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Abstract

The performance needs in Critical Real-Time Embedded Systems
(CRTES) in domains like automotive, avionics, railway and space have
been steadily on the rise in the last decade. Unprecedented computational
power is required to realize increasingly complex and performance-eager
applications that are emerging as the key factors for the competitiveness
of embedded products. To meet these computational needs, CRTES
industry has been increasingly resorting to high-performance multicore
and manycore processors that can cater for the required performance in
a cost-efficient manner. Relatively simple bus-based multicore processor
designs have been successfully deployed in general-purpose computing to
provide good performance at low energy and area cost. However, these
solutions quickly become ineffective with larger core counts as the bus
becomes a major performance bottleneck. For this reason, bus-based
designs have started migrating to Networks on Chips (NoCs) designs
like trees, rings, meshes or torus topologies, which are being increasingly
adopted in CRTES to offer multiple point-to-point connections and to
allow exchanging several packets in parallel despite the new challenges
that they entail.

Software timing is a paramount concern in the design and deployment
of CRTES as correctness of the provided functions is typically not only
determined by the delivered results, but also by the time at which
those results are delivered. Domain-specific safety standards advocate
for the adoption of software timing analysis techniques in the software
development life-cycles as a necessary step to ascertain and guarantee all
functions in the system execute timely and to prevent timing misbehavior
to arise at run time. Timing concerns become particularly relevant to
support three main phases in the CRTES development process: First,
during the timing verification phase (budgeting), in the early stages of
the software ’V’ development cycle, worst-case timing analysis is meant to
derive trustworthy upperbounds to tasks’ execution time. Second, during
the timing validation phase, in the late software development stages,
timing properties are empirically assessed to confirm the correctness of
the selected time budgets by gathering supporting evidence while running
the whole system under analysis on the actual target. Finally, those
phases are complemented by the design and deployment of techniques
for the enforcement of timing behavior that put in place safety measures
to prevent timing violations during system operation. These measures
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monitor the use of resources of the running tasks, either the CPU or
shared hardware resources.

However, performing an efficient, industrial-quality timing analysis in the
presence of complex multicore and manycore processors with complex
hardware features like NoCs is complicated by the non-negligible timing
interference arising when multiple cores contend in parallel to the
same shared hardware resources through the interconnects. Multicore
interference causes the execution time of a task to depend on the other
tasks in the system, making it extremely difficult to characterize software
timing in a trustworthy yet tight manner. The main challenges arise (i)
in the budgeting phase, when deriving tight upper-bounds to the worst
theoretical contention impact that requests can experience in traversing
the NoC from their source to their destination, and (ii) in the validation
phase, when tracking the actual multicore contention tasks generate
on each other. Despite some real-time hardware accelerator designs,
including NoCs, have been proposed to better factor multicore contention
in Worst-Case Execution Time (WCET), such proposals entail high re-
designing and re-verifying costs, making them unattractive for the CRTES
market. For this same reason, Commercial-off-the-shelf (COTS) hardware
solutions as wormhole NoCs (wNoCs) are typically adopted even in
CRTES, though with some restrictions in the configuration as a trade-
off between performance and timing predictability.

This Thesis addresses the problem of enabling efficient and effective
contention analysis and characterization in NoC-based CRTES. While
most of the works have focused on the verification phase, this Thesis
addresses all three main steps in the overall software timing analysis in
manycore processors. On the verification side, we propose EOmesh and
NoCo solutions that optimize wNoCs’ configuration to obtain tight and
reduced WCET estimates while improving CRTES performance. On the
validation phase, we propose a technique to breakdown the contention
that cores generate each other in wNoC. To that end, we introduce a
Golden Reference Value (GRV) on top of a PairWise Contention (PWC)
metric that accurately identifies contention sources in wNoCs and provides
a detailed multi-dimension contention breakdown, and a comparative
analysis on the evolution of source contention identification in wNoCs.
Finally, we cover a fundamental requirement in the enforcement phase
by proposing MCCU, a software/hardware solution that performs fine-
grain tracking of cores accesses in shared resources and enables, via
configuration registers, to prevent cores to cause more interference on
its contenders than budgeted by the system designer.

In summary, this Thesis focuses on facilitating the adoption of COTS
NoC-based manycore processors in CRTES and presents a set of software
and low-overhead solutions that contribute to optimizing software timing
verification, validation and enforcement.
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Chapter 1

Introduction

Research in academy and industry has played a key role in the creation of
computers and their evolution ever since one of the considered ”fathers of the
computers” Charles Babbage created the differential and analytical machines between
1847 and 1849. From then on, research collaboration among multiple disciplines
such as physics, chemistry, and mathematics have led to the creation of the ENIAC
computer in 1945 using the Von Neumann architecture, the discovery of the transistor,
and the first DRAM and microprocessor (i4004) creation in the 1970s. Since then, the
advances in manufacturing, integration technologies, and many other technological
improvements have popularized the use of computers making them easy to use,
small, fast, and affordable. While first computers were created mainly for military
or mathematical purposes, now, computers have been adopted from recreational or
gaming uses to research objectives, transportation (e.g. cars, plains), industry and
health care. Even though all these computers share many design concepts, every
computer system type has evolved to better fit a specific set of requirements depending
on their target. When we talk about computer systems, normally we think of general-
purpose desktops or laptops, or high-end computers for servers or supercomputers –
High-Performance Computing (HPC) – with high computing capabilities. However,
since many decades ago, Embedded Systems (ES) have gained relevance in our lives
and keep growing. According to the BBC Research report, the ES’ market is expected
to grow from $207.3 billion in 2020 to $267.3 billion by 2025 [4].

Since their conception, ES have been specific self-contained computing systems
with low computational power that can operate with low energy within a larger
mechanical or electronic system. These systems have been widely popularized for
their reliability, low energy consumption, low cost, and a relatively simple Verification
& Validation (V&V) process. Nevertheless, over the years, the ES field has been
steadily expanding as the computational power demands have increased and keep
increasing, being comparable to the ones provided by high-performance chips [5, 6, 7].
At the same time, concepts such as reliability, energy consumption, and amenability
to validation continue to be relevant in these systems’ targets [8, 9]. For instance,
examples of ES in a car include those responsible for oil temperature control, or even
much more complex tasks, like the automatic braking system.
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1. INTRODUCTION

Real-Time Embedded Systems (RTES) are a subset of ES in which both the time
and functional dimensions play a key role in their correct functioning. At a coarse
level, we can classify these systems into different groups according to the criticality1

of the provided function, the real-time computing requirements, or their architectural
setups. Based on tasks criticality, we can distinguish between: hard real-time systems,
where a system failure can lead to catastrophic consequences, including loss of human
lives, and hence deadline misses must be prevented and corrective actions must be in
place in case they occur (e.g. flight management system in an airplane); firm real-time
systems, where deadline misses do not have catastrophic consequences and infrequent
timing violation can be deemed acceptable (e.g. assembly line defects); soft real-
time systems where timing violations lead to Quality of Service (QoS) degradation
but does not imply any type of system corruption (e.g. streaming); or non-critical
real-time systems where the system correctness is not bound to their timing behavior
(e.g. a statistics unit that sends information about performance to a company server).
At a finer level, each RTES domain has its own safety criticality level classification
according to its reference standard. For instance, automotive systems build on 4
Automotive Safety Integrity Levels (ASILs) A to D, where ASIL-A represents the
lowest criticality and ASIL-D the highest one, to characterize each subsystem risk
of exposure, severity, and controllability of automotive hazards defined in the ISO-
26262 [10] standard. Avionics systems, instead, refer to Development Assurance
Levels (DALs), which go from DAL-E (less critical) to DAL-A (most critical), to
classify the effects that systems’ failures have on the aircraft, crew, and passengers
specified in the DO178B/C [11] standard. Finally, the railway domain identifies 4
Safety Integrity Levels (SILs) with levels ranging from 0 to 4 (most critical level).
Even though the integrity level concept is very similar in various industrial domains,
there is no direct equivalence between criticality levels of the different standards as
each domain has its own specific trait. In this Thesis, we focus on Critical Real-Time
Embedded Systems (CRTES) that mainly fit into the hard real-time ES group.

1.1 Critical Real-Time Embedded Systems

CRTES require, in addition to functional correctness, timing correctness. While
functional correctness implies that the system works according to functional
specification, timing correctness refers to the execution of the corresponding
functionalities in a timely manner, that is before specific time boundaries called
deadlines. To ensure that deadlines will be met during the task’s execution, CRTES
need to go through a strict V&V process before being deployed. In this process,
manufacturers need to provide evidence that both functional and non-functional
requirements are met. To guide this process, certification standards provide specific
guidelines and recommendations depending on the targeted domain (e.g. the ISO-
26262 [10] for automotive or ECSS-Q-ST-80C [12] and ECSS-E-ST-40C [13] for the
space domain).

1Criticality is a term strongly related to the consequence of what would happen if a system fails.
The notion of criticality depends on the domain and how is defined in each different standard.

4



1.1 Critical Real-Time Embedded Systems

Providing evidence of the correctness of systems’ components, especially in the
timing domain, is not trivial. Certification standards share the prescription of V&V
activities in view of obtaining trustworthy guarantees on the timing behavior of the
system. However, determining the execution time that a task will exhibit at run
time or whether a given task set is schedulable without missing any deadline can
be very complex even in the simplest processor architectures as it depends on a
lot of factors (e.g. hardware architecture, input data, compiler, system state, etc.).
That makes that even a simple operation can take between a few and hundreds of
cycles. Since deriving or observing the real Worst-Case Execution Time (WCET) of
a task is practically unfeasible, timing analysis is in charge of deriving execution time
bounds (estimates) that are required to be trustworthy and tight. Those estimates are
ultimately used to determine if all tasks in a set can be scheduled without incurring
timing violations.

1.1.1 Trends in CRTES

In the last decade, the CRTES industry has been experiencing an increasing demand
for more computing power in several domains (i.e. automotive, aerospace, space,
etc.) due to the emergence of new software applications that implement complex
functionalities and manage huge amounts of data [14]. In the automotive field,
artificial intelligence algorithms, object detection algorithms, and many other complex
programs required in an Autonomous Driving (AD) system [15, 16], have already
surpassed the amount of 100 million lines of code [17] and performance requirements
are expected to grow by 100x up until 2024 [18].

Manycore processors are able to satisfy, in a cost-efficient manner, the computing
needs of embedded real-time industry [8, 9, 19]. In this line, building as much as
possible on manycore solutions deployed in the Commercial-off-the-shelf (COTS),
high-performance (mainstream) market [6, 20] contributes to further reducing non-
recurrent costs and increasing availability. The other side of the coin is that
high-performance resources like shared caches, interconnection networks, and shared
memories hamper timing V&V and in particular the derivation of tight and
trustworthy WCET estimates [21, 22]. Indeed, the improper management of hardware
shared resources (e.g. caches, interconnection networks, and memory) in multicores
or manycores, can translate into worse average performance and WCET estimates
than when run in isolation, hence defying the benefits of manycores in CRTES [19].
Interestingly, interconnection networks have been shown to be one of the shared
resources with a larger impact on performance when cores access the shared memory
hierarchy.

On small multicores, monolithic solutions such as buses implementing static
arbitration algorithms were enough to interconnect cores with cache memories and
provide good performance (i.e. AMBA bus [23]). Nevertheless, as the cores’
complexity increased (i.e. increasing the petition Injection Rate (IR) in the bus)
and so did the number of cores connected to the bus, buses became a bottleneck.
On this account, distributed Network on Chips (NoCs) topologies starting from
low complexity and reduced point-to-point links (e.g. trees or rings [24]) to more
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complex and more point-to-point connected NoCs (e.g. meshes [25] or torus),
routing algorithms, arbitration policies, etc. have been proposed as a solution to
the scalability problems provided by buses. In fact, multiple processors targeting
CRTES already deploy NoCs (e.g. to connect 10 to 20 nodes), such as the Kalray
MPPA 256 SoC [7] (e.g. a 4x4 mesh) and the Xilinx VERSAL Multi-Processor
System-on-Chip (MPSoC) [26]. This is also the case of ongoing products like the
SiPearl Rhea processor that will build on Zeus Cores [27] and an Arm CMN 600/700
based NoC [28], and that is being produced in the scope of the European Processor
Initiative (EPI) [29].

