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Abstract

Collective behavior in animals is ubiquitous in nature. It emerges from the self-

organization of interacting individuals within a group. What makes collective be-

havior so interesting is that the behavior of the group as a whole cannot be predicted

from the actions of its individual members alone. In recent decades, there has been a

growing interest in understanding how collective behavior emerges from individual

interactions. This research has revealed that self-organization in biological systems

share common functional properties that can trigger behavioral transitions that en-

dow collectives with adaptive capabilities.

The main objective of this work is to explore the underlying mechanisms from

which complex collective behavior can emerge and adapt. We concentrate our anal-

ysis in the collective motion of schooling fish and consensus reaching in swarming

robots in a model of honeybees nest site selection.

We study the collective motion of black neon tetra (Hyphessobrycon herbertaxelrodi)

by recording their movements in an experimental tank and using a custom tracking

software to extract individual trajectories. Our analysis of the data reveals a strong

correlation between swimming speed and collective ordering. We explore this cor-

relation in the Vicsek model, a self-propelled particles model, and discover that the

system undergoes a disorder-to-order phase transition with an increase in particles’

speed. By modifying the Vicsek model to include periodically oscillating speed, we

are able to replicate the black neon tetra’s type of locomotion. This suggests that

fish can reduce the effect of noise by increasing their speed and favoring alignment

forces. Modulating directional synchronization through speed has adaptive benefits,

enabling faster and more efficient transfer of information.

We also investigate the presence and characteristics of avalanches in our fish

school, which occur when fish abruptly rearrange their direction of motion. We

observe that the size and duration of these avalanches follow a scale-free pattern

similar to self-organized critical systems. Additionally, certain fish are more likely

to initiate avalanches, acting as effective leaders. By incorporating a global leader

that periodically changes direction, we replicate in the Vicsek model the intermittent
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scale-free behavior observed in fish schools. Our findings highlight the importance

of individual variability in triggering behavioral cascades.

To analyze collective decision-making we study a decentralized model that sim-

ulates honeybees’ nest site selection process. The model integrates independent site

discovery and communication to reach consensus on the best site. We thoroughly

characterize the model’s parameters in a mean-field approximation and test its fea-

sibility by adding space, locality, and situatedness to the dynamics by using kilobots,

small swarming robots capable of exchanging information with neighboring robots.

Remarkably, the level of stationary consensu s in our results from kilobots closely

matches the consensus stationary values predicted by the mean-field approxima-

tion. To explain this result, we examine the connectivity of the kilobots system in

our experimental arena, and demonstrate that, from local interactions and mobil-

ity, kilobots form a percolating communication network from which they transmit

information as efficiently as in the mean-field approximation. The kilobots’ move-

ment effectively induces an extension of the interaction radius in respect to the static

scenario, which is especially important in the high communication regime. Our re-

sults demonstrate that this model can explain honeybees consensus reaching on the

best available site by local dynamical interactions.

Our findings inspire further exploration in individuals variability in self-organizing

systems, with the aim of developing more comprehensive models and expanding

knowledge of the universality of collective behavior.
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Resum

El comportament col·lectiu dels animals és ubic a la natura. Sorgeix de la interacció

entre individus d’un grup. Tot i així, no pot ser predit només a partir de les ac-

cions individuals dels seus integrants. En les darreres dècades, hi hagut un interès

creixent en entendre com el comportament col·lectiu emergeix de les interaccions

individuals. Aquesta recerca ha revelat que l’autoorganització en sistems biològics

comparteix propietats funcionals comunes que poden desencadenar transicions que

doten als col·lectius de capacitats adaptatives.

Aquest treball es centra en l’estudi dels mecanismes pels quals els comporta-

ments col·lectius complexes sorgeixen i s’adapten. Ens centrarem en l’anàlisi del

moviment col·lectiu de bancs de peixos i el consens en eixams de robots que mode-

len el procés amb el qual les abelles escullen l’ubicació d’un nou rusc.

Estudiem el moviment col·lectiu del peix tetra negre neon (Hyphessobrycon her-

bertaxelrodi) amb un programari personalitzat que extreu les trajectòries individuals

dels individus d’un banc a partir d’enregistraments d’un aquari experimental. Els

resultats mostren una forta relació entre la velocitat a la que neden i l’ordre col·lectiu.

Explorem aquesta correlació en el model de Vicsek, que demostra la transició de fase,

des del desordre fins a l’ordre, amb l’augment de la velocitat de les partícules. Mod-

ificant el model de Vicsek per incloure una oscil·lació de velocitat periòdica, podem

replicar la locomoció del tetra negre neon. Això suggereix que els piexos poden re-

duir l’efecte del soroll augmentant la velocitat i afavorint les forces d’alineament.

Modulant la sincronització direccional amb la velocitat, els peixos poden intercan-

viar informació de manera més ràpida i eficient, la qual cosa té beneficis adaptatius.

També investiguem la presència i característiques de les allaus als bancs de peixos

quan canvien sobtadament de direcció. S’observa que la mida i durada d’aquestes

allaus segueix un patró lliure d’escala, similar al de sistemes crítics autoorganitzats.

Adicionalemnt, alguns peixos són més propensos a desencadenar allaus, actuant

efectivament com a líders. A l’incorporar un líder global que periòdicament canvia

de direcció, repliquem – en el model de Viscek – el comportament lliure d’escala

obervat en els bancs de peixos.
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Per analitzar le presa de decisions col·lectives, estudiem un model descentralitzat

que simula el procés pel qual les abelles escullen l’indret per un nou rusc. El model

integra la cerca independent d’ubicacions i la comunicació per arribar a un con-

sens pel millor lloc. Carecteritzem els paràmetres del model amb una aproximació

de camp mitjà i provem la seva viabilitat afegint espai, localitat i contextualització

a la dinàmica utilitzant kilobots, robots d’eixam capaços d’intercanviar informació

amb robots veïns. El nivell de consens estacionari als nostres resultats amb kilobots

s’assembla notablement als valors del consens estacionari obtinguts per aproximació

de camp mitjà. Per explicar aquest resultat, examinem la connectivitat del sistema

de kilobots a la nostra arena experimental, i demostrem que – a partir de les inter-

accions locals i la mobilitat – els kilobots formen una xarxa percolada de comuni-

cació des de la que transmeten informació tan eficientment com en l’aproximació de

camp mitjà. El moviment dels kilobots indueix efectivament una extensió del radi

d’interacció respecte a l’escenari estàtic, especialment important en el règim d’alta

comunicació. Els nostres resultats demostren que aquest model pot explicar com les

abelles arriben a un consens sobre la millor situació per al nou rusc amb interaccions

dinàmiques locals.

Els nostres descobriments inspiren una exploració més profunda en la variabili-

tat dels individus en l’autoorgantizació de sistemes, amb l’objectiu de desenvolupar

models més extensos i expandir el coneixement sobre l’universalitat del comporta-

ment col·lectiu.
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Preface

I can pin point the exact moment when I became captivated by the concept of emer-

gence in collective behavior. Back in 2013 I was studying Biology at the National

Autonomous University of Mexico (UNAM). I was doing my thesis on the genetic

flux between multiple tree populations in the Transvolcanic Mexican Belt and while

it was certainly an interesting topic, I already knew I was not going to pursue a re-

search careeer on evolutionary genetics. During a chat with a dear professor of mine,

Pablo Padilla, he shared with me that he was working on a research project about

ant foraging behavior. That’s when he introduced me to a Netlogo simulation that

demonstrated how positive feedback in ant pheromone trails could help ants locate

the shortest path to food without any central direction.

I was completely mesmerized by the fact that without any planning such a com-

plex behavior could emerge and, moreover, modeled with relatively simple instruc-

tions. But what truly captured my imagination was the realization that this type of

emergent behavior was not unique to ants, but a common phenomenon in nature.

This led me to the understanding that the emergence of collective behavior might

be more of a universal property of living beings, and hence, not dependent on any

specific cognitive abilities of a particular species. Collective behavior could poten-

tially rely on the simple interactions between individuals. As individuals within a

group interact with one another, their behavior shifts in unpredictable ways, leading

to emergent complex dynamics, making collective behavior an endlessly fascinating

subject to study.

Of course, the months after that conversation I started consuming all types of

Complexity Science content. I enrolled myself in many of the online courses offered

by the Santa Fe Institute and learned concepts such as non-linear dynamics, scaling

behavior, self-organization, and so on. I also started playing with Netlogo and, with

that, I realized I loved programming.
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When I moved to Barcelona, I got into the "Research in Behavior and Cognition"

master studies in the Faculty of Psychology of the University of Barcelona (UB).

That experience introduced me to one of the many perspectives for studying com-

plex phenomena. In psychology, the primary goal of studying collective behavior

is to comprehend the social interactions that give rise to it and the particular group

behavior that emerges from such interactions. During my studies, I had the opportu-

nity to explore interesting examples of primates social organization through simple

interactions. I was also introduced to black neon tetras and zebrafish. These small

freshwater fish were the focus of the research group where I completed my master’s

final work, and they provided a unique opportunity to investigate collective motion

differences between them.

After finishing the master’s degree, I wanted to deepen my understanding of

the principles of animal collective behavior and its possible universality. To achieve

this, I pursued a PhD in Applied Physics at the Universitat Politècnica de Catalunya

(UPC), where I aimed to combine empirical work of animal emergent collective be-

haviors and theoretical approximations that could shed light into the underlying

interactions between animals and their properties. Statistical physics is a powerfull

framework for studying collective behavior as it deals with systems of many inter-

acting units to understand their macroscopic behavior. The tools and perspective

this field offers has largely enriched our understanding of complex behavior in the

last decades.

The work in the PhD was quite challenging for multiple reasons. As someone

who came from a different field, I had to deal with the discomfort of learning a new

scientific "language". Interdisciplinary research involves effective communication to

tackle the different assumptions and ways of thinking about a problem, and that in

itself takes time to build. In addition, interdisciplinary research requires a signifi-

cant investment of time and resources. For example, we had to design and set up

many of the experimental requirements to empirically work with collective systems.

These efforts can take years and can end up occupying a quarter of a slide in your

presentation and placed in the last page of the scientific paper, only thoroughly read

by the extremely curious.
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Despite the challenges, interdiscipline has the amazing quality of promoting in-

novative solutions to a problem, and we got to practice this more than once. It broad-

ens your perspective by exposing you to different ways of thinking. This is a quality

that I place very high on the top of my priorities in both personal and professional

development. Moreover, addressing complex problems from an interdisciplinary

perspective has the potential to develop a more comprehensive understanding of

the phenomena and offer effective solutions to complex issues. As in complex col-

lective behavior, individual variability sometimes is the spark that ignites a whole

different research outcome. On that note, I can only remind the reader that this

work is a collective effort that could only have emerged from the involvement and

interaction of multiple people.

During the years we worked on our project, there was a growing interest in ani-

mal collective behavior among researchers. This was in part due to the development

of new technological tools that enabled the collection of large amounts of behav-

ioral data, allowing for more detailed analyses of animal behavior. Our project is

part of this larger effort to understand collective behavior and its underlying mech-

anisms. Moreover, in today’s digital age, technological advancements are accelerat-

ing changes to our social systems, and we are struggling to predict and respond to

these changes. Therefore, understanding how collective behavior emerges in differ-

ent contexts is more important than ever.
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1 Introduction

1.1 Animal Collective Behavior

Collective behavior is a complex and a widespread phenomenon in biological sys-

tems emerging on multiple scales, hierarchies and complexity levels (Vicsek and

Zafeiris, 2012). It ranges from bacterial colonies and migrating cells (Deisboeck and

Couzin, 2009) to the spread of rumors within human beings (Miller, 2013). Within

animal species, fascinating collective behavior is displayed with the trails of forag-

ing ants (Wilson, 1971), the movement of flocks of birds (Balda and Bateman, 1971)

and light syncronization in sparkles of fireflies (Sarfati et al., 2021; see Figure 1.1).

Interestingly, within these examples of collective behavior it has been observed

that there is neither a leader nor external cues guiding the group towards a collective

pattern. Collective behaviors emerge from self-organization by individuals inter-

acting locally and exchanging information, and not as a product of a central control

(Sumpter, 2006). Even in animals with strong social hierarchies, such as societies

of primates or honeybee colonies, the behavior of the collective is not dictated by a

single leader (Wild et al., 2021). Instead, it has been shown that the collective behav-

iors exhibited in bees and other social animals are guided by consensus mechanisms

(Romanczuk and Daniels, 2023).

Through local interactions, each individual action is influenced by others within

the group, instigating it to behave differently as it would solitarily. In other words,

the global behavior cannot be directly inferred from the knowledge of the individual

components (Vicsek and Zafeiris, 2012) as the whole is more than the sum of its parts.

A direct consequence of this property in self-organized systems is its deviation from

the central limit theorem. This mathematical theorem states that if a system consists

of many individuals acting independently, and each individual contributes with a
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Figure 1.1: Collective behavior in different biological systems. A: Migrating cancel cell
(by Brian6122, licence CC BY 2.0)B: Ant trails (by Theo Crazzolara under CC BY 2.0) C:
Rumours (Image created by DALL-E AI interface with the input text "minimalist painting
of group of people together sharing secrets and rumours in nature") D: Flock of Rosy
Starlings Pastor roseus, near Delhi (by Thomas Avey, licence CC BY-SA 4.0) E: Japanese

fireflies (by Tsuneaki Hiramatsu, licence CC BY-NC-ND 2.0)

randomly distributed quantity to the total output, then the resulting sum tends to-

ward a normal distribution (Sornette, 2006). This is not evident in systems where

collective patterns emerge from individuals’ interactions, so they can be explained

in terms of the deviation they exhibit from a normal distribution.

Since information is transmitted locally through the group and there is no cen-

tralized control, individuals within the collective may have varying informational

status and unaware of intelligence gathered by others in the collective, such as a

food resource or a threat (Couzin, 2007). Nonetheless, individuals living in a group

must often make rapid decisions regarding movement or which type of behavior

to adopt in order to face the challenges imposed by their external context. All bio-

logical systems require the capacity of rapid adaptive change. Transitions between

different types of behavior are commonly observed in nature. They occur when an-

imals shift from one collective behavior to another spontaneously or in response to

a stimulus, such as groups of fish that change their cohesion and synchronization

when they find themselves under a shade (Ribeiro et al., 2022). In the last decades
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experimental and theoretical studies have begun to elucidate how collective behav-

ior emerges from the repeated individual interactions and what are the mechanisms

that trigger behavioral transitions (Tunstrøm et al., 2013; Calovi et al., 2014). Interest-

ingly, they have revealed that self-organization shares similar functional properties

in a wide range of animal groups, including humans.

From a biological point of view, the study of collective animal behavior allows us

to relate two different approaches to these analysis of natural phenomena. A mech-

anistic perspective seeks explanations about how animals interact to produce global

patterns. It focuses on identifying the underlying communication mechanisms from

which a collective pattern emerges. Alternatively, a functional perspective concen-

trates on understanding why evolution favored a collective behavior through natu-

ral selection. Although in other areas of biology these two approaches can be studied

separately, in collective animal behavior they are interdependent. We cannot deci-

pher why it is that collectiveness evolved without understanding the mechanisms

that generate it, and we cannot examine mechanisms without limiting potential ex-

planations to a viable adaptive scenario (Sumpter et al., 2008).

Collective animal behavior is a central phenomenon in behavioral biology stud-

ies, but it is also relevant in other scientific areas where collective behavior and

self-organization have been observed, including physics (Boolchand et al., 2005),

economics (Cont and Bouchaud, 2000), social sciences (Helbing, 2012), artificial in-

telligence (Thrun and Ultsch, 2021) and robotics (Pfeifer et al., 2007). From this per-

spective, animal groups are emblematic examples of collective behavior and have

triggered a growing multi-disciplinary interest and application. Particularly, collec-

tive behavior is a central concept in statistical physics, where the emergence of order

and the transitions from one global state to another in collective systems have been

intensively investigated in the last fifty years. Because of this, physics is regarded as

a source of inspiration, and its tools and methodologies have been recently applied

to problems of collective phenomena in other fields (Giardina, 2008).

Mainly, collective systems in physics are relevant for other areas because they

consist of individual components, such as particles or magnetic moments, that by

means of local interactions can generate an ordered state with collective global prop-

erties. Moreover, the underlying fundamental principles of collective phenomena
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are usually generalized, and therefore nearly independent of the specific details rel-

ative to the behavior of individual components, so they are technically transferable

between systems of different nature (Bode et al., 2011). This characteristic is known

as universality (Camazine et al., 2001a) and its possible existence in animal collective

mechanisms have generated a growing interest in animal collective behavior by both

statistical physicists and theoretical biologists, as well as by experimental scientists

(Deutsch et al., 2012).

From a theoretical point of view, the methodological tools of analysis borrowed

from physics include observables to quantify the internal structure of a collective

system, specially their dynamical features and susceptibility to perturbations (Gi-

ardina, 2008), and the generation of models of self-organized behavior, that have

proven useful for extracting connections between the interactions of individuals and

the collective patterns that emerge from them, that would otherwise be difficult to

detect (Giardina, 2008).

Models of collective animal behavior are constructed assuming some behavioral

rules at the individual level from which the global behavior can be analyzed. By

varying the parameters involved in local interactions the different resulting behav-

iors at the global level can be explored (Vicsek et al., 1995; Czirók et al., 1997; Parrish

et al., 2002; Couzin, Krause, et al., 2003). Depending on the goal of the researcher, the

individual rules of interaction can be modified for sophistication. Often biologists

want to describe specific animal groups while physicists address more conceptual

questions and seek to build the minimal set of rules needed to produce collective be-

havior (Giardina, 2008). Normally self-organized models cannot be solved exactly

by coupled dynamical equations. Rather, these models are easily implemented as

numerical simulations. Nonetheless, there are instances where the collective behav-

ior to be explained can be addressed by a simpler mathematical formulation that

provide quantitative predictions in terms of a small number of parameters (Giar-

dina, 2008).

From an empirical point of view, last decades have witnessed an explosion in ex-

perimental activity (Beckers et al., 1992; Beekman et al., 2001; Dussutour et al., 2008).

Advances in image and tracking technology have enabled experimental scientists to

obtain high precision data and make an accurate analysis of individuals interactions
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and characterize grouping behavior. From these data it is possible to compare the

observations with theoretical models, and to infer the underlying mechanisms of

communications in collective behavior events (Vicsek and Zafeiris, 2012).

Observing the distinctive ways in which individuals interact is pivotal in repre-

senting the source of the diversity of structures and dynamics of collective motion

in nature. In both theoretical and experimental works it has been shown that animal

groups can be subject to both behavioral group and individual variations (Couzin

et al., 2002; Nagy et al., 2013; Tunstrøm et al., 2013; Herbert-Read et al., 2015; Biro

et al., 2016). Group variation refers to the group’s capacity to exhibit multiple stable

collective states without necessarily changing the rules of interaction, but by chang-

ing the frequency and the force by which individuals interact. The latter refers to

individuals’ probability of responding to the movements of their neighbors. Group

variations can occur as a response to an external perturbation, to internal states,

or to different stages of development. Individual variation expresses in the differ-

ence in the rules of interaction within a group. This can be a consequence of fac-

tors that affect the preferred individual’s behavior (e.g. age differences, particular

internal states or predation alertness), or to intrinsic differences in their behavior

(e.g. more experimented or socially dominant individuals that pay less attention to

their neighbours in decision-making processes). Individual variation often causes

the emergence of leader-follower dynamics (i.e. variations in individuals’ proba-

bility to follow others Herbert-Read et al., 2011; Nagy et al., 2013). The mechanisms

behind these collective dynamics are relevant to understand which strategies groups

can adopt to transfer information and endow some members with greater weight in

the collective decision-making process (Chen et al., 2016).

In the field of biology, it is accepted that groups of individuals that follow simple

rules of behavior can self-organize. Nonetheless, animals are more complex than

particles due to their cognition and the behavioral diversity from species to species.

Moreover, they can modify their behavior substantially depending on the environ-

mental or social context and have the further capacity to learn. As has been proven

for physical systems, it is reasonable that not all animal characteristics are involved

in explaining collective behavior (Camazine et al., 2001b). Yet, there is no clear de-

lineation of which characteristics are relevant or not. This is a non-trivial problem
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as what can be a qualitative good explanation is not always consistent with an em-

pirical quantitative analysis, where differences among species, or even groups of

the same species, become evident. A continuous feedback between empirical and

theoretical work is indispensable to unveil the level of universality in collective phe-

nomena and to characterize it properly (Giardina, 2008).

1.1.1 Types of collective animal behavior

Although it can be demonstrated in multiple ways, there are some iconic examples

of self-organization in animal groups that exemplify different behavioral possibli-

ties. Among them are collective decision-making, that refers to when a group of

individuals collectively choose an option out of different possibilities, for example a

foraging area, a new nest site or the shortest path from nest to food. Another type

of collective behavior is collective motion, observed when a group of animals move

together in a coherent way, like the flocking and schooling behavior of birds and

fish, respectively. Finally, synchronization, a collective behavior where a group of

individuals experiment periodic behaviors that become synchronized by locally ex-

changing information. Examples of this are fireflies light synchronization (Sarfati

et al., 2021) or even clapping in an audience (Néda et al., 2000). Next, we briefly

discuss the particularities of the different collective animal behaviors.

Collective decision-making

How do honeybees choose their new home? When a colony reaches a certain size,

the queen leaves the hive with approximately one third of the worker bees, and clus-

ters nearby to start the process of finding a new nest-site. A search committee involv-

ing around 5% of the bees, the scouts, fly out to inspect potential nest sites. When a

scout finds a site, it assesses the site’s quality and returns to the swarm. Once there,

it performs communication waggle dances to advertise the site, and recruit others to

visit their discovery and perform dances as well. The better the quality of the poten-

tial site, the longer and stronger the honeybees dance for it. Initially, the scouts visit

sites randomly, but with time they are more likely to visit the sites advertised by oth-

ers. Consensus on a site is reached when a site has attracted a sufficient number of

bees. Some bees sense the quorum, and return to the swarm to signal the end of the
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decision-making process and start the flight towards the new home. This dynam-

ics shows the advantages of collective pooling of information, where coarse-grained

information at the group level is more suited for decision-making than information

held by each individual (Seeley and Visscher, 2004; Beekman and Oldroyd, 2018).

Another surprising example, and one of the first animal collective behavior stud-

ies, was the way in which ants self-organize by following pheromone trails (Wilson,

1971). This is demonstrated when an ant finds a food source, and leaves a trail of

pheromones at regular intervals while traveling back to the nest. Other ants, un-

aware of the location of the food source, encounter the trail and follow it to find the

food. Once they find it, they come back to the nest and reinforce the pheromone trail

by leaving traces of the substance too. It has been observed from experiments that

when more than one path to the food source exists, and as pheromones evaporate

over time, the path where the trail is stronger is the shortest path (Beckers et al.,

1993). This way, more ants will find the trail and reinforce it on their way back to the

nest. Through this mechanism, called positive feedback, multiple insects can solve

collective problems such as this one (e.g. Seeley et al., 1991; Bonabeau et al., 1998).

The self-organization of honeybees and ants are just two examples of how non-

verbal communication allows for collective problem-solving in social animals. An-

imals frequently make collective decisions. Humans make them all the time, from

huge collectives like societies electing a democratic leader, to smaller groups mak-

ing social decisions such as which restaurant to have dinner. Other animals agree on

where to rest after traveling for a while (Harcourt and Stewart, 1994) or on which site

they are going to build a new nest (Seeley and Visscher, 2004). It is apparent that col-

lective decision making is an integral part of social animals. Decisions in a group can

be made by one or a few individuals within the group, specially in small collectives,

where either social dominance is imposed or some individuals have more informa-

tion about the environment than the rest of the group and therefore, their opinion

weighs more for that current decision making process. However, it is a more com-

mon occurrence that decision making in a group is the product of self-organization,

when a group is large and communication occurs at the local level. In this scenario,

each individual contributes equally to the decision outcome (Giardina, 2008).

Successful collective decisions require, most of all, correct information within the
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group. In this sense, information uncertainty has a strong impact on the output of

collective decision making. Typically, individuals lack pieces of the information that

would help them decide between more than one option, which makes them prone

to make mistakes while deciding. Consistent information sharing in collective deci-

sion making reduces individual errors and decreases the risk of making a mistake.

The scale of communication also influences the way a decision is made in a group.

In small groups, communication can be global, i.e. all individuals can communicate

with all the others. In these cases, complex negotiating behaviors during collective

decision making can take place. Large groups, however, rely on local information

and their mechanisms for collective decision-making are restricted to self-organizing

rules. The accuracy of decisions also depend on how many individuals contribute

to the decision (Conradt, 2012). A longer quorum will increase the probability of

making an optimal decision. The possibility of information pooling, leading to a

more accurate decision outcome, can result in fitness advantages to consensus deci-

sion makers (Bose et al., 2017). However, a large group might take longer to reach a

consensus than a smaller group. The speed restriction may create the need to adjust

the number of decision makers in the group. In this way, a trade-off between speed

and accuracy can be optimized.

Additionally, collective decisions require that different, and often conflicting, in-

dividual’s preferences be agreed-upon. Thus, an important factor that groups have

to solve to achieve consensus is the potential conflicts of interests. The presence of

a conflict in the decision making process in a collective determines the exchange of

information within members and the degree of cooperation during decision making.

Depending on the chosen outcome, the conflict could have potential consequences

in individual fitness. There are decisions that imply almost no conflict, as they ben-

efit the group in an equal manner and every member shares the same goal. This

is exemplified with the evasion maneuvers of a school of fish to escape a predator

(Rosenthal et al., 2015) or honeybees choosing a new nesting site (Seeley and Viss-

cher, 2004). However, in other situations individuals of a collective can differ in their

preferred option, especially in traveling directions (Ruckstuhl, 1998) and the timing

of activities (Rands et al., 2003). Even slight differences can produce conflict within

the group, and to reach a resolution, some individuals will have to compromise with
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other group members. Individuals’ needs and physiological status can affect their

level of urgency to pursue a particular option. As a result, such individuals may

act more independently, prioritizing their own needs over the opinions of others,

and exert a greater influence on the collective decision-making process, potentially

even acting as a "temporal leader." This may come at the risk of compromising group

cohesion, as proposed by (Conradt, 2012).

To study collective decision-making multiple models have been proposed that

address information uncertainty and conflicting individual preferences. Models

that examine information uncertainty seek to understand the way the information

is transmitted within the collective, and further seek to determine how accurate a

collective decision is dependent on the dissemination of the available information

(Franks et al., 2009; Ward et al., 2011) Alternatively, models that include conflicts of

interest deal with the adaptive mechanisms an individual could incur, which would

then maximize their individual benefits within a group (Conradt and Roper, 2000;

Conradt, 2012).

Collective motion

Geese collectively migrate from Canada to southern parts of North America the au-

tumn months. While traveling, they exhibit the familiar V-shaped formation, which

helps in reducing the amount of energy exerted during flight. The way we under-

stand this spatial organization is through simple interaction rules that make neigh-

boring individuals maintain a certain distance between them and simultaneously

match their direction of motion. By varying these simple rules, it has been shown

that different collective patterns can be created (Vicsek et al., 1995; Couzin et al.,

2002). From disorganized groups where individuals are moving in random direc-

tions to highly organized collectives following a common direction of motion. This

fascinating behavior is observed across systems of very different nature. From a

wide range of biological systems, such as bacterial colonies, fish schools (Lopez et

al., 2012) or human crowds (Sumpter, 2010; Silverberg et al., 2013), to non-living

moving particle systems, this self-organized phenomenon occurs when many indi-

vidual units interact by modifying their movements to achieve a coherent group

displacement without the need of central control.
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Animal collective motion presents the opportunity to link the behavioral rules

that individuals follow with group-level emergent collective states. Fish schools, for

example, dynamically change their shape, their speed and their direction of motion

when foraging, defending or fleeing, which indicates a greater flexibility of individ-

ual interactions and rapid information transfer. Information about a threat, for ex-

ample, can be transmitted through the body movements of individuals responding

both directly to the threat and indirectly to the movements of its neighbors (Herbert-

Read et al., 2015). Individuals survival within a collective depends mainly on the

group’s adaptive capacity to respond to a changing environment (Viscido et al., 2004;

Calovi et al., 2015; Tunstrøm et al., 2013).

To achieve collective motion, individuals modulate their alignment and attrac-

tion toward others according to their positions and velocities. Both empirical and

theoretical approximations are being developed to study the underlying mecha-

nisms of coomunication in collective motion events (Vicsek and Zafeiris, 2012).

With the advances in image and tracking technologies a set of trajectories in space

and time can be obtained for individuals within a collective (Calovi et al., 2014).

From these data it is possible to compare the observations with simulated data re-

sults, and infer the underlying mechanisms of communications in collective motion

events (Vicsek and Zafeiris, 2012).

In theoretical approximations, the universal mechanisms in which local rules of

interaction between individual components generate emergent global patterns is be-

ing investigated with models of self-propelled particles (SPP). The simplest model is

composed by moving particles at a constant speed. At each time unit, they change

their orientation depending on both the average orientation of their neighbors and

a noise term that randomizes the direction of motion of each particle (Vicsek et al.,

1995). From this model, others have been built with varying levels of sophistication

regarding the interaction rules. Examples of this include the number and proper-

ties of neighbors that the focal individual interacts with (Camperi et al., 2012) and

the type of interaction depending on the particles’ distance and direction (Huth and

Wissel, 1992). Still, the goal of these models is to ensure that model outcomes are not

dependent on some particular biological feature, but reveal universal properties of

collectively moving groups.
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In SPP models the interactions among particles may give rise to the collective

states that are also observed in moving animals, from disorganized aggregations

to directionally coordinated groups (Giardina, 2008). Additionally, these models

emphasize that animal collectives on the move can be treated as a dynamical system

in which multiple collective states exist . These may be dependent to how interacting

features are modulated, particularly regarding repulsion, alignment and attraction

among individuals (Tunstrøm et al., 2013).

Synchronization

Fireflies are one of the most outstanding examples of synchronized behavior. In

some firefly species, an individual produces cyclical light flashes at night as part

of his mating display. Among individuals, there are slightly different flashing fre-

quencies. However, it has been shown that by means of local interactions, fireflies

can modify their individual frequency towards the group average in order to col-

lectively synchronize when group density is high enough (Sarfati et al., 2021). The

adaptive properties, if any, of this mesmerizing behavior are still a matter of investi-

gation (Moiseff and Copeland, 2010).

Synchronized rythmic activity is seen in many animal species (e.g. Patel et al.,

2009; Kastberger et al., 2008). Experiments in the applause of a human audience have

shown that after an initial phase of unsynchronized clapping, an audience is able to

synchronize the applause and adopt one single frequency (Néda et al., 2000). This

phenomenon was explained using a classical mathematical model for the synchro-

nization of coupled oscillators, the kuramoto model (Kuramoto, 1975). This model

demonstrates that if a number of oscillators in varying frequencies are coupled to-

gether, they will continually adjust their frequency to align closer to the average

frequency. Thus, if the initial frequencies are not too different, they will oscillate

synchronously with the same frequency after a certain amount of time. From this

model, it has been proven in many biological systems that individuals with slightly

different behavioral frequencies can synchronize by adjusting their frequency to-

ward the average. If the frequencies difference is too large, synchronization does not

occur.
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1.1.2 Principles of self-organization in animal collectives

The possible existence of universality in collective behavior has encouraged researchers

to create a unifying theory for the study of self-organization. Although this endeav-

our is proving to be very challenging, self-organizing groups share a few similarities

that contribute to the emergence of collective behavior in animals (Sumpter, 2006).

Many of the activities of animal collectives can be described in therms of the follow-

ing principles:

• Group variability: It has been argued that individuals’ variability in a group

is particularly important in cases where multiple solutions to a problem exists.

Individual variability plays a central role in the exploration of the possible

options (Sumpter, 2006).

• Positive and negative feedbacks: Recurrent reinforcement is central to am-

plify particular events (Bonabeau et al., 1998). For example, local fluctuations

are amplified to avoid predator attacks in a group. In this case, the reaction

of one individual is copied by others which creates a new collective response.

Another example is the formation of the pheromone trail in ants, as recurrent

reinforcement amplifies the choice of others to follow the path. The amplifi-

cation of a signal that feedbacks itself is known as positive feedback. A fast

decision, however, can be compromised with respect to the accuracy of the re-

sponse, which could be triggered by random fluctuations. Integrating damp-

ing or negative feedback becomes important, as it decreases the sensitivity of

the collective to environmental noise, stabilizes a group response and reduces

fluctuations within a collective. Typically, as a consequence, negative feedback

increases the time it takes the group to make a decision. A balance between

speed and accuracy is crucial for collective behavior fitness (Couzin, 2007).

• Response thresholds: In biological systems sometimes there exists a threshold

from which a response is triggered in the group. The most typical examples are

firing neurons that after reaching a voltage threshold, they activate their action

potential to fire (Mensi et al., 2012). In animals, there are also many response



1.1. Animal Collective Behavior 17

thresholds. For example, after a certain threshold temperature is reached bum-

blebees start faning to cool the nest (Weidenmüller, 2004). Another example are

white-faced capuchin monkeys, that when an individual changes its direction

of motion, it is only after a threshold of number of followers that the whole

group collectively moves (Petit et al., 2009).

• Leadership: Although leadership might seem uncompatible with the idea of

self-organization, it is observed sometimes as an emergent characteristic. For

example, some fish in a school could have information not available for the rest

of the group, such as the presence of a predator or an environmental barrier.

These individuals could act as leaders of the group response as they could trig-

ger the response of the group by changing their individual behavior (Múgica

et al., 2022).

1.1.3 Transitions and adaptability in collective animal behavior

In biological systems the parameter space that we use to describe their behavior is

ample. When we try to explain why these systems exhibit collective behavior, an

evolutionary perspective appears to be the right approach. Given such parametric

spaces we might ask if an optimal parameter combination exists in the proposed

models that could be related to specific biological functions.

Considering this, the criticality hypothesis suggests that self-organized biological

systems should operate close to a critical point from which different macroscopic

behaviors can be easily reached, i.e. parameter combinations that place the collective

near a behavioral phase transition (Munoz, 2018).

This hypothesis has been explored in different systems, such as gene-regulatory

networks (Alvarez-Buylla et al., 2008) and collective behavior of animal groups (Mora

and Bialek, 2011; Calovi et al., 2015), and multiple phase transitions have been de-

scribed. The classical behavioral change in gregarious animals is the transition from

a disordered state, with individuals moving in random directions, to an ordered

state, where individuals share the same average direction of motion. Typically this

can be observed in flocks, schools and herds. Another common phase transition

observed in nature occurs in collective decision-making. That is, when an initially
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undecided group eventually commits to a particular option, measured by the ma-

jority of individuals or other consensus definitions. For example, when honeybees

choose a new nest site, discarding other options in the process.

Phase transitions are often analyzed regarding their advantages and disadvan-

tages in the biological function of animal groups. Spontaneous symmetry break-

ing is an important aspect in behavioral phase transitions. It refers to the emer-

gence of a particular global state from a collective system when multiple states are

equally likely. When a group of animals make a decision for an option out of multi-

ple equally favored ones, symmetry breaking becomes advantageous, as otherwise

the group would find itself in a deadlock. Animal systems that show spontaneous

symmetry breaking normally behave close to the critical point (Buhl et al., 2006).

However, being near the transition represents a trade-off between being able to re-

act fast and its robustness to keep the current behavior. In an animal collective that

stays close to criticality, individuals of the group are particularly sensitive to envi-

ronmental and internal noise. If an individual makes a wrong decision, misleading

information could propagate through the group and cause an erroneous collective

response. Thus, animal collectives are faced with a trade-off between its robustness

to keep the current behavior by being able to filter out noise, and the collective’s

sensitivity to change by remaining highly responsive to relevant information. For

this, a finer approach that goes beyond the criticality hypothesis has suggested the

existence of mechanisms in animal groups that modulate the distance from the be-

havioral transition critical point according to the perceived risk and noise of the

environment.

How animal groups place themselves at a particular distance from criticality

is still a matter of research (Hidalgo et al., 2014; Klamser and Romanczuk, 2021).

However, experimental works have started yielding some hypotheses. Macroscopic

properties have been related with particular variables that seem to control the group’s

distance to criticality, which include the group size, the group density and the group

heterogeneity in the individuals’ behavior (Moretti and Muñoz, 2013; Attanasi et al.,

2014; Sosna et al., 2019).
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1.2 Using robotics to study animal collectives: an emphasis

on social insects

1.2.1 Social insects as an inspiration for swarm robotics

The field of swarm robotics has drawn inspiration from studies of the collective be-

havior of animals, such as fish schools, bird flocks and, particularly, social insects

(Garnier, 2011).

Insects form one of the most successful phylum on earth, with one million dis-

covered species ouf of an estimated 5.5 million overall. They are adapted to a multi-

tude of environments with different types of locomotion (e.g. crawling,flying, swim-

ming), complex visual systems, navigation strategies and collective behaviors (Stork,

2018).

The colonies of social insects are emblematic examples of implementing self-

organization to achieve an impressive array of behaviors, such as maintenance of

the colony (Spivak and Danka, 2021), complex nest architectures (Sane et al., 2020),

defense against invasions and sophisticated divisions of labor(Abbot, 2022).

The fascinating collective behaviors exhibited by insects are the result of local

interactions among individuals with limited cognitive abilities. Despite these lim-

itations, insects have the capability to learn from each other in various aspects of

societal living, such as foraging options, predation threats, and potential nest sites.

This demonstrates the efficiency, flexibility, and robustness of insect collective intel-

ligence (Leadbeater and Chittka, 2007).

Swarm robotics involves the utilization of multiple robots working to achieve

a common goal through collaboration. The key objectives of swarm robotics in-

clude the exploration of an environment as a group, locating targets, transporting

objects through cooperation, and assigning tasks without external supervision (Gar-

nier, 2011). For these purposes, the primary objective of swarm robotics is to build

systems that are robust yet flexible to changing environments, so they can handle

unexpected circunstances (Dorigo et al., 2021), i.e. they are able to "expect the unex-

pected". The basis of this idea is that collective behaviors will emerge from the local

interactions of swarms of simple robots (Sharkey, 2006).
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It is not surprising that this field has drawn inspiration from social insects in

an effort to compose collectives of robots. Social insects are an archetypical exam-

ple example that self-organization provide adaptive solutions to complex problems

(Dorigo et al., 2021). Seeking to imitate insect intelligence can achieve higher au-

tonomy levels, even with limited processing capabilities in small robots (De Croon

et al., 2022; Rubenstein et al., 2012).

1.2.2 Swarm robotics as a tool to study collective behavior

As previously mentioned, social insects exhibit many of the behavioral characteris-

tics from which the field of swarm robotics benefits. The inverse notion, that robotics

can be useful in the study of insects societies and of biological systems in general,

has recently been explored in more depth (e.g.Arvin et al., 2011; Halloy et al., 2007).

Experimentation with swarm robots to address animal behavioral questions may

be consideed a slow and inconvenient alternative to theoretical modeling and nu-

merical simulations (Garnier, 2011). Nonetheless, robot systems address real world

scenarios in a way that neither mathematical models nor numerical simulations can.

The study of animal collective behavior through the use of robotics highlights the

importance of considering the "situatedness" of individuals, defined as the extent to

which individuals are embedded within an environment that they can both sense

and modify. This approach aligns more closely with animal empirical studies and

emphasizes the connection between the individual and its environment (Varela and

Bourgine, 1992).

Empirical studies face a challenge in determining the causality behind an ob-

served behavior. It is difficult to establish whether an individual’s behavior is a

result of a particular event, especially when conducting field studies where con-

trol over variables is nearly impossible (Mitri et al., 2013). On the other end of the

spectrum, abstract mathematical models can also be implemented for the study of

animal collective behavior. These models make predictions by reducing the collec-

tive system to its core elements and examining the influence of a limited number of

parameters on the system’s dynamics (Bose et al., 2017). The level of abstraction in

these models, though, simplify relevant aspects of individuals’ inner status and of



1.2. Using robotics to study animal collectives: an emphasis on social insects 21

the environment in which they develop. To include such factors, self-propelled par-

ticles (SPP) and agent-based models were developed. These computational models

allow simulations of the behavior and interactions of autonomous agents as a way

to understand the global behavior of a system (Mitri et al., 2013). Nonetheless, indi-

vidual agents are described probabilistically, which reduces the individual variation

that exists in nature, as an animal’s behavior is a product of complex combinations

between perceptual, cognitive and locomotor activities (Garnier, 2011).

In the last two decades, researchers have resorted to swarm robotics as a means

to study the emergence of complex behaviors in natural systems (Dorigo et al., 2021).

A physical robot refers to a machine that is able to interact physically with its environment

and perform some sequence of behaviors, either autonomously or by remote control (Krause

et al., 2011).

