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Abstract

Our ability to confine, guide, and bend light has led to astonishing technological
achievements, playing a fundamental role in diverse fields like microscopy, photo-
chemistry, telecommunications or material design. The key property of materials
that allows to control light is the refractive index. Notably, regardless of very
different microscopic structures, all natural materials exhibit a modest, near-unity
index of refraction, n ∼ 1. This universality suggests the existence of some simple,
ubiquitous origin, whose complete characterization from microscopic considera-
tions, surprisingly, is still missing. Moreover, one can wonder which principles
might allow to synthesize a material with an ultra-high index n≫ 1, to boost the
performance of photonic devices.

In this thesis, we address these questions from an atomic-physics standpoint,
exploring if the macroscopic optical properties can be related to simple, electro-
dynamical processes occurring between well-separated atoms, which only interact
via light scattering. Standard theories neglect that light can be scattered multiple
times, and lead to unphysical predictions when strong interference occurs between
the coherent atomic emission, such as in dense atomic ensembles or ordered lat-
tices. We here develop new techniques to address the physics of multiple light
scattering, with the ultimate goal of understanding the fundamental limits to the
refractive index, as well as proposing unexpected photonic applications. Our results
are divided in three parts.

First, we investigate an ensemble of ideal atoms with increasing atomic density,
starting from the dilute gas limit, up to dense regimes where a non-perturbative
treatment of multiple scattering and near-field interactions is required. In this
situation, we find that these effects limit the index to a maximum value of n ≈ 1.7,
in contrast with standard theories. We propose an explanation based upon strong-
disorder renormalization group theory, in which the near-field interactions combined
with random atomic positions result in an inhomogeneous broadening of the atomic
resonance frequencies. This basic mechanism ensures that regardless of the physical
atomic density, light at any given frequency only interacts with at most a few near-
resonant atoms per cubic wavelength, thus limiting the index attainable.

Afterwards, we show that a radically different behavior is expected for an ideal,
atomic crystal. As long as the inter-atomic interactions are only mediated by multi-
ple scattering, each 2D array of the crystal exhibits a lossless, single-mode response,
which builds up a very large and purely real refractive index. To address the limits
to this picture, we extend our theoretical analysis to much higher densities, where
the electronic orbitals on neighboring nuclei begin to overlap. We develop a min-
imal model to include the onset of this regime into our non-perturbative analysis
of multiple light scattering, arguing that the emergence of quantum magnetism,
density-density correlations and tunneling dynamics of the electrons effectively sup-
presses the single-mode response, decreasing the index back to unity. Nonetheless,



right before the onset of chemistry, our theory predicts that an ultra-high index
(n ≈ 30) and low-loss material could in principle be allowed by the laws of nature.

Finally, inspired by the impressive optical response of atomic arrays, we propose
their use as a more complex optical device, namely a thin lens. The building blocks
of this “atomic metalens” are composed of three consecutive 2D arrays, whose
distance and lattice constants are suitably chosen to guarantee a high transmission
of light, as well as an arbitrary phase shift. To characterize its efficiency and prove
its robustness against losses, we perform large-scale numerical simulations, on a
number of atoms (N ∼ 5× 105) between one and two orders of magnitude larger
than comparable works.
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Resumen

Nuestra capacidad de confinar y guiar la luz nos ha llevado a logros tecnológicos
asombrosos, jugando un papel fundamental en campos tan diversos como la fo-
toqúımica, las telecomunicaciones o el diseño de materiales. La propiedad clave de
un material para controlar la luz es su ı́ndice de refracción. En particular, todos los
materiales naturales exhiben un ı́ndice de refracción modesto, cercano a la unidad,
n ∼ 1. Esta universalidad sugiere la existencia de algún origen simple y ubicuo,
cuya caracterización completa a partir de consideraciones microscópicas, sorpren-
dentemente, aún falta. Además, para aumentar el rendimiento de los dispositivos
fotónicos, es crucial entender si los principios f́ısicos permiten o proh́ıben la śıntesis
de materiales con ı́ndices más altos, n≫ 1.

En esta tesis, abordamos estas cuestiones desde un punto de vista atómico,
estudiando si las propiedades ópticas macroscópicas pueden deberse a procesos
electrodinámicos entre átomos bien separados, que solo interactúan a través de
la dispersión de la luz. Las teoŕıas estándar ignoran que la luz puede dispersarse
varias veces y conducen a predicciones erradas en situaciones de fuerte interferencia,
como en redes cristalinas o conjuntos densos de átomos. Aqúı, desarrollamos
nuevas técnicas para tratar la dispersión múltiple de la luz, con el objetivo final de
comprender los ĺımites fundamentales del ı́ndice de refracción, aśı como proponer
aplicaciones fotónicas innovadoras. Nuestros resultados se dividen en tres partes.

Primero, investigamos un conjunto desordenado de átomos con densidad cre-
ciente, hasta reǵımenes donde se requiere un tratamiento completo de la dispersión
múltiple y de las interacciones de campo cercano. En esta situación, encontramos
que estos efectos limitan el ı́ndice de refracción a un valor máximo de n ≈ 1, 7.
Proponemos una explicación basada en la teoŕıa del grupo de renormalización, en
la que las interacciones de campo cercano, combinadas con posiciones atómicas
aleatorias, desarrollan una ampliación no homogénea de las frecuencias atómicas
de resonancia. Este mecanismo asegura que, independientemente de la densidad
atómica, la luz (para cualquier frecuencia dada) solo interactúa con unos pocos
átomos resonantes por unidad cúbica de longitud de onda, limitando la respuesta
óptica.

Un comportamiento radicalmente diferente se manifiesta en una red cristalina
de átomos. Siempre que las interacciones solo estén mediadas por dispersión
múltiple, cada capa del cristal exhibe una respuesta monomodo sin pérdidas, que
genera un ı́ndice de refracción muy grande y puramente real. Para abordar los
ĺımites de esta respuesta f́ısica, ampliamos nuestro análisis teórico hasta densi-
dades tan altas que los orbitales electrónicos de los núcleos vecinos comienzan
a superponerse. Desarrollamos un modelo para incluir el inicio de este régimen
en nuestro análisis, argumentando que la aparición del magnetismo cuántico, las
correlaciones de densidad y la dinámica de efecto túnel de los electrones supri-
men efectivamente la respuesta monomodo, bajando nuevamente el ı́ndice a la



unidad. No obstante, justo antes del inicio de los procesos qúımicos, nuestra teoŕıa
predice la posibilidad teórica de sintetizar un material con un ı́ndice de refracción
sorprendentemente alto (n ≈ 30) y pérdidas bajas.

Por último, inspirándonos en la impresionante respuesta óptica de las redes
atómicas, proponemos su uso para imitar un dispositivo óptico complejo, a saber,
una lente delgada. El componente básico de esta ”metalente atómica” está com-
puesto por tres redes atómicas bidimensionales consecutivas, cuyas distancias y
constantes de red se eligen adecuadamente para garantizar una alta transmisión
de la luz, aśı como un cambio de fase arbitrario. Para caracterizar su eficiencia y
probar su robustez frente a pérdidas, realizamos simulaciones numéricas incluyendo
un gran número de átomos (N ∼ 5× 105), entre uno y dos órdenes de magnitud
mayor que en trabajos comparables.
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1 - Light-matter interfaces

Chapter Contents

1.1 The limits to the refractive index . . . . . . . . . 3

1.1.1 The impact of an extreme refractive index . . 7

1.1.2 Extreme indices and artificial materials . . . . . 14

1.1.3 Flat optics and metasurfaces . . . . . . . . . . 15

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . 16

1.1 The limits to the refractive index

Light played a crucial role in the development of our world. By mainly

irradiating in the visible spectrum, the sunlight constantly supplies an es-

sential energetic balance to our ecosystem. Plants, through photosynthesis,

provide a method to harness this energy, to sustain and proliferate life.

In the history of humanity, light has represented our preferential means

(along with sound) to acquire information on the physical reality. Eyesight

stands out among our senses, and the first designs of telescopes and micro-

scopes furnished it with the keys into (otherwise inaccessible) macroscopic

and microscopic worlds. On the other hand, both lighthouses and signal

fires can be interpreted as an effort to reverse this paradigm, using visible

light to communicate and spread information. Similarly, one of the first

attempts to actively manipulate physical objects with light (and viceversa)

dates back to the ancient times, when Archimedes is said to have used

gigantic mirrors to burn ships attacking Syracuse.

Despite the remarkable promises that it embodies, it is then rather sur-

prising that a systematic use of light as a technological tool, i.e. the field

of photonics, only emerged in the recent years, coming after both heat (18-

19th century) and electricity (19-20th century) [2]. Historically, this process

was effectively boosted by the invention of lasers, which guaranteed an on-

demand generation of coherent light. Similarly, optical fibers represented

a supplementary pivotal step, enabling the efficient transport of photons

over long distances. Nonetheless, one of the main, intrinsic limitations of

light-matter interfaces is still given by the low ability of natural materials

to manipulate and interact with light without experiencing extreme losses

or dissipation, as quantified by a refractive index n that never exceeds the

order unity, in any transparent spectral region [3, 4]. Moreover, while we

typically utilize materials far from their natural electronic resonances, this
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Figure 1.1: Schematic representation of the scattering cross section. a)
Scattering cross section σsc ∝ λ20 of a two-level atom, illuminated by a laser beam.
b) Additive estimation of the overall response, given a set of N atoms.

observation even holds true close to resonance [5–12], suggesting that a

widespread, fundamental reason should exist.

Due to the extremely broad nature of these observations, one might

speculate that a trace of this common behaviour could be encoded in the

most minimal model of a light-matter interface, as constituted by an iso-

lated atom in vacuum, illuminated by an external light beam. Surprisingly,

the standard predictions of atomic physics are hard to reconcile with the

empirical evidence of the macroscopic indices of refraction. In particular,

a single atom with two electronic levels |g⟩ and |e⟩ is a non-absorbing ob-

ject whose interaction with near-resonant light is exquisitely understood,

and characterized by an extraordinarily large resonant scattering cross sec-

tion [13], given by the square of the resonant wavelength of its transition

σsc ∼ λ20, as pictorially shown in Fig. 1.1-a. This effective scattering size

(considering that λ0 ∼ 1µm, in the visible range) is orders of magnitude

larger than the physical size of the atom, as characterized by the Bohr ra-

dius a0 ∼ 0.05nm. Its infinitesimal extension (from an optical standpoint)

implies that the atom responds to a photon as an ideal, point-like dipole,

explaining why its scattering area must be reasonably dictated by the only

relevant length scale: the resonant wavelength1 λ0. Intuitively, this mis-

match of scales can lead to non-trivial phenomena, when many atoms are

placed so near that their cross sections largely overlap. When considering

a collection of N atoms, indeed, if the scattering or interaction with light

1More concretely, the cross section can be calculated by the ratio σsc = Psc/I0 between
the power of the scattered field and the intensity of the input light. If we decompose
an incident plane wave into a superposition of in-going, vector spherical waves (each
associated to a different order in the multipole expansion), the atom will then perfectly
absorb and re-emit the component related to the electric dipole. This allows to estimate
the scattered power as the product Psc ∝ λ2

0I0 of the input intensity and the smallest
focusing area of that field component, which is bounded to ∼ λ2

0 by diffraction.
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were multiplicative, the collective cross section would grow as σtotsc ∝ Nσsc
[14], as portrayed in Fig. 1.1-b. Naively then, if one simply filled a cubic

wavelength with ∼ 102 – 103 atoms (still orders of magnitude more dilute

than a rarified gas, such as air), then one might expect that such a system

already allows for an extreme index of refraction.

The heuristic description provided above in fact coincides with conven-

tional models of the optical response of an atomic medium. As detailed

later, these models then predict an indefinite growth of the susceptibility2

χ(ω) with the atomic density N/V , scaling as χ(ω) = (N/V )α0(ω). Here,

the quantity α0(ω) describes the polarizability of a single atom, and it is

typically related to a real part of the index that is either high nre > 1

(for frequencies ω < ω0), or low nre < 1 (when ω > ω0). As the usual

magnitude of the polarizability is characterized by the optical volume of a

single atom |α0(ω)|∼ λ30/(2π)
3 = 1/k30, at the aforementioned densities

η = N/(V k30) ≫ 1 these theories would predict an index which extremely

deviates from that in vacuum. This is pictorially represented in Fig. 1.2,

where the orange line shows the standard predictions for the maximum

index of an atomic ensemble nmax
re ∼ √

η, as a function of the atomic den-

sity η. Although these methods well describe the experimental evidence in

the “low-density” regime of quantum optics (orange region), they become

deeply unrealistic (up to nmax
re ∼ 105 at solid densities), when extrapolated

outside.

At the other side of Fig. 1.2, when the atomic densities are comparable

to those of real solids η ∼ 1/(a0k0)
3 ∼ 109−1010, the atoms cannot be ap-

proximated anymore as independent scatterers, and must be rather treated

jointly. In this regime, a large variety of physical phenomena can potentially

take place (such as electron tunneling, Pauli exclusion, orbital hybridiza-

tion, molecular/crystalline bounds, insulator/metal transitions, Fermi’s sea

of electrons, electronic conduction or valence bands, etc.) depending on

the specific atomic species, on their spatial ordering, on the overall tem-

perature and on many other physical factors. In the rest of the thesis,

we will group this broad set of phenomena under the name of “quantum

chemistry”. Within this field, many methods have been developed, such

the as the Hartree-Fock method [15], the Quantum Monte Carlo approach

[16] or the most common Density-Functional Theory (DFT) [17], which are

able to model and precisely describe the optical properties of a large variety

of materials [18–20] (as pictorially portrayed by the blue line of Fig. 1.2).

2In classical optics, the susceptibility χ(ω) describes how much the index in a material
differs from that in vacuum, given n(ω) =

√
1 + χ(ω).
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Figure 1.2: Illustrative depiction of the standard predictions for the max-
imum (real) index nmax

re , given different regimes of density η = N/(V k30).
The orange (solid and dotted) line is associated to the standard models of quan-
tum optics, which well describe an idealized atomic medium in the dilute regime
of η ≪ 1 (orange region). On the other side, the blue region describes the typical
densities of actual solid materials η ∼ 1/(a0k0)

3. In that case, the atoms cannot
be considered anymore as isolated scatterers, and usual quantum-chemistry tech-
niques, such as Density-Functional Theory (DFT), must be used. Both models
well-describe the experimental evidences in their respective regimes of validity, but
fail or are undefined in the intermediate zone, where multiple scattering of light
dominates (pictorial inset). In that region, the average inter-atomic distance is
lower than the radius of the cross section, which imposes a non-perturbative treat-
ment of the optical response. Finally, the green area is a pictorial representation
of where natural materials would sit in such a plot.

These approaches, however, are designed to solve an extremely complex

many-body problem, which motivated focusing on the physical regime of

real solids (represented by the blue solid line in Fig. 1.2), without further

analysis into hypothetical, intermediate regimes where specific photonic ef-

fects could still be relevant (blue, dotted arrows).

In sight of these observations, it is clear that these two opposite direc-

tions are well-defined within their specific limits, but don’t easily reconcile

in the halfway region. In particular, no clear method exists to draw a contin-

uous line which could connect their predictions and simultaneously describe

the intermediate area between them. In this thesis, we aim to provide a

first step towards this long-term direction. To do so, we realize that both

approaches neglect that light scattering is actually a wave phenomenon, and

the potential complexity that emerges due to multiple scattering of photons

and interference. It is well-known, however, that multiple scattering of light
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through disordered media can give rise to complex and disruptive effects

such as Anderson localization of light [21], or make the goal of focusing

and imaging through turbid media an outstanding technological challenge

[22–24]. In the central, white region of Fig. 1.2, a non-perturbative de-

scription of these effects becomes imperative, as the average inter-atomic

distance becomes smaller than the size of the cross section. The same issue

doesn’t arise in the low-density regime η ≪ 1 of standard quantum optics3,

given that atoms are farther apart. At the same time, we suspect that

the optical cross section is dramatically reduced at the onset of quantum

chemistry, as studied in Chapter 4, which would motivate why such a non-

perturbative analysis of photon scattering can be neglected, when predicting

the optical properties of natural solids in the quantum-chemistry regime.

In sight of these reasons, in this thesis we will describe new techniques in

order to address the physics of multiple scattering of light, with the ultimate

goal of understanding the fundamental limits to the index of refraction, as

well as developing new photonic applications which exploit the complexity

of wave interference.

1.1.1 The impact of an extreme refractive index

One might wonder what technological consequences an extreme index of

refraction would imply. Within linear optics, a medium can drastically alter

the state of light as long as its photonic response n = nre + inim strongly

differs from that of vacuum n = 1. At the same time, one usually needs

that the optical dynamics is not trivially suppressed by a high absorption of

photons (as quantified by the imaginary part of the refractive index nim).

As discussed in [3, 4, 26, 27], however, no natural material exhibits both

low losses nim ∼ 0 and either a ultra-high nre ≫ 1 or a near-zero nre ∼ 0

index of refraction, in the visible or near-visible spectral range. As we are

interested in the potential implications of such transparent materials, for

the rest of this section we assume that nim ≈ 0, so that n ≈ nre.

The natural bounds to the refractive index impose strong limitations on

even the simplest optical device: a bulk, refractive lens [31]. In its simplest

definition, an optical lens is a transparent object that curves the wavefront

of an incident light beam (with initial waist win), to focus it on a smaller

spot wout, with a focal length4 of f . Considering monochromatic light

3This becomes more subtle when strict spatial order is added, due to perfect interfer-
ence patterns of the scattered light. This is the case, for instance, of Bragg gratings in
classical electromagnetism [25].

4The focal spot is placed at a distance zf = [1− (wout/win)
2]f from the lens, which
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Figure 1.3: Pictorial representation of different types of lenses. a-b) Classical
refractive lenses, which exploit a spatially variable optical path to induce a phase
delay which curves the incident wavefront, to make it focus at the established
distance. Specifically, we show a bulk lens (a) and a Fresnel, refractive lens (b),
where the phase is induced modulo 2π. c) Schematic structure of a metalens,
where microscopic nano-antennas act as discrete phase shifters, with subwavelength
thickness. Specifically, here we depict the case of rotated nano-fins [28], but other
typical structures include nano-rods [29] or nano-disks [30].

with wavevector kvac = ω/c in vacuum, the lens must impress a spatially

dependent phase shift of ∆ϕ (r) ≡ ϕ (r) − ϕ (0) = kvac(f −
√
r2 + f2),

where r is the transverse, radial coordinate [28, 32]. This is accomplished

by varying the optical path inside the lens, which induces the phase delay

∆ϕ (r) = kvac(n−1)[L(r)−L(0)], where L(r) is the thickness of the lens, as
shown in Fig. 1.3-a. From these simple considerations, one can immediately

notice that the overall thickness of a bulk, refractive lens is bounded by

L(0) ≥ (
√
f2 +R2 − f)/(n− 1) , where 2R is the transverse diameter of

the lens. To design thinner lenses, one can realize that the phase delay can

be defined modulo 2π, which leads to the so-called Fresnel geometry5, which

is characterized by the typical, discontinuous profile portrayed in Fig. 1.3-

b. The reduction in thickness, however, is obtained at the expenses of

a strong chromatic aberration [33], as well as an overall reduction of the

imaging quality, due to the higher manufacturing challenges. Nonetheless,

this scheme allows to understand a more fundamental limit, as the thickness

of the lens now reads LFr = 2π/[(n − 1)kvac] = λvac/(n − 1), which is

ultimately bounded only by the low value of the refractive index. Due to

this restraint, in the last decade the concept of metalens was developed

(see Fig. 1.3-c), where the phase is locally tailored by specifically designed

nano-elements, as will be further discussed in the next sections.

depends on both the focal length and the waist of the input and output light.
5Fresnel lenses are often referred to as diffractive lenses, in particular when approxi-

mated by a finite set of flat, concentric rings [33, 34].
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The minimum thickness is not the only constrain imposed by n ∼ 1 to

a lens. Specifically, its focusing ability is inevitably restricted by the very

general diffraction limit, which emerges from the fundamental, wave nature

of light. Let us consider a source of monochromatic light, placed in front of

a lens and surrounded by a transparent material with positive, real index n.

Without loss of generality, the emitted field admits the 2D Fourier decom-

position E(kxy, z) = f(kxy)e
ikxy·r+ikzz, where the longitudinal wavevec-

tor is constrained by the Maxwell equations to be kz =
√
k2 − |kxy|2,

with k = nω/c accounting for the surrounding material. Since no evanes-

cent field can propagate to the lens, only the components with |kxy|≤ k

can be effectively observed, leading to an optimal transverse resolution of

δr ∼ 2π/k = λvac/n [35]. This explains why near-field microscopy, which

captures evanescent waves, can partially defeat the diffraction limit [36].

These two examples well illustrate the notable properties that a trans-

parent, ultra-high index n≫ 1 would imply. They can both be summarized

with the notion that the wavelength of a monochromatic wave inside a ma-

terial shrinks by a factor λ = λvac/n. Due to this reason, a high index of

refraction wouldn’t only increase the attainable phase shift per unit length,

but would have strong implications in all the technologies which require a

strong confinement of light. This is the case, for instance, of optical fibers,

which have already revolutionized the human ability to transmit informa-

tion. Intuitively, the propagating light inside the fiber still has to obey the

diffraction limit for the medium, which sets a fundamental constraint to the

fiber diameter, given by6 d ≳ λvac/(2n).

If one thinks of a single photon, carrying a fixed energy E = h̄ω̃, the

overall reduction of the optical scale inside the medium to λ̃ = λ̃vac/n =

2πc/(ω̃n), intuitively means an enhancement of the spatial density of en-

ergy. Since nonlinear effects require remarkably high intensities, an ultra-

high index could potentially trigger nonlinearities with few photons [38], a

phenomenon which up to now has been only observed using near-resonant

atom-light interactions, either at the single [39–41] or many atom [42, 43]

level. The overall possibilities offered by high indices are broad [44, 45]

and encompass many fields of research, ranging from solar panels [46] and

super-resolved microscopy [47–49] to ink-free color printing [50] or optical

6More concretely, a fiber is compose of an internal core with an index nco that is bigger
than that of the external cladding ncl < nco, thus confining the light via total internal
reflection [25]. For the fundamental mode of a planar geometry the minimum thickness

can be calculated analytically, reading d > λvac/
(
2
√
n2
co − n2

cl

)
[37]. The cylindrical case

is described by more complicated Bessel functions, but it exhibits an identical qualitative
behaviour.
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lithography [51]. They include, as well, the modification of the spontaneous

decay rate of a two-level, quantum emitter inside a homogeneous, trans-

parent dielectric [52, 53]. These considerations, then, explain the efforts to

design materials with an enhanced refractive index [44, 54–57], as reported

in Fig. 1.4.

In addition to the case of n ≫ 1, various interesting effects have been

theorized (and partly demonstrated) for near-zero n ∼ 0 indices of refraction

as well [26, 27]. The existence of an index lower than unity is not forbid-

den by special relativity [76], since the phase velocity vph = c/n describes

the propagation of an ideal, infinitely extended, plane wave, which cannot

transport information due to its perfect spatial homogeneity. Nonethe-

less, causality imposes a bound on the group velocity7 vg = ∂ω/∂k =

c/(n+ ω∂n/∂ω) ≤ c of a lossless material, which in turns limits the dis-

persion relation of a lossless, zero-index medium to ∂n/∂ω ≥ 1/ω. More

generally, one can show that the causal order introduces a stricter relation

between how small a near-zero index can be, and the bandwidth over this

can be sustained [79]. A qualitatively similar result, for the case of ultra-high

indices n > 1, was recently derived in [80].

Inside a material with n ∼ 0, the wavelength of light becomes (almost)

infinite. This property is similar to that of a quantum-wave particle with

energy E = k2/(2m) tunneling inside a low potential barrier U ≳ E, where

the evanescent transfer is associated to typical lengths ∝ 1/
√
U − E larger

than the initial wavelength ∝ 1/
√
E. As we will see, the propagation of

light in a Near-Zero-Index (NZI) material closely resembles this analogy.

Due to the very large wavelength λ = λvac/n ∼ ∞, light doesn’t acquire

any spatial phase of propagation [81, 82]. This means that spatial and tem-

poral variations are decoupled [26, 83], and that the electromagnetic field

feels every point in space as if they were the same point. It is not surprising

then, that the transport of light in a NZI medium happens via tunneling

from one end of the material to the other, as first theorized by [84] and ex-

perimentally shown in the microwaves [85–87] and infrared [88]. This also

explains why no diffraction pattern can emerge from a double-slit experi-

ment inside a NZI material [89], and it shows that scattering processes are

suppressed. At the level of classical optics, light transfer indeed resembles a

near-field effect (which doesn’t possess any spatial phase profile), but with

7The quantity bounded by c is the speed at which information propagates [77]. This,
however, is usually equivalent to the group velocity, unless one is dealing with anomalous
dispersion, where ∂nre/∂ω < 0 [78], or strongly dispersive media [37]. Both situations can
happen in a material around its resonance, which is usually accompanied by non-negligible
losses nim > 0.
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Figure 1.4: Natural and artificial materials with ultra-high, low-loss refrac-
tive index. Values of nim and nre ≫ 1, given different frequencies. In some
occasions, the data are extracted via the freely available software of [70], while
for some natural materials we refer to [71]. Natural materials or composites are
named, while metamaterials are only defined by their reference. Those metamate-
rials marked with one (two) asterisk(s) refer to systems with reduced dimensions
(respectively, 1D or 2D), where the bulk properties can only be effectively in-
ferred. We choose those transparent natural materials with the highest positive
index [3, 4]. We don’t include the results of [72–74], as they operate in the mi-
crowaves. Titanium dioxide (TiO2) is birefringent [60], so we only considered the
index along its ordinary axis. The data of [62] refer to the ensemble of gold (Au)
nano-particles, which has a higher real index and lower imaginary part. The re-
fractive index of [64] is retrieved from the nano-sphere configuration, where the
effective, bulk refractive index is estimated through the method of [75]. For [68],
we select the 5-layer configuration, rather than the single-layer one, as we believe
that it better approximates the concept of a “bulk” material. Furthermore, we
focus on the experimental data with frequencies ≳ 0.75THz, where both the real
index nre and the figure-of-merit nre/nim are higher and less noisy. From [69], we
only plot the sample with thickness ∼ 2mm (given that similar data are shown for
the other sample), and we neglect those data in the microwave regime.
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a characteristic optical length so extended that it encompasses the whole

macroscopic material.

Intuitively, this peculiar behaviour makes light completely insensitive of

the shape of the material boundaries. This means that light can be squeezed

and tunnel inside a very narrow (even subwavelength [84, 88]) channel filled

with NZI and surrounded by a reflective coating, which leaves only two

possible apertures [87]. This can lead to ideal optical interconnects, which

are not affected by sharp or irregular bends [90–93]. Inside such channels,

light would propagate similarly to a superfluid with zero viscosity, as high-

lighted in [94] and experimentally addressed in [95]. Similarly to the outer

boundaries, light cannot be scattered or diffracted by a reflective impurity

placed inside the NZI material. This property has potential applications for

cloaking designs, which aim to make an object invisible with respect to the

environment, as was first envisioned in [96] and experimentally shown in

[86]. As discussed in [76], this property can be understood by recalling that

the optical resolution in a medium scales as δr ∼ λvac/n, which means that

two different sources can never be distinguished when n ∼ 0 (regardless of

how far they are), allowing to hide any object in the NZI material.

Due to this same reason, imaging inside a bulk, isotropic NZI medium

is impossible. Nevertheless, radically different results can be obtained by

tailoring the index anisotropically, with ϵz ̸= 0 and ϵxy = 0. In that case,

indeed, light travelling in the ẑ direction experiences a zero index, so that,

optically, the material behaves as if the front and back surfaces were directly

in contact [97]. Since this applies to all the spectral components (due to

the peculiar dispersion relation), de facto, this medium can reproduce a

“perfect” copy of the initial image from one side to the other, which can be

stretched and enlarged by exploiting curved surfaces [98, 99]. This means

that an image can be magnified in its near field by the NZI device, before the

diffraction effects of free-space propagation take place [98], which can lead

to far-field imaging beyond the diffraction limit, as experimentally addressed

in [100] for a spherical geometry.

On top of these considerations, many optical applications (such as those

based on total internal reflection) require a large contrast ratio n1/n2 be-

tween indices [4, 112], meaning that a near-zero index would produce similar

or higher enhancement than the ultra-high case [113] (with the further pos-

sibility of combine it with existing high-index materials, like silicon n ≈ 3.5).

In general, the idea of combining high-index n > 1 and low-index n < 1

materials enables interesting perspectives, including transformation-based

cloak designs, as discussed in [114, 115] and experimentally demonstrated

in [116]. Nonetheless, many applications of near-zero indices have been pro-
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Figure 1.5: Natural and artificial materials with near-zero, low-loss refractive
index. Values of nim and nre ≪ 1, given different frequencies. In some occasions,
the data are extracted via the freely available software of [70], while for some
natural materials we refer to [71]. Natural materials or composites are named, while
metamaterials are only defined by their reference. Those metamaterials marked
with one (two) asterisk(s) refer to systems with reduced dimensions (respectively,
1D or 2D), where the bulk properties can only be effectively inferred. The NZI
natural materials reported are those with the lowest associated losses [26]. In
[103], we select the data of the slab 1, whose index is inferred through the method
2 (based on [75]). The GZO (gallium-doped zinc oxide) thin film of [104] has a 4%
doping, but a similar curve can be obtained from [111], where a 6% doping is used.
The AZO (aluminium-doped zinc oxide) has a 2% doping. For the metamaterials
in [82, 106], we cannot properly infer the scaling of nim as a function of nre,
so we only consider the fixed frequency that is explicitly mentioned in the texts.
Similar considerations apply for [107, 110], where instead we focus on the value
with the lowest, positive index. In [81], the finite length of the waveguide imposes
a measurement floor of nre ∼ 0.05, so we restrict to the experimental points
above this value. Moreover, we only consider the case without the supplementary
cladding with a photonic band-gap material. The data for the SiC are taken from
the formula shown in [108], which refers to the theoretical calculations of [109].
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posed [117], including time-varying mirrors [118], optical solitons [119], all-

optical switching [120], wavefront patterning [121] (as well as lensing [86]),

frequency modulation [122–124], optomechanics [125] or highly-directional

[112, 126] and unconventional [127, 128] antennas.

Notwithstanding, high losses still represent a serious limitation to the

development of NZI optics [4]. As an example, some implementations ex-

ploit metals or doped semiconductors near their plasma frequency ω ∼ ωp,

where the relative permittivity reads ϵ/ϵ0 ∼ 1 − (ωp/ω)
2 ∼ 0 [112]. How-

ever, in this simplified formula we neglect losses, which become particularly

relevant around the plasmonic resonance [129, 130]. This issue is evident in

Fig. 1.5, where many experimental realizations of NZI media are compared,

showing that the condition nre ∼ nim ∼ 0 is still out of range.

1.1.2 Extreme indices and artificial materials

As we commented in the previous section, several works focused on the

idea of designing structures whose macroscopic behaviour could emulate an

extreme index of refraction.

The effects of a NZI, for example, are mimicked when light travels

inside an artificial material whose dispersion relation allows for a vanish-

ing wavevector k ∼ 0 at a non-vanishing frequency ω > 0. This was

experimentally investigated using waveguides operating near their cut-off

frequency [87, 131]. More concretely, this condition can be specifically en-

gineered with a photonic crystal. Such a device is constituted by a periodic

pattern of materials with alternated indices of refraction, so that light can

be scattered at their interfaces [2]. The photonic modes are subjected to

the Bloch theorem, which permits to quantify how the multiple scattering

can radically alter the dispersion relation of light.

For example, anisotropic NZI can be experimentally emulated using a

stack of alternated slabs with thicknesses za,b and indices na,b, as long as the

condition zan
2
a ≃ −zbn2b is satisfied [97–100]. This recipe requires an index

n2b < 0, which is typical of plasmonic metals8, whose losses are nonetheless

relevant. At the same time, two-dimensional photonic crystals have been

explored as well [86, 105, 106], showing that a NZI can be emulated with

tailored geometric designs of all-dielectric elements.

The idea of using ordered geometries of scatterers was analogously ex-

plored to obtain ultra-high indices [67, 132]. To this aim, a large, resonant

response of the constitutive elements is necessary, which favoured the use of

8We recall that plasmonic metals are characterized by n2/ϵ0 ∼ 1−(ωp/ω)
2 (neglecting

losses). For frequencies below ωp, one can have n2 < 0.
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cut metallic nano-antennas9 [68, 72, 133–136], metallic gratings [69] or col-

loidal superlattices of metallic nanoparticles [62, 64]. Nonetheless, some of

the main constraints of these latter approaches are the multipolar behaviour

of the metallic scatterers and large plasmonic losses in the metals.

On the contrary, an ideal light scatterer would be inherently lossless,

behave as a point-like dipole, and posses an optical scattering cross section

much bigger than its physical size. All these qualities are satisfied by two-

level atoms, so that, intuitively, one might expect that an ordered atomic

lattice could represent the ultimate platform for extreme refractive indices.

In Chapter 4, we suggest that this may be the case.

1.1.3 Flat optics and metasurfaces

The works described in the previous section are applications of the more

general idea of engineering microscopic structures to exhibit a target optical

response. A similar spirit motivates the the field of flat optics, where specific

optical phenomena are tailored in an artificial material to reproduce the

properties of a thin optical device, with a subwavelength thickness.

Namely, in Section 1.1.1 we already discussed the case of refractive

lenses, where a specific phase profile was obtained by locally changing the

optical path of light inside the material, where it experiences a higher re-

fractive index. We argued that such a tailored phase pattern can shape

the wavefront of the input light, to make the beam focus at the desired

distance. What emerges is that locally controlling the phase shift impressed

in transmission can drastically alter the macroscopic, photonic behaviour.

A metasurface (or a metalens for the specific lensing application), then, is a

device which can locally impress a variable phase retardation, in a thickness

smaller than the wavelength of light, and possibly smaller than the bound

LFr ∼ λvac/(n − 1) to Fresnel lenses [33, 137]. This is accomplished by

designing specific nano-elements, acting as discrete building blocks of the

metasurface, which aim to ideally satisfy the following conditions:

• They should be as lossless as possible, with low energy dissipation.

• Normally incident light should be transmitted in the same direction

(directional emission/scattering).

• The impressed phase shift should be tunable over the whole 2π range,

by changing some constituent parameter. Full tunability should be

ensured given a fixed frequency of light, so that the wavefront of a

(nearly) monochromatic beam can be arbitrarily shaped.

9A similar approach was associated to near-zero indices as well [82, 107, 110].
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The first demonstrations of these concepts came from the field of plas-

monics, where metallic nano-antennas and nano-resonators where designed

to fulfill that scope [138]. This included the realization of lenses, vor-

tex beam generators and holography [139]. Nonetheless, as we discussed,

such systems are heavily bounded by their losses [129, 130], which limit

their applicability. To overcome this problem, the idea emerged of de-

signing all-dielectric metamaterials [45], whose building blocks can exploit

various physical phenomena. Specifically, we can mention the case of di-

electric nano-rods, which act as truncated waveguides with an effective

index of refraction, controllable by changing their diameter [29]. Alterna-

tively, anisotropic dielectric cuboids, called nano-fins, exploit their intrinsic

birefringence to impress a variable phase shift, depending on the angle of

rotation around their main axis [28]. Devices built upon these paradigms

were proven to efficiently behave as low-loss lenses, with a thickness often

smaller than what Fresnel lenses achieve [33, 137]. Nonetheless, such di-

electric devices still need to obey the fundamental law of diffraction, which

imposes a bound that approximately scales as L ≳ λvac/n [140].

Notably, these nano-structures are often referred to as “meta-atoms”

to describe their ability to strongly manipulate light over very small spatial

scales [141]. This aspect indeed reminds the optical properties of single

atoms, which are characterized by a gigantic optical cross section, compared

to their physical size. One may wonder, then, if an “atomic metalens” can be

analogously conceived by means of actual atoms, with a well-defined dipole

transition. Unfortunately, two-level atoms do not naturally satisfy the points

two and three of the list mentioned above. Specifically, they have a non-

directional, 4π emission and the impressed phase shift is uniquely determined

by the frequency of the incident photon, without further tunability.

In Chapter 5, we argue that these problems can be solved by spatially

ordering the atoms. In particular, we employ subwavelength, inter-atomic

distances to suppress non-zero diffraction orders and ensure directionality.

At the same time, we exploit the collective atomic response to locally tune

the phase shift, by varying the lattice constants over distances ≲ λ0, which

are analogous to the discretization scales of common metalenses.

1.2 Outline of the thesis

In this introduction, we discussed the role of the refractive index in pho-

tonic technologies, as well as their intrinsic limitations due to its low order

of magnitude. At the same time, we described the emergence of novel ap-
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proaches, namely flat optics and metasurfaces, to efficiently deal with these

universal limits.

Given the constrains that n ∼ 1 imposes on optical devices, it is impor-

tant to understand what are the fundamental limits to how large refractive

index can be. From Fig. 1.2, we see that even an answer to this question

seems elusive, given the failure of existing theories to describe the transi-

tion from dilute gases to real solids, while accounting for non-perturbative

multiple scattering of light. In the rest of this thesis, we explore how its

study can give more insights into the microscopic meaning of the refractive

index, as well as representing an interesting tool for optical technologies.

To this aim, in Chapter 2 we first revise the standard methods to describe

light-matter interfaces, from the perspectives of both solid state physics and

quantum optics. Then, we underline the breakdown of these theories, in

the regime where multiple light scattering is dominant. We finally discuss

an alternative approach which naturally accounts for this latter, reporting

some novel phenomena that it enables to predict, including the possibility

of building up a mirror out of a 2D atomic array. Eventually, in Part II we

discuss our work, which is divided into the following chapters.

• First, in Chapter 3, we focus on the emergence of the concept of

refractive index in an ideal medium composed of randomly positioned

atoms. The results of this chapter are published in [142]. Given a

resonant wavelength λ0 = 2π/k0, we theoretically and numerically in-

vestigate its optical properties as a function of density η = N/(k30V ),

finding that multiple scattering prohibits the indefinite growth of the

index with η predicted by conventional models (orange, dashed line

of Fig. 1.6) and that the index saturates to a “real-life” maximum

value of n ≈ 1.7 (green curve). We develop a non-perturbative

Renormalization Group (RG) theory to understand its origin, where

we show that multiple scattering and granularity effectively produce a

process of inhomogeneous broadening, whose amount linearly scales

with density. This ensures that, regardless of the physical atomic den-

sity, light at any given frequency only interacts with at most a few

near-resonant atoms per cubic wavelength, thus resulting in the maxi-

mum index n ≈ 1.7. This limit arises purely from electrodynamics, as

it occurs at densities far below that where chemical processes become

important. Nonetheless, we speculate that this process might dom-

inate the optical response at higher densities as well (green, dotted

line).

• In Chapter 4, we then analyze the case of atoms ordered in a lattice.
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Figure 1.6: Schematic plot of the maximum real part of the refractive index
versus density of atoms η = N/(k30V ). The density is in units of the reduced
wavelength k−1

0 = λ0/(2π) of the atomic transition. Conventional theories predict
a maximum index that scales with density as n ∼ √

η (orange, dashed curve). In
the “quantum optics” regime, atoms are sufficiently far apart that they can be
considered isolated objects, which only interact via the electromagnetic field. For
sufficiently high densities, one enters the “quantum chemistry” regime where the
overlap of electronic orbitals between different atoms becomes non-negligible and
chemical interactions occur. In a vast intermediate regime of densities, ranging
from η ∼ 1 through the onset of quantum chemistry, a non-perturbative treat-
ment of multiple scattering of light is needed to correctly predict the index. For
a disordered atomic medium in the quantum optics regime, we show in Chap-
ter 3 that the maximum index is limited to n ≈ 1.7. This is shown by the solid,
green curve, while the dotted, green curve represents our suggestion that this phe-
nomenon might dominate at higher densities as well. In Chapter 4, we show that
a perfect atomic crystal exhibits a purely real index scaling as n ∼ η1/3 in the
quantum optics regime, and the maximum attainable value is limited by effects
arising from quantum chemistry (blue curve). The discontinuity of the blue curve
at low densities arises from interference effects, as discussed in Section 4.2.3.

Specifically, we aim to characterize the intermediate region between

the typical “low-density” regime η = N/(k30V ) ≪ 1 of standard quan-

tum optics and that of “high densities” η ≫ 1 which characterizes

solid state physics (see Fig. 1.6). At dilute densities, this problem

falls into the realm of pure optics, where atoms behave as isolated,

point-like scatterers of light. On the other hand, when the lattice
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constant d becomes comparable to the Bohr radius a0, the electronic

orbitals centered on different nuclei begin to overlap and strongly in-

teract, giving rise to quantum chemistry. We thus discuss a minimal

model for a unifying theory of index spanning the quantum optics

and quantum chemistry regimes. A key aspect of this theory is the

proper treatment of multiple light scattering, which can be highly

non-perturbative over a large density range.

We first focus on the regime of pure quantum optics. Differently

from the disordered case, we show that ideal light-matter interactions

can have a single-mode, narrowband nature, which allows for a purely

real maximum index that grows with density as nmax ∝ λ0/d ∝ η1/3

(blue, solid curve of Fig. 1.6). At the same time, we discuss how this

system ideally allows to reach the zero-index condition nmin = 0.

This single-mode behaviour is rooted in the perfect translational sym-

metry of the 2D layers composing the lattice, which are sequentially

encountered by normally incident light. From an optical perspective,

we first identify two possible mechanisms that could suppress this ideal

response within each 2D layer, later providing a minimal model of how

those processes should spontaneously arise at the onset of quantum

chemistry. Specifically, these corresponds to the situations when an

atom of the array is either selectively driven or removed, to create a

defect. In both cases, we show that the single-mode response of the

array is drastically affected, due to the excitation of supplementary

atomic modes.

When d ∼ a0, we identify two quantum-chemical mechanism (namely,

excited-electron tunneling-dynamics and ground-state density-density

correlations), which optically act as incoherent sources of either dis-

tinguishable excitations or off-resonant defects. Due to this reason,

these processes naturally open up inelastic and spatial multi-mode

light scattering processes, thus reducing the index back to order unity

while simultaneously introducing absorption. Furthermore, we prove

that around d ∼ a0 they allow to perturbatively recover the standard

theories of solid-state optics, due to the suppression of multiple light

scattering. Nonetheless, right before the onset of chemistry, our the-

ory predicts that low-loss materials with both ultra-high (nre ∼ 30)

and near-zero (nre ∼ 0) index could in principle be allowed by the

laws of nature, albeit within a small bandwidth around the atomic

resonance frequency.
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• Finally, in Chapter 5, we study some potential applications of the

complex interference patterns of the light scattered by atoms. Inspired

by the approach of metasurfaces to optics, we specifically wonder

if atoms can behave as an efficient optical device, when carefully

positioned in free space. In particular, we start from the intuition

that a 2D atomic array can act as an efficient mirror, to broaden

this idea into a more complex optical device: a microscopically thin

lens. As we discussed, flat optics is based on building blocks which

require high transmission of light and the possibility of locally tailoring

the impressed phase shift. We argue that this can be fulfilled by

using two 2D arrays in series, and by properly designing the lattice

constant. In particular, the choice of the transverse lattice constants

dx, dy permits to control the phase over the full 2π range, while the

distance dz between the layers can ideally ensure a 100% transmission.

While this method works only in the ideal, lossless case, we show that

the addition of a third layer can make the system robust against

the noise. Eventually, we show how these building blocks can be

assembled to form an atomic metalens, characterizing its focusing

efficiency against noise and imperfections via large-scale (N ∼ 5 ×
105) numerical simulations. We note that this number of simulated

atoms is approximately between one and two orders of magnitude

larger than comparable works in literature.
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2.1 Smooth-field theories of standard optics

The quantum interactions between multiple atoms and light can be an ex-

tremely complex problem, involving a large number of particles interacting

through a continuum of electromagnetic modes. At the same time, this

represents a powerful playground, leading to many proposed protocols for

quantum technologies [14, 38]. While the quantum regime cannot be pos-

sibly covered in the scope of this introduction, we can still examine the

classical, linear optical limit, to characterize the notion of refractive index.

In this regime, the optical problem is largely simplified by a number of

photons that is much lower than the number of atoms. The atomic system

is weakly excited, and the intrinsic nonlinearity in the atomic levels can be

neglected, meaning that their optical behaviour simplifies to that of classical

scattering dipoles. In principle, however, to exactly solve such a problem one

would still need to account for multiple scattering of light, which makes the

complexity of the problem scale linearly with the number of atoms N . Due

to these reasons, this scenario still requires unfeasible computational efforts,

if one attempted to account for the realistic numbers of atoms typical of

macroscopic system.

