
Doctoral Thesis

A comprehensive study of arithmetic
circuits and elliptic curves for efficient and

scalable zero-knowledge proof systems

Marta Bellés Muñoz

June 2023

Dr. Vanesa Daza Fernández
Pompeu Fabra University

Supervisor

Dr. Jose Luis Muñoz Tapia
Polytechnic University of Catalonia

Co-supervisor

Department of Information and Communication Technologies

Trust, but verify

Russian proverb

iii

Agraïments
La tesi que teniu a les vostres mans no hagués estat possible sense el suport i
l’ajuda de companys, col·legues, amics i família.

M’agradaria agrair l’excepcional atenció i eficàcia del personal administratiu
de Tànger, en especial la feina de la Lydia, que ha facilitat tots els processos
administratius que comporta un doctorat.

Part important d’aquesta tesi va començar durant el meu pas per iden3. Vull
agrair al Jordi l’oportunitat d’aprendre des de zero i per ser una font constant
d’inspiració. La meva visió sobre els circuits te la dec a tu. També vull agrair
a l’Arnau i l’Edu el seu entusiasme contagiós pel software lliure i el dret a la
privacitat, i per trobar sempre un moment per donar-me un cop de mà.

Gràcies als companys de la Pompeu per compartir inquietuds acadèmiques i fer-
me un lloc a les vostres converses, sempre interessants i plenes d’idees. Gràcies
en especial a l’Alex, l’Arantxa, el Fede, el Rasoul, el Sergi i la Zaira.

L’última contribució d’aquesta tesi no hagués estat possible sense la família de
Dusk. Gràcies a tot l’equip, en especial gràcies a l’Ema, la Jeske i el Matteo
per l’oportunitat que m’heu donat i per la confiança dipositada. Sí puc dir que
aquesta tesi no seria la mateixa sense el Xavi i el Javi. Us estic profundament
agraïda per haver fet equip amb mi i per ensenyar-me tantes coses que no sabia.

Gràcies a la Vanesa per animar-me a començar el doctorat i per acollir-me al
departament. Més enllà d’haver-me ajudat professionalment, em quedo amb les
converses, els consells, la força i el suport que m’has donat durant aquests anys.

No puc posar en paraules tot el meu agraïment cap al Jose. No seria on sóc
sense la teva inestimable ajuda, orientació i suport. Estaré sempre en deute en
tu per obrir-me les portes a un món que he fet casa meva.

Agraeixo a les nenes, companys de carrera, de conservatori i veïnes, la paciència
i comprensió que heu tingut amb mi. Gràcies per escoltar-me, fer-me tocar de
peus a terra quan ho necessito i ser sempre allà.

Família, papa, mama, Albert i Agnès, sempre esteu disposats a ajudar en el que
calgui, escoltar, donar consells i ajudar. Què puc dir, gràcies.

Per últim, gràcies a tu Miquel. Em sento molt afortunada d’haver pogut viure
aquesta experiència al teu costat. Gràcies per escoltar-me, per compartir amb
mi el que penses i per tenir sempre un punt de vista diferent.

iv

v

Abstract
In recent years, zero-knowledge proofs have come to play a crucial role in dis-
tributed systems where there is no trust between the parties involved. Most
popular proof systems are for the NP-complete language of arithmetic circuit
satisfiability. Although there have been tremendous efforts in understanding,
developing, and improving zero-knowledge proof systems, not much work has
been done towards the study of arithmetic circuits. In this thesis, we contribute
to this matter in three different aspects.

First, we present circom, a programming language for writing arithmetic cir-
cuits that abstracts the complexity of the proof system. Second, we provide a
deterministic algorithm for generating twisted Edwards elliptic curves that can
be used to prove elliptic-curve cryptography statements in zero knowledge effi-
ciently. Finally, we explore recursive composition of pairing-based proof systems
with native circuit arithmetic, delving into the study of cycles of pairing-friendly
elliptic curves of prime order.

Resum
En els últims anys, les proves de coneixement zero han passat a tenir un paper
crucial en el sistemes distribuïts on no hi ha confiança entre els participants. Els
sistemes de prova més populars són pel llenguatge NP complet de satisfacibilitat
de circuits aritmètics. Tot i que hi ha hagut molts esforços per entendre i
millorar les proves de coneixement zero, no s’ha avançat tant en l’estudi dels
circuits aritmètics. En aquesta tesi, contribuïm a aquest tema en tres aspectes.

Primerament, presentem circom, un llenguatge de programació per escriure
circuits aritmètics que abstreu la complexitat del sistema de prova. Segonament,
proporcionem un algorisme determinista per a generar corbes el·líptiques que
permeten demostrar eficientment declaracions de criptografia de corba el·líptica.
Finalment, explorem la composició recursiva de sistemes de prova basats en
aparellaments utilitzant l’aritmètica nativa dels circuits, aprofundint en l’estudi
de cicles de corbes el·líptiques d’ordre primer amb aparellaments adients.

vi

Contents

Abstract v

List of figures ix

List of tables xi

1 Introduction 1
1.1 Contributions and organization 4

2 Preliminaries 7
2.1 Zero-knowledge proofs . 7

2.1.1 ZK-SNARKs . 8
2.1.2 Arithmetic-circuit satisfiability 10

2.2 Elliptic curves . 13

3 A circuit language for zero-knowledge applications 15
3.1 Introduction . 15

3.1.1 Contributions and organization 16
3.2 Related work . 17

3.2.1 Libraries . 17
3.2.2 Domain-specific languages 19
3.2.3 Standardization tools . 20
3.2.4 Comparative analysis . 21

3.3 circom . 24
3.3.1 Creating a circuit . 25
3.3.2 Compiling a circuit . 26
3.3.3 Generating a ZK proof . 27
3.3.4 The main component . 28

vii

viii CONTENTS

3.3.5 Connecting templates . 29
3.3.6 Debugging . 30
3.3.7 Building complex circuits 30
3.3.8 Splitting between computation and constraints 31
3.3.9 Checking if a signal is zero 33
3.3.10 Functions and constants 35
3.3.11 Symbolic variables . 35
3.3.12 Dealing with the unknown 38
3.3.13 Using templates from circomlib 40

3.4 Applications . 40
3.4.1 Hash functions . 41
3.4.2 Elliptic-curve arithmetic 42
3.4.3 Public-key cryptography 45
3.4.4 Digital signatures . 46

3.5 circom performance on large circuits 48
3.5.1 ZK-rollup circuits . 48
3.5.2 Performance results . 49

3.6 Analysis . 50
3.7 Conclusions . 53

4 Twisted Edwards elliptic curves for arithmetic circuits 55
4.1 Introduction . 55

4.1.1 Contributions and organization 57
4.2 Related work . 57
4.3 Elliptic curves . 59

4.3.1 Montgomery curves . 59
4.3.2 Twisted Edwards curves 60

4.4 Generation of twisted Edwards curves 62
4.4.1 General overview . 62
4.4.2 Choice of Montgomery equation 63
4.4.3 Choice of generator and base points 64
4.4.4 Transformation to twisted Edwards 64
4.4.5 Optimization of parameters 65

4.5 Security tests . 65
4.6 Baby Jubjub: a suitable curve for Ethereum 67

4.6.1 Elliptic-curve arithmetic 72
4.6.2 The Bowe–Hopewood–Pedersen hash 75

4.7 Conclusions . 80

CONTENTS ix

5 Revisiting cycles of pairing-friendly elliptic curves 81
5.1 Introduction . 81

5.1.1 Contributions and organization 83
5.2 Related work . 83
5.3 Pairing-friendly elliptic curves . 84

5.3.1 Elliptic curves . 85
5.3.2 Pairing-friendly polynomial families 87

5.4 Cycles of elliptic curves . 90
5.4.1 Definition and known results 90
5.4.2 Some properties of cycles 92

5.5 Cycles from known families . 95
5.5.1 Cycles from parametric-families 96
5.5.2 2-cycles from parametric families 97

5.6 Density of pairing-friendly cycles 103
5.7 Conclusions . 110

6 Conclusions 113

Bibliography 114

A Code 131
A.1 Code from Chapter 4 . 131

A.1.1 Implementation of security tests from Section 4.5 131
A.2 Code from Chapter 5 . 139

A.2.1 Setup . 139
A.2.2 Auxiliary functions . 140
A.2.3 Code for Proposition 5.17 141
A.2.4 Code for Table 5.2 . 142
A.2.5 Code for Corollary 5.22 143
A.2.6 Main function . 144

B Publications 147

x CONTENTS

List of figures

2.1 Representation of an arithmetic circuit over a prime finite field . 11

3.1 Classification of the main software tools for ZK-SNARKs 18
3.2 Our framework for generating and verifying ZK-SNARK proofs . 27

4.1 Arithmetic circuit for scalar multiplication on Baby Jubjub . . . 73
4.2 Description of the seq box from Figure 4.1 74
4.3 Description of the window box from Figures 4.2–4.4 74
4.4 Description of the seq’ box from Figure 4.1 75
4.5 Arithmetic circuit for the Bowe–Hopwood–Pedersen hash 77
4.6 Description of the multiplication box from Figure 4.5 77
4.7 Description of the selector box from Figure 4.6 78

xi

xii LIST OF FIGURES

List of tables

3.1 Classification of backends for ZK applications 19
3.2 Classification of frontends for ZK applications 19
3.3 Classification of tools for ZK software interoperability 21
3.4 Impact of the circom compiler optimizations on large circuits . 49

4.1 Use of elliptic curves in different ZK constructions 58

5.1 Polynomial descriptions of MNT, Freeman, and BN curves 90
5.2 Bounds from Lemma 5.20 for different embedding degrees of the

potential partner curve of MNT3, Freeman, and BN curves . . . 101
5.3 Instances of curves that form a pairing-friendly 2-cycle 103

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

A proof is a proof. What kind of a proof? It’s a proof. A
proof is a proof. And when you have a good proof, it’s because
it’s proven.

– Jean Chretien

Computers and algorithms play an essential role in today’s modern society.
From smartphones and laptops, to medical devices and transportation systems,
new technologies have transformed the way we shape our society. With the
rapid growth in computing power, data availability, and recent advances in the
field of artificial intelligence, it seems natural to think that a computer with
enough memory and time can solve any problem, regardless of its complexity.
Yet, in 1936 Alan Turing proved the existence of a problem that even the most
powerful modern computer cannot solve.

We say that a problem is solvable if there exists and algorithm, that is, a
finite sequence of instructions that, once it is executed on a machine, leads to the
result of the problem [BC94]. Depending on the capabilities of the machine they
are executed on, a problem may be solvable or not. In his seminal paper [Tur36],
Turing introduced a set of theoretical machines that manipulated symbols on
an infinite tape according to a table of rules. Although these machines, later
known as Turing machines, were simple, they turned out to be a very powerful
computation model: anything that a real computer can solve can also be solved
by a Turing machine [HU79]. Turing showed that no Turing machine, and hence,

1

2 CHAPTER 1. INTRODUCTION

no modern computer, could solve the halting problem. This result is one of the
most philosophically important theorems of the theory of computation, because
it proves that computers are limited in a fundamental way [Sip13].

For those problems that are solvable over a Turing machine, it is interest-
ing to study the complexity of finding a solution based on the computational
resources needed to solve them. The fundamental complexity classes P and
NP are based on the time needed to solve a problem. The class P contains
those problems that can be solved by a deterministic Turing machine using a
polynomial amount of computation time, while NP contains those that can be
solved by a non-deterministic Turing machine in polynomial time. In general,
problems in P are considered tractable, while many problems in NP are regarded
as not realistically solvable on a computer [BC94,Sch96]. Clearly, the class NP
includes P, but whether P = NP is one of most important questions in computer
science and mathematics.

One important advance on this question was the discovery of certain prob-
lems in NP that were at least as difficult as any other problem in the class [Sch96].
More precisely, if a polynomial time algorithm exists for solving any of these
problems, all problems in NP would also be in P. These problems are known
as NP-complete problems. In this thesis we focus on an NP-complete problem
called arithmetic circuit satisfiability. An arithmetic circuit consists of wires
(also called signals) that carry values from a prime finite field Fp. These wires
are connected to gates representing additions and multiplications modulo p.
The arithmetic circuit satisfiability problem asks if, given a circuit, there exists
a valid assignment of the signals that make the circuit satisfiable.

Another characterization of the NP complexity class is as the set of problems
for which solutions can be verified in polynomial time in a deterministic Turing
machine [AB07]. In other words, we can think of this class as the set of problems
such that checking the validity of a potential solution can be done efficiently,
but finding the solution may require a more extensive search or computation.
To make this definition precise, we associate to each class of problems in NP a
language that identifies statements that are true. For example, the arithmetic
circuit satisfiability problem can be captured by the language

CSAT = { C arithmetic circuit | “C is satisfiable” is true }.

Now, the arithmetic circuit satisfiability problem is the decision problem of
determining whether C ∈ CSAT or not.

Formally, we define NP as exactly the class of languages L for which there
exists a deterministic polynomial-time verification algorithm V such that x ∈ L

3

if and only if there exists a witness w such that V (x,w) = accept. This may
be viewed as a very simple (classical) proof system between a prover P with
unbounded power or in possession of w, and a verifier V as described above.
The prover P can always try to prove to V that x ∈ L by sending w to V . If
a valid w exists, P is always able to make the verifier accept (completeness),
and if no such w exists, then there is no way in which P can trick V to accept
(soundness). This system captures the nature of a mathematical proof.

In the 1980s, some works [BS84, GMR85] proposed randomized and inter-
active verification procedures that lead to (probabilistic) proof systems with a
relaxed version of the soundness property with a small but controllable sound-
ness error. In this setting, Goldwasser, Micali, and Rackoff [GMR85] proved
that it was possible to have proofs that efficiently demonstrate membership in a
language without conveying any additional knowledge. That is, zero-knowledge
(ZK) proofs that yield nothing beyond the validity of the assertion being proved.
The non-interactive version of ZK proof systems (NIZK) was introduced shortly
after in [BFM88]. The subsequent works [Dam92,FLS99,KP98] proved the exis-
tence of NIZK arguments for all NP languages. CSAT is of particular interest,
because circuits encode many types of computation in a natural way.

For example, in the blockchain space, Zcash [HBHW19] uses NIZKs for
CSAT to process confidential transactions. In a transparent network, anyone
can check if a transaction satisfies the conditions of a valid transaction (e.g. the
sender does not spend more than they have). In the confidential case, addresses
and values are hidden. In order to prove the correctness of these transactions,
they are accompanied by a NIZK proof that proves that the conditions for a
valid transaction are met. By verifying the NIZK proof, the network can check
if the transaction is valid without learning any details.

The Ethereum network uses highly expressive smart contracts to enable
complex transactions. Smart contracts are public and provide no inherent pri-
vacy [BBB+17]. Moreover, the interaction with an smart contract is expensive,
and the smart contract’s own computational power is highly limited. To bring
privacy to smart contracts, it is not sufficient to use a NIZK, we need a NIZK
with small proof size and a fast verification algorithm. These type of proofs are
called ZK succinct non-interactive arguments of knowledge (ZK-SNARKs).

In general, ZK-SNARKs for CSAT require arithmetic circuits to be trans-
lated into a more mathematical description [GGPR13]. A common encoding
is as a set of quadratic constraints called rank-1 constraint system (R1CS). In
practice, ZK-SNARK proof shows, without revealing secret values, that the
prover knows an assignment to all wires of the circuit that fulfill all constraints
of the R1CS. In the first part of this thesis, we present circom, a programming

4 CHAPTER 1. INTRODUCTION

language for writing arithmetic circuits. Unlike other software, circom gives
programmers total control about the signals and the constraints of the R1CS
that define the computation.

Most efficient ZK-SNARK constructions [PHGR13, Gro16, GWC19] make
use of bilinear maps (pairings) on elliptic-curve groups for verification of proofs,
achieving verification time that does not depend on the size of circuit associated
to the statement being proven. More precisely, a pairing-based SNARK relies
on an elliptic curve E/Fq for some prime q such that the group E(Fq) has a large
subgroup of prime order p. With this setting, the SNARK is able to prove satis-
fiability of arithmetic circuits over Fp. Since elliptic-curve cryptography (ECC)
works in large prime fields, elliptic curves come as the natural representation of
circuits. The second part of this thesis is driven by the search of curves E′/Fp

that allow to describe ECC statements. More precisely, we look for twisted
Edwards curves that allow an efficient implementation of ECC schemes such as
the Bowe–Hopwood–Pedersen hash or the Edwards digital signature algorithm
(EdDSA). We propose a deterministic algorithm for generating such curves and
give a concrete curve E′/Fp with p being the order of BN-256.

In the last part of the thesis, motivated by recursive composition of pairing-
based SNARKs, we study 2-cycles of pairing-friendly elliptic curves. We show
that families of elliptic curves parameterized by low-degree polynomials, which
is the only known approach at generating pairing-friendly elliptic curves of prime
order, are unlikely to yield new 2-cycles. In particular, we show that such cycles
do not exist unless a strong condition holds.

1.1 Contributions and organization

The thesis is structured as follows. In Chapter 2, we give the context and
background to understand the subsequent chapters. The following Chapters 3-5
result from three lines of research. Each chapter corresponds to one paper, some
already published, some in preprint stage. The contents are essentially the same
as in the papers, with only minor modifications to remove redundancies, unify
notation, and ensure a more cohesive document.

• Chapter 3: we present circom, a novel circuit description language that
programmers can use to implement arithmetic circuits describing complex
computations. We provide a detailed description and analysis of the lan-
guage, including its syntax, semantics, and expressive power. This chapter
is based on the articles [BBDM22] and [BMIMT+22].

SECTION 1.1. CONTRIBUTIONS AND ORGANIZATION 5

• Chapter 4: we present our work on the deterministic generation of suitable
twisted Edwards curves for Fp-arithmetic circuits for a given prime p. The
contents of this chapter are the result of the common efforts from the ZK
community to standardize these procedures. The chapter is based on the
article [BWB+21].

• Chapter 5: we explore recursive composition of pairing-based SNARKs
with cycles of pairing-friendly elliptic curves of prime order. The content
of this chapter is based on [BMUS22] that has been accepted to Crypto’23.

In Chapter 6, we close with some general conclusions. The thesis also in-
cludes an Appendix A with code from Chapters 4 and 5, and an Appendix B
with the list of publications and their abstracts.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

What is intuitively required from a theorem-proving proce-
dure? First, that it is possible to “prove” a true theorem.
Second, that it is impossible to “prove” a false theorem. Third,
that communicating the proof should be efficient, in the fol-
lowing sense. It does not matter how long must the prover
compute during the proving process, but it is essential that
the computation required from the verifier is easy.

– Shafi Goldwasser, Silvio Micali, and Charles Rackoff

2.1 Zero-knowledge proofs

In 1985, Goldwasser, Micali, and Rackoff [GMR85] introduced zero-knowledge
(ZK) proofs that allow one party, called prover, to convince another one, called
verifier, that a statement is true without revealing any information beyond the
veracity of the statement. In this context, a statement is usually associated to
an instance, a public input known to both prover and verifier, and a witness, a
private input known only by the prover. Informally, a ZK proof should satisfy
three properties:

7

8 CHAPTER 2. PRELIMINARIES

• Completeness: given a statement and a witness, the prover can convince
the verifier that the statement is true.

• Soundness: a malicious prover cannot convince the verifier of a false state-
ment.

• Zero-knowledge: the proof does not reveal anything else but the truth of
the statement, in particular, it does not reveal the prover’s witness.

Note that the first two properties protect the verifier against dishonest provers,
while the zero-knowledge property guarantees the prover’s privacy against ma-
licious verifiers.

In this work we focus on ZK-SNARKs [PHGR13,Gro10,Gro16], which belong
to group of ZK proofs known as arguments of knowledge. Informally, while a
proof proves that there exists a valid witness, an argument of knowledge proves
that, with very high probability, the prover does know a concrete valid witness.
An argument of knowledge is considered a SNARK if it is non-interactive and,
regardless of the size of the statement being proved, has succinct proof size (e.g.
[Gro16]-proofs are ≈ 200 bytes). Many ZK-SNARKs use pairing functions over
elliptic curve groups to also guarantee short verification time [Gro16,GWC19].
We give a formal definition in the following section.

The main downside ZK-SNARKs for general statements is that they are not
possible without using a common reference string (CRS), which should be known
by both the prover and the verifier. Essentially, a CRS is constructed from a
set of random values (also called toxic waste) that should not be known by
the prover nor the verifier. Security proofs assume that the CRS was honestly
generated. In practice, the CRS can be generated by a trusted third party,
or using a secure multi-party computation (MPC) protocol to construct the
CRS. MPC allows multiple independent parties to collaboratively construct the
parameters in away that it is enough that one single participant deletes its secret
counterpart of the contribution to keep the whole scheme secure [Can01]. The
parameters involved in this initial phase are also known as trusted setup.

2.1.1 ZK-SNARKs
Let R be a relation generator that given a security parameter λ returns a poly-
nomial time decidable binary relation R. For pairs (ϕ,w) ∈ R, we call ϕ the
statement and w the witness. We define Rλ to be set of possible relations R
that R may output given 1λ. The relation generator may also output some side
information, an auxiliary input z, which will be given to the adversary.

SECTION 2.1. ZERO-KNOWLEDGE PROOFS 9

An efficient prover publicly verifiable non-interactive argument for R is a quadru-
ple of probabilistic polynomial algorithms (Setup, Prove, Vfy, Sim) such that

• (σ, τ) ← Setup(R): the setup produces a common reference string σ and
a simulation trapdoor τ for the relation R.

• π ← Prove(R, σ, ϕ, w): the prover algorithm takes as input a common
reference string σ and (ϕ,w) ∈ R and returns an argument π.

• 0/1 ← Vfy(R, σ, ϕ, π): the verification algorithm takes as input a com-
mon reference string σ, a statement ϕ, and an argument π, and returns 0
(reject) or 1 (accept).

• π ← Sim(R, τ, ϕ): the simulator takes as input a simulation trapdoor and
statement ϕ and returns an argument π.

Definition 2.1 (Non-interactive zero-knowledge argument of knowledge). We say
that (Setup, Prove, Vfy, Sim) is a non-interactive zero-knowledge argument of
knowledge for R if it has perfect completeness, perfect zero-knowledge, and
computational knowledge soundness as defined below.

Completeness says that, given any true statement, an honest prover should be
able to convince an honest verifier.

Definition 2.2 (Perfect completeness). We say that (Setup, Prove, Vfy) has per-
fect completeness if, for all λ ∈ N, R ∈ Rλ, and (ϕ,w) ∈ R,

Pr [(σ, τ)← Setup(R);π ← Prove(R, σ, ϕ, w) | Vfy(R, σ, ϕ, π) = 1] = 1.

An argument is zero-knowledge if it does not leak any information besides the
truth of the statement.

Definition 2.3 (Perfect zero-knowledge). We say that (Setup, Prove, Vfy, Sim) is
perfect zero-knowledge if, for all λ ∈ N, (R, z) ←∈ R(1λ), (ϕ,w) ∈ R and all
adversaries A,

Pr [(σ, τ)← Setup(R);π ← Prove(R, σ, ϕ, w) | A(R, z, σ, τ, π) = 1]

= Pr [(σ, τ)← Setup(R);π ← Sim(R, σ, ϕ) | A(R, z, σ, τ, π) = 1] .

Soundness examines the probability of proving a false statement, that is, of
convincing a verifier if no witness exists.

10 CHAPTER 2. PRELIMINARIES

Definition 2.4 (Computational knowledge soundness). We call (Setup, Prove, Vfy, Sim)
an argument of knowledge if there is an extractor that can compute a witness
whenever the adversary produces a valid argument. The extractor gets full
access to the adversary’s state, including any random coins. Formally, we re-
quire that for all non-uniform polynomial time adversaries A there exists a
non-uniform polynomial time extractor χA such that

Pr

[
(R, z)← R(1λ); (σ, τ)← Setup(R); ((ϕ, π);w)← (A || χA)(R, z, σ)

| (ϕ,w) ̸∈ R and Vfy(R, σ, ϕ, π) = 1

]
≈ 0.

Finally, we say that a non-interactive zero-knowledge argument of knowledge
is succinct (ZK-SNARK), if the verifier runs in polynomial time in λ+ |ϕ| and
the proof size is polynomial in λ.

Like most ZK proof systems, ZK-SNARKs operate in the model of arithmetic
circuits, meaning that the language L is that of satisfiable arithmetic circuits.
An assignment to the wires is valid if and only if for every gate, the value on the
output wires matches that gate’s operation and the values on its input wires.

2.1.2 Arithmetic-circuit satisfiability
The most widely studied language in the context of ZK-SNARK proofs is the
NP-complete language of circuit satisfiability [BCC+16,PHGR13,BSCTV14b].
Essentially, a circuit consists of a set of wires connected to gates that perform
some operation. Circuit satisfiability is a classical problem of computability
theory that consists of determining whether a given circuit has an assignment
of its inputs that makes the output true. If that is the case, the circuit is called
satisfiable. Otherwise, the circuit is called unsatisfiable.

In cryptographic implementations of this problem, we use a particular type
of circuits called arithmetic circuits (also called circuits, ZK circuits, or ZK-
SNARK circuits). The gates of an arithmetic circuit consist on additions and
multiplications modulo p, where p is typically a large prime number of approx-
imately 254 bits [WBB20]. The wires of an arithmetic circuit, often called
signals, can carry any value from the prime finite field Fp. As with electronic
circuits, we can distinguish between input, intermediate, and output signals.

Usually, there is a set of public signals known both to prover and verifier,
and the prover proves that, with that public information, he knows a valid
assignment to the rest of signals that makes the circuit satisfiable. From now
on, we extend the meaning of the word witness to an assignment to all signals
of a the circuit, both public and private.

SECTION 2.1. ZERO-KNOWLEDGE PROOFS 11

Example 2.1. Circuit C from Figure 2.1 is an arithmetic circuit defined over the
prime finite field F11 that, given four private inputs s1, s2, s3, s4, it outputs the
result of the operation

s1 × s2 × s3 + s4.

s1

''
s2

// ×
s5

 s3 // ×
s6

 s4 // +
s7 //

Figure 2.1: Representation of an arithmetic circuit C defined over the finite field
F11 that outputs the result of the operation s1 × s2 × s3 + s4 mod11.

To perform the calculation, the circuit uses two multiplication gates and one
addition gate, which requires two intermediate signals s5, s6, and an output
signal s7. Hence, C is a circuit defined by the set of signals

S = {s1, s2, s3, s4, s5, s6, s7}.

An example of a witness for C is w = {2, 3, 3, 9, 6, 7, 5}.

Recent years have seen a concentration of efforts towards different encodings
of arithmetic circuits [GGPR13]. In the following, we define a classical form for
encoding circuits in an algebraically useful way called rank-1 constraint system
(R1CS). An R1CS encodes a program as a set of conditions over its variables,
so that a correct execution of a circuit is equivalent to finding a satisfiable
variable assignment. Due to the transformability of arithmetic circuits into
R1CS, programs specified in R1CS are often referred to as circuits, and their
variables as signals.

12 CHAPTER 2. PRELIMINARIES

Formally, a quadratic constraint over a set of signals S = {s1, . . . , sn} is an
equation of the form

(a1s1 + · · ·+ ansn)× (b1s1 + · · ·+ bnsn)

−(c1s1 + · · ·+ cnsn) = 0,

where ai, bi, ci ∈ Fp for all i ∈ {1, . . . , n}. In short, we write a constraint as
a× b− c = 0, where a, b and c are linear combinations of s1, ..., sn. A rank-1
constraint system (R1CS) over a set of signals S = {s1, . . . , sn} is defined as a
finite collection of quadratic constraints over S.

Example 2.2. We can represent the circuit C from Figure 2.1 as the following
R1CS over S:

s1 × s2 − s5 = 0 mod 11

s5 × s3 − s6 = 0 mod 11

s6 + s4 − s7 = 0 mod 11

Note that all expressions of the system above are quadratic or linear. In fact,
we could compact last two constraints into one, resulting in an equivalent R1CS
defined over S\{s6}: {

s1 × s2 − s5 = 0 mod 11

s5 × s3 + s4 − s7 = 0 mod 11

Compressing all constraints into a single one would not result in an R1CS, since
we would end up with a non-quadratic equation:

s1 × s2 × s3 + s4 − s7 = 0mod 11.

Hence, in this example, any R1CS arithmetic representation of C will always
have at least two quadratic constraints.

Since arithmetic circuits are composed by additions and multiplications, the
representation of arithmetic circuits as R1CS is a natural transformation. More-
over, a valid witness for an arithmetic circuit translates naturally into a solution
of the R1CS representing the circuit. This way, we say that an arithmetic cir-
cuit is satisfiable if there exists a solution to the R1CS representing the circuit.
Checking satisfiability in R1CS encoded form requires to check all gates of a
circuit. Most ZK protocols use aggregation techniques, such as quadratic arith-
metic programs, to check all gates at once [PHGR13].

SECTION 2.2. ELLIPTIC CURVES 13

2.2 Elliptic curves
Elliptic curves that are defined over prime fields Fp, with p ≥ 3 prime, play
an important role in this thesis. In Chapter 3, we use a specific curve called
Baby Jubjub to illustrate the power and expressiveness of the circom language
in some ECC constructions. In Chapter 4, we focus on twisted Edwards and
Montgomery elliptic curves, which allow efficient circuit implementations. In
Chapter 5, we study cycles of pairing-friendly curves, which leads us to review
families of pairing-friendly curves of prime order. Since we focus on different
types and aspects of elliptic curves in each chapter, in this section we give a very
short introduction to elliptic curves defined over Fp. Then, in each chapter, we
include the material that covers the specifics for that chapter. In this section,
we follow [MJ16].

Generally speaking, elliptic curves are geometric objects in projective planes
over some given field, made up of points that satisfy certain equations. It is
possible to describe an elliptic curves using different systems of coordinates. In
this section, we use Weierstrass equations, which are the more general form to
describe them. We assume p > 3 is prime and denote Fp the finite field with p
elements.

Definition 2.5 (Projective Weierstrass equation). An elliptic curve E over a fi-
nite field Fp (denoted E/Fp) is a smooth projective curve associated to an
equation of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3, (2.1)

with a1, . . . , a6 ∈ Fp.

Using a change of variables, we can simplify Equation (2.1).

Definition 2.6 (Projective short Weierstrass equation). An elliptic curve E/Fp

is the set of projective points in the projective plane [X,Y, Z] ∈ P2 satisfying

Y 2Z = X3 + aXZ2 + bZ3, (2.2)

with a, b ∈ Fp and 4a3 + 27b2 ̸= 0. We call d = 4a3 + 27b2 the discriminant of
the curve. The condition d ̸= 0 ensures that Equation (2.2) has no double root.

Note that if Z ̸= 0, a projective point (X,Y, Z) admits a representative with
z = 1 with the change of coordinates x = X/Y and y = Y/Z. The only point
on E with Z = 0 is the point on the line at infinity representing all points whose
coordinates are equivalent to [0, 1, 0]. This leads us to the affine definition of
elliptic curves.

14 CHAPTER 2. PRELIMINARIES

Definition 2.7 (Affine short Weierstrass equation). An elliptic curve E/Fp is the
set defined by

E(Fp) = {(x, y) ∈ F2
p | y2 + x+ ax2 + b} ∪ {O}, (2.3)

where d = 4a3+27b2 ̸= 0 and O is an additional point called the point at infinity
of the curve. We refer to #E(Fq) as the order of the curve.

In the projective plane, an elliptic curve and a line have exactly three points
of intersection [Ful08, Sec. 5.3]. This allows us to define a composition law,
denoted as an addition, on the points of an elliptic curve.

Definition 2.8 (Group law). Let E be an elliptic curve defined as in Defini-
tion 2.7. Let P1 = (x1, y1) and P2 = (x2, y2) be points E with P1, P2 ̸= O.
We define P1 + P2 = P3 = (x3, y3) as follows:

• If x1 ̸= x2, then

m = (y2 − y1)/(x2 − x1),

x3 = m2 −A− x1 − x2,

y3 = m(x1 − x3)− y1.

(2.4)

• If x1 = x2 but y1 ̸= y2, then P1 + P2 = O.

• If P1 = P2 and y1 ̸= 0, then

m = (3x2
1 +A)/(2y1),

x3 = m2 − 2x1,

y3 = Λ(x1 − x3)− y1.

(2.5)

• If P1 = P2 and y1 = 0, then P1 + P2 = O.

Moreover, we define P +O = P for all points P on E.

Theorem 2.1. The composition of points an elliptic curve defined as in Defini-
tion 2.8 makes E into an additive Abelian group with identity O.

Chapter 3

A circuit language for
zero-knowledge applications

With software there are only two possibilities: either the users
control the program or the program controls the users. If the
program controls the users, and the developer controls the pro-
gram, then the program is an instrument of unjust power.

– Richard Stallman

3.1 Introduction
Informally, a ZK proof system allows a prover to prove to a verifier that a
statement is true without revealing any knowledge beyond the veracity of the
statement [GMR85,GMW91,GO94]. In general, efficiency of ZK proof systems
is measured considering three parameters: the computational cost of generating
a proof, the size of the proof, and the time required to verify it. In the context
of distributed ledgers, it is specially important to have small proof sizes and
short verification times. The most popular, efficient, and general-purpose ZK
protocols are ZK-SNARKs. Prominent applications of ZK-SNARKs are privacy-
preserving blockchains such as Zcash [MGGR13, BSCG+14], which uses these
proofs for verifying that private transaction have been computed correctly while
providing complete anonymity to the participants of the network. More recently,

15

16 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

ZK-SNARKs are also used in conjunction with smart contracts for enhancing
the scalability of distributed ledgers with solutions such as ZK-rollups. These
applications bundle thousands of transactions into a single batch transaction
with a ZK-SNARK proof that is verified by a smart contract.

Generally, ZK-SNARK protocols are used to prove the correctness of a com-
putation. In this context, the way of expressing a computation is by defining
it as an arithmetic circuit [BCC+16,PHGR13,BSCTV14b]. As we explained in
Section 2.1.2, an arithmetic circuit is a circuit built with addition and multipli-
cation gates, and wires that carry values from a prime finite field Fp, where p
is typically a very large prime number. A prover uses a circuit to prove that he
knows a valid assignment to all wires of the circuit, and if the proof is correct,
the verifier is convinced that the computation expressed as a circuit is valid,
but learns nothing about the wires’ specific assignment. The common encoding
of this type of circuits is a R1CS, which is later used by the ZK-SNARK pro-
tocol to generate a proof. A valid proof shows, without revealing secret values,
that the prover knows an assignment to all wires of the circuit that fulfill all
constraints of the R1CS. An issue that appears when applying ZK protocols to
complex computations, like a circuit describing the logic of a ZK-rollup, is that
the amount of constraints to be verified is extremely large, up to hundreds of
millions of constraints. In these cases, it is impractical to define circuits manu-
ally and we need tools for that. We can classify the tools in the ZK ecosystem
in two main categories: frontends (languages) and backends (libraries).

