this
differentiating issue, and the importance of future research into it.
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4.3. Limitations

The use of classification models with small datasets hinders the full assessment of
the importance of the findings. The size of the dataset was, in part, determined by the
low prevalence of ALS, which is considered a rare disease. The small number of samples
in the B group was influenced by the heterogeneity of the ALS disease in which patients’
symptomatology is very diverse.

Furthermore, hand editing the segments of the voice recordings is inherently subjective
and may introduce subtle and unintended selection biases. Although automatic instruments
have been created, these methods are currently insufficiently accurate and require manual
correction.

5. Conclusions and Future Work

This research directly addresses a recent statement released by the NEALS bulbar
subcommittee regarding the need for methodologies based on objective measurements [37].
The outcomes achieved reinforce the idea that machine learning can be a suitable tool for
helping with the diagnosis of ALS with bulbar involvement using common recording or
mobile (i.e., smartphone) devices.

We demonstrate the usefulness of assessing bulbar involvement properly using
phonatory-subsystem and time-frequency features from a study of the Spanish vowels that
outperformed previous works, specifically [6,8,13,24]. It was also demonstrated that group
identification depends on the significant features found for such an experiment.

The main contribution is the differentiation of diagnosis by gender. This outperformed
all the results in the literature.

The next steps of this work will consist of improving the corpus for diagnosing bulbar
dysfunction. It is planned to increase the sample size and enhance the annotation of the
ALS patients without bulbar involvement. Novel methods based on the creation of vowel
patterns and semi-supervised classification models will be developed to provide hints
for distinguishing those ALS patients without bulbar involvement who may have been
misdiagnosed.

Vowel patterns could be generated from the quasi-periodic components of a short
stable segment of the five Spanish vowels. Principal and independent component analysis
of these patterns is also envisioned.

Moreover, additional research is required to develop this concept properly. Longitudi-
nal research studies are conceived in which patients’ diagnoses are obtained at multiple
follow-ups. Several repetitions of the sustained phonations will be required to minimize
sampling variability even for the control subjects.
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The following abbreviations are used in this manuscript:

TFR Time-frequency representation
Jitter (absolute) inter-cycle variation of the fundamental period
Jitter(relative) relative period
Jitter(rap) relative perturbation
Jitter(ppq5) five-point period perturbation quotient
Shimmer(dB) Variability of the peak-to-peak amplitude
Shimmer(relative) relative amplitudes of consecutive periods
Shimmer(apqP) three, five and eleven-point amplitude perturbation
HNR harmonics-to-noise ratio
HNR(mean) mean HNR
HNR(SD) standard deviation of HNR
WD Wigner distribution
CWD Choi-Williams exponential function
pD joint probability density distribution
E(t) average instantaneous spectral energy
fmi(t) average instantaneous frequency
f _Cres(t) instantaneous frequency peak
H_t instantaneous information entropy
H_f spectral information entropy
H_tf joint Shannon entropy
IE(f) spectral information
K kurtosis
〈tn f m〉 joint time-frequency moment
SVM Support Vector Machine
NN Neural Networks
LDA Linear Discriminant Analysis
LR Linear Logistic Regression
RF Random Forest
C control group
B group of ALS participants diagnosed with bulbar involvement
NB group of ALS participants not diagnosed with bulbar involvement
A group of ALS participants with or without bulbar involvement
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diagnosed without bulbar involvement as bulbar and no-bulbar. The performance of
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Voice Fingerprint and Machine Learning Models for
Early Detection of Bulbar Dysfunction in ALS

Alberto Tena, Francesc Clarià, Francesc Solsona, Mónica Povedano

Abstract—The NEALS bulbar subcommittee released a recent
statement regarding the need for objective-based approaches
to diagnosing bulbar dysfunction in ALS patients. Bulbar dys-
function is a term used in ALS. It refers to motor neuron
disability in the corticobulbar area of the brainstem which
leads to a dysfunction of speech and swallowing. One of the
earliest symptoms of bulbar dysfunction is voice deterioration
characterized by grossly defective articulation, extremely slow
laborious speech, marked hypernasality and severe harshness.
Recently, research efforts have focused on voice analysis to
capture this dysfunction.

The main aim of this paper is to provide a new methodology
to diagnose this dysfunction automatically at early stages of the
disease, earlier than clinicians can do.

The study focused on the creation of a voice fingerprint
consisting of a pattern generated from the quasi-periodic com-
ponents of a steady portion of the five Spanish vowels and the
computation of the five principal and independent components
of this pattern. Then, a set of statistically significant features
was obtained and the outcomes of the most common supervised
classification models were obtained. The best model (Random
Forest) obtained an accuracy of 88.3% when classifying bulbar
vs. control participants.

In addition, due to the great uncertainty found in the annotated
corpus of the ALS patients without bulbar involvement, we used
a safe semi-supervised support vector machine (S4VM) to relabel
the ALS participants diagnosed without bulbar involvement as
bulbar and no-bulbar. The performance of the results obtained
increased by 5% (to 93.5%). This demonstrates that our model
can improve the diagnosis of bulbar dysfunction compared not
only with clinicians, but also the methods published to date.

The results obtained are very encouraging and demonstrate
the efficiency and applicability of the methodology presented in
this paper. It may be an appropriate tool for screening bulbar
involvement in early stages of the disease.

Index Terms—ALS, bulbar dysfunction, voice, diagnosis, ma-
chine learning.

I. INTRODUCTION

AMYOTROPHIC lateral sclerosis (ALS) is a neurode-
generative disease characterized by a progressive loss

of both upper and lower motor neurons leading to muscular
atrophy, paralysis and death. Currently, there is no cure for
ALS, although early detection can slow progress [1].
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ALS is known as spinal (80%; limb or spinal onset) and
bulbar (20%; bulbar onset). The first bulbar symptoms appear
early in the disease in bulbar ALS, but can also appear in later
stages of spinal ALS. Early detection of bulbar dysfunction
may be the key to effectively slowing down the disease.
However, diagnosing this is challenging due to the limitations
of human hearing [2].

Several studies demonstrated that the voice is one of the
most important aspects for detecting bulbar dysfunction. R.
Norel et al. [3] developed machine models for recognizing
the presence and severity of ALS using a variety of frequency,
spectral, and voice quality features. An et al. [4] used Convo-
lutional Neural Networks (CNNs) to classify the intelligible
speech produced by patients with ALS compared with healthy
individuals. Wang et al. [5] used Support Vector Machines
(SVM) and Neuronal Networks (NN) employing acoustic
features and adding articulatory motion information (from
the tongue and lips). In a recent study [6], we demonstrated
the feasibility of automatic detection of bulbar dysfunction
through phonatory features obtained from vowel utterance
even before it becomes perceptible to human hearing. Great
uncertainty in the annotated corpus of the ALS patients with-
out bulbar involvement was found. Although all methods per-
formed well in general, this performance dropped significantly
when diagnosing bulbar involvement among ALS patients.
The aforementioned study argued that the main causes of this
uncertainty was a small and wrongly annotated corpus of the
ALS patients without bulbar involvement. This suggests that
subjective methods employed by clinicians could lead them
to misdiagnose this dysfunction. This is coherent with the
NEALS bulbar subcommittee, which calls for objective-based
approaches.

We conjecture that the diagnosis of ALS patients with bulbar
dysfunction would greatly benefit from the creation of a voice
fingerprint able to detect bulbar dysfunction in ALS before
the first symptoms can be detected by human hearing. This
could be done effectively by means of analyzing a pattern
generated from the quasi-periodic waveform produced by the
vocal folds when a vowel is elicited. Quasi-periodic waveform
analysis has been applied to several clinical applications such
as heartbeat detection, cardiopulmonary modeling and intrinsic
brain activity detection [7, 8]. Furthermore, performance could
be increased by correcting the bias as well as enlarging the
corpus upsampling it [9], and relabeling bulbar and non-bulbar
ALS patients by using semi-supervised classifiers, as pointed
out in [10, 11].

Our objective (and contribution) is to create a machine-
learning model obtained by applying supervised and unsuper-
vised classifiers and upsampling to improve the corpus for
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diagnosing bulbar dysfunction. This will be done through the
creation of a voice fingerprint consisting of a pattern generated
from the quasi-periodic components of a steady portion of
the five Spanish vowels, and the five principal and indepen-
dent components of this pattern. This model should behave
properly with small and usually badly annotated corpus, the
kind associated with rare diseases (i.e. ALS without bulbar
involvement).