This complexity led to the development of simplified equations, which

ignore the granularity of atomic positions and instead treat them as a

smooth macroscopic medium, thus neglecting multiple light scattering. In

this section, we review the most prominent of these methods, both from

the perspective of solid-state physics (such as the Drude-Lorentz (DL) the-

ory) and from that of pure optics (starting from the quantum, Maxwell-
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Bloch (MB) equations and then focusing on their classical limit), mention-

ing one of the most famous and well-established attempts (namely, the

Lorentz-Lorenz (LL) model) to locally correct the standard theories by par-

tially accounting for multiple scattering. We show that these simplified

approaches manifest evident discrepancies when extrapolated beyond their

limited regimes of applicability, in a vast region where multiple scatter-

ing is dominant. We thus report an established method to exactly include

multiple light scattering, discussing the specific example of a 2D atomic

array, whose distinctive optical response cannot be predicted with standard

smooth-medium theories.

To conclude, we stress that here, and throughout our thesis, the analy-

sis will be limited to optical/near-optical frequencies, which motivates the

specific assumption that only the electronic response contributes to the re-

fractive index. This neglects phenomena of molecular re-organization into

permanent dipoles, such as the case of water in the radio frequencies [143].

2.1.1 Solid-state index: Drude-Lorentz and beyond

The DL theory represent the most established, textbook description of light

inside a material, whose roots dates back to the seminal works of Drude

and Lorentz at the beginning of the 20th century. It is based on a classical

toy model, which is meant to describe the optical response of electrons and

atomic nuclei in terms of smooth, macroscopically averaged quantities [25].

Specifically, let us start by explicitly focusing on a non-magnetic and elec-

trically neutral medium. Semi-classically, one can consider that each j-th

atom responds to light with its electric dipole moment dj , due to those

electrons bound to the atomic nuclei. Clearly, this represents the typical

behaviour of a dielectric medium, and one can define a macroscopic polar-

ization P(r, t) as the volume density of such electric dipoles. At the same

time, a generic material can exhibit free electrons as well, whose motion can

be accounted for via the current density Jfree(r, t), defined as the electric

current per unit area. Intuitively, this latter mechanism characterizes the

optical response in a conductor. From Maxwell’s equations, these quantities

fully characterize the propagation of an electromagnetic wave, via1

∇× (∇×E) +
1

c2
∂2tE = −µ0∂t (∂tP+ Jfree) . (2.1)

1Here, we indicate with Jfree the current induced by unbound electrons moving inside
the medium, but one can easily realize that the contribution due to the bounded electrons
can be interpreted as an additional current, namely Jbound = ∂tP.
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This expression is very generic, and the granularity in the positions of atoms

and electrons could in principle be included if P =
∑

j djδ(r − rjn) and

Jfree = qe
∑

i ṙ
i
eδ(r−rie) were defined by means of delta functions centered

at the particle positions (here, the indices j and i span the positions of re-

spectively the atomic nuclei and the free electrons, while qe is the electronic

charge [144]). Nonetheless, to avoid the issues described earlier, a simpler

classical estimation is performed, which ignores granularity.

• Free charges. First we study the limit where the effect of P is neg-

ligible compared to Jfree. The current density can be then approxi-

mated by the smooth function Jfree ≈ (Ne/V )qeṙe (where Ne/V is

the density of the electrons), which obey the simple transport equa-

tion2 r̈e + γ′ṙe = qeE/me with the rate γ′ describing the effects

of frictional dissipation. At the steady state, one gets the solution

Jfree(r, ω) ≈ −iωϵ0χcond(ω)E(r, ω), with

χcond(ω) =
ω2
p

−ω2 − iγ′ω
, (2.2)

where we defined the plasma frequency ωp =
√
(Ne/V )q2e/(meϵ0).

• Bound charges. On the contrary, when all electrons are tightly

bounded to the nuclei, one can neglect the current density due to

free electrons Jfree ∼ 0, and estimate the atomic dipole moments

dj by means of a classical toy model. Specifically, let us define the

displacement re-n of an electron from its equilibrium position. This

approach roughly models the change in the electron orbitals when go-

ing from the ground to a target excited state, and allows us to write

dj ≈ d ≡ Zeqere-n, where Ze is the atomic number. The dynamics of

re-n is then modeled as a classical, damped harmonic oscillator of res-

onant frequency ω0 and damping rate γ′0, which is meant to account

for the finite lifetime of the excited state. After solving for re-n at

the steady state, we can approximate the macroscopic polarization as

the smooth quantity P ≈ (N/V )d = (Ne/V )qere-n, where Ne/V =

ZeN/V . In Fourier space, one obtains P(r, ω) ≈ ϵ0χres(ω)E(r, ω),

where we define the susceptibility

χres(ω) =
ω2
p

ω2
0 − ω2 − iγ′0ω

. (2.3)

2In principle, the Lorentz force qeṙe × B should be similarly included, but this latter
would be typically smaller than qeE by a factor ∼ ṙe/c≪ 1, justifying its neglect [145].
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To include the possibility for electrons to be excited into many excited

states, one usually defines the total dielectric susceptibility χtot
res(ω) =∑

j fjχ
j
res(ω), where each resonance has its how frequency ωj and

decay rate γ′j , while the fractions fj are called oscillator strengths.

To describe materials such as poor conductors or semiconductors, both

contributions of P and Jfree must be included. Using the fact that P ∝ E

and Jfree ∝ E, and that no net charge is present in the material, we plug

∇× (∇×E) = −∇2E inside Eq. 2.1, leading to the refractive index [25]

nDL(ω) =
√
1 + χDL(ω)

χDL(ω) = χcond(ω) +
∑
j

fjχ
j
res(ω),

(2.4)

where the susceptibility χDL(ω)must satisfy the very general Kramers–Kronig

relations, which relate its real and imaginary parts. From Eq. 2.4 one can

identify the meaning of the plasma frequency ωp: given a low-loss conduc-

tor (with γ′ ≪ ωp and fj ≈ 0), at ω ≃ ωp one has χcond(ω ≃ ωp) ≈ −1

and nDL(ω ≃ ωp) ≈ 0. Finally, if one resonance ω0 is extremely dominant

around ω ∼ ω0, the index further simplifies into [37]

nDL(ω ∼ ω0) ≈

√
1 +

f0ω
2
p/(2ω0)

−ω + ω0 − iγ′0/2
. (2.5)

The classical DL model must ascribe its success to its simplicity and

to its ability of qualitatively (and to some extent quantitatively) describing

empirical evidence. Many works, for example, well succeed in fitting the

experimental data with the DL predictions, where the resonance frequencies

ωj , decay rates γj and strengths fj are used as free parameters [146].

Nonetheless, it is also true that, mathematically, any optical response can

be well approximated with a sufficient number of resonances [80].

Notably, the DL model already provides a rough intuition of why the

index of a dielectric, transparent material should be limited to n ∼ 1, as

discussed in [4, 74]. Specifically, let us start from Eq. 2.3, and consider the

typical transparency region of ω ≪ ω0, where χres ∼ ω2
p/ω

2
0. By approx-

imating an electronic orbital as a sphere of volume Ve, one can estimate

the resonance frequency by means of classical electrostatic considerations,

leading to ω0 ∼
√
q2e/(3ϵ0Veme). This allows to write χres ∼ 3NeVe/V ,

where the quantity NeVe/V describes (within this naive classical model) the

average orbital occupancy, thus meaning that 0 ≤ NeVe/V ≤ 2 due to Pauli
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exclusion and spin degeneracy. This very rough, semi-classical argument,

then, already provides a range of indices 1 ≤ n ≤
√
7 ≃ 2.6 [4], which is sur-

prisingly accurate compared to the primitiveness of this approach. On top

of that, an elegant work recently placed a more refined boundary between

the maximum index of a transparent material and the bandwidth where it

can be sustained [80], although it didn’t directly address how large the index

might be. Furthermore, the argument described above explicitly focuses on

very off-resonant responses, while several experimental papers explored the

refractive index of materials over broad frequency ranges, showing that the

index is similarly bounded by n ∼ 1 around the resonances [5–12].

The DL theory is a purely classical model. To overcome the limitations

emerging due to the quantum nature of particles, theories and methods were

suggested based on the laws of quantum mechanics. This is particularly true

for the case of crystals, where the Bloch theorem allows to infer the optical

properties from quantum considerations. Specifically, one can describe the

electronic state in terms of bands, where the Fermi level defines the energy

of occupancy at zero temperature. Depending on its value, one can have

different solid-state properties. In a metal, the Fermi energy is within a

(conduction) band, so that this latter is semi-filled and the electrons can be

easily accelerated by an external field, developing a current. In an insulator,

this is in the middle of a large bandgap, so that the electrons fill a lower

(valence) band and cannot be easily excited to the empty, upper band, due

to the broad energy gap. In a semi-conductor, typically, the bandgap is

small, meaning that electrons can in principle hop from the valence to the

conduction band, so that this latter is not empty at a finite temperature.

The optical properties of a conductor are then related to transitions

within the conduction band [146]. To this aim, free electrons models

are usually adopted, which lead to results similar to Eq. 2.2, where a re-

duced electron mass m∗
e locally approximates the conduction band with

the parabolic dispersion relation typical of free particles. On the contrary,

the resonant properties are associated to transitions between the valence

ψv(k, r) and the conduction ψc(k, r) band, with an energy difference of

h̄ωcv(k). After solving for the band structure via DFT (or equivalent

methods), one can then estimate the transition rate due to the coupling

Ĥint = −(qe/me)p̂ ·A with light3, where this latter is treated as a classical

3The minimal coupling Hamiltonian, with Ĥint = −(qe/me)p̂ · A, in this regime
should be equivalent to that in the dipole gauge (i.e. Ĥint = −d̂ · E). Nonethe-
less, a technical problem emerges in the calculation of ⟨d̂⟩ in an extended periodic lat-
tice, given by the contrast between the local definition of the dipole moment (which
is related to a positional displacement from each atomic center) and the global defini-
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field. In sight of Fermi’s golden rule, one can infer the absorption coefficient

as [147, pp. 149-155]

Im χcv
res(ω) =

8π2q4e
m2

eω
2

∫
BZ

dk

(2π)3
|pcv(k)|2δ(h̄ωcv(k)− h̄ω), (2.6)

where pcv(k) =
∫
UC ψ

∗
c (k, r)(−ih̄∇)ψv(k, r)dr is the electron momentum

matrix element associated with the chosen transition, in Bloch space. The

real part of the susceptibility can be then computed by plugging Eq. 2.6

into the Kramers-Kronig relation, leading to

Re χcv
res(ω) =

16πq4e
m2

e

∫
BZ

dk

(2π)3
|pcv(k)|2/ωcv(k)

ωcv(k)2 − ω2
. (2.7)

This expression closely resembles Eq. 2.3, and indeed some works include a

phenomenological decay term −iγ′ω at the denominator, to emulate inelas-

tic losses [56], such as phononic excitations. Differently from the case of

single atoms or molecules, however, here the (localized) orbitals are broad-

ened into bands, and one has to account for the contribution of transitions

over the whole Brillouin zone [4].

Within this formalism, some arguments can partially explain why ex-

treme indices of refraction are unlikely, when considering typical energies of

the bands and of the bandgaps [4, 55–57]. These results, along with those

of the more naive DL model, might suggest that the search for extreme

indices should focus on the intermediate region between quantum optics

and solid-state physics, where the response is dominated by the multiple

scattering of light. In particular, in Chapter 4 we will try to address this

idea. For the moment, in the next section we review the most common

model to describe the opposite limit of pure quantum optics, namely MB

theory.

2.1.2 Maxwell-Bloch equations of an atomic ensemble

Nowadays, the cornerstone of our understanding and description of quantum

atom-light interfaces is constituted by the MB equations [14]. Differently

from the classical DL model, they retain the quantum nature of atoms and

tion of the Bloch modes (extended over the whole lattice) [4]. One has indeed that
d(k) = e

∫
UC

ψ∗
c (k, r) r ψv(k, r)dr would wrongly depend on the arbitrary definition of

the unit cell of integration. The momentum space of p, on the other hand, is global by
definition, allowing to solve this discrepancy.
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light4, aiming to capture its behaviour via macroscopic quantum operators.

Specifically, its predictions well describes disordered ensembles of quantum

emitters, such as an ultra-cold gas of atoms, as long as the validity of

its approximations doesn’t break down. Its drastic simplifications, indeed,

have caused many essential aspects of atom-light interactions to be largely

ignored, particularly when multiple scattering comes into play [148]. These

effects are only starting to be appreciated again, given the emergence of

ordered atomic lattices [149–152] or dense atomic clouds [153–159], where

multiple scattering plays a preeminent role.

Similarly to the previous section, the full wave-equation of the electric

field operator in the presence of N quantum dipoles (atoms) reads

∇×
(
∇× Ê

)
+

1

c2
∂2t Ê = −µ0∂2t

N∑
j=1

σ̂jged0δ(r− rj), (2.8)

where now Ê is the quantum operator associated to the electric field, while

the terms σ̂jge ≡ |gj⟩ ⟨ej | stand for the quantum coherence operators of

the j-th atom5 and d0 is the dipole matrix element associated with the

transition between ground state |g⟩ and excited state |e⟩ (here, for simplicity,

we focus on a two-level atom). The quantities σ̂jged0 represent the quantum

operators associated to the atomic dipoles dj .

Within the MB approximation, the granularity of atomic positions is

ignored and the discrete set of atomic dipoles is replaced by a macroscopic

smooth polarization field P̂ge(r), which is defined by assuming a uniform

atomic distribution, namely
∑N

i δ(r − rj)σ̂
j
ged0 ≃ (N/V )P̂ge(r). The

polarization operator P̂ge(r) evolves under the usual dipole Hamiltonian,

along with independent emission, and its dynamics read

i∂tP̂ge = −Γ0

(
∆+

i

2

)
P̂ge −

d∗
0 · Ê
h̄

[
P̂gg − P̂ee

]
, (2.9)

where we defined the dimensionless detuning parameter ∆ = (ω − ω0)/Γ0,

between the light frequency ω and the atomic resonance ω0 ≡ k0c, and

where the densities of population of the ground P̂gg(r) and excited P̂ee(r)

states are smoothly defined analogously to the coherence operator P̂ge(r).

In these equations, the atoms are assumed to spontaneously emit at an

independent rate, quantified by the rate Γ0 = k30|d0|2/(3πh̄ϵ0), which is

4This is possible because atomic ensembles are simpler compared to solid-state sys-
tems, where a long list of quantum-chemical effects cannot be neglected.

5In the rotating frame of the incoming light.
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identical to the spontaneous emission rate of a single atom in vacuum.

Typically, Eq. 2.8 (with the sum of the atomic dipoles replaced by P̂eg)

and Eq. 2.9 are used to address the quantum state of light, including non-

linear effects due to the coupling with atoms. These quantum-operator

equations are still challenging to solve generally, and in our work we are in-

terested in the regime where Eq. 2.9 is simplified by the assumption of weak

nonlinearities. This corresponds to studying the linear, optical response as-

sociated to the refractive index, and it is motivated by the observation that

the number of absorbed photons is typically much lower than the number of

atoms, allowing to write |⟨P̂ee⟩|≪ |⟨P̂gg⟩|≃ 1. Taking further the classical

limit, where operators are replaced by their mean values, one can define the

polarization density P(r) = (N/V )⟨P̂ge(r)⟩, arriving to the linear response

P(r) = (N/V )α0(∆)E(r), which is characterized by the atomic polarizabil-

ity α0(∆) = 3πϵ0/[(−∆− i/2)k30] . In turn, this permits to easily solve the

Maxwell equations for monochromatic plane waves, predicting a refractive

index given by

nMB(∆) =

√
1 +

N

V ϵ0
α0(∆) =

√
1 +

3πη

−∆− i/2
, (2.10)

where we recall the definition of the dimensionless density η ≡ N/(V k30).

This formula is completely analogous to Eq. 2.5, which described the DL

index, when one single resonance dominates the optical response. This is no

coincidence, given that atoms have a very narrowband and strongly resonant

response, and that we are focusing on the classical limit of linear atomic

response.

The result of Eq. 2.10 means that the index of refraction indefinitely

grows with η, reaching for instance resonant values of nMB ∼ 102 ÷ 103 at

the typical density of air. This prediction is directly related to the simplifi-

cations adopted by the MB model. It is assumed, indeed, that at each point

in space the polarization field decays with a constant decay rate Γ0, inde-

pendently from the effects of other surrounding atoms in the cloud. This

results in an additive response, where the overall susceptibility is simply N

times the polarizability that one atom would have if no other atoms were

present. Atoms, however, are non-absorbing scatterers, and it is well-known

in other branches of optics that light propagating through a dense medium

of scatterers produces a highly complex speckle pattern in the output inten-

sity (see Fig. 2.1), due to multiple scattering and wave interference of light

[23, 24]. As there must be a direct correspondence between the intensity in

this complex pattern and the emission of the atoms, one can conclude that
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Figure 2.1: Illustration of a typical speckle pattern given a fixed random
atomic ensemble. 3D reconstruction of the forward scattered intensity I(r)/I0 =
|E(r)/E0|2 over a hemispherical surface far from the sample. The intensity value
is described in terms of the color bar on the right, while the atomic ensemble
is depicted in terms of green points, placed inside a pictorial box. The input
Gaussian beam is characterized by its waist, which is portrayed with an orange
surface. The optical behaviour is numerically calculated by means of the coupled-
dipole formalism, which will be defined in the next section.

the true model for atomic decay must be more complex than independent

emission. Furthermore, as such speckle cannot arise without granularity, we

can also conclude that a more accurate model must take granularity into

account.

2.1.3 Lorentz-Lorenz approximation

Historically, the LL (or Clausius-Mossotti) model represented one early at-

tempt to approximate the local corrections due to multiple scattering, and

it remains widely used today, both in the context of solid-state and atomic

physics. Within this model, one considers a local field Eloc(r) acting on

each atom, which is different from the macroscopic field E(r), due to the

light re-radiated by the surrounding atoms. This effective field Eloc(r) is

estimated by defining a small empty sphere6 that separates each atom from

the rest of the material, which is approximated as a smooth medium, and

then solving the problem by means of classical electrostatics [160–162].

6Often referred to as the Lorentz sphere.
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Figure 2.2: Pictorial representation of the LL correction inside the Lorentz
sphere. a) Surface charge density induced by the polarization at the interface, due
to the presence of an empty sphere inside a smooth medium. b) Contribution to the
electric field felt at the center of the Lorentz sphere (i.e. where the atomic dipole
is placed), due to the presence of the surface bound charges. When integrating all
the contributions, the part of the field perpendicular to the atomic dipole vanishes,
as represented by a red cross.

Specifically, at the interface between the empty sphere and the rest of the

medium, the atomic dipole induces a local surface density of charges, which

provides a supplementary, corrective field back to the atom (a schematic

representation of this process is depicted in Fig. 2.2). This leads to the new

definition of P(r) = ϵ0χ(ω)Eloc(r), with the local field given by

Eloc(r) = E(r) +
P(r)

3ϵ0
, (2.11)

which results in a different prediction for the refractive index, reading

nLL(∆) =

√
1 +

χ(ω)

1− χ(ω)/3
. (2.12)

Here, the value of χ(ω) depends on the underlying physical model, which

is usually either DL or MB. For this latter case, one has that χ(ω) =

(N/V )α0(∆)/ϵ0, which leads to [163]

nLL(∆) = nMB(∆ + πη) =

√
1 +

3πη

−(∆ + πη)− i/2
. (2.13)

An analogous result can be inferred starting from the resonant limit of the

DL index, which was discussed in Eq. 2.5. Despite representing a partial

correction to the MB equations, the LL model is still only phenomenolog-
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ical in origin. In particular, it simply results in a shift of all spectra by an

amount ∆ → ∆+ πη, and the maximum index of refraction will still scale

as ∼ √
η. In the context of dipole ensembles, indeed, successful agreements

between LL predictions and experimental results were historically obtained

in regimes of low optical response (N/V )α0(∆)/ϵ0 < 1, where the approx-

imated arguments of this model can be sufficient [164].

2.2 The problems with smooth theories

Smooth-field models have a well-established list of successes in predicting

optical phenomena, in situations where the multiple scattering of light is

weak. Nonetheless, in the last decade optical experiments with cold atomic

clouds have started to explore regimes where the average inter-atomic dis-

tances become comparable or smaller than the resonant, optical cross sec-

tion σ0 ∝ λ20 of single atoms, so that multiple light scattering cannot be

ignored anymore7. A list of some prominent examples is given in Table 2.1,

where the first two columns report the peak density η = N/(V k30) and the

temperature T . These works were able to study densities as high as η ∼ 1

or fraction of unity, which represent the onset of the regime of η ≳ 1 where

multiple scattering is expected to completely dominate the optical response.

In particular, in Table 2.1 we report their analysis of the optical response as a

function of increasing densities (given a fixed size of the ensemble). These

experiments already observe a relevant number of discrepancies between

their results and that predicted by traditional, smooth-medium theories.

These include the saturation of the optical scattering per unit length, which

is experimentally quantified by studying the Optical Depth (OD), i.e. the

quantity OD ∼ nimk0L, for ensembles with a fixed length L (in the direc-

tion of light propagation), and increasing density (third column). At the

same time, they also witnessed an abnormal shift of the resonance frequency

(fourth column) or broadening of the optical linewidth (fifth column). Some

supplementary analysis of can be found in [165, 169, 170].

On top of that, multiple scattering of light can be equivalently inter-

preted as a phenomenon of wave interference between the light scattered by

each atom. Interference effects can be expected to be prominent in ordered

arrays, where destructive or constructive interference might be maximized.

For example, great interest was recently gathered by the theoretical possibil-

ity of exploiting these processes to build a perfect mirror out of a single 2D

7At higher temperatures (such as with hot atomic vapours) Doppler broadening would
suppress the resonant effects of multiple scattering [165–168].
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Ref. η T(µK)
Saturation
of OD

Resonance
shift δω

Linewidth

[153] 0.5 100
Depends
on ω

δω < 0 ∝ η0.08

[154] 0.9 110 Yes δω ∼ 0 Broadens

[155] 0.9 110 – δω ∼ 0 –

[156]
[157]

≲ 0.4 120 Yes δω < 0 ∝ η

[158] 0.3 0.3 Yes δω > 0 ∝ η

[159] 0.15 150 – δω < 0 Broadens

Table 2.1: Experimental evidence of deviations from mean-field models,
with dense cold atomic clouds. Table comparing the results of various ex-
perimental references (first column), studying the optical properties of a cold
atomic ensemble. The second and third column represent the peak atomic density
η = N/(k30V ) (in units of k−3

0 ) and temperature T . The notation “–” stands for
“not analyzed in the paper”. Some of the main results are also listed, showing
discrepancies with MB and LL when increasing the atomic density, which include
witnessing a saturation of the OD (defined as the total losses, i.e. the imaginary
part of the index multiplied by the length of the ensemble in the direction of light
propagation OD = nimL), the shift of the central resonance frequency or the
broadening of the total linewidth.

atomic array [149, 150], as was experimentally addressed in [171]. Finally,

other works have explored the effects of multiple scattering on different opti-

cal phenomena, such as collective resonance shifts [163, 166, 167, 172, 173],

cooperative scattering properties [174–176], emergence of sub- and super-

radiance [151, 177–181], and Anderson localization of light [182, 183].

2.3 Atoms in free space: a spin model formalism

The full description of atoms in free space interacting with light must ac-

count for all the mutual interactions due to multiple scattering in a contin-

uum of directions, spanning the whole solid angle. To accomplish that, one

historical approach has been a Spin Model (SM) formalism [151, 184–187],

which we discuss here.

Given an atomic cloud illuminated by an external light beam, the total
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Figure 2.3: Pictorial representation of the total field reconstruction. The
total field at a given point (orange boxes) is given by the sum of the input field
shone onto the atomic ensemble (blue boxes) and the various fields scattered by
the different atoms (green boxes).

field can be directly expressed as the linear sum of the input field Ein(r)

and the field scattered by the various atomic dipoles, as pictorially depicted

in Fig. 2.3. Assuming that the atoms respond to near-resonant light as

two-level systems, with a dipole matrix element d0, this reads

Ê(r, ω) = Êin(r, ω) +
k20
ϵ0

N∑
j=1

¯̄G(r− rj , ω0) · d0 σ̂
j
ge. (2.14)

The emission pattern of each single atom at position rj is given by the

Dyadic Green’s tensor ¯̄G(r− rj , ω0), which has the form

¯̄G(r, ω0) = k0
eiρ

4π

[(
1

ρ
+

i

ρ2
− 1

ρ3

)
I+

(
−1

ρ
− 3i

ρ2
+

3

ρ3

)
ρ⊗ ρ

ρ2

]
,

(2.15)

where we defined ρ ≡ |ρ|≡ |k0r|, with k0 = ω0/c. This tensor represents

the full vectorial field emitted by a d0-polarized dipole. Its radiation pattern

is composed of several terms, which can be related to interaction strength

at different ranges of distance. In particular, one can distinguish between a

far-field behaviour and a near-field term, characterized, respectively, by the

∼ 1/ρ and the ∼ 1/ρ3 scalings. Due to the non-absorbing nature of atoms,

each atomic excitation gets converted into an electromagnetic scattered

field, as encoded by the presence of the quantum dipole operators σ̂jge.

The formula presented in Eq. 2.14 is valid in the Markovian regime,

which allows to approximate ¯̄G(r − rj , ω) ≃ ¯̄G(r − rj , ω0), so that the

Fourier transformation becomes local in time [151]. This is justified by the

very narrowband optical response of atoms (with a typical width of Γ0 ≪
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ω0), and its physical meaning can be clarified in the time domain. This

assumption, indeed, expresses the idea that light travels between different

atoms so quickly, that it can be approximated as instantaneous, compared

to the typical time-scale ∼ 1/Γ0 of the atomic dynamics. Specifically, this

corresponds to 1/Γ0 ≫ |rj−ri|/c, which is fulfilled as long as |rj−ri|≲ 1m,

for typical magnitudes of the spontaneous emission rate [151]. Eventually,

we remark that Eq. 2.14 is completely equivalent (except for the Markovian

assumption) to the Maxwell’s wave equation8 of Eq. 2.8.

The input-output equation of Eq. 2.14 permits to efficiently reconstruct

the complete field at a given point, in terms of only the atomic spins σ̂jge. In

turn, the atomic quantum state is driven by the field itself, which depends on

all other atoms. It can be shown that the full dynamics of the atomic density

matrix ρ̂ evolving under the re-scattered fields are given by [148, 151, 188]

dρ̂

dt
= − i

h̄

(
Ĥeffρ̂− ρ̂Ĥ†

eff

)
+ J [ρ̂] ,

Ĥeff = Ĥ0 −
k20
ϵ0

∑
j,k=1

d∗
0 · ¯̄G(rj − rk, ω0) · d0 σ̂

j
egσ̂

k
ge,

J [ρ̂] =
2k20
ϵ0h̄

∑
j,k=1

d∗
0 · Im ¯̄G(rj − rk, ω) · d0 σ̂

k
geρ̂σ̂

j
eg,

(2.16)

where the effective Hamiltonian Ĥeff is a non-Hermitian operator (i.e. in-

cludes emission into the photonic bath), while the Liouvillian super-operator

J [ρ̂] describes the ”population recycling” terms, i.e. the terms which in-

crease the ground state population when an excitation gets lost. Intuitively,

the terms σ̂jegσ̂kge in Ĥeff describe the exchange of excitations between two

different atoms j and k, which can be physically interpreted as a multi-

ple scattering event involving emission of a photon by one atom and re-

absorption by another atom. By accounting for all of these events, then,

the model is able to completely capture the full multiple scattering problem,

providing a complete description of the many atoms-field system.

2.3.1 Linear limit of coupled-dipoles equations

The SM equations of the previous section provide a reliable formalism, which

includes the full quantum dynamics of the atomic ensemble interacting with

8This can be easily verified by recalling the mathematical definition of the Dyadic
Green’s tensor ¯̄G(r, t), which reads ∇× [∇× ¯̄G(r, t)] + ∂2

t
¯̄G(r, t)/c2 = δ(r)I.
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the electromagnetic field. Nevertheless, finding general solutions of Eq. 2.16

for any 3D random configuration is a hard task, since the dimension of the

full atomic Hilbert space grows exponentially as 2N . Due to this reason, one

can truncate the Hilbert space to those states where only one atom is excited

at a time, which is valid in the linear response regime of low-intensity input

fields. The dimension of the single excitation manifold, then, only grows

linearly in N , allowing to efficiently treat the equations while still retaining

the complexity of the full multiple scattering many-body problem. The

atomic quantum state can thus be written as |ψ⟩ ≃ |g⟩ +
∑N

j βj |ej⟩ +
O(|β|2), where the ground state coefficient, due to the small amount of

excitation, was approximated as ∼ 1. In the equations of motion, the jump

operator J [ρ̂] ∼ O(|β|2) is then negligible, so that the steady-state solution

of Eq. 2.16 reduces to a N ×N purely algebraic problem, which reads

−∆

(
Γ0

Ω0
βj

)
−

N∑
k=1

Gjk

(
Γ0

Ω0
βk

)
=

d∗
0 ·Ein(rj)

|d0|E0
,

E(r) = Ein(r) + E0

N∑
j=1

Gj(r)

(
Γ0

Ω0
βj

)
.

(2.17)

Here, we defined the Rabi frequency Ω0 = E0|d0|/h̄ in terms of the mag-

nitude scale E0 = Ein(0) of the field, as well as the rate of spontaneous

decay Γ0 = k30|d0|2/(3πϵ0h̄). At the same time, we recall that the di-

mensionless detuning is defined as ∆ = (ω − ω0)/Γ0. In Eq. 2.17, the

Green’s tensors are encoded in the definitions of the parameters Gj(r) ≡
(3π/k0)

¯̄G(r − rj , ω0) · d0/|d0| and Gjk ≡ d∗
0 · Gj(rk)/|d0|. There, we

define Gjj = i/2, recovering the single-atom decay rate (in units of Γ0),

and regularizing the divergent self-energy associated to Re ¯̄G(r → 0, ω0).

In this limit, the nonlinear nature of the atomic energy levels is ignored,

and the atoms respond as classical, harmonic oscillators. This motivates

the use of this formalism to study the emergence of the refractive index,

which quantifies the linear optical response of the atomic medium. At the

same time, this also explains why Eq. 2.17 is mathematically equivalent to

those equations describing a system of N classical dipoles dj = βjd0 with

polarizability α0(∆) = 3πϵ0/[(−∆− i/2)k30] .

2.3.2 2D atomic arrays

When free-space atoms are positioned in an ordered geometry the dipole-

dipole interactions can radically alter the overall atomic response. This is the
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Figure 2.4: Complex eigenvalues ω(kxy)− iΓ(kxy)/2 of a 2D atomic array in
free space. The array extends in the x̂-ŷ plane, and the atomic dipoles are aligned
along x̂. The red, dashed lines describe the edge of the light cone |kxy|≤ k0, while
the black (a) and white (b) dotted lines correspond to the isoenergetic curves
ω(kxy) = ω(0). The lattice constant is dz = 0.05λ0.

case of 2D atomic arrays, that we review in the two-level, single-excitation

limit of Eq. 2.17. Rich physics was indeed highlighted in this regime, such as

the possibility of exponentially improving the storage efficiency of quantum

memories based on electromagnetically induced transparency [151, 152].

Atoms in free space can talk to a continuum of electromagnetic modes,

spanning the whole solid angle. Usually, this means that the energy can

spontaneously escape outside the atomic ensemble. Nonetheless, when

they are neatly ordered, the dipole-dipole interactions cause the appear-

ance of collective guided modes, as long as the translational symmetry is

preserved. The reason is not surprising, as can be derived in the limit

of an infinite array. In that regime the Bloch theorem defines the eigen-

modes
∣∣Ekxy

〉
=
∑N

j eikxy·Rj |ej⟩ /
√
N of the interaction matrix Gjk of

Eq. 2.17, where we identify with Rj the atomic positions. These modes are

associated to a continuum of complex eigenvalues ω(kxy)− iΓ(kxy)/2 =

−Γ0
∑

j Gj0e
ikxy·Rj , whose imaginary part quantifies the rate of photon

losses out of the array. To emit in free space, however, each Bloch mode

must satisfy the dispersion relation |kxy + kzẑ|= k0. As shown in Fig. 2.4

for a square lattice of constant d with x̂-aligned dipoles, those Bloch modes

outside the light cone |kxy|= k0 (red, dashed circle) are then associated

to evanescent normal components kz ∈ C2, which cannot propagate in the

ẑ direction and remain confined inside the array [151]. Since the Brillouin

zone is given by kx,y ≤ π/d, the condition |kxy|> k0 requires d ≤ λ0/
√
2.

In addition, it is interesting to study the optical scattering. When illu-

minated by a plane wave at normal incidence, the light can only excite the
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mode
∣∣Ekxy=0

〉
(with kxy = 0) to conserve the symmetry, which effectively

reduces the array to a single-mode system. When this collective mode de-

cays, the output field can be calculated via Eq. 2.17. The atomic array is

then equivalent to an optical grating, which from classical optics is charac-

terized by a discrete set of diffraction orders given by kz =
√
k20 − |gmn|2,

where gmn = (2π/d)(mx̂ + nŷ) are the reciprocal lattice vectors. If the

array is subwavelength d < λ0, then all the orders become evanescent (i.e.

Im kz > 0) except gmn = 0, thus reducing the problem to transmission

or reflection into the same 1D direction ẑ of the input light9, as quantified

by the complex coefficients t and r. Due to the single-mode nature of this

problem, when the input light is resonant at ω(0) with the collective mode∣∣Ekxy=0

〉
, the system becomes perfectly reflecting (with |r|2= 1) due to

perfect destructive interference [149, 150], as experimentally addressed by

[171]. More generally, this reflects the lossless nature of this single-mode

response, as certified by the relation |t|2+|r|2= 1, which retains valid for

any frequency of the input light.
The properties introduced above have a relevant role in Chapter 4, where

we analyze the refractive index of a 3D lattice of atoms in terms of 2D
planes. Specifically, we show that the key ingredient of single-mode, lossless
response can give rise to extreme (both ultra-high and near-zero) and purely
real indices of refraction. At the same time, in Chapter 5 we discuss how
two (or more) consecutive 2D arrays can be engineered to transmit light
with an arbitrary phase shift, acting as the building blocks of an “atomic
metalens”.

9When d < λ0/2 a similar argument applies to any incident angle of the input light
[150].
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3.1 Introduction

All the optical materials that we know of, with a positive index of refraction

at visible wavelengths, universally have an index of order unity n ∼ O(1),

either off resonance or closer to resonance [5–12]. Yet, despite the profound

implications of an extreme refractive index (as detailed in Section 1.1.1), a

deep understanding of the origin of this apparently universal behavior seems

to be lacking. Furthermore, this property of real materials is not readily rec-

onciled with the fact that a single, isolated atom exhibits a giant scattering

cross-section σsc ∼ λ20 for photons resonant with an atomic transition of

wavelength λ0 (Fig. 3.1-a), which far exceeds both the physical size of the

atom or the typical lattice constant of a solid.

As we discussed in Section 2.1, in standard optical theories [189, 190],

the macroscopic index of an atomic medium (Fig. 3.1-b) is constructed
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Figure 3.1: Optical response of an atomic medium. a) Illustration of a single
atom with a dipole-allowed optical transition between ground and excited states
|g⟩ and |e⟩, characterized by a transition wavelength λ0 and spontaneous emission
rate Γ0. Such an atom exhibits a scattering cross section (illustrated by the shaded
region) of σsc ∼ λ20 for a single resonant photon (wavy green arrows). b) In a dense
ensemble with many atoms per cubic wavelength λ30, the scattering of an incident
photon can involve multiple scattering and interference between atoms. c) In con-
ventional theories of macroscopic optical response, the atoms are approximated by
a smooth medium, and the index is derived from the product of single-atom polar-
izability and density. The maximum index n near the atomic resonance then scales
with atomic density like n ∼

√
Nλ30/V . d) In our renormalization group theory,

we retain multiple scattering and granularity, showing that the optical properties
of the ensemble are determined by a hierarchy of nearby atomic pairs that strongly
interact via their near fields. These interactions effectively produce an inhomoge-
neously broadened ensemble, where the amount of broadening scales with density
(with the different colors of atoms representing the different resonance frequencies
in the figure). An incident photon of a given frequency thus sees only ∼ 1 near-
resonant atom per reduced cubic wavelength to interact with, regardless of atomic
density. This results in a maximum index of n ≈ 1.7.

from the product of the single-atom polarizability and the atomic density,

and around resonance its value n ∼
√
Nλ30/V extrapolates to a maximum

of ∼ 105 at solid densities (Fig. 3.1-c). It is well-known that this argument
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neglects multiple scattering of light and photon-mediated dipole-dipole in-

teractions [169, 191], and substantial work has been devoted to explore

their effects on various optical phenomena, as summarized in Section 2.2.

In particular, we recall that this includes theoretical and experimental evi-

dence that the optical response of dense gases can be much smaller than

standard predictions [153, 159, 169, 174, 192] or even reach limiting values

[154, 156–158, 165, 170, 193]. However, an underlying physical explanation

is still missing, and our goal here is to understand better the mechanisms

that might limit the index even when operating close to resonance.

Specifically, we investigate in detail the optical response of an ideal

ensemble of identical, stationary atoms, as a function of density starting

from the dilute limit, and well within the regime where the atoms do not

interact chemically. The atoms are assumed to be ranomly positioned in

space, with a uniform distribution. In large scale numerics (involving up to

∼ 25000 atoms, about an order of magnitude larger than comparable works

[154, 157–159, 165, 166, 169, 170, 173–176]), we find that the maximum

index does not indefinitely grow with density, and saturates to a maximum

value of n ≈ 1.7, when the typical distance between atoms becomes smaller

than the length scale associated with the resonant cross section, i.e. d <

λ0. Furthermore, we introduce an underlying theory based upon strong-

disorder RG, which has been a very successful technique to deal with highly

varying interaction strengths in a wide variety of condensed matter systems

[194–201]. In the context of our particular problem, the combination of

strong near-field (∼ 1/r3) optical interactions and random atomic positions

enables one to characterize the optical response of the system in terms of

a hierarchy of strongly interacting, nearby atomic pairs. The shifts of the

resonance frequencies arising from the near-field interactions then effectively

yield an inhomogeneously broadened optical medium, where the amount of

broadening linearly scales with density. This implies that light of any given

wavelength only interacts with at most ∼ 1 near-resonant atom per reduced

cubic wavelength λ30/(2π)
3, regardless of the physical atomic density, thus

limiting the optical response (Fig. 3.1-d).

Our results are potentially significant on a number of fronts. First, in the

context of disordered ensembles, they provide a convincing picture of why

typical theories for optical response, based upon a smooth density approx-

imation, fail for dense, near-resonant atomic media, due to the important

role of granularity and strong interactions of any given atom with a particu-

larly close-by, single neighbour. Furthermore, our results show the promise

of a bottom-up approach to understanding the physical limits of refrac-

tive index, starting from objects (isolated atoms) whose optical responses
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are both huge and exquisitely understood. Separately, the existence of a

fundamental mechanism that results in inhomogeneous broadening (i.e. de-

phasing) and saturation of optical properties at high densities, which occurs

even for perfect, stationary atoms, should impose fundamental bounds on

the maximum densities and minimum sizes of atom-light interfaces needed

to realize high-fidelity quantum technologies. Finally, while we focus here

on the linear optical response of a dense atomic medium, we believe that the

validity of RG is quite general, and can constitute a versatile new tool for the

generally challenging problem of multiple scattering in near-resonant disor-

dered media [158, 159, 165, 169, 170, 175, 182, 192, 202–204], including

in the nonlinear and quantum regimes [205].

This chapter is structured as follows. First, we present our large-scale

numerical simulations, describing a few implementation details that allow

the index to be efficiently calculated, and show that the index eventually

saturates with increasing density to a maximum value of nre ≈ 1.7. Then,

we introduce our RG theory, which highlights the importance of granular-

ity and nearby atomic pairs on the macroscopic optical response, before

concluding with an expanded discussion of future interesting directions to

investigate.

3.2 Coupled-dipole simulations

We consider a minimal system consisting of N identical, stationary two-level

atoms. The atoms are assumed to have an electronic ground and excited

state |g⟩, |e⟩, with frequency difference ω0 and associated wavelength λ0 =

2πc/ω0, and which have an electric dipole transition with a dipole matrix

element along a fixed axis (say x̂), as depicted in Fig. 3.1-a. The excited

states of the atoms decay purely radiatively, with a rate of Γ0 for a single,

isolated atom. Moreover, we recall that we define the resonant wavevector

k0 = 2π/λ0, as well as the dimensionless detuning ∆ ≡ (ω − ω0)/Γ0 and

atomic density η = N/(k30V ).

As we are specifically interested in the linear refractive index, it is suffi-

cient to treat atoms in the limit of classical, polarizable, radiating dipoles. In

order to investigate the frequency-dependent index n(ω), we consider that

the atoms are driven by a monochromatic, linearly-polarized input beam

Ein(r, ω) = Ein(r, ω)x̂, whose polarization aligns with the polarizability

axis of the atoms. Each atom j acquires a dipole moment dj(ω) = dj(ω)x̂,

as a result of being driven by the total field, which consists of the sum of the

incident field and fields re-scattered from other atoms, as described by the
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coupled-dipole equations of Eq. 2.17, that we introduced in Section 2.3.1.

Although in our regime these equations are formally exact, we already

mentioned how their computational complexity fostered the development of

simplified, smooth theories (Fig. 3.1-c) for the macroscopic response, such

as the MB equations [190] of Eq. 2.10 or the LL model of Eq. 2.13, which

introduces the frequency shift nLL(∆) = nMB(∆ + πη). Notably, for an

optimum detuning, both models predict a maximum real part of the index

that scales as ∼ √
η.

3.2.1 Retrieving the index

The equations in Eq. 2.17 are ubiquitously used to model multiple scat-

tering and interference effects involving a moderate number of point-like

scatterers. Here, we briefly introduce some key details of our implementa-

tion, which allows us to perform simulations on very high atom number and

efficiently extract the index.

First, one direct way to extract the complex refractive index of a material

would be to take a slab of thickness L and large transverse extent, and

investigate the phase shift and attenuation of a quasi-plane-wave incident

field upon transmission. We approximately realize such a situation by taking

atoms with a fixed density in a cylindrical volume centered around the

origin, illuminated by a weakly focused, near-resonant Gaussian beam (see

Fig. 3.2). Decomposing the position r = {r⊥, z} in terms of a transverse

component r⊥ and axial component z, the beam amplitude within the

paraxial approximation is given by Ein(r) = Egauss(r, w0), where

Egauss(r, w0) = E0

(
w0

w(z)

)
exp

[
−
(

r⊥
w(z)

)2

+ ik0z + iφ(r, w0)

]
x̂,

(3.1)

where w(z) = w0

√
1 + (z/zR)2 describes the transverse extension of the

beam, while w0 = w(0) is the beam waist at the focal plane and φ(r, w0) =

− arctan(z/zR)+k0r
2
⊥/{2z[1+(zR/z)

2]} accounts for the curvature of the

wave-front and for the Gouy phase, assuming zR = k0w
2
0/2 [190]. Given

that the intensity of the beam drops off rapidly for transverse distances larger

than w(z), the parameters are chosen such that w(z) is small compared

to the radius of the cylinder, so that diffraction effects from the edges are

negligible. Finally we avoid very tight focusing w0 ≲ λ0, where non-paraxial

effects could emerge.

We must also specify a practical definition of index, for a granular system

as ours. In particular, since our atoms are purely scattering and have no
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Figure 3.2: Simulated physical system. A cylindrical ensemble of randomly
distributed atoms (green points) is illuminated by a z-directed Gaussian beam,
whose beam waist w(z) ≫ λ0 is represented in orange. The transverse radius
of the cylinder is chosen to be much larger than the beam waist, to avoid edge
diffraction.

absorption, it is well-known [175, 202, 203, 206] that for a fixed random

spatial configuration, an input as in Fig. 3.2 produces a complex “speckle”

pattern in the outgoing intensity when the system is optically dense, due

to multiple scattering and interference, as exemplified in the introduction

of this thesis with Fig. 2.1. To isolate the part of the field that possesses

a well-defined phase relationship with the incident field from realization to

realization, we project the total field E(r) (that we defined in Eq. 2.17)

back into the same Gaussian mode as the input, as can be experimentally

enforced by recollecting the transmitted light through a single mode fiber.

The physical and mathematical meaning of this process is better detailed

in Appendix A. This results in a transmission coefficient t(∆) given by

[152, 170]

t(∆) = 1 +
3i

(w0k0)2

N∑
j=1

E∗
in(rj)

E0
cj(∆), (3.2)

where E0 is the input field amplitude at the beam focus. Here, for con-

venience, we have defined re-scaled dipole amplitudes cj = Γ0βj/Ω0, with

βj representing the excited-state coefficients defined in the coupled-dipole

equations of Eq. 2.17. Similar considerations can be made to infer the

reflection coefficient

r(∆) =
3i

(w0k0)2

N∑
j=1

Ein(rj)

E0
cj(∆). (3.3)

Within this dimensionless formalism the coupled-dipole equations of Eq. 2.17
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become

−∆ci(∆)−
N∑
j=1

Gijcj(∆) =
Ein(ri, ω0)

E0
, (3.4)

where we recall that we define Gij ≡ (3π/k0)x̂ · ¯̄G(ri, rj , ω0) · x̂ and Gjj =

i/2, which coincides with the single-atom decay rate in units of Γ0, while

regularizing the divergent self-energy associated with the real part of ¯̄G.

