

Dedicat a les persones i experiències del passat que em faran la persona que seré.

Abstract

Nodal distributions on the high-dimensional simplex for high-order
interpolation and integration

Albert Jiménez-Ramos

To simulate unsteady phenomena on complex moving geometry, computational

scientists and engineers have been interested in unstructured space-time discretiza-

tions. These space-time discretizations aim to overcome some issues of standard time

marching methods by considering a unique mesh that discretizes the steady space-

time geometry described by the moving spatial geometry. Unfortunately, they have

not been widely adopted for 3D unsteady high-fidelity simulations because many

fundamental capabilities related to high-order approximation to geometry and solu-

tion must still be developed in 4D. These capabilities include performing high-order

numerical interpolation and integration on complex space-time geometry.

To address these issues, this thesis aims to demonstrate interpolation-aware opti-

mization of nodal distributions on the high-dimensional simplex constrained to fulfill

either feasible interpolation or feasible integration with the point coordinates as design

variables. To this end, it proposes the following contributions. First, to interpolate a

curved subdivision model obtained from a linear triangular mesh, we devise an equi-

spaced nodal geometry representation method. Second, to additionally preserve the

required simulation intent, we devise a nodal modeling method. Third, to estimate

the interpolation error of a nodal distribution, we propose a point refinement method.

Fourth, to explore the nodal distributions that are the heuristically best local minima

of an interpolation error proxy, we propose a specific-purpose optimization method.

Fifth, to minimize the interpolation error of an initial nodal distribution, we propose

a constrained optimization method. Finally, to enforce small interpolation error and

exact integration, we propose a constrained optimization problem.

In conclusion, this thesis demonstrates interpolation-aware optimization of nodal

distributions on the high-dimensional simplex for feasible interpolation or integration.

To this end, it proposes novel nodal methods to model and represent the simulation

intent and to explore and optimize nodal distributions. These novelties will contribute

to performing high-order numerical interpolation and integration on complex 4D ge-

ometry. Hence, they will help to exploit the benefits of high-fidelity 4D space-time

simulation for 3D moving complex geometries.

v

Acknowledgments

I am the author of this thesis, but I am not the only one who wrote it. The

following words are dedicated to those people.

Aquesta tesi està signada per mi, l’Albert Jiménez, però allà on posi el meu nom

hi heu d’afegir uns quants més.

S’hi ha d’afegir el nom dels meus tutors. Abel i Xevi, Xevi i Abel, moltes gràcies

per apostar per mi com a doctorand i deixar-me acompanyar-vos en aquesta etapa de

la vostra carrera. Us agraeixo el vostre recolzament en l’àmbit professional i, sobre

tot, personal. Gràcies per la vostra paciència, llibertat i empatia. Abel, et dono les

gràcies per aquella hamburguesa a Mataró, l’entrepà de pernil a casa els teus avis

i la companyia als migdies. Xevi, tot i que des del juny del 2021 et veig canviat,

t’agraeixo la confiança que has dipositat en mi, la teva comprensió en els moments

de dificultat i haver-te pogut explicar les meves preocupacions tant professionals com

personals. Vau començar com a tutors i us heu convertit en amics, em sap greu.

S’hi ha d’afegir el nom de la meva familia. Papa y mama, gracias. Gracias por

el esfuerzo que habéis hecho para poder darme la educación que tengo. Gracias por

invertir vuestro tiempo en mı́. Espero que, en un futuro, sepa valorar el esfuerzo que

segúıs haciendo por mı́ y estar a la altura. Marta, muchas gracias por todo tu apoyo,

tu interés y confianza. Os quiero. Avis y yayas, muchas gracias por el soporte que

me habéis dado. Familia Aragón Ramos, gracias por el respeto y confianza con el que

siempre me habéis tratado. Espero que podáis decir con orgullo que he sido un buen

hijo, un buen hermano, un buen nieto, un buen sobrino y un buen primo.

S’hi ha d’afegir el nom de la meva nova famı́lia. Anna, gràcies per fer-me costat

en tots els moments de dificultat. Gràcies pels somriures, les abraçades i els petons.

M’agradaria ser el teu company de pis durant molt de temps. Estic enamorat de tu.

T’estimo molt.

S’hi ha d’afegir el nom dels meus amics i companys. Eloi Ruiz, moltes gràcies

per intentar transmetre’m els teus coneixements, he gaudit molt les discussions amb

tu. Guillem i Guillermo, ha estat un plaer compartir amb vosaltres les confidències

i preocupacions durant la nostra etapa com a estudiants de doctorat. Sergi, Marc,

Miquel, Agus, amb les nostres converses i trobades m’heu ajudat, de forma conscient

o inconscient, a tirar endavant aquesta tesi. També signen aquesta tesi els meus amics

que m’han acompanyat des de la carrera: Vı́ctor, Miguel i Gerard, us hi estic molt

agräıt. Moltes inquietuds no haguessin sorgit si no fos per les converses tècniques que

vii

hem tingut.

Finalment, també vull fer menció a la gent de la FME i del BSC que m’ha ajudat

a finalitzar aquesta tesi. Carme Capdevila, gràcies per la teva ajuda en tots els temes

burocràtics. Laura Gutiérrez, gràcies per fer-me la vida tan fàcil sempre que t’ho he

demanat. Joan i Gerard, gràcies per la flexibilitat que m’heu donat en aquests últims

mesos.

I ara, la tesi.

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Algorithms xix

1 Introduction 1
1.1 Motivation and background . 1
1.2 Research opportunities and questions 4
1.3 Aim and objectives . 5
1.4 Scope . 6
1.5 Methodology . 7
1.6 Contributions and novelty . 8
1.7 Layout . 10

2 Preliminaries and definitions 15
2.1 Symmetric nodal distributions on the simplex 15
2.2 Lebesgue constant . 17
2.3 Orthonormal polynomial basis . 18

3 Interpolation of subdivision features for curved geometry modeling 21
3.1 Introduction . 21
3.2 Related work . 24
3.3 Problem statement and methodology 25
3.4 Preliminaries: curve and surface mesh subdivision 28
3.5 The limit model . 30
3.6 Approximation of the limit model . 35
3.7 Curved volume mesh approximating the limit model 42

ix

Contents

3.8 Results . 46

3.9 Discussion . 59

3.10 Concluding remarks . 61

4 Refining simplex points for scalable estimation of the Lebesgue
constant 63

4.1 Introduction . 63

4.2 Related work . 66

4.3 Neighbor-aware coordinates for point refinement 68

4.4 Adaptive point refinement . 75

4.5 Results: estimation of the Lebesgue constant 78

4.6 Concluding remarks . 84

5 Exploring locally optimal nodal distributions of a Lebesgue con-
stant proxy 85

5.1 Introduction . 85

5.2 Preliminaries . 88

5.3 Spherical simplex . 88

5.4 Exploring local minima . 92

5.5 Numerical results . 102

5.6 Concluding remarks . 118

6 Computing nodal distributions with quasi-optimal Lebesgue con-
stant 121

6.1 Introduction . 121

6.2 Preliminaries . 124

6.3 Optimizing the Lebesgue constant . 128

6.4 Results . 134

6.5 Concluding remarks . 149

7 Computing interpolation-aware numerical quadratures 151

7.1 Introduction . 151

7.2 Preliminaries . 154

7.3 Interpolation-aware numerical quadratures 157

7.4 Results . 161

7.5 Concluding remarks . 165

8 Conclusions and future work 167

A Non-interpolative to interpolative 171

B Accommodate the curvature of the boundary 173

x

Contents

C Parameterization of a symmetric high-order nodal distribution in
the simplex 177
C.1 Representatives of a symmetric nodal distribution 178
C.2 Parameterization of a nodal representative 179
C.3 Parameterization of a symmetric nodal distribution 181

D Chen-Babuska derivatives and optimization 183
D.1 Derivatives of the functional . 183
D.2 Optimization . 188

Bibliography 191

xi

List of Figures

3.1 Method. Input: (a) a linear tetrahedral mesh and the associated model
with (b) feature points, curves and (c) surfaces. Output: (d) a curved
tetrahedral mesh of polynomial degree q, q = 4 in this case. 27

3.2 Subdivision to compute the element-wise parameterization of the limit
curve on a point (cross) adjacent to a feature vertex (bold). Container
edge in the: (a) original, and (b) subdivided meshes. Dashed segments
represent the curve stencil. 32

3.3 Subdivision to compute the element-wise parameterization of the limit
surface on a point (cross) adjacent to a feature curve (bold). Container
triangle (dashed edges) in the: (a) original, and (b) subdivided meshes.
Dark gray region represents the surface stencil. 33

3.4 Regular mesh around a feature curve (bold). Elements adjacent to the
feature curve are colored with light gray, while the elements not adjacent
to the curve are colored in dark gray. 35

3.5 Mesh configurations to ensure C2 smoothness (dark gray). (a) Regular
edge (bold). (b) Irregular edge (bold). (c) Regular patch around a regular
vertex. (d) Irregular patch (light gray) around an irregular vertex. (e)
Mitigation of the irregular patch after subdividing the mesh. 38

3.6 Curving of the boundary for a boundary element of polynomial degree
q = 2. (a) Linear physical element, where the face (2 3 4) belongs to the
boundary. (b) Straight-edged physical element of polynomial degree two.
(c) Curved boundary element of polynomial degree two, displaying with
dashed lines the four elements from the subdivision scheme applied to the
boundary. 44

3.7 Accommodating the curvature to a triangular element of polynomial de-
gree q = 4. (a) Straight-edged triangle with a boundary edge (in bold).
(b) Triangle with curved boundary. (c) Transfinite interpolation applied
to the edges, (d) and to the face. 45

xiii

List of Figures

3.8 Convergence of the bounds and the distance to the limit model for the
sphere meshes of polynomial degree q, q = 1, . . . , 10, with equispaced and
non-equispaced distribution sets: (a) distance, and (b) lower and upper
bounds of the distance of the best approximating polynomial. 47

3.9 Mesh of a sphere of polynomial degree (a) one, q = 1, and (b) ten, q = 10,
both colored according to the distance to the limit model. 48

3.10 Curving of a tetrahedral mesh of the Escudo mountain range (Spain). (a)
Linear mesh. (b) Curved mesh of polynomial degree q = 4. Elements of
the volume meshes are colored with their elemental quality. 50

3.11 Initial and final linear mesh model of a Falcon aircraft. Initial model:
(a) surface features colored with their surface identifier, and (b) curve
and point features. Final model: (c) virtual surface features colored with
their surface identifier, (d) curve and point features smoothed (gray) and
preserved (black). 52

3.12 Close-up view of the leading edge of a Falcon aircraft wing. Zebra mapping
on the mesh of polynomial degree four with (a) the initial model, and (b)
the final model with the leading edge smoothed. 53

3.13 Close-up view of the leading edge of a Falcon aircraft rear wing. Surfaces
are colored according to their surface identifier. 54

3.14 Lower and upper bounds of the distance of the best approximating poly-
nomial in terms of the polynomial degree q for the Falcon aircraft. 55

3.15 Mesh of polynomial degree q = 5 of a Falcon aircraft colored according to
the distance to the limit model. 55

3.16 Close look of the rear point of the vertical stabilizer of the mesh of poly-
nomial degree q = 5 of a Falcon aircraft. (a) Rear part of the aircraft. (b)
Angle between the normal vectors along the interior edges incident to the
sharp point. 56

3.17 Curved tetrahedral mesh of polynomial degree q = 5 of a Falcon aircraft
with no invalid elements. 57

3.18 Initial and final linear mesh model of an aircraft in high-lift configuration.
Initial model: (a) surface features colored with their surface identifier,
and (b) curve and point features. Final model: (c) virtual surface features
colored with their surface identifier, (d) curve and point features smoothed
(gray) and preserved (black). 58

3.19 Curved triangular mesh of polynomial degree q = 4 of an aircraft in high-
lift configuration colored with the surface identifiers. 58

4.1 Illustration of the method. (a) Initial sampling. (b) Refining the point at
the barycenter by generating six new points (in gray) around it parallel
to the triangle edges. (c) To refine the black point we only evaluate the
target function at three new points (in gray). 69

xiv

List of Figures

4.2 For a central point (black dot), surrounding stencil points (black dots)
for the refinement directions (gray segments) parallel to the simplex edges
(gray edges) in (a) 2D and (b) 3D. 70

4.3 Coordinates of a point of resolution r and its neighbors. 71

4.4 Completing an incomplete sample point. An (a) incomplete point of res-
olution r becomes (b) complete of resolution r. 73

4.5 Refining a complete sample point. A (a) complete point of resolution r
becomes (b) complete of resolution r + 1. 73

4.6 Smooth gradations of the resolutions. (a) The gray point is complete of
resolution r (dotted line) and incomplete of resolutions r+1 (dashed line)
and r + 2 (solid line). (b) Smooth sampling after refining the gray point
until it becomes complete of resolution r + 1. 74

4.7 Two-dimensional representation of the complete points in terms of the
resolution and function value. The lower boundary of the convex hull
determines the points to complete. 76

4.8 Lebesgue function of the warp-and-blend nodal distribution of polynomial
degree 10 in the triangle (Warburton, 2006). 79

4.9 Final sampling used to capture the maximum of the Lebesgue function
of the warp-and-blend nodal distribution of polynomial degree 10 in the
triangle (Warburton, 2006). 81

4.10 Error in the estimation of the Lebesgue constant in terms of the number
of sample points using our method (blue) and DiTri (Roth, 2005) (red)
for the warp-and-blend distribution of polynomial degree 10 in the triangle. 82

5.1 Close to optimal nodal distributions of degree p = 10 (a) in the triangle,
and (b) the enhanced representation on the sphere. 89

5.2 (a) Lagrangian influence zones, each represented by a different color, and
(b) the skeleton of the Delaunay mesh using the Euclidean distance. . . . 90

5.3 (a) Skeleton of the Delaunay mesh of a close to optimal nodal distribution
of polynomial degree p = 15. (b) Value of the function Λ evaluated at the
nodal distribution resulting from placing the red node at every position
of the spherical simplex preserving symmetry. (c) Superposition of the
skeleton of the Delaunay mesh and Fig. 5.3(b). 91

5.4 Nodal dynamics during the optimization of the Chen-Babuska functional
for a nodal distribution of polynomial degree 12 in the triangle. (a) Initial
nodal set, (b) nodal set after 8 iterations, and (c) nodal set at the end of
the optimization process. Trajectories are colored in terms of the iteration
number. 93

5.5 (a) Skeleton of the Delaunay mesh of a close to optimal nodal distribution
of polynomial degree p = 15. The elements in the ring of the red node are
colored in gray. (b)-(d) Nodal configurations after dislocating the interior
red node to some of the elements in the ring. 95

xv

List of Figures

5.6 (a) Skeleton of the Delaunay mesh of a close to optimal nodal distribution
and ring of the red node. (b) Value of the function β evaluated at the
nodal distribution resulting from placing the red node at every position
of the spherical simplex preserving symmetry. (c) Superposition of the
skeleton of the Delaunay mesh and Fig. 5.6(b). 96

5.7 Two-dimensional representation of the vertices of the graph at a specific
iteration of the algorithm. The dots conforming the lower boundary of the
convex hull correspond to the vertices to be explored in the next iteration. 99

5.8 Graph of the exploration procedure for dimension 2 and polynomial degree
12. Each box corresponds to a local minima labeled with its function value.102

5.9 Comparison of close to optimal nodal distributions of polynomial degree
15 in the triangle depicted on the sphere. (a) Black spheres indicate the
points positions of the nodal distribution from Roth (2005). (b) Our
distribution is depicted with red crosses, and the nodal set from Roth
(2005) with semi-transparent black spheres. 107

5.10 Interpolation error in the triangle for different polynomial degrees using
equispaced (red), warp-and-blend (blue), and our quasi-optimal nodal dis-
tributions (black) for functions: (a) u1; (b) u2; and (c) u3. 110

5.11 Interpolation error in the tetrahedron for different polynomial degrees us-
ing equispaced (red), the explicit nodal sets from Isaac (2020) (blue), and
our quasi-optimal nodal distributions (black) for functions: (a) u1; (b) u2;
and (c) u3. 113

5.12 Interpolation error in the pentatope for different polynomial degrees using
equispaced (red), the explicit nodal sets from Isaac (2020) (blue), and our
quasi-optimal nodal distributions (black) for functions: (a) u1; (b) u2; and
(c) u3. 116

6.1 Lebesgue function of our quasi-optimal nodal distribution of polynomial
degree p = 10 in the triangle and the 83 maxima in the sextant (white
points) found during the optimization process. 128

6.2 Interpolation error in the triangle for different polynomial degrees using
equispaced (red), warp-and-blend (blue), our β quasi-optimal from Chap-
ter 5 (black), and our Lebesgue quasi-optimal (magenta) nodal distribu-
tions for functions: (a) u1; (b) u2; and (c) u3. 140

6.3 Interpolation error in the tetrahedron for different polynomial degrees us-
ing equispaced (red), explicit (Isaac, 2020) (blue), our β quasi-optimal
from Chapter 5 (black), and our Lebesgue quasi-optimal (magenta) nodal
distributions for functions: (a) u1; (b) u2; and (c) u3. 144

6.4 Interpolation error in the pentatope for different polynomial degrees us-
ing equispaced (red), explicit (Isaac, 2020) (blue), our β quasi-optimal
from Chapter 5 (black), and our Lebesgue quasi-optimal (magenta) nodal
distributions for functions: (a) u1; (b) u2; and (c) u3. 147

xvi

List of Figures

6.5 Convergence of the distance to the limit model for the sphere meshes of
polynomial degree p, p = 1, . . . , 10, with equispaced (red), explicit (blue)
and quasi-optimal Lebesgue (black) nodal distributions. 148

C.1 Representatives of the (a) triangle, and the (b) tetrahedron. Colors in-
dicate the number of degrees of freedom. Blue nodes have zero degrees
of freedom, cyan nodes identify nodes with one degree of freedom, yellow
nodes have two degrees of freedom, and red nodes describe nodes with
three degrees of freedom. 179

xvii

List of Algorithms

3.1 Parameterization of the limit model. 31
3.2 Parameterization of a limit curve of the limit model. 32
3.3 Parameterization of a limit surface of the limit model. 33
3.4 Generate high-order surface mesh interpolating the limit model. . . . 36
3.5 Curve volume mesh smoothing features. 42
3.6 Smooth geometry features. 43
3.7 Generate high-order volume mesh. 43
4.1 Approximating the minimum by sampling. 75
5.1 Exploring local minima of a function. 100
5.2 Updating the graph structure. 101
6.1 Computing the optimal Lebesgue nodal distribution in the interval. . 127
6.2 Optimizing the Lebesgue constant of a nodal distribution in the simplex.129
6.3 Computing the descent direction. 132
6.4 Computing a value of α such that y+αv improves the Lebesgue constant.133
6.5 Adjusting the bounds of the degrees of freedom. 134
7.1 Computing interpolation-aware numerical quadratures. 160
D.1 Optimizing the functional β (y). 189

xix

Chapter 1

Introduction

1.1 Motivation and background

To simulate unsteady phenomena on complex moving geometry, computational sci-

entists and engineers have been interested in unstructured space-time discretizations

(Wang and Persson, 2015; Murman et al., 2016; Badia and Olm, 2017; Jayasinghe

et al., 2018). This interest has been prompted by the potential to overcome some

issues of standard time marching unstructured methods for unsteady simulations on

moving geometries. To illustrate some of these issues, let us consider a time-marching

simulation of the flow in a turbomachine. To obtain the fluid dynamics, standard

time-marching unstructured methods perform a sequence of time steps, facilitating

parallel computations in space but not in time. These time steps can be different

at each step, but they must be the same for all the spatial regions. Thus, it is not

possible to feature different time resolutions in different spatial locations. This fixed

time resolution hampers the possibility of locally adapting the space and time reso-

lution to the space-time solution. Furthermore, many non-fully implicit high-order

time discretizations have stability issues beyond the fourth order (Wanner and Hairer,

1996). Finally, to simulate the motion of the rotor blades, the simulation code has to

feature coupling techniques for non-conformal sliding meshes (Chaurasia, 2010).

In contrast, space-time discretizations consider a unique mesh that discretizes the

steady space-time geometry described by the moving spatial geometry (Wang and

Persson, 2015; Murman et al., 2016; Jayasinghe et al., 2018). Having a unique mesh

allows parallelizing simultaneously in space and time, yet this parallelization is limited

1

1. Introduction

by causality (Badia and Olm, 2017). Moreover, we can generate an initial space-time

mesh featuring different time resolutions in different spatial regions. Then, it is pos-

sible to use this initial mesh to locally adapt the space-time mesh to feature different

resolutions not only in space but also along the time dimension (Caplan et al., 2020;

Belda-Ferŕın et al., 2019, 2023). Moreover, high-order space-time discretizations al-

low stable discretizations beyond the fourth order in space as well as in time (Wanner

and Hairer, 1996). Finally, because the motion of the spatial geometry results in a

steady space-time geometry, there is no need to use sliding meshes. Unfortunately,

although space-time discretizations have these potential advantages, they have not

been widely adopted for 3D unsteady high-fidelity simulations because many fun-

damental capabilities related to high-order approximation to geometry and solution

must still be developed in 4D. These capabilities include performing high-order nu-

merical interpolation and integration on complex space-time geometry (Frontin et al.,

2021).

Developing methods for high-order numerical interpolation and integration on

complex 4D geometry suitable for simulation is the main challenge of this thesis.

This development is relevant because it will contribute to enabling 4D high-order

space-time discretizations for 3D unsteady high-fidelity simulation.

1.1.1 Representation and modeling of the simulation intent

Flow simulations with unstructured high-order methods require curved meshes that

approximate a curved boundary representation preserving the simulation intent (Pers-

son and Peraire, 2008; Chaurasia et al., 2012; Johnen et al., 2013; Gargallo-Peiró,

2014; Gargallo-Peiró et al., 2015c,b; Ruiz-Gironés et al., 2016b,a; Moxey et al., 2016;

Thakur et al., 2009; White et al., 2005; Shapiro et al., 2011; Nolan et al., 2015). To

model the previous features, it is standard to use CAD boundary representations

based on trimmed NURBS, but these trim-based models might violate the simula-

tion intent since they might present unintended gaps or discontinuities of the normal

vector on irregular points and curves adjacent to trimmed surfaces. This issue can

be circumvented using fine elements yet coarser than the model tolerance, but since

these elements are planar, this approximation does not feature normal vector conti-

nuity through any triangular edge, and thus, it is not adequate for flow simulation.

Nevertheless, we can convert the triangular mesh to a gap-free curved geometry model

that features normal vector continuity by using successive applications of a subdivi-

2

1.1. Motivation and background

sion scheme (Persson et al., 2006) or degree three Bézier polynomials (Loseille and

Rochery, 2023). Unfortunately, no approach has devised a method to model the

simulation intent and represent curved geometry without gaps with a C1-continuous

piecewise polynomial parameterization.

Representing and modeling the simulation intent on complex geometry is the first

research problem of this thesis. Without this feature, boundary representations based

on straight-sided discretizations may be inadequate for flow simulations. This is so

because linear triangulations do not explicitly feature curvature information and thus

they fail to preserve the simulation intent.

1.1.2 Numerical interpolation

To reduce the interpolation error, nodal distributions in the simplex are obtained

by optimizing an objective function that has as design variables either the point co-

ordinates (Heinrichs, 2005; Briani et al., 2012; Rapetti et al., 2012; Roth, 2005) or

a parameter controlling an explicit warp and blend of the boundary nodes (Blyth

and Pozrikidis, 2005; Warburton, 2006; Luo and Pozrikidis, 2006; Isaac, 2020). The

objective function corresponds either to the non-differentiable infinity norm of the

interpolation operator, known as Lebesgue constant, or to a differentiable surrogate.

When the minimization of a differentiable surrogate is considered (Fekete, 1923; Bos,

1983; Chen and Babuška, 1995; Hesthaven, 1998; Taylor et al., 2000; Roth, 2005; Bri-

ani et al., 2012; Van Barel et al., 2014; Chen and Babuška, 1996; Hesthaven and Teng,

2000), nodal distributions have been obtained only up to 3D. When the minimization

of the Lebesgue constant is considered (Heinrichs, 2005; Briani et al., 2012; Rapetti

et al., 2012; Roth, 2005), there are no works using the node coordinates as design

variables and consistently exploiting first-order derivatives of the Lebesgue function.

Numerical interpolation of functions in the simplex up to four dimensions is the

second research problem of this thesis. Nodal distributions with optimal interpolation

properties have been used as a proxy of good nodal distributions for the nodal high-

order unstructured methods such as the discontinuous (Hesthaven and Warburton,

2007) and continuous Galerkin (Karniadakis and Sherwin, 2005) methods. Without

quasi-optimal interpolation nodal distributions, the accuracy of interpolating and

solving the Vandermonde systems could be reduced because non-optimal distributions

are not specifically devised for interpolation.

3

1. Introduction

1.1.3 Numerical interpolation and integration

Linear problems with the mass matrix as system matrix appear in many problems

such as in explicit time integration and L2 projections to approximate functions. The

collocation of the interpolation points with the quadrature points yields a diagonal

mass matrix. This fact is a key aspect of the spectral element method (Patera, 1984),

it leads to evaluating the functions only on the interpolation points (Hesthaven and

Warburton, 2007; Kopriva and Gassner, 2010), it improves the numerical stability for

specific finite element methods (Jameson et al., 2012; Williams and Jameson, 2013;

Williams, 2013; Witherden and Vincent, 2014), and it is also of interest in space-time

discretizations (Williams et al., 2020). To impose the exact integration of polyno-

mials, several numerical quadratures for the simplex have been studied (Lyness and

Jespersen, 1975; Zhang et al., 2009; Wandzura and Xiao, 2003; Taylor et al., 2007;

Williams et al., 2014; Witherden and Vincent, 2015; Keast, 1986; Shunn and Ham,

2012; Hammer et al., 1956; Hammer and Stroud, 1956; Silvester, 1970; Grundmann

and Möller, 1978; Dan and Wang, 2009; Xiao and Gimbutas, 2010; Williams et al.,

2020). Alternatively, there exist other approaches specifically devised to exploit the

advantages of the spectral element method (Taylor and Wingate, 1999, 2000; Pas-

quetti and Rapetti, 2006, 2013; Giraldo and Taylor, 2006). Unfortunately, none

of these approaches is ready for 4D symmetric numerical integration with positive

weights and a simplicial number of closed points.

Simultaneous numerical integration and interpolation of functions in the simplex

up to four dimensions is the third research problem of this thesis. Without these

interpolation-aware numerical quadratures, the interpolation accuracy could be re-

duced. This is so because numerical quadratures are not specifically devised for

interpolation.

1.2 Research opportunities and questions

The previous overview identifies the research opportunity to enable high-order numer-

ical interpolation and integration on complex geometry suitable for simulation up to

four dimensions. Although there are methods to obtain nodal distributions for nu-

meral interpolation and integration up to four dimensions, there are no known nodal

distribution frameworks for complex geometry that consider simulation suitability as

well as quasi-optimal interpolation error and numerical quadratures. The overview

4

1.3. Aim and objectives

also identifies the following key research questions:

(Q1) How can we represent and model the simulation intent on complex geometry?

(Q2) How can we numerically interpolate functions on complex geometry up to four

dimensions?

(Q3) How can we simultaneously numerically integrate and interpolate functions on

complex geometry up to four dimensions?

The answers to questions (Q1), (Q2), and (Q3) contribute to enable simulation

on complex geometry up to four dimensions. The question (Q1) deals with obtaining

complex geometry suitable for simulation. Meanwhile, the next two questions address

two key numerical aspects for simulation on complex geometry, interpolation (Q2)

and integration (Q3).

1.3 Aim and objectives

To enable high-order numerical interpolation and integration in complex geometry,

this thesis aims to demonstrate interpolation-aware optimization of nodal distributions

on the high-dimensional simplex constrained to fulfill either feasible interpolation or

feasible integration with the point coordinates as design variables. To this end, this

thesis develops the following objectives:

(O1) To nodally represent boundary geometry for flow simulation (Jiménez-Ramos

et al., 2020)

(O2) To model flow simulation intent with a nodal boundary representation, Chap-

ter 3 (Jiménez-Ramos et al., 2022).

(O3) To estimate the interpolation error of a given point distribution, Chapter 4

(Jiménez-Ramos et al., 2023d).

(O4) To obtain candidate point distributions suitable for interpolation, Chapter 5.

(O5) To obtain point distributions with quasi-optimal interpolation error, Chapter 6.

(O6) To obtain integration points also suitable for interpolation, Chapter 7.

5

1. Introduction

The aim of this thesis addresses the research opportunity. Moreover, the combi-

nation of the objectives addresses the research questions. For the research question

(Q1), objective (O1) addresses the simulation intent representation, and objective

(O2) accounts not only for the representation but also for the modeling of the sim-

ulation intent. Regarding the research question (Q2), objective (O3) addresses the

evaluation of the interpolation error, objective (O4) addresses the exploration of the

local minima of a proxy of the interpolation error, and objective (O5) addresses the

optimization of a candidate nodal distribution to obtain quasi-optimal interpolation

error. Finally, the research question (Q3) is addressed by objective (O6).

1.4 Scope

This thesis is focused on interpolation-aware optimization of nodal distributions on

the high-dimensional simplex constrained to fulfill either feasible interpolation or fea-

sible integration with the point coordinates as design variables. Specifically, this thesis

focuses on symmetric nodal distributions on the high-dimensional simplex optimizing

the Lebesgue constant, or a differentiable surrogate.

Following, we justify this scope, yet there are alternative choices. First, we con-

sider interpolation and integration in the simplex because simplicial unstructured

meshes have demonstrated to deal with complex geometry. Second, although the

formulations are proposed for arbitrary dimensionality, we focus on moderate dimen-

sions. This is so because we aim to simulate 4D space-time dynamics or to numeri-

cally solve the 6D Boltzmann equations. Third, we consider nodal distributions with

a simplicial number of points because interpolation in the space of polynomials of

degree less than or equal to p in d dimensions has a simplicial number of elements.

Fourth, we are interested in symmetric nodal distributions so as to be invariant un-

der permutation of the simplex vertices and avoid favoring any particular direction.

Moreover, the number of points in each sub-simplex of the symmetry simplex is cho-

sen to match that of the equispaced distribution because it seems to be the only one

to provide a unisolvent set of nodes (Marchildon and Zingg, 2022). Fifth, determinis-

tic optimization methods are favored because we want to exploit and understand the

characteristics of the interpolation problem and obtain reproducible output for the

same input. Sixth, to improve the interpolation properties of a nodal distribution, we

optimize the Lebesgue constant since it is the infinity norm of the interpolation op-

6

1.5. Methodology

erator. Seventh, to approximate the Lebesgue constant, we consider the proxy given

by the vectorial L2-norm of the Lagrange interpolating polynomials. Yet there exist

other alternatives, we favor this proxy because it is twice-differentiable and seems to

be more numerically stable.

1.5 Methodology

To gradually meet the aim of this thesis, the research methodology sorts the objectives

by sequential dependency and increasing difficulty. Out of the scope of this thesis,

our long-term goal is to represent and model 4D space-time geometry obtained by

sweeping a 3D volume mesh. Accordingly, to obtain preliminary results for a simpli-

fied version of the problem in 3D, the first two objectives consider nodal boundary

representation (O1) and modeling (O2). Then, following the 3D geometry interpo-

lation results, the objectives (O3), (O4), and (O5) are focused on evaluating and

optimizing the interpolation error of a nodal distribution. Specifically, objective (O3)

pursues evaluating the interpolation error of a nodal distribution because it is crucial

to optimize the coordinates of the distribution according to either a proxy (O4) or the

interpolation error (O5). Finally, exploiting the previously developed optimization

approaches for numerical interpolation, objective (O6) explores the possibility to ob-

tain nodal distributions that not only properly interpolate but also exactly integrate

polynomials.

The methodology approaches are based on mathematical formulations and deriva-

tions, design of optimization methods, heuristics, computer implementations, runtime

checks, and verification approaches. First, the mathematical formulation and deriva-

tions allow stating the optimization problem formulation. Second, the proposed op-

timization methods are the base of the computer implementations. Third, heuristics

are used to measure the distance to a limit model, explore hyper-volumes with an

algebraic scaling with the dimension, stop point adaptivity according to a Lipschitz

criterion, choose between different multiple minima of a Lebesgue constant proxy,

use degree-aware trust region radius, and use previous Lebesgue maxima to sample

first-order Lebesgue-function-based constraints. Fourth, the distributed computer

implementations of the proposed optimization methods allow obtaining numerical re-

sults for nodal distributions for interpolation and integration. Fifth, the computer

implementations check at runtime whether we obtain a descent direction and a feasi-

7

1. Introduction

ble nodal distribution during the optimization process. Finally, to verify the results,

we compare them with the best existing nodal distributions for each one of the di-

mensions (2D, 3D, and 4D).

1.6 Contributions and novelty

The main contribution is to propose an optimization framework to obtain nodal distri-

butions for high-order interpolation and integration in the high-dimensional simplex

that have quasi-optimal interpolation accuracy. These quasi-optimal nodal distribu-

tions can be used to represent the boundary of a complex geometry that is modeled

to preserve the simulation intent (Q1). Regarding these boundary representations,

the quasi-optimal nodal distributions can be used to approximate the target geome-

try through numerical interpolation (Q2) and to measure the geometric accuracy of

the interpolative approximation through numerical integration (Q3). The framework

heuristically explores different nodal distributions that are multiple minima of the in-

terpolation error (Q2). Moreover, the resulting nodal distributions can be optimized

to obtain numerical quadratures (Q3). To this end, addressing the previously stated

objectives, this thesis contributes with novel methods:

(C1) Devising an equispaced nodal representation method to interpolate a curved

subdivision model obtained from a linear triangular mesh. This contribution

addresses the representation aspect of question (Q1) for equispaced nodal dis-

tributions. The main novelty is proposing a nodal curving method based on

hierarchical subdivision with no need for the underlying target geometry. This

contribution corresponds to the peer-reviewed conference paper Jiménez-Ramos

et al. (2020).

(C2) Devising a nodal modeling method to preserve the required simulation intent

that interpolates the subdivision curvature of the sharp and smooth features

prescribed on a linear triangular mesh. This contribution addresses question

(Q1). There are two main novelties. First, proposing a modeling technique

to preserve or smooth the sharp features of a linear mesh model. Second,

given a polynomial degree and nodal distribution, generating curved piecewise

polynomial representations interpolating a subdivision limit model with no need

8

1.6. Contributions and novelty

for the underlying target geometry. This contribution corresponds to the journal

paper Jiménez-Ramos et al. (2022).

(C3) Proposing a point refinement method to estimate the Lebesgue constant of a

nodal distribution on the d-dimensional simplex. This contribution addresses

the estimation aspect of question (Q2). Regarding the devised adaptive method

to estimate the interpolation error, the main novelties are the algebraic scaling

with the dimensionality of the sampling points and the automatic Lipschitz-

based stopping criterion. This contribution corresponds to the peer-reviewed

conference paper Jiménez-Ramos et al. (2023d).

(C4) Proposing an optimization method to explore the nodal distributions that are

the heuristically best local minima of a Lebesgue constant proxy. This contri-

bution addresses question (Q2) for a proxy of the interpolation error. There are

two main novelties. First, approximating the uphills of the energy landscape

with the faces of a Delaunay triangulation on the (d+1)-sphere. Second, heuris-

tically enforcing a tunnel effect through the uphills of the energy landscape to

generate initial approximations with no grid-like structure. This contribution

corresponds to the journal paper in preparation Jiménez-Ramos et al. (2023a).

(C5) Proposing a constrained optimization method to minimize the Lebesgue con-

stant of an initial nodal distribution. This contribution addresses question (Q2).

The main novelty is to deterministically minimize the Lebesgue constant in the

high-dimensional simplex by consistently exploiting the first-order derivatives

of the Lebesgue function in terms of the node coordinates. This contribution

corresponds to the journal paper in preparation Jiménez-Ramos et al. (2023c).

(C6) Formulating and minimizing a constrained optimization problem enforcing small

Lebesgue constant and exact integration of an initial nodal distribution. This

contribution addresses question (Q3). The main novelty is coupling in a single

optimization problem the minimization of the interpolation error and the con-

straints of exact integration of polynomials. This contribution corresponds to

the journal paper in preparation Jiménez-Ramos et al. (2023b).

In this thesis, there are two key central findings to obtain the interpolation and

integration results on the d-dimensional simplex. First, to propose the heuristics and

methods to obtain the results, it is key to rely on the claim that nodal distributions

9

1. Introduction

that feature optimal interpolation accuracy are equidistributed in the d+ 1-sphere or-

thant (Taylor et al., 2000; Roth, 2005). To fully exploit it as a heuristic, in Chapter 5,

we propose to evaluate and optimize nodal distributions by setting on the (d + 1)-

sphere orthant the: coordinates of the adaptive sampling points, initial equispaced

approximations of nodal distributions, distance between points as the geodesic length,

Delaunay triangulations proxying the energy landscape uphills, and trust region ra-

dius. Accordingly, the equidistribution claim is a key ingredient in several of the

proposed methods and, therefore, it is crucial to obtain our quasi-optimal nodal dis-

tributions results for numerical interpolation and integration. Second, to efficiently

explore nodal distributions that are local optima and do not feature a lattice-like struc-

ture, it is key to emulate a tunnel effect in the energy landscape of a free node on the

(d + 1)-sphere orthant. Specifically, in Chapter 5, we propose to proxy the uphills

of the energy landscape of the interpolation error for a free node with the faces of a

Delaunay tessellation of the nodal distribution on the (d + 1)-sphere orthant. Using

this proxy, we can emulate a tunnel effect that heuristically enforces a node to go

to the other side of an uphill energy landscape by simply relocating the node on the

centroid of the element on the other side of the face. Then, continuously optimizing

all the degrees of freedom of the nodal distribution we can obtain a new local minima.

Using deterministic continuous optimization without this tunnel effect we cannot re-

cover the non lattice-like structures in 2D of the best Lebesgue nodal distributions

reported in the literature (Roth, 2005). Hence, the tunnel effect emulation is crucial

to verify our 2D results and obtain our 3D and 4D results for numerical interpolation

and integration.

1.7 Layout

To develop the previous contributions, the thesis starts with preliminary definitions

and contents that are common to the different contributions, see Chapter 2. Then,

the proposed contributions are successively presented. Finally, the appendices include

the detail of auxiliary methods and results. Following, we summarize the contents of

the contribution chapters.

In Chapter 3, we present a nodal interpolation method to approximate a sub-

division model. The main application is to model and represent curved geometry

without gaps and preserving the required simulation intent. Accordingly, we devise

10

1.7. Layout

the technique to maintain the necessary sharp features and smooth the indicated

ones. This sharp-to-smooth modeling capability handles unstructured configurations

of the simulation points, curves, and surfaces. The surfaces correspond to initial lin-

ear triangulations that determine the sharp point and curve features. The method

automatically suggests a subset of sharp features to smooth which the user modi-

fies to obtain a limit model preserving the initial points. This model reconstructs

the curvature by subdivision of the initial mesh, with no need for an underlying

curved geometry model. Finally, given a polynomial degree and a nodal distribu-

tion, the method generates a piecewise polynomial representation interpolating the

limit model. We show numerical evidence that this approximation, naturally aligned

to the subdivision features, converges to the model geometrically with the polyno-

mial degree for nodal distributions with sub-optimal Lebesgue constant. We also

apply the method to prescribe the curved boundary of a high-order volume mesh.

We conclude that our sharp-to-smooth modeling capability leads to curved geometry

representations with enhanced preservation of the simulation intent.

In Chapter 4, we propose a point refinement method to estimate the Lebesgue

constant on the d-dimensional simplex. The proposed method features a smooth gra-

dation of the point resolution, neighbor queries based on neighbor-aware coordinates,

and a point refinement that algebraically scales as (d+ 1) d. Remarkably, by using

neighbor-aware coordinates, the point refinement method is ready to automatically

stop using a Lipschitz criterion. For different polynomial degrees and point distri-

butions, we show that our automatic method efficiently reproduces the literature

estimations for the triangle and the tetrahedron. Moreover, we efficiently estimate

the Lebesgue constant in higher dimensions. Accordingly, up to six dimensions, we

conclude that the point refinement method is well-suited to efficiently estimate the

Lebesgue constant on simplices. In perspective, for a given polynomial degree, the

proposed point refinement method might be relevant to optimize a set of simplex

points that guarantees a small interpolation error.

In Chapter 5, we propose an optimization method to explore the heuristically best

high-order interpolation nodal distributions in the d-dimensional simplex. We con-

sider a twice-differentiable proxy of the Lebesgue constant with multiple local minima

that are heuristically explored by means of node relocations and smooth optimiza-

tions. For a free node, a proxy of the energy landscape of the Lebesgue constant is

obtained through a Delaunay triangulation on the (d+ 1)-sphere, where the opposite

11

1. Introduction

faces of the simplices incident to the node determine an approximation of the uphill

energy landscape of the functional around such node. Accordingly, to explore prox-

imal distributions, we heuristically enforce a tunnel effect by relocating one node to

the other side of the uphill of the energy landscape. To heuristically find the best

local minima, we explore nodal distributions which always improve the current func-

tion value. To exploit the available computational resources, the nodal distributions

with better function values are explored first. The results show that the considered

heuristics drastically reduce the number of local minima to explore while not having

an impact on the best values found. Moreover, in 2D, our nodal distributions present

good interpolation properties, and in 3D and 4D, our nodal sets improve the cur-

rent best interpolative nodal configurations. We conclude that the computed nodal

distributions might be suitable for high-order interpolation in the high-dimensional

simplex, yet they might be excellent initial approximations for methods optimizing

the Lebesgue constant to further improve the interpolation properties.

In Chapter 6, we propose a specific-purpose deterministic method to optimize the

Lebesgue constant of a given nodal distribution in the d-dimensional simplex. In a

sequential linear programming approach, we fix relevant spatial points and compute

a candidate descent direction consistently exploiting the first-order derivatives of

the Lebesgue function with respect to the node coordinates. The derivatives are

computed analytically and the Lebesgue constant is not differentiated in any case.

We consider an advantageous representation of the nodes on the orthant of the (d+1)-

sphere to ensure smooth dynamics during the optimization procedure. The method

finds an optimum close to the given initial approximation. Accordingly, it is well-

suited to further improve the Lebesgue constant of nodal distribution with already

good interpolation properties, such as quasi-optimal nodal distributions minimizing

the vectorial L2-norm of the Lagrange interpolating polynomials. The method is

validated by finding the optimal Lebesgue nodes in 1D. Furthermore, we reproduce

the literature results in 2D, and find the nodal distributions with the lowest Lebesgue

constant up to date in 3D and 4D. In perspective, we expect that the computed nodal

distributions might be suitable for high-order interpolation in the high-dimensional

simplex.

In Chapter 7, we propose a method to compute interpolation-aware numerical

quadratures in the four-dimensional simplex. We minimize the interpolation error of

a symmetric and closed nodal distribution subject to integrating exactly high-order

12

1.7. Layout

polynomials with positive integration weights. The design variables are the weights

and coordinates of the nodal representatives. The interpolation error is approxi-

mated with the twice-differentiable vectorial L2-norm of the Lagrange interpolating

polynomials. Because we consider symmetric distributions, the constraints only im-

pose exact integration of high-order symmetry-invariant polynomials. Solving the

constrained problem using standard optimization methods, we obtain preliminary

results in the two-, three-, and four-dimensional simplex. In perspective, we expect

that our collocation of the interpolation points with the integration points will be

used to improve the efficiency and stability of the spectral element method and other

unstructured high-order methods.

13

Chapter 2

Preliminaries and definitions

Before proposing the new methods and results of this thesis, we introduce the com-

mon notation, concepts, and definitions. First, we introduce some notation regarding

the nodal distributions, the barycentric coordinates system, and the parameteriza-

tion of symmetric nodal distributions. Second, we define the Lebesgue constant and

show the properties relevant to this thesis. Finally, we describe some implementation

details regarding the evaluation of the Lebesgue constant and a numerically stable

orthonormal polynomial basis.

2.1 Symmetric nodal distributions on the simplex

In this thesis, we are interested in interpolation and integration on complex geometry

up to four dimensions discretized using simplices. Specifically, a nodal distribution

of polynomial degree p in the d-dimensional simplex consists of Np,d =
(
d+p
d

)
nodes

and is denoted by Z = {zi}i=1,...,Np,d .

2.1.1 Barycentric coordinates system

To avoid a dependence on a specific straight-sided reference simplex, we exploit the

barycentric coordinates system. We denote by x = (x1, . . . , xd) the cartesian coordi-

nates of a point in the d-simplex Kd ⊂ Rd. The same point is expressed in barycentric

15

2. Preliminaries and definitions

coordinates as λ = (λ1, . . . , λd+1), where the components satisfy

0 ≤ λi ≤ 1, for i = 1, . . . , d+ 1,

d+1∑

i=1

λi = 1,

x =
d+1∑

i=1

λixi,

with x1, . . . ,xd+1 being the cartesian coordinates of the d+ 1 vertices of the simplex.

We highlight that the barycentric coordinates λ are obtained from a linear combi-

nations of the cartesian coordinates x and allow our definitions and methods to be

independent of a specific simplex vertices.

2.1.2 Parameterization of symmetric nodal distributions

In this thesis, we consider symmetric nodal distributions on the simplex. We favor

symmetric over non-symmetric nodal sets because we want elements that are label

invariant and orientation free. As a consequence, since in a simplicial mesh two

adjacent simplices intersect along an entity of dimension k, for k = 1, . . . , d− 1, the

nodal distribution of both elements coincides along their intersection. Moreover, on

the entities of dimension k, we impose that the number of nodes on the entity matches

the number of nodes of the k-dimensional simplex, for k = 1, . . . , d − 1. Therefore,

the restriction of the nodal basis on an entity coincides with the nodal high-order

basis of the lower-dimensional simplex. Finally, we consider unisolvent set of nodes,

that is, the data values at the nodes define a unique polynomial.

Since the nodal distribution is symmetric, determining the position of a subset of

the set of nodes is enough to describe the position of the whole distribution. These

nodes that identify the entire distribution are called representative nodes. Moreover,

the movement of the nodes presents several constraints. On the one hand, interior

nodes may belong to a symmetry hyper-plane that restricts their dynamics. For

instance, a node on the median of the triangle can only move along the median. On

the other hand, boundary nodes have to remain on the boundary while describing a

symmetric distribution on the face of the element. Thus, each representative belongs

to a manifold which describes its domain. In conclusion, a small set of parameters

is enough to determine the position of a nodal distribution. These parameters are

meant to serve as design variables in the optimization problems. We encode the n

16

2.2. Lebesgue constant

parameters describing a nodal configuration in a vector y ∈ Rn, and we denote by σ

the linear mapping which generates the whole nodal set Z from the vector of degrees

of freedom,

σ : Rn → Rd × Np,d· · · × Rd

y 7→ Z
.

In Appendix C, we carefully detail how we determine the nodal representative, the

degrees of freedom, and the mapping σ.

2.2 Lebesgue constant

Consider a compact domain Kd ⊂ Rd, and let Pdp be the finite dimensional vector

space of polynomials in d variables of degree not greater than p. Denote by Np,d :=

dim Pdp =
(
d+p
p

)
, and consider a unisolvent nodal set Z = {z1, . . . ,zNp,d}. Thus, given

a continuous function f ∈ C
(
Kd
)
, there exists a unique function g ∈ Pdp such that

g (zi) = f (zi), for i = 1, . . . , Np,d. We highlight that the interpolation operator

IZ : C
(
Kd
)
−→ Pdp ⊂ C

(
Kd
)

f 7−→ g = IZf

is linear and depends on the nodal set. The Lebesgue constant is defined as the norm

of this operator

Λ ≡ Λ (Z) := ‖IZ‖ .

Using the infinity norm in C
(
Kd
)

defined as ‖h‖∞ = maxx∈Kd |h (x)|, for h ∈ C
(
Kd
)
,

the Lebesgue constant can be written as

Λ = sup{‖IZf‖∞ : ‖f‖∞ = 1, f ∈ C
(
Kd
)
}.