II. METHODS

The study was approved by the Research Ethics Committee
for Biomedical Research Projects (CEIm) at the Bellvitge
University Hospital in Barcelona.

The methods presented in this section were implemented
and a synthetic dataset based on a random sample of the corpus
is freely available online [12].

A. Participants

Forty-five ALS participants (26 males and 19 females) aged
from 37 to 84 (M = 57.8 years, SD = 11.8 years) and 18 control
subjects (9 males and 9 females) aged from 21 to 68 (M =
45.2 years, SD = 12.2 years) took part in this study. All the
ALS participants were diagnosed by a neurologist.

Bulbar dysfunction was diagnosed by following subjective
clinical approaches [13] and the neurologist made the diagno-
sis of whether an ALS patient had bulbar dysfunction. Among
all the ALS participants, 5 reported bulbar onset and 40 spinal
onset. However, at the time of the study, 14 of them presented
bulbar symptoms.

To summarize, 14 of the 63 participants were ALS patients
diagnosed with bulbar dysfunction (3 males and 11 females)
aged from 38 to 84 (M = 56.8 years, SD = 12.3), 31 were
ALS patients that did not present this dysfunction (23 males
and 8 females) aged from 37 to 81 (M = 58.3 years, SD =
11.7) and 18 were control subjects (9 males and 9 females)
aged from 21 to 68 (M = 45.2 years, SD = 12.2 years).

B. Vowel Recording

Sustained samples of the Spanish vowels, a, e, i, o and
u, were elicited under medium vocal loudness conditions
for 3-4 seconds. The recordings were made in a regular
hospital room using an USB EMITA Streaming GXT 252
microphone connected to a laptop at a sampling rate of 44,100
Hz. 32-bit quantization was done using Audicity, an open-
source application. Each individual phonation was cut out and
anonymously labeled. The boundaries of the speech segments
were determined with an oscillogram and a spectrogram using
the Praat manual [14], and were audibly checked. The starting
point of the boundaries was established at the onset of the
periodic energy in the waveform observed in the oscillo-
gram and checked by the appearance of the formants in the
spectrogram. The endpoint was established at the end of the
periodic oscillation when a marked decrease in amplitude in
the periodic energy was observed. It was also identified by
the disappearance of the waveform in the oscillogram and the
formants in the spectrogram.

C. Generating the pattern of the quasi-periodic components
of the five Spanish vowels

A sample of 250 ms of each vowel was considered for
analysis by taking the middle point at the center of the
phonation. This fragment of the signal was normalized by
centering each sample to have a mean of 0 and scaled to
have a standard deviation of 1 (x(n)). A pattern generator was
developed to obtain a pattern sequence of the quasi-periodic
components of the fundamental frequency of x(n) inspired by
[15]. This process consisted of 3 steps.

1) Detrending Method: The baseline wandering of x(n),
which is a low-frequency artefact present in signal record-
ings, was removed by implementing a detrending method.
To obtain the trend, a six-order low-pass Butterworth filter
[16] with a cutoff frequency of 0.0035 Hz was applied twice
(forward and backward) to x(n) [17, 18]. The combined filter
had zero phase distortion, a filter transfer function equal to
the squared magnitude of the implemented Butterworth filter
transfer function, and a filter order that was double the order
of the Butterworth filter. Then, the detrending signal xd(n)
was obtained by removing the trend from x(n). Finally, each
sample of xd(n) was centered to have a mean of 0. Fig. 1a
shows x(n) and the trend of x(n) and Fig. 1b shows x(n) and
xd(n).

2) Marking the quasi-periodic components of x(n): The
spectral density |Xd(f)|2 of xd(n) (Fig. 2) was obtained by
means of the discrete Fourier transform (DFT) implementing
the fast Fourier transform (FFT) algorithm. To identify the
quasi-periods, the samples of |Xd(f)|2 whose frequency was
≥ 300 Hz were considered to identify the peaks of the spectral
density. To avoid noise, only the three highest peaks were
selected. Finally, the quasi-period of xd(n) was defined as
the lower spectral component of these three peaks (fr). The
number of samples of each quasi-period (nrep) was calculated
as the nearest integer of (fs/fr), fs being the recording
sampling rate.

The signal envelop xe(n) was obtained by computing the
cumulative sum of xd(n) and then calculating the envelope of
the analytical signal [19]. Fig. 3 shows xe(n) and x(n).

To detect the starting and ending point of each quasi-period,
a quasi-sinusoidal signal, s(n), synchronized with the period
of x(n) was computed. It was obtained by applying a second-
order Butterworth pass-band filter forward and backward to
xe(n) with a cut-off frequency fc = fs/nrep Hz. From s(n),
a quadratic-bipolar signal (q(n)) was generated assigning a
constant -A in those samples where s(n) < 0, and A in
those where s(n) > 0. Thus, by differentiating q(n), the
zero crossings of the synchronized signal s(n) were obtained,
which represent the beginning and end of each quasi period of
x(n). Fig. 4 illustrates this process. Fig. 4a represents x(n),
s(n) and q(n) and Fig. 4b depicts the starting and ending
points detected of each quasi-period of x(n).

Finally, the pattern function p(T ) was obtained as the
average of the quasi-periods of x(n), T being the average
of the number of samples of the quasi-period of x(n).

3) Pattern refinement: p(T ) was compared with xd(n) to
improve the boundaries of each quasi-period. First, as an
adapted filter, the pattern p(T ) was inverted and the resulting
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Fig. 1: Detrending method: Removing the trend from x(n).

(a) Obtaining the trend of x(n) (b) x(n) and xd(n)

Fig. 2: The spectral density of xd(n).

signal was convolved with xd(n) to detect the positions of
p(T ) in xd(n). The positive values of the resulting signal were
taken and the negative values were set at 0.

Each quasi-period detected previously was centered in the
position where the maximums values of the convolution were
found. The refined pattern, pref (T ) (Fig. 5a) was computed
as the average of the quasi-periods of xd(n) with their new
boundaries established.

Finally, pref (T ) was normalized to 550 samples and then
decimated to 110 samples to obtain patterns, pN (T ) (Fig, 5b),
with the same length.

D. Principal and Independent Component Analysis

Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) have great potential in the treat-
ment of medical signals [20, 21]. PCA is a classical technique

Fig. 3: The signal envelope of x(n).

in statistical data analysis, feature extraction and data reduc-
tion, aiming at explaining observed signals as a linear combi-
nation of orthogonal principal components. ICA is a technique
for array processing and data analysis, aiming at recovering
unobserved signals from observed mixtures, exploiting only
the assumption of mutual independence between the signals.

In the PCA of pN (T ), five Principal Components (PCs)
were computed [22]. The decomposition was obtained as X =
USV > where X is pN (T ) standardized, U is a unitary matrix
and S is the diagonal matrix of singular values si. PCs were
given by US and V contained the directions in this space that
capture the maximal variance of the matrix X .

In the ICA of pN (T ), five independent components (ICs)
were extracted by means of a reconstruction independent
component analysis (RICA) algorithm [23]. pN (T ) was stan-
dardized to have zero mean and identity co-variance. The
model x = µ + As is made up of the five rows of matrix x
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Fig. 4: Detecting the starting and ending point of each quasi-period of x(n).

(a) x(n), s(n) and q(n). (b) Starting and ending point of each quasi-period of x(n).

Fig. 5: Pattern refinement and normalization.

(a) pref (T ) (b) pN (T )
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representing the patterns of the five vowels with 110 samples
for each pattern. µ is a constant represented by a column
vector of five rows and s is a matrix in which each row (5)
is an independent component with 110 samples. A(5x5) is the
mixing matrix. Once the model has been obtained, the five
independent components computed were used for the analysis.

E. Features obtained for analysis
A total of 70 features were obtained as follow:
• Three entropy measurements per each vowel were ob-

tained by means of the Shannon entropy:
– From the probability density function of a signal,

formed by the pattern pN (T ) repeated the number of
periods of x(n) and quantified with N = 2q levels
and q = 8. This measurement was coded as entPat1
. . . entPat5.

– The density function of the five PCs was normalized
and quantified with N = 2q levels and q = 6.
Then, the Shannon entropy of the probability density
function of the five PCs was obtained and coded as
entPC1. . . entPC5.