3.1.1 Contributions and organization

While frontends provide a way of specifying computational statements, back-
ends are involved in the generation and verification of the corresponding ZK
proof. In this chapter, we present circom, a low-level language, also known as
constraint-based or hardware language [OBW22], for specifying statements as
circuits but aided by a domain-specific language (DSL) and its corresponding
compiler [Ide20a,BBDM22,BMIMT+22].

Programmers can use the circom language to define arithmetic circuits and
the compiler generates a file with the set of associated R1CS constraints together
with a program (written either in C++ or WebAssembly) that can be run to
efficiently compute a valid assignment to all wires of the circuit. One of the
main particularities of circom is that it is designed as a modular language that
allows the definition of parameterizable small circuits called templates, which
can be instantiated to form larger circuits. circom users can create their own
custom templates, but they can also use templates from circomlib [Ide20b], a

SECTION 3.2. RELATED WORK 17

publicly available library with hundreds of circuits such as comparators, hash
functions, digital signatures, binary and decimal converters, and many more.
The architecture behind circom not only provides a simple interface to model
arithmetic circuits and generate their corresponding constraints, but it also ab-
stracts the complexity of the underlying ZK proving mechanism. In particular,
the output files of circom can be used directly by snarkjs [Ide20c], which is
a JavaScript library we developed to automatize the generation and verification
of ZK-SNARK proofs.

This chapter is organized as follows. In Section 3.2, we present the main
existing tools in the ZK space and compare them to circom. In Section 3.3, we
introduce the characteristics of circom and give several examples of a correct
use of the language. In the following Section 3.4, we present some practical
applications that illustrate the power of the circom language. In Section 3.5,
we evaluate the performance of circom in large circuits described by millions
of constraints. In Section 3.6, we define the concepts of correct and safe cir-
com programs, which can help programmers understand the philosophy of the
language and help them with the writing of circuits. We close this chapter with
brief conclusions in Section 3.7.

3.2 Related work

The appealing properties of ZK-SNARKs set off the development of software
tools that allow practical ways to define statements, and to generate and verify
ZK proofs. In this section, we give an overview of the main tools that exist in
the ZK-SNARK ecosystem. In Figure 3.1, we give a visual classification of the
tools according to their functionality and in the following sections we describe
and compare them in detail.

3.2.1 Libraries

The first type of tools that were developed were libraries, also known as back-
ends. Libraries are written in some general purpose programming language and
provide functions that help users describe statements, and also generate and ver-
ify ZK proofs. In Table 3.1, we summarize the main existing libraries and their
characteristics. LibSnark [Suc] and Bellman [Zcab] were the first libraries
that came out. The former is written in C++ and is used as backend by many
other tools. The later is a Rust crate for building ZK-SNARK circuits that pro-
vides circuit traits, primitive structures, and basic gadget implementations. The

18 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

Program DSLs

• Python-like

• Ocaml-like

• Rust-like

• Java-like

• C-like

Constraint DSLs

• circom

Frontends

• ZoKrates (Python-like)

• Snarky (Ocaml-like)

• Leo (Rust-like)

• Zinc (Rust-like)

• xJsnark (Java-like)

• Buffet (C-like)

• circom (circom)

Compiler IR

• CirC

DSL specification

• CirC specification

Backends

• Libsnark

• snarkjs

• Bellman

• Pysnark

• EMP

• ZKPiE

IntB

IntB

IntA

Figure 3.1: Classification of the main software tools for ZK-SNARKs.

second most popular backend in GitHub after LibSnark is snarkjs [Ide20c],
a JavaScript library that we developed for generating and validating ZK proofs
from a set of R1CS constraints. snarkjs can run in desktops and servers with
NodeJS, and since it is written in JavaScript, it can also run seamlessly in
browsers, bringing ZK proofs to the Web. A nice feature of this library is that
it creates Solidity code to validate ZK-SNARK proofs within the Ethereum net-
work. PySNARK [KXV] is a library for writing zk-SNARKs in Python 3. The
library can be used in combination with LibSnark and snarkjs, and it also
produces Solidity smart contracts automatically. There are also other backends
that were designed for specific application scenarios. For instance, EMP [EMP]
is a library that implements several interactive and communication-efficient ZK
protocols [WYKW20,YSWW21,WYX+21] for proving statements in the con-
text of neuronal networks. The protocols implemented by EMP are interactive
and not based on R1CS. On the other hand, ZPiE [SD21, Sal] is an imple-
mentation of ZK-SNARKs based on R1CS compatible with snarkjs that is
specifically designed for embedded systems. Since the application of these back-
ends is narrowed, they are less popular and widespread than the aforementioned
backends.

SECTION 3.2. RELATED WORK 19

Backend Application Language GitHub repository
LibSnark [Suc] Desktop and server C++ scipr-lab/libsnark (1,642 ⋆)
snarkjs [Ide20c] Browser, desktop, and server JavaScript iden3/snarkjs (1,392 ⋆)
Bellman [Zcab] Desktop and server Rust zkcrypto/bellman (777 ⋆)
PySNARK [KXV] Python gadget library Python meilof/pysnark (132 ⋆)
EMP [EMP] Interactive protocols C++ emp-toolkit/emp-zk (55 ⋆)
ZPiE [SD21,Sal] Embedded systems C xevisalle/zpie (16 ⋆)

Table 3.1: Classification of open-source backends for ZK applications. The stars
from last column reflect the popularity of the tool in GitHub in June 2023.

3.2.2 Domain-specific languages

Over time, DSLs appeared as a more natural way of expressing computational
statements being proved in ZK. In these cases, statements are expressed in a
higher level DSL and compiled by the corresponding DSL compiler to lower
level functions provided by a library. The main advantage of a DSL over a
library is that a DSL allows users to express statements in the idiom and at
the level of abstraction of the problem domain [MHS05]. Moreover, domain
experts themselves (in our context, cryptographers and developers) can better
understand, validate, modify, and develop DSL programs. Additionally, DSLs
allow validation at the domain level, which is performed by a compiler. In
the context of ZK, another advantage of a DSL is that the compiler can apply
specific techniques to simplify the set of constraints. There are two categories
of DSLs [OBW22] for ZK (interface named IntB in Figure 3.1): program-based
DSLs and constraint-based DSLs. We summarize the existing DSLs and their
characteristics in Table 3.2.

Frontend Type DSL Compiler GitHub repository
ZoKrates [ET18,ZoKa] Program Python-like Rust Zokrates/ZoKrates (1,571 ⋆)
circom [BBDM22, Ide20a] Hardware circom Rust iden3/circom (858 ⋆)
Snarky [oL] Program OCaml-like OCaml o1-labs/snarky (447 ⋆)
Leo [CWC+21,Ale] Program Rust-like Rust AleoHQ/leo (440 ⋆)
Zinc [Mat19,Labb] Program Rust-like Rust matter-labs/zinc (309 ⋆)
xJsnark [KPS18,Kos] Program Java-like Java akosba/xjsnark (170 ⋆)
Buffet [WSR+15,Pepb] Program C-like C, C++ pepper-project/tinyram (34 ⋆)

Table 3.2: Classification of open-source frontends for ZK applications. The stars
from last column reflect the popularity of the tool in GitHub in June 2023.

20 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

In a program-based DSL, a statement is specified as a “program” written
with a subset of instructions of a regular programming language that can be
converted into primitives provided by the backend. In this case, the frontend
compiler transcompiles the program and converts it into a circuit definition
consisting of a set of constraints that can be proved by the backend. One of
the first practical program-based DSL was ZoKrates [ET18], a Python-like
DSL with a compiler written in Rust. This frontend was intended to help pro-
grammers use verifiable computation in their decentralized application (DApp)
from the specification of a Python-like program for which proofs can be gen-
erated and finally verified by a Solidity smart contract. Snarky [oL] is an
Ocaml-like program-based DSL with a backend based on LibSnark. To our
knowledge, this is the only DSL built on top of a functional programming lan-
guage. On the other hand, Zinc [Mat19, Labb] is a program-based DSL that
borrows Rust’s syntax and semantics with minor differences. In particular, Zinc
does not allow recursion or variable loop indexes. Leo [CWC+21] is another
Rust-like program-based DSL that abstracts the notions of native/non-native
arithmetic and constraint types, which results in more expensive circuits in
terms of constraints [CWC+21]. xJsnark is a Java-like program-based DSLs
for zk-SNARKs that uses as cryptographic backend a Java interface to Lib-
Snark. Finally, the Pepper project is an academic research project that has
developed some tools for practical verifiable computation. In particular, their
Buffet’s C-to-C compiler [WSR+15, Pepb] supports proof-specific optimiza-
tions that is used by Pequin [Pepa], a toolchain to verifiably execute programs
expressed in the C programming language.

On the other hand, in a constraint-based DSL, the statement being proved is
specified directly as a circuit using arithmetic constraints [OBW22]. In this case,
the DSL simplifies the task of writing constraints by allowing the definition of
small circuits that act as components that can be connected with each other to
form larger circuits. The constraint-based DSL compiler ensures that constraints
are correctly specified and, like in all DSLs, it can also apply simplification
techniques over the set of constraints defining a circuit.

3.2.3 Standardization tools

Finally, we would like to call attention to the efforts towards the creation of
generic tools for building and prototyping compilers and towards the standard-
ization of some of the interfaces in the ZK ecosystem. We summarize them
in Table 3.3. CirC [OBW22, OCWS] is a shared compiler infrastructure for
creating frontends that compile to constraint representations. To construct a

SECTION 3.2. RELATED WORK 21

compiler with CirC, the developer essentially writes an interpreter for the DSL
using the Circify library. The advantage is that the implementation using
the intermediate representation (IR) provided by the Circify library is much
shorter and faster to develop than building a full compiler from scratch. CirC
is a very promising tool for prototyping and creating compilers quickly. Ac-
tually, the authors of CirC have created versions of ZoKrates and circom
with less lines of code than the original compilers. Regarding the efforts to-
wards standardizing interfaces between frontends and backends, a remarkable
initiative is zkInterface [GKV+18, Qi], which specifies a protocol for com-
municating constraints, wire assignments, and proving protocols. These data
are specified using language-agnostic calling conventions and formats to enable
interoperability between different authors, frameworks, and languages.

Tool Description GitHub repository
CirC [OBW22,OCWS] Tool for compilers. circify/circ (207 ⋆)
zkInterface [GKV+18,Qi] Standard tool for ZK interoperability. QED-it/zkinterface (115 ⋆)

Table 3.3: Classification of open-source tools for software interoperability. The
stars from last column reflect the popularity of the tool in GitHub in June 2023.

3.2.4 Comparative analysis

circom is a constraint-based description language for arithmetic circuits. To
the best of our knowledge and according to the available literature [OBW22],
circom is the only implemented DSL of this type. circom is in a level of
abstraction between a library and a program-based DSL.

On the one side, as with libraries, circom users can specify the constraints
of the circuits that define the statements. Moreover, libraries allow users to
create or use already created gadgets (smaller circuits) and connect them with
a program written in the language of the library. Similarly, circom users can
make use of templates, which are small circuits that are parameterizable and
can be instantiated to form larger circuits. circom also allows users to create
their own custom templates or to use templates from circomlib. Among other
things, the circom compiler takes care that template definitions, parameters,
interconnections, and the R1CS constraints are correctly defined. Compared to
libraries, with circom, the circuit building process is checked by the compiler

22 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

and possible errors are shown to users. This way, the circom language is a
simple DSL for specifying templates and their interconnections.

On the other side, circom also supports splitting the circuit description
into a pure proving part (constraints) and a pure witness computation part.
This splitting is necessary when the witness computation requires operations
that cannot be expressed as quadratic constraints. With this feature of the
language, the compiler can automatically generate a program to efficiently com-
pute a valid assignment to all wires of the circuit (the witness). That is, when
we compile a circuit with circom, the compiler outputs the set of associated
R1CS constraints and, if asked, it also can output programs for computing the
witness efficiently. In particular, the compiler can output programs written in
C++ (to be executed in a desktop/server) and in WebAssembly (to be exe-
cuted in a browser). In comparison, program-based DSLs provide a higher level
of abstraction by allowing users to specify statements as programs and the com-
piler transforms them into a circuit description. To do so, the compiler has
to explore all paths through the program, unrolling all loops, considering all
branches, while guarding all state modifications by the condition under which
the corresponding path is taken [OBW22].

Although a program-based approach might offer the right level of abstraction
to many programmers, they can actually not completely abstract themselves
from the details of the underlying system. To illustrate this, we will make use of
an example from the ZoKrates official documentation [ZoKb, Section 3.4]: a
circuit that given an input signal x, if x ̸= 0 then the output is its inverse x−1,
and if x = 0, then the output is 0. A natural way of writing the corresponding
circuit in ZoKrates would be the following:

1 def main(field x) -> field {
2 return if x == 0 {
3 0
4 } else {
5 1 / x
6 };
7 }

However, as the official documentation states, the caveat with the previous
ZoKrates code, is that it leads to an execution failing because line 5 is executed
even when x = 0. The reason for this type of caveats is that, at the end, the
program is compiled down to an arithmetic circuit, and hence, jumping on
a branch condition does not work as with traditional architectures. For this
reason, programmers should still take into consideration the limitations of this
type of circuits. By contrast, in circom, the program can be written as:

SECTION 3.2. RELATED WORK 23

1 template Inverse () {
2 signal input in;
3 signal output out;
4 signal inv;
5 signal iszero;
6
7 inv <–- in!=0 ? 1/in : 0;
8 iszero <== -in * inv + 1;
9 in * iszero === 0;

10 out <== (1 - iszero) * inv;
11 }
12
13 component main = Inverse ();

In the previous circom code, the first two constraints (lines 8 and 9) enforce
that the signal named iszero is 1 if the input signal in is 0, and 0 otherwise
(for a detailed explanation of the iszero constraints see Section 3.3.9). The last
constraint (line 10), sets the output signal out to 0 if the input signal in is 0,
and with any other number, out is set as the inverse of the given number. The
main difference between the circom code and the ZoKrates code is that in
circom, the user can explicitly specify how exactly the inv intermediate signal
is computed in the template (line 7), which avoids the division by zero issue of
the ZoKrates code and allows the witness computation part to run without
issues. It is worth saying that the authors of ZoKrates are currently working
on an experimental feature that only activates constraints that are in a logically
executed branch. However, this feature comes with a significant overhead of
constraints [ZoKb].

On the other hand, the expressiveness and flexibility of constraint-based lan-
guages may also be a better option for those developers that, in order to create
highly optimized circuits, wish to have greater control about the set of signals
and constraints that define the computation. In this sense, the spirit of circom
is to provide an unopinionated tool in which users can use the circom language
to implement their optimizations at the template level. Moreover, as we show
in Section 3.5, the circom compiler can apply several rounds of simplification
of linear constraints, an option that can be activated or deactivated by the user.

Many projects in the Ethereum network are using the low-level approach pro-
vided by circom including payment mixers like Tornado cash [KV19], anony-
mous multi-asset pools like Zeropool [Zer], ZK signaling gadgets like Semaphore
[WLG+], public-key cryptographic protocols like ECDSA [0xpa], decentralized
ZK-RTS games like Dark Forest [DF], and ZK-rollups like Hermez [Her20], that
use circuits described by hundreds of millions of constraints. Moreover, projects
like zkREPL [zkR], which provide an online development environment for ZK-

24 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

SNARKs, are built on top of circom. As we mentioned in Section 3.2.3, the
authors of CirC have developed an alternative compiler implementation for
the circom language that is considerably smaller than our Rust implementa-
tion of the compiler and achieves roughly the same performance. However, their
comparison is with our previous version of the circom compiler (version 0.5),
which was a prototype written in JavaScript. The compilation time of our cur-
rent version written in Rust is, on average, 5 times faster than the JavaScript
and CirC versions for small and medium size circuits and can increase up to
10 times faster for large circuits.

3.3 circom

circom is a constraint-based DSL that allows programmers to design and create
their own arithmetic circuits for ZK purposes. It is designed as a low-level circuit
language, close to the design of electronic circuits. The circom compiler has
more than 150K lines of Rust, WebAssembly, and C++ and is open source.
circom allows programmers to define the constraints of an arithmetic circuit
in a low-level but friendly way.

Recall from Section 2.1.2, that arithmetic circuits consist of operations in a
finite field Fp that can be expressed as constraints of the form a × b − c = 0,
where a, b and c are linear combinations over a set of signals {s1, ..., sn}. From
a circom circuit description, the circom compiler outputs the corresponding
set of constraints and a program that, given a set of input values, can compute
an assignment to the rest of circuit signals. By default, circom takes p as the
order of BN-128 elliptic curve, but the compiler also accepts the large prime
dividing the order of BLS12-381, and the Goldilocks-like prime 264 − 232 + 1.
The user can select the prime to be used with a compiler’s command-line option.

Example 3.1. Before going into details, we first illustrate how circom works
with a circuit that will allow us to prove that the product of two secret input
signals are equal to a certain public output.

1 pragma circom 2.0.0;
2
3 template Multiplier () {
4 // declaration of signals
5 signal input a;
6 signal input b;
7 signal output c;
8 // constraints
9 c <== a * b;

10 }

SECTION 3.3. CIRCOM 25

The first line of this code is a pragma instruction that specifies the version of
the circom compiler that is used to ensure that the circuit is compatible with
the compiler version indicated after the pragma instruction. If it is incompatible,
the compiler throws a warning. All files with the .circom extension should
start with such pragma instruction, otherwise, it is assumed that the code is
compatible with the latest compiler’s version.

In line 3, we use the reserved keyword template to define the configuration
of a circuit, in this case called Multiplier. Inside the template definition, we
start by defining the signals that comprise it. Signals can be named with an
identifier, in our example, these are identifiers a, b and c. In this case, we have
two input signals a and b, and an output signal c.

After declaring the signals, we write the constraints that define the circuit.
In this example, we used the operator <==. The functionality of this operator
is twofold: on the one hand, it sets a constraint that expresses that the value
of c must be the result of multiplying a by b; and on the other hand, the
operator instructs the compiler in how to generate the program that computes
the assignment of the circuit signals. The compiler also accepts the left-to-right
operator ==> with the same semantics, but for simplicity, from now on, we will
always use the right-to-left operator <==.

3.3.1 Creating a circuit

Templates are parameterizable general descriptions of a circuit that have some
input and output signals and describe, sometimes using other subcircuits, the
relation between the inputs and the outputs. In the previous snippet of circom
code, we created the template called Multiplier, but to actually build a circuit,
we have to instantiate it. The template Multiplier does not depend on any
parameter, but as we show in next examples, it is possible to create generic
parameterizable templates that are later instantiated using specific parameters
to construct the circuit. In circom, the instantiation of a template is called
component, and it is created as follows (line 10):

1 pragma circom 2.0.0;
2
3 template Multiplier () {
4 signal input a;
5 signal input b;
6 signal output c;
7 c <== a * b;
8 }
9

10 component main = Multiplier ();

26 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

By means of the declaration of components and templates, circom allows
programmers to work in a modular fashion: defining small pieces and combining
them to create large circuits that can entail millions of operations.

3.3.2 Compiling a circuit

As we said as the beginning of Section 3.3, the use of the operator <== in the tem-
plate named Multiplier has a double functionality: it captures the arithmetic
relation between the signals, but it also provides a way of computing c from a
and b. In general, the description of a circom circuit also keeps this double
functionality. This way, the compiler can easily generate the R1CS describing a
circuit but also the instructions to compute the intermediate and output values
of a circuit. More specifically, given a circuit with the .circom extension the
compiler can return four files. For example, we can compile multiplier.circom
with the next options:

1 circom multiplier.circom --r1cs --c --wasm --sym

With the previous options, we are telling the compiler to generate a file with the
R1CS constraints (symbolic task) and the programs for computing the values
of the circuit wires in C++ and WebAssembly (computational task). The last
option tells the compiler to generate a file of symbols for debugging and printing
the constraint system in an annotated way.

After compiling a circuit, we can calculate all the signals that match the set
of constraints of the circuit using the C++ or WebAssembly programs generated
by the compiler. To do so, we simply need to provide a file with a set of valid
input values, and the program will calculate the values for the rest of signals
of the circuit. Recall that, in this context, the witness consists of a set of valid
input, intermediate, and output values.

The prime number p being used to operate in the circuit is included in the
header of the R1CS file, so that the backend can appropriately build the proof.
The prime specification is also used by the compiler to generate the witness-
calculator programs, which are linked to the correct modular arithmetic libraries
to efficiently deal with the selected prime modular operations. Currently, we
provide support and libraries for the three primes mentioned in at the beginning
of Section 3.3.

SECTION 3.3. CIRCOM 27

3.3.3 Generating a ZK proof
Imagine we want to show that we know two numbers a and b such that a×b = 33,
while keeping a and b private. For that, we could use the previous template
Multiplier by setting the inputs a and b as private signals of the circuit, and
the output c as a public signal. By default, the inputs of a circom circuit are
all considered private signals, whereas outputs are always public signals. Hence,
we can use the template Multiplier already as it is.

In Figure 3.2 we show the complete process of generating and validating a
ZK proof with our architecture. As we can see, we should first create a file
containing the inputs written in the standard JSON format:

{"a": 3, "b": 11}.

Next, we pass the file with the inputs to the C++ or WebAssembly program
generated by the compiler, which will generate a file containing the witness in
binary format. After compiling the circuit and running the witness calculator
with an appropriate input, we will have a file with extension .wtns that contains
all the computed signals, and a file with the .r1cs extension that contains the
constraints describing the circuit.

computational problem in NP

circom compiler

witness-calculator
program

R1CS

inputs file

witness file

snarkjs library

Figure 3.2: Our architecture for generating and verifying ZK-SNARK proofs
using circom and snarkjs software tools.

With the witness and the R1CS files, we can compute and verify ZK proofs
using snarkjs. All ZK protocols implemented in snarkjs require a trusted

28 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

setup. In some cases, it is possible to reuse a trusted setup, like in [GWC19],
whereas in others, it is necessary to generate a new trusted setup per circuit, as in
[PHGR13] and [Gro16]. For this reason, snarkjs already provides the necessary
commands to create MPC ceremonies for generating the trusted setup and also
verifying that an existing trusted setup has been computed correctly. From the
R1CS and the MPC, snarkjs produces a generation and a verification key for
the circuit. Finally, with the generation key and the witness, the prover can
generate a ZK-SNARK proof and send it to a verifier, who uses the verification
key and a file with the public signals of the circuit to check if the prover’s proof
is valid. Further information about the creation of a trusted setup and the
generation and verification of ZK-SNARK proofs with snarkjs can be found
in [Ide20c].

Note that we could have started the process choosing different input values.
For example, we could have used {"a": 1, "b": 33} as input and generated
a valid proof for our circuit. Hence, a proof for the circuit Multiplier would
not really show that we know how to factor 33. In Section 3.3.9, we will use a
template that checks if a signal is zero to modify the template Multiplier to
only accept inputs that are not 1.

3.3.4 The main component
The circom compiler needs a specific component as entry point. This initial
component is called main and, as we did in Example 3.1, it needs to be instan-
tiated with some template.

Unlike other intermediate components that we will introduce later, the main
component defines the global input and output signals of a circuit. As mentioned
in Section 3.3.3, by default, the global inputs are considered private signals while
the global outputs are considered public. However, the main component has a
special attribute to set a list of global inputs as public signals. The general
syntax to specify the main component is the following:

1 component main {public [s1 ,..,sn]} = templateID(v1 ,..,vn);

The {public [s1,..,sn]} part is an optional argument that specifies the list
of public signals of the circuit. Any other input signal not included in this list
is considered a private signal.

Example 3.2. Let us illustrate the use of public signals following the previous
example. For simplicity, we will no longer start out code with the pragma
instruction.

SECTION 3.3. CIRCOM 29

1 template Multiplier () {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <== a * b;
6 }
7
8 component main {public [a]} = Multiplier ();

In this code snippet, we declare the main component with the global input
a as a public input signal, whereas b remains as a global private input signal of
Multiplier.

Recall that the prover needs all signals (private and public) to generate a ZK
proof, while the verifier only needs the public signals to verify a proof, which in
this case are signals a and c.

3.3.5 Connecting templates

circom is a modular language that allows the definition of small circuits called
templates. Typically, templates are later instantiated to form larger circuits.
The idea of building large and complex circuits from smaller parts makes it
easier to test, review, and audit large circom circuits.

Example 3.3. Let us illustrate how to connect templates by continuing our pre-
vious example. In Example 3.1, we created a template for a multiplier of two
signals. In this case, we will extend this idea by connecting two of these 2-input
multipliers to get a multiplier for three signals.

1 include "multiplier.circom";
2
3 template Multiplier3 () {
4 signal input in1;
5 signal input in2;
6 signal input in3;
7 signal output out;
8
9 component multiplierA = Multiplier ();

10 component multiplierB = Multiplier ();
11
12 multiplierA.a <== in1;
13 multiplierA.b <== in2;
14 multiplierB.a <== multiplierA.c; // in1 * in2
15 multiplierB.b <== in3;
16 out <== multiplierB.c; // (in1 * in2) * in3
17 }
18
19 component main {public [in1 , in2]} = Multiplier3 ();

30 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

In line 3, we create a template called Multiplier3 that has three inputs
called in1, in2 and in3, and one output called out. Notice that in the instan-
tiation of the template (line 19), we specify that in1 and in2 are public, and
in3 is private. To build the multiplication of the three input signals, we create
two subcomponents that are 2-input multipliers (lines 9 and 10). To do so, we
have to import the definition of the 2-input multiplier template from a separate
file using the keyword include (line 1). Then, we connect the inputs in1 and
in2 to the input wires of the first subcomponent multiplierA using the dot (.)
operator. Next, we use the second subcomponent to do the other multiplication
by connecting the output of the previous 2-input multiplier (line 14) and in3
(line 15). Finally, to provide the multiplication of the three inputs, we assign the
output of the second 2-input multiplier to the output of Multiplier3 (line 16).

Remark 3.1. From a template, we can only access the inputs and outputs of its
direct subcomponents.

3.3.6 Debugging

The circom language provides a small logging function that is called with
log(arg1,...,argn) that can greatly help users debug their circuits. This
function can be called with strings, values of signals, or expressions. This way,
the console prints the logged values when the witness-computation program is
executed.

Example 3.4. Following Example 3.3, we can use the logging function to show
a string followed by the value of the signal multiplierA.c.

1 log("The result is ", multiplierA.c);

3.3.7 Building complex circuits

In our previous example, we created a template composed of different subcom-
ponents. The capability of building large circuits from smaller pieces is far more
powerful in circom. For instance, we can create parametrized templates using
flow control structures like for loops and if statements, include variables for
using them, and even define arrays of signals and arrays of subcomponents.

Example 3.5. Let us illustrate how to build more complex circuits by general-
izing Example 3.3 to an n-multiplier. That is, we will create a parametrized

SECTION 3.3. CIRCOM 31

template that will allow the instantiation of circuits that will verify the multi-
plication of n input values.

1 include "multiplier.circom";
2
3 template MultiplierN(n) {
4 signal input in[n];
5 signal output out;
6
7 component multiplier[n-1];
8
9 multiplier [0] = Multiplier ();

10 multiplier [0].a <== in[0];
11 multiplier [0].b <== in[1];
12
13 for(var i=1; i<(n-1); i++){
14 multiplier[i] = Multiplier ();
15 multiplier[i].a <== in[i+1];
16 multiplier[i].b <== multiplier[i-1].c;
17 }
18
19 out <== multiplier[n-2].c;
20 }
21
22 component main = MultiplierN (4);

In the previous code snippet, we create a template called MultiplierN which
depends on a parameter n. The template uses an array called in of n elements
to describe the template inputs (line 4). Then, we create n-1 Multiplier
subcomponents (line 7), which are referenced with an n-1-dimensional array
called multiplier. Then, we appropriately initialize the first subcomponent
(lines 9–11). Next, we use a for loop with a control variable called i, which
is created using the keyword var. Notice how inside the for loop we create
subcomponents and wire the connections between them.

Remark 3.2. It is useful to think of building circom circuits as a similar process
of building electronic circuits. With circom circuits, the compiler must know
all the required parameters of the circuit. As a result, in loops that involve
constraints (symbolic part), circom only allows to define the loop condition
based on the template parameters. In our previous example, the loop condition
used n, which was perfectly valid. For further information, see Section 3.3.12.

3.3.8 Splitting between computation and constraints
In this section, we explain what happens when the calculation of a signal does
not come from a quadratic formula. To give some intuition, we start with an
example of a template that performs a division.

32 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

Example 3.6. A division c = a/b is an operation that cannot be computed using
a quadratic formula but it can be checked using the quadratic expression a = b·c.

1 template Divider () {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <–- a/b;
6 a === b * c;
7 }

In this case, we have to split the computational task, which instructs the
compiler in how to compute signals, from the symbolic task, which instructs
the compiler in how to create constraints that verify a computation (see Sec-
tion 3.3.2). As we can see in the code, the computational task is expressed using
the individual operator <–- (line 5). The language also accepts the left-to-right
operator –-> with the same semantics. On the other side, the symbolic task is
expressed separately using the individual operator ===, which adds a constraint
that captures the quadratic relation between signals (line 6).

As an implementation detail, just mention that the === operator also adds
an assert to the program that computes the witness. As expected, if after
computing a witness there is an assert instruction that is not satisfied, the
program stops and returns an error. Therefore, the === operator also plays a
small role in the computational task.

At this point, it should be clear that the following templates A and B are
equivalent:

1 template A() {
2 signal input in;
3 signal output out;
4 out <–- in;
5 out === in;
6 }

1 template B() {
2 signal input in;
3 signal output out;
4
5 out <== in;
6 }

Indeed, these two templates are equivalent because their compilations will
produce the same R1CS and the code of the witness computation program will
be the same except for the fact that the code from template A will have an extra
assert instruction with respect to the code generated from template B. In this
particular case, the assert will always be fulfilled, so the witness computation
programs are effectively equivalent.

In general, the dual operator <== is preferred whenever possible, because
it always guarantees the equivalence between the computed witness and the
constraints that check the computation. Notice that, if not handled with care,

SECTION 3.3. CIRCOM 33

the use of the individual operators <–- and === might produce a situation in
which the witness does not fulfil the constraints or in which constraints are
disconnected from the witness.

Example 3.7. Let us look at the following template, which given two inputs a
and b, it outputs c = a + b.

1 template Incorrect () {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <–- a+b;
6 c === a * b;
7 }

In this template, the computational program will output c = a+b, but the
R1CS describing the template will consist of the constraint c = a*b. Therefore,
given two inputs, the witness computed by the witness computation program
will not be correct in general. In this case, only inputs such that a+b = a*b will
be valid inputs for the circuit. Circuits in which a computation is not reflected
as an equivalent constraint, are considered incorrect circuits.

To avoid these cases, individual operators must only be used in cases in which
the dual operator cannot express a computation like it happened in Example
3.6. In Section 3.6, we analyse these situations in greater detail.

Remark 3.3. Neither the operator === nor <== can be used with signal expres-
sions that are not quadratic.

3.3.9 Checking if a signal is zero
Now that we know the basic syntax of the circom language, we present the
template IsZero, which has some subtleties. IsZero checks if a certain signal in
a circuit is zero or not. In this case, the output signal out is 1 if the input signal
in is zero, and 0, otherwise. The circuit is based on a trick from [PHGR13].

1 template IsZero () {
2 signal input in;
3 signal output out;
4 signal inv;
5 inv <–- in!=0 ? 1/in : 0;
6 out <== -in * inv + 1;
7 in * out === 0;
8 }
9

10 component main = IsZero ();

34 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

First, we use an intermediate signal inv to compute the inverse of the input
signal in. Since signals of circom circuits are elements of a prime field Fp, the
only element that has no inverse is 0. Hence, if in is not 0, we can assign to inv
the inverse of in. In the other case, where such inverse does not exist because
in is zero, we assign 0 to inv. Note that the value of the signal inv depends on
a conditional expression, and hence, we cannot use the operator <==. Instead,
we use the individual computational operator <–-.

After that, we assign the value -in*inv + 1 to the signal out (line 6), which
will be 1 if in = 0 and 0, otherwise. Since we do the assignment using the dual
operator <==, the constraint out = -in*inv + 1 is also added to the R1CS.

Observe that the previous constraint ensures that out is 1 if in is zero, but
if in is not zero, the value of inv is not captured in any constraint, since its
assignment is done only with the individual computational operator. Hence,
inv could be manipulated to take any value. For this reason, if we want to
enforce that out is really 0 when in is not zero, we should add a new constraint
in*out === 0 (line 7).

Note that when in is 0, we decided to assign 0 to inv, but in fact, we could
have chosen any other value. Indeed, when in is zero, both constraints (lines 6
and 7) are satisfied. In this case, we say that the circuit is safe, but not strongly
safe, since there is more than one valid solution for inv. We analyse this type
of situations in greater detail in Section 3.6.

Example 3.8. The template IsZero is used very frequently. An illustrative ex-
ample, is to use it to modify our first template Multiplier from Example 3.1
to enforce that none of its inputs is 1. For that, we use the fact that a is not 1
if and only if a-1 is not zero, and the same stands for b.

1 include "iszero.circom"
2
3 template Factorization () {
4 signal private input a;
5 signal private input b;
6 signal output c;
7
8 component isz1 = IsZero ();
9 component isz2 = IsZero ();

10
11 isz1.in <== a-1;
12 isz2.in <== b-1;
13 isz1.out === 0; // enforce that a-1 != 0
14 isz2.out === 0; // enforce that b-1 != 0
15 c <== a * b;
16 }
17
18 component main = Factorization ();

SECTION 3.3. CIRCOM 35

3.3.10 Functions and constants

The circom language also allows the use of functions to encapsulate compu-
tation logic. Functions in circom have a syntax similar to functions in the
C programming language. In the body of a function, we can use control flow
statements and variables. However, functions should only be used for compu-
tational purposes, so contrary to circuit templates, functions cannot create new
constraints or use signals.