For the nodal set Z, we consider the Lagrange interpolating polynomial basis

{φi}i=1,...,Np,d satisfying φi (zj) = δij. Indeed, {φi}i=1,...,Np,d is a basis of Pdp . Thus, the

interpolative polynomial IZf can be written in this basis as

(IZf) (x) =

Np,d∑

i=1

f (zi)φi (x;Z) .

Consequently, we obtain the following equivalent definition of the Lebesgue constant

Λ = ‖IZ‖ = max
x∈Kd

Np,d∑

i=1

|φi (x;Z)| . (2.1)

17

2. Preliminaries and definitions

Note that, fixed the dimension d and the polynomial degree p, the Lebesgue constant

solely depends on the nodal distribution Z, it does not depend on the function f

to be interpolated. Furthermore, if we denote by f ? ∈ Pdp the best approximating

polynomial to f , from f ? = IZf ? and the triangular inequality, it follows that

‖f − IZf‖∞ ≤ (1 + Λ) ‖f ? − f‖∞ . (2.2)

On the right-hand side, only the term ‖f ? − f‖∞ depends on the function to be

interpolated. Thus, using nodal distributions with low Lebesgue constant leads to

tighter upper bounds for the interpolation of any function f .

It is also worth studying the growth of the Lebesgue constant as the polynomial

degree increases. According to Eq. (2.2), Λ should grow slower in p than ‖f ? − f‖∞
dies away to attain convergence of the interpolator to the target function f (Bloom

et al., 1992; Roth, 2005). In particular, uniform convergence is attained if

lim
p→+∞

Λ1/p = 1.

Unfortunately, even in one dimension, equispaced nodal sets have Lebesgue constants

that grow exponentially with the polynomial degree (Bos, 1983; Bloom, 1988) and,

therefore, are not suitable for interpolation. As an example, interpolating with eq-

uispaced points the Runge function leads to unbounded interpolation error towards

the endpoints of the interval (Runge, 1901).

In conclusion, our goal is to find nodal distributions in the simplex featuring a

simplicial number of points, low Lebesgue constant, and numerical evidence that

Λ1/p → 1 as the polynomial degree increases. Moreover, since we expect these nodes

to be used in the interpolation of fields arising from numerical simulations, we only

study symmetric nodal sets.

2.3 Orthonormal polynomial basis

To compute the Lebesgue constant, we should evaluate the Lagrange interpolating

polynomials, see Eq. (2.1). Given a basis {bj (x)}j=1,...,Np,d of Pdp , due to the interpo-

lating property of the Lagrange polynomials, the following relation holds

bj (x) =

Np,d∑

i=1

bj (zi)φi (x;Z) .

18

2.3. Orthonormal polynomial basis

Thus, to evaluate the Lagrange interpolating polynomials we aim at numerically solv-

ing a linear system with a Vandermonde matrix with entries bj (zi). Since the value of

the Lebesgue constant is independent of the choice of the polynomial basis {bj (x)},
we favor a numerically robust and stable basis. The orthogonal polynomial basis due

to Koornwinder (1975) and Dubiner (1991) is a good candidate. Nevertheless, these

polynomials are obtained via a transformation of the hypercube to the hypersimplex

and present some singularities. Fortunately, it is possible to circumvent these issues

by evaluating directly in the simplex coordinates by means of a recurrence relation

(Kirby, 2010). The available expressions generate an orthogonal polynomial basis

in the triangle and the tetrahedron, yet we modify these expressions to generate an

orthonormal polynomial basis in the d-dimensional simplex, d ≥ 1. Furthermore,

since these expressions are simple, one can easily obtain the first and second-order

derivatives to be used in the computation of the Lagrange interpolating polynomials

derivatives.

19

Chapter 3

Interpolation of subdivision

features for curved geometry

modeling

3.1 Introduction

The capability to model and represent curved geometry preserving the simulation

intent is critical for flow simulation with unstructured high-order methods. These

high-order simulations require curved meshes that approximate a curved boundary

representation (Persson and Peraire, 2008; Chaurasia et al., 2012; Johnen et al., 2013;

Gargallo-Peiró, 2014; Gargallo-Peiró et al., 2015c,b; Ruiz-Gironés et al., 2016b,a;

Moxey et al., 2016). Ideally, this boundary representation should be composed of

smooth and sharp features agreeing with the simulation intent (Thakur et al., 2009;

White et al., 2005; Shapiro et al., 2011; Nolan et al., 2015).

Flow simulation practitioners favor continuous normal vectors on smooth features

where the intent is to obtain attached flow. In contrast, they only need model conti-

nuity on sharp features where the flow detaches. To illustrate both types of features,

we can consider an aircraft model. We can find there smooth features such as the

nose tip, leading edges, and wing surfaces; and sharp features such as trailing edges

and points.

To model the previous features, it is standard to use CAD boundary represen-

21

3. Interpolation of subsivision features

tations based on trimmed NURBS. Unfortunately, these trim-based models might

violate the simulation intent. This breach is so since they might present unintended

gaps or discontinuities of the normal vector on irregular points and curves adjacent

to trimmed surfaces. Nevertheless, together with virtual geometry (Sheffer et al.,

2000; Sheffer, 2001; Foucault et al., 2008, 2013), CAD boundary representations have

shown to be crucial for generating an unstructured triangular mesh approximating

the curved model boundary.

If the element size is fine but coarser than the model tolerance, we obtain a

fair second-order approximation of the CAD boundary representation without gaps.

However, since the triangles are planar, this approximation does not feature the

normal vector continuity through any triangular edges, and thus, it is not adequate

for flow simulation. Nevertheless, we can convert the triangular mesh to a gap-free

curved geometry model (Persson et al., 2006) that features normal vector continuity

by using a subdivision scheme (Loop, 1987).

This subdivision-based conversion to a curved model is useful even when there

is no underlying CAD model. The conversion only needs a model composed of tri-

angulations, which boundaries determine the model points and polylines. Hence,

this conversion is of practical interest in any application where the triangular mesh

comes from legacy data or real samples, such as in onshore wind farm energy fore-

casting (Gargallo-Peiró et al., 2015a, 2018), transport of pollutants in urban areas

(Gargallo-Peiró et al., 2016a), and bio-engineering.

In these applications, the subdivision conversion provides a curved limit model.

We can query this limit model by successive refinements (Persson et al., 2006; Loop,

1987; Lane and Riesenfeld, 1980). However, this approach requires more refinement

levels the closer a given query point is to an irregular point.

To avoid this unbalanced query, in our previous work (Jiménez Ramos, 2018;

Jiménez-Ramos et al., 2020), we proposed a method to interpolate with a continuous

piecewise quadratic or quartic mesh the limit model while exploiting the structure of

iterative subdivision. Any posterior query to the interpolation model only uses the

corresponding triangular-wise polynomial components, thus skipping the successive

refinement step.

Although skipping posterior successive refinement, our previous approach only

extends to interpolation degrees equal to powers of two on equispaced nodal distri-

butions. Therefore, it does not allow using arbitrary polynomial degrees and nodal

22

3.1. Introduction

distributions. Recall that beyond degree four equispaced nodal distributions feature

large Lebesgue constants that might hamper the corresponding interpolation accu-

racy.

The main contribution of this chapter is to propose a method to address the pre-

vious accuracy issues while still skipping successive refinement on posterior geometry

queries. Specifically, we propose a method to interpolate the subdivision model with

any degree and nodal distribution. The method evaluates the limit model parameter-

ization (Stam, 1998) once on each interpolation point to obtain the resulting nodal

curved mesh model. Furthermore, we show that this nodal mesh is ready to prescribe

the boundary of a curved high-order volume mesh.

We also propose an approximation of the distance between the interpolation and

the limit model to check the geometric accuracy. To compute this distance, we only

need to perform forward evaluations of the nodal parameterization. The distance

allows studying how the nodal interpolation converges to the limit model in terms of

the polynomial degree for different nodal distributions.

We finally propose an assisted sharp-to-smooth modeling capability. The resulting

method automatically suggests a subset of sharp features to smooth, which the user

modifies to obtain a limit model preserving the initial points. It aims to reduce the

amount of human labor required to describe the simulation intent of the model. We

illustrate this assisted modeling capability to assign sharp and smooth features to the

union of triangulations describing an aircraft model in a high-lift configuration.

The organization of the rest of the chapter is as follows. First, in Sect. 3.2, we

review the related literature. Then, in Sect. 3.3, we present the problem statement

and the methodology. Next, in Sect. 3.4, we present some preliminary results on

subdivision, and in Sect. 3.5 we detail the subdivision limit model. In Sect. 3.6, we

detail the curved piecewise polynomial surface mesh interpolation of the limit model.

Following, in Sect. 3.7, we present our subdivision-based mesh curving approach,

detailing the sharp-to-smooth modeling process. Then, in Sect. 3.8, we present several

results to illustrate the capabilities and main features of the presented methods, and

in Sect. 3.9, we discuss some aspects of the method as well as future contributions.

Lastly, in Sect. 3.10, we present some concluding remarks of this chapter.

23

3. Interpolation of subsivision features

3.2 Related work

It is well documented that to obtain a geometric model suitable for simulation, we

need to simplify the original model (Thakur et al., 2009; White et al., 2005). To ob-

tain a simplified model, one standard approach is to define a Virtual Topology on top

of the original CAD model (Sheffer et al., 2000; Sheffer, 2001). A similar CAD simpli-

fication approach, emphasizing automation and posterior meshing needs, considers a

Mesh Constraint Topology (Foucault et al., 2008, 2013). These simplification frame-

works have been proven to be successful in many practical applications. However,

during the simplification process, these frameworks might present some geometric

issues. These issues can be fixed by maintaining a firm link between the original

CAD and the simulation model (Shapiro et al., 2011). The key idea is to store the

simplification steps in a high-level framework connecting the design and simulation

geometry, and thus, facilitating CAD de-featuring (Shapiro et al., 2011; Nolan et al.,

2015). Alternatively, we can automatically de-feature a faceted representation of the

original CAD model (Quadros and Owen, 2012).

In mesh generation, Loop’s subdivision surfaces have been already used to define

surrogate geometry with a surface-wise continuous normal vector (Persson et al.,

2006). This subdivision scheme has also been used to provide nodal quadratic, and

quartic surface and volume meshes (Jiménez Ramos, 2018; Jiménez-Ramos et al.,

2020). Alternatively, the butterfly subdivision scheme (Dyn et al., 1990) has been

used to relocate the boundary nodes when the geometry is unavailable (Yang et al.,

2019). However, the limit model does not feature continuous normal vectors on

irregular points, and the volume is not curved using hierarchical blending. Finally,

there are volume subdivision methods to generate curved volume meshes, featuring

parallel implementations, but they need a curved volume mesh to define the surrogate

geometry (Gargallo-Peiró et al., 2017).

There are alternatives to subdivision schemes for describing the surrogate geom-

etry. The work presented in Jiao and Wang (2012) proposes two curving methods

based on weighted least squares approximations and piecewise polynomial fittings to

generate curved meshes of the target surfaces. However, the method only enforces

the continuity of the model. Herein, the limit model ensures continuity in the sharp

features and normal vector continuity on the smooth features.

The curved surface meshes provided by the method in Jiao and Wang (2012)

can also be used to limit the mesh volumes and, thus, to generate curved high-order

24

3.3. Problem statement and methodology

meshes when the underlying curved geometry is not available. Furthermore, it is

possible to remove sharp features by selecting one-by-one the mesh entities defining

it (Ims et al., 2015). Besides the surface mesh curving method, the method herein

has other differences: a hierarchical blending approach to curve the mesh volume, an

all-in-one feature selection to perform sharp-to-smooth modeling, and a robust and

tunable assisted smooth feature detector.

3.3 Problem statement and methodology

3.3.1 Problem statement

We consider the problem of converting a linear mesh model to a piecewise polynomial

curved mesh of degree q that preserves both the sharp and smooth features determined

in the model. Our solution approximates a curved limit model based on a subdivision

scheme of the linear model. The rest of this section describes the inputs and the

output of the proposed method.

The input data is a linear tetrahedral mesh, a linear model Ω1, and a list of

features to be smoothed. A model of degree q, Ωq, represents the geometry as the

union of the feature points Pp, curves Sqc , and surfaces T qs :

Ωq =

np⋃

p=1

Pp ∪
nc⋃

c=1

Sqc ∪
ns⋃

s=1

T qs .

A geometry feature is characterized by a set of entities of the boundary of the volume

mesh with the same identifier. Then, a point feature describes a vertex to preserve,

and it is characterized by the global identifier of the point to be preserved. A curve

feature describes a smooth curve to preserve. A curve of Ωq is described by the

union of segments of polynomial degree q forming a polycurve. These segments

correspond to boundary edges of the tetrahedral mesh with the same curve identifier.

Finally, a surface feature describes a smooth surface to preserve. A surface of Ωq

is described by the union of facets of polynomial degree q forming a triangulation.

These facets correspond to boundary triangles of the tetrahedral mesh with the same

surface identifier.

Alternatively, we can obtain the model when only the surface features are de-

scribed. That is, if only the boundary triangles are marked, we can retrieve the

feature curves from the intersection of the boundary of two or more feature surfaces.

25

3. Interpolation of subsivision features

Similarly, point features can be determined by the intersection of two or more feature

curves.

In addition to the tetrahedral mesh, the linear model, and the geometry features,

we have an optional input determining the sharp features to smooth. Smoothing

a geometry feature corresponds to removing it from the list of features to preserve

and merging adjacent regions to ensure C1-continuity of the model along the removed

feature. That is, if we smooth a curve, we remove the curve feature and merge the two

adjacent surfaces. While when we smooth a point, we remove the point feature and

merge the curves incident to the vertex. Since each geometry feature is associated

with a unique identifier, the list of features to be smoothed is a sub-sequence of these

unique identifiers.

The output of our method is a piecewise polynomial mesh of degree q with a

boundary preserving the sharp features of the model and satisfying three properties.

First, high-order element vertices interpolate the initial linear mesh nodes. Second,

the nodes of the high-order edges that belong to a feature curve and are not adjacent

to a feature point (inner curve edges) interpolate a cubic C2-continuous curve. Third,

the nodes of the high-order elements that belong to a feature surface and are not ad-

jacent to a feature curve or point (inner surface elements) interpolate a C1-continuous

surface. These properties provide regularity guarantees in the output mesh that are

discussed in Sect. 3.6.2. The geometry features of the boundary of the generated

tetrahedral mesh of polynomial degree q characterize the model of polynomial degree

q, Ωq.

3.3.2 Method: hierarchical subdivision and blending

The curved high-order mesh generation procedure proposed in this chapter is com-

posed of five main steps:

0. Sharp-to-smooth modeling. Some applications need the capability to per-

form sharp-to-smooth geometry modeling. Then, as a preprocess, we can

smooth the non-desired geometry features accordingly to the list of features

to remove provided as input to obtain a smoother surrogate geometry. We de-

vise a technique to automatically suggest the features to smooth in Sect. 3.6.4,

and the smoothing process is detailed in Sect. 3.7.1.

26

3.3. Problem statement and methodology

(a) (b) (c) (d)

Figure 3.1: Method. Input: (a) a linear tetrahedral mesh and the associated model
with (b) feature points, curves and (c) surfaces. Output: (d) a curved tetrahedral
mesh of polynomial degree q, q = 4 in this case.

1. Approximate a surrogate boundary. Given a linear tetrahedral mesh,

Fig. 3.1(a), we extract its boundary. The entities of the boundary mesh char-

acterize the geometry features of the given linear model Ω1, see Fig. 3.1(b) and

Fig. 3.1(c). The hierarchical subdivision of the geometry features determines

a set of C2-continuous limit curves and C1-continuous limit surfaces that serves

as surrogate geometry to generate a curved high-order triangular surface mesh,

see Sect. 3.5. This curved surface mesh preserves the sharp features and smooth

regions of the linear model Ω1, and interpolates it at the nodes of the high-order

mesh. See details in Sect. 3.6.

2. Substitute the boundary of the volume mesh. We increase the polyno-

mial degree of the volume mesh and replace the straight-sided boundary of the

current high-order volume mesh by the high-order surface mesh obtained in the

first step. See details in Sect. 3.7.1.

3. Accommodate the curvature of the boundary. We accommodate the

curvature of the curved surface mesh to the boundary volume elements using

an explicit hierarchical blending, see Fig. 3.1(d). See details in Sect. 3.7.2.

4. Local smoothing and untangling. If necessary, we optimize the low-quality

elements locally following Gargallo-Peiró et al. (2015c,b).

27

3. Interpolation of subsivision features

3.4 Preliminaries: curve and surface mesh

subdivision

In this section, we present the subdivision algorithms that determine the limit model.

The boundary mesh is composed of points, curves, and surfaces. Then, the subdivi-

sion is performed hierarchically, that is, points remain fixed, curves are refined using

a curve subdivision scheme, and surfaces are subdivided using a surface subdivision

scheme.

In Sect. 3.4.1, we detail the curve subdivision algorithm we use herein, and

Sect. 3.4.2 recalls Loop’s subdivision surface scheme. Although these methods do

not preserve the position of the initial control points, a simple modification leads to

a smooth limit manifold interpolating these initial points, see Appendix A.

3.4.1 Curve subdivision scheme

The curve subdivision scheme used in this chapter was originally presented in Lane

and Riesenfeld (1980). Successive applications of the algorithm generate finer poly-

gons, all of them with the same limit curve determined by the initial mesh, referred

to as control mesh. This curve is parametrized by a polynomial of degree three and

it is C2-continuous.

We remark that there exists an element-wise parameterization of the limit curve

that allows mapping any polyline point onto the limit curve. Specifically, consider S1

the c-th curve of the model Ω1. Let Ŝ be the master interval, Se the e-th segment of

S1, λ the position in barycentric coordinates of a point in Ŝ, and {xei}i=1,...,4 the set

composed of the nodes of the segment Se and its neighbors elements. Then, if Se is

not adjacent to a feature vertex, we define the element-wise parameterization of the

limit curve S∞ as

ϕc,e : Ŝ → S∞e ⊂ S∞

λ 7→ ϕc,e (λ) ≡ ϕc,e (λ; {xei}i=1,...,4) ,
(3.1)

where S∞e is the section of the limit curve corresponding to Se. The explicit expres-

sion of ϕc,e can be found in Persson et al. (2006); De Boor (1978). We remark that

the parameterization features third-degree polynomial components in barycentric co-

ordinates. The case in which segment Se is adjacent to a feature vertex is detailed in

Sect. 3.5.1.

28

3.4. Preliminaries: curve and surface mesh subdivision

3.4.2 Surface subdivision scheme

Loop’s subdivision algorithm (Loop, 1987) is used to subdivide the feature surfaces of

the model. Successive applications of the algorithm generate finer triangular meshes,

all of them with the same limit surface determined by the initial control mesh. This

surface is C1-continuous, attaining C2-continuity around regular vertices.

We start by introducing several definitions related to neighbor elements and nodes.

The neighbor elements of a node v are the elements incident to v, and the neighbor

nodes of v are the vertices of these elements. For the case of simplices, there exists

an equivalent definition based on edges. The neighbor edges of a node v are the edges

incident to v, and the neighbor nodes of v are the vertices of these edges. We say that

a surface node is regular if it has six neighbor nodes. Otherwise, we say the node is

irregular or extraordinary. Around regular nodes, the limit surface is parametrized

by a polynomial of degree four and is C2-continuous, while on irregular nodes it is of

class C1 (Zorin, 2000).

Similarly to the curve case, there also exists an element-wise parameterization of

the limit surface for elements with at most one extraordinary vertex (Stam, 1998)

and not adjacent to a sharp feature. Specifically, consider T 1 the s-th surface of the

model Ω1. Let T̂ be the master triangle, Tf the f -th triangle of T 1, λ the position in

barycentric coordinates of a point in T̂ , and {xfi }i=1,...,N the N -point set composed

of the nodes of the triangle Tf and its neighbors elements. Assume Tf has at most

one irregular vertex and is not adjacent to a sharp feature. Then, we define the

element-wise parameterization of the limit surface T ∞ as

ϕs,f : T̂ → T∞f ⊂ T ∞

λ 7→ ϕs,f (λ) ≡ ϕs,f

(
λ; {xfi }i=1,...,N

)
.

(3.2)

The details of this parameterization can be found in Stam (1998). We remark that

the parameterization features fourth-degree polynomial components in barycentric

coordinates.

In order to compute the parameterization of an element featuring more than one

extraordinary vertex, one subdivision step is performed. Since the new edge points

obtained from Loop’s algorithm are regular, one subdivision of the mesh ensures that

every element contains at most one irregular vertex and, therefore, the parameteri-

zation can be evaluated for all the elements of the subdivided mesh. Moreover, this

29

3. Interpolation of subsivision features

parameterization can be applied to elements not adjacent to a sharp feature. The

case in which triangle Tf is adjacent to a sharp feature is detailed in Sect. 3.5.1.

3.5 The limit model

The model describes the geometry to represent and is defined by the union of feature

points, curves, and surfaces. For each of the feature curves (surface) in the model, the

curve (surface) subdivision scheme determines a limit curve (surface), see Sect. 3.4.

The union of feature points, limit curves, and limit surfaces determines the limit

model Ω∞,

Ω∞ =

np⋃

p=1

Pp ∪
nc⋃

c=1

S∞c ∪
ns⋃

s=1

T ∞s .

This limit model preserves the sharp features of the linear model, inherits the smooth-

ness properties of the limit curves and surfaces, and serves as surrogate geometry for

the mesh curving problem. In this section, we detail the parameterization of the limit

model, Sect. 3.5.1, and study its smoothness, Sect. 3.5.2.

3.5.1 Parameterization of the limit model

The limit model can be queried using the element-wise parameterizations of the limit

curves and limit surfaces. As noted in Sect. 3.4, the evaluation of these parameteriza-

tions can only be computed in certain configurations of the mesh. Specifically, they

can only be computed for inner elements and, in the case of surfaces, for triangles

with at most one extraordinary vertex. However, in our models, there are segments

(triangles) adjacent to feature points (feature points or curves), and triangles with

more than one irregular vertex. Therefore, in order to compute the parameteriza-

tion of an element in one of these two configurations the following procedures are

applied. First, we successively subdivide a segment (triangle) adjacent to a feature

point (feature point or curve) until the evaluation point belongs to an inner segment

(triangle) of the subdivided polyline (triangular mesh). Second, if an inner triangle

has more than one extraordinary vertex, we subdivide once the stencil needed for

the evaluation of the parameterization of the limit surface. Since new edge points

generated with Loop’s scheme are regular, all the triangles of the subdivided patch

feature at most one irregular vertex. In conclusion, the parameterization of the limit

model can be computed for any element of the mesh.

30

3.5. The limit model

Algorithm 3.1 Parameterization of the limit model.

Input: Linear surface mesh M, Linear model Ω1, Triangle T 1
f , Point λ ∈ T̂

Output: Point x∞

1: function MapOntoLimitManifold(M, Ω1, T 1
f , λ)

2: x ← ComputePhysicalCoordinate(T 1
f , λ)

3: switch Type of feature containing x do
4: case x is feature point
5: x∞ = x
6: case x belongs to the interior of c-th curve S1 of Ω1

7: x∞ ← MapOntoLimitCurve(M, Ω1, S1, λ, x)

8: case x belongs to the interior of s-th surface T 1 of Ω1

9: x∞ ← MapOntoLimitSurface(M, Ω1, T 1, T 1
f , λ, x)

10: return x∞

11: end function

Following, we detail the evaluation of the limit model for all the possible config-

urations. Consider a linear surface meshM, a triangle T 1
f belonging to a surface T 1

of the linear model Ω1, and denote by T̂ the master triangle. Then, we define the

element-wise parameterization of the limit model Ω∞ as

φ∞f : T̂ → T ∞ ⊂ Ω∞

λ 7→ φ∞f (λ) ≡ φ∞
(
M, T 1

f ,λ
)
.

(3.3)

The computation of function φ∞ is detailed in Algorithm 3.1. Given a linear

surface mesh M, a linear model Ω1, a triangle T 1
f of M, and a point in the master

triangle with barycentric coordinates λ, the function MapOntoLimitManifold maps

λ onto the limit model using the parameterization on triangle T 1
f . Firstly, in Line

2, we map λ onto the linear triangle T 1
f , and obtain the point x ∈ T 1

f . Now, we

distinguish three cases in terms of the type of feature the point x belongs to. If x

belongs to a feature:

• point, the limit position does not change, x∞ = x, Line 5.

• curve, say the c-th curve S1, the parameterization of its limit curve MapOnto-

LimitCurve is computed, see Algorithm 3.2. First, we get the segment Se of

the curve S1 that contains the point x, Line 2. Then, we define as Se the

polygonal mesh composed of the segment Se and the neighbor segments of the

curve, and as Ωe the associated linear model, Line 3, see Fig. 3.2(a). Then,

31

3. Interpolation of subsivision features

Algorithm 3.2 Parameterization of a limit curve of the limit model.

Input: Linear surface mesh M, Linear model Ω1, Curve S1, Point λ ∈ T̂ , Point
x ∈ S1

Output: Point x∞

1: function MapOntoLimitCurve(M, Ω1, S1, λ, x)
2: Se ← GetContainerSegment(S1, x)
3: Se, Ωe ← SubCurve(M, Ω1, Se)
4: while Se is adjacent to feature point do
5: S ′, Ω′ ← CurveSubdivision(Se, Ωe)
6: Se ← GetContainerSegment(S ′, x)
7: Se, Ωe ← S ′, Ω′

8: end while
9: λe ← ComputeBarycentricCoordinates(Se, x)
10: {xei}i=1,...,4 ← GetCurveStencil(Se, Se)
11: x∞ ← ϕc,e (λe; {xei}i=1,...,4)
12: return x∞

13: end function

(a) (b)

Figure 3.2: Subdivision to compute the element-wise parameterization of the limit
curve on a point (cross) adjacent to a feature vertex (bold). Container edge in the:
(a) original, and (b) subdivided meshes. Dashed segments represent the curve stencil.

while Se is adjacent to a feature point, in Line 5, we subdivide Se using the

curve subdivision scheme, and compute the segment of the subdivided polygonal

mesh to which x belongs, Line 6. Note that if the original segment Se is not

adjacent to a feature point, no subdivisions are performed. Now, since element

Se is not adjacent to a feature point, see Fig. 3.2(b), in Line 9, we compute the

barycentric coordinates of the point x with respect to Se, λe, and the stencil

{xei}i=1,...,4 needed for the evaluation of the limit curve, Line 10. Finally, in

Line 11, we map λe onto its limit position, x∞ = ϕc,e (λe; {xei}i=1,...,4).

• surface, say the s-th surface T 1, the parameterization of its limit surface Map-

OntoLimitSurface is computed, see Algorithm 3.3. First, we set Tf ← T 1
f .

Then, we define as Tf the triangular mesh composed of the triangle Tf and its

32

3.5. The limit model

Algorithm 3.3 Parameterization of a limit surface of the limit model.

Input: Linear surface mesh M, Linear model Ω1, Surface T 1, Triangle T 1
f , Point

λ ∈ T̂ , Point x ∈ T 1

Output: Point x∞

1: function MapOntoLimitSurface(M, Ω1, T 1, T 1
f , λ, x)

2: Tf ← T 1
f

3: Tf , Ωf ← SubSurface(M, Ω1, Tf)
4: if Tf has more than one irregular vertex then
5: T ′, Ω′ ← SurfaceSubdivision(Tf , Ωf)
6: Tf ← GetContainerTriangle(T ′, x)
7: Tf , Ωf ← T ′, Ω′

8: end if
9: while Tf is adjacent to feature point or curve do
10: T ′, Ω′ ← SurfaceSubdivision(Tf , Ωf)
11: Tf ← GetContainerTriangle(T ′, x)
12: Tf , Ωf ← T ′, Ω′

13: end while
14: λf ← ComputeBarycentricCoordinates(Tf , x)

15: {xfi }i=1,...,N ← GetSurfaceStencil(Tf , Tf)
16: x∞ ← ϕs,f

(
λf ; {xfi }i=1,...,N

)

17: return x∞

18: end function

(a) (b)

Figure 3.3: Subdivision to compute the element-wise parameterization of the limit
surface on a point (cross) adjacent to a feature curve (bold). Container triangle
(dashed edges) in the: (a) original, and (b) subdivided meshes. Dark gray region
represents the surface stencil.

neighbor triangles of the surface, and as Ωf the associated linear model, Line

3, see Fig. 3.3(a). Next, we check if the triangle has more than one irregular

33

3. Interpolation of subsivision features

vertex. If so, in Line 5, we subdivide the triangular mesh Tf to isolate the

irregularity, and, in Line 6, compute the triangle Tf of the subdivided mesh

containing the point x, see Fig. 3.3(b). Then, analogously to the curve case,

while element Tf is adjacent to a sharp feature, we subdivide Tf , Line 10, and

get the triangle of the subdivided mesh which x belongs to, Line 11. Now,

since the element Tf is not adjacent to a sharp feature, see Fig. 3.3(b), in Line

14, we compute the parameter λf and the stencil {xfi }i=1,...,N needed for the

evaluation of the limit surface, Line 15. Finally, we map the point onto its limit

position, x∞ = ϕs,f

(
λf ; {xfi }i=1,...,N

)
, Line 16.

3.5.2 Smoothness of the limit model

In this section, we analyze the smoothness of the limit curves and surfaces that

compose the limit model.

On the one hand, the curve subdivision scheme, see Sect. 3.4.1, ensures that in a

feature curve the union of the inner edges, the ones not adjacent to a feature point,

determines a cubic and C2-continuous parameterization of the limit curve. On the

contrary, curved edges of the control mesh that are incident to a feature point do not

feature that cubic parameterization. The limit curve is only of class C0 on the feature

point.

On the other hand, Loop’s subdivision scheme, see Sect. 3.4.2, ensures that in a

feature surface the union of the inner triangle, the ones not adjacent to a feature point

or curve, determines a C1-continuous parameterization of the limit surface. Around

regular vertices of the mesh, the limit surface features a quartic and C2-continuous

parameterization. The surface triangles that are adjacent to a feature point or a curve

determine the region where the limit surface is C0-continuous. We remark that this

discontinuity in the derivatives is confined. Fig. 3.4 shows a regular mesh featuring

inner triangles in dark gray and triangles adjacent to a feature curve (bold) in light

gray. In this configuration, the limit surface is of class C2 only on the dark gray

region. The limit curve determined by the bold edges is also of class C2.

This smooth limit model serves as surrogate geometry for the mesh curving prob-

lem. In Sect. 3.6, we approximate it by means of piecewise polynomial surface meshes

that, in some cases, inherit its continuity.

34

3.6. Approximation of the limit model

Figure 3.4: Regular mesh around a feature curve (bold). Elements adjacent to the
feature curve are colored with light gray, while the elements not adjacent to the curve
are colored in dark gray.

3.6 Approximation of the limit model

This section is devoted to the generation and analysis of piecewise polynomials ap-

proximations of the limit model. In Sect. 3.6.1, we exploit the parameterization of

the limit model to generate nodal high-order surface meshes interpolating the limit

model. Next, in Sect. 3.6.2, we analyze the smoothness of the high-order surface

mesh. In Sect. 3.6.3, we use the parameterization of the limit model to compute

the distance between the mesh and the limit model and, in Sect. 3.6.4, we detail the

measure used to automatically suggest to the practitioners the geometry features to

smooth.

3.6.1 Generation of high-order surface meshes

In this section, we present one of the main contributions of this chapter. Given a linear

surface mesh, we generate a surface mesh of polynomial degree q such that the nodes

of the high-order element interpolate the limit model. Since there exists an explicit

parameterization of the limit model, see Sect. 3.5.1, it is possible to map any point

in the domain onto the limit model. In Jiménez-Ramos et al. (2020), we proposed

a methodology that enabled us to use subdivision schemes to determine high-order

meshes of q = 2k, k ≥ 1, with equispaced distribution of nodes. These meshes

inherited the continuity properties of subdivision schemes but were limited by the

structure of those schemes. By using the parameterization of the limit model, we can

generalize the usage of subdivision schemes to generate high-order meshes of arbitrary

polynomial degree and nodal distribution. Thus, nodal sets with better interpolation

35

3. Interpolation of subsivision features

Algorithm 3.4 Generate high-order surface mesh interpolating the limit model.

Input: Linear surface meshM, Linear model Ω1, Polynomial degree q, Interpolation
nodes {λj}j=1,...,Nq

Output: High-order surface mesh Mq, High-order model Ωq

1: function GenerateHOSurfaceMesh(M, Ω1, q, {λj}j=1,...,Nq)
2: MC ← GenerateNewControlMesh(M, Ω1)
3: {T qi } ← BuildHighOrderTopology(M, q)
4: for each triangle T 1

i of M do
5: x∞

T qi
← MapOntoLimitManifold(MC , Ω1, T 1

i , {λj}j=1,...,Nq)

6: end for
7: Mq ← SetMesh({x∞i }, {T qi })
8: Ωq ← GenerateHOModel(M, Ω1, Mq)
9: returnMq, Ωq

10: end function

properties can be used, as it is the case of the quasi-Lebesgue distributions presented

in Warburton (2006).

The main algorithm is described in Algorithm 3.4. Given a linear triangular

surface mesh M, a linear model Ω1, a polynomial degree q, and a nodal distribution

of degree q in the master triangle in barycentric coordinates, {λj}j=1,...,Nq , the function

GenerateHOSurfaceMesh returns a surface mesh of polynomial degree q interpolating

the limit model, and the associated high-order model Ωq. First, in Line 2, we cast

the triangular surface mesh to a new control mesh to ensure that the location of

the initial vertices is preserved in the high-order mesh, as detailed in Appendix A.

Following, in Line 3, we generate the topology {T qi } of the high-order mesh. Then,

in Line 5, for each triangle T 1
i of the linear mesh, we map the interpolation nodes

onto the limit model by means of the evaluation of the element-wise parameterization

described in Sect. 3.5.1. The position of the interpolation nodes on the limit model

determines the position of the nodes of the high-order element. Finally, in Line 7, we

set the mesh of polynomial degree q, and compute the associated high-order model

Ωq, Line 8.

We highlight that the surrogate geometry for the generation of the high-order mesh

is determined by the initial linear mesh and the given geometry features. However,

as we detail in Sect. 3.6.2, prior subdivision steps improve the smoothness of the

curved high-order mesh that approximates the surrogate. Therefore, if desired, after

computing the new control mesh in Line 2, a new finer straight-sided mesh could

be generated by applying several subdivision steps. From this point, the curving

36

3.6. Approximation of the limit model

procedure would continue as detailed in Algorithm 3.4.

We note that if the interpolation nodes follow an equispaced distribution and

the polynomial degree is q = 2k, k ≥ 1, this method provides the same result as

the algorithm presented in Jiménez-Ramos et al. (2020). In that method, the high-

order nodes are generated explicitly, and therefore, it is more efficient in terms of

computational time.

3.6.2 Smoothness of the high-order surface mesh

In this section, we analyze the smoothness of the generated high-order meshes. We

highlight that the smoothness of the mesh depends on the chosen polynomial degree.

Three cases can be distinguished: the quadratic, the cubic, and any higher polynomial

degree.

The generated meshes of polynomial degree q = 2 approximate the limit model by

interpolating the limit curve (surface) with third-order accuracy. Since the limit curve

(surface) features a cubic (quartic) parameterization around inner regular configura-

tions, meshes of polynomial degree 2 are strictly C0-continuous, and no guarantees of

the C2-continuity are given by the proposed subdivision-based curving method.

Next, we analyze the smoothness of the meshes of polynomial degree three. First,

the inner edges of the feature curves of the high-order mesh exactly capture the

C2-continuous limit curve. This is so because the limit curve is parameterized by a

third-degree polynomial, and the elements are described by shape functions of degree

three too. For edges incident to feature points, we can only guarantee C0-continuity.

Regarding the limit surface, it is interpolated at the nodes and approximated with

fourth-order accuracy.

Following, we study the smoothness of the meshes of polynomial degree q ≥ 4.

As for meshes of polynomial degree three, the high-order mesh exactly captures the

C2-continuous limit curve in the inner edges. Similarly to the curve case, the nodes

of the surface mesh also interpolate the limit surface. However, the surface mesh

does not inherit the smoothness of the limit surface straight-forwardly as in the

curve case. This is so since the limit surface is parameterized element-wise, but the

parameterization is of degree four only in a regular element, that is, in an element

where its three vertices have six neighbors.

In the interior of an element, the mesh is of class C∞. Therefore, the smoothness

of the surface mesh is to be analyzed along the edges (interfaces between two inner

37

3. Interpolation of subsivision features

(a) (b)

(c) (d) (e)

Figure 3.5: Mesh configurations to ensure C2 smoothness (dark gray). (a) Regular
edge (bold). (b) Irregular edge (bold). (c) Regular patch around a regular vertex. (d)
Irregular patch (light gray) around an irregular vertex. (e) Mitigation of the irregular
patch after subdividing the mesh.

surface elements) and vertices (interfaces between more than two inner surface ele-

ments). We can only guarantee C0-continuity on the edges and vertices of triangles

adjacent to sharp features. For the case of elements not adjacent to sharp features,

we first analyze the case between two elements that share an edge. We say an edge is

a regular edge if all the vertices of the two triangles that share such edge are regular,

i.e. if the vertices have six neighbors, Fig. 3.5(a). In this case, the two elements of

degree q ≥ 4 that share the edge interpolate exactly the quartic limit surface. Hence

both elements are exactly equal to the limit surface and, since the limit surface is

C2-continuous, the interface (edge) between the two elements also is. In general, no

guarantee of the continuity of the derivatives can be deduced along an edge that is

not regular, see Fig. 3.5(b).

Now, we analyze the smoothness of the mesh around the vertices of the inner

surface elements. Given a regular vertex (with six neighbors), if all the edges incident

to it are regular then the surface mesh is of class C2 around such vertex. In particular,

if all the edges incident to a regular vertex are regular, then all its neighbor vertices are

also regular, as observed in Fig. 3.5(c). In such regions, colored in Fig. 3.5(c) in dark

gray, the surface mesh captures exactly the limit surface and inherits all its features.

The presence of an irregular vertex, as illustrated in Fig. 3.5(d), implies the surface

38

3.6. Approximation of the limit model

mesh approximates the limit surface, rather than exactly capturing it. Therefore, on

the one hand, around regular patches, we are able to interpolate and exactly capture

the limit surface and obtain a C2-continuous surface mesh. On the other hand, around

irregular patches, the limit surface is interpolated and approximated with accuracy

of order q + 1 but not matched exactly.

Some prior subdivisions can be applied to the initial linear mesh to improve the

smoothness of the high-order mesh. The linear mesh, Fig. 3.5(d), can be subdivided

before generating the mesh of degree q. As observed in Fig. 3.5(e) in contrast to

Fig. 3.5(d), the light gray irregular region where the limit surface (and subsequently

its smoothness) is not exactly captured is reduced. Exploiting prior refinements of

the linear mesh, the regions where the high-order surface mesh is not C2-continuous

can be successively reduced. This new finer high-order mesh determines a better

approximation of the surrogate geometry, and consequently, its smoothness is also

improved.

3.6.3 Distance to the limit model

In this section, we use the parameterization of the limit model, see Sect. 3.5.1, to

measure the accuracy of the generated high-order mesh with respect to the limit

model.

For the model Ωq, the s-th surface T q is a triangulation of polynomial degree q

composed of triangular facets, T q =
⋃nf
f=1 T

q
f . Then, we define the parameterization

of the surface T q element-wise for each T qf as

φqf : T̂ → T q ⊂ Ωq

λ 7→ φqf (λ) ,

where φqf is the isoparametric mapping between the master triangle and the high-order

element T qf of T q.
Denote by T ∞ the s-th surface of the limit model, see Eq. (3.3). We define the

distance between the limit surface T ∞ and the approximation given by the high-order

surface mesh T q as

d (T ∞, T q) = max
f=1,...,nf

sup
λ∈T̂

∥∥φ∞f (λ)− φqf (λ)
∥∥

2
, (3.4)

where the supremum, the least upper bound, is computed for the points λ ∈ T̂ ,

‖·‖2 is the Euclidean norm, and the maximum is taken for all the triangles of the

39

3. Interpolation of subsivision features

triangulation. In practice, this value is approximated by the maximum distance over

a fine grid of points {λj}j=1,...,Nd in the reference domain,

sup
λ∈T̂

∥∥φ∞f (λ)− φqf (λ)
∥∥

2
≈ max

j=1,...,Nd

∥∥φ∞f (λj)− φqf (λj)
∥∥

2
.

Then, the distance between the limit model Ω∞ and the model Ωq is defined as

d (Ω∞,Ωq) =
1

L(Ω∞)
max

s=1,...,ns
d (T ∞s , T qs) , (3.5)

the maximum of the distances between the s-th surface T ∞s and T qs , Eq. (3.4), s =

1, . . . , ns, adimensionalized with the characteristic length of the model L(Ω∞).

We highlight that, as detailed in Sect. 3.6.2, the generated high-order mesh in-

terpolates the limit model on the nodes, and therefore, if the polynomial degree is

greater than three, q ≥ 3, the polylines exactly coincide with the limit curves. If

the polynomial degree is greater than four, q ≥ 4, the mesh exactly coincides with

the limit surface around the regular vertices. Thus, the distance between a mesh

of polynomial degree q ≥ 4 and the limit model is non-zero only around irregular

vertices and along the interfaces between sharp features.

3.6.4 Automatic feature detection

As previously introduced in Sect. 3.3.1, the input linear model is composed of the

union of features points, curves, and surfaces describing the geometry to represent.

However, these features may not reproduce the simulation intent, and it may be

necessary to smooth them. This process has to be performed by the user and may

require significant human labor, depending on the complexity of the input model. We

propose to study the continuity of the normal (tangent) vector along (at) a feature

curve (point) to decide whether it is suggested to be smoothed.

Given a linear mesh which interpolates a surface or curve, we want to reconstruct

the implicit high-order information of the discretization not fully available in the

linear model. To this aim, we use the limit model from subdivision since it takes

into account the stencil, and therefore, it reconstructs part of the initial high-order

information. Consequently, to automatically detect the smooth features we propose

to use the high-order model Ωq which approximates the limit model and provides

direct and explicit access to the approximation of the high-order information.

Specifically, consider the c-th curve Sq of the model Ωq composed of the union

of poly-segments of degree q, Sq =
⋃ne
e=1 S

q
e . For each segment Sqe , there are two

40

3.6. Approximation of the limit model

triangles T qi and T qj such that Sqe = T qi ∩ T qj . Then, for a point x ∈ Sqe , we consider

the inner angle function

α (x) = arccos (ni (x) · nj (x)) , (3.6)

where nk (x) denotes the unitary normal vector defined from triangle T qk . This func-

tion accounts for the angle between the normal vectors at point x. If the normal

vectors at x are continuous, then ni (x) = nj (x), and thus, α (x) = 0. On the

contrary, if ni (x) 6= nj (x), then α (x) > 0. In particular, the image of α is [0, π],

and it attains the minimum in a flat configuration, when ni (x) = nj (x), and the

maximum in a reversal configuration, when ni (x) = −nj (x).

Thus, for each curve S of the model Ωq, we compute

αS =

∫
S α (x) dx∫
S dx

.

Integrating along the curve provides an average and therefore, we avoid undesired

detection due to spurious values that may arise when performing the computation

edge-wise. The set Rδ = {S : αS < δ} is composed of the feature curves with an

angle below a desired threshold δ. This set contains the potentially side features

that are suggested to the practitioners to smooth. In particular, the two different

surfaces adjacent to a curve feature S ∈ Rδ are incident with an angle less than δ

and, therefore, it may indicate that the curve feature has to be smoothed.

Once this set of curves has been identified, we smooth them in the linear model Ω1

and generate a surface mesh of polynomial degree q and a new model Ωq to study the

feature points to be potentially smoothed. We distinguish several cases depending

on the number of curves incident to the feature point. If no curves are incident,

we suggest smoothing this point. If two curves are incident to a feature point, we

proceed analogously as for curves but with the tangent vector instead. We compute

the tangent vector at the feature point from the two incident edges and, if the angle

between the two tangent vectors is below a desired threshold, we suggest smoothing

this feature point. If one or more than two curves are incident to a feature point, the

smoothing operation has to be performed manually.

We highlight that each of the feature points (curves) is characterized by a global

point (curve) identifier, and therefore, the smoothing operation consists in providing

a list of the identifiers of the points (curves) to smooth.

41

3. Interpolation of subsivision features

Algorithm 3.5 Curve volume mesh smoothing features.

Input: Linear volume mesh M, Linear model Ω1, Polynomial degree q, Features to
smooth R, Interpolation nodes {λj}j=1,...,Nq

Output: High-order volume mesh Mq, High-order model Ωq

1: function CurveVolumeMesh(M, Ω1, q, R, {λj}j=1,...,Nq)
2: Ω1 ←SmoothFeatures(Ω1, R)
3: Mq, Ωq ← GenerateHOVolumeMesh(M, Ω1, q, {λj}j=1,...,Nq)
4: returnMq, Ωq

5: end function

3.7 Curved volume mesh approximating the limit

model

In this section, we detail how a linear tetrahedral mesh with marked boundary en-

tities is curved while preserving the sharp features of the model. In Sect. 3.7.1, we

detail the sharp-to-smooth modeling of the geometry features and the replacement

of the straight-edged boundary of the linear mesh by the curved boundary mesh. In

Sect. 3.7.2, the curvature on the boundary is accommodated to the interior using a

blending technique. This procedure leads to a high-order tetrahedral mesh where its

boundary approximates a surrogate geometry composed of feature surfaces with an

interior that is C1-continuous and C2-continuous almost everywhere. In addition, the

vertices of the high-order mesh are kept in the same position as in the initial linear

mesh.

3.7.1 Substitute the boundary of the volume mesh

In this section, we detail the subdivision-based curving of a high-order tetrahedral

mesh. This process is presented in Algorithm 3.5. First, in Line 2, we smooth

the desired feature entities. Then, in Line 3, we generate a high-order volume

mesh preserving the sharp features provided by the new model once the original

entities have been smoothed. These processes, denoted as SmoothFeatures and

GenerateHOVolumeMesh, are next detailed in Algorithms 3.6 and 3.7.

The first step to curve the volume mesh is to smooth, if necessary, the geometry

features present in the original model. Recall that points, curves, and surfaces are

characterized by a unique identifier. Thus, in order to smooth a sharp feature, it is

enough to provide its identifier. That is, in Algorithm 3.6, the variable R contains a

42

3.7. Curved volume mesh approximating the limit model

Algorithm 3.6 Smooth geometry features.

Input: Model Ωq, Features to smooth R
Output: Model Ωq

1: function SmoothFeatures(Ωq, R)
2: for each feature f in R do
3: Ωq ← RemoveFeatureFromList(Ωq, f)
4: Ωq ← MergeIncidentFeatures(Ωq, f)
5: end for
6: return Ωq

7: end function

Algorithm 3.7 Generate high-order volume mesh.

Input: Linear volume meshM, Linear model Ω1, Polynomial degree q, Interpolation
nodes {λj}j=1,...,Nq

Output: High-order volume mesh Mq, High-order model Ωq

1: function GenerateHOVolumeMesh(M, Ω1, q, {λj}j=1,...,Nq)
2: ∂M← ExtractBoundary(M)
3: ∂Mq, Ωq ← GenerateHOSurfaceMesh(∂M, Ω1, q, {λj})
4: Mq ← IncreasePolynomialDegree(M, q)
5: Mq ← ReplaceBoundary(Mq, ∂Mq)
6: Mq ← AccommodateCurvature(Mq, M)
7: if Mq is low quality then
8: Mq ← OptimizeMesh(Mq)
9: end if

10: returnMq, Ωq

11: end function

list of the identifiers of the feature points and curves to be smoothed. Specifically,

the smoothing of a feature is composed of two steps: removing the feature from

the list of features to preserve, Line 3; and merging the features incident to such

feature, Line 4. Since each feature is described by a unique identifier, the process of

merging the incident features reduces to assigning the same identifier to these features.

The features to smooth are manually provided by the user, however, to reduce the

human labor of manually selecting the features to smooth, the indicator proposed in

Sect. 3.6.4 can be used to determine the features that have to be potentially smoothed,

as illustrated in Sect. 3.8.5.

Next, the curving method based on hierarchical subdivision and blending is per-

formed. The generation of a high-order volume mesh is described in Algorithm 3.7.