– Similarly, to compute the Shannon entropy of the
five ICs, the density function of the five ICs was
normalized and quantified with N = 2q levels
and q = 6 and the Shannon entropy of each IC
was obtained. The results were coded as entIC1
. . . entIC5.

• The variance of a signal formed by the pattern pN (T )
repeated the number of periods of x(n) was computed
and coded for each vowel as var1 . . . var5.

• The Kurtosis is defined as a measure of outlier-prone. It is
calculated from the distribution of a signal formed by the
pattern pN (T ) repeating the number of periods of x(n),
and coded as kurt1. . . kurt5. The bias-corrected equation
defined in [23] was applied to obtain the Kurtosis.

• The rhythm variability, RR(n), of x(n) was computed by
firstly calculating the differences (in seconds) between
the quasi-periodic elements of x(n) and dividing the
result by the sampling frequency (44.100 Hz). Finally,
RR(n) was obtained by reducing the sampling to fr =
350. Thus, RR(n) is a signal resampled to fr = 350
(Tr = 0.0029 s) with a bandwidth of 175 Hz. The
mean and the standard deviation of RR (mean RR
and std RR) were then computed and coded for each
vowel as medRR1. . . medRR5 and dsvRR1 . . . dsvRR5
respectively.

• The spectrum of P N(f) was obtained from the positive
and normalized part of the FFT of the autocorrelation of
pN (T ). The mean frequency of P N(f) (fmEsPat)
was computed according to Eq. 1 in the frequency band
0 Hz to 2205 Hz and coded for each vowel as fmEsPat1
. . . fmEsPat5.

fmEsPat =

∫
fP N(f) df (1)

• Similarly, the mean frequency of the probability density
function of the five PCs was computed and coded as
fmEsPC1 . . . fmEsPC5.

• Finally, the average spectral energy was calculated as
the integral of P N(f). The average spectral energy
was computed and normalized to 1 for 5 frequency
bands of the total spectrum (0-4,410 Hz): 1, 0-250 Hz;
2, 250-750 Hz; 3, 750-1500 Hz; 4, 1500-2500 Hz; 5,
2500-4,410 Hz. These measurements for the five patterns
and the five bands of each pattern were coded for
each vowel as enBnEs a1 . . . enBnEs a5 and enBnEs u1
. . . enBnEs u1, respectively.

F. Classification Models

Five supervised classification models were implemented in
R to measure the classification performance. These models
are Random Forest (RF), Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Neural Networks (NN) and
Support Vector Machine (SVM). The classification models
were fitted with the features selected. These were standardized
by subtracting the mean and centered at 0. 10-fold cross-
validation was implemented in R using the caret package
[24] to draw suitable conclusions. The upsampling technique
with replacement was applied to the training data by making
the group distributions equal to deal with the unbalanced
dataset that could bias the classification models [9]. Supervised
models with classification thresholds of 50% were built. The
classification threshold is a value that converts the result of a
quantitative test into a simple binary decision by treating the
values above or equal to the threshold as positive, and those
below as negative.

In addition, the semi-supervised classification model S4VM
was implemented using the RSSL package [25]. S4VM returns
predicted labels for unlabeled instances. It randomly generates
multiple low-density separators and merges their predictions
by solving a linear programming problem meant to penalize
the cost of decreasing the performance of the classifier, com-
pared to the supervised SVM [26]. As for SVM, a linear kernel
was used, and the regularization parameter C for labeled and
unlabeled data was set at 0.05.

G. Feature Selection

To select a subset of relevant features for use in the con-
struction of the classification model, the Multivariant Analysis
of Variance (MANOVA), which uses the covariance between
the features in testing the statistical significance of the mean
differences, was implemented in IBM SPSS Statistics. By
using this procedure, it was possible to contrast the null
hypothesis in the features obtained.

To perform this statistical analysis, it was assumed that
the features had a multivariable normal distribution and no
assumptions were made regarding the homogeneity of the
variance or the correlation between the features. A significance
value of p < 0.05 was considered sufficient to assume
the existence of feature differences between the four groups
analyzed.

H. Experiments

The participants in this study belonged to three different
groups: the control group with 18 participants, labeled as C,
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the group with 14 ALS participants diagnosed with bulbar
dysfunction, labeled B, and the group with 31 ALS partici-
pants not diagnosed with bulbar dysfunction, labeled NB. In
addition, the A label was added to every ALS participant, with
or without bulbar dysfunction.

Three experiments were performed with these groups:

1) Performance evaluation of the supervised models for 4
cases (C vs. B, C vs. NB, B vs. NB and C vs. A) by
using the original corpus.

2) Re-labeling of the NB participants as B’ and C’ by
applying the semi-supervised S4VM algorithm. Thus,
the NB group was removed.

3) Re-evaluation of the model performance with four new
groups of participants: C vs. B+ (B + B’), C vs. NB-
(NB - B’), B+ vs. NB- and C+ (C + C’) vs. B+.

The first experiment obtained the outcomes of the models
using the original corpus. Next, due to the great uncertainty
found in the ALS participants diagnosed without bulbar in-
volvement [2, 6], it was intended to re-label the participants
of the NB group as B and C using the semi-supervised S4VM
model. We tried to obtain a new corpus that contains elements
classified as bulbar (B’) or control (C’) by S4VM among those
who were previously diagnosed as non-bulbar by a clinician
(NB). In the third experiment, the models outcomes were again
obtained by changing the composition of the B and NB groups
by adding B’ to B (B+) and removing C’ from NB (NB-).

I. Performance Metrics

There are several metrics for evaluating classification algo-
rithms [27]. The Accuracy, Sensitivity and Specificity metrics,
the most popular ones, were used to evaluate the performance
of the classification models.

III. RESULTS

Firstly, the voice fingerprint representations and the features
selected in relation to the four cases (C vs B, C vs NB, B vs
NB and C vs A) are presented. Then, the performance of the
classification models is evaluated.

A. Voice fingerprint representations to detect bulbar dysfunc-
tion in ALS

The voice fingerprint for detecting bulbar dysfunction in
ALS consisted of the computation of pN (T ), the 5 PCs of
pN (T ) and the 5 ICs of pN (T ) for the 5 Spanish vowels.

Fig. 6 shows the voice fingerprint computed of a ALS
patient. Figure 6(a) shows the pN (T ) of the five Spanish
Vowels (a, e, i, o, u). Figure 6(b) shows the 5 PCs of pN (T ) of
the five Spanish Vowels. Figure 6(c) shows the 5 ICs of pN (T )
of the five Spanish Vowels. Figure 6(d) shows the spectrum
of pN (T ) of the five Spanish Vowels. Figure 6(e) shows the
spectrum of the 5 PCs of pN (T ) of the five Spanish Vowels.
Figure 6(f) shows the probability density function of the 5 ICs
of pN (T ) of the five Spanish Vowels.

TABLE I: Model performance for the first experiment.

C vs B C vs NB B vs NB C vs A

RF
Accuracy 88.3 48.7 66.7 68.6
Sensitivity 85.0 46.7 40.0 84.0
Specificity 95.0 50.0 75.8 30.0

LR
Accuracy 56.7 62.0 60.2 65.0
Sensitivity 45.0 68.3 60.0 66.0
Specificity 65.0 50.0 59.2 65.0

LDA
Accuracy 54.2 62.0 54.0 65.2
Sensitivity 45.0 68.3 60.0 68.5
Specificity 60.0 50.0 51.7 60.0

NN
Accuracy 66.7 59.2 66.3 60.5
Sensitivity 70.0 63.3 60.0 64.0
Specificity 65.0 50.0 68.3 55.0

SVM
Accuracy 86.5 68.0 78.7 73.1
Sensitivity 88.3 71.7 80.0 79.0
Specificity 85.0 60.0 77.5 60.0

B. Features Selected

A total of 75 features were obtained. The MANOVA analy-
sis was applied to select the statistically significant features (p-
value<0.05) for the four comparisons analyzed: C vs. B, C vs.
NB, B vs. NB and C vs. A. The features not showing statistical
significance (p-value≥0.05) were discarded. The box plots of
the statistically significant features are depicted in Figure 7.