Example 3.9. An example of a basic function is the following one, which adds
one to a given value:

1 function my_function(x){
2 return x+1;
3 }

The use of functions is not strictly necessary to define circuit templates and
their main usage in circom is to define global constants. The reason for this, is
that circom does not admit the definition of global constants. Thus, whenever
we want to have one, we can define a function that always returns the same
value, and call it every time we need it in our circuit.

Example 3.10. The following function will be later used in Section 3.4.2 and it
returns a parameter of an elliptic curve.

1 function baby_const_a (){
2 return 168700;
3 }

3.3.11 Symbolic variables

In Section 3.3.7, we explained several uses of the variables when building cir-
cuits. However, variables have another important use, which is to store symbolic
expressions when building the constraints. We call symbolic variables to those
variables that contain symbolic expressions on signals.

Example 3.11. Let us analyse an example of a template that uses symbolic
variables. The following template implements a multiAND circuit that depends
on a parameter n. That is, MultiAND is a template that takes an array of n
binary inputs and outputs 1 if and only if all elements of the array are 1.

36 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

1 include "iszero.circom"
2
3 template MultiAND(n) {
4 signal input in[n];
5 signal output out;
6 var sum = 0;
7
8 for(var i=0; i<n; i++) {
9 sum = sum + in[i];

10 }
11
12 component isz = IsZero ();
13
14 sum - n ==> isz.in;
15 isz.out ==> out;
16 }
17
18 component main = MultiAND (4);

In the previous code snippet, we implemented a multiAND gate for four binary
inputs (line 15). To do so, we add the values of the inputs and check if the
result is equal to the number of inputs by subtracting and checking if the result
is zero. If the result is zero, the output should be one, and zero, otherwise.

Notice that we used two variables: i and sum. The variable i is a regular
index variable used in the for loop, while sum is a symbolic variable that is used
to create a constraint in which we add up the values of the n input signals. Inside
the loop, the symbolic variable sum is used to create the sum of signals in[0]
+ ... + in[n-1]. In line 9, sum is finally used to generate the constraint:

in[0] + ... + in[n-1] - n = isz.in.

Example 3.12. In the following example, we analyze a template that given an
input signal in, it outputs the binary representation of in as an n-array of
signals called out[n]. For a given number n, we could use the following list of
quadratic constraints:

1 out [0] * (out[0] -1) === 0
2 [...]
3 out[n-1] * (out[n-1] -1) === 0
4
5 out [0] * 2^0 +...+ out[n-1] * 2^(n-1) - in === 0

The first lines guarantee that all elements of the array out are binary, and the
last line, that out is indeed the binary representation of the input in. We can
rewrite the previous code using a loop:

SECTION 3.3. CIRCOM 37

1 signal input in;
2 signal output out[n];
3 var bsum = 0;
4 var exp2 = 1;
5
6 for (var i = 0; i<n; i+=1){
7 out[i] * (out[i]-1) === 0;
8 bsum += out[i] * exp2;
9 exp2 * = 2;

10 }
11 bsum === in;

Note that, in the previous code, we used the individual symbolic operator ===.
We cannot use the dual operator because the constraints that check the binary
representation of in cannot be computed using quadratic expressions. For this
reason, we need to build the constraints without providing a way to compute
their values. This has to be done separately with the following simple algorithm
that extracts one by one the bits of in:

1 for (var i = 0; i<n; i+=1) {
2 out[i] <–- (in >> i) & 1;
3 }

Notice how we used the individual operator for computation <–- to assign com-
puted values to signals without generating new constraints.

Now, putting the two pieces together, we can implement a circuit template
called Num2Bits(n) that outputs the bit representation of up to n bits of an
input signal.

1 template Num2Bits(n) {
2 signal input in;
3 signal output out[n];
4 var bsum = 0;
5 var exp2 = 1;
6 for (var i = 0; i<n; i+=1){
7 out[i] <–- (in >> i) & 1;
8 out[i] * (out[i]-1) === 0;
9 bsum += out[i] * exp2;

10 exp2 * = 2;
11 }
12 bsum === in;
13 }

Note that in the body of control flow statements we can have both symbolic
and computational expressions (lines 7-10). In general, circom programmers
can write constraints and signal computations together, even when the symbolic
and computational descriptions differ.

38 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

3.3.12 Dealing with the unknown

Recall that, when writing circom programs, it is useful to think of them as
physical circuits of wires and gates. As with physical circuits, circom circuit
descriptions cannot depend on the value of its wires. That is, the R1CS repre-
sentation of any circom program must be the same for any set of inputs. In
fact, the compiler builds the R1CS without knowing the values of the inputs,
and hence, it considers the values of the signals unknown at compilation time.
As a result, since Boolean expressions on conditional expressions and loops can
only depend on values known at compilation time (i.e. template parameters but
no signal values), if we try to add a constraint inside a conditional or a loop
that depends on unknown expressions, circom will output a compilation error.

Formally, a block of code is unknown if it depends on a Boolean expression
which is unknown at the program point where it was evaluated. For instance,
the body of a loop is unknown, if its condition depends on the value of an input.
An expression is unknown at a program point pp, if there is a variable involved
in the expression which is unknown at pp. Finally, a variable x is unknown at
pp if, for a given instantiation of the template, there exists a path in the control-
flow graph ending at pp in which, for the last assignment modifying x, the new
value depends on an unknown expression or such an assignment belongs to an
unknown block.

Notice that this definition is recursive and thus, the circom compiler per-
forms a fixed-point analysis to detect the unknown variables present in the
program. A hint for the programmer when getting a compilation error for an
unknown variable is to pay attention to two common situations:

1. The addition of a constraint that depends on a Boolean condition involving
an unknown variable.

2. The addition of a constraint with an array access using as index an un-
known variable or a signal.

Example 3.13. Let us see an example of a circom program that does not com-
pile because of the unknown.

1 template ErroneousTemplate1(n) {
2 signal input in;
3 signal output out1;
4 signal output out2;
5 for(var i=0; i<n; i++) {
6 out1 <== in * in;

SECTION 3.3. CIRCOM 39

7 if(in >= 0){
8 out2 <== in + 2;
9 }

10 }
11 }
12
13 component main = ErroneousTemplate1 (4);

When compiling this program, we obtain an error derived from the instruction
in line 8, where we are trying to add a new constraint to the R1CS only if the
value of signal in is greater or equal than 0. In this case, the compiler detects
that the execution of line 8 depends on the condition from line 7, but signal in
has an unknown value at compilation time, and hence, the compiler throws an
error. Notice that line 6 is correct, since it is inside the loop from line 5, whose
Boolean condition depends on the value of n, which is a template parameter
known at compilation time.

Example 3.14. In this other example, we illustrate the situation in which, to
create a constraint, a symbolic variable (unknown) is used to access an array.

1 template ErroneousTemplate2(n) {
2 signal input in[5];
3 signal output out;
4 var aux;
5
6 if(n > 0)
7 aux = in[0] + 3;
8 else
9 aux = 2;

10 out <== in[aux];
11 }
12
13 component main = ErroneousTemplate2 (4);

Observe that at line 10, the variable aux is unknown, since for the given in-
stantiation of the template (n = 4), aux is modified (line 7) and its new value
depends on the value of the signal in[0]. Therefore, we will get a compila-
tion error, since the constraint out = in[aux] cannot be added to the R1CS
without knowing the value of aux used to index the array in.

As a result of the previous discussion, circuits, which are defined by a set
of R1CS constraints, must be known at compilation time. However, in certain
occasions, it may be useful to do computations requiring accesses to positions
in arrays or memories that are unknown at compilation time, e.g. depending
on the value of an input signal. When using circom, the user has to build the
circuits that arithmetize this type of computations. These arithmetizations are

40 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

not built-in features of circom, because by design, circom is unopinionated
in how arithmetizations are implemented and rather, these arithmetizations
should be part of template libraries. In the literature, we find several approaches
for such types of arithmetizations. For instance, [BFR+13] uses a line-by-line
compilation approach with instructions for memory reads and writes, and a
hash structure to store the current memory state, while [BSCTV14b] uses a
permutation network to verify that the sequence of memory reads and writes
is consistent. Buffet [WSR+15, Pepb] uses a combination of [BFR+13] and
[BSCTV14b] to build an efficient arithmetization of the random access memory.

3.3.13 Using templates from circomlib

As we have explained in the previous sections, the use of templates allows cir-
com developers to build large circuits from smaller individual subcircuits. In
this regard, circom users can create their own custom templates, but in addi-
tion to the language and the compiler, we also provide an open-source library
of circom templates called circomlib [Ide20b], with hundreds of different cir-
cuits. On the one side, circomlib has the implementation of basic operations,
such as binary logic gates, comparators, conversions between field elements and
their binary representations, and multiplexers. On the other side, the library
contains more complex circuit structures that are used in the context of dis-
tributed ledgers and cryptocurrencies, such as digital signatures, elliptic curve-
based cryptographic schemes, hash functions, and Merkle tree structures. We
would like to remark that apart from circomlib, there is a community actively
using circom for building their own custom templates. Remarkable examples
are an elliptic-curve pairing implementation from 0xParc [0xpb] and a circom-
based library from Electron Labs that allows to generate proofs for a batch
of Ed25519 signatures [Laba]. In the following Section 3.4, we show how to
make use of circomlib templates and present some practical applications of
circom.

3.4 Applications

Most of the applications that use ZK proofs need to prove the correctness of
computations such as hash functions, public key derivations, and digital signa-
tures. In this section, we present some implementations of these circuits, which
illustrate the expressiveness and potential of the circom language. In Section
3.4.1, we give an example of a circuit that allows us to prove that we know the

SECTION 3.4. APPLICATIONS 41

preimage of a hash value using templates from circomlib. In Section 3.4.2,
we introduce templates that implement the arithmetic operations on the elliptic
curve called Baby Jubjub [BWB+21]. In Section 3.4.3, we explain how to use
the previous curve operations to verify that a private key corresponds to a pub-
lic key without revealing the private key. Finally, in Section 3.4.4, we explain
how to verify a signature with templates from circomlib and give an example
of a circuit that verifies that a given message has been signed by a public key
from a pair of authorized public keys, but without revealing which of the two
was used.

3.4.1 Hash functions
A cryptographic hash function is a deterministic one-way function that maps
data of an arbitrary size to a bit array of a fixed size. Hash functions are widely
used in authentication systems to avoid storing plaintext passwords in databases,
but are also used to identify and validate the integrity of files, documents,
and other types of data. One of the main uses of hash functions is in digital
signatures, where the hash is used to create a cryptographic digest of the data
being signed (see Section 3.4.4).

circomlib provides circuits for several hash functions. For example, the
template Sha256(nBits) is an implementation of SHA-256, which is defined as
a hash function

H : {0, 1}nBits → {0, 1}256.

The next example shows a circuit that you can use to prove that you know the
preimage of a given hash without revealing it. The following piece of code creates
a circuit that takes a binary array in of 256 bits and returns out = H(in).

1 include "sha256.circom";
2
3 template Main() {
4 signal input in [300];
5 signal output out [256];
6
7 component sha256 = Sha256 (300);
8
9 for (var i=0; i<300; i++){

10 sha256.in[i] <== in[i];
11 }
12 for (var i=0; i<256; i++){
13 out[i] <== sha256.out[i];
14 }
15 }
16
17 component main = Main();

42 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

In line 7, we instantiate the template Sha256(nBits) with nBits = 300. In
this case, we have to assign the values of the signal array bit by bit (line 10).
Finally, we set each bit of out to each bit of the output of the sha256 component
(line 13).

Classical hash functions, such as the family of SHA functions [Han05], are
heavy on bit operations, which makes them very inefficient to implement inside
arithmetic circuits. For example, the previous template sha256 from circomlib
for an input of 300 bits is described by 29,450 constraints. Recently, there have
been efforts to develop new hash functions that optimize their representation
inside arithmetic circuits. In this regard, circomlib also contains the imple-
mentation the Pedersen hash [LMS17] (pedersen), two hash functions from
the MiMC family [AGR+16] (mimc, mimc_sponge), and Poseidon [GKR+21]
(poseidon).

3.4.2 Elliptic-curve arithmetic

A classical use of ZK protocols is to prove ownership of a public key without
revealing the secret key. For that, we need to be able to write the logic of
verifying that a given secret key corresponds to a given public key inside an
Fp-arithmetic circuit. This logic is usually implemented by means of arithmetic
operations of an elliptic curve. In this section, we show how to implement
the arithmetic operations of an elliptic curve called Baby Jubjub [BWB+21],
used in the Ethereum blockchain to implement elliptic-curve cryptography inside
circuits [WBB20]. We describe this curve in great detail later in Chapter 4.

Defining the parameters of the curve

Baby Jubjub is an elliptic curve defined over the prime field Fp with

p =218882428718392752222464057452572750885

48364400416034343698204186575808495617,

and described by equation

ax2 + y2 = 1 + dx2y2, (3.1)

with a = 168700 and d = 168696. Baby Jubjub consists of the set of points
(x, y) with x, y ∈ Fp that satisfy Equation (3.1), together with the point at
infinity, which is usually represented by (1, 0).

SECTION 3.4. APPLICATIONS 43

To avoid replicating the values of a and d from Equation (3.1) in every
template to the curve, it is useful to define them only once. As we explained in
Section 3.3.10, circom does not admit the definition of global constants and,
instead, we have to to define two functions that always return these values.

1 function baby_const_a (){
2 return 168700;
3 }
4
5 function baby_const_d (){
6 return 168696;
7 }

This way, every time we need the coefficients of the elliptic curve, we can call
these two functions.

Checking if a point belongs to the curve

We start by checking if a pair of coordinates (x, y) correspond to a point on
the curve that safisfies Equation (3.1). For that, we create a template called
BabyCheck(), that verifies if a pair of x and y are a solution to the equation.

1 template BabyCheck () {
2 signal input x;
3 signal input y;
4 var a = baby_const_a ();
5 var d = baby_const_d ();
6 signal x2;
7 signal y2;
8 x2 <== x * x;
9 y2 <== y * y;

10 a * x2 + y2 === 1 + d * x2 * y2;
11 }

In the previous template, first, we declare two input signals x and y, one
per each coordinate. Then, we get the values of the coefficients a and d from
the functions we previously defined and assign them to two variables a and d,
respectively. Now, note that we cannot write directly the constraint

a*x*x + y*y === 1 + d*x*x*y*y,

as in Equation (3.1), since it is not a quadratic expression. Instead, we use two
new intermediate signals, x2 and y2, to represent x2 and y2 (lines 8- 9). Once
these signals are defined, we can check if the point (x,y) belongs to the curve
using the quadratic constraint

a*x2 + y2 === 1 + d*x2*y2.

44 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

Alternatively, we could have defined a signal u, enforced u <== x*y, and then
used u to rewrite the curve equation using an equivalent constraint of the form

a*x2 + y2 === 1 + d*u*u.

Adding two points in the curve

Now, we define how to operate in the elliptic-curve group. For that, we use that
the addition of two points P1 = (x1, y1) and P2 = (x2, y2) on Baby Jubjub is
defined [BWB+21] as a third point P3 = (x3, y3) with coordinates

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
and y3 =

y1y2 − ax1x2

1− dx1x2y1y2
. (3.2)

The following piece of code consists of a template, called BabyAdd, that takes
two points and outputs their addition using the formula from Equation (3.2).

1 template BabyAdd () {
2 signal input p1[2];
3 signal input p2[2];
4 signal output pout [2];
5
6 signal beta;
7 signal gamma;
8 signal delta;
9 signal tau;

10 var a = baby_const_a ();
11 var d = baby_const_d ();
12
13 beta <== p1[0] * p2[1];
14 gamma <== p1[1] * p2[0];
15 delta <== (-a * p1[0]+p1[1]) * (p2[0] + p2[1]);
16 tau <== beta * gamma;
17
18 pout [0] <–- (beta + gamma) / (1+ d * tau);
19 (1+ d * tau) * pout [0] === (beta + gamma);
20
21 pout [1] <–- (delta + a * beta - gamma) / (1-d * tau);
22 (1-d * tau) * pout [1] === (delta + a * beta - gamma);
23 }

In this template, we define points using 2-dimensional arrays of signals.
In particular, we have two points as input signals (p1 and p2), and a third
point as output signal (pout). We also have four intermediate signals (beta,
gamma, delta, and tau), and two variables (a and d) with the coefficients from
Equation (3.1). Since both expressions from Equation (3.2) involve a division
by signals, we cannot write the formulas directly using the dual operator <==.
Instead, we first use the individual computational operator <–- to compute the

SECTION 3.4. APPLICATIONS 45

denominators, and then, use the individual symbolic operator === to enforce a
multiplicative relation between the numerator and the denominator.

To illustrate the definition of public input signals, let us suppose that we
want to use circuit BabyAdd to prove that given an initial point P1 and a final
point Pout, we know the point P2 such that P1+P2 = Pout, where all the points
belong to the curve.

1 component main {public [p1]} = BabyAdd ();

We indicate that the first point p1 is public thanks to the tag public that
precedes the list of public input signals in the declaration of the main component.
An array of signals must have all elements public or all elements private. In this
case, both signals of p1 (p1[0] and p1[1]) are public. The two coordinates of
the output point pout are also public, since they are output signals. Finally,
the two coordinates of the second point p2 remain private, since they do not
appear in the previous list.

3.4.3 Public-key cryptography

To build public-key cryptography using elliptic curves, the participants must
agree on a publicly known point called generator. In this setting, a private key
is a randomly chosen scalar and its corresponding public key is computed by
multiplying the generator point by the private key. This scheme achieves the
properties of public-key cryptography because point multiplication by a scalar
can be efficiently computed with algorithms like double-and-add [Sti], while
computing the private key from the generator and the public key is computa-
tionally unfeasible [Sti]. In the following code snippet, we use the ScalarMulFix
template from circomlib to compute a public key from a private key provided
as input.

1 template BabyPbk () {
2 signal input in;
3 var GEN [2] = [
4 52996192406415512816348655835182970302
5 82874472190772894086521144482721001553 ,
6 16950150798460657717958625567821834550
7 301663161624707787222815936182638968203
8];
9 signal output Ax;

10 signal output Ay;
11
12 component pvkBits = Num2Bits (253);
13 pvkBits.in <== in;
14 component mulFix = ScalarMulFix (253, BASE8);

46 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

15 var i;
16
17 for (i=0; i <253; i++) {
18 mulFix.e[i] <== pvkBits.out[i];
19 }
20
21 Ax <== mulFix.out [0];
22 Ay <== mulFix.out [1];
23 }
24 component main = BabyPbk ();

Let us identify the main parts of this template. First, we have an input signal
in, which is the scalar (private key) used to generate the new point (public key);
the generator point GEN[2]; and two output signals, Ax and Ay, which are the
coordinates of the public key point generated from multiplying GEN[2] by in.

After these definitions, we declare a component (Num2Bits) to transform the
scalar in to its 253-bit representation, and assign in as its input signal. Right
after, we declare a new component (ScalarMulFix) to perform the multiplica-
tion of the generator by the scalar. Details about how this multiplication is
performed can be found in [Ide20b]. In line 16, each of the bits from the rep-
resentation of the scalar are set to its corresponding input of the component.
Finally, we assign the output signals of this component to the final output signals
Ax and Ay.

If we compile the program without declaring any input signal as public,
then they all remain as private signals. In particular, in is a private signal
whose value should not be known because it is a private key. Finally, note
that BabyPbk() only has two public output signals, Ax and Ay, which are not
explicitly declared as public, since the output signals of the main component
are always considered as public signals.

3.4.4 Digital signatures

A popular elliptic curve-based signature scheme is the Edwards-curve digital
signature algorithm (EdDSA) [JL17], which is a digital signature scheme based
on twisted Edwards curves, as is Baby Jubjub. Given a public key as defined in
Section 3.4.3, and a message, the EdDSA protocol uses a public cryptographic
hash function to bind the signature to a given message and public key.

circomlib has different implementations of EdDSA based on Baby Jubjub
which differ in the hash functions being used. The template eddsa uses the
Pedersen hash, eddsamimc is implemented using MiMC, and eddsaposeidon is
a variation with Poseidon. All these templates output 1 if the signature is valid,
and 0 otherwise.

SECTION 3.4. APPLICATIONS 47

Users can use these templates to validate that a signature of a message is
valid, but they can also use them to prove more elaborated statements. For
example, that a message has been signed with a public key that belongs to a
list of authorized public keys but without revealing which specific one. In the
following example, we define a template that validates if a message has been
correctly signed by one of two public keys {pk1, pk2}.

1 include "eddsa -simplified.circom";
2
3 template VerifyAuthorizedSignature () {
4 signal input pk1 [2]; // public key 1
5 signal input pk2 [2]; // public key 2
6 signal input msg; // message
7 signal input sig; // signature
8
9 signal out1;

10 signal out2;
11
12 component verify1 = EdDSAVerifier ();
13 component verify2 = EdDSAVerifier ();
14
15 // verify signature with pk1
16 verify1.pk <== pk1;
17 verify1.msg <== msg;
18 verify1.sig <== sig;
19 out1 <== verify1.out;
20
21 // verify signature with pk2
22 verify2.pk <== pk2;
23 verify2.msg <== msg;
24 verify2.sig <== sig;
25 out2 <== verify2.out;
26
27 out1 + out2 === 1;
28 }
29
30 component main {public [pk1[0],pk1[1],pk2[0],pk2[1],msg]}
31 = VerifyAuthorizedSignature ();

Notice that we used the EdDSAVerifier() template as a black box that
returns a signal that determines if a signature is valid for a given message and
public key. Since we need to verify the signature twice, one per each key, the
template EdDSAVerifier is instantiated in two different components (verify1,
verify2). The constraint out1 + out2 === 1 imposes that either verify1 or
verify2 is 1. In other words, this constraint ensures that the message has been
signed with one of either pk1 or pk2 keys, which are public input signals of the
circuit (line 30).

48 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

3.5 circom performance on large circuits

One of the main advantages of circom is its modularity. With circom, users
can define parameterized independent templates that can later be instantiated
and combined to produce large circuits describing complex operations. How-
ever, combining components significantly increases the number of constraints
describing the circuit. Specially, when connecting the output of a component
as an input of another component, the developer needs to introduce linear con-
straints that capture this binding. This situation is aggravated when working
with large circuits, which can entail hundreds of millions of extra constraints.

To reduce the amount of constraints describing a circuit, the circom com-
piler simplifies the linear constraints. More specifically, the compiler divides the
set of constraints into clusters of related linear constraints and then applies the
classical Gauss-Jordan elimination to each of them. These optimizations are
iterated until it is no longer possible to optimize more linear constraints. The
compiler treats clusters independently which allows to parallelize the optimiza-
tion subprocesses. The compiler runs these optimizations by default but the
user can choose to turn them off. Currently, there is also an ongoing work on
non-trivial optimization techniques applied to R1CS [ABI+22].

3.5.1 ZK-rollup circuits

To evaluate the performance of circom with large circuits, the language and the
compiler have been analyzed with the ZK-rollup circuits of the Hermez [Her20]
project. As we explained in Section 3.1, a ZK-rollup [GBFS16] is a construction
intended to increase the scalability of Ethereum by performing calculations off-
chain, rolling many transactions up into a single batch, and sending it to the
main Ethereum chain for processing in one action. In more detail, a ZK proof
is generated off-chain for every batch of transactions and it proves the validity
of every transaction in the batch. This means that it is not necessary to rely on
the Ethereum main chain to verify each signed transaction.

The key of ZK-rollups is that they allow verification to be carried out in
constant time regardless of the number of transactions in the batch. This ability
to verify proofs both efficiently and in constant time is at the heart of all ZK-
rollups. In addition to this, all transactions’ data can be published cheaply on-
chain, so that anyone can reconstruct the current state and history retrieving
the on-chain data. In the following section, we present some results for Hermez
ZK-rollup circuits of different sizes, which correspond to different amounts of
transactions per batch.

SECTION 3.5. CIRCOM PERFORMANCE ON LARGE CIRCUITS 49

3.5.2 Performance results

In Table 3.4, we show the number of generated constraints, the size of the
R1CS file, and the compilation time for different instances of ZK-rollup circuits.
We also show their corresponding gains and losses before and after applying
the simplification of linear constraints. The results have been obtained from
an AMD Ryzen Threadripper 3990X 64-Core Processor with 270GB of RAM
(Linux Kernel 5.4.0-80-generic).

Number of constraints
Circuit without simplification after simplification gain

ZK-Rollup-256 134,267,317 24,301,347 81.9%
ZK-Rollup-512 197,926,325 37,792,099 80.9%
ZK-Rollup-1024 325,244,341 64,773,603 80.1%
ZK-Rollup-2048 579,880,373 118,736,611 79.5%
ZK-Rollup-2341 652,925,030 134,203,765 79.4%

Size of the .r1cs file
Circuit without simplification after simplification gain

ZK-Rollup-256 15.7GB 8.5GB 45.9%
ZK-Rollup-512 23.4GB 13.7GB 41.5%
ZK-Rollup-1024 38.8GB 24.1GB 37.9%
ZK-Rollup-2048 69.5GB 44.6GB 35.8%
ZK-Rollup-2341 78.4GB 51.1GB 34.8%

Compilation time
Circuit without simplification after simplification overhead

ZK-Rollup-256 12.1min 38.9min ×3.22
ZK-Rollup-512 17.5min 58.3min ×3.33
ZK-Rollup-1024 28.4min 111.2min ×3.92
ZK-Rollup-2048 50.6min 512.5min ×10.14
ZK-Rollup-2341 56.5min 618.9min ×10.95

Table 3.4: Comparison of different Hermez ZK rollup circuits before and after
the circom compiler applies optimization techniques to reduce the number of
constraints describing the circuits.

As the experimental evaluation shows, in circuits this large, the compiler’s
optimizations are crucial to handle the huge amount of constraints. For in-
stance, for ZK-Rollup-256, circom without simplification generates 134,267,317

50 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

constraints whose file size is 15.7GB and the time needed for the compilation is
12.05min. On the other hand, the simplification allows us to reduce the number
of constraints up to 24,301,347, whose file size is 8.5GB and the compilation time
is increased up to 38.92min. Note that in this case, the reduction on the number
of constraints is close to 82%, whereas the size of the .r1cs file is not reduced
in the same proportion. This is due to the fact that constraint simplification
often implies the addition of new variables in the remaining constraints.

The cost of simplification is that compilation time increases slightly more
than three times. In the other circuits, the gain is similar, a reduction of around
80% in the number of constraints and 40% in the file size, but compilation
time increases considerably more when dealing with more than 500 millions of
constraints. The reason for this, is that the amount of RAM memory needed in
the simplification process reaches a peak of around 750GB, which is far larger
than the memory of the machine we used, which has 270GB of RAM, and hence,
it needs to use a lot of swap memory. As observed in the table, this fact notably
affects the performance in the last two circuits. In this sense, the job of the
compiler is to keep a right balance between constraints reduction and the time
needed for it.

Note that with circuits from Table 3.4, circom produces around 100 mil-
lion constraints (500 million without simplification). With these numbers, ZK-
rollups can handle around 2,000 transactions. Take into account that the soft-
ware used afterwards to generate and validate ZK-SNARK proofs also have
bounds inherited from the ZK protocol. In fact, thanks to simplification, we
can handle up to 2,341 transactions without exceeding the limit of 227 con-
straints that snarkjs can handle [Ide20c]. Processing a batch of this size needs
less than 2.1 million gas, so with this amount of transactions per batch and the
current Ethereum gas limit per block of 30 millions, we have that we can process
32,774 transfer transactions per block, which is around 23 times more transfers
than if they were executed directly in the Ethereum blockchain.

3.6 Analysis

Let Cn×t×m be the set of all circuits that can be programmed in circom with
n input signals, t intermediate signals, and m output signals. Given a circuit
C ∈ Cn×t×m, we denote by C(C) the set of constraints generated by circom
after compiling C. Let W : Cn×t×m × Fn

p → Ft
p × Fm

p be a partial function
that takes a circuit C ∈ Cn×t×m and n values for the input signals, such that it
returns the t values of the intermediate signals and the m values of the output

SECTION 3.6. ANALYSIS 51

signals. The function W describes the computation made by the executable
code obtained from compiling C after the input values are given. Note that W
is a partial function, since not every input of a circuit produces a valid output.

Definition 3.1 (Correct circom program). A circom program C ∈ Cn×t×m is
said to be correct if for every given values i⃗ ∈ Fn

p for the n input signals of C, we
have that: if C(C) replacing the inputs signals by i⃗ is satisfiable, then W (C, i⃗) =
(⃗t, o⃗) ∈ Ft

p×Fm
p and (⃗i, t⃗, o⃗) is a solution to the system C(C). Otherwise, we say

that C is incorrect.

A circom program is called strongly safe when the values computed by
the executable code are the unique solution to the R1CS constraint system.
However, sometimes this notion of safety involving all signals including the
intermediate ones could be too strong for some components, as it happens with
the IsZero circuit from Section 3.3.9. In that case, when the value of signal in
is 0, the computation sets the intermediate signal inv to be also 0, but inv could
have taking any other value and still satisfy the constraints from the template.
For these reasons, there is an alternative weaker notion of safety, which only
requires the constraints and the code to meet on inputs and outputs, but not
necessarily on the intermediate signals.

Definition 3.2 (Safe circom program). A circom program C ∈ Cn×t×m is
said to be strongly safe if for every given values i⃗ ∈ Fn

p for the n input sig-
nals of c, we have that: if W (C, i⃗) = (⃗t, o⃗) ∈ Ft

p × Fm
p , then (⃗i, t⃗, o⃗) is the only

solution of C(C), and it is said to be safe if all solutions of C(C) are of the form
(⃗i, t⃗′, o⃗). Otherwise, the program is called unsafe.

Note that, by definition, every strongly safe circom program is also a safe
program. Conversely, every safe program can always be converted into a strongly
safe program by adding new constraints which enforce that, given the input val-
ues, the intermediate and output signals are a unique solution for the program.
For instance, the template IsZero can be converted into a strongly safe template
by adding the constraint inv * out === 0 to the R1CS.

Lemma 3.1. A strongly safe circom program is deterministic.

Proof. From definition 3.2, we deduce that, given a safe circom program C and
an input i⃗ for this program, if there exists an output o⃗ and an intermediate t⃗
for C, then it must be unique.

52 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

The following results show that many times both kinds of safety are guar-
anteed by construction.

Lemma 3.2. A circom program is strongly safe if it is written without using
<–- and –-> and all its intermediate and output signals are the target of an
assignment operation.
Proof. Without loss of generality, let us assume the program only uses right-
to-left operators. If a program does not use operator <–-, the value of a signal
can only be assigned using operator <==. At the computational level, this in-
struction is translated as an assignment where the signal on the left obtains the
same value as the value of the expression on the right. At the constraint level,
this instruction introduces a new constraint where both sides must have the
same value. Consequently, this constraint is guaranteed once the assignment is
executed and, since signals are immutable, and they can only have one single
value assigned, this constraint remains true. Apart from <==, the operator ===
also adds new constraints to the constraint system, and an assert in the com-
putational level. As a result, either the program has no result for the input or
the constraints are guaranteed to be satisfied by the result.

In a more intuitive way, the previous lemmas are just the consequence that
circom has only three operators: <==, <–-, and ===. With these operators,
circom circuits can only do two things: calculations and constraints’ definitions.
If circuits are only built with the double operator <==, then both, calculations
and constraints are equivalent because they derive from the same expression.
As a result, in this type of circuits, the witness-calculator program will always
produce values that will satisfy the set of R1CS constraints. Problems may arise
when calculations and constraints are not aligned. This can only happen when
<–- and === are used in the circuits, because their equivalence is not guaranteed
by the compiler. In more detail, the use of the === operator imposes an isolated
constraint over a set of signals. Here, we have two cases:

1. If the expression involves signals whose computation has been already
defined, then it is the backend’s job to ensure that the set of constraints
is satisfied by the set of computed inputs. That is, given a set of inputs,
if the witness-generator program produces a set of signals which do not
satisfy the set of constraints, the backend will not be able to produce a
valid proof. In other words, the security is guaranteed by the backend.

2. If the === involves a new signal that should be computed (using the <–-
operator) but this computation is not defined in the circom description,
the compiler will detect this fact and throw an error.

SECTION 3.7. CONCLUSIONS 53

On the other hand, <–- allows users to compute values beyond quadratic ex-
pressions. Here, we also have two cases:

1. If the <–- operator is backed up by an associated constraint or constraints
(using ===), then the circom description is as safe as using the double
operator <==.

2. If the <–- operator is not backed up by its associated constraints, then
this means that the circom description lacks constraints. In this case,
the backend cannot help the user to detect missing constraints, it just
generates proofs that can be verified but that have fewer constraints than
might be necessary.

Finally, regarding the field size and potential overflows, recall that circom
informs the backend about the field size that must be used. It does so by
including the prime number at the header of the R1CS file. On the other
hand, the witness-calculator program is linked by the circom compiler to the
proper modular arithmetic library, so that the computations are performed in
the correct field.

3.7 Conclusions
In this chapter, we presented circom, a constraint-based DSL for describing
ZK circuits. circom is in a level of abstraction between a program DSL and a
library and, to the best of our knowledge and according to the available literature
[OBW22], it is the only implemented DSL of this type. The circom compiler is
responsible for generating all the necessary material to, later, generate and verify
ZK-SNARK proofs. The philosophy of circom is that programmers have full
control over the exact construction of arithmetic circuits and the resulting set
of constraints which, at the end, are the ones used to build ZK proofs. circom
is modular at many levels, and to deal with extra constraints introduced by the
interconnection of templates, we implement several rounds of optimizations of
linear constraints in the compiler, which are crucial for the use of circom in
industrial circuits describing real-world problems.

54 CHAPTER 3. A CIRCUIT LANGUAGE FOR ZERO-KNOWLEDGE APPLICATIONS

Chapter 4

Twisted Edwards elliptic
curves for arithmetic circuits

Design is where art and science break even.