Note that, for simplicity, the Green’s function ¯̄G(ri, rj , ω0) is only evaluated

at the atomic resonance frequency, in order to ease the computational cost

as the detuning is varied. We remind that ignoring the dispersion of ¯̄G is an

excellent approximation for near-resonant atoms, as the optical dispersion

and delay of such a system is dominated by the atomic response itself rather

than from the vacuum [207]. Similarly, we approximate the near-resonant

input field as Ein(ri, ω) ≃ Ein(ri, ω0).

The expression in Eq. 3.2 represents a useful closed-form definition of the

transmission coefficient t(∆), which avoids a numerically expensive point-

by-point evaluation of the scattered field E(r, ω), as nominally prescribed

by Eq. 2.17. We can extrapolate the complex index of refraction n(∆) from

the relation

⟨t(∆)⟩ = exp {i [n (∆)− 1] k0L} . (3.5)

where the averages are performed over ∼ 103−104 sets of random positions,

for each fixed density. Unlike in a smooth medium, we have that |⟨t(∆)⟩|2 ̸=
⟨|t(∆)|2⟩. Nevertheless, our definition of the index coincides with that often

used within atomic physics (e.g. in phase contrast or absorption imaging of

a Bose-Einstein condensate [208, 209]).

3.2.2 Numerical results

In Fig. 3.3, we plot our numerical results for the real and imaginary parts of

n(∆), as a function of the input field detuning ∆, and for various densities.

For comparison, we also plot the index as predicted by the MB equations,

which starts to appreciably deviate from the full numerical results for di-

mensionless densities η ≳ 0.1. Interestingly, for sufficiently high densities,

we observe that the computed spectra collapse onto the same curve when

plotted as a function of the re-scaled detuning ∆/η, as shown in the insets

of Fig. 3.3, which include all plots in the range 2 ≲ η ≲ 3. The invariance

of n(∆/η) for η ≳ 2 directly indicates that both the maximum real index

and the attenuation per unit length acquire fixed values with increasing

density, and that density only determines a linear broadening in the spectra.

Notably, the maximum real index saturates to a “real-life” value of ∼ 1.7,
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Figure 3.3: Frequency-dependent refractive index for different atomic den-
sities. The solid lines portray the imaginary (subfigure a) and real (subfigure b)
part of the refractive index versus dimensionless detuning ∆, obtained through
Eq. 3.2, while the dotted lines show the MB predictions. The colors denote differ-
ent atomic densities (colorbar on right), with the specific values indicated by the
dotted white lines. The refractive index is inferred by averaging the complex trans-
mission coefficient t(∆) over ∼ 103 − 104 atomic configurations. Other system
parameters are: thickness L = 0.4λ0, transverse radius 5 ≤ Rcyl/λ0 ≤ 7, beam
waist 2.5 ≤ w0/λ0 ≤ 3. The insets show the curves at the 3 highest densities as
a function of the rescaled detuning ∆/η.

in contrast to the indefinite growth predicted by both MB and LL.

We note that a number of experiments involving dense cold atomic

clouds have observed both a saturation of the index [154, 156, 158] and the

emergence of an anomalous broadening of the linewidth [153–155, 157, 159],

including a linear scaling with density [156, 158]. A maximum index of

n ≈ 1.26 has also been observed in experiments involving dense, hot atomic

vapours [193], which has been attributed to atomic collisions. However,

while complex collision dynamics necessitate semi-phenomenological models

[210], here, our mechanism for saturation is quite fundamental, and occurs

even for perfectly identical, stationary atoms.

3.2.2.1 Macroscopic behaviour of the index

In this technical subsection, we validate the independence of the calculated

index from the thickness L, which is implicitly assumed in Eq. 3.5. We also

discuss how, alternatively, one might assume that the calculated ⟨t(∆)⟩
approximately coincide with the finite-slab Fresnel coefficients for a smooth

material [211], which would produce an alternative way to extrapolate the

index, yielding closely similar results.

Our operative definition of the complex index of refraction is given by

Eq. 3.5. Since the refractive index is an intensive property by definition,

it must not depend upon the thickness L that we choose in our numerics.
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LLL

Figure 3.4: Independence of the refractive index from the thickness of the
ensemble. Given the physical system of Fig. 3.2 (with w0 = 2.5λ0, Rcyl = 5λ0),
we compare the resonant (∆ = 0) refractive index as a function of the density,
for various ensemble thicknesses: L = 0.4λ0 (in blue), L = 0.6λ0 (in green) and
L = 0.8λ0 (in orange). Subfigures a) and b) illustrate the real and imaginary parts
of the index, respectively. The insets show the full spectra n(∆) at a fixed density
η ≃ 0.28. All data are obtained by averaging ⟨t(∆)⟩ over > 1000 configurations.

Here, we show that our operative definition satisfies this condition. We

consider the same physical system described in Fig. 3.3, with w0 = 2.5λ0,

Rcyl = 5λ0 and different values of the thickness L. By applying Eq. 3.2

and Eq. 3.4, we compute the resonant (∆ = 0) refractive index for growing

values of the density η, and we plot its real (imaginary) part in Fig. 3.4-a(b).

The simulated values of the thickness are: L = 0.4λ0 (as Fig. 3.3, here in

blue), L = 0.6λ0 (in green) and L = 0.8λ0 (in orange). Moreover, for the

point at η ≃ 0.28, we evaluate the full spectra n(∆), as represented in the

insets of the figure. All curves show the same behaviour, independently of

L, both on resonance and when varying the detuning.

From the standpoint of classic optics, given a dielectric slab of length
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Figure 3.5: Recovering the reflection and transmission coefficients via Fres-
nel law. We solve the coupled-dipole equations of Eq. 3.2, Eq. 3.3 and Eq. 3.4 to
compute the transmission and reflection of the atomic medium, which are averaged
over many configurations (solid lines). Each color relates to a different value of
the atomic density, as denoted by the color bar (the white marks identify the exact
densities of the simulations). We then compute the refractive index n(∆) from the
phase of transmission, by means of Eq. 3.5 (similarly to Fig. 3.3). To verify the
consistency of this prediction, we plug the value of n(∆) inside the Fresnel laws
of Eq. 3.6, which describe in classical optics the transmission and reflection of a
macroscopic slab with index n(∆), and plot these results with dashed lines.

L and (complex) refractive index n(∆), the Fresnel equations predict

tFr(∆) =
4n(∆)ein(∆)k0L

[1 + n(∆)]2 − e2in(∆)k0L[n(∆)− 1]2
,

rFr(∆) =
[n(∆)2 − 1]

(
e2in(∆)k0L − 1

)
[1 + n(∆)]2 − e2in(∆)k0L[n(∆)− 1]2

,

(3.6)

due to the index mismatch at the interfaces with free space. As a consis-

tency check of our predictions for n(∆) (which were shown in Fig. 3.3), we

plug these values into the Fresnel equations, aiming to reproduce the initial

transmission and reflection resulting from the coupled-dipole simulations of
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Eq. 3.2, Eq. 3.3 and Eq. 3.4. This is shown in Fig. 3.5, where the solid

lines represent the values of ⟨t(∆)⟩ and ⟨r(∆)⟩ computed by solving the

coupled-dipole equations (and averaging over many configurations), while

the dashed lines display the Fresnel predictions.

Their agreement confirms our interpretation of the index. Physically,

our simplified method is valid because the non-negligible, near-resonant

absorption nim > 0 suppresses the multiple bouncing inside the slab between

its two interfaces, so that the Fresnel transmission in Eq. 3.6 approximately

reduces to Eq. 3.5.

3.3 Renormalization group approach

The analytic description of multiple scattering is a complex problem, even in

the linear regime. Differently from diagrammatic approaches [212, 213] or

from other attempts to treat the dipole-dipole interactions with a mean-field

models (such as the case of the “cooperative Lamb shift” [214]), we focus

on a non-perturbative analysis of the strongly correlated atomic system.

This is necessary in the high-density regime where the average inter-atomic

distance is much smaller than the size of the atomic cross section.

3.3.1 Physical intuition and definition of the scheme

Our RG theory is based upon the key intuition gained in the collective

scattering of just two atoms, to build up an understanding of the many-

atom problem in a hierarchical manner. To be specific, let us consider

the problem of two identical atoms, whose distance is much smaller than

a wavelength, ρ12 ≡ k0|r1 − r2|≪ 1. Applying Eq. 3.2 and Eq. 3.5, we

can calculate the imaginary part of the “index” of the two-atom system,

as illustrated in Fig. 3.6-a. One can see that the characteristic two-atom

spectrum (blue line) is not twice the response of a single, isolated atom

(green dashed curve), but instead consists of two, well-separated peaks

with different linewidths and shifted resonances.

To understand this behavior, we consider the normal modes of the two-

atom system, as encoded in the eigenstates of the dimensionless matrix G,

whose elements Gij were introduced in Eq. 3.4. When ρ12 ≪ 1, G is dom-

inated by its off-diagonal components G12 = G21, and in particular, by the

purely real 1/ρ312 near-field term (which we denote by Gnear
12 ). Specifically, in

spherical coordinates ρij ≡ ρij (cos θ x̂+ sin θ cosϕ ŷ + sin θ sinϕ ẑ), one
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80Figure 3.6: Renormalization group scheme. a) Representative optical response
of two identical atoms separated by a distance ρ12 ≪ 1. Here, we plot the ab-
sorption spectrum (blue curve), which consists of two well-separated Lorentzians.
The positions of the resonances are given by ∼ ∓Gnear

12 , where Gnear
12 ∝ 1/ρ312 is the

near-field component of the Green’s function. To compare, we also plot twice the
response of a single, isolated atom (green dashed line). b) Pictorial representation
of the RG scheme for a many-atom system. At each step of the RG flow the nearby
pairs (identified by orange circles) that mostly strongly interact via their near fields
are identified, and replaced with atoms with different resonance frequencies (indi-
cated by different colors) in such a way to produce an equivalent optical response.
At the end of the RG process (last panel) the overall system is equivalent to an
inhomogeneously broadened ensemble of weakly interacting atoms.

obtains

Gnear
ij =

3

4ρ3ij
(−1 + 3 cos2 θ). (3.7)

This describes the strong, coherent, near-field coupling between the two

dipoles. This produces symmetric and anti-symmetric eigenstates whose

dimensionless normal mode frequencies (real parts of the eigenvalues) are

shifted as ω± ≈ ∓Gnear
12 , and align with the resonant peaks seen in Fig. 3.6-

a. Given that Im G is also a 2 × 2 matrix with equal diagonal entries

and equal off-diagonal entries, its eigenstates are also the same symmetric

and anti-symmetric modes. This results in renormalized linewidths for these

modes (given by the eigenvalues of Im G) of Γ+ ≈ 2 and Γ− ≈ ρ212, which is

simply the two-atom limit of the famous Dicke superradiance model [178].

The key insight is that due to the large splitting, the total response in

Fig. 3.6-a is characterized by two well-separated resonances, which, although

arising from the strong interaction of identical atoms, resemble the case of

two, inhomogeneous and non-interacting atoms, which were assigned these

resonance frequencies and linewidths to start. This concept is at the heart

of the RG approach for the many-atom case.

We now discuss how strong, coherent 1/ρ3ij near-field interactions in a

many-atom system can be treated, by successively replacing strongly inter-
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acting pairs by optically equivalent, non-interacting atoms. Here, we will

focus on the main conceptual steps of our RG scheme, while additional

justification of this scheme can be found in Section 3.3.3. Given the discus-

sion above, we anticipate that the scheme generates an optically equivalent

ensemble containing atoms with different renormalized resonance frequen-

cies ωi. Contrary to the two-atom case, however, the linewidths will not

be renormalized within our RG scheme (see Section 3.3.3). At any step

of the RG flow, each pair of atoms can either interact, or not, through

the near-field coupling, depending on the previous RG steps. The normal

modes of such a system are given by the eigenstates of the generalized

N × N matrix M = diag(ω) − G̃, where the elements G̃ij are defined

as G̃ij = LijG
near
ij + (Gij − Gnear

ij ). Here, diag(ω) is a diagonal matrix

containing the individual resonance frequencies ω = (ω1, . . . , ωN ), while

Lij = 1 or 0 dictates whether pair i, j is allowed to interact via the near

field. At the beginning of the RG process, the optically equivalent ensemble

corresponds to the physical one, and thus all atoms are allowed to inter-

act (Lij = 1 for all pairs) and ωi = ω0. In three dimensions, the 1/ρ3

scaling of the near-field interaction implies that if an atom has a partic-

ularly close-by and near-resonant neighbour, this pair will interact much

more strongly between themselves than with any other nearby atoms [194].

Suppose that atoms i, j (with Lij = 1) are identified as the most strongly

interacting pair, by a prescription given below. Then, we can re-write M
as M = Mpair+(M−Mpair), where the only non-zero elements of Mpair

involve atoms i, j. This effective 2× 2 matrix reads

Mpair = ⟨ω⟩ijI+

 δωij −Gnear
ij

−Gnear
ij −δωij

 , (3.8)

where ⟨ω⟩ij = (ωi + ωj)/2 and δωij = (ωi − ωj)/2, and where we have

included the coherent near-field interaction inMpair. The remaining far-field

interactions between atoms i and j, as well as near- and far-field interactions

involving all other atoms, are included in (M−Mpair). The large near-field

interaction motivates diagonalizing Mpair first, while treating (M−Mpair)

as a perturbation.

From the structure of Mpair, we define the pairwise interaction param-

eter Kij = Lij |Gnear
ij |/(|δωij |+1). A large value of Kij (which requires

Lij = 1) implies that the strong near-field interaction is able to strongly

split the original resonances, including overcoming any possible differences

in resonance frequencies δωij of the pair. We thus identify the most strongly
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interacting pair as that with the largest value of Kij , as pictorially depicted

in the first panel of Fig. 3.6-b. Diagonalization of Mpair results in two, new

interacting resonance frequencies ω± = ⟨ω⟩ij ∓
√
δω2

ij + (Gnear
ij )2. We can

then obtain an approximately equivalent system by replacing the two original

resonance frequencies ωi,j with the new values ω± (second panel of Fig. 3.6-

b). While the resulting normal modes are in principle delocalized between

atoms i, j, to facilitate the RG, we randomly assign ω+ to either atom i or j,

while ω− is then assigned to the other atom (see Appendix B on the issue of

replacing atoms i, j with two new atoms placed at the midpoint of the orig-

inal locations). This new system is described by a renormalized interaction

matrix Meff = diag(ωeff)−G̃eff, where ωeff = (ω1, . . . , ω+, . . . , ω−, . . . ωN )

contains the two renormalized resonance frequencies, and where G̃eff in-

cludes the new set of allowed near-field interactions Leff, which both forbid

the renormalized pair from interacting again (i.e. Leff
ij = 0) and prevent

any backflow of the RG process (see Appendix B for more details). The RG

process can be iteratively repeated by identifying, at each step, the most

strongly interacting pairs, and ends once Kij ≤ Kcut-off ∼ 1, i.e. when

all strong near-field interactions have been removed. In the numerics pre-

sented here, we take a cutoff parameter of Kcut-off = 1. Other choices result

in minor quantitative corrections, while the overall conclusions remain the

same. The final result, as suggested in the third panel of Fig. 3.6-b, is that

the original, homogeneous system can be mapped to an optically equiva-

lent system that is inhomogeneously broadened, with a smooth probability

distribution of resonance frequencies P (ωeff).

3.3.2 Results of the renormalization

To validate the RG approach, we can use Eq. 3.2 and Eq. 3.4 (with the near-

field interactions of renormalized atoms suitably removed, see Appendix B)

to calculate the maximum real index (optimized over detunings) as a func-

tion of density η of the ensemble with renormalized resonance frequencies.

This is plotted in Fig. 3.7-a (green), along with exact numerical simulations

(blue) of Eq. 3.2 for the original system of identical atoms. These curves

show good agreement for all densities, and in particular, reveal a maximum

index of n ≈ 1.7 at high densities. For comparison, the maximum index of

the MB and LL equations (orange) increase indefinitely with density.

Furthermore, motivated by our previous observation that high-density

spectra collapse onto the same curve when the detuning is rescaled by

density (insets of Fig. 3.3 and Fig. 3.7-a), in Fig. 3.7-b, we plot the re-

scaled probability distribution of effective resonance frequencies P (ωeff/η)
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Figure 3.7: Renormalization group analysis. a) Comparison between the max-
imum real refractive index predicted by the full coupled-dipole simulations of iden-
tical atoms (blue points), and index of the equivalent, inhomogeneously broadened
ensemble predicted by RG (green). For each value of density, the maximum index
is obtained by optimizing over detuning. For comparison, the MB and LL models
both predict a maximum index given by the orange curve. The inset compares the
rescaled spectra Re n(∆/η) of the RG (green) and full coupled-dipole (blue) sim-
ulations, given the points at densities η ≳ 2. b) Rescaled probability distribution
of effective, inhomogeneously broadened resonance frequencies P (ωeff/η) obtained
from the application of the RG scheme. Given 9 different values of the density
η (ranging from η ≈ 2.5 up to η ≈ 80), the distributions of effective resonance
frequencies are plotted with a different color, according to the bar on the right.
The exact values chosen for the curves are emphasized by dotted white lines in
the color-bar. The curves at η ≈ 2.5 and η ≈ 3 are calculated using the cylin-
drical system studied in Fig. 3.3 (with thickness d = 0.4λ0 and transverse radius
lcyl = 5λ0), while the distributions P (ωeff/η) at densities η > 3 are evaluated
using a spherical geometry of radius rsph. = 0.55λ0. Finally, for the case of density
η ≈ 3 we plot (black dashed curve) the many-atom distribution of the eigenvalues
of the near-field matrix −Gnear (also rescaled by a factor of 1/η for consistency), as
discussed further in Section 3.3.3. All distributions are obtained by accumulating
results from ∼ 100 different configurations of atomic positions.

predicted by RG. For all densities considered (2.5 ≲ η ≲ 80), we see that a

single universal curve results, i.e. the amount of broadening grows directly

with density. Based on this curve, we find that the number of near-resonant

atoms per reduced cubic wavelength (λ0/2π)
3 = k−3

0 , within a range±Γ0 of

the original atomic resonance frequency, is approximately∼ 0.3. The limited

number of near-resonant atoms for light to interact with, regardless of how

high the physical density is, directly explains the saturation of the maximum

achievable index. We note that obtaining P (ωeff) by RG does not require

solving the coupled equations of Eq. 3.4, but only the diagonalization of 2×2

pairwise matrices, and we can calculate this distribution for much higher

densities up to η ∼ 80. Furthermore, as RG only involves the “short-range”

near-field interaction (see Eq. 3.8), we expect the rescaled distribution to
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be unique in the bulk of the atomic medium. That is, it should not depend

sensitively on the specific geometry, provided that the system is sufficiently

large that boundary effects are negligible. In Fig. 3.7-b, the curves for

η ≤ 3 are obtained by a cylindrical geometry (the highest densities that

we can compare to full coupled-dipole simulations, as in Fig. 3.7-a). For

higher densities η > 3, when comparing with coupled-dipole simulations

is no longer feasible, the extreme aspect ratio of the cylindrical geometry

makes it inefficient to explore significantly higher densities using RG. We

then find it more efficient to switch to atoms within a spherical geometry,

which has the smallest surface area to volume ratio.

Within the language of RG, the universal distribution P (ωeff/η) consti-

tutes the (numerically obtained) fixed point, as the interaction parameter

of a system flows toward Kij → 1. While it might be desirable to write

down and analytically solve the RG flow equation for P (ωeff), this appears

quite challenging in our case. This is because Kij not only depends on the

distance between atoms, but also their spatial orientation (as the near field

is anisotropic) and the difference in resonance frequencies.

As mentioned earlier, it is rather inconvenient to derive key optical prop-

erties of a system, like index, by solving a set of equations (Eq. 3.4) as large

as the number of particles. At the same time, the RG approach clearly shows

why conventional models (such as MB and LL) that treat atoms as a smooth

medium fail at high densities [166, 169, 173], since the optical properties

depend highly on granularity and on the strong interaction between an atom

and a single, particularly close-by neighbor. Interestingly, RG also provides

a basis to develop a more accurate smooth medium model. In particular,

after the system is mapped to an inhomogeneously broadened distribution,

P (ωeff), where near-field interactions and the influence of single neighbors

are seen to be strongly reduced, one can finally apply a smooth medium

approximation. Specifically, the MB equation (i.e. Eq. 2.10) for index can

be readily generalized to an inhomogeneously broadened ensemble

n(∆) =

√
1 + 3πη

∫
P (ωeff)

−∆+ ωeff − i/2
dωeff. (3.9)

Substituting the distribution found in Fig. 3.7-b, at high densities η ≫ 1,

this equation predicts a maximum index of n ≈ 1.8, in qualitative agreement

with full results. We stress that the emergence of a finite bound to the

maximum index predicted by Eq. 3.9 can be directly related to the invariance

of the distribution P (ωeff/η), and thus to the linear growth of broadening

with density.
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Figure 3.8: Fitting the RG distribution P (ωeff/η) with a Lorentzian. The
solid, colored lines show the rescaled, RG distributions P (ωeff/η) as equally rep-
resented in Fig. 3.7-b. Here, the black, dot-dashed line is a Lorentzian fit of the
universal function P (ωeff/η).

This can be intuitively visualized by approximating the RG distribution

with a Lorentzian function P (ωeff) ≈ 1.1η/(ω2
eff +10.8 η2) (via least-square

fitting), which simplifies Eq. 3.9 to n(∆) ≈
√
1 + 3π/[−(∆/η)− iπ]. The

validity of this approximation is addressed in Fig. 3.8.

3.3.3 Microscopic justification of the scheme

In the previous sections, we have established that our RG procedure repro-

duces well the dependence of refractive index on density. We now present

additional numerical and physical arguments that justify this approach and

its approximations. Casual readers can consider skipping this section and

jump to Section 3.4. In this section, we will specifically answer the following

questions:

1. Strictly speaking, RG is an approximate diagonalization of the many-

atom near-field interaction matrix Gnear, in terms of pairwise blocks.

In sight of that, how well does our RG prescription reproduce the

entire eigenvalue distribution of Gnear?

2. In our RG prescription, the collective symmetric and anti-symmetric

modes of two strongly interacting atoms are replaced by two new

effective atoms with electric dipole transitions and modified resonance

frequencies. However, this seemingly ignores the possibility that these

modes (in particular the anti-symmetric one) could have a higher order

multipolar character. Then, why is such a replacement valid?
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3. As a related point, these collective modes can be renormalized again

if they strongly interact with a third nearby atom. As a higher order

multipolar mode can have a different scaling of the near field (∼ 1/ρ4

in the case of the anti-symmetric mode), why does our replacement

scheme with an electric dipole transition and a ∼ 1/ρ3 near-field

interaction work?

4. Our RG prescription focuses on the strong interaction between nearby

pairs due to the near field, but the ∼ 1/ρ far field associated with a ra-

diating dipole might suggest that the large number of atoms far away

from a given atom might have a dominant effect in the interactions.

What justifies treating the near field first over the far field?

5. As seen in the case of just two interacting atoms (Fig. 3.6-a), both

the resonance frequencies and linewidths of the collective modes are

modified. Thus, why is it incorrect to renormalize both resonance

frequencies and linewidths pairwise in the many-atom problem?

6. In the coupled-dipole numerics of Fig. 3.3, we choose a cylindrical

shape of the atomic medium, to minimize the computational cost of

the simulations. When calculating the RG distribution P (ωeff), as in

Fig. 3.7-b, we instead opt for a spherical ensemble for densities η > 3.

How do these two scenarios relate? Is the “universal” function P (ωeff)

dependent on the system shape?

3.3.3.1 Comparison with eigenvalue distribution

First, while we have previously focused on the observable quantity of re-

fractive index, we note that mathematically, the RG approach is an attempt

to approximately diagonalize the many-atom, near-field interaction matrix

Gnear
ij = 3(−1 + 3 cos2 θ)/(4ρ3ij), in terms of pairwise blocks. We can

thus test its accuracy by comparing the probability distribution of effective

resonance frequencies P (ωeff) obtained by RG, with the probability distri-

bution of the eigenvalues of −Gnear obtained by exact diagonalization of

a many-atom, dense system. A remarkable agreement can be observed in

Fig. 3.7-b, where the rescaled distribution of effective resonances P (ωeff/η)

is compared with the eigenvalue distribution of −Gnear (also rescaled by

the density, black dashed curve), as calculated for the highest feasible den-

sity η ≈ 3 of our cylindrical system. We separately checked that different

(higher) densities and different geometries give similar results. Although

subtle, we point out for future work the presence of a slight asymmetry



3.3. Renormalization group approach 59

a) b)

c) d)

Log Isc.(r)

min

max

Figure 3.9: Radiation pattern of a single dipole, compared to that of two
in-phase or out-of-phase dipoles. a) Given an isolated dipole d of fixed dipole
amplitude d0 and direction x̂, which is placed at ρ = 0 and radiates light at the
frequency ω0, we plot the intensity of the radiated field Isc.(r) = |µ0ω

2
0
¯̄G(r, ω0) ·

d|2/(2µ0c) in the x̂-ẑ plane, with the value indicated in the colorbar. b-c) Radiation

pattern Isc.(r) = |µ0ω
2
0

∑
j=1,2

¯̄G(r−rj , ω0) ·dj |2/(2µ0c) for two near-positioned
dipoles of fixed amplitude d0 and direction x̂, oscillating either in-phase (b) or out-
of-phase (c) with one another (i.e. d1 = ±d2 = d0x̂), and placed at positions ρ1 =
−ρ2 = 0.1(x̂+ ẑ)/

√
2. d) Intensity radiated by two out-of-phase dipoles averaged

over all possible inter-atomic orientations, keeping fixed the mutual distance |ρ1−
ρ2|= 0.2. This pattern closely resembles that of a single oscillating dipole.

in the exact eigenvalue spectrum around ωeff = 0, which doesn’t appear

in the RG-derived distribution P (ωeff). This might arise from higher order

corrections to RG (e.g. rare triplets of nearly equidistant atoms, where the

pairwise picture fails).

3.3.3.2 Multipolar nature of collective modes

Even if RG accurately predicts the resonance frequencies of a strongly inter-

acting pair (e.g., the positions of the resonant peaks in Fig. 3.6-a), one can

wonder what is the justification of associating these two collective modes

with two new individual atoms, which we implicitly assumed up to now to

be characterized by electric dipole transitions like the original atoms.

To frame the issue, we recall from Section 3.3.1 that two strongly in-



60 Chapter 3 | Refractive index of a disordered atomic medium

teracting, identical atoms are diagonalized by a symmetric and an anti-

symmetric collective mode, where the two atomic electric dipoles respec-

tively oscillate in phase or out of phase with one another. Clearly, the

symmetric mode retains an electric dipole character, as the two individual

dipoles add to produce a dipole of doubled amplitude. This can be observed

in Fig. 3.9, where we compare the intensity pattern radiated by one single

dipole d = d0x̂ of fixed amplitude and direction (Fig. 3.9-a) with that of two

in-phase, close-by dipoles d1 = d2 = d0x̂ (Fig. 3.9-b). The case of the anti-

symmetric mode, however, is visibly more complex (Fig. 3.9-c). Intuitively,

the two out-of-phase dipoles produce a vanishing electric dipole response,

and are instead a hybrid of magnetic dipole and electric quadrupole modes.

Interestingly, though, while the radiation pattern of Fig. 3.9-c depends sen-

sitively on the relative orientation of the two out-of-phase dipoles, if one

averages over orientations, the pattern again closely resembles that of a

single, electric dipole (see Fig. 3.9-d). More concretely, in Section B.3 we

show that the orientation-averaged resonant scattering cross section asso-

ciated to the anti-symmetric mode is ⟨σ−sc⟩ ≈ 0.94σsc, where we recall that

σsc = 3λ20/(2π) is the resonant cross section of a single atom with electric

dipolar response. To sum up, the anti-symmetric mode on average is seen

to behave almost identically to a single atom with electric dipole response,

justifying such a replacement in our RG prescription. Furthermore, we show

in Section B.3 that this agreement is even stronger when considering pairs

of strongly interacting atoms with different resonance frequencies δωij ̸= 0,

which is a situation typically encountered in an actual RG flow.

3.3.3.3 Near-field between renormalized atoms

Having argued that the anti-symmetric mode has an average optical re-

sponse resembling that of a single electric dipole, we now turn to a second,

related issue. Namely, since the anti-symmetric mode is a hybrid of mag-

netic dipole and electric quadrupole modes, it should have a near-field of

∼ 1/ρ4 at distances ρ much larger than the separation between the two

composing atoms and much smaller than the optical wavelength. As the

RG flow proceeds, a third atom that interacts strongly with this mode would

then see such a scaling law at this distance (see Fig. 3.10-a). However, our

RG prescription assumes that any new effective resonance has electric dipole

character, and in particular, a ∼ 1/ρ3 near-field interaction with the third

atom. We now argue that the RG prescription is a good approximation,

because as the RG flow continues, it is likely that the third atom actu-

ally sits closer to one of the atoms in the pair (say atom 1), than the
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Figure 3.10: Microscopic analysis of the renormalization of the anti-
symmetric modes. a) Pictorial representation of the near-field interaction be-
tween the anti-symmetric mode of a pair (represented by two out-of-phase dipoles,
pink circles labeled 1 and 2) and a third atom (green circle, with label 3), which
may sit very far from the pair (characterized by the distances ρ12 < ρ13 ∼ ρ23). In
this case, the interaction strength scales like ∼ 1/ρ413, reflecting the higher order
multipole nature of the out-of-phase dipoles. b) A similar illustration for the case
where the third atom sits closer to one atom of the pair (say atom 1) than the
pair separation itself (ρ13 < ρ12 ∼ ρ23). The interaction strength then scales like
∼ 1/ρ313. c) System properties during the RG flow. The horizontal axis quantifies
how many pairs NRG have been renormalized, from the beginning (NRG = 0) to-
wards the end (NRG = Nfinal

RG ) of the algorithm. As one atom can be renormalized
more than once, typically Nfinal

RG > N/2. The blue circles represent the average
inter-atomic distance ρRG of those pairs that get renormalized, while the orange
squares shows the average distance ρnearest between the atoms of those pairs and
their respective nearest atom, chosen among those that are still allowed to interact
(i.e. with Lij = 1). The green triangles display the fraction of atoms N0/N that
have never been renormalized up to that moment of the flow. The data represents
the average over ∼ 300 runs over different random atomic positions, uniformly
sampled inside a sphere of radius Rsph. = 0.55λ0 and density η ≈ 32. The bars
show one standard deviation in the accumulated statistics.

pair separation itself (Fig. 3.10-b). In that case, the effective interaction

strength between the anti-symmetric mode of the pair and the third atom

will scale as ∼ 1/ρ313, exactly as if this mode was replaced by an elec-

tric dipolar atom. Mathematically, this is possible because the interaction

parameter Kij = |Gnear
ij |/(|δωij |+1) that governs when atoms are renor-

malized does not depend only on closest distance of separation (via Gnear
ij ),

but on the detunings δωij as well. To quantify this picture, we have run

∼ 300 RG flows over random configurations of a dense medium (η = 32)

within a spherical geometry of radius rsph. = 0.55λ0. In Fig. 3.10-c, we

plot several salient properties throughout the RG flow, averaged over the

various runs. The horizontal axis denotes the relative position within the

flow (0 ≤ NRG/N
final
RG ≤ 1). In particular, Nfinal

RG is the total number of pairs
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renormalized during the entire RG (starting from a homogeneous atomic

medium, until one reaches Kij < Kcut-off = 1 for all pairs), while NRG de-

notes the total number of renormalized pairs at any point in between. We

recall that it is possible for an atom to be renormalized more than once, so

that in general Nfinal
RG > N/2 for a dense medium. For reference, in green,

we plot the fraction N0/N of atoms that have never been renormalized

up to that point. Notably, the fact that N0/N reaches nearly zero when

NRG/N
final
RG ∼ 0.4 indicates that almost all renormalization events beyond

this stage involve previously renormalized (and thus inhomogeneous) atoms.

Separately, with blue circles, we show the average value of the inter-atomic

distance between atoms comprising the renormalized pairs at that stage, and

we compare it with the average distance between each atom of these pairs

and its own nearest neighbour, as portrayed by the orange squares. As we

are interested in the interaction between atoms which will possibly be renor-

malized in some subsequent RG step, we only count the nearest neighbours

where Lij = 1. The figure shows that we can roughly divide the RG flow

into two parts. Before the critical value of NRG/N
final
RG ∼ 0.4, many atoms

are still homogeneous, so that the algorithm mostly renormalizes pairs of

identical, nearest neighbour atoms (as confirmed by the coincidence of the

blue and orange curves). On the contrary, when NRG/N
final
RG ≳ 0.4, almost

all atoms have already been renormalized at least once, and in particular,

an effective atom representing an anti-symmetric mode can potentially be

renormalized again. In this regime, however, the nearest, interacting neigh-

bour to the two original atoms forming this mode is on average significantly

closer than the distance between these two atoms, as evidenced by the blue

curve being significantly higher than the orange. This confirms that the

intuitive picture of Fig. 3.10-b constitutes a typical case, which preserves

the ∼ 1/ρ3 scaling of the near-field interaction.

3.3.3.4 Near-field vs far-field interactions

Separately, we want to underline the importance of separating the effects

of near-field and far-field interactions, which occur in an atomic medium.

To this aim, we point out the historic work of [194], which used RG to

understand the properties of permanent, static dipoles, which only expe-

rience a near-field 1/ρ3 interaction. Given only a near-field interaction in

three dimensions, the interaction of a dipole with its nearest neighbour is

then indeed dominant. However, we have a qualitatively different system,

of driven, radiating dipoles. Naively then, a similar argument considering

the 1/ρ far field would suggest that atoms within a shell of radius ρ and
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Figure 3.11: Renormalization group analysis, given different geometries.
Similar plot as Fig. 3.7-b, but for a fixed density η = 3 and different geometrical
shapes of the atomic ensemble.

ρ+dρ of one atom at the origin would contribute an interaction strength of

∼ ρdρ, such that the furthest atoms actually play the strong role. We argue

that an RG process based on the near field is still the correct prescription,

as the index should be a local property. Instead, the apparent ”dominance”

of the far field simply reflects the fact that the macroscopic geometry of an

optical system (e.g., if it is shaped as a lens or prism) can drastically alter

the overall optical response, but not the index.

3.3.3.5 Linewidths in the RG prescription

At this point, we note that although the problem of just two atoms (Fig. 3.6-

b) can be interpreted in terms of renormalized resonance frequencies and

linewidths, in the many-atom case, we only renormalize the resonance fre-

quencies. As we discussed, the interaction between atoms is described by

the dimensionless matrix G (as defined in Eq. 3.4), whose real part Re G

determines the coherent part of the interaction (i.e. the collective resonance

frequencies), while its imaginary part Im G is associated to the dissipative

phenomena, thus dictating the collective linewidths. In the case of two

identical atoms, Re G and Im G are both naturally and exactly diagonalized

by the same symmetric and anti-symmetric modes. However, in a many-

atom ensemble, the different mathematical structures and physical origins

of Re G and Im G become important. In particular, we recall that the

∼ 1/ρ3ij near-field component of the Green’s function, Gnear
ij , is purely real

and strongly divergent as two atoms approach each other, which motivates

our RG theory based on diagonalizing these terms first. Physically, Im G

does not contain a near-field term (recall that Im Gij → 1/2 as ρij → 0),
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since dissipation is associated with the radiation of energy into the far field.

The absence of a near-field term implies that Im G does not yield an es-

pecially strong interaction between close atomic pairs, and thus cannot be

approximately diagonalized pairwise. Again, this makes sense physically,

because the emitted power by a collection of dipoles depends on the global

interference between all dipoles, and does not generally decompose into the

sum of powers radiated by pairs. Separately, we have checked that if our

RG prescription were modified to renormalize resonance frequencies and

linewidths pairwise, it would predict a non-physical optical response that

tends to decrease (n → 1) in the limit of high densities, in contrast with

the full numerical simulations.

3.3.3.6 Independence of geometry

Finally, we remark how the choice of the cylindrical geometry in Fig. 3.3

was aimed to optimize the computational complexity of the coupled-dipole

calculations. The Gaussian input beam (of waist w0) has a rotational sym-

metry, and choosing a cylinder with the same symmetry ensures that the

atoms at the edges couple with equal strength to light. At the edge this

coupling must be small, in order to avoid unwanted edge diffraction effects.

We find that Rcyl ∼ 2w0 is sufficient to achieve this. With a rectangular-

box geometry, corresponding width would be 4w0, meaning that the atoms

at the corners would sit at a larger distance 2
√
2w0 from the beam axis.

These would not affect the optical response but would be accounted for

in the numerics, representing a “waste” of numerical resources that would

undermine our goal to calculate very high densities and atom number.

In Fig. 3.6-d, on the contrary, the evaluation of the effective probability

distribution of resonance frequencies P (ωeff) purely by RG does not involve

any external field or full coupled-dipole simulations, so that we don’t have

the same geometrical constraint as before. For consistency, we decide to still

compute P (ωeff) for the same cylindrical shape up to the maximum densi-

ties η ≃ 3 where we could also run coupled dipole simulations. We note,

however, that these cylinders have an extreme aspect ratio, being several

wavelengths in radius but sub-wavelength in thickness. At densities much

higher than η ≃ 3, this aspect ratio becomes inefficient and impractical. As

the RG scheme only involves short-range, near-field interactions, we expect

the distribution P (ωeff) to be unique in the bulk, and thus the results to be

independent of the exact geometry, as long as the system is big enough to

minimize boundary effects (as characterized by the system surface area to

volume ratio). In Fig. 3.11, we check this statement by calculating P (ωeff)
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Figure 3.12: Spectrum of the refractive index, assuming isotropic atoms.
The scheme of the figure is analogous to Fig. 3.3, but here we solve the coupled-
dipole equations assuming that the atomic dipoles can isotropically align in all
directions (isotropic scenario).

for four different geometries, at the fixed density η = 3.

3.4 Isotropic atoms

Conceptually, the case where atoms have a fixed polarization axis is the

simplest, minimal model that one can consider. Usually, the atomic dipoles

tend to align along the polarization of the external, input field, which typ-

ically validates this approximation. At the same time, we also notice that

a fixed polarization axis does serve to model well various solid-state impu-

rity emitters, which can have a reduced symmetry due to their surrounding

crystal environment. Nonetheless, it is true that a realistic, isolated atom

might be more precisely modelled by an isotropic polarizability. In this

subsection, we discuss how our physical conclusions are affected when the

atomic dipoles are allowed to align in any direction, from the perspective of

both the coupled-dipole numerics and of our theoretical RG formalism.

• When dealing with isotropic atoms the coupled-dipole equations of

Eq. 2.17 must be modified by associating three degrees of freedom

to each atomic dipole, i.e. dj =
∑

a=x,y,z β
a
j d0â. This leads to the

well-known equations

di = α0(∆)

Ein(ri) + µ0ω
2
0

∑
j ̸=i

¯̄G(ri, rj , ω0) · dj

 ,
E(r) = Ein(r) + µ0ω

2
0

∑
j=1

¯̄G(r, rj , ω0) · dj ,

(3.10)
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which are shown in the their very common formulation of dipoles with

a polarizability α0(∆) = 3πϵ0/[(−∆− i/2)k30] . Numerically, a fixed

polarization axis is then favourable as it results in the smallest number

of degrees of freedom for large-scale numerics, scaling as the number

of atomsN , rather than 3N as one would obtain with isotropic atoms.

We believe that our simplified model of two-level atoms well captures

the main physical processes involved in building up the index. To show

this, we numerically solve Eq. 3.10 for a medium of isotropic atoms,

inferring the transmission and the index analogously to Eq. 3.2 and

Eq. 3.5. In Fig. 3.12, we show the refractive index over an extended

range of near-resonant frequencies, given increasing densities. The

data confirm our conclusion that the index of refraction saturates at

high densities, although our computational resources don’t allow us

to reach the same densities and atom number as we currently do in

the case of fixed polarization. In the case of isotropic dipoles, the

saturation value of the index approximately reads nre ∼ 1.5, showing

that the precise value of nre ∼ 1.7 discussed in the previous sections

should not be considered as a universal, exact threshold, but rather

as the result of a fundamental physical process which fixes the the

correct magnitude of the index.

• Theoretically, one would have to modify the specific RG rules, ac-

counting for the fact that a pair of isotropic atoms strongly interacting

via their near-fields now has six eigenstates instead of two. Moreover,

the natural polarizability axes of these six eigenstates will be oriented

either parallel or perpendicular to the “molecular” axis defined as the

vector pointing from one atom to the other. This axis generally does

not coincide with the polarization of the input field, which requires

one to then calculate the projected responses. We believe that this

extension of RG should be valid, but it is challenging to compare

and verify with exact numerics on dense ensembles, given realistic

computational resources.

3.5 Conclusions and outlook

To summarize, we have shown that despite the large resonant scattering

cross section of a single atom, a dense atomic medium does not exhibit an

anomalously large optical response. Rather, strong near-field interactions

between atomic pairs combined with spatial disorder results in an effective

inhomogeneous broadening mechanism, which occurs even if the atoms are
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otherwise perfect, and yields a maximum index of nre ≈ 1.7. The key role of

atomic granularity in this process also illustrates why conventional smooth

medium approximations fail to describe the near-resonant response.

While we have focused on the linear refractive index, we believe that

our RG formalism is valid in general for resonant disordered atomic media,

and constitutes a versatile new tool to study multiple scattering. Within

the linear regime, RG might be used to provide additional insight to the

question of whether an Anderson localization transition exists in a 3D en-

semble, and under what conditions [182, 183, 204, 215–217]. Furthermore,

it would be interesting to explore the usage of RG toward the challenging

problem of quantum, nonlinear scattering. As previously mentioned, the

multiple scattering problem is formally encoded in a non-Hermitian Hamilto-

nian that describes light-mediated dipole-dipole interactions between atoms.

In the limit of linear response, the resulting equations are equivalent to our

coupled-dipole equations of Eq. 3.10, but beyond that, one is faced with the

challenge of dealing with the exponentially large Hilbert space associated

with N two-level atoms. Perturbative diagrammatic approaches have only

recently been developed to treat the dilute atom limit [205], but our un-

derstanding of the nonlinear physics beyond this regime is very limited. To

this end, we hypothesize that a diagrammatic theory can also be developed

in the dense, strong scattering regime, where strong interactions between

nearby pairs are first non-perturbatively summed via RG, while remaining

interactions can be treated perturbatively.

Our results could also have interesting implications for quantum tech-

nologies based on atomic ensembles. In particular, the total optical depth

of system, given by the product of the imaginary part of the index and sys-

tem length, OD ∼ nimk0L, is a fundamental resource [14, 218, 219], with

its magnitude establishing fundamental error bounds for most applications.

As the imaginary part of the index also saturates with increasing density,

this could place minimum size constraints on systems in order to achieve

a given fidelity. Likewise, constraints on the maximum density could arise

due to the induced inhomogeneous broadening, which typically constitutes

an undesirable dephasing mechanism.

Finally, it would be interesting to understand more fully how the op-

tical properties of a dilute atomic medium eventually transform into the

low refractive index of actual optical materials, as the density is increased.

Specifically, for a disordered ensemble, we have seen that the maximum

index already saturates, at densities that are approximately six orders of

magnitude before the onset of chemical processes. We hypothesize that

the onset of chemistry, and the phase transition toward a real material,
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does not qualitatively alter the optical response, provided that the system

remains disordered and the electrons tightly bound. Separately, it would be

interesting to explore the same questions and transition for spatially ordered

atomic systems, where RG breaks down and one expects very different qual-

itative behavior, due to the possibility of strong constructive and destructive

interference in light scattering. This will be the topic of the next chapter.
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4.1 Introduction

In the previous chapter, we studied the concept of refractive index in a dis-

ordered atomic medium, observing the emergence of strict bounds imposed

by the electrodynamics of multiple light scattering. Here, we introduce a

minimal physical model that elucidates how extreme one might expect the

index to become in an ordered atomic crystal, under ideal circumstances.
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Specifically we want to study what index might be achievable as a func-

tion of the atomic density, spanning a wide range of physical regimes. As

long as the atomic nuclei are too far separated for electronic orbitals on

different nuclei to directly interact (which we term the “quantum-optics”

regime), the atoms only interact via electromagnetic fields, and the index

should solely be a function of the atomic distance and the single-atom polar-

izability. At very dilute densities, moreover, one expects that conventional

macroscopic theories hold, as discussed in Chapter 2. Nonetheless, when

increasing the densities (still within this quantum-optics scenario), the inter-

atomic distance can become lower than the spatial extent of the scattering

cross section of an (isolated) atom, so that multiple scattering of light can

cause the breakdown of conventional theories of refractive index. In the dis-

ordered case of Chapter 3, we indeed showed that these electrodynamical

effects were already guaranteeing an order of magnitude in line with em-

pirical evidences, thus speculating that these processes might qualitatively

characterize the optical response at any larger density.