The study of collective behavior through the lens of robotics is similar to that of

agent-based models, where individual robots interact with each other. However, the

fact that physical robots execute their behavior within the constraints of a real-world

environment, obviates the need to make assumptions regarding its properties, such

as differences in perception or spatial limitations (Mitri et al., 2013). In other words,

swarm robotics situatedness implicitly include the laws of physics, which dictates

the limitations imposed on the individual robots’ mobility, perception, and informa-

tion transfer within the collective, as well as the impact of environmental noise. In

systems where the physical environment and spatial considerations play a decisive

role in determining collective behavior, the use of robotic systems becomes an indis-

pensable tool for research. For instance, the agent-based modeling of aggregation

behavior in the German cockroach (Blatella germanica) resulted in larger clusters

than the actual animal groups (Jeanson et al., 2005). It was not until researchers

resorted to physical robots that it became apparent that the extended body of the

robots reduced individuals’ ability to sense others in the cluster, resulting in smaller

aggregates more akin to those observed in real cockroaches (Garnier et al., 2008).

An example of how physical interactions can influence the movements of the in-

dividuals in a group comes from the study of foraging efficiency in ant-like robots

programmed to collect objects scattered in an enclosed space. The study revealed

that gathering efficiency was reduced in larger groups due to increased interference
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among robots, compared to smaller groups (Krieger et al., 2000). This finding offers

a apotential explanation for the phenomenon of decreased "per capita" productivity

with increasing group size observed in various social insects (Kramer et al., 2014).

Moreover, swarming robot models are more likely to result in unexpected out-

comes due to the real-world properties that may not be considered in more abstract

approaches (Trianni et al., 2016). Furthermore, the emergence of global collective be-

haviors from the actions and interactions of swarming robots in response to real-life

stimuli provides evidence for the feasibility of the mechanisms proposed to underlie

collective output. For instance, robots can be tested in conditions that closely re-

semble the environment experienced by certain social insects, and the behavior of

the swarm of robots can be compared to that of the target organisms under similar

conditions (Sharkey, 2006).

Studies about collective behavior have covered different ranges of situatedness

by incorporating robots in simulated and physical form, and experimenting with

mixed models where physical robots directly interact with animals. Computational

models of simulated robots are crucial in swarm robotics, serving as a complemen-

tary tool to physical robots. These simulations are designed to mimic the behavior

and characteristics of the corresponding physical robots and their environment. The

simulated robots are not simple points as in most agent-based models, but rather

have an extended body that occupies space in the world and sensors with limited

range and accuracy that gather information about their environment. Additionally,

they move within a defined space with limited resources. The fact that the simula-

tions mirror the behaviors of physical robots forces researchers to consider the lim-

itations in movement, perception and resources of the real world when conducting

experiments (Mitri et al., 2013). Simulations are an important tool in research as they

allow for multiple experiments to be conducted with numerous individuals, even

more than physically available, in a fraction of the time required for physical exper-

iments. Before expanding physical robot research, simulations must be calibrated to

be a reliable substitute for physical robots (Mondada et al., 2004). For example, in

the context of collective behavior, simulations must adjust certain parameters such

as interaction range or perception limitations due to environmental factors so that

they can accurately reproduce both individual and collective behaviors.This way,
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valid conclusions can be drawn with increasing statistics.

However, one of the major challenges in real-world simulations is known as the

simulation-reality gap, defined as the possibly subtle but important discrepancy be-

tween the real-world and simulations. This difference can have a significant impact

on the performance of physical robots in real-world applications of swarm robotics.

The ideal swarm robotics simulator should minimize these discrepancies, although

they cannot be completely eliminated (Bose et al., 2017).

Robotics to emulate and study insects behavior

In recent years, the use of physical robots in the study of collective behavior has

gained significant attention due to the unique advantages that they offer in compar-

ison to traditional methods. Insects and robots share some similarities. Insects ap-

pear to follow a set of predetermined behaviors in response to environmental stim-

uli, and their interactions with each other can seem fixed and repetitive, leading to a

robotic-like appearance.

Insect intelligence is characterized by its parsimony, defined in this context as

the efficient use of minimal resources to achieve successful behavior in complex en-

vironments. This parsimony is dependent not only on the capacity of the brain, but

on insect embodied cognition, that is, an insect’s body and sensory apparatus that

expand the perception and interaction of each individual. In other words, insect

intelligence builds on the capacity to interact with the world through embodiment,

simplifying the cognitive effort of the brain. Through this lens, working with robots

to study insects behavior is not only ideal, but perhaps even crucial to replicate both

the situatedness and the sensorial characteristics that contribute to their intelligence

in real world environments (De Croon et al., 2022). The swarm intelligence of insects

further allows for parsimonious solutions, offering robustness, scalability, and flex-

ibility that can be also replicated in swarming robots. Robotics research has much

to learn from insects and their adaptive response to the environment, and as our

understanding deepens, so should our ability to emulate them (Sharkey, 2006).

For these reasons, researchers have created robots to artificially replicate insects’

behavior and to increase our understanding of these life forms (Rubenstein et al.,

2012; Ma et al., 2013; Phan et al., 2019; Yang et al., 2020, Figure 1.2). To be considered
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Figure 1.2: Robots inspired by insects’ bodies and behavior. A: RoBeetle, an autonomous
crawling robot that emulates muscles and metabolism in beetles (citeyan2020; image bor-
rowed from the authors paper). B: Kilobots, swarming robots that can perform collec-
tive tasks (Rubenstein et al., 2012); image from wikimedia with licence CC BY-SA 4.0. C:
KUBeetle-S, a flying robot that can perform stable flight (Phan et al., 2019; image bor-
rowed from the authors’ paper). D: Fly-like robot with flapping wings (Ma et al., 2013;

image borrowed from the authors’ paper)

effective, robots have to exist in a physical form and not just in a computer simu-

lation, and interact within a real-world environment. It is through these interplays

that both their capabilities and limitations are studied and understood (Webb, 2001).

The self-organization of insects has been studied particularly in the field of robotics.

For example, the ability for self-organization without the need for communication

or memory, only using simple oscillatory processes, was tested in groups of physi-

cal robots. The experiments resulted in synchronized light-emission patterns among

groups of physical robots, which is thought to be analogous to synchronized firefly

light production (Wischmann et al., 2006). Other studies have been focused on un-

derstanding the evolution of communicative behavior in robots. This question has

been challenging to address through other experimental methods due to the long

time scales often associated with the evolution of animal communication and the

lack of a fossil record. However, experiments using both physical and simulated

robots have been instrumental in showing that efficient self-organization processes
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can occur even with little sensory information. For example, robots following simple

rules have been observed to self-organize into groups performing different tasks, il-

lustrating that division of labor can take place simply due to differences in local

perception (Mitri et al., 2013).

These studies have expanded our understanding of self-organization in insects,

and have demonstrated the potential for robots to provide more convincing demon-

strations of these phenomena than is possible with just software.

Overall, the use of physical robots in the study of collective behavior is a rapidly

evolving field that offers immense potential for increasing our understanding of the

underlying mechanisms of social behavior. By studying the similarities and differ-

ences between insects and swarming robots, researchers can gain insight into the

mechanisms underlying swarm intelligence and use this knowledge to design more

intelligent and adaptive systems.
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1.3 Scope of the thesis

The primary goal of this thesis is to explore the underlying mechanisms from which

complex collective behavior can emerge and adapt. We concentrate our analysis in

the collective motion of schooling fish and consensus reaching in swarming robots

in a model of honeybees nest site selection.

Our work is divided in two parts. The first part concentrates on the collective

motion of black neon tetra (Hyphessobrycon herbertaxelrodi), a small schooling fish

that inhabits in freshwaters from southern Mexico to Argentina.

In Chapter 2 we describe the characteristics of shoaling behavior in fish and the

main properties that are measured to further comprehend their collective motion.

We then explain our experimental setup to record groups of 20 and 40 black neon

tetra.

In Chapter 3 we discuss how animal tracking methodologies are typically struc-

tured, and describe the design of a custom tracking software we developed to ex-

tract the individuals’ (x, y) positions in time for further analysis of their collective

behavior. To verify our results, we categorize the individual features of the fish and

compare them with reported behavioral traits of our fish collective and other closely

related species.

Chapter 4 is dedicated to describing existing models of self-propelled particles

(SPP) which study collective motion. In our research, we focus on a classical sim-

ple SPP model, the Vicsek model. We explore the behavior of the system’s order-

disorder phase transition as a function of the system’s parameters, including unre-

ported transitions as a function of particles’ speed.

Our first empirical and theoretical analysis of collective motion is carried out in

Chapter 5. Here, we study the relationship between swimming speed and collec-

tive ordering in black neon tetras, and we imitate the speed behavior observed by

modifying the Vicsek model to include a periodic oscillation of the particles’ speed.

In Chapter 6 we investigate sudden directional rearrangments observed in our

fish collective. We analyze the role of effective leadership in initiating these behav-

ioral cascades and replicate the behavior by modifying the Vicsek model to include

a global leader.
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The second part of the thesis is dedicated to the analysis of a decentralized model

of the nest site selection in honeybees and its implementation in a more realistic

scenario by utilizing small swarming robots.

In Chapter 7 we describe the characteristics of the swarming robots, the kilobots,

and categorize their individual speed and message reception. We also engage the

kilboots simulator, kilombo, to observe the motion of a kilobot collective moving as

persistent random walkers within a circular arena.

In Chapter 8 we indicate different models for collective decision-making and

concentrate on existing models of honeybees nest site selection. We elaborate on

the first model to integrate the interaction between independent decision-making

and imitation, and further categorize the behavior of the system in a mean-field

approach by exploring its parameter space.

In Chapter 9 we implement the model within our kilobot system. We describe

our experimental design and setup, carry out the empirical experiments and com-

pare our results with mean-field approximations and quenched configurations. We

further explain our results by means of percolation theory and network methodolo-

gies.

In the final Chapter, Chapter 10, we summarize our findings and provide insights

that can guide future research.
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Part 1

Collective motion of schooling fish
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2 Empirical analysis of shoaling

fish

2.1 Introduction

Social aggregation is a common feature in at least half of all fish species throughout

their life cycle (Pitcher, 1998). It is probable that aggregation serves as an adap-

tive mechanism which helps fish respond within a variety of environmental con-

texts and necessities. The primary advantages of grouping are expressed in foraging

and anti-predation maneuvers. Foraging together allows for the fish to find food

more rapidly (Pitcher et al., 1982) and to spend more time eating with a decreased

need for vigilance (Magurran et al., 1985). Anti-predatory advantages include a re-

duced individual risk of being taken by a predator as group size increases (Foster

and Treherne, 1981). This is due, among other phenomena, to the perceptual or cog-

nitive overloading that predators experience when confronted with a large group

of similar-looking prey, rendering them unable to choose between multiple items of

prey (Krakauer, 1995). Also, as a group the fish are more rapidly able to detect a

predator (Ward et al., 2011) and their capacity to counter an attack by means of syn-

chronized evasion maneuvers increases (Pitcher, 1983). Other advantages for group

members include access to potential mates (Krause et al., 2022). Additionally, there

is evidence of hydrodynamic benefit to group movements, as fish save energy and

decrease oxygen consumption by taking advantage of the flows and vortices cre-

ated by the fish in front of them (Weihs, 1973; Liao et al., 2003). Living in a group

can also yield disadvantages, such as individuals’ detection by a predator is more

likely to occur in large groups of fish than in small groups and solitary individuals,

and both competition for food and contagious ectoparasites exposure also increase
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with increasing group size (Ruxton, 2012). Therefore, fish constantly perform a risk-

balancing trade-off and decide to stay with a group, go off alone or join other groups

of fish (Lopez et al., 2012).

The adaptive nature of aggregation results in the vast repertoire of collective be-

haviors that we observe in nature. Collective motion patterns are thought to emerge

from simple behavioral rules of individual motion, and from the interaction between

individuals and their environment (Parrish and Edelstein-Keshet, 1999; Herbert-

Read et al., 2011). The degree of aggregation in a group is characterized by its cohe-

sion, defined by the spatial distribution of individuals. When the individuals present

a significant degree of cohesion the group is defined as a shoal. Consequently, shoal-

ing behavior is often described with spatial parameters such as distance between

individuals, surface area or volume measurements.

Moreover, shoals can be dynamically structured with different degrees of motion

synchronization. Shoals that aggregate but are locally and globally disordered are

called swarms. A shoal in which fish have a tendency to adopt similar orientations

and match their swimming speeds is called a school (Delcourt and Poncin, 2012). In a

school, fish can be synchronized both locally and globally, or they can show a milling

behavior, which is characterized by a high degree of alignment with local neighbors

but globally the school forms a rotating mill (Tunstrøm et al., 2013). An example of

these dynamic states is shown in Figure 2.1. Schooling behavior is measured not by

spatial parameters, but by dynamic parameters involving vectors and angles. With

these parameters, we can determine a degree of school behaviors for a given social

group at a given time (Delcourt and Poncin, 2012).

Schooling may have appeared in a very early stage of vertebrate evolution (Vic-

sek and Zafeiris, 2012). It is estimated that at least 50% of fish species school as ju-

veniles, and that approximately 25% of species school throughout their lives (Lopez

et al., 2012). Depending on the species, fish can spend more or less time schooling

as a response to different environmental contexts. For example, the synchronization

of fish movements decrease predation risk as it is thought to accelerate the transmis-

sion of information about a potential predator (Delcourt and Poncin, 2012).

Schooling is relevant to many fields in biology, including ecology, ethology and
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Figure 2.1: Swarming, schooling and milling behavior in fish shoals
Swarm of maldives surgeon fish (left), school of common bluestripe snappers (right

up) and mill of barracudas (right bottom). Credits: Robin Hughes (licence CC BY-SA
2.0), Uxbona (licence CC BY 3.0) and Bernard Dupont (licence CC BY-SA 2.0).

neurosciences. Moreover, understanding schooling behavior has a practical impli-

cation for the fishing industry, as fisheries can adopt better fishing techniques. With

these interests in mind, multiple studies in the last decades have categorized school-

ing phenomena to address questions regarding the dynamic patterns exhibited in

natural and experimental conditions. Observations in natural environments have

primarily been conducted by video recordings from the air and underwater (Doran

et al., 2022), and by sonar techniques that allow to estimate the size and density of

the schools (Gerlotto et al., 2000). To increase control of the enviornmental variables

influencing groups, experimental observations are carried out in controlled labora-

tory setups and individuals’ behavior is recorded by zenithal or lateral cameras to

analyze their motion either in real time or deferred in time.

It is clear that schooling is a biologically relevant feature. The underlying mech-

anisms from which collective motion emerges are central for schooling to be adap-

tively successful (Parrish et al., 2002). Considering this, a dominant question in

collective motion research is evaluating how individual behavior and interactions

within the group result in the large-scale patterns we observe in nature. It is through

the analysis of these underlying properties at local and global scales that it can be

determined which collective behaviors are adopted by an animal aggregation (Del-

court and Poncin, 2012).
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2.2 Shoaling characterization

The properties of animal collective motion resemble other physical phenomena like

ferro-magnetic particles or molecular spatial arrangements, which has rasied the

interest of the statistical physics community and led to the application of statistical

physics tools to gain further insight into the structure of animal collective motion.

Both group cohesion and motion synchronization are analyzed to study collec-

tive motion in fish. In order to characterize group cohesion, descriptive parameters

involving the euclidean distance between individuals are obtained. Synchronization

is commonly measured by an individual’ speeds angle differences and the degree of

polarization, which refers to the degree of direction alignment among individuals.

The requisite information for these determinations are the x, y coordinates of

each individual in time. From this, group cohesion can be described by the distance

of a focal fish i to its nearest neighbor nni at time t,

NNDi(t) =
√
(xi(t)− xnni(t))2 + (yi(t)− ynni(t))2. (2.1)

A more global descriptor of group cohesion can be obtained by calculating the

average distance of all pairs of individuals in a group of size N at time t,

I ID(t) =
2

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

Di,j(t), (2.2)

where Di,j(t) is the distance of fish i to fish j at time t. This descriptor can be corrected

by body size to obtain a relative distance in body lengths,

I IDBL(t) =
I ID(t)

BL
. (2.3)

Still, differences in body size within the group can bias the cohesion quantifica-

tion.

Another common parameter that has been used to provide information about

the degree of group cohesion is the Clark-Evans Index (Clark and Evans, 1954), a de-

scriptor commonly used in ecology which consists of comparing the NND obtained

from the experimental observations with the theoretical NND∗ if the distribution of
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individuals in space was random. The group mean distance to the nearest neighbor

NND at time t is calculated as the sum of all measured nearest neighbor distances

divided by the group size,

NND(t) =
N

∑
i=1

NNDi(t)
N

. (2.4)

The mean distance expected in a random spatial distribution for an infinite pop-

ulation of a density ρ is calculated as

NND∗ =
1

2
√

ρ
. (2.5)

Then the Clark-Evans Index R at time t is,

R(t) =
NND(t)
NND∗ . (2.6)

This index ranges from 0 ≤ R ≤ 2.1491. When R = 0 there is a limit situation

of complete aggregation, when R = 2.1491 the individuals distribution is perfectly

homogeneous and when R = 1 the individuals are distributed randomly in space.

However, this quantification of cohesion does not consider the volume of indi-

viduals, which could differ enormously. To account for this, one can measure the

packing fraction, which refers to the ratio of the individuals’ exclusion volume on

the group volume. Small values of the packing fraction correspond to gas-like sys-

tems, while for large values the spatial structure will resemble more a liquid or a

solid.

To categorize schooling behavior the main descriptor is the velocity vector, from

which headings, speed and polarization can be analyzed.

Individual speed at time t is obtained from the velocity vector v⃗i(t),

vi(t) = |⃗vi(t)| ≡ [⃗vi(t) · v⃗i(t)]
1/2 . (2.7)

Speed synchronization can be studied comparing fish i speed with the speed of fish

j, and correlating their values through time. Normally, correlation coefficients closer

to 1 indicate that the fish are synchronized in their speed, while values closer to 0

demonstrate nonsynchronization.
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Local synchronization in the direction of motion can be analyzed by the heading

difference between pairs of individuals, hi,j(t), defined by the angle formed by the

velocity vectors v⃗t(t) and v⃗j(t), and computed as

hi,j(t) = arctan
{∥v⃗i(t)× v⃗j(t)∥

∥v⃗i(t) · v⃗j(t)∥

}
, (2.8)

where × represents the vectorial product and ∥·∥ the vector modulus. hi,j(t) takes

values in the interval [−π, π]. Figure 2.2 shows a representation of cohesion and

motion synchronization measurements in two fish.

Figure 2.2: Local measurements of shoaling and schooling tendencies in two fish.

To estimate the synchronization in the direction of motion of the shoal at time

t, i.e. the degree of polarization, the order parameter ϕ is commonly used (Vicsek

et al., 1995; Ginelli, 2016),

ϕ(t) =
1
N

∣∣∣∣∣ N

∑
i=1

v⃗i(t)
vi(t)

∣∣∣∣∣ , (2.9)

In a perfectly ordered school, in which all fish travel in the same direction ϕ takes

its maximum value 1. In a disordered swarm, with all fish traveling in randomly

chosen directions, a low value is expected, scaling as ϕ ≃ N−1/2 (Ginelli, 2016).

Polarization can also be measured locally considering only a subgroup of neigh-

boring individuals of the collective, ϕl . In this case, the fact that local polarization

tends towards 1 does not mean that the school is globally polarized, as shown in

Figure 2.3 where different individual headings configurations are exemplified with

their corresponding local and global polarization values.
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Another order parameter that yields information about the structure of the school

is the rotation order parameter ϕr, which describes the degree of rotation of the col-

lective around its center of mass. It is defined by the mean angular momentum,

ϕr(t) =
1
N

∣∣∣∣∣ N

∑
i=1

v⃗i(t)
vi(t)

× R⃗CM
i (t)

∣∣∣∣∣ , (2.10)

where R⃗CM
i (t) is the vector pointing from the center of mass of the shoal towards fish

i at time t. The rotation order parameter also ranges from 0, which indicates that the

shoal is not rotating, to 1, which implies that the collective is experiencing a strong

rotation. Identifying the degree of group rotation allows one to recognize milling

behavior, and differentiate it from swarming when global polarization is low. Figure

2.3 exemplifies schooling, milling and swarming behaviors with their respective ϕ,

ϕl and ϕr values.

Figure 2.3: Examples of fish shoals dynamical structures. A: Schooling behavior with
paralel polarized fish. B: Milling behavior. C: Swarming behavior.

From another research perspective, experimental studies in fish collectives have

shown that the individuals’ arrangement in space during collective motion could

be influenced by social preferences in some species (Barber and Wright, 2001; Lee-

Jenkins and Godin, 2013). For example, guppies (Poecilia reticulata) prefer to shoal

with individuals that they are familiar with (Griffiths and Magurran, 1999) and with

individuals of the same size and sex (Croft et al., 2004). To investigate the underlying

social patterns and how they could impact the spatial positions of individuals in a

shoal, there have been recent attempts to integrate social information in the analysis

of collective motion in fish by means of network theory (Croft et al., 2004).
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Network analysis provides a framework to express the relationships and inter-

actions between individuals (Krause et al., 2009; Sih et al., 2009). From this, the

structure of the resulting communication and social networks can be analyzed with

the purpose of both understanding how social preferences affect the cohesion and

synchronization in collective motion, and how collective motion shapes social pref-

erences in short or long terms. From the resulting networks, relevant measures can

be applied such as the distribution of contact durations, i.e. how long two fish swim

together within an interaction radius (Borrel et al., 2008; Murakami et al., 2015),

or the delay between the direction of motion of pairs of individuals from which a

leader-follower network can be established (Nagy et al., 2010).

In the next Section we will describe our study subjects used to analyze collective

motion in fish aggregates. We will study the possible underlying interactions found

in our groups of fish with theoretical approaches by means of numerical simulations.

2.3 Study subjects

For our collective motion analysis we worked with black neon tetra (Hyphessobrycon

herbertaxelrodi), a small freshwater fish of adult mean body size 2.5cm shown in Fig-

ure 2.4. The black neon tetra is one of the most popular ornamental fish species,

characterized by a mild temperament. There are not many studies about the behav-

ior and ecology of this particular species. The genus Hyephesobrycon is one of the

biggest genera of the Characidae family with around 130 representative species dis-

tributed in the neotropical region from southern Mexico to Argentina (Carvalho and

Langeani, 2013; Lima et al., 2014; Teixeira et al., 2016). Particularly, black neon tetras

live in groups in streams and lakes. Their diet is omnivorous, consisting of worms,

crustaceans and plants.

Recent laboratory research on the collective behavior of this species has shown

that black neon tetra occupy mostly the upper water layers of the tank even with

access to an increased water depth. They swim mostly in schools with consistently

high global polarization of ⟨ϕ⟩ = 0.88, 95% with a Confidence Interval of CI[0.88, 0.85]

for groups of different sizes (from 2 to 20). They tend to remain cohesive, even
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Figure 2.4: Left: individual of black neon tetra. Right: school of black neon tetras. Credits:
Brian Gratwicke (licence CC BY 2.0) and Tifr (licence CC BY-SA 3.0)

at the expense of a temporary loss of polarization, showing small variations in in-

terindividual distances, I ID = 13.56 cm, 95% CI[12.36, 14.74], and group density

ρg = 0.052 fish/cm2, 95% CI[0.045, 0.060]. Nevertheless, measures of heading dif-

ferences and turning angles show that fish tend to turn away from neighbors if the

distance between them is less than a body length to avoid excesive proximity and

collisions The characterized motion of black neon tetra indicates that this species is

suitable for studying collective motion, as it is a small species that swims in groups

with a stable coordinated motion. In a more practical sense, this species distributes

horizontally in the water column, which reduces measurement error when recording

in 2D from a zenithal point of view (Gimeno et al., 2016; Quera et al., 2019).

2.4 Experimental setup

Experiments were performed at the Quantitative Psychology Unit of the Institute of

Neurosciences, University of Barcelona. To later obtain the individuals’ x, y posi-

tions in time and perform collective motion analysis, we recorded groups of 20 and

40 black neon tetras swimming freely in a 100× 93× 40cm rectangular experimental

tank, using a CCD (uEye UI-1640LE) fixed camera mounted 2.2m from the center of

the tank. The signal was recorded with the software uEye Cockpit (IDS GmbH, 2010)

with 20 frames per second, 8 bits of gray levels and a resolution of 1072 × 1004 pix-

els per frame. Light was adjusted from three bulb lamps and two fluorescent lamps

placed around the tank to illuminate the opposite side and obtain homogeneous,

indirect, low-intensity lighting, as shown in Figure 2.5.
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Figure 2.5: Experimental setup for the analysis of collective motion in black neon tetras.
A: View from the top of experimental setup. B: Lateral view of experimental tank and

senital camera, connected to the computer that records the videos.

For clarity of recording and analysis, we worked with a water column with a

depth of 5 cm to avoid fish distributing in more than one vertical layer. Three in-

dependent replicates of 12000 frames (coded A, B and C) were recorded for each

experimental condition, along with 250 frames of the empty tank for background

subtraction. Between recordings fish were maintained in aquariums of identical size

40× 43× 30 cm with light/dark regular photo-periods, at a temperature of 25◦ ± 2◦,

pH of 7.8 − 8, total hardness of 10 − 14 ppm, nitrate levels below 100 mg/L and ni-

trite levels of 0 mg/L. For each experimental trial, either 20 or 40 randomly chosen

fish were moved from the aquarium to the experimental tank. First, to acclimatize

the fish to the temperature in the tank the group was transferred for five minutes to a

container with water from the experimental tank and from the aquarium. The group

was then transferred into the tank and left to habituate to the new environment for

five minutes prior to starting the recording. After recording each independent repli-

cate, fish were captured with a net and transferred back to the aquarium along with

water from the experimental tank to aid in the reacclimation. The recording and the

posterior data analysis were blind with respect to the subjects, given that individual

identification between recording events was not feasible. Video files were saved in

AVI format for the posterior processing of individual trajectories.
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3 Tracking animals on the move:

Software design and

implementation

3.1 Introduction

To study the individual interactions between animals from which collective phe-

nomena emerge greatly depends upon our ability to track the individuals’ behavior

in space and time. The quantitative analysis of animal behavior is crucial in a variety

fields, such as ecology, medicine, neurology and evolutionary research, where mul-

tiple individuals need to be tracked simultaneously (e.g. Fernando and Lande, 2000;

Cachat et al., 2011; Bownik and Wlodkowic, 2021). Direct observations have lower

resolution and often result in a small sample of individuals and fewer data points

(Dell et al., 2014). Fortunately, the advances in technology have made large amounts

of high precision behavioral data collection possible with individual tracking. This

has augmented the wide interest in animal behavior with a diversity of technologi-

cal solutions that address the multiple scenarios where animals are to be quantified,

from tracking devices attached directly to the individuals in their natural habitat

(e.g. Daniel Kissling et al., 2014), to image-based tracking in laboratory settings

where software tools calculate individuals positions in time (e.g. Pérez-Escudero et

al., 2014).

Organisms move rapidly when interacting with each other and their environ-

ment. To capture their motion, behavioral studies first need to adjust video frame

rate, field of view and image resolution with the required temporal and spatial res-

olution. Software and algorithms that can track individuals positions are critical
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Figure 3.1: Example of an occlusion between two fish.

for efficient research (Panadeiro et al., 2021). This often implies a high amount of

image data to process and analyze, which can be very labor intensive, especially if

manual tracking is used. In addition, tracking individuals manually introduces the

possibility of human error, which can reduce the accuracy of the results. Therefore,

automatic approaches for animal tracking are needed. However, most approaches,

as it will be discussed later, perform automatic tracking using human intervention

for specific conflict solving.

One of the main problems of tracking software is wrong individual’s identifica-

tion due to occlusions, observed when individuals move really close to each other

or even superimpose. When this happens, they can appear to be a single individual

for a certain amount of time (Dolado et al., 2015). Occlusions can impact the track-

ing accuracy by mixing the identities and breaking the trajectories. In Figure 3.1

an example of an occlusion between two individuals is shown. This may have un-

fortunate consequences, as identity errors can propagate throughout the remaining

sequence.

Addressing the issue of occlusions is an important feature of tracking software.
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While there are methods capable of effectively tracking one or few individuals, pre-

serving the identity of multiple individuals after an occlusion is still a challenging

problem (Rodriguez et al., 2018). Automated techniques able to accurately track

multiple organisms and preserve their identities still need to be developed.

To address the occlusion problem some technical approaches are:

• Tagging organisms with a visual marker. This technique can be physically

invasive and it is not applicable in general, for example, for organisms with

small body size.

• Using several cameras. This approach adds complexity to the experimental

setup, as different images need to be rendered or processed together. Also, it

adds computational cost to the system because of the process to integrate the

different images.

• Specific models of the animal body. These methods can only be applied for an-

imals geometrically compatible with the used model. Tracking software using

this approach often relies on specific shapes.

• Sophisticated contour representations or fingerprinting (characterizing indi-

viduals by specific bodily identifiers; e.g. variations in size). These approaches

greatly enhance the usefulness of image-based tracking allowing tracking of

differently sized and shaped organisms (Dell et al., 2014). However, it requires

videos with high-resolution.

• Image pattern recognition. This approach either uses matching texture maps or

convolutional neural networks. It is computationally and memory expensive

and requires access to past and future frames. Adittionally, it requires videos

with high temporal and spatial resolution (Rodriguez et al., 2018).

• Customized automated algorithms which predict identity based on the rela-

tive speed and direction of movement can reduce mistakes, but error propa-

gation is still unavoidable because of the stochastic behavior of the organisms.

These software rely on human expertise to solve occlusions. However, differ-

entiating individuals during an occlusion can be partly overcome when prior
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knowledge about the shape or movements of the organisms is incorporated

into the system.

3.1.1 What is a tracking software?

Among tracking software there is a common workflow in the algorithmic processes

implemented, that include from image acquisition to data analysis, and a similar

sequence of algorithms (Panadeiro et al., 2021). The identified steps are roughly de-

scribed below.

Image acquisition: The image acquisition process obtains the images to be pro-

cessed. The most common approach is offline processing, which extracts a sequence

of images from a video file, which are then cleaned and led to the detection algo-

rithms. The primary advantage of offline processing is that, since is not occurring in

real time, allows the algorithms to carry out more complex computations with ac-

cess to future and past frames while processing the current image. Image acquisition

has several limitations to be considered. First, it requires special equipment such

as experimental setting, lighting and cameras (for specific video quality). Second,

these decisions impact the computational cost of the algorithmic processes (speed

and memory) needed to run the tracking algorithms. This allows us to see how pa-

rameters such as image resolution, codec configuration or video frame rate can affect

the computational cost of tracking algorithms exponentially.

Furthermore, for the correct functioning of tracking algorithms, that are based

on libraries such as OpenCV (García et al., 2015; Gollapudi, 2019), it is recommended

that each animal in a video is composed of at least 50 pixels. The recommended

frame rate for the algorithms to be able to generate the trajectories depends on the

tracking software and the species being tracked. But it should be high enough that

the animal position overlaps in two consecutive frames. On the spatial resolution,

most tracking applications are limited by the maximum resolution that their detec-

tion and tracking algorithms can handle.
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Calibration: The calibration process defines the equivalence between the cam-

era’s units (pixels) and the real-world units (cm, for example). Some software in-

clude algorithms designed to avoid distortions caused by the optics of the lens, mis-

alignment, etc. This step is often unncecesary.

Detection step: This module is where the spatial positions of the animals at each

frame are identified. Thus, for every frame in the sequence, the (x,y) coordinates for

each detected individual are extracted. Detection algorithms normally include pro-

cesses such as background subtraction (if all the animals move, stationary features

are not a focal point) and segmentation, which reinforces the edges of potential ob-

jects. These processes are normally performed one after the other. Some software

include a filter in this step to eliminate detected objects that do not satisfy specific

conditions, such as shape or size. That is, it removes possible false positives.

The most common segmentation technique uses a threshold value to separate

the pixels below and above this determined value. The resulting image satisfies the

conditions required by the detection algorithms that require the animals to appear

as bright objects in a dark background, or vice versa. This also speeds computational

times as the amount of information handled during the detection step is lower.

Trajectory generation: This step takes all the frames where objects/individuals

have been detected and creates the movement paths for each animal across sequence

of the ordered frames in time. This process addresses the possible occlusions and

complex backgrounds or uneven illumination conditions in order to preserve the

identity of each individual across its trajectory, while simultaneously avoiding indi-

vidual swapping. Trajectory generation is a complex task that usually requires man-

ual correction, especially with a large number of animals. Moreover, some software

use algorithms to further smooth the trajectories during a post-processing step.

Data Analysis: After the trajectories are created, the data analysis step can be

performed. It processes the information from each trajectory to build the desired

behavioral data. For example, it is possible to extract values and statistics from mov-

ing velocity, mean distance, animal polarization, rate of explored territory or activity

rate. There are few software that include this step in their pipeline.
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Tracking software limitations

Multiple free tracking software have been developed in the last decade, and under-

standing which one, if any, suits your experimental settings can be a challenging

endeavor. Most tracking applications perform automatic tracking through different

approaches and were designed for specific setups, therefore each one has their own

strengths and limitations.

It is especially important to check each software requirement in video quality

(spatial and temporal resolution) and computational processing power, the species

type the application has been tested on, the number of animals capable of tracking

simultaneously, individuals’ ID preservation through time, and if/how it solves oc-

clusions. For example, some software rely on simple following algorithms that only

keep individuals ID’s for as long as no occlusions occur (see for example Mönck et

al., 2018; Werkhoven et al., 2019). Others, as mentioned in Section 3.1, solve oc-

clusions by analyzing pixels intensity histograms in each individual and joining

trajectory fragments by intensity similarity (Rodriguez et al., 2018), and the most

sophisticated ones rely on algorithms that search for “visual marks” through deep

learning processes to identify individuals or image specific traits (Xu and Cheng,

2017; Romero-Ferrero et al., 2019). The utility of each software depends on the infor-

mation that needs to be extracted. Experiments that look for only individual frame

information or group behavioral features, like area coverage, may not need to invest

time in complex algorithms and/or manual intervention for individual tracking,

while experiments that require information about individuals velocity or interac-

tions would prioritize ID maintenance and occlusion solving. Table 3.1 summarizes

main features of multiple free open-source tracking software (Harmer and Thomas,

2019; Rodriguez et al., 2018; Branson et al., 2009; Rao et al., 2019; Sridhar et al., 2019;

Gallois and Candelier, 2021; Walter and Couzin, 2021).

As described in Chapter 2, our black neon tetra videos were recorded with group

sizes of 20 and 40 individuals, at medium video quality: a spatial resolution of 1072

x 1004 pixels, each of 8 bits, and a temporal resolution of 20 frames per second. Of

the softwares documented, pathtrackr (Harmer and Thomas, 2019) and Animapp

(Rao et al., 2019) can only track one individual at a time, while ToxTrac (Rodriguez
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Table 3.1: Main tracking software technical features and requirements.

Software Platform Computational re-
quirements

Minimum video
resolution (px, fps)

Max
ind.

Id preser-
vation

Manual in-
tervention

ToxTrac Windows
8GB of RAM and
2.0+ Ghz Quadcore
or higher

1920x1080, 25 20 Yes Yes

pathtrackr Windows, Mac,
Linux NA NA, 30 1 - Yes

Animap Windows, Mac,
Linux NA 640x480, 15 1 - No

idtracker.ai Windows, Mac,
Linux

Core(TM) i7-7700K
CPU @4.20GHz
6 core Intel(R) -
Nvidia TITAN X
/ GeForce GTX
1080 Ti / RAM
16Gb-128Gb

1920x1080, 25-50 100 Yes Yes

Ctrax Windows, Mac,
Linux

32 and 64-bit sys-
tems 1920x1080, 20 2-150 No Yes

Tracktor Windows, Mac,
Linux

Intel i5 2.4 Ghz 8GB
RAM NA, 25 2-8 Yes No

Fastrack Windows, Mac,
Linux NA Any, Any 100 Yes Yes

TRex Windows, Mac,
Linux

Intel Core i9.790OX
CPU / NVIDIA
Geforce 1080 Ti / 64
GB RAM

Any, Any 100 Yes Yes

et al., 2018) and Tracktor (Sridhar et al., 2019) can manage up to 20 individuals. Only

Ctrax (Branson et al., 2009) and idtracker.ai (Romero-Ferrero et al., 2019) have the

capacity to process over 100 individuals. As we wanted to mantain the identity of

the individuals through time, Ctrax was not a viable option, as it does not include ID

preservation and was primarily tested in fruit flies. idtracker.ai requires a minimum

spatial resolution of 1920x1080 pixels, videos of 25 to 50 frames per second, and high

computational power, including a dedicated NVIDIA GPU. We tested our videos

on this software, in a computer with Intel Core i7-8550U CPU, 16GB of RAM, an

SSD disk and NVIDIA 1650 super GPU. The software was unable to perform the

pre-processing step of foreground objects (blobs) detection and orientation. Our

videos’ spatial resolution was also not enough for AI-based shape identification and

occlusions could not be resolved.

New animal tracking software explores new possibilities that are not well cov-

ered by existing tools. We found that our videos needed both automatic tracking

and an efficient Graphical User Interface to manually correct occlusions and ID mis-

matches. Therefore, to track the individuals on the videos available for this research,

we developed a tracking software, described in Section 3.2. Fastracker (Gallois and

Candelier, 2021) and TRex (Walter and Couzin, 2021) are the only software that based
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on the description of their technical features, could comply with our requirements.

Nonetheless, these software were released in 2021. At this time, the tracking of our

experimental data had already been completed.

3.2 Tracking Software Design

To obtain Black neon tetras individual trajectories, a custom made tracking software

was built using python opencv library (García et al., 2015; Gollapudi, 2019), which

makes use of computer vision to detect objects. It can be downloaded from https://

github.com/TheFishTankLab/Peixos_Tracking, where technical requirements and

usage are specified.

In summary, the tracking software consists on the implementation of different

processes and algorithms performing the following tasks:

1. Split the video into frames.

2. Detect individuals at each frame using image processing steps such as back-

ground subtraction, binarization and filtering.

3. Create trajectories, i.e connecting the detected objects across frames. This is

performed by means of a rule system controlling possible candidates in the

next frame for each object and a simple assignation algorithm.

4. Run post-processing algorithms to smooth the trajectories.

Assigning each individual at time t to its corresponding position at t + 1 is moni-

tored by a Graphical User Interface (GUI), described in Section 3.2.6, where a human

can inspect the process and manually solve occlusions that can not be solved by the

software.

The tracking software requires the user to manually label all the individuals in

the first three frames of the video (named t − 2, t − 1 and t). They are used to com-

pute the estimated position of each individual at t + 1. Then, a rule system is used

to select among all the candidate objects at frame t + 1, those who could actually be

the next point in each individual trajectory.

https://github.com/TheFishTankLab/Peixos_Tracking
https://github.com/TheFishTankLab/Peixos_Tracking
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Finally, the algorithm considers all the individuals with their respective candi-

date positions and iteratively assigns the best candidate until there are no candidates

left.

The rule system that selects the candidates aims to capture the expected individ-

ual changes in position. It has three rules that limit the distance and direction in

which an individual can travel, which are configured by the user. The first two rules

limit the possible forward and backward travel distance and angle. The third rule

considers a 360◦ angle within a small radius in the surroundings of an individual i

at time t, representing the space where it could be found at t + 1. The candidates

for an individual are those that satisfy the rules under the parameters selected by

the user. The assignation step starts by assigning all the individuals that have only

one candidate. Then, the candidates for the rest of individuals are sorted, placing

their best candidate first. This candidate is assigned and deleted as candidate for

the remaining individuals. This process iterates until no candidates are left and all

individuals are assigned to a new position.

We describe how the different steps were solved following the common taxonomy

for tracking software (Panadeiro et al., 2021)

3.2.1 Image Acquisition

The image acquisition process is described in detail in Chapter 2. In short, we

recorded black neon tetra, Hyphessobrycon herbertaxelrodi collective motion of groups

of 20 and 40 individuals swimming freely in a 100 × 93 × 40cm rectangular experi-

mental tank. The video characteristics are: 20 frames per second, 8 bits of gray levels

and a resolution of 1072 × 1004 pixels per frame. This was the maximum resolution

the camera was able to provide. The videos consider experimental conditions with

a depth of the water column of 5cm (experiment code Q5N20 and Q5N40). Three

independent replicates of 12000 frames (coded A,B and C) were recorded for each

experimental condition, along with 250 frames of the empty tank for background

subtraction.
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3.2.2 Detection

In the detection step the tracking software finds the (x, y) positions of each fish at

each frame. The images are acquired from the videos and processed after by using

the OpenCV library (García et al., 2015) for computer vision applications.

The detection step includes: frame separation, resizing the background frame if

necessary, background subtraction, converting RGB to gray color space and filtering.

• The frame separation process converts the video into individual images.