In the case C vs B, a set of 19 statistically significant
features (p-value<0.05) were obtained. These were medRR2,
medRR3, medRR5, fmEsPat1, enBnEs a3, enBnEs e4,
enBnEs e5, enBnEs i5, enBnEs o5, entPat2, entPat3, entPat4,
entPC1, entPC2, entPC4, entPC5, entIC2, entIC3 and entIC4.

In the case C vs NB, a set of 2 statistically significant fea-
tures were obtained. These were enBnEs o4 and enBnEs o5.

In the case B vs NB, a set of 20 statistically significant fea-
tures were obtained. These were medRR1, medRR2, medRR3,
medRR4, enBnEs e4, enBnEs e5, enBnEs i3, entPat1, ent-
Pat2, entPat4, entPC1, entPC2, entPC3, entPC4, entPC5, en-
tIC1, entIC2, entIC3, entIC4 and entIC5.

In the case C vs A, a set of 3 statistically significant
features were obtained. These were fmEsPat1, enBnEs o4 and
enBnEs o5.

C. Classification Model Performance and Experiments

In the first experiment, the classification models were fitted
with the 75 features selected. Table I shows the classification
performance (Accuracy, Sensitivity and Specificity metrics) of
the classification models tested for the four cases defined with
the original labels (B, NB and C).

In the case C vs. B, the results indicate that RF and
SVM have a good classification performance. RF obtained
the best Accuracy, 88.3%, with a Sensitivity of 85.0% and
a Specificity of 95.0%. SVM obtained an Accuracy of 86.5%
with a Sensitivity of 88.3% and a Specificity of 85.0%. NN, LR
and LDA showed a poorer performance, obtaining respective
Accuracies of 66.7%, 56.7% and 54.2% respectively.

In the cases C vs. NB, B vs. NB and C vs. A, poorer
results were obtained. In all these cases SVM obtained the best
Accuracy, these being 68.0%, 78.7% and 73.1% respectively.

In the second experiment, S4VM was applied from the data
labeled C and B to estimate the class of NBs which were split
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Fig. 6: Voice fingerprint for a patient.

(a) pN (T ) of the five Spanish vowels: a (top), e, i, o, u (bottom)
(b) Principal Components of pN (T ) of the five Spanish vowels ordered from
the highest (PC1 on the top) to the lowest contribution (PC5 on the bottom)

(c) Independent Components of pN (T ) of the five Spanish vowels ordered from
the highest (IC1 on the top) to the lowest contribution (IC5 on the bottom) (d) Spectrum of pN (T ) of the five Spanish vowels: a (top), e, i, o, u (bottom))

(e) Spectrum of the Principal Components, PC1 to PC5, of pN (T ) of the five
Spanish vowels ordered from the highest to lowest contribution

(f) Probability Density Function of the Independent Components of pN (T ) of
the five Spanish vowels
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Fig. 7: Box plots of the statistically significant features per each case.

(a) C vs B (b) B vs NB

(c) C vs NB (d) C vs A
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TABLE II: Model performance for the third experiment.

C vs B+ C vs NB- B+ vs NB- C+ vs B+

RF
Accuracy 93.5 69.3 89.7 92.4
Sensitivity 96.6 66.7 83.3 83.3
Specificity 90.0 70.0 96.7 97.5

LR
Accuracy 56.0 69.2 71.7 71.4
Sensitivity 53.3 73.3 76.7 66.7
Specificity 60.0 60.0 65.0 75.0

LDA
Accuracy 62.9 69.2 82.3 80.9
Sensitivity 60.0 73.3 76.7 78.3
Specificity 65.0 60.0 88.3 82.5

NN
Accuracy 75.9 68.7 86.9 82.6
Sensitivity 80.0 80.0 83.3 83.3
Specificity 70.0 50.0 91.6 82.5

SVM
Accuracy 89.2 69.6 91.0 92.1
Sensitivity 90.1 73.3 83.3 86.7
Specificity 90.0 60.0 100 95.0

into C’ and B’. From the total of 31 NBs, 9 were split as B’
and 22 as C’.

In the third experiment, the classification models were fitted
with the features selected and tested for the four new cases (C
vs. B+, C vs. NB-, B+ vs. NB- and C+ vs. B+). Table II
shows the classification performance (Accuracy, Sensitivity
and Specificity metrics) for this experiment.

In the case of C vs. B+, the results indicate that RF and
SVM have good classification performance. RF obtained the
best Accuracy, 93.5%, with a Sensitivity of 96.6% and a
Specificity of 90.0%. SVM obtained an Accuracy of 89.2%
with a Sensitivity of 90.1% and a Specificity of 90.0%. NN
obtained an Accuracy of 75.9% with a Sensitivity of 80.0% and
a Specificity of 70.0%. LR and LDA showed poorer perfor-
mance, obtaining Accuracies of 56.0% and 62.9% respectively.

In the B+ vs. NB- and C+ vs. B+ cases, good model
classification performance was also observed.

In B+ vs. NB-, SVM obtained the best Accuracy, 91.0%,
with a Sensitivity of 83.3% and a Specificity of 100.0%. RF
obtained an Accuracy of 89.7% with a Sensitivity of 83.3%
and a Specificity of 96.7%. NN obtained an Accuracy of 86.9%
with a Sensitivity of 83.3% and a Specificity of 91.6%. LDA
obtained an Accuracy of 82.3% with a Sensitivity of 76.7%
and a Specificity of 88.3%. Finally, LR performed the worst
performance with an Accuracy, 71.7%, a Sensitivity of 76.7%
and a Specificity of 65.0%.

In C+ vs. B+, RF obtained the best Accuracy, 92.4%, with a
Sensitivity of 83.3% and a Specificity of 97.5%. SVM obtained
an Accuracy of 92.1% with a Sensitivity of 86.7% and a
Specificity of 95.0%. NN obtained an Accuracy of 82.6%
with a Sensitivity of 83.3% and a Specificity of 82.5%. LDA
obtained an Accuracy of 80.9% with a Sensitivity of 78.3% and
a Specificity of 82.5%. Finally, LR had the worst performance
with an Accuracy of 71.4%, a Sensitivity of 66.7% and a
Specificity of 75.0%.

Finally, in C vs NB- poorer results were obtained. All
models showed similar performance. SVM, RF, LR, LDA and
NN obtained Accuracies of 69.6%, 69.3%, 69.2%, 69.2% and
68.7%.

IV. DISCUSSION

A. Principal Findings

We have carried out a preliminary assessment of the po-
tential for obtaining a voice fingerprint for an early detection
of bulbar dysfunction in ALS patients. This was motivated by
the need for a standardized diagnostic procedure for assessing
bulbar dysfunction and new methodologies based on objective
measurements [2].

The study demonstrated the feasibility of the methodology
proposed. Its major benefit is to provide a methodology based
on objective measures to identify bulbar dysfunction in early
stages of the ALS disease. We suggest two new labels, C’ and
B’, to improve the diagnosis of those patients in whom bulbar
dysfunction has not yet been detected by the current subjective
procedures.

This methodology is based on the development of a voice
fingerprint which consists of a pattern generated from the
quasi-periodic components of a steady portion of the five Span-
ish vowels, and five principal and independent components
computed from this pattern. From this voice fingerprint, a total
of 75 features were obtained. Then, a MANOVA analysis was
applied to obtain the significant features for the four cases
studied (C vs. B, C vs. NB, B vs NB and C vs. ALS). Finally,
three experiments were conducted.

The first experiment showed the performance of the machine
learning models used for the four cases. The best results
were obtained when comparing C with B. RF and SVM
achieved the best performance (Accuracies of 88.3% and
86.5% respectively). LR, LDA and NN were far from these
results. When comparing C with NB, poor performance was
observed. SVM achieved the best accuracy (68.0%). In B
vs. NB and C vs. A, SVM achieved Accuracies of 78.7%
and 73.1% respectively. From the good results achieved by
C vs. B, it can be inferred that the methodology proposed is
good at detecting bulbar dysfunction, RF and SVM being the
best models for performing this task. The poor performance
obtained in C vs. NB revealed a similar voice performance of
Cs and NBs, as expected. Instead, the performance obtained
in B vs. NB may indicate that some NBs voices could be
affected in some NBs but this may yet not be perceptible to
human hearing.

The second experiment revealed that 9 of the total of 31 NBs
may have bulbar dysfunction. This result is consistent with the
previous statement that indicated that the voices of some NBs
could be affected. We suggest labelling these patients as B’ if
their voices show a similar performance to Bs and C’ if they
are similar to C.