– Robin Mathew

4.1 Introduction

In 2008, blockchain was added to the list of practical uses of ECC. In Satoshi’s
seminal Bitcoin paper, ECC was used for securing the various transactions oc-
curring on the network, for controlling the generation of new currency units, and
verifying the transfer of digital assets and tokens. A few years later, privacy-
oriented cryptocurrencies incorporated new cryptographic techniques to ensure
user anonymity and obfuscate payment details. For instance, Monero started
using ring signatures and Pedersen commitments [NML16], while Zcash used
ZK-SNARKs [MGGR13,BSCG+14]. As we have seen in the previous chapters,
before proving computational statements with ZK-SNARKs, statements have to
be expressed as an Fp-arithmetic circuit, also called ZK circuit or ZK-SNARK
circuit. The specific instantiation of the ZK protocol is what determines p, but
typically p is a large prime number of approximately 254 bits that is deter-
mined by the order of a pairing-friendly elliptic curve [WBB20]. For instance,

55

56 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

in Ethereum, p is the order of the BN256 elliptic curve, and in Zcash, p is the
large prime order subgroup of BLS12-381.

Classical cryptographic schemes consisted mostly of Boolean operations,
which makes them inefficient when evaluated inside a ZK-SNARK circuit. As
an example, the Zcash circuit relied on the SHA256 hash function to create
a message-authentication code to prevent malleability, for generating pseudo-
random strings, and for commitments. However, each invocation of SHA256
added tens of thousands of multiplication gates to ZK-SNARK circuits, making
this hash the primary cost when generating ZK-SNARK proofs [zcaa]. These
issues motivated the search for algebraic primitives to replace SHA256 and other
inefficient functions. So, instead of hash functions such as SHA256 inside ZK-
SNARK circuits, the idea was to use ECC that works in large prime fields, which
is the natural representation of circuits. For this reason, new schemes that relied
on elliptic curves were gradually adopted in ZK-SNARK constructions.

In this context, two prominent examples are Pedersen hashes [LMS17] and
EdDSA [JL17]. These schemes can be built efficiently by using elliptic curves
that can be represented in twisted Edwards form, using the fact that they
have a single formula for doubling and adding points of the curve [BBJ+08].
There is another form of representing elliptic curves called Montgomery, that
makes computations faster but has different formulas for adding and doubling
points [LM87]. A twisted Edwards curve is generally birationally equivalent
to a Montgomery curve, so curves can be easily converted from one form to
another [BBJ+08]. Inside a circuit, we can use the Montgomery form when we
know for sure that either we are adding different points or we are adding the
same point, and use twisted Edwards when, depending on the inputs of the
circuit, this cannot be assured. Combining the two forms in this way makes the
implementation of the group law as an arithmetic circuit very efficient.

In order to implement the Pedersen hash and EdDSA as circuits, we need
curves that are defined over Fp, where p is determined by the particular choice of
pairing-friendly elliptic curve used to generate ZK-SNARK proofs. It is crucial
to choose an appropriate twisted Edwards elliptic curve with optimal parameters
for the cryptographic schemes, since the choice of the curve has great impact
on their security and efficiency. Moreover, curves need to be generated in a
transparent and deterministic way, so that anyone can audit and recreate the
procedure. Transparency is paramount, as it significantly reduces the possibility
of a backdoor being present, thus leading to better security. It is also crucial
that the new curves are also tested for resilience against best known attacks,
such as the rho method, or additive and multiplicative transfers, which attack
the discrete logarithm problem over elliptic curve groups [BSS99].

SECTION 4.2. RELATED WORK 57

4.1.1 Contributions and organization

In this chapter, we present a set of deterministic algorithms that, given a field Fp,
allows us to generate secure twisted Edwards elliptic curves that are suitable
for Fp-arithmetic circuits and allow the efficient computation of ZK-SNARK
proofs that prove ECC statements. There have already been two curves that
have been generated using these methods. On the one side, Jubjub curve for
Zcash, defined over the scalar field of BLS12-381 and on the other side, Baby
Jubjub for Ethereum, defined over the scalar field of BN256. The present work
is a formalization and generalization of the common efforts to generate suitable
twisted Edwards curves for ZK-SNARK circuits.

The chapter is organized as follows. In Section 4.2, we introduce related
work on generation of elliptic curves in the ZK context. In Section 4.3, we
extend the background from Section 2.2 to twisted Edwards and Montgomery
elliptic curves. In Section 4.4, we present a deterministic algorithm for gen-
erating twisted Edwards elliptic curves defined over a given prime field. We
complement the work in Section 4.5, with the security checks that a twisted
Edwards elliptic curve should pass. We base the latter section on the work from
Bernstein and Lange gathered in [BL19]. In Section 4.6, we use our algorithms
to generate Baby Jubjub. As we explained in Section 3.4, this curve can be used
to implement ECC inside Fp-arithmetic circuits for Ethereum. In fact, Baby
Jubjub was accepted as an Ethereum improvement proposal [WBB20] and has
already been used in practical applications such as Hermez and Tornado Cash.

In Section 4.7, we include some discussion of the work and future research
directions. In Appendix A.1 there is a SAGE implementation of the security
checks presented in Section 4.5, which was used to prove that Baby Jubjub was
safe under best-known security attacks.

4.2 Related work

The enhance privacy in the blockchain space, there has been an intensive use
of cryptographic schemes that make use of elliptic curves [AHG22], which has
motivated the appearance of new problems that have been tackled by both
industry and academia. For instance, the need for efficient pairing-friendly
curves in ZK-SNARK schemes resurfaced the work from Barreto and Naehrig
[BN05], and Barreto, Lynn, and Scott [BLS02], who developed techniques to
generate pairing-friendly elliptic curves that had an optimal Ate pairing. The
vast application of curves derived from their work, which are usually called

58 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

BN and BLS curves, resulted in undergoing processes from the IRTF Crypto
Forum Research Group to standardize particular instantiations of these curves
[KKKK14,YCKS19], such as the BN-256 and the BLS12-381, which are used in
digital signature schemes and ZK-SNARK protocols all over the Internet.

The order of these curves is what determines the type of statements we can
prove using ZK. More precisely, the largest prime p dividing the curve’s order
fixes the field in which we can do modular arithmetic. As a result, compu-
tational statements that involve elliptic-curve operations can only be proved
efficiently with curves that are defined over Fp. Hence, the implementation
of ECC schemes that make use of twisted Edwards curves require new curves
defined over Fp. In Table 4.1, we summarize the related work.

System Outer curve Inner curve
Zcash [zcaa] BLS12-381 Jubjub

Masson et al. [MSZ21] BLS12-381 Bandersnatch
Our proposal BN-256 Baby Jubjub

Ben-Sasson et al. [BSCTV14a] MNT4 MNT6
Zexe [BCG+20] CP6-782 BLS12-377

Housni et al. [HG20] BW6-761 BLS12-377

Table 4.1: Use of elliptic curves in different ZK constructions.

The Zcash team was the first to generate a suitable curve for Fp-arithmetic
circuits. Since Zcash ZK-SNARK constructions are based on BLS12-381, their
Jubjub elliptic curve was expressly built over the BLS12-381 scalar field. Re-
cently, a new elliptic curve built over the BLS12-381 scalar field was introduced
in [MSZ21], but although this curve allows a faster scalar multiplication al-
gorithm than Jubjub, it does not provide any performance improvement in
multi-scalar multiplications or in the ZK circuit representations [MSZ21].

We have used a similar approach to generate Baby Jubjub, which is an em-
bedded elliptic curve designed to operate on the field produced by the BN256
elliptic curve. The work presented in this chapter covers the case in which we
want to use circuits that can verify public key cryptography primitives such
as digital signatures and encryptions in Ethereum. Then, these proofs can be
verified by an Ethereum smart contract. We presented and discussed the tech-
niques used to generate Jubjub and Baby Jubjub at the second annual ZKProof
standardization workshop [WBB19]. This chapter is a reviewed, formalized, and
generalized version of the efforts towards the standardization of the generation
of suitable twisted Edwards curves for proving arithmetic circuit satisfiability.

SECTION 4.3. ELLIPTIC CURVES 59

The generation of other type of curves for ZK-SNARK circuits has also ap-
peared in other lines of research. For instance, the authors of [BSCTV14a]
presented the first practical setting of recursive proof composition with a cy-
cle of two Miyaji–Nakabayashi–Takano (MNT) pairing-friendly elliptic curves
[MNT01]. The idea of their proposal is that proofs generated from one curve
can feasibly reason about proofs generated from the other curve. To achieve
this, one curve’s order is the other curve’s base field order and vice versa. Al-
though current MNT cycles of curves are quite expensive at the 128-bit security,
the work opens the door to the possibility of having succinct blockchains that
are verifiable with one single proof.We explore these ideas in further detail in
Chapter 5. Bowe et al. [BCG+20] proposed ZEXE, a construction that follows
a relatively relaxed approach to find a suitable pair of curves that form a chain
rather than a cycle. A later work from El Housni and Guillevic [HG20] improved
ZEXE with a new curve that makes the verification of composed ZK-SNARK
proofs significantly faster.

4.3 Elliptic curves

Both the affine and the projective short Weierstrass forms presented in Sec-
tion 2.2 are the most general ways to describe elliptic curves over finite fields Fp

with p > 3. However, in certain situations it might be advantageous to consider
more specialized representations of elliptic curves for example to get faster algo-
rithms for the group law or the scalar multiplication. In this section, we review
Montgomery and twisted Edwards elliptic curves and over finite fields. We as-
sume p > 3 and denote Fp the finite field of order p. We follow [BBJ+08,OKS00].

4.3.1 Montgomery curves

Montgomery curves are those whose equation can be written in Montgomery
form. This curves allow for constant time algorithms for the elliptic curve scalar
multiplication [OKS00].

Definition 4.1 (Montgomery curve). Let A ∈ Fp\{−2, 2} and B ∈ Fp\{0}. An
elliptic curve defined by

EM : By2 = x3 +Ax2 + x

is called a Montgomery (elliptic) curve.

60 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

Although Montgomery curves look different from short Weierstrass curves, they
are just a special way to describe certain short Weierstrass curves. In fact, every
curve in affine Montgomery form can be transformed into an elliptic curve in
short Weierstrass form. The set of (Fp-rational) points of EM forms a group
with the point at infinity O as the identity element. The rules of the following
theorem are a complete description of the elliptic curve group law [LM87].

Definition 4.2 (Montgomery group law). Let EM be a Montgomery curve. Let
P1 = (x1, y1) and P2 = (x2, y2) be points on EM with P1, P2 ̸= O. We define
P1 + P2 = P3 = (x3, y3) as follows:

• If x1 ̸= x2, then

Λ = (y2 − y1)/(x2 − x1),

x3 = BΛ2 −A− x1 − x2,

y3 = Λ(x1 − x3)− y1.

(4.1)

• If x1 = x2 but y1 ̸= y2, then P1 + P2 = O.

• If P1 = P2 and y1 ̸= 0, then

Λ = (3x2
1 + 2Ax1 + 1)/(2By1),

x3 = BΛ2 −A− 2x1,

y3 = Λ(x1 − x3)− y1.

(4.2)

• If P1 = P2 and y1 = 0, then P1 + P2 = O.

Moreover, we define P +O = P for all points P on EM . Note that the inverse
of O is O, and the inverse of any other point P = (x, y) is (x,−y).

A result due to [LM87], is that the order of a Montgomery curve is always
divisible by 4.

4.3.2 Twisted Edwards curves

Edwards in [Edw07] introduced an addition law for the curves x2 + y2 =
c2(1 + x2y2) over a non-binary field, and later, Bernstein and Lange [BBJ+08]
generalized the addition law to the curves x2+y2 = 1+dx2y2. This form covers
considerably more elliptic curves over a finite field than the Edwards form.

SECTION 4.3. ELLIPTIC CURVES 61

Definition 4.3 (Twisted Edwards curve). Let a, b ∈ Fp\{0} with a ̸= b. An
elliptic curve defined by

E : ax2 + y2 = 1 + dx2y2

is called a twisted Edwards (elliptic) curve.

In contrast to Montgomery and short Weierstrass curves, twisted Edwards
curves have complete addition formulas. This is very convenient when writing
the arithmetic as a circuit, because we can express it as a single computation
without the need of branching the operation to each case.

Definition 4.4 (Twisted Edwards group law). Let E be a twisted Edwards curve.
Let P1 = (x1, y1) and P2 = (x2, y2) be any points on E. We define the addition
P1 + P2 = P3 = (x3, y3) as follows:

λ = dx1x2y1y2,

x3 = (x1y2 + y1x2)/(1 + λ),

y3 = (y1y2 − x1x2)/(1− λ).

Note that the inverse of any point P = (x, y) is (−x, y).

Montgomery and twisted Edwards curves are birationally equivalent. The
following theorem gives the explicit transformation from one form to the other.

Theorem 4.1 ([BBJ+08, Theorem 3.2]). Every twisted Edwards curve E/Fp is
birationally equivalent over Fp to a Montgomery curve EM/Fp with parameters

A = 2
a+ d

a− d
and B =

4

a− d
.

The birational equivalence from E to EM is the map

(x, y)→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
with inverse

(u, v)→ (x, y) =

(
u

v
,
u− 1

u+ 1

)
. (4.3)

Conversely, every Montgomery curve EM/Fp is birationally equivalent over Fp

to a twisted Edwards curve E/Fp with parameters

a =
A+ 2

B
and d =

A− 2

B
.

62 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

4.4 Generation of twisted Edwards curves

In this section, we present a deterministic method that, given a prime number
p, it outputs a twisted Edwards curve E defined over Fp.

4.4.1 General overview

Our algorithm takes a prime number p and returns a twisted Edwards curve
defined over Fp. More precisely, the specific outputs of the algorithm are:

• The prime order of the finite field the curve is defined over, which is the
input p.

• Parameters a and d of the equation that defines the twisted Edwards curve.

• The order of the curve and its decomposition into the product of a cofactor
h and a large prime q.

• A generator and a base point for the curve.

Since the finite field is defined by the input p, no specification of this pa-
rameter is required. The order of the curve and its decomposition are also
determined once the parameters of the equation describing the curve are fixed.
Hence, the only remaining specifications are parameters a and d, and the choice
of generator and base point. We have divided the procedure in four steps:

1. Choice of Montgomery equation (Section 4.4.2): we start by deterministi-
cally generating a Montgomery elliptic curve EM over Fp.

2. Choice of generator and base points (Section 4.4.3): we set the generator
and base points of EM .

3. Transformation to twisted Edwards (Section 4.4.5): we convert the curve
EM to its birationally equivalent twisted Edwards form and the generator
and base points using the maps from Theorem 4.1.

4. Optimization of parameters (Section 4.4.4): if possible, we rescale all pa-
rameters so that the arithmetic in the curve can be sped up [HWCD08].

All algorithms presented in this section have been implemented in SAGE
programming language, and are presented in Section 4.6.

SECTION 4.4. GENERATION OF TWISTED EDWARDS CURVES 63

4.4.2 Choice of Montgomery equation

We start by finding a Montgomery curve defined over Fp, where p is a given
prime number. The assumptions and algorithm presented are based on the work
of [LHT16] and Zcash team [Bow19]. Algorithm 1 takes a prime p, fixes B = 1
and returns the Montgomery elliptic curve defined over Fp with the smallest
coefficient A such that A− 2 is a multiple of 4. This approach comes from the
fact that, when defining a Montgomery curve, the smaller A is, the faster the
group operation becomes. More precisely, as pointed out in [BL17], for the best
performance, we need (A − 2)/4 to be small. As with A = 1 and A = 2, a
twisted Edwards equation does not describe a smooth curve, so the algorithm
starts with A = 3.

Algorithm 1 Generation of EM

Input: prime number p
Output: coefficients A, B, order n, cofactor h, prime q
fix B = 1
start with A = 3
if (A− 2) = 0mod 4 then

continue
else

increment A by 1 and go back to line 3
if equation y2 = x3 +Ax2 + x defines an elliptic curve over Fp then

continue
else

increment A by 1 and go back to line 3
compute the group order n and cofactor h
if p = 1mod 4 then

if (cofactor is 8 and cofactor of twist is 4) then
set h = 8

else
increment A by 1 and go back to line 3

if p = 3mod 4 then
if (cofactor and cofactor of twist is 4) then

set h = 4
else

increment A by 1 and go back to line 3
compute q = n/h
return A, B, n, h, and q

64 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

For primes congruent to 1 modulo 4, the minimal cofactors of the curve and
its twist are either {4, 8} or {8, 4}. We choose a curve with the latter cofactors,
so that any algorithms that take the cofactor into account do not have to worry
about checking for points on the twist, because the twist cofactor will be the
smaller of the two [LHT16]. For a prime congruent to 3 modulo 4, both the
curve and twist cofactors can be 4, and this is minimal.

4.4.3 Choice of generator and base points
To pick a generator GM

0 of the curve, we choose the smallest element of Fp that
corresponds to an x-coordinate of a point in the curve of order n. Then, as a
base point, we define GM

1 = 8GM
0 , which has order q. The steps are written

down in Algorithm 2.

Algorithm 2 Generator and base points of EM

Input: Montgomery curve EM , order n, cofactor h
Output: generator GM

0 , base point GM
1

start with u = 1
find v such that (u, v) is a point of EM . else, increment u by 1 and repeat
check that (u, v) has order n. else, increment u by 1 and go back to step 2
set GM

0 = (u, v) and GM
1 = hG0

return GM
0 and GM

1

4.4.4 Transformation to twisted Edwards
In Algorithm 3, we use the birational map from Equation (4.3) to get the coef-
ficients, generator, and base points in the twisted Edwards form.

Algorithm 3 Conversion of EM to E

Input: Montgomery coefficients A, B, generator GM
0 = (xM

0 , yM0), base point
GM

1 = (xM
1 , yM1)

Output: twisted Edwards coefficients a, d, generator G0, base point G1

compute a = (A+ 2)/B and d = (A− 2)/B
compute x0 = xM

0 /yM0 and y0 = (xM
0 − 1)/(xM

0 + 1)
compute x1 = xM

1 /yM1 and y1 = (xM
1 − 1)/(xM

1 + 1)
set G0 = (x0, y0) and G1 = (x1, y1)
return a, d, G0 and G1

SECTION 4.5. SECURITY TESTS 65

4.4.5 Optimization of parameters
As pointed out in [HWCD08, Section 3.1], if −a is a square in Fp, it is possible
to optimize the number of operations in a twisted Edwards curve by scaling it.
The result follows directly from the map’s definition.

Theorem 4.2. Consider a twisted Edwards elliptic curve defined over Fp given
by equation ax2 + y2 = 1 + dx2y2. If −a is a square in Fp, then the map
(x, y) → (x/

√
−a, y) defines the curve −x2 + y2 = 1 + (−d/a)x2y2. We call

f =
√
−a the scaling factor.

Algorithm 4 rescales, if possible, the twisted Edwards curve found in the
previous step as described in Theorem 4.2. It also converts the generator and
base points to the new coordinates. After applying the algorithm, the map that
transforms EM to E is the composition of maps from Theorems 4.1 and 4.2.

Algorithm 4 Rescaling of E with a = −1 (if possible)
Input: coefficients a, d, generator G0 = (x0, y0), base point G1 = (x1, y1)
Output: scaling factor f , coefficients a′ = a/f2, d′ = −d/a, generator G′

0 =
(x0/f, y0), base point G′

1 = (x1/f, y1)
if −a is a square in Fp then

take f =
√
−a

set a′ = −1 and d′ = −d/a
compute x′

0 = x0/f and x′
1 = x1/f

set G′
0 = (x′

0, y0) and G′
1 = (x′

1, y1)
return f , a′, d′, G′

0 and G′
1

else
set f = 1
return f , a, d, G0 and G1

4.5 Security tests
This section specifies the safety criteria that an elliptic curve found in the pre-
vious section should satisfy. The choices of security parameters are based on
the joint work of Bernstein and Lange summarized in [BL19]. In Appendix A.1,
we provide an implementation of the algorithm that should be run after finding
the elliptic curve as proposed in the previous section. The algorithm is based
on the code from [Hop17], which is an extension of the original SAGE code
from [BL19], to general twisted Edwards curves.

66 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

Curve parameters

We check that all given parameters describe a well-defined elliptic curve over a
prime finite field:

• The given number p is prime.

• The given parameters define an equation that corresponds to an elliptic
curve.

• The product of h and q results into the order of the curve and the point
G0 is a generator.

• The given number q is prime and the point G1 is a base point.

Elliptic-curve discrete logarithm problem

We check that the discrete logarithm problem remains difficult in the given
curve. For that, we check the curve is resistant to the following known attacks:

• Rho method (Section V.1, [BSS99]): we require the cost for the rho method,
which takes on average around 0.886

√
q additions, to be above 2100.

• Additive and multiplicative transfers (Section V.2, [BSS99]): we require
the embedding degree to be at least (q − 1)/100.

• High discriminant (Section IX.3, [BSS99]): we require the complex-multiplication
field discriminant D to be larger than 2100.

Elliptic-curve cryptography

We check if the curve is suitable for ECC:

• Ladders [LM87]: check the curve supports the Montgomery ladder.

• Twists (twist, [BL19]): check if it is secure against the small-subgroup
attack, invalid-curve attacks and twisted-attacks.

• Completeness (complete, [BL19]): check if the curve has complete single-
scalar and multiple-scalar formulas. It is enough to check that there is
only one point of order 2 and two points of order 4.

• Indistinguishability [BHKL13]: check availability of maps that turn elliptic-
curve points indistinguishable from uniform random strings.

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 67

4.6 Baby Jubjub: a suitable curve for Ethereum

Ethereum, the second-largest blockchain, uses BN256 to generate and verify
ZK-SNARK proofs. BN256 is a pairing-friendly elliptic curve of prime order

p =218882428718392752222464057452572750885

48364400416034343698204186575808495617.

In order to prove ECC statements with ZK-SNARKs, Ethereum needed a
new curve defined over Fp. In this section, we present a SAGE implementation
of the algorithms presented in the previous sections, and we use them to generate
Baby Jubjub, a twisted Edwards elliptic curve suitable for ZK-SNARK circuits
in Ethereum.

In Listing 4.1, we implemented Algorithm 1, which generates a Montgomery
curve EM with the smallest A satisfying the conditions from Section 4.4.2.

1 def findCurve(prime , curveCofactor , twistCofactor , _A):
2 Fp = GF(prime)
3 A = _A
4 while A < _A + 200000:
5 if (A-2.) % 4 != 0:
6 A+=1.
7 continue
8 try:
9 E = EllipticCurve(Fp, [0, A, 0, 1, 0])

10 except:
11 A+=1.
12 continue
13
14 groupOrder = E.order()
15 if (groupOrder % curveCofactor != 0 or not is_prime(groupOrder //

curveCofactor)):
16 A+=1
17 continue
18
19 twistOrder = 2 * (prime +1)-groupOrder
20 if (twistOrder % twistCofactor != 0 or not is_prime(twistOrder //

twistCofactor)):
21 A+=1
22 continue
23
24 return E, A, 1, groupOrder , curveCofactor , groupOrder //

curveCofactor
25
26 def find1Mod4(prime , curveCofactor , twistCofactor , A):
27 assert ((prime % 4) == 1)
28 return findCurve(prime , curveCofactor , twistCofactor , A)

Listing 4.1: Generation of EM .

68 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

In the following lines of code, we instantiate the functions from Listing 4.1
using the prime number p, which is the order of BN256 curve, and enforce the
resulting curve to have cofactor h = 8.

1 # Baby Jubjub in Montgomery form
2 prime = 218882428718392752222464057452572750885483644004160343436982041
3 86575808495617
4 Fp = GF(prime)
5 h = 8
6 A = 1.
7 EC, A, B, n, h, q = find1Mod4(prime , h, 4, A)

The result is that the smallest A satisfying the conditions is A = 168698. As a
result, the Montgomery form EM/Fp of Baby Jubjub is defined by equation:

y2 = x3 + 168698x2 + x.

The function findCurve also returns the order of the curve, which is

n = 218882428718392752222464057452572750886

14511777268538073601725287587578984328,

where n = h× q, with h = 8, and q is the large prime number

q = 27360303589799094027808007181571593860

76813972158567259200215660948447373041.

To get a generator and a base point for EM deterministically, we imple-
mented Algorithm 2 in Listing 4.2, which returns as generator GM

0 the point of
the curve of order n with smallest x-coefficient, and GM

1 = hGM
0 as base point.

1 def findGenPoint(prime , A, EC, N):
2 Fp = GF(prime)
3 for uInt in range(1, 1e3):
4 u = Fp(uInt)
5 v2 = u^3 + A * u^2 + u
6 if not v2.is_square ():
7 continue
8 v = v2.sqrt()
9

10 point = EC(u, v)
11 pointOrder = point.order()
12 if pointOrder == N:
13 return point
14
15 def findBasePoint(EC , h, u, v):
16 return h * EC(u, v)

Listing 4.2: Generator G0 and base point G1 of EM .

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 69

The next couple of lines of code are used to find a valid generator and base
point for Baby Jubjub in Montgomery form.

1 # Generator and base points of Baby Jubjub in Montgomery form
2 gen_u , gen_v , gen_w = findGenPoint(prime , A, EC , n)
3 base_u , base_v , base_w = findBasePoint(EC, h, gen_u , gen_v)

The outputs are the generator GM
0 = (xM

0 , yM0) with coordinates

xM
0 = 7,

yM0 = 42587277738759406903626075504983045981

01071202821725296872974770776423442226,

and the base point GM
1 = (xM

1 , yM1) with coordinates

xM
1 = 71179280504075836181111764215552147566

75765419608405867398403713213306743542,

yM1 = 145772682188818994209667796876902054252

27431577728659819975198491127179315626.

Algorithm 3 maps a Montgomery curve to its twisted Edwards form. We di-
vided the algorithm in three different functions. The first function mont_to_ted
converts a Montgomery point to a twisted Edwards point, the second function
ted_to_mont does the opposite, and finally is_on_ted checks if a point is a
solution to a given twisted Edwards equation. Although the last two functions
are not needed in the original algorithm, we implemented them in order to have
sanity checks after the conversion from Montgomery to twisted Edwards form.

1 def mont_to_ted(u, v , prime):
2 Fp = GF(prime)
3 x = Fp(u / v)
4 y = Fp((u-1)/(u+1))
5 return(x, y)
6
7 def ted_to_mont(x, y , prime):
8 Fp = GF(prime)
9 u = Fp((1 + y)/ (1 - y))

10 v = Fp((1 + y) / ((1 - y) * x))
11 return(u, v)
12
13 def is_on_ted(x, y, prime , a, d):
14 Fp = GF(prime)
15 return Fp(a * (x * * 2) + y * * 2 - 1 - d * (x * * 2) * (y * * 2)) == 0

Listing 4.3: Conversion of EM to E.

70 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

We run these functions to get the twisted Edwards form E of Baby Jubjub.

1 # Conversion of Baby Jubjub to twisted Edwards
2 a = Fp((A + 2) / B)
3 d = Fp((A - 2) / B)
4
5 # Check we have a safe twist and discriminant != 0
6 assert(not d.is_square ())
7 assert(a * d * (a-d)!=0)
8
9 # Conversion of generator to twisted Edwards

10 gen_x , gen_y = mont_to_ted(gen_u , gen_v , prime)
11 assert(is_on_ted(gen_x , gen_y , prime , a , d))
12
13 # Sanity check: the inverse map returns the original point in Montgomery
14 u , v = ted_to_mont(gen_x , gen_y , prime)
15 assert (u == gen_u)
16 assert (v == gen_v)
17
18 # Conversion of base point to twisted Edwards
19 base_x , base_y = mont_to_ted(base_u , base_v , prime)
20 assert(is_on_ted(base_x ,base_y , prime , a , d))

After the conversion maps, we get that E is described by equation

168700x2 + y2 = 1 + 168696x2y2.

The code from Listing 4.3 also outputs the generator G0 = (x0, y0) and base
point G1 = (x1, y1) in twisted Edwards form. The specific outputs are that G0

has coordinates

x0 = 99520344158219574957829117978738443650

5546430278305826713579947235728471134,

y0 = 547206071795981880556160143631431877213

7091100104008585924551046643952123905,

and G1 has coordinates

x1 = 52996192406415512816348655835182970302

82874472190772894086521144482721001553,

y1 = 169501507984606577179586255678218345503

01663161624707787222815936182638968203.

Finally, the last Algorithm 4 tries to escalate the twisted Edwards form
of the curve, so that the equation has parameter a = −1. This last step is
implemented in Listing 4.4.

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 71

1 def scaling(a, d, prime):
2 Fp = GF(prime)
3 if Fp(-a).is_square ():
4 f = sqrt(Fp(-a));
5 a_ = Fp(a / (f * f));
6 d_ = Fp(d / (-a));
7 if a_ == Fp(-1):
8 a_ = -1
9 else:

10 a_ = a;
11 d_ = a;
12 return a_, d_ , f
13
14 def ted_to_tedprime(x, y, prime , scaling_factor):
15 Fp = GF(prime)
16 x_ = Fp(x * (-scaling_factor))
17 y_ = y;
18 return(x_, y_)
19
20 def tedprime_to_ted(x_, y_, prime , scaling_factor):
21 Fp = GF(prime)
22 x = Fp(x_ / (-scaling_factor))
23 y = y_
24 return(x, y)
25
26 def is_on_ted_prime(x, y, prime , a_ , d_):
27 Fp = GF(prime)
28 return Fp(a_ * (x * * 2) + y * * 2 - 1 - d_ * (x * * 2) * (y * * 2)) == 0

Listing 4.4: Scaling of E to E′.

We call these functions to get E escalated to E′.

1 # Conversion of E to E’
2 a_, d_ , f = scaling (a, d, prime)
3
4 # Conversion of generator to E’
5 gen_x_ , gen_y_ = ted_to_tedprime(gen_x , gen_y , prime , f);
6 assert(is_on_ted_prime(gen_x_ , gen_y_ , prime , a_ , d_))
7
8 # Sanity check: the inverse map returns the original point in E
9 u , v = tedprime_to_ted(gen_x_prime , gen_y_prime , prime , f)

10 assert (u == gen_x)
11 assert (v == gen_y)
12
13 # Conversion of base point to E’
14 base_x_ , base_y_ = ted_to_tedprime(base_x , base_y , prime , f);
15 assert(is_on_ted_prime(base_x_ ,base_y_ , prime , a_ , d_))
16
17 # Sanity check: the inverse map returns the original point in E
18 u , v = tedprime_to_ted(base_x_prime , base_y_prime , prime , f)
19 assert (u == base_x)
20 assert (v == base_y)

72 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

The resulting scaling factor is

f = 19119828543052250743812513441033299316

37610209014896889891168275855466657090.

This way, the optimal version of Baby Jubjub in twisted Edwards form is given
by equation

−x2 + y2 = 1 + d′x2y2,

where

d′ = 121816440234217301248741585216995556817

64249180949974110617291017600649128846.

After generating Baby Jubjub, we checked that the curve passed all safety
checks described in Section 4.5. The security evidence is shown in [Whi18]. The
determinism and transparency of the procedure allows any party to reproduce
the generation of the curve and ensure its resilience against best-known security
attacks [ST16].

4.6.1 Elliptic-curve arithmetic
In this section, we present a circuit description of the scalar multiplication on
Baby Jubjub. Before, we recall from Section 4.3, that Montgomery curves have
group laws where many cases have to be distinguished. Cases are translated to
branches in a circuit, and as we pointed out in Section 3.2.4, circuit branches are
undesirably costly. Twisted Edwards curves offer an advantage in this regard,
as doubling can be carried out using the same formula as addition, which elimi-
nates the need for such case distinctions. In contrast, operating in Montgomery
curves offers cost efficiency. For a detailed breakdown of the precise number of
operations required in different forms of elliptic curves, see [BBJ+08].

In this section, we describe a circuit that performs a scalar multiplication
on a point on Baby Jubjub. The circuit combines both forms Montgomery and
twisted Edwards of the curve to take advantage of the closed formula of the
former and the efficiency of the latter.

Scalar multiplication

Let P ̸= O be a point of the curve E of order strictly greater than 8, and let k
a binary number representing an element of Fp. We describe the circuit used to
compute the point kP .

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 73

First, we divide k into chunks of 248 bits. If k is not a multiple of 248, we
take j segments of 248 bits and leave a last chunk with the remaining bits. More
precisely, we write

k = k0k1 . . . kj

with {
ki = bi0b

i
1 . . . b

i
247 for i = 0, . . . , j − 1,

kj = bj0b
j
1 . . . b

j
s with s ≤ 247.

Then,
kP = k0P + k12

248P + · · ·+ kj2
248jP. (4.4)

In Figure 4.1 we describe de circuit that performs this sum. The idea is that each
term of Equation (4.4) is calculated separately inside an seq box and then all
terms added together. The computations performed in the seq boxes described
in Figures 4.2–4.4.

Figure 4.1: Description of the arithmetic circuit that performs the multiplication
of a scalar k by a point P on Baby Jubjub elliptic curve. The seq and seq’ boxes
are described in more detail in Figures 4.2–4.4.

First note that if we denote Pi = 2248iP for i = 0, . . . , j − 1, then Equa-
tion (4.4) can be written as

kP = k0P0 + k1P1 + · · ·+ kjPj . (4.5)

Now, the seq box takes as inputs a point Pi of E and a segment ki, and outputs
two points:

Pi+1 = 2248iPi and
247∑
n=0

bin2
nPi.

74 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

The first output point is the input of the next (i+1)-th seq box, and the second
output is the computation of the i-th term in Equation (4.5). The idea of the
circuit, which is depicted in Figure 4.2 is to first compute

Qi =Pi + b1(2Pi) + b2(4Pi) + b3(8Pi) + · · ·+ b247(2
247Pi),

and output the point Qi − b0Pi. This trick allows the computation of Qi using
the Montgomery form of Baby Jubjub and only use the twisted Edwards form
for the second calculation.

Figure 4.2: Description of the seq circuit that is part of the circuit from Fig-
ure 4.1. The window box is described in more detail in Figure 4.3.

Figure 4.3: Description of the window circuit that is part of Figures 4.2 and 4.4.

Finally, the last term of Equation (4.5) is computed in a very similar manner.
The difference is that the number of bits composing kj may be shorter and that
there is no need to compute Pj+1, as there is no other seq box after this one.
So, there is only output, the point kjPj = kj2

248jP . This circuit is named seq’
and is depicted in Figure 4.4.

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 75

Figure 4.4: Description of the seq’ circuit that is part of the circuit from Fig-
ure 4.1. The window box is described in more detail in Figure 4.3.

Security and efficiency considerations

The reason to change from Montgomery to twisted Edwards form in the seq
and seq’ circuits in the calculation of the output, is that if b0 = 0, then the
computation may become a sum with input the point at infinity. For this reason,
by switch back to twisted Edwards and use a single formula for computing b0Pi.