• The resizing step refers to changing the dimensions of an image, be the width,

the height, or both by changing its pixel information. Resizing an image needs

a way to calculate pixel values for the new image from the original one. This

is usually done with interpolation methods. An interpolation function exam-

ines neighborhoods of pixels and optically increases or decreases the size of an

image without distorting it. In our tracking software, the new image preserves

the aspect ratio of the original image. It uses the cv2.resize() OpenCV function

using AREA_INTERPOLATION, that resamples using the pixel area relation.

For this, first an area of pixels is defined according to the desired modificaton

in image dimensions. For example, if we want the new image to be three times

smaller than the original in both width and height, then the pixel area will be

3x3 = 9 pixels. Then, the values of the pixels within it are summed up and

then divided by the area. The result is the pixel value of the output image

(Ansari, 2020).

• Background subtraction allows to remove stationary features from the envi-

ronment. This is everything that might be in the background frame, so it is not

tracked as a "non-moving" object by the software. The software subtracts the

background from the foreground by using a running average technique, that

averages pixel values between frames. For this, a set of the video frames are an-

alyzed. In each new frame, the running average is computed over the current

frame and the result from the previous frames. Finally, the absolute difference

between the background model (which is a function of time) and the current

frame is calculated. We implemented this technique via the opencv function
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cv.accumulateWeighted(), which includes a parameter to control the weight of

the current image frame on the averaging with the accumulated image (Sobral

and Vacavant, 2014).

• The RGB to gray color space conversion, together with the filtering, allow to

binarize the image, making the objects easier to track. The filtering process

includes a Bilateral Filter, and Thresholding. The filter aims to reduce noise

by smoothing images while preserving edges. For this, it uses a nonlinear

combination of nearby pixel values to define the intensity of each focal pixel.

The thresholding takes a grayscale source image, and applies a particular color

to every pixel exceeding a threshold value and another color to those below.

The color space conversion, the filtering and the thresholding constitute the

segmentation step in the common workflow (Panadeiro et al., 2021).

The object detection is performed by using the Finding contours OpenCV func-

tion, which defines the lines containing all the points alongside a boundary with the

same intensity in terms of pixels. That is, the function finds the points where there

is a significant difference in the intensity to create contours around. This function

works better for binarized images, that is why it is applied after the binarization and

filtering processes.

Once all the candidate objects have been detected in a frame, the software gener-

ates the trajectories using this information.

3.2.3 Trajectory generation

For the trajectory generation the software connects the detected contours across

frames, assigning to each object in a frame the more likely object in the subsequent

one to complete the trajectory.

For this propose, the tracking software estimates the position of the fish at frame

t + 1 using the information of the position at t − 2, t − 1 and t. Then, it uses some

heuristics, expressed in a set of rules, together with an assignation algorithm, to

decide the final position at t + 1.

The general trajectory generation process can be described as follows:
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1. Consider the position of each animal at frame t and detect all possible animals

at frame t + 1.

2. For each animal, estimate its position at frame t + 1, considering its trajectory

(t − 2, t − 1 and t).

3. For each animal, define its candidates at t+ 1 as those objects that under certain

conditions, defined by the rule system described next, are likely to properly

continue the trajectory of the animal.

4. Assign an object at frame t + 1 to each animal at frame t. This process is car-

ried out by the assignation algorithm, taking into account heuristics such as:

assigning first those objects that are the only candidate for an animal, consid-

ering proximity and looking at the past trajectory.

Note that the tracking software requires manual identification of individuals for

the first three frames, t − 2, t − 1 and t, in order to build the trajectories. Each indi-

vidual identity has to be preserved across these first frames. This process is carried

out by means of the user interface provided by the software (described in Section

3.2.6).

Estimating the position at t + 1

To estimate the position of a fish at t + 1 the velocity vectors from t − 2 to t − 1 as

well as from t − 1 to t are used.

Figure 3.2 shows a schematic of the estimate position process. We proceed in the

following way:

1. Calculate Vt−2,t−1, that is the vector of movement among frames t− 2 and t− 1.

2. Place Vt−2,t−1 over the detected animal at frame t − 1. The result is the es-

timated position of the animal A at frame t. This considers that the animal

moves along the same direction and with the same speed.

3. We estimate the error E at t considering the real position of the animal at frame

t and the estimated position. The error corresponds to a change of direction
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Figure 3.2: Schematic of the process to estimate the position of a fish at frame t + 1, based
on its positions at frames t − 2, t − 1 and t. The process builds the vectors of movement

from t − 2 to t − 1 and from t − 1 to t, named Vt−2,t−1 and Vt−1,t.

(i.e if the animal is turning to the left or to the right) or speed, and express the

variations in comparison to the previous frame.

4. Calculate Vt−1,t, that is the movement of the animal between t − 1 and t.

5. Place Vt−1,t into the center of the position of the animal at frame t. Then add

E to the result. The resulting position corresponds to the estimated position of

the animal at frame t + 1.

This estimation of the position intends to capture the curved paths that the fish

tend to follow, considering the direction of the velocity into the prediction of the next

position.

Calculating the estimated position helps to solve problems such as the following

one: when an occlusion occurs, the closest detected object at t+ 1 will be a candidate

for all the individuals occluding. However, if we estimate their positions at t + 1

considering its trajectories it is likely that we have two or more (depending on the

number of individuals) different estimated positions at t + 1 from which to proceed.

Rule system

Now that we have an estimated position for each fish at t + 1, we analyze which of

the detected individuals at t + 1 are actually good candidates for each estimated fish

position at t + 1. All the fish with their selected candidates will be then processed by
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an assignation algorithm. Selecting candidates allows faster processing as not every

individual at frame t + 1 has to be considered in the assignation process.

The rules are based on heuristics intended to capture the physical movement of

the animals and to handle small variations that are produced by the OpenCV detec-

tion function.

The rules can be tuned by the user as well as activated or not according to the

performance of the tracking software for a specific video. For example, there is a

rule to capture the fact that the species being tracked does not move backwards. This

rule allows to discard objects located within certain angle which, according to the

biology of the species, is unlikely to be reached by an individual from one frame to

the next. Rule parameters are defined by the user in a configuration file. Next, we

describe the configurations and the rules.

Rules Configuration

Rules can be configured at a config.ini file. The file requires the following values:

• dis_rule_front: an offset to adjust the tracking zone.

• max_dist_front: the maximum distance that an animal can move forward in

one frame. Objects beyond this distance are not consider as valid candidates.

• front_angle: the angle within which it is consider that an animal can move

forward.

• dis_rule_behind: an offset to define the tracking region.

• max_dist_behind: the maximum distance that an animal can move backwards

in one frame. Objects beyond this distance are not consider as a valid candi-

dates.

• dis_rule_inner: offset to configure the tracking region.

• max_dis_rule_inner: maximum distance that we consider an animal can move

in any direction. Objects beyond this distance are not consider as a valid can-

didates.
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Figure 3.3: Angles of the front, inner and behind rules define a 2 dimensional space where
the candidate objects can be.

The offsets dis_rule_front, dis_rule_behind and dis_rule_inner, allow to define

a region beyond the closest object detected to search for candidates. The maxi-

mum distances max_dist_front, max_dist_behind and max_dis_rule_inner bound

the search in case the closest detected object is too far. This means that if the sum of

the closest detected object and the offset is greater than the maximum distance, then

a fish has no candidates for that rule.

There is a global parameter max_long_jump set in the configuration file, which

monitors "long jumps". This is, displacements considered impossible for the species

being tracked, that could result of an unusual speed increase of an individual, or an

error in the individual assignation. This parameter is intended to speed the process

of manual correction, and to simplify the tracking process.

These rules parameters are used for three rules. Named: Front, Inner and Behind

rule. Each of them has an angle and threshold distances for being able to select

different areas. A visual description of the angles of the rules: Front, Inner and

Behind, can be found at Figure 3.3.

Front Rule

This rule aims to capture fish forward movement. It is important to remark that

we are measuring position changes in 1
f ramerate seconds, so for standard video tem-

poral resolutions, the change in position among two consecutive frames is small.

Let PA,t be the position of fish A at time t, and PA,t+1 the estimated position of fish

A at t + 1. Let min_dist be the distance between the closer detected object at frame

t + 1 and PA,t+1. Then, an object B at frame t + 1 is a candidate for A according to

the front rule if it satisfies the following conditions:
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dist(PA,t+1, B) < min(min_dist + dis_rule_front), max_dist_front ) and angle < front_angle (3.1)

where angle corresponds to the absolute value of the angle between the vector from

PA,t to PA,t+1 and the vector from PA,t to B, and front_angle corresponds to the angle

allowing forward movement.

The value dist_rule_front defines how much, beyond the distance of the closer

object detected at t + 1 (min_dist), the software will look for possible candidates

B. If we only consider the closest distance we would not consider other plausible

candidates. Such distance is bounded by the max_dist_front.

Behind Rule

This rule is designed to limit the backward movement. Also, it is intended to

improve the tracking process when an animal remains static but the object detection

library places the detected object “backwards”, as it identifies the centroid of the

detected blob, but the size and/or shape of the blobs can vary from frame to frame,

due for example to changes in fish tilting or startled fish that appear longer.

Let PA,t be the position of fish A at time t, and PA,t+1 the estimated position of fish

A at t + 1. Let min_dist be the distance between the closer detected object at frame

t + 1 and PA,t+1. Then, an object B at frame t + 1 is a candidate for A according to

the behind rule if it satisfies the following conditions:

dist(PA,t+1, B) < min( (min_dist + dis_rule_behind), max_dist_behind ) and angle < behind_angle (3.2)

where angle corresponds the absolute value of the angle between the vector be-

tween PA,t and PA,t+1 and the vector going from PA,t to B, and behind_angle corre-

sponds to the angle where the animal can move backward.

As in the case of the front_rule, the value dist_rule_behind defines the distance

beyond the minimum distance in which the objects that are found will be included as

candidates. max_dist_behind limits the maximum distance where a detected object

can be considered as candidate for A.

Inner Rule This rule considers movements that can be produced in any direction.

This rule also helps to consider small variations during the tracking process due
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changes in the position of the centroid of the detected blob from frame to frame.

If PA,t+1 is the estimated position of fish A at t + 1 candidates according to the

Inner Rule will be blobs B satisfying:

dist(PA,t+1,B) < min((min_dist + dis_rule_inner), max_dist_inner) (3.3)

Again dis_rule_inner defines how far from min_dist will the objects found included

as candidates.

Each rule creates a set of possible candidates. The candidates for a fish at t + 1

will be the union of the sets containing the candidates selected by each rule.

The process of selecting the candidates for a fish at t + 1 is described pseudocode

in Algorithm 1.

Algorithm 1 Get candidates function

1: function GET CANDIDATES(positions at t-2, t-1, t, t+1, dis_rule_front,
max_dis_rule_front, front_angle, dis_rule_behind, max_dis_rule_behind, be-
hind_angle, dis_rule_inner, max_dis_rule_inner)

2: for each animal a in frame t do
3: Compute the estimated position at t + 1 considering t − 2, t − 1, and t.

This process is described in detail in Section 3.2.3.
4: Compute the distances from the estimated position of the individual to

the objects detected at t + 1
5: Let “distance” be the distance from the estimated position (at t + 1) to a

current candidate.
6: Let min_dist be the minimum of all the distances.
7: Candidates for a are objects satisfying:
8: front_rule_active and distance < min( (min_dis +

dis_rule_front),max_dis_rule_front) and angle < front_angle
9: behind_rule_active and distance < min((min_dis + dis_rule_behind),

max_dis_rule_behind) and angle > behind_angle
10: inner_rule_active and distance < min((min_dis + dis_rule_inner),

max_dis_rule_inner)
11: end for
12: return Candidates
13: end function

3.2.4 Assignation Process

The function that collects the candidates information and assigns to each detected

object at time t its best candidate at t + 1 operates as follows. For a fish, the “best
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assignation” is considered to be its closest object, given that the system has already

considered the direction of movement for three frames to estimate its position at

frame t + 1. Moreover, the rules have already filtered objects that are unlikely to

be the next position on its trajectory. In this way, the best assignation function finds

for each fish its closest object considering these restrictions. The function starts by

assigning those fish that have only one candidate. Once this is done, it assigns the

rest of the fish to its closest object among the candidates. And finally, it assigns those

individuals that might have no candidates (the rules could return empty sets) to its

closest object considering the raw data as it is captured before being processed by

the rules.

3.2.5 Post-processing of tracking data

Opencv detects blobs and assigns the position of the detected object to the center

of its darkest region. However, when a fish remains steady for a few frames, blob

variations can be produced in the subsequent frames, creating, given detection dif-

ferences, an unnatural motion where the position moves slightly forward and back-

wards.

The Savitzky-Golay filter is a commonly used filter in signal processing to smooth

data, i.e. to increase the signal precision without distorting its tendency (Savitzky

and Golay, 1964). It calculates a polynomial fit of order N by linear least squares in

a sequence of points.

Roughly speaking, the Savitzky-Golay filter proceeds in the following way for

a given x[n] signal of successive points. Consider a window of size 2M + 1 points

centered at point n∗. It is possible to obtain the coefficients of the polynomial:

p(n) =
N

∑
k=0

aknk (3.4)

that minimize the least squares error of the window. i.e.

ϵN =
n∗+M

∑
n∗−M

(p(n)− x[n])2 (3.5)
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The value of the smoothed function would be p(n) evaluated at n∗. That is, y[n∗],

the output at n = n∗ is

y[n∗] = p(n∗) = a0 (3.6)

i.e., the output value is equal to the 0th polynomial coefficient. The filter computes

the output value of the central point by shifting the window by one point at a time

during the length of the signal.

3.2.6 Graphical User Interface

The tracking software provides a Graphical User Interface (GUI) where the user con-

trols the tracking process. When the GUI is initiated, the software first asks the user

to set the number of individuals, the path of the background video (otherwise it is

calculated automatically), and the path to a specific tracking file (otherwise it ini-

tiates a new file). After those variables are set, the GUI changes to the one shown

at Figure 3.4 where the tracking process is supervised. At the left bottom of Figure

3.4 there is a bar that allows frame to frame shifting. In the example image, we are

positioned at frame 391. The same frame to frame movement is allowed by the small

box located an the end of the bar, also holding number 391. To assign an ID to a par-

ticular fish, the New Position From box is used. It allows to select a number among

the individuals being tracked and assign it to the fish selected by the mouse pointer

when the left click is pressed.

When assigning the id to the first thee frames, the bottoms at Display Options

to facilitate Manual Intervention region can be used. By selecting the Show Only

One Fish option, the tracking software automatically assigns the Selected id across

frames. If the software switches ID’s after two fish occluding, the Switch from but-

ton allows to swap selected identities.

Buttons New Position changes the ID position of the selected fish at the current

frame without altering subsequent frames, and Full New Position changes the fish

ID position in a particular frame and resets that ID positions information in all the

subsequent frames. This second option is used when we need to correct a full trajec-

tory where an error is being propagated across frames.



60 Chapter 3. Tracking animals on the move: Software design and implementation

Button Save writes the x,y positions by frame into a python pickle file, and but-

ton Post Processing applies the smoothing algorithm to the saved data. Finally, the

button Play Automatic assignation calls the tracking algorithm to automatically as-

sign frame by frame the positions of the individuals, and it will stop if the box Stop

if Not Assigned is checked to allow the user to manually correct the unassigned

fish. The error area is circled if the Show Error Zone box is checked.

Figure 3.4: A: Image of tracking Software Graphical User Interface (GUI) with main con-
trols for automatic and manual tracking highlighted.

3.3 Tracking results

In total, three 12,000 frames replicates (≈ 10 min videos) per experimental condition

(Q5N20, Q5N40) were processed, adding up to 72,000 frames.

For each video, first background subtraction was performed by analyzing all

12,000 frames and removing stationary features corresponding to the tank edges

and black spots on the tank floor. Figure 3.5, A shows an example of the background

obtained by this process. Next, parameters were tuned to achieve a correct image
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segmentation by thresholding, filtering and binarization. For this, we used a thresh-

old value of 30 (of gray-scale from 0 to 255), which resulted in clear fish shapes where

pixels where darker than the threshold. We can check the resulting binarization di-

rectly in the GUI, by enabling the Show Binary Frame box (Figure 3.5, B).

Figure 3.5: A: Background subtraction resulting image. B: Software GUI visualization of
binarization process.

For the trajectory generation, we also tuned parameters by direct observation

of object detection of approximately 100 frames with different parameter combina-

tions. Finally we set our parameters for the rule system as shown in Table 3.2, and

proceeded with the tracking by automatic assignation of a bounding box to each

detected shape. We kept the Show Error Zone and Stop if Not Assigned boxes

checked so the software would show us whenever a fish had no good candidates ac-

cording to the rule system parameters, either caused by rare long jumps or because

it was impossible for the software to differentiate between two or more fish after an

occlusion (See example in Fig. 3.6,B). These circumstances where solved by manual

Table 3.2: Parameters used for the tracking of 20 and 40 individuals of black neon tetra.

Rule Value Unit
dis_rule_inner 3 px

max_dis_rule_inner 15 px
dis_rule_front 6 px

max_dis_rule_front 35 px
dis_rule_behind 4 px

max_dis_rule_behind 15 px
front_angle 15 degrees

behind_angle 170 degrees
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intervention. Complete tracking of each video took from 6 to 10 hours, depending

on the need for manual intervention, divided in 2-hours work sessions. Example

GUI images of the trajectories generation process are included in Figure 3.6,C).

Figure 3.6: A: Bounding boxes assignation in detection step. B: C:

Once all the trajectories were completed, a a post-processing step was included

to correct small path deviations due to either manual intervention or different shape

size detection, and hence different location of the centroid. For this, we applied

a Savitzky-Golay filter of degree three over a 0.35 s time window (7 frames; Fig.

3.7). Finally, we obtained the trajectories in a .csv file with frame, fish ID, and x, y

coordinates in pixels. We then transformed x,y coordinates from px to cm according

to image resolution (1072x1004px) and tank measures (100x94cm).

3.3.1 Software performance

To explore the obtained trajectories we first plot the normalized density of fish space

occupation in the experimental tank. In Fig 3.8 we show replicas A,B and C of condi-

tion Q5N40 as example. Fish moved with more frequency in central tank areas and

less near the tank walls.

We calculate individual and collective behavior descriptors to validate our track-

ing results, and compare measures with other studies that have worked with black

neon tetras or closely related species, using different tracking software and method-

ologies.

First, to check the coherence in each individual trajectory, we calculated the indi-

vidual instantaneous speed,

vi(t) = |⃗vi(t)| ≡ [⃗vi(t) · v⃗i(t)]
1/2 , (3.7)

and turning angle per frame, defined as the angle of rotation from v(t) to v(t + 1),
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Figure 3.7: A: Example of pre-processed fish trajectory (blue points) and smoothed trajec-
tory after applying Savitzky-Golay filter (orange line). B: Final trajectories of 1000 frames

tracked fish in replica B of conditions Q5N20 and Q5N40.

φi(t) =
∥∥∥∥arctan

{∥v⃗i(t)× v⃗i(t + 1)∥
∥v⃗i(t) · v⃗i(t + 1)∥

}∥∥∥∥ , (3.8)

where × stand for the vectorial product and ∥·∥ represents the vector modulus. The

angles are computed in the interval [−π, π] to check for symmetry.

Table 3.3 shows mean speed values and standard deviations aggregated for all

individuals, per each tracked experiment. Individual speed values are in tune with

reported speeds in other fish studies when divided by body length (Palstra et al.,

2010; Videler and Wardle, 1991), and with closely related species H. rhodostomus, that

move with a mean speed of 0.7 cm/frame when swimming freely in an experimental

tank (Calovi et al., 2018).

Additionally, each trajectory’s speed in time exhibits a burst-and-coast swim-

ming pattern, characterized by an active phase during which the fish accelerated

(burst phase), followed by a passive phase where they glide and keep their bodies

Figure 3.8: A: Normalized density of space occupation of 40 black neon tetra swimming
freely in an experimental tank. Replicas A,B and C of condition QN540 are shown.
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Table 3.3: Mean individual speed values, ⟨vi⟩, and mean individual distance to the nearest
neighbor, NND, for each replicate and condition tracked.

Condition replicate ⟨vi⟩ ± S.D. ⟨NND⟩ ± S.D.
(cm/ f rame) (cm)

Q5N20
A 0.89 ± 0.42 4.01 ± 1.48
B 0.83 ± 0.42 4.10 ± 1.50
C 0.87 ± 0.44 4.30 ± 1.62

Q5N40
A 0.92 ± 0.34 3.33 ± 1.29
B 0.94 ± 0.37 3.78 ± 1.41
C 0.89 ± 0.38 3.79 ± 1.44

motionless and straight (coast phase) (Videler and Weihs, 1982). This swimming pat-

tern is also observed in other fish species with body and caudal fin propulsion (Fish,

2010b), such as H. rhodostomus (Calovi et al., 2018). The burst-and-coast swimming

behavior in black neon tetras is explored in more detail in Chapter 5.

Individuals turning angles can be used to analyze trajectories smoothness and

video resolution. We would expect that our resolution (20 frames per second) cap-

tures fish continuous motion, which would result in mostly smooth directional changes

(turning angles close to 0) and occasional larger turns when individuals abruptly

change direction. The distributions of φi(t) for each replicate are plotted in Fig-

ure 3.9. Turning angles distribute symmetrically between [−π, π], and the high fre-

quency of ⟨φi⟩ values close to zero falls within expectations of smooth trajectories

with small directional changes. Larger turns are also represented with low frequen-

cies. In fact, 95% of observed turning angles fall between ±0.429 radians.

One of the most commonly used parameters to measure shoal behavior, i.e. to as-

sess group cohesion, is the distance of the focal fish to the nearest neighbor (NND).

Here, we observed mean NND values from 3.33 to 6.14 cm (Table 3.3), that corre-

spond to 1.3 to 2.2 body lengths (black neon tetra’s body length is of ≈ 2.5 cm,

Chapter 2) which is consistent to observed NND in black neon tetra (Quera et al.,

2019) and other species with different body length and group sizes (Katz et al., 2011;

Herbert-Read et al., 2011). To verify that our trajectories depict the schooling ten-

dency of interacting black neon tetras, and compare results with observations in this

species, we calculate the heading difference in time between the focal fish and it’s
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Figure 3.9: A:Probability density function of individuals turning angle ⟨φi⟩ for A,B and C
replicates of each condition. B: Probability density function of individuals heading differ-

ence with their closest neighbor, γij(t), for A,B and C replicates of each condition.

nearest neighbor,

γij(t) =
∥∥∥∥arctan

{∥v⃗i(t)× v⃗j(t)∥
∥v⃗i(t) · v⃗j(t)∥

}∣∣∣∣ , (3.9)

with angles also computed in the interval [−π, π].

Figure 3.9, B shows γij(t) distributions for each replicate. As with turning angles,

we observe angle symmetry in all experiments, and a high frequency of small head-

ing differences, which indicates that neighbouring fish heading tends to be similar

to that of the focal fish, i.e. a high polarization and individuals schooling tendency,

also reported in (Quera et al., 2019).
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3.4 Closing remarks

The need for animal behavioral data, specially about the way they move, has elicited

numerous tracking software solutions that tackle various behavioral and/or tech-

nical specifics. Nonetheless, both the stochasticity of animal systems and the ar-

ray of experimental designs and/or resources available makes most software non-

transferable to use under different experimental settings. We found that only a cou-

ple of applications could track more than 20 individuals at a time, and from them,

the only software that could preserve identities through time needed a high video

resolution and expensive computational power, which were not available for our

research. We built a software that allows to automatically track at least 40 individu-

als following similar image-processing approaches to other tracking software, and a

rule-system algorithm that aims at estimating future individual positions based on

previous directional behaviors and on knowledge of common maximum distance

traveled from frame to frame. As our videos were recorded at medium resolution,

precluding individual fingerprinting, we built an intuitive, functional GUI to per-

form manual corrections when position change identification by the algorithm was

not possible, and corrected possible path deviations with a noise filtering algorithm.

We obtained clear individual trajectories for each experimental condition recorded,

and categorized fish individual features to compare our tracking results with behav-

ioral traits of black neon tetras and closely related species reported elsewhere.
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4 Modeling of collective motion

4.1 Models of collective motion

Collective motion is a widespread phenomenon that can be observed in systems of

very different nature, such as bird flocks, fish schools or human crowds. An intrigu-

ing property of collective motion phenomena is that even in very different systems,

be cells clusters or human crows, very similar collective behaviors can emerge un-

der certain conditions (Lopez et al., 2012). Following this observation, a collective

motion system has been conceived as a collection of individual units that interact

in relatively simple ways. This idea faciliates the use of theoretical modeling to dis-

entangle the underlying interactions from which collective motion emerges. In the

last decades, multiple models have been proposed to simulate the most characteris-

tic features observed in natural systems exhibiting collective motion. These models

have contributed to the idea that there are universal mechanisms by which individ-

uals’ local rules of interaction generate the emergent global patterns observed.

In theoretical approximations, the universal laws that could apply to collective

motion systems are being investigated with models of self-propelled particles (SPP;

Deutsch et al., 2012). Although in recent years the increase in theoretical and experi-

mental studies has deepened our understanding of collective motion, the proximate

causes of the collective patterns diversity are still poorly understood (Herbert-Read,

2016; Vicsek and Zafeiris, 2012). The philosophy of SPP models is to provide the

simplest possible model that reproduces the key features of flocks, herds, migrat-

ing cells, etc. The purpose is to ensure that model outcomes are not dependent on

some particular system, and hence to reveal the universal properties of the global

behavior exhibited by the individuals. Moreover, SPP models allow us to investi-

gate the conditions under which collective patterns are produced by spatially local

interactions. Establishing a connection between reproducing the global behavior of
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collectives and describing how between-individual interactions produce group dy-

namics is where SPP models play an important role.

In SPP models particles move in a one, two or three-dimensional space. Each

particle has a local interaction zone within which it responds, i.e. affects and is af-

fected, to other particles. The exact form of this interaction varies between models

but, typically, individuals are repulsed by, attracted to and/or align with other indi-

viduals within one or more different zones. Typically, noise is also incorporated into

the movement of the individuals to replicate the stochasticity of real world systems.

Collective motion can be expressed as an ordered motion in one extreme, and as

disordered random motion on the other. In models of SPP, a transition from disor-

dered to ordered motion can emerge by tweaking relevant parameters of the model.

As discussed earlier in Chapter 1, a phase transition is a process from which the col-

lective of many interactive particles undergoes a transition from one phase to another

depending on certain parameter values (Lopez et al., 2012). Phase transitions are de-

fined by the change of a parameter that indicates the level of order that characterizes

a phase, with typically zero indicating a disordered phase and one an ordered phase.

The way the order parameter changes provides information about the possible states

in which the system can be found. Generally speaking, a discontinuous change in

the order parameter is referred to as a first order phase transition, on which both

phases can coexist, while a continuous change is called a second order phase transi-

tion (Vicsek and Zafeiris, 2012).

The simplest SPP model was proposed by Vicsek et al., 1995. It is defined by a

group of N identical particles moving at a constant speed in a d-dimensional space.

At each time step, they change their orientation depending on both the average ori-

entation of their neighbors (where are they heading) and a noise term that random-

izes the direction of motion of each particle.

Based on this model, others have been built with varying levels of sophistication

regarding the interaction rules. Examples of this include changing the number and

properties of neighbors that the focal individual interacts with (Camperi et al., 2012),

varying the type of interaction depending on the particles distance and direction

(Wang et al., 2013), or considering the effect of spatial memory on group distribution

(Grünbaum, 2012).
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For example, the model proposed by Couzin et al., 2002 is based on a series of

local repulsion, alignment and attraction rules according to the particles’ relative po-

sition and alignment. These rules assume that individuals operate in a hierarchical

manner. First, they try to maintain a minimum distance with others at all time. Sec-

ond, individuals tend to be attracted to other individuals. Finally, they try to align

with each other.

In this chapter, we describe the Vicsek model with more detail and explore some

of its properties while varying the control parameters that characterize the model.

We specially focus on particles’ speed-based phase transitions behavior, as is the

least explored property in the literature. In Chapters 5 and 6 we work with modified

versions of the Vicsek model to explore various emergent collective properties in our

experimental fish schools.

4.2 The Vicsek Model

To establish a quantitative interpretation of flocking behavior the Vicsek model was

introduced in 1995 (Vicsek et al., 1995). The Vicsek model describes the dynamics of a

set of self-propelled particles (SPP) characterized by an instantaneous position x⃗i(t)

and direction of motion given by the unit vector s⃗i(t). The dynamics is overdamped

and the position of particles is updated in a parallel scheme in discrete time as:

x⃗i(t + 1) = x⃗i(t) + vi(t)⃗si(t), (4.1)

where vi(t) is the speed of particle i at time t. Periodic boundary conditions in the

box containing the particles are imposed.

Interactions in the Vicsek consist in the alignment of the velocity of an SPP with

the average velocity of some of its neighbors. Perfect alignment is, however, im-

peded by the addition of a noise term that mimics, for instance, the difficulties in

gathering or processing the surrounding information. In two dimensions, assuming

a direction of motion in polar coordinates, s⃗i(t) = (cos(θi(t)), sin(θi(t))), in terms of
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Figure 4.1: Diagram of the Vicsek model dynamics. A: The focal particle (green) has three
neighbors (colored purple) within a radius R0. B: The focal particle changes its orienta-
tion averaging its neighbors’ orientations. Noise prevents perfect alignment. C: The focal
particle moves at a constant speed v0 towards the new direction of motion. In the Vicsek

dynamics all particles change orientation and position synchronously.

the angle θ with the horizontal axis, the orientation dynamics is expressed as (Vicsek

et al., 1995)

θi(t + 1) = Arg

 ∑
j∈Ni(t)

s⃗j(t)

+ ηξi(t), (4.2)

where Arg
[
V⃗
]

represents the angle described by vector V⃗, Ni(t) represents the set

of particles at a distance smaller than or equal to R0 of particle i (including i itself)

at time t, ξi(t) is an uncorrelated random noise uniformly distributed in the interval

[−π, π], and η ∈ [0, 1] is a parameter representing the noise strength. The model is

thus fully defined in terms of the number of particles N, the size of the simulation

box L (related by the density ρ = N/L2), the radius of interaction between particles

R0, the noise strength η, and the particle speed vi(t). In the classical Vicsek model,

speed is constant and the same for all particles, vi(t) = v0.

A typical choice to reduce the number of variables, is to select R0 = 1. Then, the

model only depends on parameters η, v0 and ρ.

Equation 4.2 contains a explicit alignment term that competes with the noise pa-

rameter η to define the orientation of each single particle. When it is strong enough

to overcome the effect of the noise, the system develops a global order, and the par-

ticles appear oriented in the same direction generating collective motion. This is

measured by a polar order parameter, i.e. the average normalized velocity:

ϕ(t) =

∣∣∣∣∣ 1
N

N

∑
i=1

s⃗i(t)

∣∣∣∣∣
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The polar order stationary time average, ⟨ϕ⟩ = limT→∞
1
T

∫ T
0 ϕ(t)dT, is used to

describe order transitions, with ⟨ϕ⟩ > 0 representing the ordered phase.

4.3 Properties of the Vicsek Model

One of the main attractives for the statistical physics community to the study of the

Vicsek model is the behavior of the phase transition when the system’s behavioral

parameters are varied (Aldana et al., 2009).

Vicsek et al., 1995 showed that, when η is increased, the system undergoes a

phase transition from an ordered state where all the particles move in the same direc-

tion (⟨ϕ⟩ > 0), to a disordered state where the particles move in random directions

(⟨ϕ⟩ ≃ 0).

As for the nature of the phase transition, numerical results first showed that a

second order (continuous) transition ocurred at a critical η value (Vicsek et al., 1995).

Figure 4.2 shows the stationary order parameter as a function of noise amplitude for

different system sizes, where a continous transition is apparently observed. In the

thermodynamic limit, the order parameter is expected to change according to

⟨ϕ⟩ ≈ [ηc(ρ)− η]β, (4.3)

where β is a critical exponent, and ηc(ρ) is the critical noise for L −→ ∞ depending

on ρ.

These results were later challenged by numerically analyzing large systems with

many more particles moving at higher speeds. From these analysis a first order

(discontinuos) transition was observed (Grégoire and Chaté, 2004). This elicited a

debate about the nature of the transition in the Vicsek model, and it has resulted in a

number of studies investigating the order-disorder phase transition under different

parameter combinations (Aldana et al., 2009, Baglietto and Albano, 2009a, Clusella

and Pastor-Satorras, 2021).

The main findings are that both the critical value at which the phase transition

occurs and the nature of the transition are dependent on combinations of speed, den-

sity and system size, which act as regulators of the particles’ interactions, and hence,

of the randomness in the direction of motion. For low densities and low particles
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Figure 4.2: ⟨ϕ⟩ as a function of η for different number of particles, keeping ρ = 0.5. ⟨ϕ⟩ was
averaged over 100, 000 time steps (5,000 time steps of thermalization) in three simulations

repetitions.

speeds, the phase transition is predicted to occur at low noise amplitudes, regard-

less of the system size, and to be compatible with a second-order phase transition

(Sumpter et al., 2008; Aldana et al., 2009), as shown previously in Figure 4.2. Under

this regime, the transition is fairly independent of the speed value as shown in Fig-

ure 4.3 where different speed values produce a very similar order-disorder transition

curve. There is an exception for v0 = 0, where no transition is observed as noise is

increased.

When density and particles’ speed are high enough and the system size is large,

the predicted noise critical value is higher, and the order-to-disorder phase transition

is closer to a first-order, discontinuous phase transition (Grégoire and Chaté, 2004;

Aldana et al., 2009).

Figure 4.3: Stationary ϕ as a function of η in the Vicsek Model for multiple values of
v0.⟨ϕ⟩ was averaged over 100, 000 time steps (5,000 time steps of thermalization) in three

simulations repetitions.
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Figure 4.4: A: High density particles’ bands within a disorganized Vicsek system. Image
borrowed from Ginelli, 2016. B: Qualitative phase diagram of the type of order in the

Vicsek model with combinations of ρ, η.

An interesting property of the Vicsek model is the heterogeneous particles’ spa-

tial distribution that can emerge in the system due to the interplay between local

order and local density in the first order regime. For a combination of noise am-

plitudes and densities, particles may gather in high density bands. These patches

create an increase in the neighbors that a particle interacts with and as a result, local

alignment improves while the rest of the system is desorganized. This mechanism

generates a long wavelength instability near the onset of order, that breaks the homo-

geneous ordered phase and leads to spontaneous phase separation. In Figure 4.4 we

can see a snapshot of particles arranged in high-density bands with a well-defined

width moving through an otherwise disorganized system. When noise amplitude

decreases and particles’ density increases, the instability disapears and an ordered

phase emerges, as can be seen in Figure 4.4B, that shows a schematic of the three

phases of the Vicsek model: A disordered phase, where particles act as persistent

random walkers at high noise amplitude, a phase separated ordered system with

high-density bands, and an homogeneous ordered phase for high densities and low

noise amplitudes (Ginelli, 2016).

Although the model has been extensively analyzed varying the noise amplitude

and the particles’ density, to our knowledge there is very few literature related to

the order-disorder phase transition as a function of the particles’ speed. The single

study whose objective was to understand the speed-induced ordering phase transi-

tion worked with a modified version of the Vicsek model that included an attraction
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radius to keep particles’ cohesion (Cambui and Rosas, 2018). They observed that in-

creasing particles’ speed caused a decrease in the order parameter, and the nature of

the order-disorder phase transition depended on the noise intensity and the attrac-

tion radius between particles. A second-order transition was observed with high

values of noise (η > 0.2) and small attraction radius, and a transition compatible

with a first-order phase transition was obtained for η < 0.05 and at longer attraction

radius.

Here, we first explore the behavior of the system order-disorder phase transi-

tion as a function of v0 and ρ, for different combinations of η for the original Vicsek

model. We fixed the group size to N = 10, 000 particles, and we plotted the value of

⟨ϕ⟩ as a function of particles’ density on the interval [0.1, 2], and of particles’ speed

on the interval [0, 5]. We wanted to compare the transitions for different noise ampli-

tudes, so we analyzed the changes in ⟨ϕ⟩ for η = 0.3, 0.4, 0.5, 0.6, as shown in Figure

4.5.

We found that when both v0 and ρ are increased, the system undergoes a disorder-

to-order phase transition. A dense system and faster moving particles promote more

interactions between particles, which in turn endow each particle with a higher

number of neighbors to average their direction of motion, and counteract the ran-

domness introduced by the noise term. For this reason, when the noise amplitude is

high the system has more difficulties counteracting its effect on particles’ direction,

and an ordered state is more difficult to achieve.

For low values of η, the disorder-to-order phase transition occurs at very low

values of v0 and ρ. For higher noise amplitudes, the intervals of particle’s speed

and density where the system is in a disordered state widens. The transition to

order occurs at higher values of both v0 and ρ as η increases. For example, while for

η = 0.3, ⟨ϕ⟩ ∼ 0.8 at ρ = 1.0 for all v0, for the case of η = 0.6, for the same density

⟨ϕ⟩ would be close to 0 for v0 < 1 and would slowly increase with speed up to only

⟨ϕ⟩ ∼ 0.3 for v0 = 5.

From Figure 4.5 we can also observe that the disorder-to-order phase transitions

for different critical values have distinct slopes. Focusing on the effect of the particles

speed in the system ordering, we explore with more depth the phase transitions as

a function of speed. We fixed the particles density to ρ = 0.2 where a transition is
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Figure 4.5: ⟨ϕ⟩ as a function of ρ and v0 for a fixed value of η. N = 10, 000. ⟨ϕ⟩ was
averaged over 100, 000 time steps (5,000 time steps of thermalization) in three simulations

repetitions.

observed by increasing speed in all η < 0.6 and we plotted in Figure 4.6A the values

of ⟨ϕ⟩ as a function of v0 for η = 0.1, 0.2, 0, 3, 0.4, 0.5 for N = 10, 000. When the

noise amplitude is very low, as is the case of η = 0.1, the system is ordered even

for very slow moving particles. As η increases, the critical v0 value at which the

phase transition is observed becomes higher until noise is too strong (η = 0.5) for an

ordered state to emerge at any v0 value. Before this occurs, there are η values where

the transition from disorder to order seems compatible with a first order transition,

as is the case of η = 0.4. A similar behavior is observed for ⟨ϕ⟩ as a function of v0

for different particles’ density in Figure 4.6B, where for high density values (ρ = 1)

the system is fairly ordered for all speed values and completely disordered for low

densities values, with medium densities showing a phase transition compatible with

a first order transition.

To investigate this further, we chose a value of ρ where a transition was observed

at each η fixed value, and examined ⟨ϕ⟩ as a function of v0. Figure 4.7 shows the

transitions for four (η, ρ) combinations as v0 changes. For the smaller (η, ρ) values,

for range of small values of v0 , there is little to no increase in the system’s ⟨ϕ⟩,
but after a v0 threshold value, it can be observed that the phase transition seems

compatible with a first-order transition.
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Figure 4.6: A: ⟨Φ⟩ per v0 value, for multiple η values, with fixed ρ = 0.2. B: ⟨Φ⟩ per v0
value, for multiple ρ values with fixed η = 0.4. N = 10,000. ⟨ϕ⟩ was averaged over 100, 000

time steps (5,000 time steps of thermalization) in three simulations repetitions.

Figure 4.7: ⟨ϕ⟩ per v0 value, for combinations of η and ρ where a transition is observed.
N = 10, 000, time = 100,000 (therm = 5,000). Four replicates per η value.

Of course, this assertion needs to be corroborated with a more thorough explo-

ration of the parameter space and the nature of the phase transition, which is outside

of the scope of this section. Our objective is to qualitatively show how the Vicsek

model’s control parameters affect ordering of the system.

Finally, we included in Figure 4.8 the behavior of ⟨ϕ⟩ as a function of v0 for pa-

rameter combinations that are closer to our experimental observations in fish, i.e.

a smaller group size (N = 100) and a lower particles’ density, ρ = 0.05. This ρ

value aims to represent a rough approximation of fish density inside the experimen-

tal tank, calculated as,

ρ =
Nl2

L2 (4.4)
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Figure 4.8: ⟨Φ⟩ per v0 value, for multiple η values. N = 100 ρ = 0.2. ⟨ϕ⟩ was averaged
over 100, 000 time steps (5,000 time steps of thermalization) in four simulations repetitions.

assuming l = 2 cm and L = 100 cm. In Chapter 5 we compare the order dependence

of speed in fish with a modified version of the Vicsek model. The disorder-to-order

transition was also observed for this parameter combination under a noise ampli-

tude threshold (η < 0.25). Yet, the transition is smoothed out by the low density of

particles. We can also observe ⟨ϕ⟩’s saturation values depending on the η value for

threshold values of v0 , where ⟨ϕ⟩ no longer increases.

The disorder-to-order phase transition that we observed as particles’ speed is

varied differs from the conclusions in Cambui and Rosas, 2018. Our results point to a

disorder-order phase transition as speed increases, while in their study the transition

they found was from order-to-disorder. This disparity can stem from the effects of

the attraction radius on the collective ordering of the system that Cambui and Rosas,

2018 included in the model. We worked with the original Vicsek model, which only

considers an interaction radius where particles align with their neighbors. As it will

be mentioned in Chapter 5 the implementation of an attraction zone can provoke the

alignment forces to lose correlation with speed.