The third experiment performed better than the first one
when B’ and C’ labels were considered. In C vs B+, RF
obtained an Accuracy of 93.5% (increasing by 5% over
the first experiment), with a Sensitivity and Specificity
of 96.6% and 90.0%, outperforming the results obtained in
the first experiment. Similarly, in B+ vs. NB-, the classifi-
cation performance was greatly improved. SVM obtained an
Accuracy of 91.0% with a Sensitivity and Specificity of
93.3% and 100.0%. Good results were also obtained in C+ vs
B+. RF obtained the best result with an Accuracy of 92.4%,
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and in C vs. NB-, the models showed poor performance, SVM
being the one that obtained the best Accuracy = 69.6%.

In general, the third experiment achieved better performance
than the first one. This indicates that our method can diagnose
bulbar dysfunction better than clinicians with the current
subjective approaches.

B. Comparison with Prior Work

This study is consistent with Tena et al. [6], which found a
great uncertainty in ALS patients in whom bulbar dysfunction
was not detected yet suggesting that some of them were mis-
diagnosed. It is also consistent with Plowman et al. [2], which
indicated the difficulties in diagnosing bulbar dysfunction by
subjective approaches. In many cases, the perturbance in those
subjects’ voices could not be appreciated by the human ear
until advanced stages of the disease. We went a step further
by providing two new labels, B’ and C’, to achieve an earlier
and more accurate diagnosis.

This study is also in line with Norel et al., An et al. and
Wang et al. [3, 4, 5], who demonstrated that voice is one of
the most important aspects for detecting bulbar dysfunction.
Norel et al. implemented SVM classifiers to recognize the
presence of voice disability in patients with ALS. They iden-
tified acoustic features in naturalistic contexts, achieving 79%
accuracy (sensitivity 78%, specificity 76%) in the classification
of males and 83% accuracy (sensitivity 86%, specificity 78%)
in the classification of females. An et al. implemented CNNs to
classify the intelligible speech produced by patients with ALS
and healthy individuals. The experimental results indicated
a sensitivity of 76.9% and a specificity of 92.3%. Wang et
al. [5] implemented SVM and NN using acoustic features
and adding articulatory motion information (from tongue and
lips). When only acoustic data were used to fit the SVM,
the overall accuracy was slightly higher than the level of
chance (50%). Adding articulatory motion information further
increased the accuracy to 80.9%. The results using NN were
more promising, with accuracies of 91.7% being obtained
using only acoustic features, increasing to 96.5% with the
addition of both lip and tongue data. Adding motion measures
increased the classifier accuracy significantly at the expense
of including more invasive measurements to obtain the data.
We investigated the means of optimizing accuracy in detecting
ALS bulbar dysfunction by only analyzing the voices of
patients. These studies only focused on B vs. C cases.

To date, only Tena et al. [6] have conducted studies con-
sidering additional cases. They used phonatory subsystem
features, such as jitter, shimmer, harmonic-to-noise ratio and
pitch and PCA, to analyze the performance of several machine
learning models considering four scenarios (C vs. B, C vs. NB,
B vs. NB and C vs. A). In C vs. B, they obtained an Accuracy
of 95.8% with a Sensitivity of 91.4% and Specificity of
99.3% using SVM. Poor performance was obtained in B vs.
NB (Accuracy of 75.5% with Sensitivity of 55.7% and and
Specificity of 88.4% using RF). In C vs. NB and C vs. A,
good results were also obtained, NN being the model which
performanced best in both cases (Accuracies of 92.5% and
92.2% respectively).

In this study, in C vs. B, an Accuracy of 88.3% was ob-
tained for RF with a Sensitivity of 85.0% and a Specificity
of 95.0%. This performance improved when considering B’
patients, C vs. B+, obtaining an Accuracy of 93.5% outper-
forming the results of [3, 4, 5]. In B vs. NB, we obtained
an Accuracy of 78.7% (SVM) outperforming the results
obtained by [6]. This performance was greatly improved when
considering B’ patients, B+ vs. NB-, obtaining an Accuracy
of 91.0% with a Sensitivity of 83.3% and a Specificity
of 100.0%. This suggests that having well-annotated patients
is essential for properly assessing bulbar dysfunction in B
vs. NB. We demonstrated that semi-supervised classification
models such as S4VM are an useful tools for performing this
task.

C. Limitations

The size and bias of this study is heavily influenced by the
fact that ALS is a rare and a very heterogeneous disease where
not all the patients present the same symptomatology. Al-
though upsampling and semi-supervised classifier techniques
were used to correct the bias, it would be necessary to increase
the number of participants to draw definitive conclusions.

However, we proved that the method presented can be
successfully applied to such a corpus. The question is what
the outcomes should be when applying it to a large enough
corpus. The outcomes indicate that accuracy could increase
much more. A specific study should be performed to determine
the extent of this increase.

V. CONCLUSIONS

Promising outcomes in detecting bulbar dysfunction were
obtained when comparing ALS patients with and without this
dysfunction in early stages of the disease, or prior to being
diagnosed by clinicians. This could lead to the development
of a screening tool that may help to develop standardized di-
agnostic procedures for assessing bulbar dysfunction based on
objective measures. This directly addresses a recent statement
released by the NEALS bulbar subcommittee regarding the
need for objective-based approaches [2].

Due to the great uncertainty of the corpus, we highlight
the importance of improving the annotation of ALS patients
as regards bulbar dysfunction to develop powerful machine
learning models able to distinguish this dysfunction. We
provide two new labels, C’ and B’, and demonstrate that
Semi-Supervised Machine learning models could help in the
early detection of this dysfunction. Yet, further analyses are
needed to develop this concept fully. These include performing
longitudinal studies in which patients’ diagnosis are retrieved
at several follow-ups.

The usefulness of this methodology is that it could be
applied to the automated identification and early diagnosis
of many other neurological or respiratory illnesses where
obtaining a large enough and well-annotated corpus is difficult.
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Chapter 3

Discussion

This work demonstrated the feasibility of using bio-sounds for the automatic detection

of certain diseases such as bulbar involvement in ALS patients or COVID-19 positive

cases through the acoustic analysis of voices and coughs respectively. Four studies

have been conducted. Three of them were related to detect bulbar involvement in

ALS patients and one of them was related to detect COVID-19 cough.

The participants in the ALS studies belonged to three different groups: the control

group (C), patients with ALS with bulbar involvement (B), and patients with ALS

without bulbar involvement (NB). In addition, the ALS group (A) was composed

of every participant with ALS, with or without bulbar involvement. Then, four

classification experiments were performed. These consisted of C vs. B, C vs. NB, B

vs. NB and C vs. ALS. Table 3.1 summarizes nomenclature employed for each group

considered in the ALS studies.

Table 3.1: Groups of subjects considered in the ALS studies.

Group Subjects
C Control subjects
B ALS patients with bulbar involvement

NB ALS patients without bulbar involvement
ALS ALS patients with and without bulbar involvement

In the COVID-19 cough study, five groups of subjects were defined for analysis.

These were: the group of subjects tested COVID-19 positive (C), the group of subjects
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tested COVID-19 negative who had no cough as symptom (N), the group of subjects

tested COVID-19 negative with non-specific-cough as a symptom (NC), the group of

non-COVID-19 subjects with pertussis cough (PT), and finally, the group NNC, which

merged all non-COVID-19 subjects (N, NC and PT). Four classification experiments

were performed. These consisted of C vs. N, C vs. NC, C vs. PT and C vs.

NNC. Table 3.2 summarizes nomenclature employed for each group considered in the

COVID-19 cough study.

Table 3.2: Groups of subjects considered in the COVID-19 cough study.

Group Subjects
C COVID-19 tested positive subjects
N COVID-19 tested negative subjects

without cough as symptom
NC COVID-19 tested negative subjects

with with non-specific-cough as a symptom
PT non-COVID-19 subjects with pertussis cough

NCC N, NC and PT subjects

3.1 First study - ALS bulbar involvement

The first study was guided by 2 objectives:

1. to design a methodology for diagnosing bulbar involvement efficiently through

the acoustic parameters of uttered vowels in Spanish, and

2. to demonstrate the better performance of automated diagnosis of bulbar in-

volvement compared with human diagnosis.