1.2 Challenges to CRTES timing analysis

The adoption of high-performance NoC-based manycore processors in CRTES
markets [8, 9] offers some obvious benefits like good performance, a simpler core
design, and the capability to exploit parallelism, improving single applications’
performance and scheduling multiple applications in the same core, hence maximizing
hardware utilization. However, as introduced in the previous section, the use of high-
performance hardware in CRTES introduces important challenges in the CRTES
development process and jeopardizes, in particular, timing analyzability. These
challenges arise at the different stages of the software engineering process, namely:
verification, validation, and safety measures (enforcement) depicted in Figure 1.1.2

Figure 1.1: Standard V-model software development process.

1.2.1 Timing Verification (budgeting)

During the early stages of the software ’V’ development cycle (see Figure 1.1),
execution time budgets3 (i.e. worst-case estimates) are associated with each task
based on their worst-case timing requirements so that, at run time, tasks will complete
within their allocated schedule slot. WCET analysis [30, 31, 32, 33, 34] is crucial for
reasoning on timing correctness in a system as it provides the necessary inputs to the
schedulability analysis [35, 36] that allows testing whether a task set is schedulable
(e.g. all their budgets are met) under a given scheduling algorithm.

2Is worth noting that we use the terms V&V with the meaning they are provided in the automotive
domain. In other domains (e.g. avionics), terms may be used differently.

3Timing budgeting is part of the verification process when estimates and checks are performed
with the aim of building a dependable system. Validation, instead, is mostly based on testing
activities once system components are implemented to identify design and verification flaws.

6



1.2 Challenges to CRTES timing analysis

Determining the WCET of tasks is a challenging endeavor due to the increasing
complexity of hardware (e.g. deep caches hierarchies or buffers) and software deployed
on CRTES systems, which makeWCETs often arising as a rare corner case considering
multiple worst-case scenarios to occur at the same time. Two main families of timing
analysis techniques are considered in industry and academia for deriving WCET
estimates: Static Timing Analysis (STA) and Measurement-Based Timing Analysis
(MBTA). STA has been the most used technique in CRTES, and it derives the WCETs
mathematically and using abstract models. To achieve that, STA [37, 38] builds
a timing model of the hardware making an abstraction of all potential hardware
states and transitions. That allows deriving the worst-cases scenario without actually
executing the task. Despite achieving mathematically sound WCET bounds, STA
requires deep knowledge of the architectural design (which is not always available) and
suffers from scalability issues, when dealing with hardware state explosion, already
in relatively simple architectures. Those limitations can lead to unuseful, overly-
pessimistic WCET estimates [39, 40]. In contrast, MBTA [30, 41, 42] executes the
tasks on the real hardware to collects execution task measurements. The challenges in
this methodology lie in triggering the worst-case scenarios that can possibly happen
at run time, which can be particularly difficult or even impossible if the worst-case
HW scenario cannot be willingly enforced by the programmer. As an attempt to
overcome the limitations of consolidated timing analysis methods, Measurement-
Based Probabilistic Timing Analysis (MBPTA) approaches [43, 44] have been
proposed that builds on statistical tools to quantifying the representativeness of the
collected measurements.

Timing analysis of multicores and manycore processor architectures is possibly
even more challenging. The derivation of high-quality WCET bounds is hampered by
the massive hardware resource sharing in those systems, which has been unequivocally
identified as one of the main challenges for timing analysis [45, 46]. When multiple
cores try to simultaneously access the same hardware resource (e.g. shared caches,
interconnection networks, memory controllers, etc.), an arbiter prioritizes requests
causing tasks to experience variable access latencies. This, in turn, introduces
variability on tasks’ execution time, typically referred to as multicore timing
interference or contention impact. The impact of contention in tasks’ execution
time is non-negligible: it has been observed to cause more than 20x performance
degradation with respect to execution in a single core [22]. The latency one task
has when accessing a shared resource depends on the contention created from other
cores when accessing the same shared resource (i.e. frequency, accesses interleaving,
etc.). The (potential) variability stemming from contention makes it more difficult
to obtain reasonably tight WCET estimates as simply accounting for the theoretical
worst-case contention scenario may easily lead to overly-pessimistic and unusable
bounds. Conceptually, the execution time of a task in a manycore can be broken
down into two main components:

• Isolation time: time that a task takes to execute when running in isolation in
the system (i.e. as if in single core).

• Contention time: additional delay created by co-running tasks in the other cores
due to resource contention.
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Figure 1.2: Execution task decomposition in manycores.

Figure 1.2 provides an example breakdown of a task execution time in the two
components, with further classification of contention based on the shared resource
it stems from. Deriving tasks WCET estimates in manycores is complex as tasks’
execution time is a combination of the contention that occurs in all shared resources
and circularly depends on the other co-runner tasks. Modifying even a single task
in the system may require to re-iterate over the timing analysis effort for all tasks
in the system to capture new contention scenarios, with evident repercussions on
development costs.

To ease the WCET derivation and enable a more incremental task integration
process, time composability is a desired property for WCET estimates. That means
WCET estimates of a task are meant to account for the worst-possible contention
scenario, regardless of the actual set of co-running tasks in the system [47]. For
instance, time-composable WCET estimates can be obtained by upper-bounding the
maximum access time to a shared resource (when being affected by the interferences)
and later, applying this Upper-Bound Delay (UBD) to each access to the shared
resource [34]. Nevertheless, accounting for the worst possible contention scenario will
inherently lead to overly pessimistic and scarcely useful results, especially in high-
performance systems that are not optimized for worst-case scenarios [39]. Research
in this topic has been done mostly in two directions: A lot of research effort has been
devoted to deriving efficient approaches to deal with contention impact. The explored
solutions can be broadly classified in two main approaches: devising real-time specific
designs [19, 48, 49] which allow controlling by design the amount of timing interference
tasks can suffer, or making use of COTS high-performance processors [5, 20, 32, 50, 51]
with contention-aware software solutions and (to a minor extent) hardware changes
to make these systems more time predictable while still delivering high systems’
performance.

Multicore timing interference is not a specific concern for NoC-based systems
as it already arises in relatively simple bus-based solutions. However, NoCs possibly
exacerbate the problem by bringing their own complexity in how and where contention
can actually happen at run time. The main challenge in timing analysis of NoC-based
systems lies in accurately estimating the latency that each packet will experiment in
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1.2 Challenges to CRTES timing analysis

the NoC. From the multicore interference standpoint, it translates into determining
the maximum contention that packets can suffer from the others, accounting not only
for the contention that occurs in each traversed router (i.e. packet waiting for winning
the arbitration round) but also for other complex packet blocking effects [52, 53, 54]
like buffer backpressure [55, 56] (i.e. a packet cannot proceed because the packets
ahead are also stalled). Real-time NoC designs have been proposed to minimize or
even reduce contention in NoCs [49, 57, 58, 59]. However, similarly to other custom
real-time designs, these solutions are generally not adopted for the high production
and validation costs they incur. Several techniques have been proposed to derive more
or less accurate bounds to the worst-case contention [52, 55, 60] and classify it into
direct or indirect contention depending on whether contending flows share resources
over their paths in the NoC or not [61]. Other works, instead, focus on the available
COTS solutions from the high-performance market and propose methods to exploit
the existing hardware support to improve time predictability [53, 62, 63, 64].

1.2.2 Timing Validation (testing)

Validation, which happens in the late development stages, relies on extensive testing
intended to cause extreme – yet possible – behavior. The absence of timing failures,
i.e. software components overrunning their time budget, serves as an argument to
sustain the correctness of the software timing behavior.

Timing V&V heavily relies on extensive testing campaigns aiming at spotting
latent timing failures in the system. Focusing just on end-to-end observed execution
times against the estimated budgets is generally considered inadequate, especially in
multicore and manycore systems, as observations can easily hide undesired contention
behavior, decreasing the confidence in the collected evidence. This approach relates
to current practice in specific domains such as automotive and avionics, in which
end-users need to provide evidence of freedom from interference or to show how
interference due to the use of shared hardware resources has been controlled or
mitigated. For avionics, CAST-32A [65], now A(M)C 20-193 [66], explicitly calls
for the identification and bounding of interference channels in multicores. In the
case of the automotive domain, although certification practice is less strict (i.e.
no certification authority exists yet), ISO26262 [10] asks for providing evidence of
freedom from interference which, in practice, implies proving that tasks cannot exceed
their allocated time budgets because of interference from other tasks. However,
achieving full freedom from interference is challenging and, typically, interference
that occurs in some shared resources can only be mitigated but not fully removed
without replicating hardware, which will bring to a Functional Unit Blocks (FUBs)
re-verification, or entail a huge average performance drop. Despite the majority of
the works focus on how to achieve systems’ timing isolation [22, 67, 68], an equally
relevant issue in contention analysis is related to the capability, during testing, to
identify the actual sources of contention, to detect which task causes timing overruns
and propose, and to apply corrective actions. To that end, fine-grained metrics
(e.g. shared resources’ utilization and Worst-Case Delays (WCDs), collected by
Performance Monitoring Counters (PMCs) in Performance Monitoring Units (PMUs),
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allow breaking down task execution at the level of CPU time and contention delay,
thus enabling the detection of timing failures more accurately and promptly take
corrective actions [39, 69].

When focusing on the NoCs behavior, the solutions proposed for deriving WCET
and contention bounds, needed during verification [52, 61], cannot be applied for
validation purposes to track execution (and contention) over observed measurements.
The reason is that those solutions have been specifically designed to account for the
worst possible delay packets can suffer in the NoC (bound) which does not necessarily
correspond to detecting the actual delay of packets. The challenge lies in identifying
the main sources of contention for a specific run in distributed NoCs as 2D meshes
and locating where contention occurs. In fact, due to the distributed nature of the
interconnects, contention can occur in multiple locations at the same time and can be
propagated along the NoC. For these reasons, which add to the very limited fine-grain
information available when monitoring or debugging NoCs, novel fine-grained metrics
and tracing methodologies are advocated as key elements for easing the validation
process and improving the trustworthiness of its results [39].

1.2.3 Safety Measures (enforcement)

Safety measures are required to prevent timing violations to occur during system
operation. Typically, deployed solutions build on monitoring the use of resources
of the running tasks to intercept system misbehaviors. During the validation stage,
mechanisms are deployed to monitor the execution time of tasks so that corrective
actions can be taken in case of a timing budget exhaustion (e.g. watchdogs [10]). The
number of accesses to shared hardware resources (together with other resource usage
metrics) is monitored and exploited [33] to take corrective actions when specific usage
thresholds are exceeded.

Software solutions Quota Monitoring and Enforcement (SQME) techniques have
been proposed to handle multicore contention in more generic processors with limited
hardware support for time predictability [33, 67]. In general, SQME approaches build
on limiting per task (core) maximum shared resources’ utilization. To that end, the
operating system monitors tasks’ activities using the available hardware PMCs and
suspends tasks execution when their assigned budget is exhausted.

Most solutions for timing-related safety measures have been designed and deployed
on relatively simpler bus-based systems. When considering NoCs, as far as we
know, no enforcement techniques based on quotas monitoring enforcement exist for
distributed NoCs. For these systems, precisely ascribing the contention suffered by
one task to another task is not trivial, despite the availability of similar hardware
PMCs that can be tracked by the operating system as that available in bus-based
NoCs. In fact, finer-grain contention information must be obtained and conveniently
collected among all the nodes in the NoC, as we briefly introduced in Section 1.2.2.

Fortunately, it is possible to leverage some of the techniques that have been
recently introduced to support mixed-criticality requirements in CRTES manycore
systems [70, 71]. The solutions adopted in CRTES manycores to support
the execution of tasks with different criticality/priority (i.e. mixed-criticality
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systems), can be also used to limit contention caused/suffered between tasks.
Approaches for controlling or limiting how interference can arise in the NoC are
particularly promising, such as priority-based flit-level preemption mechanisms [70,
71], where packets from higher criticality/priority tasks can preempt packets from
lower criticality/priority tasks to advance in the NoC, or weighted arbitration
mechanisms [64], that can directly prioritize certain ports and buffers favoring the
advancing rate of packets coming from specific tasks.