Here, we show that for an ordered, atomic crystal the scenario is radi-

cally different. Specifically, we argue that multiple light scattering can build

up an index that keeps growing with density, due to perfect constructive in-

terference. This motivates our direct analysis of the “quantum-chemistry”

regime, where the atomic densities are sufficiently high that electronic or-

bitals on neighbouring nuclei begin to overlap, in principle giving rise to a

wealth of new phenomena associated with chemical interactions. We empir-

ically know, indeed, that conventional, computational quantum chemistry

(which ignores multiple light scattering) can predict the optical properties

of real solids with reasonable accuracy, suggesting that multiple scattering

in the full regime of chemistry is a weak effect. Due to these reasons, we

develop a model to non-perturbatively study multiple scattering including

the onset of quantum chemistry, showing how this latter can suppress the

growth of the index mentioned above.

4.1.1 Summary of the chapter

We now summarize the scope and main results of this chapter.

• In Section 4.2 we analyze the refractive index of an atomic crystal in

the quantum optics limit. We first review the result of Section 2.3.2,

that a single two-dimensional (2D) array of atoms can provide a large,

lossless and cooperatively enhanced response to light near resonance,

as characterized by large reflectance and large phase shift in transmis-

sion [149, 150, 171]. At the same time, we re-phrase the equations in
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an equivalent, operatorial manner, which might allow in the following

sections to include the effects of quantum chemistry more directly.

By considering a three-dimensional (3D) crystal as a sequence of 2D

arrays separated by lattice constant dz, we then show that the 2D

properties directly translate into a refractive index near resonance that

can be purely real, and which scales as nmax ∝ λ0/dz. At the same

time, the dispersion relation of the array allows for the lossless index

nmin ∼ 0. The key property enabling this behavior is the single-mode

nature of the light-matter interaction, both in the 2D and 3D arrays,

where light excites only a single collective mode of the atoms, and

this collective mode only re-radiates light elastically back in the same

kxy = 0 direction, to produce a maximal and lossless response.

• To counteract the physical processes that build up the index, one

would need to suppress this single-mode nature of the response. In

Section 4.3, we study from a purely optical perspective what mech-

anisms might be required to fulfil this scope. Specifically, one would

need to break down the perfect translational symmetry within each

2D array. We thus first study the case of an atom in the array that is

selectively driven, to make it distinguishable from the others. After-

wards, we discuss the effects of a missing atom at a particular site,

acting as a defect. In both cases, we show that these hypotheti-

cal scenarios allow for spatial multi-mode response, suppressing the

coherent emission in the relevant, ẑ-directed mode.

• In Section 4.4.1, we finally introduce a model to tackle the onset of

quantum-chemistry. In particular, our analysis focuses on an expan-

sion around a large lattice constant compared to the Bohr radius,

d/a0 ≫ 1. Then, quantum chemistry can be treated perturbatively,

while multiple scattering must still be treated non-perturbatively (given

d/λ0 ≪ 1). Considering the simplest model of a lattice of hydrogen

atoms, we identify two mechanisms stemming from a combination

of quantum magnetism, electronic density-density correlations, and

chemistry of photo-excited electrons dominate at large d/a0. Specifi-

cally, we argue that these effects modify the optical response similarly

to selectively driven atoms or defects in the array. We quantify how

these processes lead to a maximum allowed real part of the refractive

index, and the growth of the imaginary part associated with absorp-

tion. Our model suggests that an ultra-high index material of n ∼ 30

with low losses is not fundamentally forbidden by the laws of nature.

Similarly, our ideal scheme would predict a near-zero index n ∼ 0
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around a specific frequency.

• Although our quantitative model deals with hydrogen atoms, in Sec-

tion 4.5 we also discuss possible realistic routes toward extreme-index

materials, such as high-density arrays of solid-state quantum emit-

ters [220–222] or van der Waals heterostructures [223], and we qual-

itatively show that the extreme indices are robust to some degree

of additional imperfections (e.g., implementation-dependent inhomo-

geneities, or additional inelastic mechanisms). Finally, in Section 4.6

we provide an outlook of future research questions to explore.

4.2 Optical properties of a 3D lattice

We derive the refractive index of a perfect atomic lattice in the quantum-

optics limit, where quantum-chemistry interactions between atoms are ig-

nored and each atom is seen as a point dipole from the standpoint of optics.

Similarly to Chapter 3, we consider the relevant levels of the atom to consist

of an electronic ground state and first excited state, connected by an electric

dipole transition of frequency ω0 and corresponding wavevector k0 = ω0/c

and wavelength λ0 = 2π/k0. The atoms can also be driven by a weak

coherent input field of frequency ωL, with a polarization x̂ that aligns with

the dipole matrix-element d0 = d0x̂ of the atomic transition. The excited

state can only decay by emitting a photon, at a rate Γ0 = k30d
2
0/(3πϵ0h̄).

Although our conclusions in this section are completely general to any

atom with the properties specified above, here we re-write the SM and

coupled-dipole formalism of Section 2.3 in a second-quantized notation of

the atomic degrees of freedom, to be consistent with our later model in-

cluding quantum chemistry. Specifically, there we will consider hydrogen

atoms whose ground and excited states are then the 1s and 2px orbitals.

Moreover, we treat the near-resonant input field as a classical field Ein. In

the rotating frame relative to this driving field and in the long-wavelength

limit, the Hamiltonian describing the atom-light interactions is given by

ĤQO = Ĥ0 + Ĥdip−dip + Ĥdrive

= −δ
∑
i,σ

b̂†piσ b̂piσ − Γ0

∑
ij,σσ′

Gij(b̂
†
piσ b̂siσ)(b̂

†
sjσ′ b̂pjσ′)

−
∑
i,σ

[
Ωib̂

†
piσ b̂siσ + h.c.

]
,

(4.1)
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where we define the detuning δ = ωL − ω0 the Rabi frequency Ωi =

d0 · Ein(ri)/h̄, and the fermionic operator b̂αiσ that annihilates an elec-

tron of orbital α and spin σ on atom i, whose nucleus is at position ri. We

recall that the dipole-dipole interaction Ĥdip−dip describes the electronic

excitation (b̂†piσ b̂siσ) of an atom from its s to its p-orbital at site i, and the

de-excitation (b†sjσ′ b̂pjσ′) of another at site j. This describes electromag-

netic field mediated interactions once the photons are integrated out within

the Born-Markov approximation, with Gij = (3π/k0)x̂ · ¯̄G(ri − rj , ω0) · x̂
being proportional to the electromagnetic Green’s function at frequency ω0

(as in Eq. 2.17). In this formalism, the positive-frequency component of

the electric field operator (as shown in Eq. 2.14 of Section 2.3) reads

Ê(r) = Ein(r) +
k30
3πϵ0

∑
iσ

¯̄G(r− ri, ω0) · d0 b̂
†
siσ b̂piσ, (4.2)

which formally expresses the total field at any spatial point, in terms of the

input field and that scattered by the atoms. At this level of discussion, ĤQO

and the relevant Hilbert space can just as well be written in terms of the

pseudospin-1/2 objects σ̂eg introduced in Section 2.3 [151, 178, 185]. We

avoid that here, to prevent confusion with the actual electronic spins σ and

to more naturally extend to the inclusion of quantum chemistry.

We want to remark that, since Gij is complex, the Hamiltonian Ĥdip−dip

is non-Hermitian. Its Hermitian and non-Hermitian components describe

coherent energy exchange between atoms, and collective spontaneous emis-

sion arising from interference of light emission, respectively. To the extent

that Eq. 4.1 and Eq. 4.2 can be solved exactly, they fully incorporate the

effects of non-perturbative multiple scattering of light and wave interference

in emission.

4.2.1 Review of a 2D array

While the equations for a 3D lattice absent driving can in principle be

(numerically) diagonalized [224, 225], one can arrive at a better physical

understanding of the refractive index by first considering a single, 2D square

array of lattice constant d, located in the z = 0 plane. The brief review of

this subsection is aimed to expand the discussion of Section 2.3.2.

We write the total wave function |Ψ(t)⟩ = |ψ2D(t)⟩⊗|σ⟩ in terms of the

orbital |ψ2D(t)⟩ and electronic spin |σ⟩ wave functions, the latter of which is

time independent and irrelevant in the quantum optics limit, as atom-light

interactions and thus ĤQO are decoupled from spin. In the single-excitation
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limit (containing exactly one p-orbital), the discrete translational symmetry

implies that all eigenstates of Ĥdip−dip of the 2D array are Bloch modes with

corresponding Bloch wavevector kxy, |Ekxy⟩ = N−1/2
∑

i e
ikxy·Rib†pibsi|G⟩.

The ground state consists of all atoms in the s orbitals, |G⟩ = Πib
†
si|vac⟩.

Here, we have suppressed the spin index given its decoupling from dynamics,

and N → ∞ represents the number of atoms in the 2D array.

We write the complex eigenvalues of the Bloch modes in the form

ω(kxy) − iΓ(kxy)/2 = −Γ0
∑

i,j Gije
ikxy·Rij , which can be calculated by

discrete Fourier transform of the Green’s function [149, 150]. The disper-

sion relation ω(kxy) represents the energy shift of each Bloch mode relative

to the bare atomic resonance ω0, due to dipole-dipole interactions, and can

be evaluated numerically. The collective emission rate admits an analytic

solution given by [151, 226]

Γ(kxy) =
3λ20Γ0

4πd2

∑
m,n

|kxy+gmn|≤k0

k20 − [(kxy + gmn) · x̂]2

k0
√
k20 − |kxy + gmn|2

,
(4.3)

and is modified from the single-atom value due to interference in the emitted

light from different atoms [150]. Here, we defined the reciprocal lattice

vectors, gmn = (2π/d)(mx̂ + nŷ). In the regime of lattice constants d <

λ0/2 that we are interested in, its expression further simplifies into

Γ(kxy) =
3λ20Γ0

4πd2

(
k20 − k2x

k0
√
k20 − |kxy|2

)
Θ(k0 − |kxy|), (4.4)

where Θ(k0−|kxy|) is the Heaviside step function. For the collective mode

with kxy = 0, one has Γ(0) = 3λ20Γ0/(4πd
2). At small lattice constants,

the rate is significantly enhanced relative to the single-atom value Γ0 by an

amount ∝ (λ0/d)
2 due to strong constructive interference.

We now consider driving with a plane wave at normal incidence to the

2D array (with longitudinal wavevector kz = k0 and perpendicular wavevec-

tor kxy = 0), whose spatially uniform Rabi frequency Ωi = Ω0 is suffi-

ciently weak that dynamics can be restricted to the ground state and single-

excitation manifold. The discrete symmetry imposes that this field will only

couple to the Bloch mode |E⟩ = |Ekxy=0⟩, with the time-dependent wave

function restricted to the form |ψ2D(t)⟩ = cG(t)|G⟩+ cE(t)|E⟩. The wave

function approach to the non-Hermitian Hamiltonian of Eq. 4.1, or more

properly the full master equation, is valid within the quantum jump formal-

ism of open systems. Nonetheless, under weak driving, quantum jumps can
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Figure 4.1: Reflection and transmission coefficients of a 2D atomic array. a)
Spectrum of reflectance (blue) and transmittance (green) as a function of detuning
relative to the collective resonance frequency of the array δ−ω(0), and in units of
the collective linewidth Γ(0). b) Spectrum of transmission phase, arg t(δ).

be neglected and cG(t) ≈ 1 up to order ∼ (Ω0/Γ0)
2 [152]. The Schrodinger

equation then leads to a steady-state amplitude of the excited state whose

dependence on detuning δ goes as

cE(δ) =
Ω0

−δ + ω(0)− iΓ(0)/2
. (4.5)

We now derive the expectation value E(r) = ⟨Ê(r)⟩ of the total field

from Eq. 4.2. Given the periodic nature of the array and that only the

kxy = 0 Bloch mode is excited, the total field only contains transverse

momentum components given by integer multiples (m,n) of the reciprocal

lattice vectors, gmn = (2π/d)(mx̂+ nŷ). Specifically, we find

E(r)

E0
=

Ein(r)

E0
+

(
i
Γ(0)

2

∑
m,n

k20 − (gmn · x̂)2

k0kmn
z

eigmn·r⊥+ikmn
z |z|

)
cE(δ)

Ω0
,

(4.6)

where kmn
z =

√
k20 − |gmn|2, and where Ein(r) = E0e

ik0zx̂. Note that for

d < λ0, then k
mn
z is imaginary except for m = n = 0. In other words, only

transmission and reflection at normal incidence are radiation waves, while

any other (m,n) ̸= (0, 0) correspond to evanescent diffraction orders (with

the sign of Im kmn
z chosen such that the field decays away from the array).

In the far field limit |k0z|≫ 1, one thus has

E(r) ≃ Ein(r)

[
1 + i

Γ(0)

2

cE(δ)

Ω0
Θ(z)

]
+E∗

in(r)

[
i
Γ(0)

2

cE(δ)

Ω0
Θ(−z)

]
,

(4.7)

Using the steady-state amplitude in Eq. 4.5, we identify the reflection and
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transmission coefficients r(δ) = iΓ(0)/[−2δ + 2ω(0) − iΓ(0)] and t(δ) =

1 + r(δ). Note in particular that the array is perfectly reflecting when light

is resonant with the Bloch mode, δ = ω(0), and generally that the system is

lossless with |r|2+|t|2= 1. These properties reflect the single-mode nature

of the light-matter interaction for this system, where the light excites only

a single collective eigenmode |E⟩ = |Ekxy=0⟩, and this collective mode

only re-radiates light elastically back in the same kxy = 0 direction (either

forward or backward). In Fig. 4.1, we plot the reflectance and transmittance

spectra and as well as the transmission phase. Notably, near resonance, the

transmitted light can undergo a significant phase shift of up to ±π/2.

4.2.2 Single-mode response and 1D formalism

We now consider a 3D array, with the lattice constant dz between 2D layers

allowed to be different than the intra-layer lattice constant d, as pictorially

represented in Fig. 4.2. Naively, if each 2D layer can contribute a large

phase shift to propagating light, then one expects a large, perfectly real

index scaling like n ∼ λ0/dz. This naive argument does not account for

multiple scattering between planes or evanescent fields, but we now present

an exact calculation showing that this scaling holds.

As before, we restrict ourselves to the weak-driving limit at normal in-

cidence. Thus, only the collective mode |E⟩ = |Ekxy=0⟩ of each 2D array

can be excited, leading to a total wave function |ψ3D(t)⟩ = cG(t)|G⟩ +∑
j c

j
E(t)|Ej⟩, where cG(t) ≈ 1 and |Ej⟩ is the collective mode associated

with the 2D plane at position zj . Within this manifold, the dynamics under

ĤQO of Eq. 4.1 is mathematically equivalent to a 1D problem, characterized

by the matrix elements H1D
dip−dip,ij = ⟨Ei|Ĥdip−dip|Ej⟩, which read

H1D
dip−dip,ij =


ω(0)− i

2
Γ (0) i = j,

−iΓ(0)
2

∑
m,n

k20 − (gmn · x̂)2

k0k
(m,n)
z

eik
(m,n)
z |zi−zj | i ̸= j,

(4.8)

where we recall that kmn
z =

√
k20 − |gmn|2. Comparing Eq. 4.8 with Eq. 4.6,

the off-diagonal elements i ̸= j between different planes can be equivalently

interpreted as the Rabi frequency associated with the field scattered by one

plane, as experienced by the atoms in another plane.

The structure of Eq. 4.8 defines two type of interactions between the

2D atomic layers. Specifically, the zero-th diffraction-order (m,n) = (0, 0)
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Figure 4.2: 1D model for a 3D atomic lattice, illuminated at normal in-
cidence. We consider a 3D atomic lattice, composed of a stack of 2D arrays
with constant d separated by a longitudinal distance dz. The atoms are identical
two-level systems, with a resonant frequency ω0 between two generic states |g⟩
(afterwards, in our chemistry model we consider the state 1s of Hydrogen) and
|e⟩ (state 2px of Hydrogen). The spontaneous emission rate reads Γ0. The lay-
ers are illuminated at normal incidence, and they can re-radiate only in this same
ẑ direction (red, wavy arrows), while the other diffraction orders give rise to an
evanescent interaction between the arrays (blue, shaded, wavy arrows). Each 2D

array only excites the collective state |E⟩ = N−1/2
∑

i b
†
pibsi|G⟩ with resonant

frequency ω(0). This can decay back to the ground state |G⟩ = Πib
†
si|vac⟩ with a

radiative rate Γ(0) = 3λ20Γ0/(4πd
2).

describes an infinite-range interaction ∝ exp(ik0|zi − zj |) mediated by ra-

diative emission (red, wavy arrows of Fig. 4.2). On top of that, the residual

diffraction orders (m,n) ̸= (0, 0) (blue, shaded, wavy arrows of Fig. 4.2)

contribute with an evanescent coupling, which is exponentially suppressed

∼ exp(−|kmn
z (zi − zj)|) with increasing distances between the layers.

4.2.3 Extreme refractive indices

Diagonalizing the matrix H1D
dip−dip of Eq. 4.8 then gives the optical band

structure of the array at normal incidence, with dispersion relation

J(kz) = ω(0) +
Γ(0)

2

[
sin(k0dz)

cos(kzdz)− cos(k0dz)
+ Jev(kz)

]
, (4.9)

where |kz|≤ π/dz is restricted to the first Brillouin zone. We find that

deriving the 3D band structure in terms of 2D planes is more elucidating

for our purposes than applying previously developed techniques, such as

in [225]. We recall that we are in a rotating frame, and J(kz) is thus
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Figure 4.3: Optical band structure along ẑ of a 3D lattice. Re-scaled disper-
sion relation (d/λ0)

3J(kz)/Γ0 for Bloch waves along z with Bloch wavevector kz,
for the lattice constants d and dz shown in the legend. The non-invertibility of the
band for some values of d, dz can be clearly seen in the inset.

the frequency relative to the bare atomic resonance frequency ω0. Also,

we will always be in a regime where the shift is small relative to the bare

frequency |J(kz)|/ω0 ≪ 1. Here, Jev(kz) is the contribution coming from

the evanescent fields of each plane, and is found to be

Jev(kz) = −
∑

(m,n) ̸=(0,0)

(gmn · x̂/k0)2 − 1√
|gmn/k0|2 − 1

×

1 + sinh

(
k0dz

√
|gmn/k0|2 − 1

)
cos (kzdz)− cosh

(
k0dz

√
|gmn/k0|2 − 1

)
 .
(4.10)

Although H1D
dip−dip itself is non-Hermitian, the dispersion relation is purely

real, as a result of the lossless nature of the individual planes. We notice,

indeed, that Eq. 4.9 is equivalent to what expected for an ideal chain of

two-level atoms perfectly coupled to a lossless waveguide [187, 227], up to

the supplementary, evanescent interaction term Jev(kz).

A typical band structure is illustrated in Fig. 4.3 for various values of

d/λ0 and dz/d. As long as J(kz) is invertible (a single value of |kz| is
associated to each value of J(kz)), then the index is well-defined as the

reduction of the effective wavelength of light compared to free space at

the same frequency, reading n(δ) ≈ kz(δ)/k0. Here, we inferred kz(δ) by
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inverting the relation J(kz) = δ, and we used the fact that |J(kz)|/ω0 ≪ 1.

Then, the maximum index is associated to the band edge kz = π/dz, and

reads

nmax ≈ λ0
2dz

, (4.11)

which is obtained at δmax = ω(0)− [Γ(0)/2] tan (k0dz/2) and which grows

indefinitely with shrinking lattice constant. The formula in Eq. 4.11 is valid

as long as dz < λ0/2, while the behaviour of the index for λ0/2 ≤ dz < λ0
is discussed in Appendix C.1. At the same time, by choosing a different

detuning δmin = ω(0) + [Γ(0)/2] cot (k0dz/2) one can excite the central

mode kz = 0, leading to

nmin ≈ 0. (4.12)

These predictions are derived from the dispersion relation. To validate them,

one can check their agreement with the calculation of the phase of trans-

mission, by numerically simulating a finite number of 2D layers (similarly to

what done in Chapter 3). As discussed in Appendix C.2, this supplementary

analysis shows a perfect agreement with our theoretical predictions.

In reality, the band structure is not always invertible, due to the interfer-

ing mechanisms of energy transfer between planes via radiation and evanes-

cent waves. For fixed dz/d, non-invertibility will arise for sufficiently small

d, while for fixed d, increasing dz/d will eventually lead to invertibility. This

is illustrated in Fig. 4.3, for example, as the choices d/λ0 = 1/10, dz/d = 1

and d/λ0 = 1/60, dz/d = 1.6 are invertible, while d/λ0 = 1/60, dz/d = 1

is not. The condition for invertibility is derived in greater detail in Appendix

Appendix C.3. In what follows, we will fix dz/d = 2.5, where the contribu-

tion of the evanescent coupling to the band is negligible |Jev(kz)|≪ |J(kz)|
down to d ≃ λ0/360 (corresponding to d ≃ 6a0 for hydrogen atoms), by

which point quantum chemistry has already become significant.

4.3 Optical limits to the single-mode response

In the previous section, we showed that an atomic 3D array of ideal atoms

responds to light in a single-mode manner, which builds up a large optical

response characterized by both extremely high and extremely low refractive

indices. As long as the single-mode behavior is preserved, this mechanism

would ensure the gigantic collective response of the ordered atomic set.

In this section, we address the following question: from a purely optical

standpoint, are there physical processes which can potentially suppress such

single-mode nature of the atom-light interaction? For the moment, we only
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focus on identifying these potential mechanisms, without analyzing why and

when we expect them to appear. This will be the topic of Section 4.4.1,

where we will argue that they naturally arise at small lattice constants, due

to the onset of quantum chemistry. Specifically, we know from Section 4.2.1

that the single-mode response is deeply related to the perfect translational

symmetry within each 2D, transverse layer. Due to this reason, we here

study two scenarios where this latter is broken in a 2D array, namely the

cases when a specific atom is either selectively driven or missing.

4.3.1 Selectively driven atom

The collective response of a uniformly excited array differs remarkably from

the response of a single, distinguishable driven atom. Concretely, we now

consider an infinite 2D array, but where a weak input field with detuning

δ selectively drives just a single atom located at r = rh, i.e. taking Ωj =

Ωhδjh in Eq. 4.1, as illustrated in Fig. 4.4-a. Although this scenario might

not be particularly physical by its own, it represents one of the simplest

theoretical ways of breaking the perfect translational symmetry in a 2D

array. Moreover, it allows us to analyze an optical mechanism that will be

directly relevant for our quantum chemistry discussions later.

We consider a wave function |ψ2D⟩ = cG|G⟩ +
∑

j c̃jb
†
pjbsj |G⟩, where

other atoms j ̸= h can still be excited via dipole-dipole interactions with

the driven atom. Our goal is to solve for the steady-state atomic ampli-

tudes c̃j(δ) under Eq. 4.1, assuming that cG ≈ 1. This can be efficiently

done by calculating the free propagator inside the 2D atomic array, which

describes the spread of the excitation mediated by dipole-dipole interactions

[228, 229]. In the rotating frame, such a propagator is given by the oper-

ator Ĝχ(δ) = −(Ĥ0 + Ĥdip−dip)
−1, which can be explicitly computed by

decomposing the single-excitation manifold into the Bloch modes |Ekxy⟩
that diagonalize it. One obtains

Ĝχ(δ) = −N
(
d

2π

)2 ∫
BZ

dkxy

∣∣Ekxy

〉
⟨Ekxy |

−δ + ω(kxy)− iΓ(kxy)/2

= −
∑
jhσσ′

χ(rj − rh, δ) (b
†
pjσbsjσ)(b

†
shσ′bphσ′),

(4.13)

where we defined the susceptibility

χ(rj − rh, δ) =

(
d

2π

)2 ∫
BZ

dkxy
e−ikxy·(rj−rh)

−δ + ω(kxy)− iΓ(kxy)/2
. (4.14)
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Figure 4.4: Optical properties of a 2D array. a) A single, distinguishable atom
at rh in a 2D array is selectively driven by a weak input field of Rabi frequency
Ωh (blue arrow). Dipole-dipole interactions between atoms allow other atoms j
in the array to become excited by an amount proportional to the susceptibility
χ(rj − rh, δ). The rate of such a process is given by Γd(δ) = −2Im [Ωh/c̃h(δ)] =
−2Im 1/χ(0, δ). b) Dispersion relation ω(kxy) of a 2D atomic array, within the
first Brillouin zone. The lattice constant is chosen as d = λ0/20, while the black,
dashed line and the black point at the center represent the isoenergetic modes with
ω(kxy) = ω(0). The modes with |kxy|< k0 that radiate into free space are inside
the boundary given by the dotted black circle.

The physical meaning of these operators is given by the first-order ex-

pansion of the Dyson equation, which leads to the steady state |ψ2D⟩ =

(1 + Ĝχ(δ)Ĥdrive) |G⟩. For the case of a selectively driven atom, one has

the driving field Hamiltonian Ĥdrive = −Ωh
∑

σ

(
b†phσbshσ + h.c.

)
, which

leads to the coefficients

c̃j(δ) = χ(rj − rh, δ) Ωh. (4.15)

Some of the energy provided by the drive will naturally be radiated into free

space, through the excitation of collective modes |kxy|≤ k0 with non-zero

radiative decay rate Γ(kxy). However, at small lattice constants d≪ λ0 this

channel is negligible compared to the amount of energy that has gone into

exciting non-radiative modes with |kxy|> k0, which subsequently propagate

outward from rh along the array itself. To illustrate this, we first plot ω(kxy)

within the first Brillouin zone |kx|, |ky|< π/d in Fig. 4.4-b for a lattice

constant d = λ0/20 that is small compared to the resonant wavelength.

For d≪ λ0, the first Brillouin zone is dominated by the region outside the

light cone |kxy|> k0.

Restricting the integration in Eq. 4.14 to this dominant region, one has

Γ(kxy) = 0, while the energy scale is dictated by the near-field (∼ 1/r3)
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component of the Green’s function, leading to the functional form ω(kxy) ∼
Γ0f(kxyd/π)(λ0/d)

3. Considering that the region of integration scales as

dkxy = (π/d)2d(kxyd/π), one then obtains the final scaling1 χ(rj−rh, δ) ∼
d3/(Γ0λ

3
0). In Appendix D.1, we discuss how we can verify this scaling by

means of numerical simulations. We note that χ(0, δ) can have an imaginary

component describing work done by the drive on atom h. This occurs if

there exists an isoenergy contour where ω(kxy) = δ (see the dashed black

curve in Fig. 4.4-b for the contour ω(kxy) = ω(0)), allowing the drive to

resonantly excite a continuum of non-radiative modes. Specifically, the

quantity

Γd(δ) = −2Im

[
Ωh

c̃h(δ)

]
= −2Im

[
1

χ(0, δ)

]
, (4.16)

quantifies the rate at which energy is irradiated into the atomic array via

the selectively driven atom (as pictorially described by the wavy arrows in

Fig. 4.4-a).

4.3.2 2D array with defects

Similarly to the previous case, we here consider a scenario where the transla-

tional symmetry is broken within a 2D atomic array, which will be helpful for

the quantum chemistry problem. Specifically, we study the problem of a 2D

array illuminated by a normally incident plane wave of Rabi frequency Ω0,

but with a single missing atom at site r = rh. Such a system is pictorially

represented in Fig. 4.5-a.

Working in the usual weak driving limit, it is convenient to write the

steady-state, single-excitation amplitude of atom j as cj(δ) = cE(δ)+ c̃j(δ).

Here, cE(δ) is the solution for a defect-free, uniformly driven array given

in Eq. 4.5, while c̃j(δ) is the solution for an array with a single driven

atom at rh given in Eq. 4.15. This expression is valid provided that Ωh =

−cE(δ)/χ(0, δ) is chosen such that ch(δ) = cE(δ) + c̃h(δ) = 0. Physically,

this states that the overall solution can be expressed as the coherent sum of

the solution of two separate problems, of a uniformly driven perfect array and

a perfect array with a single driven atom, as pictorially depicted in Fig. 4.5-

b. Enforcing that ch(δ) = 0 via a proper choice of the single-atom driving

amplitude Ωh says that the atom at rh has no excitation amplitude, which

1One can similarly prove that, in comparison, the contribution to the susceptibil-
ity χ(rj − rh, δ) from the modes inside the light cone is negligible. Restricting the
integral in Eq. 4.14 to this latter region, due to the far-field dominance we have
ω(kxy) ∼ Γ0f

′(kxy/k0)(λ0/d). By considering Γ(kxy) ∼ Γ0g(kxy/k0)(λ0/d)
2 and

dkxy = k20d(kxy/k
2
0), one can infer the scaling χinside(rj − rh, δ) ∼ d4/(Γ0λ

4
0), so that

|χinside|≪ |χoutside|∼ |χ|.
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Figure 4.5: Optical response of a 2D atomic array with a hole. a) A 2D square
array with coefficients cj (blue points) and a missing atom at Rh is illuminated
by a normally incident plane wave (blue, thick arrow), with Rabi frequency Ω0. b)
The system can be written as the sum cj = cE + c̃j of a perfectly filled array with
solutions cE (orange points) and a perfectly filled array of coefficients c̃j where
the atom placed at rh is selectively driven by the Rabi frequency Ωj = Ωhδjh,
which is self-consistently defined to ensure that c̃h = −cE. This distinguishable
excitation spreads inside the array with a propagator Ĝχ(δ) (red, wavy arrow),
which characterizes the response function c̃j = χ(rj − rh)Ωh. c) By accounting

for the energy dispersed via Ĝχ(δ), one can finally define an effective scattering
cross section σh ∼ λ0d for the defect. The system is then optically equivalent
to an ideal array of dipoles cE with a macroscopic hole, which encompasses many
lattice sites.

is equivalent to having no atom at rh to begin with. The initial problem of

a defect was then re-phrased as that of a selectively driven atom, already

solved in Eq. 4.15. In the next subsections, we use this solution to infer

some key physical insights.

4.3.2.1 Scattering cross section of a defect

To quantify the effect of a missing atom, we can calculate the scattering

cross-section associated with a defect, at the (collective) resonant frequency

ω(0). This latter can be calculated by means of the optical theorem [230,

231], which was already discussed in Appendix B.3. We recall that given a

generic set of atomic dipoles with coefficient cj and decay rate Γ0, centered
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around r0 and illuminated by Ωj , this theorem states that the optical cross

section is σ = (σ0/2)(Γ0/Ω
2
0)Im

∑
j Ωjcj , where σ0 = 3λ20/(2π) is the

resonant cross section of a single atom in vacuum. As we are interested

in the resonant cross section, hereafter we implicitly assume δ = ω(0) in

all the equations. For the case of a defect in a 2D array, this reduces

to σh = (σ0/2)(Γ0/Ω
2
0)Im Ωhc̃h = −4d2Im [χ(0)Γ(0)]−1 ∼ dλ0, where

we have the effective coefficient of the defect c̃h = −cE, and the Rabi

frequency Ωh = −cE/χ(0), as self-consistently defined from Eq. 4.15.

It is convenient to normalize this quantity by the cross-section of a

single atom in the perfect array at the same frequency, which reads σa =

(σ0/2)Im [Γ0cE/Ω0] = 2d2. Their ratio Nh = σh/σa describes the number

of lattice sites effectively affected by the defect, and it is given by

Nh =
σh
σa

=
Γd(δ = ω(0))

Γ(0)
∼ λ0

d
≫ 1, (4.17)

where we recall that the rate of excitation of the atomic modes in the 2D

array is given by Γd(δ) = −2Im [1/χ(0, δ)].

As pictorially shown in Fig. 4.5-d, the cross section σh can be inter-

preted as the area of the “macroscopic” hole induced by the defect (in an

otherwise perfect array), as seen by resonant, incident light (similar results

were suggested in [232, 233]). From Eq. 4.17, one can better understand

the physical origin of such a large response due to the single defect. The

quantity Γd(δ = ω(0)), indeed, defines the rate of “optical losses” due to

the missing atoms (at resonance). More concretely, these “losses” corre-

spond to the energy spent in the excitation of transverse kxy ̸= 0, either

non-radiative |kxy|≥ k0 or radiative |kxy|< k0 modes, which breaks down

the perfect single-mode response of Section 4.2.2. In particular, the non-

radiative modes will dominate at low lattice constants (as discussed in Sec-

tion 4.3.1). The ratio above Γd(δ = ω(0))/Γ(0) then corresponds to the

rate of energy effectively lost in these transverse directions, over the rate of

energy actually radiated in the single-mode channel.

4.3.2.2 Optical response and self-energy

To validate the results of the previous subsection, here we analytically cal-

culate the optical response to a normally incident plane wave of a 2D array

with a missing atom at a random position rh. We then extend this result

to the limit of many defects, under the condition that their number is much

smaller than the number of total lattice sites.

We begin by considering just a single hole or removed atom in the array,
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Figure 4.6: Resonant δ = ω(0) optical response of a finite 2D array with
many holes. Resonant reflectance R = |r|2 (a) and transmittance T = |t|2 (b),
as a function of the fraction of holes Ph. Different colors are associated to different
lattice constants d/λ0. The solid lines show the predictions of our model Eq. 4.20,
while the points represent the numerics, calculated for a finite system illuminated
by a Gaussian beam. In this latter case, the optical properties are computed from
the coupled-dipole equations, by projecting on the same mode as the input, as
described in Appendix A.3. In the numerics, the response is averaged over a large
number > 100 of random configurations of the positions of the defects.

at position rh. The solution to the excitation amplitudes of the atoms

cj(δ) = cE(δ) + c̃j(δ) was provided in Section 4.3.1. Using Eq. 4.2, we can

then calculate the total field. In the far field limit of k0|z|≫ 1, it can be

written as E(r⊥, z) ≃ Eideal(z) + Eh
defect(r⊥, z), where Eideal(z) is the far

field associated to a defect-free array, as defined in Eq. 4.7. On the other

hand, the field scattered due to the defect is

Eh
defect(r⊥, z) = iE0

Γ(0)

Ω0

(
d

2π

)2

Ωh(δ)

×

[∫
|kxy|≤k0

(
k20 − k2x
k0kz

)
e−ikxy·(r⊥−rh)+i|z|kz

−δ + ω(kxy)− iΓ(kxy)/2
dkxy

]
x̂,

(4.18)

with kz =
√
k20 − |kxy|2, and where we recall that Ωh is self-consistently

defined by Eq. 4.15. The broken translational symmetry due to the defect

allows it to scatter into all directions inside the light cone, |kxy|≤ k0.

This result can be easily extended to the case of multiple defects, as

long as they are well separated and uncorrelated, which is valid in the limit

of a small fraction of defects Ph ≪ 1 over the total number of atoms. In

that case, we can fairly assume that the total field is E(r⊥, z) ≃ Eideal(z)+∑
hE

h
defect(r⊥, z), implicitly stating that each defect still scatters the same
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light that it would scatter if it were the only defect in the array. To infer

the transmission and reflection coefficients of such a system, we first need

to divide the total field into forward and backward propagating waves

E+(r⊥, z) = Ein(r)

[
1 + i

Γ(0)

2

cE(δ)

Ω0
Θ(z)

]
+Θ(z)

∑
h

Eh
defect(r⊥, z),

E−(r⊥, z) = E∗
in(r)

[
i
Γ(0)

2

cE(δ)

Ω0
Θ(−z)

]
+Θ(−z)

∑
h

Eh
defect(r⊥, z).

(4.19)

Then, we calculate the fraction of power scattered into the same mode as

the input light, in both directions. As discussed in Appendix A.2.1, this

can be calculated as ⟨Ein|E⟩ =
∫
dr⊥ E∗

in(z) ·E(r⊥, z)/
∫
dr⊥ |Ein(z)|2 ,

which naturally applies to the case of paraxial Gaussian beams [152, 234,

235] or interfaces with optical fibers [156, 157], as well as for input plane

waves [170]. These latter, however, have a nominally infinite power, and we

account for it by calculating ⟨Ein|E⟩ for a finite, square system of size L2,

so that the projection correctly renormalizes to a finite value at any scale

L. In the limit of L→ ∞, we then obtain

t(δ) = ⟨Ein|E+⟩ = 1 + i
Γ(0)

2

cE(δ)

Ω0

(
1 + Ph

Ωh(δ)

Ω0

)

≃ 1 +
iΓ(0)/2

−δ + ω(0)− iΓ(0)/2 + Σh(δ)
,

(4.20)

as well as the reflection r(δ) = ⟨E∗
in|E−⟩ = t(δ)−1. Here, we used the fact

that, for each defect at transverse position rh, the projection ⟨Ein|Edefect⟩
only selects from Eq. 4.18 the component with kxy = 0, thus not depending

on the value of rh. At the same time, we observe that the fraction of defects

emerges as Ph =
∑

h d
2/L2, while in the last step we assume Ph ≪ 1, thus

defining the self-energy Σh(δ) = Ph/χ(0, δ). In Fig. 4.6, we numerically

validate the analytic prediction in Eq. 4.20, by solving the coupled-dipole

equations for a finite 2D atomic array with (randomly positioned) holes.

As expressed by Eq. 4.20, the real part Re Σh(δ) of the self-energy in-

troduces an energy shift of the total resonance frequency of the collective

mode |E⟩ of the 2D array. At the same time, its imaginary part represents

the emergence of losses (from the perspective of the single-mode |E⟩),
due to the energy irradiated into the other collective modes (mainly non-

radiative, when d ≪ λ0). One can easily notice, indeed, that the quantity

−2Im Σh(δ) = PhΓd(δ) is the straightforward extension of Γd(δ) (rep-
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resenting the rate of excitation of the transverse modes through a single

defect, as shown in Eq. 4.16) to the case of multiple defects.

4.3.2.3 Final remarks on a 2D array with defects

We want to conclude this section by highlighting some implications of our

findings, beyond the analysis of the refractive index. In the context of atomic

arrays it is generally accepted that low lattice constants can mitigate the

effects of experimental, inelastic losses Γ′ (that we assume are independent

of the lattice constant d), by enhancing the fraction Γ(0)/Γ′ ∝ (λ0/d)
2

of elastic over inelastic response. In a real experimental setting, however,

some lattice sites remain likely unfilled, leading to a fraction of defects

Ph ̸= 0 that might be low but still non-null. In sight of our observations,

the relevant figure of merit for the elastic optical response of the 2D atomic

array then reads (at low lattice constants d≪ λ0)

Γ(0)

Γ′ − 2Im Σh(δ)
∼ d

Phλ0
, (4.21)

where we used the fact that Γ(0) ∝ Γ0(λ0/d)
2 and Σh(δ) ∼ Γ0(λ0/d)

3Ph

(as shown in Section 4.3.1). This proves the counter-intuitive result that

low lattice constants might instead be detrimental in real implementations

of atomic arrays, approximately when d/λ0 ≲ Ph.

4.4 The onset of quantum chemistry

As mentioned before, our primary goal is to understand the behavior of

the refractive index at densities corresponding to the onset of quantum

chemistry, when the lattice constant is still large compared to the Bohr

radius, i.e. d ≫ a0. We favor this approach because chemistry can be

considered weak and can thus be treated perturbatively, which allows one to

avoid the well-known theoretical and computational challenges of quantum

chemistry of solids. Studying this regime also enables one to continue to

treat multiple scattering non-perturbatively, which is key to understanding

the limits of refractive index.

In the regime of pure optics that we studied so far, our analysis was

dealing with generic two-level emitters, uniquely characterized by their res-

onant frequency ω0 and spontaneous emission rate Γ0. Within the weak

chemistry limit, one has to choose the individual atomic building block of

the lattice. We take hydrogen atoms, which have the advantage that the
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single hydrogen atom is an exactly solvable quantum mechanics problem.

Our analysis must indeed be interpreted as a simplified, very minimal model

of the onset of chemistry, to highlight the first-order corrections to quantum

optics. In fact, despite the specificity of considering hydrogen, we will see

that the main mechanisms that limit the refractive index involve the emer-

gence of quantum magnetism, chemistry-induced electronic density-density

correlations, and tunneling dynamics of photo-excited electrons. These are

rather general features in materials, which may plausibly give our model

broader qualitative validity.

To be specific, we consider a rectangular lattice with constant d in the

transverse plane and dz = 2.5d along the direction of light propagation,

avoiding the effects of the evanescent coupling discussed in Section 4.2.3.

For an isolated hydrogen atom, the transition wavelength from the 1s to 2px
level is λ0 ≈ 121 nm and the corresponding spontaneous emission rate is

Γ0 ≈ 2π× 100 MHz. Of course, neither hydrogen nor any other material is

energetically stable for arbitrary values of d, dz. In our simplified model, we

assume that the nuclei can be arbitrarily fixed for this thought experiment,

while more realistic routes are discussed in Section 4.5.

4.4.1 Definition of the Hamiltonian

The Hamiltonian of Eq. 4.1 characterizes the quantum optics limit of atoms

that are very far apart, compared to the spatial extension of their orbitals.

In this situation, the atoms are point-like scatterers, which respond to light

via their electric dipole moment.

Here, we are specifically interested in the regime of a0 ≪ d ≪ λ0.

The atoms can still be fairly considered as separated objects, and we can

approximate the electronic orbitals as those of isolated atoms. At the same

time, the optical response is still dominated by the electric dipole moment

of the atoms, since higher multipolar orders would only start to contribute

at distances d comparable to the extension of the orbitals (roughly, ∼ a0)

[144].

Nonetheless, as the tails of the orbitals bound to neighbouring nuclei

start to overlap, one can identify electron hopping as a first, fundamental

correction to Eq. 4.1. To model this process in our simplified scenario of

hydrogen atoms, we only need to account for one electron per nucleus, which

can either be in the 1s or 2px state, as characterized by the creation b̂†νiσ
and annihilation b̂νiσ fermionic operators (defined in Eq. 4.1) of an electron

with spin σ, occupying the orbital ν of atom i. At the first order, the

tunneling tν b̂
†
νiσ b̂νjσ, between two neighbouring ⟨ij⟩ sites, can be restricted
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only to atoms belonging to the same 2D layer, thanks to our geometrical

configuration dz ≫ d. This assumption strongly simplifies our calculations,

allowing us to study the onset of chemistry only within the 2D arrays, to

quantify how it breaks the single-mode nature of their optical response.

Finally, when two electrons occupy the orbitals ν and ν ′ of the same atom,

one need to pay an energetic penalty Uνν′ , due to their Coulomb repulsion.

At the same time, one needs to enforce Pauli exclusion, which forbids two

electrons having the same quantum state. We can thus write the total

Hamiltonian for our model as

Ĥtot ≈ ĤQO +
∑
n

Ĥ2D,n
QC , (4.22)

where the terms Ĥ2D,n
QC , represent the onset of chemistry within each n-th

2D array Ln, reading

Ĥ2D,n
QC = −

∑
⟨ij⟩∈Ln

∑
νσ

tν

(
b̂†νiσ b̂νjσ + h.c.

)
+
∑
i∈Ln

Ussn̂si↑n̂si↓

+
∑
i∈Ln

Usp(n̂pi↑ + n̂pi↓)(n̂si↑ + n̂si↓).

(4.23)

where we define the population operators n̂νiσ = b̂†νiσ b̂νiσ. The Hamil-

tonian in Eq. 4.23 (with the addition of the term Ĥ0 of Eq. 4.1, which

quantifies the bare orbital energies) represents the well-established two-band

Fermi-Hubbard model, at half filling (due to our choice of neutral, hydrogen

atoms). Here, we neglect the repulsion term Upp because we are explicitly

interested in the linear-optics regime of single excitation.