This study was based on the accurate acoustic analysis of the five Spanish vowel

segments, that were elicited by all the participants. 15 acoustic features were ex-

tracted. These were jitter(absolute), jitter(relative), jitter(rap), jitter(ppq5), shim-

mer(relative), shimmer(dB), shimmer(apq3), shimmer(apq5), shimmer(apq11), pitch(mean),

pitch(SD), pitch(min), pitch(max), HNR(mean) and HNR(SD). Then, the PCs of

these features were obtained to fit the most common supervised classification models
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in clinical diagnosis, SVM, NN, LDA, LR, NaB and RF. Finally, their performance

was compared.

This study demonstrated the feasibility of automatic detection of bulbar involve-

ment in ALS patients through acoustic features obtained from vowel utterance. The

study also confirmed that speech impairment is one of the most important issues for

diagnosing bulbar involvement as was suggested in [83]. Furthermore, bulbar involve-

ment can be detected using automatic tools before it becomes perceivable to human

hearing.

Voice features extracted from B compared with those features extracted from C

showed the best classification models performance to determine bulbar involvement

in ALS patients.

Accuracy for C vs. B revealed values of 95.8% for SVM with the classification

threshold established at 50%. However, on switching it to 95%, the Accuracy values

for SVM dropped (86.3%) and LR showed the best performance (92.8%). NN also

showed a good Accuracy (92.6%). This implied that NN and LR were more robust

for finding Accuracy.

For that case, the results obtained reinforced the idea that it is possible to diagnose

bulbar affection of ALS patients using supervised models and objective measures. The

SVM and LR models provided the best performance for the 50% and 95% thresholds

respectively.

A great uncertainty was found in the analysis regarding bulbar involvement in the

NB patients.

The Accuracy values of C vs. NB and C vs. ALS with the classification threshold

at 50%, gave 92.57% and 92.2% for NN. That revealed that the features extracted

from NB differed significantly from C. Lower performance was expected because par-

ticipants labeled as C and NB should have had similar voice performance. This

indicated that some of the NB participants probably had bulbar involvement, but

they were not correctly diagnosed because the perturbance in their voices could not

be appreciated by the human ear. It could alternatively be simply that a classification

threshold of 50% could be very optimistic. For a 95% classification threshold, lower
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results were obtained in C vs. NB and C vs. ALS. NN showed the best performance

with Accuracy = 84.8% and Accuracy = 86.8% respectively for the two cases. The

performance between the B and C showed better results than between NB and the

C. Despite this, the unexpectedly high performance of the models for C vs. NB still

suggested that some NB participants could have bulbar involvement. Changing the

classification threshold to 95% worsened the results, specially for Sensitivity although

it still remained significant.

B vs. NB revealed that the classification models did not distinguish B and NB

participants as well as they did with the other groups. The Accuracy in the 50%

threshold showed the highest performance of 75.5% for RF while the models showed

difficulties in identifying positive cases. That may be due to the low difference in the

variation of the data among B and NB participants. The same occurred for the 95%

threshold. LR obtained the highest Accuracy of 74.1% but obtained a Sensitivity of

16.7%. These values remained far from those in C vs. B. These results also reinforced

the idea that NB participants were misdiagnosed.

The good model performance obtained in comparing C vs. NB supported these

findings underscoring the importance of using objective measures for assessing bulbar

involvement.

The projection of the NB in the PCA biplot chart required special attention.

Although the projection of these subjects had a spatial proximity with respect to the

C, their variability was higher, overflowing the circle corresponding to the B. This

indicated that some features of some NB patients, especially shimmer and jitter, had

similar projections to the B patients. This may reveal that these NB patients could

have bulbar involvement but were not correctly diagnosed yet because the perturbance

in their voices could still not be appreciated by human hearing. The box plots of the

features also indicated that the means of the features of the NB patients were between

the means of the features of C and B corroborating these assumptions.

The PCA biplot charts indicated that shimmer and jitter were the most important

features for group separation in the 2-PC model for ALS classification, while they also

revealed pitch and HNR parameters as good variables for this purpose. These results
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were consistent with Vashkevich et al. [16], who demonstrated significant differences

in jitter and shimmer in ALS patients. They were also consistent with Mekyska [30]

and Teixeria et al. [29] who mentioned pitch, jitter, shimmer and HNR values as

the most popular features describing pathological voices. Finally, Silbergleit [26]

suggested the shimmer, jitter and HNR parameters were sensitive indicators of early

laryngeal deterioration in ALS.

Concerning the classification models, recently, Norel et al. [18] implemented SVM

classifiers to recognize the presence of speech impairment in ALS patients. They iden-

tified acoustic speech features in naturalistic contexts, achieving 79% accuracy (pre-

cision=0.78, recall=0.76) for male classification and 83% accuracy (precision=0.86,

recall=0.78) for females. The data used did not originate from a clinical trial or con-

trived study nor was it collected under laboratory conditions. Wang [17] implemented

SVM and NN using acoustic features and adding articulatory motion information

(from tongue and lips). When only acoustic data were used to fit the SVM, the over-

all accuracy was slightly above the level of chance (50%). Adding articulatory motion

information further increased the accuracy to 80.9%. The results using NN were more

promising, with accuracies of 91.7% being obtained using only acoustic features and

these accuracies increasing to 96.5% with the addition of both lip and tongue data.

Adding motion measures increased the classifier accuracy significantly at the expense

of including more invasive measurements to obtain the data. We investigated the

means of optimizing accuracy in detecting ALS bulbar involvement by only analyzing

the voices of patients. An et al. [19] implemented CNNs to classify the intelligible

speech produced by patients with ALS and healthy individuals. The experimental re-

sults indicated a sensitivity of 76.9% and a specificity of 92.3%. Vashkevich et al. [16]

performed LDA with accuracy of 90.7% and Susha et al. [13], used DNNs based on

MFCCs with a 92.2% accuracy for automatic detection of patients with ALS.

Starting from the most widely used features suggested in the literature, the classi-

fication models used in this paper to detect bulbar involvement automatically (C vs.

B) performed better than the ones used by other authors. We obtained the best ever

performance metrics. This suggested that decomposing the original dataset of fea-
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tures into PCs to obtain another dataset whose data (PCs) were linearly independent

and therefore uncorrelated improves the performance of the models.

3.2 Second study - ALS bulbar involvement

The second study demonstrated that it is possible to diagnose bulbar involvement

by using supervised gender-specific models fitted to the significant phonatory and

time-frequency features.

In the case of B vs C, the Accuracy achieved was up to 98.1% (RF) and 96.1%

(RF) for females and males respectively.

Lower performance was obtained in C vs NB but this was still higher than ex-

pected. The voice performance in C or NB should be similar. This indicated that

some participants in the NB group were probably incorrectly diagnosed. This was

coherent with [59]. Similarly, the excellent performance achieved in C vs. A suggested

that some of the members of A (14 out of 45) had bulbar involvement.

On the whole, huge uncertainty was observed in the evaluation concerning bulbar

involvement among the participants in the NB group. The case of B vs NB disclosed

that the models did not differentiate between the B and NB subject groups as well as

they did with the other groups. RF achieved the best overall performance (Accuracy

= 91.8%) in males. However, the model presented problems for spotting positive cases

(Sensitivity = 55.0%). In females, RF achieved an Accuracy of 84.8%. These values

were still far from the ones obtained in the C vs B case. These outcomes additionally

reinforced the idea that NB subjects were misdiagnosed.

The outcomes of each comparison between groups depended on the significant fea-

tures chosen (between phonatory and time-frequency). In other words, the optimal

results in each experiment were obtained with an ad-hoc set of features. This means

the differentiation between the participants in different groups depended on differ-

ent features. However, classifiers obtained very similar results for each experiment,

showing a lesser influence.

The results obtained proved that combining phonatory subsystem and time-frequency
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features improved the ability of the machine-learning models to detect bulbar involve-

ment. In addition, detecting bulbar involvement also depended on the ad-hoc set of

significant features found for such a case.

This study was consistent with [16, 17, 26, 59] which demonstrated that such

phonatory subsystem features as jitter, shimmer, pitch and HNR were sensitive in-

dicators for describing pathological voices in ALS. It was also consistent with [59]

where great uncertainty was found in the diagnosis of NBs participants.