1.3 Contributions

In this Thesis, we aim at designing new techniques to monitor and control contention
in CRTES. We focus on the improvement and development of methods to achieve
tighter WCET estimates and control contention in bus-based and NoC-based real-
time systems while accounting for CRTES requirements such as time predictability,
high performance, low area and energy utilization, and their V&V.

The contributions in this Thesis cover 3 major topics that correspond to the
3 software development activities with a bearing on timing verification, validation,
and enforcement of safety measures. Specific contributions are enumerated below
with 1 and 2 belonging to the Verification stage (e.g. techniques to improve WCET
estimates), contributions 3 and 4 to the Validation stage (e.g. techniques to improve
testing and detect timing failures), and contribution 5 to the Safety measures stage
(e.g. enforcement techniques).

1. EOmesh. Reducing WCET estimates while improving average performance
becomes challenging in 2D mesh NoC-based CRTES. While wmeshes have
been proposed to alleviate NoCs pathological Bandwidth (BW) imbalance,
they fail to fairly distribute BW in high contention scenarios. Thus, we
propose even/odd mesh (EOmesh), an XY-YX predictable routing solution that
delivers near-optimal BW across cores. To that end, EOmesh makes locally
imbalanced arbitration decisions to achieve globally balanced BW distribution
within XY-YX deterministic routing. We evaluate the performance increase,
WCET reduction in a single thread and parallel applications, and different
implementation possibilities with low hardware overhead.

2. NoCo. Finding the optimal NoC configuration that minimizes the WCD
of packets and tasks’ WCET is a multidimensional problem that requires
optimizing tasks’ mapping, routing allocations, and arbitration simultaneously.
We propose NoCo, a stochastic ILP optimization that finds minimal WCD NoC
configurations. We analyze the main wormhole NoC (wNoC) parameters that
cause variability in WCD, we model their interactions and decompose the WCD
reduction multidimensional problem into a stochastic-based optimization and
an ILP formulation. Finally, we evaluate the effectiveness of our contribution
with respect to other strategies that only focus on optimizing a subset of the
NoC parameters.
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Table 1.1: Thesis contributions organized by topic and focus.

Topic Subtopic Name Focus Publication

1. Verification
(Budgeting)

Distributed
NoCs

EOmesh WCET estimates,
High-Performance and
NoC parameters
optimization

TCAD’18

2. Verification
(Budgeting)

Distributed
NoCs

NoCo WCET estimates,
High-Performance and
NoC parameters
optimization

RTSS’18

3. Validation
(Testing)

Distributed
NoCs

PWC
&
GRV

Contention metrics,
Actual contention and
Overruns diagnosis

TODAES’23

4. Validation
(Testing)

Distributed
NoCs

ACM
NoC

Contention metrics,
Actual contention and
Accuracy analysis

(To be
submitted)

5. Safety
Measures
(Enforcement)

Centralized
NoCs

MCCU WCET estimates,
Performance guarantees
and Enforcement

DATE’19

3. PWC-GRV. Measuring and analyzing the actual contention that tasks
generate to each other for diagnosis and validation purposes is challenging in
manycore systems. While determining the sources of contention in centralized
interconnection systems, it becomes more challenging in distributed NoCs as 2D
meshes where contention information is distributed along the NoC nodes. To
solve that, we define a metric (PWC) that captures and bounds the slowdown
the packets generated by a task suffer from packets of other tasks, formulate a
criterion (GRV) that classifies packets contention distinguishing the source and
the location where contention takes place and propose an implementation via
an off-line method for timing validation. We evaluate the metric results in a
wide variety of traffic scenarios and our implementation scalability in different
NoC sizes.

4. ACMNoC. In this contribution, we analyze the challenges associated with
resource planning, offline testing, and online monitoring in NoC-based manycore
by providing evidence for certification, system optimization, and overruns
diagnosis. We show the need for timing V&V support in NoC-based manycores
for CRTES and define a workflow to accurately estimate contention. We
analyze how the accuracy of results depends on the NoC traffic nature and
the information available from the NoC to perform the contention analysis.
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We compare the methodology proposed in our third contribution with respect
to other NoC metrics and evaluate the accuracy of the obtained results,
showing that contention estimates and breakdown are key to achieving sufficient
accuracy, as needed for V&V, system optimization, and overrun diagnosis at
operation.

5. MCCU. MCCU improves current techniques that monitor and control
contention a task suffers from other co-runner tasks in bus-based real-time ES.
Existing techniques track and bound the number of requests to hardware shared
resources that each task is allowed to perform. However, software-only solutions
only work well when there is only one shared resource and type of request to
track and bound, but do not scale to large number of shared resources and types
of requests. In MCCU, we handle this general case and propose low-overhead
hardware support that performs fine-grain tracking preventing a core to cause
more interference on its contenders than budgeted. We evaluate the proposal in
a simulator and we also quantify the hardware implementation overhead that
does not require re-designing or re-verifying the existing FUBs.

Furthermore, Table 1.1 summarizes the target topic, the challenges tackled,
the proposed technique and focus, and the publications associated with each of
contributed item.

1.4 Thesis Organization

The Thesis is organized as follows:

• Chapter 1 - Introduction. Motivates our work by introducing the main
topics and concepts of this Thesis. It contextualizes the evolution of CRTES
and introduces the current status and the main challenges in the software timing
engineering process.

• Chapter 2 - Background. Explains the background concepts, terminology
and previous work targeting the challenges posed by the adoption of manycores
with centralized (e.g. Bus-based) and distributed interconnections (e.g. NoCs
at large and wormhole 2D mesh NoCs in particular) onto the timing Verification,
Validation and Enforcement activities within the CRTES software development
process.

• Chapter 3 - Experimental Setup. Presents the experimental setups used
in the Thesis to evaluate our contributions. More in detail, it describes
the methodology followed, the reference architectures used in the Thesis and
their peculiarities, the way these architectures have been modeled, and other
additional tools, benchmarks and applications that have been used to evaluate
the contributions.
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• Chapters 4 to 8 - Contributions. Each of those chapters presents a
different Thesis contribution. The chapter structure is the same across all
chapters: first a brief introduction to the topic and main points of the
contribution are provided, followed by specific background information and the
problem statement. Each chapter is then developing a detailed explanation of
the contribution, the evaluation of the proposed technique, and finally some
concluding remarks.

• Chapter 9 - Conclusions and Future work. Concludes the work done
in this Thesis, discusses the impact and possible extensions to the proposed
contributions, and identifies promising future research directions.

1.5 List of Publications

1.5.1 Conference Papers and Journal Articles

• EOmesh: Combined Flow Balancing and Deterministic Routing for
Reduced WCET Estimates in Embedded Real-Time Systems. Jordi
Cardona, Carles Hernandez, Jaume Abella, and Francisco J. Cazorla. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.
Embeedded Systems Week (ESWEEK’18) Conference. Oct 2018, Torino, Italy.

• NoCo: ILP-based Worst-Case Contention Estimation for Mesh Real-
Time Manycores. Jordi Cardona, Carles Hernandez, Enrico Mezzetti, Jaume
Abella and Francisco J. Cazorla. In 39th IEEE Real-Time Systems Symposium
(RTSS’18). Dec 2018, Nashville (Tennesse), USA.

• Maximum-Contention Control Unit (MCCU): Resource Access
Count and Contention Time Enforcement. Jordi Cardona, Carles
Hernandez, Jaume Abella, and Francisco J. Cazorla. Design, Automation and
Test in Europe 2019 (DATE’19) Conference, Florence, Italy.

• Accurately Measuring Contention in Mesh NoCs for Timing
Validation and Optimization Jordi Cardona, Carles Hernandez, Jaume
Abella, Enrico Mezzetti and Francisco J. Cazorla. ACM Transactions on Design
Automation of Electronic Systems 2023 (TODAES 2023).

To be Submitted

• Software Timing Verification and Diagnosis on NoC-based Manycores
Jordi Cardona, Carles Hernandez, Jaume Abella, Enrico Mezzetti and Francisco
J. Cazorla.
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1.5 List of Publications

1.5.2 Posters and other publications

• Hardware Support for Enforcing Performance Guarantees in
Multicore Processors Jordi Cardona, Carles Hernández, Jaume Abella and
Francisco J. Cazorla. In Design, Automation Conference 2018 (DAC’18 Young
Fellows program).

• Computing Worst-Case Contention Delays for Networks on Chip
Jordi Cardona, Carles Hernández, Jaume Abella and Francisco J. Cazorla. In
the 7th Barcelona Supercompuing Center International Doctoral Symposium,
Spring 2020.

• Monitoring and Controlling Interconnect Contention in Critical
Realtime Systems Jordi Cardona. In Design, Automation and Test in Europe
(DATE’21 PhD Forum), Virtual Conference and Exhibition.
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Chapter 2

Background and Related work

This section provides the necessary background on the main topics covered in
this Thesis including timing analysis practice, and the properties required from the
platform used to improve time predictability. This section also covers the NoC designs
considered in this Thesis and the Weighted Mesh (wmesh) upon which we build our
contributions.

2.1 Timing Analysis

CRTES’ safety standards require providing evidence of the correct system’s behavior
to pass the certification process. To that end, timing analysis contributes to the timing
validation and verification process, mandatory in CRTES (1) providing estimates of
tasks WCETs and (2) providing guarantees on those estimates so that tasks can meet
their deadlines and produce schedulable task sets.

As we already introduced in Section 1.1, estimating the execution time of tasks
can be very challenging in part due to the impact that jitter has on hardware shared
resources during tasks’ execution. Determining and reducing the sources of jitter can
be very complex or even impossible to achieve in some cases since part of the factors
causing this jitter (e.g. system status) cannot be controlled by the end user. A highly
relevant source of jitter, and hence, execution time variability, relates to resource
sharing between tasks (i.e. contention) in multicores and manycores.

As obtaining a deterministic execution time is practically unfeasible, timing
analysis is in charge of deriving execution time bounds (estimates). These estimates
will be later used as input for a scheduler, which will be in charge of doing
schedulability analysis and, if possible, scheduling tasks in a way that deadline misses
are avoided. In Figure 2.1, we show the typical distribution of the execution times
of a task. We observe that the potential execution times of a task are comprised
between the Best-Case Execution Time (BCET) andWCET. Notice that the observed
execution times (between the minimal and the maximal observed execution time) only
show a subset of all the potential execution times that the task can have. That is why
it is so important to obtain good WCET estimates that tightly upper bound all the
potential execution times of a task. In order to be useful, WCET estimates need to
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Figure 2.1: Execution time distributions [1].

be as tight as possible to the real WCET value (i.e. need to tightly upper-bound all
potential task execution times). For instance, guaranteeing that the braking system
of a car would take no more than 5 seconds to react is useless in practice because such
a value is higher than the real maximum, and is not usable from a system perspective.

Until recently, CRTES built upon relatively-simple software running on relatively
low-performance (and low-complexity) hardware. For instance, many avionics
systems still build upon single-core processors with in-order execution and without
cache memories. The advantage of those systems is that timing verification is
relatively simple since execution time variability is low. Hence, the WCET can be
tightly estimated using timing models of the system or by collecting measurements
and adding a safety margin over the highest execution time observed to cover the
impact of ’unobserved’ effects.