First, given a linear tetrahedral mesh, the linear model Ω1, the polynomial degree

43

3. Interpolation of subsivision features

(a) (b) (c)

Figure 3.6: Curving of the boundary for a boundary element of polynomial degree
q = 2. (a) Linear physical element, where the face (2 3 4) belongs to the boundary.
(b) Straight-edged physical element of polynomial degree two. (c) Curved boundary
element of polynomial degree two, displaying with dashed lines the four elements
from the subdivision scheme applied to the boundary.

q, and the interpolation nodes of the master tetrahedron in barycentric coordinates

{λj}j=1,...,Nq , Fig. 3.6(a), we extract its boundary, Line 2. The boundary is a surface

mesh that inherits the geometry features of the volume mesh. Next, in Line 3, we

call the function GenerateHOSurfaceMesh to generate a surface mesh of polynomial

degree q preserving the sharp features and interpolating the limit model at the bound-

ary nodes of the interpolation set {λj}j=1,...,Nq , see Sect. 3.6.1. Third, we generate a

straight-edged high-order volume mesh, Line 4, illustrated in Fig. 3.6(b). Following,

in Line 5, we replace the boundary of the straight-edged mesh by the curved surface

mesh, see Fig. 3.6(c). Then, in Line 6, the curvature of the surface is accommodated

to the elements adjacent to the boundary, using a blending technique to be described

in Sect. 3.7.2. Finally, if the mesh contains low-quality elements, it is optimized using

the method in Gargallo-Peiró et al. (2015c,b), see Line 8.

The methodology proposed in this chapter can also be used to generate, given an

initial linear mesh, finer linear meshes that successively improve the approximation of

the surrogate geometry. To do so, the generated high-order mesh can be reinterpreted

as a linear mesh by the decomposition of each high-order element into linear elements.

Specifically, the reference high-order element is decomposed into several structured

linear elements determined by the high-order nodes. If the linear mesh contains

low-quality elements, the optimization procedure described in Gargallo-Peiró et al.

(2015c) is applied to ensure a valid mesh.

44

3.7. Curved volume mesh approximating the limit model

(a)
(b) (c) (d)

Figure 3.7: Accommodating the curvature to a triangular element of polynomial
degree q = 4. (a) Straight-edged triangle with a boundary edge (in bold). (b)
Triangle with curved boundary. (c) Transfinite interpolation applied to the edges,
(d) and to the face.

3.7.2 Accommodation of the curvature of the boundary

In Algorithm 3.7, after replacing the curved boundary in the straight-sided high-

order mesh, Line 5, the obtained high-order mesh may contain low-quality or tangled

elements, see Fig. 3.7(a) and 3.7(b). In isotropic mesh generation, only boundary

tetrahedra are affected and therefore, the number of invalid elements is small com-

pared with the scale of the generated meshes. Thus, similarly to Johnen et al. (2018),

as an attempt to improve the mesh quality in a fast and explicit manner, in Line

6 in function AccommodateCurvature, we use Transfinite Interpolation (TFI) (Per-

ronnet, 1998) to accommodate the curved surface to those entities of the boundary

elements not present in the surface mesh. Specifically, given a boundary element, we

use transfinite interpolation hierarchically on its entities to accommodate the curving

of the boundary. That is, first we relocate the nodes on edges, then nodes on faces,

and finally, nodes in the interior of tetrahedra. We explicitly detail the position of all

the interior nodes of the boundary elements in Appendix B.

The analogous procedure for triangular meshes is illustrated in Fig. 3.7. In

Fig. 3.7(a), we show a straight-sided boundary triangle of degree q = 4, with the

boundary edge highlighted in bold. After the curving of the boundary, the boundary

nodes have been relocated, see Fig. 3.7(b). In Fig. 3.7(c), we illustrate the relocation

of the nodes on the interior edges of the triangle, and the interior nodes in Fig. 3.7(d)

account for the curvature propagated through the edges.

We remark that this method does not guarantee to repair the invalid elements,

neither ensures an increase in the element quality. However, it is an explicit and fast

formulation, which in practice represents a good initial condition for mesh curving

methods when no geometry is available (Gargallo-Peiró et al., 2015b; Ruiz-Gironés

45

3. Interpolation of subsivision features

et al., 2019; Moxey et al., 2016; Toulorge et al., 2013; Persson and Peraire, 2008). In all

the tested applications, see Sect. 3.8, the procedure improves significantly the quality

of the meshes. Once the TFI-based relocation process is finalized, if low quality

or inverted elements are present, we perform the non-linear quality optimization

procedure presented in Gargallo-Peiró et al. (2015b).

3.8 Results

In this section, we present several examples to illustrate the main features of the

methods presented in this chapter. As a proof of concept, the proposed algorithms

have been developed in Anaconda Python (Van Rossum and Drake Jr, 1995). The

prototyping code is sequential (one execution thread) and non-vectorized. All the

examples have been run on a MacBook Pro (with one dual-core Intel Core i5 CPU,

a clock frequency of 2.3 GHz, and a total memory of 16 GBytes).

In all the examples, we validate both the high-order boundary and volume meshes

using the Jacobian-based distortion measure proposed in Gargallo-Peiró et al. (2016b,

2015c). In particular, the quality of a high-order element is computed with respect

to the corresponding original straight-edged element in the linear mesh.

3.8.1 Convergence of the high-order surface mesh to the

limit model

In this example, we analyze the convergence of the surface meshes of polynomial

degree q to the limit model when q is increased, q = 1, . . . , 10. This kind of con-

vergence is useful in such applications where the initial partition of elements has to

be preserved. We consider a sphere of radius 1 discretized with a linear triangular

mesh composed of 450 nodes and 896 elements, see Fig. 3.9(a). The mesh is colored

according to the distance to the limit model, see Eq. (3.5), with L(Ω∞) = 1, the

radius of the sphere. Note that the distance at the vertices is zero due to the interpo-

lation property of the scheme. Then, for each polynomial degree q, we generate two

surface meshes with two different nodal distributions: one equispaced, and the other

defined using a warp-and-blend technique aimed at quasi-minimizing interpolation

errors presented in Warburton (2006).

46

3.8. Results

q ΛEq d
(
Ω∞,Ωq

Eq

)
LEq ΛWB d (Ω∞,Ωq

WB) LWB

1 1.00 2.10 · 10−2 1.05 · 10−2 1.00 2.10 · 10−2 1.05 · 10−2

2 1.66 5.64 · 10−3 2.12 · 10−3 1.66 5.64 · 10−3 2.12 · 10−3

3 2.27 2.67 · 10−3 8.15 · 10−4 2.11 2.52 · 10−3 8.10 · 10−4

4 3.47 1.88 · 10−3 4.20 · 10−4 2.66 1.67 · 10−3 4.57 · 10−4

5 5.45 1.31 · 10−3 2.04 · 10−4 3.12 1.14 · 10−3 2.78 · 10−4

6 8.75 1.09 · 10−3 1.11 · 10−4 3.70 8.79 · 10−4 1.87 · 10−4

7 14.35 9.92 · 10−4 6.46 · 10−5 4.27 6.36 · 10−4 1.21 · 10−4

8 24.01 8.63 · 10−4 3.45 · 10−5 4.96 4.50 · 10−4 7.55 · 10−5

9 40.92 5.26 · 10−4 1.25 · 10−5 5.74 2.98 · 10−4 4.43 · 10−5

10 70.89 7.02 · 10−4 9.76 · 10−6 6.67 1.91 · 10−4 2.49 · 10−5

Table 3.1: Interpolation with equispaced and non-equispaced nodes of a sphere limit
model for polynomial degree q, q = 1, . . . , 10: Lebesgue constant, distance to the
limit model, and lower bound of the distance.

1 2 3 4 5 6 7 8 9 10

Polynomial degree

10−1

10−2

10−3

10−4

10−5

d
(Ω
∞
,Ω

q
)

Distance to limit model

Equispaced

Warp-and-blend

(a)

1 2 3 4 5 6 7 8 9 10

Polynomial degree

10−1

10−2

10−3

10−4

10−5

10−6

E
rr

or

f ? bounds

d
(

Ω∞,Ωq
Eq

)

LqEq

d (Ω∞,Ωq
WB)

LqWB

(b)

Figure 3.8: Convergence of the bounds and the distance to the limit model for the
sphere meshes of polynomial degree q, q = 1, . . . , 10, with equispaced and non-
equispaced distribution sets: (a) distance, and (b) lower and upper bounds of the
distance of the best approximating polynomial.

For each polynomial degree and interpolation set, we compute the distance be-

tween the high-order surface mesh and the limit model, see Eq. (3.5). In Table 3.1,

we report the distances between the meshes and the limit model, for the different

degrees and nodal distributions. In Fig. 3.8(a), we plot the logarithm of the distance

in terms of the polynomial degree using red for the data of the equispaced distribution

and blue for the data of the warp-and-blend distribution. We observe that for the

47

3. Interpolation of subsivision features

(a) (b)

Figure 3.9: Mesh of a sphere of polynomial degree (a) one, q = 1, and (b) ten, q = 10,
both colored according to the distance to the limit model.

warp-and-blend distribution, the logarithm of the distance seems to converge linearly

with the polynomial degree q. In Table 3.1, we also show the Lebesgue constant of

the equispaced distribution, ΛEq, and of the warp-and-blend distribution, ΛWB. If we

denote by f ? the best approximating polynomial of the limit model φ∞, since it is

optimal, we have the inequality

‖φ∞ − f ?‖∞ ≤ ‖φ∞ − φq‖∞ .

Furthermore, for a given interpolation set, the Lebesgue constant bounds the inter-

polation error in terms of the error made by the best approximating polynomial,

‖φ∞ − φq‖∞ ≤ (1 + Λ) ‖φ∞ − f ?‖∞ . (3.7)

Combining these inequalities, we bound the error made by f ?,

‖φ∞ − φq‖∞
1 + Λ

≤ ‖φ∞ − f ?‖∞ ≤ ‖φ∞ − φq‖∞ . (3.8)

The term on the left is denoted as LqEq and LqWB for the equispaced and warp-and-

blend distribution, respectively, and they are also reported in Table 3.1. In Fig. 3.8(b),

we plot the lower and upper bound for the two interpolation sets. For low polynomial

degrees, both distributions provide similar results. However, as the polynomial degree

increases, the equispaced distribution becomes more uncertain, while the warp-and-

blend distribution is more accurate and the region is more restricting. The error of the

best approximating polynomial f ? is between the two bounds and, more concretely,

48

3.8. Results

in the more restricting region. In this particular example, this region is given by the

bounds of the warp-and-blend distribution and, in general, we would expect the same

behavior since the warp-and-blend distribution has better interpolation properties.

We might intuitively expect that for the higher polynomial degrees, equidistant

point distributions lead to significant error oscillations. Nevertheless, in this example,

we can see that both point distributions lead to almost comparable errors. To under-

stand this error similarity, we can use the upper bound of the interpolation error in

terms of the Lebesgue constant, see Eq. (3.7). In particular, for polynomial degree

10, if we divide the upper bound of the error for both point distributions, we see that

equidistant points feature an error at most 71/7 times larger than the error for warp

and blend points. This error relation, around 10, agrees with the numerical results

of Table 3.1.

Finally, in Fig. 3.9(b), we illustrate the mesh of polynomial degree q = 10 colored

according to the pointwise distance to the limit model. It can be observed that, in

the neighborhood of the regular vertices, the mesh exactly captures the limit model

and, consequently, the distance is zero. On the contrary, around irregular vertices,

the mesh approximates the limit model and the distance is non-zero.

3.8.2 Volume curving of a structured topography mesh

In this example, we illustrate the features of our method with a structured linear

mesh that discretizes the topography on the Escudo mountain range (Spain). The

original data is provided as a level curve map that is cast to a structured mesh with

the level values on the nodes.

We consider a tetrahedral mesh that discretizes the region enclosed by the topog-

raphy and a planar ceiling, located at the desired height. The tetrahedral mesh is

regular and is generated using the mesher presented in Gargallo-Peiró et al. (2015a,

2018). From the linear mesh, we generate a curved high-order mesh of polynomial

degree four using the procedure detailed in Sect. 3.7. Since the surface nodes are reg-

ular, the high-order topography surface mesh is C2-continuous and exactly captures

the limit surface, as detailed in Sect. 3.6.2. To check the implementation, the distance

between the mesh of polynomial degree four and the limit model, see Eq. (3.5), has

been computed, verifying that the result is zero.

In Fig. 3.10(a), we show the initial linear mesh, composed of 4.8 · 105 nodes and

2.6 ·106 tetrahedra. The high-order boundary mesh is generated in 106 minutes and is

49

3. Interpolation of subsivision features

(a) (b)

Figure 3.10: Curving of a tetrahedral mesh of the Escudo mountain range (Spain).
(a) Linear mesh. (b) Curved mesh of polynomial degree q = 4. Elements of the
volume meshes are colored with their elemental quality.

Min Q # inv

Boundary 0.93 0
Volume (no TFI) 0 169
Volume (TFI) 0.80 0

Table 3.2: Quality statistics of a mesh of polynomial degree q = 4 for the Sierra del
Escudo (Spain) topography.

composed of 1.1·106 nodes and 1.4·105 triangles, featuring a minimum quality of 0.93.

The curved high-order volume mesh takes 18 minutes to be generated and contains

169 inverted elements. The process of accommodating the curvature of the boundary

detailed in Sect. 3.7.2 is performed to 4.1 · 105 elements abutting the boundary. This

blending untangles all the invalid elements in 7 minutes, attaining a minimum quality

of 0.8. Finally, in Fig. 3.10(b), we show the mesh of polynomial degree four composed

of 2.9 · 107 nodes and 2.6 · 106 elements. The statistics regarding the mesh quality on

the different steps of the mesh generation procedure are presented in Table 3.2.

3.8.3 Smoothness of the boundary mesh

In this example, we analyze the smoothness of the interpolative model Ωq for the mesh

of the sphere in Sect. 3.8.1. When the polynomial degree is greater than four, q ≥ 4,

the surface mesh features C2-continuity around regular patches, see Sect. 3.6.2. Thus,

50

3.8. Results

q 1 2 3 4 5

maxe α∞,e 9.00 5.49 1.72 1.54 1.02

Table 3.3: Maximum angle between the normal vectors of adjacent elements for the
surface mesh of the sphere of polynomial degree q, q = 1, . . . , 5.

normal vectors are continuous along regular edges. On the contrary, we may observe

discontinuous normal vectors along edges around irregular points which indicate that

the mesh is not C1-continuous.

To quantify the smoothness of the surface mesh, we compute the distortion of

the normal vector. Specifically, consider the s-th surface T q composed of triangular

facets, T q =
⋃nf
f=1 T

q
f . Then, for each internal edge Sqe such that Sqe = T qi ∩ T qj , we

compute

α∞,e = max
k=1,...,N

α (xk) ,

where xk ∈ Sqe is a sampling point, and α (x) is defined in Eq. (3.6). The value α∞,e

approximates the maximum angle formed by the normal vectors along the edge Sqe .

In Table 3.3, we show the maximum angle between normal vectors for the mesh

of the sphere in Sect. 3.8.1 for different polynomial degrees. We observe a significant

improvement with cubic meshes with respect to the original linear mesh. For quartic

and quintic polynomial meshes, the maximum angle formed by two normal vectors

from adjacent elements is less than two degrees.

3.8.4 Sharp-to-smooth modeling and mesh volume curving

In this example, we illustrate the capability of our method to perform a sharp-to-

smooth modeling in different features of the geometry. To preserve the simulation

intent, we smooth some of the feature entities present in the original model and thus

provide a new model improving the smoothness of the surrogate geometry. Each

feature point (node of the mesh), curve (set of edges of the mesh), and surface (set

of triangles of the mesh) is associated with a unique identifier. Therefore, to smooth

a feature, it is enough to know its identifier.

We consider a linear tetrahedral mesh from a CAD legacy model of a simplified

Falcon aircraft. The boundary triangles are marked identifying the feature surfaces.

The complete linear model is composed of 28 surfaces, 54 curves, and 34 points. As

shown in Fig. 3.11(a) and Fig. 3.11(b), the main part of the fuselage is composed of

51

3. Interpolation of subsivision features

(a) (b)

(c) (d)

Figure 3.11: Initial and final linear mesh model of a Falcon aircraft. Initial model: (a)
surface features colored with their surface identifier, and (b) curve and point features.
Final model: (c) virtual surface features colored with their surface identifier, (d) curve
and point features smoothed (gray) and preserved (black).

two surfaces and a curve. However, such curve is not desirable since, ideally, we would

desire a smooth model along each section of the fuselage. To address this issue, we

smooth the curve indicating its unique identifier. The first step consists in removing

the curve from the list of feature curves. Following, the two surfaces initially incident

to this curve, see Fig. 3.11(a), are merged by identifying the identifiers of the two

surfaces with a new but equal identifier, see Fig. 3.11(c). As a result, the whole

fuselage is modeled as a smoother virtual surface.

Similarly, we observe that each section of the wing is described by a top and

bottom surface, and a leading and trailing edge curve. To preserve the simulation

intent, we smooth the feature curve describing the leading edge. This way, the surface

at the top and the bottom are merged and join smoothly in the front part of the

wing. We highlight that the curve describing the trailing edge is maintained as a

sharp feature.

Note that the lateral wing joins the fuselage in a profile described by two curves

(top and bottom) and two vertices (front and back). We smooth the feature point

in the front. Thus, this point is removed from the list of feature points, and the two

curves are merged by identifying their identifiers as a unique one. As a result, we

52

3.8. Results

(a) (b)

Figure 3.12: Close-up view of the leading edge of a Falcon aircraft wing. Zebra
mapping on the mesh of polynomial degree four with (a) the initial model, and (b)
the final model with the leading edge smoothed.

obtain a single closed curve with a sharp endpoint on the trailing edge.

Similar changes are made in similar features of the mesh to generate the proper

model for flow simulation, see Fig. 3.11(c) and Fig. 3.11(d). As highlighted in

Sect. 3.7.1, once the identifiers of all the features to smooth are located, the smoothing

process is straight-forward. Given the list of identifiers, the smoothing process con-

sists in removing these features from the list of features to preserve and automatically

identify the features adjacent to the smoothed feature as a single one. We remark

that the smoothing of some of the geometry features does not modify the mesh, only

the number of feature points, curves, and surfaces changes. Specifically, the original

model of the presented Falcon aircraft contains 34 feature points, 54 curves, and 28

surfaces; while the model with the smoothed features contains 20 points to preserve,

32 curves, and 20 surfaces.

To illustrate the difference between these two models, we take a close look at the

leading edge of the wing. In Fig. 3.12(a), we show a zebra mapping on the mesh of

polynomial degree q = 4 generated with the initial marks. Specifically, we see the

isophote bands for a spotlight in front of the leading edge. We observe a discontinuity

in the normal vector of the wing along the leading edge. In Fig. 3.12(b), we show

a mesh generated with a model in which the leading edge has been smoothed. The

nodes originally present in the leading edge are still on the leading edge, but the new

points are generated to interpolate the almost everywhere C2-continuous surrogate

geometry. The second mesh model is smoother than the original one along those

regions where the features have been smoothed. The leading edge now belongs to

53

3. Interpolation of subsivision features

Figure 3.13: Close-up view of the leading edge of a Falcon aircraft rear wing. Surfaces
are colored according to their surface identifier.

q ΛWB d (Ω∞,Ωq
WB) LWB

1 1.00 1.48 · 10−2 7.42 · 10−4

2 1.66 4.09 · 10−4 1.54 · 10−4

3 2.11 1.98 · 10−4 6.38 · 10−5

4 2.66 9.93 · 10−5 2.71 · 10−5

5 3.12 5.14 · 10−5 1.25 · 10−5

Table 3.4: Interpolation with non-equispaced nodes of a Falcon aircraft limit model
for polynomial degree q, q = 1, . . . , 5: Lebesgue constant, distance to the limit model,
and lower bound of the distance.

the interior of the surface, and therefore, all the nodes interpolate a C1-continuous

surface.

The modeling capability not only allows for the smoothing of geometric features

that prevented the model from describing the simulation intent, but it also removes

the sharp features that were artificially created by CAD engines. That is, it is possible

to repair a CAD model with artificial features. In this example, we observe that

the intersection of the two surfaces (top and bottom) describing the rear wing does

not occur exactly at the leading edge of the wing, but at the top of the wing, see

Fig. 3.13. Indeed, this curve does not appropriately describe the simulation intent

and should be smoothed. To this end, we proceed as described above by locating the

curve identifier, removing the curve from the list of feature curves to preserve, and

automatically assigning the same identifier to the adjacent surfaces.

In Table 3.4, for each polynomial degree q, q = 2, . . . 5, we report the distances

54

3.8. Results

1 2 3 4 5

Polynomial degree

10−2

10−3

10−4

10−5

10−6

E
rr

or

f ? bounds

d (Ω∞,Ωq
WB)

LqWB

Figure 3.14: Lower and upper bounds of the distance of the best approximating
polynomial in terms of the polynomial degree q for the Falcon aircraft.

Figure 3.15: Mesh of polynomial degree q = 5 of a Falcon aircraft colored according
to the distance to the limit model.

between the limit model and the high-order surface meshes, see Eq. (3.5). In this

example, L (Ω∞) is set to the aircraft length. Note that as the polynomial degree q

increases, the distance to the limit model is reduced. In Fig. 3.14, we plot the lower

and upper bound of the best approximation polynomial, see Eq. (3.8). The upper

curve coincides with the logarithm of the distance which seems to converge linearly

with the polynomial degree. In Fig. 3.15, we show the point-wise distance between

the mesh of polynomial degree five and the limit model. Note that around the regular

vertices, the distance between the limit model and the surface mesh of polynomial

five is zero. Around the irregular vertices, the distance is smaller than 10−4.

The maximum angle between normal vectors along interior edges is reduced signif-

icantly as we increase the polynomial degree, see Table 3.5. The linear mesh features

55

3. Interpolation of subsivision features

q 1 2 3 4 5

maxe α∞,e 63.92 24.08 8.19 5.04 5.60

Table 3.5: Maximum angle between the normal vectors of adjacent elements for the
surface mesh of the Falcon aircraft of polynomial degree q, q = 1, . . . , 5.

(a)

(b)

Figure 3.16: Close look of the rear point of the vertical stabilizer of the mesh of
polynomial degree q = 5 of a Falcon aircraft. (a) Rear part of the aircraft. (b) Angle
between the normal vectors along the interior edges incident to the sharp point.

an angle of 60 degrees along the leading edge of the rear wing. In contrast, the mesh

of polynomial degree five attains a maximum angle smaller than 2 degrees in the

same region. However, the interpolative property of the method affects the smooth-

ness of the high-order mesh. For instance, consider the rear point where the vertical

stabilizer joins the fuselage, see Fig. 3.16. All the high-order nodes of the triangles

around the sharp point interpolate the C1-continuous limit surface determined by the

surface subdivision scheme, except for the vertices that coincide with the sharp point,

which remain fixed. In that region, we can only guarantee C0-continuity and the angle

between the normal vectors is greater than 5 degrees.

A summary of the mesh quality can be found in Table 3.6. The linear mesh is

composed of 3.1·105 nodes and 1.7·106 tetrahedra, and the volume mesh of polynomial

degree q = 5 is generated in 6.5 hours and is composed of 3.6 · 107 nodes and 1.7 · 106

elements. This mesh, prior to the blending technique, contains 2179 tangled elements.

In this example, there are 3.0·105 boundary elements and in 8 minutes the TFI reduces

to 24 the number of invalid elements, that is, 99% of the invalid elements have been

untangled. Now, we apply the optimization technique presented in Gargallo-Peiró

56

3.8. Results

Min Q # inv

Boundary 0.55 0
Volume (no TFI) 0 2179
Volume (TFI) 0 24
Volume
(TFI + Optimization) 0.69 0

Table 3.6: Quality statistics of a mesh of polynomial degree q = 5 for a Falcon
aircraft.

Figure 3.17: Curved tetrahedral mesh of polynomial degree q = 5 of a Falcon aircraft
with no invalid elements.

et al. (2015c,b) to optimize locally the quality of the inverted elements. Since the

mesh after the TFI is close to optimal, it is a good initial condition for the implicit

optimization. This process takes 41 minutes and the mesh becomes valid achieving a

minimum quality of 0.69. In Fig. 3.17, we show the valid curved tetrahedral mesh of

polynomial degree q = 5 with the volume elements colored according to their quality.

3.8.5 Assisted sharp-to-smooth boundary modeling

As detailed in Sect. 3.6.4, it is possible to automatically suggest to the practition-

ers the features to smooth. In this example, we consider a mesh-based boundary

57

3. Interpolation of subsivision features

(a) (b)

(c) (d)

Figure 3.18: Initial and final linear mesh model of an aircraft in high-lift configuration.
Initial model: (a) surface features colored with their surface identifier, and (b) curve
and point features. Final model: (c) virtual surface features colored with their surface
identifier, (d) curve and point features smoothed (gray) and preserved (black).

Figure 3.19: Curved triangular mesh of polynomial degree q = 4 of an aircraft in
high-lift configuration colored with the surface identifiers.

representation of an aircraft in high-lift configuration, a common research model pre-

sented in the 3rd High-Lift Prediction Workshop (Rumsey et al., 2019). The model,

58

3.9. Discussion

see Fig. 3.18(a) and Fig. 3.18(b), is represented by 182 feature points, 282 curves, and

118 surfaces. For models with a significant complexity, we use the automatic feature

detection capability detailed in Sect. 3.6.4 to reduce the human labor required to

design a model preserving the simulation intent.

First, using the original model, we generate a surface mesh of polynomial degree

q = 4. Then, for each feature curve, we compute the normal vector along the curve

and decide whether this curve has to be smoothed. The threshold used in this example

is δ = 17 degrees. We highlight that this is a parameter that can be easily tuned

to determine the curves in the set Rδ. Next, we manually decide if these candidates

have to be indeed smoothed or not. Some of the curves present in this set are the

ones representing the leading edge of the wings and flaps that indeed have to be

smoothed. However, there are some curves in the set that we do not want to smooth.

For example, we do not smooth the two curves that describe where the swept wing

starts to angle, and the curves that represent the cabin windows. Thus, these curves

are not smoothed. Second, once the model has been updated, we generate again the

mesh to detect the smooth points. The final model is composed of 122 feature points,

169 curves, and 67 surfaces, see Fig. 3.18(c) and Fig. 3.18(d).

In Fig. 3.19, we show the generated mesh of polynomial degree four using the

smoothed model where the surfaces have been colored with their surface identifier.

Since the curves describing the leading edge have been automatically smoothed, the

wing surface describes the simulation intent. On the contrary, we can appreciate the

desired discontinuity on the normal vectors of the surface along the curves describing

the cabin windows.

3.9 Discussion

After detailing the methods and results to interpolate the subdivision features for

curved geometry modeling, we present a discussion on many aspects related to: C1-

continuous shape functions, evaluating a limit curve around a feature point, the fea-

ture detection threshold, the TFI node relocation, polynomial degrees, and exploiting

successive subdivisions.

C1-continuous shape functions In this work, we indirectly approximate the C1-

continuity of the limit surface by using interpolative triangular elements. An alterna-

59

3. Interpolation of subsivision features

tive approach might be to directly impose C1-continuity using the Argyris et al. (1968)

or the Bell (1969) triangular elements. Both elements have polynomial degree 5 and

feature one degree of freedom per edge, and six degrees of freedom per vertex. The

degrees of freedom of the vertices correspond to the value, the two first derivatives,

and the three second derivatives required to determine the symmetric Hessian. Since

the limit surface has C1-continuity everywhere, it is possible to query at the vertices

the value and the first derivatives from the limit surface, and set the corresponding

vertex degrees of freedom. However, since at the irregular points the limit surface

might not be C2-continuous, the Hessian at the irregular points of the limit surface is

not defined. Since it is undefined, to apply this approach, one would need to decide

a criterion to force a Hessian at the irregular nodes. Herein, to not force the Hessian,

we favor the numerical approximation of the C1-continuous limit surface.

Limit curve around a sharp point To evaluate the limit curve close to a sharp

point, we can replace the successive refinement in Algorithm 3.2 with an explicit

evaluation. To perform this evaluation, we can consider a stencil featuring three

segments and four points. To this end, one straightforward approach is to add to the

original control poly-line a ghost segment on the other side of each sharp point. Each

ghost segment is limited by the original sharp point and an additional point having

the same coordinates. Now, we can evaluate the standard limit curve expression

on this new control poly-line since the original segment becomes internal. Other

evaluation alternatives are detailed in De Boor (1978).

Feature detection threshold The automatic feature detector from Sect. 3.6.4

uses the same threshold δ for the whole mesh. Even though the current normal

disparity is a helpful tool to set up a ranking of sharp features, it might be worth

considering a variable weight accounting for the local mesh size. This improvement

may be studied in the near future.

TFI node relocation In Sect. 3.7.2, we present a technique to accommodate the

curvature of the surface mesh to the volume elements adjacent to the boundary. By

discarding the TFI node relocation, we could simplify the mesh curving procedure by

directly untangling and optimizing the volume mesh. However, the TFI node reloca-

tion pre-process helps, for isotropic meshes, to accelerate the whole curving process.

This is so since the TFI relocation is explicit, fast, and provides a fair initial approx-

60

3.10. Concluding remarks

imation. This approximation reduces the number of non-linear iterations required by

the implicit and slower optimization solver. Finally, note that in all the examples,

the TFI relocation reduces the number of invalid elements.

Polynomial degree In this work, we present a method to interpolate the limit

model with arbitrary polynomial degree. In practice, one might prefer polynomial

degree four. This preference for degree four is so since the interpolation reproduces the

C2-continuity of the limit model around the regular points. Furthermore, we have seen

that around the irregular points with degree four, the interpolative approximation to

the limit model has a sufficiently small error. If we need a smaller error, we can

increase the polynomial degree of the limit model approximation. Nevertheless, this

approximation cannot be guaranteed to be C1-continuous around irregular points.

Thus, since the limit model is just a geometry surrogate, degree four could be adequate

for practical purposes.

Exploiting successive subdivisions Renouncing to interpolate the limit model,

we could simplify the interpolation of subdivision features by skipping the limit model

parameterization (Stam, 1998). To this end, we could interpolate the limit model

with a polynomial degree equal to a power of two on equispaced nodal distribution

exploiting the structure of the subdivision scheme (Jiménez-Ramos et al., 2020).

Then, we would interpolate this surrogate with an inferior polynomial degree to obtain

an alternative approximation. The resulting surface mesh might not interpolate the

limit model, but it might provide similar accuracy measurements.

3.10 Concluding remarks

We have proposed a method to interpolate a subdivision model with arbitrary degree

and nodal distribution. The method evaluates one time the limit model and thus,

skips successive refinement on posterior geometry queries. The results show that

we can generate, from an initial straight-edged mesh, a piecewise polynomial mesh

that approximates smooth curves and surfaces while preserving the required sharp

features. We also show that the resulting curved high-order surface mesh is ready

to prescribe the boundary in mesh curving methods. We have to highlight that for

61

3. Interpolation of subsivision features

regular meshes, as it is the case for digitized topographies, the resulting curved surface

mesh has class C2.

We have numerical evidence that the proposed distance from the nodal interpola-

tion to the limit model converges geometrically with the polynomial degree for nodal

distributions with sub-optimal Lebesgue constant. Hence, we can expect accurate

approximations of the limit model for sufficiently high polynomial degrees. We un-

derstand that this geometrical convergence rate, to a parameterization with up to

continuous derivatives, seems to be originated by the natural alignment of the trian-

gulation entities with the subdivision continuity interfaces. That is, irregular points

of the initial triangulation are aligned with C1 irregular points of the limit model.

Analogously, the interior of segments and triangles of the initial triangulation are

aligned with the interior of the C2 segments and the C∞ triangles of the limit model,

respectively.

The results show that the proposed assisted sharp-to-smooth modeling capability

reduces the human labor required to prescribe the simulation intent. Specifically, it

facilitates assigning sharp and smooth features to a linear model composed of points,

polylines, and triangulations. To illustrate it, we have assigned the desired flow

simulation intent to an aircraft model in a high-lift configuration.

In conclusion, we have presented a methodology to model and represent curved

geometry of practical interest for flow simulation with unstructured high-order meth-

ods. In perspective, high-order methods might benefit from using curved meshes that

approximate our curved boundary representation, which we devised to describe the

flow simulation intent.

62

Chapter 4

Refining simplex points for

scalable estimation of the Lebesgue

constant

4.1 Introduction

In approximation theory, one of the key problems is obtaining a set of simplex points

for a given polynomial degree that guarantees a small interpolation error. To solve

this problem, it is standard to obtain interpolation points featuring a small Lebesgue

constant. This constant is usually denoted by Λ and defined as

Λ = max
x∈Kd

Np,d∑

i=1

|φi (x)| . (4.1)

It corresponds to the maximum on the d-dimensional simplex Kd of the summation

of the absolute values of the Lagrange polynomials φi associated with each of the Np,d

interpolation points, a summation that is Lipschitz because the absolute value terms

are Lipschitz, a summation that is called the Lebesgue function. The maximum of this

function appears in the upper bound of the interpolation error. Specifically, given

a point distribution, for any function f , the error of the polynomial interpolation

satisfies

‖f − I (f)‖ ≤ (1 + Λ) ‖f − f ?‖ ,

63

4. Refining simplex points

where I (f) denotes the Lagrange interpolator, and f ? the best polynomial approxi-

mation. According to the previous inequality, the smaller the Lebesgue constant, the

smaller the bound of the interpolation error. Moreover, the Lebesgue constant exclu-

sively depends on the position of the interpolation points. For instance, equispaced

distributions of points, which lead to larger errors for higher polynomial degrees, fea-

ture large values of the Lebesgue constant, yet non-uniform distributions of points,

with improved interpolation error, feature sub-optimal values of the Lebesgue con-

stant (Angelos et al., 1989; Roth, 2005; Warburton, 2006). Accordingly, to guarantee

small interpolation errors, the Lebesgue constant has to be evaluated and thus, it is

key to estimate on the simplex the maximum of the Lebesgue function.

To approximate this maximum, it is critical to automatically generate on the d-

dimensional simplex a finite number of sample points – exactly the goal of this work.

Then, for those points, the approximation is the maximum of the function evaluations.

Note that these sample points are used to estimate the Lebesgue constant, but they

do not correspond to the interpolation points that define the Lagrange polynomials in

Eq. (4.1). To estimate the Lebesgue constant, there are general zeroth-order optimiza-

tion (Paulavičius and Žilinskas, 2014) and Lebesgue-specific (Roth, 2005; Warburton,

2006; Briani et al., 2012) methods. These approaches are mainly different because

the latter family exploits the structure of the Lebesgue function. Specifically, be-

cause the Lebesgue function presents several similar local maxima, specific-purpose

methods successfully favor smooth gradations of the point resolution.

Nevertheless, both families of methods share some aspects. They feature the same

stopping criterion, add sample points, and have computational costs scaling with the

number of points. To stop the maximum approximation process, all the previous

methods terminate after a fixed number of iterations. The two families of methods

generate sample points statically or dynamically, statically by adding in one shot

a grid of points (Briani et al., 2012), dynamically by adding at each iteration new

points (Roth, 2005; Warburton, 2006; Paulavičius and Žilinskas, 2014). Because the

Lebesgue function is evaluated at these sample points, the computational cost of the

maximum estimation scales with the number of points. This scaling depends on the

method, the polynomial degree, and the simplex dimension. Next, we see how to

automatically stop the optimization iterations and the need for neighbor queries and

scalable point refinement.

Unfortunately, to automatically stop the optimization iterations, neither the gen-

64

4.1. Introduction

eral nor the specific-purpose methods exploit that the Lebesgue function is Lipschitz.

Although all the previous methods can improve the estimation of the maximum by

increasing the number of iterations, none of them automatically stops when the op-

timal of the Lebesgue function is sufficiently converged. To measure the convergence

and stop the iterations, first- and second-order optimization methods check if the ap-

proximated candidate is sufficiently flat, a successful condition that can be emulated

if the function is Lipschitz — precisely the case for the Lebesgue function.

To emulate the sufficiently flat condition on a sample point, it is key to query

for point neighbors. Thus, using all these points to evaluate the function, a local

estimation of the Lipschitz constant is the quotient of the function difference and the

distance of the neighbor points. Then, using this constant and a flatness tolerance,

the automatic stopping criterion can be incorporated by only evaluating the function.

The specific-purpose (Roth, 2005; Warburton, 2006) and the general (Paulavičius and

Žilinskas, 2014) methods incorporate neither the stopping criterion nor the neighbor

queries.

To efficiently estimate the Lebesgue constant in the simplex, it is critical to use

scalable point refinement techniques. In this manner, the Lebesgue function can be

finely sampled only on the interest regions and coarsely sampled otherwise, an adap-

tive strategy that reduces the number of needed points (Roth, 2005; Warburton, 2006;

Paulavičius and Žilinskas, 2014). As we said before, the computational cost scales

with the number of points, so the local refinement reduces the cost of approximat-

ing the Lebesgue constant. Unfortunately, when specific-purpose methods refine the

resolution (Roth, 2005; Warburton, 2006; Briani et al., 2012), the number of points

scales exponentially with the dimensionality. This exponential scaling is affordable

for two and three dimensions, but impractical for higher dimensions. Fortunately,

some general methods do not scale exponentially with the dimension. Specifically,

the DiSimpl (Paulavičius and Žilinskas, 2014) method adds only two new points per

point refinement, a refinement scaling that is well-suited for higher dimensions.

Summarizing, for more than three dimensions, there is no specific-purpose method

to estimate the Lebesgue constant in the simplex. For two and three dimensions,

the specific-purpose methods successfully estimate the Lebesgue constant, but their

extensions to arbitrary dimensions do not scale well with the dimensionality. For

arbitrary dimensions, optimization methods for general functions scale well with the

dimensionality, but they are not specifically devised to estimate the Lebesgue con-

65

4. Refining simplex points

stant. That is, they do not control size gradation. Neither general nor specific-purpose

methods feature neighbor queries. Thus, they are not ready to stop automatically

when the optimal candidate features sufficient flatness.

To address the previous issues, the main contribution of this chapter is to propose

a new specific-purpose point refinement method. The proposed method features a

smooth gradation of the resolution, neighbor queries based on neighbor-aware point

coordinates, and a point refinement that scales algebraically with the dimension as

(d + 1)d. The main novelty of the proposed smooth point refinement method is not

only that it scales algebraically with the dimension but also that it is ready to use

an automatic Lipschitz stopping criterion.

The main application of the proposed point refinement method is to estimate the

Lebesgue constant on the simplex. Accordingly, the results check whether the pro-

posed point refinement method reproduces the literature estimations for the triangle

and the tetrahedron. Moreover, the results assess whether the method is well-suited

for Lebesgue constant approximations on the simplex for mid-range dimensionality.

The rest of the chapter is organized as follows. First, in Sect. 4.2, we review the

related literature. Then, in Sect. 4.3, we describe the system of coordinates that allow

the neighbor queries and the core point refinement operations. Next, in Sect. 4.4, we

detail the adaptive minimization method. In Sect. 4.5, we illustrate with several

examples the main features of the presented method. Lastly, in Sect. 4.6, we present

some concluding remarks of this chapter.

4.2 Related work

One of the most immediate estimates of the Lebesgue constant is given by the max-

imum value of the function in an equispaced grid of points. The size of the sampling

determines the accuracy of the estimation at the expense of increasing the number

of function evaluations. Alternatively, it is possible to use a sequence of admissi-

ble meshes (Calvi and Levenberg, 2008) as sampling points (Briani et al., 2012).

Admissible meshes have the property that the maximum value at this finite set of

points bounds the infinity norm of a polynomial of certain degree overall the simplex.

Unfortunately, none of these methods is adaptive.

An alternative is to estimate the Lebesgue constant by means of a non-deterministic

adaptive method (Warburton, 2006). The method starts with a random sample of

66

4.2. Related work

points in the simplex. Next, the function is evaluated, and the points are sorted in

terms of their function value. Then, new random samples are generated inside boxes

centered at the points with the largest values. At each iteration, the box edge-length

is halved to capture the maximum more accurately, and thus, a smooth gradation

in the sampling resolution is obtained. This process is repeated until a prescribed

number of iterations is reached. Finally, the estimate for the Lebesgue constant is

the largest value at a sample point.

To compute the Lebesgue constant, an alternative adaptive method (Roth, 2005)

named DiTri modifies the DiRect algorithm (Jones et al., 1993) to work in triangles.

The method starts with the evaluation of the function at the centroid of the triangle.

Next, the triangle is subdivided using a quadtree strategy. Then, the function is

evaluated at the centroid of the three new smaller triangles. At each iteration, the

algorithm chooses a set of potentially optimal triangles to refine in terms of their

size and the function value at their centroid. After the refinement step, additional

elements are refined to ensure a smooth gradation of the element size. When a

prescribed number of iterations is reached, the centroid of the triangle with the largest

function value determines an estimation of the Lebesgue constant. Remarkably, the

method exploits the simplicity of the triangle by uniquely identifying each element

with a triplet of integers, and therefore, no explicit mesh connectivity structure is

needed.

Similarly to the DiRect algorithm but based on simplices, the method named DiS-

impl also considers a Lipschitzian optimization approach (Paulavičius and Žilinskas,

2014). DiSimpl is devised to find the global minimum of an arbitrary function whose

domain is a hypercube or simplex, and performs particularly well when the function

presents symmetries. Initially, the search space is decomposed into simplices. Then,

two approaches are considered. In one case, the function is evaluated at the centroid

of the simplex, and two hyper-planes cutting the longest edge subdivide the poten-

tially optimal simplex into three smaller simplices. In the other case, the function

is evaluated at the vertices of the simplex, and one hyper-plane cutting the longest

edge generates two smaller simplices. Interestingly, in any of the approaches, only

two function evaluations per refinement are performed. Finally, the algorithm stops

when a prescribed number of iterations is reached.

These adaptive methods outperform grid-based methods but they are not de-

vised to estimate the Lebesgue constant in the d-dimensional simplex. The non-

67

4. Refining simplex points

deterministic method (Warburton, 2006) starts sampling the function in 10 000 points

and generates 10 samples per each 2D box. Thus, to keep the same resolution we

would need 10d/2 points inside the d-box. Even in 2D, a considerable amount of ap-

proximately 200 000 sample points are required to accurately estimate the Lebesgue

constant, and we expect a higher value for higher dimensions. Moreover, the non-

deterministic nature of the algorithm makes it difficult to query neighbor points. The

quad-tree subdivision-based method (Roth, 2005) is devised to estimate the Lebesgue

constant in the triangle. The natural extension of this method to higher dimensions

would subdivide the d-simplex into 2d subelements and, consequently, the number

of sample points would increase exponentially. Furthermore, the simplicity of the

triangle case to uniquely identify each element could not be exploited. Finally, the

DiSimpl algorithm (Paulavičius and Žilinskas, 2014) has not been tested against the

Lebesgue function and the subdivision strategy becomes complicated in high dimen-

sions. Moreover, the resulting mesh is not conformal and the method does not feature

access to neighbor elements.

The method proposed in this chapter is deterministic and exploits a rational

barycentric system of coordinates to uniquely identify each sample point. The method

considers a discrete set of directions to refine which are parallel to the simplex edges.

Every time a point is refined, we evaluate the function at most (d+ 1) d times. Then,

after refining the potentially optimal points, we generate new sample points to ensure

a smooth gradation of the sampling resolution. Moreover, the system of coordinates

allows accessing to the adjacent points with no need for storing the neighbor struc-

ture, which enables a stopping criterion based on the sampling density and the local

Lipschitz constant around the extremum.

4.3 Neighbor-aware coordinates for point

refinement

Even though the main application is computing the maximum of the Lebesgue func-

tion, we present the method in a minimization framework. In Sect. 4.3.1, we schemat-

ically illustrate the method in 2D. Then, we detail the system of coordinates in

Sect. 4.3.2, and the core refinement operations in Sect. 4.3.3 and Sect. 4.3.4.

68

4.3. Neighbor-aware coordinates for point refinement

(a) (b) (c)

Figure 4.1: Illustration of the method. (a) Initial sampling. (b) Refining the point
at the barycenter by generating six new points (in gray) around it parallel to the
triangle edges. (c) To refine the black point we only evaluate the target function at
three new points (in gray).

4.3.1 Outline

To estimate the minimum of the target function, we propose using neighbor-aware

sample points. Consider the set of sample points shown in Fig. 4.1(a) and assume that

the point at the barycenter of the triangle is our minimum candidate. To improve

the estimation of the minimum, we refine the sampling around it by generating new

sample points parallel to the simplicial edges, see Fig. 4.1(b). Analogously, if our next

minimum candidate is the black point in Fig. 4.1(b), we generate new sample points

at positions parallel to the triangle edges, see Fig. 4.1(c). However, we only generate

three new points (in gray) since one of them already exists. Applying successively

this refinement operation to potentially optimal points, we expect to finely sample

the target function and find an accurate estimate of the minimum.

4.3.2 Neighbor-aware coordinates

Since we work with simplicial domains, we exploit the barycentric coordinates system.

More precisely, we consider an equispaced sampling with q+ 1 points on each edge of

the simplex, and we uniquely determine a sample point x ∈ Kd by a set of rational

barycentric coordinates of the form

x =

(
λ1

2rq
, . . . ,

λd+1

2rq

)
, (4.2)

with
∑d+1

i=1
λi

2rq
= 1, and non-negative integers r and λi, i = 1, . . . , d + 1. For each

barycentric coordinate, the numerator indicates the position on a uniform grid and

69

4. Refining simplex points

(a) (b)

Figure 4.2: For a central point (black dot), surrounding stencil points (black dots) for
the refinement directions (gray segments) parallel to the simplex edges (gray edges)
in (a) 2D and (b) 3D.

the denominator represents the level of refinement on the grid. Thus, the higher the

denominator, the higher the resolution of the sampling around the point.

Aligned with this system of coordinates, for each simplicial edge we choose a

refinement direction. Each refinement direction has two possible orientations: forward

and backward. Thus, we consider nD = 2nE vectors, where nE is the number of edges

of Kd. Each vector is identified by a pair of integers (i, j) and is written in rational

barycentric coordinates as

u(i,j) =
1

q
(ei − ej) ,

with i, j = 1, . . . , d+1, i 6= j, and where the (d+ 1)-dimensional vector ek is a vector

with a one in the k-th position and zeros elsewhere. The set of direction vectors

U = {u(i,j) for i, j = 1, . . . , d+ 1, i 6= j}

defines a canonical stencil that is used for generating new sample points. More con-

cretely, we generate at most (d+ 1) d new sample points per point refinement. These

(d+ 1) d refinement positions provide a reasonable scaling for medium dimensionality

while sampling sufficiently fine the neighborhood of the point to refine. In particular,

for the equilateral triangle, the six refinement positions are top-left, top-right, left,

right, bottom-left, and bottom-right, see Fig. 4.2(a), while for the tetrahedron there

are twelve positions, see Fig. 4.2(b).

70

4.3. Neighbor-aware coordinates for point refinement

Figure 4.3: Coordinates of a point of resolution r and its neighbors.

The value r in Eq. (4.2) is strongly related to the resolution of the sampling. With-

out loss of generality, consider the sample point x =
(

1
2
, 1

2

)
in the one-dimensional

interval [0, 1], and the direction vector u(1,2) =
(

1
2
, −1

2

)
. The point

y = x+ u(1,2) =

(
2

2
,
0

2

)

corresponds to the point zero in cartesian coordinates, while the point z = x +
1
2
u(1,2) =

(
3
4
, 1

4

)
is between the points x and y. Thus, scaling the vector u(1,2) with

a factor of the form 2−r, r ≥ 0, leads to the generation of closer points along the

direction described by the vector u(1,2).

The value of q determines the density of the initial sampling, see Eq. (4.2). In

practice, we favor setting q equal to one. When q is one, the initial grid contains only

the simplex vertices as sampling points. That is, the initial number of sampling points

is d + 1, and thus, it scales linearly with the number of dimensions. Bigger values

determine denser initial samplings that might require fewer adaptation iterations,

but the initial number of sampling points scales exponentially with the number of

dimensions. This initial offset might be reflected in a larger number of final sampling

points required to seek the target function minimum.