We now want to estimate the tunneling rates in Eq. 4.23, as a function

of the lattice constant d. To this aim, we notice that 2ts corresponds to the

energy splitting between the two states of the ground-state manifold of the

H+
2 hydrogen molecule ion, which are approximately given by the odd/even

superpositions of a 1s orbital on the two nuclei a and b, |1s⟩a∓|1s⟩b, at large
nuclear separation. A similar reasoning relates 2tp to the px-state manifold

of H+
2 . The energy curves of H

+
2 can be calculated with very high numerical

precision (we use the numerical data of [236]) obtaining the black (ts) and

red (tp) curves of Fig. 4.7-a. Finally, the Coulomb-repulsion energies Uνν′

can be calculate from the known orbital wave functions φν(ri), as

Uss =
q2

4πϵ0

∫
dr1dr2

1

|r1 − r2|
φ2
1s(r1)φ

2
1s(r2), (4.24)
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Figure 4.7: Estimation of the relevant energies and rates. a) Numerical values
of the tunneling rates ts (black) and tp (red) used in our calculations for the ground
and excited state electrons, respectively, as a function of scaled lattice constant
d/a0. These rates are inferred from the spectrum of the H+

2 hydrogen molecule
ion. We also plot the on-site interaction energies Uss (blue) and Usp (green),
as calculated from the isolated hydrogen atom. Energies are shown in units of
the Rydberg constant |ϵs|. b) Heisenberg interaction strength J (black) and p-
orbital impurity tunneling rate teff (red) as a function of lattice constant, and
in units of the Rydberg constant. The solid and dashed blue lines indicate the
collective emission rate Γ(0) of an ideal 2D lattice in the quantum optics limit,
and the emission rate Γ0 of an isolated hydrogen atom, respectively. The orange
line represents the resonant emission rate Γd(δ = ω(0)) related to a selectively
driven atom in an array, as discussed in Section 4.3.1. The green curve captures
the effective dissipation rate in the optical response of a 2D array, due to quantum
chemistry. On resonance, this is quantified by −2Im ΣQC(δ = ω(0)).

and

Usp =
q2

4πϵ0

∫
dr1dr2

1

|r1 − r2|
φ2
1s(r1)φ

2
2px(r2), (4.25)

which can be solved analytically by expanding the Coulomb potential in

spherical harmonic functions. One obtains Uss = 5|ϵs|/4 (blue line of

Fig. 4.7-a) and Usp = 118|ϵs|/243 (green line), where ϵs ≈ −13.6 eV

is the hydrogen ground-state energy.

The Fermi-Hubbard model in Eq. 4.23 certainly over-simplifies the full

quantum chemistry problem of an array of hydrogen atoms. Perhaps most

prominently, the on-site interaction energies Uνν′ , as estimated above, are

on the order of the ionization energy of hydrogen itself, which implies that

higher bands should be needed to accurately reproduce the full electronic

wave functions of the array. Nonetheless, state-of-the-art computational

quantum chemistry calculations [237] on the ground state of a 1D hydro-

gen chain at large lattice constants suggest that the Fermi-Hubbard model

well describes the key physics. Although such a direct comparison in 2D is

beyond numerical capabilities, we take the 1D results as sufficient justifica-
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Figure 4.8: Illustration of the relevant perturbative processes in the two-
band, Fermi-Hubbard model. a) Mechanism giving rise to anti-ferromagnetic
Heisenberg spin interactions between nearest-neighbour electrons in their s-orbitals.
An electron tunnels to its nearest neighbour, producing an intermediate state with
large energy E = Uss (due to on-site interactions), and forcing an electron to
tunnel back. This process is only allowed provided the two electrons have different
spins, due to Pauli exclusion. b) The Heisenberg spin interaction leads to an
anti-ferromagnetic Néel order for the many-body ground state, as qualitatively
illustrated here by the checkerboard pattern of up and down spins of the s-orbital
electrons. At next order in perturbation theory, the intermediate state illustrated
in (a) manifests itself in the many-body ground state through the appearance of
bound holon-doublon pairs (the pairs of sites outlined by rectangles), which reflect
the electronic density-density correlations generated by the interactions. These
pairs consist of a holon (dashed circle), i.e. a nucleus without an electron, and
a neighbouring doublon with two electrons. c) An analogous process to (a) can
occur if an electron on one site is in its p-orbital (with the p-orbital state indicated
by orange) and a neighbour is in its s-orbital (indicated by green). Note that going
from the initial to the final state, both the spin and orbital degrees of freedom
between the sites have been exchanged.

tion for the reduction to the 2D Fermi-Hubbard model.

Starting from Eq. 4.23, we can identify two relevant physical aspects,

that we introduce here below. In the next section, we will discuss in detail

how they affect the optical response.

• Dynamics in the low-energy sector. The dynamics and the physical

properties encoded in Eq. 4.23 can be conveniently studied by further

simplifying our Hamiltonian. To do so, we realize from Fig. 4.7-a that

the on-site interaction terms Uss, Usp greatly exceed the tunneling

rates ts, tp, in the regime of interest of d ≫ a0 (roughly, when d ≳
10a0). The Hilbert space thus separates into a low-energy manifold

consisting of one electron per site, and a high-energy manifold where

two electrons occupy the same nucleus. The dynamics within the

low-energy sector is characterized by perturbative, virtual processes
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which involve higher-energy states. Specifically, within second-order

perturbation theory, an electron can tunnel to a neighbour nucleus

to create a virtual state with higher energy, followed by tunneling of

an electron back to the empty site. The relevant situations are then

illustrated in Fig. 4.8. Specifically, in Fig. 4.8-a we show the case of

an electron in its s-orbital hopping into a site already occupied by an

electron in its s-orbital, with an energy price of E = Uss. Due to

Pauli exclusion, this process is restricted to electrons having opposite

spins, and it gives rise to anti-ferromagnetic Heisenberg interactions

of strength J = 4t2s/Uss (black curve of Fig. 4.7-b) between the spin

degrees of freedom of nearest neighbour electrons. Another relevant

case is that depicted in Fig. 4.8-c. There, a p-orbital electron can first

tunnel to a nearest neighbour already containing an s-orbital electron,

to create a high-energy intermediate state of energy E = Usp. The s-

orbital can then tunnel back to replace the p-orbital on its original site,

with an overall rate of teff = 2tstp/Usp (red curve of Fig. 4.7-b). This

includes as well the analogous case of a s-orbital electrons tunneling

to a site occupied by a p-orbital electron, which then replaces the first

electron in its original site.

The emerging Hamiltonian for the low-energy sector is given by the

so-called tJ model, reading

Ĥ2D,n
QC ≈ J

∑
⟨ij⟩∈Ln

Ŝi · Ŝj︸ ︷︷ ︸
ĤJ

−teff
∑

⟨ij⟩∈Ln

∑
σσ′

(
b̂†piσ b̂pjσ b̂

†
sjσ′ b̂siσ′ + h.c.

)
︸ ︷︷ ︸

Ĥt

,

(4.26)

which can be formally derived from Eq. 4.23 by projecting the dynam-

ics into the low-energy manifold via a Schrieffer-Wolff transformation

[238]. Here, the (isotropic) Heisenberg interaction ĤJ reflects the

onset of quantum magnetism due to quantum chemistry, by coupling

the spin operators Ŝα
i =

∑
σσ′ b̂

†
siστ

α
σσ′ b̂siσ′/2, where τα is the α-th

Pauli matrix. As a result, the global state of the spins in the ground

state has anti-ferromagnetic Néel order.

• Holon-doublon pairs. Now, we neglect the dynamics involving an

excited electron in its p-orbital, and we focus more in detail on the

ground-state properties within the manifold where all electrons are

in their s-orbitals. Specifically, while ĤJ describes the perturbative

effect of tunneling within the low-energy manifold of one electron per

nucleus, at next order of perturbation theory the intermediate states
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in Fig. 4.8-a lead to a total ground state illustrated in Fig. 4.8-b,

where there is a small probability ∼ (ts/Uss)
2 to find holon-doublon

pairs consisting of two electrons on one nucleus (doublon) and no

electrons on a nearest neighbour (holon). More precisely, one can

calculate the fraction of sites occupied by holons or doublons via the

slave-fermion formalism introduced in [239]. In the thermodynamic

limit, the number of holon-doublon pairs over the total number of

lattice sites is given by

Phd ≈ 2.58

(
ts
Uss

)2

. (4.27)

These holon-doublon pairs are a manifestation of density-density cor-

relations that emerge due to quantum chemistry. To make this state-

ment more concrete, we consider, from the full Hamiltoninan Eq. 4.23,

the terms that only involve s-orbital electrons, and we study the sys-

tem in its ground state. At any perturbative order, the electron-

density operator D̂j =
∑

νσ n̂νjσ must have a homogeneous, mean

value of one electron in each lattice site, i.e. ⟨D̂j⟩ = 1, ∀j, due

to both the half-filling condition
∑

j⟨D̂j⟩ = N and the full trans-

lational symmetry, which guarantees the homogeneity ⟨D̂j⟩ = ⟨D̂i⟩,
∀i, j. Within the low-energy sector (by definition), this operator has

zero variance ⟨D̂2
i ⟩ − ⟨D̂i⟩2 = 0. At higher perturbative orders, how-

ever, due to the virtual processes of Fig. 4.8-a, the variance around

the (homogeneous) mean value becomes non-zero. This means that

a non-null probability exists, per lattice site, of encountering either a

holon or a doublon, which can be described with the population Phd.

At the same time, this is accompanied with the emergence of spatial

correlations ⟨D̂iD̂j⟩ − ⟨D̂i⟩⟨D̂j⟩ ≠ 0 for nearest neighbours.

4.4.2 Optical response at the onset of chemistry

Here, we analyze in detail how we expect that the onset of chemistry can

alter the optical response of each 2D atomic layer. We begin by recalling

the main result in the quantum optics limit of Section 4.2.3, involving only

the ĤQO term of Eq. 4.22. In particular, for weak light at normal incidence,

a 2D array behaves as a single-mode system, where the light excites only a

single collective mode |E⟩, and this collective mode only re-radiates light

elastically at a rate Γ(kxy = 0) back in the same kxy = 0 direction (either

forward or backward). This single-mode nature of the quantum optics limit
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Figure 4.9: Model of optical response of a 2D atomic array including the
onset of chemistry. a) In the quantum optics regime, a large refractive index is
achieved due to the single-mode response of an individual 2D layer, where weak
incident light only couples the many-electron ground state |G⟩ to a single collective
excited state |E⟩, and this state emits elastically back into the same optical mode
at a rate Γ(0). b) Quantum chemistry allows for inelastic or spatial multi-mode
emission. Spatial multi-mode emission into directions kxy ̸= 0 arises from light
scattering off of electronic density-density correlations, in the form of holon-doublon
pairs (dashed green arrow). Hopping of the photo-excited electron at a rate ∼ teff
couples the excited states to a continuum of additional states |n⟩, labeled by
an integer n that describes the degree to which the hopping disturbs the anti-
ferromagnetic Néel order of the electron spins, as described further in the main
text. This process, along with the effective decay rate Γd(δ) = −2Im 1/χ(0, δ) of
the excited electron, lead to inelastic emission. c) The various quantum chemistry
processes illustrated in Fig. 4.9-b give rise to a modified optical response of the 2D
layer, which can be captured by a complex self energy ΣQC(δ) of the excited state
|E⟩. The real and imaginary parts describe an chemistry-induced energy shift and
effective inelastic decay rate, respectively.

is illustrated in Fig. 4.9-a (dashed purple box), and produces the large,

purely real refractive index of a 3D lattice. One effect that emerges due to

quantum chemistry is the appearance of anti-ferromagnetic Néel ordering in

the spin component |σ⟩ of the many-electron ground state |G⟩, as discussed
in Section 4.4.1. This same spin wave function is inherited by |E⟩, as the
exciting light does not affect spin. The Néel ordering in itself thus does not

alter the refractive index.

In contrast, the excited electron dynamics and the density-density cor-

relations break the single mode response by allowing for inelastic or spatial

multi-mode emission processes, as illustrated in Fig. 4.9-b (dashed blue

box). Specifically, they give rise to optical processes analogous to those dis-

cussed in Section 4.3, which can be incorporated into a frequency-dependent

effective level shift and inelastic decay rate of the excited state, as charac-
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terized respectively by the real and imaginary parts of a self-energy term

ΣQC(δ) (see Fig. 4.9-c). We now discuss these processes more in detail.

4.4.2.1 Dynamics of photo-excited electron

In this subsection, we neglect density-density correlations (i.e. assuming

exactly one electron per site), and focus on the effect of photo-excited

electron dynamics as described by the tJ-model Hamiltonian of Eq. 4.26.

Instead of dealing directly with ĤtJ, we will work with the simpler tJz
model, which is known to capture well the dynamics at short times [240].

In the tJz model, only the z components of the spins are assumed to in-

teract, which is enforced by replacing the Heisenberg coupling ĤJ with

the anti-ferromagnetic, Ising coupling ĤJz =
∑

⟨ij⟩∈Ln
Sz
i S

z
j . In this case,

the classical anti-ferromagnetic Néel order describes exactly the global spin

ground state configuration |σ⟩ of the electronic ground state |G⟩ and ex-

cited state |E⟩, as illustrated in Fig. 4.10-a,b. The excited state is an equal

superposition of the excited p-orbital being located at different sites, as we

qualitatively show in Fig. 4.10-b by depicting two representative configura-

tions in the overall superposition.

We thus want to derive the index of the system evolving under Eq. 4.22

with the replacement chemistry described by the tJz-model of Eq. 4.26 (with

only ẑ-spins interacting). We also assume that due to the small magnitude

of J (compared to both Γ(0) and teff , as seen in Fig. 4.7-b), the energies

Eσ of different spin configurations will be non-zero but negligible from the

standpoint of the dynamical evolution e−iEσt, so that ĤJz , although defining

the spin ground state, doesn’t directly affect the dynamics. Furthermore,

we ignore the contributions of Ĥdrive beyond the matrix element connecting

|G⟩ and |E⟩, as all other contributions only lead to multi-photon corrections

in the refractive index that are nonlinear in the field intensity.

The first non-trivial effect beyond the quantum optics limit arises from

Ĥt acting on |E⟩. As illustrated in Fig. 4.10-b, we can express the state

|E⟩ =
(∑

j |rj⟩/
√
N
)
⊗ |σ⟩ as an equal-weight superposition, where |rj⟩

denotes that the excited p-orbital is located at site rj and |σ⟩ is the ground-
state spin configuration. The Hamiltonian Ĥt allows the excited electron

to exchange both its orbital and spin degrees of freedom with any nearest

neighbor, thus coupling |E⟩ to the new normalized state

|1⟩ = 1

2
√
N

∑
j

∑
δ1=±dx̂,±dŷ

|rj + δ1⟩|σj,δ1⟩, (4.28)
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Figure 4.10: Physics of the tJz model. a) The many-body ground state of
the 2D array consists of a single s-orbital electron per site (green), with classi-
cal anti-ferromagnetic Néel order of the spins, as indicated by the arrows. b) A
single incident photon excites the array into the superposition state |E⟩, where
any electron at site i is equally excited to a p-orbital (yellow) without changing
the spin. c) Dynamics of the excited electron via the Hamiltonian Ĥt couples
the state |E⟩ to the state |1⟩, a superposition state of all possibilities where the
p-orbital can exchange orbital and spin degrees of freedom with an s-orbital elec-
tron in a neighbouring site (solid red arrows). This dynamics breaks the perfect
anti-ferromagnetic order for the s-orbital electrons inside the blue boxes. Certain
configurations making up the superposition are labeled and described further in the
main text.

where |rj + δ1⟩ describes the position of the p-orbital following a move

in the nearest neighbor direction δ1 and |σj,δ1⟩ is the spin state following

the corresponding spin exchange. All spin states are orthogonal to one

another ⟨σj,δ1 |σj′,δ′1⟩ = δj,j′δσ1,σ′
1
, and the state |1⟩ is entangled in the

orbital and spin degrees of freedom. The matrix element of the interaction

is ⟨1|Ĥt |E⟩ = −2teff .

A key consequence of the above discussion is that the dynamics of Ĥt

results in distinguishable spin backgrounds, even when the p-orbital winds up

on the same final site. This is illustrated in Fig. 4.10-b, where we explicitly

show two positions |rj⟩ and |ri = rj −dx̂+dŷ⟩ of the p-orbital in the state

|E⟩, and in Fig. 4.10-c, where we draw the new orbital states |rj + dŷ⟩
following an upward move and |(rj −dx̂+dŷ)+dx̂)⟩ = |rj +dŷ⟩ following
a rightward move, respectively. Despite the orbital wave functions being the
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same, the orthogonality of the associated spin wave functions
∣∣σj,dŷ〉 and∣∣σi,dx̂〉 is particularly easy to see by examining the blue boxes enclosing the

s-orbital electrons where the original perfect Néel order has been broken as a

result of the p-orbital motion. Note that should broken order be left behind

once the p-orbital relaxes by photon emission, the photon emission will be

inelastic and thus contributes an imaginary component to the refractive

index.

To calculate the effect on the index, we must understand how state

|1⟩ further evolves under excited-state hopping dynamics and dipole-dipole

interactions, as contained in the approximate Hamiltonian Ĥt + Ĥ0 +

Ĥdip−dip (from above, recall that we ignore ĤJz and Hdrive in subsequent

evolution). These processes are pictorially described in Fig. 4.9-a, by orange

(Ĥt) and red, wavy arrows (Ĥ0+Ĥdip−dip). Due to the different scalings of

the interactions seen in Fig. 4.7-b, we consider simpler limits where either

Ĥt or Ĥ0 + Ĥdip−dip completely dominates. In any case, from the stand-

point of |E⟩, these dynamics couple this state to a continuum, leading for

example, to an effective decay rate other than the preferred elastic emission

channel, decreasing in optical response. Our goal is to quantify this in terms

of a “self-energy” contribution to state |E⟩.

• Case when Ĥ0+Ĥdip−dip dominates. We first consider when Ĥ0+

Ĥdip−dip dominates subsequent evolution of |1⟩. Since Ĥ0+Ĥdip−dip

does not couple to spins, the various states in |1⟩ with different spin

backgrounds |σj,δ1⟩ always retain orthogonality in subsequent evo-

lution under Ĥ0 + Ĥdip−dip. This implies that the excited p-orbital

|rj+δ1⟩ in |1⟩ is “distinguishable” in complete analogy to the situation

studied in Section 4.3.1, where we considered an array in the quan-

tum optics limit with a single atom selectively driven by an external

source. In particular, each orbital configuration |rj + δ1⟩ represents

an excitation deposited on a selected atom, which can spread in-

side the array through the propagator Ĝχ(δ) = −(Ĥ0 + Ĥdip−dip)
−1

(in the rotating frame of the incident light) of Eq. 4.13. One of

the consequences is an effective decay rate Γd(δ) = −2Im 1/χ(0, δ)

as seen by the distinguishable excitation, which is depicted by red,

wavy arrows in Fig. 4.9-b from the state |1⟩. This analogy is man-

ifestly seen once we use the Nakajima-Zwanzig formalism [241] to

integrate out the excited states |rj +δ1⟩ and the continuum to which

they couple, to produce an effective non-Hermitian dynamics on state

|E⟩. The resulting complex self-energy, encoding the coherent energy

shift and decay rate due to this coupling to a continuum, is given
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by Σt(δ) = ⟨E|ĤtĜχ(δ)Ĥt |E⟩ = −4t2effχ(0, δ) [229, 241, 242]. The

appearance of the susceptibility χ defined by a classical optics calcula-

tion confirms the analogy. To conclude, in Appendix D.2.1 we report

an alternative approach to calculate the same self-energy Σt(δ), by

directly solving the equations of motion at the steady-state.

• Case when Ĥt dominates. We now consider the opposite limit where

Ĥt dominates the subsequent dynamics of the state |1⟩. Besides

returning back to |E⟩, Ĥt connects |1⟩ to an additional orthogonal

state |2⟩ characterized by n = 2 non-trivial hops of the p-orbital

relative to its position in the original state |E⟩,

|2⟩ = 1

2
√
3N

∑
j

∑
δ1,2=±dx̂,±dŷ

(1− δδ1,−δ2) |rj + δ1 + δ2⟩|σj,δ1,δ2⟩.

(4.29)

The corresponding matrix element is ⟨2|Ĥt|1⟩ = −
√
3teff . The state

|2⟩ has an increased number of nearest neighbors with broken Néel

ordering, with the spin states |σj,δ1,δ2⟩ being orthogonal to one an-

other and to the spin states in |1⟩ and |E⟩. For a larger number of

hops n > 2, a standard approximation is to assume that spin back-

grounds are always distinguishable [243, 244]. Then, the problem

reduces to hopping on a Bethe lattice and the matrix elements are

⟨n+ 1|Ĥt|n⟩ = −
√
3teff for n ≥ 1 (see Appendix D.2.2).

Intuitively, the effect of hopping over the states |n⟩ will dominate the

effective dissipation seen by the state |E⟩ when teff ≫ Γd(δ). As

shown in Fig. 4.7, in the relevant range of lattice constants d ≫ a0,

this regime never occurs when illuminating the system exactly at the

resonance δ = ω(0). However, hopping to other states |n⟩ can be-

come important for other near-resonant driving frequencies δ ̸= ω(0).

Hopping on the Bethe lattice has been previously solved in [245],

with the main results summarized in Appendix D.2.2. In particular,

one finds that these dynamics contribute an imaginary self-energy to

the the excited state |E⟩, reading Σt(δ) = −4iteff. This intuitively

states that the effective decay rate from |Ekxy=0⟩ to the continuum

of states |n⟩ is proportional to the hopping matrix element itself.

Up to now, we have considered the limits where either Ĥt or Ĥdip−dip

dominates the dynamics from the state |1⟩. To include both effects, we can
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use the simplified, phenomenological formula

Σt(δ) =
4t2effχ(δ, 0)

iteffχ(δ, 0)− 1
, (4.30)

which interpolates between the results obtained in the two limits. This is the

main result of this section, as it reduces all of the chemistry-induced photon-

excited electron dynamics to an effective complex self-energy correction to

the excited state |E⟩.

4.4.2.2 Density-density correlations

We now ignore the p-orbital dynamics of Ĥt, and consider just the ef-

fect of ground-state density-density correlations under the quantum optics

Hamiltonian ĤQO. The holon (nucleus with no electron) and doublon (ap-

proximately a negatively charged hydrogen ion) have a completely different

response to light and in particular do not efficiently couple to light near

resonance with the neutral hydrogen transition. At large d/a0, we can thus

model the optical response of the holon-doublon pair in the otherwise per-

fect array as a classical array of point dipoles with two consecutive empty

sites. The breaking of discrete translational symmetry by these two sites

induces light scattering from the incident direction into random ones, effec-

tively leading to an imaginary contribution to the index.

Specifically, we want to quantify the optical properties of an array with

a fraction Phd ≪ 1 of holon-doublon pairs, as defined in Section 4.4.1 (i.e.

number of pairs over the total number of lattice sites). Assuming that the

density of pairs is low enough that the emission from different pairs is uncor-

related, we can proceed in an analogous fashion to Section 4.3.2.2, where we

calculated the optical response of an array with a small fraction Ph of ran-

dom holes. A naive guess would be to simply replace Ph → 2Phd in Eq. 4.20

to account for the fraction of sites occupied by holons or doublons. How-

ever, the fact that a holon-doublon pair occupies neighboring sites means

that their scattering is correlated, and leads to a modest correction that we

now derive. To properly address this, we begin by solving a 2D array with

a pair of neighboring defects at positions rh± , similarly to the single-defect

case, defining the Rabi frequency Ωhd(δ)/2, which self-consistently drives

the two defects to ensure c̃h±(t) = −cE(δ). At the steady state, one obtains
c̃j(δ) = [χ(rj − rh+ , δ) + χ(rj − rh− , δ)]Ωhd(δ)/2. The transmission and

reflection coefficients for a low density of defects Phd ≪ 1 can be calcu-

lated by directly generalizing the procedure of Section 4.3.2.2, leading to a

structural form identical to Eq. 4.20, with the replacement of the single-hole
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self-energy Σh(δ) with the holon-doublon self-energy

Σhd(δ) =
∑

â=x̂,ŷ

Phd

χ(0, δ) + χ(dâ, δ)
, (4.31)

which is averaged over the two possible orientations â = x̂, ŷ of the pairs.

The imaginary component of Σhd(δ) characterizes an effective dissipation

arising from the scattering of normally incident light kxy = 0 into ran-

dom other directions. Similarly to what shown for the single-defect case

of Fig. 4.6, we have numerically calculated the classical transmission and

reflection of finite-size 2D arrays with a fixed fraction of nearest-neighbour

atoms removed (with a random orientation of the pair axis), finding a great

agreement between the numerics and our analytical solution.

The difference in orientations arises from the anisotropic band struc-

ture of Fig. 4.4-b. In response to a plane wave near resonance δ ≈ ω(0)

with the kxy = 0 mode, the pair of defects will strongly scatter into

the isoenergetic modes that satisfy ω(kxy) ≈ ω(0) (black dashed line),

which are roughly characterized by |kx|∼ const ≪ π/d, and |ky|≤ π/d.

When the connecting vector between the pair of sites is along x̂, the rel-

evant Bloch modes cannot resolve the two defects placed at a distance

d, and intuitively one expects the total scattering cross section to resem-

ble that of a single defect. On the contrary, when the connecting vec-

tor is along ŷ, the Bloch modes can resolve the sites, and one expects a

scattering cross section roughly twice that of a single defect. To check

this intuition, we compute the resonant cross section of a pair of near-

est defects (at δ = ω(0)) from the optical theorem, analogously to Sec-

tion 4.3.2.1. We obtain σx,yhd = (σ0/2)(Γ0/Ω
2
0)
∑

± Im (Ωhd/2)c̃h± , when

the pair is aligned either along x̂ or ŷ. By numerically evaluating the

susceptibilities χ(dx̂, δ = ω(0)) and χ(dŷ, δ = ω(0)) with the method

of Appendix D.1, we find that the number of lattice sites affected by

the holon-doublon pair (as defined in Section 4.3.2.1) is N x
hd ≃ Nh for

the x̂ alignment, and N y
hd ≃ 1.8Nh otherwise, with an average value of

⟨Nhd⟩ ∼ 1.4Nh. Here, Nh is the single-defect solution of Eq. 4.17, while

the resonant cross section of a holon-doublon can be related to the self-

energy via Phd⟨Nhd⟩ = −2Im Σhd/Γ(0), at δ = ω(0).

4.4.3 The limit to the index by quantum chemistry

From the previous subsections, we can assign a total complex self-energy

ΣQC(δ) = Σt(δ) + Σhd(δ) for the collective mode |E⟩ of a 2D array, which
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includes the effects of both the p-orbital dynamics Σt(δ) (via Eq. 4.30)

and the density-density correlations Σhd(δ) (via Eq. 4.31). The frequency-

dependent resonance shift Re ΣQC(δ) and inelastic losses −2Im ΣQC(δ)

alter the linear reflection and transmission coefficients in response to a

normally incident field, to r(δ) = iΓ(0)/[−2δ + 2ω(0) + 2ΣQC(δ)− iΓ(0)]

and t(δ) = 1 + r(δ). A non-zero loss −2Im ΣQC(δ) > 0 generally results

in a loss of coherently scattered energy |r|2+|t|2< 1. It should also limit

the maximum index achievable. This can easily be seen in the limit of large

−2Im ΣQC(δ)/Γ(0) ≫ 1, where r(δ) ∼ 0 and t(δ) ∼ 1.

The derivation of the refractive index of a 3D lattice, based upon mul-

tiple scattering between 2D arrays, follows in a manner analogous to that

presented in Section 4.2.3. In particular, recall that we obtained the dis-

persion relation J(kz) of Eq. 4.9 for a 3D system by diagonalizing the

Hamiltonian H1D
dip−dip,ij of Eq. 4.8 describing field-mediated interactions

between planes. Within the limits that we consider quantum chemistry, one

can repeat the calculation with the modification of the intra-plane matrix

element H1D
dip−dip,ii → H1D

dip−dip,ii + ΣQC(δ) to include chemistry effects.

This modifies the dispersion relation of Eq. 4.9 into the nonlinear form

J(kz) → J(kz) + ΣQC(J(kz)).

By choosing an aspect ratio of dz/d = 2.5, we can ensure that the

contribution of the evanescent field to the band (i.e. Jev(kz), as defined

in Eq. 4.10) is negligible in the range of interest d/a0 ≫ 1, guaranteeing

that the modified dispersion relation Eq. 4.9 is readily invertible (see Ap-

pendix C.3 for more quantitative details). By defining the complex refractive

index as n(δ) = kz(δ)/k0, we obtain

n(δ) =
1

k0dz
arccos

[
cos(k0dz) +

Γ(0) sin(k0dz)

2δ − 2ω(0)− 2ΣQC(δ)

]
. (4.32)

One can prove that the definition of index leading to Eq. 4.32 correctly de-

scribes the optical properties within the framework of classical macroscopic

electrodynamics. For example, in Section 4.4.4.1 we show that the formula

of n(δ) correctly describes the reflection and transmission of a finite-length

3D system when inserted into standard Fresnel coefficient formulas for a

dielectric slab, as long as the wavelength of light cannot resolve the atomic

positions, i.e. when k0dz ≪ 1 and |n(δ)k0dz|< 1.

The expression shown in Eq. 4.32 represents our final formal result,

where we are able to transition from the quantum optics to (weak) quantum

chemistry limit, while calculating the refractive index in a manner that still

retains non-perturbative multiple scattering of light. In order to appreciate
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Figure 4.11: Maximum (real) refractive index. Approximate calculation of
maximum real part of the refractive index (solid, blue line, maximized over the
detuning δ), as a function of lattice constant, including the effects of quantum
chemistry ΣQC(δ), without additional experimental noise Γ′ = 0. The dashed
black curve represents the result n = λ0/(2dz) in the quantum optics limit, while
the red curve shows the imaginary part of the index.

its non-perturbative nature, we can examine the requirements for Eq. 4.32 to

reduce to usual perturbative theories of optical response, such as the Drude-

Lorentz model. As shown in Section 4.4.4.2, this occurs when the inelastic

losses due to quantum chemistry become so intense as to strongly suppress

the effects of multiple scattering, specifically, when −2Im ΣQC(δ)/Γ(0) > 1

and k0dz ≪ 1. This observation helps to qualitatively understand why

perturbative theories work so well when quantum chemistry interactions

become strong, as is the case for real solids.

We use Eq. 4.32 to calculate the complex refractive index, as a function

of the lattice constant a0 ≪ d ≪ λ0, choosing the detuning δ which

maximizes its real part. In the numerical implementation, we must avoid

the range of frequencies associated with the bandgap, where there are no

propagating modes, i.e. the range of values of J(kz) that have no solution

for any kz. It can readily be checked that even if the losses are explicitly set

to zero (Im ΣQC = 0), within the bandgap region, Eq. 4.32 would predict a

complex index, incorrectly suggesting a lossy medium. We emphasize that

this issue is simply associated with how to define a proper macroscopic index

in the bandgap regime, whereas the microscopic dispersion relation J(kz)

remains correct.
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The results of Eq. 4.32 are shown in Fig. 4.11, where the blue line shows

the maximum real part of the index, while the orange line represents the

associated imaginary part (i.e. at the same frequency δ). The red, dashed

line shows the ideal quantum optics scaling of nmax = λ0/(2dz) obtained

in Eq. 4.11. One can see that the model predicts a possible real part of the

index as large as maxnre ≈ 30 around d ≈ 15a0, accompanied by a small

imaginary part describing losses nim ≲ 1, for an optimal lattice constant.

As one further decreases the lattice constant, one first sees a decrease in

the real part of the index and an increase in the imaginary part, followed by

a decrease in both, even as the effects of quantum chemistry continuously

increase, as characterized by ΣQC(δ). This reflects our earlier observation

that a huge inelastic loss rate should make an individual 2D layer increasingly

transparent. Finally, when the lattice constants are d ≳ 30a0, the presence

of ΣQC(δ) ≈ 0 is negligible. Due to this reason, given Eq. 4.32, any lattice

constant 30a0 ≲ d < λ0 would guarantee a (purely real) near-zero index

nmin ≈ 0 (as shown in Section 4.2.3), regardless of chemistry.

4.4.4 Recovering classical optics

The refractive index defined in Eq. 4.32 includes, non-perturbatively, the

multiple scattering, between each 2D atomic array, of the light propagating

in the longitudinal ẑ direction. As anticipated in Section 4.4.3, the onset

of chemistry introduces some fundamental losses which allow to perturba-

tively recover the standard laws of macroscopic, classical optics, due to the

suppression of multiple scattering along ẑ. Here, we analytically prove the

emergence of the Fresnel equations for the reflection and transmission of

a finite slab (as discussed in Section 3.2.2.1), as well as the appearance of

the usual smooth-field theories introduced in Section 2.1.

4.4.4.1 Emergence of Fresnel equations

In Eq. 4.32, we define the refractive index for the 3D lattice via a Bloch band

structure calculation. In this appendix, we prove that this definition of index

correctly reproduces various predictive properties of optical response, within

classical macroscopic electrodynamics. In particular, we on one hand will

calculate by microscopic approaches the reflection and transmission through

a finite-length 3D system, and on the other hand see that this agrees with

the standard Fresnel equations for a dielectric slab.

First of all, we recall that from the standpoint of classic optics, given a

dielectric slab of length L and (complex) refractive index n(δ), the Fresnel

equations predict a transmission tFr(δ) and a reflection rFr(δ) that were
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explicitly shown in Eq. 3.6. We now consider a 3D crystal composed of a

number M of 2D atomic arrays, separated by the distance dz and illumi-

nated at normal incidence. In the regime where the evanescent field can

be neglected, each 2D array is characterized by the reflection and trans-

mission coefficients r(δ) = iΓ(0)/[−2δ + 2ω(0) + 2ΣQC(δ) − iΓ(0)] and

t(δ) = 1 + r(δ). To our analysis, it is convenient to write r(δ) and t(δ)

as functions of the index n(δ) = kz(δ)/k0. This is accomplished by using

Eq. 4.32 to replace the dependency on δ with that on n, thus obtaining the

functions r(n) and t(n).

The multiple scattering problem through multiple layers reduces to a

1D problem that can be efficiently and exactly solved by the transfer-matrix

formalism [246]. In particular, the Chebyshev’s identity can be used to

calculate the (exact) total transmission and reflection of the stack of M ,

2D arrays, which read [247]

tM (n) =
eik0dzt(n)

uM (n)− eik0dzt(n)uM−1(n)
,

rM (n) =
e2ik0dzr(n)uM (n)

uM (n)− eik0dzt(n)uM−1(n)
,

(4.33)

where we define the function uM (n) = sin(Mnk0dz)/sin(nk0dz).

Starting from Eq. 4.33, we define the total length L and replace the

number of layers with M → L/dz. Eventually, we can expand the resulting

expressions as a Taylor series in k0dz ≪ 1, with the supplementary assump-

tion that |n(δ)k0dz|< 1, but also keeping in mind that k0L can be arbitrarily

large. The two requirements k0dz ≪ 1 and |n(δ)k0dz|< 1 correspond to the

physical regime where light cannot resolve the space between each single

2D atomic layer. This condition is naturally satisfied at low lattice constant

due to the losses −2Im ΣQC(δ), which reduce the index to |n(δ)k0dz|< 1

for any frequency δ. By performing such Taylor expansion, one recovers the

Fresnel predictions of Eq. 3.6, at the zero-th order in k0dz ≪ 1. Further

numerical evidence of the agreement with Fresnel equations is provided in

Appendix C.2.2.

4.4.4.2 Emergence of Drude-Lorentz theory

At high densities, the losses introduced by quantum chemistry strongly

suppress the effects of multiple scattering, preventing the appearance of

ultra-high indices. In that regime, one expects that usual mean-field the-

ories (such as the DL model) can well describe the physical phenomena.
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Specifically, we are interested in a system which exhibits one single, dom-

inant resonance ωres, and which is illuminated by near-resonant light with

|ωL − ωres|≪ ωres. We recall from Eq. 2.5 that, in this limit, the DL model

predicts the index

n =

√
1 +

fresω
2
P

ω2
res − ω2

L − iγ′ωL
≈

√
1−

fresω
2
P/ωres

2(ωL − ωres) + iγ′
, (4.34)

where ωP and γ′ are respectively the plasma frequency and the damping

rate, while fres is the so-called oscillator strength which depends on the

choice of the resonant transition. Here, we show that the refractive index

of an atomic lattice, as predicted by Eq. 4.32, reduces to Eq. 4.34 at high

densities, due to the losses induced by quantum chemistry. To this aim, we

first re-write Eq. 4.32 as

cos(k0dzn(δ)) = cos(k0dz) +
Γ(0) sin(k0dz)

2δ − 2ω(0)− 2ΣQC(δ)
. (4.35)

At low lattice constants, we can expand this equation up to the second order

in k0dz ≪ 1. To do so, one needs to fulfill the condition |k0dzn(δ)|< 1,

which is guaranteed by the suppression of multiple scattering induced by

−2Im ΣQC(δ) ≳ Γ(0) > Γ0 (this also guarantees the closure of the op-

tical bandgap). This procedure permits to directly recover Eq. 4.34, by

defining ωres = ω0 + ω(0) + Re ΣQC(δ), γ
′ = −2Im ΣQC(δ) and fresωP =√

6πωresΓ0/(k30d
2dz). To trace this latter back to the usual definition of

the plasma frequency, we can focus on the simple case of a transition be-

tween the ground and the first excited state of a hydrogen atom, observing

that the factor 1/(d2dz) = N/V represents the electronic density. Then, we

can compute the atomic dipole moment as |d0|= q|⟨ψ2px |x̂ |ψ1s⟩ |= βqea0,

and plug it into the definition of the decay rate Γ0 = k30|d0|2/(3πh̄ϵ0).
There, we recall that qe denotes the electron charge, while β ≈ 0.53 is

a proportionality factor, related to the choice of the 1s → 2px hydro-

gen transition. Finally, by noticing that in our regime both ω(0) and

Re ΣQC(δ) represent small displacements compared to ω0, we can write

ωres ∼ ω0 = (3/4)h̄/(2mea
2
0), where me is the electron mass. This leads

to ωP =
√
Nq2e/(meϵ0V ), which is the standard formula discussed in Sec-

tion 2.1.1 for the plasma frequency, along with fres = β
√

3/4 ≈ 0.46.

Within the limits studied here, we note that the typically phenomenologi-

cal decay rate γ′ appearing in the Drude-Lorentz model can be quantita-

tively connected to specific quantum mechanical processes as encoded in
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the imaginary part of the self-energy ΣQC(δ).

Finally, it is interesting to notice that the first correction that emerges

from this picture is the shift of the resonant frequency ω0 → ω0 + ω(0),

due to near-field interactions and multiple scattering. Notably, at low lat-

tice constants d ≪ λ0 the numerical value ω(0)/Γ0 ≈ −0.0136(λ0/d)
3 =

−3.37(d/dz)η [150] (with η = N/(k30V )) is surprisingly close to what pre-

dicted by the LL model discussed in Section 2.1.3. We recall, indeed, that

this latter represents an established (but approximated) method to partially

include near-field corrections, which predicts a density-dependent resonance

shift ωLL/Γ0 = −πη, for an isotropic distribution of atoms (see Eq. 2.13).

Although it would be hard to infer some general and solid conclusions from

this relation, we think that the agreement ω(0)/ωLL ≈ 1.07(d/dz) (up to

the spatial anisotropy factor d/dz characterizing our geometry) represents

an interesting observation.

4.5 A new route to extreme indices?

From an applied perspective, rather than focus on how large the real part of

the index can be, a more relevant question might be how small the loss can

be, min nim, given a target value of the real part of the index nre. To this

aim, it is instructive to generalize Eq. 4.32 to a more realistic experimental

scenario, including a phenomenological inelastic loss term Γ′ to the self-

energy, ΣQC(δ) → ΣQC(δ)−iΓ′/2, which accounts for other effects beyond

the quantum chemistry interactions that we explicitly considered up to now.

In Fig. 4.12, we thus quantify how robust the near-zero (Fig. 4.12-a) and

ultra-high (Fig. 4.12-b) indices are to the hypothetical additional dissipation

rates Γ′/Γ0 = 0.01, 0.1, 1, 102, 103 (from the bottom, solid brown curve

to the top, solid magenta curve). To do so, we numerically compute the

minimum value of the losses nim for a target value nre, optimizing over

the lattice constant d and detuning δ. As a reference, the black, solid line

represent the case where Γ′ = 0 (this curve doesn’t appear in Fig. 4.12-

a, as in that case one would obtain exactly n = 0, at lattice constants

where chemistry does not play any role). For the same reasons discussed in

Section 4.4.3, when optimizing over δ, we avoid the range of frequencies that

would be associated to an optical bandgap when Γ′ = 0. This guarantees

that the complex index of refraction is a well-defined quantity, but also

reduces the performance of the numerical optimization.

Finally, the dotted lines portray simple approximate scalings that can be

inferred in the same regime of k0dz ≪ 1 and |nk0dz|< 1 that was considered
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Figure 4.12: Minimum losses in experimental scenarios. Given any fixed value
of the real index nre, we plot the minimum imaginary part nim, obtainable with
proper choices of d and δ (colored, solid lines). Specifically, in (a) we consider
the case of a near-zero index nre ∼ 0, while in (b) we focus on ultra-high values
nre ≫ 1. The curves (from brown at the bottom, to magenta on top) refer to
increasing values of the additional inelastic losses Γ′ = 0.01, 0.1, 1, 10, 102, 103.
The black solid line shows the case Γ′ = 0, which is purely limited by the intrinsic
effects of ΣQC(δ). The dotted, colored lines represent the asymptotic scalings
nim ∝ n−1

re Γ′/Γ0 for the near-zero index in (a) and nim ∝ n3reΓ
′/Γ0 for the ultra-

high index in (b).

in Section 4.4.4. These are given by nim ∝ n−1
re Γ′/Γ0 for the near-zero index

and nim ∝ n3reΓ
′/Γ0 for the ultra-high index.

To calculate them, we start by deriving from Eq. 4.32 the equation

2δ̃ +
γ̃ cos(k0dz)

sin(k0dznre) sinh(k0dznim)
= γ̃ cot(k0dznre) coth(k0dznim),

(4.36)

where δ̃ = [δ − ω(0)− Re ΣQC(δ)]/Γ(0) and γ̃ = [Γ′ − 2Im ΣQC(δ)]/Γ(0).

In the regime of low losses k0dznim ≪ 1, we can solve Eq. 4.36 to obtain

nim ≈ γ̃[cos(k0dznre) − cos(k0dz)]/[2k0dz δ̃ sin(k0dznre)]. Inspired by the

numerical, brute-force optimization of minnim, we then observe that the

minimal losses are always obtained when the lattice constant is roughly

fixed around d ≈ dQC ≈ 15a0. This value roughly represents the lattice

constant where quantum chemistry starts to play a major role (as shown by

the dotted, vertical line in Fig. 4.11), so that d ≈ dQC then minimizes the

parameter γ̃ in Eq. 4.32, for any fixed value of Γ′. Given d = dQC, the value

of nre is varied by changing δ on a fixed curve. As we are in the regime of

low losses nim ≪ 1 and negligible quantum chemistry, we can approximate
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δ̃ with the band structure of Eq. 4.9, i.e. δ̃ ≈ [J(nrek0) − ω(0)]/Γ(0),

evaluated d = dQC. This proves to be a good approximation as long as

nim ≪ nre. Finally, after expanding for k0dz ≪ 1 (given nrek0dz < 1), one

obtains

nim ≈ Γ′

Γ0

(
dz
d

)(
k30d

3
QC

12π

)(
1

nre
− 2nre + n3re

)
, (4.37)

where we use the fact that d = dQC ≈ 15a0 (i.e. right before quantum

chemistry) to approximate γ̃ ≈ Γ′/Γ(0).

From the above discussions, it is clear that in principle one possible ap-

proach to achieve high-index materials is to realize high-density arrays of

well-positioned, sufficiently homogeneous quantum emitters [4]. The maxi-

mum index would be achieved at a distance between emitters right before

the electronic orbital wave functions between nearest neighbor emitters be-

gins to appreciably overlap. Although we know of no specific platform that

would immediately allow for an extreme and low-loss index, we note that

there has been steady progress to deterministically position emitters, such

as by self-organization [248] or ion beam implantation [249]. We also note

that in principle, quantum emitters already exist with sufficiently small val-

ues of Γ′ (where we allow Γ′ to incorporate non-radiative decay, additional

undesired radiative decay paths, dephasing, and inhomogeneous broaden-

ing) that an ultra-high index might be possible, if they could be arranged

into arrays.

For example, single color centers in diamond (such as silicon-vacancy

centers) exhibit inelastic rates as low as Γ′ ∼ Γ0 [249, 250], and inhomo-

geneous broadening levels at low temperatures in the range of Γ′/Γ0 ∼ 10-

100 [249, 251, 252]. Single quantum dots can offer almost lifetime-limited

linewidths with Γ′ ≪ Γ0 [253, 254], although some technological improve-

ment is still required to reduce the amount of inhomogeneous broadening in

ensembles. Separately, since the key underlying ingredient for high index is a

near-ideal single-mode response of a single 2D layer, 2D materials support-

ing excitonic resonances could also be a suitable platform. In particular, 2D

transition metal dichalcogenides have been observed to exhibit nearly per-

fect reflection on resonance [255–257], due to the high radiative efficiency

of excitons in such systems. If such individual layers with sufficiently low

loss could be stacked with controllable spacings between layers [223, 258],

both a ultra-high and a near-zero index should exist until quantum chem-

istry between layers becomes appreciable and the index reduces back to the

value found in bulk 3D material.
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4.6 Conclusions and outlook

In summary, we have shown that the magnitudes of refractive indices ob-

served in known optical materials likely does not reflect a fundamental limit,

and an ultra-high index, low-loss material should be allowed by the laws of

nature. Our analysis also suggests why an answer to the problem surround-

ing the limits of refractive index has been elusive, as the answer seemingly

requires one to understand the nature of non-perturbative multiple light

scattering over a broad range of densities that spans across the quantum

optics and quantum chemistry limits. Our work will hopefully stimulate new

efforts to identify, design, and fabricate ultra-high index materials.