The simplicity of the Vicsek model suggests that phase transitions are a possible

universal feature of moving groups. From a biological perspective, this observation

is of great relevance, as it suggests that phase transitions could be an intrinsic conse-

quence of grouping, and not a natural selection fine tuning (Sumpter et al., 2008).
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5 Collective ordering dependence

on swimming speed

5.1 Introduction

Fish ensembles will often align their headings through collective movement as a

means to travel together. Multiple experimental studies have observed a correlation

between group directional synchronization and the swimming speed of individuals.

In various species, there is a demonstrable increase in collective order as individuals

increase their swimming speed (Viscido et al., 2004; Gautrais et al., 2012; Tunstrøm

et al., 2013; Rieucau et al., 2015).

From an adaptive perspective, it is understandable that speed acts as a modula-

tor of collective ordering. Responding to speed changes requires minimum percep-

tion and cognitive abilities, and functions as a mechanism to transfer information

quickly and efficiently (Lemasson et al., 2013), allowing groups to react rapidly to

changing environmental conditions. In the pursuit of linking local behavioral rules

with emergent collective states, it is imperative to understand the dependence of the

collective order of a flock on the speed of the individuals.

Inspired by experimental observations of fish, various models have been pro-

posed to infer the local interaction rules that govern group cohesion and direc-

tional synchronization. These data-driven models include either active heading syn-

chronization dependency to a particle’s speed, or this correlation emerges as a by-

product of the model’s behavioral rules. However, it is still not clear if this depen-

dence can emerge in a simpler model of collective motion such as the Vicsek model,

described in Chapter 4. Modified versions of the Vicsek model that have studied the

effects of speed in particles’ collective ordering either include other behavioral rules
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that change the collective dynamics, or actively force the polarization-speed relation-

ship. These model modifications might not be necessary to reproduce experimental

observations of collective ordering dependence on swimming speed.

Next, we review data-driven and Vicsek based models that address this behavior,

highlighting their findings in speed-polarization correlation.

5.1.1 Collective ordering and speed in models of collective motion

Data-driven models

Viscido et al., 2004 first quantified the relationship between polarization and speed

by analyzing schools of four and eight giant danios (Danio aequipinnatus. By char-

acterizing the individuals movements, they constructed an agent-based model cen-

tered on attraction/repulsion and alignment forces, and concluded that speed was

mediated mainly by the alignment force, and was positively correlated with polar-

ization. Couzin et al., 2002 also proposed a collective motion model based on re-

pulsion, attraction and alignment of orientations, and showed that transitions from

disorganized to organized collective states primarily involve mainly the adjustment

of individual speeds. Gautrais et al., 2012 built a model based on the quantifica-

tion of individual motion and local interactions in groups of barrel flagtails (Kuhlia

mugil). They found that alignment and attraction interactions were able to repli-

cate the motion behavior, which in turn were regulated by speed. This feature was

further investigated by Calovi et al., 2014, which found the existence of two dy-

namically stable collective states: a swarming state in which individuals aggregate

without cohesion, with a low level of polarization, and a schooling state in which

individuals are aligned with each other and have a high level of polarization. They

concluded that mean speed acts as a modulator on the strength of each interaction.

High speeds mean the predominance of alignment interactions over attraction.

Herbert-Read et al., 2011 analyzed groups of two to eight mosquitofish (Gambusia

holbrooki), and created a model through machine learning techinques to infer the

interaction rules individual fish follow to maintain group structure. They found

that attraction forces are responsable for maintaining group cohesion, but contrary

to previous studies, they did not find evidence that fish actively match orientation
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with their neighbors. Instead, fish actively changed their speed in order to avoid or

move toward neighbors, i.e. attraction/repulsion forces were regulated by speed,

which in turn could modulate group alignment. However, they did not discard the

possibility of species changing their adopted rules depending on context.

Tunstrøm et al., 2013 studied the emergence of collective states in groups of

up to 300 individuals of golden shiners (Notemigonus crysoleucas), as well as their

dependence on individual responses and on external perturbations. They found

three dynamically-stable collective behaviors: swarm (disordered state), polarized

(aligned state) and milling (fish moving around the center of the group; examples

can be seen in Fig.2.1 in Chapter 2), which correlated to group size and individual

speed. Low speed was associated with the group being dense and disordered, i.e.

swarming, and high speed was associated with polarized or milling groups.

From a kinematic perspective, Ashraf et al., 2016 studied tail beatings synchro-

nization of pairs and triads of red nose tetra fish (Hemmigrammus bleheri), a close rel-

ative to the fish we use in our study (black neon tetra described in Chapter 2). Ashraf

et al., 2016 characterized the time fish spent synchronized, either out of phase (tails

to opposite side) or in phase (tails to same side), and non-synchronized, for all swim-

ming velocities. They found that for relatively small swimming speeds, fish spend

a majority of their time swimming independently in a non-synchronized state. In-

creasing swimming speed changes this tendency to synchronized states until fish are

fully synchronized at higher velocities. Regardless of the speed, distance between

neighbors remains constant. This is an indication that speed can be viewed as a

modulator of the strength og the interaction between individuals, as hydrodynamic

pressure between neighbors increases with speed.

The Vicsek model (Vicsek et al., 1995; see Chapter 4) has been widely used as

an archetypical model to explore possible universalities within the study of collec-

tive motion. The model predicts the presence of a phase transition separating a

disordered, swarming phase, from an ordered, flocking one by modulating noise

strength (Vicsek et al., 1995; Ginelli, 2016). The relation between a variable speed

and the order-disorder phase transition in the Vicsek model and in variations of it

has been considered in several works. For example, Cambui and Rosas, 2018 consid-

ered a variable speed in a modified Vicsek model with an attraction rule to mantain
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the cohesion of particles. Contrary to what has been documented in experimental

observations and in data-driven models, they found that increasing average speed

decreased the order of the system, and that the nature of the order-disorder phase

transition was dependent on noise intensity and interaction radius between parti-

cles. Mishra et al., 2012, on the other hand, coupled the local order with the local

speed to force the system to improve local polarization at local high speed, follow-

ing empirical observations in real fish. However, this model does not explain the

intrinsic dependence of the two parameters. Contrary to the observed behavior of

Cambui and Rosas, 2018 in the Vicsek model, our exploration of the original model

in Chapter 4 shows that the collective order undergoes a phase transition from or-

der to disorder depending on the speed of the particles. This straightforward model

appears to reproduce the findings of studies on actual schools of fish.

Finally, an example of how swimming speed impacts the ordering of fish col-

lectives is described in Herbert-Read et al., 2015. This study investigated pacific

blue-eyes (P. signifer) and found that changes in speed by a few informed individu-

als can initiate escape waves. They modeled the dynamics observed by modifying

the Vicsek model to include particles’ acceleration and deceleration, and confirmed

that the group probabilities of changing direction increase when informed individ-

uals increase their speed. They concluded that escape waves occur when there is

an initial increase in an individual’s speed that leads to a local density increase that

propagates through the group.

5.1.2 Objectives

In this chapter we aim at contributing to the understanding of collective order de-

pendence upon speed by studying within an experimental setting and utilizing a

variation of the Vicsek model, in order to see whether such a simple model is able to

account for this dependence.

From the experimental point of view, we study the relationship between swim-

ming speed and polarization in groups of black neon tetra (Hyphessobrycon herbertax-

elrodi), a small freshwater fish that has a strong tendency to aggregate in polarized

schools, even when habituated to a novel environment (Gimeno et al., 2016, See

Chapter 2).
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We observed locomotion in our experimental subjects that consisted in alternat-

ing bouts of active swimming, with passive coast periods, a strategy called burst-

and-coast.To our knowledge, this behavior is not formally characterized specifically

in black neon tetra, but is a motion behavior characteristic of body-caudal fin swim-

ming modes (BCF), which represents the fish used in our study. This movement in-

cludesthat include body and/or caudal fin oscillations as a way of propelling thrust

to increase swimming speed (Webb, 1984). This swimming strategy has been docu-

mented in multiple fish species (Korsmeyer et al., 2002; Fish et al., 1991; Wu et al.,

2007; Dutil et al., 2007), including other tetra fish pertaining to the same family as

our study subjects (Li et al., 2021; Calovi et al., 2018).

For the theoretical analysis, to imitate the speed behavior observed in black neon

tetra, we modified the Vicsek model so that particles’ speed oscillates as a triangular

wave in time with a characteristic period, and analyzed changes in polarization as a

consequence.

5.2 Results

5.2.1 Experimental data

To quantify fish speed and collective ordering we categorized the motion of groups

of N = 20 and N = 40 individuals of black neon tetra (Hyphessobrycon herbertaxel-

rodi) swimming freely in an experimental tank. Fish (x,y) coordinates in time were

obtained for three replicates of 12,000 frames each (ABC) for each group size, adding

up to a total of 72,000 frames analyzed (≈ 1 hour). Group size conditions, tagged

as Q5N20 for N = 20 and Q5N40 for N = 40, were analyzed separately to avoid

mixing potential effects of differing group size. Physical units were converted from

pixels/frames to centimeters/seconds using the camera frame rate and resolution,

and the tank dimensions (see Chapter 2).

From the sequence of positions of fish in time, the discretized instantaneous ve-

locity was computed using a Richardson extrapolation scheme of order 4 (Fornberg,

1988), in terms of the expression

v⃗i(t) =
1

12∆t
[⃗ri(t − 2)− 8⃗ri(t − 1) + 8⃗ri(t + 1)− r⃗i(t + 2)] , (5.1)
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where ∆t = 1/20s the time discretization step.

From v⃗i(t), we obtained the instantaneous speed of each fish,

vi(t) = |⃗vi(t)| ≡ [⃗vi(t) · v⃗i(t)]
1/2 , (5.2)

the average speed of the flock,

v̄(t) =
1
N ∑

i
vi(t), (5.3)

and the instantaneous polarization,

ϕ(t) =
1
N

∣∣∣∣∣ N

∑
i=1

v⃗i(t)
vi(t)

∣∣∣∣∣ , (5.4)

measuring the global degree of order in the flock at time t (Vicsek et al., 1995; Ginelli,

2016). In a perfectly ordered flock, in which all fish travel in the same direction, al-

beit with possibly different speeds, ϕ takes its maximum value 1. In a disordered

swarm, with all fish traveling in randomly chosen directions, one expects to observe

a very small average value, scaling as ⟨ϕ⟩ ≃ N−1/2 (Ginelli, 2016).

Speed statistics

The probability density functions (PDF) for both instantaneous P(vi) and average

speed P(v̄) for both conditions (each consisting of replicates A,B and C) are shown

in Figure 5.1. Both distributions are bell shaped, lacking long tails, with a mean value

18.4± 7.3cm/s. The distribution is additionally stationary in time, with non overlap-

ping slices of the time sequence giving very similar distributions. For example, the

middle half of the sequence of individual velocities has a mean value 18.3 ± 6.8cm

for condition Q5N40, fully compatible with the whole sequence. Mean values and

error bars for both analyzed conditions are summarized in Table 5.1. Both ⟨vi⟩, ⟨v̄⟩
and rvi ,vj are slightly lower for groups of 20 individuals.

In Figure 5.2(A) we plot the individual speed as a function of time for a sample of

3 randomly chosen fish from condition Q5N40. As we can see from this figure, black
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Table 5.1: Mean ±S.D. individual and average swimming speeds in time, and mean Pear-
son correlation coefficient for individual speeds, original and randomized.

Condition ⟨vi⟩ (cm/s) ⟨v̄⟩ (cm/s) rvi ,vj rvirand,vjrand

Q5N40 18.4 ± 7.3 18.4 ± 6.8 0.51 ± 0.11 0.0002 ± 0.03
Q5N20 17.2 ± 8.5 17.2 ± 5.96 0.48 ± 0.09 0.0003 ± 0.03
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Figure 5.1: A: Probability density function (PDF) P(vi) of the individual instantaneous
speed vi. B: PDF P(v̄) of the average instantaneous speed v̄.Left, condition Q5N20. Right,

condition Q5N40.

neon tetra’s individual speeds show a clear quasi-periodic oscillation pattern that is

consistent with a burst-and-coast behavior (Fish, 2010a), where we can interpret the

regions of increasing speed as corresponding to the burst phase, while the periods

where the speed decreases represent the result of the coast phase.

Moreover, the oscillation of speed over time seems to be synchronized between

the different individuals, indicating that the beginning of the acceleration (dips) and

gliding (peaks) phases in the different fish take place approximately at the same

instant of time, with a potential small phase shift. This observation suggests a syn-

chronized individual speed behavior reflected in collective swimming, which has

been already observed in red nose tetra fish (Hemigrammus bleheri), that synchronize
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Figure 5.2: A: Individual speed vi(t) as a function of time for three randomly selected fish
in a 60 seconds time lapse in replicate B in Q5N40. Dotted vertical lines mark selected
local maxima of the upper curve. The plots have been shifted vertically for clarity. B: Fish
average speed v̄ as a function of time for same time laps in replicate B in Q5N40. The

shaded region correspond to one standard deviation.

their burst-and-coast events and save energy by limiting water flow speed fluctu-

ations (Calovi et al., 2018). In Figure 5.2(B), we show the evolution in time of the

average speed of the flock v̄(t). Here we can observe that the average speed also

experiences an oscillatory evolution, as expected from the synchronization of indi-

vidual speeds, and reflected in the small dispersion measured by the average speed

standard deviation, shown in the shaded region in Figure 5.2(B).

A more quantitative characterization of individual speed synchronization can be

obtained by evaluating the Pearson correlation coefficient rvi ,vj of the sequence of

instantaneous velocities of pairs of fish. In Figure 5.3(A) we show the PDF P(rvi ,vj)

corresponding to the Pearson correlation of pairs of actual velocity sequences for

both experimental conditions (mean values are reported in Table 5.1). In order to

increase the statistics, we computed the Pearson coefficient for each replicate over

10 non-overlapping windows of length 1200 frames (60s). Moreover, to confirm that

fish (rvi ,vj ) values were not merely a product of randomness, we randomized the

individual speed sequences by sampling values from vi distribution, and calculated

(rvi ,vj ).

In the randomized case, correlations are essentially nonexistent, with an almost

zero mean Pearson coefficient rvi ,vj rand = 0.0002 ± 0.03 and a maximum value 0.107;
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Figure 5.3: PDF P(rij) of the Pearson correlation coefficients ri,v of the instantaneous speed
of pairs of fish (blue). The orange curve represents the PDF of Pearson coefficients ob-
tained for randomized sequences of individual speeds. Left, condition Q5N20. Right,

condition Q5N40.

in our experimental fish, however, large Pearson coefficients are observed, with an

mean value rvi ,vj = 0.51 ± 0.11, and a maximum value up to 0.84 for condition

Q5N40, indicating that the behavior in time of the speed of pairs of fish is strongly

correlated.

Correlation between speed and collective ordering

In order to investigate the effects of a quasi-periodic oscillation speed on the collec-

tive order of black neon tetra, we have computed the instantaneous polarization of

the flock ϕ(t), defined in Eq.(5.4). In Fig.5.4(A) we plot a sample of ϕ(t) as a function

of time for a segment of 60s of replica B of condition Q5N40. As we can see, flocks

show a high level of polar order (see Table 5.2), with a mean value higher than 0.92

for both group sizes, remaining highly polarized most of the time, as reflected by the

small standard deviation. These values are in agreement with the results reported in

Gimeno et al., 2016 for black neon tetras. The evolution of the polarization in time

shows also an apparent oscillatory behavior, similar to the average speed. Indeed,

in Figure 5.4(B), where we present a simultaneous standardized plot of average ve-

locity and polarization, we can see that polarization tends to follow the behavior of

the mean speed, with almost coincident relative maxima and minima.

These correlations are also evident in a color density plot of the polarization ϕ(t)

as a function of the average speed v̄(t) in Fig.5.5. Again, this plot shows the strong
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Figure 5.4: A: Instantaneous polarization ϕ(t) as a function of time. B: Standardized plot
of the average speed v̄(t)(blue) and polarization ϕ(t) (orange) as a function of time. Con-

dition Q5N40, replicate B.
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Figure 5.5: Normalized color density plot of the polarization ϕ(t) as a function of the
average velocity v̄(t) for all replicates of each condition.Left, condition Q5N20. Right,
condition Q5N40. White lines represent the mean polarization as a function of average

speed.

correlations between the evolution of the speed and the polarization, with polar-

ization taking larger values when the speed increases, and smaller values when the

speed decreases. This is particularly evident in the plot of the mean temporal po-

larization as a function of the average speed, depicted as a white line in Figure 5.5.

Our observations agree with independent experiments of collective motion in fish

reported in the literature (Gautrais et al., 2012; Tunstrøm et al., 2013; Rieucau et al.,

2015; Viscido et al., 2004).

To measure the correlation between polarization and speed, and to account for
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Figure 5.6: Normalized cross-correlation Cϕ,v̄(τ) of polarization and average velocity as
a function of the time lag τ for the three replicates of each experiment. Left, condition
Q5N20. Right, condition Q5N40. Cross-correlations are computed over a window of 60s

.

the small shift we observe in these parameters time series maxima and minima, we

computed the normalized cross-correlation (CCV),

ϕ,v̄(τ) =
1

tmax

tmax

∑
t=1

(ϕ(t)− ϕ)(v̄(t + τ)− v̄)√
σϕσv̄

, (5.5)

where ϕ (v̄) and σϕ (σv̄) denote mean and standard deviation of the polarization

(resp. average speed). Same as in individual speeds Pearson correlations, to increase

statistics we computed correlations over 10 non-overlapping time windows of size

1200 frames.

From this analysis, see Figure 5.6 and Table 5.2, we observe that the conditions’

instantaneous correlation at time lag τ = 0 is higher than 0.4 for both conditions.

However, the maximum correlation between average speed and polarization takes

place for a lag τmax larger than zero, that we estimate as approximately eight frames

for both conditions analyzed, corresponding to a mean maximum correlation Cϕ,v̄(τmax) >

0.5Cϕ,v̄ for both τ0 and τmax were lower for Q5N20. When this lag is taken into ac-

count, we observe that the correlations between v̄(t) and ϕ(t + τmax) become better

for both conditions.

As we can see in the standardized plot in Fig.5.7(A), the maxima and minima of

v̄ in time correspond more accurately with the maxima and minima of ϕ(t + τmax).

On the other hand, in the color density plot of v̄ versus ϕ(t + τmax), Figure 5.7(B),
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medium and low values of ϕ are no longer observed at higher v̄: the system’s order

is low only when average fish speed is sufficiently low.
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Figure 5.7: A: Standardized plot of the average speed v̄(t)(blue) and shifted polarization
ϕ(t + τmax) (orange) as a function of time for condition Q5N40, where τmax is the lag
that maximizes the normalized cross-correlation. B: Normalized color density plot of the
shifted polarization ϕ(t + τmax) as a function of the average velocity v̄(t) for all replicates
of each experiment. Left, condition Q5N20. Right, condition Q5N40. White lines represent

the mean polarization as a function of average speed.

Such non-zero lag might imply the presence of a characteristic response time

between velocity and polarization fluctuations. Indeed, it is plausible that, after a

sudden reorientation of the flock, and therefore inducing a change of velocity, it

might take some time for the fish in the flock to adjust their trajectories to return

again to their level of optimal polarization.

Table 5.2: Mean polarization in time and mean normalized cross-correlation values at τ0
and τmax for swimming speed and polarization.

Condition ⟨ϕ⟩ Cϕ,v̄(τ0) Cϕ,v̄(τmax) τmax (s)

Q5N40 0.93 ± 0.01 0.42 ± 0.04 0.58 ± 0.01 0.42 ± 0.06
Q5N20 0.92 ± 0.11 0.33 ± 0.04 0.51 ± 0.02 0.43 ± 0.03
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Table 5.3: Mean oscillation periods T for individual speed (s), average speed (s), polariza-
tion, and individual and centroid distance to border (s).

Condition Tvi Tv̄ Tϕ TID TCD

Q5N40 1.90 ± 0.87 2.68 ± 1.05 2.40 ± 0.96 6.00 ± 1.96 6.24 ± 1.71
Q5N20 1.66 ± 0.75 2.45 ± 0.97 2.43 ± 0.97 5.50 ± 1.55 5.65 ± 1.42

Quasi-periodic nature of velocity and polarization

As we have noted above, both velocity and polarization over time seem to show

a quasi-periodic behavior, which in the case of the speed we can attribute to the

burst-and-coast swimming mechanism of the fish. In order to explore in more detail

this periodicity, we attempted to determine the value of the average period on both

speed and polarization. The short length of our experimental time series precludes

the application of a standard Fourier analysis. Therefore, we opt for a more empirical

approach, measuring the distance between consecutive maxima in the time series

ϕ(t), vi(t), and v̄(t), after applying a smoothing one-dimensional Gaussian filter of

window length 1s for both speeds and 3s for polarization.

In Figure 5.8(A) we plot the PDF P(T) of periods thus computed for the indi-

vidual velocity, the average flock velocity and the instantaneous polarization. These

observed distributions exhibit a strong overlap, specially for Q5N40, and are charac-

terized by similar mean periods.A summary of the statistics of the empirical periods

of speed and polarization is presented in Figure 5.8(B) in the form of violin plots,

and mean values documented in Table 5.3. From here we can conclude that the em-

pirical periods of the average speed and polarization are very strongly correlated,

being equal, within error bars, at the level of the mean values.

Effects of the walls

It could be argued that the oscillations in the swimming speed of the fish could have

their origin in the boundary effects of the walls of the experimental tank, which

force the fish to slow down and change their trajectories when they approach them.

These boundary effects would impose a quasi-periodic variation of the speed, with

a period related to the average time to cross the tank between opposite walls, and

would therefore not be related to any self-organized synchronization process or to
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Figure 5.8: A: PDF P(T) of empirical periods, defined as thetemporal distance between
consecutive maxima, for the average speed, individual speed and instantaneous polar-
ization. Left, condition Q5N20. Right, condition Q5N40. B: Violin plot summarizing the
statistics of the distributions of speed and polarization empirical periods. Data refers to

the aggregation of all replicates for both conditions.

the burst-and-coast swimming mechanism. In consideration of this possibility, we

have studied the correlations between the speed and the distance to the tank walls.

In particular, we have determined two different correlations: The correlation be-

tween the average speed v̄(t) with the distance of the centroid of the flock to the

closest wall of the tank, and correlation between the instantaneous speed vi(t) of

each individual fish with the distance of the fish to the closest wall. These correla-

tions are analyzed in the form of normalized color density plots in Figures 5.9(A)

and (B). The results demonstrate a weak correlation between velocity and wall dis-

tance, for either the flock as a whole or at the individual fish level. This observation

suggests that although the tank walls may have an effect on the swimming dynamics

of the fish, they are not the primary force ruling the quasi-periodic variation of the

individual and average speeds. Therefore this behavior can be more appropriately

attributed to the burst-and-coast strategy.

Interestingly, both the individual and centroid minimum distances to the walls

also show a quasi-periodic dynamics, although this is not as well indicated as in the
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Figure 5.9: A: Normalized color density plot of the individual speed vi(t) as a function to
the distance of the fish to the closest tank wall. B: Normalized color density plot of the
average school speed v̄(t) as a function to the distance of the school centroid to the closest

tank wall. Left, condition Q5N20. Right, condition Q5N40.
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Figure 5.10: A: Individual distance to nearest tank border as a function of time for three
randomly selected fish in a 60 seconds time lapse in replicate B of condition Q5N40. Dot-
ted vertical lines mark selected local maxima of the individual in the upper curve. The
plots have been shifted vertically for clarity. B: Fish centroid distance to nearest tank wall
as a function of time for replicate B of Q5N40. The shaded region corresponds to one stan-

dard deviation.

case of speed and polarization, see Figures 5.10(A) and (B), specially for the case of

individual distances.
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Figure 5.11: Violin plots summarizing the statistics of the distributions of empirical peri-
ods of the distance to the closest wall of individual fish and the school centroid, compared
with the distributions of individual and average speeds. Data refers to the aggregation of

all replicates for both experimental conditions

We have estimated the empirical periods of these quantities, following the ap-

proach used for the case of speed and polarization. In this case, we used a smoothing

Gaussian filter of window length 4s. In Figure 5.11(A) we summarize the statistics

of the distributions of empirical periods measured, in terms of box plots, compared

with the distributions of average and individual speed. As we can observe, the

distributions of periods to the distances to the walls are broader than the ones cor-

responding to speed, taking mean values TCD = 6.3 ± 2.6 and TID = 5.9 ± 1.9 for

the wall distance of the centroid and individuals, respectively, and practically equal

within error bars. However, these periods are more than double the periods ob-

served for speed and polarization in both conditions, which further strengthens the

conclusion that the quasi-periodic nature of the movement and order of the flock is

not induced by interactions with the tank walls.

5.2.2 Modeling speed variation in flocking dynamics

In order to explore in a more controlled way the effects of synchronized individual

speed in the ordering dynamics of collective motion, we study a variation of the clas-

sical Vicsek model (Vicsek et al., 1995) with varying particle speed. In the original

Vicsek model (see Chapter 4), a set of N self-propelled particles travel at constant

speed v0 with an orientational dynamics, thus making their particles align their ve-

locity. THey do this with the mean velocity of a set of neighboring particles inside

a circle or radius R0, and subject to a noise perturbation of amplitude η, accounting
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for errors in the determination of the neighbors’ state. In our variation of the model,

and in order to mimic the behavior observed empirically in black neon tetras, we

impose to all particles a periodic time varying speed vi(t) = v(t), ∀i, that, inspired

by the burst-and-coast swimming mechanism, and is chosen as a triangular wave of

period T, i.e. vi(t + T) = vi(T), with a minimum value vmin and a maximum value

vmax, corresponding to an amplitude A = (vmax − vmin)/2, given by the expression

in the interval [0, T]

v(t) = vmin + (2A − vmin)

[
1 −

∣∣t − T
2

∣∣
T
2

]
(5.6)

In order to use a system model compatible with our experimental setting, we

consider a number of particles N = 100 and a radius of interaction R0 = 1. The

density ρ can be estimated from the experimental data assuming that the fish have

an excluded surface given by disk of radius ℓ, where ℓ is the fish body length. So we

have

ρexp ≃ Nexpℓ2

L2exp.
(5.7)

With Nexp = 40, Lexp = 100cm and ℓ = 2.5cm, we obtain ρexp ≃ 0.07. In our simu-

lations we thus fix a density ρ = 0.05. Statistical properties are computed averaging

over 500000 time steps, after discarding an initial transient of 10000 time steps.

When we reviewed the behavior of collective ordering in the Vicsek model in

Chapter 4, we saw that the mean polarization ϕ, defined as the temporal average

of the instantaneous polarization in Equation (5.4), is an increasing function of v0

(see Figure 4.8 in Chapter 4). This relationship is in agreement with the average

positive correlations between speed and polarization experimentally observed, but

at odds with previous numerical simulations (Baglietto and Albano, 2009b; Cambui

and Rosas, 2018); we notice, however, that (Baglietto and Albano, 2009b) considers a

much smaller range of velocity values and that (Cambui and Rosas, 2018) introduces

an additional attraction rule. To fix the parameters of the oscillating speed in our

model variant, we analyzed the behavior in the classic Vicsek model of the average

ϕ in time, ⟨ϕ⟩, as a function of v0 for different noise amplitudes. As we can observe
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in this Figure, for η < 0.3 there is a significant gap in the polarization in the ordered

and disordered states.

Fixing a low noise value η = 0.1, compatible with the highly polarized state

shown by black neon tetras, we consider a range of speed values in the interval

[0.01, 2.99] covering a region of high and low order, see Figure 5.12(A). We therefore

choose as the time varying speed in our model a triangle wave with minimum value

vmin = 0.01, maximum value vmax = 2.99, corresponding to an amplitude A = 1.49,

and we tested oscillation periods T that covered from T = 100 to T = 3000.

With this standardized, synchronized periodic speed imposed on all particles in

the model, we obtain time series of the instantaneous polarization that also vary in

time in an almost periodic form, see Figure 5.12(B). For small period T = 100 the

polarization oscillates primarly around high values between 0.6 and 0.9. Increasing

the period results in the occasional presence of highly disordered states of low polar-

ization close to zero, much like the experimental polarization ϕ(t) observed in fish.

This is due to the relaxation time needed for the system to accommodate the value

of the polarization expected for each temporal value of the time-varying speed. For

small periods, velocity changes too quickly, and the model is not able to relax to

the disordered state corresponding to small velocity, and thus polarization oscillates

primarly among high values. For large periods, instead, the relaxation time is short

enough and the system can explore more freely the disordered state.

This relaxation time is comparable to the response time between velocity and

polarization variations discussed for real fish, and we can analyze it analogously

computing the normalized cross-correlation Cϕ,v̄(τ) between the numerical polar-

ization and the triangular wave speed. For τ = 0, the instantaneous correlation is

around 0.4 for short periods, T ∼ 100, and saturates at a higher value around 0.6 for

sufficiently large periods T > 1000. As in the case of real fish, we observe that the

maximal correlations corresponds to a non-zero τmax, which takes a value τmax ≃ 12

for T = 100 and up to τmax ≃ 81 for T = 5000, and that grows approximately as the

square root of the period, τmax(T) ≃ T1/2.

In Figure 5.13(A) we show the direct correlations between the triangular wave

velocity v(t) and polarization ϕ(t) by means of a color density plot. As we can

see, the plots are similar to those corresponding to real fish, signaling the strong
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Figure 5.12: A: Instantaneous polarization ϕ(t) as a function of time for the Vicsek model
with constant speed v0 for different values of v0. Noise parameter η = 0.1. B: Instanta-
neous polarization ϕ(t) from the Vicsek model with a time varying periodic speed given
by a triangular wave of minimum value vmin = 0.01, amplitude A = 1.49 and different

periods, T = 100, 500, and 1000, from top to bottom. Noise parameter η = 0.1.

correlation between these two variables, a correlation that is enhanced when the lag

τmax is considered, as we can observe in Figure 5.13(B).

The statistical distribution of the instantaneous polarization obtained for differ-

ent values of T is shown in Fig.5.14(A), and compared with the result of our em-

pirical observations on black neon tetra. As we can see, experimental data shows a

PDF with a clear exponential increasing trend for small ϕ, followed by a very sharp

decrease close to ϕ ≃ 1. Interestingly, our model qualitatively and aptly reproduces

this behavior, with higher accuracy for larger values of the period.

With consideration of the time lag velocity and polarization, we have made a

standardized comparative plot, shown in Figure 5.15. The resulting shifted polar-

ization ϕ(t + τmax) directly follows the oscillating pattern of the velocity. In the re-

gions of high velocity, polarization shows an almost flat behavior, compatible with

the maximum, saturating polarization corresponding to large velocities, see Figure

5.13(A). The periodicity shows clearly instead in the regions of small velocity, when

polarization experiences a sudden dip, which indicates that the system has briefly



98 Chapter 5. Collective ordering dependence on swimming speed

0 1 2 3 0 1 2 3 0 1 2 3

0.5

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

0.8

0.9

v(t)

ϕ
(t

)

A

0 1 2 3 0 1 2 3 0 1 2 3

0.5

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

0.8

0.9

v(t)

ϕ
(t

 +
 τ

m
ax

)

0.25 0.50 0.75 1.00

B

Figure 5.13: A: Normalized color density plot of the instantaneous polarization ϕ(t) ver-
sus the imposed triangular wave speed v(t). Periods are, from left to right, T = 100, 1000,
and 3000. B: Normalized color density plot of ϕ(t + τmax) versus the imposed triangular

wave speed.
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cal data, aggregated for all replicas of condition Q5N40, and continuous lines to numerical
simulations of the Vicsek model with triangular wave velocity for different values of the

period T.
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entered the disordered state. This dynamics is reminiscent of the behavior observed

in our experimental fish, Figure 5.3(B).
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Figure 5.15: Standardized speed v(t) and shifted instantaneous polarization ϕ(t + τmax)
obtained for the Vicsek model with a triangular wave speed with different periods, from
top to bottom, T = 100, 1000, and 3000. We show 10 oscillations cycles for each value of T.

To examine the period of the instantaneous polarization in the modified Vicsek

model, as the statistics allow it, we perform in this case a Fourier analysis, comput-

ing the power spectrum of ϕ(t) applying the Welch method (Welch, 1967), using

a time signal decomposed in L = 64 segments of length M = 1500 and overlap

D = 0.5%. In Figure 5.16 we show the power spectrum obtained for simulations of

the Vicsek model with triangular wave velocity and different periods. As we can see,

the fundamental frequency f1, observed for each value of T, corresponding to the

maximum of the power spectrum, matches perfectly with the expectation f1 = 1/T,

while the secondary peaks observed correspond to the harmonics fn = f1/n. That

is, a periodic time varying speed induces in the Vicsek model a periodic instanta-

neous polarization, with the same main frequency, but with a small induced time

lag which is dependent on the period.

5.3 Discussion

Here we discuss the possible effects of speed in collective motion interaction rules,

and the adaptiveness of speed and polarization correlation in fish collectives. Also,
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Figure 5.16: Power spectrum density for the polarization ϕ(t) for different triangular wave
speed periods. The inset shows the same data in semi-logarithmic scale.

we address the possible impact of tank walls in fish speed modulation and compare

our results with other analyses that have also looked at this potential effect. We also

discuss how our modified Vicsek model with an oscillating speed can reproduce our

experimental order dynamics, and what that means in respect to the simplicity of the

model and the possible universality of the relationship between these parameters.

A positive correlation between speed and order has been reported in analysis

of the collective motions of several fish species (Viscido et al., 2004; Gautrais et al.,

2012; Calovi et al., 2018; Mishra et al., 2012; Tunstrøm et al., 2013). In both experi-

mental work and in data-driven fish models, it has been concluded that the increase

in group’s speed is equivalent to increasing the alignment interaction strength, and

thereby decreasing the effect of the noise in fish matching orientations. Therefore,

the speed-induced phase-transition can be thought of as a competition between

noise and social interactions.

From a biological perspective, speed and collective order positive correlation

could be an adaptive mechanism that would ensure a faster information transfer

in changing environmental conditions. This trait is part of a set of behavioral ad-

justments that allow a quick response to perturbations. An emblematic example is

observed in predation risk avoidance: when fish feel threatened, they increase their
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swimming speed and increase their ordering to collectively respond to attacks (Rieu-

cau et al., 2015).

The analysis of the individual speed of black neon tetra shows a oscillatory,

quasi-periodic behavior in time, with alternating phases of increasing and decreas-

ing trends. Interestingly, all fish have a closely synchronized speed variation that

translates in a quasi-periodic average school speed with an effective period T ∼ 2s.

The degree of order of the school, measured in terms of the global polarization,

shows a similar oscillatory pattern, strongly correlated with the evolution of the

average speed, and with a similar effective period. Despite this strong correlation,

our experimental conditions fish show mixed polarization levels at low swimming

speeds, which to the best of our knowledge, are findings not previously reported.

From an adaptive perspective, the period of fish speed oscillations could reflect

the assurance that at high swimming speeds the system will always be ordered,

which would translate into an efficient information transfer and a rapid group re-

sponse to environmental changes. A shorter oscillation period would out-gain the

system’s characteristic response time and fish could exhibit lower polarization lev-

els than predicted at high swimming speeds. This hypothesis can be supported by

burst-and-coast studies that have measured the oscillation dynamics depending on

their average speed, and have found that when fish are swimming at high average

speeds, the burst phase is extended while the coast phase is shortened, but the peri-

odicity of the oscillation maintains (Li et al., 2020).

To be able to disregard the influence of the tank walls on speed time series peri-

odicity, we have studied the dependence of the velocity patterns with the distance of

fish to the walls, observing a notably weak correlation, both at the level of individ-

ual fish and at the level of the centroid of the school. This precludes boundary wall

effects as the cause of the oscillatory behavior, and lend support to an explanation

based on the burst-and-coast swimming mechanisms.

A weak correlation between tank walls and other schooling metrics has also been

reported in other fish studies. Viscido et al., 2004 compared the distance between

the group centroid and the nearest tank wall, to speed, polarization and distance be-

tween individuals, and found no relationship between edge proximity and changes
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in these schooling properties. Herbert-Read et al., 2011 also found weak border ef-

fects in mosquito fish accelerations and turning angles, which were instead strongly

affected by the nearest neighbor position.

Although tank walls restrict group movements, its direct effect on collective mo-

tion has not been demonstrated. Border correlations with multiple schooling prop-

erties are overshadowed by the strong correlations between individuals’ behavioral

synchronization, a trait that facilitates groups with adaptiveness to changing envi-

ronments.

We have also studied the effects of an oscillating speed on the classic Vicsek

model, one of the simplest models of collective motions showing a flocking transi-

tion. The noise critical value at which phase transitions occur in the Vicsek, and even

their possible nature, is dependent on combinations of speed, density and system

size, which act as regulators of particles’ interactions, and hence, of the randomness

in the direction of motion. For example, for low densities and low particles’ speeds,

the phase transition is predicted to occur at low noise amplitudes, regardless of the

system size (Sumpter et al., 2008; Aldana et al., 2009). On the contrary, for high den-

sities, high speeds and large system sizes, the predicted noise critical value is higher

(Grégoire and Chaté, 2004; Aldana et al., 2009). In our model, we impose a common

oscillating speed, given by a triangular wave of period T. In this scenario, the global

polarization closely follows the evolution of the speed, the match being better for

larger periods. As observed in real fish, there is temporal lag between velocity and

polarization, which can be attributed to a response time needed to integrate globally

changes in speed that take place more smoothly for larger T.

Our results also coincide with those of Mishra et al., 2012, which introduced vari-

able individual speeds to the Vicsek model. The range and the dynamics of speed

changes were adapted from speed dynamics of experimental fish data where they

found that when individual speed was higher, the local polar order was also higher

than in areas with lower individual fish speeds. In their model, they coupled the

local order with local speed to force the system to improve its local alignment when

local speed increased. Here, we prove that it is not necessary to actively couple

these two parameters in collective motion models, for the ordering of the system is

intrinsically dependent on speed. Our results also differ from the first conclusion of
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Cambui and Rosas, 2018. In their study an order-disorder transition was observed

by increasing particle speed. The primary difference with our model is the introduc-

tion of an attraction zone. In their parametric space exploration, Calovi et al., 2014

concluded that increasing speed causes the effect of alignment to predominate over

attraction. By forcing an attraction zone, alignment interactions could be eclipsed,

and hence lose correlation with speed. Further work is needed to prove this hypoth-

esis.

5.4 Closing remarks

Our contributions intend to provide evidence of the close relationship between swim-

ming speed and collective ordering within fish collectives. Modulating polarization

by changes in speed has an important adaptive component, as information is trans-

ferred faster and more efficiently. An intriguing question is whether this relationship

is actively enforced through individuals cognitive mechanisms, or is a by-product of

local interactions that favor alignment forces over others when speed is increased.

We have shown that the Vicsek model can reproduce the speed and collective order-

ing coupling only by particles aligning with neighbors, and simulate the behavior in

black neon tetra’s collective motion by oscillating average speed with a sufficiently

long period that allows the system to recover from its characteristic response time.

This contribution furthers our understanding on the generalization of this relation-

ship and further upholds the possibility of universality in collectives of different

nature.
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6 Scale-free behavioral cascades

and effective leadership in

schooling fish

6.1 Introduction

Sudden collective changes of state are characteristic of animal groups that collec-

tively move (Herbert-Read et al., 2015). Sometimes they may be the result of a

global alarm cue that triggers individuals reflex response. In such cases, the col-

lective change of state is not necessarily a social response of the group. All members

directly receive the stimulus and there is no actual transfer of information among

them. Nevertheless, there are many examples that involve a flow of information

through the collective. They could be the result of a few members of the group re-

sponding to an external cue, which are followed by the rest as information travels

across the group. The most recognized example is when a nearby predator is seen

by a small number of individuals that results in a sudden direction change of the

entire group.

Intriguinly, it has also been shown that the collective directional switching can

be also triggered spontaneously, without apparent changes in the external environ-

ment. For example, fish schools often change direction even in the absence of preda-

tors or obstacles. This poses the question as to why and how this kind of behavior

arises (Attanasi et al., 2015). More so, who are the initiatiors of these spontaneous

collective directional changes?

As part of answering these questions, leadership has been sometimes brought
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about to rationalize the cooperative movements of animal groups by single individ-

uals that appear to have a strong influence on the flock behavior (Couzin et al., 2005).

In the case of collective travel, this translates to the timing or direction of the group’s

movements. In this sense, the effects of leadership have been considered in several

contexts, including crowd behavior (Aubé and Shield, 2004), hierarchical leadership

(Shen, 2008), linear response theory in flocking systems (Pearce and Giomi, 2016;

Kyriakopoulos et al., 2016) or the emergence of complex patterns of cooperation and

conflict (Smith et al., 2016).