We store the points in a hash table built from the rational coordinates. Hence,

the point
(
λ1

2rq
, . . . , λ

d+1

2rq

)
and the point

(
2kλ1

2r+kq
, . . . , 2kλd+1

2r+kq

)
are identified as the same

point. Moreover, this system of rational barycentric coordinates allows to easily access

the neighbor points with no need for storing the neighbor structure. As depicted in

Fig. 4.3, coordinates of neighbor points with the same denominator only differ in

one unit. Thus, to query if a neighbor exists, we simply add one to one component,

71

4. Refining simplex points

subtract one from another component, and search in the set of points. Therefore,

there is no need for storing explicit connectivity information.

4.3.3 Point refinement

Besides the resolution, it is also useful to classify the points in terms of the complete-

ness of the stencil. On the one hand, we say a point x is incomplete of resolution r

if the sample point x+ 2−ru(i,j) exists, for some u(i,j) ∈ U . Alternatively, this means

that at least one point of the stencil of resolution r centered at x exists. A sample

point x may be incomplete in several resolutions, but it is for the highest resolution

when the representation of the function around x is more accurate.

On the other hand, if all the points of the stencil exist, we say this point is

complete. More precisely, a point x is complete of resolution r if the sample point

x+ 2−ru(i,j) exists, for all u(i,j) ∈ U . Similarly to the incomplete case, the higher the

resolution, the more accurate the representation of the function around the point.

We remark that a complete point of resolution r provides a finer discretization

than an incomplete point of resolution r′ with r′ ≤ r, since the neighborhood is

denser and sampled along all the considered directions. Furthermore, a point may be

complete and incomplete at the same time both providing meaningful information.

For instance, consider a complete point of resolution r which is also incomplete of

resolution r+1. In this case, not only the neighborhood is fully sampled at resolution

r, but additional partial information of the function at resolution r + 1 is known.

Around an incomplete point, this partial information has to be enhanced to obtain

a more accurate representation of the target function. Accordingly, we consider an

operation that completes the stencil around an incomplete point. Specifically, to

complete an incomplete point of resolution r, we propose to generate all the missing

points of the stencil of resolution r. Thus, the resulting point is no longer incomplete

at level r. In Fig. 4.4, for the two-dimensional case, we illustrate the completion

step for an incomplete point of resolution r. Since three points of the stencil exist,

Fig. 4.4(a), we only generate the remaining missing points to complete the stencil.

Once completed, the point becomes complete of resolution r, Fig. 4.4(b).

When the information gathered from a complete point indicates that there is

a minimum nearby, we should sample the function in a smaller neighborhood to

capture it. Thus, we need a point refinement operation. Refining a complete point

of resolution r consists in generating all the points of the stencil of resolution r + 1.

72

4.3. Neighbor-aware coordinates for point refinement

(a) (b)

Figure 4.4: Completing an incomplete sample point. An (a) incomplete point of
resolution r becomes (b) complete of resolution r.

(a) (b)

Figure 4.5: Refining a complete sample point. A (a) complete point of resolution r
becomes (b) complete of resolution r + 1.

Thus, the point becomes complete of resolution r+ 1. We highlight that if the point

is incomplete of level r + 1, we only generate those points needed to complete the

stencil of resolution r + 1 and, therefore, we avoid repeated function evaluation. In

Fig. 4.5, we illustrate, for the two-dimensional case, the refinement of a complete

point of resolution r which is also incomplete of resolution r + 1. Since one point of

the stencil of resolution r+1 exists, see Fig. 4.5(a), we generate five points to complete

the stencil. Then, the point becomes complete of resolution r + 1, see Fig. 4.5(b).

73

4. Refining simplex points

(a) (b)

Figure 4.6: Smooth gradations of the resolutions. (a) The gray point is complete
of resolution r (dotted line) and incomplete of resolutions r + 1 (dashed line) and
r+ 2 (solid line). (b) Smooth sampling after refining the gray point until it becomes
complete of resolution r + 1.

4.3.4 Smooth gradation

To obtain smooth discretizations of the target function, we need smooth gradations

of the resolution of the sampling points. Accordingly, we only consider sampling

configurations where the resolution between neighbors differs at most by one unit.

More precisely, assume that the finest complete resolution of a point is r, and the

highest incomplete resolution is r′, r′ > r. Then, the sampling is smooth if r′ = r+1.

Thus, after completing or refining a point we check if we have a smooth gradation

of points. If there is a point such that r′ > r + 1, we smooth it by refining until

resolution r′ − 1.

In Fig. 4.6(a), we show the sampling after refining the black point. We observe that

the gray point is complete of resolution r (dotted stencil), but it is also incomplete of

resolutions r+1 (dashed stencil) and r+2 (solid stencil), and therefore, this sampling

configuration is non-smooth. To obtain a smooth discretization, we refine the gray

point until it becomes complete of resolution r + 1 by generating one new point, see

Fig. 4.6(b). Now, there is a smooth gradation of the point resolution.

74

4.4. Adaptive point refinement

Algorithm 4.1 Approximating the minimum by sampling.

Input: Function F , Domain Kd

Output: Minimum x?, F (x?)
1: function ComputeMinimum(F , Kd)
2: Σ ← InitializeSamplePoints(F , Kd)
3: x? ← GetMinimum(Σ)
4: while x? is not a minimum of F do
5: ΣC ← GetCompletePoints(Σ)
6: {xCi} ← GetPointsToRefine(ΣC)
7: RefinePoints(F , Σ, {xCi})
8: ΣI ← GetIncompletePoints(Σ)
9: {xIj} ← GetPointsToComplete(ΣI)
10: CompletePoints(F , Σ, {xIj})
11: SmoothSampling(F , Σ)
12: x? ← GetMinimum(Σ)
13: end while
14: return x?, F (x?)
15: end function

4.4 Adaptive point refinement

In this section, we first present our adaptive method to estimate the minimum of a

function defined in the d-dimensional simplex, see Sect. 4.4.1. The rational barycen-

tric coordinate system described in Sect. 4.3 is the core of our method since an explicit

point connectivity structure is not needed. Then, in Sect. 4.4.2, we detail the stopping

criterion.

4.4.1 Algorithm

The adaptive point refinement is detailed in Algorithm 4.1. Given the function to

minimize, F , and the simplicial domain where it is defined, Kd, the first step of the

method is to initialize the set of sample points denoted as Σ, Line 2. We remark that

function F is an arbitrary target function, yet in our main application it corresponds

to minus the Lebesgue function. In the second step, the method gets the first min-

imum approximation on the initial sample points, Line 3. This initialization allows

iterating to seek a better approximation of the minimum until convergence, Line 4.

To improve the minimum approximation, the iterative process successively refines

and completes the potentially optimal sample points and smooths the gradation of

75

4. Refining simplex points

Point resolution

F
u

n
ct

io
n

va
lu

e

Figure 4.7: Two-dimensional representation of the complete points in terms of the
resolution and function value. The lower boundary of the convex hull determines the
points to complete.

the sampling point resolution.

First, the method refines the candidate points. To this end, in Line 5, we retrieve

the set of complete points ΣC and choose the points to refine, Line 6. We determine

the points to refine in terms of their resolution and function value. More concretely,

each complete sample point is represented in a graph by a dot with the horizontal

coordinate given by its resolution, and the vertical coordinate given by its function

value. If a point x is complete of resolutions r1, . . . , rk, with r1 < r2 < · · · < rk, then

it is represented by a dot at position (rk, F (x)). In Fig. 4.7, we show this graph in an

intermediate stage of the algorithm. Similarly to the DiRect algorithm (Jones et al.,

1993), we choose the points to refine by exploring multiple Lipschitz constants which,

in practice, reduces to computing the lower boundary of the convex hull of this point

cloud. Then, in Line 7, we refine the chosen points {xCi}.
Second, the method completes the incomplete points. To this end, in Line 8, we

obtain the set of incomplete points ΣI and choose the points to complete, Line 9.

Let x ∈ ΣI be an incomplete point of resolutions r1, . . . , rk, with r1 < r2 < · · · < rk,

which is either not complete or complete with finest resolution r, r < r1. Incomplete

points provide information about the function in a local sense since they have been

76

4.4. Adaptive point refinement

sampled along a particular direction only. In contrast, complete points have been

sampled along all the directions and, therefore, global information is known. Since

we prefer to have first a big picture of the function landscape before focusing on the

higher-resolution detail, we represent the incomplete point x by a dot with coordinates

(r1, F (x)) instead of (rk, F (x)). Then, we obtain a point cloud similar to the one

shown in Fig. 4.7. The lower part of the convex hull of this representation of ΣI

determines the points {xIj} to be completed. Finally, in Line 10, we complete these

points.

Third, the method smooths the gradation of the sampling point resolution. Specif-

ically, in Line 11, we generate the points needed to ensure the sampling is smooth,

see Sect. 4.3.4, and retrieve the minimum point x? from the sampling Σ, Line 12.

These steps are repeated until the point x? is a minimum, see Line 4. The details

on the stopping criterion are to be described in Sect. 4.4.2. Finally, the algorithm

returns the minimum point and the function value at the minimum, Line 14.

We highlight that the function is evaluated only in the generation of new sample

points, that is, in the refinement, completion, and smoothing steps. Further, in the

point data structure, we store the point coordinates and the function value, so it

can be immediately obtained when needed avoiding repeated calculations. To easily

access the neighbor points, the point data structure also contains an updated list of

the complete and incomplete resolutions.

4.4.2 Stopping criterion

In zeroth-order minimization, it is standard to stop seeking a minimum when a fixed

number of iterations is reached or when the minimum approximation is numerically

close to a known minimum value. In our case, only the value of the function is known,

yet the sample structure allows obtaining an indicator of the flatness of the function.

Accordingly, we can consider a stopping criterion accounting for the function flatness

as in first- and second-order optimization methods. The user specifies spatial and

functional tolerances, and the method automatically stops when a minimum below

these thresholds is found.

The spatial tolerance controls the resolution of the sampling in the neighborhood

of the minimum sample point. Specifically, given a spatial tolerance δ, there exists

a resolution R such that the distance between a point x and the point x + 2−ru(i,j)

is smaller than δ for all r ≥ R and vector u(i,j) ∈ U . Note that a complete point of

77

4. Refining simplex points

resolution r, r ≥ R, satisfies this criterion.

The functional tolerance ε is used to assess the flatness of the function around a

point in terms of an estimate of the local Lipschitz constant. Specifically, consider a

complete point x of resolution r, and denote by y the neighbor along the direction

(i, j), y = x+ 2−ru(i,j). We estimate the Lipschitz constant of resolution r around x

along the direction (i, j) as

K̃(i,j) (x) =
F (x)− F (y)

d (x,y)
,

where d (x,y) = ‖x− y‖2 is the distance between points x and y. Note that we

allow negative Lipschitz constant estimations. In particular, K̃(i,j) (x) is negative if

and only if F (x) < F (y). Moreover, the magnitude of the Lipschitz constant is

strongly related to the flatness of the function around x. Thus, the point x is a

minimum candidate if K̃(i,j) (x) is negative and
∣∣∣K̃(i,j) (x)

∣∣∣ < ε,

for all the directions u(i,j) ∈ U .

In Algorithm 4.1, at the end of the loop, there exists a sample point x? such that

F (x?) ≤ F (y), for all y ∈ Σ. Then, in Line 4, we check if the point x? is complete

of resolution r, r ≥ R, and the local estimates of the Lipschitz constant along all

the possible directions for resolution r are less than ε. If so, we assume that the

neighborhood of x? has been sufficiently sampled and the function is sufficiently flat

there. Thus, the point x? is considered an estimate of the function minimum and the

algorithm stops.

Alternatively, it is also possible to limit the number of iterations. This limit

allows the user to obtain an approximation of the minimum before the tolerance-

based stopping criterion is satisfied. In both cases, the algorithm returns the sample

point x? with the smallest function value.

4.5 Results: estimation of the Lebesgue constant

The main application of the method presented in Sect. 4.4 is the estimation of the

Lebesgue constant in the d-dimensional simplex. The Lebesgue constant is used to

assess the interpolation capabilities of a nodal distribution and is defined as the max-

imum of the Lebesgue function, see Eq. (4.1). Due to the absolute value, the function

78

4.5. Results: estimation of the Lebesgue constant

Figure 4.8: Lebesgue function of the warp-and-blend nodal distribution of polynomial
degree 10 in the triangle (Warburton, 2006).

is non-differentiable and, hence, a zeroth-order method is required to compute the

maximum.

In Fig. 4.8, for a triangle of polynomial degree 10, we show the Lebesgue function

for a warp-and-blend nodal distribution (Warburton, 2006). Since this nodal family

is symmetric, the Lebesgue function is symmetric, too. Consequently, it is enough to

find the maximum inside the sextant of the triangle. More precisely, we consider the

symmetric tile of the d-dimensional simplex determined by the points with barycentric

coordinates
(
λ1, . . . , λd+1

)
,
∑d+1

i=1 λ
i = 1, such that λi ≥ λj if i ≥ j.

4.5.1 Verification in 2D and 3D

To verify the estimated values of the Lebesgue constant found using our method,

we compare our results with those reported in Warburton (2006). In Table 4.1, we

report the value of the Lebesgue constant for the equispaced and the warp-and-blend

distribution (Warburton, 2006) for several polynomial degrees p, p = 2, . . . , 15, in

the triangle. The initial sampling is composed of the three vertices of the domain,

q = 1. We set δ = 10−4 and ε = 10−3 for the stopping criterion, and in all cases the

minimum is found before the limit of 50 iterations is reached. We also list the number

of sample points needed. In general, as the polynomial degree increases, also does the

79

4. Refining simplex points

Equispaced Warp-and-blend
p ΛEq # points ΛWB # points

2 1.67 219 1.67 221
3 2.27 302 2.11 292
4 3.47 280 2.66 283
5 5.45 280 3.12 483
6 8.75 424 3.70 404
7 14.34 356 4.27 378
8 24.01 409 4.96 668
9 40.92 533 5.74 611
10 70.89 397 6.67 685
11 124.53 427 7.90 497
12 221.41 538 9.36 747
13 397.70 422 11.47 735
14 720.69 412 13.97 1142
15 1 315.89 599 17.65 885

Table 4.1: Number of sample points needed to estimate the Lebesgue constant using
the equispaced distribution, ΛEq, and the warp-and-blend distribution (Warburton,
2006), ΛWB, of polynomial degree p = 2, . . . , 15 as interpolation set in the triangle.

number of points. This is so because, for high polynomial degrees, the basins of the

Lebesgue function that contain the minima are smaller and deeper and, consequently,

more sample points are needed to capture the minimum with the same precision. In

spite of this fact, we remark that our method is able to compute a good estimate

of the Lebesgue constant using less than 1200 sample points, yet the values coincide

with those reported in Warburton (2006) up to the second decimal place.

In Fig. 4.9, we show the final sampling used to capture the maximum of the

Lebesgue function associated with the warp-and-blend distribution of polynomial

degree 10 represented in Fig. 4.8. Since this function features triangle symmetry,

the search space is simply the sextant. We remark that regions with higher values,

blueish areas in Fig. 4.8, present a finer sampling in Fig. 4.9. We also see that there

are three local minima with similar function values, yet the global minimum is the

one in the interior of the domain.

In Table 4.2, we report the maximum value and the number of sample points

needed to estimate the Lebesgue constant for the equispaced and the warp-and-blend

distribution (Warburton, 2006) for several polynomial degrees p, p = 2, . . . , 15, in the

tetrahedron. We use the same initial sampling and the same tolerances δ = 10−4 and

80

4.5. Results: estimation of the Lebesgue constant

Figure 4.9: Final sampling used to capture the maximum of the Lebesgue function
of the warp-and-blend nodal distribution of polynomial degree 10 in the triangle
(Warburton, 2006).

Equispaced Warp-and-blend
p ΛEq # points ΛWB # points

2 2.00 398 2.00 398
3 3.02 565 2.93 635
4 4.88 536 4.07 722
5 8.09 581 5.32 990
6 13.66 690 7.01 1040
7 23.38 675 9.21 1671
8 40.55 751 12.54 854
9 71.15 708 17.02 1651
10 126.20 779 24.36 2412
11 225.99 798 36.35 1644
12 408.15 853 54.18 1707
13 742.69 860 84.62 2594
14 1 360.49 843 135.75 2635
15 2 506.95 926 217.71 3519

Table 4.2: Number of sample points needed to estimate the Lebesgue constant using
the equispaced distribution, ΛEq, and the warp-and-blend distribution (Warburton,
2006), ΛWB, of polynomial degree p = 2, . . . , 15 as interpolation set in the tetrahedron.

ε = 10−3 for the stopping criterion, and in all cases the minimum is found before

the limit of 50 iterations is reached. As in the two-dimensional case, more sample

points are required to estimate the Lebesgue constant of higher polynomial degrees.

81

4. Refining simplex points

0 50 100 150 200 250
Number of points

10−6

10−5

10−4

10−3

10−2

10−1

100

E
st

im
at

io
n

er
ro

r
Our method

DiTri

Figure 4.10: Error in the estimation of the Lebesgue constant in terms of the number
of sample points using our method (blue) and DiTri (Roth, 2005) (red) for the warp-
and-blend distribution of polynomial degree 10 in the triangle.

We highlight that the values coincide with those reported in Warburton (2006) up to

the second decimal place, and only 3519 points are needed to compute an estimate of

the Lebesgue constant for the warp-and-blend distribution of polynomial degree 15.

In contrast, using an admissible mesh of 3519(1/3) ≈ 16 points per line, the estimated

value of the Lebesgue constant is 211.07.

4.5.2 Performance comparison in 2D

To check the performance, we compare the results of our method with the results

of our implementation of the DiTri algorithm (Roth, 2005). For both methods, we

compute in a triangle the Lebesgue constant for the warp-and-blend symmetric nodal

distribution of polynomial degree 10. To do so, we report, at the end of each iteration,

the number of sample points and the relative error of the maximum estimation. In

Fig. 4.10, we show the evolution of our method, in blue, and the DiTri algorithm, in

red. We observe that both methods show similar evolution. Moreover, to capture the

maximum with a relative error below 10−4, both methods need less than 200 sample

points. Note that we do not consider the non-deterministic method (Warburton,

2006) because the initial sampling already consists of 10 000 sample points.

82

4.5. Results: estimation of the Lebesgue constant

Dimension 4 Dimension 5 Dimension 6

p
#

Λ Λ̃
#

Λ Λ̃
#

Λ Λ̃
points points points

6 1126 19.22 19.05 2030 25.49 19.90 1807 32.63 25.45
7 1075 34.08 33.51 1545 46.54 34.43 1790 61.00 50.46
8 1033 60.86 55.75 1578 85.24 65.06 2466 114.13 96.97
9 1175 109.43 90.72 1677 156.62 126.31 2252 213.76 180.24
10 1572 198.08 150.71 1667 288.82 241.51 2381 400.93 323.42

Table 4.3: Estimation of the Lebesgue constant of the equispaced distribution of
polynomial degree p = 6, . . . , 10 in the d-simplex, d = 4, . . . , 6. Number of sample
points needed to compute our estimation Λ, and approximation using an admissible
mesh Λ̃.

Although the evolution of both methods is similar in 2D, our method scales better

in higher dimensions. We highlight that to refine a point using our method, we

generate at most 6 new sample points, while DiTri always requires 3 new sample

points. This difference is almost irrelevant in 2D and, consequently, the two curves

follow a similar trend. However, this would not be the case in higher dimensions since

we generate at most (d+ 1) d new sample points per refinement, while an extension

to higher dimensions of DiTri would require 2d − 1 new sample points. Hence, for

each method, the number of sample points scales differently with the dimension d,

exponentially for an extension to arbitrary dimensions of DiTri, quadratically for our

method.

Moreover, since we only need a point data structure, the refinement, comple-

tion, and smoothing operations are implemented for arbitrary dimensions and no

dimension-specific considerations are required. Finally, the system of rational barycen-

tric coordinates allows easily accessing the adjacent points with no need for storing

the neighbor structure, which enables using a stopping criterion based on the flatness

of the function.

4.5.3 Results in 4D, 5D, and 6D

The values reported in Sect. 4.5.1 for 2D and 3D coincide with the ones found in

the literature (Warburton, 2006). Thus, we believe that our method is capable of

estimating the Lebesgue constant accurately using a moderate amount of sample

points. In Table 4.3, we show our estimation Λ of the Lebesgue constant of the

83

4. Refining simplex points

equispaced nodal distribution of polynomial degree p in the d-simplex, p = 6, . . . , 10,

d = 4, . . . , 6. We also show the number of required sample points. As expected, we

observe that the values increase with the polynomial degree and the dimension.

As an alternative to our method, we can use an admissible mesh (Calvi and

Levenberg, 2008) to estimate the Lebesgue constant. Since in dimension d = 4

we provided an estimate using at most 1572 sample points, we approximate the

Lebesgue constant using an admissible mesh of approximately 15721/4 points per line.

Analogously, in 5D and 6D, we compute an estimate using approximately 20301/5

and 24661/6 points per line, respectively. In Table 4.3, we denote by Λ̃ the maximum

function value at this grid of sample points. We observe that with the same number

of points, our method captures a higher value and, therefore, it is more suitable to

estimate the Lebesgue constant in small and moderate dimensionality.

4.6 Concluding remarks

To estimate the Lebesgue constant on the simplex, we have proposed a new specific-

purpose point refinement method. The proposed method features a smooth grada-

tion of the resolution, neighbor queries based on neighbor-aware coordinates, and a

point refinement that algebraically scales with dimensionality. Remarkably, by using

neighbor-aware coordinates, the point refinement method is ready to automatically

stop using a Lipschitz criterion.

In mid-range dimensionality, we conclude that the point refinement is well-suited

to automatically and efficiently estimate the Lebesgue constant on simplices. Specif-

ically, for different polynomial degrees and point distributions, our results efficiently

have reproduced the literature estimations for the triangle and the tetrahedron. More-

over, we have adaptively estimated the Lebesgue constant up to six dimensions.

In perspective, for a given polynomial degree, the proposed point refinement might

be relevant to obtaining a set of simplex points that guarantees a small interpolation

error. That is, it efficiently estimates the Lebesgue constant, an estimation that is

helpful in two ways. First, to assess the quality of a given set of interpolation points.

Second, to evaluate the Lebesgue constant when optimizing the interpolation error

for the point distribution as a design variable. We also think the method might be

well-suited to seek optima in the simplex for functions behaving as the Lebesgue

function.

84

Chapter 5

Exploring locally optimal nodal

distributions of a Lebesgue

constant proxy

5.1 Introduction

In computational science and engineering, point distributions featuring optimal inter-

polation error for unknown functions have a major interest. This interest is prompted

by the different applications of optimal interpolation point distributions. In this the-

sis, we are interested in interpolating curved geometry obtained as the boundary of a

3D representation of the discretized domain (Jiménez-Ramos et al., 2020, 2022), see

Chapter 3, or as the 3-dimensional boundary of a space-time 4D geometry. Moreover,

we are also interested in using optimal interpolation points as a proxy of good nodal

distributions for the nodal high-order unstructured methods such as the discontin-

uous (Hesthaven and Warburton, 2007) and continuous Galerkin (Karniadakis and

Sherwin, 2005) methods for 4D space-time solutions.

In these high-dimensional applications, it is important to specifically obtain point

distributions on the simplex. This is so because complex geometries can be dis-

cretized using automatic triangular and tetrahedral mesh generators such as the ad-

vancing front method (Peraire et al., 1987; Löhner and Parikh, 1988) and the Delau-

nay method (George et al., 1990; Shewchuk, 2005; Si, 2015). Beyond three dimensions,

85

5. Exploring locally optimal nodal distributions

there also exist mesh generators featuring Delaunay implementations (Barber et al.,

1996; The CGAL Project, 2023).

Fair point distributions for interpolation in the simplex are obtained by optimizing

an objective function that has as design variables either the point coordinates or a

parameter controlling an explicit warp and blend of the points on the boundary. The

objective function, in turn, is either the non-differentiable infinity norm of the inter-

polation operator, known as Lebesgue constant, or a differentiable surrogate. These

alternatives have yielded different approaches. On the one hand, for up to three

dimensions, we have methods optimizing the point coordinates as design variables.

In one dimension, it is possible to obtain the optimal Lebesgue point distributions

with deterministic optimization methods (Angelos et al., 1989). In two dimensions,

it is possible to explore first the local minima of a surrogate of the Lebesgue constant

(Fekete, 1923; Bos, 1983; Chen and Babuška, 1995; Hesthaven, 1998; Taylor et al.,

2000; Roth, 2005; Briani et al., 2012; Van Barel et al., 2014) and, then, optimize

the Lebesgue constant of the candidates with a non-deterministic genetic algorithm

(Roth, 2005). Nonetheless, it is also possible to optimize directly the Lebesgue con-

stant by means of a sequential quadratic programming approach (Briani et al., 2012;

Rapetti et al., 2012) or a damped Newton’s method (Heinrichs, 2005). In 3D, some

local minima of a differentiable surrogate have been found (Chen and Babuška, 1996;

Hesthaven and Teng, 2000), yet optimizing the point coordinates to minimize the

Lebesgue constant has not been considered. On the other hand, for up to three

dimensions, there are methods optimizing the parameter of a warp and blend func-

tion aiming to reduce the Lebesgue constant (Warburton, 2006). Alternatively, there

also exist explicit point distributions generated by blending a prescribed nodal dis-

tribution on the edges into the interior of the triangle and the tetrahedron (Blyth

and Pozrikidis, 2005; Luo and Pozrikidis, 2006) or the d-dimensional simplex (Isaac,

2020).

The methods using the point coordinates as variables lead to fairer point distri-

butions for interpolation when higher is the interpolation degree. This is so because

they are able to obtain points that break the grid structure of an initial equidis-

tributed distribution, a mechanism that has been identified as primordial to obtain

better interpolation points (Taylor et al., 2000; Roth, 2005). Remarkably, these sub-

optimal sets cluster the points around the boundary, yet present an equidistributed

arrangement on the sphere (Roth, 2005). Unfortunately, beyond three dimensions,

86

5.1. Introduction

there are no methods that optimize an objective function with the point coordinates

as design variables.

Accordingly, the goal of this chapter is to obtain fair point distributions for inter-

polation on the high-dimensional simplex by optimizing an objective function with

the point coordinates as design variables. We expect that the obtained point distri-

butions feature good interpolation properties and provide the required accuracy for

the aforementioned applications in complex geometry.

Our main contribution is to devise a specific-purpose approach that systemati-

cally and deterministically explores the heuristically best local minima of a proxy of

the Lebesgue constant up to dimension four. To explore proximal distributions, we

heuristically relocate one node to the other side of the uphill of the energy landscape.

A proxy of the energy landscape is obtained through a Delaunay triangulation on the

(d+ 1)-sphere, where the opposite faces of the simplices incident to a node determine

an approximation of the uphill energy landscape of the functional around such node.

After these nodal dislocations, these point configurations are locally optimized using

Newton’s method equipped with a trust-region globalization taking into account the

point resolution. Finally, the optimized nodal sets are represented as nodes of a tree

that are heuristically explored to obtain the best proxy values.

Our solution presents four main benefits. First, the local nodal dislocation tech-

nique is deterministic and allows reaching local minima non-reachable with continuous

minimization. Second, it is a generic formulation on the spatial dimension and thus,

we are able to optimize up to dimension four using the available computational re-

sources. Third, the tree structure handles the unicity of local optima using a specific

hash function. Fourth, the heuristic exploration of the tree nodes enforces reducing

the value of the functional.

The rest of the chapter is organized as follows. In Sect. 5.2, we recall some prelim-

inaries regarding some properties of the Lebesgue constant and the parameterization

of symmetric nodal distributions in the simplex. Next, in Sect. 5.3, we describe the

connection between the simplex and the sphere, and illustrate the relation between

the influence regions of the Lagrange interpolating polynomials and the euclidean

Delaunay mesh. The nodal dislocation technique and the exploration method are

presented in Sect. 5.4. Then, in Sect. 5.5, we include discussions and results. The

chapter ends with the concluding remarks in Sect. 5.6.

87

5. Exploring locally optimal nodal distributions

5.2 Preliminaries

Following, we recall some notation and definitions introduced in Chapter 2 used

throughout this chapter regarding the Lebesgue constant and the parameterization

of symmetric nodal distributions in the simplex. We refer the reader to Chapter 2

for a full detailed description.

For a given polynomial degree p and a set of interpolation nodesZ = {zj}j=1,...,Np,d

in a simplex Kd ⊂ Rd, the Lebesgue constant Λ corresponds to the infinity norm of

the interpolation operator IZ and appears in the upper bound of the interpolation

error of a function f ,

‖f − IZf‖∞ ≤ (1 + Λ) ‖f ? − f‖∞ ,

where f ? denotes the best approximating polynomial. Accordingly, to attain conver-

gence of the interpolator IZf to the target function f , Λ should grow slower in p

than ‖f ? − f‖∞ dies away. In particular, uniform convergence is attained if

lim
p→+∞

Λ1/p = 1.

Remarkably, the Lebesgue constant can be expressed as

Λ (Z) = max
x∈Kd

Np,d∑

i=1

|φi (x;Z)| ,

where φj is the Lagrange interpolating polynomial associated to the node zj, j =

1, . . . , Np,d.

In this thesis, the set of interpolation nodes Z is symmetric. Thus, as detailed

in Sect. 2.1, only n degrees of freedom encoded in a vector y are enough to describe

the position of the whole set of nodes. We recall that σ is the function mapping the

vector of degrees of freedom y to the whole nodal distribution,

σ : Rn → Rd × Np,d· · · × Rd

y 7→ σ (y) = Z
.

5.3 Spherical simplex

Up to moderate polynomial degree, close to optimal interpolation nodal distributions

present a grid structure. In contrast, for high polynomial degrees, quasi-optimal sets

88

5.3. Spherical simplex

(a) (b)

Figure 5.1: Close to optimal nodal distributions of degree p = 10 (a) in the triangle,
and (b) the enhanced representation on the sphere.

tend to cluster points towards the boundary and do not follow a uniform distribution,

see Fig. 5.1(a). Remarkably, there exists a mapping representing close to optimal

interpolation nodes in the simplex as uniformly distributed points on the sphere

Sd ⊂ Rd+1, see Fig. 5.1(b). More precisely, a point P ∈ Kd expressed in barycentric

coordinates as P = (λi)i=1,...,d+1, with λi ≥ 0, and
∑d+1

i=1 λ
i = 1, is mapped onto the

sphere Sd via

ϕ : Kd ⊂ Rd −→ Sd ⊂ Rd+1

P = (λi)i=1,...,d+1 7−→ ϕ (P) =
(√

λi
)
i=1,...,d+1

.
(5.1)

The region ϕ
(
Kd
)
, which we call spherical simplex, corresponds to the orthant of

the sphere Sd, namely the surface of the sphere where all the coordinates are non-

negative. Remarkably, uniformly distributed points on the orthant are distributed in

the simplex with density

ρ =
d+1∏

i=1

1

2
√
λi

via the mapping ϕ (Roth, 2005). This density coincides with the extremal measure of

the simplex (Baran, 1995) and, in the interval, Fekete points follow this distribution

(Bloom et al., 1992). For higher dimensions, it is an open question whether there exist

Fekete points following the density ρ (Bloom et al., 1992), but it is conjectured that

89

5. Exploring locally optimal nodal distributions

(a) (b)

Figure 5.2: (a) Lagrangian influence zones, each represented by a different color, and
(b) the skeleton of the Delaunay mesh using the Euclidean distance.

nodal sets with good interpolatory qualities in the simplex are distributed uniformly

over the orthant (Roth, 2005). Unfortunately, to obtain good interpolations points,

uniform distributions over the orthant are not sufficient. For instance, equispaced

distributions of points using spherical averaging (Buss and Fillmore, 2001) feature

large Lebesgue constant and do not exhibit uniform convergence (Roth, 2005).

Nevertheless, considering a nodal interpolative distribution as a set of points on

the sphere is an advantageous representation since it provides the nodes with connec-

tivities. To infer a structure on the spherical simplex, we first consider the influence

zone of a Lagrange polynomial φi, that is, the set of points in the simplex where the

polynomial φi dominates. Formally, the influence zone Vi of a Lagrange polynomial

φi is defined as

Vi = {x ∈ Kd : |φi (x)| ≥ |φj (x)| , ∀j = 1, . . . , Np,d}.

For the distribution represented in Fig. 5.1(b), we plot in Fig. 5.2(a) the sets ϕ (Vi),

for all i = 1, . . . , Np,d. For close to optimal nodal distributions, we observe that the

sets ϕ (Vi) resemble euclidean Voronoi cells. Thus, we approximate the regions ϕ (Vi)

by the constrained Voronoi diagram on the spherical simplex. Accordingly, the dual

of this diagram, the constrained Delaunay mesh, provides a reasonable set of point

connectivities, see Fig. 5.2(b).

Furthermore, the skeleton of the Delaunay mesh approximates the uphills of the

90

5.3. Spherical simplex

(a) (b) (c)

Figure 5.3: (a) Skeleton of the Delaunay mesh of a close to optimal nodal distribution
of polynomial degree p = 15. (b) Value of the function Λ evaluated at the nodal
distribution resulting from placing the red node at every position of the spherical
simplex preserving symmetry. (c) Superposition of the skeleton of the Delaunay
mesh and Fig. 5.3(b).

Lebesgue constant energy landscape for a free node. Let us consider the nodal distri-

bution Z of polynomial degree p = 15 shown in Fig. 5.3(a), and compute the Lebesgue

constant when the red node moves through the interior of the triangle. Specifically, in

Fig. 5.3(b), we plot the estimation of the Lebesgue constant of the nodal distribution

obtained as a result of relocating the red node from Fig. 5.3(a) to every position in the

interior of the triangle while preserving the symmetry. Remarkably, the skeleton of

the Delaunay mesh approximates the uphills of this landscape, see Fig. 5.3(c). More

precisely, let E be the set containing the mesh elements of the constrained Delaunay

mesh generated from the nodal set Z, and define I (zi) as the set of elements incident

to node zi,

I (zi) := {e ∈ E : zi ∈ e}.

Then, the boundary of I (zi) determines a discrete hyper-sphere that approximates

the energy uphills surrounding node zi. Going through these uphills is key to obtain

quasi-optimal interpolation nodal distributions, as it is to be detailed in the next

section.

According to the previous observation, we consider minor modifications of the

method to estimate the Lebesgue constant proposed in Chapter 4 to account for

the importance of this result. Specifically, the search space is not the simplex but

the orthant of the (d + 1)-sphere Sd. Accordingly, sample points are computed by

91

5. Exploring locally optimal nodal distributions

means of spherical averaging of the orthant vertices (Buss and Fillmore, 2001), where

the weight of each vertex is given by the corresponding component of the rational

barycentric coordinate. Nevertheless, sample points are mapped from the sphere onto

the simplex via ϕ−1 to evaluate the Lebesgue function. Finally, in the Lipschitz-based

automatic stopping criterion, we consider the geodesic distance between sample points

to compute a local estimate of the Lipschitz constant.

5.4 Exploring local minima

The number of local minima of the Lebesgue constant increases with the polyno-

mial degree. For low polynomial degrees, the Buss-Fillmore distribution (Buss and

Fillmore, 2001) belongs to the convergence basin of the optimal Lebesgue config-

uration but, for high polynomial degrees, these two distributions are basins apart.

Thus, to find the optimal Lebesgue configuration, one can optimize the Lebesgue con-

stant starting the optimization procedure from different initial approximations and,

among these local optima, the nodal distribution with the lowest Lebesgue constant

determines an approximation of the global Lebesgue optimum. Unfortunately, opti-

mizing the Lebesgue constant is not straight-forward. Thus, in order to explore as

many minima as possible in a fast and systematic manner, we present an exploration

method based on nodal dislocations, optimization of the Chen-Babuska functional

(Chen and Babuška, 1995) and featuring an analogy to standard graph search algo-

rithms. First, in Sect. 5.4.1, we present the Chen-Babuska functional used as a proxy

of the Lebesgue constant, later, in Sect. 5.4.2, we introduce the concept of nodal

dislocation, and finally, in Sect. 5.4.3, we explicitly detail the exploration algorithm.

5.4.1 Optimization of Chen-Babuska functional

Let y be the degrees of freedom describing the node position of a symmetric nodal

distribution, see Sect. 5.2. To approximate the minimization of the Lebesgue con-

stant, we consider the fast minimization of the Chen-Babuska functional (Chen and

Babuška, 1995). This functional corresponds to the square of the vectorial L2-norm

of the Lagrange interpolating polynomials,

β (y) :=
1

vol (Kd)

∫

Kd

Np,d∑

i=1

φ2
i (x;σ (y)) dx. (5.2)

92

5.4. Exploring local minima

(a) (b) (c)

Figure 5.4: Nodal dynamics during the optimization of the Chen-Babuska functional
for a nodal distribution of polynomial degree 12 in the triangle. (a) Initial nodal
set, (b) nodal set after 8 iterations, and (c) nodal set at the end of the optimization
process. Trajectories are colored in terms of the iteration number.

When this functional is used as a proxy of the Lebesgue function, it allows efficiently

obtaining new nodal distributions with approximately improved Lebesgue constants.

That is, given an initial nodal distribution, we can compute the closer local minimum

of the Chen-Babuska functional with standard second-order methods. This computa-

tionally efficient possibility is so since there are analytical expressions for evaluating

the functional value and the first and second derivatives, see Appendix D. Specifically,

we solve for the minimum of β (y) by means of Newton’s method equipped with a

trust-region globalization (Nocedal and Wright, 2006) implemented in Mogensen and

Riseth (2018). The trust region is chosen to account for the point resolution and is

adaptively updated to ensure feasible point distributions, see details in Sect. D.2.

To illustrate the optimization procedure, in Fig. 5.4 we show on the sphere the

dynamics for a nodal distribution of polynomial degree 12 in the triangle. The initial

approximation is depicted in Fig. 5.4(a), and the trajectory of the nodes is colored

in terms of the iteration number. We observe that the restrictions on the maximum

radius of the trust region computations force a smooth dynamics of the nodes. In-

terestingly, we appreciate a torsion-like movement of the interior nodes that allow

the distribution to achieve the minimum of the basin. This phenomenon can be ob-

served comparing Fig. 5.4(b) and Fig. 5.4(c), where we show the nodal set after 8

iterations and the final position, respectively. After 8 iterations, the interior node

located at the bottom-center part of the region has not moved significantly but, at

93

5. Exploring locally optimal nodal distributions

some point, it moves to the left while the neighbor node at the top-left moves up and

the neighbor node at the top-right moves down. These three nodes rotate clockwise

in a synchronous way and, finally, the nodal set attains the minimum. We remark

that this kind of dynamics is not specific to this polynomial degree or dimension.

Actually, we have observed this pattern when optimizing high polynomial degrees

distributions in the triangle and the tetrahedron, and we expect to find this coupling

in higher dimensions with an even more complex entanglement.

Unfortunately, the Chen-Babuska functional presents several local minima. For

low polynomial degrees, Buss-Fillmore nodal distributions (Buss and Fillmore, 2001)

are close to the global optimum, but for high polynomial degrees, the Buss-Fillmore

distribution may not belong to the optimal convergence basin. Thus, finding the

global minimum requires exploration approaches.

5.4.2 Nodal dislocations

To explore different local minima, we need a systematic manner to provide different

initial nodal distributions. Ideally, these distributions must converge to different

local minima, and if we explored all the local minima, we would obtain the global

minimum. Herein, we only expect to explore a large number of local minima and thus,

to obtain a quasi-optimal approximation of the global minimum. Next, we detail how

to systematically generate the set of initial configurations.

First, we remark that each local minimum of the Chen-Babuska functional cor-

responds to a different point distribution which belongs to a different convergence

basin. Unfortunately, since these points do not feature explicit connectivities, it is

not easy to structurally identify different configurations. To heuristically distinguish

point distributions, we compute the connectivity structure given by the Delaunay tri-

angulation of the points on the spherical simplex, see Sect. 5.3. Herein, we consider

that two nodal distributions are structurally different if the mesh connectivities are

different. Thus, we explore different nodal configurations by exploring different mesh

connectivities.

Moving one node, we can easily generate different mesh connectivities. If we fix all

the nodes, we can obtain different configurations by moving a node to the centroid of

some of the simplices of the Delaunay mesh. Specifically, let E be the set containing

the mesh elements of the constrained Delaunay mesh generated from the nodal set

Z, and I (zi) the set of elements incident to node zi, see Sect. 5.3. We define the

94

5.4. Exploring local minima

(a) (b) (c) (d)

Figure 5.5: (a) Skeleton of the Delaunay mesh of a close to optimal nodal distribution
of polynomial degree p = 15. The elements in the ring of the red node are colored in
gray. (b)-(d) Nodal configurations after dislocating the interior red node to some of
the elements in the ring.

elemental ring R (zi) as the set of adjacent elements to the incident elements to node

zi,

R (zi) :=


 ⋃

e∈I(zi)

⋃

zj∈e

I (zj)


 \ I (zi) . (5.3)

Then, we propose dislocating the node zi to the projection onto the sphere of the

centroid of each of the elements in R (zi). Consequently, we are generating at most

|R (zi)| structurally different nodal distributions per nodal dislocation. In Fig. 5.5(a),

we show a close to optimal nodal distribution of polynomial degree 15 and the skele-

ton of the Delaunay mesh, where we color in gray the elements in the ring of the

red interior node. In Fig. 5.5(b)-Fig. 5.5(d), we show three of the fourteen nodal

dislocations after relocating the red node to the centroid of the elements in its ring.

Note that not only the red node is relocated, but also the nodes in its equivalence

class.

This systematic exploration procedure has an energetic interpretation. This is so

since, for a free node, the energy landscape of the Chen-Babuska functional is a proxy

of the energy landscape of the Lebesgue constant. Consider the nodal distribution

of polynomial degree p = 15 depicted in Fig. 5.6(a). Then, in Fig. 5.6(b), we plot

the functional β at the nodal distribution obtained as a result of relocating the red

node from Fig. 5.6(a) to every position of the simplex while preserving symmetry.

Comparing Fig. 5.3(b) and Fig. 5.6(b), we observe that the uphills of the energy

landscapes of the Lebesgue constant Λ and the Chen-Babuska β are almost identical.

Accordingly, we approximate the uphills of the energy landscape of the Chen-Babuska

functional by the boundary of the elements incident the red node. Thus, by relocating

95

5. Exploring locally optimal nodal distributions

(a) (b) (c)

Figure 5.6: (a) Skeleton of the Delaunay mesh of a close to optimal nodal distribution
and ring of the red node. (b) Value of the function β evaluated at the nodal distri-
bution resulting from placing the red node at every position of the spherical simplex
preserving symmetry. (c) Superposition of the skeleton of the Delaunay mesh and
Fig. 5.6(b).

a node onto the elements in its ring, we are enforcing a tunnel effect in such a way

that the point crosses to the other side of the uphill energetic barrier. Furthermore,

the centroid of each constrained simplex is an approximation of the point with highest

influence of the surrounding Lagrange polynomials. Then, by moving an interpolation

point on that highly influenced region, we are enforcing there a Lebesgue value of one,

a value that is the smallest possible one. Finally, in Fig. 5.6(c) we merge Fig. 5.6(a)

and Fig. 5.6(b) to illustrate that dislocating the red node to the centroid of the

elements in its ring forces the tunnel effect and moves the node through the uphill

barriers.

We remark that the energetic barriers on the functional also appear due to the

fact that we are considering symmetric nodal configurations. For instance, a node

that belongs to the median of the triangle cannot move beyond the barycenter by

optimizing the Chen-Babuska functional. This is so because as this node approaches

the barycenter, also do the nodes in its equivalence class and, consequently, the value

of the functional increases. Thus, the proposed dislocation operation allows to explore

distributions with a nodal disposition that would be difficult to obtain by means of

smooth optimization.

Considering symmetric nodal distributions demands a precise description of the

nodal dislocation operation. To dislocate a node, we relocate it to the centroid of an

96

5.4. Exploring local minima

element in the ring and project it onto the sphere. Unfortunately, this nodal disloca-

tion operation is not well-posed for nodes with less than d degrees of freedom. Recall

that, as described in Sect. 2.1, the number of degrees of freedom of a representative

is determined by the number of symmetry entities the node belongs to, and the in-

tersection of these entities describes the domain manifold where the node can freely

move. In particular, interior nodes which do not belong to any symmetry entity are

free to move in the interior of the simplex. For those representatives with d degrees

of freedom, the projection onto the sphere of the centroid of an element belongs to

the spherical simplex and the dislocation operation is well-defined. However, if we

consider the case when the representative has less than d degrees of freedom, for

instance, a node on the median of the triangle with one degree of freedom, the pro-

jection onto the sphere of the centroid of an element does not belong, in general, to

the spherical median. To circumvent this issue, we find the orthogonal projection of

the centroid to the domain manifold on the sphere. More precisely, we dislocate the

representative to the point on the spherical domain manifold such that the distance

to the centroid is minimized. We find this point by projecting to the subspace that

contains the vertices of the spherical manifold and passes through the origin, and then

projecting again to the sphere. Finally, once the representative is relocated, the nodes

in its equivalence class are repositioned according to the corresponding permutation

to ensure symmetry is preserved.

By dislocating each of the nodal representatives to the elements in their ring, we

expect to generate a set of structurally different point distributions. Heuristically,

each of these nodal sets belongs to a different Chen-Babuska convergence basin and

should be optimized to attain the local minimum. After optimizing these new config-

urations, we may repeat this process and generate a new set of initial approximations.

We expect that some of these structurally different local minima improve the function

value, and successive iterations of these steps converge to the global optimum. Since

the number of local minima may be large, we need a criterion to determine which

optima should be explored.

5.4.3 Exploration graph

We heuristically determine which local minima are worth exploring by classifying

them in terms of their function values and the number of dislocations they have un-

dergone. Given a local minimum of the Chen-Babuska functional β, we apply the

97

5. Exploring locally optimal nodal distributions

nodal dislocation technique to every representative of the nodal distribution and gen-

erate a family of nodal sets, see Sect. 5.4.2. These nodal configurations are used as

initial approximations for the minimization procedure to obtain a local minimum of

the function β as detailed in Sect. 5.4.1. Abstractly, the operation that consists in

dislocating a representative of an optimum and optimizing the resulting nodal distri-

bution connects two (different) minima of the functional β. Therefore, we propose

to represent local minima as vertices of a directed graph, and explore different local

minima by visiting different vertices of the graph.

Specifically, we identify a local minimum of β with a vertex of a directed graph,

and build an edge from vertex v to vertex w, v → w, if two conditions hold. First, w is

the minimum attained when optimizing the functional β with initial approximation

given as a dislocation of a representative of v. Second, β (w) < β (v). Note that,

in contrast to standard graph search algorithms, the graph is unknown in advance

since the vertices and edges of the graph are generated while we dislocate nodes and

optimize distributions. Moreover, all the children of vertex v correspond to local

optima of β obtained after an optimization of a nodal dislocation of v and with a

lower function value than β (v). Consequently, the function value is reduced at each

offspring and, in particular, the leaves of the graph correspond to nodal distributions

with the smallest function values.

To determine the exploration order of the graph vertices, we sort them in terms

of their function value and their position in the graph. Let us define the depth d

of a vertex as d = d′ + 1, where d′ is the depth of its ancestor, and set the root

of the tree to have depth 0. Next, we select which vertices to explore similar to

how potentially optimal hyperrectangles are chosen in the DiRect algorithm (Jones

et al., 1993). More precisely, we represent each unexplored vertex of the graph as a

two-dimensional point with the first component given by its depth and the second

component given by the function value at such minimum. Following, we consider the

convex hull of this point cloud. Then, the points that compose the poly-segment of

the lower boundary determine the next minima to be explored, see Fig. 5.7. With

this choice we balance minima with low function values and unexplored optima. In

particular, the minimum with the lowest function value will always be explored in

the next iteration. We highlight that to obtain the lower boundary of the convex

hull it is enough to consider the points with minimum value, which can be efficiently

accomplished if, for each depth, we store the vertices in a priority queue sorted by

98

5.4. Exploring local minima

Vertex depth

F
u
n
ct

io
n
 v

a
lu

e

Figure 5.7: Two-dimensional representation of the vertices of the graph at a specific
iteration of the algorithm. The dots conforming the lower boundary of the convex
hull correspond to the vertices to be explored in the next iteration.

the function value.