For the rest, we use the addition and doubling formulas in Montgomery form
because are more efficient, but we have to ensure that none of the points being
doubled or added when working with EM is the point at infinity and, also that
we never add a point to itself. Let’s show that this is not the case:

• By assumption, P ̸= O and ord(P) > 8. Hence, by Lagrange theorem
[BC68, Corollary 4.12], P must have order q, 2q, 4q or 8q. For this reason,
none of the points in EM being doubled or added in the circuit is the point
at infinity, because for any integer m, 2m is never a multiple of r, even
when 2m is larger than q, as q is a prime number. Hence, 2mP ̸= O for
any m ∈ Z.

• Looking closely at the two inputs of the sum, it is easy to realize that they
have different parity, one is an even multiple of Pi and the other an odd
multiple of Pi, so they must be different points. Hence, the sum in EM is
done as expected.

4.6.2 The Bowe–Hopewood–Pedersen hash

The Bowe–Hopwood–Pedersen hash is al algebraic hash function that was in-
troduced by Zcash in the Sapling network upgrade. The precise definition was
first introduced in [HBHW19, Section 5.4.1.7] and it is based on the works

76 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

[CDG87,CvHP92,BGG94] with optimizations for efficient instantiation in ZK-
SNARK circuits by Sean Bowe and Daira Hopwood. The Bowe–Hopwood–
Pedersen hash maps a sequence of bits to a compressed point on a twisted
Edwards elliptic curve [LMS17]. We adapt the original definition from Jubjub
to Baby Jubjub using 4-bit windows.

Definition 4.5 (Bowe–Hopwood–Pedersen hash function). Let E by Baby Jub-
jub elliptic curve in twisted Edwards form and let G denote the large subgroup
of E of prime order q. For a fixed k ∈ Z, let P0, P1, . . . , Pk be uniformly sam-
pled generators of G. We define the Bowe–Hopwood–Pedersen hash function
H : {0, 1}∗ → G for a binary input of arbitrary length M the following way.
Split M into sequences of at most 200 bits and each of those into chunks of 4
bits1. More precisely, write M = M0M1 . . .Ml where

Mi = m0m1 . . .mki
with

{
ki = 49 for i = 0, . . . , l − 1,

ki ≤ 49 for i = l,

where the mj terms are chunks of 4 bits [b0 b1 b2 b3]. Define

enc(mj) = (1− 2b3)(1 + b0 + 2b1 + 4b2)

and let

⟨Mi⟩ =
ki−1∑
j=0

enc(mj)2
5j .

Then, H(M) is defined as

H(M) = ⟨M0⟩P0 + ⟨M1⟩P1 + ⟨M2⟩P2 + · · ·+ ⟨Ml⟩Pl. (4.6)

Note that Equation (4.6) is linear combination of elements of G, so H(M) is a
point of E of order q.

Circuit description

We assume that for a fixed k, the points P0, . . . , Pk are known uniformly sampled
generators of G. As suggested in [HBHW19], this can be done by taking a string
D = "string_seed" followed by a byte S holding that smallest number such
that H = Keccak256(D || S) results in a point in the elliptic curve E.

1If M is not a multiple of 4, pad M to a multiple of 4 bits by appending zero bits.

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 77

In Figure 4.5 we depicted the circuit used to compute the Pedersen hash
of a message M as described in Definition 4.5. Each multiplication box
in the circuit, returns a term of the sum from Equation (4.6). The logic of
multiplication is depicted in Figure 4.6,

Figure 4.5: Description of the arithmetic circuit that performs the Bowe–
Hopwood–Pedersen hash on a binary input message M . The multiplication
box is described in more detail in Figure 4.6.

Figure 4.6: Description of the multiplication circuit that is part of the circuit
from Figure 4.5. The selector box is described in more detail in Figure 4.7.

As the set of generators P0, . . . , Pk are fixed, we can precompute its multiples
and use 4-bit lookup windows to select the right points. This is done as depicted
in Figure 4.7. This circuit receives a 4-bit chunk input and returns a point. The
first three bits are used to select the right multiple of the point and last bit
decides the sign of the point. The sign determines if the x-coordinate should be
taken positive or negative. As we pointed out in Definition 4.4, negating a point
in twisted Edwards form corresponds to the negation of its first coordinate.

78 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

Figure 4.7: Description of the selector circuit that is part of Figure 4.6.

Security considerations

In our circuit description, we use a windowed scalar multiplication algorithm
with signed digits. Each 4-bit message chunk corresponds to a window called
selector and each chunk is encoded as an integer from the set {−8..8}\{0}.
This allows a more efficient lookup of the window entry for each chunk than
if the set {1..16} had been used, because a point can be conditionally negated
using only a single constraint [HBHW19]. As there are up to 50 segments per
each generator Pi, the largest multiple of the generator Pi is nPi with

n = 20 × 8 + 25 × 8 +
(
25
)2 × 8 · · ·+ 2245 × 8.

To avoid overflow, this number should be smaller than (q − 1)/2. Indeed,

n = 8×
49∑
k=0

25k = 8× 2250 − 1

25 − 1

= 466903585634339497675689455680193176827701551071131306610716064

548036813064,

and,

q − 1

2
= 13680151794899547013904003590785796930384069860792836296001

07830474223686520

> n.

SECTION 4.6. BABY JUBJUB: A SUITABLE CURVE FOR ETHEREUM 79

Efficiency discussion

We look at the number of constraints per bit of the input in our circuit imple-
mentation. We are using 4-bit windows in the Montgomery form of the curve, so
we have 1 constraint for the sign, and 3 constraints for the sum. Now, let’s look
at the constraints required in the multiplexers from the circuit in Figure 4.7.
Standard 4-bit windows require 2 constraints, one for the output and another to
compute the product s0s1. So, without optimizations, we would need a total of
4 constraints, 2 per multiplexer. However, we can reduce it to 3 by reusing the
computation s0s1, which is the same in both multiplexers. Let the multiplexers
of coordinates x and y be represented by the following look-up tables:

multiplexer for x
s2 s1 s0 out
0 0 0 a0
0 0 1 a1
0 1 0 a2
0 1 1 a3
1 0 0 a4
1 0 1 a5
1 1 0 a6
1 1 1 a7

multiplexer for y
s2 s1 s0 out
0 0 0 b0
0 0 1 b1
0 1 0 b2
0 1 1 b3
1 0 0 b4
1 0 1 b5
1 1 0 b6
1 1 1 b7

We can express these tables using these 3 constraints:

(1) aux = s0s1,

(2) out =
[
(a7 − a6 − a5 + a4 − a3 + a2 + a1 − a0)aux+ (a6 − a4 − a2 + a0)s1

+(a5−a4−a1+a0)s0+(a4−a0)
]
z+(a3−a2−a1+a0)aux+(a2−a0)s1

+ (a1 − a0)s0 + a0,

(3) out =
[
(b7 − b6 − b5 + b4 − b3 + b2 + b1 − b0)aux+ (b6 − b4 − b2 + b0)s1

+(b5−b4−b1+b0)s0+(b4−b0)
]
z+(b3−b2−b1+b0)aux+(b2−b0)s1

+ (b1 − b0)s0 + b0.

As a result, the amount of constraints per bit using 4-lookup windows is
(1 + 3 + 3)/4 = 1.75. Indeed, our implementation of the Bowe–Hopwood–
Pedersen hash in circomlib [Ide20b] for a binary input of 256 bits consists of
452 constraints, roughly 256×1.75. The extra 4 constraints come from circom
templates connections (see Section 3.5).

80 CHAPTER 4. TWISTED EDWARDS ELLIPTIC CURVES FOR ARITHMETIC CIRCUITS

4.7 Conclusions
In the recent years, ZK proofs arose as a potential solution to blockchain privacy
and scalability issues and, today, we can see many zero-knowledge protocols in-
tegrated and deployed in various blockchain projects. The use of cryptography
in the blockchain space arises new efficiency needs that motivate novel lines of
research that combine theoretical and practical aspects. In particular, the re-
cent implementation of ZK protocols has had a huge impact in the interest for
generating types of curves with special properties. The correct and transparent
generation of new elliptic curves is paramount to the success of cryptographic
primitives that can help blockchains improve their privacy and scalability guar-
antees. In this chapter, we presented a deterministic algorithm for generating
twisted Edwards elliptic curves defined over a given prime field. We also pro-
vided an algorithm for checking the safety of a curve against best known security
attacks. Additionally, we gave an example that puts theory into practice: we
detailed the generation of the twisted Edwards curve Baby Jubjub and present
specific circuits for performing elliptic arithmetic and a hash function based on
this curve.

Chapter 5

Revisiting cycles of
pairing-friendly elliptic curves

It is possible to write endlessly on elliptic curves.

(This is not a threat.)

– Serge Lang

5.1 Introduction

A recent area of cryptographic interest is recursive composition of proof sys-
tems [Val08, BSCTV17], since it leads to proof-carrying data (PCD) [CT10],
a cryptographic primitive that allows multiple untrusted parties to collabo-
rate on a computation that runs indefinitely, and has found multiple appli-
cations [CTV15,NT16,KB20,BMRS20]. In recursive composition of proof sys-
tems, each prover in a sequence of provers takes the previous proof and verifies
it, and performs some computations on their own, finally producing a proof that
guarantees that (a) the previous proof verifies correctly, and (b) the new compu-
tation has been performed correctly. This way, the verifier, who simply verifies
the last proof produced in the sequence, can be sure of the correct computation
of every step.

81

82 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

We require two things from the proof system for recursive composition to
work. First, that it is expressive enough to be able to accept its own verification
algorithm as something to prove statements about, and second, that the verifi-
cation algorithm is small enough so that the prover algorithm does not grow on
each step. SNARKs are of particular interest, since they provide a computation-
ally sound proof of small size compared to the size of the statement [BCCT12].
In particular, pairing-based SNARKs [PHGR13, Gro16, GWC19] make use of
elliptic-curve pairings for verification of proofs, achieving verification time that
does not depend on the size of the statement being proven. In this chapter, we
focus on this type of SNARKs, due to the appeal of constant verification time.

A pairing-based SNARK relies on an elliptic curve E/Fq for some prime
q, and such that E(Fq) has a large subgroup of prime order p. With this
setting, the SNARK is able to prove satisfiability of arithmetic circuits over Fp.
However, the proof will be composed of elements in Fp and, crucially, elements
in E(Fq). Each of these latter elements, although they belong to a group of
order p, are represented as a pair of elements in Fq. Moreover, the verification
involves operations on the curve, which have formulas that use Fq-arithmetic.
Therefore, recursive composition of SNARK proofs requires to write the Fq-
arithmetic, derived from the verification algorithm, with an Fp-circuit. Since
Fp-circuit satisfiability is an NP complete problem, it is possible to simulate Fq-
arithmetic via Fp-operations, but this solution incurs into an efficiency blowup
of O(log q) compared to native arithmetic [BSCTV17, Section 3.1].

Ideally, we would like q = p. However, there is a linear-time algorithm for
solving the discrete logarithm problem on curves of this kind [Sma99]. Therefore,
we shall assume that p ̸= q. In this case, one approach is to instantiate a new
copy of the SNARK with another elliptic curve E′ to deal with Fq-circuits.
In [CFH+15], the authors propose to use a 2–chain of pairing-friendly elliptic
curves to achieve bounded recursive proof composition. A 2-chain of (pairing-
friendly) elliptic curves is a tuple of pairing-friendly elliptic curves (E1, E2),
defined over Fp1

and Fp2
, where p1 | #E2(Fp2

).

A more ambitious approach, proposed in [BSCTV17], is to use pairs of curves
that also satisfy that p2 | #E1(Fp1). In this case, the pair of curves is called a 2–
cycle. By alternating the instantiation of the SNARK with the two curves of the
cycle, it is possible to allow unbounded recursive composition of the SNARK
without incurring into non-native arithmetic simulation. Although this idea
can also be used with longer cycles, 2-cycles are the optimal choice for recursive
SNARKs, because they only require the generation and maintenance of two
CRS.

SECTION 5.2. RELATED WORK 83

5.1.1 Contributions and organization

In this chapter, we continue with the line of research of [CCW19] and tackle
some of the open problems suggested by the authors. In Section 5.3, we review
the background material on families of pairing-friendly curves with prime order.
In Section 5.4, we recall the notion of cycles of elliptic curves, and what is
known about them. We also present some new results, in particular a lower
bound on the trace of curves involved in a 2-cycle, when both curves have the
same (small) embedding degree. In Section 5.5 we study whether a combination
of curves from different families can form a 2-cycle. This answers one of the
open questions from [CCW19], for the case of 2-cycles.

Theorem 5.21 (informal). Parametric families either form 2-cycles as polyno-
mials or only form finitely many pairing-friendly 2-cycles, and these can be
explicitly bounded.

Moreover, we show that no curve from any of the known families can be in
a 2-cycle in which the other curve has embedding degree ℓ ≤ 22, even going
a bit further in some cases. This is achieved by combining the previous the-
orem with explicit computations for each of the families. These results shed
some light over the difficulty of finding new cycles of elliptic curves, considering
the fact that polynomial families are the only known way to produce pairing-
friendly elliptic curves with prime order. In Section 5.6 we estimate the density
of pairing-friendly cycles among all cycles. In [BK98], Balasubramanian and
Koblitz estimated the density of pairing-friendly curves. We generalize their re-
sult to cycles of pairing-friendly curves. In Section 5.7, we discuss some future
research directions. In Appendix A.2, we include SageMath code that we used
to derive some of the results of this chapter.

5.2 Related work

Silverman and Stange [SS11] introduced and did a systematic study on 2-cycles
of elliptic curves. As they show in their paper, in general, cycles of elliptic
curves are easy to find. However, for recursive composition of pairing-based
SNARKs, we need to be able to compute a pairing operation on the curves of
the cycle. For this reason, curves need to have a low embedding degree, so that
the pairing can be computed in a reasonable amount of time. Such curves are
called pairing-friendly curves.

84 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

In [CCW19], Chiesa, Chua, and Weidner focused on cycles of pairing-friendly
curves. In particular, they showed that only prime-order curves can form cy-
cles. The only known method to produce prime-order curves is via families of
curves parameterized by polynomials, and currently there are only five that are
known. The first three of these families were introduced by Miyaji, Nakabayashi,
and Takano [MNT01], who characterized all prime-order curves with embed-
ding degrees 3, 4, and 6. These are called MNT curves. Based on the work
from [GMV07], Barreto and Naehrig [BN05] found a new family of curves with
embedding degree 12, and later Freeman [Fre06] found another one with embed-
ding degree 10. The only known cycles are formed by alternating MNT curves
of embedding degrees 4 and 6 [KT08, CCW19]. As proposed in [BSCTV17],
these cycles can be used to instantiate recursive composition of SNARKs, but
due to their very low embedding degree, the parameter sizes need to be very
large to avoid classical discrete-logarithm attacks [MOV93], making the whole
construction slow. Furthermore, the fact that the embedding degrees are dif-
ferent leads to an unbalance in the parameters, making one curve larger than
necessary. Therefore, it would be desirable to have 2-cycles in which both curves
have the same embedding degree k, for k a bit larger than in MNT curves. For
instance, [CCW19] suggests embedding degrees 12 or 20. This would allow for
more efficient instantiations of protocols that make use of recursive composition
of pairing-friendly SNARKs.

A characterization of all the possible cycles consisting of MNT curves is
given in [CCW19]. They also showed that there are no cycles consisting of
curves from only the Freeman or Barreto–Naehrig (BN) families. They also
gave some properties and impossibility results about pairing-friendly cycles,
suggesting that adding the condition of pairing-friendliness to the curves of a
cycle is a strong requirement: while cycles of curves are easy to find, cycles of
pairing-friendly curves are not.

Recent progress has focused on chains of elliptic curves [EHG22] but there are
still some interesting problems in the direction of cycles. In particular, [CCW19]
lists some open problems, such as studying 2-cycles where the two curves have
the same embedding degree or finding a cycle by combining curves from different
families.

5.3 Pairing-friendly elliptic curves

Notation. Throughout this chapter, we assume that p, q, qi > 3 are prime
numbers. We denote by Fq the finite field with q elements. For n ∈ N, we

SECTION 5.3. PAIRING-FRIENDLY ELLIPTIC CURVES 85

denote by φ(n) the Euler’s totient function on n, and by Φn the n-th cyclotomic
polynomial, which has degree φ(n). A polynomial g ∈ Q[X] is integer-valued if
g(x) ∈ Z for all x ∈ Z.

5.3.1 Elliptic curves
An elliptic curve E over Fq (denoted E/Fq) is a smooth algebraic curve of
genus 1, defined by the equation

Y 2 = X3 + aX + b,

for some a, b ∈ Fq such that 4a3 − 27b2 ̸= 0. We denote the group of Fq-
rational points by E(Fq), and refer to #E(Fq) as the order of the curve. The
neutral point is denoted by O. Given m ∈ N, the m-torsion group of E is
E[m] = {P ∈ E(Fq) | mP = O}, where Fq is the algebraic closure of Fq. When
q ∤ m, we have that E[m] ∼= Zm ×Zm. The trace of Frobenius (often called just
trace) of E is

t = q + 1−#E(Fq).

Hasse’s theorem [Sil94, Theorem V.1.1] states that |t| ≤ 2
√
q, and Deuring’s

theorem [Cox89, Theorem 14.18] states that, for any t ∈ Z within the Hasse
bound, there exists an elliptic curve E/Fq with trace t.

A curve is said to be supersingular when q | t, and ordinary otherwise. Since
we work with q > 3 prime, the Hasse bound implies that the only supersingular
curves are those with t = 0. In the case of ordinary curves, the endomorphism
ring will be an order O ⊆ Q(

√
d), where d is the square-free part of t2 − 4q.

The value d is called the discriminant of the curve E, and we say that E has
complex multiplication by O. Note that the Hasse bound implies that d < 0.1

Pairings and the embedding degree

Let E/Fq be an elliptic curve. Then, for m such that q ∤ m, we can build a
pairing

e : E[m]× E[m]→ µm,

where E[m] ∼= Zm × Zm is the m-torsion group of the curve and µm is the
group of mth roots of unity. The map e is bilinear, i.e. e(aP, bQ) = e(P,Q)ab

for any P,Q ∈ E[m]. Various instantiations of this map exist, e.g. the Weil

1Other works take |d| as the discriminant.

86 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

pairing [Sil94, §III.8]. Since µm ⊂ F∗
qk for some k ∈ N and is a multiplicative

subgroup, it follows that m | qk − 1. The smallest k satisfying this property is
called the embedding degree of E[m]. When m = #E(Fq), we refer to this k as
the embedding degree of E.

Proposition 5.1. Let E/Fq be an elliptic curve of prime order p. The following
conditions are equivalent:

• E has embedding degree k.

• k is minimal such that p | Φk(q) [MNT01, Remark 1].

• k is minimal such that p | Φk(t− 1) [BLS02, Lemma 1].

Most curves have a very large embedding degree [BK98, Theorem 2]. This
has a direct impact on the computational cost of computing the pairing. On
the one hand, we want small embedding degrees to ensure efficient arithmetic.
On the other hand, however, small embedding degrees open an avenue for at-
tacks, more precisely the [MOV93] and [FR94] reductions. These translate the
discrete logarithm problem on the curve to the discrete logarithm problem on
the finite field Fqk , where faster (subexponential) algorithms are known. With a
small embedding degree, we are forced to counteract the reduction to finite field
discrete logarithms by increasing our parameter sizes. Therefore, a balanced
embedding degree is preferred when using pairing-friendly curves.

We note the following result, useful for finding curves with small embedding
degree.

Proposition 5.2. Let E/Fq be an elliptic curve with prime order p and embed-
ding degree k such that p ∤ k. Then p ≡ 1 (mod k).

Proof. The embedding degree condition is equivalent to k being minimal such
that qk ≡ 1 (mod p). Since p is prime, by Lagrange’s theorem we have that
k | p− 1.

The complex multiplication (CM) method

Let E/Fq be an elliptic curve with prime order p and trace t. The embedding
degree condition is determined by p and q alone, so the actual coefficients of the
curve equation do not play any role. Because of this, the main approach to find-
ing pairing-friendly curves tries to find (t, p, q) first, and then curve coefficients
that are compatible with these values.

SECTION 5.3. PAIRING-FRIENDLY ELLIPTIC CURVES 87

Given (t, p, q) such that p = q + 1 − t and t ≤ 2
√
q, Deuring’s theorem

ensures that a curve exists, but that does not mean that it is easy to find. The
algorithm that takes (t, p, q) and produces the curve coefficients is known as
the complex multiplication (CM) method, and its complexity strongly depends
on the discriminant d of the curve. Currently, this is considered feasible up to
|d| ≈ 1016 [Sut12].

Because of our focus on finding good triples (t, p, q), we will identify curves
with them. That is, we write E ↔ (t, p, q) as shorthand for an elliptic curve
E/Fq with order p and trace t. This curve might not be unique, but any
of them will have the same embedding degree and discriminant, so they are
indistinguishable for our purposes.

5.3.2 Pairing-friendly polynomial families
The idea of considering families of elliptic curves parameterized by low-degree
polynomials is already present in [MNT01,BN05], but is studied in a more sys-
tematic way in [Fre06,FST10]. We will consider triples of polynomials (t, p, q) ∈
Q[X]3 such that, given x ∈ Z, there is an elliptic curve E ↔ (t(x), p(x), q(x)).

We are interested in prime-order elliptic curves, so we require that the poly-
nomials p, q represent primes.

Definition 5.1. Let g ∈ Q[X]. We say that g represents primes if:

• g(X) is irreducible, non-constant and has a positive leading coefficient,

• g(x) ∈ Z for some x ∈ Z (equivalently, for infinitely many such x), and

• gcd{g(x) | x, g(x) ∈ Z} = 1.

The Bunyakovsky conjecture [Peg] states that a polynomial in the conditions
of the definition above takes prime values for infinitely many x ∈ Z. We now
formally define polynomial families of pairing-friendly elliptic curves.

Definition 5.2. Let k, d ∈ Z with d < 0 < k. We say that a triple of polynomials
(t, p, q) ∈ Q[X]3 parameterizes a family of elliptic curves with embedding degree
k and discriminant d if:

1. p(X) = q(X) + 1− t(X),

2. p is integer-valued (even if its coefficients are in Q \ Z),

3. p and q represent primes,

88 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

4. p(X) | Φk(t(X)− 1), and

5. the equation 4q(X) = t(X)2 + |d|Y 2 has infinitely-many integer solutions
(x, y).

We naturally extend the notation E ↔ (t, p, q) to polynomial families.

Conditions 1-3 ensure that the polynomials represent infinitely many sets
of parameters compatible with an elliptic curve. Condition 4 ensures that the
embedding degree is at most k, where ideally k is small. Condition 5 ensures
that there are infinitely many curves in the family with the same discriminant
d. If this d is not too large, we will be able to use the CM method to find
the curves corresponding to these parameters. If we ignore condition 5, such
families are not too hard to find, as illustrated by the following lemma.2

Lemma 5.3. For any integer k ≥ 3 there are infinitely many pairs (q, Eq) with
embedding degree k, and such that |E(Fq)| is prime, under the Bunyakovsky
conjecture.

Proof. Infinite families are known for k = 3, 4, 6, as detailed below in Table 5.1.
We can then assume φ(k) ≥ 4. We will construct a family represented by the
polynomial tuple (t, p, q) as follows.

Let p(X) = Φrk(X), for some prime number r such that r ∤ k. Then, it
holds that φ(kr) ≥ 4(r − 1) ≥ 2r. We set q(X) = p(X) +Xr. Then

p(X) | Xrk − 1 = (Xr)k − 1 = (q(X)− p(X))k − 1,

so p(X) | q(X)k − 1. In this case p(X) = q(X) −Xr, so the trace is given by
t(X) = 1 + Xr, and deg (t) ≤ deg (p)/2. Also, the cyclotomic polynomial is
irreducible, so it represents infinitely many prime values.

Let f(X) = 4q(X) − t(X)2. Freeman [Fre06] observed that condition 5 in
Definition 5.2 is strongly related to the form of this polynomial.

Proposition 5.4. Fix k ∈ N, and let (t, p, q) ∈ Z[X]3 satisfying conditions (1-4)
in the previous definition. Assume that one of these holds:

• f(X) = aX2+bX+c, with a, b, c ∈ Z, a > 0 and b2−4ac ̸= 0. There exists
a discriminant d such that ad is not a square. Also, the CM equation has
an integer solution.

2Furthermore, numerical experiments easily find many tuples (t, p, q) with low degree and
small coefficients satisfying conditions 1-4, but unfortunately not condition 5.

SECTION 5.3. PAIRING-FRIENDLY ELLIPTIC CURVES 89

• f(X) = (ℓX + |d|)g(X)2 for some discriminant d, ℓ ∈ Z, and g ∈ Z[X].

Then, we have that (t, p, q) parameterizes a family of elliptic curves with em-
bedding degree k and discriminant d.

On the other hand, if deg f ≥ 3, it is unlikely to produce a family of curves,
as highlighted by the following result, which is a direct consequence of Siegel’s
theorem [Sil94, Corollary IX.3.2.2].

Proposition 5.5. Fix k ∈ N, and let (t, p, q) as above, and satisfying conditions
(1-4) in the previous definition. Assume that f(X) is square-free and deg f ≥ 3.
Then (t, p, q) cannot represent a family of elliptic curves with embedding degree
k.

Finally, [Fre06] also proves some results on the relations between the degrees
of the polynomials involved in representing a family of curves.

Proposition 5.6. Let t ∈ Q[X]. Then, for any k and any irreducible factor
p | Φk(t− 1), we have that φ(k) | deg p.

Proposition 5.7. Let (t, p, q) represent a family of curves with embedding degree
k, with φ(k) ≥ 4. If f = 4q − t2 is square-free, then:

• deg p = deg q = 2deg t.

• If a is the leading coefficient of t(X), then a2/4 is the leading coefficient
of p(X), q(X).

Known pairing-friendly families with prime order

Only a few polynomial families of elliptic curves with prime order and low
embedding degree are known. The first work in this direction is due to Miyaji,
Nakabayashi, and Takano, [MNT01], who characterized all prime-order curves
with embedding degrees k = 3, 4, 6 (these correspond to φ(k) = 2). Based on
the work of Galbraith, McKee and Valença [GMV07], two additional families
were found: Barreto and Naehrig [BN05] found a family with k = 12, and
Freeman [Fre06] found another one with k = 10 (both cases have φ(k) = 4).
Note, however, that their results are not exhaustive, meaning that there could
still be other families with these embedding degrees that have not been found,
unlike in the MNT case. We summarize the polynomial descriptions of these
families in Table 5.1.

90 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

Family k t(X) p(X) q(X)

MNT3 3 6X − 1 12X2 − 6X + 1 12X2 − 1

MNT4 4 −X X2 + 2X + 2 X2 +X + 1

MNT6 6 2X + 1 4X2 − 2X + 1 4X2 + 1

Freeman 10 10X2 + 5X + 3 25X4 + 25X3 + 15X2 + 5X + 1 25X4 + 25X3 + 25X2 + 10X + 3

BN 12 6X2 + 1 36X4 + 36X3 + 18X2 + 6X + 1 36X4 + 36X3 + 24X2 + 6X + 1

Table 5.1: Polynomial descriptions of MNT, Freeman, and BN curves, where k
corresponds to the embedding degree, t(X) is the trace, p(X) is the order, and
q(X) is the order of the base field.

For completeness, we note that there are no elliptic curves with prime order
and embedding degree k ≤ 2, except for a few cases of no cryptographic interest.

Proposition 5.8. Let p, q ∈ Z be prime numbers. If q ≥ 14, then there is no
elliptic curve E/Fq with #E(Fq) = p and embedding degree k ≤ 2.

Proof. Suppose that such a curve exists.

• If k = 1, then p | q−1. Clearly p ̸= q−1, since otherwise p, q cannot both
be prime. Then p ≤ q−1

2 , and then q − p ≥ q+1
2 . But, at the same time,

q − p = t − 1 ≤ 2
√
q − 1, due to the Hasse bound. These two conditions

are only compatible when q ≤ 9, which is already ruled out by hypothesis.

• If k = 2, then p | q2−1 = (q−1)(q+1). We have that p ∤ q−1 (otherwise
k = 1), and thus p | q + 1 because p is prime. Again, p ̸= q + 1, because
otherwise p, q cannot both be prime. Then p ≤ q+1

2 , and thus q−p ≥ q−1
2 .

By the Hasse bound, q − p ≤ 2
√
q − 1, and these are only compatible for

q < 14.

5.4 Cycles of elliptic curves

5.4.1 Definition and known results
The notion of cycles of elliptic curves was introduced in [SS11].

Definition 5.3. Let s ∈ N. An s-cycle of elliptic curves is a tuple (E1, . . . , Es)
of elliptic curves, defined over fields Fq1 , . . . ,Fqs , respectively, and such that

#Ei(Fqi) = qi+1 mod s,

for all i = 1, . . . , s.

SECTION 5.4. CYCLES OF ELLIPTIC CURVES 91

Remark 5.1. Cycles of length 2 have some particular properties that are worth
noting. Let E,E′ be two curves forming a 2-cycle.

• If E ↔ (t, p, q), then Definition 5.3 implies that E′ ↔ (2− t, q, p).

• We have that p = #E(Fq) is in the Hasse interval of q = #E′(Fp) if and
only if q is in the Hasse interval of p. Indeed, if the former holds, then

√
p− 1 ≤ √q ≤ √p+ 1,

which is equivalent to
√
q − 1 ≤ √p ≤ √q + 1.

It is known that cycles of any length exist [SS11, Theorem 11]. We summarize
in the following two propositions some facts about cycles. These results are due
to [CCW19].

Proposition 5.9. Let E1, . . . , Es be an s-cycle of elliptic curves, defined over
prime fields Fq1 , . . . ,Fqs . Then:

(i) E1, . . . , Es are ordinary curves.

(ii) If q1, . . . , qs > 12s2, then E1, . . . Es have prime order.

(iii) Let t1, . . . , ts be the traces of E1, . . . , Es, respectively. Then
s∑

i=1

ti = s.

(iv) If s = 2, then the curves in the cycle have the same discriminant d.

(v) If the curves in the cycle have the same discriminant |d| > 3, then s = 2.

(vi) If s > 2 and E1, . . . , Es have the same discriminant d, then necessarily
s = 6 and |d| = 3.

There are also some impossibility results.

Proposition 5.10. We have the following.

(i) There is no 2-cycle with embedding degree pairs (5, 10), (8, 8) or (12, 12).

(ii) There is no cycle formed only by Freeman curves.

(iii) There is no cycle formed only by BN curves.

92 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

5.4.2 Some properties of cycles

In this section, we show some results about cycles, most of them about 2-cycles
in which both curves have the same embedding degree. We start with a small
result that rules out safe primes in 2-cycles with the same embedding degree.

Proposition 5.11. Safe primes are not part of any 2-cycle in which both curves
have the same embedding degree k.

Proof. Let p, q be the orders of the curves in the cycle. Assume that p is a safe
prime, i.e. p = 1 + 2r, with r prime. Since p, q are in a cycle, q = p+ 1− t for
some |t| ≤ 2

√
p. Now, since k | p− 1 by Proposition 5.2, we have k = 1, 2, r, 2r.

We already know that k ̸= 1, 2, hence k ∈ {r, 2r}. Since q also has embedding
degree k, again by Proposition 5.2 we have that k | q − p, and thus r | q − p.
Therefore

|q − p| ≥ r =
p− 1

2
> 2
√
p+ 1

for any p > 3, which contradicts the fact that |q − p| = |1− t| < 2
√
p+ 1.

Proposition 5.12. Let s ∈ Z, and let (t, p, q) ∈ Q[X]3 parameterize a family of
pairing-friendly elliptic curves, with deg t even. Then, there are only finitely
many s-cycles such that all s curves in the cycle belong to the family.

Proof. If s curves with traces t1, . . . , ts, respectively, form a cycle, by Proposi-
tion 5.9.(iii) we have that

∑s
i=1 ti = s. Since deg t ≥ 2 and s is fixed, necessarily

there exist a, b ∈ {1, . . . , s} such that ta, tb have different signs. However, since
deg t is even, there exists a lower bound b such that, for all |x| > b, we have that
t(x) has the same sign. Therefore, only finitely many cases can occur in which
the traces have opposing sign.

Given an elliptic curve E ↔ (t, p, q), Hasse’s theorem gives us the bound
|t| ≤ 2

√
q, which in the polynomial case implies that deg t ≤ 1

2deg q. We now
derive a lower bound for t in the case of 2-cycles in which both curves have the
same small embedding degree. We require first the following technical lemma.

Lemma 5.13. Let k ∈ N and 3 ≤ k ≤ 104. We have that:

(i) For any |x| > 1,

Φk(x) ≤
|x|
|x| − 1

xφ(k).

SECTION 5.4. CYCLES OF ELLIPTIC CURVES 93

(ii) For any ε > 0, there exists B > 0 such that, for all x with |x| > B,

Φk(x− 1) ≤ (1 + ε)
|x|
|x| − 1

xφ(k).

Proof. Clearly such bound exists for |x| large enough, since Φk(x) = xφ(k) +
o
(
xφ(k)

)
. More precisely, for k ≤ 104, the k-th cyclotomic polynomial has only

0 and ±1 as coefficients [Mig83]. Therefore

Φk(x) ≤ xφ(k) +

φ(k)−1∑
i=0

|x|i = xφ(k)

1 +

φ(k)∑
i=1

1

|x|i

≤ xφ(k)

(
1 +

1

|x| − 1

)
=

|x|
|x| − 1

xφ(k),

using the fact that the geometric series converges when |x| > 1.
Part (ii) is now trivial when x > 0. For x < 0, we note that, since Φk is a

polynomial with positive leading coefficient, for any ε > 0 there exists B > 0
such that, for all x with |x| > B,

Φk(x− 1) ≤ (1 + ε)Φk(x),

since otherwise the function would grow exponentially fast when x→ −∞. The
result follows directly from applying part (i) to Φk(x).

Remark 5.2. More precisely, for k such that 3 ≤ k ≤ 104, we do not need to
choose B too large to achieve a small constant. The following values have been
obtained computationally.

1 + ε 2 1.1 1.01
B 146 1069 10250

Proposition 5.14. Let E ↔ (t, p, q) be an elliptic curve with embedding degree
k, with |t| > 1 and 3 ≤ k ≤ 104. Then, for any ε > 0 there exists B > 0 such
that, for all t with |t| > B, we have

|t| >
(

1

1 + ε

|t| − 1

|t|
q

) 1
φ(k)

.