2.1.1 Timing Analysis Paradigms

Several timing analysis techniques have been developed to derive WCET estimates
(e.g. STA, MBTA, Probabilistic Timing Analysis (PTA), MBPTA, etc.). STA [37, 38]
builds a timing model of the hardware making a Task Under Analysis (TuA)
abstraction and modeling all potential hardware states and transitions at instruction
or execution cycle level. After analyzing all possible transitions and states (i.e. at
the end of the task execution), it selects the final state with a higher execution time
that determines the WCET. However, STA becomes infeasible when the number of
potential states grows exponentially due to multiple branches outcomes, memory
addresses uncertainty, etc [40]. Although is it true that it is possible to decrease the
states’ complexity of the model making pessimistic assumptions (e.g. cache accesses
always miss) to merge several states, it is not enough for making this type of analysis
feasible for complex tasks or hardware due to the pessimism introduced. Furthermore,
STA requires accurate hardware details that, in many cases, are protected by
manufacturers’ Intellectual Property [39]. MBTA [30, 43, 44], in contrast, builds
upon execution time measurements of a task running on the target system, and does
not require a timing model or system abstraction. The focus of this technique is on
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relating the representativeness of the execution times observed during evaluation with
the ones that can occur during operation. In fact, MBTA usually uses the Maximum
Observed Execution Time (MOET) plus a safety margin as the WCET estimate to
account the unknowns. In the last years, other techniques like MBPTA [43, 44],
also based on the measurement-based model, have emerged, and bound the WCET
estimate to a probability of exceeding this number. The goal of MBPTA is to replace
the arbitrary safety margin used in MBTA with a quantifiable margin that can be
obtained using statistical methods such as Extreme Value Theory (EVT) [72].

2.1.2 Multicores and manycores

The adoption of high-performance resources like shared caches, interconnection
networks and shared memories, hamper timing V&V and, in particular, deriving
tight and trustworthy timing WCET estimates [21, 22]. That is explained by the
impact that interferences have on tasks when running in parallel and try to access a
given hardware shared resource at the same time. This contention effect causes high
execution time variability as it makes tasks’ execution time dependent on the use that
other co-runner tasks’ do of the systems’ shared resources, which is hard to predict
and model. Indeed, multicore timing interferences impact translates to a WCET and
task response time increase, but also leads to overly pessimistic WCET estimates.

Focusing on the interconnect shared resource, given that it is one of the shared
resources that has more impact in CRTES manycores, we can distinguish mainly two
types of interconnects: centralized and distributed interconnects.

Centralized interconnects, like buses, are broadly used in high-performance
manycores with a moderate number of cores as they provide good performance, with
low power and area consumption. Furthermore, they are also commonly used in the
CRTES domain (e.g. NXP T2080 in Figure 2.2 and T1040) as they have good timing
predictability when they work under some restrictions (i.e. static arbitration), which
allows tightly upper-bounding packets worst-case latency, hence easing the obtaining
of WCET estimates and making them time-composable. Indeed, a lot of research
has been done to compute safe contention bounds [32, 73] and derive tight WCET
estimates [74, 75, 76, 77, 78] for centralized interconnects.

Regrettably, centralized interconnects can provide limited performance when
running memory demanding applications that make buses to be a system bottleneck.
To overcome this limitation, distributed NoCs like trees, rings or meshes have been
created to provide more BW by sending multiple packets simultaneously taking
advantage of their multiple point-to-point connections. As explained in Section 1.2,
CRTES have also embraced the use of distributed NoCs to reach the high-performance
computation levels demanded by the new functionalities despite complicating the
V&V process. Two examples of that are Neoverse N1 (see Figure 2.3) and E1
processors that use the ARM CMN-600 Mesh NoC also used in some contributions
in this Thesis. Academia and industry are putting a lot of effort to make these
distributed topologies more time-predictable and to ease WCET estimation. In this
direction, some works (e.g. rings [79], trees [80] and meshes [81, 82]) have been
presented.
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Figure 2.2: Block diagram of the quad-core T2080 processor using a centralized NoC [2].

Figure 2.3: Block diagram of the Neoverse N1 edge reference design using ARM
CMN-600 NoC [3].

2.2 NoCs

The need for CRTES manycores to connect their cores with other devices and
components (e.g. main memory, shared caches), pushes for setting up efficient
interconnects that are able to provide high-performance, low latency and time
predictability. In this section, we provide the essential background and related work
focusing on 2D meshes and their application in the software timing design for CRTES.
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2.2.1 NoC fundamentals

NoCs comprise point-to-point links, switches and routers to send packets across nodes.
NoC characteristics impact the latency of requests to traverse them from source to
destination. In this work, we consider a mesh NoC, as it has been shown to deliver high
performance and has been implemented in several processors [5, 20]. Communication
at the NoC level requires sending messages from source nodes to destination nodes
(where Processor or Memory Elements (PMEs) units are attached). Messages can
vary significantly depending on the information they bring (e.g. memory requests
or replies, coherence messages). Network Interface Communications (NICs) with
some Direct Memory Access (DMA) engines process messages and convert them into
packets to be sent and processed inside interconnections. In general, packets are built
of three parts: the Header part (includes NoC information such as source/destination
ID, and packet information such as size and type), Payload (i.e. data) and Tail
(contains the checksum field). In some networks, there is a fixed packet size so that
network buffers can be sized in accordance with that. In most of cases, packets
(payload and control information) will be split in Flow Control Units (flits) (logical
unit information). However, flits may require higher BW than that allowed by NoC
links. E.g., 500-bit packets cannot be sent atomically through a 128-bit wide link.
Hence, packets will be split into Physical Units (phits) (physical unit information),
which can be sent atomically as they are not wider than links. For simplicity,
throughout this Thesis, we will talk about flits instead of phits. The group of flits
that have the same source and destination node and usually share the same path (i.e.
group of routers traversed) is known as flow.

NoCs are structured by nodes (i.e. PMEs) that are connected by links and
routers that are in charge of routing and switching the packets by looking at their
header information. Routing refers to the criteria followed to determine the paths
that flits will follow when traversing the NoC from the source to the destination
node. Conversely, switching refers to the criterion used to define the granularity at
which flits can be sent or not across routers. To increase NoCs performance, buffers
have been introduced into router input/output ports maximizing flits processing and
ejection. However, buffers are limited, so it exists a mechanism that prevents buffers
from overflowing by controlling nodes’ and routers’ flits arrival and departure. This
mechanism is called flow control, and receives specific names when referring to each
different implementation (e.g. Stop&Go, Credit-based, etc.). In some NoC topologies
such as trees, meshes or torus, routers can have multiple input and output ports so
that flits from different input ports can target the same output port at the same
time. In these scenarios, an arbitration policy determines which flits can proceed to
the output port and which others stall until the next arbitration round.

2.2.2 Real-Time wNoC Mesh

In this Thesis, we target NxM wormhole mesh NoCs, see Figure 2.4a and Figure 2.4b,
as they are widely implemented in COTS manycores [6, 7, 20] and guarantee high
performance. The main NoCs characteristics are summarized below:
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Node. Each node, with an ID between 0 and (N ×M) − 11, see Figure 2.4a,
comprises the router, serving as an interface to the mesh, and a PME. Each
router comprises up to 5 bidirectional ports (i.e. input port and output port), see
Figure 2.4b, and each input port comprises a queue to store flits. The main memory
or memory controller is attached to one of the ports of one of the routers in a corner.
Hence, such router has both a PME and a main memory port.

(a) 3x3 2Dmesh using XY routing. (b) Router input/output ports.

Figure 2.4: Mesh concepts.

Routing. Deterministic routing policies like XY or YX routing are the preferred
policies to allow the Worst Case Delay (WCD) estimation [51, 62] in CRTES. XY
routing, for instance, forwards packets in the X direction first until reaching the
column of the destination node and then forwards them in the Y direction. One of
the best properties of these routing policies is that they take deterministic decisions
which, in addition, result in minimal length routes (in terms of hops). Routing policies
are defined over the set of routersR in the mesh and a given routing policy defines the
traffic flows (Fi) per each source i as a set of packets that are sent over a predefined
subset of routers in R (i.e., path). For example, in Figure 2.4a, flow F4 identifies the
set of packets that are sent over the path identified by routers {R4, R5, R8} ⊆ R. The
term Ĥi is used in this Thesis to denote the ordered set of routers traversed by Fi

packets.
Switching and control flow. Wormhole switching is one of the most

common approaches used in multicore processors [6, 20]. Indeed, recent works
build upon wormhole switching and study contention effects such as, for instance,
buffer backpressure [83], and how to take them into account in the late validation
stages [55, 60]. In wormhole switching messages or if packets are split into several
flits, the header flit that contains the destination information, the body flits contain
the data, and the tail flit contains error detection codes’ information. When the
header flit of packet Pi arrives at Rn, the flit is stored in Rn’s input port and the
router allocates an entry queue in Rm (being Rm the next router in Ĥi). Once Rm

can accept the header flit, the latter competes for an output port in Rn and, only
when granted access, it traverses the router crossbar. Flits of a packet leave the
router when the signals of the control flow mechanism from the next router inform

1Notice that nodes can also be identified by coordinates (x,y) being (0,0) R0, (1,0) R1 and so on
so forth.
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that there is an empty slot in the target queue. A new arbitration is performed once
the entire packet has been sent. One of the main properties of wormhole switching is
that switching is done at flit level, not at packet level, allowing flits to advance to the
next router even if not all the flits of the packet fit in an input port, which maximizes
buffer utilization and wNoC performance with reduced hardware resources.

Arbitration. Policies like round-robin are locally fair, which favors time
predictability, and are easy to implement [84]. Round-robin policy fairly grants access
to the input ports contending for the same output port, considering only those input
ports that have a ready packet to be sent at arbitration time. When the header flit is
stalled due to arbitration (contention), body flits are also stalled. Note that queues
are typically sized with enough space to avoid bubbles in the packet transmission.

Packetization. As introduced in Section 2.2.1, packets consist of a group
of flits whose number can vary depending on the type of data they bring inside.
When computing WCD and WCET estimates, worst-case contention cases arise when
contention occurs between long packets. Hence, to obtain a reliable WCET estimate,
the longest packet size sent in the system is assumed as the size of all packets flowing
in the interconnection. That allows to compute a reliable upper-bound, but brings
pessimism to the WCET estimates that, in some cases, can end up not being useful
at all (i.e. too pessimistic). To prevent that, packetization has been introduced as a
way of having all packets of the same size in a way that longer packets are split into
smaller packets. In some cases, packets size is set to the flit size, which simplifies the
WCD and WCET estimation.

Virtual Channels. In canonical wormhole routers, Virtual-Channels (VCs) are
used to multiplex physical channels: an input queue resource per port is assigned to
a VC. Dynamic VC allocation increases the throughput of the wNoC, however, in
the context of critical real-time, the dynamic allocation of VCs penalizes WCD [51].
Instead, static VC allocation can alleviate contention by providing isolation if the
particular allocation of VCs allows for reducing the overlapping between the routes
followed by the different flows. This ultimately reduces the WCD. With VCs, two
different arbitration rounds take place in the router. A first arbitration determines
the input port that is granted access to the output port. A second arbitration selects
the VC in that input port that is granted access.

Weighted Mesh grants heterogeneous BW in the routers to the different flows to
accommodate the different needs of different communication flows in the wNoC [85].
Weighted arbitration can be employed to achieve a globally-fair (homogeneous) BW
allocation across cores [64]. This is achieved by using, for instance, a larger arbitration
window in the case of round-robin, so that a larger number of slots is given to some
ports so that the overall BW allocated to each core to the destination is homogenized.
Conceptually, given a NoC with NxM nodes, globally-fair wmeshes reduce the BW for
nodes whose allocated BW is above 1

N×M
for a given destination node and increase it

for those whose BW is below. Such an approach has been shown doable and suitable
for WCD estimation in the context of critical real-time systems [64]. However, weights
leading to homogeneous BW allocation are not necessarily the best choice for any
routing or workload. We will talk in more detail about wmeshes in Chapters 4 and
5.
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Summary. WCET estimation is easier to carry out on deterministic routing
policies. In particular, XY routing has been shown to be very suitable for meshes as
WCD (and Worst-Case Traversal Time (WCTT)) bounds can easily be determined,
and their implementation complexity is very low [51, 62]. XY routing builds upon
forwarding packets in the X direction first until reaching the column of the destination
node, and then forwarding them in the Y direction, thus making routes to have
a minimal length (in terms of hops) and making routing decisions to be fully
deterministic in any router (a single direction can be chosen for a given packet).
In order to choose the packet to be granted access to an output port, we build upon
round-robin arbitration, which has been shown to be a (locally) fair and easy to
implement arbitration policy in NoCs [84]. However, for meshes, homogeneous round-
robin at router level delivers highly unbalanced BW across nodes since nodes closer
to the destination and those in routes with fewer flows receive higher overall BW than
the other cores [85].