As we discussed in Section 1.1.2, the idea of using resonant scatter-

ers to potentially realize extreme-index materials has been discussed before,

typically in the context of small metallic nanoparticles or metal composites

with plasmonic resonances. Compared to such works, two key differences of

our work are that first, we consider isolated atoms as building blocks that

are completely lossless and have a large scattering cross section decoupled

from their physical size, and that second, by bringing the atoms progres-

sively closer until quantum chemistry turns on, we can better address the

fundamental limits of refractive index of a “real” material.

While our current analysis focused on a specific model in which the lim-

its to index arise due to electronic density-density correlations and dynamics

of excited electrons, it would be interesting in future work to examine other

general material models. For example, are there paradigms in which the

mechanisms discussed here can be strongly suppressed, leading to higher

indices? In order to better answer such questions, and also to aid in the

search or possible design of extreme-index materials, it might also be de-

sirable to develop more general frameworks for the calculation of optical

response in the regime of non-perturbative scattering, and which ideally

might be integrated with state-of-the-art computational quantum chem-

istry. One promising approach might be to generalize the electromagnetic

Green’s function based methods to many-body condensed matter settings.

Finally, while our work specifically focused on the question of linear

refractive index, it more generally suggests that there is a broad range

of material densities where other important optical properties might have

surprising behavior, due to strong multiple scattering. As one example, it

would be interesting to develop similar theories for the limits of nonlinear

optical response, and to address whether there exist mechanisms to enhance

the nonlinear response beyond that of known materials.

In the context of atomic arrays, for instance, our analysis of the de-
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fects might offer a possible pathway to study nonlinear phenomena. At the

quantum level, the first manifestation of nonlinearity consists of an excited

atom becoming transparent to a second incoming photon, suggesting that it

might act similarly to a defect. It would be interesting to explore if the scat-

tering cross section σh of a hole can provide the correct physical intuition

for the two-photon correlations in a 2D atomic array, perhaps expanding our

analysis to cubic 3D arrays by including the evanescent coupling between

2D layers.
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5.1 Introduction

As extensively discussed in the previous chapters, light-mediated dipole-

dipole interactions can strongly modify the optical response of an atomic

ensemble, leading to the emergence of cooperative effects which firmly differ

from that of individual atoms [155, 163, 166, 167, 172–181, 259]. We

showed that this is the case of ordered atomic arrays, [151, 152, 260–264]

and we mentioned the great interest gathered by the theoretical possibility

of building a perfect mirror out of a single 2D atomic array [149, 150], as

experimentally addressed in [171]. In this context, further manipulation of

light at the quantum level was proposed in recent years, by either exploiting

the Rydberg blockade of ancillary atoms trapped next to the array [265–

267], or by controlling the energy levels of the individual atoms via AC Stark

shift [268–270]. In this chapter, we discuss the design of a structured optical

device, specifically a microscopic lens, which solely exploits the cooperative

response of arrays of two-level atoms, where the choice of tailored lattice

constants allows to locally manipulate the properties of light.
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5.1.1 From lenses to metalenses

Usual refractive lenses rely on local variations of the optical path inside the

lens (where light experiences a higher, positive refractive index) to induce

a spatially dependent phase shift. Thereby, the wavefront is shaped in such

a way that the output beam focuses at a designed distance. In the last

couple of decades, the idea emerged of designing optical devices by means

of flat metasurfaces, which rely on the electromagnetic response of tailored

nanostructures to locally impress abrupt phase shifts on the transmitted

light [271–274]. In particular, flat metalenses can be designed to mimic the

spatial phase pattern of a spherical lens [28, 29, 32, 275–283], and they have

proven to exhibit good focusing properties as well as an ultra-thin thickness,

up to fractions of a micron [33, 273].

Considering an input monochromatic light beam with wavevector k =

(2π/λ0)ẑ = k0ẑ, the system acts as a lens with focal length f as long as it

imparts the phase profile

ϕlens (r) = mod
[
k0

(
f −

√
r2 + f2

)
+ ϕ0, 2π

]
− π, (5.1)

where we define the transverse coordinate r =
√
x2 + y2, while the pa-

rameter −π < ϕ0 ≤ π corresponds to the phase at the center of the lens

[28, 279]. As discussed in Section 1.1.3, a metalens is usually composed of

microscopic nano-elements, which act as discrete phase shifters, whose size

is as small as few fractions of the wavelength λ0 [33]. Here, we propose

that an “atomic metalens” can be analogously conceived by means of actual

atoms, with a well-defined dipole transition, arranged to form atomic arrays.

Specifically, we show that any phase shift can be impressed (while main-

taining high and directional transmission) by using at least two consecutive,

2D arrays with tailored (subwavelength) lattice constants.

5.1.2 Overview of experimental platforms

From an experimental perspective, color centers in diamond can offer a

reliable framework for the implementation of such an atomic metalens. In

particular, a single color center is known to behave as an atom-like emitter

with well-defined selection rules and a dipolar response aligned along one

of the four possible tetrahedral directions of the diamond lattice [220, 284–

288]. Moreover, new technologies in the fabrication process promise to offer

good control over the spatial position of single color centers [289–293], as

well as the construction of almost defect-free arrays [294].
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Hereafter, we select Silicon-Vacancy (SiV) centers as a plausible experi-

mental reference. These latter can exhibit nearly lifetime-limited linewidths,

as well as ∼ 70% of emission into the zero-phonon line [249, 252, 295, 296].

Furthermore, we assume that the fabrication process permits to preferen-

tially discriminate over the four possible orientations, so that all dipole

transitions of the SiV centers can be considered as aligned along the same

axis, that we define as x̂ [297–300]. Although we consider color centers in

diamond as a possible system to implement our scheme, the proposed pro-

tocol is more general. Specifically, it is based on the scattering properties

of point-like dipoles, and it can be potentially tested with any experimental

platform where a sufficient control can be ensured over the spatial positions

of two-level, atom-like systems. In the context of solid-state systems, in

the last years many efforts were put in controlling at the nanoscale the spa-

tial positions of the single elements forming arrays of either quantum dots

[221] or rare-earth-ion dopings [222], showing promising results, but limited

to very small systems. At the same time, it was recently proven that cold

atoms can be arranged in arrays of arbitrary shape [301–303], although with

typical distances ≳ µm.

5.2 Theoretical formalism

We can now introduce the theoretical framework. We focus on a set of

atom-like scatterers, embedded in a bulk, nonabsorbing material of pos-

itive refractive index n, which are characterized by a linear polarizability

α0 = −3πϵ0/[(∆ + i(1 + Γ′)/2)k30] and a dipole matrix element d0 = d0x̂,

aligned along a well-defined direction. Here, ∆ ≡ (ω − ω0)/Γ0 represents

the dimensionless detuning between the frequency ω of the incident light

and the atomic resonance ω0, in units of the natural atomic linewidth Γ0

in the bulk material, while k0 = 2π/λ0 = nω0/c denotes the resonant

wavevector. For the specific reference of SiV centers, one has a resonant

transition 2πc/ω0 = 737nm and a decay rate Γ0/(2π) ≃ 94MHz [249, 252],

while the bulk index (diamond) reads n ≃ 2.4.

Throughout this chapter, we focus on the relevant case of resonant input

light, i.e. ∆ = 0, but the extension to near-resonant light is straightforward.

Moreover, we write all the frequencies and rates in units of Γ0.

Finally, the term Γ′ represents both non-radiative and non-elastic emis-

sion, and it also includes the possibility of inhomogeneous broadening of

the atomic resonances [251] (some further discussion is provided in Ap-

pendix D.3). In particular, we define Γ′ = Γinel + Γinhom, where we adopt
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some experimentally inspired values of Γinel ∼ 3/4 and Γinhom ∼ 5.

We are interested in an atomic system arranged in a stack of M , 2D

rectangular lattices, infinitely extending in the x̂ and ŷ directions, with

constants ξx = dx/λ0 and ξy = dy/λ0, and separated by a longitudinal

distance ξz = dz/λ0. The system is illuminated by a resonant, ẑ-directed,

x̂-polarized plane wave Ein(r, z) = E0e
ikzx̂. In this regime, the coupled-

dipole equations of Eq. 2.17 can be simplified by exploiting the symmetries

of the lattice. In Section 2.3.2, we discussed in details the optical response

of a 2D square array, where ξx = ξy. In this case, we are interested in the

more general scenario of ξx ̸= ξy, which nonetheless exhibits a qualitatively

identical response. Specifically, a plane wave normally incident to an infi-

nite 2D rectangular lattice still only excites one symmetric collective mode,

characterized by the cooperative resonance ωcoop(ξx, ξy) and cooperative

decay rate Γcoop(ξx, ξy) (in this chapter, we define the dimensionless rates

Γcoop = Γ(0)/Γ0 and ωcoop = ω(0)/Γ0). Each plane is thus reduced to

just a single degree of freedom, characterized by the dipole moment dm
for all the atoms in the plane m. In general, this single mode can scatter

light in all the directions, associated to an infinite number of diffraction or-

ders. However, if we restrict to the regime of ξx < 1 , ξy < 1 (i.e., zero-th

diffraction order), the light can only be scattered (either in transmission or

in reflection) into the same direction as the input light, while all the other

orders become evanescent.

As discussed in Chapter 4, if one now assembles a stack ofM infinite 2D

atomic arrays, the optical response at normal incidence will be single-mode,

allowing to rewrite Eq. 2.17 as a simpler set of coupled equations between

the layers (we remind that we fix the resonant condition ∆ = 0)[
ωcoop −

i

2
(Γcoop + Γ′)

]
cm −

∑
m ̸=j

Gmjcj = e2πi(m−1)ξz , (5.2)

whose dimensionless coefficients cm are related to the atomic dipole mo-

ments dm through cm = dmΓ0/(Ω0|d0|) and where we define the the inter-

action matrix Gmj = G1D
mj+Gev

mj . Here, the term G1D
mj = iΓcoope

2πi|m−j|ξz/2

represents that scattered light which propagates in the longitudinal ẑ di-

rection, while the term Gev
mj stands for the evanescent interaction, which

exponentially decreases with the distance between planes (its full expression

can be found in Appendix E.1). We also notice that Γcoop = 3/(4πξxξy)

when ξx, ξy < 1 (which is the straightforward extension to ξx ̸= ξy of

the parameter Γ(0)/Γ0 shown in Eq. 4.3), while ωcoop can be numerically

calculated with the prescriptions of [150, 225, 262, 304].
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After solving for the excitation amplitudes cn via Eq. 5.2, one can find

the optical response. In particular, as detailed in Appendix C.2.1, the stack

of M , 2D arrays is characterized by the total transmission and reflection

t = 1 + i
Γcoop

2

M∑
m=1

cm e−2πi(m−1)ξz ,

r = i
Γcoop

2

M∑
m=1

cm e2πi(m−1)ξz .

(5.3)

To conclude, hereafter we want to restrict to a regime where one has

Gev
mj ∼ 0 for any pair of planes. For rectangular lattices (in the regime of

ξx ≪ 1 , ξy ≪ 1), an approximate rule of thumb for Gev
mj ∼ 0 to be satisfied

is ξz ≫ max[ξx, ξy]/(2π). However, as discussed in detail in Appendix E.1,

when one approaches the condition ξy ∼ 1 , then some supplementary cau-

tion is required.

5.3 The building block: a phase shifter

We now discuss how to conceive the building blocks of an atomic metalens.

A usual metalens is composed of nanostructures of the size of fractions

of λ0, and each of these blocks is designed to transmit as much light as

possible and to induce a tunable phase shift. Hereafter, we show that

these two properties can be similarly achieved by exploiting the collective

response of an atomic array. We underline that we work in a regime where

the evanescent interaction can be neglected, i.e. Gev
mj ∼ 0. Finally, hereafter

we will define the phase shift impressed upon transmission as ϕ ≡ arg t.

Given Eq. 5.2, one can easily calculate the complex transmission of a

stack of M atomic layers. It is then easy to show that our goal cannot

be obtained with one single layer of atoms. In that case, indeed, the so-

lution of Eq. 5.2 satisfies the relation t1L + r1L = 1, which (together with

|t1L|2+|r1L|2= 1) imposes cos(ϕ1L) = |t1L|, meaning that a perfect trans-

mission is strictly associated with the fixed phase ϕ1L = 0.

On the contrary, a system with M = 2 atomic layers and Gev
mj ∼ 0 is

equivalent to a Fabry-Perot cavity, which can potentially fulfill our scope.

This is represented in Fig. 5.1-a, where we plot the value of the phase ϕ2L =

arg t2L in the noiseless regime Γ′ = 0. To this aim, we vary the three lattice

constants ξx,y < 0.1 and ξz < 0.5 independently (same results are obtained

if considering the full range ξx,y,z < 1), and we plot the phase shift as a
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Figure 5.1: Phase shift of a multi-layer atomic array, as a function of
ν(ξx, ξy) ≡ 2ωcoop(ξx, ξy)/Γcoop(ξx, ξy) and ξz = z/λ0. (a,b) Phase shift
ϕ2L = arg t2L in the case of two atomic layers, given either Γ′ = 0 (a) or
Γ′ = 5.75 (b). The transverse lattice constants are varied imposing the con-
straint 1 > ξx,y ≥ ξmin = 0.03, which means that Γ′/Γcoop(ξx, ξy) ≳ 0.03. When
different pairs of ξx and ξy are associated to the same value of ν(ξx, ξy), but dis-
tinct Γcoop(ξx, ξy), the pair with the highest cooperative decay is selected. The
colorbar depicts the value of the phase shift ϕ2L. The region where |t2L|2< 0.5
is represented by a white shaded area, while the insets show the relevant case of
ϕ2L ≡ arg t2L ∼ ±π and |t2L|2≥ 0.5, whose bandwidth is infinitesimally small and
breaks down in the noisy regime (b). (c,d) Same structure of subfigures (a) and
(b), but for the three-layer case. The white dashed lines represent the path defined
in Eq. 5.8. Here, the insets show the emergence of a new branch, where both the
phase ϕ3L = ±π and the transmission |t3L|2≥ 0.5 can be obtained over a much
broader bandwidth (c), becoming more resistant to the noise (d).

function of ξz and the parameter ν(ξx, ξy) = 2ωcoop(ξx, ξy)/Γcoop(ξx, ξy),

which provides the ratio of resonance frequency to cooperative linewidth of

a single 2D array. Notably, we see that these parameters allow one to tune

the transmission, although the input frequency is fixed to the bare atomic

resonance. In particular, the white shaded area shows the region of low

transmission, where |t2L|2< 0.5. By suitably choosing ξx, ξy and ξz, one
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can have both a sufficient transmission |t2L|2≥ 0.5 and an arbitrary phase

shift −π < ϕ2L ≤ π. However, the bandwidth associated to ϕ2L → ±π
and |t2L|2≥ 0.5 is asymptotically small [305], as can be observed in the

insets of Fig. 5.1-a. This phenomenon makes the system around ϕ2L ∼
±π very fragile against the noise. To quantify this, we should first set a

minimum inter-atomic distance ξmin = 0.03 (corresponding to d = 10nm for

SiV centers) that is realistically achievable [293, 306]. Otherwise, allowing

the distance to become arbitrarily small allows the cooperative decay rate

Γcoop(ξx, ξy) to become arbitrarily large and overtake any sources of noise.

In Fig. 5.1-b, we then define Γ′ = 5.75 and perform the same calculation

of the phase shift. It can be seen that a large transmission |t2L|2≥ 0.5 and

full phase control can no longer be simultaneously achieved.

5.3.1 Fragility of two layers against nonradiative losses

Before describing our final approach, we devote this section to a more quan-

titative analysis of the fragility of two layers. Specifically, we analytically

derive the qualitative conclusions of the previous subsection, and we accom-

plish this by re-writing in a Fabry-Perot fashion the results of Eq. 5.2 and

Eq. 5.3 for two layers M = 2. For a reader specifically interested in our

implementation of an atomic metalens, we suggest jumping to Section 5.3.2.

Starting from Eq. 5.2 and Eq. 5.3, we can define the resonant (∆ = 0),

single-layer reflection r1L = iΓcoop/[2ωcoop − i(Γcoop + Γ′)] ≡
√
R1Le

iϕR
1L

and transmission t1L = 1+ r1L ≡
√
T1Le

iϕT
1L , where we recall that one has

−π/2 ≤ ϕT1L ≤ π/2, as shown in Fig. 4.1-b. When Gev
mj ∼ 0, the two-layer

transmission derived from Eq. 5.3 can be equivalently written as

t2L(ζ) =
T1L

1−R1Le2iζ
e2iϕ

T
1L , ζ = 2πξz + ϕR1L, (5.4)

which is valid for both the noiseless Γ′ = 0 and noisy Γ′ > 0 case.

In particular, in the noiseless regime of Γ′ = 0, one has T1L +R1L = 1.

Thus, by tuning the distance ξz to satisfy ζ = 0, the factor T1L/ (1−R1L) =

1 simplifies to unity, regardless of the single-layer properties. This cor-

responds to an ideal Fabry-Perot resonance, where the two-layer system

becomes perfectly transmitting, while inheriting a completely tunable phase

shift set by the single-layer transmission phase, i.e. t2L(0) = e2iϕ
T
1L .

Analogously, when Γ′ > 0 the condition ζ = 0 is satisfied as long as

ζ = 0 −→ tan(2πξz) =
1

2π
arctan

(
ν

1 + γ′

)
, (5.5)
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where we define the ratio γ′(ξx, ξy) = Γ′/Γcoop(ξx, ξy), while we recall that

ν(ξx, ξy) = 2ωcoop(ξx, ξy)/Γcoop(ξx, ξy). This leads to the transmission on

the Fabry-Perot resonance given by

|t2L(0)|2=
(

T1L
1−R1L

)2

=

[
ν2 + (γ′)2

γ′(2 + γ′) + ν2

]2
,

ϕT2L(0) = arg t2L(0) = 2 arctan

(
ν

γ′(1 + γ′) + ν2

)
.

(5.6)

We recall that in our situation we have a fixed value of Γ′ = 5.75, while

the lattice constants are constrained by ξx,y ≥ ξmin ≃ 0.03, leading to the

maximum cooperative rate Γmax
coop = Γcoop(ξmin, ξmin) ≃ 225. This implies

that γ′ ≥ γ′min = Γ′/Γmax
coop ≃ 0.03.

First of all, we want to quantify how the noise affects the system around

ϕT2L(0) ≈ ±π, via analytic optimization. To this aim, in this paragraph we

assume that γ′ and ν can be independently optimized, although in general

this is not true, as they are correlated by the choice of the lattice constants

ξx,y. Nonetheless, this ensures that any physical scenario cannot perform

better than what we calculate. We now ask what is the closest phase to

ϕT2L(0) ≈ ±π that can be achieved, and what is its associated transmis-

sion. To compute so, we first notice from Eq. 5.6, that ϕT2L(0) → ±π
when |ν|+(1+γ′)(γ′/|ν|) ≃ |ν|+γ′/|ν|→ 0. We thus minimize |ν|+γ′/|ν|,
with the constrain γ′ ≥ γ′min. The optimal solution is given by γ′ = γ′min

and ν = ±
√
γ′min, leading to ϕT2L(0) ≃ ±2 arctan

(
1/
(
2
√
γ′min

))
≈ ±0.8π

and |t2L(0)|2= (4 + γ′min)
2/(6 + γ′min)

2 ≈ 0.4, where we used γ′min ≪ 1.

At the same time, a supplementary question is how close the phase can

be to ϕT2L(0) ≈ ±π, when constraining the transmission to be higher than

a fixed value, namely |t2L(0)|2≥ 0.5. We obtain the solution ϕT2L(0) ≈
±2 arctan

(
0.4/

(√
γ′min

))
≈ ±0.7π, whose inadequate value further con-

firms the fragility against the noise.

A radically different result emerges when studying the response of the

system around the phases ϕT2L(0) ≈ ±π/2. The reason why this value is

interesting will become clearer in the next section. Differently from the

previous analysis (where we argued that even the best-case scenario had

low performance), here we provide some reasonable argument to conclude

that a relatively good result can be obtained with realistic settings. To this

aim, we numerically observe that a choice of ξx,y exists that guarantees

both ν = ±1 and γ′ ≈ 2γ′min ≪ 1, given our choice of ξmin = 0.03. In

general, we have numerical reasons to believe that analogous results should
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still be obtainable given a broad range of values of ξmin ≪ 1, by fixing,

for example, one of the lattice constant to ξmin and then tuning the other.

In any case, plugging ν = ±1 into Eq. 5.6 and using γ′ ≪ 1, we obtain

ϕT2L(0) ≃ ±(π/2−γ′) ≈ ±0.45π and |t2L(0)|2≃ 1−4γ′ ≈ 0.81. The higher

resistance to the noise can be understood by observing from Fig. 5.1-a that

the bandwidth where a single cavity transmits at least half of the light and

imparts a phase of ϕ2L ∼ ±π/2 is much broader than that associated to

ϕ2L ∼ ±π.

5.3.2 Robust scheme with three layers

The addition of a third atomic layer solves the problem of the previous

section. The system, indeed, becomes analogous to a row of two subsequent

cavities, which can be designed to impress a phase of ϕ2L ∼ ±π/2 each,

so that the total phase shift will be twice this quantity ϕ3L ∼ 2ϕ2L. As

discussed in the previous section, differently from ϕ2L ∼ ±π, a single cavity

can impart phases ϕ2L ∼ ±π/2 while exhibiting much higher resistance to

noise. This result is evident from Fig. 5.1-c,d, where the insets highlight

the regime of ϕ3L ∼ ±π and |t3L|2≥ 0.5 over a large bandwidth, for both

the noiseless (c) and noisy case (d).

In sight of these observations, we construct the building blocks of the

atomic metalens with a three-layer atomic array. First, we focus on the ideal

case Γ′ = 0. Ignoring the evanescent interaction, the transmission reads

t3L =
ν3

2e4πiξz(−i+ ν) + (−i+ ν)3 + e8πiξz(i+ ν)
. (5.7)

The system is equivalent to a three-mirror etalon, so that it can be fully

transparent when properly engineering the layer distance ξz [307]. In what

follows, we take the following parameterization of ξz as a function of the

lattice constants ξx,y

ξz(ξx, ξy) = −mod [g(ξx, ξy), 2π]

6π
+

5− sign[ν(ξx, ξy)]

12
,

g(ξx, ξy) = arg

[
−8

(
ν + i

ν − i
√
4 + 3ν2

)3
]
∈ (−π, π],

(5.8)

which is represented by the dashed, white line of Fig. 5.1-c,d. In the noiseless

case, this choice of ξz(ξx, ξy) leads to t3L(ξx, ξy) = exp[ig(ξx, ξy)], so that

the transparency condition |t3L|2= 1 is ensured, while the phase shift reads
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Figure 5.2: Longitudinal lattice constant ξz and phase shift ϕ3L = arg t3L
as a function of ξx and ξy, given Γ′ = 5.75. In the subfigure (a) we show the
phase shift ϕ3L(ξx, ξy) ≡ arg t3L of a three-layer atomic array, when choosing ξz
as in Eq. 5.8. The latter is reported in the subfigure (b). The system transmission
is given by Eq. 5.7, where the noise is included by the substitution ν(ξx, ξy) →
ν(ξx, ξy)−iΓ′/Γcoop(ξx, ξy). On the horizontal axis, the transverse lattice constants
ξx and ξy are varied along the path composed of the two straight lines ξx =
ξmin ∪ ξmin ≤ ξy < 1 (left side of the plots) and ξy = ξmin ∪ ξmin ≤ ξx < 1 (right
side of the plots), where ξmin = 0.03. The color scheme depicts the corresponding
absolute value of transmission |t3L|2. The solid part of the curves show the range of
parameters that we consider for the design of our atomic metalens, corresponding
to −π < ϕ(ξx, ξy) ≤ π, 1/6 ≤ ξz(ξx, ξy) ≤ 1/3 and |t3L|2≳ 0.6.

ϕ3L(ξx, ξy) ≡ arg t3L(ξx, ξy) = g(ξx, ξy). Then, by properly tuning ξx < 1

and ξy < 1 to explore any value of ν(ξx, ξy) ∈ R , one can design the lattice

to impress any phase −π < ϕ3L(ξx, ξy) ≤ π .

In the noisy case Γ′ = 5.75, the transmission of Eq. 5.7 is modified

by the substitution ν(ξx, ξy) → ν(ξx, ξy) − iΓ′/Γcoop(ξx, ξy). In particular,

assuming the minimum distance ξmin = 0.03, we can vary the transverse

lattice constants along the two straight lines ξx = ξmin, 1 > ξy ≥ ξmin and

1 > ξx ≥ ξmin, ξy = ξmin, while still choosing ξz(ξx, ξy) as in Eq. 5.8. As

shown in Fig. 5.2-a, this allows to both tune the phase in the full range

−π < ϕ3L(ξx, ξy) ≤ π and keep a sufficiently high transmission |t3L|2≳ 0.6.

The corresponding values of the longitudinal lattice constant ξz(ξx, ξy) are

shown in Fig. 5.2-b, and span the range 1/6 ≤ ξz(ξx, ξy) ≤ 1/3. Due to this

reason, the maximum thickness of the atomic metalens is ∆z = 2λ0ξ
max
z =

2λ0/3, corresponding to ∆z ≃ 205nm for SiV centers.

5.4 Atomic metalens

In the previous section, we showed how a three-layer atomic lattice can

be engineered to impress an arbitrary phase shift, while guaranteeing high
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Figure 5.3: Structure of an atomic metalens, with focal length f = 20λ0 and
radius Rlens = 10λ0. (a) 3D representation of the atomic metalens, where each
point depicts the position of one atom. This atomic metalens is composed of 15
concentric rings of thickness ∆r = 2λ0/3, with a buffer-zone parameter α = 0.2.
The lens has a width of ∆z ≈ 2λ0/3, much thinner than the total diameter of
20λ0. The atoms belonging to the j-th ring have the same lattice constants ξjx , ξ

j
y

and ξjz , which are uniquely associated to the phase shift ϕj = ϕ(∆r(2j − 1)/2) of
Eq. 5.1 (with ϕ0 ≃ −2.06), through the curves ϕj = ϕ(ξjx , ξ

j
y ) and ξ

j
z = ξz(ξ

j
x , ξ

j
y )

shown in Fig. 5.2. The color of the atoms in each ring reflects the value of ϕj , as
described by the colorbar at the bottom. b) Focusing of a x̂-polarized, resonant,
input Gaussian beam with win

0 = 4λ0, due to the atomic metalens. The orange,
shaded area shows the theoretical beam waist w(z). The metalens is designed to
focus the beam at a distance zidealf ≃ 17λ0. This defines the focal plane, where we

numerically reconstruct the total intensity I(r)/I in0 = |E(r)/E in
0 |2 via the input-

output formalism of Eq. 2.17, in the noisy regime of Γ′ = 5.75. The value of I(r)
is portrayed with the color scheme shown by the colorbar at the bottom. Further
results from the coupled-dipole simulations are shown in Fig. 5.4.

transmission in presence of non-radiative noise. Here, we want to describe

how such a system can be used as a building block of an atomic metalens.

The main idea is to design a pattern of lattice constants ξx and ξy which

vary in space in such a way that the induced phase shift of the system

ϕ3L(ξx, ξy) mimics the ideal phase shift ϕlens(r) of a thin lens (i.e. Eq. 5.1).

Specifically, we divide the transverse plane into concentric rings j = 1, 2... of

radius rj = j∆r (see Fig. 5.3-a), and we associate to each ring the central

phase shift ϕj ≡ ϕlens(∆r (2j − 1)/2) , by using Eq. 5.1. Here, we recall

that the initial phase shift ϕ0 is a free parameter. At this point, we impose

ϕ3L(ξ
j
x , ξ

j
y) = ϕj , and extract the lattice constants ξjx and ξjy by numerically

inverting the solid line of Fig. 5.2-a. Exploiting Eq. 5.8, we then define the
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longitudinal distance between the layers ξjz = ξz(ξ
j
x , ξ

j
y), as in Fig. 5.2-b.

For each j-th ring we can thus construct a three-layer lattice with constants

ξjx , ξ
j
y and ξjz , whose atoms are constrained by the condition rj−1 ≤ r < rj .

The final metalens is then the union of these discrete building blocks, as

shown in Fig. 5.3. By choosing ∆r ≲ λ0, we ensure that the discretization

scale is of the same order of a common metalens [33, 277].

Given this scheme, at the interface between different rings the lattice

constants can change abruptly. The sharp, finite size of the rings can po-

tentially give rise to phenomena of light diffraction into unwanted modes,

which should be avoided as they might lower the efficiency. To this aim, in

the x̂, ŷ-plane we introduce a small buffer zone between two consecutive

rings, which extends over the first fraction 0 ≤ α < 1 of each ring (i.e. the

region rj−1 ≤ r < rj−1 + α∆r). In this buffer zone, the atoms are placed

at intermediate positions between those of the consecutive rings, thus mit-

igating the undesired effects. The definition of such connecting regions is

not strict, and many variants might be tested. Our approach is described

in detail in Appendix E.2, and we numerically found that it can boost the

efficiency of up to ∼ 3%. To conclude, we remark that for each target focal

length f , our atomic metalens is defined up to three free parameters, which

are the overall phase shift −π < ϕ0 ≤ π, the ring thickness ∆r, and the

buffer fraction 0 ≤ α < 1.

5.4.1 Numerical simulations

To check our design, we need to calculate the efficiency of the atomic met-

alens. Once we fix the atomic positions, we illuminate the system at normal

incidence with a x̂-polarized, resonant, input Gaussian beam focused at the

lens position and defined by the beam waist win
0 and the focal intensity I in0 =

|E in
0 |2/(2µ0c). This reads Ein(r, z) = E in

0 [w
in
0 /w(z)] exp[−|r|2/w(z)2 +

ik0z+ iφ(r, z, w
in
0 )]x̂, where w(z) = win

0

√
1 + (z/zR)2 describes the trans-

verse extension of the beam, while we have φ(r, z, win
0 ) = − arctan(z/zR)+

k0r
2/[2R(z)], with zR = k0(w

in
0 )

2/2 and the radius of curvature R(z) =

z[1 + (zR/z)
2]. Moreover, we want to fulfill the condition win

0 > λ0, to

avoid nonparaxial effects. We perform exact simulations of the linear op-

tical response, reconstructing the total field E(r, z) (input plus scattered)

via the input-output formalism of Eq. 2.17. We want to compare it with

the theoretical prediction of the field transmitted by an ideal lens of focal

length f . This is given by the Gaussian beam Eideal(r, z), characterized by

the beam waist wideal
0 = Mwin

0 , focal position z
ideal
f = (1−M2)f and focal

intensity I ideal0 = I in0 /M2, where the parameter M = f/
√
f2 + k20(w

in
0 )

4/4
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is the so-called magnification of the lens, which ensures the conservation of

energy
∫
|Eideal|2dr =

∫
|Ein|2dr = π(E in

0 w
in
0 )

2/2.

We analyze the projection of the transmitted field onto the ideal Gaus-

sian mode, which reads ⟨Eideal|E⟩ =
∫
E∗

ideal ·E dr/
∫
|Eideal|2dr, as defined

in Appendix A and further discussed in Appendix E.3. In the far field

z ≫ λ0 this quantity does not depend on the observation point and we can

use it to define the efficiency η = |⟨Eideal|E⟩|2, which describes the fraction

of power that is transmitted into the target solution. Similarly, we define

another quantity of interest, that is the overlap between the transmitted

field and the input field ϵ = |⟨Ein|E⟩|2, which quantifies how strongly the

atomic system is manipulating the light. Obviously, one aims to operate

in a regime where η ∼ 1, while ϵ ≪ 1. As our definition of efficiency is

theoretically strict, we also estimate the more experimentally friendly signal-

to-background ratio, which compares the power transmitted into the target

mode Pη to the total transmitted power Pout. This reads Pη/Pout, where

Pη = η
∫
|Eideal|2dr/(2µ0c) = ηπ(E in

0 w
in
0 )

2/(4µ0c), while we numerically

compute Pout =
∫
|E|2dr/(2µ0c) by reconstructing the total field at the

focal plane z = zidealf .

To show the potential of our scheme, we can now discuss a full-scale

simulation of an illustrative atomic metalens, characterized by the focal

length f = 20λ0 and the radius Rlens = 10λ0, illuminated by an input

Gaussian beam of waist win
0 = 4λ0. These simulations involve on the order

of N ∼ 5× 105 atoms, which is between one and two orders of magnitude

larger than coupled-dipole models of atoms in literature [154, 157–159, 165,

166, 169, 170, 173–176]. The techniques by which we accomplish this are

described in Appendix E.4.

The predicted magnification reads M = wideal
0 /win

0 ≃ 0.37, associ-

ated to an ideal intensity enhancement of I ideal0 /I in0 ≃ 7.32. The free pa-

rameters of the lens were numerically chosen to maximize η in the noisy

regime, and read ∆r = 2λ0/3, ϕ0 ≃ −2.06, and α = 0.2. The re-

sults are shown in Fig. 5.4, where we plot the intensity of the total field

I(r)/I in0 = |E(r)/E in
0 |2, calculated on the horizontal plane y = 0 (top row)

and at the expected focal plane z = zidealf ≃ 17λ0 (bottom row). The latter

shows the focal spot, whose size is often used as an experimental benchmark

of the lens efficiency. The column on the left (Fig. 5.4-a,c), shows the ideal

values that one would expect for a textbook thin lens, i.e. Eideal. This is

compared to the numerical simulations of the atomic metalens, calculated

for the noisy case Γ′ = 5.75 (right column, Fig. 5.4-b,d). Very similar plots

are obtained when studying the noiseless case Γ′ = 0, or when plotting

the intensity on the plane x = 0. We benchmark the optical response of
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Figure 5.4: Performance of an atomic metalens with focal length f = 20λ0,
radius Rlens = 10λ0, and parameters ∆r = 2λ0/3, ϕ0 ≃ −2.06, and α = 0.2,
illuminated by a resonant Gaussian beam with waist win

0 = 4λ0. The figures
show the intensity of the total field I(r) ∝ |E(r)/E in

0 |2, calculated on the planes
y = 0 (top row, subfigures a,b) and z = zidealf ≃ 17λ0 (bottom row, subfigures c,d).
The subplots (a,c) represent the ideal case of a perfect lens, while the subplots (b,d)
show the results of the numerical simulations with Γ′ = 5.75. The dashed, white
lines represent the ideal value of the beam extension w(z), while the dot-dashed,
white lines show the beam waist of the input beam without the lens. The efficiency
of the noisy Γ′ = 5.75 case, estimated from the simulations, reads η ≃ 0.9. Almost
identical plots are obtained when plotting the intensity on the plane x = 0, as
well as when simulating the noiseless case Γ′ = 0 (although in that situation the
efficiency is higher, reading η ≃ 0.95). Both the noisy and the noiseless simulations
show a high signal-to-background ratio, given by Pη/Pout > 0.98. The number of
simulated atoms is N ≃ 4.6× 105.

the atomic metalens from our simulations, finding an efficiency η ≃ 0.95

and an intensity enhancement at the focal point of I0/I
in
0 ≃ 6.03, in the

noiseless regime. Similarly, in the noisy case of Γ′ = 5.75 we obtain the

values η ≃ 0.90 and I0/I
in
0 ≃ 5.60. These high efficiencies can be com-

pared with the relatively low overlap between the output field and the input
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Figure 5.5: Transmission of a three-layer lattice as a function of the induced
phase, given Γ′ = 5.75. The dashed, red line represents the relation between |t3L|2
and arg t3L, when varying the lattice constants following our scheme. In particular,
we recall that the transverse lattice constants are chosen on the path composed
of the two straight lines ξx = ξmin ∪ ξmin ≤ ξy < 1 and ξy = ξmin ∪ ξmin ≤
ξx < 1, where ξmin = 0.03, while the longitudinal lattice constant ξz(ξx, ξy) is
defined by Eq. 5.8. The colored points represent the actual values for each ring
of the lens in Fig. 5.4. Their color is associated to the intensity of the input
beam integrated over the area of each of those rings, divided by the input power
Pin =

∫
|Ein|2dr/(2µ0c) = π(win

0 E
in
0 )

2/(4µ0c).

beam, which reads ϵ ≃ 0.42 (for both Γ′ = 0.0 and Γ′ = 5.75). Finally,

both the noisy and the noiseless cases exhibit a high signal-to-background

ratio, reading Pη/Pout > 0.98.

To understand how the non-radiative noise affects the efficiency in

Fig. 5.5, we plot the expected transmission |t3L|2 of the rings compos-

ing the metalens, as a function of the ring phase ϕ3L = arg t3L, in presence

of noise. In the noiseless case, the transmission would always be 100%, but

when Γ′ = 5.75, some phases are associated to a much lower transmission,

up to |t3L|2≈ 0.6, around ϕ3L ≃ ±π. If we consider the rings that compose

our atomic metalens (colored points of Fig. 5.5) we observe that some rings

can transmit more light than others, because of the presence of Γ′. The

rings, however, are not homogeneously illuminated, meaning that some of

them receives more energy than others. One can check that the reduction in

efficiency in the noisy system (i.e. the ratio between the noisy and noiseless

efficiencies), agrees well with the average of the loss of each ring, weighted

by the intensity illuminating the ring. This naive model should explain why

we observe that the detrimental effect of Γ′ can strongly depend on the

phase parameter ϕ0 of Eq. 5.1 (which describes the phase at the center of



126 Chapter 5 | Atomic metalens of structured arrays

-1000 -500 0 500 1000
0.0

0.2

0.4

0.6

0.8

1.0
-4 -3 -2 -1 0 1 2 3 4

Δ

Δ / Γcoop
max

Γ' = 5.75

η

Pη

Pout

ϵ

η0

Figure 5.6: Spectral response of the atomic metalens, with focal length
f = 20λ0, radius Rlens = 10λ0, and parameters ∆r = 2λ0/3, ϕ0 ≃ −2.06,
and α = 0.2. The curves represent the efficiency (η, blue), signal-to-background
ratio (Pη/Pout, green) and overlap with the input beam (ϵ, orange). The dashed,
black, horizontal line shows the value of the overlap between the input and the
ideal field η0 = |⟨Eideal|Ein⟩|2. The simulation is performed for the noisy case
Γ′ = 5.75. The gray region empirically corresponds to the regime where the
metalens becomes transparent and stops to efficiently focus the light. The detuning
∆ = (ω − ω0)/Γ0 is expressed both in units of Γ0 (label below) and in units of
Γmax
coop = Γcoop(ξmin, ξmin) ≃ 225 (label above).

the lens). Indeed, due to the exponential decay of the energy of the in-

put Gaussian beam, the rings with small radius receives much more energy,

meaning that one should roughly aim to maximize the transmission of the

first ring, i.e. |t3L(ϕ1)|2= |t3L(ϕ(∆r/2))|2.

5.4.2 Spectral properties

Although we design our atomic metalens to optimally focus resonant light

∆ = (ω − ω0)/Γ0 = 0, it is interesting to explore the bandwidth where the

efficiency retains high. Intuitively, we expect the bandwidth of the response

to be of the same order of the maximum cooperative decay rate allowed in

our system, i.e. Γmax
coop = Γcoop(ξmin, ξmin) ≃ 225 (in units of Γ0).

This intuition well reflects what we numerically observe in Fig. 5.6,

where we plot the spectrum of efficiency η (blue), signal-to-background

ratio Pη/Pf (green) and overlap with the input mode ϵ (orange). This is

calculated when illuminating the atomic metalens with a Gaussian beam of

waist win
0 = 4λ0, in the noisy regime of Γ′ = 5.75. As expected, when
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|∆/Γmax
coop|≫ 1 the metalens shows the features of a transparent system, i.e.

E ∼ Ein, meaning that ϵ ∼ 1, while the efficiency tends to the overlap

between the ideal and the input mode, i.e. η ∼ η0 = |⟨Eideal|Ein⟩|2≈ 0.4

(approximately marked with a gray region in the plot). On the contrary, the

behaviour inside the white area is irregular, but we can identify a bandwidth

of ∼ Γmax
coop where the efficiency η retains relatively high. For SiV centers,

this would correspond to a value of ∼ (2π)×21GHz. Finally, we stress that

the value of Γmax
coop is related to our particular choice of ξmin, to guarantee

Γmax
coop ≫ Γ′. We can thus identify a trade-off between the tightness of

the bandwidth and the resistance to noise, meaning that some applications

which require smaller bandwidths, but can tolerate lower efficiencies, can

opt for higher values of ξmin.

5.4.3 Noise and imperfections

Up to now, we only included in our model the presence of some intrinsic,

minimal losses, roughly characterized by the inelastic rate Γ′ = 5.75. Here,

we want to investigate the detrimental effects of experimental imperfections,

which can deviate from that basic description.

First, we study the response in presence of much larger losses Γ′ ≫ 1.

To this aim, it is instructive to focus on the response of the single building

blocks of the metalens. In particular, in the noiseless case Γ′ = 0 our scheme

allows to have a perfect transmission |t|2= 1 for any chosen phase. This

is not true anymore when Γ′ ̸= 0, as some choices of the phase become

associated to lower transmission, especially around arg t ∼ ±π. In Fig. 5.7-

a, we show the relation between the phase arg t (on the horizontal axis) and

the absolute transmission |t|2 (color scheme), when considering increasing

values of Γ′ (vertical axis, in log scale). The plot is obtained by varying

the lattice constant as defined by our protocol, i.e. scanning the transverse

constants along the path ξx = ξmin, 1 > ξy ≥ ξmin and 1 > ξx ≥ ξmin,

ξy = ξmin, while fixing ξz to fulfill Eq. 5.8. For values Γ′/Γmax
coop ≳ 0.04,

the system starts to manifest low transmissions |t|2≲ 0.5. The deleterious

process becomes even stronger for values Γ′/Γmax
coop ≳ 0.15, where some

phases cannot be engineered anymore (black areas in the plot). For our

particular choice of ξmin = 0.03, this threshold corresponds to Γ′ ≳ 30,

although this can be generally mitigated by decreasing ξmin.

In Fig. 5.7-b, we discuss the overall response of our atomic metalens,

for noise levels up to Γ′/Γmax
coop ≃ 2 × 102, i.e. Γ′ ≃ 105. The blue line

depicts the efficiency η, the orange line the overlap ϵ and the green line the

signal-to-background ratio Pη/Pout. Roughly, the system becomes trans-
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Figure 5.7: Resistance to nonradiative losses. a) Transmission |t3L|2 of a 3-
layer array, as defined in Eq. 5.7, given increasing levels Γ′. For each value of Γ′

(vertical axis), we choose ξx, ξy and ξz following our proposed protocol, which allows
to associate a unique transmission |t3L|2 (color scheme) to each phase arg t3L
(horizontal axis). An almost identical plot is obtained if numerically optimizing
(ξx, ξy, ξz) ≥ ξmin = 0.03 to ensure the maximum transmission. The black,
dashed line highlights the particular case Γ′ = 5.75. The black regions (bounded
by dotted, white lines) identify values of arg t that cannot be obtained with any
configuration of ξx, ξy and ξz, given that level of noise Γ′. b) Efficiency as a function
of Γ′, given an atomic metalens with focal length f = 20λ0, radius Rlens = 10λ0,
and construction parameters ∆r = 2λ0/3, ϕ0 ≃ −2.06, and α = 0.2, illuminated
by a Gaussian beam with win

0 = 4λ0. The lines show the efficiency η (blue), signal-
to-background ratio Pη/Pout (green), overlap ϵ (orange) and base-line efficiency
η0 = |⟨Eideal|Ein⟩|2 (black, dashed line). The colored, dotted lines represent the
values at Γ′ = 0, while the colored points show the case of Γ′ = 5.75. Finally,
the black, dotted line depicts the threshold of 0.9, while the shaded, gray region
portrays the regime where some phases cannot be engineered anymore by the single
building blocks, i.e. the appearance of black areas in subfigure (a).

parent above the threshold Γ′/Γmax
coop ≳ 0.5, which would correspond to

Γ′ ≳ 102. Notably, the efficiency retains acceptable η ≳ 0.5 beyond the

threshold of Γ′/Γmax
coop ≈ 0.15 where some phases cannot be engineered any-

more (gray, shaded region). This happens because the initial phase shift

ϕ0 ≃ −2.06 allows us to concentrate the majority of the optical response

far from the phases |ϕ|∼ π, which are less robust to noise. This is a general

recipe to maximize the efficiency, but we expect that an atomic metalens

with a higher numerical aperture would hardly exhibit a good efficiency

above Γ′/Γmax
coop ≈ 0.15. Nonetheless, for certain application, a high effi-

ciency is unnecessary, and one only needs to identify the focal spot over

the background of transmitted light [308]. As one can see from Fig. 5.7-b,

the signal-to-background ratio Pη/Pout retains relatively high up to much

higher losses, so that Pη/Pout ≳ 0.9 up to Γ′/Γmax
coop ≈ 0.8 (i.e. Γ′ ≃ 102)
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Figure 5.8: Resistance to random spatial displacement. The data are calcu-
lated for the atomic metalens with focal length f = 20λ0, radius Rlens ≃ 9λ0, and
construction parameters ∆r = 2λ0/3, ϕ0 ≃ −2.06, and α = 0.2, illuminated by
a Gaussian beam with win

0 = 4λ0. The horizontal axis represents the amount of
disorder δξ = δd/λ0. This is defined by randomly displacing the position of each
atom inside a sphere of radius δd, centered at the original position. The curves
represent the efficiency (η, blue), signal-to-background ratio (Pη/Pout, green) and
overlap with the input beam (ϵ, orange). Each point is calculate by averaging over
10 random configurations, and the error bars represent one standard deviation.
The simulation is performed for the noisy case Γ′ = 5.75.

and Pη/Pout ≳ 0.5 up to Γ′/Γmax
coop ≈ 5 (i.e. Γ′ ≃ 103).