94 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

Proof. We have that p | Φk(t − 1), so p ≤ Φk(t − 1). Also, we have that
|t| < |Φk(t)−Φk(t− 1)| for |t| large enough, since Φk is at least quadratic in t.
Assume first that t > 1. Then, combining these upper bounds on p and t, and
using part (i) of the previous lemma, we obtain

q = p− 1 + t ≤ p+ t < Φk(t) ≤
t

t− 1
tφ(k).

Taking φ(k)-th roots,

t >

(
t− 1

t
q

) 1
φ(k)

.

The case t < −1 is completely analogous, using part (ii) of Lemma 5.13.

The result above deals with a single curve, but actually it can be strength-
ened for some 2-cycles.

Proposition 5.15. Let E ↔ (t, p, q) and E′ ↔ (2− t, q, p) be two elliptic curves
with |t| > 1 and the same embedding degree k ≡ 0 (mod 4), such that 3 ≤ k ≤
104. Then, for any ε > 0 there exists B > 0 such that, for all t with |t| > B, we
have

|t| >
(

1

1 + ε

|t| − 1

|t|
q

) 2
φ(k)

.

Proof. The case k ≡ 0 (mod 4) corresponds to those cyclotomic polynomials
such that Φk(x) = Φk(−x) for all x. From the embedding degree conditions, we
have

p | Φk(t− 1),

q | Φk(1− t),

and therefore pq | Φk(t − 1), since p, q are different primes. Assume, without
loss of generality, that q < p. Then q2 ≤ pq ≤ Φk(t− 1), and proceeding as the
proof of Proposition 5.14, we obtain

q2 ≤ (1 + ε)
|t|
|t| − 1

tφ(k),

from which we obtain the desired bound.

Corollary 5.16. Let E ↔ (t, p, q) and E′ ↔ (2 − t, q, p) be two elliptic curves
with the same embedding degree k ≡ 0 (mod 4), such that 3 ≤ k ≤ 104. There
exists B such that, if |t| > B, then

1

2
q

2
φ(k) < |t| ≤ 2q

1
2 .

SECTION 5.5. CYCLES FROM KNOWN FAMILIES 95

Remark 5.3. The result above is particularly interesting in two cases:

• When φ(k) = 2, i.e. k = 4. In this case,

1

2
q < |t| ≤ 2q

1
2 ,

which cannot happen for q > 15. This shows that there are no (4, 4)-cycles
(which was already known from [CCW19]).

• When φ(k) = 4, i.e. k ∈ {8, 12}. In this case,

1

2
q

1
2 < |t| ≤ 2q

1
2 ,

which shows that t asymptotically behaves like √q, and therefore is on
the outermost part of the Hasse interval. In particular, for polynomial
families this means that deg t = 1

2deg p, which improves on the inequality
known before.

5.5 Cycles from known families

In this section, we prove our main result about 2-cycles of elliptic curves: given
a family (t, p, q) ∈ Q[X]3 with embedding degree k, and ℓ ∈ N, one of two things
can happen:

(a) q | pℓ − 1, as polynomials. In this case, any curve in the family forms a
2-cycle with the corresponding curve in the family (2− t, q, p), which has
embedding degree ℓ (see Proposition 5.1). Observe that, due to Proposi-
tion 5.9, both families have the same discriminant.

(b) Only finitely many curves from the family form a 2-cycle with curves of
embedding degree ℓ.

Furthermore, when we are in the second case we can explicitly find these cycles.
For all known families (Table 5.1), we prove that no curve from them (except
for a few anecdotal cases) is part of a 2-cycle with any curve with embedding
degree ℓ ≤ L. The bound L depends on the family, and in all cases at least
L ≥ 22.

96 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

5.5.1 Cycles from parametric-families
First, we show a technique that will help us rule out many cases from our main
results, by performing a very simple check.

Proposition 5.17. Let (t, p, q) ∈ Q[X]3 parameterize a family of pairing-friendly
elliptic curves. Let a curve E from the family be in a cycle, and assume that
the previous curve in the cycle has embedding degree ℓ. Then there exists
i ∈ {0, . . . , ℓ− 1} such that

q(i) ≡ 1 (mod ℓ).

Proof. Let x ∈ Z such that E ↔ (t(x), p(x), q(x)), and let E′ ↔ (t′, p′, q′) be
the previous curve in the cycle with embedding degree ℓ. From the definition of
cycle, p′ = q(x). Then, applying Proposition 5.2 to curve E′, we deduce that

q(x mod ℓ) ≡ q(x) ≡ p′ ≡ 1 (mod ℓ).

By testing the condition given by Proposition 5.17 for known families and
3 ≤ ℓ ≤ 100, we obtain the following results. Note that this not help for BN
curves, since in that case q(0) = 1, and thus the condition holds for any ℓ.

Corollary 5.18. An MNT3 curve cannot be preceded in a cycle by a curve with
embedding degree ℓ, where

ℓ ∈ {3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32,
33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61,

62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87,

88, 89, 90, 91, 92, 93, 96, 98, 99, 100}.

Corollary 5.19. A Freeman curve cannot be preceded in a cycle by a curve with
embedding degree ℓ, where

ℓ ∈ {4, 5, 8, 10, 11, 12, 15, 16, 20, 22, 24, 25, 28, 30, 32, 33, 35, 36, 40, 44, 45, 48, 50,
52, 53, 55, 56, 59, 60, 61, 64, 65, 66, 68, 70, 72, 75, 76, 77, 79, 80, 83, 84, 85, 88,

90, 92, 95, 96, 97, 99, 100}.

Furthermore, even when we cannot rule out a certain ℓ, we obtain a condition
on xmod ℓ, which will help us later when we check by brute force all x in an
interval. Also note that, despite the fact that we will use these corollaries to
simplify our work in the next section, which deals with 2-cycles, these results
work for cycles of any length.

SECTION 5.5. CYCLES FROM KNOWN FAMILIES 97

5.5.2 2-cycles from parametric families

The goal here will be to start from a known family of pairing-friendly elliptic
curves, and argue that they form no 2-cycles with other pairing-friendly curves.
To do so, let (t, p, q) represent such family. For any curve E ↔ (t(x), p(x), q(x)),
there is another curve E′ ↔ (2 − t(x), q(x), p(x)) such that the two of them
form a 2-cycle. Furthermore, if E′ has a small embedding degree ℓ ∈ Z, then
q(x) | p(x)ℓ − 1. Note that this is for a particular x ∈ Z, not as polynomials.

Informally, our strategy will be the following. The embedding degree con-
dition on E′ can be reformulated in terms of integer division: the division of
p(x)ℓ by q(x) has remainder 1. We will compare integer division and polynomial
division, and show that, outside of a finite interval [Nleft, Nright], the remainders
in both cases essentially agree. Therefore, by showing that the polynomial re-
mainder r(x) never takes the value 1, we will rule out any possibility of cycles
outside of [Nleft, Nright]. For known families of curves, we will deal with the cases
x ∈ [Nleft, Nright] manually, as there are only a finite number of them, and show
that none of them leads to a partner curve with small embedding degree.

Lemma 5.20. Let x ∈ Z, and let a, b ∈ Q[X] be two integer-valued polynomials.
Assume that b has even degree and positive leading coefficient.

• Let h, r ∈ Q[X] be the quotient and remainder, respectively, of the poly-
nomial division of a by b. Let c > 0 be the smallest integer such that
ch, cr ∈ Z[X].

• Let hx, rx ∈ Z be the quotient and remainder, respectively, of the integer
division of ca(x) by b(x).

Then either deg r = 0, or there exist Nleft, Nright ∈ Z and δleft, δright ∈ {0, 1} such
that:

• For all x < Nleft, we have that sign(r(x)) is constant, and rx = cr(x) +
δleftb(x).

• For all x > Nright, we have that sign(r(x)) is constant, and rx = cr(x) +
δrightb(x).

Furthermore, let us denote σleft = sign{r(x) | x < Nleft} and σright = sign{r(x) |
x > Nright}. Then

δleft =
1− σleft

2
, δright =

1− σright

2
.

98 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

Proof. We observe that c is well-defined, as it can be taken as the least com-
mon multiple of all denominators occurring in the coefficients of h, r. Likewise,
σleft, σright are well-defined, since r is a polynomial, and thus at most it changes
sign deg r times. For the second part, we have that

ca(x) = b(x)hx + rx,

ca(x) = b(x)(ch(x)) + cr(x),

where 0 ≤ rx < b(x), and deg r < deg b, and all these values are integer.
Subtracting, we obtain

rx − cr(x) = b(x)(ch(x)− hx),

and thus rx ≡ cr(x) (mod b(x)). Since 0 ≤ rx < b(x), we just need to find
cr(x) mod b(x), as this will necessarily be the same as rx.

We illustrate the technique for the case σleft = −1, σright = 1 (the other cases
are completely analogous). Note that, if deg r > 0, then r is not a constant
polynomial.

• Let Nleft ∈ Z be the largest integer such that 0 < −cr(x) ≤ b(x) for
all x < Nleft. Such Nleft exists because both b(x),−cr(x) → ∞ when
x → −∞, and deg b > deg (−cr). If x < Nleft, then 0 < −cr(x) ≤ b(x).
Multiplying by (−1), we get that −b(x) ≤ cr(x) < 0, and adding b(x), we
get 0 ≤ cr(x) + b(x) < b(x). Therefore, rx = cr(x) + b(x).

• Let Nright ∈ Z be the smallest integer such that 0 ≤ cr(x) < b(x) for all
x > Nright. Such Nright exists because both b(x), cr(x)→∞ when x→∞,
and deg b > deg (cr). If x > Nright, then 0 ≤ cr(x) < b(x). Therefore,
necessarily rx = cr(x).

We can now prove the main theorem of this section, from which the desired
results will directly follow.

Theorem 5.21. Let k, ℓ ∈ N. Let (t, p, q) be a triple of polynomials parameteriz-
ing a family of elliptic curves with embedding degree k. Then either q | pℓ−1 as
polynomials, or there are at most finitely many 2-cycles formed by a curve from
the family and a curve with embedding degree ℓ. Furthemore, in the second
case, there exist efficiently computable bounds such that all cycles considered
above are within those bounds.

Proof. Due to Proposition 5.8, we can safely assume that k, ℓ ≥ 3. Assume that
there exists a 2-cycle involving a curve E from the family and another curve E′

SECTION 5.5. CYCLES FROM KNOWN FAMILIES 99

with embedding degree ℓ. That is, assume that there exists x ∈ Z such that
E ↔ (t(x), p(x), q(x)) is in a 2-cycle. Then E′ ↔ (2 − t(x), q(x), p(x)). By the
condition of the embedding degree, we have that

q(x) | p(x)ℓ − 1,

and thus there exists h ∈ Z such that

p(x)ℓ = q(x)h+ 1.

We now wish to apply Lemma 5.20, with a = pℓ and b = q, so we must argue
that q has even degree and positive leading coefficient. We distinguish two cases:

• For k ∈ {3, 4, 6}, all the prime-order families are the MNT families, which
have deg q = 2 and positive leading coefficient.

• For k with φ(k) ≥ 4, we have from Proposition 5.6 that φ(k) | deg p, and
in this case φ(k) is always even. Furthermore, since p = q + 1 − t and
t = O(

√
q) (due to the Hasse bound), necessarily deg q = deg p. Now, since

q has even degree, it necessarily has positive leading coefficient, otherwise
it could not represent infinitely many curves.

Let h, r ∈ Q[X] be the quotient and remainder, respectively, of the polynomial
division of pℓ by q. If q ∤ pℓ − 1 as polynomials, then r ̸= 1. If r is another
constant polynomial, then the embedding degree condition does not hold for any
x ∈ Z. If deg r > 0, Lemma 5.20 gives us c,Nleft, Nright ∈ Z, δleft, δright ∈ {0, 1}
such that, if x < Nleft,

cr(x) + δleftb(x) = 1,

and, if x > Nright, then
cr(x) + δrightb(x) = 1.

The polynomials cr(X) and cr(X) + b(X) can only take the value 1 finitely
many times. By enlarging [Nleft, Nright] if necessary, we can ensure that this
only happens inside of [Nleft, Nright]. Therefore, there are no cycles for x ̸∈
[Nleft, Nright].

This result immediately yields the following consequences for concrete fami-
lies of curves. Let (t, p, q) parametrize a family of curves. Given a certain value
of ℓ, it is immediate to check whether q ∤ pℓ−1 as polynomials. If that is not the
case (which happens most of the time), Theorem 5.21 ensures that there are at
most finitely-many cycles formed by a curve from the family and a curve with

100 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

embedding degree ℓ. For each candidate ℓ, we compute the values c,Nleft, Nright

from Theorem 5.21 corresponding to the division of pℓ by q. Interestingly, c = 1
for all known families of pairing-friendly curves with prime order. The resulting
values of Nleft, Nright are summarized in Table 5.2 for the MNT3, Freeman, and
BN families. No tables are included for MNT4 and MNT6 families because, in
these cases, we have Nleft = −1, Nright = 0 and Nleft = Nright = 0, respectively,
regardless of ℓ.

Remark 5.4. Given arbitrary integer-valued polynomials p, q ∈ Q[X] and ℓ ∈ N,
there is no guarantee that the polynomial remainder of pℓ by q will have integer
coefficients, i.e. c = 1, or even be integer-valued. Nevertheless, this does happen
for MNT, Freeman, and BN curves.

Freeman curves. We proceed by induction on ℓ. For ℓ = 1, we have that

p(X) mod q(X) = −10X2 − 5X − 2.

This polynomial is of the form 25aX3 +5bX2 +5cX + d, for some a, b, c, d ∈ Z.
We will now show that, if pℓ mod q is of this form, then pℓ+1 mod q is also of
this form. This will prove that all the remainder is actually in Z[X] for any
ℓ ∈ N.
Hence, suppose that there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 25aX3 + 5bX2 + 5cX + d.

Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡
(
25aX3 + 5bX2 + 5cX + d

) (
−10X2 − 5X − 2

)
≡ −250aX5 − (125a+ 50b)X4 − (50a+ 25b+ 50c)X3

−(10b+ 25c+ 10d)X2 − (10c+ 5d)X − 2d
≡ (75a+ 25b− 50c)X3 + (−25a+ 40b− 25c− 10d)X2

+(−20a+ 20b− 10c− 5d)X + (−15a+ 6b− 2d) (mod q(X)).

Since the coefficient of degree 3 is divisible by 25, and the coefficients of degree
2 and 1 are divisible by 5, the induction step works.

MNT3 curves. In this case, q(X) = 12X2 − 1. We proceed by induction on ℓ.
For ℓ = 1, we have that

p(X) mod q(X) = −6X + 2,

which is of the form 6aX + b, for some a, b ∈ Z. We show that, if pℓ mod q is
of this form, then so is pℓ+1 mod q. Then all the remainders will actually be in

SECTION 5.5. CYCLES FROM KNOWN FAMILIES 101

Bounds for MNT3

ℓ Nleft Nright

5 -104 104
10 -75658 75657
19 -10626317415 10626317415

Bounds for Freeman

ℓ Nleft Nright

3 -2 4
6 -164 161
7 -686 685
9 -10608 10607
13 -1805067 1805066
14 -6158596 6158595
17 -210958904 210958905
18 -643610018 643610019
19 -1875810507 1875810508
21 -12522961240 12522961243
23 -15125575810 15125575853

Bounds for BN

ℓ Nleft Nright

3 -1 0
4 -3 4
5 -12 11
6 -15 4
7 -65 64
8 -104 103
9 -167 168
10 -831 830
11 -513 508
12 -3523 3524
13 -8620 8619
14 -4092 4097
15 -52351 52350
16 -66417 66414
17 -164463 164464
18 -626817 626816
19 -186373 186364
20 -2992820 2992819
21 -6014684 6014683
22 -5673471 5673474
23 -41263041 41263040
24 -39448697 39448694
25 -151319223 151319224
26 -462478015 462478014
27 -20593636 20593693
28 -2473968276 2473968275
29 -4050737756 4050737755
30 -6238668798 6238668799
31 -31854421247 31854421246
32 -20649322466 20649322461

Table 5.2: Bounds Nleft, Nright from Lemma 5.20 for different embedding degrees
ℓ of the potential partner curve of MNT3, Freeman, and BN curves. The re-
maining intermediate values of ℓ are covered by Corollaries 5.18 and 5.19 for
MNT3 and Freeman curves, respectively.

102 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

Z[X]. Assume that there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 6aX + b.

Then
p(X)ℓ+1 ≡ p(X)ℓp(X) ≡ (6aX + b) (−6X + 2)

≡ −36aX2 + (12a− 6b)X + 2b
≡ (12a− 6b)X + (−3a+ 2b) (mod q(X)).

Since the coefficient of degree 1 is divisible by 6, the induction step works.

BN curves. In this case, q(X) = 36X4 + 36X3 + 24X2 + 6X + 1. Assume that
there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 36aX3 + 6bX2 + 6cX + d,

for some a, b, c, d ∈ Z. Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡
(
36aX3 + 6bX2 + 6cX + d

) (
−6X2

)
≡ −216aX5 − 36bX4 −−36cX3 − 6dX2

≡ (−72a+ 36b− 36c)X3 + (−108a+ 24b− 6d)X2

+(−30a+ 6b)X + (−6a+ b) (mod q(X)).

Since the coefficient of degree 3 is divisible by 36, and the coefficients of degree
2 and 1 are divisible by 6, the induction step works.

Remark 5.5. The values of Nleft, Nright in MNT4 and MNT6 families are in stark
contrast with the other families (shown in Appendix ??), but can be easily ex-
plained. In MNT3, Freeman, and BN curves, the remainder r of the polynomial
division qk by p has coefficients that mostly increase with k. Because of this,
we need to get further away from zero before the asymptotic behavior kicks in.

On the contrary, only a small number of remainders are possible in MNT4
and MNT6 curves. Let (t, p, q) ∈ Q[X]3 parameterize MNT4 curves. We have
that q | p6 − 1 (they form infinitely many cycles with MNT6 curves). That
is, p has order 6 modulo q, and thus pk mod q can only take 6 possible values.
Concretely, p(X)k mod q(X) ∈ {±1,±X,±(X + 1)} for any k ∈ N, and all
of these yield the bounds Nleft = −1, Nright = 0. Similarly, in the case of
MNT6 curves, the remainder of pk by q can only take 4 values. Concretely
p(X)k mod q(X) ∈ {±1,±2X} for any k ∈ N, which yield the bounds Nleft =
Nright = 0.

SECTION 5.6. DENSITY OF PAIRING-FRIENDLY CYCLES 103

An exhaustive search in [Nleft, Nright] reveals no curves with embedding degree
ℓ, for any of the values of ℓ considered, except for a few examples with no
cryptographic interest (see Table 5.3). We consider MNT3, Freeman, and BN
curves, since it is already known [CCW19] that MNT4 and MNT6 curves are
only in cycles with each other.

Corollary 5.22. Let (E,E′) be a 2-cycle of elliptic curves, and assume that E is
not one of the curves described in Table 5.3.

(i) If E is an MNT3 curve, then E′ has embedding degree ℓ ≥ 23.

(ii) If E is a Freeman curve, then E′ has embedding degree ℓ ≥ 26.

(iii) If E is a BN curve, then E′ has embedding degree ℓ ≥ 33.

Family k ℓ x t p q

MNT3 3 10 −1 −7 19 11

MNT3 3 10 1 5 7 11

BN 12 18 −1 7 13 19

Table 5.3: Instances of curves E ↔ (t, p, q), with embedding degree k, from
known cycles that form a pairing-friendly 2-cycle with another curve E′ with
embedding degree ℓ.

The computational check took a few hours on a standard computer, using
the SageMath code from Appendix A.2. Theoretically, there is no reason to
stop at a given embedding degree ℓ. However, the interval [Nleft, Nright] grow
rapidly, making the brute force check inside of the interval a much more serious
computing effort, requiring a more polished implementation. Still, the most
interesting cases are those with smaller embedding degree, as the ideal cycles
for recursive composition would be those in which the embedding degrees of
both curves are as close as possible.

5.6 Density of pairing-friendly cycles
The previous sections have been mostly an algebraic treatment of cycles. In
this section, we look at cycles from a different angle, concerning ourselves with
their density. The goal is to quantify in concrete terms the folklore notion
that pairing-friendly cycles are hard to find. Our starting point is the following

104 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

result of [BK98]. It proves an upper bound on the probability of a random
elliptic curve being pairing-friendly.3

Theorem 5.23 ([BK98], Theorem 2). Let M ∈ Z. Let p be the probability of
finding an elliptic curve E/Fq with prime order p ∈ [M, 2M] and embedding
degree k ≤ (log q)2, by sampling uniformly from all the curves with orders in
the interval [M, 2M]. Then

p < c
(logM)9(log logM)2

M
,

for some constant c > 0.

We generalize the result above to s-cycles of elliptic curves. In particular, an
s-cycle is a collection of s primes q1, . . . , qs and s elliptic curves E1/Fq1 , . . . , Es/Fqs ,
such that #Ei(Fqi) = qi+1 mod s. Among these, we are interested in finding
those with small embedding degrees. As s increases, the number of cycles also
increases. However, since the embedding degree condition is imposed on every
step of the cycle, the probability decreases dramatically with s, as this is a very
strong requirement. We start by stating the main result of this section.

Theorem 5.24. Let s ≥ 2, K > 0, and M ∈ Z. Let p be the probability of
finding an s-cycle of elliptic curves E1/Fq1 , . . . , Es/Fqs with qi ∈ [M, 2M] and
embedding degrees ki ≤ K for all i = 1, . . . , s, by sampling uniformly from all
the s-cycles of elliptic curves with orders in the interval [M, 2M]. Then

p < cK(K + 1)
(logM)3s(log logM)2s

Ms/2
,

for some constant c > 0 depending on s.

We will prove our result above through a sequence of lemmas. The overall
strategy is as follows: in Lemma 5.25, we count the number of s-tuples of primes
within the interval [M, 2M] that are compatible with the Hasse condition. In
Lemma 5.26, we impose an upper bound K on the embedding degree. Finally,
in Lemmas 5.28 and 5.29, we count the curves that are compatible with the
primes counted in the previous two results.

3In [BK98], the authors define pairing friendliness as having an embedding degree k ≤
(log q)2. We will keep the bound as an unspecified parameter K.

SECTION 5.6. DENSITY OF PAIRING-FRIENDLY CYCLES 105

We start by disregarding the curves and just looking at the primes. In order
to get a cycle, we need an s-tuple of primes q1, . . . , qs that fit in the Hasse
interval of each other, i.e. |qi+1 − qi − 1| ≤ 2

√
qi. Thus, we first count the

s-tuples of possible primes q1, . . . , qs that are not too far apart.

Lemma 5.25. Let s ≥ 2 be a fixed positive integer and C > 0 a constant de-
pending on s. For any M ≥ 2 we denote by Ts(M) the number of s-tuples
of primes in the interval [M, 2M] with |qi − qj | ≤ C

√
M . Then, there exist

constants c5, c9 depending on s, such that

c5
M (s+1)/2

(logM)s
≤ Ts(M) ≤ c9

M (s+1)/2

(logM)s
.

Proof. We split the interval [M, 2M] in subintervals Ik = [M+(k−1)C
√
M,M+

kC
√
M) for 1 ≤ k ≤ ⌊

√
M/C⌋ and call πk the number of primes on the interval

Ik. We denote MC = M +C
⌊√

M
C

⌋√
M . Observe that 2M −MC ≤ C

√
M and,

hence, the prime number theorem gives

⌊
√
M/C⌋∑
k=1

πk = π(MC)− π(M) =
M

logM
+ e,

where |e| < ε M
logM for any ε > 0 and M > Mε sufficiently large, depending on ε.

Then, a simple application of Hölder’s inequality [BB61, Chapter 1, Theorem
2] for p = s and q = s

s−1 gives us that, for M > Mε,

(1− ε)
M

logM
≤

⌊
√
M/C⌋∑
k=1

πk ≤

⌊
√
M/C⌋∑
k=1

1

(s−1)/s ⌊
√
M/C⌋∑
k=1

πs
k

1/s

≤ c1M
(s−1)/2s

⌊
√
M/C⌋∑
k=1

πs
k

1/s

.

(5.1)

Hence,

c2M
(s+1)/2

(logM)s
≤

⌊
√
M/C⌋∑
k=1

πs
k.

Finally, observe that every s-tuple of primes on each interval Ik is counted in
Ts(M), so we can use the above expression to get a lower bound on Ts(M). Let

106 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

A be the set of indices k such that the interval Ik has more than (s+1)2 primes.
Now, since for any N1 > 0 and N2 > 1 we have the following inequality [MV73,
Corollary 2],

π(N1 +N2)− π(N1) ≤
2N2

logN2
, (5.2)

we get that πk ≤ c3
√
M

logM for any k. Therefore,

M

logM
∼

∑
k∈A

πk +
∑
k∈A

πk < c3

√
M

logM
#A+ (s+ 1)2(

√
M −#A)

< c3

√
M

logM
#A+ (s+ 1)2

√
M,

which gives us the bound
#A > c4

√
M

for any M sufficiently large. Now, to get the lower bound, we look at the
variations of s-tuples of primes in each interval Ik for 1 ≤ k ≤ ⌊

√
M/C⌋.

Ts(M) ≥
⌊
√
M/C⌋∑
k=1

πk!

(πk − s)!
≥

∑
k∈A

πk!

(πk − s)!
=

∑
k∈A

πs
k

s−1∏
j=0

(
1− j

πk

)
>

∑
k∈A

πs
ke

−s(s+1)/πk >
1

e

∑
k∈A

πs
k

=
1

e

⌊
√
M/C⌋∑
k=1

πs
k −

∑
k∈A

πs
k

 ≥ c5
M (s+1)/2

(logM)s
− 1

e
(s+ 1)2s

√
M

> c6
M (s+1)/2

(logM)s
.

In order to prove the second inequality, we denote the primes in the interval
[M, 2M], in increasing order, as q1, . . . , qN . If we have an s-tuple starting with
qi, then the rest of the s − 1 primes on the s-tuple will be in the interval
Ii = (qi, qi + C

√
M]. Hence, letting πi =

∑
q∈Ii

1, we can apply the inequality
of Equation (5.2) to obtain

Ts(M) ≤
N∑
i=1

(
πi

s− 1

)
≤ c7

N∑
i=1

πs−1
i ≤ c8

M
s−1
2

(logM)s−1
N ≤ c9

M
s+1
2

(logM)s
.

SECTION 5.6. DENSITY OF PAIRING-FRIENDLY CYCLES 107

Remark 5.6. For s = 2 and C = 1 we can get any constant c5 < 1/2. Note that,
when C = 1, we have c1 = 1 in Equation (5.1), and thus it yields the inequality

⌊
√
M⌋∑

k=1

πs
k ≥ (1− ε)

M (s+1)/2

(logM)s
,

for any ε > 0. Then, we observe that, for M large enough,

T2(M) ≥ 1

2

√
M∑

k=1

πk(πk − 1) =
1

2

√
M∑

k=1

π2
k −

1

2

√
M∑

k=1

πk

≥ 1

2

M3/2

(logM)2
− 1

2

M

logM
≥

(
1

2
− ε′

)
M3/2

(logM)2
,

where in the last inequality we have used that the first term is asymptotically
dominant. A different proof of the lower bound for the case s = 2 and C = 1,
with a slightly worse constant, is given in [Kob91, Lemma 1].

Now, let us impose the condition of having very small embedding degree.

Lemma 5.26. For any M > 0 and K > 0, let Ts,K(M) be the number of s-tuples
of primes in the interval [M, 2M], with |qi − qj | ≤ C

√
M , for some constant

C > 0 and such that qi+1 | qki
i − 1 for some ki ≤ K. Then

Ts,K(M) ≤ c2K(K + 1)
√
M,

for some constant c2 > 0.

Proof. We proceed similarly to [BK98]. First note that if qi+1 | qki
i − 1, then

qi+1 | (qi− qi+1)
ki − 1 and, since |qi− qj | ≤ C

√
M , we have that for any i there

exists an integer |hi| ≤ C
√
M such that qi+1 | hki

i − 1 for some ki ≤ K. Now,
since qi+1 > M ≥ (Chi)

2, we see that hi
ki − 1 has at most c1

ki

2 prime divisors
on the interval [M, 2M], for some constant c1 > 0. Summing over the possible
k and h we get

Ts,K(M) ≤
∑
k≤K

∑
|h|≤C

√
M

∑
q|hk−1

1 ≤ c2K(K + 1)
√
M.

Finally, we bring curves back into the equation. Given an interval [M, 2M],
we will count the tuples of curves with orders in the intervals, and the subset

108 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

of those such that every curve in the tuple is pairing-friendly. Theorem 5.24
will follow directly from these. We introduce the following result from [Len87],
which we will require for the proof.

Lemma 5.27 ([Len87], Propositon 1.9). Let q > 3 be a prime number, let P ⊂
N and let Nq,P be the number of isomorphism classes of elliptic curves over Fq

and order #E(Fq) ∈ P . Then:

• If P ⊂ [q + 1 − 2
√
q, q + 1 + 2

√
q], then Nq,P ≤ c#P (log q)(log log q)2

√
q

for some constant c > 0.

• If P ⊂ [q−√q, q+√q] and #P ≥ 3, then Nq,P ≥ c(#P − 2)
√
q

log q for some
constant c > 0.

Lemma 5.28. Let M ≥ 2, and let Cs(M) be the number of s-tuples of elliptic
curves E1/Fq1 , . . . , Es/Fqs forming a cycle of length s, where qi ∈ [M, 2M] for
all i = 1, . . . , s. Then there exist constants c7, c2, depending on s, such that

c7
M (2s+1)/2

(logM)2s
≤ Cs(M) ≤ c2(log logM)2sM (2s+1)/2.

Proof. First, note that, if we have an s-cycle of curves, then the corresponding
primes are as in Lemma 5.25 for any C > s. Without loss of generality, let us
assume that cycles start at the smallest prime. Now, if we have an s-tuple in
which the smallest prime is q1, then the rest of the s− 1 primes on the s-tuple
will be in the interval Ii = (q1, q1 + s

√
q
1
+ (s/2)2]. To see this, we first prove a

result by induction. Let qℓ, qℓ+1 be the ℓ-th and (ℓ+ 1)-th primes in the cycle,
respectively. The induction hypothesis is that qℓ ≤ (

√
q1 + ℓ)2 (the base case is

true due to the Hasse bound). Then,

qℓ+1 ≤ qℓ + 2
√
qℓ + 1 ≤ q1 + 2ℓ

√
q1 + ℓ2 + 2

√
q1 + 2ℓ

√
q1 + ℓ2 + 1

= q1 + 2(ℓ+ 1)
√
q1 + (ℓ+ 1)2 = (

√
q1 + (ℓ+ 1))2,

concluding the induction step. From here, we deduce that, for any ℓ = 1, . . . , s,
we have that √

qℓ −
√
q1 ≤ ℓ.

Since they form a cycle, then it must be the case that qℓ ∈ Ii for all ℓ (note that
there are at most s/2 primes between the largest and the smallest prime of a
cycle).

SECTION 5.6. DENSITY OF PAIRING-FRIENDLY CYCLES 109

Now, let us start by proving the upper bound for Cs(M). Let P be a subset
of primes p satisfying that |p− (q + 1)| ≤ 2q. By the first part of Lemma 5.27,
we know that there are at most c1

√
q log q(log log q)2#P isomorphism classes

over Fq of elliptic curves with #E(Fq) ∈ P for some constant c1. Taking P with
#P = s and multiplying over each prime of an s-tuple we get that, on each
s-tuple, there will be less than

c2(logM)s(log logM)2sMs/2

isomorphism classes of elliptic curves with points on the s-tuple and, in partic-
ular, forming a cycle of length at most s. Note that the constant c2 depends on
s. Applying the second inequality of Lemma 5.25, we get the expected upper
bound for cycles of length at most s, and in particular for Cs(M).

To prove the lower bound for Cs(M) we use the second part of Lemma 5.27.
In this case, for any q and any subset of primes P ⊂ [q−√q, q+√q] with #P ≥ 3

there are more than c3(#P−2)
√
q

log q isomorphism classes over Fq of elliptic curves
with #E(Fq) ∈ P for some constant c3. Hence, on each s-tuple with s ≥ 3 we
have more than c4

Ms/2

(logM)s isomorphism classes of elliptic curves with points on
the s-tuple and, in particular, forming a cycle of length at most s. Note that c4
is a constant that depends on s. Observe that, in particular, all those primes lie
on the Hasse interval for q, since P ⊂ [q−√q, q+√q] ⊂ [q+1−2√q, q+1+2

√
q].

Combining this with the first inequality of Lemma 5.25, we get the lower bound

c5
M (2s+1)/2

(logM)2s
.

Then, Cs(M) will be cycles of isomorphism classes of elliptic curves of length at
most s minus cycles of isomorphism classes of elliptic curves of length at most
s − 1. In order to bound the number of cycles of length at most s − 1, we use
the previous upper bound for Ci(M), for i = 1, . . . , s− 1, so we get

s−1∑
i=1

(log logM)2iM (2i+1)/2 ≤ c6(log logM)2s−2M (2s−1)/2

for some constant c6. Hence,

Cs(M) ≥ c5
M (2s+1)/2

(logM)2s
− c6(log logM)2s−2M (2s−1)/2 ≥ c7

M (2s+1)/2

(logM)2s
,

for some constant c7 and for M sufficiently large depending on s.

110 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

By mimicking the second part of the previous proof, but using Lemma 5.26
instead of Lemma 5.25, we obtain the following analogous result.

Lemma 5.29. Let M ≥ 2. Let Cs,K(M) be the number of s-tuples in the same
conditions as in Lemma 5.28, which additionally satisfy that Ei has embedding
ki ≤ K for all i = 1, . . . , s. Then there exists a constant c, depending on s, such
that

Cs,K(M) ≤ cK(K + 1)(logM)s(log logM)2sM (s+1)/2.

Finally, by dividing Cs,K(M) by Cs(M) from Lemmas 5.28 and 5.29, we get
Theorem 5.24 .

5.7 Conclusions
Cycles of elliptic curves require the curves involved to be of prime order, and
families of elliptic curves parameterized by low-degree polynomials are the only
known approach at generating pairing-friendly curves with prime order. In this
chapter, we have shown that this approach is unlikely to yield new cycles, beyond
the MNT4-MNT6 cycles that are already known. In particular, we have shown
that no known families are involved in a 2-cycle with any pairing-friendly curve
of cryptographic interest. While a lot is still unknown about pairing-friendly
cycles, we highlight two avenues that we consider interesting for future research.