2.2.3 Related Work on Software Timing for NoC-based
Systems

Timing-related aspects of multicore shared resources in CRTES are covered in
different stages of the overall software engineering process (verification, validation
and operation). In this section, we show a brief overview of the trends in the different
stages.

2.2.3.1 Verification

As part of the system design and verification, the maximum time needed to execute
each task (WCET) is estimated and assessed against its corresponding budget.

The estimation of time-composable WCET bounds [47] requires accounting for
the worst potential congestion that can occur upon integration of other tasks in
multicores. In the context of STA and NoCs, this requires computing the worst
(theoretical) contention that requests can experience to traverse the NoC from their
source to their destination [19, 86]. Then, contention bounds are added to the intrinsic
latency of requests in a contention-free scenario.

Two main approaches exist to estimate such worst contention: WCTT [62] and
WCD [51]. The former accounts for the worst overall contention that a request can
experience, which may be caused (at least partially) by previous requests of the
same task. Thus, an event causing contention on multiple requests of the same task
would be accounted for multiple times. In particular, one request experiences such
contention and the other ones get stalled due to backpressure of the other request.
The latter, WCD, accounts only for the contention caused by requests of other tasks,
thus not accounting for backpressure caused by requests of the same task. This avoids
accounting multiple times for contention, thus delivering tighter (yet reliable) WCET
estimates. In fact, measurement-based analysis of worst-case contention scenarios
reveal that WCD tightly upper-bounds maximum contention [51]. Hence, we build
on WCD for WCET estimation in this Thesis. In particular, we estimate the WCD,
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which can be added to requests latency in the context of STA, or can be factored
in WCET estimates obtained with MBTA by adding WCD cycles per request to the
WCET estimate obtained in a contention-free scenario.

For multicores and manycores, an extensive set of timing budgeting techniques are
used to factor in the fact that multiple functionalities can be simultaneously executed.
This includes hardware techniques to isolate tasks or bound the impact they can cause
on each other [19, 49, 48, 87, 88] and software techniques that control the number
of requests each task generates as a way to control the contention they can cause on
others [31, 32, 33, 68, 78, 89].

In the case of wmesh NoCs, budgeting solutions result in a packet-level analysis of
contention to accurately bound maximum contention experienced per packet and/or
for the task as a whole [51, 55, 62, 90, 91, 92, 93]. Some of those solutions’ breakdown
contention across direct and indirect categories, where potential contention caused by
flows sharing any resource with the one under analysis (e.g. an arbiter or a buffer in
a router) is regarded as direct, and remaining contention as indirect. This concept is
further reviewed in Section 6.2.

In the NoCs scope, budgeting works can be classified into three groups: (1) NoC
designs for hard-real time systems, (2) optimization approaches to minimize NoC
contention, and (3) analytic approaches to achieve tight budgeting.
Real time NoC designs. Contention-free NoCs have been traditionally considered
the best fit to hard-real time applications. Contention free communication
can be achieved by using time-division multiplexing [58, 94, 95], time-triggered
architectures [96], and other ad-hoc wormhole-based designs like SurfNoC [97]
or PhaseNoC [98]. However, as the number of cores included in the processor
increases, time-division multiplexing approaches lose competitiveness since differences
between worst-case performance and average performance increase with the number
of cores [99]. Furthermore, customized NoCs will naturally find difficulties in being
adopted by industry [100] since their implementation incurs high non-recurrent
costs. Priority-based flit-level preemption NoCs based on customized wNoCs in which
different priorities are assigned to the existing flows in the NoC have been proposed.
The initial approaches [61, 70, 101] are based on assigning a different virtual-channel
to each of the flows in the NoC such that the impact of NoC contention is accounted
for in the schedulability analysis. Enhanced hardware designs have been proposed in
this context to improve the performance of both, low-criticality and high-criticality
traffic [71]. More recent approaches have shown that VCs can be reduced by ensuring
a different priority (virtual channel) is assigned to the flows that actually share one or
more links [102]. Virtual-channel requirements can be further reduced if the analysis
includes the effect of contention of flows sharing priorities [103]. More recently,
authors in [104] have shown that the model proposed in [61] and later enhanced [101]
has some deficiencies. Based on the findings in [104], authors in [105] have proposed a
tight alternative model for priority-preemptive real-time networks. Best-effort wNoCs
can also be employed in the context of hard-real time systems by deriving latency
upper-bounds as described in [62]. Using prioritization on a per-VC basis has proven
to be an effective means to achieve tight latency bounds in wNoCs [61]. However,
the use of per-VC prioritization becomes impractical when a significant number of
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flows exist in the network. To overcome this issue, the impact of VC sharing has
been analyzed in [106] and [103]. However, while these approaches effectively reduce
the number of VCs required, the timing guarantees obtained build upon a detailed
knowledge of the characteristics of the software (applications and/or tasks) that will
be executed in the deployed system and hence, do not meet incremental qualification
requirements. The work in [107] has similar pros and cons, since the proposed
solution guarantees specific BW allocation for guaranteed-service connections per
port, by splitting the BW of output ports among best effort and guaranteed service
connections.

However, as shown in [51] and [83], these bounds can be pessimistic when time-
composability properties [47] have to be preserved. To mitigate this problem,
authors in [64] proposed an alternative approach to meet CRTES requirements.
In particular, they propose specific ways to derive time-composable WCD bounds
without sacrificing average performance by allocating weights to arbiters so that
fair BW allocation is achieved across cores, building upon wmeshes, wormhole
networks [108].
wNoCs optimization approaches. In [35], Integer Linear Programming (ILP)
models of heterogeneous multicores are used to find the optimal task layout that
guarantees specific execution time bounds. In this approach, the internals of the
communication infrastructure are not exposed to the solver. Since the adoption of
NoCs as the primary interconnection architecture for multi/manycores, many works
have targeted the problem of task mapping [109]. Authors in [110] proposed an ILP
formulation for a contention-aware application mapping algorithm in tile-based NoCs
using meshes with XY routing to minimize inter-tile network contention, being able to
achieve a significant reduction of packet latency. In [111], the scheduling and mapping
of tasks are combined to minimize packet latency and to increase predictability in
the context of meshes with flexible routing decisions. To that end, communications
have to follow a regular access pattern. A similar approach is the one in [112] that
uses a constraint solver to find the mapping where contention is minimized. Once
the mapping is fixed, communication bursts are mapped onto frames that are time-
multiplexed in the context of 2D meshes with XY routing.
Analytic approaches. In the context of wNoCs, several works [113] have targeted
analyzing NoC contention using queue models. Unfortunately, this analysis cannot be
directly applied to precisely determine the WCD and/or the contention breakdown.
To support wNoCs in hard real-time systems, using VC prioritization coupled with
router architectures that support flit-level preemption have been proposed to limit
inter-task interferences in the NoC [54, 61]. Nevertheless, COTS wNoCs do not
implement such support. In processors with limited support for time predictability,
approaches to analyze contention rely on the utilization of PMCs to track and enforce
contention quotas [32, 33, 78, 89, 114]. These techniques require bounding the
longest contention latency a request can suffer [21, 32, 115], and track the maximum
number of accesses a task can perform to shared hardware resources [78]. Authors
in [33, 78, 116] use PMCs to implement a software approach to enforce quotas
on the maximum contention created by tasks during operation. To improve the
quality of WCET/WCRT estimates for certain tasks, several works use PMCs to
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monitor tasks’ activity and suspension mechanisms that can be implemented at the
OS level [31, 33, 67, 68] or by hardware means [117].

Several works have shown that worst NoC interference can also be analytically or
experimentally derived in regular wNoCs available in COTS manycores [51, 62, 118].
The impact of NoC interference in task execution time has been analyzed in [119]
where a model to predict applications’ slowdown is proposed. However, the proposed
model does not provide a valid contention upper bound and therefore, is not valid in
the context of CRTESs.

So that to fill this gap, different techniques focused on modeling wNoCs time
and contention having complex effects when having multiple VCs, flows serialization
or different buffer or packets sizes, have been proposed: Scheduling Theory,
Compositional Timing Analysis, Recursive Calculus, Network Calculus and STA
techniques applied to NoCs.

Scheduling Theory techniques [120] consider tasks contention managing flows
priorities, multiple VCs and flit-level preemption so as to reduce contention suffered by
high-priority flows. Network Calculus [52, 55, 90] techniques derive contention bounds
by using mathematical and statistical tools and assuming per flow packets arrival and
departure distribution curves. In this line, many recent works extending Network
Calculus have been presented [55, 56, 60, 61]. Recursive Calculus techniques [93, 121]
use branch and prune or branch, prune and collapse algorithms to compute end-to-
end packets latency [91]. Compositional Timing Analysis techniques [83, 106] extend
Network Calculus to obtain the worst-case contention delay and Statical Timing
Analysis Techniques mathematically compute WCD and WCET by systematically
considering the worst-possible contention case [51, 62].

Some of those solutions break down contention across direct and indirect
categories [55, 60, 120], where potential contention caused by flows sharing any
resource with the one under analysis (e.g. an arbiter or a buffer in a router) is
regarded as direct, and remaining contention as indirect. This concept is further
reviewed in Section 6.2.

Those techniques, in essence, intend to provide precise and tight upper-bounds to
NoC contention during the system design and verification phase and the contention
classification criteria that they use are directed to that end [61].

2.2.3.2 Validation

During late design stages, test campaigns are needed to validate that execution time
budgets are not violated to provide evidence on the correctness of the selected time
budgets (i.e. WCET or contention estimates). End-to-end execution times may
easily hide effects across individual tasks or in specific NoC locations (e.g. routers)
that detailed contention tracking/analysis would instead reveal. Otherwise, triggering
those individual effects in a single test, so that they become visible in end-to-end
execution times, may easily be beyond the reach of end-users, and it would not
offer diagnosis information needed to identify the root causes of overruns. As we
introduced in Section 1.2.2, focusing on total observed contention effects and end-to-
end execution time only, is generally considered inadequate as observations can hide
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undesired contention behavior, decreasing the confidence that can be put on testing.
Specific domains such as avionics in CAST-32A [65] (directly) and other domains

as automotive in the ISO26262 [10] (indirectly) call for proving freedom from
interference. This is why interference-free designs were considered the default choice
to implement multicore designs for CRTES in the past [48, 49, 58, 88]. Unfortunately,
real-time specific designs (e.g. time-triggered ones and those based on Time Division
Multiple Access (TDMA)) involve high non-recurrent costs that jeopardize their
general adoption in the context of CRTES [100, 122]. Furthermore, other works have
arisen in the same direction for mixed-criticality COTS systems processors [123].

2.2.3.3 Enforcement

Safety measures are deployed to prevent timing violations during system operation by
monitoring the use of resources of the running tasks. In the former case, mechanisms
are deployed to monitor the execution time of tasks to take corrective actions in case
of a timing budget exhaustion (e.g. watchdogs [10]). In the latter case, the number of
accesses to shared hardware resources (or any other usage measure) is monitored [33]
to take corrective actions when specific usage thresholds are exceeded.

Hardware techniques: Several hardware designs providing predictability-aware
resource sharing exist [19, 48, 49, 87, 88]. These designs combine the use of time-
predictable arbitration schemes and provisioning each core/task with separate queues
in each hardware shared resource to avoid a given core clogging that resource.
Unfortunately, those changes require the re-verification of affected FUBs such as
cache memories, buses and memory controllers among others that is the main reason
for chip vendors not having adopted these solutions yet.

Software techniques: Contention models build on a timing estimate of the
isolation, i.e. without contention, execution time of the task τa, C

isol
a , to derive a

multicore estimate of τa’s execution time (Cmuc
a ). To that end, the models bound the

contention τa’s requests can suffer in the access to hardware shared resources, ∆cont
a

so that Cmuc
a = Cisol

i +∆cont
a .