Leadership can arise as an instinct in some animals, specially in mammals, which

form a permanent hierarchical structure. In this scenario a dominant individual has

won the leader role by agonistic interactions (Nagy et al., 2013). However, leader-

ship may exhibit a switching dynamics that can even depend on contex (Nagy et

al., 2010; Flack et al., 2012; Nagy et al., 2013; Chen et al., 2016). This is the case in

animals that perform collective motion. There, effective leadership can come from

individuals having useful information about their environment, such as the position

of food or predators, not visible to the rest of the flock (Couzin et al., 2011; Ward

et al., 2011). Dominance hierarchies have ben proved not to be correlated with lead-

ership in collective decision making. For example, Nagy et al., 2013 worked with

groups of 10 to 30 pigeons (Columba livia). They characterized their social hierarchy,

expressed in dominance interactions while begin fed, and observed if they remained

in the leader-follower dynamics while the group was performing free flights. They

found that flight leadership is independent of the individuals’ social hierarchy. By

ignoring social dominance when in flight, flocks of pigeons potentially make better

navigational decisions because leadership can emerge from relevant attributes, such

as individual information and route fidelity (Ward et al., 2011).

Within the context of spontaneous collective directional switching, individuals

that first change their direction of motion act as effective group leaders. When one or

a few individuals abruptly change their dynamic, usually by modifying their veloc-

ity, the change can propagate and the group can exhibit from intermittent collective

rearrangements to state transitions at the macroscopic level. The behavioral shift can

occur without any perceived threat in the neighborhood, resulting in a spontaneous

transition at the collective level that can be interpreted as a consequence of random
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individual decisions (Couzin et al., 2005).

Spontaneous effective leadership and collective behavioral waves in groups have

been studied in different animal systems (Flack et al., 2012; Ginelli et al., 2015; At-

tanasi et al., 2015; Rosenthal et al., 2015). Ginelli et al., 2015 focused on individual

directional shifts that may trigger a collective response without an apparent exter-

nal stimulus. To do so, they characterized the collective behavior of large groups

of Merino sheep (Ovis Aries). They revealed an intermittent dynamics where sheep

disperse slowly while grazing, followed by fast avalanche-like packing events, trig-

gered by individual sheep that start running. They designed an agent-based model

to explore the individual stimulus/response and found that given an individual

behavioral shift, strong imitation to neighbors would create a wave of rearrange-

ment sufficient to generate the complex collective behavior observed. High imita-

tion could be key in individuals being able to cover large grazing areas, but rapidly

regroup and protect from predation. Attanasi et al., 2015 studied spontaneous col-

lective turns in groups of starlings Sturnus vulgaris and found that individuals in

the peripheral tips of the flock always start the turn and display unusual deviations

from the mean flock’s motion over longer periods of time than other birds. The fact

that the collective turn origin is so location-specific could relate to birds in the pe-

riphery experiencing higher risk for predatory attacks and less social feedback from

neighbors. Rosenthal et al., 2015 reconstructed interaction networks in spontaneous

startle events in golden shiners (Notemigonus crysoleucas), and found that intercon-

nection among an individual’s neighbors has a vital role in propagating the startle

response through the group, due to the fact that multiple pathways allow for rein-

forcement of observations, increasing the likelihood of behavioral change. They also

found that individuals near the leading and side edges of the group tend to be the

most socially influential and most susceptible to social influence.

Most interestingly, these experimental studies emphasize that animal rearrange-

ments can either spread extensively within the group or extinguish rapidly, leading

to an avalanche-like type of response with a broad-tailed distribution of avalanche

magnitudes (Rosenthal et al., 2015; Ginelli et al., 2015). This sort of avalanche be-

havior is well known in the physics literature (Fisher, 1998), where it has been dis-

cussed in magnetic materials (Zapperi et al., 1998), superconductors (Altshuler and
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Johansen, 2004), plastic deformation of crystalline materials (Miguel et al., 2001),

fracture phenomena (Zapperi et al., 1999), or earthquakes (Kawamura et al., 2012).

Avalanche-like collective behavior can be looked at from an adaptive perspec-

tive. For many animal collectives, such as schooling fish and flocking birds, social

contagion happens very fast. The collective behavioral waves are observed in partic-

ular when individuals are under threat of attack from predators. Survival depends

on how individual interactions scale to collective properties (Rosenthal et al., 2015).

Both the slightest uncertainty and a slow and inefficient transfer of information are

punished by decrease of cohesion, or even splitting of the group, leaving some in-

dividuals as easy prey for predators (Attanasi et al., 2015). The fact that this mech-

anism is observed even in the absence of external cues might reinforce its adaptive

nature, as each individual does not wait to confirm the presence of an external threat,

but reacts to local sudden changes.

6.1.1 Objectives

In this chapter we examine the interplay between effective leadership and behav-

ioral cascades (avalanching behavior) by means of an empirical analysis of the move-

ment of black neon tetra fish (Hyphessobrycon herbertaxelrodi), and through the theo-

retical analysis of a variation of the classical Vicsek model (Vicsek et al., 1995) that

includes an explicit leader.

For this study we use the dataset described in Chapter 2). In our empirical analy-

sis, we define avalanches in terms of changes in the fish heading above a given turn-

ing angle threshold, which lead to a sudden reorientation of the global trajectory of

the school. We measure the statistics of avalanche initiators to explore the possible

presence of consistent leadership in fish that promote substantial school rearrange-

ments. In order to check the general effects of leadership in avalanche behavior, we

consider a Vicsek-like model in which a global leader alternates a directed motion,

unaffected by other individuals, with sudden variations of its direction of motion, in

the spirit of run-and-tumble locomotion (Méndez et al., 2014).
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6.2 Results

6.2.1 Experimental results

Quantifying avalanches in black neon tetra

Black neon tetra tend to move in a coherent and highly polarized fashion, swimming

along a common and slowly changing average velocity. In this regime, the heading

of the fish velocities changes almost continuously. However, at some instants of

time, we can recognize swift rearrangements of the individuals’ headings, that lead

to a change of the average orientation of the school, accompanied by an increase

of the average velocity and a decrease and a delayed increase of the global order

of the school. We interpret these sudden rearrangements of individual heading as

triggeres of avalanches of activity. In order to categorize them, we fist examine the

angular variations in the heading of individual fish, defined as the turning angle

φi(t) formed by the velocity vectors v⃗i(t + 1) and v⃗i(t) (see Figure 6.1A), defined in

Chapter 3 and computed as

φi(t) =
∣∣∣∣arctan

{∥v⃗i(t)× v⃗i(t + 1)∥
∥v⃗i(t) · v⃗i(t + 1)∥

}∣∣∣∣ , (6.1)

In Figure 6.1B we plot the distribution of turning angles P(φ) for the different

data replicates (hollow symbols) and for the aggregation of all three of them (red

line). Extremely small values of φ are probably attributed to a low precision for very

accute angles of the algorithm used in Equation 6.1. This numerical instability does

not have a big effect on our analysis, as we consider much larger turning angles. Dis-

carding these extreme values, the distributions show an extended plateau for small

turning angles, corresponding to stretches of time in which fish barely change their

heading and are thus compatible with movement along a smoothly winding trajec-

tory. Instead, for values larger than 0.01 radians, the distribution starts to decrease

sharply.

In order to quantitatively identify avalanches, as is customarily done in con-

densed matter physics (Laurson and Alava, 2006), we define a turning threshold φth

that distinguishes small turns φ < φth, associated to smooth trajectories, from large

turns φ > φth, associated to sudden rearrangements that trigger an avalanche. In
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Figure 6.1: A: Example of individual turning angle φi from t − 1 to t. B: Probability den-
sity of turning angles φ of individual fish for each replicate (hollow symbols) and for the

aggregation of all three of them (red line).

Figure6.2 we plot, for a given value of the threshold, the number of active fish, de-

fined as those performing a turn larger than φth, as a function of time. Here we can

see the actual presence of turning avalanches, defined as trains of consecutive frames

in which more than one fish is active, delimited by two frames (one at the beginning

and another at the end of the train) with no active fish. These curves highlight the

intermittent and heterogeneous character of avalanches, which may be rather small

or can also reach relatively large sizes.
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Figure 6.2: A Number of fish turning an angle larger than φth in a sequence of 1000 frames
in replicate A, for different values of the turning threshold.
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Figure 6.3: Diagram exemplifying an avalanche of duration t = 3 and size s = 25. At
frame 2, three fish becom active, i.e. change their direction of motion and turn more than
the turning threshold φth (red). In the following frames, some fish continue to be active

while others become active. Past participants of the avalanche are colored in blue.

To study the statistics of avalanches, we compute their duration t and size s,

defined as the number of consecutive time steps (frames) with at least one active

fish, and the sum of the number of active fish at each time step of an avalanche,

respectively. Notice that, since a fish can be active in more than one step along the

duration of an avalanche, the avalanche size s is in general larger than the avalanche

duration t, and can be larger than the total number of fish in the experiment. Figure

6.3 shows a diagram exemplifying an avalanche of duration t = 3 and size s = 25.

A first broad statistical characterization is given by the relative size and duration

fluctuations, measured as the standard deviation σ divided by the corresponding

average value µ.

Our experimental data only allows the identification of a limited number of

avalanches. Indeed, in Figure 6.4(A) we plot the total number of recorded avalanches

as a function of the turning threshold. From here we observe that the range of val-

ues of φth that lead to at least 1000 avalanches range approximately in the interval

[0.20, 1.50]. In Figure6.4(B), we plot these relative fluctuations for both s and t, re-

spectively. From this plot, we observe that relative fluctuations are only larger than

1 for threshold values within the interval between 0.1 and 1.2. We therefore restrict

our analysis to the conservative threshold interval [0.20, 1.20].

We consider the shape of the probability distributions of avalanche sizes, P(s),

and durations, P(t), obtained for different values of φth (see Figures 6.5 A and B) and

their correspondent cumulative probabilities distributions (see Figures 6.5 C and D),

Pc(s) =
∞

∑
s′=s

P(s′) and Pc(t) =
∞

∑
t′=t

P(t′). (6.2)
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Figure 6.4: A: Number of avalanches observed as a function of the turning threshold. B:
Relative fluctuations of the avalanche size (s) and duration (t) distributions as a function

of the turning threshold.

From the double logarithmic scale in the plots, we can see that the distributions

show long tails, compatible with a power-law behavior of the form P(s) ∼ s−τs

and P(t) ∼ t−τt for small values of s and t. This power-law behavior is due to

the correlated nature of turns in the fish school, which creates larger and longer

avalanches than expected by random fluctuations. We corroborated this feature by

comparing the results with the avalanche distributions obtained from trajectories

reconstructed by randomizing the sequence of turning angles of each fish. In the

latter case, one obtains a clear exponential decay, as shown in triangle symbols in

Figures 6.5 C and D.

A null model of fish avalanches

We can obtain an analytical derivation of avalanche properties in the case of absence

of dynamical correlations between the turning angles of fish, when the evolution

of avalanches is purely determined by the independent turning probability P(φ) of

each fish. As a null model of avalanche behavior, we consider the case in which

each fish independently turns a angle φ at each time step. Consider an avalanche

of duration t and size s, starting at time t′ = 1. If the avalanche lasts t time steps, it

means that at least one fish turned an angle larger than φth every frame from t′ = 1

to t′ = t, and that no fish turned an angle larger than φth at frame t′ = t + 1. Under

these conditions, the probability that a fish turns an angle larger than φth in any
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Figure 6.5: A: Probability distribution of the avalanche sizes P(s) for different values of
the turning threshold φth. B: Probability distribution of the avalanche durations P(t) for
different values of the turning threshold φth. C: Cumulative probability distribution of
the avalanche sizes Pc(s) for different values of the turning threshold φth. D: Cumulative
probability distribution of the avalanche durations Pc(t) for different values of the turning
threshold φth. In both C and D points represent the actual empirical distributions, while
triangles correspond to distributions obtained by randomizing the turning angles in the

trajectory of each fish.

frame is

q =
∫ π

φth

P(φ) dφ, (6.3)

and the probability that at least one fish turns an angle larger than φth in a given

frame is

Q = 1 − (1 − q)N , (6.4)

where N is the number of fish. Therefore, the normalized probability that an avalanche

lasts for t frames in this null model is

P0(t) =
(1 − Q)Qt

∑∞
t′=1(1 − Q)Qt′ = (1 − Q)Qt−1, t = 1, 2. . . . , ∞, (6.5)

where we consider that avalanches have a minimal duration of one frame. That
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is, in the uncorrelated null model, the avalanche duration distribution has an expo-

nential form, with average avalanche duration t0 = ∑∞
t=1 tP0(t) = 1/(1 − Q).

Consider now a frame in an avalanche of finite duration. In this frame, at least

one fish turned an angle larger than φth, therefore the probability of observing the s1

large turns in this frame is

p1(s1) =
1
Q

(
N
s1

)
qs1(1 − q)N−s1 , s1 = 1, 2, . . . , N, (6.6)

If the avalanche has duration t, at each frame a number s1 of fish, distributed with

the probability in Eq.(6.6), will turn a large angle. Therefore, the distribution of

sizes in avalanches of duration t, P0(s|t) will be given by the convolution of the

probability in Eq.(6.6) t times with itself. The form of this expression is hard to

compute. However, we can approximate the avalanche size distribution as follows:

Since Eq.(6.6) is similar to a binomial distribution, it is bell-shaped and centered at

the average value

s̄1 =
N

∑
s1=1

s1 p1(s1) =
Nq
Q

. (6.7)

Therefore, the average size of an avalanche of duration t is

s̄t =
Nq
Q

t, (6.8)

linear with t. Assuming that the relation between size s and duration t is tight, given

the bounded distribution p1(s1), we can use relation s ≃ Nq
Q t and the distribution

P0(t) from Eq.(6.5) to obtain the probability transformation P0(t)dt = P0(s)ds, lead-

ing to

P0(s) ≃
1 − Q

Nq
e−sQ ln(1/Q)/(Nq), (6.9)

that is, an exponential decay with a characteristic size

sc =
Nq

Q ln(1/Q)
. (6.10)

as we observe in Figures 6.5C and D.
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Scaling behavior of avalanche sizes and durations

Upon closer scrutiny of avalanche sizes and durations probability distributions in

Figure6.5C and D, we can also observe that, for sufficiently large φth, the initial

power-law behavior of the size distributions is followed by a faster decay for s larger

than a characteristic size sc that appears to be a decreasing function of the threshold

φth.

Inspired by the observations in other avalanche systems (Laurson et al., 2009)

and in models of self-organized criticality (Pruessner, 2012), we can assume that, for

different values of the threshold, the size distributions exhibit a scaling behavior of

the form

P(s) = s−τs Gs

(
s

sc(φth)

)
(6.11)

where the scaling function Gs(z) is constant for small z ≪ 1 and decays rapidly

to zero for z ≫ 1. In analogy with avalanches in condensed matter and critical

phenomena (Yeomans, 1992; Cardy, 1996) we make the ansatz for the behavior of the

size cut-off sc(φth) ∼ φ−σs
th , where σs is a characteristic exponent. We can estimate

the values of the exponents by noticing that Eq.(6.11) implies, for the cumulative

distribution Pc(s) = s−τs+1Fs
(
sφσs

th

)
, where Fs(z) is another scaling function. The

previous expression can be rewritten as

φ
σs(1−τs)
th Pc(s) = F′

s
(
sφσs

th

)
, (6.12)

where F′
s(z) = z−τs+1Fs(z). Eq.(6.12) implies that, when plotting the rescaled distri-

bution φ
σs(1−τs)
th Pc(s) as a function of the rescaled size sφσs

th, with the correct exponents

τs and σs, plots for different values of φth should collapse onto the same universal

function F′
s(z).

Using this idea, one can estimate numerically the exponents τs and σs as those

that provide the best collapse of the data rescaled using Eq.(6.12) for the different

values of φth. Data collapse is performed by considering the difference of the curves

for the different values of φth and choosing the exponents τs and σs that minimize
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this difference. To compute the difference, we locate the interval of values of sφσs
th

common for all φth. In this interval, we compute a spline of order k for each quantity

φ
σs(1−τs)
th Pc(s) and interpolate a fixed number n of equispaced points. The difference

is defined as the sum of the variances of the values of φ
σs(1−τs)
th Pc(s) in each point of

the interpolation, for the different values of φth. In the results presented here, we

consider splines of order k = 2 and interpolate n = 10 points for each Pc(s) curve.

Following this approach, using values of φth in the interval [0.7, 1.2], we estimate

the exponents τs ≃ 2.03 and σs ≃ 3.03. In Figure6.6A we show the data collapse for

Eq.(6.12) obtained for the cumulated size distributions using these values. Different

intervals of the turning threshold provide slightly different values of the exponents,

from which we estimate the average exponents quoted in Table 6.1. The same pro-

cedure can be applied to the duration distribution, see Figure6.6B, where now the

cumulative duration distribution Pc(t) fulfills Eq.(6.12) with the corresponding ex-

ponents τt and σt. In the same interval of thresholds we find τt ≃ 2.33 and σt ≃ 1.59,

see Figure6.6B, while the average exponents are given again in Table 6.1.
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Figure 6.6: A: Check of the scaling of the cumulative size distribution with the turning
threshold, as given by Eq.(6.12). B Check of the scaling of the cumulated time distribution

with the turning threshold, as given by Eq.(6.12.)

τs σs τt σt
2.0(1) 3.1(3) 2.4(1) 1.70(4)

Table 6.1: Summary of scaling exponents for the avalanche size and duration distributions
obtained from observations of black neon tetra
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We can check the validity of these results considering that, for small values of s

and t, the distributions P(s) ∼ s−τs and P(t) ∼ t−τt imply that the average size of

avalanches of duration t, s̄t, takes the form

s̄t ∼ tm, with m =
τt − 1
τs − 1

. (6.13)

In Figure6.7 we represent the empirical average avalanche size s̄t as a function

of the duration t. For the different values of the turning threshold considered, we

estimate numerically that s ∼ t1.31. This observation is in good agreement with the

expression in Eq.(6.13), which, using the values from Table 6.1, yields m = 1.4(2).

In Figure6.7(A) we also show the average avalanche size observed in randomized

avalanches, which shows a linear dependence as expected theoretically, see Eq.(6.8).

This last result highlights the relevant effect of turning angle correlations in real fish.
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Figure 6.7: A: Average size s̄t of avalanches of fixed duration t as a function of t. The
main plot shows the empirical data. The inset presents the results from a randomization
of the turning angles in each fish trajectory. In this case, we plot the average duration as a

function of the theoretical prediction Nqt/Q, see Eq. (6.8).
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Effective leadership and avalanche behavior

In order to explain the origin of the avalanche behavior observed in our empirical

data, we consider the possibility that avalanches are triggered by some initiator or

effective leader, which consistently starts the large turning rearrangements that lead

to the formation of an avalanche. While several definitions of leadership have been

proposed within the field of collective animal motion (Strandburg-Peshkin et al.,

2018), here we use a measure explicitly devised to detect the presence of preferential

initiators of avalanches. We consider the originator of an avalanche as the fish that

performs the first large heading turn in the evolution of the avalanche. As more than

one fish can be active in any frame, we consider as initiators all active fish in the first

frame of an avalanche. We define the leadership probability χi of fish i in a given data

replicate as the ratio of the number of avalanches in which the fish i is active in the

first frame, divided by the total number of avalanches in which fish i participates.

An example of a fish that participates in two avalanches, and initiates one of those,

is shown in Figure 6.8.

The calculation is restricted to sufficiently large avalanches, of duration larger

than 5 frames. In Figure 6.9 we plot the value of χi computed for each one of the

N = 40 fish in each series, for different values of the turning threshold φth. As we

can see, the leadership probability shows an important variation among fish. More-

over, for the largest values of φth considered, the leadership probability can take

values up to 0.60, indicating that some fish initiate more than half of the avalanches

in which they participate.

In order to quantify the relevance of the values of χi obtained, and ascertain that

they are not the effect of random fluctuations in the activity of the fish, given our

small populations, we compare our empirical estimates with the results obtained in

a null model in which the turns performed by fish are completely independent.

In the avalanche null model defined in Section 6.2.1, consider a fish that partic-

ipates in a given avalanche. To estimate its leadership probability we have to com-

pute the probability that it leads the avalanche (i.e. it is active in its first time step),

provided that it participates in it. To compute it, we use Bayes’ theorem to write
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Figure 6.8: Leadership Probability example diagram. Fish i, along with two other fish,
originates Avalanche 1. In Avalanche 2, fish i participates in the avalanche but it does not
initiate it. In this example of two avalanches, fish i leadership probability is χi =

1
2 = 0.5.

P(p)P(l|p) = P(l)P(p|l), (6.14)

where P(p) is the probability that the fish participates in a given avalanche,

P(l|p) the probability of leading an avalanche in which it participates (the proba-

bility we are seeking), P(l) the probability of leading an avalanche, and P(p|l) the

probability that a fish participates in an avalanche provided that it leads it. Obvi-

ously, P(p|l) = 1. To estimate the rest of probabilities, we need information about

the duration t of the avalanche. Thus, we have P(p) = 1 − (1 − q)t, the probability

that the fish turns at least once in the development of the avalanche, and P(l) = q,

the probability that the fish is active (performs a large turn) in the first time step of

the avalanche. Therefore, from Eq.(6.14) we obtain
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Figure 6.9: Leadership probability χi computed for each fish i in the three data replicates
considered A, B and C (rows, left to right) and for different values of the turning threshold
φth = 0.25, 0.5, 1.0 and 1.2 (columns, top to bottom). Symbols are color-coded with the
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P(l|p) = P(l)P(p|l)
P(p)

=
q

1 − (1 − q)t . (6.15)

Within this null model, consider a fish that participates in Na avalanches, each of

duration tα, α = 1, . . . , Na. The probability of leading any of these avalanches is pα =

q/[1 − (1 − q)tα ]. Therefore, the probability P(ℓ) of leading ℓ of the Na avalanches is

given by a Poisson binomial distribution, representing the probability distribution

of a sum of independent Bernoulli trials that have different success probabilities pα

(Hoeffding, 1956). The Poisson binomial distribution has a rather convoluted form,

but its mean and variance can be easily expressed as (Hoeffding, 1956)

µ = ∑
ℓ

ℓP(ℓ) = ∑
α

pα, σ2 = ∑
ℓ

ℓ2P(ℓ)−
[
∑
ℓ

ℓP(ℓ)

]2

= ∑
α

pα(1 − pα). (6.16)

The average leadership probability of a fish in this null model is thus given by

χ0 = ℓ/Na, where ℓ = ∑α pα is the average number of avalanches led by the fish.

In Figure 6.9 we show the actual values of χi computed for each fish. The full

line and shaded region represents the null-model average value χ0
i computed for

each fish, taking into account the number of avalanches in which it participates, and

its 99% confidence interval, respectively.

Our results indicate that, with the exception of replicate C, in all replicates and

for all values of the turning threshold considered, several fish have an unusually

very large probability to initiate an avalanche, much larger than the value expected

from pure random fluctuations. We can associate them to effective leaders of the

school, which initiate with large probability the avalanches in which they partici-

pate.

More information can be obtained by considering the evolution of the leadership

probability as a function of the turning threshold for each fish in each time series,

as seen in Figure 6.10. From this plot we can confirm, first of all, that some fish

never initiate an avalanche (χi = 0) for large values of the turning threshold, while

others consistently start much less avalanches than they should by mere random

fluctuations. Some other fish behave as initiators for some range of values of the
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turning threshold. Finally, some fish reliably initiate a large number of avalanches,

much more than they should by pure randomness. These fish can be identified as

consistent effective leaders, which trigger a large majority of the avalanches, inde-

pendently of the value of the threshold used to quantitatively define them.

6.2.2 Modeling avalanches in the presence of leaders

Model definition

To explore the effects of the presence of leadership in the avalanche behavior of

schooling fish, we consider as the simplest modeling scenario a variation of the clas-

sic Vicsek model (Vicsek et al., 1995) in which we introduce an effective leader.

As described in Chapter 4, the Vicsek model (Vicsek et al., 1995; Ginelli, 2016)

consists on particles that interact among them by trying to align their instantaneous

velocity with the average velocity of the set of nearest neighbors inside a circular

region of radius R. A noise source of strength η, representing physical or cognitive

difficulties in gathering or processing local information, allows the formation of an

ordered (flocking) phase at low noise intensities, and of disordered (swarming) states

at high enough noise values.

In the variation of the Vicsek model we consider, one of the SPPs, say particle 1,

plays the role of a leader which influences the orientation of the rest of particles in the

system, independently of their distance to it. The velocity of the leader, v⃗1(t) = v⃗L

is not affected by the behavior of its neighbors, and therefore its heading remains

constant θ1(t) = θL over time, which represents a privileged direction it wants to

follow.

In the heading update rule in Eq. 4.2 of the classic Vicsek model, the average

velocity of the neighbors, V⃗i(t), is replaced by the average V⃗L
i (t) as follows

θi(t + ∆t) = Θ
[
V⃗L

i (t)
]
+ η ξi(t). (6.17)

In the classical Vicsek model, V⃗i(t) is calculated considering the particles located

inside a circular area Vi of radius R centered at particle i position. Here, V⃗L
i (t) is
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Figure 6.10: Individual fish leadership probability χi as a function of φth in the three repli-
cates A, B and C. Symbols are color-coded with the number Nα of actual avalanches in
which each fish participates. Full lines represent the average leadership probability in a
null model of uncorrelated avalanches. The shadowed regions represents the 99% confi-

dence interval of this value.
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R i

Global leader

Figure 6.11: Schematic of the modified Vicsek model with a global leader that influences
the orientation of particle i, independently of the distance to it.

computed in the set V L
i = Vi ∪ {1}, including the global leader and all the particles

in the local neighborhood of i (see Figure 6.11).

Simulations of the model are performed in square boxes of different size L with

periodic boundary conditions. We fix the density of particles ρ = N/L2 = 1, the

radius of interaction R = 1, and the constant speed of the SPPs v0 = 0.03.

The presence of an unperturbed leader has the effect of suppressing the disor-

dered phase exhibited by the classic Vicsek model. As we can see in Figure 6.12,

while for the classical model the transition becomes sharper when increasing the

systems size L, the leader induces an ordered state for any value of η, with an or-

der parameter fairly independent of system size and vanishing only in the limit of

maximum noise η = 1.

Avalanche behavior in response of leader perturbations

In this section, we focus our attention on the system-wide perturbations that are

induced by changes in the preferred direction of motion of the leader. To analyze

them, we consider a random reorientation of the leader’s heading by an angle ∆θL

(see Figure 6.13), performed in the steady state corresponding to a given value of the

noise intensity η, and measure the subsequent rearrangements that this perturbation

induces in the heading of the rest of fish, as given by the turning angle φi(t) =

θi(t + 1)− θi(t) projected on the interval [0, π].

In Figure 6.14 we represent the probability density of SPPs turning angles P(φ)
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Figure 6.12: Average order parameter ϕ(η) as a function of noise intensity in the classic
standard Vicsek model (SVM) and the Vicsek model with a non-rotating global leader for

different system sizes.

ΔθL

Figure 6.13: Schematic of run-and-tumble of turning leader in the modified Vicsek Model

in the steady state, for different values of the noise intensity η. In this plot we con-

sider the model with a fixed, non-turning leader (dashed lines), and the case of a

periodically perturbed leader (full lines), in which the leader experiences a random

rotation ∆θL of its heading, uniformly distributed in the interval [−π, π], every 250

time steps, a time lapse larger than the maximum avalanche duration recorded in

simulations.

As we can see, for fixed η, the two distributions are almost identical for small

φ, while they differ drastically regarding the behavior of the tails beyond a given

cut-off turning angle φc(η). A numerical analysis performed for different values of

L allows to estimate this cut-off as φc(η) ≃ 2.4πη. The presence of this turning angle

cut-off, not available in empirical data, permits to distinguish the changes of heading

due to the effect of the leader perturbations, and suggests that the proper definition

of avalanches should consider turning thresholds larger than the cut-off φc(η). In
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Figure 6.14: Probability density of the turning angles φ for the Vicsek model with a leader,
for different values of the noise intensity η, in a system of size L = 220. Dashed lines cor-
respond to a non-turning leader. Full lines represent a leader perturbed periodically every
250 time steps. Vertical lines, indicating the departure of the distributions for perturbed

and non-perturbed leaders, are estimated at a value φc(η) ≃ 2.4πη.

the following, we will fix the value of the threshold to φth(η) = 2.5πη. We notice

that for large η ≥ 0.5, the angular distributions with and without perturbations are

identical, compatible with a large noise masking external perturbations and making

avalanches non discernible.

In Figure6.15 we plot a sample of the number of SPPs that turn an angle larger

than φth(η) as a function of time. This curve emphasizes the heterogeneous char-

acter of the avalanche sizes in response to the leader’s changes of direction, akin to

what is observed in fish schools: Sometimes a perturbation is followed by a small

number of SPPs reorientations; but other times, it triggers the reorientation of a large

number of particles. As expected, the strength of the effects of the leader perturba-

tions decreases with increasing noise, indicating that interesting avalanche behavior

will only occur for moderate levels of noise.

We compute the cumulative probability distributions Pc(s) and Pc(t), defined

in Equation (6.2), of observing an avalanche of size and duration larger than s and

t, respectively, plotted in Figure6.16(A) and (B) for a turning threshold φth(η) and

different values of η. As we can see from these plots, the values η = 0.2 and 0.3

lead to size and duration distributions analogous to that observed in rearrangement

avalanches in black neon tetra schools, with a shape that can be approximated by a
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Figure 6.15: Number of SPPs turning an angle larger than φth(η) = 2.5πη in a sequence
of 10000 simulation time steps in the Vicsek model with a periodically perturbed leader,

for different values of η.

power-law form for intermediate values, followed by a crossover to a sharp decrease

for large s and t above a characteristic size or duration. The behavior for η = 0.1

is more complex, probably due to the fact that for small noise one expects a fairly

homogeneous response with many SPPs following a leader perturbation. We thus

discard this value in the following analysis.
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Figure 6.16: A: Cumulated distribution of sizes Pc(s) of avalanches induced by a peri-
odically perturbed leader in a system of size L = 220 with turning threshold φth(η), for
different values of the noise intensity. B: Cumulated distribution of durations Pc(t) of
avalanches induced by a periodically perturbed leader for different values of the noise

intensity.

The fact that we work now with a numerical model, allows us to explore the

behavior of the system for different systems sizes L at a fixed turning threshold,
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Figure 6.17: A: Cumulative probability distribution of sizes Pc(s) and durations Pc(t) of
avalanches induced by a perturbed leader in a system with η = 0.2, turning threshold
φth(η) and different values of L. B:Cumulative probability distribution of sizes Pc(s) and
durations Pc(t) of avalanches induced by a perturbed leader in a system with η = 0.3,

turning threshold φth(η) and different values of L.

which was not possible in our fixed size empirical data. In Figure6.17(A) we plot the

cumulative size and duration distributions in avalanches in the Vicsek model with

a turning leader for a turning threshold φth(η), η = 0.2 and η = 0.3 and different

system sizes. As we can observe, the behavior of the distributions is analogous to

that observed in real fish schools, compatible with a power-law decay but that are

now truncated by a size and time cut-offs that are functions of the system size L.

Inspired again by self-organized criticality (Pruessner, 2012), we can assume now

that the distributions obey a finite-size scaling form

P(s) = s−τs Gs

( s
LD

)
, P(t) = t−τt Gt

(
t

Lz

)
. (6.18)

where D and z are new characteristic exponents that define the characteristic size

sc(L) ∼ LD and time tc(L) ∼ Lz as a function of the system size (Pruessner, 2012;

Cardy, 1988).

The better statistics in numerical simulations allow to estimate the characteristic

exponents applying the more precise moments analysis technique (De Menech et al.,
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1998), defined as follows.

The finite-size scaling (FSS) method (Cardy, 1988) assumes that the dependence

on system size L of the avalanche size and time distributions is of the form

P(s, L) = s−τsFs

(
s

sc(L)

)
, (6.19)

P(t, L) = t−τtFt

(
t

tc(L)

)
, (6.20)

where Fx(z) are scaling functions that are approximately constant for z < 1, and

decay very fast to zero for z > 1. The quantities sc(L) and tc(L) are the cut-off

characteristics size and time, which are assume to depend on system size as sc(L) ∼
LD and tc(L) ∼ Lz, thus defining the standard critical exponents τs, τt, D (the fractal

dimension) and z (the dynamic critical exponent) (Pruessner, 2012).

Assuming the scaling form given by Equations 6.19 and 6.20, we can compute

numerically the associated critical exponents applying the moment analysis tech-

nique (De Menech et al., 1998). One starts by defining the q-th moment of the

avalanche size distribution on a box of size L as

⟨sq⟩L = ∑
s

sq P(s, L) ≃
∫

ds s−τs+qFs

( s
LD

)
= LD(q+1−τs)

∫
dx x−τs+qFs(x) ∼ Lσs(q), (6.21)

where we have introduce the FSS form in Eq. (6.19), and taken the continuous ap-

proximation for the s variables. The exponents σs(q) ≡ D(q + 1 − τs) can be esti-

mated as the slope of the numerical evaluation of sq
L as a function of L in a double

logarithmic plot. Then, for sufficiently large values of q, we can perform a linear fit

of the exponent σs(q) to the form

σs(q) = Aq + B, (6.22)

with A = D and B = D(1 − τs), from where D and τs can be directly estimated.

Along the same lines, the exponents associated to the avalanche time distribution

can be evaluated considering the q-th moment of the time distribution, ⟨tq⟩L ∼ Lσt(q),
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with σt(q) ≡ z(q + 1 − τt).

Application of this method leads to the characteristics exponents reported in Ta-

ble 6.2. We check the accuracy of these values performing a data collapse analogous

to that performed for the avalanches in real fish, which, for the cumulated distribu-

tions, takes the form,

LD(τs−1)Pc(s) = F′
s(sLD), Lz(τt−1)Pc(t) = F′

t (tLz), (6.23)

The collapsed cumulated distributions are shown in Figure6.18(A) for avalanche

sizes and Figure6.18(B) for avalanche durations. As we can see from these values,

the exponents show a dependence on the value of the noise η, although the size

exponents appear to be compatible within error bars.
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Figure 6.18: A: Check of the scaling of the avalanches cumulated size and duration dis-
tributions as given by Eq.(6.12) in a system with η = 0.2. B: Check of the scaling of the
avalanches cumulated size and duration distributions in a system with η = 0.3. Statistics

are performed over at least 105 different avalanches.

We have finally checked the effects of changing the turning threshold in the scal-

ing of the distributions as a function of the system size. In Figure6.19 we show the
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Figure 6.19: A: Check of the scaling of the avalanches cumulated size distributions as
given by Eq.(6.12) in a system with η = 0.2 and η = 0.3, and turning threshold φth(η) =
2.8πη. B: Check of the scaling of the avalanches cumulated duration distributions in a
system with η = 0.2 and η = 0.3, and turning threshold φth(η) = 2.8πη . Statistics are

performed over at least 105 different avalanches.

results for a turning threshold φth = 2.8πη for η = 0.2 and 0.3, summarized in Ta-

ble 6.2. As we can see, the scaling exponent τs and τt in our model depend on the

value of the threshold. This fact is in contrast with the behavior of the fish school, in

which the characteristics exponents appear to be independent of the threshold, and

thus allowing for a scaling solution of the form given by Eq.(6.11). Interestingly, the

exponents D and z appear to be rather detail independent, taking the approximate

values D ≃ 2 and z ≃ 1/2 for any value of η and φth, which would indicate that

avalanches in this model are compact (Pruessner, 2012).

It is important to notice that the presence of a rotating leader in necessary to

obtain scaling avalanche distributions. Even in the absence of a leader, the heading

fluctuations due to noise and interactions in the standard Vicsek model allow to

define avalanches for a given threshold. These avalanches, however, show a simple,

short ranged exponential distribution, as shown in Figure6.20.
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Vicsek model with a perturbed leader
φth(η) = 2.5πη

η τs D τt z
0.2 1.73(5) 2.01(2) 4.03(5) 0.39(5)
0.3 1.69(5) 2.01(2) 3.49(5) 0.42(5)
Vicsek model with a perturbed leader

φth(η) = 2.8πη

η τs D τt z
0.2 0.99(5) 2.06(2) 0.26(4) 0.50(5)
0.3 1.04(5) 2.03(2) 0.57(5) 0.52(5)

Table 6.2: Summary of scaling exponents for the avalanche size and duration distributions
obtained from the Vicsek model with a perturbed leader.

Figure 6.20: A: Cumulative probability distribution of size Pc(s) of avalanches in the stan-
dard Vicsek model with η = 0.2, turning threshold φth(η) and different values of L. B:
Cumulative probability distribution of duration Pc(t) in the standard Vicsek model with
η = 0.2, turning threshold φth(η) and different values of L. C: Cumulative probability
distribution of size Pc(s) of avalanches in the standard Vicsek model with η = 0.3, turn-
ing threshold φth(η) and different values of L. D: Cumulative probability distribution of
duration Pc(t) in the standard Vicsek model with η = 0.3, turning threshold φth(η) and

different values of L. Statistics are performed over at least 105 different avalanches.

6.3 Discussion

Behavioral cascades, taking the form of intermittent rearrangements (avalanches)

in the patterns of movement are an important, albeit sometimes neglected, feature

of collective motion in animals. Here we have shown that behavioral cascades

can be observed in the rearrangement dynamics of swimming fish schools. Such

avalanches, defined in terms of a turning threshold for the heading of the fish, have
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distributions of sizes and times exhibiting a scaling behavior compatible with a

power-law tail truncated by a cut-off that is an decreasing function of the turning

threshold. A data collapse analysis allows to determine the exponents characteriz-

ing the scaling form. We conjecture that such avalanche behavior can be due to the

presence of effective leadership in the schools. In order to support this conjecture, we

introduce a measure of leadership, based in the concept of avalanche initiators, and

observe that, indeed, some fish have consistently an unusually large probability to

initiate any avalanche in which they participate. These predominant initiators can be

interpreted as effective leaders, determining the start of sudden rearrangements of

the school headings. Leadership in the context of avalanche initiation could account

for individuals having sudden behavioral changes or specific information about the

environment, such as the proximity of a wall.

To check whether the presence of leaders is enough to induce avalanche behav-

ior in collective motion, we have considered a very simple model, consisting in a

variation of the classical Vicsek model with the addition of a global leader, which

influences the movement of the particles, subject to random changes in its heading.

Interestingly, this simple model displays an intermittent behavior qualitatively sim-

ilar to that observed in real schools, with avalanche size and duration distributions

displaying a self-similar scaling form.

Our results provide a new perspective on the avalanche behavior observed in

real collective motion situations (Ginelli et al., 2015), which can be associated to a

simple mechanism of leadership, observed in many natural situations, indicating

the possibility of a direct relation between these two phenomena. Leadership in the

present context of a moving school corresponds to those individuals that first react

to any external input, or that first exhibit a random behavioral change, and prefer-

entially start sudden rearrangements of the trajectories of other fish in the school.

Such interpretation is validated by the numerical results from our model. It is also

worth emphasizing that, while it does not offer a perfect quantitative prediction of

the characteristic exponents, it nevertheless allows to reproduce the scaling form of

the avalanche distributions within a minimalist modeling framework.

Different venues of future research stem from the results presented here. From

an empirical perspective, it would be interesting to further study the nature of the
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avalanches observed in real schools, and to correlate them with other physical prop-

erties measured in similar systems (Herbert-Read et al., 2011; Katz et al., 2011), as

well as with other measures of leadership devised in different contexts of collec-

tive motion (Strandburg-Peshkin et al., 2018). From a numerical point of view, our

results present new challenges in the understanding of the properties of the pro-

posed model. Indeed, a clearly open question remains to ascertain the ultimate ori-

gin of the scaling behavior observed in avalanches in a system in which no apparent

critical transition exists. Another interesting question regards the effects of leader

switching strategies. We expect the scale-free nature of the observed avalanches to

be preserved, provided that the influence of the leader, sensory wise, remains rather

long-ranged. In this sense, as we have numerically checked (data not shown), a

short-ranged leader, only with local influence over its nearest neighbors, is not able

to induce system-wide orientation rearrangements. On the other hand, the value of

the exponents associated to the size and duration cutoffs are apparently indepen-

dent of the noise intensity imposed on the system. These observations hint towards

a possible partial universality, which is not shared, however, by the power-law de-

cay exponent. Further work in this direction is clearly needed in order to clarify

these issues.

6.4 Closing remarks

In our empirical analysis we found that the measured avalanches distributions of

size and duration of the measured avalanches show a scale-free behavior, in anal-

ogy with self-organized critical processes (Pruessner, 2012), that can be described in

terms of a set of characteristics scaling exponents. A statistical analysis of avalanche

initiatiors allowed us to differentiate fish with an anomalous large probability of

starting an avalanche, acting thus as effective leaders promoting substantial school

rearrangements. By including a global leader that periodically changes direction in

the simplest SPP model, the Vicsek model, we were able to replicate the intermittent

scale-free avalanche-like behavior, not present in the original model.