• Generalizing Theorem 5.21 and Corollary 5.22 to s-cycles, for s > 2. The
case s = 2 is the most appealing from a practical perspective, due to the
application to recursive composition of SNARKs, but it would be desirable
to have the complete picture. The main hurdle here is that, whereas fixing
a curve in a 2-cycle automatically determines the other, longer cycles have
more degrees of freedom, so we do not have as much explicit information
to work with in the proof.

• Consider a 2-cycle such that both curves E ↔ (t, p, q) and E′ ↔ (2−t, q, p)
have the same embedding degree k. If we restrict ourselves to the case
k ≡ 0 (mod 4), it is easy to argue (as in Proposition 5.15) that

pq | Φk(t− 1).

This approach allows [CCW19] to prove that said cycles cannot exist when
k ∈ {8, 12}. However, the authors leave higher values of k as an open
question. If we consider families of curves, Theorem 5.21 tells us that the

SECTION 5.7. CONCLUSIONS 111

above relation must hold as polynomials, or else only a finite number of
cycles will exist. Thus, we wonder if considering the above condition as a
relation between polynomials, and applying polynomial machinery, could
help in answering this question.

112 CHAPTER 5. REVISITING CYCLES OF PAIRING-FRIENDLY ELLIPTIC CURVES

Chapter 6

Conclusions

When the trust is high, communication
is easy, instant, and effective.

– Stephen Covey

The initial papers on interactive proofs and zero-knowledge from the 1980s
primarily contributed to expanding the theoretical boundaries of these proof
systems. This changed with the emergence of distributed ledgers, which became
a killer use case for ZK proofs. These proof systems have become a subject of
intense study for enhancing the privacy and scalability of blockchains, which has
led to the exploration of more efficient and generic protocols to address practical
requirements within the blockchain space.

This symbiosis between academia and the blockchain industry has fostered
a diverse community working on ZK proofs that encompasses computer science
theorists, cryptographers, mathematicians, engineers, programmers, and finan-
cial analysts. Each profile brings unique expertise and perspectives to the field,
with individuals specializing in different aspects of ZK proofs while considering
other elements as black boxes.

For instance, most popular proof systems assume statements in R1CS form,
but they do not delve into the optimal and secure formulation of the statements.
In this regard, in Chapter 3 of this thesis, we introduced circom, a novel
programming language that empowers developers to describe circuits at the

113

114 CHAPTER 6. CONCLUSIONS

constraint level. The modularity of circom allows each circuit to be treated
independently and implement optimizations at the template level. Ultimately,
the clarity of the language facilitates circuit analysis and auditing, and it opens
the door to a more in-depth study of the security an efficiency of arithmetic
circuits.

In the subsequent sections of this thesis we delved into elliptic curves, an
aspect often overlooked by both programmers and cryptographers. Typically,
ZK protocols consider elliptic curves as abstract groups, without dealing with
the specific instantiation of these groups in a practical scenario. In this the-
sis, we demonstrated that comprehending these mathematical objects, rather
than treating them as black boxes, opens a wide range of interesting research
problems. In this thesis, we have addressed two topics. On the one hand, in
Chapter 4, we proposed a method for generating elliptic curves with efficient
arithmetic within circuits. On the other hand, in Chapter 5, we addressed the
search for suitable cycles enabling the recursive composition of ZK systems—an
idea that holds significant potential for enhancing the performance and adoption
of blockchains.

In conclusion, this PhD thesis has contributed to the advancement of arith-
metic circuits and elliptic curves for ZK proofs in the context of blockchain
technology. By bridging the gap between theoretical foundations and practi-
cal applications, this research has provided valuable insights, novel method-
ologies, and potential solutions to enhance privacy, scalability, and efficiency
in blockchain systems. The findings and innovations presented in this thesis
pave the way for further exploration and development in the field, offering new
possibilities for the future of secure and decentralized systems.

Bibliography

[0xpa] 0xparc. zk–ECDSA: zk–SNARKs for EcDSA. 23

[0xpb] 0xparc. zk–SNARKs for elliptic-curve pairings. 40

[AB07] Sanjeev Arora and Boaz Barak. Computational Complexity: A
Modern Approach. Princeton University, 2007. 2

[ABI+22] Elvira Albert, Marta Bellés-Muñoz, Miguel Isabel, Clara
Rodríguez-Núñez, and Albert Rubio. Distilling constraints in
zero-knowledge protocols. In Sharon Shoham and Yakir Vizel, ed-
itors, Computer aided verification (CAV), pages 430–443, Cham,
2022. Springer International Publishing. 48

[AGR+16] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen. MiMC: Efficient encryption and cryp-
tographic hashing with minimal multiplicative complexity. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in cryp-
tology – ASIACRYPT 2016, pages 191–219, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg. 42

[AHG22] Diego Aranha, Youssef Housni, and Aurore Guillevic. A survey
of elliptic curves for proof systems. Designs, Codes and Cryptog-
raphy, 12 2022. 57

[Ale] Aleo. The Leo programming language. GitHub. 19

[BB61] Edwin F Beckenbach and Richard Bellman. Inequalities. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 2. Folge. Springer
Berlin, Heidelberg, 1961. 105

115

116 BIBLIOGRAPHY

[BBB+17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. Cryptology ePrint Archive,
Report 2017/1066, 2017. 3

[BBDM22] Marta Bellés–Muñoz, Jordi Baylina, Vanesa Daza, and Jose Luis
Muñoz-Tapia. New privacy practices for blockchain software.
IEEE Software, 39(03):43–49, May 2022. 4, 16, 19

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and
Christiane Peters. Twisted Edwards curves. In Serge Vaudenay,
editor, Progress in cryptology – AFRICACRYPT 2008, pages
389–405, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
56, 59, 60, 61, 72

[BC68] Benjamin Baumslag and Bruce Chandler. Schaum’s outline of
theory and problems of group theory. Schaum’s outline series.
McGraw-Hill Book Company, New York, 1968. 75

[BC94] Daniel P. Bovet and Pierluigi Crescenzi. Introduction to the the-
ory of complexity. Prentice Hall international series in computer
science. Prentice Hall, 1994. 1, 2

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth,
and Christophe Petit. Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In Proceedings,
part II, of the 35th annual international conference on advances
in cryptology — EUROCRYPT 2016, volume 9666, pages 327–
357, Berlin, Heidelberg, 2016. Springer-Verlag. 10, 16

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In Proceedings of the
3rd innovations in theoretical computer science conference, pages
326–349, 2012. 82

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers,
Pratyush Mishra, and Howard Wu. Zexe: Enabling decentral-
ized private computation. In 2020 IEEE Symposium on security
and privacy (SP), pages 947–964, Los Alamitos, CA, USA, may
2020. IEEE Computer Society. 58, 59

BIBLIOGRAPHY 117

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive
zero-knowledge and its applications. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC
’88, page 103–112, New York, NY, USA, 1988. Association for
Computing Machinery. 3

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying computa-
tions with state. In Proceedings of the twenty-fourth ACM sym-
posium on operating systems principles, SOSP ’13, page 341–357,
New York, NY, USA, 2013. Association for computing machinery.
40

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremen-
tal cryptography: The case of hashing and signing. In Yvo G.
Desmedt, editor, Advances in Cryptology — CRYPTO ’94, pages
216–233, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. 76

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja
Lange. Elligator: Elliptic-curve points indistinguishable from uni-
form random strings. In Proceedings of the 2013 ACM SIGSAC
Conference on computer and communications security, CCS ’13,
page 967–980, New York, NY, USA, 2013. Association for com-
puting machinery. 66

[BK98] R. Balasubramanian and N. Koblitz. The improbability that an
elliptic curve has subexponential discrete log problem under the
Menezes-Okamoto-Vanstone algorithm. Journal of Cryptology,
11(2):141–145, 1998. 83, 86, 104, 107

[BL17] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the
Montgomery ladder. Cryptology ePrint Archive, paper 2017/293,
2017. 63

[BL19] Daniel J. Bernstein and Tanja Lange. Safecurves: choosing safe
curves for elliptic-curve cryptography. Available online: https:
//safecurves.cr.yp.to, 2019. 57, 65, 66

[BLS02] Paulo S.L.M. Barreto, Ben Lynn, and Michael Scott. Construct-
ing elliptic curves with prescribed embedding degrees. In Interna-
tional conference on security in communication networks, pages
257–267. Springer, 2002. 57, 86

https://safecurves.cr.yp.to
https://safecurves.cr.yp.to

118 BIBLIOGRAPHY

[BMIMT+22] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Al-
bert Rubio, and Jordi Baylina. Circom: A circuit description
language for building zero-knowledge applications. IEEE Trans-
actions on Dependable and Secure Computing, pages 1–18, 2022.
4, 16

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan
Shapiro. Mina: Decentralized cryptocurrency at scale. New York
University, O(1) Labs, New York, NY, USA, Whitepaper, pages
1–47, 2020. 81

[BMUS22] Marta Bellés-Muñoz, Jorge Jiménez Urroz, and Javier Silva.
Revisiting cycles of pairing-friendly elliptic curves. Cryptology
ePrint Archive, Paper 2022/1662, 2022. https://eprint.iacr.
org/2022/1662. 5

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly
elliptic curves of prime order. In Proceedings of the 12th Interna-
tional conference on selected areas in cryptography, SAC’05, page
319–331, Berlin, Heidelberg, 2005. Springer-Verlag. 57, 84, 87,
89

[Bow19] Sean Bowe. Derivation of jubjub elliptic curve. GitHub,
2019. Available online: https://github.com/zkcrypto/
jubjub/blob/master/doc/derive/derive.sage (accessed on
30 October 2021). 63

[BS84] László Babai and Endre Szemerédi. On the complexity of matrix
group problems i. In IEEE Annual Symposium on Foundations
of Computer Science, 1984. 3

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In IEEE Sym-
posium on Security and Privacy, pages 459–474. IEEE Computer
Society, 2014. 15, 55

[BSCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves. In
Juan A. Garay and Rosario Gennaro, editors, Advances in cryp-
tology – CRYPTO 2014, pages 276–294, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. 58, 59

https://eprint.iacr.org/2022/1662
https://eprint.iacr.org/2022/1662
https://github.com/zkcrypto/jubjub/blob/master/doc/derive/derive.sage
https://github.com/zkcrypto/jubjub/blob/master/doc/derive/derive.sage

BIBLIOGRAPHY 119

[BSCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von Neu-
mann architecture. In Proceedings of the 23rd USENIX Confer-
ence on Security Symposium, SEC’14, pages 781–796, USA, 2014.
USENIX Association. 10, 16, 40

[BSCTV17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves. Al-
gorithmica, 79(4):1102–1160, 2017. 81, 82, 84

[BSS99] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in
Cryptography, volume 256 of London Mathematical Society Lec-
ture Note Series. Cambridge University Press, Cambridge, 1999.
56, 66

[BWB+21] Marta Bellés-Muñoz, Barry Whitehat, Jordi Baylina, Vanesa
Daza, and Jose Luis Muñoz Tapia. Twisted Edwards elliptic
curves for zero-knowledge circuits. Mathematics, 9(23), 2021. 5,
41, 42, 44

[Can01] R. Canetti. Universally composable security: a new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 136–145, 2001. 8

[CC16] Paul-Jean Cahen and Jean-Luc Chabert. What you should know
about integer-valued polynomials. The American Mathematical
Monthly, 123(4):311–337, 2016. 140

[CCW19] Alessandro Chiesa, Lynn Chua, and Matthew Weidner. On cy-
cles of pairing-friendly elliptic curves. SIAM Journal on Applied
Algebra and Geometry, 3(2):175–192, 2019. 83, 84, 91, 95, 103,
110

[CDG87] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Mul-
tiparty computations ensuring privacy of each party’s input and
correctness of the result. In A Conference on the Theory and
Applications of Cryptographic Techniques on Advances in Cryp-
tology, CRYPTO ’87, pages 87–119, Berlin, Heidelberg, 1987.
Springer-Verlag. 76

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss,
Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee

120 BIBLIOGRAPHY

Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE
Symposium on Security and Privacy, pages 253–270, 2015. 82

[Cox89] David A Cox. Primes of the form x2 + ny2: Fermat, class field
theory, and complex multiplication. John Wiley & Sons, 1989. 85

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and
hearsay arguments from signature cards. In ICS, volume 10, pages
310–331, 2010. 81

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Clus-
ter computing in zero knowledge. In Advances in Cryptology-
EUROCRYPT 2015: 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II 34, pages 371–
403. Springer, 2015. 81

[CvHP92] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Crypto-
graphically strong undeniable signatures, unconditionally secure
for the signer. In Joan Feigenbaum, editor, Advances in Cryp-
tology — CRYPTO ’91, pages 470–484, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg. 76

[CWC+21] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric
McCarthy, and Eric Smith. Leo: A programming language for
formally verified, zero-knowledge applications. Cryptology ePrint
Archive, Paper 2021/651, 2021. 19, 20

[Dam92] Ivan Damgård. Non-interactive circuit based proofs and non-
interactive perfect zero-knowledge with proprocessing. In Inter-
national Conference on the Theory and Application of Crypto-
graphic Techniques, 1992. 3

[DF] Dark Forest. zk–SNARK space warfare. 23

[Edw07] Harold Edwards. A normal form for elliptic curves. Bulletin
of The American Mathematical Society - BULL AMER MATH
SOC, 44:393–423, 07 2007. 60

[EHG22] Youssef El Housni and Aurore Guillevic. Families of SNARK-
friendly 2-chains of elliptic curves. In Annual International Con-
ference on the Theory and Applications of Cryptographic Tech-
niques, pages 367–396. Springer, 2022. 84

BIBLIOGRAPHY 121

[EMP] EMP. Efficient multi-party computation toolkit. GitHub. 18, 19

[ET18] Jacob Eberhardt and Stefan Tai. ZoKrates - scalable privacy-
preserving off-chain computations. In 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1084–1091, 2018. 19, 20

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninter-
active zero knowledge proofs under general assumptions. SIAM
Journal on Computing, 29(1):1–28, 1999. 3

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-
divisibility and the discrete logarithm in the divisor class group
of curves. Mathematics of computation, 62(206):865–874, 1994.
86

[Fre06] David Freeman. Constructing pairing-friendly elliptic curves with
embedding degree 10. In International Algorithmic Number The-
ory Symposium, pages 452–465. Springer, 2006. 84, 87, 88, 89

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of
pairing-friendly elliptic curves. Journal of cryptology, 23(2):224–
280, 2010. 87

[Ful08] William Fulton. Algebraic curves. An introduction to algebraic
geometry. 2008. 14

[GBFS16] Vincent Gramoli, Len Bass, Alan D. Fekete, and Daniel W. Sun.
Rollup: Non-disruptive rolling upgrade with fast consensus-based
dynamic reconfigurations. IEEE Transactions on Parallel and
Distributed Systems, 27(9):2711–2724, 2016. 48

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs with-
out PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in cryptology – EUROCRYPT 2013, pages 626–645,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. 3, 11

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger,
Arnab Roy, and Markus Schofnegger. Poseidon: A new hash func-
tion for zero-knowledge proof systems. In 30th USENIX Security

122 BIBLIOGRAPHY

Symposium (USENIX Security 21), pages 519–535. USENIX As-
sociation, aug 2021. 42

[GKV+18] Jens Groth, Yael Kalai, Muthu Venkitasubramaniam, Nir Bitan-
sky, Ran Canetti, Henry Corrigan-Gibbs, Shafi Goldwasser, Cha-
ranjit Jutla, Yuval Ishai, Rafail Ostrovsky, Omer Paneth, Tal
Rabin, Mariana Raykova, Ron Rothblum, Alessandra Scafuro,
Eran Tromer, and Douglas Wikström. Security track proceeding.
Technical report, ZKProof standards, Berkeley, CA, May 2018.
https://zkproof.org/documents.html. 21

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems. In Proceedings of
the seventeenth annual ACM symposium on theory of computing,
STOC ’85, pages 291–304, New York, NY, USA, 1985. Associa-
tion for Computing Machinery. 3, 7, 15

[GMV07] Steven D Galbraith, James F McKee, and Paula C Valença. Or-
dinary abelian varieties having small embedding degree. Finite
Fields and Their Applications, 13(4):800–814, 2007. 84, 89

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in NP have zero-
knowledge proof systems. Journal of the ACM, 38(3):690–728,
jul 1991. 15

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of
zero-knowledge proof systems. Journal of Cryptology, 7(1):1–32,
dec 1994. 15

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In
Masayuki Abe, editor, Advances in cryptology - ASIACRYPT
2010, pages 341–358, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. 8

[Gro16] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In Marc Fischlin and Jean-Sébastien Coron, editors, Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceed-
ings, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 305–326. Springer, 2016. 4, 8, 28, 82

https://zkproof.org/documents.html

BIBLIOGRAPHY 123

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
PlonK: Permutations over Lagrange-bases for oecumenical non-
interactive arguments of knowledge. Cryptology ePrint Archive,
article 2019/953, 2019. 4, 8, 28, 82

[Han05] Helena Handschuh. SHA Family (Secure Hash Algorithm), pages
565–567. Springer US, Boston, MA, 2005. 42

[HBHW19] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan
Wilcox. Zcash protocol specification version 2019.0.0 [overwin-
ter+sapling]. May 1, 2019. 3, 75, 76, 78

[Her20] Hermez Network. Hermez whitepaper, October, 2020. 23, 48

[HG20] Youssef El Housni and Aurore Guillevic. Optimized and secure
pairing-friendly elliptic curves suitable for one layer proof compo-
sition. Cryptology ePrint Archive, Report 2020/351, 2020. Avail-
able online: https://ia.cr/2020/351 (accessed on 30 October
2021). 58, 59

[Hop17] Daira Hopwood. Supporting evidence for security of the jubjub
curve to be used in zcash. Available online: https://github.
com/daira/jubjub/blob/master/verify.sage (accessed on 30
October 2021), 2017. 65

[HU79] John E. Hopcroft and Jeff D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Publish-
ing Company, 1979. 1

[HWCD08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and
Ed Dawson. Twisted Edwards curves revisited. In Advances in
cryptology - ASIACRYPT 2008, pages 326–343, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg. 62, 65

[Ide20a] Iden3. Circom: Circuit compiler for zero-knowledge proofs.
GitHub, 2020. 16, 19

[Ide20b] Iden3. Circomlib: Library of circom templates. GitHub, 2020.
16, 40, 46, 79

[Ide20c] Iden3. snarkjs: JavaScript implementation of zk-SNARKs.
GitHub, 2020. 17, 18, 19, 28, 50

https://ia.cr/2020/351
https://github.com/daira/jubjub/blob/master/verify.sage
https://github.com/daira/jubjub/blob/master/verify.sage

124 BIBLIOGRAPHY

[JL17] S. Josefsson and I. Liusvaara. Edwards-curve Digital Signature
Algorithm (EdDSA). Internet Research Task Force (IRTF). Re-
quest for Comments: 8032, January, 2017. 46, 56

[KB20] Assimakis Kattis and Joseph Bonneau. Proof of necessary work:
Succinct state verification with fairness guarantees. Cryptology
ePrint Archive, 2020. 81

[KKKK14] K. Kasamatsu, S. Kanno, T. Kobayashi, and Y. Kawahara.
Barreto-naehrig curves. Network Working Group. Internet-Draft,
February, 2014. Available online: https://tools.ietf.org/
html/draft-kasamatsu-bncurves-01 (accessed on 30 October
2021). 58

[Kob91] Neal Koblitz. Elliptic curve implementation of zero-knowledge
blobs. J. Cryptology, 4(3):207–213, 1991. 107

[Kos] Ahmed Kosba. xJsnark. GitHub. 19

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-
knowledge proof system for np with general assumptions. Journal
of Cryptology, 11:1–27, 1998. 3

[KPS18] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xJs-
nark: A framework for efficient verifiable computation. In 2018
IEEE Symposium on Security and Privacy (SP), pages 944–961,
5 2018. 19

[KT08] Koray Karabina and Edlyn Teske. On prime-order elliptic curves
with embedding degrees k = 3, 4, and 6. In International Al-
gorithmic Number Theory Symposium, pages 102–117. Springer,
2008. 84

[KV19] Dmitry Khovratovich and Mikhail Vladimirov. Tornado Privacy
Solution. Cryptographic Review. Version 1.1. ABDK Consulting,
November 29, 2019. 23

[KXV] Koninklijke Philips N.V., Glenn Xavier, and Meilof Veeningen.
pysnark. GitHub. 18, 19

[Laba] Electron Labs. Bringing IBC to Ethereum using zk-SNARKs.
EthResearch. 40

https://tools.ietf.org/html/draft-kasamatsu-bncurves-01
https://tools.ietf.org/html/draft-kasamatsu-bncurves-01

BIBLIOGRAPHY 125

[Labb] Matter Labs. The Zinc language. GitHub. 19, 20

[Len87] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann.
of Math. (2), 126(3):649–673, 1987. 108

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves
for Security. RFC 7748, January, 2016. 63, 64

[LM87] Peter L. Montgomery. Montgomery, p.l.: Speeding the pollard
and elliptic curve methods of factorization. Mathematics of Com-
putation - Math. Comput., 48:243–243, 01 1987. 56, 60, 66

[LMS17] B. Libert, F. Mouhartem, and D. Stehlé. Tutorial 8, 1016-17.
Notes from the Master Course Cryptology and Security at the
École Normale Supérieure de Lyon. 42, 56, 76

[Mat19] Matter Labs. Zinc v0.2.3. Cryptology ePrint Archive, Report
2019/953, 2019. 19, 20

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Ru-
bin. Zerocoin: Anonymous distributed e-cash from bitcoin. In
IEEE Symposium on Security and Privacy, pages 397–411. IEEE
Computer Society, 2013. 15, 55

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and
how to develop domain-specific languages. ACM Comput. Surv.,
37(4):316–344, dec 2005. 19

[Mig83] Adolph Migotti. Zur Theorie der Kreisteilungsgleichung. B.
der Math.-Naturwiss, Classe der Kaiserlichen Akademie der Wis-
senschaften, Wien, 87:7–14, 1883. 93

[MJ16] Nadia El Mrabet and Marc Joye. Guide to Pairing-Based Cryp-
tography. Chapman & Hall/CRC, 2016. 13

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New
explicit conditions of elliptic curve traces for FR-reduction. IE-
ICE transactions on fundamentals of electronics, communications
and computer sciences, 84(5):1234–1243, 2001. 59, 84, 86, 87, 89

[MOV93] Alfred J Menezes, Tatsuaki Okamoto, and Scott A Vanstone.
Reducing elliptic curve logarithms to logarithms in a finite
field. iEEE Transactions on information Theory, 39(5):1639–
1646, 1993. 84, 86

126 BIBLIOGRAPHY

[MSZ21] Simon Masson, Antonio Sanso, and Zhenfei Zhang. Bander-
snatch: a fast elliptic curve built over the bls12-381 scalar field.
Cryptology ePrint Archive, Report 2021/1152, 2021. Avail-
able online: https://ia.cr/2021/1152 (accessed on 30 October
2021). 58

[MV73] Hugh Lowell Montgomery and Robert Charles Vaughan. The
large sieve. Mathematika, 20(2):119–134, 1973. 106

[NML16] Shen Noether, Adam Mackenzie, and The Lab. Ring confidential
transactions. Ledger, 1:1–18, 12 2016. 55

[NT16] Assa Naveh and Eran Tromer. PhotoProof: Cryptographic image
authentication for any set of permissible transformations. In 2016
IEEE Symposium on Security and Privacy (SP), pages 255–271.
IEEE, 2016. 81

[OBW22] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: Compiler
infrastructure for proof systems, software verification, and more.
In 43rd IEEE Symposium on Security and Privacy, SP 2022, San
Francisco, CA, USA, May 22-26, 2022, pages 2248–2266. IEEE,
2022. 16, 19, 20, 21, 22, 53

[OCWS] Alex Ozdemir, Edward Chen, Riad S. Wahby, and
Northrim William Seo. CirC: The circuit compiler. GitHub. 20,
21

[OKS00] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai.
Elliptic curves with the montgomery-form and their crypto-
graphic applications. In Proceedings of the Third International
Workshop on Practice and Theory in Public Key Cryptography:
Public Key Cryptography, PKC ’00, pages 238–257, London, UK,
UK, 2000. Springer-Verlag. 59

[oL] o1 Labs. snarky. GitHub. 19, 20

[Peg] Ed Jr. Pegg. Bouniakowsky conjecture. MathWorld–A Wolfram
Web Resource, created by Eric W. Weisstein. 87

[Pepa] Pepper Project. Pequin: An end-to-end toolchain for verifiable
computation, snarks, and probabilistic proofs. GitHub. 20

https://ia.cr/2021/1152

BIBLIOGRAPHY 127

[Pepb] Pepper Project. tinyram. GitHub. 19, 20, 40

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE, May
2013. Best Paper Award. 4, 8, 10, 12, 16, 28, 33, 82

[Qi] QED-it. zkInterface, a standard tool for zero-knowledge interop-
erability. GitHub. 21

[Sal] Xavier Salleras. ZPiE: Zero-knowledge proofs in embedded sys-
tems. GitHub. 18, 19

[Sch96] Bruce Schneier. Applied Cryptography. Wiley, 2nd edition, 1996.
2

[SD21] Xavier Salleras and Vanesa Daza. ZPiE: Zero-knowledge proofs
in embedded systems. Mathematics, 9(20), 2021. 18, 19

[Sil94] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume
106 of Graduate Texts in Mathematics. Springer, New York, 1994.
85, 86, 89

[Sip13] Michael Sipser. Introduction to the Theory of Computation.
Course Technology, Boston, MA, third edition, 2013. 2

[Sma99] Nigel P. Smart. The discrete logarithm problem on elliptic curves
of trace one. Journal of cryptology, 12:193–196, 1999. 82

[SS11] Joseph H Silverman and Katherine E Stange. Amicable pairs
and aliquot cycles for elliptic curves. Experimental Mathematics,
20(3):329–357, 2011. 83, 90, 91

[ST16] Sushil Kumar Singh and Sudeep Tanwar. Analysis of software
testing techniques: Theory to practical approach. Indian Journal
of Science and Technology, 9, 08 2016. 72

[Sti] D. R. Stinson. On the connections between universal hashing,
combinatorial designs and error-correcting codes. 45

[Suc] Succinct Computational Integrity and Privacy Research (SCIPR)
Lab. libsnark: a C++ library for zk-SNARK proofs. GitHub. 17,
19

128 BIBLIOGRAPHY

[Sut12] Andrew V Sutherland. Accelerating the CM method. LMS Jour-
nal of Computation and Mathematics, 15:172–204, 2012. 87

[Tur36] Alan M. Turing. On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, 2(42):230–265, 1936. 1

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of
knowledge imply time/space efficiency. In Theory of Cryptography
Conference, pages 1–18. Springer, 2008. 81

[WBB19] Barry WhiteHat, Jordi Baylina, and Marta Bellés. Generation of
twisted edwards elliptic curves for circuit use. Accepted Commu-
nity Standard Proposal at ZK Proof Workshop 2, 2019. 58

[WBB20] Barry WhiteHat, Marta Bellés, and Jordi Baylina. Baby Jub-
jub elliptic curve. Ethereum Improvement Proposal, EIP-2494,
January 29, 2020. 10, 42, 55, 57

[Whi18] Barry WhiteHat. Baby jubjub supporting evidence. GitHub,
2018. Available online: https://github.com/barryWhiteHat/
baby_jubjub (accessed on 30 October 2021). 72

[WLG+] Barry WhiteHat, Chih Cheng Liang, Kobi Gurkan, Koh Wei Jie,
and Harry Robert. Semaphore. 23

[WSR+15] Riad Wahby, Srinath Setty, Zuocheng Ren, Andrew Blumberg,
and Michael Walfish. Efficient ram and control flow in verifiable
outsourced computation. In Network and Distributed System Se-
curity Symposium (NDSS 2015), 02 2015. 19, 20, 40

[WYKW20] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. Cryptology
ePrint Archive, Report 2020/925, 2020. 18

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and
Xiao Wang. Mystique: Efficient conversions for zero-knowledge
proofs with applications to machine learning. Cryptology ePrint
Archive, Report 2021/730, 2021. 18

https://github.com/barryWhiteHat/baby_jubjub
https://github.com/barryWhiteHat/baby_jubjub

BIBLIOGRAPHY 129

[YCKS19] S. Yonezawa, S. Chikara, T. Kobayashi, and T. Saito. Pairing-
friendly curves. Network Working Group. Internet-Draft, Jan-
uary, 2019. Available online: https://tools.ietf.org/html/
draft-yonezawa-pairing-friendly-curves-00 (accessed on
30 October 2021). 58

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang.
Quicksilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. Cryptology ePrint
Archive, Report 2021/076, 2021. 18

[zcaa] Electric Coin Company. What is Jubjub? Available online:
https://z.cash/technology/jubjub/ (accessed on 30 October
2021). 56, 58

[Zcab] Zcash. Bellman. GitHub. 17, 19

[Zer] ZeroPool. Privacy solution for blockchain. 23

[zkR] zkREPL. An online playground for zero–knowledge circuits. 23

[ZoKa] ZoKrates. Zokrates. GitHub. 19

[ZoKb] ZoKrates. ZoKrates documentation. GitHub Docs. 22, 23

https://tools.ietf.org/html/draft-yonezawa-pairing-friendly-curves-00
https://tools.ietf.org/html/draft-yonezawa-pairing-friendly-curves-00
https://z.cash/technology/jubjub/

130 BIBLIOGRAPHY

Appendix A

Code

Talk is cheap. Show me the code.