∆cont
a is computed combining (i) the longest contention each of its request can

suffer, Lmax and (ii) the number of requests, na, performed by τa and its contenders
running in the other cores, referred to as c(τa). Let cr(x → a) be the number of τa
requests that contend in the access to a shared resource with the requests of another
concurrently running task tx. It is defined as crb→a = min(na, nb). Overall, the
longest contention τa can suffer is defined as: ∆cont

a =
∑

τx∈c(τa) crx→a × Lmax.
State-of-the-art works in this area can be classified into several groups. First,

those that derive bounds to the number of requests performed by tasks to shared
resources [33, 78] (n) which is affected, among others, by tasks’ input data and the
execution paths they traverse.

Another strand of works derive bounds to the maximum contention delay each
request of a task can suffer [21, 32, 115] (Lmax). These works build on time-
predictable arbitration policies (e.g. round-robin) used in many shared hardware
resources in high-performance embedded processors. For instance, for round-robin,
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the longest contention delay a request can suffer is (Nc − 1) × L when Nc is the
number of requestors and L the duration of a request [34]. These works also build on
documentation from processor manuals, when available, and carry strong validation
through an extensive set of measurements to reduce the uncertainty on the validity
of the bound [21, 115], which however cannot be removed.

And third, SQME works build on those bounds to derive contention models to
bound ∆cont

a in on-chip shared resources (e.g. bus and caches) [32, 33, 89] and enforce
bounds (quotas) to task’ access counts hence limiting ∆cont

a [33, 78, 116]. SQME
techniques reduce the impact of contention on WCET estimates of the monitored
tasks’ activity by stalling contender tasks if they go beyond their quota, preventing
∆cont

a of the TuA from being violated [31, 33, 67, 68]. SQME techniques also allow
defining contention scenarios and derive partially time-composable WCET estimates
valid under those scenarios. The basic idea is to upper-bound the number of accesses
of each type that potential contenders will put on the different shared resources and
derive WCET estimates using those bounds. With this approach, WCET estimates
are time-composable as long as the load put by contenders once the system is deployed
is equal or lower than the one used to obtain these estimates.
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Chapter 3

Experimental Setup

This chapter covers the experimental setup used and the research methodology
followed to develop and evaluate the proposals made in this Thesis. The main
aspects are grouped into: methodology, reference processor architectures, tools and
simulators, and benchmarks and applications.

3.1 Methodology

We have followed the methodological workflow shown in Figure 3.1 that includes the
simulation framework and describes how the different tools are interconnected in the
workflow:

1. Proposal: After an analysis of the state of the art and its limitations, we define
a proposal (roadmap) and implement it in an architectural simulator under
specific setups. The proposal is made along with hypotheses on the results that
we expect to obtain at the end of the workflow.

2. Implementation: The changes planned in the proposal are implemented in
the simulators (i.e. SoClib, gNoCsim). Other elements of the workflow were
implemented to analyze the results (scripts, parsers, statistical modules, etc.).

3. Execute experiments: Experiments are executed using well-known
representative benchmarks (e.g. EEMBC automotive, Mediabench, self-made
stressing kernels, etc.) and statistics about the benchmarks’ execution are
collected.

4. Obtain results: Results in form of PMC’s counters, traces, feasible or optimal
solutions, and WCET estimates are directly obtained from the benchmarks’
execution or simulators.

5. Results post-processing: fine-grain and low-level results go through in-
depth analysis. In the case of contention analysis, we developed a parser that
creates multiple contention breakdowns and classifications. In the ILP solver
case, we developed a parser that finds the optimal solutions from the feasible
configurations found in the results step. We used an ILP solver for some of the
works in this Thesis.
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3. EXPERIMENTAL SETUP

6. Results evaluation: results are assessed against related work and the
hypotheses made in the proposal’s initial step. Evaluation leads to a conclusion,
depending on that conclusion a new proposal will be defined (modifying the
architectural configurations or the hypothesis), additional experiments and
results will be gathered, or the proposal will be completed finalizing the
framework.

Figure 3.1: Methodology framework followed in the Thesis contributions.

3.2 Reference Processor Architectures

We model two multicore and manycore architectures representative of the state and
coming trends of CRTES. We first model a Cobham Gaisler’s Next Generation
Microprocessor (NGMP), and second a 2D mesh-based variant from the NGMP
processor modeling the EPI Processor. In this section, we provide a summary of
the most relevant features of these architectures. Table 3.1 summarizes the modeled
architectures features.

• LEON 4. LEON 4 [124] is a core based on its family predecessors LEON 3
and LEON 3 extension carried out as part of the PROXIMA project [125]. The
LEON4 is a 32-bit in-order processor that has 7 pipeline stages (Fetch, Decode,
Register File Access, Execute, Memory, Exception and Write-Back) with a
branch predictor implementing an SPARC V8 Instruction Set Architecture
(ISA). LEON4 is interfaced using the AMBA 2.0 AHB bus, has 1-cycle load
latency, and can be efficiently implemented on Field-Programmable Gate Array
(FPGA) and ASIC technologies. Its cache system consists of a separated
instruction/data multi-set L1 cache (4-way) and an optional L2 cache.
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• NGMP. The NGMP is a fault-tolerant quad-core LEON4 SPARC V8 processor
that was first implemented as the radiation-hard System on Chip (SoC) GR740
and has eight port SpaceWire router, PCI initiator/target interface, CAN 2.0
interfaces and 10/100/1000 Mbit Ethernet interfaces. The GR740 was designed
as the European Space Agency’s NGMP and is part of the European Space
Agency Roadmap. This device is targeted at high-performance general-purpose
processing even though the architecture is suitable for symmetric, asymmetric
multiprocessing and mixed-criticality applications (as their shared resources can
be monitored). We use this reference architecture when later simulating our
proposals in our cycle-accurate simulators in Chapter 8.

Figure 3.2: NGMP basic block diagram.

• EPI processor + Tile based Manycore. Part of this Thesis has been
carried out under the scope of the EPI project. After the EPI General-Purpose
Processor (GPP) was in progress in 2018 and only high-level architecture details
were known, the Automotive Stream started thinking of a second version of
the GPP processor adapted to the CRTESs field. As part of this Automotive
Stream from the Barcelona Supercomputing Center Computing Architecture
and Operating Systems group member (BSC-CAOS), we started analyzing how
to apply timing analysis in an NoC-based system. As far as we know, EPI GPP
will build on Zeus Cores (i.e. Neoverse N1 CPUs) and will be supporting a
high-end memory subsystem, including HBM and DDR5 controllers.

Since at the beginning of the Thesis there was neither a consolidated core nor
NoC EPI simulators, we started working with the NGMP version modified
to include a wormhole 2D Mesh interconnection with added features already
known from the EPI processor. More in detail, we have modeled an XY-routing
mesh network with 5 bidirectional input/output ports (X+, X-, Y+, Y- and
PME) of 10 flits capacity. Routers implement round-robin arbitration, XY-
routing, credit-based flow control, and wormhole switching (see Figure 2.4a and
Figure 2.4b). Flit traversal latency in a no-contention scenario is 1 cycle to
traverse the router and 1 cycle to traverse the link between routers. Cores
are connected to each router and send requests to different memory modules
attached to boundary routers, which serve one request per cycle.
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We called this architecture Tile-based Manycore (TILED MC), and we mainly
focused on working with a similar setup to the one provided by the ARM
CoreLink CMN600 [25]. Since our purpose in the EPI Automotive Stream was
more focused on the NoC contention analysis for real-time ES, NoC specification
was enough for our research. We use this reference architecture when later
simulating our proposals in our cycle-accurate simulators in Chapters 4 to 7.

3.3 Tools and Simulators

We used different tools to ease the implementation and testing of our proposals. While
some of them have been implemented in the scope of some Thesis proposals as the
contention breakdown parser (see Chapter 6), others have been obtained from the
CAOS group at BSC and from the master studies in the Facultat d’Informàtica de
Barcelona de la Universitat Politècnica de Catalunya (FIB-UPC).

3.3.1 Architectural Simulators

The architectural simulators used in this Thesis are: SoCLiB [126] and gNoCsim [127].

• SoCLiB [126] is an open virtual Cycle Accurate Bit-Accurate (CABA) timing
simulator and functional emulator used to model multiprocessors. In our case,
SoCLiB has been modified to model NGMP SoC and other complex NoC-based
architectures. The version used of the tool in this Thesis is a modified version
of the simulator that has been assessed to accurately simulate real hardware
with discrepancies of 1% on average and 3% at most [128].

• gNoCsim [127] is an event cycle-accurate simulator developed in C and C++.
This simulator models the flits flowing along the NoC links, router stages
and collects statistics. gNoCsim has 2 working modes: In master mode, the
simulator self-generates synthetic traffic that can be specified by the user at
core level (e.g. IR per core, packets/flits size,...). In slave mode, the simulator
works by simulating the NoC part of the system and is plugged into a core
simulator such as SoCLiB.

In this Thesis, we have used SoCLiB to model the NGMP bus-based architecture
in itself, but also to evaluate the impact of our proposals when using real traffic (e.i.
real benchmark simulated by SoCLIB) attached to gNoCsim simulating a 2DMesh
NoC interconnected system (e.g. gNoCsim in slave mode) when modeling the TILED
MC described in the previous section. As there were neither low details of the EPI
GPP nor a system emulator or simulator, we started working with LEON4 as cores
(SoCLIB) but interconnected in a 2DMesh wNoC (gNoCsim). Moreover, we have
also used gNoCsim in master mode to reach some NoC traffic cases (synthetic traffic)
and also SoCLiB attached with gNoCsim simulating well-known benchmarks and
self-created stressing benchmarks both described in Section 3.4.
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Table 3.1: Summary of the modeled reference architectures.

Parameters LEON4 NGMP TILED MC

C
or
e

Stages 7 7 7

Core Count 1 4 4 to 36

Write Buffer 2 2 2

L
1
I/
D

C
ac
h
e

Line Size 32 Bytes 16 Bytes

Set Number 128 Sets 512 Sets

Associativity 4 Way

Total Size 16 KiB 32 KiB

Write Policy Write-Through

Placement Policy Modulo

Replacement Policy LRU

L
2
C
ac
h
e

Line Size 32 Bytes 64 Bytes

Set Number 2048 Sets 1024 Sets

Associativity 4 Way 4 to 36 Way

Total Size 256 KiB 256 KiB to 2,3 MB

Write Policy Copy-Back

Placement Policy Modulo Partitioned

Replacement Policy LRU

B
u
s Arbitration Policy Round-Robin,

Random
-

Width 128 bits -

2D
M
es
h

Sizes - 2x2 to 6x6

Router pipeline - Atomic

Arbitration Policy - Round-Robin,
Random, Weighted

Routing Policy - XY, YX

Link Width - 144 bits

Packet Size - 128 bits

Packetization - Yes 1 to 6 flits

Memory Controllers - 1 to 4

3.3.2 ILP Tools

As we described in the goals and contributions in Section 1.3, one of the targets of
the Thesis has been the optimization of the WCET calculus obtaining tighter and
more reliable estimates. After realizing in Chapter 4 that WCET estimates in NoC-
based systems are a multidimensional problem, in Chapter 5 we have used the IBM
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ILOG CPLEX Tool inside a more complex workflow described in Section 5.3. CPLEX
is a tool that accelerates the development and deployment of decision optimization
models using mathematical and constraint programming. In this Thesis, we have
used the mixed ILP part of the tool to minimize the WCET estimates obtained
when optimizing multiple parameters of the NoC setup. Despite IBM CPLEX being
a licensed tool, it exists other alternatives and open source solvers (e.g. Coin-Or,
GLPK or LP Solver).

3.3.3 Contention parser

With the goal of breaking down contention NoC cycles in Chapter 6 we created a
tool that given an event trace from a simulator or processor it provides per cycle
contention breakdown a task suffers from their co-runner tasks in a 2Dmesh with
deterministic routing, router arbitration and task allocation. More in detail, the tool
is a parser written in C and C++ that filters the execution trace and assigns the NoC
contention suffered by a TuA chosen by the user to their co-runner tasks that causes
this packet stall. We develop this tool in Chapter 6, and we used and extend it in
Chapter 7.