Besides the 15 phonatory subsystem features obtained in [59], this study also

provided 35 time-frequency features. The combination of phonatory subsystem and

time-frequency features, after performing MANOVA for feature selection, enhanced

the outcomes of [59], which achieved the best results to date for detecting bulbar

involvement in ALS using only acoustic features, ahead of [13, 17, 18].

Accuracies of up to 98.1% (RF) and 96.1% (RF) for females and males respectively

were achieved when comparing the bulbar and control participants (case B vs C). This

Accuracy exceeded the one obtained in [18] with SVM (79.0%) by 17.1% for males

and 15.1% for females. The other studies found did not distinguish the classification

problems by gender. In [59], SVM obtained an Accuracy of 95.8%. In [13], NN based

on Mel Frequency Cepstral Coefficients (coefficients for speech representation based

on human auditory perception) obtained 90.7%. In [17], NN based on phonatory

subsystem features obtained 91.7% and adding motion sensors for both lip and tongue

data increased the Accuracy to 96.5% at the expense of including more invasive

measurements. For females, our results outperformed those from the aforementioned

studies by 2.3%, 7.4% and 6.4% respectively. For males, ours were 0.3% above those

obtained in [59] and 5.4% and 4.4% above those obtained in [13, 17].

When comparing ALS patients diagnosed with bulbar involvement with those

patients in whom bulbar involvement has yet to be detected (B vs NB), the outcomes

outperformed the ones obtained in [59]. The respective accuracy for males and females

increased by 16.3% and 9.3% with the same classifier (RF) (91.8% and 84.8% as

against 75.5%). This was an important outcome which indicated that the use of time-

frequency features increased the identification of bulbar involvement among patients
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with ALS.

The outcomes obtained in the C vs NB and C vs A cases were very similar to

those in [59], reinforcing the idea that some NBs could have bulbar involvement.

The most important gains were obtained when comparing B and NB. The selec-

tion of the significant features for this comparison improved the outcomes. Thus,

involvements (i.e. bulbar) could be detected through a separate, and more closely

adjusted, set of features. Consequently, by increasing the identification of particular

features, treatment could be better customized for each ALS patient.

In addition, only studies showing C vs. B have been presented in the literature

(except in [59]). No attempts to distinguish other subjects have been made to date.

We highlighted this differentiating issue, and the importance of future research into

it.

3.3 Third study - ALS bulbar involvement

In the third study, we carried out a preliminary assessment of the potential of obtain-

ing a voice fingerprint for an early detection of bulbar dysfunction in ALS patients.

This was motivated by the need of standardised diagnostic procedure for assessing

bulbar dysfunction and new methodologies based on objective measures [2].

The study demonstrated the feasibility of the methodology proposed. Its major

benefit was to provide a methodology based on objective measures to identify bulbar

dysfunction in early stages of the ALS disease. We suggested two new labels, C’ and

B’, to improve the diagnosis of those patients in whom bulbar dysfunction had not

been detected yet by the current subjective procedures.

This methodology was based on the development of a voice fingerprint which

consisted of a pattern generated from the quasi-periodic components of a steady

portion of the five Spanish vowels, and five principal and independent components

computed from this pattern. From this voice fingerprint, a total of 75 features were

obtained. Then, a MANOVA analysis was applied to obtain the significant features

for the four cases studied (C vs. B, C vs. NB, B vs NB and C vs. ALS). Finally,
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three experiments were conducted.

The first experiment showed the performance of the machine learning models used

for the four cases. The best results were obtained when comparing C vs. B. RF and

SVM achieved the best performance (Accuracy of 88.3% and 86.5% respectively).

LR, LDA and NN were far from these results. When comparing C vs. NB a poor

performance was observed. SVM achieved the best accuracy (68.0%). In B vs. NB

and C vs. A, SVM achieved an Accuracy of 78.7% and 73.1% respectively. From the

good results achieved by C vs. B, we inferred that the methodology proposed was

good to detect bulbar dysfunction, being RF and SVM the best models to perform

this task. The poor performance obtained in C vs. NB revealed a similar voice

performance of Cs and NBs as it was expected. Instead, the performance obtained in

B vs. NB indicated that some NBs voices could be affected in some NBs buy may it

was not perceptible by the human hearing yet.

The second experiment revealed that 9 from the total of 31 NBs probably had

bulbar dysfunction. This result was consistent with the previous statement that

indicated that some NBs could have their voices affected. We suggested to label

these patients as B’ if their voices showed a similar performance than Bs and C’ if

they were similar to C.

The third experiment showed a better performance than the first one when B’

and C’ labels were considered. In C vs B+, RF obtained an Accuracy of 93.5% with

a Sensitivity and Specificity of 96.6% and 90.0% respectively outperforming the

results obtained in the first experiment. Similarly, in B+ vs. NB-, the classification

performance was greatly improved. SVM obtained an Accuracy of 91.0% with a

Sensitivity and Specificity of 93.3% and 100.0% respectively. In C+ vs B+ good

results were also obtained, RF obtained the best result with an Accuracy of 92.4%,

and in C vs. NB- the models showed a poor performance being SVM which obtained

the best Accuracy = 69.6%.

This study was consistent with the previous ones which found a great uncertainty

in ALS patients in whom bulbar dysfunction was not detected yet suggesting that

some of them were misdiagnosed. It was also consistent with Plowman et al. [2] which
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indicated the difficulties in diagnosing bulbar dysfunction by subjective approaches.

In many cases, the perturbance in those subjects’ voices could not be appreciated by

the human ear until advanced stages of the disease. We went a step further providing

two new labels, B’ and C’, to achieve an earlier and more accurate diagnosis.

In C vs. B, we obtained for RF an Accuracy of 88.3% with a Sensitivity and

Specificity of 85.0% and 95.0% respectively. This performance improved when con-

sidering B’ patients, C vs. B+, obtaining an Accuracy of 93.5% outperforming the

results of [18, 19, 17]. In B vs. NB, we obtained an Accuracy of 78.7% (SVM) out-

performing the results obtained by our first study [59]. This performance was greatly

improved when considering B’ patients, B+ vs. NB-, obtaining an Accuracy of 91.0%

with Sensitivity and Specificity of 83.3% and 100.0% respectively. This suggested

that to have well annotated patients is essential to properly asses bulbar dysfunction

in B vs. NB. We demonstrated that semi-supervised classification models such as

S4VM are useful tools to perform this task.

3.4 Fourth study - COVID-19 cough

The four study directly addressed a recent statement released by the WHO [3] which

believed in the use of rapid tests essential to control people infected with COVID-19.

We demonstrated the feasibility of automatic detection of COVID-19 positives from

the time-frequency analysis of coughs.

The visual appraisal of the time-frequency representations confirmed differences in

the frequency distribution of the voluntary coughs of the C, N, NC and PT subjects.

The features selected by RFE to fit the models obtained better results on the

overall performance of the models than those features extracted by means of the

Autoencoder. Furthermore, the rank of the features selected by RFE which fitted the

model that obtained the best performance depended highly on the experiment done.

This means that when comparing coughs, a good selection of the features must be

chosen.

The classification models performed better when comparing C vs. PT than when
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comparing C vs. N, C vs. NC or C vs. NNC, although a good performance was

observed for all the experiments. In C vs. PT, the metrics that performed better

were Accuracy = 94.81%, Sensitivity = 98.91% for RF, Precision = 97.13% for

LR, F − score = 97% for RF and AUC = 97.29 for SVM. This experiment better

detected positive COVID-19 coughs but did not work so well for classifying pertussis

coughs (Specificity = 85% for LR and LDA). Instead, in the other experiments, the

detection of positive and negative cases was more balanced. This was specially so

in the C vs. NNC experiment, which obtained the best Specificity = 85.09. This

experiment reflected a more real case scenario where COVID-19 coughs co-exist with

coughs of different patterns. In the four classification experiments done, RF showed

the best overall performance.

Other existing works, such as Laguarta et al. [47], extracted MFCCs from cough

recordings and input them into a pre-trained CNN. Their model achieved an AUC

of 97% with a Sensitivity = 98.5% and a Specificity of 94.2%. Pahar et al.