– Linus Torvalds

A.1 Code from Chapter 4

A.1.1 Implementation of security tests from Section 4.5

1 # It outputs all results in the console
2
3 import os
4 import sys
5 from errno import ENOENT , EEXIST
6 from sortedcontainers import SortedSet
7
8 def readfile(fn):
9 fd = open(fn ,’r’)

10 r = fd.read()
11 fd.close()
12 return r
13
14 # Expresses n as sums or differences of sparse powers of 2 (if possible)
15 def expand2(n):
16 s = ""
17
18 while n != 0:
19 j = 1
20 while 2 * * j < abs(n): j += 1
21 if 2 * * j - abs(n) > abs(n) - 2 * * (j-1): j -= 1

131

132 CHAPTER A. CODE

22
23 if abs(abs(n) - 2 * * j) > 2 * * (j - 1):
24 if n > 0:
25 if s != "": s += " + "
26 s += str(n)
27 else:
28 s += " - " + str(-n)
29 n = 0
30 elif n > 0:
31 if s != "": s += " + "
32 s += "2^" + str(j)
33 n -= 2 * * j
34 else:
35 s += " - 2^" + str(j)
36 n += 2 * * j
37
38 return s
39
40 def verify(curve):
41
42 p = Integer(readfile(curve+’/p’)) # Prime p
43 k = GF(p) # Finite field F_p.
44 kz.<z> = k[] # Polynomial ring k[z].
45 l = Integer(readfile(curve+’/l’)) # Large prime l dividing |E(F_p)|
46 x0 = Integer(readfile(curve+’/x0’)) # (x0,y0): generating point of E
47 y0 = Integer(readfile(curve+’/y0’))
48 x1 = Integer(readfile(curve+’/x1’)) # (x1,y1): base point of E[l]
49 y1 = Integer(readfile(curve+’/y1’))
50 shape = readfile(curve+’/shape’).strip()
51 s = readfile(curve+’/primes ’)
52 rigid = readfile(curve+’/rigid’).strip()
53
54 safefield = True
55 safeeq = True
56 safebase = True
57 saferho = True
58 safetransfer = True
59 safedisc = True
60 saferigid = True
61 safeladder = True
62 safetwist = True
63 safecomplete = True
64 safeind = True
65
66 V = [] # Distinct verified primes.
67 for line in s.split():
68 n = Integer(line)
69 if n.is_prime (): # Instead of generating the original Pocklington

primality proofs
70 if not n in V: V += [n]
71
72 # Verify p is prime.
73 pstatus = ’Unverified ’
74 if not p.is_prime (): pstatus = ’False ’
75 if p in V: pstatus = ’True’
76 if pstatus != ’True’: safefield = False
77 print(’verify -pisprime: %s\n’ %pstatus)
78

SECTION A.1. CODE FROM CHAPTER 4 133

79 # Verify l is prime.
80 pstatus = ’Unverified ’
81 if not l.is_prime (): pstatus = ’False ’
82 if l in V: pstatus = ’True’
83 if pstatus != ’True’: safebase = False
84 print(’verify -lisprime: %s\n’ %pstatus)
85
86 # Write l and p as sums or differences of sparse powers of 2 (if

possible)
87 print(’expand2 -p: p = %s\n’ % expand2(p))
88 print(’expand2 -l: l = %s\n’ % expand2(l))
89
90 # Write the variables in base 16
91 print(’hex -p: %s’ %hex(p))
92 print(’hex -l: %s’ %hex(l))
93 print(’hex -x0: %s’ %hex(x0))
94 print(’hex -x1: %s’ %hex(x1))
95 print(’hex -y0: %s’ %hex(y0))
96 print(’hex -y1: %s\n’ %hex(y1))
97
98 # Verify gcd(l,p) = 1 (else , if l=p -> DL easy via additive transfers)
99 gcdlpis1 = gcd(l,p) == 1

100 print(’verify -gcdlp1: %s\n’ %gcdlpis1)
101
102 # Verify if embedding degree is large (else , multiplicative transfers (

or MOV attacks) are easy)
103 # Embedding degree: smallest integer k such that l divides (p^k-1)
104 # It could also be computed (it takes longer): k = (Integers(l)(p))

.multiplicative_order ()
105 # Brainpool and SafeCurves require embedding degree > (l-1) /100
106 # [Balasubramin , Koblitz] MOV is subexponential if k < (log(p))^2
107 print(’verify -movsafe: Unverified ’)
108 print(’verify -embeddingdegree: Unverified ’)
109 if gcdlpis1 and l.is_prime ():
110 u = Integers(l)(p)
111 d = l-1
112 for v in V:
113 while d % v == 0: d /= v
114 if d == 1:
115 d = l-1
116 for v in V:
117 while d % v == 0:
118 if u^(d/v) != 1: break
119 d /= v
120 print(’verify -movsafe: %s’ %((l-1)/d <= 100))
121 print(’verify -embeddingdegree: %s = (l-1)/%s\n’ % (d,(l-1)/d))
122
123 # Compute the Frobenius trace t (it should satisfy |E(F_p)| = p + 1 - t

)
124 # Hasse ’s theorem: |t|<2 * sqrt(p)
125 # Also compute the cofactor such that |E(F_p)| = cofactor * l
126 # If E is Montgomery curve , the cofactor has to be a multiple of 4
127 t = p+1-l * round((p+1)/l)
128 if l^2 > 16 * p:
129 print(’verify -trace: %s’ % t)
130 f = factor (1)
131 d = (p+1-t)/l
132 for v in V:

134 CHAPTER A. CODE

133 while d % v == 0:
134 d //= v
135 f * = factor(v)
136 print(’verify -cofactor: %s\n’ % f)
137 else:
138 print(’verify -trace: Unverified ’)
139 print(’verify -cofactor: Unverified\n’)
140
141 # Compute the complex -multiplication field discriminant D:
142 # Let s^2 be the largest square dividing t^2-4p. Then (t^2-4p)/s^2 is

a squarefree negative integer.
143 # If (t^2-4p)/s^2 mod 4 = 1, then D = (t^2-4p)/s^2.
144 # Otherwise , D = 4(t^2-4p)/s^2.
145 # Verify D is big: SafeCurves requires |D| >2^100.
146 D = t^2-4 * p
147 for v in V:
148 while D % v^2 == 0: D /= v^2
149 if prod([v for v in V if D % v == 0]) != -D:
150 print(’verify -disc: Unverified ’)
151 print(’verify -discisbig: Unverified ’)
152 safedisc = False
153 else:
154 f = -prod([factor(v) for v in V if D % v == 0])
155 if D % 4 != 1:
156 D * = 4
157 f = factor (4) * f
158 Dbits = (log(-D)/log(2)).numerical_approx ()
159 print(’verify -disc: %s = %s; -2^%.1f’ % (D,f,Dbits))
160 print(’verify -discisbig: %s\n’ %(D < -2^100))
161
162 # Verify that the cost of the Pollard ’s rho attack is above 2^100
163 pi4 = 0.78539816339744830961566084581987572105
164 rho = log(pi4 * l)/log (4)
165 print(’verify -rho: %.1f’ % rho)
166 print(’verify -rhoabove100: %s\n’ %(rho.numerical_approx () >= 100))
167
168 # Verify security against twist attacks
169 twistl = ’Unverified ’
170 d = p+1+t
171 for v in V:
172 while d % v == 0: d /= v
173 if d ==1:
174 d = p+1+t
175 for v in V:
176 if d % v == 0:
177 if twistl == ’Unverified ’ or v > twistl: twistl = v
178
179 print(’verify -twistl: %s\n’ % twistl)
180 print(’verify -twistmovsafe: Unverified ’)
181 print(’verify -twistembeddingdegree: Unverified\n’)
182 if twistl == ’Unverified ’:
183 print(’hex -twistl: Unverified\n’)
184 print(’expand2 -twistl: Unverified\n’)
185 print(’verify -twistcofactor: Unverified\n’)
186 print(’verify -gcdtwistlp1: Unverified\n’)
187 print(’verify -twistrho: Unverified\n’)
188 safetwist = False
189 else:

SECTION A.1. CODE FROM CHAPTER 4 135

190 print(’hex -twistl: %s\n’ %hex(twistl))
191 print(’expand2 -twistl: %s\n’ % expand2(twistl))
192 f = factor (1)
193 d = (p+1+t)/twistl
194 for v in V:
195 while d % v == 0:
196 d //= v
197 f * = factor(v)
198 print(’verify -twistcofactor: %s\n’ % f)
199 gcdtwistlpis1 = gcd(twistl ,p) == 1
200 print(’verify -gcdtwistlp1: %s\n’ %gcdtwistlpis1)
201
202 movsafe = ’Unverified ’
203 embeddingdegree = ’Unverified ’
204 if gcdtwistlpis1 and twistl.is_prime ():
205 u = Integers(twistl)(p)
206 d = twistl -1
207 for v in V:
208 while d % v == 0: d /= v
209 if d == 1:
210 d = twistl -1
211 for v in V:
212 while d % v == 0:
213 if u^(d/v) != 1: break
214 d /= v
215 print(’verify -twistmovsafe: %s’ %((twistl -1)/d <= 100))
216 print(’verify -twistembeddingdegree: %s = (l‘-1)/%s\n’ % (d,(twistl

-1)/d))
217
218 rho = log(pi4 * twistl)/log(4)
219 print(’verify -twistrho %.1f’ % rho)
220 print(’verify -twistrhoabove100: %s\n’ %(rho.numerical_approx () >=

100))
221
222 precomp = 0
223 joint = l
224 for v in V:
225 d1 = p+1-t
226 d2 = p+1+t
227 while d1 % v == 0 or d2 % v == 0:
228 if d1 % v == 0: d1 //= v
229 if d2 % v == 0: d2 //= v
230 # best case for attack: cyclic; each power is usable
231 # also assume that kangaroo is as efficient as rho
232 if v + sqrt(pi4 * joint/v) < sqrt(pi4 * joint):
233 precomp += v
234 joint /= v
235
236 rho = log(precomp + sqrt(pi4 * joint))/log (2)
237 print(’verify -jointrho: %.1f’ % rho)
238 print(’verify -jointrhoabove100: %s\n’ %(rho.numerical_approx () >=

100))
239
240 x0 = k(x0)
241 y0 = k(y0)
242 x1 = k(x1)
243 y1 = k(y1)
244

136 CHAPTER A. CODE

245 # Verify if the equation defines and elliptic curve
246 # Verify the shape of the elliptic curve
247 # Verify both points [x0,y0] and [x1 ,y1] are on the curve
248 if shape in (’edwards ’, ’tedwards ’):
249 d = Integer(readfile(curve+’/d’))
250 a = 1
251 if shape == ’tedwards ’:
252 a = Integer(readfile(curve+’/a’))
253
254 print(’verify -shape: Twisted Edwards ’)
255 print(’verify -equation: %sx^2+y^2 = 1%+dx^2y^2\n’ % (a, d))
256 if a == 1:
257 print(’verify -shape: Edwards ’)
258 print(’verify -equation: x^2+y^2 = 1%+dx^2y^2\n’ % d)
259
260 a = k(a)
261 d = k(d)
262 elliptic = a * d * (a-d)
263 level0 = a * x0^2+y0^2-1-d * x0^2 * y0^2
264 level1 = a * x1^2+y1^2-1-d * x1^2 * y1^2
265
266 if shape == ’montgomery ’:
267 print(’verify -shape: Montgomery ’)
268 A = Integer(readfile(curve+’/A’))
269 B = Integer(readfile(curve+’/B’))
270 if B == 1: print(’verify -equation: y^2 = x^3%s+dx^2+x\n’ %A)
271 else: print(’verify -equation: %sy^2 = x^3%s+dx^2+x\n’ %(B,A))
272
273 A = k(A)
274 B = k(B)
275 elliptic = B * (A^2-4)
276 level0 = B * y0^2-x0^3-A * x0^2-x0
277 level1 = B * y1^2-x1^3-A * x1^2-x1
278
279 if shape == ’shortw ’:
280 print(’verify -shape: short Weierstrass ’)
281 a = Integer(readfile(curve+’/a’))
282 b = Integer(readfile(curve+’/b’))
283 print(’verify -equation: y^2 = x^3%s+dx%s+d\n’ % (a,b))
284
285 a = k(a)
286 b = k(b)
287 elliptic = 4 * a^3+27 * b^2
288 level0 = y0^2-x0^3-a * x0-b
289 level1 = y1^2-x1^3-a * x1-b
290
291 print(’verify -elliptic: %s’ %str(elliptic)) # discriminant
292 print(’verify -iselliptic: %s’ %(elliptic != 0)) # if eq. defines an

elliptic curve
293 print(’verify -isoncurve0: %s’ %(level0 == 0)) # if generating point is

on the curve
294 print(’verify -isoncurve1: %s\n’ %(level1 == 0)) # if base point is on

the curve
295
296 # Transform an Edwards or a twised Edwards curve to a Montgomery curve
297 if shape in (’edwards ’, ’tedwards ’):
298 A = 2 * (a+d)/(a-d)
299 B = 4/(a-d)

SECTION A.1. CODE FROM CHAPTER 4 137

300 x0 ,y0 = (1+y0)/(1-y0) ,((1+y0)/(1-y0))/x0
301 x1 ,y1 = (1+y1)/(1-y1) ,((1+y1)/(1-y1))/x1
302 shape = ’montgomery ’
303
304 # Transform a Montgomery curve to a short Weierstrass
305 if shape == ’montgomery ’:
306 a = (3-A^2) /(3 * B^2)
307 b = (2 * A^3-9 * A)/(27 * B^3)
308 x0,y0 = (x0+A/3)/B,y0/B
309 x1,y1 = (x1+A/3)/B,y1/B
310 shape = ’shortw ’
311
312 try:
313 E = EllipticCurve ([a,b])
314 numorder2 = 0
315 numorder4 = 0
316 for P in E(0).division_points (4):
317 if P != 0 and 2 * P == 0:
318 numorder2 += 1
319 if 2 * P != 0 and 4 * P == 0:
320 numorder4 += 1
321 print(’verify -numorder2: %s’ %str(numorder2))
322 print(’verify -numorder4: %s\n’ %str(numorder4))
323
324 # Verify completeness
325 completesingle = False
326 completemulti = False
327 if numorder4 == 2 and numorder2 == 1:
328 # Complete Edwards and Montgomery with unique point of order 2
329 completesingle = True
330 completemulti = True
331 # Should extend this to allow complete twisted hessian
332 print(’verify -completesingle: %s’ %completesingle)
333 print(’verify -completemulti: %s\n’ %completemulti)
334
335 print(’verify -ltimesbase1is0: %s’ %(l * E([x1 ,y1]) == 0))
336 print(’verify -ltimesbase1: %s\n’ %(str(l * E([x1,y1]))))
337
338 print("verify -cofactorbase01: it can not be done as I do not have z0.

")
339 print(’verify -cofactorbase01: %s\n’ %(str (((p+1-t)//l) * E([x0,y0])

== E([x1,y1]))))
340 except:
341 print(’verify -numorder2: Unverified ’)
342 print(’verify -numorder4: Unverified\n’)
343
344 print(’verify -ltimesbase1: Unverified ’)
345 print(’verify -cofactorbase01: Unverified\n’)
346 safecomplete = False
347
348 # Verify monladder
349 montladder = False
350 for r,e in (z^3+a * z+b).roots ():
351 if (3 * r^2+a).is_square ():
352 montladder = True
353 print(’verify -montladder: %s’ %montladder)
354
355 # Verify indistinguishability

138 CHAPTER A. CODE

356 indistinguishability = False
357 elligator2 = False
358 if (p+1-t) % 2 == 0:
359 if b != 0:
360 indistinguishability = True
361 elligator2 = True
362 print(’verify -indistinguishability: %s’ %indistinguishability)
363 print(’verify -ind -notes: Elligator 2: %s\n’ % ([’No’,’Yes’][elligator2

]))
364
365 # Verify rigidity (by reading the file "rigid ")
366 saferigid &= (rigid == ’fully rigid ’ or rigid == ’somewhat rigid’)
367
368 safecurve = True
369 print(’verify -safefield: %s’ %safefield)
370 print(’verify -safeeq: %s’ %safeeq)
371 print(’verify -safebase: %s’ %safebase)
372 print(’verify -saferho: %s’ %saferho)
373 print(’verify -safetransfer: %s’ %safetransfer)
374 print(’verify -safedisc: %s’ %safedisc)
375 print(’verify -saferigid: %s’ %saferigid)
376 print(’verify -safeladder: %s’ %safeladder)
377 print(’verify -safetwist: %s’ %safetwist)
378 print(’verify -safecomplete: %s’ %safecomplete)
379 print(’verify -safeind: %s’ %safeind)

SECTION A.2. CODE FROM CHAPTER 5 139

A.2 Code from Chapter 5

A.2.1 Setup

MNT3(), MNT4(), MNT6(), Freeman(), BN()

These functions return the set of polynomials that define the families of curves
MNT3, MNT4, MNT6, Freeman, and BN, respectively.

The expected outputs are:

• t: polynomial t(X) ∈ Q[X] that parameterizes the trace.

• p: polynomial p(X) ∈ Q[X] that parameterizes the order of the curves.

• q: polynomial q(X) ∈ Q[X] that parameterizes the order of the finite field
over which the curve is defined.

1 # SETUP
2
3 # Polynomial rings over the reals and rationals.
4 R.<X> = PolynomialRing(RR, ’X’)
5 Q.<X> = PolynomialRing(QQ, ’X’)
6
7 # Curve families.
8 def MNT3():
9 t = Q(6 * X -1)

10 q = Q(12 * X^2 - 1)
11 p = q + 1 - t
12 return(t, p, q)
13
14 def MNT4():
15 t = Q(-X)
16 q = Q(X^2 + X + 1)
17 p = q + 1 - t
18 return(t, p, q)
19
20 def MNT6():
21 t = Q(2 * X + 1)
22 q = Q(4 * X^2 + 1)
23 p = q + 1 - t
24 return(t, p, q)
25
26 def Freeman ():
27 t = Q(10 * X^2 + 5 * X + 3)
28 q = Q(25 * X^4 + 25 * X^3 + 25 * X^2 + 10 * X + 3)
29 p = q + 1 - t
30 return(t, p, q)
31
32 def BN():
33 t = Q(6 * X^2 + 1)

140 CHAPTER A. CODE

34 q = Q(36 * X^4 + 36 * X^3 + 24 * X^2 + 6 * X + 1)
35 p = q + 1 - t
36 return(t, p, q)

A.2.2 Auxiliary functions
is_integer_valued(g)

This function checks whether a given polynomial g is integer-valued. It returns
True if so, and False otherwise. The test is based on the fact that a polynomial
g ∈ Q[X] is integer-valued if and only if g(x) ∈ Z for deg g + 1 consecutive
x ∈ Z [CC16, Corollary 2].

1 def is_integer_valued(g):
2
3 # Check if evaluation is integer in deg(g) + 1 consecutive points.
4 for x in range(g.degree ()+1):
5 if (not g(x) in ZZ):
6 print(str(g) + " is not integer -valued.")
7 return False
8 return True

find_relevant_root(w, b, side)

This function finds the left-most or right-most root of a polynomial b(X) ∈
Q[X].

The expected inputs are:

• w: positive integer.

• b: polynomial b(X) ∈ Q[X].

• side: this parameter specifies which root to keep. If side = -1, then the
function takes the left-most root, and if side = 1, it returns the right-most
root.

The expected output is the relevant extremal root.

1 def find_relevant_root(w, b, side):
2 # Decide whether to keep the left -most or right -most root.
3 i = -(1 + side) / 2
4 # 0 <= w(x)
5 C_1 = 0
6 w_roots = R(w).roots()

SECTION A.2. CODE FROM CHAPTER 5 141

7 if (w_roots != []):
8 C_1 = w_roots[i][0]
9 # w(x) < b(x)

10 C_2 = 0
11 bw_roots = R(b - w).roots()
12 if (bw_roots != []):
13 C_2 = bw_roots[i][0]
14 # Return the relevant extremal root.
15 if (side == -1):
16 return ceil(min(C_1 , C_2))
17 else:
18 return floor(max(C_1 , C_2))

check_embedding_degree(px, qx, k)

This function determines whether k is the smallest positive integer such that
(pxk − 1) (mod qx) = 1, and outputs True/False.

1 def check_embedding_degree(px , qx, k):
2 # Checks divisibility condition
3 if ((px^k - 1) % qx != 0): return False
4 # Checks that divisibility conditions does not happen for smaller

exponents
5 div = divisors(k)
6 div.remove(k)
7 for j in div:
8 if ((px^j - 1) % qx == 0):
9 return False

10 return True

A.2.3 Code for Proposition 5.17

candidate_embedding_degrees(Family, K_low, K_high)

Given a family of curves, this function computes the possible embedding degrees
of curves that may form 2-cycles with a curve of the given family.

The expected inputs are:

• Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of
pairing-friendly elliptic curves with prime order.

• K_low, K_high: lower and upper bounds on the embedding degree to look
for.

The expected outputs are:

142 CHAPTER A. CODE

• embedding_degrees: a list of potential embedding degrees k such that
K_low ≤ k ≤ K_high and a curve from the family might form a cycle with
a curve with embedding degree k.

• modular_conditions: conditions on x mod k for each of these k.

1 def candidate_embedding_degrees(Family , K_low , K_high):
2
3 (t, p, q) = Family ()
4 # Create an empty list to store the candidate embedding degrees
5 embedding_degrees = []
6 # Create an empty list to store the lists of modular conditions for

each k
7 modular_conditions = [None] * (K_high + 1)
8
9 # Embedding degree k implies that q(x) = 1 (mod k).

10 # We check this condition in 0, ..., k-1 and build a list of
candidates

11 # such that any x has to be congruent to one of them modulo k.
12 for k in range(K_low , K_high + 1):
13
14 candidate = False
15
16 for i in range(k):
17 if ((q(i) % k) == 1):
18 # First time a candidate k is discovered , add it to the

list and
19 # create a list within modular_conditions to store the

values i.
20 if (not candidate):
21 candidate = True
22 embedding_degrees.append(k)
23 modular_conditions[k] = []
24 modular_conditions[k]. append(i)
25
26 return embedding_degrees , modular_conditions

A.2.4 Code for Table 5.2

compute_bounds(a, b)

This function computes the bounds Nleft, Nright of Lemma 5.20. This function
has been used to produce the results of tables from Table 5.2. It uses the
auxiliary functions from Appendix A.2.2.

SECTION A.2. CODE FROM CHAPTER 5 143

The expected inputs are:

• a, b: two integer-valued polynomials in Q[X].

The expected outputs are:

• N_left, N_right: integer bounds Nleft, Nright described in Lemma 5.20.

1 def compute_bounds(a, b):
2
3 # Check that b has even degree and positive leading coefficient
4 if (b.degree () % 2 == 1 or b.leading_coefficient () < 0):
5 print("Invalid divisor.")
6 return
7
8 # Check that a, b are integer valued.
9 if (not is_integer_valued(a) or not is_integer_valued(b)):

10 return
11
12 # Polynomial division
13 (h, r) = a.quo_rem(b)
14
15 # Compute c so that ch, cr are in Z[X]
16 denominators = [i.denominator () for i in (h.coefficients () + r.

coefficients ())]
17 c = lcm(denominators)
18
19 # Compute signs
20 sigma_right = sign(r.leading_coefficient ())
21 sigma_left = sigma_right * (-1)^(r.degree ())
22
23 # We compute the polynomials w_left , w_right such that
24 # 0 <= w_left < b(x) for all x < N_left , and
25 # 0 <= w_right < b(x) for all x > N_right.
26 w_left = c * r + ((1 - sigma_left) / 2) * b
27 w_right = c * r + ((1 - sigma_right) / 2) * b
28
29 # Compute N_left , N_right
30 N_left = find_relevant_root(w_left , b, -1)
31 N_right = find_relevant_root(w_right , b, 1)
32
33 return (N_left , N_right)

A.2.5 Code for Corollary 5.22
exhaustive_search(Family, k, N_left, N_right, mod_cond)

This function performs the exhaustive search from Corollary 5.22 within the
intervals [Nleft, Nright].

The expected inputs are:

144 CHAPTER A. CODE

• Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of
pairing-friendly elliptic curves with prime order.

• k: an embedding degree.

• N_left, N_right: upper and lower integer bounds.

• mod_cond: conditions on x mod k for every x in the interval [N_left, N_right].

The expected output is:

• curves: a list of curve descriptions (x, k, t(x), p(x), q(x)) such that x ∈
[N_left, N_right], and the curve parameterized by (t(x), p(x), q(x)) forms
a cycle with a curve with embedding degree k.

1 def exhaustive_search(Family , k, N_left , N_right , mod_cond):
2
3 (t, p, q) = Family ()
4 curves = []
5
6 for x in range(N_left , N_right +1):
7 # We skip those values that will never yield q(x) = 1 (mod k), as

precomputed above.
8 if (not (x % k) in mod_cond): continue
9 # Check the embedding degree condition

10 if (check_embedding_degree(p(x), q(x), k)):
11 curves.append ((x, k, t(x), p(x), q(x)))
12
13 return curves

A.2.6 Main function
search_for_cycles(Family, K_low, K_high)

This function looks for 2-cycles formed by a curve belonging to a given param-
eterized family of curves and a prime-order curve with an embedding degree
between two given bounds.

The expected inputs are:

• Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of
pairing-friendly elliptic curves with prime order.

• K_low, K_high: integer lower and upper bounds on the embedding degree
to look for.

SECTION A.2. CODE FROM CHAPTER 5 145

The function prints to a file all 2-cycles involving a curve from the family and
a prime-order curve with embedding degree K_low ≤ k ≤ K_high.

1 import time
2
3 def search_for_cycles(Family , K_low , K_high):
4
5 file_name = ’output_ ’ + Family.__name__ + ’.txt’
6 f = open(file_name , ’w’)
7 start = time.time()
8
9 # Instantiate the family

10 (t, p, q) = Family ()
11 print("Starting family: " + str(Family.__name__), file=f)
12 print("t(X) = " + str(t), file=f)
13 print("p(X) = " + str(p), file=f)
14 print("q(X) = " + str(q), file=f)
15
16 # Find the candidate embedding degrees up to K that are compatible

with this family
17 (embedding_degrees , modular_conditions) = candidate_embedding_degrees

(Family , K_low , K_high)
18 print("Candidate embedding degrees: " + str(embedding_degrees), file=

f)
19 for k in embedding_degrees:
20 print (("For k = " + str(k) + ", necessarily x = " +str(

modular_conditions[k])) + " (mod " + str(k) + ")", file=f)
21 print("========================", file=f)
22
23 # For each potential embedding degree , find the bounds N_left ,

N_right and perform exhaustive search within [N_left , N_right].
24 for k in embedding_degrees:
25
26 f.close()
27 f = open(file_name , ’a’)
28 start_k = time.time()
29
30 print("k = " + str(k), file=f)
31 (N_left , N_right) = compute_bounds(p^k, q)
32 print("N_left = " + str(N_left) + ", N_right = " + str(N_right),

file=f)
33
34 curves = exhaustive_search(Family , k, N_left , N_right ,

modular_conditions[k])
35 print("Curves with embedding degree " + str(k) + " that form a

cycle with a curve from the " + str(Family.__name__) + " family: " +
str(len(curves)), file=f)

36
37 for curve in curves:
38 (x, k, tx, px , qx) = curve
39 print("x = " + str(x), file=f)
40 print("embedding degree = " + str(k), file=f)
41 print("t(x) = " + str(tx), file=f)
42 print("p(x) = " + str(px), file=f)
43 print("q(x) = " + str(qx), file=f)

146 CHAPTER A. CODE

44 print("------------", file=f)
45
46 end_k = time.time()
47 print(’Computations for embedding degree ’ + str(k) + ’ took’,

round(end_k - start_k , 2), ’seconds.’, file=f)
48 print("------------------------", file=f)
49
50 end = time.time()
51 print("========================", file=f)
52 print(’Overall computation took’, round(end - start , 2), ’time’, file

=f)
53
54 f.close()

Appendix B

Publications

Journals

2020 R. Genés-Durán, D. Yarlequé-Ruesta, M. Bellés-Muñoz, A. Jimenez-Viguer,
and J.L. Muñoz-Tapia, “An architecture for easy onboarding and key life-
cycle management in blockchain applications”, in IEEE Access, vol. 8, pp.
115005-115016, doi: 10.1109/ACCESS.2020.3003995.

Abstract. New manufacturing paradigms require a large number of busi-
ness interactions between multiple cyber-physical systems with different
owners. In this context, public distributed ledgers are disruptive because
they make it possible to securely and publicly record proofs of agree-
ments between parties that do not necessarily trust each other. Many
industry leaders have already achieved significant business benefits using
this technology, including greater transparency, improved traceability, en-
hanced security, increased transaction speed and costs reduction. While
the benefits of blockchain technologies for industrial applications are un-
questionable, these technologies have an inherent complexity that might
be overwhelming for many users. To decrease entry barriers for industry
users to distributed ledger technologies, it is necessary to have an easy
user onboarding process and a simple key life-cycle management. In this
paper, we propose an architecture that facilitates these processes and sim-
plifies how users utilize decentralized applications without sacrificing on
the expected security. To achieve this goal, our architecture uses a middle-

147

148 CHAPTER B. PUBLICATIONS

ware that allows us to decouple the digital signatures required for paying
blockchain fees from the ones required for authorization. This approach
has the advantage that users are not forced to create wallets, buy cryp-
tocurrency, or protect their private keys. For these reasons, our solution
is a promising way of enabling a reasonable transition to the integration
of distributed ledger technologies in industrial business processes.

2021 R. Genés-Durán, J. Hernández-Serrano, O. Esparza, M. Bellés-Muñoz,
J.L. Muñoz-Tapia, “DEFS — Data exchange with free sample protocol”,
in Electronics, vol. 10, no. 12: 1455, doi: 10.3390/electronics10121455.

Abstract. Distrust between data providers and data consumers is one
of the main obstacles hampering the take-off of digital-data commerce.
Data providers want to get paid for what they offer, while data consumers
want to know exactly what they are paying for before actually paying for
it. In this article, we present a protocol that overcomes this obstacle by
building trust based on two main ideas. First, a probabilistic verification
protocol, where some random samples of the real dataset are shown to
buyers in order to allow them to make an assessment before committing
any payment; and second, a guaranteed, protected payment process en-
forced with smart contracts on a public blockchain that guarantees the
payment of data if and only if the provided data meet the agreed terms,
and that honest players are otherwise refunded.

2022 M. Bellés-Muñoz, B. Whitehat, J. Baylina, V. Daza, and J.L. Muñoz-
Tapia, “Twisted Edwards elliptic curves for zero-knowledge circuits”, in
Mathematics, vol. 9, no. 23: 3022, doi: 10.3390/math9233022.

Abstract. Circuit-based zero-knowledge proofs have arose as a solution
to the implementation of privacy in blockchain applications, and to cur-
rent scalability problems that blockchains suffer from. The most efficient
circuit-based zero-knowledge proofs use a pairing-friendly elliptic curve
to generate and validate proofs. In particular, the circuits are built con-
necting wires that carry elements from a large prime field, whose order is
determined by the number of elements of the pairing-friendly elliptic curve.
In this context, it is important to generate an inner curve using this field,
because it allows to create circuits that can verify public-key cryptogra-

149

phy primitives, such as digital signatures and encryption schemes. To
this purpose, in this article, we present a deterministic algorithm for gen-
erating twisted Edwards elliptic curves defined over a given prime field.
We also provide an algorithm for checking the resilience of this type of
curve against most common security attacks. Additionally, we use our
algorithms to generate Baby Jubjub, a curve that can be used to imple-
ment elliptic-curve cryptography in circuits that can be validated in the
Ethereum blockchain.

2022 M. Bellés-Muñoz, J. Baylina, V. Daza and J. L. Muñoz-Tapia, “New pri-
vacy practices for blockchain software”, in IEEE Software, vol. 39, no. 3,
pp. 43-49, doi: 10.1109/MS.2021.3086718.

Abstract. In this article, we present the software tools we have imple-
mented to bring complex privacy technologies closer to developers and to
facilitate the implementation of privacy-enabled blockchain applications.

2022 M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A. Rubio and J. Baylina,
“circom: A circuit description language for building zero-knowledge ap-
plications”, in IEEE Transactions on Dependable and Secure Computing
(early access), doi: 10.1109/TDSC.2022.3232813.

Abstract. A zero-knowledge (ZK) proof guarantees that the result of a
computation is correct while keeping part of the computation details pri-
vate. Some ZK proofs are tiny and can be verified in short time, which
makes them one of the most promising technologies for solving two key
aspects: the challenge of enabling privacy to public and transparent dis-
tributed ledgers and enhancing their scalability limitations. Most practical
ZK systems require the computation to be expressed as an arithmetic cir-
cuit that is encoded as a set of equations called rank-1 constraint system
(R1CS). In this paper, we present circom, a programming language and a
compiler for designing arithmetic circuits that are compiled to R1CS. More
precisely, with circom, programmers can design arithmetic circuits at a
constraint level, and the compiler outputs a file with the R1CS description,
and WebAssembly and C++ programs to efficiently compute all values of
the circuit. We also provide an open-source library called circomlib with
multiple circuit templates. Circom can be complemented with snarkjs,

150 CHAPTER B. PUBLICATIONS

a library for generating and validating ZK proofs from R1CS. Altogether,
our software tools abstract the complexity of ZK proving mechanisms and
provide a unique and friendly interface to model low-level descriptions of
arithmetic circuits.

Conference proceedings

2022 E. Albert, M. Bellés-Muñoz, M. Isabel, C. Rodríguez-Núñez, A. Rubio,
“Distilling constraints in zero-knowledge protocols”, in Computer Aided
Verification: 34th International Conference, CAV 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol 13371, pp. 430–443, Springer-
Verlag, Berlin, Heidelberg, doi: 10.1007/978-3-031-13185-1_21.

Abstract. The most widely used zero-knowledge (ZK) protocols require
provers to prove they know a solution to a computational problem ex-
pressed as a rank-1 constraint system (R1CS). An R1CS is essentially a
system of non-linear arithmetic constraints over a set of signals, whose
security level depends on its non-linear part only, as the linear (additive)
constraints can be easily solved by an attacker. Distilling the essential
constraints from an R1CS by removing the part that does not contribute
to its security is important, not only to reduce costs (time and space) of
producing the ZK proofs, but also to reveal to cryptographic programmers
the real hardness of their proofs. In this paper, we formulate the problem
of distilling constraints from an R1CS as the (hard) problem of simplifying
constraints in the realm of non-linearity. To the best of our knowledge, it
is the first time that constraint-based techniques developed in the context
of formal methods are applied to the challenging problem of analysing and
optimizing ZK protocols.

2023 M. Bellés-Muñoz, J. Jiménez Urroz, and J. Silva, “Revisiting cycles of
pairing-friendly curves”. To appear in Crypto’23.

Abstract. A recent area of interest in cryptography is recursive compo-
sition of proof systems. One of the approaches to make recursive compo-
sition efficient involves cycles of pairing-friendly elliptic curves of prime
order. However, known constructions have very low embedding degrees.

151

This entails large parameter sizes, which makes the overall system ineffi-
cient. In this paper, we explore 2-cycles composed of curves from families
parameterized by polynomials, and show that such cycles do not exist un-
less a strong condition holds. As a consequence, we prove that no 2-cycles
can arise from the known families, except for those cycles already known.
Additionally, we show some general properties about cycles, and provide
a detailed computation on the density of pairing-friendly cycles among all
cycles.

Preprints and other publications

2020 B. Whitehat, M. Bellés, J. Baylina, “ERC-2494: Baby Jubjub elliptic
curve”, Ethereum Improvement Proposals (EIP), no. 2494.

2022 L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, and J.L. Muñoz-
Tapia, “PlonKup: Reconciling PlonK with plookup”, available in Cryptol-
ogy ePrint Archive, paper 2022/086.

Abstract. In 2019, Gabizon, Williamson, and Ciobotaru introduced
PlonK, a fast and flexible ZK-SNARK with an updatable and univer-
sal structured reference string. PlonK uses a grand product argument to
check permutations of wire values, and exploits convenient interactions be-
tween multiplicative subgroups and Lagrange bases. The following year,
Gabizon and Williamson used similar techniques to develop plookup, a
ZK-SNARK that can verify that each element from a list of queries can
be found in a public lookup table. In this paper, we present PlonKup,
a fully succinct ZK-SNARK that integrates the ideas from plookup into
PlonK in an efficient way.

2022 M. Bellés-Muñoz and V. Daza, “Chaum blind signature scheme”, in Ency-
clopedia of Cryptography, Security and Privacy (3rd Ed.), Springer-Verlag,
Berlin, Heidelberg, doi: 10.1007/978-3-642-27739-9_1752-1.

2022 M. Bellés-Muñoz and V. Daza, “Self-sovereign identity”, in Encyclopedia
of Cryptography, Security and Privacy (3rd Ed.), Springer-Verlag, Berlin,
Heidelberg, doi: 10.1007/978-3-642-27739-9_1752-1.

152 CHAPTER B. PUBLICATIONS

	Abstract
	List of figures
	List of tables
	Introduction
	Contributions and organization

	Preliminaries
	Zero-knowledge proofs
	ZK-SNARKs
	Arithmetic-circuit satisfiability

	Elliptic curves

	A circuit language for zero-knowledge applications
	Introduction
	Contributions and organization

	Related work
	Libraries
	Domain-specific languages
	Standardization tools
	Comparative analysis

	circom
	Creating a circuit
	Compiling a circuit
	Generating a ZK proof
	The main component
	Connecting templates
	Debugging
	Building complex circuits
	Splitting between computation and constraints
	Checking if a signal is zero
	Functions and constants
	Symbolic variables
	Dealing with the unknown
	Using templates from circomlib

	Applications
	Hash functions
	Elliptic-curve arithmetic
	Public-key cryptography
	Digital signatures

	circom performance on large circuits
	ZK-rollup circuits
	Performance results

	Analysis
	Conclusions

	Twisted Edwards elliptic curves for arithmetic circuits
	Introduction
	Contributions and organization

	Related work
	Elliptic curves
	Montgomery curves
	Twisted Edwards curves

	Generation of twisted Edwards curves
	General overview
	Choice of Montgomery equation
	Choice of generator and base points
	Transformation to twisted Edwards
	Optimization of parameters

	Security tests
	Baby Jubjub: a suitable curve for Ethereum
	Elliptic-curve arithmetic
	The Bowe–Hopewood–Pedersen hash

	Conclusions

	Revisiting cycles of pairing-friendly elliptic curves
	Introduction
	Contributions and organization

	Related work
	Pairing-friendly elliptic curves
	Elliptic curves
	Pairing-friendly polynomial families

	Cycles of elliptic curves
	Definition and known results
	Some properties of cycles

	Cycles from known families
	Cycles from parametric-families
	2-cycles from parametric families

	Density of pairing-friendly cycles
	Conclusions

	Conclusions
	Bibliography
	Code
	Code from Chapter 4
	Implementation of security tests from Section 4.5

	Code from Chapter 5
	Setup
	Auxiliary functions
	Code for Proposition 5.17
	Code for Table 5.2
	Code for Corollary 5.22
	Main function

	Publications