Our results confirm the presence of scale-free signatures in behavioral cascades



6.4. Closing remarks 135

in collective motion (Rosenthal et al., 2015) and highlight the role of effective leader-

ship interactions in the emergence of this sort of collective behavior.
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Part 2

Collective-decision making in

swarming robots
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7 Kilobots: swarm robots to study

collective decision making

7.1 What are kilobots?

Kilobots are simple open-source swarm robots measuring 3.3 cm in diameter espe-

cially designed for testing collective behavior. They were developed by the Self-

organizing Systems Research Group at Harvard University (Rubenstein et al., 2012)

and are now manufactured by the Switzerland based company K-team. The kilobot

was designed with the capability to perform a wide variety of collective behaviours,

but is not so complex that it is unaffordable (the cost per kilobot is ≈ 100 euros).

They have been used to study collective decision-making behaviors (Valentini

et al., 2016), pattern formation (Gauci et al., 2018), morphogenesis (Slavkov et al.,

2018), space exploration (Dimidov et al., 2016), and collective transport of objects

(Rubenstein et al., 2013).

Each individual bot consists of an Atmega328 microprocessor with 32 KB flash

memory and 1 KB EEPROM. Locomotion occurs from two lateral coin-shaped vi-

bration motors which cause the supporting legs to vibrate, therefore allowing the

bots to move forward when both motors are activated, and rotate to each side by

activating only the left or right motor. The bots move approximately 1 cm/s and ro-

tate approximately 45°/s. This type of locomotion does not allow for odometry (i.e.

position estimation relative to some known position),which limits precision when

moving over long distances. The kilobot has a 3.4 V 260 MAh lithium-ion battery,

which can potentially power the robot for up to 24 hours, depending on its activity

level. Figure 7.1 shows the main components of kilobots from below and isometric

views.
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Figure 7.1: Kilobot architecture and main components from below and isometric views.

Kilobots have the capacity to exchange up to 9 bytes of information with nearby

robots within an interaction radius. This information is communicated by an in-

frared LED transmitter and an infrared photo-diode receiver, located at the center of

the circuit board (Figures 7.1 and 7.2), with an isotropic emission or reception pat-

tern, which allows each robot to receive messages equally from all directions. The

kilobots can communicate at rates of 30 kb/s with robots up to 10 cm away, although

this distance may vary slightly depending on a few factors, such as reflective char-

acteristics of the surface and the luminance of the ambient light (Rubenstein et al.,

2012). To deal with potential communication "jamming" of two or more robots trans-

mitting at the same time, a standard carrier sense multiple access with collision avoidance

(CSMA/CA) protocol was implemented (Karn et al., 1990); this allows for multiple

signals to use the same channel by waiting until it is free. However, even with the

implementation of CSMA/CA the channel can get saturated when many kilobots

are transmitting simultaneously.

When communicating, the receiving robot measures the intensity of the incom-

ing infrared light using two amplifiers, allowing it to calculate the distance between

neighbours. Distance measurements, then, are used to gauge the relative position

and orientation of nearby robots. This helps each bot self-locate. Due to noise

and manufacturing variances, the intensity of the incoming light has an accuracy

of ±2mm. In addition, an RGB LED light display on the kilobots shows information

about their state to external observers.

Kilobots are programmed in C-language with specific functions handled by a
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Figure 7.2: textbfA: Example of a kilobot communicating to another via reflected infrared.
B: Overhead controller (OHC) sending infrared signals to multiple kilobots at the same

time.

custom Application Programming Interface (API) packed as a library named kilo-

lib (Kilolib n.d.). Kilobots have their own clock, the kilotick, which is equivalent to

approximately 30 milliseconds. Additionally, time can be measured by the num-

ber of iterations per time unit. Programs are loaded on the kilobots by an overhead

controller (OHC) that sends the program via infrared to all kilobots synchronously,

making the system scalable and avoiding the time-consuming task of programming

each one separately. The OHC also connects with low-level electronics like motors,

power circuitry and RGB LED to communicate information about them to the user.

To upload and run the programs a Graphical User Interface is used, the KiloGUI,

transmits directly to the OHC, which in turn communicates with the kilobots. Figure

7.3 show the main GUI window, where the user can access several attributes of the

kilobots such as to upload, reset, pause or run a program, check kilobots batteries’

voltage, activate sleep mode, and access messages sent by the kilobot (Serial Input)

and calibrate left and right motors power (Calibration).

The Serial Input button opens a new window where all the messages sent by a

robot appear. This option serves as a debugging mechanism because the user can get

direct feedback from the kilobot. To do so, the kilobot has to be directly connected

to the OHC by a debug 2-wire cable, respecting the polarity as seen in Figure 7.4.

7.2 Experimental characterization of individual kilobots

Due to differences in manufacturing, motion accuracy varies based on the individual

kilobots and on the surface upon which they perform their motion and communi-

cation. Before implementing our behavioral algorithm for the study of collective
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Figure 7.3: A: KiloGUI, the kilobots graphical user interface (GUI) to control the kilo-
bots through the OHC. B: Calibration GUI to manually calibrate motors power values for
turning right, turning left and going straight. Here also a unique identifier (UID) can be

assigned to each kilobot.

decision making, we characterized individual speed and message reception of indi-

vidual robots in our experimental setup, consisting either on a plain 1m2 bounded

melamine whiteboard where kilobots are placed, or on a glass surface held 15 cm

from the white melamine base. The second setup was used to guarantee the syn-

chronization of the kilobots’ internal clocks as will be explained in detail in Chapter

Figure 7.4: Debugging configuration. Image borrowed from Tharin, n.d.
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9.

As described in Section 7.1, kilobots forward motion and turning are produced

by lateral vibrating motors. The power of the motors is calibrated to achieve a

straight line when going forward and a full left and right turn. Despite being cali-

brated by the manufacturer, we found that most deviated significantly from a straight

line moving forward. With this consideration, we manually calibrated each of the

kilobots’ motors power values to achieve full left and right turns and, as much as

possible given their stick-slip locomotion, a straight forward motion.

To calibrate the motors, we used the KiloGUI Calibration option in Figure 7.3

A, which opens a new GUI window to adjust the power values for turning left,

right and going straight, as shown in Figure 7.3 B. Adjusted values are transmitted

through the OHC and the motors’ power is modified in real time. The values of

each kilobot varied from 55 to 95, with left and right values to go straight were 2 to

10 units smaller than the turning values. Once the motors were calibrated, we wrote

the values changes to the EEPROM memory of the individual kilobot.

In the same calibration window, one can modify the bot’s ID. We assigned a

unique identifier (UID) to each bot, allowing them to be recognized by others as the

same individual while performing the collective decision making process.

According to Rubenstein et al., 2012 kilobots move straight at an average speed

of 1 cm/s. To build upon this assessment, and to evaluate the speed distribution of

our kilobot sample, we measured individual speed vi by timing the seconds that a

bot moved 15 cm in straight line, and then converted it to cm/s. We documented

mean and standard deviation for reproducibility from our physical kilobots to a

kilobot simulator, described next in 7.3. To increase insight of accuracy within our

sample size, we repeated the measurement 10 times per kilobot, as there is always

some small variation in their displacement. Figure 7.5 shows the vi distribution.

Kilobots move at a mean value v̄i = 0.90 ± 0.2cm/s, with some bots moving faster,

with vmax = 1.49 cm/s and some moving as slow as vmin = 0.43 cm/s. Within our

experiment, our kilobots’ mean speed aligns with the mean speed documented by

Rubenstein et al., 2012. However, there is a considerable amount of dispersion in

speed values that must be taken into account when understanding their dynamics

and testing our algorithms.
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Figure 7.5: PDF of individual speed vi (cm/s) for 35 kilobots. Each kilobot speed was
measured 10 times, adding up to a total of 350 values.

Figure 7.6: A: Bots seen by central bot debugging configuration. B: Mean bots seen by
central kilobots as a function of time (iterations). Colors represent different central bots

and shaded regions the standard deviation from the mean.

To characterize how much time it takes for a focal bot to receive messages from

neighboring kilobots, we worked with 30 kilobots. We placed one kilobot at the cen-

ter and surrounded it with the rest organized in three kilobot layers, i.e. with the

farthest kilobots located at three bot-size distance (∼ 9 cm) from the central one, as

shown in Figure 7.6 A. We then connected the debug cable to the central kilobot and

the OHC, and obtained the number of time iterations that are needed for the central

bot to detect the maximum number of bots that are within its communication range.

We repeated this measurement thirty times per kilobot, for five different central kilo-

bots. Bots see most surrounding bots at around 100 loop iterations (∼ 1s), as shown

in Figure 7.6 B.
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Figure 7.7: Kilombo GUI shows kilombo bots performing the same algorithm as physical
kilobots.

7.3 Kilombo: a kilobot simulator

Collective algorithms testing and debugging in the actual physical kilobots is a chal-

lenging task. Setting up and programming the kilobots is both time intensive and

meticulous in its process, and the time needed for the behavioral algorithm to run

is often extensive. Moreover, unexpected behaviors or errors are difficult to deduce

only by the kilobots behavior. Due to these elements, it is useful to test algorithms

in a computer simulator prior to executing physical experiments. Simulations per-

form algorithms faster and allow for inspection and repetition when a problem is

detected.

With this in mind, we tested our behavioral algorithms on a simulator designed

specially for kilobots. Kilombo is a C-based simulator that allows the simulation

code to be run on the physical robots as well, removing the slow and error prone

step of converting code to a different platform (Jansson et al., 2015). The simulator

also includes a graphical user interface (GUI) that shows the robots from a top-down

perspective as in Figure 7.7 and allows them to interact with the simulation at run

time by moving robots around with the mouse, or changing the simulation speed.

The GUI can be deactivated.

Kilombo simulations capture the essential features of the physical kilobots and

the real world they interact with that can affect their behavior. The simulator keeps

track of the Euclidean positions and orientations of each robot, and updates these

through the simulation at each time step (at each time step the user program’s loop



146 Chapter 7. Kilobots: swarm robots to study collective decision making

Figure 7.8: Kilombo demonstration by Jansson et al., 2015 of parameter tuning to represent
the physical kilobots behavior more accurately. A: Physical kilobots performing the orbit
algorithm.B: Bots in kilombo performing the same orbit algorithm. C:Bots in kilombo
performing the same orbit algorithm but adding noise to message reception so that 20 %

of the messages are lost, and a standard deviation of 2 mm

function is run). Motion occurs as in the real kilobots, by turning the two motors on

or off. A configuration file allows for setting bots speed and turning rate, so they can

reflect the physical robots’ real motion depending on the surface used and the robots’

motor calibration. The simulator also handles collisions between robots by displac-

ing overlapping robots equally along the vector joining their centers with no energy

loss to friction or plastic deformation. Furthermore, the simulator replicates commu-

nication and the distance measurement via infrared, including variance in messages

reception success and distance measurement. For example, Figure 7.8 shows a com-

parison of kilombo performing the kilobots’ sample algorithm orbit (Rubenstein et

al., 2012) which consists of a stationary bot that emits messages. Another bot moves

and tries to keep a constant distance to the stationary bot, by alternating between

turning left and right. Figure 7.8 A shows the moving bot trajectory in physical kilo-

bots and Figure 7.8 B shows the same algorithm implemented in kilombo. Figure

7.8 C shows the same algorithm but modifying the noise in message reception and

distance measurement.

The user can also include a callback function to specify a light intensity profile
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Parameter Description (units) Value
Number of bots Number of bots to simulate 35
Time step Simulator time step (seconds per loop). 0.0103
Simulation time Total simulation runtime (s). 872
Turn rate Kilobot turning speed (degrees/s) 45
Speed kilobot movement speed (mm/s) 9

Speed variation
Standard deviation in kilobots’
movement speed (mm/s)

2

Table 7.1: Parameters chosen in kilombo to accurately represent physical kilobots. Other
parameters not mentioned in the table are left equal to kilombo presetting values.

for the environment for kilobots’ light sensing, and another callback function for

user-defined obstacles that limit kilobots motion through space. Other features that

can be configured in the simulator include initial bots space distribution, random

seed generation, and seconds per time step for real world compatibility. For further

details and information the Kilombo User Manual can be accessed online 1.

Kilombo has proved to be sufficiently accurate for testing potential behavioral

algorithms (Jansson et al., 2015), although, as with any simulator, it is difficult to

predict to which extent small variations of the real world can propagate through

the system and affect global dynamics. Experimentation with real kilobots is then

fundamental to complement kilombo simulations. Furthermore, kilobots behavior

can be contrasted to what is observed in the simulator to help identify algorithms

that are more sensitive to the noise of real life (Jakobi, 1997).

7.4 Kilobots motion characterization in kilombo simulations

We will now take profit from the kilombo simulator to characterize the collective

motion of kilobots. The simulator has the advantage to enable the tracking of in-

dividuals’ positions over time. Therefore, after having characterized the kilobots’

individual speed distribution in Section 7.2, we feed the obtained mean velocity and

standard deviation to the kilombo configuration file. Table 7.1 shows the full set of

configuration parameters.

We are interested in characterizing the kilobots collective motion while bots per-

form a continuous time persistent random walk (PRW), i.e. as they alternate a for-

ward motion at a constant speed with random changes of its direction of motion

1https://github.com/JIC-CSB/kilombo/blob/master/doc/manual.md
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Figure 7.9: A: Probability distribution of the mean individual speed v̄i (mm/s), calculated
from bots’ positional data every ∆t ≃ 0.5, 2.5 and 5.8 s, shown in log-lin. B: Probability

distribution of the mean individual speed v̄i (mm/s) for ∆t = 5.8 s in a linear plot.

with a prescribed turning rate, in a circular arena of radius R = 20 cm. There are

many examples of non-equilibrium self-propelling entities in nature for which this

model would be appropriate. Examples include self-propelling living entities at dif-

ferent length scales, from bacteria to fish schools. (Ariel and Ayali, 2015; Murakami

et al., 2015).

We conducted a study involving N = 35 kilobots (to match the number of phys-

ical kilobots available) for a total of 25 runs, each lasting 872 seconds (equivalent to

14.5 minutes). Individual bot’s positions were saved every ∆t ∼ 6 loop iterations.

To prevent, as much as possible, kilobots from clustering at the border of the arena,

the PRW was configured with discrete wide turning angles so they would be able to

turn away from the border faster. We established the turning times to either ∼ 2.8

(turning angle of ∼ 125 degrees) or ∼ 5.8 seconds (turning angle of ∼ 251 degrees),

and a forward motion time of ∼ 3.8 seconds. From these data, next we analyze the

collective motion and distribution of the kilobots within the circular arena.

7.4.1 Speed distribution during kilobots PRW motion

By taking the modulus of the individual bots displacements in a given time window

(∆t), we can compute their corresponding speed. We have taken each bot positional

data and estimated their individual speed vi (mm/s) as the displacement in the time

window divided ∆t.

In Figure 7.9 A, we present the probability distribution of such mean individual

speeds calculated over different time windows. For short ∆t, the histogram reveals
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notably larger speed values and characteristic "peaks” at particular vi values. Those

features tend to disappear as ∆t is increased. The rational for this behavior of P(vi)

is the following: First, let us recall that kilobots are performing a PRW, with phases

of straight movement and phases of rotation to change their direction of motion. In

this regard, we have set for the kilombo bots’ mean speed and standard deviation

parameters the speed measured in the physical kilobots when moving in a straight

fashion and independently, v̄ = 9 ± 2 mm/s, and we have fixed the turning speed

to 45◦/s, based on prior work by Rubenstein et al., 2013 (Section 7.2).

Second, it turns out that, while a kilobot rotates, its mean (translation) speed

calculated over a short time window (shorter than the rotation duration) is higher

than when they move straight. Of course, this does not mean that the bot is actually

moving faster. What happens is that its rotation is not a pure rotation around one

of its legs: a kilobot rotates by activating only one of its lateral vibrating motors,

which causes its body to rotate around an axis that slightly moves in time (see, for

instance, Figure 7.8). The vibrational drift of the rotation axis appears to have an

associated characteristic speed, which can be clearly identified as very narrow peaks

in the speed distribution. Thus, these narrow peaks appear as a consequence of

the erratic characteristics of the kilobot vibrating motion on relatively short length-

scales, but they become irrelevant on the longer timescales involved in their PRW

dynamics. Using a longer time window, ∆t = 5.6 s (already slightly larger than the

typical rotation stage duration), such rotation-induced peaks are less relevant and

the distribution curves smooth out.

Still, as seen in Figure 7.9 B, the individual velocities of the group of kilobots

moving concurrently in the arena are found to deviate from the pure translation

input value parameter v̄ = 9 ± 2mm/s used in simulations. These deviations can

indeed be attributed to the periods of time spent by the bots reorienting their direc-

tion of motion during the turning stage of their PRW motion (which paradoxically

can produce larger instantaneous speeds, but globally slow down the displacement),

but also to collisions among bots and with the arena wall. The distribution in Fig-

ure 7.9 B shows that the effective mean individual bot velocity calculated over 5.6

seconds is equal to v̄i = 6.50 ± 2.48 mm/s.
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Figure 7.10: Root-mean square displacement r(t) for N = 35 bots in kilombo. As a guide
to the eye, dashed lines in green and orange mark the extension of the ballistic and subd-
iffusive regimes, respectively, observed in the dynamics. The grey dotted line shows the

arena radius, i.e. the maximum distance a bot can travel.

7.4.2 Mean Square displacement

We now turn our attention to the characterization of the mean-square displacement

of the simulated kilobots on the arena. We calculated the mean square displacement

r2(t) as a function of the elapsed time t, averaged over N bots and over all time lags

of duration t in the interval [0, tmax],

⟨r2⟩ = 1
T − t

1
N

T−t−1

∑
t0=0

N

∑
i=1

[ri(t0 + t)− ri(t0)]
2 (7.1)

where ri(t) is the position of kilobot i at time t.

Our results show that the root-mean square displacement is described by a cross-

over between two power-law-like behaviors of the form: r = ⟨r2(t)⟩1/2 ∝ tα, fol-

lowed by a saturation plateau due to the finite size of our arena. We found that the

exponent values for our PRW kilobots are equal to α ≃ 1 at short times, and α ≃ 0.33

at intermediate time scales, as illustrated in Figure 7.10. Thus, we conclude that, as

expected, after an almost ballistic regime at short time scales, describing their for-

ward motion, kilobots exhibit a weak subdiffusive behavior at longer time scales,

when they perform their discrete PRW dynamics, due to collisions with other kilo-

bots. Indeed, subdiffusive behavior is a characteristic feature of crowded systems

that can limit the diffusion capabilities of individual bots.
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Figure 7.11: Examples of 35 bots displayed in an arena of radius R = 200 mm with A: no
exclusion radius, re = 0.0 (point-like particles), B: an exclusion radius re = 1.5 cm, and C

kilombo bots with an exclusion radius re = 1.5 cm.

7.4.3 Spatial distribution of kilobots inside the arena

As the kilobots move within the circular arena in our kilombo simulations, we fur-

ther analyze their spatial distribution. In order to better understand the unique char-

acteristics of the kilobots’ spatial coverage due to their particular dynamics, we also

examine the results obtained from fixed (quenched) configurations of randomly po-

sitioned bots in the same arena. This is done with the purpose of better evaluating

the deviations from the quenched approximation (used as a reference model) ob-

served in the case of moving bots.

Thus, each spatial configuration in the quenched approximation is an indepen-

dent sample of the positions of N agents inside a circular arena of radius R. In

particular, we randomly place N = 35 agents within an arena of radius R = 20 cm.

An agent position is generated from a uniform distribution inside a circle,

r = R
√

ξ1(0, 1), θ = 2πξ2(0, 1) → x = r cos θ, y = r sin θ (7.2)

where ξi(0, 1) are random numbers uniformly distributed between 0 and 1. Agents

have an exclusion radius of re due to its finite size, and occupy an area equal to

πr2
e . Therefore if the random deposition of a new agent overlaps with the area of an

agent already placed in the arena, we discard this position and generate a new one.

We analyze both the cases of finite-size bots with (re > 0) and zero-body size bots

(re = 0). If re = 0 (i.e. point-like particles), bots never overlap.

Figures 7.11 show example quenched configurations of point-like bots (A), finite-

size bots with an exclusion radius re = 1.5 cm (B), and of kilobots in the kilombo
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Figure 7.12: Normalized probability distribution of radial positions inside a circular re-
gion of radius r, P(r), for quenched spatial configurations (with and without exclusion

radius re), and for kilombo simulations.

simulator, which also have a radius re = 1.5 cm (C).

In the following subsections, we analyze the spatial distribution of kilobots within

the kilombo environment, and compare it with the distribution of random quenched

configurations. For this, we compute the probability distribution of radial positions

of the bots, and the number of bots within circles of varying radii. Additionally,

we examine fluctuations in the number of detected bots as the radial distance from

the center of the arena is increased. By comparing our findings to quenched spa-

tial configurations, and to theoretical predictions for point-like processes, we aim to

better identify and describe any possible deviations from the expected outcomes for

systems that lack excluded volume interactions or dynamical correlations effects.

Probability distribution of radial positions inside the area

In Figure 7.12, we illustrate the radial position probability distribution, or density

profile, of kilobots in the steady state as a function of their radial distance to the

origin of coordinates located at the arena center. This probability has been prop-

erly normalized by the area of a differential cylindrical shell between (r, r + dr) to

account for area differences at different radial distances. While point-like particles

distribute uniformly throughout the entire arena, both the quenched approximation
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with an exclusion radius and the simulated kilobots system exhibit noticeable devi-

ations from this ideal behavior near the wall.

The characteristic dynamics of kilobots produces significant deviations from the

random point-particle case, and gives rise to a prominent peak at r ≃ 185 mm where

the probability of finding a bot is about one order of magnitude greater than that

observed in the central area of the arena. The accumulation of some bots near the

wall also causes a depletion of probability next to the wall, with the chance of finding

other bots at less than a bot-diameter distance decreasing due to their own excluded

volume.

Additionally, a smaller peak is visible at a radius compatible with a secondary

ring of kilobots that are temporarily stalled against the bots trapped at the wall. The

normalized distribution indicates a flat distribution for small and intermediate radii,

with the border effect only becoming noticeable for r > 140 mm.

Number of bots and its spatial fluctuations

To gain further insight into our kilombo configurations, and to investigate the poten-

tial presence of clustering phenomena, we also determine the number of bots located

within circular regions of increasing radius r.

We define N(r) as the number of bots inside a circle of radius r measured from

the arena center, which is nothing but the cumulative distribution of P(r). For the

case of quenched random configurations, we observe that the variation of N(r) as a

function of r obeys the following expression

N(r) = N
r2

(R2 − r2
e )

(7.3)

where R is the radius of the arena and re is the excluded radius of each bot.

This expression can be derived assuming that the probability of finding an agent

inside an area of radius πr2 follows a Poissonian distribution with probability p,

given by

p =
A(r)
AT

=
r2

(R2 − r2
e )

. (7.4)
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Figure 7.13: A: Fraction of bots ⟨N(r)⟩/N as a function of r for kilombo simulations and
for quenched bots’ configurations. B: Log-log of ⟨N(r)⟩/N as a function of r for kilombo

simulations and for quenched bots’ configurations.

Thus, N(r) can be seen as a random variable that follows a binomial distribution

with parameters N and p (Baddeley et al., 2007).

In Figure 7.13 A, we plot the time average ⟨N(r)⟩/N as a function of r for quenched

configurations and for kilombo simulation data. The dashed lines correspond to

Equation 7.3 with re = 0 and re = 1.5 cm. ⟨N(r)⟩ grows essentially as the square of

the radius of the containing circle r, as one would expect for a random homogeneous

distribution of bots.

When agents have a finite body size re ̸= 0, the effective area of the arena (where

agents can be placed) is reduced to π(R2 − r2
e ). Moreover, finite body effects result

in the arena filling up more quickly (as seen for both finite body cases), enhancing

proximity between bots and, as we will discuss later on, creating bigger dynamic

clusters of bots. Configurations obtained from kilombo simulations further show

the border effect: ⟨N(r)⟩/N slows down its growth right before the boundary and

then suddenly rises. We also observe that the area πr2
e correction factor is necessary

and works well, as in the quenched configurations, if we consider R = 20 cm and

re = 1.5 cm.

The log-log plot in Figure 7.13 B shows ⟨N(r)⟩ /N growing as ∼ r2 for all the

three cases. The discrepancies observed for small r are simply due to lack of statistics

for the occurrence of observations at very small values of r.

Having analyzed the distribution of bots within a circular arena of radius r, we

now proceed to also analyze its fluctuations. Remember that ⟨N(r)⟩ quantifies the
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Figure 7.14: Mean-square number fluctuations σ2
N(r) as a function of the average number

of bots ⟨N(r)⟩ in a circular area of radius r.

average number of particles in a circular region of radius r over different time steps

t in the stationary state. Then, mean square fluctuations of N(r) are calculated using

the following expression,

σ2
N(r) = ⟨(N(r)− ⟨N(r)⟩)2⟩. (7.5)

In a homogeneous case, with a uniform distribution of point-like bots in the

arena of area A=πR2, ⟨N(r)⟩ = Nr2/R2, and the corresponding variance is

⟨N2(r)⟩ − ⟨N(r)⟩2 =
Nr2

R2

(
1 − r2

R2

)
. (7.6)

This is the result for an ideal Poisson process of point-particles randomly located

in the arena, where N(r) has a binomial distribution with parameters N and p =

r2/R2, as previously stated. In this particular case, fluctuations exhibit a symmetric

inverted parabolic dependence on the average value ⟨N(r)⟩, and attain a maximum

value at N/2.

From Figure 7.14 we can observe that, as expected, fluctuations in the case of

point particles obey nearly perfectly the theoretical expression in Equation 7.6. On
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the contrary, for finite-body size bots, re ̸= 0, the behavior of fluctuations deviates

from the theoretical ideal behavior, in a similar manner for both quenched config-

urations and kilombo simulations. The ideal theoretical parabolic behavior is now

substituted by an asymmetric parabolic profile with enhanced fluctuations on its

right hand side, i.e. for larger radial distances that contain more than half the total

number of particles in the arena. In particular, its maximum value is now shifted

towards larger values around ⟨N(r)⟩/N ∼ 0.6 bots or, according to Figure 7.13, to

radial distances beyond r ∼ 16 cm, which already contain 60% of the total number

of bots. These regions, about a bot-diameter distance apart from the arena wall, are

probably more susceptible to bot depletion and excluded volume effects since, as

we have seen previously in the density profiles, bots tend to accumulate at larger

distances close to the arena wall. Both effects enhance the magnitude of fluctuations

in the number of particles found in that region of the system.
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8 Modelling of collective decision

making

8.1 Models of opinion dynamics

Collective decision making, as we previously discussed in Chapter 1, is a process

by which a collective of agents make a choice that is not directly attributable to any

of the individual agents, but rather to the collective as a whole (Bose et al., 2017).

Many natural and artificial systems exhibit collective decision-making and multiple

disciplines study the phenomenon, including sociology, biology and physics (Dyer

et al., 2009; Sasaki and Pratt, 2018). Collective decision making can be made about an

infinite amount of choices. For this type of process, consensus towards an option is

continuous. This can be seen in flocking dynamics when individuals have to choose

a common direction of motion (Múgica et al., 2022).

But another category of collective decision making processes is one that implies

finite and countable choices, and consensus reaching becomes a discrete problem.

The models of collective decision making that achieve discrete consensus require a

group of agents to collectively decide the best option out of n available ones (Valen-

tini et al., 2017). In real life scenarios, examples of these types of decisions are those

such as foraging patches, traveling paths or electoral candidates.

A collective decision is made when a large majority of agents in the group favor

the same option. The threshold of what is considered a large majority is defined by

the experimenter, but it must represent a cohesive collective decision with more than

50 percent of agreement amongst the individuals (Valentini et al., 2017).

Each option is characterized by attributes that make it more or less beneficial,

such as size, distance or volume (for instance, in regard to a potential nesting site for

honeybees). In collective decision-making models, quality and cost of each potential
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option encompass these attributes. Therefore, the quality of each option represents

all attributes that are relevant for the collective to achieve their objective (Garnier

et al., 2009). The cost of each option is represented by the average time needed by

an agent to know that that option exists. The cost impacts the decision process in an

indirect form, as it is induced by the environment and it is not controlled by individ-

ual agents (Campo et al., 2010). These two properties can be configured in multiple

ways in collective decision-making models. The most simplistic one is when op-

tions’ qualities and costs are the same for all available options, or symmetric. This

scenario deals purely with symmetry breaking by the collective selecting an option

in an arbitrary way, as a result of the amplification of random fluctuations (Garnier

et al., 2009). For all other scenarios, the decision-making process in the collective is

shaped by the combination of qualities and costs among different options. For ex-

ample, when the cost is different for each option, or asymmetric, but the qualities

are symmetric, the option of minimum cost will be considered to be the best op-

tion by the collective (Schmickl et al., 2007). In the case of asymmetric qualities and

symmetric costs, the maximum quality option will be chosen (Valentini et al., 2014).

Opinion dynamics models are used to understand how individuals communi-

cate and make decisions in groups. These models involve a set of agents, each with

their own opinion or state. The agents interact with each other and revise their opin-

ions based on the opinions of others. The voter model (Holley and Liggett, 1975) is

one of the simplest models used to study collective decision-making. In this model,

a population of N agents are situated on the nodes of a static network, with each

node representing one agent. Each agent has a binary variable s = ±1. At each

time step, an agent i and a neighboring agent j are chosen randomly, and i adopts

the opinion of j (si = sj). The model assumes that each agent is influenced only

by a fixed set of neighbors, with no external influences or other interactions. This

revision step is repeated until the entire population of N agents reaches consensus.

In finite networks, fluctuations always cause the system to eventually reach a state

where the entire population holds the same opinion (Castellano et al., 2009).

The voter model has been extensively studied in many different fields, includ-

ing physics (Sood and Redner, 2005), social dynamics (Castellano et al., 2009), and

ecology (Martinez-Garcia et al., 2021). It is a valuable tool for exploring collective
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decision-making and opinion dynamics in large populations. The voter model is

particularly useful in understanding how groups of individuals can come to a con-

sensus on a particular issue. Common metrics for measuring the voter model in-

clude the exit probability, which is the probability that all individuals will eventually

adopt the same opinion, and the consensus time, which is the average time it takes

for all individuals to adopt the same opinion (Castellano et al., 2009).

The majority rule model is another popular opinion dynamics model. In this

model, there are N agents, each of whom can adopt one of two binary states, denoted

by s = ±1. At each time step, a group of neighboring agents of odd size G is randomly

chosen, and each agent in the group adopts the state of the local majority. These

steps are repeated until a final consensus is reached, where all agents adopt the same

opinion. This rule is a simple and intuitive way of modeling how individuals tend

to conform to the opinions of those around them (Galam, 2002).

However, these models are limited in that they assume that all agents are equally

likely to adopt either opinion. In reality, individuals may have different preferences,

beliefs, or biases that can influence their decision-making. To address this limita-

tion, more complex models have been developed that incorporate features such as

stubbornness, partisanship, and heterogeneity (Galam, 2005; Deffuant et al., 2000).

These models can help us understand how opinion diversity and polarization can

arise in groups, and how these dynamics might be influenced by different factors.

8.1.1 Collective decision-making in honeybees: review of the process and

models.

Insects have long been known for their fascinating behavior, and collective decision

making is no exception. One particularly intriguing example of this can be found in

the way honeybees choose their nest sites. This process has been the focus of many

models of collective decision-making in honeybees (Britton et al., 2002; Passino and

Seeley, 2006; List et al., 2009; Pais et al., 2013; Reina et al., 2017). Next, we briefly

review the mechanism by which honeybees collectively decide on a new home and

we further describe recent models inspired by the mechanism by which honeybees

collectively choose a new home.
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Honeybees collective decision-making when choosing a new nest site

Honeybees are social insects that live in large colonies, and the process of selecting a

new nest site is a collective decision-making process that involves a combination of

individual and group behaviors. In recent years, researchers have made significant

progress in understanding the mechanisms behind this behavior, which is critical

for the survival and reproduction of honeybee colonies (Seeley et al., 2012; Beekman

and Oldroyd, 2018).

The process of collective decision-making in honeybees has been described pri-

marily in regards to the species Apis mellifera. It begins when a colony becomes

overcrowded or otherwise unsuitable. At this point, the queen and several other

hundred bees will leave the colony and cluster in the surrounding area. About five

percent of the swarm, the scouts, will start exploring and assessing potential nest

sites based on a variety of factors, including the size and shape of the location, the

quality of the nesting material, and the proximity to food sources (Seeley, 2010; See-

ley et al., 2012).

After a scout bee has discovered a potential new nesting site, it will fly back to

the swarm and communicate information about the prospective site to other bees

through a complex dance on the surface of the swarm cluster, the waggle dance.

Through the dance, bees recruit others to visit the site by conveying both the di-

rection and distance to the new site, as well as its desirability. Recruited bees then

visit the site and return to the cluster to perform their own dance in support of the

site.

The waggle dance can consist of one to 100 or more circuits, composed by figure-

eight movements made by the honeybee’s body, called a return phase, and a wag-

gling phase as it moves forward in a straight line, known as the waggle run. The

duration of a waggle run ranges from 0.28 seconds to over a minute and the return

phase is typically shorter than the waggle run (Seeley and Buhrman, 2001; Dyer,

2002).

The duration of the waggle dance is correlated with the honeybee’s perception of

the quality of the site. A longer dance corresponds to a more suitable new nest site,
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while a shorter dance corresponds to a less desirable site. The intensity of the wag-

gling and the speed of the dance can also convey information about the perceived

quality of the site. For example, a more intense and rapid waggle dance can signal

to other bees that the new site is of higher quality and therefore worth investigating

(Seeley, 1997).

As a result, a high-quality site receives longer and more frequent advertising

than a low-quality site, which leads to an overall increase in the number of bees

visiting and dancing for high-quality sites, and a decrease in the number of bees

doing so for low-quality sites. This highlights the importance of high-quality sites in

the overall behavior and success of a bee colony. Over time the dances performed by

the honeybees tend to focus on a single site. After a potential nest site has attracted

enough bees, a quorum is formed. The bees that have detected the quorum will

return to the swarm and produce an audible signal called piping, indicating that the

decision-making process is complete. The piping serves as a message to the inactive

bees in the cluster, letting them know that they should begin preparing for flight.

This process helps to ensure that the entire colony is in sync and ready to move to

their new home (Beekman and Oldroyd, 2018).

Models of collective-decision making in honeybees

Models of nest site selection in honeybees often consider factors such as the quality

of the different nest sites, the number of scouts who have visited each site, and the

persistence of the scouts in advertising their preferred sites.

Through the study of these models, researchers can gain valuable insights into

the underlying mechanisms of honeybee decision-making and the factors that con-

tribute to the process of achieving consensus. Moreover, these models have the po-

tential to inform our understanding of group decision-making in other animals, in-

cluding humans. For instance, as shown in Pais et al., 2013, models of honeybee

swarm decision-making can be applied to various levels of biological complexity,

from individual brains to intracellular decision-making circuits, and even be utilized

to inform the design of artificial, decentralized decision-making systems.

The model deals with binary-choice decision-making and involves agents that

can be in one of three states: uncommitted to either alternative (s = 0), committed
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to state 1 (s = 1), or committed to alternative state 2 (s = 2). Each agent inter-

acts stochastically with every other agent in several ways, each interaction having a

particular probability per time step.

In this model, there are four types of interactions: commitment, abandonment,

recruitment, and direct switching. An uncommitted agent (s = 0) may sponta-

neously commit to either state with probabilities γ1 and γ2. A committed agent to

either state can spontaneously abandon its commitment and return to an uncommit-

ted state with probabilities α1 and α2. A committed agent to either state may recruit

an uncommitted agent to the state that the former is promoting with probabilities ρ1

and ρ2. Alternatively, a committed agent to either state can switch another agent’s

state, who is already committed to the alternative state, such as in the recruitment

interactions, but with probabilities δ1 and δ2. The total number of agents is fixed as

N = N1 + N2 + N0, and all rates γj, αj, ρj, δj are greater than 0.

In this model, it has been found that when faced with a decision between two

equal states, the system inevitably reaches a stable deadlock, with an equal number

of agents committed to each alternative. As one site gains a majority of agents, the

rate of switching from that site to the other increases, ultimately forcing the system

back into a state of equal commitment. However, a stable deadlock is suboptimal as

it fails to reach a consensus. To address this issue, a modification to the model has

been proposed that replaces the direct switching interaction with a discriminate

stop signal interaction. This change results in a significant qualitative difference,

allowing the system to overcome deadlocks when faced with equal alternatives.

Under the discriminate stop signal interaction, an agent committed to a state can

actively inhibit the commitment of an agent committed to the other state, convincing

the latter to lose its commitment and become uncommitted with probabilities σ1 and

σ2. This modification enables the system to move away from the deadlocked state

and towards a consensus.

Reina et al., 2017 extended the original model from the study of binary choices

to the study of the best-of-N options, and by introducing a new control parameter

r. This parameter represents the ratio between the individuals’ interaction and the

spontaneous transitions (i.e. the probability that a scout bee chooses a nest site at

random, independent of the information gathered from other bees). The definition of
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r has a simple and natural biological interpretation, as it represents the propensity of

scout bees to deliver signals to others, relative to the rate of spontaneous transitions.

The larger the value of r, the greater the effect of social influence on the decision-

making process.

The introduction of the new parameter r in the model highlighted the potentially

high adaptability of honeybees’ decision-making process to changes in the environ-

ment. The model demonstrated that honeybees become committed to the higher

quality option when the value of one option exceeds that of the other, and the com-

mitment to the low quality option decreases until it is abandoned altogether. More-

over, the model showed that when bees face equal quality options, increasing the

signaling behavior has the potential to break decision deadlocks. Thus, it might be

prudent to increase the value of r over time. However, excessive signaling can re-

duce decision accuracy when deciding among options of varying quality. The study

showed that while the level of signaling required to break deadlocks between N

equal options increases quadratically with N, the level of signaling that optimizes

the discriminatory ability of the swarm in best-of-N scenarios increases only lin-

early. Thus, optimizing the best-of-N decisions seems to conflict with optimizing

equal alternatives scenarios. However, in natural environments, the probability of

encountering N equal-quality nest options decreases rapidly with N.

The results from this model suggest that honeybees may use a combination of

strategies in different contexts to optimize their collective decision-making process.

This observation was initially reported by List et al., 2009 in their proposed model of

house-hunting honeybees. This model is the first agent-based model that integrates

the interaction between independent individual decisions and imitation to capture

the decision-making of honeybees in the process to select a new site to build their

nest. In the following section, we elaborate on the key features of this model.

8.2 Agent-based model of nest-site selection by honeybees

The nest-site choice model proposed by (List et al., 2009) consists of a swarm ranging

from 1 to N scout bees that collectively decide towards one of the potential nest sites,

labeled 1, 2, 3, ..., k where each site j has an intrinsic quality qj ≥ 0 that reflects on the
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time a bee is advertising site j. In each discrete time step ∆t (in this case, ∆t = 1), the

status of bees is updated in parallel. Each bee’s state at t + 1 depends both on the

individual and the other bees state at time t.

At time t, a bee can either be dancing (i.e. promoting) for one of the k sites, or

not dancing for any site, which could represent that they are still searching for a site,

observing other bees dance or resting. Formally, the vector xi,t = (si,t, di,t) represents

the state of bee i at time t, where si,t refers to the site it is dancing for, with si,t = 0

meaning that she is not dancing for any site, and di,t the remaining duration of the

dance for bee i.

The model starts at time t = 1 where none of the bees are committed to a site, that

is xi,1 = (0, 0), although, in the steady state, the model is insensitive to initial condi-

tions and would yield similar results even if it started with different proportions of

committed and uncommitted bees.

Bees that are not dancing at time t have a probability of starting to dance for site

j at time t + 1, denoted pj,t+1. This adds up to 1 including the probability of keeping

uncommitted to any site at t + 1, p0,t+1. pj,t+1 depends on the likelihood for a bee i

to find site j independently of another bee promoting the site, and in proportion of

bees dancing for site j at time t. It is calculated as follows

pj,t+1 = (1 − λ)πj + λ f j,t (8.1)

Here, λ refers to the interdependence of each bee to the rest of the collective, πj

to the a priori probability of discovering site j independently, and f j,t represents the

proportion of bees dancing for site j at time t. The term λ ranges between 0 and

1. This determines how much bees rely on each other to decide to dance for a site.

If λ = 0, the probability of finding site j becomes the a priori discovery probabil-

ity regardless of the proportion of bees dancing for it. If λ → 1 the probability of

committing to site j at t + 1 depends almost entirely on the proportion of bees danc-

ing for it at time t, f j,t. The particular case with λ = 1 is ill-defined in this model,

since new self-discovery information would not be introduced in the swarm. Thus,

at t + 1, each non-dancing bee will start dancing for one of k sites with probability

pj,t+1, and will continue uncommitted to a site with probability p0,t+1. The original
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model features a dance behavior in which a bee’s dance duration for a particular site

is fixed either through an independent assessment of the site’s quality, with exactly

qj steps, or by mimicking others, which results in a generic dance time. For simplic-

ity, in our modified version of the model if a bee starts dancing for a site they will

dance for exactly qj time steps; therefore, the duration of the dance is fixed by the

site quality.