[51] presented a machine-learning based COVID-19 cough classifier able to discrim-

inate COVID-19 positive coughs from both COVID-19 negative and healthy coughs

recorded on a smartphone. They obtained an AUC of 98% using the Resnet50 classi-

fier to discriminate between COVID-19 positive and healthy coughs, while an LSTM

classifier was best able to discriminate between COVID-19 positive and COVID-19

negative coughs with an AUC of 94%. Brown et al. [52] used coughs and breathing to

understand how discernible COVID-19 sounds were from those in asthma or healthy

controls. Their results showed that a simple binary machine-learning classifier was

able to classify healthy and COVID-19 sounds correctly. Their models achieved an

AUC of above 80% across all tasks.

The RF model used in thi study performed similarly to the ones used by other

authors (Accuracy and AUC close to, or above 90% depending on the experiment)

although automated cough detection introduced some performance penalty. Addi-

tionally, our methodology allowed coughs in samples of raw audio recordings to be

detected automatically by using the YAMNet deep neuronal network [63]. We also

found the set of time-frequency features that could lead to distinguishing COVID-19
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coughs from other cough patterns. In addition, the high performance obtained in

various sampling sources (UdL, UC, Virufy and Coswara) validated our method as a

more generic proposal.

Newer machine-learning works have shown lower results. For example, an accuracy

of 85.2% with RF and 70.6% with CNN, were obtained in [53] and [54] respectively.

Recently [55], an accuracy of 90% was obtained with a recurrent neural network

(RNN) by using the Coswara dataset. However, the accuracy dropped to 80% with

Coswara and Virufy simultaneously. This fact demonstrates that obtaining good

outcomes when different datasets are used is a challenge. Our proposal behaved

much better even when three additional datasets (UdL, UC and Pertussis) were used.

3.5 Limitations

This work has some limitations. In the ALS studies, using machine learning on

small sample sizes made it difficult to evaluate the significance of the findings fully.

The sample size of the dataset used was, in part, determined by the low prevalence

of ALS, which is considered a rare disease. The small number of samples of the

B group was influenced by the heterogeneity of the ALS disease in which patients’

symptomatology is very diverse. Although, upsampling techniques have been made

to correct the bias it would be necessary to increase the number of participants to

draw definitive conclusions.

Furthermore, hand-edit of the segments of the voice recordings could have in-

troduced subtle and unintended selection biases. Although automatic instruments

have been created, these methods they are currently not accurate enough and require

manual correction.

In the COVID-19 study, although in general, high performance was obtained in

RF, its Specificity was not the optimal. Overall, Specificity outcomes were lower.

That means that correctly classifying negative samples is an issue. This must be due

to classification mistakes in the dataset. Additional efforts must be made to curate

the corpus.

140



Furthermore, further analyses comparing COVID-19 cough patterns with cough

patterns from other conditions, such as asthma or bronchitis, are needed.
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Chapter 4

Conclusions

This work suggests that machine learning may be an appropriate tool for the auto-

matic detection of certain diseases by means of bio-sounds analysis. Concretely, the

methods presented can help with the diagnosis of ALS of the clinical multi-disciplinary

teams, in particular, to help with the diagnosis of bulbar involvement. Additionally,

they could also be useful to help for an early response to further COVID-19 outbreaks

or other pandemics that may arise in the future.

We demonstrated that an accurate analysis of the features extracted from an

acoustic analysis of the vowels elicited from ALS patients may be used for an early

detection of the bulbar involvement. This could be done automatically using su-

pervised classification models. Better performance was achieved by applying PCA

previously to the obtained features. Note that, when classifying ALS participants

with bulbar involvement and controls, the SVM for a 50% classification threshold

exceeded the performance obtained by other authors, and more specifically, those

obtained by [17] and [13].

Furthermore, bulbar involvement can be detected using automatic tools before

it becomes perceivable to human hearing. The results point to the importance of

obtaining objective measures to allow an early and more accurate diagnosis, given

that humans may often misdiagnose this deficiency. This directly addresses a re-

cent statement released by the NEALS bulbar subcommittee regarding the need for

objective-based approaches [2].
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Moreover, we demonstrated the usefulness of properly assessing bulbar involve-

ment by using phonatory subsystem and time-frequency features from a study of the

Spanish vowels outperforming previous works, specifically [17, 18, 13, 59]. We also

demonstrated that each identification between two groups depends on the significant

features found for such an experiment.

One of the main contribution is the idea of differentiating the diagnose by gender.

This outperformed all the results of the literature.

The creation of a voice fingerprint combined with machine learning models could

lead to minimize the uncertainty found in the diagnosis of bulbar involvement which

use the current subjective procedures.

Due to this great uncertainty, we highlight the importance of improving the an-

notation of ALS patients on regards the bulbar involvement to develop powerful

machine learning models able to distinguish this dysfunction. We demonstrated that

semi-supervised Machine learning models could help in the early detection of this

dysfunction. Further analysis is needed to fully develop this concept. This would in-

clude longitudinal studies in which the diagnosis of patients was recovered in several

follow-ups.

We obtained promising results in detecting bulbar involvement when comparing

ALS patients with and without this dysfunction. SVM obtained up to 91.0% of

Accuracy with 100.0% of Specificity. These could lead to the development of a

screening tool that may help to develop standardised diagnostic procedures for as-

sessing bulbar dysfunction based on objective measures.

These studies directly address a recent statement released by the NEALS bulbar

subcommittee regarding the need for objective-based approaches [2]. The results

obtained reinforces the idea that machine learning may be an appropriate screening

tool for helping with the diagnosis of ALS with bulbar involvement.

We also demonstrated the feasibility of the automatic detection of COVID-19 from

coughs. Excellent results were achieved by fitting an RF model with the set of the

time-frequency features selected by RFE for distinguishing COVID-19 coughs. This

new methodology presented could lead to automatic identification of COVID-19 by
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using existing simple and portable devices. It could be the core of a pre-screening

mobile app for use as an early response to further COVID-19 outbreaks or other

pandemics that may arise in the future.

The usefulness of these methods could be applied to the automated identification

and early diagnosis of many other neurological or pulmonary problems, or infectious

respiratory diseases such as Parkinson, asthma, bronchitis or Chronic Obstructive

Pulmonary Disease.

Future work is directed towards the improvement of the ALS voice database by

increasing the sample size. Also, longitudinal studies in which patients diagnosis were

retrieved at several follow-ups are envisaged.

Also, we will gather more COVID-19 quality data, especially different cough pat-

terns from other conditions, and curate the actual corpus to further train, fine-tune,

and improving performance of the models.
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Abbreviations

ALS Amyotrophic lateral sclerosis

COVID-19 COronaVIrus Disease of 2019

NEALS Northeast Amyotrophic Lateral Sclerosis Consortium

SARS-CoV2 Severe Acute Respiratory Syndrome

WHO World Health Organisation

ALSFRS-R Amyotrophic lateral sclerosis Functional Rating Scale – Revised

F1 First formant

F2 Second formant

VISC Vowel inherent spectral change

ENT Ears, nose and throat

MDVP Multi-Dimensional Voice Program

PHON Sustained phoneme production

DDK Diadochokinetic task

SPON Spontaneous speech

SVM Support Vector Machines

DNN Deep neural network

MFCCs Mel frequency cepstral coefficients

AUC Area under the curve

LDA Linear discriminant analysis

NDI Northern Digital Inc.

CNN Convolutional Neuronal Network

GRBAS Grade, roughness, breathiness, asthenia, strain scale

MPT Maximum phonation time

HNR Harmonics-to-noise ratio

TFR Time-frequency representation

NN Neuronal Network

PNN Probabilistic neural network

HMM Hidden Markov Model

146



GMCC Gammatone Cepstral Coefficient

FFT Fast Fourier Transform

kNN k-Nearest Neighbor

LR Logistic Regression

RF Random Forest

SMOTE Synthetic minority oversampling technique

MLP Multilayer perceptron

LSTM long short-term memory

Resnet50 Residual-based neural network architecture

SFS Sequential forward selection

GBT Gradient Boosting Trees

CWD Choi-Williams distribution

F0 Fundamental Frequency

WD Wigner distribution

DFT Discrete Fourier transform

MANOVA Multivariate analysis of variance

RFE Recursive Feature Elimination

PCA Principal Component Analysis

PC Principal Component

SVD Singular Value Decomposition

ICA Independent Component Analysis

NaB Naive Bayes

S4VM Safe Semi-Supervised Support Vector Machine

CEIm Research Ethics Committee for Biomedical Research Projects
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