5.4.4 The algorithm

In Algorithm 5.1, we detail the complete method for exploring local minima of the

function β based on nodal dislocations and smooth optimization. Fixed the dimen-

sion and the polynomial degree, the input data is the function to optimize β, and

the initial approximation Z0. In our case, β is the Chen-Babuska functional defined

in Eq. (5.2), and the initial approximation is the Buss-Fillmore nodal distribution

(Buss and Fillmore, 2001). First, in Line 2, we compute the corresponding degrees

of freedom of the initial nodal distribution y0. Then, we initialize the graph struc-

ture and optimize the initial approximation, Lines 3 and 4. The optimized initial

approximation is denoted as y?0 and corresponds to the root of the directed graph.

Internally, the vertex structure stores the degrees of freedom of the optimized nodal

set, the depth of the vertex, the function value at the minimum, and the parent and

children information. The function CreateVertex creates an instance of this vertex

99

5. Exploring locally optimal nodal distributions

Algorithm 5.1 Exploring local minima of a function.

Input: Function β, Initial approximation Z0

Output: Graph G
1: function ExploreFunctionMinima(β, Z0)
2: y0 ← GetVectorOfDOFs(Z0)
3: G ← InitializeGraph

4: y?0 ← Optimize(β, y0)
5: CreateVertex(G, y?0, 0, β (y?0))
6: while there are unexplored vertices do
7: {t?1, . . . , t?k} ← GetDistributionsToExplore(G)
8: {y1, . . . ,yl} ← GenerateNodalDislocations({t?1, . . . , t?k})
9: {y?1, . . . ,y?l } ← Optimize(β, {y1, . . . ,yl})
10: UpdateGraph(G, {y?1, . . . ,y?l })
11: MarkAsExplored({t?1, . . . , t?k})
12: end while
13: return G
14: end function

structure and fills in the fields corresponding to the degrees of freedom, depth, and

function values with the arguments provided. For the root vertex, the corresponding

degrees of freedom are y?0, the depth is 0, and the function value is given by β (y?0),

Line 5. The root vertex has no parent nor children so far, yet this information is to

be filled in later.

Following, we have the main loop of the algorithm. This loop is repeated until all

the vertices of the graph have been explored, Line 6, and is composed of five steps.

First, in Line 7, we get the distributions {t?1, . . . , t?k} to be explored in the current

iteration. We choose these distributions in terms of their depth and function value,

as described in Sect. 5.4.3. Second, in Line 8 and following the method detailed in

Sect. 5.4.2, we generate the nodal sets {y1, . . . ,yl} by dislocating each representative

of each nodal distribution t?i , i = 1, . . . , k. Third, in Line 9, we optimize each initial

approximation yj to a local minima y?j , j = 1, . . . l. Fourth, we update the graph

structure, Line 10. Lastly, in the fifth step, we mark the vertices {t?1, . . . , t?k} as

explored to ensure they will not be explored again in the future, Line 11. The output

of the algorithm is the graph structure.

The fourth step in Algorithm 5.1 corresponds to updating the graph structure.

That is, we check whether the new found minimum already exists in the graph struc-

ture, create this new vertex if needed, and build an edge between the parent and the

100

5.4. Exploring local minima

Algorithm 5.2 Updating the graph structure.

Input: Graph G, Nodal sets {y?1, . . . ,y?l }
1: function UpdateGraph(G, {y?1, . . . ,y?l })
2: for each y?j in {y?1, . . . ,y?l } do

3: if β
(
y?j
)
< β

(
Parent(y?j)

)
then

4: if y?j /∈ G then

5: CreateVertex(G, y?j , Depth(Parent(y?j)) + 1, β
(
y?j
)
)

6: end if
7: BuildEdge(G, Parent(y?j), y

?
j)

8: end if
9: end for
10: end function

children. This process is detailed in Algorithm 5.2. Specifically, for each distribution

y?j , we first check if the value of β evaluated at the child is smaller than the value of

β evaluated at the parent, Line 3. If the child is better than the parent, we should

create an edge between these vertices. However, we should first check if the child was

already found previously. Graph vertices are stored in a hash table, with the hash

value determined by a random number generated with a seed given by the first four

significant digits of the function value at the minimum. Thus, to check if a vertex is

in the graph, we simply look it up in this hash table. Now, if the nodal distribution

was not already found, we create a new vertex calling the function CreateVertex,

Line 5. Note that the depth of the child is one unit greater than the depth of its

parent. Finally, we connect the parent with its (new) child with a directed edge, Line

7.

In Fig. 5.8, we show a representation of the graph for dimension 2 and polynomial

degree 12, where vertices are labeled with their function value. We can observe that

the values become smaller as we go down in the lineage. In particular, the leaves of

the graph are those nodal distributions which are better than their ancestors and do

not have any children improving the function value. We also stress that a child may

have more than one parent, that is, a minimum of the functional β might be found

from the nodal dislocation of two different minima.

As regards the implementation, since each optimization run is independent, we

distribute this operation in several CPUs. If the number of available CPUs is larger

than the number of distributions to explore, we repeat the process in Line 7 until

the desired load of minimization runs per CPU is achieved. We remark that this

101

5. Exploring locally optimal nodal distributions

Figure 5.8: Graph of the exploration procedure for dimension 2 and polynomial degree
12. Each box corresponds to a local minima labeled with its function value.

exploration order allows the minima with lower function values to be explored first,

and even though all the vertices of the graph will be eventually explored, this ordering

is particularly useful when the computational resources are only available during a

limited period of time, since we expect to obtain the best results within this time

limitation.

5.5 Numerical results

In this section, we report the main properties of the nodal configurations found by

the method presented in this work. All the algorithms are coded in Julia (Bezanson

et al., 2017) and some parts feature a parallel implementation aiming to exploit the

resources of the MareNostrum4 supercomputer located at the Barcelona Supercom-

puting Center. Even though the proposed methods do not present a dimensional

102

5.5. Numerical results

Dislocations Condition # local minima min β min Λ

Ring Descending 2 1.106 5.918
Ring Non-descending 144 1.106 5.918
All Descending 2 1.106 5.918
All Non-descending 221 1.106 5.918

Table 5.1: Number of local minima, minimum function value, and minimum Lebesgue
constant found for the different versions of the method for polynomial degree 9 in the
triangle, d = 2.

Ring and descending All and descending
Degree # local minima min β min Λ # local minima min β min Λ

10 5 1.027 7.085 9 1.027 7.085
11 6 1.069 7.266 16 1.069 7.266
12 27 1.102 8.669 57 1.102 8.669
13 72 1.094 8.877 267 1.094 8.877
14 439 1.088 8.988 840 1.088 8.988
15 1 242 1.112 10.306 2 443 1.112 10.306

Table 5.2: Number of local minima, minimum function value, and minimum Lebesgue
constant found for the different versions of the method in terms of the polynomial
degree in the triangle, d = 2.

limitation, the computational time is a practical barrier. Consequently, the reported

values were obtained after using 2400 CPUs for at most 48 hours. We remark that in

2D and for low polynomial degrees in 3D and 4D, all the graph vertices were explored.

In contrast, for high polynomial degrees in 3D and 4D, there are still graph vertices

to explore once the time limitation is reached. Nevertheless, since graph vertices are

explored by priority, see Sect. 5.4.3, we obtain nodal distributions with improved

interpolation properties.

5.5.1 Method variations

In Sect. 5.4, we propose a method to explore different minima of a smooth functional.

This heuristic method features local nodal dislocations, and it always explores the

graph vertices in a decreasing fashion. In the following example, we illustrate the

influence of these decisions on the optima found.

More precisely, in Algorithm 5.1 of Sect. 5.4, we propose to dislocate a node to

103

5. Exploring locally optimal nodal distributions

explore different mesh connectivities. The new locations are determined by the pro-

jection onto the sphere of the centroid of the elements in the ring around a given

node, see Sect. 5.4.2. Alternatively, we can generate structurally different nodal sets

by dislocating a node to the projection onto the sphere of the centroid of all the

elements in the Delaunay mesh, not only those in the ring. With this alternative ap-

proach, we explore more mesh connectivities. Accordingly, we expect to find smaller

local minima since we are enforcing crossing more energetic barriers, not only the

ones with highest influence. Unfortunately, increasing the number of distributions to

optimize increases the computational cost.

Regarding the graph exploration, we represent each function minima by a vertex

of a directed graph and build an edge connecting a parent and its child if the function

value decreases, see Sect. 5.4.3. As an alternative, we can consider the graph obtained

when we do not impose the decrease condition. Under this criterion, we explore

more possibilities since the graph has more vertices, and we may end up finding

a better local minimum. On the downside, exploring more local minima is more

computationally expensive.

In Table 5.1, we compare the four possible combinations arising from this discus-

sion in the exploration of quasi-optimal nodal distributions of polynomial degree 9 in

the triangle. We list the number of local minima found, the minimum function value,

and the minimum Lebesgue constant. As expected, exploring worse children leads

to an increase in the number of optima found, but these new optima do not feature

better interpolation properties. Indeed, the same best local minimum and the same

distribution with the lowest Lebesgue constant are found in all four cases.

To illustrate the influence of dislocating a node to the elements in the ring or to

all mesh elements, we explore the minima for polynomial degrees from 10 to 15, see

Table 5.2. We observe that, even though the number of local minima is larger when

we dislocate a node to all mesh elements, the same best local minimum and the same

distribution with the lowest Lebesgue constant are found with both methods. We be-

lieve that this is so because the initial approximation, the Buss-Fillmore distribution,

is close to the quasi-optimal nodal set and local dislocations are enough to find the

basin which contains the optimum. Furthermore, if such minimum is obtained after a

single global nodal dislocation, we expect that it will also be reached after successive

local nodal dislocations.

We conclude that none of the alternatives studied presents a clear advantage

104

5.5. Numerical results

with respect to the original method presented in Sect. 5.4 and they mainly increase

the computational cost without an impact on the best nodal distributions found.

Definitely, starting from a Buss-Fillmore distribution, it is sufficient to consider local

nodal dislocations and children improving the function value.

5.5.2 Quasi-optimal Chen-Babuska points in 2D

The method presented in Sect. 5.4 explores different local minima of the Chen-

Babuska functional. These minima correspond to nodal distributions with an associ-

ated function value β and Lebesgue constant Λ. Since the Chen-Babuska functional

is a proxy of the Lebesgue constant, the global optimum of Chen-Babuska may have a

greater Lebesgue constant than another local minimum. For instance, for polynomial

degree 9, we find two local minima, see Table 5.1. One minimum is at value β = 1.106

and has Lebesgue constant Λ = 7.573, while the other minimum is attained at value

β = 1.123 and has Lebesgue constant Λ = 5.918. Therefore, the nodal configuration

with the smallest function value may not correspond to the best interpolation set in

terms of the Lebesgue constant. Furthermore, we are also interested in the condition

number of the Vandermonde matrix and the interpolation error for several benchmark

functions. Following, we study these quantities of interest for our nodal distributions

in the triangle and compare the values against the nodal sets in the literature.

Chen-Babuska functional and Lebesgue constant

In Table 5.3, up to polynomial degree 20, we report the minimum function value β

and the minimum Lebesgue constant Λ found with our method. We also list these

values for the nodal sets computed in Chen and Babuška (1995), where the functional

β is optimized. We observe that up to polynomial degree 8 we obtain the same local

minima for the functional β, yet we find lower function values for higher polynomial

degrees. Similarly, up to polynomial degree 10, our values for the Lebesgue constant

coincide with those from Chen and Babuška (1995), yet we find nodal distributions

with smaller Lebesgue constant for higher polynomial degrees. Interestingly, some

of these optimal nodal distributions present a structured configuration. Our quasi-

optimal Lebesgue nodal sets of polynomial degree p, p ≤ 10, present a lattice-like

structure in the triangle and, hence, we believe that the initial approximation in

the optimization procedure used in Chen and Babuška (1995) was the equispaced

105

5. Exploring locally optimal nodal distributions

Optimizing β
Chen and Babuška (1995)

Optimizing Λ
Roth (2005)

Optimizing β
with our method

p β Λ Λ1/p Λ Λ1/p min β min Λ min Λ1/p

3 0.740 2.111 1.283 2.108 1.282 0.740 2.112 1.283
4 0.820 2.692 1.281 2.587 1.268 0.820 2.692 1.281
5 0.884 3.301 1.270 3.081 1.252 0.884 3.301 1.270
6 0.941 3.791 1.249 3.595 1.238 0.941 3.791 1.249
7 0.996 4.391 1.235 4.143 1.225 0.996 4.391 1.235
8 1.055 5.089 1.226 4.766 1.216 1.055 5.089 1.226
9 1.123 5.918 1.218 5.486 1.208 1.106 5.918 1.218
10 1.205 7.085 1.216 5.921 1.195 1.027 7.085 1.216
11 1.311 8.338 1.213 6.724 1.189 1.069 7.266 1.198
12 1.453 10.082 1.212 7.187 1.179 1.102 8.660 1.197
13 1.651 12.046 1.211 7.253 1.165 1.094 8.877 1.183
14 7.706 1.157 1.088 8.988 1.170
15 8.243 1.151 1.112 10.306 1.168
16 1.134 10.970 1.161
17 1.148 14.026 1.168
18 1.138 12.344 1.150
19 1.143 11.797 1.139
20 1.162 12.861 1.136

Table 5.3: Minimum function value, Lebesgue constant and its convergence for our
nodal sets in the triangle for polynomial degree p, p = 3, . . . , 20. We also report the
values from Chen and Babuška (1995) and Roth (2005). Blank spaces indicate not
reported results.

distribution in the triangle. In contrast, for degrees p ≥ 11, our distributions do

not present a lattice-like pattern and we obtain smaller Lebesgue constants. These

results agree with the belief that the optimal Lebesgue nodal sets feature a lattice-like

structure until polynomial degree 9, yet there exist better Lebesgue configurations

that do not exhibit this structure for higher polynomial degrees (Roth, 2005).

In Table 5.3, we also list the estimation of the Lebesgue constant for the quasi-

optimal symmetrical nodal sets computed in Roth (2005). Our quasi-optimal nodal

distributions feature larger Lebesgue constant than the ones found in Roth (2005).

This fact is not surprising since our method explores local minima of the Chen-

Babuska functional, which is a proxy of the Lebesgue constant, and the nodal sets

found in Roth (2005) are computed optimizing the Lebesgue constant instead. Up

to polynomial degree 9, the values suggest that these nodal sets feature a lattice-like

106

5.5. Numerical results

(a) (b)

Figure 5.9: Comparison of close to optimal nodal distributions of polynomial degree
15 in the triangle depicted on the sphere. (a) Black spheres indicate the points
positions of the nodal distribution from Roth (2005). (b) Our distribution is depicted
with red crosses, and the nodal set from Roth (2005) with semi-transparent black
spheres.

structure, while for higher polynomial degrees it seems they exhibit an unstructured

disposition. Unfortunately, the points coordinates of the nodal sets are not available

and only a figure of the nodal distribution of polynomial degree p = 15 is shown,

see Fig. 5.9(a). Remarkably, we have found a local minimum of the Chen-Babuska

functional which is topologically close to this nodal distribution, see Fig. 5.9(b).

This minimum has a Lebesgue constant of Λ = 10.422 and a Chen-Babuska value

of β = 1.112. Thus, even though the Lebesgue constant of this nodal set is larger

than the best value found, we believe that our local minima could be used as initial

approximations for a method that directly optimizes the Lebesgue constant to obtain

better point configurations.

It is also worth studying the series Λ1/p as the polynomial degree increases since

its convergence to one is a sufficient condition to ensure uniform convergence, see

Sect. 5.2. In Table 5.3, we show these values for our quasi-optimal nodal distributions

and the nodal sets computed in Chen and Babuška (1995) and Roth (2005). We

observe that the sequence Λ1/p is monotonically decreasing except between polynomial

degrees 16 and 17, yet the three series have a general trend to decrease.

107

5. Exploring locally optimal nodal distributions

Condition number κ
p Equispaced Warburton (2006) Rapetti et al. (2012) Our method

3 5.828 5.903 5.903 5.906
4 7.599 6.777 7.064 6.915
5 10.167 7.845 8.242 8.129
6 14.658 9.591 9.651 9.639
7 22.239 11.160 11.642 11.170
8 35.627 13.886 14.599 13.869
9 59.949 16.896 17.184 16.847
10 104.164 21.670 22.059 21.376
11 186.545 27.401 31.751 18.965
12 344.977 36.132 24.137 24.264
13 626.693 47.219 31.071 31.882
14 1 198.655 63.679 46.113 27.075
15 2 194.382 85.692 30.931 32.565
16 4 284.058 117.712 44.424 35.659
17 7 879.557 166.716 50.798 35.043
18 15 597.334 247.913 55.253 41.240
19 28 798.839 344.617 41.738
20 57 534.253 476.785 42.792

Table 5.4: Condition number κ of the Vandermonde matrix using different interpola-
tive nodal sets in the triangle for polynomial degree p, p = 3, . . . , 20. We compare the
values for the equispaced distribution, the values from Warburton (2006) and Rapetti
et al. (2012), and our nodal sets. Blank spaces indicate not reported results.

Condition number of the Vandermonde matrix

To construct an interpolating polynomial, it is standard to evaluate the Lagrange

interpolating basis by solving a linear system where the system matrix corresponds

to the Vandermonde matrix in terms of an orthogonal basis. Thus, to indirectly mea-

sure how the nodal distribution affects the accuracy of an interpolation, we compare

the condition number of the Vandermonde matrix using the Koornwinder-Dubiner

orthogonal basis (Koornwinder, 1975; Dubiner, 1991; Kirby, 2010). In Table 5.4, we

report the condition number when evaluating this basis at the equispaced distribu-

tion and at our quasi-optimal nodal distribution. Since the nodal positions of the

distribution in Roth (2005) are not available, we also list the condition number for

the nodal sets in Warburton (2006) and Rapetti et al. (2012). We see that the values

rapidly increase for the equispaced distribution. Nevertheless, when evaluating with

108

5.5. Numerical results

all the other nodal distributions, up to polynomial degree 15, we should expect to

lose less than three digits of accuracy because all the condition numbers are smaller

than 100.

Interpolation error of benchmark functions

To further assess the interpolation properties of our nodal sets, we estimate the error

of interpolating several benchmark functions. The first two benchmark functions,

expressed in barycentric coordinates λ = (λi)i=1,...,d+1, with λi ≥ 0, and
∑d+1

i=1 λ
i = 1,

are

u1 (λ) =
(
exp

(
−2λ1

)
− 1
) d+1∏

i=2

(
2λi
)
,

u2 (λ) =
(
cosh

(
−2λ1

)
− 1
) d+1∏

i=2

(
2λi
)
.

(5.4)

These functions are particularly relevant since they are devised to allow equispaced

points to achieve uniform convergence. That is, they are the multi-dimensional ver-

sion of a 1D analytic function that has the n-th derivative bounded by Cn, where

C is a constant. Hence, the upper bound of the interpolation error tends to zero as

the polynomial degree increases (Davis, 1975). The third benchmark function is an

extension of the Runge function to several dimensions, namely

u3 (λ) =
1

1 + 2α
∥∥λ − 1

d+1
1
∥∥2

2

, (5.5)

with α = 25, and 1 the vector with all its components equal to one.

In Fig. 5.10, we plot the interpolation error ‖ui − IZui‖∞ / ‖ui‖∞, i = 1, 2, 3, in

terms of the polynomial degree when interpolating these functions using equispaced

points, warp-and-blend nodes (Warburton, 2006) and our quasi-optimal nodal distri-

butions. To estimate these errors, we apply the adaptive sampling method proposed

in Chapter 4 using as objective function |ui − IZui|. Indeed, the interpolations using

either nodal sets converge to the functions u1 and u2, see Fig. 5.10(a) and (b). Up

to degree 14, the three interpolation errors decrease as expected. From degree 15 to

degree 20, the interpolation errors stop the previous decreasing trend because ma-

chine accuracy is reached when estimating the error. For the Runge function u3, we

observe in Fig. 5.10(c) that the interpolation error using equispaced points diverges,

while with the warp-and-blend or our quasi-optimal nodal configurations the errors

seem to converge.

109

5. Exploring locally optimal nodal distributions

2 4 6 8 10 12 14 16 18 20
Polynomial degree

10−1

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u1

Equispaced

Warp-and-blend

Quasi-optimal

(a)

2 4 6 8 10 12 14 16 18 20
Polynomial degree

10−1

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u2

Equispaced

Warp-and-blend

Quasi-optimal

(b)

2 4 6 8 10 12 14 16 18 20
Polynomial degree

101

10−1

10−3In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u3

Equispaced

Warp-and-blend

Quasi-optimal

(c)

Figure 5.10: Interpolation error in the triangle for different polynomial degrees using
equispaced (red), warp-and-blend (blue), and our quasi-optimal nodal distributions
(black) for functions: (a) u1; (b) u2; and (c) u3.

5.5.3 Quasi-optimal Chen-Babuska points in 3D

Analogously to the two-dimensional case, we repeat the same study for nodal distri-

butions in the tetrahedron. We highlight that, up to polynomial degree 9, we explore

all the graph vertices using the available computational resources in less than 48

hours. For higher polynomial degrees, there are still graph vertices to explore once

the time limit is reached. In either case, since we are prioritizing which graph vertices

should be explored first, see Sect. 5.4.3, we obtain nodal distributions with improved

interpolation properties.

110

5.5. Numerical results

Optimizing β
Chen and Babuška (1996)

Explicit nodal sets
Isaac (2020)

Optimizing β
with our method

p β Λ Λ1/p Λ Λ1/p min β min Λ min Λ1/p

3 0.644 2.934 1.432 2.933 1.431 0.643 2.936 1.432
4 0.767 4.112 1.424 4.093 1.422 0.767 4.134 1.426
5 0.889 5.616 1.412 5.547 1.409 0.889 5.644 1.414
6 1.024 7.363 1.395 7.169 1.389 1.022 7.310 1.393
7 1.190 9.366 1.377 9.202 1.373 1.129 8.897 1.366
8 1.417 12.311 1.369 12.067 1.365 1.342 12.010 1.364
9 1.753 15.686 1.358 15.593 1.357 1.328 15.146 1.353
10 20.623 1.353 1.381? 15.611? 1.316?

11 28.034 1.354 1.348? 19.425? 1.310?

12 38.649 1.356 1.423? 23.569? 1.301?

13 55.143 1.361 1.462? 25.701? 1.284?

14 81.037 1.369 1.514? 29.539? 1.274?

15 118.420 1.375 1.551? 36.375? 1.271?

Table 5.5: Minimum function value, Lebesgue constant and its convergence for our
nodal sets in the tetrahedron for polynomial degree p, p = 3, . . . , 15. We also report
the values from Chen and Babuška (1996) and Isaac (2020). Blank spaces indicate
not reported results, and values with ? indicate unfinished exploration of the graph
for the available computational resources.

Chen-Babuska functional and Lebesgue constant

In Table 5.5, we list our results up to polynomial degree 15. Specifically, we list the

minimum function value β, the Lebesgue constant Λ and the value Λ1/p. We also

report the results from Chen and Babuška (1996) since the same functional β is op-

timized. Up to polynomial degree 5, we obtain the same minimum function values.

Moreover, the distribution that corresponds to the minimum function value coincides

with the distribution featuring the minimum Lebesgue constant. Nevertheless, we at-

tribute the largest values reported here to a more precise estimation of the Lebesgue

constant. For higher polynomial degrees, we find nodal distributions with smaller

minimum function values and Lebesgue constants. We also compare our nodal con-

figurations with the explicit nodal sets computed in Isaac (2020). We observe that,

for p ≤ 6, the Lebesgue constant for our nodes is slightly larger. However, for higher

polynomial degrees, we obtain nodal sets with smaller Lebesgue constants, and as

we increase the polynomial degree, the difference between the two values increases.

Finally, we observe that the sequence Λ1/p has a general trend to decrease.

111

5. Exploring locally optimal nodal distributions

Condition number κ
p Equispaced Isaac (2020) Our method

3 10.248 10.505 10.537
4 15.392 15.817 15.878
5 20.245 18.766 18.763
6 32.997 25.851 25.803
7 52.301 37.339 35.490
8 91.944 55.905 54.849
9 162.216 86.315 82.432
10 300.740 137.967 79.217
11 558.909 224.111 76.962
12 1 064.722 371.800 101.923
13 2 027.690 621.826 122.222
14 3 917.567 1 052.205 142.834
15 7 560.901 1 785.689 167.841

Table 5.6: Condition number κ of the Vandermonde matrix using different interpola-
tive nodal sets in the tetrahedron for polynomial degree p, p = 3, . . . , 15. We compare
the values for the equispaced distribution, the values from Isaac (2020), and our nodal
sets.

Condition number of the Vandermonde matrix

In Table 5.6, we compare the condition number of the Vandermonde matrix using

the Koornwinder-Dubiner orthogonal basis evaluated at our nodal distributions, the

nodes from Isaac (2020), and the equispaced nodal set. As in the two-dimensional

case, we see that the values rapidly increase for the equispaced distribution and a

similar trend is observed for the Isaac (2020) distribution. In contrast, when using

our nodal distributions, the growing ratio is smaller and we should expect to lose less

than four digits of accuracy.

Interpolation error of benchmark functions

Regarding the interpolation error, we use the same functions ui, i = 1, . . . , 3, stated

in Eq. (5.4) and Eq. (5.5). In Fig. 5.11, we plot ‖ui − IZui‖∞ / ‖ui‖∞ in terms of the

polynomial degree when using equispaced points, the nodal sets from Isaac (2020)

and our quasi-optimal nodal distributions. Indeed, the interpolations using either

nodal sets converge to the functions u1 and u2, see Fig. 5.11(a) and (b). Up to degree

14, the three interpolation errors decrease as expected, but for polynomial degree 15

112

5.5. Numerical results

2 4 6 8 10 12 14 16
Polynomial degree

100

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u1

Equispaced

Explicit

Quasi-optimal

(a)

2 4 6 8 10 12 14 16
Polynomial degree

100

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u2

Equispaced

Explicit

Quasi-optimal

(b)

2 4 6 8 10 12 14 16
Polynomial degree

101

10−1

10−3In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u3

Equispaced

Explicit

Quasi-optimal

(c)

Figure 5.11: Interpolation error in the tetrahedron for different polynomial degrees
using equispaced (red), the explicit nodal sets from Isaac (2020) (blue), and our
quasi-optimal nodal distributions (black) for functions: (a) u1; (b) u2; and (c) u3.

we reach the machine accuracy in the error estimation and the decreasing trend is

lost. For the Runge function u3, we observe in Fig. 5.11(c) that the interpolation

error using equispaced points diverges. When using the explicit nodal sets from Isaac

(2020) or our quasi-optimal nodal configurations, the errors are smaller and tend to

be reduced as the polynomial degree increases.

5.5.4 Quasi-optimal Chen-Babuska points in 4D

For dimension d = 4, we are able to compute quasi-optimal nodal distributions up

to moderate polynomial degree. Up to degree 8, we are able to explore all the graph

vertices using the available computational resources, while up to degree 10, our im-

113

5. Exploring locally optimal nodal distributions

Equispaced
Explicit nodal sets Optimizing β
from Isaac (2020) with our method

p Λ Λ1/p Λ Λ1/p min β min Λ min Λ1/p

3 3.880 1.571 4.200 1.613 0.565 4.169 1.609
4 6.244 1.581 6.147 1.575 0.719 6.130 1.573
5 10.918 1.613 8.839 1.546 0.898 8.865 1.547
6 19.224 1.637 12.502 1.523 1.120 12.532 1.524
7 34.085 1.656 17.231 1.502 1.354 17.085 1.500
8 60.859 1.671 23.366 1.483 1.652 22.310 1.474
9 109.427 1.685 32.646 1.473 1.739? 31.328? 1.472?

10 198.083 1.697 45.768 1.466 1.913? 40.873? 1.449?

Table 5.7: Minimum function value, Lebesgue constant and its convergence for our
nodal sets in the pentatope for polynomial degree p, p = 3, . . . , 10. Values with ?
indicate unfinished exploration of the graph for the available computational resources.
We also report the values of the equispaced distribution and the nodal sets from Isaac
(2020).

plementation permits exploring the graph up to a certain depth only. For higher

polynomial degrees, we compute all the dislocations of the nodal representatives of

the initial approximation, but not all the optimization runs converge before the time

limit of 48 hours is reached. Accordingly, we only analyze nodal distributions up to

polynomial degree 10.

Chen-Babuska functional and Lebesgue constant

In Table 5.7, we report the minimum function value β and the minimum Lebesgue

constant Λ found with our method, as well as the values Λ1/p, for p = 3, . . . , 10. We

also list the Lebesgue constant of the explicit nodal distributions in the pentatope

computed in Isaac (2020). These explicit nodal sets preserve the lattice-like structure,

while our method explores structurally different configurations. We believe that the

similar values of the Lebesgue constant might be due to the fact that quasi-optimal

interpolation points present a grid structure for up to moderate polynomial degree.

Indeed, we see a similar behavior in the triangle and the tetrahedron, see for instance

Table 5.5, when it is not until polynomial degree 10 that we appreciate a significant

difference between the Lebesgue constant of our nodal distribution and the explicit

nodal set from Isaac (2020). Even so, our values correspond to minima of the Chen-

Babuska functional, so there is still room for improvement if these configurations are

114

5.5. Numerical results

Condition number κ
p Equispaced Isaac (2020) Our method

3 16.341 17.328 17.222
4 30.487 32.801 32.365
5 43.949 44.850 43.593
6 73.139 65.410 63.335
7 125.524 108.158 101.359
8 229.769 194.218 144.363
9 428.923 358.026 239.176
10 823.800 681.022 415.212

Table 5.8: Condition number of the Vandermonde matrix using different interpolative
nodal sets in the pentatope for polynomial degree p, p = 3, . . . , 10. We compare the
values for the equispaced distribution, the values from Isaac (2020), and our nodal
sets.

used as initial approximations for optimizing the Lebesgue constant.

Condition number of the Vandermonde matrix

In Table 5.8, we compare the condition number of the Vandermonde matrix using

the Koornwinder-Dubiner orthogonal basis evaluated at our nodal distributions, the

nodes from Isaac (2020), and the equispaced nodal set. Although our nodal con-

figurations feature slightly smaller values, the three nodal families present a similar

growing trend, and we should expect to lose less than four digits of accuracy.

Interpolation error of benchmark functions

Finally, in Fig. 5.12, we plot the interpolation errors of the functions ui, i = 1, . . . , 3,

see Eq. (5.4) and Eq. (5.5), in terms of the polynomial degree when using equispaced

points, the nodal sets from Isaac (2020) and our quasi-optimal nodal distributions.

Even though we only have used polynomials up to degree 10, we observe a clear trend

to decrease in the interpolation error of the functions u1 and u2, with the three nodal

sets providing similar results, see Fig. 5.12(a) and (b). In the case of the Runge

function u3, see Fig. 5.12(c), for the three nodal families the curves are not monotone

and the errors are large.

115

5. Exploring locally optimal nodal distributions

3 4 5 6 7 8 9 10
Polynomial degree

100

10−5

10−10

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u1

Equispaced

Explicit

Quasi-optimal

(a)

3 4 5 6 7 8 9 10
Polynomial degree

100

10−5

10−10

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u2

Equispaced

Explicit

Quasi-optimal

(b)

3 4 5 6 7 8 9 10
Polynomial degree

101

10−1

10−3In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u3

Equispaced

Explicit

Quasi-optimal

(c)

Figure 5.12: Interpolation error in the pentatope for different polynomial degrees
using equispaced (red), the explicit nodal sets from Isaac (2020) (blue), and our
quasi-optimal nodal distributions (black) for functions: (a) u1; (b) u2; and (c) u3.

5.5.5 Quasi-optimal Fekete points in 2D

As detailed in Sect. 5.1, many proxies to the Lebesgue constant have been considered

in the literature. In this work, we use the Chen-Babuska functional to optimize dis-

located nodal configurations but any functional can be minimized. Next, we explore

the local maximum of the Fekete functional F , which aims to maximize the logarithm

of the determinant of the Vandermonde matrix.

In Table 5.9, for polynomial degree p, p = 3, . . . , 20, we list the maximum func-

tion value, and the minimum Lebesgue constant Λ and Λ1/p of the quasi-optimal

nodal distributions in the triangle obtained by optimizing the Fekete functional. We

compare these values with the ones reported in Taylor et al. (2000) since the same

116

5.5. Numerical results

Optimizing F
Taylor et al. (2000)

Optimizing Λ
Roth (2005)

Optimizing F
with our method

p Λ Λ1/p Λ Λ1/p maxF min Λ min Λ1/p

3 2.108 1.282 12.727 2.112 1.283
4 2.587 1.268 21.801 2.729 1.285
5 3.081 1.252 33.579 3.611 1.293
6 4.17 1.269 3.595 1.238 48.196 4.171 1.269
7 4.91 1.255 4.143 1.225 65.800 4.929 1.256
8 5.90 1.248 4.766 1.216 86.375 5.905 1.249
9 6.80 1.237 5.486 1.208 110.339 6.803 1.237
10 7.75 1.227 5.921 1.195 138.508 7.879 1.229
11 7.89 1.207 6.724 1.189 169.234 7.907 1.207
12 8.03 1.190 7.187 1.179 203.538 9.421 1.206
13 9.21 1.186 7.253 1.165 241.805 9.279 1.187
14 9.72 1.176 7.706 1.157 283.855 9.959 1.178
15 9.97 1.166 8.243 1.151 329.275 10.021 1.166
16 12.1 1.169 378.644 10.689 1.160
17 13.3 1.164 431.601 11.534 1.155
18 13.5 1.156 488.695 12.377 1.150
19 550.251 12.634 1.143
20 615.259 13.863 1.140

Table 5.9: Maximum function value, Lebesgue constant and its convergence for our
nodal sets in the triangle for polynomial degree p, p = 3, . . . , 20. We also report the
values from Taylor et al. (2000) and Roth (2005). Blank spaces indicate not reported
results.

functional F is optimized. We observe that up to polynomial degree 15, the values

of the Lebesgue constant are similar, but we obtain nodal configurations featuring

smaller Lebesgue constant for higher polynomial degrees. We also report the values

from Roth (2005). Since the Fekete functional is a proxy of the Lebesgue constant,

our nodal sets present larger values.

Next, we compare the values in Table 5.3 and Table 5.9 to determine which

proxy provides better results. We can see that the Lebesgue constant of the nodal

distributions that correspond to the local minima of the Chen-Babuska functional

are smaller than the ones found when exploring the Fekete minima. It is also worth

noting that the Chen-Babuska functional aims to minimize the vectorial L2-norm

of the Lagrange polynomials which can be understood as the physical energy of the

system and its value is of order one. In contrast, the Fekete functional in the one-

117

5. Exploring locally optimal nodal distributions

dimensional segment is related to the potential energy of electric charges (Hesthaven,

1998), but in higher dimensions this physical interpretation is not clear. Furthermore,

the determinant of the Vandermonde matrix can be very large. Indeed, the function

values F reported in Table 5.9 correspond to the logarithm of the determinant and,

therefore, the actual value of the determinant for polynomial degree 20 is of order

10267. Thus, agreeing with our experience, optimizing the Fekete functional is prone

to numerical overflows. Hence we favor the Chen-Babuska functional as our proxy of

the Lebesgue constant.

5.6 Concluding remarks

We have proposed a specific-purpose deterministic optimization method to obtain

fair point distributions for interpolation on the high-dimensional simplex using the

point coordinates as design variables. To do so, we have devised a method to explore

the multiple local minima of a twice-differentiable proxy of the Lebesgue constant.

The optimized quasi-optimal nodal distributions do not feature a grid-like structure

and cluster interior nodes towards the simplex boundary. We use an advantageous

representation of the nodal distribution on the orthant of the (d + 1)-sphere. On

this surface, the euclidean Voronoi diagram of the nodes approximates the influence

zone of the Lagrange interpolating polynomials. The dual of this diagram, the De-

launay triangulation, provides the nodal distribution with a connectivity structure.

Furthermore, for a free node, the boundary of the union of the elements incident to

such node determines a proxy of the uphills of the energy landscape of the Lebesgue

constant. To explore structurally different point configurations, we heuristically en-

force a tunnel effect by relocating one node to the centroid of the elements across the

uphills. Each of these structurally different point configurations determines an initial

approximation that is optimized using Newton’s method equipped with a trust-region

globalization taking into account the point resolution. The optimized nodal sets are

represented as nodes of a tree sorted in decreasing order of the proxy objective func-

tion value. To fully exploit the available computational resources, the tree nodes are

explored in such a way that nodes with the smallest values are explored first.

The results show that the proposed local nodal dislocation technique and the

always-decreasing graph exploration approach are well-suited heuristics to obtain

nodal distributions with good interpolation properties using the available compu-

118

5.6. Concluding remarks

tational resources. Furthermore, in 2D, our point distributions feature interpola-

tion properties comparable to those nodal sets obtained by optimizing directly the

Lebesgue constant. Up to 4D, we find nodal configurations of moderate polynomial

degree which are the best-known local minima of the Chen-Babuska functional and

present the lowest Lebesgue constant up to date.

In perspective, we expect these nodal distributions to be of practical interest for

several communities. In particular, our nodal sets might be used to interpolate curved

geometry and perform space-time simulation using nodal high-order unstructured

methods. Additionally, we believe that methods optimizing the Lebesgue constant

might benefit from using our nodal distributions as initial approximations for the

optimization procedure.

119

Chapter 6

Computing nodal distributions

with quasi-optimal Lebesgue

constant

6.1 Introduction

In 4D space-time discretizations on complex geometry, the interest in point distri-

butions featuring quasi-optimal interpolation error for unknown functions is twofold.

First, they are accepted as a proxy of fair nodal distributions for high-order un-

structured methods such as the discontinuous (Hesthaven and Warburton, 2007) and

continuous Galerkin (Karniadakis and Sherwin, 2005) methods. Second, they might

allow representing (Jiménez-Ramos et al., 2020) and modeling (Jiménez-Ramos et al.,

2022) complex curved geometry preserving the simulation intent, see Chapter 3. Since

complex geometries can be discretized using automatic simplicial mesh generators

(Peraire et al., 1987; Löhner and Parikh, 1988; George et al., 1990; Shewchuk, 2005;

Si, 2015; Barber et al., 1996; The CGAL Project, 2023), we focus on obtaining quasi-

optimal point distributions on the simplex.

To find such quasi-optimal nodal distributions, it is standard to minimize the

infinity norm of the interpolation operator, known as Lebesgue constant. Nodal dis-

tributions with optimal Lebesgue constant are conjectured to fulfill two properties:

they have interior nodes clustered towards the boundary and do not feature a grid-like

structure (Taylor et al., 2000; Roth, 2005). The first property is exploited by explicit

121

6. Computing quasi-optimal nodal distributions

and semi-explicit methods to generate sub-optimal Lebesgue nodal configurations.

Specifically, these approaches distort a grid of points and enforce clustering the in-

terior nodes towards the boundary based on heuristics. In particular, semi-explicit

methods optimize the Lebesgue constant in terms of a single blending parameter

which controls how the prescribed nodes on the edges are incorporated into the in-

terior of the simplex. These explicit or semi-explicit nodal distributions have been

computed in the triangle (Blyth and Pozrikidis, 2005; Warburton, 2006), the tetra-

hedron (Luo and Pozrikidis, 2006; Warburton, 2006), and the d-simplex (Isaac, 2020)

and feature good interpolation properties for low polynomial degrees. However, since

the initial approximation is given by a grid of points, this grid-like structure is pre-

served, so they underperform as the polynomial degree increases.

Alternatively, some implicit methods using the point coordinates as design vari-

ables are capable of breaking the grid-like structure and finding the appropriate dis-

position of the boundary and interior nodes. Unfortunately, these methods have to

deal with the non-differentiability of the objective function. Specifically, the opti-

mization of the Lebesgue constant addresses the minimization with respect to the

node coordinates of the maximum over the simplex points of the Lebesgue function.

Accordingly, with respect to the node coordinates, the Lebesgue constant is not dif-

ferentiable not only because the Lebesgue function is not everywhere differentiable

but mainly because the involved maximum is not differentiable.

In 1D, the non-differentiable points of the Lebesgue function coincide with the

coordinates of the interpolation nodes. This particularity of the 1D case can be ex-

ploited to numerically compute the optimal Lebesgue nodes by means of a sequential

linear programming approach (Angelos et al., 1989). In higher dimensions, besides

the interpolation nodes, there are more regions where the Lebesgue function is not

differentiable. Nevertheless, for any spatial point where none of the Lagrange inter-

polating polynomials vanish, the derivatives of the Lebesgue function with respect to

the node coordinates are well-defined.

The Lebesgue constant, which depends exclusively on the nodal coordinates, is not

differentiable, yet the derivatives can be approximated using finite differences. Us-

ing these approximations, it is possible to optimize the point coordinates by means

of steepest-descent or damped Newton’s method (Heinrichs, 2005), or by solving a

quadratic problem in a sequential quadratic programming approach (Briani et al.,

2012; Rapetti et al., 2012). These local optimization methods find a minimum close

122

6.1. Introduction

to the given initial approximation, so if the initial condition features a grid-like struc-

ture, the optimized nodal distribution preserves such structure. Thus, these methods

neither break the grid-like structure of the initial approximation nor are consistent

with the smoothness of the Lebesgue function.

To avoid the non-differentiability of the Lebesgue constant, there exist zeroth-

order optimization methods using only the values of the objective function. The key

point of these zeroth-order methods is that they are capable of changing the structure

of the nodal distribution by randomly perturbing a node. Thus, these methods can

be applied to break the grid-like structure of an initial approximation and further

improve the Lebesgue constant (Roth, 2005; Rapetti et al., 2012). Unfortunately,

these methods are not deterministic and suffer the curse of dimensionality. As the

dimension and the polynomial degree increases, the search space becomes larger and

zeroth-order methods fail to exhaustively explore regions with potentially optimal

minima.

Accordingly, the goal of this chapter is to obtain interpolative nodal distribu-

tions on the high-dimensional simplex by optimizing the Lebesgue constant using the

node coordinates as design variables, yet consistently exploiting first-order deriva-

tives of the Lebesgue function. We expect that the obtained nodal distributions

feature quasi-optimal interpolation properties and provide the required accuracy for

the aforementioned applications in complex geometry.

To meet our goal, the main contribution of this chapter is a specific-purpose

deterministic method to optimize the Lebesgue constant of a given nodal distribu-

tion in the d-dimensional simplex using the point coordinates as design variables.

In a sequential linear programming approach, we sample at relevant spatial points

and compute a candidate descent direction using the first-order derivatives of the

Lebesgue function with respect to the node coordinates. The derivatives are com-

puted analytically and the Lebesgue constant is not differentiated in any case. The

method finds an optimum close to the given initial approximation. Thus, it is well-

suited to further improve the Lebesgue constant of nodal distributions with already

good interpolation properties. Remarkably, the nodes are represented on the orthant

of the (d + 1)-sphere, a representation that is exploited to ensure smooth dynamics

during the optimization procedure. The method is validated by finding the optimal

Lebesgue nodes in 1D. Furthermore, using the nodal distributions from Chapter 5

as initial approximations, we reproduce the literature results in 2D, and we find and

123

6. Computing quasi-optimal nodal distributions

report the nodal distributions with the lowest Lebesgue constant up to date in 3D

and 4D.

The rest of the chapter is organized as follows. First, in Sect. 6.2, we recall some

preliminaries regarding symmetric nodal distributions, the Lebesgue constant, and

the optimization method to compute optimal Lebesgue configurations in the interval

(Angelos et al., 1989). Then, in Sect. 6.3, we present our constrained optimization

method to minimize the Lebesgue constant of a given nodal distribution in the high-

dimensional simplex. In Sect. 6.4, we report and discuss the obtained results, and

finally, in Sect. 6.5, we finish with some concluding remarks.

6.2 Preliminaries

Next, we recall some notation and definitions introduced in Chapter 2 used through-

out this chapter regarding the parameterization of symmetric nodal distributions in

the simplex, Sect. 6.2.1, and the Lebesgue constant, Sect. 6.2.2. Then, in Sect. 6.2.3,

we describe the algorithm from Angelos et al. (1989) to compute the optimal Lebesgue

nodes in the interval.

6.2.1 Parameterization of symmetric nodal distributions

For a given polynomial degree p, we denote byZ = {zj}j=1,...,Np,d a set of interpolation

nodes in a simplex Kd ⊂ Rd. Specifically, we consider symmetric nodal distributions

and thus, the coordinates of a subset of nodes are enough to describe the whole

nodal set, see details in Sect. 2.1. More precisely, only n degrees of freedom encoded

in a vector y ∈ Rn are the actual design variables. The ni degrees of freedom of

representative node i are encoded in the vector yi = (y1
i , . . . , y

ni
i). As detailed in

Appendix C, these values should satisfy

0 < yji < 1, for j = 1, . . . , ni,
ni∑

j=1

yji < 1,
(6.1)

to describe a point inside its associated ni-simplex. We recall that σ, see Eq. (C.2), is

the function mapping the vector of degrees of freedom to the whole nodal distribution,

σ : Rn → Rd × Np,d· · · × Rd

y 7→ σ (y) = Z
.

124

6.2. Preliminaries

6.2.2 The Lebesgue constant

The Lebesgue constant Λ corresponds to the infinity norm of the interpolation oper-

ator IZ at the nodal set Z and appears in the upper bound of the interpolation error

of a function f ,

‖f − IZf‖∞ ≤ (1 + Λ) ‖f ? − f‖∞ ,

where f ? denotes the best approximating polynomial. Accordingly, to attain conver-

gence of the interpolator IZf to the target function f , Λ should grow slower in p

than ‖f ? − f‖∞ dies away. In particular, uniform convergence is attained if

lim
p→+∞

Λ1/p = 1.

Remarkably, the Lebesgue constant can be expressed as

Λ (Z) = max
x∈Kd

Np,d∑

i=1

|φi (x;Z)| , (6.2)

where φj is the Lagrange interpolating polynomial associated to the node zj, j =

1, . . . , Np,d.

6.2.3 Optimization of the Lebesgue constant in the interval

The position of the optimal Lebesgue nodes in the interval is known algebraically only

for polynomial degree p ≤ 3 (Rack, 1984), yet it is possible to compute numerically

the optimal Lebesgue nodal distribution for arbitrary degree p (Angelos et al., 1989).

The method reduces the Lebesgue constant of a given nodal distribution by means of a

sequential linear programming approach. At each iteration, the information gathered

from the current local maxima of the Lebesgue function is used to compute a nodal

displacement which leads to a new nodal distribution with an improved Lebesgue

constant.

Consider a nodal distribution Z = {zi}i=1,...,Np of polynomial degree p, with z1 =

−1, zNp = 1, and zi < zj, for i < j, and let Ωk be the subinterval [zk, zk+1], for

k = 1, . . . ,m = Np − 1. Note that the Lebesgue function has a single maximum on

each of these intervals (Luttmann and Rivlin, 1965). We denote by τk ∈ Ωk the point

where the maximum is attained, and by λk := L (τk;Z) the value of such maximum.

To preserve the symmetry, it is enough to consider the nodes in half the domain.

125

6. Computing quasi-optimal nodal distributions

Specifically, the vector of degrees of freedom y ∈ Rn, n = b(Np − 1)/2c, encodes the

position of the points with positive coordinates.

Then, to compute a nodal displacement v ∈ Rn, the following linear problem is

solved,

min
w∈R,v∈Rn

w

s.t. L (τk;σ (y)) +∇yL (τk;σ (y)) · v ≤ w, for k = 1, . . . ,m

(yi+1 + vi+1)− (yi + vi) ≥ δ, for i = 1, . . . , n

− bi ≤ vi ≤ bi, for i = 1, . . . , n.

(6.3)

where the term ∇yL (τk;σ (y)) ∈ Rn denotes the derivatives of L (x;σ (y)) with

respect to the degrees of freedom y evaluated at x = τk, vi denotes the displacement

associated to the i-th degree of freedom, and δ is a small parameter.