Bees that are already dancing for a site at time t will continue dancing for it at

t + 1 if di,t > 1, reducing di,t by one timestep, and will stop dancing if di,t = 0,

xi,t+1 =


(si,t, di,t − 1) if di,t > 1

(0, 0) if di,t = 1
(8.2)

8.2.1 Analytical description of a further simplified model

Following the publication of the original model, Galla, 2010 proposed a simplifica-

tion which replicates the same features as the original system, and whose stationary

state can be found analytically in the mean-field approximation. The model reduces

the state variables from (si,t, di,t) to only (si,t), which can then be treated as a Markov

chain.

The simplification implies substituting the dance time by a stop-dancing rate. In

List et al., 2009 model, once a bee starts dancing the end of the dance occurs at a

deterministic moment in time. In the reduced model proposed by Galla, 2010 this is

replaced by a random process under which a bee can stop dancing with a probability

rj and continues dancing with a probability (1 − rj). The stopping rate is inversely

proportional to the site quality rj ∝ q−1
j . The probability that a dance for a given

site j lasts precisely l time steps is given by (1 − rj)
l−1rj, which gives a geometric

distribution of mean 1/rj. The modification of the original algorithm occurs at each

state update from t to t+ 1 for bees that are dancing at t. Non-dancing bees compute

state probabilities as in the original model. In the simplification, if bee i is dancing

for site j at time t (i.e. si(t) = j > 0), then with probability rj set si(t + 1) = 0 (bee

stops dancing), and with probability 1 − rj set si(t + 1) = j (bee keeps dancing for

site j).
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To specify the stopping rates rj, Galla uses a definition that accounts for the de-

gree of bees’ independent quality assessment of a site. As previosly mentioned, our

modified List et al., 2009 model does not include this parameter, but rather a fixed

dance duration dj(t) = qj. For this, our definition of stopping rates is only deter-

mined by site quality:

rj =
q0

qj
(8.3)

where q0 is a prefactor that defines the time scale of the model (typically set to 1),

and with its upper bound at the lowest site quality, which ensures that 0 < rj ≤ 1.

The mean duration of the dance for site j, 1/rj is proportional to the site’s quality, as

it is originally defined in the List et al., 2009 model.

The simplified stochastic model defines a one-dimensional Markov process that

can be analyzed in terms of the master equation. First, the state of the system is

defined as the number of bees dancing for each site nj(t), including j = 0, i.e. bees

not dancing at time t. Thus, one has ∑k
j=0 nj(t) = N for all times t. For convenience,

Galla, 2010 introduces the shorthand vector notation n(t) = (n0(t), n1(t), ..., nk(t)).

The state of the system at time t is therefore fully determined by n(t). A master

equation can be then proposed for the probability of finding the system in state n:

d
dt

Pn =
k

∑
j=1

Pn−ej+e0 T+
j (n − ej + e0)− Pn

k

∑
j=1

T+
j (n)

+
k

∑
j=1

Pn+ej−e0 T−
j (n + ej − e0)− Pn

k

∑
j=1

T−
j (n) (8.4)

for the probability Pn(t) of finding the system in state n at time t. T+
j (n) stands

for the probability that an inactive bee starts dancing for site j at time t, given the

current state n of the system. Likewise, T−
j (n) is the probability for a bee dancing for

site j to stop dancing in the next time step. ej, for j = 0, 1, ..., k, are the unit vectors

representing each site, i.e. (ej)m = δj,m for j, m ∈ 0, 1, ..., k The transition rates are

defined as:

T+
j (n) = n0

[
(1 − λ)πj + λ

nj

N

]
(8.5)
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and

T−
j (n) = nj

[
q0

qj

]
(8.6)

The transition rate T+
j (n) is proportional to the number of non-dancing bees n0 and,

similarly, T−
j is proportional to the number of bees dancing for site j, nj.

Finally, to derive a set of deterministic ordinary differential equations in the limit

of an infinite system size, N → ∞, continuous frequency variables f j = nj/N are

introduced. For instance, considering

⟨n(t)⟩ = ∑
n

nPn(t) (8.7)

and working through the expression of its time derivative, one arrives at

d⟨n⟩
dt

=
k

∑
j=1

[
(ej − e0)T+

j (⟨n⟩)
]

+
k

∑
j=1

[
(e0 − ej)T−

j (⟨n⟩)
] (8.8)

where a deterministic approximation has been used to write ⟨T±
j (n)⟩ = T±

j (⟨n⟩).
Using this expression for each site, one finds

ḟ j(t) = (1 − ρ(t))[(1 − λ)πj + λ f j]− f jrj (8.9)

where ρ(t) = ∑k
j=1 f j(t), and the fraction of bees not dancing at time t is given by

f0(t) = 1 − ρ(t). Equation 8.9 can be integrated numerically for any fixed choice of

parameters. Nevertheless, an expression for the stationary points of this equation

can be found as the solution of k coupled quadratic equations,

rj f ∗j =

(
1 −

k

∑
m=1

f ∗m

)
[(1 − λ)πj + λ f ∗j ] (8.10)

This equation can be rewritten in the form,Galla, 2010:

f ∗j =

[
rj

1 − ρ∗
− λ

]−1

(1 − λ)πj j = 1, ..., k (8.11)
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The expressions for the different f ∗j , for j = 1, ..., k, can be combined to first find a

closed equation for the stationary value of f0,

f ∗0 = 1 − (1 − λ)
k

∑
j=1

[
rj

f ∗0
− λ

]−1

πj (8.12)

Eq.8.12 has k + 1 roots (which can be found by solving the equation numerically or

by rearranging it as a (k + 1)th degree polynomial in f0), but not each one leads

to physical solutions, as some of them result in f ∗0 > 1. From the remaining valid

solutions f ∗0 ≤ 0 only one will lead to a valid and linearly stable solution for the

rest of dance frequencies, f ∗j ≤ 1 (once f ∗0 is introduced into Eq. 8.11). Stochastic

simulations and the integration of Eq. 8.9 confirm the stability of this result. In the

particular case of k = 2 sites one always find one non-physical f ∗0 solution ( f ∗0 > 1)

and from the two remaining only the lowest one leads to valid solutions for the rest

of f ∗j .

The limit λ = 0 in Eq. 8.12 leads to the simpler solution,

f ∗0 =
1

1 + ∑k
m=1 πmqm

, (8.13)

that we can use to compute the result for the rest of the dancing frequencies. Using

Eq. 8.11, we obtain

f ∗j =
πjqj

1 + ∑k
j=m πmqm

(8.14)

Another special case is when λ → 1. As mentioned, λ = 1 is an ill-defined case

where the dynamics of the system remains the same for any value the discovery

probabilities πj’s. Nevertheless, it is worth looking at the limit when this param-

eter approaches the value 1. Due to the extreme reliance on interdependence, one

expects that the site with a greater quality will be finally dominating the whole sys-

tem, leaving no agents committed to the other sites and only a small quantity of un-

committed agents (remember that in this model, bees can always finish their dance,

even if they dance for the best-quality site, and return to the uncommitted state for

a few iterations). Then, assuming that qk > qk−1 > ... > q1 we can impose that
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f ∗1 = ... = f ∗k−1 = 0, and using 8.10 we find the following stationary solution:

f ∗0 = rk, f ∗1 = ... = f ∗k−1 = 0, f ∗k = 1 − rk (8.15)

This result can be validated by simulating the system, or by solving the equations at

high values of λ. It shall be noticed, though, that the opposite solutions where one

of the lower quality sites is imposed, for instance site k − 1, i.e. f ∗0 = rk−1, f ∗1 = ... =

f ∗k−2 = 0, f ∗k−1 = 1 − rk−1, f ∗k = 0, are mathematically viable. To confirm the validity

of the stationary solutions 8.15, we can also perform a linear stability analysis (LSA)

of the possible mathematical solutions. Without delving into too much detail, we

find that performing a LSA on the first solution (the best-quality site k imposes itself

in the system) results in all negative eigenvalues, i.e. it is an stable solution. Instead,

when performing a LSA to any other alternative fix point that imposes any of the

j ̸= k less-quality sites, we find that there are at least k − j positive eigenvalues,

meaning that these solutions are actually saddle points - which are never reached by

numerical simulation.

8.2.2 Mean-field parametric exploration of the nest-site selection model

First, we confirm that stationary states for the original model by List et al., 2009

can be obtained by stochastic simulations of the simplified model, by the numerical

integration of Eqs. 8.9, and from the combination of the numerical solution in Eq.

8.11 by first solving Eq. 8.12. Moreover, we explore the model’s parametric space

to check for consistency, and to gain a deeper understanding of the effect that each

parameter has on consensus reaching in mean-field approximations.

For the parameter exploration, we fix the number of agents to N = 100 and the

number of potential nest sites to k = 2 for the simplest nest selection problem. Site

quality values qj, which are directly correlated with dance duration, were chosen

based on real-life honeybee scenarios (Grüter and Farina, 2009). Of the two poten-

tial nest sites, site 1 represents low and medium quality sites, with quality values q1

ranging between 3 and 9, and site 2 represents the high quality site, with a quality

value q2 = 10. We explore a wide range of a priori discovery probabilities for both
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sitesπ1,2 ∈ [0.01, 0.5], to understand the effect of different likelihoods of bees becom-

ing scouts, and independently finding a site. The exploration of the parameter space

defined by discovery probability values is simultaneously carried out for varying

values of the interdependence parameter λ (the likelihood of a bee becoming a scout

could be seen as (1 − λ)πj in the pj equation). To analyze the collective decision

making, we measured both dancing frequencies f j, and a strong majority definition

of consensus,

Q = f2 − 2 f1 (8.16)

This implies that there must be twice as many bees dancing for the high quality site

than for the low quality site, where Q > 0 represents a strong consensus towards site

2, and Q < 0 indicates that less than 2 f1 are dancing for site 2. Here we apply this

strong consensus definition instead of a simple one (i.e. Qs = f2 − f1), as it ensures

that the fraction of bees dancing for site 2 represent a large majority, i.e. a majority

over a factor of 2/3s if there were no uncommitted bees in the system.

First, we observe how dance frequencies f j evolved in time for stochastic sim-

ulations and from the numerical integration of Eqs. 8.9. Figure 8.1 shows average

values of the frequencies f0, f1 and f2 as a function of time for the stochastic simula-

tions and from the numerical integration of the deterministic mean-field equations

for a fixed set of parameters. Simulations of the stochastic model show oscillatory

fluctuations of all dance frequencies and their convergence towards a such fluctu-

ating state. The numerical integration produces smooth evolution curves that does

not accurately characterize the transitory state, but describe properly the average

stationary value obtained by the stochastic model.

We then explore the effect of a priori discovery probabilities in both f2 and con-

sensus reaching for different levels of interdependence. For this, we match π1 = π2

and scan the parameters (π1,2, λ) space. We fix the values of the site qualities close

to each other, i.e. q1 = 7 and q2 = 10. This was done to have clear observations of

the transition from non-consensus to consensus reaching. We then plotted the av-

eraged stationary values of f2 and Q calculated over 100 realizations (Figure 8.2 A

and B). The color charts illustrate the corresponding values of these two magnitudes

throughout the parameter space. The orange line on the right plot corresponds to
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Figure 8.1: Frequencies f0 (red), f1 (green) and f2 (blue) as a function of time obtained
from numerical simulations of the stochastic model, and from the numerical integration of
the mean-field deterministic equations (smooth superimposed curves in the same color).
Left: Symmetric discovery scenario with probabilities π1 = π2 = 0.3. Right: Asymmetric
discovery scenario with probabilities π1 = 0.4 and π2 = 0.2. Simulations were averaged

over 100 realizations. Other parameters are: N = 100, q1 = 7, q2 = 10, and λ = 0.6.

Figure 8.2: A: Stationary values of f2 in the parameter (π1,2, λ) space obtained from nu-
merical simulations of the stochastic model. B: Stationary value of Q in the parameter
(π1,2, λ) space obtained from numerical simulations of the stochastic model. The orange
line corresponds to the theoretical crossover line where Q = 0. Here N = 100, π1 = π2,

q1 = 7, and q2 = 10.

the theoretical crossover line where the strong consensus parameter Q = 0.

The proportion of agents dancing for the high quality site f2 increases with the

interdependence parameter. Independent discoveries for both sites introduce more

agents dancing for site 1, which decreases the ratio of bots dancing for site 2 as the

value of π1 = π2 increases. This translates in strong consensus not being achieved

(i.e. Q < 0) when interdependence is very low, or lower than 0.5. After a π1,2-

dependent λ threshold, the system crosses over to a consensus situation, Q > 0,

and becomes stronger as interdependence increases. The region of non-consensus
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Figure 8.3: Theoretical curve representing the behavior of the consensus crossover thresh-
old value λ∗, i.e. Q(λ∗) = 0, as a function of π1 = π2. Colors represent different values of

the low-quality site q1. Other parameters are N = 100, q2 = 10.

grows as π1,2 grows, narrowing the range of interdependence for which consensus

is reached. This is a consequence of bees having a higher probability of indepen-

dently discovering the less quality site, and therefore having more bees dancing for

it. Nevertheless, higher levels of interdependence increase the proportion of bees

dancing for the high quality site, which is benefited by longer dance times. Figure

8.2 also shows the theoretically predicted crossover curve from Q = 0. This curve

is obtained by iteratively solving Eq. 8.12 for f0, then computing the corresponding

f1,2 and finally Q, changing λ until Q converges to 0. The stochastic simulations

accurately align with the null strong consensus curve.

In Figure 8.3, we represent the theoretical curve representing the behavior of the

consensus crossover threshold value λ∗, i.e. the interdependence parameter λ∗ for

which Q(λ∗) = 0, as a function of π1 = π2. Different curves, from cyan blue to

dark green, correspond to increasing values of q1 and a fixed value of q2 = 10. From

the figure, one can appreciate the dependence on quality difference between the two

sites. On one hand, when there is a site that is perceived as of higher quality than

its competing site, in this case q1 <= 5, q2 = 10, the swarm discriminates the high

quality site for all λ values. This occurs even if the sites’ independent discovery

increases the number of bees dancing for the low quality site. On the other hand,

when q1 increases and gets closer to q2, the competition between sites intensifies,

and consequently a higher λ is needed to counteract the effect of a priori discovery

probabilities.
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To further explore the statistical behavior of the model, we studied the case of

asymmetric a priori discovery probabilities by plotting average values of f2 and Q

for different π1 and π2 from 0 to 0.5, now with a fixed value of λ. Figure 8.4 shows

stationary values at three contrasting values of interdependence λ = 0.3, 0.6, 0.9, and

the same site qualities q1 = 7 and q2 = 10 as for the symmetric case. In all plots, the

diagonal starting on the bottom-left corner and ending on the upper-right corner

represents the symmetric π1 = π2 scenario and, thus, divides situations where the

high quality site is easier to find independently (upper triangle where π1 < π2) from

those where the low quality site has more probability to be found (lower triangle

with π1 > π2). When the high quality site is easier to discover than the low qual-

ity site, we expect the dance frequency for site 2 to be high and the system to reach

a good consensus for the high quality site (Q > 0). This is indeed the case when

π1 << π2. Nevertheless, even if discovering the best site is easier, if both a priori

discovery probabilities are high, the ratio of agents dancing for the high quality site

is lower and consensus reaching becomes more challenging as new bees dancing for

the worst site are constantly introduced in the system. This is particularly applicable

for low interdependence values (e.g. λ = 0.3), where consensus is reached for very

low π1 but if both sites are easier to discover, a strong majority cannot be achieved.

When interdependence is intermediate (e.g. λ = 0.6) consensus is achieved even

for relatively similar discovery probabilities, but when π1 >> π2 the frequency

of bees dancing for site 1, f1, prevents the high quality site from permeating the

swarm. In Figure 8.4, we can also see a region for small π2 where strong consen-

sus is achieved, even if π1 > π2 . In these situations, strong consensus can still

be achieved through information exchange, as the dance times for site 2 last longer,

and, are therefore broadcasted for a longer period of time to other bees. Exceeding

a λ-dependent π1 threshold, the dance duration for site 2 cannot longer surpass the

frequent independent discovery and advertising of site 1. For this parameter com-

bination, high interdependence (e.g. λ = 0.9) ensures consensus in all conditions,

even when π1 >> π2.

As seen in Figure 8.1, a consequence of the agents’ constant state update is that

stationary values in numerical simulations are fluctuating, and thus distributed around
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Figure 8.4: A: Stationary values of f2 and B: Stationary values of Q in the (π1, π2)-
parameter space. From left to right, we represent stochastic simulation results for increas-
ing values of the interdependence parameter λ = 0.3, 0.6 and 0.9. Here N = 100, q1 = 7,

and q2 = 10. Stationary values were averaged over 100 realizations.

central values. We also explored the associated variability in the form of the stan-

dard deviation (σ) of f2 over the (π1 = π2, λ)-parameters space in the symmetric

discovery scenario. We also explored finite-size effects in the behavior of those fluc-

tuations by considering three different group sizes with N = 35, 100, 500 bees. Here

we also include the small system size of N = 35 bees because we wanted to char-

acterize the behavior of a system size comparable to our experimental 35 − kilobot

swarm. Experimental results will be discussed in Chapter 9.

In Figure 8.5, one can clearly see that regions with high variability concentrate

around and above the transition to consensus. Therefore, although average station-

ary consensus towards the high quality site has been reached, i.e. Q > 0, the errors

represented by the value of σ indicate that in a significant number of realizations

consensus has not been reached. Comparing σ values among different system sizes,

we can also conclude that fluctuations are mainly due to finite size effects of the sys-

tem as they decrease when N increases, contrary to what would be expected if we

were facing a second order phase transition. The increase in consensus accuracy for

larger groups is congruent with the wisdom of the crowds effect that relies on large
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Figure 8.5: Standard deviation, σQ, of the strong consensus parameter in the (π1,2, λ)-
parameter space. From left to right, we represent increasing values of N = 35, 100, 500.
Site qualities were fixed at q1 = 7, and q2 = 10. Standard deviation calculated over 100

realizations.

group sizes to cancel the inherent noise of individual opinions to make a smarter

collective decision.

8.3 Closing remarks

Models of collective decision-making in honeybees have provided valuable insights

into the underlying mechanisms of honeybee decision-making and the factors that

contribute to the process of achieving consensus. From the models we have learn

that honeybees may use a combination of strategies in different contexts to optimize

their collective decision-making process and to break possible decision deadlocks.

Moreover, these models have the potential to inform our understanding of group

decision-making in other animals, including humans. Further research in this area

may lead to new ways of designing artificial, decentralized decision-making sys-

tems.

By means of numerical mean-field simulations we have categorized the behav-

ior of a decentralized decision making model that seeks to shed light on honeybees’

mechanisms to choose the best option when looking for a new nest site. The model

integrates both the independent discovery of potential nest sites and inter-individual

communication to achieve consensus towards the best site. Sites qualities are then

expressed in dance duration: the higher the quality, the longer an individual pro-

motes it. The difference in dance times is a driving indicator for breaking the symme-

try of the system. This is because the high quality sites receive more "advertisement",
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which in turn generates more dancing activity for the site. The interdependence pa-

rameter helps the swarm to make a collective decision toward a higher quality site.

When each site is equally likely to be discovered, a high interdependence is benefi-

cial in order to counteract the continuous surge of individuals dancing for the low

quality site, specially when the probabilities of sites being discovered are high.

When sites have asymmetric a priori discovery probabilities, if the high qual-

ity site has a higher probability to be found, even without any communication the

swarm will reach consensus towards it. The scenario where communication be-

comes crucial is when the low quality site has a higher probability to be discovered

than the high quality site, i.e. π1 > π2. The level of communication needed to

achieve consensus towards the high quality site increases with π1 and with its dis-

tance with respect to π2. In this model, independence acts as a random noise in the

process that hampers the ability of the system to reach consensus, specially when

sites are easy to discover.



177

9 Honeybees nest-site selection

model in kilobots

The original List et al., 2009 model seeks to unravel the underlying behavior of indi-

vidual honeybees from which consensus can emerge when they are choosing a new

nest site. Nonetheless, the model uses a mean field approach where agents have

access to all the information of the system at each time step. This is an unrealis-

tic assumption. In general, living organisms have sensor and cognitive limitations

regarding the distance and number of individuals they can pay attention to. In par-

ticular, honeybees interact with only a number of neighboring bees when they are

dancing or when they are watching a waggle dance (Sumpter, 2006; Judd, 1995).

To explore the feasibility of the model as a possible mechanism for real honey-

bees nest-site selection, we analyze the effects that more realistic interactions might

have in consensus reaching. We do this by adding space and locality to the original

model proposed by List et al., 2009, and by applying the model to study consensus

formation in a physical system. To do so, we have chosen kilobots as our study sub-

jects as they are designed as swarm robots (Rubenstein et al., 2012; Valentini et al.,

2016; Gauci et al., 2018) . As discussed previously in Chapter 7, this is a system that

consists of multiple robots that can perform collective tasks through their capability

of exchanging information on relatively short-range distances, i.e. within a radius of

approximately 7 cm, while moving through space.

The study of insects via robotics has been widely applied as it has several ad-

vantages. Particularly, the inherent behavioral variations of the robots, and that they

interact with environmental stimuli, which introduces real noise within the model.

Therefore, the introduction of artificial noise to simulate environmental conditions

is not required, which increases the robustness of the model proposed mechanisms.

Moreover, if the robots manage to solve the proposed problem of the model, then the
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Figure 9.1: A: Kilobots experimental setup. B: Kilobots performing the modified List et al.,
2009 model. Each kilobot is covered by a custom 3D-printed case, and some are dancing
for the low quality site (green), others for the high quality site (blue) or not dancing for

any site (red).

noise they were subjected to is not enough to preclude the solution (Sharkey, 2007).

9.1 Experimental Setup

In this case, the experimental setup consisted of a whiteboard melamine base and

a glass surface held 15 cm from the base, where kilobots performed their motion.

In the melamine base, we placed a central kilobot, turned upside-down, that func-

tioned as a beacon to mark the clock to all other kilobots sending messages via in-

frared signals. Two additional kilobots were also placed on the base to amplify the

signal of the beacon as shown in Figure 9.1.

In the absence of the beacons, the kilobot swarm exhibits synchronization prob-

lems within the long time runs. The requirement for synchronization originates

when processes, such as the ones investigated in this chapter, need to be executed

concurrently. Thus, the main purpose of enabling the synchronization of the kilobots

internal clock is the coordination of the process iterations.

Our experiment consisted of a group of 35 kilobots moving as persistent random

walkers (PRW) in a circular arena of radius, R = 20 cm as described in Chapter 7.

After confirming that the kilobots were able to receive and transmit messages, and

had sifficient battery-life, we started our experiments to observe consensus-reaching.
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For the kilobots to gather information from their surroundings, they need to have

sufficient time to sense their local environment, and also enough time for their set of

near-neighbors to change. With this in mind, and with consideration of the kilobot

motion and message-passing characteristics explored previously in Chapter 7 (see,

for instance, Figures 7.10 and 7.6), we established a time step of ∆t = 800 kilobots’

loop iterations, which translates into approximately 8.24 seconds. During this time,

our group of kilobots are constantly transmitting and receiving messages. Moreover,

for each time step ∆t signaled by the beacons, kilobots were either dancing for site 1

(the low quality site), for site 2 (the high quality site) or not dancing for any site. We

utilize the kilobot’s built-in led lights to identify each bot state: red for non-dancing

bots, green for bots dancing for site 1, and blue for bots dancing for site 2, as shown

in Figure 9.1 B. Kilobots that were not dancing for any site did not move while other

bots promoted the site they were dancing for by performing a persistent random

walk with discrete angles, as described in Chapter 7.

To identify the state of the dancing bots, we isolate the kilobots’ led lights from

other light sources. To achieve this, we recorded kilobots in absolute darkness and

built custom made 3D-printed black casings to cover the kilobot body except the

led light, which prevented the led from reflecting on the metal components of the

kilobot as shown in Figures 9.1 A and B.

Recordings were made with a video camera Sony Alpha a7rii with a spatial res-

olution of 1920x1080 pixels and a temporal resolution of 25 frames per second. We

recorded the kilobots’ decision making process from a top-down view for 30-minute

intervals for each realization of all the experimental conditions considered. We ex-

tracted one image frame at the second half of every ∆t cycle of 8.2 seconds up to 210

images, which we identified as a sufficient number of time steps for the system to

reach a stationary state (see for instance Figure 9.5A).

9.1.1 Kilocounter: A color tracking software

To automatically count the number of kilobots dancing for each site at each time

step, a color tracking software, kilocounter, was developed. Kilocounter is designed

to identify and count the number of bright or dark colored blobs in an image. The

software utilizes the scikit-image image processing library, which is implemented in
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Figure 9.2: A: A single frame showcasing a group of 35 kilobots, each identified by their
colored light, either dancing for site one (green), site two (blue), or not dancing for any
site (red). The frame was recorded in a dark setting. B: The same frame as in A, processed
using the kilocounter software, which has identified 8 bots with green lights, 17 bots with

blue lights, and 10 bots with red lights.

the programming language Python. During the tracking of our experimental record-

ings, the number of kilobots present in the arena is known, and this information is

provided to the Kilocounter software as an input parameter. This allows the soft-

ware to optimize the detection process, as it can identify the exact number of kilobots

to track.

To speed up the image detection process, we use a Multidimensional Gaussian

filter in combination with the peak_local_max function to detect blobs with specific

colors within the image. The Gaussian filter is a widely used image filtering tech-

nique that consists of a low-pass filter that blurs the image by convolving it with

a Gaussian kernel. This has the effect of smoothing the image and reducing noise,

which makes it easier to identify the blobs (George et al., 2018).

The Gaussian filter is controlled by a parameter σ that modifies the width of the

kernel function used in the filter; larger values of σ produce a wider kernel function

that blurs over a wider radius. Choosing an appropriate value for σ is important

to ensure that the filter is able to cover all the objects in the image, but not so large

that it overlaps neighboring objects. However, there is no formula to determine the

optimal value of σ, as it depends on various image factors, including the resolution

of the image and the size of the objects being detected (in pixels; Walt et al., 2014). In

our study, we used a value of σ = 2.7, which we found to be suitable for detecting

most of the blobs in the image.
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After the Gaussian filter is applied, we use the peak_local_max function to find

the coordinates of the local maxima in the filtered image. This function works by

first applying a maximum filter to the image, which finds the local maxima. The

function then dilates the original input image, merging neighboring local maxima

that are closer than the amount of dilation. The coordinates where the dilated and

original images match are returned as local maxima.

With the coordinates of the local maxima established, we analyze the RGB levels

of the central pixel of each blob to determine its color. We assign the color with the

maximum value in the RGB codification to the blob. The software is designed to

process frames in parallel, as there is no need to perform the analysis sequentially. If

the number of detected coordinates does not match the expected number of kilobots,

the corresponding image is placed in a separate folder for manual analysis. The

source code for the software is available in GitHub 1. Figure 9.2 shows an example

frame of N = 35 kilobots dancing during one time step (A) and the same frame

processed by the kilocounter software (B).

9.2 Experimental results

9.2.1 Distribution of bots detected over a time step

An interesting feature of opinion dynamics is the manner in which individual agents

interact with each other in order to make the decision toward the available options.

We first wanted to know how many kilobots an undecided bot detects during a time

step ∆t for our experimental conditions. As it will be further described in Section

9.2.2, the implemented model considers three different status. Dancing kilobots that

move as PRWs, promoting either site 1 or site 2, and non-mobile undecided kilobots

that are gathering information from their local environment to make a decision in

the next time step. To prevent our group of kilobots from clustering at the wall of

the circular observation area, the implemented PRW was configured with discrete

wide turning angles so they would be able to turn away from the border faster. We

established the turning times to either ∼ 2.8 seconds (turning angle of approximately

1https://github.com/TheFishTankLab/kiloColors
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125◦) or ∼ 5.8 seconds (turning angle of approximately 251◦) and a forward motion

time of ∼ 3.8 seconds.

Taking into account the limitations for kilobots to express their state, we first ob-

tain information about the number of contacts of undecided kilobots with dancing

kilobots by establishing ranges of bots detected, and mapping these numbers to a

LED color. Thus, we implemented an algorithm for the undecided bots to commu-

nicate at each time step the range of bots they have seen in the previous time step.

First, we documented the maximum number of kilobots detected by an undecided

bot after several repetitions to calibrate the ranges of bots detected. We found that

the maximum number was approximately 15 bots. We then divided the number of

bots detected in four intervals, each one identified by an assigned color: red (0 − 3

bots), green (4 − 7 bots), blue (8 − 11 bots) and white (12 − 15 bots). At each time

step, we counted the number of bots per color. We fixed an interaction radius re-

stricted to ∼ 7 cm to ensure that bots would only detect a vicinity of no more than

2 kilobots’ body lengths. We recorded five repetitions of 210 time steps (about 150

minutes), adding up to 19, 195 points. We extracted an image frame per cycle and

counted colors with the kilocounter software described in Section 9.1.

Let Dn,m be the ratio of kilobots that detected from n to m kilobots in a given

time step ∆t. Figure 9.3 shows a boxplot of Dn,m. Most bots received messages

from 0 to 3 and from 4 to 7 bots in one cycle of ∼ 8.24 seconds, with mean values

D̄0,3 = 0.710 and D̄4,7 = 0.242. The dispersion of the boxplots suggest that there is

an heterogeneous spatial distribution across ∆t cycles. Although in most cases bots

are spread out and only come into contact with at most three neighbors, in some

time steps, transient clustering of bots may enhance information exchange with a

higher number of neighbor bots. Nonetheless, the small mean values for the higher

ranges considered, D̄8,12 = 0.032 and D̄8,12 = 0.016 suggest that big clusters rarely

happen, or that they dissolve rather quickly. From the behavior of Dn,m, we estimate

the mean value of bots detected by an undecided bot to be of the order of 2.92± 2.50

during each time step ∆t.

To extend our analysis of bots detected we also resorted to kilombo, the kilo-

bots’ simulator described in Chapter 7. First, we wanted to confirm that the number
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Figure 9.3: Bots detected in ∆t in physical kilobots. The boxplots show the ratio of kilobots
that detected from n to m kilobots in a given ∆t cycle Dn,m for four n, m ranges. Model

parameters used for the exploration were λ = 0 and πi = πj = 0.30

of bots detected per time step ∆t was similar to the one measured in physical kilo-

bots. Second, kilombo makes it possible to extract more information that the bot has

gathered during a decision-making cycle. Hence, we can obtain not only the total

number of bots seen by an undecided bot during a time step ∆t, but also the detailed

fractions of bots detected that are dancing for each available site.

Figure 9.4 A shows the probability distribution of bots detected by kilobot i in

a time step ∆t, Bi,∆t, for the different values of the interdependence parameter λ

considered in the experiments, both for the symmetric and asymmetric a priori dis-

covery scenarios discussed in Chapter 8. Uncommitted bots in kilombo detected a

mean of 2.91 ± 1.35 bots. The mean is the same as the estimated mean in physical

kilobots, although in kilombo the distribution dispersion is more narrow. This dis-

crepancy could represent the greater individual behavioral differences existing in

physical kilobots that make up for the inherent noise of real life systems.

From our mean-field exploratory work in Chapter 8 we know that the popula-

tion fraction promoting each site, f j, varies greatly depending on the chosen model

parameters. With this in mind, we analyzed the ratio of bots seen for each site

by one individual during a time step ∆t, fi,j for interdependence parameter val-

ues λ = 0, 0.3, 0.6, 0.9 in the case of symmetric a priori discovery probability values,

π1 = π2 = 0.3, and asymmetric discovery probability values π1 = 0.40, π2 = 0.20,

so that in the latter case, the site with low quality has a higher probability to be
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Figure 9.4: Bots detected during a time step ∆t in kilombo. A: Probability distribution,
Bi,∆t, of bots detected by a focal kilobot i in a time step ∆t. B: Boxplots for the ratio of type
j bots, bots dancing for site j, detected by a focal kilobot i in a time step ∆t, fi,j, as a function
of the interdependence parameter λ for symmetric (up) and asymmetric (bottom) a priori
discovery probabilities. Data aggregated over 50 repetitions per parameter combination.

found. We fixed site qualities to q1 = 7 and q2 = 10, which translate to dance times

of 7∆t for the low quality site, and 10∆t for the high quality site. These values were

chosen so that we could observe a transition from non-consensus to consensus as a

function of λ. Remember from Chapter 8 that for big quality differences, i.e. q1 < 6

for q2 = 10, the robot swarm achieves consensus for all λ’s, while close site quality

values hinder consensus at lower values of λ.

Let fi,j be the ratio of type j bots, i.e. bots dancing for site j, over the number of

bots detected in a time step by a focal individual i. Figure 9.4B shows boxplots for

fi,j as as a function of the interdependence parameter for both symmetric and asym-

metric discovery probabilities πj’s. In the boxplots, we can observe the spread and

skewness of the distribution fi,j for each available site. The dispersion of fi,j is large

for both sites and discovery probabilities combinations, specially for intermediate

λ’s. We can also see a clear increasing trend for non-dancing bots detecting higher

numbers of bots dancing for site 2, the high quality site, as λ increases, whereas bots

dancing for site 1 are seldom encountered as λ increases. Moreover, as expected, for

the asymmetric discovery probabilities case, the difference between seen-bots distri-

butions for the two sites available is narrower than for the symmetric case at each λ,

as the site of less quality has a higher rate of independent discovery.
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9.2.2 Consensus reaching in a group of kilobots

After exploring the distribution of contacts among kilobots during a time step ∆t, we

now proceed to analyze the List et al., 2009 decision making process in our kilobots

experiment.

At each time step, kilobots are either dancing for site 1 (the low quality site), site

2 (the high quality site) or not dancing for any site. Kilobot’s LED lights changed

color to show each bot state: red for undecided bots, green for bots dancing for

site 1 and blue for bots dancing for site 2, as shown in Figure 9.1 After a new time

step has passed, kilobots that were dancing for a site either continue their dance if

there is dance time left, or they stop if the dance time is over. Those that were not

dancing updated their probability to start promoting a site based on Eq.8.1, with fi

the frequencies calculated by every non-dancing bot over the time interval ∆t, i.e.

the ratios fi,j discussed in the previous section. Kilobots that are not dancing for any

site do not move, while other bots promote the site they dance for by performing a

PRW motion such as the one described in Chapter 7.

Here we analyze the experimental behavior of dance frequencies and of consen-

sus values for different levels of interdependence for two particular cases with sym-

metric and asymmetric discovery probabilities. In particular, we recorded five rep-

etitions of the experiment for interdependence parameter values λ = 0, 0.3, 0.6, 0.9,

both for the symmetric discovery probability values π1 = π2 = 0.30, and for the

asymmetric discovery probability values π1 = 0.40, π2 = 0.20. In total, these record-

ings represent approximately 20 hours of tracking the kilobots decision making pro-

cess. From the recordings, we extracted an image frame per cycle and counted colors

with the kilocounter software 2. From the extracted data, we analyzed the temporal

evolution and obtained stationary values for dance frequencies f j, and for the strong

consensus Q = f2 − 2 f1, defined in Chapter 8, for each parameter combination.

Temporal evolution of dance frequencies

Figure 9.5A shows dance frequencies f0, f1, f2 as a function of time, averaged over

five repetitions. Our initial conditions are f1(t = 0) = f2(t = 0) = 0.43 for bots

2https://github.com/TheFishTankLab/kiloColors
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Figure 9.5: A: Dance frequencies f j as a function of time (averaged over five repetitions).
In red, green, and blue, we represent the fraction of uncommitted, type 1, and type 2
bots, respectively. B: Histograms of f j values in the stationary state. Plots correspond to
symmetric (up) an asymmetric (bottom) a priori discovery probabilities, and to interde-

pendence parameter values λ = 0, 0.3, 0.6, 0.9 (left to right).

dancing for either site 1 or site 2, and a lower probability of f0(t = 0) = 0.14 of

bots that start undecided. It is noticeable that, as it is also observed in mean-field

simulations (see Figure 8.1 in Chapter 8), an increasing interdependence broadens

the difference between the frequency of bots dancing for low and high quality sites.

Increasing the value of the interdependence parameter increments f2 and reduces f1

and, to a lesser extent, f0. This becomes clearer in kilobots’ dance frequency distri-

butions during the stationary state, achieved after approximately 50 time steps, as
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shown in Figure 9.5 B. All conditions have a large f j dispersion. For low values of

λ all three distributions overlap, but as λ increases f1 and f2 distributions separate

until they have different mean values at the highest value of λ = 0.9. Nonetheless,

few values can still overlap at some time steps due to its recurrent state updating, a

characteristic feature of the model considered.

Indeed, an inherent consequence of the model dynamics is that bots promoting

a site return to an uncommitted state when their dancing time is over, thus contin-

uously changing the decided-undecided ratio. This property causes the dance fre-

quencies obtained for kilobots to fluctuate in time. Finite size effects amplify these

fluctuations even further. Thus, the stationary state is characterized by a peaked-

distribution around a central mean value and an associated standard deviation, as

discussed in the model parametric exploration presented before in Chapter 8. These

relatively large fluctuations also make it difficult to quantitatively determine a char-

acteristic transition time towards the stationary state. For practical purposes, we

set a minimum number of time steps after which we can assume that our system

evolution is already stationary. In these experiments, we fixed this transient time to

be of the order of 50∆t, which is shown as dashed gray lines in Figures 9.5 A. Al-

though stationary values do not depend on the initial preparation of the system, this

transient time, obviously, does.

Stationary dance frequencies and consensus reaching in kilobots

After getting a sense of the temporal evolution of dance frequencies fi(t) in kilobots,

in this section we analyze the average behavior of stationary dance frequencies ⟨ f j⟩
and the corresponding stationary consensus values ⟨Q⟩ as a function of the interde-

pendence parameter in the model λ. Averages are obtained after five repetitions per

experimental condition in our kilobot ensemble. Figures 9.6 summarize our main

experimental results. For completeness, these results are also compared with simu-

lation results as explained in detail in the following paragraphs.

Firstly, the same model and conditions are also implemented in the kilombo sim-

ulator for proper comparison with the experimental results. In kilombo simulations,

we have considered a speed value of 9± 2 mm/s to match the movement of physical

kilobots. As explained before, kilombo simulations allow us to scale up the system
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and to improve our statistics far beyond our current experimental capabilities. Here,

we represent the average behavior ⟨ f j⟩ ± S.D. and ⟨Q⟩ ± S.D. averaged over 50 re-

alizations of the kilombo simulations for each experimental condition. Secondly, we

also include the mean stationary values of the same quantities averaged over 100

realizations of the mean-field approximation, described in the previous Chapter 8,

again for the sake of providing an experimental-theoretical comparison.

Finally, we also included the comparison with stationary values of dancing fre-

quencies and consensus parameter for a quenched approximation of the same collec-

tive decision making model. The latter replaces real or simulated kilobots by immo-

bile agents randomly deposited inside the circular arena of radius R, as described in

Chapter 7 and shown in Figure 7.11 B. Agents are kept quenched at these same po-

sitions through the whole evolution of the model. Moreover, dancing probabilities

pj are calculated after exchanging information with neighboring particles located

within an interaction radius ri. As in the experimental set up, here we use N = 35

bots, an arena of radius R = 20 cm , as well as an interaction radius ri = 5 cm and an

exclusion radius re = 1.5 to match our kilobots’ interaction characteristics and body

size, respectively.

The quenched approximation is included to allow us to compare our experimen-

tal results to this immobile limit, where the mixing of agents is completely absent

and the locality of kilobots interactions should prevail, and thus depart as much as

possible from the mean-field, all-to-all interaction, approximation.

π1 π2 λ ⟨ f2⟩ ⟨Q⟩
0.3 0.3

0 0.478 ± 0.088 −0.171 ± 0.25
0.3 0.524 ± 0.079 −0.062 ± 0.2
0.6 0.634 ± 0.113 0.219 ± 0.319
0.9 0.775 ± 0.077 0.63 ± 0.197

0.4 0.2
0 0.325 ± 0.078 −0.586 ± 0.221

0.3 0.398 ± 0.09 −0.419 ± 0.251
0.6 0.522 ± 0.123 −0.101 ± 0.341
0.9 0.644 ± 0.144 0.26 ± 0.401

Table 9.1: Stationary ⟨ f2⟩ and ⟨Q⟩ values for physical kilobots averaged over five repeti-
tions.