Finally, we discuss the effect of disorder in the atomic positions, defined

by randomly displacing each position inside a 3D sphere of radius δξ =

δd/λ0, given a uniform distribution. In Fig. 5.8, we represent the values of

efficiency (blue), signal-to-background ratio (green) and overlap with the

input mode (orange) as a function of increasing disorder δξ. As intuitively

expected, when the displacement is comparable to ξmin, then the efficiency

is strongly undermined, with η → 0. In that regime, the transmitted light is

so randomly altered, that it does not overlap anymore with the input field

either and ϵ → 0. This introduces a trade-off in the choice of ξmin, as low

values enhance the resistance to losses, but they make the system more

fragile against imperfect positioning. Nonetheless, the signal-to-noise ratio

still exhibit robust properties, with Pη/Pout ≳ 0.6 up to δξ ∼ 0.7ξmin.

5.5 Conclusions and outlook

We have argued that it is possible to build an atomic metalens composed of

atomic arrays with lattice constants ξx, ξy and ξz that vary in space, in order
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to ensure a proper phase modulation and a good transmission. The spatial

variation of the lattice constants is discretized over scales ≲ λ0, which

roughly correspond to the discretization lengths of common metalenses [28,

33, 277]. We have shown that two atomic layers would be enough in the

ideal, lossless regime, but they fail when the intrinsic losses are accounted

for. On the contrary, the addition of a third layer makes the scheme more

robust and resistant to losses. We tested the behaviour of an exemplary

atomic metalenses, by numerically solving the coupled-dipole equations,

which describe exactly the optical, linear response. To this aim, we chose

a situation where the atomic metalens is substantially altering the mode of

the light, up to the limitations of our computational resources. We observed

good efficiencies and signal-to-background ratios, even in presence of losses.

The possibility of using atomic arrays to build up a device as complex as

a lens is a fascinating idea. Differently from some other proposals [268, 269],

we engineer the cooperative response by fixing tailored values of the lattice

constants, without the necessity of selectively driving the individual atoms

with external laser fields, to keep the lens working. If one considers a solid-

state system, such as color centers in diamond, this approach would turn the

atomic system into a static, passive, optical element, whose properties are

set during the fabrication process, such as the majority of usual metalenses.

Similarly to these latter, our atomic metalens would be characterized by

a subwavelength thickness (reading ≃ 2λ0/3), and it wouldn’t intrinsically

require a much thicker substrate (typically ∼ 1mm, for common metalenses

[33]). At the same time, our scheme shares with metalenses the possibility

to polarize and spectrally filter the focused light, given that the atomic

system is meant to respond only to one transverse polarization [309] and

within a small bandwidth ∼ 102Γ0 (i.e. tens of GHz for typical electronic

transitions).

The atomic nature of our metalens can provide further tools to dynami-

cally control the optical properties. As an example, AC Stark shift has been

proposed as a path to control the response of atomic arrays [268, 269],

and we estimate that in our scheme this phenomenon could be exploited to

fine-tune the wavelength of maximum efficiency, by a factor of few GHz.

Similarly, it has been shown that the atomic, optical response can be dynam-

ically tuned by addressing supplementary atomic level, potentially modifying

their refractive index [310], or the dispersion relation in ordered arrays [311].

Our calculations are performed in the classical regime of linear optical

response. Nonetheless, at the quantum level, atoms can be engineered

to exhibit strong nonlinearities. Given a system of two atomic arrays in

series, it was recently discussed the possibilities of either enhancing the non-
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linear, collective effects [312], or even designing a non-reciprocal optical

response [313]. Similarly, large interest was raised by the possibility of

dynamically inhibiting the atomic response by exploiting Rydberg blockade

[265–267, 314]. This can be activated in the quantum regime, potentially

allowing to create a quantum superposition of different macroscopic optical

responses. Finally, for the specific case of solid-state systems such as color

centers in diamond, further physical effects can be exploited to tune the

resonance frequency of individual color centers, such as two-photon Raman

transitions [315] or strain control [316–319].

Our proposal is based on the design of atomic arrays that can impress an

arbitrary phase shift, along with high transmission. These building blocks

can potentially offer a broader range of optical applications. As an example,

they exhibit the typical requirements to encode a phase-only, computer-

generated hologram [320–322]. To this aim, one would need to arrange the

atomic arrays into subwavelength ≲ λ0 quadratic pixels, whose phase shift

encodes the hologram, rather than concentric rings. Moreover, one could

also explore other combinations of lattice constants associated to a lower

transmission, given that holograms can be more efficiently encoded when

engineering both amplitude and phase [320, 321, 323].





Part III

Discussion





6 - Overall conclusions

The promising role of photonics in modern and future technologies [324]

has motivated in the recent years a deeper analysis of the intrinsic bounds

to the index of refraction, from either a fundamental [4, 80] or more applied

[55–57] perspective. Given the implicit limits imposed on photonic devices

[140], it is indeed surprising that no complete answer exists to an apparently

basic question: why is the refractive index always of order one?

To tackle this question, we embarked on an unconventional path, start-

ing from an idealized description of the dilute, quantum optical regime,

and then drawing a continuous line which would potentially connect its

predictions to those of solid-state materials. To do so, we had to explore

in detail a vast, intermediate region where the inter-atomic distances are

much smaller than the extent of optical cross sections of the atoms, but

nonetheless considerably larger than the size of atomic orbitals. Under these

conditions, the atoms can be considered as point-like light scatterers, but

the multiple scattering of light occurring between them must be treated

non-perturbatively.

Our results open several questions on a number of fronts. First, they

suggest that the refractive index of a disordered atomic medium is intrinsi-

cally limited by electrodynamics, due to a combination of near-field coupling

and random atomic positions. These properties effectively induce an intrin-

sic inhomogeneous broadening, which limits the number of near-resonant

atoms to few atoms per cubic wavelength, regardless of the physical density.

The existence of such a process has compelling implications for those quan-

tum technologies based on atomic ensembles. In fact, on the back of our

findings, it has been shown that this phenomenon can represent an intrinsic

dephasing mechanism for collective, spin-wave excitations [259, 325], de-

creasing the performance of light-matter interfaces based on this paradigm.

At the same time, we notice that the magnitude of the OD encodes funda-

mental error bounds for many applications [14, 218, 219], and a constraint

on the maximum imaginary part of the index limits the minimum system

sizes that are compatible with high fidelities.

Furthermore, the detrimental effect of this inhomogeneous broadening

scales as the average near-field intensity ∼ 1/⟨ρ⟩3 ≈ η. In three-dimensional

ensembles, this equates the additive enhancement of the optical response

with increasing densities η = N/(k30V ), and this balance leads to the sat-

uration of the optical response. For 2D geometries, this would not hold
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true anymore, as the inhomogeneous broadening ∼ 1/⟨ρ⟩3 would eventually

overcome the additive response ∼ 1/⟨ρ⟩2, leading to the counter-intuitive

prediction that the atomic medium would become progressively transparent

at higher densities. As numerical simulations strongly support this interpre-

tation, two-dimensional slabs of cold atoms (such as those studied in [158])

would then represent a straightforward ground to experimentally test our

theory.

This raises wider questions on the role of dimensionality in dense, dis-

ordered, atomic media. It is well known, for example, that this should rep-

resent a decisive parameter for the appearance of Anderson localization of

light [182, 183, 204, 215–217]. Can our RG formalism provide key insights

to the challenging question of whether an Anderson localization transition

exists in a 3D ensemble? Some recent experiments with silica particles [326]

and titanium powders [327, 328] show evidences in this direction, suggest-

ing that the near-field couplings provide a competing channel for the energy

transport, which suppresses localization. One can wonder if a similar de-

scription can be applied to atomic ensembles. Our RG theory could then not

only describe this property at the steady-state (due to a renormalized, lower

density of near-resonant atoms), but it might also provide a framework to

estimate the complex structure of this hypothetical near-field channel. To

this aim, a suggestive strategy would consist of addressing the transport

dynamics with the insights gained from studying the spread of correlations

during the RG flow. More generally, the problem of optical trapping is

strictly related to the concepts of subradiance [329, 330] and superradiance

[331]. We have numerical evidences that the correlations built by the RG

can be used to approximately reproduce the decay-rate distribution of su-

perradiant eigenmodes in spherical atomic clouds. The possibility of relating

this observation with light transport via near-field couplings is certainly an

intriguing perspective.

Differently from the disordered case, we found that in 3D atomic arrays

a high optical response is favoured by the perfect interference patterns

stemming from the multiple scattering of light. Specifically, this applies

to the subwavelength, quantum optics regime of atoms acting as point-

like scatterers, with characteristic lattice constants a0 ≪ d < λ0. In this

situation, the optical behaviour reduces to a single-mode problem [332],

leading to an enhanced, purely real, refractive index which grows as n ≈
λ0/(2d). Similarly, we predict that a lossless NZI is theoretically possible

in the same regime. Both these findings suggest that extreme indices of

refraction are not prohibited by the laws of physics, as long as one deals

with resonant and low-loss objects (such as atoms) whose optical response
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is narrow-band enough, in agreement with [3].

Aiming to highlight the extreme limits to the index, we designed our lat-

tice geometry to enhance this single-mode response, by choosing a distance

dz ≫ d between the 2D arrays, larger than their transverse lattice constant

d. This allows us to neglect the coupling between 2D layers mediated by

the evanescent field, stemming from the non-radiative diffraction orders.

Similarly to what mentioned for the disordered case, this phenomenon can

nonetheless represent a competing transport channel, whose effects in the

ordered case would be similar to having a tight-binding, hopping term on

top of the radiative Hamiltonian. We have argued that this phenomenon

can make the dispersion relation non-invertible, meaning that the incident

light at some given frequencies can potentially excite a superposition of two

modes, in relation to these two transport processes. It would be interesting

to provide a full characterization of this regime. Specifically, if such super-

position is nearly equal, then the index would not be a well-defined concept.

In practice, however, since one wavevector is much larger than the other,

then one would expect that the lower kz would get predominantly excited,

due to mode-matching considerations, which in turn would define the index.

In any case, it would be compelling to provide a deeper description of the

physical meaning of these evanescent-field phenomena, for example whether

they continuously transform into quasi-particle excitations in the limit of a

dense, conventional solid.

At very close distances d ≪ λ0, it is well known that the atomic scat-

tering can be described by a series of multipole orders, by expanding the

response for values of d much larger than the atomic orbitals ∼ a0. In our

analysis, we retain only the first-order (electric-dipole) term, by focusing

on the regime d > 10a0. We also neglect further well-known perturba-

tive processes stemming from those energy non-conserving terms in the

electric-dipole Hamiltonian, such as van Der Waals and Casimir interac-

tions between ground-state atoms, or (Rydberg-like) blockade effects be-

tween excited states [333]. This latter, indeed, would only be relevant in

the non-linear, multi-excitation case, while the first would produce an over-

all shift of ground-state energy, which would not affect our conclusions. In

this context, the first corrections that we identify are related to electron

tunneling between neighbouring, overlapping orbitals, which we argue can

suppress the enhanced refractive index back to unity.

Introducing the onset of quantum chemistry in the framework of non-

perturbative multiple light scattering is a new, fascinating paradigm, which

would deserve further studies. In particular, it would be interesting to iden-

tify the immediate, second-order corrections to our description, once one
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approaches d ∼ a0 and our perturbative treatment of chemistry is not valid

anymore. At the same time, one might investigate if other processes can

be engineered to suppress the detrimental mechanisms discussed, to ob-

tain higher refractive indices. More ambitiously, it would be desirable to

develop a more general framework to predict the optical response in the

regime of non-perturbative light scattering. One possible approach would

consist of generalizing the methods based on the electromagnetic Green’s

function to many-body, condensed-matter settings, aiming to describe on

the same non-perturbative and second-quantized ground, both the multiple

scattering of light and the many-body dynamics of the electrons.

To conclude, our work provided various insights on the linear optical be-

haviour in presence of strong multiple scattering of light. One might wonder

if similar approaches might be used to characterize the nonlinear regime.

From a technological standpoint, indeed, it would be equally relevant to

understand the mechanisms limiting the nonlinear properties of materials.

From a more applied perspective, one might investigate if strong multiple

scattering could lead to an enhanced nonlinear response, in analogy to what

observed for the refractive index of an atomic lattice. More specifically, in

the disordered case we hypothesize that our RG theory could provide useful

tools to extend the diagrammatic treatment of nonlinearities (see [205] for

the dilute case) to the strong-scattering scenario of dense media. A possible

approach would consist of first summing via RG the interactions between

nearby pairs, and then treating the remaining interactions perturbatively. In

the case of atomic lattices, on the contrary, our analysis of the defects might

represent a potential starting point, since the first manifestation of nonlin-

earity is given by an excited atom acting as a defect for a second incoming

photon. Similarly to [232, 233], we showed the importance of near-field ef-

fects, which lead to the counter-intuitive result of a defect having a bigger

scattering cross section than a unit cell.

Finally, we mention that engineering the nonlinear, inter-atomic inter-

actions could be a fascinating outlook also for our proposal of an atomic

metalens, as it might be use to induce specific and on-demand optical ef-

fects on top of the lens. In the context of atomic arrays, for instance, it

was either proposed how to tailor a non-reciprocal response [313], or shown

how to experimentally inhibit the optical response at the quantum level

[334]. All these properties can potentially apply to the building blocks of

our atomic metalens, paving the way to their possible use in the metalens

context.
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A - Optical mode projection

Here, we discuss the projection of a light field into a well-defined optical

mode, to infer the transmission and reflection of Eq. 3.2 and Eq. 3.3.

A.1 Definition of the mode projection

We start by considering generic, monochromatic field E± with wavevector

|kxyz|= k0 = 2π/λ0, where the sign ± selects only the forward or backward

components ±kz, along the ẑ direction. Hereafter, we focus on the case

of forward-propagating light E = E+ in the far field k0z ≫ 1 (where

evanescent components are suppressed). Analogous conclusions can be

derived for the backward case E−, given k0z ≪ −1. We can write

E(r⊥, z) =

∫
|kxy|≤k0

dkxy

(2π)2
E(kxy)e

ikxy·r⊥eikz(kxy)z,

E(kxy) = Ex(kxy)x̂+ Ey(kxy)ŷ −
[
kxEx(kxy)

kz(kxy)
+
kyEy(kxy)

kz(kxy)

]
ẑ.

(A.1)

where kz(kxy) =
√
k20 − |kxy|2. We are interested in calculating the flux

of energy Φ across the z ≫ λ0, x̂, ŷ-plane. For any polarized light beam,

we can define Ey(r⊥, z) = 0 without loss of generality, by labelling x̂ the

polarization axis and ŷ its orthogonal component. We thus calculate Φ

from the surface integral of the ẑ-component of the Poynting vector

Φ

2
=

∫
k0z≫1

dr⊥Ex(r⊥, z)H
∗
y(r⊥, z) =

∫
|kxy|≤k0

dkxy

(2π)2
Ex(kxy)H

∗
y(kxy),

(A.2)

which shows that Φ doesn’t depend on z in the far field k0z ≫ 1. There, we

made use of the far-field condition to restrict to |kxy|≤ k0, while the initial

factor of 2 comes from time average. The magnetic field can be calculated

by means of the Maxwell’s equation and using ∇ ·E = 0, obtaining

H∗
y(kxy) =

(
1

ck0µ0

)[
kz(kxy) +

k2x
kz(kxy)

]
E∗

x(kxy) (A.3)

We finally obtain

Φ =
2

cµ0

∫
|kxy|≤k0

dkxy

(2π)2
kz(kxy)

k0
|E(kxy)|2, (A.4)
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where we used |Ex(kxy)|2= kz(kxy)
2|E(kxy)|2/[k2x + kz(kxy)

2]. Inspired

by this analysis, we can define the projection of a field E(r⊥, z) onto the

spatial mode Emode(r⊥, z) as

⟨Emode|E⟩ = Nmode

∫
|kxy|≤k0

dkxy

(2π)2
kz(kxy)

k0
E∗

mode(kxy) ·E(kxy),

(A.5)

which is normalized to the detection mode, i.e. Nmode = 2/(cµ0Φmode).

A.2 Mode decomposition

The physical meaning of this equation can be explained by decomposing

the fields into a complete set of plane waves, whose wavevector kxy =

k0(cosϕk sin θkx̂+ sinϕk sin θkŷ) is written in spherical coordinates

uk0
θk,ϕk,α

(r⊥, z) = êαθk,ϕk
eik0(cosϕk sin θkx+sinϕk sin θky+cos θkz), (A.6)

where we introduce the polarization basis defined by the two independent

versors ê1θk,ϕk
= sinϕkx̂− cosϕkŷ, parallel to the x̂, ŷ-plane, and ê2θk,ϕk

=

cosϕk cos θkx̂+sinϕk cos θkŷ−sin θkẑ, orthogonal to ê1θk,ϕk
and to kxyz =

kxy + kz(kxy)ẑ [152]. We can re-write the expression in Eq. A.1 as

E(r⊥, z) =
k20

(2π)2

∑
α=1,2

∫
S+

dΩk Ẽ
α(θk, ϕk) u

k0
θk,ϕk,α

(r⊥, z) (A.7)

where we made use of the integral equation∫
|kxy|≤k0

dkxy

k0kz(kxy)
f(kxy) =

∫
S+

dΩkf(θk, ϕk), (A.8)

with S+ representing the positive kz > 0 hemisphere. We also defined

kz(kxy)

k0
E(kxy) =

∑
α=1,2

Ẽα(θk, ϕk)ê
α
θk,ϕk

= Ẽ(θk, ϕk). (A.9)

In sight of these definitions, the projection Eq. A.5 becomes

⟨Emode|E⟩ = Nmode

∫
S+

dΩk Ẽ∗
mode(θk, ϕk) · Ẽ(θk, ϕk), (A.10)

which clarifies the correct physical meaning of the projection, given that the

choice Emode = uk0
θ′k,ϕ

′
k,α

′ leads to the correct coefficient ⟨uk0
θ′k,ϕ

′
k,α

′ |E⟩ ∝
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Ẽα′
(θ′k, ϕ

′
k), up to the factor Nmode, which is undefined for a plane wave.

A.2.1 Paraxial limit

Its physical interpretation further simplifies in the paraxial limit, where

the detection mode Emode has non-null Fourier components only when

kz(kxy) ≈ k0. Starting from Eq. A.5 and using kz(kxy) ≈ k0, one has

⟨Emode|E⟩ ≃ Nmode

∫
k0z≫1

dr⊥ E∗
mode(r⊥, z) ·E(r⊥, z), (A.11)

where we used the fact that the evanescent components are null in the far

field [152, 170, 234, 235]. This simplified equation is commonly used to

describe the coupling between a free-space light beam and a single-mode

fiber [156, 157]. Any complete set Eα
mn of solutions to the paraxial wave

equation (α defines two orthogonal polarizations in the x̂, ŷ plane), satisfy

the correct relations using the scalar product of Eq. A.11

Orthogonality: ⟨Eα
mn|Eα′

m′n′⟩ = δm,m′δn,n′δα,α′ ,

Completeness:
∑
m,n

[Eα
mn(r⊥, z)]

∗ ·Eα
mn(r

′
⊥, z

′) ∝ δ(r⊥ − r′⊥),

(A.12)

meaning that any generic paraxial field can be written as a linear combi-

nation E =
∑

m,n,α Cα
mnE

α
mn, so that the projection defined in Eq. A.11

correctly yields ⟨Eα
mn|E⟩ = Cα

mn.

A.3 Projection of the scattered field

We want to apply our definition of the projection to the field scattered by

an atomic dipole dj = d0βj , which reads

Ej
sc(r⊥, z) = E0

(
3π

k0

)
Γ0

Ω0

¯̄G(r⊥ − rj⊥, z − zj) · dj . (A.13)

The Green’s function can be written in Fourier space as [150, 152, 262]

¯̄G(r⊥ − rj⊥, z − zj , ω0)

=

∫
R2

dkxy

(2π)2

[(
i

2k20

) ¯̄K(kxy, ω0)

kz(kxy)

]
eikxy·(r⊥−rj⊥)+i|z−zj |kz(kxy),

(A.14)
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where

¯̄K(kxy, ω0) =

 k20 − k2x −kxky −s kxkz(kxy)

−kxky k20 − k2y −s kykz(kxy)

−s kxkz(kxy) −s kykz(kxy) k20 − kz(kxy)
2

 ,

(A.15)

where s = sign(z − zj). In our case, we are studying forward-propagating

light in the regime where z > zj (similar conclusions apply for the opposite

case). From Eq. A.5 we have

⟨Emode|Ej
sc⟩

∝ i

2k30

∫
|kxy|≤k0

dkxy

(2π)2

(
Ẽ∗

mode(kxy) · ¯̄K(kxy) · dj

)
e−ikxy·rj⊥−ikz(kxy)zj

=
i

2k0
E∗

mode(r
j
⊥, zj) · dj .

(A.16)

where we exploited Ẽ∗
mode(kxy) · ¯̄K(kxy) · dj = k20Ẽ

∗
mode(kxy) · dj , due to

Eq. A.1 and Eq. A.15. If one chooses the detection mode Emode = Egauss

as a paraxial, Gaussian beam of waist w0, travelling in the ẑ direction, then

Ngauss = 2/(πw2
0E

2
0), so that

⟨Egauss|Ej
sc⟩ =

3i

(k0w0)2
E∗

gauss(r
j
⊥, zj) · d0

E0

(
Γ0

Ω0
βj

)
, (A.17)

where we recall that, in our notation, we have dj = βjd0, where βj is the

excited-state coefficient of the j-th atom. This defines the transmission

coefficient of Eq. 3.2. Similarly, the reflection can be inferred by projecting

onto the backward mode E∗
gauss, to obtain Eq. 3.3.
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Here, we provide a more detailed and formal description of the RG algorithm.

The first part of this technical subsection is meant to ensure that the scheme

could be fully reproducible. In the second part, we discuss the problem of

assigning new positions to the renormalized atoms. Finally, we analyze the

optical cross section of an atomic pair.

B.1 Definition of the RG algorithm

We assume that we have an ensemble of N randomly positioned atoms.

As shown in Eq. 3.4, each pair of atoms interacts through the coupling

Gij = (3π/k0)x̂ · ¯̄G(ρij , ω0) · x̂, where ρij ≡ k0(ri − rj). The 1/ρ3ij near-

field component of Gij is given by Eq. 3.7. This near-field interaction is

purely real, and describes a coherent interaction between dipoles.

Let us now consider a generic step of the RG flow, where the atomic

ensemble is already composed of effective atoms characterized by different

atomic resonances and a specific set of allowed near-field interactions. This

system is described by the N × N matrix M = diag(ω) − G̃, where the

elements G̃ij read G̃ij = LijG
near
ij +(Gij −Gnear

ij ). Numerically, this matrix

is initialized according to ωinit. = (0, . . . , 0) and Linit.
ij = 1 − δij , stating

that all atoms are resonant at the frequency ω0 and cannot self-interact.

At each step of the RG flow, we evaluate the list of couplings Kij =

Lij |Gnear
ij |/(|δωij |+1) (where δωij = (ωi − ωj)/2), ordering them from the

largest to smallest in amplitude. Nominally, we should select the most

strongly interacting pair and renormalize the pair properties, but the com-

putational cost of this approach would be unfeasible for large atom num-

ber. Due to this reason, we start from the most strongly interacting pair

(say, i, j), select it, and remove from the list all other pairs containing

one of those atoms (e.g. i, k or j, k). We then proceed iteratively, until

we select Nstep most strongly interacting pairs. We choose Nstep to be a

small fraction of the total atom number N (approximately ∼ 2.5%), since

the maximum number of possible disjoint pairs scales as N/2. We have

checked that the results are insensitive to different choices. Given each pair

(i, j) of the selected set, we diagonalize Mpair, and define its eigenvalues

as the new effective resonances ω± = ⟨ω⟩ij ∓
√
δω2

ij + (Gnear
ij )2, where

⟨ω⟩ij = (ωi + ωj)/2. We then substitute the initial frequencies (ωi, ωj)

with the new two effective resonances in ω, randomly choosing the labels.

We need to impose that the pair does not interact anymore through the
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Figure B.1: RG scheme based upon re-positioning atoms. Due to the finite
size of the sample, if one defines the positions of the new effective atoms as being at
the midpoint between the original pair, then, at each RG step, the cloud effectively
shrinks, resulting in a distortion of the ensemble.

near field, meaning that we must replace Lold
ij = 1 with Lnew

ij = 0. At the

same time, at any given stage of the RG flow, the resonance frequencies

of any pair of effective atoms i and j might have been derived from a set

of previous RG steps involving a set of atoms with indices {I ′} and {J ′},
respectively. If the sets {I ′} and {J ′} have some non-zero intersection,

then atoms i and j must be omitted from a subsequent frequency renor-

malization step. Not doing this would violate the principle of RG, that we

are integrating or “freezing” out the degrees of freedom with the strongest

interactions. Numerically, we efficiently enforce this constraint by replac-

ing Lnew
ik = Lnew

jk = Lnew
ki = Lnew

kj = Lold
ik Lold

jk , ∀k, anytime a pair (i, j)

is renormalized. Since L has (at any step) zero-valued diagonal elements,

this directly ensures that Lnew
ij = 0. After all atoms of the step have been

renormalized, we re-evaluate the new set of K parameters, and repeat the

scheme. When all pairs exhibit K ≤ Kcut-off = 1, we stop the RG flow, ob-

taining an ensemble of N inhomogeneously broadened atoms. Given a fixed

value of the density η, we repeat this process for ≈ 100 different spatial

configurations, in order to build up the final distribution P (ωeff).

We extract the optical properties from the renormalized ensemble by

applying Eq. 3.4, modified in order to account for the the new N × N

matrix M emerging from the RG scheme. This reads

(−∆+ ωi) ci(∆)−
N∑
j=1

[
Gij − (1− Lij)G

near
ij

]
cj(∆) =

Ein(ri, ω0)

E0
.

(B.1)

B.2 Choice of the effective positions

In the previous section, we described how the optical response of a pair of

atoms separated by a distance ρij ≪ 1 is characterized by two effective
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resonance frequencies, corresponding to the real parts of the eigenvalues of

the two-atom system. The two collective modes are intrinsically delocalized

in space (being formed by atoms with two different positions ri, j). As this

delocalization is difficult to incorporate into the RG scheme, we instead

attribute each of these two resonance frequencies to a new effective atom,

with well-defined position.

In our scheme, the new effective atomic positions are assigned to those of

the original pair, ri, j (randomly between the two possible permutations).

A more natural choice, given that the two renormalized atoms are non-

interacting, might be to place them at the midpoint (ri + rj)/2 between

the two original atoms, but here we discuss the problem with that approach.

Specifically, for a finite-size sample, the atoms closest to the perimeter

of the sample will only renormalize with atoms that are closer to the interior.

As illustrated in Fig. B.1, this means that step by step, the shape of the

cloud tends to shrink. This effectively distorts the ensemble and results in

a higher density, and higher interaction strengths in the next step of RG.

B.3 Cross section of an atomic pair

The optical response of an identical atomic pair is characterized by a sym-

metric and an anti-symmetric normal mode. Here, we will study the scat-

tering cross sections of such modes, in the limit of near-positioned atoms.

First of all, let us write the dimensionless positions (in units of k−1
0 ) of

the two atoms of the pair as

ρ1 = −ρ2 =
ρ12
2

(cos θ x̂+ sin θ cosϕ ŷ + sin θ sinϕ ẑ) , (B.2)

where ρ12 ≪ 1. The scattering cross section can be derived by means of

the so-called optical theorem [230, 231, 335–338], which reads

σpairsc (∆) =
σsc
2
Im

2∑
j=1

E∗
in(ρj)

E0
cj(∆) (B.3)

where σsc = 3λ20/(2π) is the resonant cross section of a single, isolated,

electric dipolar atom, while the dimensionless coefficients cj = Γ0βj/Ω0

are defined as in Eq. 3.4, starting from the excited-state coefficients βj of

Eq. 2.17 or, equivalently, from the atomic dipole moments dj = βjd0.

By plugging the solutions of Eq. 3.4 into Eq. B.3, one obtains a to-

tal cross section characterized by the two resonances ω±, which are re-

spectively associated to the symmetric and anti-symmetric modes, so that
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the resonant scattering cross sections of these two modes can be defined

as σ±sc ≡ σpairsc (ω±). In the limit where ρ12 ≪ 1, the two resonances

ω± = ∓Re G12 ∼ ∓1/ρ312 are well-separated and can be efficiently re-

solved, leading to

σ±sc
σsc

≃ (E∗
12 · v±)(E12 · v±)

Γ±
, (B.4)

where we defined E12 ≡ {Ein(ρ1), Ein(ρ2)}/E0, as well as the eigenstates

v± = {1,±1}/
√
2 and the decay rates Γ± = 1± 2Im G12.

Assuming that the input field is either a x̂-polarized, ẑ-directed Gaussian

beam with w0 ≫ λ0 and focal point at r = 0, or equivalently a x̂-polarized,

ẑ-directed a plane wave, one can evaluate the cross sections in the limit of

ρ12 ≪ 1, obtaining

σ+sc
σsc

≃ 1,
σ−sc(θ, ϕ)

σsc
≃ f(θ, ϕ)

g(θ)
, (B.5)

where f(θ, ϕ) ≡ (sin θ sinϕ)2 and g(θ) ≡ [2− cos2 θ]/5.

As expected, the symmetric mode exhibits a perfect electric dipolar be-

haviour, characterized by the same scattering cross section of one single,

isolated atom. On the contrary, the complex multipolar nature of the anti-

symmetric mode leads to a more complicated scattering cross section, which

depends on the mutual orientation of the initial pair. This suggests consid-

ering the average resonant cross section over all possible orientations of a

pair, obtaining〈
σ−sc
σsc

〉
=

1

4π

∫ π

0
dθ

∫ 2π

0
dϕ

σ−sc(θ, ϕ)

σsc
sin θ ≃ 0.94 ∼ 1, (B.6)

which shows that, on average, the multipolar anti-symmetric mode will

scatter light very similarly to a point-like, dipolar atom.

During the RG flow, one can also encounter pairs of effective atoms

that have a detuning of δω12 = (ω1 − ω2)/2 with respect to each other. In

order for these pairs to strongly interact and be renormalized, the pairwise

interaction parameter should satisfy K12 > 1 , which is roughly equivalent

to |δω12/G
near
12 |≪ 1. In this limit, one can readily extend the previous

calculation to the case of two different atoms. In particular, after averaging

the resonant cross-section of the (nearly) anti-symmetric, multipolar mode
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over all possible orientations, one finds

〈
σ−sc(ζ)

σsc

〉
=

5

2

1− (3ζ2 + 1)

arctanh

(
1√

5ζ2+2

)
√
5ζ2 + 2

 , (B.7)

where ζ ≡ δω12/(ρ12G
near
12 ), and which satisfies

0.94 ≲

〈
σ−sc(ζ)

σsc

〉
≤ 1. (B.8)

Thus, we see that the multipolar mode of a pair of inequivalent atoms can

also be well-approximated in its optical response by a single, electric dipolar

atom.





C - Optical properties of a 3D
atomic array

In this appendix, we provide some supplementary information on the optical,

linear response of a 3D atomic array. We start by addressing the refractive

index in the regime λ0/2 ≤ dz < λ0 that was not explored in Section 4.2.3.

Afterwards, we explicitly report our method to calculate the index from the

phase of transmission, as obtained from numerical simulations. Finally, we

discuss the regimes where the evanescent interaction between different 2D

layers can or cannot be ignored.

C.1 Maximum index when λ0/2 ≤ dz < λ0

Here, we calculate the index in the regime of λ0/2 < dz < λ0. In this

section, we focus on the lossless regime Γ′ = 0 and we ignore the evanescent

field between layers. The band structure of Eq. C.1 reduces to

J(kz) = ω(0) +
Γ(0)

2

sin(k0dz)

cos(kzdz)− cos(k0dz)
. (C.1)

To obtain this, we recall that we work in the “single-mode” scenario where

all diffraction orders but kxy = 0 are evanescent, i.e. when d < λ0. In

this situation (and as long as the evanescent fields are suppressed), we

can associate the wavevector of the Bloch mode to the index of refraction,

reading n(δ) = kz(δ)/k0, assuming that klight ≈ k0. This happens because

the light at a fixed δ excites one precise Bloch mode, with its wavevector

kz(δ) describing the phase of propagation per unit length.

In Chapter 4, we explicitly focus on the regime dz < λ0/2, where we

can write:

n(δ) =
1

k0dz
arccos

[
cos(k0dz) +

Γ(0) sin(k0dz)

2δ − 2ω(0)

]
, (C.2)

by directly inverting Eq. C.1 within the first Brillouin zone. Considering the

Bloch mode at the edge of the Brillouin zone, we have then the maximum

index nmax = λ0/(2dz). As one can see, this latter prediction should not

be extended to lattice constants above dz > λ0/2, as it would lead to the

conclusion that the maximum index is below unity.

The condition d = λ0/2 represents the threshold between two regimes,

where the light-lines (i.e. kz = ±(δ + ω0)/c ≈ ±k0) are either outside
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Figure C.1: Band structure for lattice constants above and below the thresh-
old d = λ0/2, compared to the light-cone. The light cone is given by the red,
solid line, and it appears vertical since we are in the near-resonant regime |δ|≪ ω0,
i.e. klight ≈ k0. The blue (dashed and solid) curves describe the dispersion relation
inside the first Brillouin zone |kz|≤ π/dz, while the green lines are two extended
Brillouin zones. The solid lines are those modes effectively excited by the incoming
light, corresponding to the Bloch modes nearer to the light-cone.

(dz > λ0/dz) or inside (dz < λ0/dz) the first Brillouin zone, as represented

in Fig. C.1 for the two cases of dz = 0.8λ0 (a) and dz = 0.4λ0 (b). In

particular, in the first case, the input light excites the modes belonging

to the extended Brillouin zones π/dz ≤ |kz|≤ 2π/dz, which are nearer to

the light-cone. This is a standard result in the field of photonic crystals,

where higher frequencies excite higher bands with wavevectors belonging to

extended Brillouin zones [246, 339]. This leads to the index

n(δ) =
1

k0dz

{
− arccos

[
cos(k0dz) +

Γ(0) sin(k0dz)

2δ − 2ω(0)

]
+ 2π

}
, (C.3)

whose maximum value reads nmax = λ0/dz.

In Fig. C.2, we compare these predictions (green lines) with the nu-

merical estimation of the refractive index from the phase of transmission,

given a finite-length system (blue points). The agreement is excellent, both

spectrally (Fig. C.2-a) or only considering the maximum index (Fig. C.2-b).

Here, the numerics are calculated using the method reported in the next

section, i.e. Section C.2.

The discontinuity at dz = λ0/2 in the behaviour of maxn, is associated

to the exceptional point at dz = λ0/2 where the band in Eq. C.1 becomes

flat J1D(kz) = ω(0). Physically, this represents the condition of perfect

Bragg reflection at normal incidence, where perfect destructive interference

cancels the forward propagation of light, so that the object becomes fully

reflective.
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Figure C.2: Refractive index of a 3D lattice. a) Spectrum of the index given
dz = 0.7λ0. Here, we fix dz = 2.5d to suppress the evanescent field, so that
Eq. C.1 is valid. b) Maximum index as a function of the lattice constant dz. In
both cases, the green lines represent the predictions of Eq. C.2 (for d < λ0/2) and
Eq. C.3 (for d > λ0/2).

C.2 Numerical simulations of the index

In this section, we define our numerical method to calculate the refractive

index of an ordered 3D atomic lattice, composed of a finite number M of

transverse 2D arrays. For any detuning δ, we can numerically calculate the

transmission t(δ) and reflection r(δ) from the coupled-dipole formalism.

C.2.1 Transmission and reflection

In our regime dz ≤ d < λ0 of single-mode response, the result is the natural

extension of the single-layer case shown in Eq. 4.7. Specifically, the total

wavefunction has the form |ψ3D⟩ = cG|G⟩+
∑

j c
j
E|Ej⟩, where cG ≈ 1 and

|Ej⟩ is the collective mode associated with the 2D plane at position zj .

We can use it to compute the field from the output equation of Eq. 4.2.

We are interested in the far-field transmission and reflection, so that the

observation point is far |k0(z − zj)|≫ 1 from the position zj of any layer.

Recalling Ein(z) = E0e
ik0zx̂, we get

E(z) = ⟨ψ3D|Ê |ψ3D⟩ =
[
E+(z) + E−(z)

]
x̂, (C.4)

where the |ψ3D⟩ is calculated at the steady state from Eq. 4.8. Here, we

decomposed the field into the forward- and backward-propagating terms

E+(z)

E0
= eik0z + i

Γ(0)

2

∑
zm<z

eik0(z−zm)cmE (δ), (C.5)
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and
E−(z)

E0
= i

Γ(0)

2

∑
zm>z

e−ik0(z−zm)cmE (δ). (C.6)

We can then define the transmission and reflection coefficients as

t ≡ lim
z→+∞

E+(z)

Ein(z)
, r ≡ lim

z→−∞

E−(z)

E∗
in(z)

. (C.7)

C.2.2 Index from the phase of transmission

Once one knows the transmission, they can in principle attempt to infer the

index from the phase accumulated in the medium. This was the spirit of the

numerical calculations performed in Chapter 3. Formally, the transmission

and the index are related by the macroscopic Fresnel equation. As discussed

in Section 3.2.2.1, this accounts for the effects of multiple bouncing inside

the medium by reflection at the interfaces with free space. For a system of

length L, we recall that this reads

tFr =

[
4n

(1 + n)2 − (n− 1)2t2ph

]
tph, (C.8)

where tph = exp (i (n− 1) k0L). In Chapter 3, we approximated the total

transmission with only ∼ tph to speed up the calculations. As we checked

in Section 3.2.2.1, we were allowed to do so by the high, on-resonance

absorption nim ≫ 0, which suppressed multiple bouncing of light between

the two interfaces of the atomic medium with free space.

In the case of an ordered lattice of (ideal, lossless) atoms, we predict

from the dispersion relation a purely real index, so we do not expect this

approximation to be valid. Nonetheless, if one studies the phase arg tFr as

a function of the total length L =Mdz, then can notice that the pre-factor

inside the square brackets of Eq. C.8 only contributes with small oscillations

around the behaviour of arg tph. This is exemplified in Fig. C.3, where

we use the dispersion relation of Eq. C.2 to predict the index ntheo (given

d = dz = λ0/60 and δ ≃ 1.5ω(0)), as a function of the number of layersM .

Then we plug this value into Eq. C.8 to define tFr (blue line) as well as its

simplified version tph (orange line). The phase analysis of Fig. C.3-a clearly

show how arg tph largely characterizes the behaviour of arg tFr. Finally, we

use the coupled-dipole equations to numerically compute the transmission

(as discussed in Section C.2.1), finding a perfect agreement with the Fresnel

equations where n = ntheo is defined from the band dispersion.
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Figure C.3: Comparison between the Fresnel prediction tFr and the full
numerics, given dz = d = λ0/60 and δ ≃ 1.5ω(0). The detuning is chosen to
be in a regime where the band is invertible. First, we compute the transmission
by numerically solving the coupled-dipole equations, for an increasing number of
transverse layers M , as described in Section C.2.1. We plot with blue points the
resulting phase arg t (a) and absolute value T = |t|2. We want to compare this
transmission with that predicted by the Fresnel theory, i.e. tFr. We thus use the
dispersion relation Eq. C.2 to predict the index ntheo and we plug this latter into
Eq. C.8, obtaining the blue curves. Finally, with orange lines we represent the value
of the simplified model tph, where the transmission only corresponds to a phase.

These observations motivate the definition of the following algorithm,

to extract the index from the numerical simulations of the transmission.

We anticipate that we extensively checked our theoretical predictions by

comparing it with the results of this algorithm, used as a black box (as in

Fig. C.2).

• For each value of the detuning δ, we numerically calculate the trans-

mission for many, increasing values of M , from the coupled-dipole

equations. For each value of M , we evaluate the phase ϕ = arg t.

• For each pair of consecutive points (e.g. M̃ and M̃ +1), we compute

the phase difference ∆ϕM̃ = ϕM̃+1 − ϕM̃ .

• If |∆ϕM̃ |> π, we vertically shift all the following points M ≥ M̃ + 1

by a factor ±2π, choosing the sign that minimizes |∆ϕM̃ ± 2π|. This
happens because the phase function arg t is only defined modulo 2π,

which we must correct (green arrow in Fig. C.3-a).

• We fit the final line with ϕ = aM + b, and then define the real index

as nre = a/(k0dz) + 1.

The necessity of imposing the condition |∆ϕM̃ |> π, to identify the

jumps, arises because these jumps are typically slightly different than exactly
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2π, since we can only discretely increaseM and due to the small fluctuations

of the pre-factor in the square brackets of Eq. C.8. Moreover, since we

expect that nre ≤ λ0/(2dz), we obtain that the vertical space between

consecutive, numerical points should remain bounded by |ϕM+1−ϕM |≲ π,

meaning that we should easily identify the discontinuous jumps anytime

we witness |ϕM+1 − ϕM |> π. Numerically, we found that the threshold

|∆ϕM̃ |> π gives consistent and robust results.

C.3 Invertibility of the optical band structure

In this section, we discuss the effect of the evanescent interaction between

atomic layers, which can make the optical band structure non-invertible.

We start from the band structure of the 3D system J(kz), as described

in Eq. C.1 and Eq. 4.10. We are interested in the limit dz ≪ λ0 and

dz ≥ d. By Taylor expanding in the ratio |cos (kzdz) /cosh (|gmn| dz) |≪ 1,

one can simplify the evanescent contribution to the band into Jev(kz) ≃
(λ0/dz) [−A(dz/d) +B(dz/d) cos(kzdz)], where we define the coefficients

A(µ) =
∑
m∈Z
n∈Z

(m,n)̸=(0,0)

m2µ√
m2 + n2

[
1− tanh

(
2πµ

√
m2 + n2

)]
,

B(µ) =
∑
m∈Z
n∈Z

(m,n)̸=(0,0)

m2µ√
m2 + n2

tanh
(
2πµ

√
m2 + n2

)
cosh

(
2πµ

√
m2 + n2

)
 .

(C.9)

which only depend on the aspect-ratio of the lattice µ = dz/d. This allows

to easily calculate the properties of the band in an analytic fashion. In

particular, hereafter we focus on the quantum optics regime, i.e. when no

quantum chemistry is present. The presence of a local maximum around

|kz|≲ π/dz is responsible for the non-invertible behavior of the band. In the

limit k0dz ≪ 1, the condition for this local maximum to exist becomes

d

λ0
<

d

dz

√
2B(dz/d)

π
≃ 2

√
2d

πdz
e−πdz/d, (C.10)

which defines the regime where the band is non-invertible. This threshold is

represented by the white, dashed line of Fig. C.4-a, where we illustrate the

condition as a function of λ0/d and dz/d. In the same figure, we perform
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Figure C.4: Contribution of the evanescent fields to the band dispersion of
a 3D lattice. a) Regimes where the band is either invertible (blue region) or not
(green region), as a function of the aspect ratio dz/d and the longitudinal lattice
constant dz/λ0. The data are calculated by fully numerically computing the band
and explicitly looking for local maxima at some |kz|< π/dz. The white, dashed
line represents the analytic bound of Eq. C.10. b) Ratio between the evanescent
and radiative contributions to the band structure, i.e. |Jev/J1D|, calculated at
kz = π/dz. When dz ≪ λ0, one can prove that this corresponds to the maximum
value maxkz

|Jev/J1D|. The dashed, white line is the same invertibility boundary
as before, which is equivalent to |Jev/J1D|≲ 1/2. The solid, white line shows the
analytic prediction for the threshold where |Jev/J1D|≤ 10−2. In both plots the
value of Jev is computed numerically from its exact formula of Eq. 4.10.

an exact numerical calculation of the band structure, and indicate with

blue and green the regions of parameter space where the band structure is

invertible and non-invertible, respectively.