The first set of constraints corresponds to a first-order approximation of the func-

tion L (x;Z) with respect to Z around the current position of the nodes. Taking into

account symmetry, these constraints read as

L (τk;σ (y)) +∇yL (τk;σ (y)) · v ≤ w, for k = 1, . . . ,m. (6.4)

Variable w serves as an upper bound of the value of the Lebesgue function at the

maxima. Thus, the combination of the minimization of w and constraints Eq. (6.4)

aims to find the nodal displacement v which leads to a new nodal distribution with

the lowest value of the Lebesgue constant as possible. The second set of constraints

(yi+1 + vi+1)− (yi + vi) ≥ δ, (6.5)

enforces the nodes to preserve their current order and avoids swapping. Finally, the

third set of constraints ensures each of the components of the displacement vector v

is small,

|vi| ≤ bi. (6.6)

These constraints are needed because Eq. (6.4) is a linearization around Z. We

remark that these constraints are linear for the one-dimensional case,

|vi| ≤ bi ⇔ −bi ≤ vi ≤ bi.

The solution to this linear problem gives a candidate descent direction v, but

the nodal distribution Znew = σ (y + v) may have larger Lebesgue constant. This

126

6.2. Preliminaries

Algorithm 6.1 Computing the optimal Lebesgue nodal distribution in the interval.

Input: Initial nodal distribution Z0

Output: Optimized nodal distribution Z
1: function OptimizeLebesgue1D(Z0)
2: y ← GetVectorOfDOFs(Z0)
3: {λk},T ← ComputeMaximaEachInterval(σ (y))
4: {bi} ← InitializeBounds(Z0)
5: while mink λk 6= maxk λk do
6: v ← ComputeDescentDirection(σ (y), T, {bi})
7: α ← BacktrackingLineSearch(σ (y), v)
8: {bi} ← AdjustBounds({bi})
9: y ← y + αv

10: {λk},T ← ComputeMaximaEachInterval(σ (y))
11: end while
12: Z ← σ (y)
13: return Z
14: end function

is so because direction v is computed using the local maxima as sample points of

the Lebesgue function, that is, only partial information is being used. Thus, even

though L (τk;Znew) < L (τk;Z) for all k, we may find a greater value of the Lebesgue

function at another point, usually near a local maximum, and consequently, the actual

Lebesgue constant of Znew may be larger than that of Z. This issue is circumvented

by means of a backtracking line search over the restriction set. Specifically, a value

α ∈ [0, 1] is found such that the Lebesgue constant of σ (y + αv) improves the current

value. This process is iterated until convergence is achieved.

The whole procedure is described in Algorithm 6.1. The input is a nodal distri-

bution Z0. First, in Line 2, we compute the degrees of freedom y that define Z0.

Following, in Line 3, all the local maxima of the Lebesgue function in the interval are

computed. Two sets are the output of function ComputeMaximaEachInterval: the

maxima values {λk}k=1,...,m, and the coordinates of the points where these maxima

are attained T = {τk}k=1,...,m. Then, in Line 4, the bounds {bi}i=1,...,Np are initial-

ized. Next, there is the main loop of the algorithm. In Line 6, a candidate descent

direction v is computed by solving the linear problem stated in Eq. (6.3), and, in

Line 7, it takes place the backtracking line search. Finally, we adjust the bounds,

update the nodal positions and compute the new maxima, see Lines 8-10. This pro-

cess is repeated until all the maxima are equal, see Line 5. This is so because it

127

6. Computing quasi-optimal nodal distributions

Figure 6.1: Lebesgue function of our quasi-optimal nodal distribution of polynomial
degree p = 10 in the triangle and the 83 maxima in the sextant (white points) found
during the optimization process.

was conjectured in Bernstein (1931) and later proved in De Boor and Pinkus (1978);

Kilgore (1977, 1978) that the maxima in each subinterval attain the same value in

the optimal Lebesgue nodal configuration. Thus, the stopping criterion ensures that

the obtained nodal distribution corresponds to the optimal Lebesgue configuration.

6.3 Optimizing the Lebesgue constant

In this section, we present a local method to optimize the Lebesgue constant of an

initial nodal distribution in the d-dimensional simplex. Our method is inspired by

the one-dimensional algorithm (Angelos et al., 1989) detailed in Sect. 6.2.3 and the

structure is analogous, but it features two remarkable differences. First, in higher

dimensions, there is not an optimal condition to ensure that the global optimum has

been found. To circumvent this issue, the stopping criterion takes into account the

relative error in the nodal displacement. Second, in a higher dimensional simplex, it

is not known what are the regions where the Lebesgue function has the maxima and,

therefore, we cannot define regions containing one single maximum. Instead, we store

in a set T the global maximum at each iteration. Thus, this set T contains points that

128

6.3. Optimizing the Lebesgue constant

Algorithm 6.2 Optimizing the Lebesgue constant of a nodal distribution in the
simplex.

Input: Initial nodal distribution Z0

Output: Optimized nodal distribution Z
1: function OpimitizeLebesgue(Z0)
2: y ← GetVectorOfDOFs(Z0)
3: τ , Λ ← ComputeLebesgueConstant(σ (y))
4: T ← {τ}
5: b ← InitializeBounds(Z0)
6: while ((α < 1) or (b > ε)) and (α > εα) do
7: v, optimal, numLPSolved ← ComputeDescentDirection(y, T, b)
8: if not optimal then
9: Z ← σ (y)

10: return Z
11: end if
12: α, Λnew, T ← BacktrackingLineSearch(y, Λ, T, v)
13: b ← AdjustBounds(α, numLPSolved, b)
14: y ← y + αv
15: Λ ← Λnew

16: end while
17: Z ← σ (y)
18: return Z
19: end function

have been relevant in the past and might be close to a global maximum in the future.

Consequently, these points approximate the function peaks and allow us to compute

an accurate descent direction and perform fewer iterations in the backtracking line

search procedure.

To illustrate this, in Fig. 6.1, we show the Lebesgue function of our quasi-optimal

nodal distribution of polynomial degree 10 in the triangle, and the set of global max-

ima appearing during the optimization procedure to be described next. We observe

that the points are on those regions where the Lebesgue function attains high values

and indeed, they are a good approximation of the local maxima of the function.

6.3.1 Outline of the algorithm

Despite these differences with respect to the one-dimensional problem, the structure

of our algorithm is analogous, see Algorithm 6.2. Given a nodal distribution Z0, the

first step is to compute the corresponding degrees of freedom y, Line 2. Next, in Line

129

6. Computing quasi-optimal nodal distributions

3, we compute the Lebesgue constant using the adaptive sampling method proposed

in Chapter 4. The output is the maximum point τ and the value of the Lebesgue

constant Λ. Following, in Line 4, we initialize the set T with the maximum τ of the

current nodal distribution and, in Line 5, we initialize the bounds to be used in the

computation of the descent direction. Herein, we use a single bound b ∈ R for all the

degrees of freedom.

Then, we enter the main loop of the algorithm. In Line 7, we compute the

descent direction v and, in Line 12, we compute the step length α such that the

nodal distribution represented by y + αv improves the Lebesgue constant. Finally,

we adjust the bounds, Line 13, and update the variables, Lines 14 and 15. This

process is repeated until the maximum bound is less than a prescribed tolerance

ε = 10−3 1
64p

, see Line 6. As an additional safety stopping criterion, we decide to

stop the optimization if α < εα = 10−6. Following, we precisely describe the routines

ComputeDescentDirection, BacktrackingLineSearch, and AdjustBounds.

6.3.2 Computing the descent direction

To compute a descent direction v, we solve a linear problem similar to the one pro-

posed for the interval in Angelos et al. (1989). As in the one-dimensional case, we

seek a minimum for the bound w subject to a set of constraints. Eq. (6.4) extends

straight-forwardly to higher dimensions as

L (τ ;σ (y)) +∇yL (τ ;σ (y)) · v ≤ w, for τ ∈ T. (6.7)

Note that the function L (τ ;σ (y)) is not differentiable with respect to the degrees of

freedom if any of the Lagrange interpolating polynomials vanishes at τ , see Eq. (6.2).

To address this issue, we consider a regularized absolute value function |x|δAbs
=√

x2 + δ2
Abs, with δAbs = 10−16. This value has no influence when φi (τ ;σ (y)) 6= 0,

yet it allows computing the derivatives when τ is at a non-differentiable location.

The first-order approximation in Eq. (6.7) is only valid for small values of ‖v‖.
Accordingly, we impose the following set of linear constraints,

−b ≤ vi ≤ b, for i = 1, . . . , n,

where vi denotes the i-th component of vector v.

In the interval, the nodes should preserve the order of the coordinates, see Eq. (6.5).

In contrast, in higher dimensions the nodes should freely move and no restriction

130

6.3. Optimizing the Lebesgue constant

regarding the order is needed. Nevertheless, the new degrees of freedom should de-

termine a valid nodal distribution, see Eq. (6.1). Thus, for each node representative

i, we impose the following constraints

0 < yji + vji < 1, for j = 1, . . . , ni,
ni∑

j=1

yji + vji < 1,

where vji denotes the displacement associated with the j-th components of the vector

of degrees of freedom encoding the i-th node representative. We remark that two

nodes will avoid collapsing since otherwise the Lebesgue function would increase in-

between, and, in that case, the upper bound w would increase and the displacement

v would not be a descent direction.

In conclusion, the linear problem to compute a descent direction reads as

min
w∈R,v∈Rn

w

s.t. L (τ ;σ (y)) +∇yL (τ ;σ (y)) · v ≤ w, for τ ∈ T,

− b ≤ vi ≤ b, for i = 1, . . . , n,

0 < yji + vji < 1, for j = 1, . . . , ni, for i = 1, . . . ,m,
ni∑

j=1

yji + vji < 1, for i = 1, . . . ,m.

(6.8)

The routine ComputeDescentDirection computes nodal displacements, see de-

tails in Algorithm 6.3. Given the degrees of freedom describing a nodal distribution

y, the set of maxima T, and the bounds b, in Line 2, we compute the nodal dis-

placement v solving the linear problem in Eq. (6.8). To this end, we use the simplex

method implemented in the GLPK solver (GLPK) through the JuMP interface (Dun-

ning et al., 2017). In Line 3, we initialize the counter of solved linear problems in

the current iteration. Note that the function SolveLP returns the computed nodal

displacement v and an additional boolean variable telling whether the solution is

optimal. If the solution is not optimal, we halve the bounds b, Line 5, try to solve

the linear problem again, Line 6, and increase by one the counter of linear problems

solved, Line 7. This process is repeated until we find an optimal solution to the linear

problem or the bounds are below the threshold ε. In either case, in Line 9, the routine

returns the computed displacement v, the boolean variable optimal, and the num-

ber of linear problems solved numLPSolved. We highlight that the main algorithm

131

6. Computing quasi-optimal nodal distributions

Algorithm 6.3 Computing the descent direction.

Input: Degrees of freedom y, Set of maxima T, Bounds b
Output: Nodal displacement v, Boolean variable optimal, Number of LP solved

numLPSolved

1: function ComputeDescentDirection(y,T, b)
2: v, optimal ← SolveLP(y, T, b)
3: numLPSolved ← 1
4: while not optimal and (b > ε) do
5: b ← b/2
6: v, optimal ← SolveLP(y, T, b)
7: numLPSolved ← numLPSolved+ 1
8: end while
9: return v, optimal, numLPSolved
10: end function

described in Algorithm 6.2 is responsible for stopping the optimization procedure if

the solution is not optimal. Nonetheless, even when the displacement v is optimal,

we should ensure that the Lebesgue constant is reduced.

6.3.3 Backtracking line search

Although v is the optimal solution to the linear problem, the nodal set described by

y+v may worsen the Lebesgue constant since the maximum of the nodal distribution

given by y + v may not belong to the set T. Thus, we perform a backtracking line

search to find a value of α ∈ [0, 1] such that the new position of the nodes, y + αv,

leads to a decrease in the Lebesgue constant. We remark that this is the most time-

consuming part of the algorithm since we should estimate the Lebesgue constant at

each reduction step.

The complete backtracking line search algorithm is described in Algorithm 6.4.

Given the current degrees of freedom y, the Lebesgue constant Λ of σ (y), the list of

maxima T, and the computed nodal displacement v, first, in Line 2, we initialize the

value of α to 1 and, in Line 3, we compute the maximum point τα and the value of the

Lebesgue constant Λα of the nodal distribution σ (y + αv). Then, we add the point

τα to the set of maxima T, Line 4. Thus, in the following iterations, new and relevant

sample points are used in the computation of the descent direction v. Now, if Λα ≥ Λ,

we halve the value of α, Line 9, compute again τα and Λα, Line 10, and append the

maxima to the list, Line 11. This process is repeated until Λα < Λ or the value of

132

6.3. Optimizing the Lebesgue constant

Algorithm 6.4 Computing a value of α such that y + αv improves the Lebesgue
constant.
Input: Degrees of freedom y, Lebesgue constant Λ, List of maxima T, Nodal dis-

placement v
Output: Alpha value α, New Lebesgue constant Λα, Updated list of maxima T
1: function BacktrackingLineSearch(y, Λ, T, v)
2: α ← 1
3: τα, Λα ← ComputeLebesgueConstant(σ (y + αv))
4: T ← T ∪ {τα}
5: while Λα ≥ Λ do
6: if α < εα then
7: return 0, Λ, T
8: end if
9: α ← α/2

10: τα, Λα ← ComputeLebesgueConstant(σ (y + αv))
11: T ← T ∪ {τα}
12: end while
13: return α, Λα, T
14: end function

α is less than a prescribed tolerance εα = 10−6, Lines 5 and 6. Note that we do not

impose a sufficient decrease condition as it is standard with high-order optimization

methods. This is so because the Lebesgue constant is not differentiable. Thus, as

soon as the Lebesgue constant is reduced, the value of α is accepted. Finally, in Line

13, we return the step length α, the Lebesgue constant of the new nodal distribution

σ (y + αv), and the updated list of maxima points T.

6.3.4 Adjusting the bounds

The value b ∈ R bounds the allowed nodal displacement in the linear problem, see

Eq. (6.8). We determine the initial value for these bounds in terms of the polynomial

degree p of the nodal distribution to optimize. More precisely, in Line 5 from Algo-

rithm 6.2, we set b = π
2

1
64p

, that is, we limit the nodal displacement by a fraction of

the spherical simplex edge length taking into account the point resolution in terms

of the polynomial degree p. This is so because points having a close to optimal nodal

distribution are conjectured to follow an equispaced arrangement on the sphere, see

Sect. 5.3.

Aiming to compute a nodal displacement v with the correct magnitude and reduce

133

6. Computing quasi-optimal nodal distributions

Algorithm 6.5 Adjusting the bounds of the degrees of freedom.

Input: Alpha α, numLPSolved, Bounds b
Output:
1: function AdjustBounds(α, numLPSolved, b)
2: if α < 1 then
3: b ← b/2
4: else if numLPSolved is 1 then
5: b ← min

(
2b, π

2
1

64p

)

6: end if
7: end function

the backtracking line search iterations, the value of the bounds is adjusted at each

optimization step, see Line 13 of Algorithm 6.2. The routine AdjustBounds is detailed

in Algorithm 6.5. The inputs are the previously computed value of α, the counter

of linear problems solved, and the set of bounds to update in-place. Then, in Line

2, we check if α < 1. If α is less than one, the nodal displacement computed in the

current iteration does not have the correct magnitude, and it had to be shortened.

Thus, in Line 3, we halve the bounds. In the next iteration, we expect a shorter nodal

displacement but with the appropriate magnitude. In contrast, if α = 1, the linear

problem is solved once. That is, the nodal displacement has the correct magnitude,

and we may allow larger displacements in the next iteration. Thus, in Line 5, we

double the bounds, yet they never exceed π
2

1
64p

.

6.4 Results

The Lebesgue constant has multiple minima and we require exploration approaches

to find the global minimum. Conveniently, some local minima of the Chen-Babuska

functional, a proxy of the Lebesgue constant, have been already explored in Chapter 5.

These local minima feature good interpolation properties and thus, they are suitable

candidate initial approximations to be further optimized with our method.

All of these candidates are optimized with the method proposed in Sect. 6.3. Our

quasi-optimal Lebesgue distribution is obtained after optimizing a local minimum

with good Chen-Babuska and Lebesgue constant values. However, optimizing only

the best local minimum in terms of the Chen-Babuska functional does not lead to the

best Lebesgue configuration, and neither does the local Chen-Babuska minimum with

the smallest Lebesgue constant lead to the best Lebesgue configuration. Thus, we

134

6.4. Results

p Λ Λ1/p maxk λk −mink λk

3 1.4229 1.1248 8.171 · 10−14

4 1.5595 1.1175 2.635 · 10−12

5 1.6722 1.1083 4.645 · 10−13

6 1.7681 1.0996 3.935 · 10−12

7 1.8516 1.0920 7.853 · 10−12

8 1.9255 1.0853 1.193 · 10−11

9 1.9917 1.0796 8.483 · 10−12

10 2.0517 1.0745 7.820 · 10−12

11 2.1066 1.0701 9.444 · 10−10

12 2.1571 1.0662 1.484 · 10−10

13 2.2040 1.0627 1.239 · 10−9

14 2.2476 1.0596 1.211 · 10−8

15 2.2884 1.0567 2.103 · 10−8

Table 6.1: Properties of the optimal Lebesgue distribution of polynomial degree p in
the interval, p = 3, . . . , 15. We report the Lebesgue constant Λ, the series Λ1/p, and
the difference between the maximum and minima maxima values in each subinterval.

optimize all the minima of the Chen-Babuska functional found in Chapter 5, and the

nodal distribution with the smallest Lebesgue constant is our quasi-optimal Lebesgue

interpolation nodal set.

To assess the interpolation properties of the nodal distributions found with the

proposed method, we study the value of the Lebesgue constant Λ, the convergence

of the sequence Λ1/p as we increase the polynomial degree p, and the interpolation

error for some benchmark functions. To validate the proposed method, we first find

the optimal Lebesgue nodes in the interval, see Sect. 6.4.1. Next, in Sect. 6.4.2-

Sect. 6.4.4, we analyze the optimized nodal sets for several polynomial degrees in the

triangle, the tetrahedron, and the pentatope, respectively. Finally, in Sect. 6.4.5, we

revisit the example in Sect. 3.8.1 to interpolate a geometry representation given by a

subdivision limit model.

6.4.1 Optimal Lebesgue nodes in the interval

To validate our method, we optimize the position of the equispaced nodal distribu-

tion in the interval. Remarkably, in 1D, Lebesgue nodes satisfy maxk λk = mink λk,

where λk denotes the maximum of the Lebesgue function at the interval [zk, zk+1],

see De Boor and Pinkus (1978); Kilgore (1977, 1978). In Table 6.1, we report the

135

6. Computing quasi-optimal nodal distributions

Lebesgue constant Λ, the value Λ1/p and the difference maxk λk − mink λk for the

optimized nodal distributions of polynomial degree p, p = 3, . . . , 15. We observe

that the difference between maxima values at each subinterval is approximately zero,

that is, all the maxima attain the same value Λ and, therefore, we find the opti-

mal Lebesgue nodal distributions. Moreover, there is numerical evidence that the

sequence Λ1/p tends to 1, which ensures that the interpolant converges uniformly to

the interpolated function, see Sect. 6.2.

6.4.2 Quasi-optimal interpolation points in 2D

The Chen-Babuska minima computed with the exploration method proposed in Chap-

ter 5 are excellent initial approximations for the Lebesgue optimization method de-

scribed in Sect. 6.3. Following, we optimize all of these nodal distributions and

analyze the interpolation properties of the optimized nodal sets.

Lebesgue constant

In Table 6.2, we report the minimum Lebesgue constant Λ found after optimizing

each Chen-Babuska minima. We also list the Lebesgue constant of the initial approx-

imation, that is, the Lebesgue constant of the nodal distribution that leads to the

minimum Lebesgue constant. We observe that the difference between the Lebesgue

constant of the initial approximation and the optimized nodal set is almost irrele-

vant up to polynomial degree 9, yet the improvement becomes more significant as we

increase the polynomial degree. We also show the values of the sequence Λ1/p and

observe that it has a decreasing tendency to 1. Thus, there is numerical evidence

that, using these nodal distributions, the interpolative polynomial might converge

uniformly to the function being interpolated.

Finally, we measure the distance between the initial approximation Z0 =

{z0
i }i=1,...,Np,d and the optimized nodal configuration Z? = {z?i }i=1,...,Np,d defined as

the maximum distance on the sphere between the position of the i-th node before

and after the optimization,

d
(
Z0,Z?

)
:=

π

2p
max

i=1,...,Np,d
dSd
(
z0
i , z

?
i

)
.

We remark that this value is normalized to account for the spherical simplex edge

length and the polynomial degree. We observe that since the method is local, small

136

6.4. Results

p Initial Λ Optimized Λ Λ1/p d (Z0,Z?)

3 2.111 2.108 1.282 5.904 · 10−3

4 2.692 2.587 1.268 1.336 · 10−2

5 3.301 3.081 1.252 1.432 · 10−2

6 3.791 3.595 1.238 8.477 · 10−3

7 4.391 4.143 1.225 4.754 · 10−3

8 5.089 4.766 1.216 5.112 · 10−3

9 5.918 5.486 1.208 3.879 · 10−3

10 7.158 5.921 1.195 4.417 · 10−3

11 8.010 6.720 1.189 4.675 · 10−3

12 8.972 7.187 1.179 3.916 · 10−3

13 9.591 7.253 1.165 2.303 · 10−3

14 8.988 7.705 1.157 1.691 · 10−3

15 10.422 8.242 1.151 2.621 · 10−3

16 12.438 8.729 1.145 2.909 · 10−3

17 14.026 9.449 1.141 2.147 · 10−3

18 14.241 9.576 1.134 2.240 · 10−3

19 13.242 9.802 1.128 1.116 · 10−3

20 13.093 10.414 1.124 1.721 · 10−3

Table 6.2: Minimum Lebesgue constant of the optimized nodal distribution in the
triangle. For each polynomial degree p, p = 3, . . . , 20, we report the Lebesgue constant
before and after the optimization, the value Λ1/p, and the distance between the initial
approximation and the optimized distribution.

displacements are undergone, yet the Lebesgue constant improves significantly. The

small distances suggest that the optimized nodal distribution is in the same con-

vergence basin as the initial approximation, and, consequently, the optimized nodal

distributions preserve the point structure on the spherical simplex, see Sect. 5.3.

Thus, to find quasi-optimal Lebesgue minima, we have to consider structurally dif-

ferent nodal distributions as initial approximations, and this is precisely the case of

the local minima of the Chen-Babuska functional computed in Chapter 5.

In Table 6.3, we compare our results with those from the literature. Specifically,

we compare the nodal sets from Roth (2005) obtained using a genetic algorithm, the

nodal sets found by optimizing a proxy of the Lebesgue constant using the approach

proposed in Chapter 5, and the nodal sets found by optimizing the Lebesgue constant

with the deterministic method proposed in Sect. 6.3. On the one hand, we observe

that the quasi-optimal interpolation nodal distributions have smaller Lebesgue con-

137

6. Computing quasi-optimal nodal distributions

Lebesgue constant Λ
p Roth (2005) Our method from Chapter 5 Our method from Sect. 6.3

3 2.108 2.112 2.108
4 2.587 2.692 2.587
5 3.081 3.301 3.081
6 3.595 3.791 3.595
7 4.143 4.391 4.143
8 4.766 5.089 4.766
9 5.486 5.918 5.486
10 5.921 7.085 5.921
11 6.724 7.266 6.720
12 7.187 8.660 7.187
13 7.253 8.877 7.253
14 7.706 8.988 7.705
15 8.243 10.306 8.242
16 10.970 8.729
17 14.026 9.449
18 12.344 9.576
19 11.797 9.802
20 12.861 10.414

Table 6.3: Lebesgue constant Λ of different nodal distribution of polynomial degree
p in the triangle, p = 3, . . . , 20. Blank spaces indicate not reported results.

stant than the nodal distributions found in Chapter 5. Indeed, given a nodal set,

the method proposed in Sect. 6.3 optimizes the Lebesgue constant. On the other

hand, our quasi-optimal interpolation nodal distributions feature the same Lebesgue

constant as for the nodal sets obtained using a genetic algorithm (Roth, 2005). Thus,

our quasi-optimal interpolation nodes coincide with the nodal distributions with the

smallest Lebesgue constant up to date.

Condition number of the Vandermonde matrix

To further assess the interpolation properties of our quasi-optimal nodal sets, we

report the condition number of the Vandermonde matrix using the Koornwinder-

Dubiner orthogonal basis (Koornwinder, 1975; Dubiner, 1991; Kirby, 2010). In Ta-

ble 6.4, we compare the condition number for the equispaced distribution, for the

nodal sets in Warburton (2006) and Rapetti et al. (2012), and for our quasi-optimal

nodal sets. These values indicate that, using double-precision calculations, we should

138

6.4. Results

Condition number κ
p Equispaced Warburton (2006) Rapetti et al. (2012) Our method

3 5.828 5.903 5.903 5.928
4 7.599 6.777 7.064 7.105
5 10.167 7.845 8.242 8.252
6 14.658 9.591 9.651 9.650
7 22.239 11.160 11.642 11.882
8 35.627 13.886 14.599 14.520
9 59.949 16.896 17.184 17.238
10 104.164 21.670 22.059 17.346
11 186.545 27.401 31.751 23.324
12 344.977 36.132 24.137 25.466
13 626.693 47.219 31.071 25.524
14 1 198.655 63.679 46.113 28.403
15 2 194.382 85.692 30.931 30.820
16 4 284.058 117.712 44.424 37.476
17 7 879.557 166.716 50.798 35.678
18 15 597.334 247.913 55.253 41.688
19 28 798.839 344.617 42.670
20 57 534.253 476.785 45.387

Table 6.4: Condition number κ of the Vandermonde matrix using different interpola-
tive nodal sets in the triangle for polynomial degree p, p = 3, . . . , 20. Blank spaces
indicate not reported results.

expect to lose less than three digits of accuracy because all the condition numbers

are smaller than 100.

Interpolation error of benchmark functions

Moreover, we estimate the error of interpolating the following benchmark functions

introduced in Chapter 5,

u1 (λ) =
(
exp

(
−2λ1

)
− 1
) d+1∏

i=2

(
2λi
)
,

u2 (λ) =
(
cosh

(
−2λ1

)
− 1
) d+1∏

i=2

(
2λi
)
,

u3 (λ) =
1

1 + 2α
∥∥λ − 1

d+1
1
∥∥2

2

,

(6.9)

139

6. Computing quasi-optimal nodal distributions

2 4 6 8 10 12 14 16 18 20
Polynomial degree

10−1

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u1

Equispaced

Warp-and-blend

Quasi-optimal β

Quasi-optimal Λ

(a)

2 4 6 8 10 12 14 16 18 20
Polynomial degree

10−1

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u2

Equispaced

Warp-and-blend

Quasi-optimal β

Quasi-optimal Λ

(b)

2 4 6 8 10 12 14 16 18 20
Polynomial degree

101

10−1

10−3In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u3

Equispaced

Warp-and-blend

Quasi-optimal β

Quasi-optimal Λ

(c)

Figure 6.2: Interpolation error in the triangle for different polynomial degrees using
equispaced (red), warp-and-blend (blue), our β quasi-optimal from Chapter 5 (black),
and our Lebesgue quasi-optimal (magenta) nodal distributions for functions: (a) u1;
(b) u2; and (c) u3.

with α = 25. Functions u1 and u2 are particularly relevant since they are devised

to allow equispaced points to achieve uniform convergence, and the third benchmark

function u3 is an extension of the Runge function to several dimensions.

The relative interpolation error ‖ui − IZui‖∞ / ‖ui‖∞, i = 1, 2, 3, in terms of the

polynomial degree is plotted in Fig. 6.2. We also show the error for the equispaced

distribution, the nodal sets from Warburton (2006) and the nodal sets computed in

Chapter 5 optimizing the Chen-Babuska functional. The interpolations using either

nodal sets converge to the functions u1 and u2, see Fig. 6.2(a) and (b). For polynomial

degrees p ≥ 15, the interpolation errors stop the decreasing trend because machine

140

6.4. Results

p Initial Λ Optimized Λ Λ1/p

3 2.936 2.930 1.431
4 4.134 4.005 1.415
5 5.643 5.258 1.394
6 7.310 6.759 1.375
7 9.207 8.252 1.352
8 13.910 10.594 1.343
9 15.514 13.693 1.337
10 15.611 14.273 1.305
11 21.393 17.032 1.294
12 26.468 19.696 1.282
13 27.857 21.948 1.268
14 33.760 24.168 1.255
15 39.538 27.870 1.248

Table 6.5: Minimum Lebesgue constant of the optimized nodal distribution in the
tetrahedron. For each polynomial degree p, p = 3, . . . , 15, we report the Lebesgue
constant before and after the optimization and the value Λ1/p.

accuracy is reached when estimating the error. For the Runge function u3, we observe

in Fig. 6.2(c) that the interpolation error using equispaced points diverges, while with

the warp-and-blend or our quasi-optimal nodal configurations the errors seem to be

reduced.

6.4.3 Quasi-optimal interpolation points in 3D

Analogously to the two-dimensional case, we repeat the same study for nodal distri-

butions in the tetrahedron.

Lebesgue constant

In Table 6.5, we report the minimum Lebesgue constant Λ found after optimizing

each Chen-Babuska minimum. We also list the Lebesgue constant of the initial ap-

proximation, that is, the Lebesgue constant of the nodal distribution that leads to

the minimum Lebesgue constant. We observe that the improvement of the optimized

distributions becomes more apparent as we increase the polynomial degree. Further-

more, we report the values of the sequence Λ1/p and observe that it has a decreasing

tendency to 1.

141

6. Computing quasi-optimal nodal distributions

Lebesgue constant Λ

p Chen and Babuška (1996) Isaac (2020)
Our method Our method

from Chapter 5 from Sect. 6.3

3 2.934 2.933 2.936 2.930
4 4.112 4.093 4.134 4.005
5 5.616 5.547 5.644 5.258
6 7.363 7.169 7.310 6.759
7 9.366 9.202 8.897 8.252
8 12.311 12.067 12.010 10.594
9 15.686 15.593 15.146 13.693
10 20.623 15.611 14.273
11 28.034 19.425 17.032
12 38.649 23.569 19.696
13 55.143 25.701 21.948
14 81.037 29.539 24.168
15 118.420 36.375 27.870

Table 6.6: Lebesgue constant Λ of different nodal distribution of polynomial degree
p in the tetrahedron, p = 3, . . . , 15. Blank spaces indicate not reported results.

In Table 6.6, we compare our results with those from the literature. Specifically, we

compare the nodal sets from Chen and Babuška (1996) obtained optimizing a proxy

of the Lebesgue constant, the explicit nodal sets from Isaac (2020), the nodal sets

found by optimizing a proxy of the Lebesgue constant using the approach proposed

in Chapter 5, and the nodal sets found by optimizing the Lebesgue constant with

the method proposed in Sect. 6.3. We observe that, for small polynomial degrees,

all the nodal distributions feature similar Lebesgue constant. In contrast, for high

polynomial degrees, our Lebesgue quasi-optimal nodal distributions have significantly

smaller values. In particular, for polynomial degree p = 15, we improve an order of

magnitude the value from Isaac (2020). In conclusion, our quasi-optimal interpolation

nodes have the smallest Lebesgue constant up to date.

Condition number of the Vandermonde matrix

To further assess the interpolation properties of our quasi-optimal nodal sets, we

report the condition number of the Vandermonde matrix using the Koornwinder-

Dubiner orthogonal basis (Koornwinder, 1975; Dubiner, 1991; Kirby, 2010). In Ta-

ble 6.7, we compare the condition number for the equispaced distribution, the explicit

142

6.4. Results

Condition number κ

p Equispaced Isaac (2020)
Our method Our method

from Chapter 5 from Sect. 6.3

3 10.248 10.505 10.537 10.447
4 15.392 15.817 15.878 15.640
5 20.245 18.766 18.763 18.908
6 32.997 25.851 25.803 26.318
7 52.301 37.339 35.490 35.277
8 91.944 55.905 54.849 51.521
9 162.216 86.315 82.432 76.600
10 300.740 137.967 79.217 77.593
11 558.909 224.111 76.962 82.866
12 1 064.722 371.800 101.923 101.617
13 2 027.690 621.826 122.222 131.180
14 3 917.567 1 052.205 142.834 141.867
15 7 560.901 1 785.689 167.841 156.978

Table 6.7: Condition number κ of the Vandermonde matrix using different interpola-
tive nodal sets in the tetrahedron for polynomial degree p, p = 3, . . . , 15.

nodal sets in Isaac (2020), the nodal sets found in Chapter 5, and the quasi-optimal

Lebesgue nodal sets found with the method proposed in Sect. 6.3. For high polyno-

mial degrees, we observe a difference of two orders of magnitude between the values

obtained with our method and the explicit nodal distributions. Moreover, using our

nodes, all the condition numbers are smaller than 100 and, thus, we should expect to

lose less than three digits of accuracy using double-precision calculations.

Interpolation error of benchmark functions

Finally, we estimate the error of interpolating the benchmark functions in Eq. (6.9).

The relative interpolation error ‖ui − IZui‖∞ / ‖ui‖∞, i = 1, 2, 3, in terms of the

polynomial degree is plotted in Fig. 6.3. We also show the error for the equispaced

distribution, the nodal sets from Isaac (2020) and the nodal sets computed in Chap-

ter 5 optimizing the Chen-Babuska functional. For all the considered nodal distri-

butions, the interpolation error for functions u1 and u2 decreases as the polynomial

degree increases, see Fig. 6.3(a) and (b). For the Runge function u3, we observe in

Fig. 6.3(c) that the interpolation error using equispaced points diverges, while with

the other nodal configurations the errors seem to be reduced.

143

6. Computing quasi-optimal nodal distributions

2 4 6 8 10 12 14 16
Polynomial degree

100

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u1

Equispaced

Explicit

Quasi-optimal β

Quasi-optimal Λ

(a)

2 4 6 8 10 12 14 16
Polynomial degree

100

10−5

10−10

10−15

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u2

Equispaced

Explicit

Quasi-optimal β

Quasi-optimal Λ

(b)

2 4 6 8 10 12 14 16
Polynomial degree

101

10−1

10−3In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u3

Equispaced

Explicit

Quasi-optimal β

Quasi-optimal Λ

(c)

Figure 6.3: Interpolation error in the tetrahedron for different polynomial degrees us-
ing equispaced (red), explicit (Isaac, 2020) (blue), our β quasi-optimal from Chapter 5
(black), and our Lebesgue quasi-optimal (magenta) nodal distributions for functions:
(a) u1; (b) u2; and (c) u3.

6.4.4 Quasi-optimal interpolation points in 4D

In this section, we repeat the same study for nodal distributions in the pentatope.

Lebesgue constant

In Table 6.8, we report the minimum Lebesgue constant Λ found after optimizing each

Chen-Babuska minimum. Comparing the values of the Lebesgue constant before

and after the optimization procedure, we observe a further improvement for high

polynomial degrees. Finally, we report the values of the sequence Λ1/p and observe

that it has a decreasing tendency to 1.

144

6.4. Results

p Initial Λ Optimized Λ Λ1/p

3 4.169 3.760 1.555
4 6.130 5.964 1.563
5 8.865 8.488 1.534
6 12.532 11.683 1.506
7 17.568 15.629 1.481
8 22.310 21.053 1.464
9 31.328 27.500 1.445
10 46.505 35.668 1.430

Table 6.8: Minimum Lebesgue constant of the optimized nodal distribution in the
pentatope. For each polynomial degree p, p = 3, . . . , 10, we report the Lebesgue
constant before and after the optimization and the value Λ1/p.

Lebesgue constant Λ

p Equispaced Isaac (2020)
Our method Our method

from Chapter 5 from Sect. 6.3

3 3.880 4.200 4.169 3.760
4 6.244 6.147 6.130 5.964
5 10.918 8.839 8.865 8.488
6 19.224 12.502 12.532 11.683
7 34.085 17.231 17.085 15.629
8 60.859 23.366 22.310 21.053
9 109.427 32.646 31.328 27.500
10 198.083 45.768 40.873 35.668

Table 6.9: Lebesgue constant Λ of different nodal distribution of polynomial degree
p in the pentatope, p = 3, . . . , 10.

In Table 6.9, we compare our results with those from the literature. Specifically,

we compare the explicit nodal sets from Isaac (2020), the nodal sets found by optimiz-

ing a proxy of the Lebesgue constant using the approach proposed in Chapter 5, and

the nodal sets found by optimizing the Lebesgue constant with the method proposed

in Sect. 6.3. For small polynomial degrees, all the nodal distributions possess simi-

lar Lebesgue constant, yet for high polynomial degrees, our Lebesgue quasi-optimal

nodal distributions present significantly smaller values. We highlight that, for poly-

nomial degrees 9 and 10, the method presented in Chapter 5 is not able to explore

all the graph vertices within the time limitation that the computational resources

are available. Hence, there may exist nodal distributions with even smaller Lebesgue

145

6. Computing quasi-optimal nodal distributions

Condition number κ

p Equispaced Isaac (2020)
Our method Our method

from Chapter 5 from Sect. 6.3

3 16.341 17.328 17.222 16.055
4 30.487 32.801 32.365 30.786
5 43.949 44.850 43.593 43.092
6 73.139 65.410 63.335 62.355
7 125.524 108.158 101.359 97.771
8 229.769 194.218 144.363 164.940
9 428.923 358.026 239.176 236.985
10 823.800 681.022 415.212 261.944

Table 6.10: Condition number κ of the Vandermonde matrix using different inter-
polative nodal sets in the pentatope for polynomial degree p, p = 3, . . . , 10.

constant. Even so, our nodal sets feature the smallest Lebesgue constant up to date.

Condition number of the Vandermonde matrix

Following, we analyze the condition number of the Vandermonde matrix using the

Koornwinder-Dubiner orthogonal basis (Koornwinder, 1975; Dubiner, 1991; Kirby,

2010). In Table 6.10, we compare the condition number for the equispaced distribu-

tion, the explicit nodal sets in Isaac (2020), the nodal sets found in Chapter 5, and

the quasi-optimal Lebesgue nodal sets found with the method proposed in Sect. 6.3.

Since all the values are below 1000, we should expect to lose less than four digits

of accuracy. Nonetheless, the values using our quasi-optimal Lebesgue distributions

seem to grow slower than when using any other nodal set.

Interpolation error of benchmark functions

Lastly, we estimate the error of interpolating the benchmark functions in Eq. (6.9).

The relative interpolation error ‖ui − IZui‖∞ / ‖ui‖∞, i = 1, 2, 3, in terms of the

polynomial degree using different nodal distributions is plotted in Fig. 6.4. We show

the error for the equispaced distribution, the nodal sets from Isaac (2020), the nodal

sets computed in Chapter 5 optimizing the Chen-Babuska functional, and our quasi-

optimal Lebesgue nodal sets. For all the considered nodal distributions, the interpo-

lation error for functions u1 and u2 decreases as the polynomial degree increases, see

146

6.4. Results

3 4 5 6 7 8 9 10
Polynomial degree

100

10−5

10−10

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u1

Equispaced

Explicit

Quasi-optimal β

Quasi-optimal Λ

(a)

3 4 5 6 7 8 9 10
Polynomial degree

100

10−5

10−10

In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u2

Equispaced

Explicit

Quasi-optimal β

Quasi-optimal Λ

(b)

3 4 5 6 7 8 9 10
Polynomial degree

101

10−1

10−3In
te

rp
ol

at
io

n
er

ro
r

Interpolation error for u3

Equispaced

Explicit

Quasi-optimal β

Quasi-optimal Λ

(c)

Figure 6.4: Interpolation error in the pentatope for different polynomial degrees using
equispaced (red), explicit (Isaac, 2020) (blue), our β quasi-optimal from Chapter 5
(black), and our Lebesgue quasi-optimal (magenta) nodal distributions for functions:
(a) u1; (b) u2; and (c) u3.

Fig. 6.4(a) and (b). For the Runge function u3, we observe in Fig. 6.4(c) that for the

four nodal families the curves are not monotone and the errors are large.

6.4.5 Quasi-optimal geometry interpolation

In this example, we use our quasi-optimal nodal distributions to interpolate a sub-

division limit model, see Chapter 3. We consider a discretization of a sphere of

unit radius with linear triangular elements. This linear mesh model determines a C1-

continuous subdivision limit model interpolating the given data points. To interpolate

this curved limit model, we use the method proposed in Chapter 3 to generate piece-

147

6. Computing quasi-optimal nodal distributions

1 2 3 4 5 6 7 8 9 10

Polynomial degree

10−1

10−2

10−3

10−4

10−5

d
(Ω
∞
,Ω

p
)

Distance to limit model

Equispaced

Warp-and-blend

Quasi-optimal

Figure 6.5: Convergence of the distance to the limit model for the sphere meshes
of polynomial degree p, p = 1, . . . , 10, with equispaced (red), explicit (blue) and
quasi-optimal Lebesgue (black) nodal distributions.

wise polynomial representations of polynomial degree p. As described in Sect. 3.6.3,

we approximate the distance between the piecewise polynomial model Ωp and the

limit model Ω∞ with a fine sampling of Nd points on each facet f ,

d (Ω∞,Ωp) = max
f=1,...,nf

max
j=1,...,Nd

∥∥φ∞f (λj)− φpf (λj)
∥∥

2
.

In Fig. 6.5, we plot the distance between the piecewise polynomial representation

and the limit model in terms of the polynomial degree for different nodal distributions.

We observe that the explicit nodal distribution from Warburton (2006), in blue, and

our quasi-optimal nodal sets, in black, provide very similar results. Accordingly,

the explicit nodal distributions (Warburton, 2006) are well-suited to interpolate 2D

geometry for up to moderate polynomial degree. Nonetheless, it is not until we

compare the explicit nodal distributions and our quasi-optimal Lebesgue nodal sets

that we can assess the suitability of explicit nodes. However, for high polynomial

degrees, the condition number of the Vandermonde matrix using our quasi-optimal

nodal distributions is approximately one order of magnitude smaller than when using

these explicit nodes, see Table 6.4. Hence, we advocate for using our quasi-optimal

interpolation nodal distributions to represent 2D geometry since they are closer to the

interpolated geometry, have a smaller Lebesgue constant, and the condition number

of the Vandermonde matrix is much smaller.

148

6.5. Concluding remarks

6.5 Concluding remarks

We have proposed a specific-purpose deterministic method to optimize the Lebesgue

constant of a given nodal distribution in the d-dimensional simplex using the point

coordinates as design variables. The method preserves the structure of the initial

approximation and consistently exploits first-order derivatives of the Lebesgue func-

tion. In a sequential linear programming approach, at each iteration, we compute

a candidate descent direction using the first-order derivatives of the Lebesgue func-

tion with respect to the node coordinates evaluated at maximum points in previous

iterations. The derivatives are computed analytically and the Lebesgue constant is

not differentiated in any case. We consider an advantageous representation of the

nodes on the orthant of the (d + 1)-sphere to ensure smooth dynamics during the

optimization procedure.

The results show that the computed nodal distributions present quasi-optimal

Lebesgue constants. In 1D, the method computes the optimal Lebesgue nodes. In

2D, we reproduce the literature results up to polynomial degree 15, and improve the

current values up to polynomial degree 20. In 3D and 4D and up to polynomial

degree 15 and 10, respectively, we find and report the nodal distributions with the

lowest Lebesgue constant up to date.

There is numerical evidence that our quasi-optimal Lebesgue nodes are suitable

for interpolation. According to Bloom et al. (1992); Roth (2005), we must check that

Λ1/p converges to one to ensure uniform convergence of the interpolator to the target

function. Using our quasi-optimal nodal distributions, for increasing degrees, we have

observed that Λ1/p seems to converge to one. Hence, we have numerically checked

their interpolation suitability.

The results suggest that explicit nodal distributions might be well-suited to inter-

polate geometry for low polynomial degrees. Nevertheless, it is not until we compare

explicit and our quasi-optimal Lebesgue nodal distributions that we can draw such

conclusions. However, using the Koornwinder-Dubiner orthogonal basis, the condi-

tion number of the Vandermonde matrix using our nodal set is reduced by orders of

magnitude in comparison to using explicit nodal configurations. Thus, we advocate

for using our quasi-optimal Lebesgue nodal sets.

In conclusion, in combination with the method proposed in Chapter 5, we have

devised a two-stage method to compute quasi-optimal Lebesgue nodal distributions.

First, we explore the local minima of a proxy of the Lebesgue constant with the

149

6. Computing quasi-optimal nodal distributions

method described in Chapter 5. These nodal distributions are good candidates for

optimal Lebesgue configurations since they do not feature a grid-like structure and

cluster the nodes towards the boundary. Second, we deterministically optimize the

Lebesgue constant of a nodal distribution by consistently exploiting the first-order

derivatives of the Lebesgue function with respect to the node coordinates. The re-

sults are nodal distributions for high polynomial degrees up to 4D with no grid-like

structure and with the lowest Lebesgue constant up to date. In perspective, we

expect these quasi-optimal Lebesgue nodal distributions to be useful for high-order

unstructured methods and for representing and modeling complex curved geometry.

150

Chapter 7

Computing interpolation-aware

numerical quadratures

7.1 Introduction

The solution of linear problems with the mass matrix as the system matrix is a

key capability in computational methods. These linear problems appear in many

problems such as in explicit time integration and L2 projections to approximate

functions. To accelerate the solution of these problems, it is possible to collocate the

interpolation points with the quadrature points. Thus, the resulting mass matrix is

diagonal, a matrix structure that leads to linear systems that can be solved efficiently.

The collocation of the interpolation points with the quadrature points has many

applications. For instance, it is a key aspect of the spectral element method (Patera,

1984), it leads to evaluating the functions only on the interpolation points (Hesthaven

and Warburton, 2007; Kopriva and Gassner, 2010), it improves the numerical stability

for specific finite element methods (Jameson et al., 2012; Williams and Jameson, 2013;

Williams, 2013; Witherden and Vincent, 2014), and it is also of interest in space-time

discretizations (Williams et al., 2020).

When the computational domain is discretized using tensor-product-like shapes

such as quadrilaterals or hexahedra, it is standard to use Legendre-Gauss-Lobatto

points since they have both good interpolation and integration properties. However,

to deal with complex geometry, simplicial unstructured meshes have demonstrated

151

7. Computing interpolation-aware numerical quadratures

to be better suited than tensor-product-like shapes. Thus, for time-marching and

space-time discretizations, it is of major interest finding nodal distribution on the

simplex featuring good properties regarding not only function interpolation but also

function integration (Williams et al., 2020).

Bearing in mind the previous applications, we are interested in collocating interpo-

lation points with integration points up to the four-dimensional simplex. To do so, we

require them to satisfy three properties. First, in order to be invariant of the element

orientation, we require symmetric nodal distributions. Accordingly, the integration

weights should also be symmetric. Second, we require closed sets with a simplicial

number of points. This is so because we want to facilitate the implementation of

conformal methods with a unisolvent nodal distribution for interpolation. Third, we

require positive integration weights to guarantee that the integral of positive functions

is positive.

There are several numerical quadratures for the simplex, but they are not ready for

4D symmetric numerical integration with positive weights and a simplicial number of

closed points. Symmetric numerical quadratures have been extensively studied in the

triangle (Lyness and Jespersen, 1975; Zhang et al., 2009; Wandzura and Xiao, 2003;

Taylor et al., 2007; Williams et al., 2014; Witherden and Vincent, 2015), the tetrahe-

dron (Keast, 1986; Zhang et al., 2009; Shunn and Ham, 2012; Williams et al., 2014;

Witherden and Vincent, 2015), and the higher dimensional simplex (Hammer et al.,

1956; Hammer and Stroud, 1956; Silvester, 1970; Grundmann and Möller, 1978; Dan

and Wang, 2009; Xiao and Gimbutas, 2010; Williams et al., 2020). Unfortunately,

some of these symmetric numerical quadratures in the four-dimensional simplex ei-

ther do not feature a simplicial number of points (Hammer et al., 1956; Hammer and

Stroud, 1956; Grundmann and Möller, 1978; Dan and Wang, 2009; Xiao and Gimbu-

tas, 2010), or do feature a simplicial number of points but have negative weights

(Silvester, 1970) or open points (Williams et al., 2020).

Alternatively, there exist other approaches specifically devised to exploit the ad-

vantages of the spectral element method, but they do not meet all the aforementioned

requirements. Many of these approaches consider Fekete nodes for interpolation.