3.3.4 Computational Intrastructure

Most of the experiments done during this Thesis have been launched in the Sert UPC
Cluster with more than 130 nodes Intel Xeon E5-2630L, with 64 to 128 GB of RAM
and 1TB HDD SATA-3 (see Research UPC Cluster [129] for more details). The less
computationally demanding experiments have been directly obtained in a laptop with
an Intel i7-8650U processor with 16GB of DRAM.

3.4 Benchmarks and Applications

We used different benchmarks and applications representative in the CRTES domain.
On the one hand, we use the MediaBench [130] and the EEMBC Autobench [131] well-
known suites but on the other hand, we have also created our own Benchmarks with
more heavy memory-loaded scenarios. So as to recreate other scenarios, especially
in the interconnection part without depending on a core architecture, we have also
performed synthetic traffic injection experiments that are also detailed in this section.
For the real core program execution experiments we have used:

• MediaBench [130] is a set of applications and algorithms that include
communications and multimedia functions increasingly relevant for many
CRTES domains as autonomous navigation and driving systems. MediaBench
contains 20 applications (see Table 3.3) culled from available image processing,
communications and DSP applications. Figure 3.3 shows a characterization of
the memory load of the Mediabench suite (M benchmarks).

36



3.4 Benchmarks and Applications

• EEMBC AutoBench [131] is a suite of benchmarks that allow measuring the
performance of microprocessors and microcontrollers in automotive, industrial,
and general-purpose applications. The benchmark suite is composed of 16
benchmark kernels (see Table 3.3) that include generic workload tests, basic
automotive algorithms and signal processing algorithms. Each benchmark
consists of a number of calls to different functions that are located in the main
loop, and the user can configure the number of iterations that every benchmark
loops (or use the default number provided by the suite). Figure 3.3 shows
a characterization of the memory load of the EEMBC AutoBench suite (E
benchmarks).

Figure 3.3: Percentage of loads/stores in each benchmark. E and M stands for
EEMBC Auto and MediaBench, respectively.

• A−H Self-generated benchmarks: these 8 workloads (A, B, C, D, E, F, G, and
H) generate different percentages of load (LD), store (ST) operations. Whereas
EEMBC Automotive and Mediabench have between 0 and 18% of load/store
memory operations in their benchmarks, our self-generated workloads have
between 5 and 50% of load/store operations (see Table 3.2). Still, we have
also created other synthetic benchmarks that are 100% load/store operations
so as to evaluate saturation cases (i.e. higher packets injection than ejection in
the NoC) or for validating the correct implementation of our router.

Table 3.2: Self-generated Benchmarks.

Benchmarks A B C D E F G H

% Local Op 80 50 50 60 95 87.5 87.5 90
% LD Op 10 10 40 20 2.5 2.5 10 5
% ST Op 10 40 10 20 2.5 10 2.5 5

Moreover, with the aim of recreating high contention scenarios in the NoC
interconnection, we have also executed experiments using synthetic traffic (gNoCsim
working in slave mode as explained in Section 3.3). This working mode has allowed
us to tune the traffic injection at synthetic core level recreating worst-case scenarios
and avoiding pathological packets’ alignment.
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Table 3.3: Summary of benchmarks used for evaluation.

Mediabench benchmarks

adpcm.d Adaptive differential pulse code modulation, decode
adpcm.e Adaptive differential pulse code modulation, encode
epic.d Experimental image compression utility, decode
epic.e Experimental image compression utility, encode
g721.d Voice compression G721, decode
g721.e Voice compression G721, encode
gsm.d GSM 6.10 standard for full-rate speech transcoding, decode
gsm.e GSM 6.10 standard for full-rate speech transcoding, encode
jpeg.d Image lossy compression JPEG, decode
jpeg.e Image lossy compression JPEG, encode
mesa.m 3D graphics library clone of OpenGL, mipmap application
mesa.o 3D graphics library clone of OpenGL, osdemo application
mesa.t 3D graphics library clone of OpenGL, texgen application
mpeg2.d Standard for high-quality digital video transmission, decode
mpeg2.e1 Standard for high-quality digital video transmission, encode
pegwit.d Public key encryption and authentication, decode
pegwit.e Public key encryption and authentication, encode
pgp.d Security algorithm PGP, decode
pgp.e Security algorithm PGP, encode
rasta Speech recognition

EEMBC Autobench

a2time Angle to Time Conversion
aifftr Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
basefp Basic Integer and Floating-Point
bitmnp Bit manipulation
cacheb Cache buster
canrdr CAN Remote Data Request
idctrn Inverse Discrete Cosine Transform (iDCT)
iirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

1 mpeg2.e benchmark has been excluded in some contributions’ evaluation due to issues executing
it in our reference platform.
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Part II

Contention Aware Optimizations
in Verification stage
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Chapter 4

Mesh NoC Flow Balancing
Bandwidth Optimization

4.1 Introduction

The increasing performance needs in CRTES can only be satisfied with the use of
high-performance manycore processors. NoC-connected manycores have already been
deployed in high-performance (mainstream) processors [5, 20], and have been shown
to allow, under some restrictions (e.g. deterministic routing), the derivation of tasks’
WCET estimates as needed for CRTES [51, 62]. However, WCET estimates vary
drastically across cores in mesh NoCs due to the different BW effectively allocated
to each core and, to a lower extent, the diverse latencies caused by non-homogeneous
distances from cores to their target node (e.g. the one where main memory is
attached) [64]. Local homogeneous BW allocation (e.g. as provided by fair policies
like round-robin) might cause unwanted heterogeneous global BW distribution across
cores (i.e. cores further away from memory have lower BW than those closer to it).
As a result, tasks running in cores with lower allocated BW can be severely penalized.
Parallel applications, despite being less widespread than in the mainstream market,
are now considered in CRTES for computing intensive functions related to AD and
unmanned navigation. For those applications, unwanted BW imbalance may result
in poor WCET estimates for the whole application since all threads may have to
synchronize with the slowest one (i.e. normally the thread that runs in the farthest
core from memory).

Wmeshes, widely used in high-performance routers for off-chip wormhole
networks [108], have been proposed as a solution in CRTES to allow heterogeneous
BW allocation across ports to homogenize overall BW across cores [64].
Unfortunately, wmeshes suffer from a key limitation: efficiently sized resources in
NoCs may create bubbles in some links, so that they are unable to send packets steadily.
If the requirements on BW allocation impose highly unbalanced BW in some routers,
bubbles may prevent from reaching the desired BW allocation in those routers, leading
to globally unbalanced BW allocations.
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In this chapter, we tackle this challenge by proposing EOmesh, a new weighted
mesh design that effectively achieves near-optimal (homogeneous) BW allocation
across cores. EOmesh builds on the observation that BW allocation can only be
practically achieved by combining the use of weights in the arbiters and balancing
the number of flows served at each output port. In particular, our contributions are
as follows:

1. We analyze the behavior of wmeshes, showing that, by construction, they cannot
achieve homogeneous BW allocation across cores as long as one port needs to
serve above 2/3 of the requests, which necessarily occurs for square meshes with
4x4 nodes and beyond.

2. We provide a smart combination of time-predictable routing policies (XY
and YX) that allows reducing the imbalance across ports so that bubbles
do not prevent from reaching the desired homogeneous BW allocation. The
combination of multiple routing policies with statically allocated VCs makes
the mesh NoC deadlock-free.

3. We use appropriate weight allocations that achieve homogeneous BW allocation
across cores, in combination with the new routing scheme. Hence, fairness across
cores in terms of BW is achieved despite bubbles in the NoC.

4.2 Modeling a Weighted Mesh

WCET estimation in manycores needs bounding access times to shared hardware
resources [132]. In the case of NoCs, this translates into having a bounded WCD
such that every request sent to the NoC has a bounded service (traversal) time at
analysis time.

4.2.1 Baseline NoC

We consider a NxM mesh NoC as the one described in Section 2.2.2 in which each
node can be identified using (x,y) coordinates, see Figure 4.1. The router located at
coordinates (x,y) is referred to as R(x, y), see Table 4.1 for the definitions used in this
chapter. Each node comprises the router that communicates the node to the mesh
and a PME (Processor/Memory element). The PME can be either a processor core,
a cache memory, main memory, I/O, etc. In the network several traffic flows may
exist. A traffic-flow (Fi) is a packet stream that traverses the same H -node route
from a source to a destination node and requires the same grade of service along the
path.

For the characterization we use deterministic XY routing but any other
deterministic routing can be used too. Deterministic routing allows identifying routers
in a given path as Rj where j is the hop number of the path (e.g. R1 is the source
node). With XY routing, packets are forced to use the X dimension first. In the X
dimension the position of the target node with respect to the source node determines
whether to go right (X+) or left (X-) direction. The same approach is used for the Y
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Figure 4.1: Router coordinates of a 4x4 2Dmesh.

Table 4.1: Definitions used in this chapter.

Acronym Description

R(x, y) Node with coordinates (x,y) in the NoC
Fi Flow i

P j
i Number of requests that might contend for the same Rj output

port as Fi under the worst-case contention scenario

ERj
i Rate at which flits of flow Fi can be ejected from router Rj

Dj
i Maximum time that a packet of Fi requires to go from

the input port of Rj to its destination node
fx{i} Index of the flow causing the worst possible blocking on Fi

PERwc Propagated worst-case ejection rate
PERi(R

j) Propagated worst-case ejection rate for flow Fi at router Rj

L Maximum packet size
Idir Number of flows traversing the dir input port
Odir Number of flows traversing the dir output port
Nports Number of ports per router

dimension. Once packets are routed using the Y dimension they cannot be forwarded
to the X dimension. Note that the opposite port is represented as Ȳ and X̄. For
instance, the opposite port of Y+ is Y−. Routing restrictions help determining the
exact number of requests (P j

i ) that might contend at router Rj for the same output
port as Fi in the worst-case situation. For instance, P j

i values for a mesh with XY
routing and assuming all-to-all communication are determined as follows:

P j
i =

{
2 if destination is X+ or X−
4 if destination is Y+, Y − or PME
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4.2.2 Deriving Worst-Contention Delay

In this section, we provide expressions to compute WCD bounds that are also suitable
for NoCs using weighted round-robin arbitration. Expressions given in this section
are based on the concept of worst-case ejection rate (ERj

i ). We define ERj
i as the

rate at which flits of flow Fi can be ejected from router Rj to the corresponding port
when the next router (Rj+1) is accepting incoming packets (i.e. it is not stalling Rj

packet transmission). We also extend the concept of worst-case network ejection rate
to model the rate at which flits can be ejected from a given router port when the
network is fully congested. To do so, we define propagated worst-case ejection rate
PERwc as the minimum rate at which flits of Fi can be ejected from Rj in the worst-
case situation. ERj

i values can be computed by considering the maximum number of
flows P j

i contending at Rj
i for the same output port as Fi, see Equation 4.1.

ERj
i =

1

P j
i

(4.1)

Then, PERi(R
j) is computed by multiplying ERj

i values from the current router
Rj

i to the target router RH
i as presented next:

PERj
i =

H∏
k=j

1

P k
i

(4.2)

Let Dj
i be the time that a packet of flow Fi requires to go from the input port of

Rj to its destination node. Dj
i can be computed recursively by considering the time

required to reach Rj+1 as 1/PERj
fx{i} plus the time required to reach its destination

once at Rj+1. fx{i} represents the index of the flow that causes the worst possible
blocking in Fi. Note that a Ffx{i} packet stalled in a subsequent router of the path
followed by Fi might cause Fi to suffer worst contention than one following exactly
the same path. In the same way, PERj

fx{i} represents the worst ejection rate for
Fi packets. To determine the flow causing the worst contention, PER values for all
routers and all flows are computed in advance, and for any particular flow and router
we choose the worst PERj

fx{i}. Equation 4.3 shows the recursive definition of Dj
i .