The condition above describes when Jev(kz) is so strong to radically

alter the band, making it non-invertible. In turns, this means that even

in the regime where the band is invertible, the contribution could still be

non-negligible, albeit small. To quantify this, we calculate the ratio between

the evanescent Jev(kz) and the radiative J1D(kz) = sin(k0dz)/[cos(kzdz)−
cos(k0dz)] contributions. This quantity in principle depends on the wavevec-

tor kz, so we consider the maximum value maxkz |Jev/J1D|. When dz ≪ λ0,

this ratio is maximized by kz = π/dz so that we obtain max|Jev/J1D|≃
(λ0/dz)

2B(dz/d)/π. Comparing this with Eq. C.10, one can deduce that

the band becomes non-invertible if |Jev/J1D|≳ 1/2. In Fig. C.4-b, we rep-

resent the value of this maximum ratio as a function of the aspect ratio

dz/d and lattice constant d. The black region represents the regime where

|Jev/J1D|≥ 10−2, which allows us to ignore the evanescent contribution. For

our choice of the aspect ratio dz/d = 2.5, this is true as long as d/a0 ≳ 6.

To conclude, we mention that in Appendix E.1 we extend the analysis
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of the evanescent interaction to the case of a rectangular array with lattice

constants dx,y,z that are different in all the three spatial directions. This

discussion finds application in the context of the “atomic metalens” that

we propose in Chapter 5.



D - Dissipation processes in 2D
arrays

In this appendix, we group some further analysis of dissipation processes

in a 2D (square and subwavelength), atomic array spanning the x̂ and ŷ

directions. With the term “dissipation”, we also denote the excitations of

non-radiative modes inside the 2D array. These, indeed, can be seen as

emergent losses to the single-mode response expected for an ideal array,

where all the energy is either reflected or transmitted in the ẑ direction. We

thus start by further analyzing the optical scenario of an atom selectively

driven, which can excite such modes. Then, we discuss more in detail the

dynamics under the 2D tJz model, that we use in Section 4.4 to model

the onset of chemistry. We show that the associated physical phenomena

provide indeed a natural source of selective atomic excitation. Finally, we

discuss the possible presence of supplementary, unidentified environmen-

tal factors (namely, inelastic losses and inhomogeneous broadening of the

atomic resonances), arguing that they can be modeled with a non-radiative

decay rate Γ′.

D.1 Distinguishable atom in a 2D array

In this appendix, we detail how to numerically calculate the susceptibility

χ(rj−rh, δ) = cj(δ)/Ωh from the steady-state solutions cj(δ) of an infinite

2D array of lattice constant d, where one atom at position rh is selectively

driven by a near-resonant Rabi frequency Ωh, detuned by a factor δ =

ωL − ω0. We recall that the atomic wave function is given by |ψ2D(t)⟩ =
cG(t)|G⟩+

∑
j cj b̂

†
pj b̂sj |G⟩, and the other atoms rj ̸= rh can still be excited

via dipole-dipole interactions with the driven atom, via Eq. 4.1.

We numerically simulate a finite 2D square array of lateral size 2l and

lattice constant d. For simplicity, the selectively driven atom is placed at

the center rh = 0. To mimic the infinite size of the array, we introduce

a smooth cut-off of non-radiative decay Γ′
cut-off(R =

√
x2 + y2), which

decreases the response of the system around the boundaries. This allows as

well to avoid finite-size, hardcore interfaces. Specifically, we define

Γ′
cut-off(R) =


0 if R ≤ Rcut-off

3Γ(0)

(
R−Rcut-off

Rcut-off/2

)2

if R > Rcut-off

. (D.1)
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Figure D.1: Plot of the resonant susceptibility of the selectively driven atom
χ0 = χ(0, δ = ω(0)) vs d. The blue points (green triangles) represent, in log-log
scale, the value of its imaginary (real) part, while the dashed blue and green lines
show the asymptotic scalings Im χ0/Γ0 ∼ 187(d/λ0)

3 and Re χ0/Γ0 ∼ 24(d/λ0)
3.

On top of that, we fix R ≤ l = (3/2)Rcut-off. This way, the cut-off is zero

at R = Rcut-off, and up to Γ′
cut-off(l) = 3Γ(0) at the boundaries R = l.

We opt for a quadratic power-law scaling to ensure that also the impedance

mismatch can both vary smoothly, and also exhibit small values in the

relevant region around Rcut-off.

Due to the finite size of the system, we are effectively computing the

optical response by discretely sampling Bloch wavevectors, rather than ac-

counting for the full continuum. The smallest wavevector that we are im-

plicitly considering can be roughly estimated by |kmin
xy |≈ π/Rcut−off . We

thus impose in our numerics that Rcut−off ≥ λ0/2, aiming to well capture

at least those modes outside the light cone |kxy|= k0. For lattice constants

as small as d ≃ λ0/400, this condition implies atomic numbers as large as

N ≈ 4× 105, which represents the maximal size that we can simulate. For

larger lattice constants d ≳ λ0/150, however, our numerics can tolerate

larger systems, and in that case we impose N ≥ 4 × 104, to reduce the

extent of our numerical approximations.

Our results are exemplified in Fig. D.1, where we numerically calculate

the resonant susceptibility of the selectively driven atom χ0 = χ(0, δ =

ω(0)). Specifically, the blue points and the green triangles show the imag-

inary and real part of χ0, along with their asymptotic values Im χ0/Γ0 ∼
187(d/λ0)

3 (dashed blue line) and Re χ0/Γ0 ∼ 24(d/λ0)
3 (dashed blue
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line), which confirm the scaling χ0 ∼ Γ0(d/λ0)
3.

D.2 Dynamics under the 2D, tJz model

In this section, we provide more insights into one of the two fundamental

processes which limit the refractive index of a 3D atomic array, as discussed

in Section 4.4.1. Specifically, we study the dissipation mechanisms (within

each 2D layer), due to the evolution of a photo-excited electron under the

tJz Hamiltonian, which models the onset of chemistry. This is character-

ized by two limits, where the hopping rate of the electron is either much

smaller (Appendix D.2.1) or much larger (Appendix D.2.2) than the optical

dynamics.

D.2.1 Adiabatic elimination

Here, we explicitly show a procedure (alternative to that of the main text)

to calculate the corrections to the optical response of a 2D atomic array due

to the photo-excitation dynamics described of Section 4.4.2.1. Specifically,

we are interested in the single-hop case where Ĥt |E⟩ results in the state

|1⟩, and in its subsequent evolution under Ĥ0 + Ĥdip−dip, as defined in

Eq. 4.1 of the main text. Here, we ignore the further, multi-hop dynamics

due to Ĥt, which would give rise to the state Ĥt |1⟩ ∝ |2⟩ and so on. The

opposite case, where Ĥt dominates over Ĥdip−dip, is described in the next

appendix. Furthermore, we recall that we also neglect the contribution of

Ĥdrive to the evolution of |1⟩, as it would describe nonlinear, multi-photon

processes, that go beyond the analysis of the refractive index.

For simplicity, here we adopt the formalism of Section 4.2.1, where we

separate the orbital and spin degrees of freedom. In this language, the collec-

tive excited state reads |E⟩ =
(∑N

j |rj⟩ /
√
N
)
⊗|σ⟩, where |rj⟩ means that

the atom at position j is excited, while |σ⟩ is the antiferromagnetic, ground

state of the spins. One has that Ĥt(|rj⟩ ⊗ |σ⟩) = −teff
∑4

⟨i⟩j
|ri⟩ ⊗ |σij⟩,

where ⟨i⟩j represent the sum over the four neighbour sites of j, while |σij⟩
is the spin ground state with the spins at sites i and j exchanged. We can

explicitly write Ĥt |E⟩ = −2teff |1⟩ = −2teff
∑N

j

∑4
⟨i⟩j

|ri⟩ ⊗ |σij⟩ /
√
4N .

The total state involved in the photonic dynamics of |E⟩, its hopping into

|1⟩ and its evolution due to Ĥdip−dip reads

|ψ2D⟩ = |G⟩+ c′E |E⟩+
N∑
k=1

N∑
j=1

4∑
⟨i⟩j

ck(ij) |rk⟩ ⊗ |σij⟩ , (D.2)
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where each (ij) in ck(ij) identifies a different, distinguishable, spin back-

ground, while the label k represent the site of the excited atom. In this

state, we approximated the ground-state coefficient as ≈ 1, since we are

in the low excitation limit. The relevant, non-null matrix elements of the

Hamiltonian are given by

1. ⟨E|Ĥdrive |G⟩ = −Ω0,

2. ⟨E|Ĥ0 + Ĥdip−dip |E⟩ = −δ + ω(0)− i

2
Γ(0),

3.
(
⟨rk|⊗⟨σij |

)
Ĥt |E⟩ = −δki

2teff√
4N

,

4.
(
⟨rk|⊗⟨σij |

)
Ĥ0 + Ĥdip−dip

(
|ra⟩ ⊗ |σbc⟩

)
= δibδjc

[
(δak − 1)Gak − δak

(
δ +

i

2
Γ0

)]
.

(D.3)

In sight of this, the steady-state coefficients are described by[
−δ + ω(0)− i

2
Γ(0)

]
c′E − 2teff√

4N

N∑
j=1

4∑
⟨i⟩j

ci(ij) = Ω0, (D.4)

together with the set of equations[
−δ − i

2
Γ0

]
ck(ij) −

∑
n̸=k

Gkncn(ij) = δki
2teff√
4N

c′E. (D.5)

Specifically, Eq. D.5 explicitly shows that each spin background (ij) inde-

pendently undergoes its own dynamics due to Ĥ0+Ĥdip−dip. The formula in

Eq. D.5 is equivalent to the application of Eq. 2.17 to an atomic array where

the single site k = i is selectively driven by Ωi = 2teffc
′
E/

√
4N , whose so-

lution was discussed in Section 4.3.1, reading ci(ij) = χ(0, δ)2teffc
′
E/

√
4N .

These values can be plug into Eq. D.4 to recover[
−δ + ω(0)− i

2
Γ(0) + Σt(δ)

]
c′E = Ω0, (D.6)

defining the complex self-energy Σt(δ) = −4t2effχ(0, δ).
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Figure D.2: Behavior of the hopping dynamics due to Ĥt, depicted as a
Bethe lattice. Evolution of the initial excited p-orbital |0⟩, to states |nab...⟩.
Here, the non-negative integer n denotes the number of hops, while a, b, ... ∈
{U,D,L,R} denotes the direction (up, down, left, right) of each hop.

D.2.2 Hopping on a Bethe lattice

In this section, we derive the contribution to the self-energy Σt(δ) ≈ −4iteff
of the excited state |E⟩, which arises from the dynamics of the p-orbital

hopping Ĥt. As can be seen from Eq. 4.28 and Eq. 4.29 in the main text,

the states involved in up to n = 2 hops are orthogonal due to their differ-

ent spin backgrounds, and can be labeled according to the original position

(when n = 0) rj of the p-orbital, the four possible moves δ1 = ±dx̂,±dŷ
to a nearest neighbor at n = 1, and the three possible moves (besides re-

turning to rj) δ2 ̸= δ1 at n = 2. As the dynamics under Ĥt is the same

for each rj up to translation, in what follows we will forget about this label

and simply denote the initial position as |0⟩. For a better visualization,

we will also switch to the labels U,D,L,R (up, down, left, right) for the

possible values of δi. In Fig. D.2 we thus show how Ĥt has matrix ele-

ments (green arrows) between the initial state |0⟩ and the superposition

state |1⟩ =
(
|1U ⟩+ |1D⟩+ |1L⟩+ |1R⟩

)
/2 following n = 1 hops, and how

|1⟩ is connected in turn by Ĥt to the various configurations |2ab⟩ (with
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a, b ∈ {U,D,L,R}) comprising the state |2⟩. The corresponding matrix

elements are ⟨1|Ĥt|0⟩ = −2teff and ⟨2|Ĥt|1⟩ = −
√
3teff .

While this description up to n = 2 is exact, a standard approximation

for larger n is to assume that the nature of the hopping from |1⟩ to |2⟩
generalizes to any |n⟩ to |n + 1⟩ [243, 244]. In particular, one assumes

that Ĥt connects a particular configuration |nab...⟩ to three possible new

configurations |(n + 1)ab...⟩, and furthermore that all possible generated

states have orthogonal spin backgrounds, i.e. the configurations satisfy the

orthogonality condition ⟨mab···|na′b′···⟩ = δm,nδa,a′δb,b′δ···. This makes the

problem equivalent to hopping on a so-called Bethe lattice [245].

Within this approximation, the Hamiltonian Ĥt takes the form

Ĥt ≈ ĤBethe ≡ −2teff |1⟩ ⟨0|−
√
3teff

∑
n>0

|n+ 1⟩ ⟨n|+h.c., (D.7)

where we define the normalized states |n⟩ =
∑

ab...

∣∣nab...〉 /(2√3n−1),

which are an equal superposition of all possible configurations at a given n.

The eigenenergies and eigenstates of ĤBethe can be written in the form

E(θ) = −2
√
3teff cos(θ),

|ψ(θ)⟩ =
√

2

π

[√
3

2
sin(γ) |0⟩+

∞∑
n=1

sin(nθ + γ) |n⟩

]
,

(D.8)

where tan(γ) = 2 tan(θ). The density of states can be also calculated,

obtaining the value [243, 245]

ρ(E) = 2

πteff

√
24− (E/teff)2
16− (E/teff)2

= − 3

2π
sin2(γ)

dθ

dE
. (D.9)

Starting from the quasi-bound state |0⟩ initially, the decay rate ΓBethe out

of this state into the continuum of the band can be estimated by Fermi’s

golden rule as

ΓBethe

teff
=

2π

teff

∫ 2
√
3teff

−2
√
3teff

dE ρ(E)
∣∣∣⟨ψ(E)|ĤBethe |0⟩

∣∣∣2

=
24

π

∫ π

0
dθ sin2(γ) sin2(θ + γ) =

864

π

∫ 1

0
du

√
u3(1− u)

(1 + 3u)2
= 8.

(D.10)

This allows us to define the contribution to the self-energy of the state |E⟩
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as Σt(δ) ≈ −4iteff.

D.3 Non-radiative noise in a 2D array

Here, we discuss our model of inelastic noise in a 2D atomic array as a

supplementary, non-radiative decay rate. In the expression of the atomic

polarizability α0 = −3πϵ0/{[∆ + i(1 + Γ′)/2]k30}, we define a generic non-

radiative decay rate Γ′ (in units of the natural atomic linewidth Γ0), which

accounts for the energy that is lost in non-radiative processes. This includes

both inelastic scattering of light (such as losses into phononic side-bands),

as well as inhomogeneous broadening of the atomic resonance frequencies.

In particular, we consider Γ′ = Γinel + Γinhom.

While the interpretation of inelastic scattering is straightforward, it is not

obvious a priori that the inhomogeneous broadening can have very similar

effects to non-radiative decay. In a 1D atomic array, for instance, this

would not generally be true, as the randomness in the atomic frequencies

can lead to peculiar effects such as Anderson localization [340, 341]. On

the contrary, it is experimentally known that the inhomogeneous broadening

of both 3D atomic ensembles (such as Doppler broadening [165–168]) or

two-level emitters in solid-state systems (including color centers in diamond

[249, 251, 252, 342]) usually acts by inelastically broadening the overall

linewidth (without contributing to the resonant scattering), behaving as a

supplementary, non-radiative term.

Mathematically, one can model the inhomogeneous broadening of such

an open ensemble by assuming that each atom of the lattice has a shifted

resonance ω̃i, distributed according to a well-defined probability distribu-

tion Pinhom(ω̃). Here, for simplicity, we focus on a Lorentzian distribution of

width σLorentz (in units of Γ0), i.e. Pinhom(ω̃) = σLorentz/
[
π(σ2Lorentz + ω̃2)

]
.

The coupled-dipole equations, then, are modified by substituting α0 →
α(ω̃i), in Eq. 2.17, so that each atom is characterized by a different po-

larizability α(ω̃i) = −3πϵ0/{[∆− ω̃i + i (1 + Γinel) /2] k
3
0}. In our model,

we assume that we can average the atomic response over disorder first, be-

fore solving the multiple-scattering problem. We obtain an average atomic

polarizability, which reads

α0 = ⟨α(ω̃)⟩ = −3πϵ0
k30

∫
Pinhom(ω̃)

∆− ω̃ + i(1 + Γinel)/2
dω̃

= −3πϵ0
k30

1

∆ + i(1 + Γinel + 2σLorentz)/2
,

(D.11)
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Figure D.3: Effects of inhomogeneous broadening on a 2D atomic array,
given Γinel = 0. Transmission spectrum of a finite 2D square lattice with transverse
dimensions ∆x = ∆y = 6.4λ0 and lattice constants ξx = ξy = 0.2, illuminated by
a Gaussian beam of waist w0 = ∆x/4. The detuning ∆ is expressed in units of
Γ0. The blue points (green squares) are calculated by solving the inhomogeneous
version of the coupled-dipole equations Eq. 2.17 with α0 → α(ω̃i), and considering
atomic resonance frequencies ω̃i randomly sampled from a Lorentzian (Gaussian)
distribution of width σLorentz = 2.5 (standard deviation σGauss = 5). The red line
shows the predictions of Eq. 2.17, when removing the inhomogeneous broadening
ωi = ω0 but adding a non-radiative decay rate Γ′ = Γinhom = 5. The data are
averaged over ∼ 100 configurations.

so that one can define Γinhom = 2σLorentz.

The validity of this assumption, in the regime under analysis, is reason-

able, but not obvious. In Fig. D.3, we check its soundness by evaluating the

spectrum of transmission t(∆) of a 2D square lattice of transverse dimen-

sions ∆x = ∆y = 6.4λ0 and lattice constant ξx = ξy = 0.2, illuminated by

a Gaussian beam of waist w0 = ∆x/4 (here, t(∆) is calculated by project-

ing the output field of Eq. 2.17 onto the same mode as the input beam,

as in Eq. E.8 of Appendix E.3). Assuming Γinel = 0, we compare the re-

sults of Eq. 2.17 when Γ′ = Γinhom = 5 (red line), with those obtained by

considering a Lorentzian distribution of width σLorentz = 2.5 (blue points),

observing a great agreement. As a reference, with green points we also show

the case when the resonances ω̃i are sampled from a Gaussian distribution

of standard deviation σGauss = 5.



E - Analysis of the atomic metalens

In this appendix, we provide further insights into our definition and nu-

merical validation of an atomic metalens. We start by properly discussing

the validity of neglecting the evanescent coupling between the 2D arrays.

Then, we detail our definition of buffer zones, where atoms are placed in

an intermediate position at the interface between two consecutive rings.

To continue, we report our method to extract the efficiency of the atomic

metalens from the numerics. Finally, we mention some computational chal-

lenges in the numerical validation of our scheme, via large-scale simulations.

E.1 Neglecting the evanescent interaction

Here, we discuss the validity of the approximation Gev
nm ∼ 0, ∀n, m, when

applying our protocol to define an atomic metalens. In Section C.3, a

similar analysis was provided, restricted to the case where each 2D layer

was composed of a square array with dx = dy = d, and mainly focused

on the role of the evanescent field in the dispersion relation (in the limit

of an infinite number of 2D layers, M → ∞). In this section, we instead

study the direct coupling between two neighbouring, 2D arrays at distance

dz, and we extend the discussion to dx ̸= dy.

Considering x̂-polarized atomic dipoles, the interaction of Eq. 5.2 be-

tween two different 2D arrays reads Gnm = G1D
nm + Gev

nm, where the evanes-

cent term can be explicitly written as

Gev
nm =

Γcoop

2

∑
a∈Z
b∈Z

(a,b) ̸=(0,0)

1− (a/ξx)
2

κz(a, b)
e−2π|m−n|ξzκz(a,b),

(E.1)

where κz(a, b) =
√

(a/ξx)
2 + (b/ξy)

2 − 1, and where we recall that ξx,y,z =

dx,y,z/λ0 < 1, while Γcoop = Γ(0)/Γ0 = 3/(4πξxξy). Differently from

the infinite-range terms G1D
nm = iΓcoope

2πi|m−n|ξz/2, the magnitude of the

evanescent interaction Gev
nm decreases exponentially with the distance ∼

|n−m|ξz between the two planes. Due to this reason, we can focus on the

worst-case scenario of two nearest-neighbor planes.

The asymptotic behaviour at small lattice constants ξx ≪ 1 and ξy ≪ 1

can be studied by considering the first terms in the sum of Eq. E.1. In

particular, if we retain the terms with either a = ±(1, 2) and b = 0 or a = 0

and b = ±(1, 2), for |Gev
12|< |G1D

12 | to be satisfied one obtains the following
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Figure E.1: Strength of the evanescent interaction in our scheme. Magnitude
of |Gev

12|/|G1D
12 |, for two nearest-neighbor planes, where the evanescent interaction

is maximum. The red color describes the region where the approximation |Gev
12|∼ 0

breaks down. In the two panels, we explore the two branches of the path chosen for
our scheme, reading ξy = ξmin ∪ ξmin ≤ ξx < 1 (a) and ξx = ξmin ∪ ξmin ≤ ξy < 1
(b), where ξmin = 0.03. The evanescent interaction is calculated from the full
equation Eq. E.1. The white, dotted line represents the possible values of ξz(ξx, ξy),
as defined in Eq. 5.8, while the white points show the actual values that we used
to design the lens of Fig. 5.4, which all fall in a regime where Gev

12 ∼ 0. The yellow,
either solid and dashed lines respectively show the asymptotic bounds of Eq. E.2
and Eq. E.3.

bounds (expanded, respectively, in ξx ≪ 1 and ξy ≪ 1)

ξz ≳
ξx
2π

log

(
1 +

√
1 + 4ξx
ξx

)
, ξz ≳

ξy
2π

log
(
ξy +

√
ξy + ξ2y

)
,

(E.2)

which roughly correspond to the rule of thumbs ξz ≫ max[ξx, ξy]/(2π) .

On top of this, since we are considering x̂-polarized dipoles, the terms with

a = 0 and b = ±1 explode when ξy → 1, meaning that the evanescent

interaction dominates in that regime. In particular, this leads to the sup-

plementary condition for Gev
12 to be negligible (in the regime of ξy → 1)

ξz >
ξy

2π
√
1− ξ2y

log

 2ξy√
1− ξ2y

 . (E.3)

The validity of the approximation Gev
12 ∼ 0 in our scheme is shown in Fig. E.1.
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Here, we plot the ratio |Gev
12|/|G1D

12 |, when exploring the two branches ξy =

ξmin ∪ ξmin ≤ ξx < 1 (Fig. E.1-a) and ξx = ξmin ∪ ξmin ≤ ξy < 1

(Fig. E.1-b) of the path adopted in our scheme, while arbitrarily varying ξz.

The red regions represents regimes where our approximation breaks down,

while the other colors show various degrees of validity of our assumption

(from the highest, in black, to the lowest, in green). The white points show

the values of the lattice constants that were actually used to design the lens

in Fig. 5.4, which fall in a regime where our approximation |Gev
12|≪ |G1D

12 |
is perfectly justified. On the contrary, the dotted white lines show all the

possible values that one might potentially need when designing a generic

lens with our prescription (in sight of Eq. 5.8, which defines ξz(ξx, ξy)). As

one can see in Fig. E.1-b, the main problem is associated with those phases

ϕ(ξx, ξy) that require ξy ≳ 0.7, which violate the bound of Eq. E.3 (yellow,

dashed line). Nonetheless, as shown in Fig. 5.2-a, this happens only for

phases ϕ(ξx, ξy) ∼ 0, and two easy solutions would be to either leave the

related ring empty (which would correspond to approximating the requested

phase with exactly ϕ(ξx, ξy) = 0), or to introduce a cut-off on the minimum

absolute value of the phase.

E.2 Buffer zones

Here, we describe in detail our definition of the buffer zone between con-

secutive rings of an atomic metalens, which is aimed to avoid an abrupt

change of lattice constants at the interfaces.

This scheme takes advantage of the fact that, in our approach, often

one of the two lattice constant does not change between two consecutive

rings, having either ξjx = ξj−1
x = ξmin or ξjy = ξj−1

y = ξmin (as discussed in

Fig. 5.2). The full algorithm is described below.

• Given each ring j, its first 0 ≤ α < 1 fraction is reserved as a buffer

zone (green and orange regions of Fig. E.2), aimed to connect the

j-th lattice with the previous one in a smoother way. Hereafter, we

describe how a generic j-th buffer (separating the (j − 1)-th and the

j-th ring) is constructed.

• First of all, the system checks if either ξjx = ξj−1
x = ξmin or ξjy =

ξj−1
y = ξmin are satisfied. If none of them is fulfilled, then the algo-

rithm ignores that buffer (as in the orange regions of Fig. E.2).

• Let us assume that one has ξjy = ξj−1
y = ξmin, as in the green regions

of Fig. E.2. The opposite case is a straightforward extension, which
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can be described by simply reversing the references to the vertical and

horizontal coordinates.

• In this regime, the lattices are organized in columns spaced by either

ξj−1
x and ξjx . The algorithm defines xmax = maxxj−1 + (3/4)ξj−1

x ,

where xj−1 identify the horizontal positions of the columns of the

(j−1)-th ring. If there are columns of the j-th ring having xj > xmax,

then those columns are ignored in the following steps (as in the black

box of Fig. E.2).

• At this point, the algorithm counts the number of columns in either

the j-th or the (j − 1)-th ring, satisfying the condition 0 ≤ xj,j−1 ≤
xmax. Then, it identifies which of the two rings has less columns.

For the sake of simplicity, we will assume it to be the j-th ring, but

the algorithm deals with the opposite case in a similar manner. For

each column i of this ring, the code searches the horizontally nearest

column k among the ones of the (j−1)-th ring, i.e. the one minimizing

the quantity |xij − xkj−1|.

• Given this pair of columns, the algorithm connects them by drawing

a straight line, and then placing atoms with a vertical spacing ξjy =

ξj−1
y = ξmin. For a line to be drawn, the condition yij > ykj−1 must

be fulfilled, in order to avoid negative slopes. When the number of

columns in the two original rings are different, some columns must

remain unconnected, as highlighted by the purple box in Fig. E.2.

• For what concerns the ẑ position, all the atoms of the j-th buffer

are associated to the lattice constant ξjz , meaning that the columns

are actually connected only in the x̂, ŷ-plane. We tested the idea of

fully connecting them in 3D, but this choice seems not to improve the

efficiency.

E.3 Definition of the efficiency

In our simulations of an atomic metalens, we consider a finite ensemble of

N , x̂-polarizable atomic dipoles, with resonant frequency ω0 and embedded

in a non-absorbing, bulk material of index n. Due to the presence of the

bulk material, the resonant wavevector is defined as k0 = 2π/λ0 = nω0/c.

This atomic system is illuminated by a resonant, x̂-polarized Gaussian beam
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Figure E.2: Example of “buffer zones” between two consecutive rings, in the
x̂, ŷ-plane. The blue points show the atomic positions, while each ring is identified
by a red line, as well as an ordinal number, still in red. The first α = 0.2 fraction
of each ring is dedicated to the buffer zones, which are represented by either green
or orange regions. In particular, the green areas describe the case where one of the
two conditions ξjx = ξj−1

x = ξmin or ξjy = ξj−1
y = ξmin are satisfied, which allows to

smoothly connect the neighbouring rings. On the contrary, the case where none
of these two conditions is fulfilled is shown by the orange zones, which are simply
treated as normal parts of the corresponding ring. The black and purple boxes
identify two peculiar instances, as described in the main text.

of waist win
0 . We recall that it reads Ein(r, z) = Egauss(r, z, w

in
0 ), with

Egauss(r, z, w0) = E in
0

w0

w(z)
exp

[
−
(

r

w(z)

)2

+ ik0z + iφ(r, z, w0)

]
x̂,

(E.4)

where w(z) = win
0

√
1 + (z/zR)2 is the waist of the beam, while φ(r, z, win

0 )

= − arctan(z/zR) + k0r
2/[2R(z)], with zR = k0(w

in
0 )

2/2 and radius of

curvature R(z) = z[1 + (zR/z)
2].

The total field E(r, z) can be reconstructed by means of the coupled-

dipole equations of Eq. 2.17. This numerical prediction must be then com-

pared to the theoretical output field that one would expect for an ideal lens

of focal length f . When the focal plane of the input beam is on the lens,

this latter is given by Eideal(r, z) = Egauss(r, z − zidealf , wideal
0 )/M, where
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one has

wideal
0

win
0

= M =
f√

f2 + k20(w
in
0 )

4/4
, zidealf =

(
1−M2

)
f. (E.5)

Here, M is the so-called magnification of the lens, and describes en-

ergy conservation [37]. The ideal increase in the beam intensity at the

focal spot (over the intensity I in0 = |E in
0 |2/(2µ0c)) is instead given by

I ideal0 /I in0 = 1/M2. We can calculate the efficiency η of the atomic metal-

ens by evaluating the overlap between this ideal solution and the total field.

In the paraxial limit, we use Eq. A.11 to define η = |⟨Eideal|E⟩|2, where

⟨Eideal|E⟩ = t0 +
3i

(k0win
0 )

2

N∑
j=1

E∗
ideal(rj , zj)

E in
0

(
Γ0

Ωin
0

βj

)
, (E.6)

due to Eq. A.17. Here,we have

t0 = ⟨Eideal|Ein⟩ =
2πwin

0 w
ideal
0 exp

(
2iπzidealf /λ0

)
π
[
(win

0 )
2 + (wideal

0 )2
]
+ izidealf λ0

. (E.7)

Here, we recall that N in
gauss = 2/[π(win

0 E
in
0 )

2]. Similarly, we define the

overlap ϵ = |⟨Ein|E⟩|2 between the output and the input mode, where

⟨Ein|E⟩ = 1 +
3i

(k0win
0 )

2

N∑
j=1

E∗
in(rj , zj)

E in
0

(
Γ0

Ωin
0

βj

)
. (E.8)

E.4 Numerical methods

In Section 5.4, we discussed the results of our large-scale numerical simula-

tions of coupled-dipole equations. Here, we briefly describe some technical

expedients that allowed us to implement such numerical calculations.

We numerically simulate the optical response of the system by solving

the coupled-dipole equations of Eq. 5.2 and Eq. 5.3, whose complexity scales

as ∼ N2, where N is the number of atomic dipoles. The input Gaussian

beam must have a waist w0 much smaller than the radius Rlens of the atomic

metalens, to avoid scattering from the edges or non-negligible fractions of

light passing outside the lens. Due to the paraxial approximation, however,

this imposes the constraint λ0 ≪ win
0 ≪ Rlens. Furthermore, to counteract

the effects of the noise Γ′, one must work with small lattice constants, thus
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explaining the necessity of simulating up to N ∼ 5 × 105 atomic dipoles,

between one and two orders of magnitude larger than typical theoretical

studies [154, 157–159, 165, 166, 169, 170, 173–176]. To accomplish this

task, we exploit the fact that the system is symmetric for x̂ → −x̂ and

ŷ → −ŷ , which implies that the each dipole dj is equal to those of the

atoms at the mirrored positions. The actual degrees of freedom are given by

the number of atoms satisfying xj ≥ 0 and yj ≥ 0, which are roughly Ñ ∼
N/4. The coupled dipole equations can be then simplified by accounting

only for these atoms, and then considering as if each of them scattered

light from the mirrored positions as well. This allows us to simulate up to

N ∼ 5 × 105 two-level atoms, by solving a system of only Ñ ∼ 1.2 × 105

degrees of freedom, which still requires notable computational efforts. The

most compelling problem is the amount of Random Access Memory (RAM)

needed to elaborate the simulation. We design the code in such a way that

the maximum allocation of memory is given by the construction of the Ñ×Ñ
Green’s function matrix. By defining it as a matrix of Complex{Float32}
(64 bit) rather than the custom Complex{Float64} (128 bit), we cut the

memory consumption to ∼ 200 – 300 GB of RAM. We checked that we were

still working with enough numerical precision, by comparing the simulations

of smaller systems, performed with both choices of the variable definition.
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[93] A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis
of ϵ -near-zero-filled narrow channels”, Physical Review E, vol. 78,
p. 016604, 7/2008. Cited at page 12.

[94] I. Liberal et al., “Near-zero-index media as electromagnetic ideal flu-
ids”, Proceedings of the National Academy of Sciences of the United
States of America, vol. 117, pp. 24050–24054, 9/2020. Cited at
page 12.

[95] H. Li et al., “Direct observation of ideal electromagnetic fluids”, Na-
ture Communications, vol. 13, pp. 1–8, 8/2022. Cited at page 12.

[96] J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on
zero index metamaterial”, Applied Physics Letters, vol. 96, p. 101109,
3/2010. Cited at page 12.

[97] S. A. Ramakrishna et al., “Imaging the near field”, Journal of Modern
Optics, vol. 50, no. 9, pp. 1419–1430, 2003. Cited at pages 12 and
14.

[98] A. Salandrino and N. Engheta, “Far-field subdiffraction optical mi-
croscopy using metamaterial crystals: Theory and simulations”, Phys-
ical Review B, vol. 74, p. 075103, 8/2006. Cited at pages 12 and
14.

[99] Z. Jacob et al., “Optical Hyperlens: Far-field imaging beyond the
diffraction limit”, Optics Express, vol. 14, pp. 8247–8256, 9/2006.
Cited at pages 12 and 14.

[100] I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying Superlens
in the Visible Frequency Range”, Science, vol. 315, pp. 1699–1701,
3/2007. Cited at pages 12 and 14.
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[139] R. Paniagua-Doḿınguez et al., “A Metalens with a Near-Unity Nu-
merical Aperture”, Nano Letters, vol. 18, pp. 2124–2132, 3/2018.
Cited at page 16.

[140] D. A. B. Miller, “Why optics needs thickness”, Science, vol. 379,
pp. 41–45, 1/2023. Cited at pages 16 and 135.

[141] M. Pan et al., “Dielectric metalens for miniaturized imaging systems:
progress and challenges”, Light: Science & Applications, vol. 11,
pp. 1–32, 6/2022. Cited at page 16.

[142] F. Andreoli et al., “Maximum Refractive Index of an Atomic
Medium”, Physical Review X, vol. 11, p. 011026, 2/2021. Cited
at page 17.

[143] A. Andryieuski et al., “Water: Promising Opportunities For Tun-
able All-dielectric Electromagnetic Metamaterials”, Scientific Reports
2015 5:1, vol. 5, pp. 1–9, 8/2015. Cited at page 22.

[144] R. Loudon, The Quantum Theory of Light. Oxford University Press,
3rd ed., 2000. Cited at pages 23 and 88.

[145] N. W. Ashcroft and D. N. Mermin, Solid state physics. Saunders
College Publishing, 1976. Cited at page 23.

[146] A. D. Rakić et al., “Optical properties of metallic films for vertical-
cavity optoelectronic devices”, Applied Optics, vol. 37, pp. 5271–
5283, 8/1998. Cited at pages 24 and 25.

[147] F. Bassani et al., Electronic States and Optical Transitions in Solids.
Pergamon, 1975. Cited at page 26.

[148] D. E. Chang et al., “Colloquium: Quantum matter built from
nanoscopic lattices of atoms and photons”, Reviews of Modern
Physics, vol. 90, p. 031002, 8/2018. Cited at pages 27 and 34.

[149] R. J. Bettles, S. A. Gardiner, and C. S. Adams, “Enhanced Optical
Cross Section via Collective Coupling of Atomic Dipoles in a 2D Ar-
ray”, Physical Review Letters, vol. 116, p. 103602, 3/2016. Cited at
pages 27, 32, 37, 70, 74 and 111.

[150] E. Shahmoon et al., “Cooperative Resonances in Light Scattering
from Two-Dimensional Atomic Arrays”, Physical Review Letters,
vol. 118, p. 113601, 3/2017. Cited at pages 27, 32, 37, 70, 74,
106, 111, 114 and 143.

http://dx.doi.org/10.1021/ACS.NANOLETT.8B00368
http://dx.doi.org/10.1021/ACS.NANOLETT.8B00368
http://dx.doi.org/10.1126/SCIENCE.ADE3395
http://dx.doi.org/10.1038/s41377-022-00885-7
http://dx.doi.org/10.1038/s41377-022-00885-7
http://dx.doi.org/10.1103/PhysRevX.11.011026
http://dx.doi.org/10.1103/PhysRevX.11.011026
http://dx.doi.org/10.1038/srep13535
http://dx.doi.org/10.1038/srep13535
https://global.oup.com/academic/product/the-quantum-theory-of-light-9780198501763?cc=us&lang=en&
https://www.worldcat.org/it/title/934604
http://dx.doi.org/10.1364/AO.37.005271
http://dx.doi.org/10.1364/AO.37.005271
http://dx.doi.org/10.1063/1.3023374
http://dx.doi.org/10.1103/REVMODPHYS.90.031002
http://dx.doi.org/10.1103/REVMODPHYS.90.031002
http://dx.doi.org/10.1103/PhysRevLett.116.103602
http://dx.doi.org/10.1103/PhysRevLett.116.103602
http://dx.doi.org/10.1103/PhysRevLett.116.103602
http://dx.doi.org/10.1103/PhysRevLett.118.113601
http://dx.doi.org/10.1103/PhysRevLett.118.113601


188 Bibliography

[151] A. Asenjo-Garcia et al., “Exponential Improvement in Photon Stor-
age Fidelities Using Subradiance and ”Selective Radiance” in Atomic
Arrays”, Physical Review X, vol. 7, p. 31024, 8/2017. Cited at
pages 27, 32, 33, 34, 36, 73, 74 and 111.

[152] M. T. Manzoni et al., “Optimization of photon storage fidelity in
ordered atomic arrays”, New Journal of Physics, vol. 20, p. 83048,
8/2018. Cited at pages 27, 36, 46, 75, 86, 111, 142 and 143.

[153] J. Pellegrino et al., “Observation of Suppression of Light Scattering
Induced by Dipole-Dipole Interactions in a Cold-Atom Ensemble”,
Physical Review Letters, vol. 113, p. 133602, 9/2014. Cited at
pages 27, 32, 43 and 48.

[154] S. D. Jenkins et al., “Collective resonance fluorescence in small and
dense atom clouds: Comparison between theory and experiment”,
Physical Review A, vol. 94, p. 023842, 8/2016. Cited at pages 27,
32, 43, 48, 123 and 173.

[155] S. D. Jenkins et al., “Optical Resonance Shifts in the Fluorescence of
Thermal and Cold Atomic Gases”, Physical Review Letters, vol. 116,
5/2016. Cited at pages 27, 32, 48 and 111.

[156] S. Jennewein et al., “Coherent Scattering of Near-Resonant Light by
a Dense Microscopic Cold Atomic Cloud”, Physical Review Letters,
vol. 116, p. 233601, 6/2016. Cited at pages 27, 32, 43, 48, 86 and
143.

[157] S. Jennewein et al., “Propagation of light through small clouds of cold
interacting atoms”, Physical Review A, vol. 94, no. 5, 2016. Cited
at pages 27, 32, 43, 48, 86, 123, 143 and 173.

[158] L. Corman et al., “Transmission of near-resonant light through a dense
slab of cold atoms”, Physical Review A, vol. 96, p. 53629, 11/2017.
Cited at pages 27, 32, 43, 44, 48, 123, 136 and 173.

[159] S. Jennewein et al., “Coherent scattering of near-resonant light by a
dense, microscopic cloud of cold two-level atoms: Experiment versus
theory”, Physical Review A, vol. 97, 5/2018. Cited at pages 27, 32,
43, 44, 48, 123 and 173.

[160] J. Van Bladel, “Some Remarks on Green’s Dyadic for Infinite Space”,
IRE Transactions on Antennas and Propagation, vol. 9, no. 6,
pp. 563–566, 1961. Cited at page 29.

http://dx.doi.org/10.1103/PhysRevX.7.031024
http://dx.doi.org/10.1103/PhysRevX.7.031024
http://dx.doi.org/10.1103/PhysRevX.7.031024
http://dx.doi.org/10.1088/1367-2630/aadb74
http://dx.doi.org/10.1088/1367-2630/aadb74
http://dx.doi.org/10.1103/PhysRevLett.113.133602
http://dx.doi.org/10.1103/PhysRevLett.113.133602
http://dx.doi.org/10.1103/PhysRevA.94.023842
http://dx.doi.org/10.1103/PhysRevA.94.023842
http://dx.doi.org/10.1103/PhysRevLett.116.183601
http://dx.doi.org/10.1103/PhysRevLett.116.183601
http://dx.doi.org/10.1103/PhysRevLett.116.233601
http://dx.doi.org/10.1103/PhysRevLett.116.233601
http://dx.doi.org/10.1103/PhysRevA.94.053828
http://dx.doi.org/10.1103/PhysRevA.94.053828
http://dx.doi.org/10.1103/PhysRevA.96.053629
http://dx.doi.org/10.1103/PhysRevA.96.053629
http://dx.doi.org/10.1103/PhysRevA.97.053816
http://dx.doi.org/10.1103/PhysRevA.97.053816
http://dx.doi.org/10.1103/PhysRevA.97.053816
http://dx.doi.org/10.1109/TAP.1961.1145064


Bibliography 189

[161] K. M. Chen, “A Simple Physical Picture of Tensor Green’s Function
in Source Region”, Proceedings of the IEEE, vol. 65, no. 8, pp. 1202–
1204, 1977. Cited at page 29.

[162] D. E. Aspnes, “Local-field effects and effective-medium theory: A mi-
croscopic perspective”, American Journal of Physics, vol. 50, pp. 704–
709, 8/1982. Cited at page 29.

[163] J. Keaveney et al., “Cooperative Lamb Shift in an Atomic Vapor
Layer of Nanometer Thickness”, Physical Review Letters, vol. 108,
p. 173601, 4/2012. Cited at pages 30, 32 and 111.

[164] S. E. Schnatterly and C. Tarrio, “Local fields in solids: Microscopic
aspects for dielectrics”, Reviews of Modern Physics, vol. 64, no. 2,
pp. 619–622, 1992. Cited at page 31.

[165] B. Zhu et al., “Light scattering from dense cold atomic media”, Phys-
ical Review A, vol. 94, p. 023612, 8/2016. Cited at pages 31, 43,
44, 123, 165 and 173.

[166] J. Javanainen et al., “Shifts of a resonance line in a dense atomic sam-
ple”, Physical Review Letters, vol. 112, 3/2014. Cited at pages 31,
32, 43, 56, 111, 123, 165 and 173.

[167] S. L. Bromley et al., “Collective atomic scattering and motional ef-
fects in a dense coherent medium”, Nature Communications, vol. 7,
pp. 1–7, 3/2016. Cited at pages 31, 32, 111 and 165.
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[180] M. O. Araújo et al., “Superradiance in a Large and Dilute Cloud of
Cold Atoms in the Linear-Optics Regime”, Physical Review Letters,
vol. 117, p. 073002, 8/2016. Cited at pages 32 and 111.

[181] Y. He et al., “Geometric control of collective spontaneous emission”,
Physical Review Letters, vol. 125, p. 213602, 11/2020. Cited at
pages 32 and 111.

[182] S. Skipetrov and I. Sokolov, “Absence of Anderson Localization of
Light in a Random Ensemble of Point Scatterers”, Physical Review
Letters, vol. 112, p. 023905, 1/2014. Cited at pages 32, 44, 67 and
136.

http://dx.doi.org/10.1364/aop.4.000108
http://dx.doi.org/10.1364/aop.4.000108
http://dx.doi.org/10.1103/PhysRevA.102.031701
http://dx.doi.org/10.1103/PhysRevA.102.031701
http://dx.doi.org/10.1103/PhysRevA.93.063835
http://dx.doi.org/10.1103/PhysRevA.93.063835
http://dx.doi.org/10.1103/PhysRevA.96.013825
http://dx.doi.org/10.1103/PhysRevA.96.013825
http://dx.doi.org/10.1103/PhysRevLett.124.073403
http://dx.doi.org/10.1103/PhysRevLett.124.073403
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1103/PhysRevLett.117.073003
http://dx.doi.org/10.1103/PhysRevLett.117.073003
http://dx.doi.org/10.1103/PhysRevLett.117.073002
http://dx.doi.org/10.1103/PhysRevLett.117.073002
http://dx.doi.org/10.1103/physrevlett.125.213602
http://dx.doi.org/10.1103/PhysRevLett.112.023905
http://dx.doi.org/10.1103/PhysRevLett.112.023905


Bibliography 191

[183] S. E. Skipetrov and I. M. Sokolov, “Search for Anderson localization
of light by cold atoms in a static electric field”, Physical Review B,
vol. 99, 4/2019. Cited at pages 32, 67 and 136.

[184] T. Gruner and D. G. Welsch, “Green-function approach to the
radiation-field quantization for homogeneous and inhomogeneous
Kramers-Kronig dielectrics”, Physical Review A, vol. 53, no. 3,
pp. 1818–1829, 1996. Cited at page 32.
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