Fekete nodes are a set of points with good interpolation properties since they aim to

maximize the determinant of the Vandermonde matrix. Thus, Fekete nodes might

be used as an interpolation nodal set in combination with another set of points for

integration. If Fekete nodes are also used as integration points, the mass matrix is

152

7.1. Introduction

diagonal but the weights might be negative (Taylor and Wingate, 1999, 2000). Alter-

natively, two different sets of points might be used — Fekete points for interpolation

and Gauss points for integration. Then, if the function values at the interpola-

tion nodes are known, the function values at the integration points can be obtained

through matrix multiplication (Pasquetti and Rapetti, 2006, 2013). In this case, the

mass matrix is no longer diagonal. A different approach is presented in Giraldo and

Taylor (2006). Therein, the polynomial space used for interpolation is enriched with

additional interior modes vanishing at the boundary. These extra degrees of freedom

are used to attain high-order quadratures. However, the number of points is larger

than the target simplicial number.

Summarizing, symmetric numerical integration with positive weights and a simpli-

cial number of closed points in the four-dimensional simplex has not been considered.

Accordingly, the goal of this chapter is to optimize the collocation of the interpola-

tion and integration points subject to fulfilling the previous requirements. A nodal

distribution featuring good interpolation and integration properties might be used

both for interpolation and integration purposes in high-order methods. Hence, it will

enable accomplishing not only the computational efficiency of dealing with a diagonal

mass matrix, but also the reduced approximation error of a high-order quadrature.

To meet our goal, the main contribution of this chapter is to formulate and min-

imize the interpolation error of a symmetric and closed nodal distribution subject

to integrating exactly high-order polynomials with positive integration weights. The

design variables are the weights and coordinates of the nodal representatives. The

interpolation error is approximated with the twice-differentiable vectorial L2-norm

of the Lagrange interpolating polynomials. Because we consider symmetric distribu-

tions, the constraints only impose exact integration of high-order symmetry-invariant

polynomials. Solving the constrained problem with standard optimization methods,

we obtain preliminary results in the two-, three-, and four-dimensional simplex.

The rest of the chapter is organized as follows. First, in Sect. 7.2, we present some

preliminaries. Then, in Sect. 7.3, we propose our constrained minimization problem.

Next, in Sect. 7.4, we report preliminary results and, finally, in Sect. 7.5, we present

some concluding remarks.

153

7. Computing interpolation-aware numerical quadratures

7.2 Preliminaries

Following, we recall some notation and definitions introduced in Chapter 2 used

throughout this chapter regarding the parameterization of symmetric nodal distri-

butions in the simplex, Sect. 7.2.1, and the Chen-Babuska proxy of the Lebesgue

constant, Sect. 7.2.2. Then, in Sect. 7.2.3, we give basic results about invariant

theory to compute symmetry-invariant polynomials in the simplex.

First, let us define the standard simplex Kd
S ⊂ Rd given by the set of points

Kd
S = {x ∈ Rd :

d∑

i=1

xi = 1, xi ≥ 0 ∀i = 1, . . . , d}. (7.1)

This set describes the domain of barycentric coordinates of points in a (d− 1)-

dimensional simplex. We also introduce the set Sd, the group of permutations of

the set {1, . . . , d}. We note that the standard simplex Kd
S is invariant under any

ρ ∈ Sd, ρ
(
Kd
S

)
= Kd

S.

7.2.1 Symmetric point distribution

In this section, we recall the notation used to describe a symmetric point distribution

Z = {zi}i=1,...,Np,d in the simplex, see details in Sect. 2.1. The coordinates of a subset

of nodes are enough to describe the whole nodal set. Specifically, the design variables

are the n degrees of freedom encoded in a vector y ∈ Rn describing the position of

the m nodal representatives. The ni degrees of freedom of representative node i are

encoded in the vector yi = (y1
i , . . . , y

ni
i), and these values should satisfy

0 < yji < 1, for j = 1, . . . , ni,
ni∑

j=1

yji < 1,

to describe a valid symmetric point in the simplex.

The barycentric coordinates λi of the i-th node representative are obtained via the

mapping σ1, σ1 (yi) = λi, and the full nodal distribution Z is the image by mapping

σ of the whole vector of degrees of freedom, Z = σ (y). The number of elements in

the equivalence class [λi] is called the multiplicity of the node and is denoted as µi.

154

7.2. Preliminaries

7.2.2 Chen-Babuska functional

A proxy of the Lebesgue constant is given by the square of the vectorial L2-norm of

the Lagrange interpolating polynomials (Chen and Babuška, 1995),

β (y) :=
1

vol (Kd)

∫

Kd

Np,d∑

i=1

φ2
i (x;σ (y)) dx.

Remarkably, there exist analytical expressions for evaluating the functional value and

the first and second derivatives with no need for evaluating integrals, see Appendix D.

Accordingly, this functional can be optimized using second-order optimization meth-

ods.

7.2.3 Symmetric polynomials

To compute a symmetric numerical quadrature, one approach consists in finding

integration points and weights such that the
(
d+q
d

)
elements of a basis of polynomial

degree q are integrated exactly. Remarkably, not all these constraints are needed

for computing symmetric quadratures, only the generators of the ring of symmetric

polynomials have to be considered (Maeztu and Sáinz de La Maza, 1995; Wandzura

and Xiao, 2003; Chuluunbaatar et al., 2022). Following, we detail how to generate a

basis of the ring of symmetric polynomials and preliminary results about integration

in the simplex.

Let p ∈ R [x] = R [x1, . . . , xd] be a polynomial defined in the d-dimensional sim-

plex Kd. By an affine change of variable, we express p in barycentric coordinates as

p (λ) = p (λ1, . . . , λd+1), with
∑d+1

i=1 λi = 1. We say p ∈ R [λ] is symmetry invariant if

it is invariant under every permutation ρ ∈ Sd+1 of the variables. As an example, the

k-th power sum sk (λ) := λk1 + . . . + λkd+1 is a symmetry invariant polynomial. Note

that s1 (λ) = 1. The key theoretical results used in our formulation are summarized

in the following theorems.

Theorem 7.1. (Sturmfels, 2008) The ring of symmetry invariant polynomials

C [λ]Sd+1 is generated by the first d+ 1 power sums,

C [λ]Sd+1 = C [s1, . . . , sd+1] .

Consequently, a symmetry invariant polynomial p (λ) of degree q can be ex-

pressed as a linear combination of products of power sums. More precisely, let

155

7. Computing interpolation-aware numerical quadratures

α = (α2, . . . , αd+1), αi ∈ N, and denote by φα = sα2
2 · · · s

αd+1

d+1 . The set

I = {φα : αi ∈ N, 2α2 + . . .+ (d+ 1)αd+1 ≤ q}
constitutes a basis of the set of symmetry invariant polynomials up to degree q.

Theorem 7.2. (Wandzura and Xiao, 2003) For any function f (λ) defined in Kd+1
S ,

∫

Kd+1
S

f (λ) dλ =

∫

Kd+1
S

f̄ (λ) dλ,

where f̄ denotes the Reynolds average defined as

f̄ (λ) =
1

|Sd+1|
∑

ρ∈Sd+1

f (ρ (λ)) .

Theorem 7.3. (Wandzura and Xiao, 2003) The Reynolds average f̄ (λ) is symmetry

invariant.

Combining these three results, the integral of a polynomial of up to degree q can

be computed as a linear combination of the integrals of the elements in I. Thus, to

find a symmetric numerical quadrature such that it exactly integrates polynomials

of degree q, we need not impose the exact integration for all the
(
d+q
d

)
elements of a

basis of the polynomial space Pdp , yet we only need to consider exact integration for

the elements in I ⊆ Pdp .

We analytically compute the integrals of the elements in I. Indeed, the integral

of a polynomial φα ∈ I reduces to a sum of integrals of the form∫

Kd+1
S

λᾱ1
1 · · ·λ

ᾱd+1

d+1 dλ, (7.2)

with
∑d+1

i=1 λi = 1. The exponents ᾱi are linear combinations of the exponents αj

defining the polynomial φα. Remarkably, the integral Eq. (7.2) can be analytically

computed using the following result.

Theorem 7.4. (Grundmann and Möller, 1978) Let Kd+1
S be the standard simplex

defined in Eq. (7.1), and λ =
(
λ1, . . . , λd, 1−

∑d
i=1 λi

)
. Then,

∫

Kd+1
S

λᾱ1
1 · · ·λᾱdd

(
1−

d∑

i=1

λi

)ᾱd+1

dλ =
ᾱ1! · · · ᾱd! ᾱd+1!

(d+ ᾱ1 + · · ·+ ᾱd + ᾱd+1)!
.

In conclusion, to compute the integral of φα, it is enough to evaluate an analytical

expression only in terms of the exponents α2, . . . , αd+1. Furthermore, we highlight

that the r-th power φrα is equal to φrα, φrα = φrα. In particular, computing the square

of the L2-norm of φα translates into computing the integral of φ2α.

156

7.3. Interpolation-aware numerical quadratures

7.3 Interpolation-aware numerical quadratures

Following, we propose a method to minimize the interpolation error of a symmetric

and closed nodal distribution subject to integrating exactly high-order polynomials

with positive integration weights. In Sect. 7.3.1, we describe our formulation of the

constrained optimization problem, and in Sect. 7.3.2 we detail some aspects regarding

the numerical implementation.

7.3.1 Constrained optimization formulation

To compute a numerical quadrature with points Ξ = {ξi}i=1,...,Np,d and weights W =

{wi}i=1,...,Np,d , it is standard to solve a constrained non-linear optimization problem

using the point coordinates and weights as design variables. Since we consider close

and symmetric quadratures with a simplicial number of points, the set of points

ξ is parametrized by a vector of degrees of freedom y as described in Sect. 7.2.1.

Moreover, points in the same equivalence class have the same weight. Thus, only the

subset of the weights corresponding to the point representatives has to be considered.

Therefore, the actual variables are y ∈ Rn and w̃ ∈ Rm.

We distinguish three kinds of constraints to be satisfied. First, the degrees of

freedom should determine a valid point distribution, see Sect. 7.2.1. For the i-th

nodal representative with ni degrees of freedom, i = 1, . . . ,m, the conditions are

0 < yji < 1, for j = 1, . . . , ni,
ni∑

j=1

yji < 1.

Second, the integration weights should be positive to ensure that the numerical

integration of a positive function is positive. To ease the problem resolution, we

reduce the number of constraints by introducing the change of variables w̃i = esi , for

i = 1, . . . ,m. Now, variables s are unconstrained, yet w̃ always remain positive.

Third, the quadrature should integrate exactly polynomials up to degree q. As

discussed in Sect. 7.2.3, we only need to consider the elements in the set of symmetry

invariant polynomials I. Specifically, to exactly integrate polynomials of degree q,

for each element φα ∈ I, we impose

m∑

i=1

φα (σ1 (yi)) e
siµi =

∫

Kd+1
S

φα (λ) dλ,

157

7. Computing interpolation-aware numerical quadratures

where σ1 maps the degrees of freedom onto the barycentric coordinates, and µi is the

multiplicity of the i-th point representative, see Sect. 7.2.1. We analytically compute

the integral on the right-hand side of the equation, see details in Sect. 7.2.3.

Finally, the objective function of the problem assesses the interpolation properties

of the point distribution. To do so, we consider a proxy of the Lebesgue constant,

namely the twice-differentiable Chen-Babuska functional,

β (y) =
1

vol (Kd)

∫

Kd

Np,d∑

i=1

φ2
i (x;σ (y)) dx.

In conclusion, the constrained nonlinear problem reads as

min
y∈Rn, s∈Rm

β (y)

s.t. 0 ≤ yi ≤ 1, for i = 1, . . . ,m,
ni∑

j=1

yji < 1, for i = 1, . . . ,m,

m∑

i=1

φα (σ1 (yi)) e
siµi =

∫

Kd+1
S

φα (λ) dλ, for φα ∈ I.

(7.3)

7.3.2 Numerical implementation

The constrained nonlinear problem in Eq. (7.3) is solved by means of a trust-region

interior point method (Byrd et al., 1999) implemented in the SciPy library (Jones

et al., 2001). This interior point algorithm writes the problem in a lagrangian form

and solves a sequence of equality-constrained barrier problems. Each of these sub-

problems, in turn, is solved using a trust-region sequential quadratic programming

method (Lalee et al., 1998; Nocedal and Wright, 2006).

To ensure smooth point dynamics, we would like to provide the algorithm with

a maximum trust-region radius in terms of the edge-length of the spherical simplex

and the polynomial degree p. Unfortunately, this feature is not supported in the

current implementation. Alternatively, we solve a sequence of problems within a

tighter domain, and we continue the solution between iterations.

More precisely, consider an initial approximation of the integration points y(0),

and denote by ε the maximum allowed trust-region radius. We set ε to a value

accounting for the edge-length of the spherical simplex and point resolution in terms

of the polynomial degree, ε = π
2

1
2p

. Then, to enforce smooth dynamics, we modify

158

7.3. Interpolation-aware numerical quadratures

Eq. (7.3) and replace the constraints 0 ≤ yi ≤ 1 with

max
(

0,y
(0)
i − ε

)
≤ yi ≤ min

(
1,y

(0)
i + ε

)
.

Thus, the degrees of freedom describing the point coordinates can only move in an

interval of length 2ε with respect to the initial approximation. Next, we solve the

constrained nonlinear problem and obtain a solution y(1). This solution becomes the

initial approximation for a new subproblem with an updated set of bounds. At stage

k of the algorithm, the problem to be solved reads as

min
y∈Rn, s∈Rm

β (y)

s.t. max
(

0,y
(k−1)
i − ε

)
≤ yi ≤ min

(
1,y

(k−1)
i + ε

)
, for i = 1, . . . ,m,

ni∑

j=1

yji < 1, for i = 1, . . . ,m,

m∑

i=1

φα (σ1 (yi)) e
siµi =

∫

Kd+1
S

φα (λ) dλ, for φα ∈ I.

(7.4)

We expect that the sequence of solutions to these problems with tighter constraints

smoothly converges to a feasible solution to the original problem Eq. (7.3).

The complete procedure is described in Algorithm 7.1. Given a symmetric nodal

configuration Ξ0, in Line 2 we compute the corresponding degrees of freedom y(0).

Next, in Line 3, we set the parameter ε, and, in Line 4, we compute the basis of the

ring of symmetric polynomials I. This basis is normalized such that the elements

φα ∈ I have unitary L2-norm. Then, in Line 5, we compute an initial approximation

for the weights. To do so, we compute the positive weight values minimizing the

L2-norm of the integration constraints, namely

min
w̃∈Rm

∑

φα∈I

(
m∑

i=1

φα (σ1 (yi)) w̃iµi −
∫

Kd+1
S

φα (λ) dλ

)2

s.t. w̃i ≥ 0, for i = 1, . . . ,m

(7.5)

Following, we enter the main loop of the algorithm. At an intermediate iteration

k, we have vectors y(k) and s(k) describing the current position of the nodes and the

weights values, respectively. Then, in Line 9, we solve the problem in Eq. (7.4). This

function call returns the solution found by the solver, y(k+1) and s(k+1), and a boolean

variable with information about the solution found. Specifically, optSol is true in

159

7. Computing interpolation-aware numerical quadratures

Algorithm 7.1 Computing interpolation-aware numerical quadratures.

Input: Nodal distribution Ξ0, Function to optimize β, Integration degree q
Output: Nodal distribution Ξ, Integration weights w
1: function ComputeIntegrationRule(Ξ0, β, q)
2: y(0) ← GetVectorOfDOFs(Ξ0)
3: ε = π

2
1
2p

4: I = ComputeSymmetricPolynomialBasis(d, q)
5: w̃(0) ← OptimizeWeights(y(0), I)
6: s(0) ← log

(
w̃(0)

)

7: k ← 1
8: while not converged and (k < kmax) do
9: y(k+1), s(k+1), optSol ← TrustRegionConstrained(y(k), s(k), β, I, ε)
10: if optSol and

(∥∥y(k+1) − y(k)
∥∥
∞ < δ

)
and

(∥∥s(k+1) − s(k)
∥∥
∞ < δ

)
then

11: converged ← True
12: end if
13: k ← k + 1
14: end while
15: w̃(k) ← es

(k)

16: Ξ, W ← Symmetrize(y(k), w̃(k))
17: return Ξ, W
18: end function

two cases. First, optSol is true if the solver finds an optimal solution, that is, both

the infinity norm of the Lagrangian gradient and the constraint violation are smaller

than εLag = 10−8. Second, optSol is true if the trust-region radius used by the solver

is below rmin = 10−8. Next, we check if the sequence of solutions has converged, Line

10. Explicitly, we check if optSol is true and if the infinity norm of the difference

between iterates is less than a prescribed value δ = 10−16. This process is repeated

until the algorithm converges or the maximum number of iterations kmax = 100 is

reached, Line 8. Finally, in Line 15, we undo the change of variables for the weights

and, in Line 16, we recover the full symmetric numerical quadrature from the vectors

of degrees of freedom.

We highlight that the number of design variables determines an upper bound

for the integration accuracy. In particular, the polynomial degree q is chosen such

that the number of elements in I does not exceed the number of variables n + m.

However, in some cases, the problem in Eq. (7.3) may not have a feasible solution

when |I| = n+m. For instance, the numerical quadrature that corresponds to a point

distribution of polynomial degree three has four degrees of freedom, n = 1,m = 3,

160

7.4. Results

and the number of elements in I for q = 5 is also four. Therefore, the problem has

four variables and four nonlinear equality constraints. Unfortunately, the solution

to this system of nonlinear equations is not feasible because one weight is negative.

Thus, we can only integrate exactly polynomials up to degree q = 4. For the general

case, there exist precise relations between the number of degrees of freedom and the

number of constraints to ensure exact quadratures up to a certain polynomial degree

(Maeztu and Sáinz de La Maza, 1995; Chuluunbaatar et al., 2022). Herein, we first

compute the number of variables and choose the highest possible value for q such

that |I| ≤ n + m. Then, we try to solve the problem in Eq. (7.3) for such q. If the

solver fails to find a solution before the maximum number of iterations permitted is

reached, we understand that there is no feasible solution for such q, and try to solve

for q − 1. This process is repeated until the solver finds a feasible solution.

7.4 Results

Next, we report preliminary results for our numerical quadratures computed using the

method proposed in Sect. 7.3. Ideally, the initial approximation for the optimization

problem should be as close as possible to the optimal feasible solution. Conveniently,

the nodal distributions computed in Chapter 5 are local minima of the Chen-Babuska

functional. Hence, the initial approximation is given by the point coordinates of the

nodal distribution with the lowest Chen-Babuska value. The initial value for the

integration weights is obtained by solving a quadratic problem with linear constraints,

see Eq. (7.5).

7.4.1 Interpolation-aware numerical quadratures in 2D

Following, we study the integration properties of the optimized nodal sets in the trian-

gle. First, we analyze the maximum integration order of the quasi-optimal Lebesgue

nodal distributions found in Chapter 6. To compute a set of integration weights given

the nodes coordinates, it is standard to compute the i-th integration weight w̃i as the

integral of the Lagrange interpolating polynomial φi. However, this approach might

yield negative weights. To enforce obtaining positive integration weights, we solve the

quadratic problem with linear constraints described in Eq. (7.5). In Table 7.1, in the

triangle and for polynomial degree p, p = 3, . . . , 15, we report the highest polynomial

degree q we are able to integrate exactly using the quasi-optimal Lebesgue nodal dis-

161

7. Computing interpolation-aware numerical quadratures

p
Optimizing weights Optimizing nodes and weights

Positive Arbitrary signed Positive Arbitrary signed

3 3 3 3 4
4 3 4 5 5
5 5 5 6 7
6 5 6 8 8
7 7 7 10 10
8 7 8 11 11
9 7 9 13 13
10 7 10 15 15
11 7 11 15 15
12 7 12 16 18
13 7 13 18 18
14 7 14 18 21
15 7 15 18 21

Table 7.1: In the triangle and for nodal distributions of polynomial degree p, p =
3, . . . , 15, the maximum polynomial degree q we are able to exactly integrate using
only (positive) weights or the nodes and (positive) weights as design variables.

tribution from Chapter 6, and either the positive integration weights obtained solving

the problem in Eq. (7.5) or the arbitrary signed set of integration weights computed

by integrating the Lagrange interpolating polynomials. We observe that using posi-

tive weights we are able to integrate exactly polynomials of smaller degrees than with

arbitrary signed weights. We should expect this behavior because when we enforce

positivity of the integration weights we are restricting to the positive region of the

search space and, therefore, we are reducing the set of feasible solutions.

To simultaneously account for the interpolation and integration properties of a

nodal set, we optimize the nodal coordinates and integration weights by solving the

constrained non-linear problem presented in Sect. 7.3. We recall that to enforce

positive integration weights, we introduce the change of variables w̃ = es, but it is

possible to consider negative integration weights working directly with variables w̃

as design variables. In Table 7.1, we also report the highest polynomial degree q we

are able to integrate exactly using these optimized nodes and (positive) weights. As

before, we are able to integrate polynomials of higher degrees if we consider arbitrary

signed integration weights. Nevertheless, we favor positive weights to ensure we

obtain positive values when integrating positive functions. Comparing the maximum

162

7.4. Results

Lebesgue constant Λ

p
Nodal distribution Nodal distribution

from Chapter 6 for interpolation and integration

3 2.108 2.111
4 2.587 2.837
5 3.081 3.921
6 3.595 4.589
7 4.143 5.690
8 4.766 6.781
9 5.486 8.122
10 5.921 38.798
11 6.720 10.185
12 7.187 10.872
13 7.253 9.321
14 7.705 9.577
15 8.242 10.532

Table 7.2: In the triangle and for nodal distributions of polynomial degree p, p =
3, . . . , 15, the Lebesgue constant Λ of the quasi-optimal Lebesgue nodal distributions
from Chapter 6 and the nodal distribution suitable for interpolation and integration.

integration order against those obtained when only the weights are optimized, we

observe that considering the nodes position as degrees of freedom presents a clear

advantage.

We highlight that the same integration order is achieved for polynomial degrees

p = 13, 14, and 15. We believe this is due to numerical inaccuracies in the com-

putation of the elements in the ring of symmetric polynomials. We expect that a

more numerical stable basis will lead to higher integration orders. Moreover, consid-

ering the integration weights as dependent variables of the nodes (Taylor et al., 2007)

reduces the number of degrees of freedom and may improve the obtained results.

Nonetheless, using a nodal distribution of polynomial degree p = 10, we are able to

exactly integrate polynomials up to degree q = 15.

Next, we analyze the interpolation properties of the optimized nodal sets. In

Table 7.2, we compare the Lebesgue constant of the quasi-optimal Lebesgue nodal

distributions from Chapter 6 and the optimized nodal set suitable for interpolation

and integration using the points and weights as design variables. We observe that

the Lebesgue constant of the nodal distributions accounting for interpolation and

integration is larger than for the quasi-optimal Lebesgue nodal sets. Nevertheless,

163

7. Computing interpolation-aware numerical quadratures

Method from Sect. 7.3 Method from Chapter 6
p max q Λ Λ

3 3 2.936 2.930
4 4 4.576 4.005
5 5 6.355 5.258
6 7 11.215 6.759
7 8 14.143 8.252
8 10 24.687 10.594
9 10 20.670 13.693
10 10 18.736 14.273

Table 7.3: In the tetrahedron and for nodal distributions of polynomial degree p,
p = 3, . . . , 10, the maximum polynomial degree q we are capable of integrating exactly,
and the Lebesgue constant Λ of the nodal distribution suitable for interpolation and
integration and of the quasi-optimal Lebesgue nodal distributions from Chapter 6.

because the Lebesgue constants are still reasonable, we conclude that our nodal dis-

tributions possess good interpolation properties and are capable of exactly integrating

polynomials up to moderate degree.

7.4.2 Interpolation-aware numerical quadratures in 3D

Analogously, we study the integration and interpolation properties of the nodal dis-

tributions in the tetrahedron obtained using the method in Sect. 7.3. In Table 7.3,

we report the maximum polynomial degree q we are able to integrate exactly and

the Lebesgue constant. We also show the Lebesgue constant of the quasi-optimal

Lebesgue nodal distributions from Chapter 6. We observe that for low polynomial

degrees, the maximum integration order q coincides with p. For low polynomial

degrees, almost all the nodes in the tetrahedron are on the element boundary and,

thus, there are not enough degrees of freedom to achieve exact high-order integration.

In contrast, as we increase the polynomial degree, interior nodes appear and these

degrees of freedom allow achieving higher integration order. For polynomial degree

p = 9 and 10, there is no improvement in the value of q. Maybe, a more numerically

stable polynomial basis will help to attain higher-order quadratures. Regarding the

interpolation properties, we observe that the nodal distributions accounting for exact

integration of polynomials present larger Lebesgue constant, yet they still have good

interpolation properties.

164

7.5. Concluding remarks

Method from Sect. 7.3 Method from Chapter 6
p max q Λ Λ

3 2 4.169 3.760
4 3 6.130 5.964
5 4 9.322 8.488
6 5 12.867 11.683
7 7 27.567 15.629
8 7 30.062 21.053
9 9 66.209 27.500
10 11 101.511 35.668

Table 7.4: In the pentatope and for nodal distributions of polynomial degree p,
p = 3, . . . , 10, the maximum polynomial degree q we are capable of integrating exactly,
and the Lebesgue constant Λ of the nodal distribution suitable for interpolation and
integration and of the quasi-optimal Lebesgue nodal distributions from Chapter 6.

7.4.3 Interpolation-aware numerical quadratures in 4D

We repeat a similar study for the nodal distributions in the pentatope, see Table 7.4.

Unfortunately, we do not attain an integration degree that is larger than the inter-

polation degree. We may achieve higher integration orders expressing the weights in

terms of the nodal coordinates, using a more numerical stable polynomial basis, or

considering a different initial approximation. Even exploration approaches similar to

the ones proposed in Chapter 5 might be useful to enforce a tunnel effect through the

problem constraints.

7.5 Concluding remarks

We have proposed a nonlinear constrained optimization problem to minimize the

interpolation error of a symmetric and closed nodal distribution with a simplicial

number of points subject to integrating exactly high-order polynomials with positive

integration weights. The design variables are the weights and coordinates of the nodal

representatives. The interpolation error is approximated with the twice-differentiable

vectorial L2-norm of the Lagrange interpolating polynomials. Because we consider

symmetric distributions, the constraints only impose exact integration of high-order

symmetry-invariant polynomials.

The preliminary results in the two- and three-dimensional simplex show that the

165

7. Computing interpolation-aware numerical quadratures

obtained nodal distributions feature low Lebesgue constant and are able to integrate

exactly polynomials of higher degree than the nodal degree. In the 4D case, integra-

tion degrees higher than the nodal degree have not been attained. In the near future,

we will improve the current numerical solver to either understand this issue or obtain

higher integration order.

In conclusion, to obtain diagonal mass matrices, we have proposed a method to

compute an interpolation-aware numerical quadrature featuring a closed and sym-

metric point set with a simplicial number of points, and positive weights. In 2D and

3D, the preliminary results show that high-order integration can be attained with

low effect on the interpolation error. In perspective, for complex geometry, we expect

that our collocation of the interpolation points with the integration points will be

used to improve the efficiency and stability of the spectral element method and other

unstructured high-order methods.

166

Chapter 8

Conclusions and future work

In this thesis, we have enabled high-order numerical interpolation and integration on

complex geometry suitable for simulation up to four dimensions. To this end, we

have fulfilled the following objectives: to nodally represent boundary geometry for

flow simulation (Jiménez-Ramos et al., 2020); to model flow simulation intent with a

nodal boundary representation, Chapter 3 (Jiménez-Ramos et al., 2022); to estimate

the interpolation error of a given point distribution, Chapter 4 Jiménez-Ramos et al.

(2023d); to obtain candidate point distributions suitable for interpolation, Chapter 5;

to obtain point distributions with quasi-optimal interpolation error, Chapter 6; and

to obtain integration points also suitable for interpolation, Chapter 7. To enable

high-order numerical interpolation and integration on complex geometries, we have

used mathematical formulations and derivations, optimization methods, heuristics,

computer implementations, runtime checks, and verification approaches.

There are two central findings to obtain the interpolation and integration results

on the d-dimensional simplex. First, to propose the heuristics and methods to obtain

the results, we have relied on the claim that nodal distributions that feature optimal

interpolation accuracy are equidistributed in the (d + 1)-sphere orthant. Since we

have exploited this claim in several of the proposed heuristics, it is crucial to obtain

our quasi-optimal nodal distribution results for numerical interpolation and integra-

tion. Second, to efficiently explore nodal distributions that are local optima and do

not feature a lattice-like structure, we have emulated a tunnel effect in the energy

landscape of a free node on the (d + 1)-sphere orthant. We have proposed to proxy

the uphills of the energy landscape of the interpolation error for a free node with

167

8. Conclusions and future work

the faces of a Delaunay tessellation of the nodal distribution on the (d + 1)-sphere

orthant. Using this proxy, we have been able to emulate a tunnel effect that heuristi-

cally enforces a node to go to the other side of an uphill energy landscape by simply

relocating the node on the centroid of the element on the other side of the face. Using

deterministic continuous optimization without this tunnel effect we could not recover

the non lattice-like structures in 2D of the best Lebesgue nodal distributions reported

in the literature. Hence, the tunnel effect emulation is crucial to verify our 2D results

and obtain our 3D and 4D results for numerical interpolation and integration.

The work carried out in this thesis leaves open some research activities that should

be performed in the near future. First, it would be interesting to explore an exten-

sion to 4D of the proposed curved geometry modeling. Since the boundary of a 4D

simplicial mesh is composed of tetrahedra, we should devise a tetrahedral subdivision

method featuring C1-continuity. Second, regarding the combinatorics for the number

of points in each sub-simplex of the symmetry simplex, we have considered only sym-

metric distributions that have the same combinatorics as the equidistributed nodal

distribution. Even though these seem to be the only combinations giving rise to

unisolvent nodal distributions in 2D for low polynomial degrees, it might not be the

case for higher degrees or higher-dimensional simplices. Accordingly, we would like

to study other symmetry combinatorics for the nodal distributions and compare their

interpolation and integration performance with the nodal sets found in this thesis.

Third, we have obtained preliminary results regarding nodal sets suitable for interpo-

lation and integration, but the implementation could be improved if we considered a

more numerically stable polynomial basis to enforce exact integration. Moreover, it

is possible to consider the integration weights as dependent variables. Consequently,

the number of design variables would be reduced and higher integration order may

be achieved.

Nevertheless, we have contributed to enabling 4D high-order space-time discretiza-

tions for 3D unsteady high-fidelity simulation. Specifically, we have proposed meth-

ods to model and represent the simulation intent, to obtain nodal distributions with

quasi-optimal interpolation, and to determine weights and integration points that are

also suitable for interpolation.

In perspective, our high-order geometry modeling and representation methods,

numerical interpolation, and integration on complex geometry will be key ingredients

in 4D high-order space-time discretizations. In these discretizations, the boundary

168

representation might be represented as a piecewise polynomial boundary mesh pre-

serving the simulation intent. Meanwhile, the computation nodes might be deter-

mined by our quasi-optimal interpolation distributions. Finally, in applications such

as the spectral element method, our closed numerical quadratures might provide the

node location.

169

Appendix A

Non-interpolative to interpolative

Given a control mesh, the schemes in Sect. 3.4.1 and Sect. 3.4.2 for mesh subdivision

generate a hierarchy of subdivided meshes all of them tending to the same limit model

(curve or surface). These schemes do not preserve the position of the initial vertices

of the mesh. However, a new control mesh can be computed so that the limit model

contains the nodes of the initial mesh (Persson et al., 2006; Jiménez-Ramos et al.,

2020). That is, new points can be found such that the limit curves and surfaces

interpolate the given data points.

Given a polygon, the curve subdivision scheme presented in Lane and Riesenfeld

(1980) generates a sequence of refined polygons, all of them converging to the same

cubic C2-continuous curve. We remark that the initial control mesh determines the

limiting curve, so all the refined polygons converge to the same curve. The expression

to map a node of the polygon onto the limit curve becomes linear when applied to the

nodes of the polygon. Specifically, denote by xli the position of node i at refinement

level l, and by xli−1 and xli+1 its neighbor nodes. Then, the position of node xli on

the limit curve, xl,∞i , is determined by the following linear expression

xl,∞i =
1

6

(
xli−1 + 4xli + xli+1

)
. (A.1)

In the case of surfaces, Loop’s subdivision scheme (Loop, 1987) defines a hierarchy

of control meshes, all of them converging to the same limit surface. Analogously to

the curve case, we can compute the limiting location for the nodes at any refinement

level. In particular, given a linear mesh, the limit position for the node v at any

171

A. Non-interpolative to interpolative

refinement level l, denoted by xl,∞v , is given by the following linear expression

xl,∞v = (1− kχk)xlv + χk

k∑

i=1

xli, (A.2)

where {xli}i=1,...,k are the positions of the k neighbor nodes of v at level l, and where

the weights are computed as

χk =
1

k + 3
8ωk

,

with ωk = 1
k

(
5
8
−
(

3
8

+ 1
4

cos
(

2π
k

))2
)

.

To ensure that the limit model contains the nodes of the initial mesh, we compute

a new control mesh. Specifically, let L be the operator that maps the nodes of the

initial mesh, X0, onto their limit position. Row i of matrix X0 corresponds to the

position of node i of the boundary mesh x0
i . Then, we compute a new control mesh,

with nodes position denoted by XC , such that

LXC = X0,

where the i-th row of matrix XC corresponds to the unknown position of node i

of the control mesh, xCi . In the case of the subdivision schemes considered in this

thesis, L is a linear application with rows given by the coefficients in Eq. (A.1)

or Eq. (A.2), for curve and surface points, respectively. This matrix is sparse and

the solution of the linear system can be computed using a sparse direct solver. In

our Python implementation, we call the sparse direct solver of the SuperLU library

(Demmel et al., 1999; Li et al., 1999) through the Python SciPy package (Jones et al.,

2001). Recall that this operation is performed on the boundary of a tetrahedral mesh.

Therefore, the dimension of the linear system is of the order of the number of boundary

nodes and not of the order of nodes of the volume mesh.

172

Appendix B

Accommodate the curvature of the

boundary

In this appendix, we detail the computation TFI-based approach proposed in Chap-

ter 3 to accommodate the curving of the boundary surface mesh into the interior of

the volume mesh in the mesh approximation process of the limit model, see Sect. 3.7.

First, consider an edge of a high-order boundary element with one of its end-

points on the curved surface. The new location of the edge nodes is given by the

linear isoparametric mapping between the one-dimensional reference domain and the

physical edge, denoted as φ1. Specifically, the new position of the k-th node of the

edge, xk, for k = 0, . . . , q, is determined as

xk = φ1 (ξk) =
1∑

l=0

xvlNvl (ξk)

where ξk is the position of the k-th interpolation node of the reference domain, xvl
is the position of the l-th endpoint of the edge, and Nvl is the linear nodal shape

function of the interval associated with the l-th endpoint. In Fig. 3.7(c), we illustrate

the relocation of the nodes of the edges in a triangle when one of its edges (in bold)

is on the boundary.

Now, we are interested in relocating the nodes on the interior of a face of a

boundary tetrahedron. On the one hand, if such face belongs to the boundary, its

nodes have been already relocated onto the surrogate geometry, see bold edge in

Fig. 3.7(c). On the other hand, if such face does not belong to the boundary, its

173

B. Accommodate the curvature of the boundary

edge nodes have been modified using the transfinite interpolation for edges explained

above, see non-bold edges in Fig. 3.7(c). For the latter, we apply the transfinite

interpolation for faces, that is, we accommodate the deformation of the curving of

the edges to the interior of the triangular faces.

We denote by fi the edge of the triangle opposite to vertex i, i = 1, 2, 3. Let

us denote as xfi,k the coordinates of the k-th node of the edge fi in the physical

element, k = 0, . . . , q. These nodes are fixed now, since as previously detailed their

location has already been computed. Therefore, each curved or relocated edge can be

parametrized using the restriction to such edge of the two-dimensional isoparametric

mapping of degree q, φq, as:

φfi (ξ) := φq|fi (ξ) =

q∑

k=0

xfi,kNfi,k (ξ) (B.1)

where Nfi,k (ξ) is the high-order nodal shape function of the triangle associated to

the k-th node of the edge fi. In particular, the boundary of the triangle is fixed and

parameterized by the three mappings {φfi}i=1,2,3.

Consider a point x in the physical triangle, to which we want to compute its

displaced position in terms of the location of the boundary edge nodes. Denote by ξ

the position of the point in the reference triangle expressed in cartesian coordinates

such that φq (ξ) = x. Now, denote by λ the same point in the reference domain

expressed in barycentric coordinates (λ1, λ2, λ3),
∑3

i=1 λi = 1. Following Perronnet

(1998), we compute the projection of the point to the edges. A point on an edge can

be parametrized as a function of the barycentric coordinates of the two vertices of

the triangle defining the edge. Therefore, two different projections (λjf∗ for j ∈ f∗)
are computed for each one of the three edges of the triangle (rows, λ∗fi for i = 1, 2, 3):

f1 = (2, 3) :




λ2
f1

= (0, 1− λ3, λ3) ,

λ3
f1

= (0, λ2, 1− λ2) ,

f2 = (1, 3) :




λ1
f2

= (1− λ3, 0, λ3) ,

λ3
f2

= (λ1, 0, 1− λ1) ,

f3 = (1, 2) :




λ1
f3

= (1− λ2, λ2, 0) ,

λ2
f3

= (λ1, 1− λ1, 0) .

Note that λjfi belongs to edge fi and has the j-th component expressed in terms

of the other components. Then, we express these six projections of the point at the

174

edges, computed in barycentric coordinates, back in the reference coordinates ξ. As

previously remarked, we denote the change from barycentric coordinates of a point

λjfi to reference coordinates as ξjfi , for i = 1, 2, 3. Since these points are on the edges

of the triangle, they can be mapped onto the physical triangle through the mappings

φfi of the edges, i = 1, 2, 3, presented in Eq. (B.1) as:

xjfi := φfi
(
ξjfi
)

We highlight that given a point x, xjfi corresponds to the coordinates on the physical

element of the projection j of the point to the edge fi, i = 1, 2, 3.

Finally, the new position of point x in the physical triangle, denoted as x̂, is given

in Perronnet (1998) as:

x̂ = λ1

(
x1
f2

+ x1
f3
− xv1

)
+ λ2

(
x2
f1

+ x2
f3
− xv2

)

+ λ3

(
x3
f1

+ x3
f2
− xv3

)

where xvj is the position of the j-th vertex of the physical triangle. We highlight

that the transfinite interpolation for triangles can be expressed as a function of the

isoparametric mapping of the edges and the location of the vertices of the triangle.

In order to relocate the nodes in the interior of the high-order physical faces, the

steps detailed above are applied to the interpolation nodes in the interior of the high-

order reference triangle, see Fig. 3.7(d). This procedure is repeated for all the faces

with a boundary node or edge.

Lastly, we follow an analogous approach to modify the position of the nodes in

the interior of the boundary tetrahedra. The boundary of a tetrahedron is composed

of four faces and six edges. These faces and edges have already been curved with

the procedures detailed above. Therefore, we relocate the interior nodes according

to the curved boundary already accommodated to the edges and faces. Similarly to

the triangle case, the transfinite interpolation for tetrahedra can be expressed as a

function of the isoparametric mapping of the edges, the isoparametric mapping of the

faces, and the location of the vertices of the tetrahedron.

Denote by T the set of vertices of a tetrahedron. We define the entity fi1,...,ik as

the entity of dimension d−k, d = 3, with vertices given by the nodes T \ {i1, . . . , ik}.
Note that the face opposite to node i is denoted by fi, and the edge shared by the

faces fi and fk is fik. Given the three-dimensional isoparametric mapping of degree

q, φq, analogously to Eq. (B.1), we denote the restriction to the face fi as φfi , and

the restriction to the edge fik as φfik .

175

B. Accommodate the curvature of the boundary

Similarly to the two-dimensional case, consider a point x in the physical tetra-

hedron, and denote by ξ and λ its preimage in the reference tetrahedron expressed

in cartesian and barycentric coordinates, respectively. Now, denote by λjfi the pro-

jection of the point to the face fi that has the j-th component expressed in terms

of the other components. λjfik denotes the projection of the point to the edge fik

that has the j-th component expressed in terms of the others. These projections in

the reference domain expressed in cartesian coordinates are denoted by ξjfi and ξjfik ,

respectively.

Since these points are on the faces and edges of the tetrahedron, they can be

mapped onto the physical element through the mappings φfi on the faces and φfik on

the edges as:

xjfi := φfi
(
ξjfi
)
, xjfik := φfik

(
ξjfik
)

Finally, the new position of point x in the physical triangle, denoted as x̂, is given

in Perronnet (1998) as:

x̂ = λ1

(
x1
f2

+ x1
f3

+ x1
f4
− x1

f23
− x1

f24
− x1

f34
+ xv1

)

+ λ2

(
x2
f1

+ x2
f3

+ x2
f4
− x2

f13
− x2

f14
− x2

f34
+ xv2

)

+ λ3

(
x3
f1

+ x3
f2

+ x3
f4
− x3

f12
− x3

f14
− x3

f24
+ xv3

)

+ λ4

(
x4
f1

+ x4
f2

+ x4
f3
− x4

f12
− x4

f13
− x4

f23
+ xv4

)

176

Appendix C

Parameterization of a symmetric

high-order nodal distribution in

the simplex

A d-simplex Kd ⊂ Rd of polynomial degree p is composed of Np,d :=
(
d+p
d

)
nodes

defining an interpolative nodal distribution Z = {z1, . . . ,zNp,d}. In this work, we

consider symmetric nodal distributions on the simplex. We favor symmetric over

non-symmetric nodal sets because we want elements that are label-invariant and

orientation free. As a consequence, since two adjacent simplices in a mesh intersect

along an entity of dimension k, for k = 1, . . . , d − 1, the nodal distribution of both

elements coincides along their intersection.

The choice of the symmetry pattern used herein is determined by two aspects.

First, on the entities of dimension k, we impose that the number of nodes on the

entity matches the number of nodes of the k-dimensional simplex, for k = 1, . . . , d−1.

Therefore, the restriction of the nodal basis on an entity coincides with the nodal

high-order basis of the lower-dimensional simplex. Second, the nodal set should be

unisolvent, that is, there should exist a unique polynomial of degree p defined by

the function value at the nodes. Remarkably, a nodal set is unisolvent if, and only

if, its Vandermonde matrix is non-singular. The symmetry pattern that coincides

with the equispaced distribution seems to be the only one that satisfies these two

conditions (Marchildon and Zingg, 2022). Furthermore, this symmetry pattern allows

177

C. Parameterization of a symmetric high-order nodal distribution

us to determine in a systematic manner the subset of the nodes describing the whole

symmetric nodal distribution.

C.1 Representatives of a symmetric nodal

distribution

Next, we detail our choice of the nodal representatives describing a symmetric high-

order nodal distribution. Given a symmetric nodal distribution Z = {zi}i=1,...,Np,d ,

we denote by λi =
(
λ1
i , . . . , λ

d+1
i

)
the barycentric coordinates of node i. Then, given

a permutation ρ in the set of permutations Sd+1, we define as

P [ρ] : Rd+1 −→ Rd+1

λ =
(
λ1, . . . , λd+1

)
7−→ P [ρ] (λ) = (λρ1 , . . . , λρd+1) ,

the function that permutes the components of a vector according to permutation ρ.

Now, in order to determine which nodes define the symmetric nodal distribution, we

define the equivalence class

[λi] = {P [ρ] (λi) | ρ ∈ Sd+1}.

Equivalently, nodes with the same barycentric coordinates up to permutation belong

to the same equivalence class. We choose the greatest node under the lexicographical

order � to be the representative of a class of related nodes. More precisely, assume

node i is related to k nodes, [λi] = {λi1 , . . . ,λik}. Then, the representative is the

node ij such that λij � λis , ∀s = 1, . . . , k. The number of elements in [λi] is called

the multiplicity of the node and it is denoted as µi.

To illustrate these definitions, in Fig. C.1, we show the representatives of the

equispaced nodal distribution of degree p = 12 for the triangle and for the tetrahedron.

In the two-dimensional simplex, Fig. C.1(a), the representatives are a vertex, six

edge nodes, three nodes on the symmetry hyper-plane {λ2 = λ3}, one node on the

symmetry hyper-plane {λ1 = λ2}, one node at the intersection of these two symmetry

hyper-planes, and seven free interior nodes. For the tetrahedron, Fig. C.1(b), note

that the representatives on the face {λ4 = 0} are the representative of the triangle

described before. Furthermore, there are thirteen interior nodes that belong to at

least one of the symmetry hyper-planes {λ1 = λ2}, {λ2 = λ3} or {λ3 = λ4}, and two

free interior nodes.

178

C.2. Parameterization of a nodal representative

(a) (b)

Figure C.1: Representatives of the (a) triangle, and the (b) tetrahedron. Colors
indicate the number of degrees of freedom. Blue nodes have zero degrees of freedom,
cyan nodes identify nodes with one degree of freedom, yellow nodes have two degrees
of freedom, and red nodes describe nodes with three degrees of freedom.

C.2 Parameterization of a nodal representative

A nodal representative is constrained to move along the intersection of the symmetry

hyper-planes it belongs to. Consider first the representative of an interior node with

barycentric coordinates λ =
(
λ1, . . . , λd+1

)
,
∑d+1

i=1 λ
i = 1. Let us assume that the

first k components are equal and the rest d+ 1− k are pairwise different, that is,

λ = (λ1, . . . , λ1

︸ ︷︷ ︸
k

, λk+1, . . . , λd+1),

with λi 6= λ1 for i = k + 1, . . . , d + 1, and λi 6= λj for i, j = k + 1, . . . , d + 1,

i 6= j. Since the sum of the components equals one, this node has d − (k − 1)

degrees of freedom. To determine the domain of a node, we compute the intersection

of the simplex with the symmetry hyper-planes the node belongs to. In particular,

a node with k equal components belongs to
(
k
2

)
symmetry hyper-planes, and the

intersection of these hyper-planes with the whole simplex Kd determines a simplex

of dimension d − (k − 1). In general, a node with s subsets of equal components

of lengths k1, . . . , ks has d − (k1 − 1) − · · · − (ks − 1) degrees of freedom, and the

intersection of the symmetry hyper-planes with the simplex Kd determines a simplex

of dimension d− (k1 − 1)− · · · − (ks − 1).

For the representative of a boundary node, we determine its domain by studying

179

C. Parameterization of a symmetric high-order nodal distribution

the face {λd+1 = 0} as a (d− 1)-dimensional simplex. On the one hand, the nodes in

the interior of the boundary face are interior nodes of the (d− 1)-dimensional simplex

and the reasoning above applies. On the other hand, the nodes on the boundary of

the boundary face belong to a (d− 2)-dimensional simplex. Therefore, we recursively

compute the domain of any nodal representative.

Finally, the position of the representative is a linear combination of the position of

the vertices of its sub-simplicial domain. More precisely, consider the representative

node i and suppose that it has ni degrees of freedom. Then, it is constrained to

move on its associated ni-dimensional simplicial domain. Expressing the node in

barycentric coordinates with respect to the vertices of its sub-simplicial domain leads

to a point in Rni+1 denoted as µi =
(
µ1
i , . . . , µ

ni+1
i

)
, with

∑ni+1
j=1 µji = 1. The first ni

components are enough to determine the position of the representative and serve as

the degrees of freedom describing such node, yi = (y1
i , . . . , y

ni
i), with yji = µji .

We remark that the degrees of freedom should satisfy

0 < yji < 1, for j = 1, . . . , ni,
ni∑

j=1

yji < 1,
(C.1)

to describe a point inside its associated ni-simplex. Moreover, even though a node

can freely move therein, there are some regions where it would not define a unisolvent

nodal distribution. For instance, in the two-dimensional case, although a free interior

node can move throughout all the triangle, this node cannot be in the median. If

it was on the median, there would be one of its related nodes on the same position.

Therefore, these two nodes would overlap, and they would not determine a unisolvent

nodal distribution.

In Fig. C.1(a), the representatives of the equispaced nodal distribution of degree

p = 12 for the triangle are colored accordingly to their number of degrees of freedom.