Figures 9.6 A and B show the experimental average dancing frequencies ⟨ f j⟩ and
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Figure 9.6: A: Mean Dance frequencies ⟨ f j⟩ as a function of λ for symmetric (up) and
asymmetric (bottom) πj for kilobots, kilombo, mean field and quenched simulations. B:
Mean consensus parameter ⟨Q⟩ as a function of λ for symmetric (up) and asymmetric
(bottom) a priori discovery probabilties πj for physical kilobots, kilombo, mean-field and
quenched simulations. Triangles: Experimental kilobots (five repetitions per parameter
combination). Solid line: Mean values obtained from kilombo simulations (averaged over
50 repetitions). Shaded area: Standard deviation in kilombo simulations. Dashed dark
line:Mean values obtained in mean field simulations (averaged over 100 realizations).
Dashed light line: Mean values obtained from numerical simulations in the quenched

approximation (averaged over 100 realizations).

consensus parameter ⟨Q⟩ together with the three different approximations we have

just described. From the Figures we can generally observe that the resulting station-

ary values in physical kilobots are very similar, within the shaded error area, to kilo-

mbo simulations. Moreover, experimental results also fall close to mean field and to

quenched approximation results. The latter finding is not so surprising when one re-

alizes that, for the parameters characterizing our experimental setup and the swarm

of physical kilobots, that both approximations (the mean-field and the quenched

approximations) are also close to each other, as can be observed in these figures. Be-

low, we will further discuss and justify this, a priori, unexpected result, but first let’s

examine the kilobots’ stationary behavior.

For the parameters considered in the experimental tests, the average value ⟨ f1⟩
decreases whereas the average value ⟨ f2⟩ increases as interdependence becomes

more relevant. Additionally, both dance frequencies exhibit a similar functional

trend but in opposite directions, with average stationary ⟨ f2(λ = 0.9)⟩ − ⟨ f2(λ =

0)⟩ = 0.30 and average stationary ⟨ f1(λ = 0.9)⟩ − ⟨ f1(λ = 0)⟩ = −0.25 for the case
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of symmetric discovery probabilities, and ⟨ f2(λ = 0.9)⟩ − ⟨ f2(λ = 0)⟩ = 0.32 and

average stationary ⟨ f1(λ = 0.9)⟩ − ⟨ f1(λ = 0)⟩ = −0.26 for asymmetric discovery

conditions. Thus, the stationary value of ⟨ f0⟩ remains almost constant. For exam-

ple, it only decreases by a small amount ⟨ f0(λ = 0.9)⟩ − ⟨ f0(λ = 0)⟩ = −0.045 for

the symmetric discovery case for the physical kilobots. The continuous introduction

of independent discoveries for both sites reduces the amount of undecided bots. If

πj → 0, f0 would be higher, specially for λ → 0 and for short dancing times, i.e.

qj → 0.

Regarding the stationary average of our strong consensus parameter ⟨Q⟩ intro-

duced in Chapter 8, in Figure 9.6B, we can observe that there is a smooth crossover

from non-consensus to reaching a consensus as a function of the interdependence

parameter λ. Moreover, consensus is higher for the symmetric discovery probabili-

ties scenario, as there is less introduction of independent discovery of the low quality

site, than in the asymmetric case.

Kilombo simulations reproduce the physical kilobots’ behavior: most stationary

values of the kilobots’ fall within the standard deviation shaded area of kilombo.

These results indicate that improving the statistics in the physical kilobots experi-

ments would eventually yield better agreement with average kilombo results.

Remarkably, experimental results from physical kilobots closely match station-

ary values predicted by the mean-field approximation. In the case of kilombo simu-

lations, stationary values are found to overlap with mean-field stationary values un-

der all analyzed conditions. These findings suggest that mobile agents mixing with

their local environment can effectively sample the state of the system and transmit

information throughout, allowing for the attainment of collective decision-making

comparable to that of mean-field connected agents that have full access to group

information for individual decision-making.

To explain the observed similarity, it is necessary to delve into our quenched

approximation. As previously mentioned, we also find that quenched bots config-

urations, featuring the same characteristics as physical kilobots, yield very similar

stationary dance frequencies than physical kilobots and mean-field results. Indeed,

all these results are almost identical for low values of λ, and they start differing

after an interdependence parameter value of approximately λ > 0.5, when ⟨ f1⟩ is
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higher for quenched simulations and ⟨ f2⟩ attains lower values. This, in turn, re-

sults in a lower consensus value (Figure 9.6B), and even in a no-consensus situation

in a region of λ values where kilobots and mean-field simulations could achieve it,

especially for the asymmetric discovery case.

Thus, the fact that communication occurs between all agents (i.e. mean-field in-

teractions) only implies a better consensus parameter in the region where the in-

terdependence parameter λ is higher than a given threshold, which is higher in

the symmetric discovery scenario than in the asymmetric case. Quenched config-

urations with fixed neighbors interactions emphasize the relevance of kilobots mix-

ing under the experimental conditions considered in our setup. Despite the limited

range of kilobots’ interactions, their mobility enables information to travel in a way

that is similar to mean-field results. Quenched conditions, on the other hand, can

promote low-quality environments where low-quality sites can dominate the con-

sensus dynamics.

Low interdependence reduces the impact of agents’ communication in the in-

dividual decision making process. As interdependence increases, communication

becomes more relevant for consensus reaching. Within the high interdependence

regime, our results show that the mixing agents, i.e. kilobots moving in space through

time, is indeed needed for reaching higher consensus values as the ones obtained in

mean field simulations.

One possible explanation of the fact that quenched stationary values are lower

for high interdependence than in kilombo is that the distribution of stationary states

in quenched approximations is more dispersed. This could be attributed to the het-

erogeneity of the agents’ spatial distribution between different simulation realiza-

tions in the quenched approximation. With that in mind, we next analyze the dis-

persion of our stationary data for all of our approximations. In Figure 9.7 we show

the standard deviation of stationary dance frequencies and consensus.

The impact of interdependence on the values of the stationary states is notice-

able. When the interdependence parameter λ is set to 0, the dispersion of stationary

values could be considered as the inherent variation in the system when decisions

are made independently (see the analytical description of the model provided in the
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Figure 9.7: A: Standard deviation of ⟨ f j⟩ as a function of λ for symmetric (up) and
asymmetric (bottom) discovery scenarios for physical kilobots, kilombo, mean field and
quenched simulations. B: Standard deviation of ⟨Q⟩ as a function of λ for symmetric (up)

and asymmetric (bottom) discovery probabilities Πj.

previous Chapter 8). The continuous change in the number of dancing and non-

dancing agents, as well as the probabilistic nature of the model, contribute to this

dispersion.

As interdependence increases, the standard deviation of f1, f2 and Q grow in a

similar way in all three types of simulations (mean field, quenched, and kilombo)

for a low to medium λ range. However, for λ > 0.6, there is a clear difference be-

tween mean field and quenched simulations. In this range, the mean field standard

deviation decreases significantly, while the quenched standard deviation continues

to increase. That is, the fact that agents calculate the probabilities of dancing for a

site taking into account all other agents’ opinions in the mean-field approximation

increases the certainty in the consensus value and the consensus itself is stronger.

The higher dispersion in quenched approximations may result from the varia-

tions in the static spatial distributions of agents across repetitions of the simulations,

which affects local interactions among neighboring bots. In situations where agents

rely heavily on the opinions of their neighbors, it can lead to local environments
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where agents are promoting different sites. This can amplify contrasting dance fre-

quencies around the group and cause the value of consensus to vary among repeti-

tions.

This is especially pronounced as independent discovery probabilities are higher

and low quality sites are easier to find, as we observe for λ = 0.9 in our asym-

metric case. Kilombo simulations show a sort of intermediate standard deviation

value between mean field and quenched approximations for λ > 0.7. The number

of repetitions performed in the physical kilobots probably does not represent the

entire stationary values distribution. As such, kilobots’ standard deviation behav-

ior when increasing interdependence is noisier than kilombo, but in most cases it

follows the same trend, particularly for asymmetric a priori probabilities. Kilobot’s

local interactions and mixing through time do achieve as high a consensus as mean

field approximations, but the probability of obtaining a different value of consensus

is higher for kilobots.

9.3 Cluster sizes and percolation of information spreading

Having analyzed the variations in dance frequencies and consensus across our mul-

tiple approximations, in this next section, we aim to investigate why collective decision-

making in physical kilobots is as effective as in our idealized mean field approxima-

tion. One possible explanation is that, despite detecting only about 2.9 other bots,

on average, the movement of kilobots and the system’s overall density enable the

formation of a connected network of bots, which facilitates the transmission of in-

formation throughout the system. In this communication network, bots receive in-

formation beyond their immediate surroundings, even from other bots that are not

directly detected by their sensors, through the percolation of their intercommunica-

tion areas in continuous space.

The kilobot contact network (Newman, 2010) can be constructed in terms of a ge-

ometrical network (Barthélemy, 2011), in which nodes represent kilobots at a partic-

ular position in space and two nodes are connected by an edge if the corresponding

kilobots are at a Euclidean distance smaller than their interaction radius. As com-

munication in kilobots is approximately isotropic, the network is undirected, i.e. we
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assume that if bot i interacts with bot j, bot j would also interact with bot i. This

network has a time-varying nature, since the configuration of contacts changes as

the kilobots change position in the experimental arena.

Here, we aim to investigate these issues by extending our analysis to examine

the characteristics of the kilobots’ contact network. Understanding physical quanti-

ties such as the cluster size distributions, the average connectivity, etc. for various

system sizes, interaction radii, and exploratory time windows will prove crucial in

understanding our results.

In the following subsections, we characterize the connectivity properties of a

kilobot ensemble, both in the quenched approximation and under dynamics con-

ditions such as the one implemented in the experiments, through the kilombo sim-

ulator. The use of the simulator is fundamental in this respect since it allows us to

scale up the size of our system to understand the fundamental ongoing physical pro-

cesses, and therefore, to reduce the unavoidable spurious finite size effects inherent

to our small group of physical kilobots.

9.3.1 Mean cluster size

We consider the cluster structure of the kilobot contact networks constructed from

the vast amount of spatial configurations generated in kilombo simulations. A clus-

ter in the kilobot network is defined as a connected component in which all pairs

of nodes can be reached from one to the other following a continuous path of adja-

cent edges (Newman, 2010). From a computational perspective, we will say that a

bot belongs to the same communication cluster of a focal bot if it is located within

a circular region of radius ri, the effective interaction radius, centered on the focal

bot. A third kilobot will belong to the same cluster when its separation from any one

of the previous bots is shorter than the interaction radius ri. The process is iterated

over all bots to finally determine all the clusters, as well as their size (the number of

components), present for each spatial configuration of the system. A cluster in this

context can thus be understood as a group of kilobots that are located within their

infrared inter-communication distance, or interaction distance, estimated from pairs

of neighboring kilobots.
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The basic characterization of the cluster structure is given by the mean cluster

size ⟨S⟩, which is computed as (Stauffer and Aharony, 2018)

⟨S⟩ = ∑′ s2n(s)
∑′ sn(s)

,

where n(s) is the number of clusters of size s (composed by s bots) and the summa-

tion in the denominator does not include the giant component of the network, i.e.

the largest cluster observed in a given bot configuration. The result is averaged over

all configurations comprising our statistics.

The mean cluster size is a fundamental quantity in the geometrical process of per-

colation (Stauffer and Aharony, 2018), as it plays the role of a transport coefficient,

such as the magnetic susceptibility or the specific heat, quantifying the fluctuations

of the cluster size distribution. In the context of our contact networks, it can be used

to detect the presence and position of a percolation transition, in which the commu-

nication network passes from having only small isolated clusters of bots to having

a large connected communicating component. At fixed density, this transition takes

place as a function of the interaction radius ri, and is characterized by a threshold

value at which the mean cluster sizes diverges in the thermodynamic limit. In the

case of our finite experimental networks, the mean cluster size does not show a di-

vergence, but a maximum at the position of the interaction radius threshold (Stauf-

fer and Aharony, 2018; Newman, 2010). Studying the evolution of the position and

height of this maximum, applying a finite-size scaling analysis, allows to obtain nu-

merical information about the transition properties (Stauffer and Aharony, 2018).

In Figure 9.8A, we plot ⟨S⟩ for different system sizes, preserving the same num-

ber density N/πR2 = 0.028 bots/cm2, in the quenched approximation. This figure

clearly illustrates the effects of system size for different values of the interaction

radii ri, which characterizes the maximum extent of message transmission, and thus

of information exchange, through infrared sensors among physical kilobots. From

kilombo data in the quenched approximation, we can identify the critical percola-

tion interaction radius at around r∗i = 6.5 ± 0.2 cm for N = 35 and r∗i = 6.4 ± 0.2

cm for N = 492. Continuous percolation threshold values for two dimensional discs

of effective radius ri in a square box of linear dimension L and periodic boundary
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Figure 9.8: A: Mean cluster size as a function of the interaction radius ri for quenched
configurations with different system sizes, preserving the same number density. B: Aver-
age giant component as a function of ri for quenched configurations with different system
sizes, preserving the same number density. Cluster sizes were averaged over 1000 config-

urations per system size.

conditions are found in the literature (Mertens and Moore, 2012). The critical fill-

ing factor in that particular geometry is η∗ = πr2
i N/L2 ≃ 1.128, or in other words,

r∗i = (L2η∗/(Nπ))1/2. Assuming a similar scaling behavior in our case, with a fixed

rigid circular wall, would yield a smaller threshold radius of approximately 3.59 cm,

indicating that both our circular geometry and fixed boundary conditions give rise to

packing and size effects that cannot be neglected in the quantitative determination of

this non-universal threshold value. On the other hand, such effects should not be rel-

evant regarding the behavior of critical exponents. In Figure 9.8B, we also represent

the average size of the so-called giant component, or the size of the largest connected

cluster in the system, as a function of the interaction radius ri. This quantity attains

its maximum value, comparable to the system size, after the percolation threshold.

As the maximum value of the mean cluster size, the size of the giant component at

the percolation threshold scales as a power law of the system size. Likewise, at the

percolation threshold, the probability distribution of cluster sizes P(s) = n(s)/ntot

represented in Figure 9.10, decays algebraically as a power law up to a given limit-

ing size determined by finite size effects, where this probability density decays much

faster towards zero. For finite system sizes, or near the critical point, only finite clus-

ters exist up to a largest cluster size, and the cluster-size distribution is smoothly cut

off by a rapidly decaying function. A proper finite-size scaling analysis of all these
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Figure 9.9: A: Mean cluster size as a function of the interaction radius ri for quenched con-
figurations and kilombo simulations at different integration times ∆t = 0, 400, 800 kilobot
iterations. B: Average giant component as a function of ri for quenched configurations
and kilombo simulations at different integration times ∆t = 0, 400, 800 kilobot iterations.
The left panel shows the results for system size N = 35, while the right panel shows the

results for system size N = 492.

power-law behaviors will provide critical exponent values in agreement with previ-

ous results published in the literature (Stauffer and Aharony, 2018). However, such

detailed finite-size scaling analysis is, however, beyond the scope of this thesis.

In addition, if we now consider the PRW trajectories performed by kilobots in the

two dimensional kilombo simulations, we can also compute the mean cluster size of

their communication network integrated over their exploratory time window ∆t, i.e.

of the total number of transmission contacts accumulated during their exploratory

time step ∆t. In Figure 9.9 we now represent the mean cluster size obtained for

different exploratory time windows of ∆t = 0, 400, 800 kilobot loop iterations or,

equivalently, of ∆t = 0, 4.12, 8.24 seconds, and different system sizes with the same

number density of bots n = N/πR2 = 0.028 bots/cm2.

A temporal window of ∆t = 0 should match the results obtained from the
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quenched configuration approximation described in the previous paragraphs, whereas

increasing values of ∆t would yield increasingly larger communication cluster sizes

as a result of the kilobot exploratory dynamics. Indeed by moving, bots increase

their average number of communication contacts favouring the widespread of infor-

mation through the system. Quantitatively speaking, this will eventually translate

into the reduction of the percolation threshold radius above which we can find a

giant communication component that allows the exchange of information among al-

most all bots in the system. In Figures 9.9 and 9.10, we represent our main results for

the mean cluster size, the giant component size, and the distribution of cluster sizes,

in comparison with the results of the quenched approximation.

As expected, for large enough system sizes, the position of the peak of the mean

cluster size for ∆t = 0 is compatible, within error bars, with that corresponding to

the quenched approximation. This implies that potential spatial correlations origi-

nating from the accumulation of some bots against the arena wall, or from bot col-

lisions, are unimportant for large enough system sizes. These correlations are, of

course, absent in the quenched positions approximation. Although the qualitative

behavior remains similar for small system sizes, spatial correlations induced by the

motion of kilobots near the wall of the arena may generate spurious size fluctuations

for interaction radii larger than the percolation threshold, spurious fluctuations that

disappear for larger system sizes.

In Figures 9.9A and B, one can also observe the shift of the mean cluster size dis-

tribution peak, as well as the average size of the giant-component, towards smaller

values of r∗i as we increase the exploratory time window ∆t. For the larger system

size of N = 492 bots, the percolation threshold moves from the quenched approx-

imation value around r∗i = 6.4 ± 0.2 cm to the smaller value of r∗i = 4.75 ± 0.25

cm for ∆t = 4.12 s (400 loops), and to an even smaller value around 4.25 ± 0.25

cm for the exploratory time window of ∆t = 8.24 s (800 loops). The same observa-

tions hold true for the small system size of N = 35 bots, for which the percolation

threshold for the quenched approximation is around 6.5 ± 0.1 cm, and the threshold

value after an exploration time window of ∆t = 8.24 seconds (800 loops) is located

at r∗i = 3.75 ± 0.25 cm, rather close to the kilobot excluded distance of de = 3.0 cm.

In addition, at the corresponding finite size percolation thresholds, the distributions
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Figure 9.10: Probability distribution of cluster sizes P(s) at the percolation transition for
quenched configurations and kilombo simulations at different integration times. The left
panel shows the results for system size N = 35, with percolation transitions at the fol-
lowing r∗i : Quenched (r∗i = 6.4 cm), ∆t = 0 (r∗i = 7.0 cm), ∆t = 400 (r∗i = 5.5 cm), and
∆t = 800 (r∗i = 3.8 cm). The right panel shows the results for system size N = 492, with
percolation transitions at the following r∗i : Quenched (r∗i = 6.5 cm), ∆t = 0 (r∗i = 6.0 cm),

∆t = 400 (r∗i = 4.8 cm), and ∆t = 800 (r∗i = 4.3 cm)

of cluster sizes depicted in Figure 9.10, decay as a truncated power law of s with

compatible exponent values within error bars.

Finally, it is worth emphasizing the latter results since the mobility of kilobots

over the exploratory temporal window ∆t can readily ensure the percolation of the

communication network for relatively short communication radii ri, radii slightly

larger than the kilobot radius. Remember that physical kilobots in our kilombo ex-

periments have an interaction radii of 5 ± 2 cm, and the possibility to explore their

neighborhood for a time window of ∆t = 8.24 seconds (800 loops) . Therefore, from

this point of view, kilobots form a percolating communication network that allows

them to exchange information at the system size level, or in other words, as in a

mean-field interaction approximation.

9.3.2 Communication network degree and degree distribution

In network theory, the degree of a node k is defined as the number connections or

edges that the node has to other nodes, while the degree distribution P(k) is defined

as the probability that a randomly chosen node has degree k (Newman, 2010). The
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Figure 9.11: Degree distribution P(k) in kilobots in kilombo for different time steps of
∆t = 0, 400, 800 loop iterations at the threshold r∗i and for 1000 quenched configurations.
(top panels). Bottom panels represent results for different interaction radius ri and ∆t =

800 loop iterations. Left panel correspond to N = 35 and the right panels to N = 495.

degree and the degree distribution are important factors in determining the proper-

ties of dynamical processes taking place on networks (Barrat et al., 2008), such as in

this case, the spread of information through an infrared communication network.

In Figure 9.11 we show the degree distribution observed in the kilobot commu-

nication network obtained from kilombo simulations over different values of the

exploratory time step ∆t, and different radius of interaction ri, for two different sys-

tem sizes with the same number density of kilobots. From the figure we can see

that the distributions are bell-shaped, roughly compatible with a Poisson form,

P(k) = e−λ λk

k!
, (9.1)

with λ equal to the average degree ⟨k⟩.
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Figure 9.12: Integrated average degree ⟨k⟩ as a function of ri in kilobots in kilombo for dif-
ferent time steps of ∆t = 0, 400, 800 loop iterations, and for 1000 quenched configurations.

Left panel shows ⟨k⟩ for N = 35 and right panel for N = 495.

As in the previous subsection, we have also calculated the integrated average de-

gree of the kilobot communication network, denoted by ⟨k⟩, in kilombo simulations

over different values of the exploratory time step ∆t, and two different system sizes

with the same number density of kilobots. Figures 9.12 show the integrated aver-

age degree as a function of ri for the same exploratory time steps of ∆t = 0, 400, 800

kilobot loop iterations or, equivalently, of ∆t = 0, 4.12, 8.24 seconds, for N = 35 and

N = 492 bots (and the same number density n = N/πR2 = 0.028 bots/cm2) in

kilombo simulations. For comparison, we also include ⟨k⟩ values for 1000 quenched

random configurations with re = 1.5 cm. A time step ∆t = 0 in kilombo represents

a single spatial configuration, or a single snapshot of the dynamics.

Our results show that for the small system size N = 35, the quenched kilobot

configurations exhibit a slightly larger average degree than single snapshots of the

kilombo dynamics simulations with ∆t = 0. Again, this may be due to some bots

being accumulated at the arena wall and not occupying space as effectively as they

would do when randomly distributed, as shown in Chapter 7. This finite size effect

reduces a bit the average connectivity of the kilobot network. However, when we in-

crease the system size, the wall effect becomes negligible, and both the quenched and

the ∆t = 0 configurations yield approximately the same average degree. In all cases,

increasing the exploratory time step and interaction radius leads to larger average

degrees. This can be related with the average degree needed in a general network to
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observe a giant component, which can be obtained from the celebrated Molloy and

Reed (1995) criterion
⟨k2⟩
⟨k⟩ > 2. (9.2)

In the ideal case of the geometric network obtained for a uniform distribution of

points, corresponding to zero size kilobots, the degree distribution can be shown to

have the form of a homogeneous Poisson distribution (Ferrero and Gandino, 2011).

For this distribution, we have ⟨k2⟩ = ⟨k⟩2 + ⟨k⟩, which, introduced into the formula

of the Molloy and Reed criterion, predicts the position of the percolation threshold

(signaling the presence of a giant component) at ⟨k⟩ = 1. As we have seen in Fig-

ure 9.11, in the case of actual kilobots the degree distribution has also a Poisson-like

form for different values of ∆t and ri. We can thus conclude that the dependence

of the average degree on the interaction radius shown in Figure 9.12 is compatible,

within this network interpretation, with a threshold radius of interaction that de-

creases with the time integration interval ∆t.

9.3.3 Crowding effects in consensus reaching

In this section, we investigate the role of crowding effects in collective decision mak-

ing in our nest-site selection model system. We also characterize the interplay be-

tween system size N, infrared communication distance or interacting radius ri, and

the radius R of the arena, for various conditions represented by the main model pa-

rameters, such as the interdependence parameter λ, and through several observables

of interest.

We first describe crowding effects in terms of the agents’ radius of interaction ri

by inspecting, for instance, the stationary values of dance frequencies ⟨ fi⟩ for differ-

ent values of ri. Large enough values of ri should provide dance frequencies equiv-

alent to mean-field results, whereas small ri values, around a bot-diameter, would

represent an ensemble of effectively independent bots. Remember that the com-

munication radius is a fixed parameter equal to 7 cm in our experimental kilobot

ensemble.

Taking advantage of the scalability properties of numerical simulations, we first
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Figure 9.13: Stationary dance frequencies as a function of the interdependence parameter
λ for different values of the communication radius ri. For comparison, we also show the
results of two limiting cases: the mean-field approximation (shown as dot-dashed lines),

and the extreme case of isolated kilobots ri = 0 (shown as dashed lines).

describe the model results for uncorrelated bot positions in the quenched approx-

imation. In Figure 9.13, we plot the stationary values of ⟨ fi⟩ as a function of the

interdependence parameter λ, and for fixed values of the interaction radius within

the interval 3 ≤ ri ≤ 12 cm. The number of bots in these simulations is N = 35, and

the radius of the arena is R = 20 cm, as in the kilobots experiments. In addition,

we fix quality values q1 and q2 for both sites 1 and 2, which are equal to q1 = 7 and

q2 = 10, and the values of the independent discovery probabilities π1 = π2 = 0.3,

which are considered to be equal and, thus, correspond to the symmetric discov-

ery scenario. For the sake of comparison, we also represent as dotted-dashed lines

the expected stationary values in the mean field approximation, where every bot

can exchange information with every other bot in the system, and the limiting case

where bots remain isolated (shown as dashed lines). The latter limiting case would

corresponds to an effective interacting radius equal to ri = 0 in the simulations.

We see that asymptotically, at large enough interaction radius, the stationary fre-

quencies converge towards mean field predictions (dotted-dashed lines). As we

saw in the previous section, beyond an interaction radius approximately equal to

r∗i ≃ 6.5 ± 0.2 we have a percolating communication network that enables the ex-

change of information among almost all bots in the system, and for this reason,

the stationary values of the fraction of bots dancing for each state are very close

to mean-field results. On the other hand, as the interaction radius decreases below
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Figure 9.14: A Stationary dance frequency for the high quality site ⟨ f2⟩, and B consensus
parameter ⟨Q⟩ as a function of N(ri/R)2 in uncorrelated quenched configurations of bots,

for three values of the interdependence parameter λ = 0.3, 0.6, 0.9.

the percolation threshold r∗i , average values deviate substantially from mean-field

predictions, specially so for higher values of the interdependence parameter λ, i.e.

when communication matters the most. In the opposite limit, when λ = 0, the value

of the interaction radius becomes an irrelevant variable. In this case, all curves match

the λ = 0 analytic result of List et al., 2009 model that we discussed in the previous

Chapter 8 (see Equations 8.13 and 8.14). When the interaction radius ri ≤ 3, due

to excluded volume effects (each bot has an excluded radius equal to 1.5 cm), there

are no bots within the intercommunication distance, and stationary values follow an

effective zero interaction limit (as when λ = 0) but, in this case, with effective a priori

discovery probabilities equal to (1− λ)Πj in each case. This is also an analytical lim-

iting result that one can find exactly from the definition of the model under scrutiny.

It is represented with a dashed line in Figure 9.13.

Second, we investigate crowding effects by directly changing the density of bots

in the arena. Within the same quenched approximation, we analyze the station-

ary behavior of the dancing frequency for the best-quality site and the average con-

sensus parameter for different values of the number of bots N within the interval

5 ≤ N ≤ 100 in the same arena of radius R = 20 cm. Our simulation results for dif-

ferent values of N with a fixed value of ri, and for different values of ri with a fixed

number of bots N are represented together to characterize the scaling properties
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of relevant observables, such as dancing frequencies and the consensus parameter,

with these quantities. Our results confirm the basic assumption that for a homo-

geneous, uncorrelated, distribution of bots in the arena, the interaction area of each

kilobot should scale linearly with the inverse of the number density of kilobots, or in

other words, that ri should be simply rescaled by a factor R/N1/2 to obtain the same

functional dependence of both quantities for different values of N, ri, and R. In Fig-

ures 9.14, we represent the behavior of ⟨ f2⟩ and ⟨Q⟩ as a function of N ∗ (ri/R)2

obtained for different combinations of N and ri in the quenched approximation.

Results for varying numbers of bots are depicted with an orange continuous line,

whereas results for varying interaction radii are depicted with a green continuous

line. One can observe a very reasonable collapse of both curves, in the three condi-

tions considered with interdependence parameter values equal to λ = 0.3, 0.6, 0.9 in

the symmetric probability discovery scenario.

Finally, we analyze crowding effects in an ensemble of moving kilobots by means

of kilombo simulations at different bot densities. Even though kilobots have a built-

in interaction radius of approximately ri = 7 cm, calibration results showed that the

number of bots seen by physical kilobots was compatible with a lower interaction

radius of ri = 5 ± 2 cm in kilombo simulations. Here, we fix this interaction radius,

as well as the radius of the arena R = 20 cm, and change the density by changing

the number of bots in the range 5 ≤ N ≤ 35.

Figure 9.15A shows the probability distribution of bots detected by a focal kilobot

i in a time step of ∆t = 8.24 seconds (or 800 kilobot loop iterations), Bi,∆t , as the

number density of bots increases by changing N from N = 5 until N = 35. More

interestingly, in Figure 9.15B, we represent the progression of the mean ratio of type

1 and type 2 bots detected by a focal kilobot i during a ∆t cycle, fi,j, as N is increased,

for the same three contrasting values of λ = 0.3, 0.6, 0.9 considered in the quenched

approximation.

Mean values of fi,j, and of the average stationary dance frequencies ⟨ f j⟩ increase

gradually with N until they reach a plateau for a group of approximately 30 kilo-

bots. This means that even for lower number densities than the one considered in

the physical kilobot experiments (where N = 35), the system achieves global infor-

mation about dancing frequencies. Again, this is a signature of the formation of a
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Figure 9.15: Bots detected during a time step ∆t in kilombo simulations as a function of the
number N of kilobots in the arena. A: Probability distribution, Bi,∆t, of bots detected by a
focal kilobot i in a time step ∆t. B: Ratio of type j bots, bots dancing for site j, detected by
a focal kilobot i in a time step ∆t, fi,j, as a function of the number of kilobots in the arena.

Figure 9.16: A Stationary dance frequency for the high quality site ⟨ f2⟩, and B consensus
parameter ⟨Q⟩ as a function of N(ri/R)2. Results are obtained from: (i) different ensemble
sizes N and a fixed value of ri (curve in orange), (ii) from different interaction radii ri
and a constant number of N = 35 bots (curve in green), both in the quenched position
approximation; and (iii) from kilobots simulations in kilombo (triangular symbols), for
three values of the interdependence parameter λ = 0.3, 0.6, 0.9. The interaction radius ri

in each case has been rescaled by the corresponding percolation threshold.

percolating communication network as a function of bot density for a fixed commu-

nication radius ri. The movement of kilobots over the exploratory time window ∆t,

exchanging information within a radius ri in an arena of radius R, enables the perco-

lation of the communication network for number densities above a threshold value

N∗, which facilitates the transmission of information throughout the system.

The average stationary values ⟨ f2⟩ and ⟨Q⟩ obtained from kilombo simulations

for different N values are also represented with triangular symbols in Figures 9.16

A and B.
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The reasonable collapse of the kilombo simulation data with the quenched ap-

proximation results, orange and green curves, has been obtained after re-scaling the

interaction radii by the corresponding percolation threshold r∗i in each case. This

feature corroborates our main starting hypothesis: the motion of kilobots over the

exploring time window, together with its number density, are relevant variables that

control the formation of a percolated communication network in the system, which

facilitates the wide-spreading of information throughout the system, and determine

the scaling properties of the most significant observables in collective decision mak-

ing.

9.4 Closing remarks

In this study, we analyze how adding space and local interactions affects consensus

reaching in the model proposed by List et al., 2009 of honeybees choosing a new

site to build their nest. We chose kilobots as our study subjects since they are small

swarm robots capable of performing collective tasks through exchanging informa-

tion within an interaction radius.

In our version of the model, kilobots move randomly through a circular arena

while exchanging information with nearby robots during a sufficiently long time step.

We create an experimental setup that allows us to monitor the system at each time

step, and also implement the model in a kilobots simulator, kilombo, to gain scala-

bility and statistics. To better understand the impact of locality and the importance

of kilobots’ spatial mixing in collective decision-making, we compared our results

with those obtained from a mean-field approximation and from quenched bots con-

figurations. Our findings suggest that kilobots and quenched configurations achieve

consensus levels as high as those obtained in a mean-field approximation in the low

and medium communication regimes. However, only kilobots, through their mobil-

ity, achieve a similar level of consensus to the mean-field approximation in the high

communication regime.

We investigate this further by using percolation theory and network methodolo-

gies and find that both the motion of kilobots and the density of the system play
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a crucial role in forming a connected communication network. Through a perco-

lated communication network, each bot can receive information beyond its imme-

diate surroundings. The time kilobots spent exploring the environment results in

an extended interaction radius, which reduces the bot density required to create a

connected network in respect to a static system.
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10 Conclusions and Perspectives

Collective animal behavior is a fascinating and complex phenomenon that involves

the coordination of individuals in a group towards a common goal. Studying col-

lective animal behavior offers insights into how individuals interact and exchange

information within a group, with implications for a broad range of disciplines, in-

cluding ecology, evolution, physics, and robotics. Moreover, it has also inspired

the development of new algorithms and technologies. By developing agent-based

or SPP models, researchers have been able to simulate collective animal behavior

using simple local interaction rules and to create more efficient algorithms for de-

centralized decision-making that are applicable to network systems, robotics and

optimization processes. In addition, technological advancements have allowed for

the collection of vast amounts of high-precision behavioral data, leading to diverse

technological solutions to address scenarios where animals need to be quantified.

Although the unifying theory for self-organization is still a challenge, self or-

ganizing groups share common principles that contribute to the emergence of col-

lective behavior in animals. Group variability, positive and negative feedbacks, re-

sponse thresholds, and effective leadership all play vital roles in discrete and contin-

uum collective decision-making processes. Behavioral transitions observed in ani-

mal collectives also represent an esential adaptive property which implies a continu-

ous adjustment of individuals’ interactions to enable a swift response to unexpected

stimuli, while also being robust enough to maintain the current behavior.

In this work, our main objective is to investigate the underlying mechanisms that

give rise to complex collective behaviors in animals. Specifically, we concentrate on

two types of collective behavior: collective motion and collective decision-making.

By analyzing these phenomena, we aim to shed light on the ways in which animals

communicate and self-organize.
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Our investigation into collective motion focus on two different but intercon-

nected behaviors in schooling fish. First, we analyze collective ordering dependence

on swimming speed. To accomplish this, we take advantage of the natural speed

variations observed in our study fish, which are primarily the result of the species’

type of locomotion. Secondly, we narrow our attention to a specific type of direc-

tional rearrangement: the avalanche behaviors that are observed in our schooling

fish. We explore the connection between these behaviors and effective leadership,

seeking to better understand the relationship between them.

To analyze collective decision-making, we implement a model of honeybees nest

site selection in physical swarming robots, which incorporates space and locality, as

well as physical restrictions.

Our main goal gives rise to two additional objectives. On the one hand, in order

to empirically investigate animal collective behavior, it is crucial to first establish ap-

propriate experimental designs and setups. In this study, we place great emphasis on

developing the necessary tools for recording, tracking, and processing our empirical

data. Many of the resources that we use are custom made. This is a highly challeng-

ing and time-consuming undertaking that is essential for producing accurate and

reliable results. On the other hand, we modify existing models of collective behav-

ior to explain our empirical observations. The ability of these models to replicate

observed collective behaviors increases their value and broadens their applicability.

We also undertake a detailed exploration of the implemented models’ parameters to

gain a better understanding of their characteristics and behaviors, and we uncover

several unreported properties of the models. Next, we describe the main findings of

this work.

Our study of black neon tetra and the modification of the Vicsek model by includ-

ing a periodic variable particles’ speed sheds light on how collective order depends

on the speed of individuals within a group. We found strong evidence of the cor-

relation between swimming speed and collective ordering in fish collectives. This

relationship implies that an increase in group speed is equivalent to increasing the

alignment interaction strength and, thus, decreasing the effect of noise in fish match-

ing orientations. This phase transition can be understood as a competition between

noise and social interactions. From a biological perspective, a positive correlation
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between speed and collective order could serve as an adaptive mechanism that en-

sures rapid information transfer in changing environmental conditions. For exam-

ple, when fish feel threatened, they increase their swimming speed and ordering to

collectively respond to attacks.

Through our exploration of the order parameter in the original Vicsek model we

have uncovered a strong relationship between the system ordering and particles’

speed. The fact that a disorder-to-order phase transition is observed when increas-

ing particles’ speed in a simple model like the Vicsek model contributes to a better

understanding of the possible universality of phase transitions in moving groups.

Our study on behavioral cascades in our fish collective shows that scale-free

avalanches can be observed in the rearrangement dynamics of swimming fish schools.

The presence of effective leadership in fish schools can account for these avalanche

behaviors, as some fish have an unusually large probability to initiate any avalanche

in which they participate. This leadership can lead to sudden behavioral changes or

provide specific information about the environment, such as the proximity of a wall.

By modifying the classical Vicsek model to include a global leader, our study repli-

cates the intermittent scale-free behavior observed in fish schools, with avalanche

size and duration distributions displaying a self-similar scaling form. Our findings

contribute to the understanding of the interplay between leadership and behavioral

cascades in animal groups.

For our study of collective decision-making, we investigate the behavior of a

decentralized decision-making model aimed at shedding light on the mechanisms

used by honeybees to choose the best option for a new nest site. The model in-

tegrates independent discovery of potential sites and inter-individual communica-

tion to achieve consensus toward the best site, with site quality expressed through

dance duration. The variance in dance times is a driving indicator for breaking sys-

tem symmetry, as high-quality sites receive more "advertisement", generating more

dancing activity for that site. The interdependence parameter represents the level of

communication between agents. The level of communication needed to achieve con-

sensus toward the high-quality site increases with the probability of the low-quality

site being discovered and with its similarity from the high-quality site. Indepen-

dence in this model acts as random noise that hampers the system’s ability to reach
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consensus, especially when sites are easy to discover. We analyze the feasibility of

this model as a possible mechanism for honeybee nest-site selection by investigating

the effects of more realistic interactions on consensus reaching. Our results demon-

strate that physical kilobots, through their mobility and interaction with the local

environment, form a percolating communication network that allows them to effec-

tively sample the state of the system and transmit information to achieve collective

decision-making comparable to mean-field interactions. The impact of communica-

tion on individual decision making is reduced with low interdependence, but be-

comes more relevant for consensus reaching as interdependence increases. Within

the high interdependence regime, the mobility of agents, such as kilobots, is needed

for reaching high consensus values as those obtained in mean-field simulations. The

dynamic nature in our swarming robots implementation of the model induces an

extension of the interaction radius in a static scenario. Our study provides insights

about the mechanisms underlying collective decision-making, specially regarding

individuals’ connectivity for efficient information transfer. Our findings demon-

strate how honeybees can achieve consensus on the best available site for their nest

solely through local dynamical interactions. Our results increase the robustness of a

model that was previously only implemented in unrealistic mean-field approxima-

tions.

As mentioned, working with empirical data can be challenging due to various

reasons. Firstly, collecting data can be time-consuming and resource-intensive. Sec-

ondly, analyzing empirical data can be complex, especially when attempting to draw

causal inferences from the data. Moreover, having a sufficient amount of data can

also be a challenge, as researchers need to ensure that they have enough data points

to achieve statistical significance and to make meaningful conclusions. Although

our data provides valuable findings, there may be additional interesting questions

that could not be fully addressed with the current data.

One area of interest in the study of fish schools is gaining a more detailed under-

standing of how the boundaries of the school’s environment affect their behavior.

While variations in speed and sudden directional rearrangments are largely the re-

sult of behavioral synchronization within the collective, the confinement of the fish

to a tank makes it important to separate the effects of the tank from those of the
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group interactions to fully understand the adaptive behavior of the school. In this

sense, empirical analysis of schooling fish in tanks of different sizes and with vary-

ing group sizes would be necessary. This could provide valuable insights into the

ways in which fish schools adapt to environmental barriers and navigate through

their surroundings.

In future research, exploring the role of individual variation in collective behav-

ior could provide valuable insights into how group composition influences collective

behavior and how individuals interact within a group. For instance, investigating

the effect of leader switching strategies on the preservation of the observed scale-

free nature of avalanches under different conditions could be a promising direction.

Moreover, further studies could investigate the dynamical networks of larger fish

schools and additional temporal series, enabling the examination of the potential

preferences of individual fish to stay close to conspecifics.

Introducing individual variation in collective motion and decision-making mod-

els can lead to a more comprehensive understanding of the diverse strategies and

adaptive behaviors that underlie animal collectives. For example, by incorporat-

ing bees that are more experienced and carry more weight in the decision-making

process or individuals that can learn and change their "social status" within the col-

lective. More realistic models incorporating social networks, cognitive limitations,

and stress effects on decision-making can predict how animal groups make decisions

and explore how these decisions may change in response to different environmental

conditions.

With this work, we contribute to the understanding of the ways in which animals

can communicate and self-organize. We accomplish this through the development

of appropriate experimental setups and modifications of existing models of collec-

tive behavior. Through our research, we have uncovered several new properties of

these existing models and identified relationships between collective ordering and

individuals’ speed, the interplay between leadership and behavioral cascades and

the effect of dynamical local interactions in consensus reaching. Our research find-

ings aim to inspire and encourage further exploration in this field. Our hope is to

contribute to the development of more comprehensive models and to expand the

knowledge regarding the universality of collective behavior.
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