Nodes colored in blue have zero degrees of freedom, color cyan represents nodes with

one degree of freedom, while yellow nodes have two degrees of freedom. We remark

that the barycenter belongs to the three symmetry hyper-planes and, therefore, it

is fixed. The node at the midpoint of the edge is a boundary node that belongs to

a symmetry hyper-plane of the one-dimensional simplex, i.e. the edge, hence it has

zero degrees of freedom. Analogously, in Fig. C.1(b), we color the representatives of

the equispaced nodal distribution of degree p = 12 for the tetrahedron. Besides the

colors already described, red nodes are nodes with three degrees of freedom. Note

180

C.3. Parameterization of a symmetric nodal distribution

that the representatives on the boundary are the same as for the triangle case and

with the same degrees of freedom.

C.3 Parameterization of a symmetric nodal

distribution

We encode the degrees of freedom of all the representatives in a single vector y ∈ Rn,

with n being the sum of degrees of freedom of all the representatives. Vector y is

simply a concatenation of the parameters describing the representatives. In the first

positions, we find the degrees of freedom (if any) of the first representative. Following,

we encounter the degrees of freedom (if any) describing the second representative.

This process is repeated for all the representatives, and the result is a vector of

dimension n with all the degrees of freedom that define the nodal distribution. We

note that the domain for y is not the whole space Rn, but the subspace defined by

the product of each of the simplicial domain in Eq. (C.1).

In the example of Fig. C.1(a), the vector encoding the degrees of freedom of the

nodal distribution has length 3 ·0+9 ·1+7 ·2 = 23. The first component corresponds

to the unique degree of freedom describing the position of the second edge node, y1
2.

Similarly, the degrees of freedom describing the position of the edge nodes 3, . . . , 6

follow. Next, we find the degrees of freedom describing node 15. Since it belongs

to the symmetry line, it has one degree of freedom, y1
15. Two degrees of freedom

describing the position node 16, (y1
16, y

2
16), appear immediately after in the vector

y. Proceeding similarly for the rest of the representatives, the vector describing the

degrees of freedom is

y =
(
y1

2, y
1
3, y

1
4, y

1
5, y

1
6, y

1
15, y

1
16, y

2
16, y

1
17, y

2
17, y

1
18, y

2
18,

y1
19, y

2
19, y

1
28, y

1
29, y

2
29, y

1
30, y

2
30, y

1
31, y

1
40, y

1
41, y

2
41

)
.

For optimization purposes, it is convenient to consider the inverse mapping of

the procedure described above, that is, the mapping from the degrees of freedom

of each representative, y, to the cartesian coordinates of all the nodes, Z. This

mapping consists of three steps. First, we recover the barycentric coordinates of

the representative from the degrees of freedom. Then, we permute these coordinates

to retrieve all the symmetric nodes. Finally, all the nodes expressed in barycentric

coordinates are expressed in cartesian coordinates.

181

C. Parameterization of a symmetric high-order nodal distribution

More precisely, consider the components of the vector y that correspond to the

ni degrees of freedom describing the representative node i, yi = (y1
i , . . . , y

ni
i). First,

we recover the barycentric coordinates, λi, from its degrees of freedom via a mapping

σ1,

σ1 : Rni −→ Rd+1

yi = (y1
i , . . . , y

ni
i) 7−→ σ1 (yi) = λi =

(
λ1
i , . . . , λ

d+1
i

)
.

Next, by means of a mapping σ2 the barycentric coordinates of all the elements in

the equivalence class [λi] are obtained by permuting the components of λi,

σ2 : Rd+1 −→ Rd+1 × µi· · · × Rd+1

λi 7−→ σ2 (λi) = {λi1 , . . . ,λiµi} = {P [ρ] (λi) |∀ρ ∈ Sd+1}.

Finally, σ3 maps points in barycentric coordinates onto points in cartesian coordi-

nates,

σ3 : Rd+1 × µi· · · × Rd+1 −→ Rd × µi· · · × Rd

{λi1 , . . . ,λiµi} 7−→ σ3

(
{λi1 , . . . ,λiµi}

)
= {zi1 , . . . ,ziµi}

The composition of these linear mappings, σ = σ3 ◦ σ2 ◦ σ1, maps a sub-vector of

degrees of freedom yi to a subset of nodes of the nodal distribution expressed in

cartesian coordinates, {zi1 , . . . ,ziµi}. Applying the mapping σ to the degrees of free-

dom of all the representatives consecutively, we recover the whole nodal distribution.

Specifically, if we denote by m the number of representative nodes, and by σ the

mapping applied to the whole vector of degrees of freedom, mapping σ consists in

applying the mapping σ to each sub-vector describing the representatives

σ : Rn → Rn1 × m· · · × Rnm → {Rd}µ1 × m· · · × {Rd}µm → {Rd}Np,d
y 7→ (y1, . . . ,ym) 7→ (σ (y1) , . . . , σ (ym)) 7→ Z

, (C.2)

where the first and last mappings are simply a split and a concatenation, respectively.

We highlight that this mapping is linear and, therefore, the second derivatives with

respect to the degrees of freedom are null. The use of this mapping allows us to

properly define the functional to optimize in terms of the degrees of freedom of the

representatives, i.e. the actual design variables.

182

Appendix D

Chen-Babuska derivatives and

optimization

In this appendix, we describe how we optimize a symmetric nodal distribution with

respect to the Chen-Babuska functional. Sect. D.1 is devoted to a careful derivation

of the first and second derivatives of the Chen-Babuska functional. Remarkably, it

is possible to get rid of the integral term using an orthogonal basis. We refer the

reader to Eq. (D.7) and Eq. (D.8) for the final expressions. In Sect. D.2, we detail

the second-order method used to optimize the Chen-Babuska value of a given initial

nodal distribution.

D.1 Derivatives of the functional

Following, we derive the expressions for the evaluation of the Chen-Babuska func-

tional, as well as the first and second derivatives. We follow the content in Roth

(2005) — the expressions are stated in this thesis just for completeness.

D.1.1 Preliminaries

Let us denote by zk the k-th node with components zk = (zx1k , · · · , zxdk), and by ∂
∂zxrk

the derivative with respect to the r-th coordinate of the k-th node. We introduce the

183

D. Chen-Babuska derivatives and optimization

mapping πi (Z) := zi which retrieves the i-th node from a nodal set Z. Note that

∂

∂zxrk
πi (Z) = erδki =





0, if k 6= i

er, if k = i
,

where er is the canonical vector of Rd with all the components equal to zero, except

for the r-th that equals one, and δki is the Kronecker delta.

Let b = {bj (x)}j=1,...,Np,d be an orthonormal basis of the space of polynomials in

d variables of degree equal or less than p, and denote by V (Z, b) the Vandermonde

matrix with entries Vij (Z, b) = bj (πi (Z)). The nodal derivatives of the polynomial

bj evaluated at the node zi are

∂

∂zxrk
(bj (πi (Z))) = ∇bj (πi (Z))

∂

∂zxrk
πi (Z) = ∇bj (πi (Z)) erδki =

=
∂

∂xr
bj (πi (Z)) δki.

(D.1)

Hence, the nodal derivative of the Vandermonde matrix, denoted by ∂
∂zxrk

V (Z, b),

is a matrix with all the entries equal to zero, except for those of the k-th row that

correspond to the terms ∂
∂xr
bj (πk (Z)), for j = 1, . . . , Np,d. We highlight that the

choice of the polynomial basis affects the entries of the Vandermonde matrix and, in

particular, using the Lagrangian basis φ = {φi (x;Z)}i=1,...,Np,d yields to Vij (Z,φ) =

δij. We remark that since φ is an interpolative basis, we have

V T (Z, b)φ (x;Z) = b (x) . (D.2)

Since the Vandermonde matrix does not depend on x, the spatial derivatives satisfy

a similar relation. In particular, for the first derivative it reads as

V T (Z, b)
∂

∂x
φ (x;Z) =

∂

∂x
b (x) . (D.3)

D.1.2 Evaluation of the functional

In Sect. 5.4.1, we introduced the Chen-Babuska functional as a proxy of the Lebesgue

constant,

β̃ : Rd × Np,d· · · × Rd −→ R
Z 7−→ β̃ (Z) =

∫
Kd

∑Np,d
i=1 φ2

i (x;Z) dx.

184

D.1. Derivatives of the functional

We are interested in the computation of the first and second derivatives of β̃ (Z) with

respect to a concrete spatial component of a particular node, namely ∂
∂zxrk

β̃ (Z) and
∂

∂zxsj

∂
∂zxrk

β̃ (Z), for k, j = 1, . . . , d, and r, s = 1, . . . , Np,d. Since the integral is a linear

operator, we will focus on the term

Wij = Wij (Z) :=

∫

Kd

φi (x;Z)φj (x;Z) dx.

We define the matrix W as

W =

∫

Kd

φ (x;Z)φT (x;Z) dx,

where the integral is applied element-wise. Now, using Eq. (D.2), it expands to

W =

∫

Kd

φ (x;Z)φT (x;Z) dx =

∫

Kd

(
V −T (Z, b) b (x)

) (
V −T (Z, b) b (x)

)T
dx,

and since V (Z, b) does not depend on x,

W = V −T (Z, b)

(∫

Kd

b (x) bT (x) dx

)
V −1 (Z, b) .

Now, using that the basis b is orthonormal,

W = V −T (Z, b)V −1 (Z, b) =
(
V (Z, b)V T (Z, b)

)−1
.

Finally, the functional β̃ (Z) reduces to the trace of the matrix W

β̃ (Z) =

Np,d∑

i=1

Wii = tr (W)

We highlight that we have got rid of the integrals, and only a matrix product and

inverse are needed.

D.1.3 First-order derivatives

Taking derivatives with respect to zxrk leads to

∂

∂zxrk
β̃ (Z) =

Np,d∑

i=1

∫

Kd

2φi (x;Z)
∂

∂zxrk
φi (x;Z) dx. (D.4)

In order to provide a more explicit expression for the term ∂
∂zxrk

φi (x;Z), we differen-

tiate Eq. (D.2) with respect to zxrk ,
(

∂

∂zxrk
V T (Z, b)

)
φ (x,Z) + V T (Z, b)

(
∂

∂zxrk
φ (x,Z)

)
=

∂

∂zxrk
b (x) . (D.5)

185

D. Chen-Babuska derivatives and optimization

Since b (x) does not depend on any of the nodes Z, the right hand side is the zero

vector. The i-th row of the first term can be written as

Np,d∑

j=1

(
∂

∂zxrk
V T (Z, b)

)

ij

φj (x,Z) . (D.6)

Recall that by Eq. (D.1),
(

∂

∂zxrk
V T (Z, b)

)

ij

=
∂

∂zxrk
bi (πj (Z)) =

∂

∂xr
bi (πj (Z)) δkj,

and, therefore, substituting in Eq. (D.6),

Np,d∑

j=1

(
∂

∂zxrk
V T (Z, b)

)

ij

φj (x,Z) =
∂

∂xr
bi (πk (Z))φk (x,Z) ,

and using the relation in Eq. (D.3), we get

∂

∂xr
bi (πk (Z))φk (x,Z) =



Np,d∑

j=1

Vji (Z, b) (Z)
∂φj
∂xr

(πk (Z);Z)


φk (x,Z) .

Replacing this expression back in Eq. (D.5), we obtain

φk (x,Z)V T (Z, b) (Z)
∂φ

∂xr
(πk (Z);Z) + V T (Z, b)

(
∂

∂zxrk
φ (x,Z)

)
= 0,

and isolating,
∂

∂zxrk
φ (x,Z) = −φk (x,Z)

∂φ

∂xr
(πk (Z);Z) .

Now, we can use this explicit expression in Eq. (D.4),

∂

∂zxrk
β̃ (Z) =

Np,d∑

i=1

∫

Kd

2φi (x;Z)
∂

∂zxrk
φi (x;Z) dx =

=

Np,d∑

i=1

∫

Kd

2φi (x;Z)

(
−φk (x,Z)

∂φi
∂xr

(πk (Z);Z)

)
dx =

= −2

Np,d∑

i=1

∂φi
∂xr

(πk (Z);Z)

∫

Kd

φi (x;Z)φk (x,Z) dx

Finally, the first derivatives of the Chen-Babuska functional are

∂

∂zxrk
β̃ (Z) = −2

Np,d∑

i=1

∂φi
∂xr

(πk (Z);Z)Wik (D.7)

186

D.1. Derivatives of the functional

D.1.4 Second-order derivatives

For the second derivatives, we differentiate Eq. (D.7) with respect to zxsj ,

∂

∂zxsj

∂

∂zxrk
β̃ (Z) = −2

Np,d∑

i=1

(
∂

∂zxsj

∂φi
∂xr

(πk (Z);Z)

)
Wik+

∂φi
∂xr

(πk (Z);Z)

(
∂

∂zxsj
Wik

)
.

Let us start with the term ∂
∂zxsj

Wik. Expanding terms we get

∂

∂zxsj
Wik =

∫

Kd

(
∂

∂zxsj
φi (x;Z)

)
φk (x,Z) dx+

∫

Kd

φi (x,Z)

(
∂

∂zxsj
φk (x;Z)

)
dx,

and using the same reasoning as for the first derivatives we obtain

∂

∂zxsj
Wik = −∂φi

∂xs
(πj (Z);Z)Wjk −

∂φk
∂xs

(πj (Z);Z)Wij.

In order to provide an explicit expression of the term ∂
∂zxsj

∂φi
∂xr

(πk (Z);Z), we differ-

entiate

V T (Z, b)
∂φ

∂xr
(πk (Z);Z) =

∂

∂xr
b (πk (Z))

with respect to zxsj to obtain

(
∂

∂zxsj
V T (Z, b)

)
∂φ

∂xr
(πk (Z);Z) + V T (Z, b)

(
∂

∂zxsj

∂φ

∂xr
(πk (Z);Z)

)
=

=
∂

∂zxsj

∂

∂xr
b (πk (Z))

Note that now the right hand side is non-zero because it depends on the nodes. For

the left hand side, we proceed analogously as for the first derivatives to get

(
∂

∂zxsj
V T (Z, b)

)
∂φ

∂xr
(πk (Z);Z) = V T (Z, b) (Z)

∂φ

∂xs
(πj (Z);Z)

∂φj
∂xr

(πk (Z);Z) .

The right hand side becomes

∂

∂zxsj

∂

∂xr
b (πk (Z)) =

∂2

∂xs∂xr
b (πk (Z)) δjk = V T (Z, b) (Z)

∂2

∂xs∂xr
φ (πk (Z);Z) δjk.

Coupling all together,

∂

∂zxsj

∂φ

∂xr
(πk (Z);Z) = − ∂φ

∂xs
(πj (Z);Z)

∂φj
∂xr

(πk (Z);Z) +
∂2

∂xs∂xr
φ (πk (Z);Z) δjk

187

D. Chen-Babuska derivatives and optimization

In conclusion, the second derivatives of the Chen-Babuska functional are

∂

∂zxsj

∂

∂zxrk
β̃ (Z) = −2

Np,d∑

i=1

(
∂

∂zxsj

∂φi
∂xr

(πk (Z);Z)

)
Wik +

∂φi
∂xr

(πk (Z);Z)

(
∂

∂zxsj
Wik

)

= 2

Np,d∑

i=1

∂φi
∂xr

(πk (Z);Z)
∂φi
∂xs

(πj (Z);Z)Wjk +
∂φi
∂xr

(πk (Z);Z)
∂φk
∂xs

(πj (Z);Z)Wij+

+
∂φi
∂xs

(πj (Z);Z)
∂φj
∂xr

(πk (Z);Z)Wik −
∂2

∂xs∂xr
φi (πk (Z);Z) δjkWik.

(D.8)

D.1.5 Symmetric nodal distributions

In this thesis we consider symmetric nodal distributions on the simplex. As detailed

in Appendix C, a vector y of length n encodes the position of all the points. Thus,

the actual functional we consider is

β (y) :=
1

vol (Kd)

∫

Kd

Np,d∑

i=1

φ2
i (x;σ (y)) dx.

where σ generates the cartesian coordinates of the nodal distributions from the vector

of degrees of freedom. To compute the derivatives of β, we apply the chain rule.

Fortunately, the mapping σ is linear and computations are simplified.

D.2 Optimization

In this section, we detail the second-order method used to optimize the Chen-Babuska

functional. Specifically, we use Newton’s method with a trust-region globalization.

The radius of confidence accounts for the point resolution and ensures smooth dy-

namics of the points. Moreover, feasibility of the nodal distribution is preserved

throughout all the optimization process.

The complete algorithm is stated in Algorithm D.1. Given a symmetric nodal

configuration Z0, in Line 2 we compute the corresponding degrees of freedom y(0).

Next, in Lines 3-5, we set the algorithm parameters. We denote by δ the maximum

allowed displacement, that is, the maximum spherical distance a node can move

between two consecutive iterations. We set δ to a fraction of the spherical edge

length in terms of the polynomial degree. Next, we set the largest allowable trust

188

D.2. Optimization

Algorithm D.1 Optimizing the functional β (y).

Input: Nodal distribution Z0, Function to optimize β
Output: Nodal distribution Z
1: function OptimizePoints(Z0, β)
2: y(0) ← GetVectorOfDOFs(Z0)
3: δ = π

2
1

16p

4: rmax = δ
√
n

5: r(0) ← rmax

6: k ← 0
7: while

∥∥∇β
(
y(k)

)∥∥
RMS

> ε and k < kmax do

8: y(k+1), r(k+1) ← OneIterationTrustRegion(β,y(k),r(k),rmax)
9: while not isFeasible(y(k+1)) or maxNodalDistance(y(k),y(k+1)) > δ do

10: r(k) ← r(k)/2
11: y(k+1), r(k+1) ← OneIterationTrustRegion(β,y(k),r(k),rmax)
12: r(k+1) ← r(k)

13: end while
14: k ← k + 1
15: end while
16: Z ← σ

(
y(k)

)

17: return Z
18: end function

region radius rmax and the starting trust region radius r(0). The maximum radius

rmax is defined in terms of the maximum allowed displacement δ and the number of

degrees of freedom n, and the radius for the first iteration r(0) is set to the maximum

radius.

Once all the parameters have been specified, we compute the new nodal position.

We do so by performing one iteration of trust region method, see Line 8. The call to

this function returns the new vector of degrees of freedom y(k+1) and the suggested

radius for the next iteration r(k+1). Then, we check if y(k+1) satisfies the domain

and optimization constraints. More precisely, in Line 9, we check if the degrees of

freedom are feasible, i.e., if they belong to their simplicial domain, and if the nodes

that correspond to the vector y(k+1) have moved more than the maximum allowed

displacement δ. If the nodes are valid, we proceed to the next iteration. On the

contrary, while any of these constraints is violated, we recompute the new position

by calling the trust region method with half the starting radius, Lines 10 and 11.

At some point, the degrees of freedom become feasible and the nodes do not move

more than δ. Since the estimation for the next radius does not take into account

189

D. Chen-Babuska derivatives and optimization

these constraints, the method usually suggests incrementing it. In our experience,

using this larger radius in the next iteration we find unfeasible nodal distributions.

Thus, we discard the estimation for the next radius obtained from the trust region

method and use the initial radius that worked in the current iteration, see Line 12.

This process is repeated until gradient convergence is achieved,
∥∥∇β

(
y(k)

)∥∥
RMS

>

ε, see Line 7. We remark that we use the root mean square of the gradient in the

stopping criterion. This is so because the length of the gradient vector depends on

the number of degrees of freedom, which vary in terms of the dimension and the

polynomial degree and, therefore, we need a normalized measure to solve all the

problems with the same accuracy. Hence, we set ε = 10−6 independently of the

dimension and the polynomial degree. If gradient convergence is not achieved, the

algorithm stops once a limit of iterations kmax is reached, kmax = 1000. In such case,

we solve the optimization problem using a specific steepest descent algorithm. We

expect this more robust method to exit the conflicting zone and improve the current

solution.

190

Bibliography

Angelos, J. R., Kaufman Jr, E. H., Henry, M. S., and Lenker, T. D. Optimal nodes
for polynomial interpolation. Approximation theory VI, 1:17–20, 1989.

Argyris, J. H., Fried, I., and Scharpf, D. W. The TUBA family of plate elements
for the matrix displacement method. The Aeronautical Journal, 72(692):701–709,
1968.

Badia, S. and Olm, M. Space-time balancing domain decomposition. SIAM journal
on scientific computing, 39(2):C194–C213, 2017.

Baran, M. Complex equilibrium measure and Bernstein type theorems for compact
sets in Rn. Proceedings of the American Mathematical Society, 123(2):485–494,
1995.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996.

Belda-Ferŕın, G., Gargallo-Peiró, A., and Roca, X. Local bisection for conformal
refinement of unstructured 4D simplicial meshes. 27th International Meshing
Roundtable 27, pages 229–247, 2019.

Belda-Ferŕın, G., Ruiz-Gironés, E., Gargallo-Peiró, A., and Roca, X. Conformal
Marked Bisection for Local Refinement of n-Dimensional Unstructured Simplicial
Meshes. Computer-Aided Design, 154:103419, 2023.

Bell, K. A refined triangular plate bending finite element. International journal for
numerical methods in engineering, 1(1):101–122, 1969.

Bernstein, S. Sur la limitation des valeurs d’un polynôme Pn(x) de degré n sur tout
un segment par ses valeurs en (n + 1) points du segment. Bulletin de l’Académie
des Sciences de l’URSS. Classe des sciences mathématiques et na, (8):1025–1050,
1931.

191

Bibliography

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017. doi: 10.1137/141000671.
URL https://epubs.siam.org/doi/10.1137/141000671.

Bloom, T. The Lebesgue constant for Lagrange interpolation in the simplex. Journal
of approximation theory, 54(3):338–353, 1988.

Bloom, T., Bos, L., Christensen, C., and Levenberg, N. Polynomial interpolation of
holomorphic functions in C and Cn. The Rocky Mountain Journal of Mathematics,
22(2):441–470, 1992.

Blyth, M. and Pozrikidis, C. A Lobatto interpolation grid over the triangle. IMA
journal of applied mathematics, 71(1):153–169, 2005.

Bos, L. Bounding the Lebesgue function for Lagrange interpolation in a simplex.
Journal of Approximation Theory, 38(1):43–59, 1983.

Briani, M., Sommariva, A., and Vianello, M. Computing Fekete and Lebesgue points:
simplex, square, disk. Journal of Computational and Applied Mathematics, 236(9):
2477–2486, 2012.

Buss, S. R. and Fillmore, J. P. Spherical averages and applications to spherical splines
and interpolation. ACM Transactions on Graphics (TOG), 20(2):95–126, 2001.

Byrd, R. H., Hribar, M. E., and Nocedal, J. An interior point algorithm for large-scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999.

Calvi, J.-P. and Levenberg, N. Uniform approximation by discrete least squares
polynomials. Journal of Approximation Theory, 152(1):82–100, 2008.

Caplan, P. C., Haimes, R., Darmofal, D. L., and Galbraith, M. C. Four-dimensional
anisotropic mesh adaptation. Computer-Aided Design, 129:102915, 2020.

Chaurasia, H., Roca, X., Persson, P., and Peraire, J. A coarse-to-fine approach
for efficient deformation of curved high-order meshes. Research Notes, 21st Int.
Meshing Roundtable, Springer International Publishing, pages 1–5, 2012.

Chaurasia, H. K. Active pitch control of an oscillating foil with biologically-inspired
boundary layer feedback. PhD thesis, Massachusetts Institute of Technology, 2010.

Chen, Q. and Babuška, I. Approximate optimal points for polynomial interpolation
of real functions in an interval and in a triangle. Computer Methods in Applied
Mechanics and Engineering, 128(3-4):405–417, 1995.

Chen, Q. and Babuška, I. The optimal symmetrical points for polynomial interpola-
tion of real functions in the tetrahedron. Computer methods in applied mechanics
and engineering, 137(1):89–94, 1996.

192

https://epubs.siam.org/doi/10.1137/141000671

Bibliography

Chuluunbaatar, G., Chuluunbaatar, O., Gusev, A., and Vinitsky, S. PI-type fully
symmetric quadrature rules on the 3-,. . . , 6-simplexes. Computers & Mathematics
with Applications, 124:89–97, 2022.

Dan, W. and Wang, R.-h. A fourth degree integration formula for the n-dimensional
simplex. Applied numerical mathematics, 59(12):2990–2993, 2009.

Davis, P. J. Interpolation and approximation. Courier Corporation, 1975.

De Boor, C. A practical guide to splines, volume 27. springer-verlag New York, 1978.

De Boor, C. and Pinkus, A. Proof of the conjectures of Bernstein and Erdös concern-
ing the optimal nodes for polynomial interpolation. 1978.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. A
supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and
Applications, 20(3):720–755, 1999.

Dubiner, M. Spectral methods on triangles and other domains. Journal of Scientific
Computing, 6(4):345–390, 1991.

Dunning, I., Huchette, J., and Lubin, M. JuMP: A Modeling Language for Mathemat-
ical Optimization. SIAM Review, 59(2):295–320, 2017. doi: 10.1137/15M1020575.

Dyn, N., Levine, D., and Gregory, J. A. A butterfly subdivision scheme for surface
interpolation with tension control. ACM transactions on Graphics (TOG), 9(2):
160–169, 1990.

Fekete, M. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen
mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17(1):228–249, 1923.

Foucault, G., Cuillière, J.-C., François, V., Léon, J.-C., and Maranzana, R. Adapta-
tion of CAD model topology for finite element analysis. Computer-Aided Design,
40(2):176–196, 2008.

Foucault, G., Cuillière, J.-C., François, V., Léon, J.-C., and Maranzana, R. General-
izing the advancing front method to composite surfaces in the context of meshing
constraints topology. Computer-Aided Design, 45(11):1408–1425, 2013.

Frontin, C. V., Walters, G. S., Witherden, F. D., Lee, C. W., Williams, D. M., and
Darmofal, D. L. Foundations of space-time finite element methods: Polytopes,
interpolation, and integration. Applied Numerical Mathematics, 166:92–113, 2021.

Gargallo-Peiró, A., Avila, M., Owen, H., Prieto, L., and Folch, A. Mesh generation
for atmospheric boundary layer simulation in wind farm design and management.
Procedia Engineering, 124:239–251, 2015a.

193

Bibliography

Gargallo-Peiró, A., Roca, X., Peraire, J., and Sarrate, J. Optimization of a regularized
distortion measure to generate curved high-order unstructured tetrahedral meshes.
International Journal for Numerical Methods in Engineering, 103(5):342–363,
2015b. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4888.

Gargallo-Peiró, A., Houzeaux, G., and Roca, X. Subdividing triangular and quadri-
lateral meshes in parallel to approximate curved geometries. Procedia Engineer-
ing, 203:310 – 322, 2017. ISSN 1877-7058. URL http://www.sciencedirect.

com/science/article/pii/S1877705817343771. 26th International Meshing
Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain.

Gargallo-Peiró, A. Validation and generation of curved meshes for high-order unstruc-
tured methods. PhD thesis, Universitat Politècnica de Catalunya. Departament de
Matemàtica Aplicada III, July 2014.

Gargallo-Peiró, A., Roca, X., Peraire, J., and Sarrate, J. Distortion and quality
measures for validating and generating high-order tetrahedral meshes. Engineering
with Computers, 31(3):423–437, Jul 2015c. ISSN 1435-5663.

Gargallo-Peiró, A., Folch, A., and Roca, X. Representing urban geometries for un-
structured mesh generation. Procedia engineering, 163:175–185, 2016a.

Gargallo-Peiró, A., Roca, X., Peraire, J., and Sarrate, J. A distortion measure to val-
idate and generate curved high-order meshes on CAD surfaces with independence
of parameterization. International Journal for Numerical Methods in Engineering,
106(13):1100–1130, 2016b.

Gargallo-Peiró, A., Avila, M., Owen, H., Prieto-Godino, L., and Folch, A. Mesh
generation, sizing and convergence for onshore and offshore wind farm Atmospheric
Boundary Layer flow simulation with actuator discs. Journal of Computational
Physics, 375:209–227, 2018.

George, P., Hecht, F., and Saltel, E. Automatic 3D mesh generation with prescribed
meshed boundaries (alternator). IEEE Transactions on magnetics, 26(2):771–774,
1990.

Giraldo, F. X. and Taylor, M. A. A diagonal mass matrix triangular spectral element
method based on cubature points. Technical report, Naval postgraduate school,
Monterey, CA, Dept of Operations Research, 2006.

GLPK. GNU Linear Programming Kit. URL http://www.gnu.org/software/glpk/

glpk.html.

Grundmann, A. and Möller, H.-M. Invariant integration formulas for the n-simplex
by combinatorial methods. SIAM Journal on Numerical Analysis, 15(2):282–290,
1978.

194

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4888
http://www.sciencedirect.com/science/article/pii/S1877705817343771
http://www.sciencedirect.com/science/article/pii/S1877705817343771
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

Bibliography

Hammer, P., Marlowe, O., and Stroud, A. Numerical integration over simplexes and
cones. Mathematical Tables and Other Aids to Computation, 10(55):130–137, 1956.

Hammer, P. C. and Stroud, A. H. Numerical integration over simplexes. Mathematical
tables and other aids to computation, 10(55):137–139, 1956.

Heinrichs, W. Improved Lebesgue constants on the triangle. Journal of Computational
Physics, 207(2):625–638, 2005.

Hesthaven, J. S. From electrostatics to almost optimal nodal sets for polynomial
interpolation in a simplex. SIAM Journal on Numerical Analysis, 35(2):655–676,
1998.

Hesthaven, J. S. and Teng, C.-H. Stable spectral methods on tetrahedral elements.
SIAM Journal on Scientific Computing, 21(6):2352–2380, 2000.

Hesthaven, J. S. and Warburton, T. Nodal discontinuous Galerkin methods: algo-
rithms, analysis, and applications. Springer Science & Business Media, 2007.

Ims, J., Duan, Z., and Wang, Z. J. meshCurve: An automated low-order to high-
order mesh generator. In 22nd AIAA computational fluid dynamics conference,
page 2293, 2015.

Isaac, T. Recursive, parameter-free, explicitly defined interpolation nodes for sim-
plices. SIAM Journal on Scientific Computing, 42(6):A4046–A4062, 2020.

Jameson, A., Vincent, P. E., and Castonguay, P. On the non-linear stability of flux
reconstruction schemes. Journal of Scientific Computing, 50:434–445, 2012.

Jayasinghe, S., Darmofal, D. L., Burgess, N. K., Galbraith, M. C., and Allmaras, S. R.
A space-time adaptive method for reservoir flows: formulation and one-dimensional
application. Computational Geosciences, 22:107–123, 2018.

Jiao, X. and Wang, D. Reconstructing high-order surfaces for meshing. Engineering
with Computers, 28(4):361–373, Oct 2012. ISSN 1435-5663.

Jiménez Ramos, A. Incorporating curvature to the boundary of linear and high-
order meshes when a target geometry is unavailable. Master’s thesis, Universitat
Politècnica de Catalunya, 2018.

Jiménez-Ramos, A., Gargallo-Peiró, A., and Roca, X. Subdivided Linear and Curved
Meshes Preserving Features of a Linear Mesh Model. In Proceedings of the 28th
International Meshing Roundtable (IMR). Zenodo, February 2020. doi: 10.5281/
zenodo.3653357.

Jiménez-Ramos, A., Gargallo-Peiró, A., and Roca, X. Interpolation of subdivision
features for curved geometry modeling. Computer-Aided Design, 145:103185, 2022.

195

Bibliography

Jiménez-Ramos, A., Gargallo-Peiró, A., and Roca, X. Exploring locally optimal
nodal distributions of a Lebesgue constant proxy in the high-dimensional simplex.
In preparation, 2023a.

Jiménez-Ramos, A., Gargallo-Peiró, A., and Roca, X. Computing interpolation-aware
numerical quadratures in the high-dimensional simplex. In preparation, 2023b.

Jiménez-Ramos, A., Gargallo-Peiró, A., and Roca, X. Computing nodal distribu-
tions with quasi-optimal Lebesgue constant in the high-dimensional simplex. In
preparation, 2023c.

Jiménez-Ramos, A., Gargallo-Peiró, A., and Roca, X. Refining simplex points for
scalable estimation of the Lebesgue constant. In SIAM International Meshing
Roundtable, March 2023d.

Johnen, A., Roca, X., Toulorge, T., and Remacle, J. A new framework for curving
structured boundary-layer meshes, 2018.

Johnen, A., Remacle, J.-F., and Geuzaine, C. Geometrical validity of curvilinear
finite elements. Journal of Computational Physics, 233:359–372, 2013.

Jones, D. R., Perttunen, C. D., and Stuckman, B. E. Lipschitzian optimization
without the Lipschitz constant. Journal of optimization Theory and Applications,
79(1):157–181, 1993.

Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for
Python, 2001. URL http://www.scipy.org/.

Karniadakis, G. E. and Sherwin, S. Spectral/hp element methods for computational
fluid dynamics. Oxford University Press on Demand, 2005.

Keast, P. Moderate-degree tetrahedral quadrature formulas. Computer methods in
applied mechanics and engineering, 55(3):339–348, 1986.

Kilgore, T. A. Optimization of the norm of the Lagrange interpolation operator.
Bulletin of the American Mathematical Society, 83(5):1069–1071, 1977.

Kilgore, T. A. A characterization of the Lagrange interpolating projection with
minimal Tchebycheff norm. 1978.

Kirby, R. C. Singularity-free evaluation of collapsed-coordinate orthogonal polyno-
mials. ACM Transactions on Mathematical Software (TOMS), 37(1):1–16, 2010.

Koornwinder, T. Two-variable analogues of the classical orthogonal polynomials. In
Theory and application of special functions, pages 435–495. Elsevier, 1975.

196

http://www.scipy.org/

Bibliography

Kopriva, D. A. and Gassner, G. On the quadrature and weak form choices in collo-
cation type discontinuous Galerkin spectral element methods. Journal of Scientific
Computing, 44:136–155, 2010.

Lalee, M., Nocedal, J., and Plantenga, T. On the implementation of an algorithm
for large-scale equality constrained optimization. SIAM Journal on Optimization,
8(3):682–706, 1998.

Lane, J. M. and Riesenfeld, R. F. A theoretical development for the computer gener-
ation and display of piecewise polynomial surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-2(1):35–46, 1980.

Li, X., Demmel, J., Gilbert, J., iL. Grigori, Shao, M., and Yamazaki, I. SuperLU
Users’ Guide. Technical Report LBNL-44289, Lawrence Berkeley National Labo-
ratory, September 1999. https://portal.nersc.gov/project/sparse/superlu/
ug.pdf Last update: June 2018.

Löhner, R. and Parikh, P. Generation of three-dimensional unstructured grids by the
advancing-front method. International Journal for Numerical Methods in Fluids,
8(10):1135–1149, 1988.

Loop, C. Smooth Subdivision Surfaces Based on Triangles. PhD thesis, Department
of Mathematics, The University of Utah, Masters Thesis, January 1987.

Loseille, A. and Rochery, L. P3 Bézier CAD Surrogates for anisotropic mesh adap-
tation. Computer-Aided Design, 160:103515, 2023.

Luo, H. and Pozrikidis, C. A Lobatto interpolation grid in the tetrahedron. IMA
journal of applied mathematics, 71(2):298–313, 2006.

Luttmann, F. W. and Rivlin, T. J. Some numerical experiments in the theory of
polynomial interpolation. IBM Journal of Research and Development, 9(3):187–
191, 1965.

Lyness, J. and Jespersen, D. Moderate degree symmetric quadrature rules for the
triangle. IMA Journal of Applied Mathematics, 15(1):19–32, 1975.

Maeztu, J. and Sáinz de La Maza, E. Consistent structures of invariant quadrature
rules for the n-simplex. Mathematics of computation, 64(211):1171–1192, 1995.

Marchildon, A. L. and Zingg, D. W. Unisolvency for polynomial interpolation in
simplices with symmetrical nodal distributions. Journal of Scientific Computing,
92(2):1–24, 2022.

Mogensen, P. K. and Riseth, A. N. Optim: A mathematical optimization package for
Julia. Journal of Open Source Software, 3(24):615, 2018. doi: 10.21105/joss.00615.

197

https://portal.nersc.gov/project/sparse/superlu/ug.pdf
https://portal.nersc.gov/project/sparse/superlu/ug.pdf

Bibliography

Moxey, D., Ekelschot, D., Keskin, Ü., Sherwin, S., and Peiró, J. High-order curvilinear
meshing using a thermo-elastic analogy. Computer-Aided Design, 72:130 – 139,
2016. ISSN 0010-4485. URL http://www.sciencedirect.com/science/article/

pii/S0010448515001530. 23rd International Meshing Roundtable Special Issue:
Advances in Mesh Generation.

Murman, S. M., Diosady, L., Garai, A., and Ceze, M. A space-time discontinuous-
Galerkin approach for separated flows. In 54th AIAA Aerospace Sciences Meeting,
page 1059, 2016.

Nocedal, J. and Wright, S. Numerical optimization. Springer Science & Business
Media, 2006.

Nolan, D. C., Tierney, C. M., Armstrong, C. G., and Robinson, T. T. Defining
simulation intent. Computer-aided design, 59:50–63, 2015.

Pasquetti, R. and Rapetti, F. Spectral element methods on unstructured meshes:
comparisons and recent advances. Journal of Scientific Computing, 27:377–387,
2006.

Pasquetti, R. and Rapetti, F. Spectral element methods on simplicial meshes. In
Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM
2012: Selected papers from the ICOSAHOM conference, June 25-29, 2012, Gam-
marth, Tunisia, pages 37–55. Springer, 2013.

Patera, A. T. A spectral element method for fluid dynamics: laminar flow in a channel
expansion. Journal of computational Physics, 54(3):468–488, 1984.

Paulavičius, R. and Žilinskas, J. Simplicial Lipschitz optimization without Lipschitz
constant. In Simplicial Global Optimization, pages 61–86. Springer, 2014.

Peraire, J., Vahdati, M., Morgan, K., and Zienkiewicz, O. C. Adaptive remeshing for
compressible flow computations. Journal of computational physics, 72(2):449–466,
1987.

Perronnet, A. Interpolation transfinie sur le triangle, le tétraèdre et le pentaèdre.
Application à la création de maillages et à la condition de Dirichlet. Comptes
Rendus de l’Académie des Sciences-Series I-Mathematics, 326(1):117–122, 1998.

Persson, P.-O. and Peraire, J. Curved Mesh Generation and Mesh Refinement using
Lagrangian Solid Mechanics. In 47th AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition, 12 2008.

Persson, P.-O., Aftosmis, M. J., and Haimes, R. On the Use of Loop Subdivision Sur-
faces for Surrogate Geometry. In Pébay, P. P., editor, Proceedings of the 15th In-
ternational Meshing Roundtable, pages 375–392, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-34958-7.

198

http://www.sciencedirect.com/science/article/pii/S0010448515001530
http://www.sciencedirect.com/science/article/pii/S0010448515001530

Bibliography

Quadros, W. R. and Owen, S. J. Defeaturing CAD models using a geometry-based
size field and facet-based reduction operators. Engineering with Computers, 28(3):
211–224, 2012.

Rack, H.-J. An example of optimal nodes for interpolation. International Journal of
Mathematical Education in Science and Technology, 15(3):355–357, 1984.

Rapetti, F., Sommariva, A., and Vianello, M. On the generation of symmetric
Lebesgue-like points in the triangle. Journal of Computational and Applied Math-
ematics, 236(18):4925–4932, 2012.

Roth, M. J. Nodal configurations and Voronoi tessellations for triangular spectral
elements. PhD thesis, 2005.

Ruiz-Gironés, E., Roca, X., and Sarrate, J. High-order mesh curving by distor-
tion minimization with boundary nodes free to slide on a 3D CAD representation.
Computer-Aided Design, 72:52–64, 2016a.

Ruiz-Gironés, E., Sarrate, J., and Roca, X. Generation of curved high-order meshes
with optimal quality and geometric accuracy. Procedia engineering, 163:315–327,
2016b.

Ruiz-Gironés, E., Gargallo-Peiró, A., Sarrate, J., and Roca, X. Automatically im-
posing incremental boundary displacements for valid mesh morphing and curving.
Computer-Aided Design, 2019.

Rumsey, C. L., Slotnick, J. P., and Sclafani, A. J. Overview and Summary of the
Third AIAA High Lift Prediction Workshop. Journal of Aircraft, 56(2):621–644,
2019.

Runge, C. Über empirische Funktionen und die Interpolation zwischen äquidistanten
Ordinaten. Zeitschrift für Mathematik und Physik, 46(224-243):20, 1901.

Shapiro, V., Tsukanov, I., and Grishin, A. Geometric issues in computer aided
design/computer aided engineering integration. Journal of Computing and Infor-
mation Science in Engineering, 11(2), 2011.

Sheffer, A. Model simplification for meshing using face clustering. Computer-Aided
Design, 33(13):925–934, 2001.

Sheffer, A., Bercovier, M., Blacker, T., and Clements, J. Virtual topology operators
for meshing. International Journal of Computational Geometry & Applications, 10
(03):309–331, 2000.

Shewchuk, J. R. Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. In Applied Computational Geometry Towards Geometric Engineer-
ing: FCRC’96 Workshop, WACG’96 Philadelphia, PA, May 27–28, 1996 Selected
Papers, pages 203–222. Springer, 2005.

199

Bibliography

Shunn, L. and Ham, F. Symmetric quadrature rules for tetrahedra based on a cubic
close-packed lattice arrangement. Journal of Computational and Applied Mathe-
matics, 236(17):4348–4364, 2012.

Si, H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans-
actions on Mathematical Software (TOMS), 41(2):11, 2015.

Silvester, P. Symmetric quadrature formulae for simplexes. Mathematics of Compu-
tation, 24(109):95–100, 1970.

Stam, J. Evaluation of Loop Subdivision Surfaces. In Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH, 01 1998.

Sturmfels, B. Algorithms in invariant theory. Springer Science & Business Media,
2008.

Taylor, M. and Wingate, B. The Fekete collocation points for triangular spectral
elements. SIAM Journal of Numerical Analysis, 1999.

Taylor, M. A. and Wingate, B. A generalized diagonal mass matrix spectral element
method for non-quadrilateral elements. Applied Numerical Mathematics, 33(1-4):
259–265, 2000.

Taylor, M. A., Wingate, B. A., and Vincent, R. E. An algorithm for computing
Fekete points in the triangle. SIAM Journal on Numerical Analysis, 38(5):1707–
1720, 2000.

Taylor, M. A., Wingate, B. A., and Bos, L. P. A cardinal function algorithm for
computing multivariate quadrature points. SIAM Journal on Numerical Analysis,
45(1):193–205, 2007.

Thakur, A., Banerjee, A. G., and Gupta, S. K. A survey of CAD model simplification
techniques for physics-based simulation applications. Computer-Aided Design, 41
(2):65–80, 2009.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.5.2
edition, 2023. URL https://doc.cgal.org/5.5.2/Manual/packages.html.

Toulorge, T., Geuzaine, C., Remacle, J.-F., and Lambrechts, J. Robust untangling
of curvilinear meshes. Journal of Computational Physics, 254:8–26, 2013.

Van Barel, M., Humet, M., and Sorber, L. Approximating optimal point configu-
rations for multivariate polynomial interpolation. Electronic Transactions on Nu-
merical Analysis, 42:41–63, 2014.

Van Rossum, G. and Drake Jr, F. L. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

200

https://doc.cgal.org/5.5.2/Manual/packages.html

Bibliography

Wandzura, S. and Xiao, H. Symmetric quadrature rules on a triangle. Computers &
Mathematics with Applications, 45(12):1829–1840, 2003.

Wang, L. and Persson, P.-O. A high-order discontinuous Galerkin method with un-
structured space–time meshes for two-dimensional compressible flows on domains
with large deformations. Computers & Fluids, 118:53–68, 2015.

Wanner, G. and Hairer, E. Solving Ordinary Differential Equations II Stiff and
Differential-Algebraic Problems. Springer Berlin, Heidelberg, 1996.

Warburton, T. An explicit construction of interpolation nodes on the simplex. Journal
of engineering mathematics, 56(3):247–262, 2006.

White, D. R., Saigal, S., and Owen, S. J. Meshing complexity: predicting meshing
difficulty for single part CAD models. Engineering with Computers, 21(1):76–90,
2005.

Williams, D. M. Energy stable high-order methods for simulating unsteady, viscous,
compressible flows on unstructured grids. Stanford University, 2013.

Williams, D. M. and Jameson, A. Nodal points and the nonlinear stability of high-
order methods for unsteady flow problems on tetrahedral meshes. In 21st AIAA
Computational Fluid Dynamics Conference, page 2830, 2013.

Williams, D. M., Frontin, C. V., Miller, E. A., and Darmofal, D. L. A family of
symmetric, optimized quadrature rules for pentatopes. Computers & Mathematics
with Applications, 80(5):1405–1420, 2020.

Williams, D., Shunn, L., and Jameson, A. Symmetric quadrature rules for simplexes
based on sphere close packed lattice arrangements. Journal of Computational and
Applied Mathematics, 266:18–38, 2014.

Witherden, F. D. and Vincent, P. E. An analysis of solution point coordinates for flux
reconstruction schemes on triangular elements. Journal of Scientific Computing,
61:398–423, 2014.

Witherden, F. D. and Vincent, P. E. On the identification of symmetric quadrature
rules for finite element methods. Computers & Mathematics with Applications, 69
(10):1232–1241, 2015.

Xiao, H. and Gimbutas, Z. A numerical algorithm for the construction of efficient
quadrature rules in two and higher dimensions. Computers & mathematics with
applications, 59(2):663–676, 2010.

Yang, H. Q., Zhou, X., Harris, R. E., and Yang, S. An Open Source, Geometry
Kernel Based High-Order Element Mesh Generation Tool. In AIAA Scitech 2019
Forum, page 1719, 2019.

201

Bibliography

Zhang, L., Cui, T., and Liu, H. A set of symmetric quadrature rules on triangles and
tetrahedra. Journal of Computational Mathematics, pages 89–96, 2009.

Zorin, D. A method for analysis of C1-continuity of subdivision surfaces. SIAM
Journal on Numerical Analysis, 37(5):1677–1708, 2000.

202

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivation and background
	1.2 Research opportunities and questions
	1.3 Aim and objectives
	1.4 Scope
	1.5 Methodology
	1.6 Contributions and novelty
	1.7 Layout

	2 Preliminaries and definitions
	2.1 Symmetric nodal distributions on the simplex
	2.2 Lebesgue constant
	2.3 Orthonormal polynomial basis

	3 Interpolation of subdivision features for curved geometry modeling
	3.1 Introduction
	3.2 Related work
	3.3 Problem statement and methodology
	3.4 Preliminaries: curve and surface mesh subdivision
	3.5 The limit model
	3.6 Approximation of the limit model
	3.7 Curved volume mesh approximating the limit model
	3.8 Results
	3.9 Discussion
	3.10 Concluding remarks

	4 Refining simplex points for scalable estimation of the Lebesgue constant
	4.1 Introduction
	4.2 Related work
	4.3 Neighbor-aware coordinates for point refinement
	4.4 Adaptive point refinement
	4.5 Results: estimation of the Lebesgue constant
	4.6 Concluding remarks

	5 Exploring locally optimal nodal distributions of a Lebesgue constant proxy
	5.1 Introduction
	5.2 Preliminaries
	5.3 Spherical simplex
	5.4 Exploring local minima
	5.5 Numerical results
	5.6 Concluding remarks

	6 Computing nodal distributions with quasi-optimal Lebesgue constant
	6.1 Introduction
	6.2 Preliminaries
	6.3 Optimizing the Lebesgue constant
	6.4 Results
	6.5 Concluding remarks

	7 Computing interpolation-aware numerical quadratures
	7.1 Introduction
	7.2 Preliminaries
	7.3 Interpolation-aware numerical quadratures
	7.4 Results
	7.5 Concluding remarks

	8 Conclusions and future work
	A Non-interpolative to interpolative
	B Accommodate the curvature of the boundary
	C Parameterization of a symmetric high-order nodal distribution in the simplex
	C.1 Representatives of a symmetric nodal distribution
	C.2 Parameterization of a nodal representative
	C.3 Parameterization of a symmetric nodal distribution

	D Chen-Babuska derivatives and optimization
	D.1 Derivatives of the functional
	D.2 Optimization

	Bibliography