Dj
i =

1

PERj
fx{i}

+Dj+1
i (4.3)

The WCD for flow Fi, given by D1
i , is the time required to reach its destination

(j = H) from the source node.
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4.2.3 Computing WCD with Weighted arbitration

Figure 4.2: 2x2 2Dmesh unfair bandwidth allocation using round-robin arbitration.

We illustrate how to compute WCD using Equations 4.1, 4.2, 4.3 considering
round-robin arbitration in the example presented in Figure 4.2. We aim at computing
F1 WCD, i.e. the WCD of packets with source node in (x,y) router and destination in
(x+1,y+1). First, we compute PERj

i as the product of the ERj
i coefficients (shown

in brackets in Figure 4.2) of all the routers that Fi (i = 1) traverses. Later, we start
from the last hop (j = 3) and compute all Dj

i values;

D3
1 =

1
1/3

= 3 D2
1 =

1
1/6

+D3
1 = 9 D1

1 =
1

1/6
+D2

1 = 15

Table 4.2: WCD values for L-flit packets.

Round-Robin Weighted

F1 F2 F3 F4 F1 F2 F3 F4

D3
i 3L - - - 2L - - -

D2
i 9L 3L 3L - 6L 2L 4L -

D1
i (WCD) 15L 9L 6L 3L 10L 6L 8L 4L

Figure 4.2 shows WCD values for the 2x2 NoC for both round-robin and weighted
round-robin arbitration. In particular, we compute the WCD of F1, F2, F3 and F4.
WCD for F3 is given by D1

3 = D(x, y+1). Table 4.2 shows the Dj
i and WCD values for

F1, F2, F3 and F4 for both round-robin and weighted arbitrations. F4 comes directly
from one of the router (x+1,y+1) ports. As shown in the table, weighted arbitration
makes the WCD of the packets to be reduced for those flows that are located in
the farthest positions, and this comes at the expense of penalizing the WCD of the
nodes closer to the destination. It is also important to mention that despite weighted
arbitration has the potential to fairly share the BW, the WCD of each core is not
fully equalized.
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4.2.4 Limitations of Weighted Meshes

Wmeshes have been proposed jointly with XY routing1. Figure 4.3(a) shows an
example of XY routing in which for a typical 4x4 mesh with the target node (e.g.
a shared cache or main memory) connected to a port in a router in one corner (e.g.
(3,0)) and all nodes attempting to send packets to that node.

As shown, under XY routing the router at the corner has to arbitrate among
three input ports with highly unbalanced traffic: (1) the X+ port receives requests
from 3 out of 16 cores, (2) the local port (not shown in the picture) receives requests
from 1 out of 16 cores, and (3) the Y+ port receives requests from the remaining 12
cores. Overall, the Y+ port needs to absorb 75% of the traffic if BW across cores is
homogeneously balanced.

Let us consider an arbitration window implemented as an extended round-robin
vector with 16 entries, so that BW can be weighted as needed for homogeneous BW
allocation. The arbitration window for the router in the corner is composed of 16
elements (1 PME, 3 X+, 12 Y+). The only way to arrange those port grants in a
window so that, inside the window and across windows, the maximum number of
consecutive arbitrations granted to the same port is minimized is using the following
pattern:
PME, Y+, Y+, Y+, X+, Y+, Y+, Y+, X+, Y+, Y+, Y+, X+, Y+, Y+, Y+.
Note that swapping PME and X+ grants or moving Y+ grants to the beginning
would lead to equivalent patterns with Y+, Y+, Y+ sequences interleaved with other
(individual) grants over time.

The effectiveness of the weighted arbitration is decreased in the presence of
bubbles. In regular wormhole mesh NoCs designs, bubbles can occur due to local
and global control-flow effects.

Canonical routers in a 2D mesh are pipelined into several stages. First, the
incoming packet is stored in the corresponding input buffer. Then, routing and
switching occur in one or more stages, and finally the packet is sent through the
link. However, since no packet-loss is allowed in wormhole, before the packet is sent
to the next router, the stall/go signal coming from the next router is checked to
ensure there is enough buffer space to store the packet. This stall/go signal is used to
ensure the link-level (or local) flow control and requires Cf cycles to travel from the
destination router (Rx+1) to the current one (Rx), and the round trip time (RTT) is
equal to 2× Cf . The RTT determines the amount of buffering required at the input
buffers to avoid having bubbles in the transmission.

Let us consider the example in Figure 4.4, where we show the main stages of three
consecutive routers (Rx, Rx−1, Rx−2), being packets ejected through router Rx. Let
us also consider three packets (P1, P2, P3), and an initial state where P1 is in an input
buffer in Rx, P2 in an input buffer of Rx−1, and P3 in an input buffer of Rx−2. If
Rx did not allow these packets to make any progress in the previous cycle, but Rx−1

and Rx−2 allowed them to progress, P1 could not be switched and ejected. Instead,
P2 and P3 were switched but could not be transmitted to the following router due to

1Note that the reasoning that follows applies identically with YX routing.
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(a) XY mesh (b) YX XY mesh

Figure 4.3: Routes to router (3,0).

Figure 4.4: Example of bubbles when sending continuously packets from one port.

backpressure of the input buffers. This is illustrated in the chronogram in Figure 4.4
as the state in cycle 0. Eventually, in cycle 1 P1 is ejected, P2 reaches the input buffer
of Rx, and P3 the input buffer of Rx−1. In cycle 2 P2 is ejected, and P3 is switched in
Rx−1. In cycle 3, P3 reaches the input buffer of Rx, but cannot be ejected until cycle
4. Overall, Rx can eject up to 2 packets consecutively coming from the same input
port. Hence, a weighted mesh where more than 2 packets need to be transmitted in
consecutive cycles cannot serve those packets at a sufficient speed and causes some
imbalance.

In this example, if buffers are large enough potentially all packets can reach Rx

faster. However, buffers are the most expensive resource in routers, so their size is
kept as low as reasonably possible.

Global Effects. In current CRTES, packets in the NoC usually correspond to
memory transactions going from the cores to the memory devices and the other way
around. The maximum speed at which cores issue requests to memory is determined
by the number of cycles the requests going to memory need to be processed. In
the context of a NoCs, this time is usually in the order tens of cycles and avoids
having always requests to be served by the router during operation. However, WCD
estimation cannot make any assumption on the actual load, so the worst congestion
must be assumed for WCET estimation.

Thus, even allocating BW as in [64] (that theoretically allows achieving
homogeneous arbitration using weights that consider the amount of flows using each
input port), global fairness cannot be achieved in practice if the amount of traffic
flows traversing each port is not balanced as well.

47



4. MESH NOC FLOW BALANCING BANDWIDTH OPTIMIZATION

4.3 EOMESH: A Fair Weighted Mesh

As we have seen in the previous section, although regular weighted NoCs with XY
routing are theoretically able to achieve a perfect balancing of the available BW, this
balancing is not achieved in reality due to the presence of bubbles. To solve this
problem, we propose a new mesh design intended to achieve near-optimal weighted
arbitration. The idea behind Even/Odd mesh (EOmesh) is that the even allocation
of BW cannot be practically achieved by simply playing with the arbitration, but
it also requires balancing the amount of flows served at each output port. EOmesh
combines both concepts, and it balances both (1) the BW each flow is assigned using
a weighted arbitration and (2) the amount of flows each port has to serve. In the
following sections, we describe how EOmesh implements these concepts.

4.3.1 Combined Flow Balancing & XY-YX routing

In order to balance the amount of flows each output port serves, we change the routing
algorithm. With XY routing, the default routing policy in the wmesh proposed in [85],
ports in the Y direction serve high number of flows that makes not possible to achieve
a fair distribution of the BW due to the presence of bubbles. To avoid the imbalance
in number of flows that traverse each given port when using XY routing, we propose a
new routing algorithm that combines both XY and YX. More in detail, this algorithm
uses XY for packets originated at the source nodes with an even identifier, and YX
for the packets from source nodes with an odd identifier. The proposed mechanism
is illustrated in Figure 4.3(b): combining XY and YX algorithms for even and odd
sources allow improving the balancing in the number of flows each port has to serve.
For the particular example in the plot, we see how the output port arbitration of the
memory controller attached to node 3 serves 6, 9, and 1 flows through the X, Y, and
PME input ports while in the case of the XY routing (Figure 4.3) the distribution of
flows is 3, 12, 1, for the X, Y, and PME input ports.

VC allocation. The main reasons why XY routing is heavily utilized are its
simplicity (low complexity) and its deadlock freedom properties. However, as we
have analyzed previously, XY routing does not balance traffic flows efficiently. With
EOmesh routing approach, the amount of flows traversing each port is more balanced.
However, the combined use of XY and YX routings, allows the creation of deadlock
situations for specific communication flows. In that respect, in order to avoid deadlock
situations, EOmesh assigns a specific VC to each of the two routing policies employed
(XY and YX). Performing a static VC allocation to isolate flows from the different
routing policies XY and YX also allows reducing the worst contention that the
different flows can have since the amount of contender packets that each flow finds in
each hop is reduced.

Given that dynamic VC allocation policies have a very negative impact in WCD –
since the number of potential contenders is increased in a router with VCs [51] – the
static allocation of VCs performed by EOmesh does not degrade the best guaranteed
performance achievable by the network.
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4.3.2 Adapting arbitration weights

Weights in the weighted round-robin mesh design proposed in [85] can be computed
using the following expression:

w(Idir, Odir) = Idir/Odir (4.4)

where Idir represents the number of communication flows traversing the diri input
port of a given router being dir any of the possible mesh router port directions.
Similarly, Odir is the number of flows traversing the dir output port of the same
router.

Figure 4.5: EOmesh arbitration weights to access a shared resource attached to router
(3,0). Router internal port (PME) weights are not shown in the picture.

Given a fixed number of communication flows, the actual flows traversing the
input/output ports of each router can be determined considering the particular route
used by each flow. Figure 4.5 shows the EOmesh weights required to arbitrate the
flows originated at each router that target the shared resource attached to Router
(3,0).

4.4 Implementation

The baseline wmesh can be implemented in two main different ways: (1) as a
programmable NoC or (2) as a hardwired NoC.
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4.4.1 Programmable NoCs

In a programmable NoC, routing and arbitration decisions can be interfaced and
modified by means of software commands, thus with no hardware modification.

Figure 4.6: Routing and arbitration implementation of a programmable NoC.

Programmable routing. Making routing programmable requires, for instance,
the use of routing tables in each port. Hence, for each port of each router, we need
a table with as many entries as potential different flows (e.g. 16 entries for a 4x4
mesh) where each entry contains the identifier of a destination port, which can be
{X+, X−, Y+, Y−, PME}. Although 5 different values are possible across all ports,
for a given port only 4 of them are possible since a port cannot be its own target.
For instance, valid values for the X+ port are {X−, Y+, Y−, PME}. Thus, this
table needs 2-bit entries to encode the destination port for each flow in each input
port. Overall, given a NxM mesh, the (distributed) storage required to make routing
programmable is:

RoutCost = (NxM) ·Nports · (NxM) · bits/entry (4.5)

Where the first NxM factor is the number of routers, Nports stands for the number
of ports per router (up to 5 ignoring the fact that routers at the boundaries do not
have all ports), the second NxM factor corresponds to the number of entries per
routing table, and the last factor, bits/entry is 2 as indicated before. For instance,
in a 4x4 mesh, routing tables require less than 16 · 5 · 16 · 2 = 2560 bits, so 320 bytes,
which is a rather small cost. This design is sketched in Figure 4.6 (left).

Programmable arbitration. Two main alternative implementations can be
used to have programmable arbitration. One of them requires an arbitration window
per port and per router, with an arbitrary number of entries Narb, and 2 bits per entry
indicating the input port that is granted access to the particular output port. Narb

must be sufficiently large so that 1/Narb provides sufficient granularity to allocate
weights as needed. Moreover, Narb may change across ports and routers. For the sake
of illustration, we assume that arbitration windows have NxM entries. Then, each
arbiter also needs a log2Narb counter pointing to the next entry in the window along
with an adder for that counter. Alternatively, one could use shift registers with wrap-
up for the window and always use the value at a given position (e.g. first position)
to determine what port is granted access next.
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In this work, we build on the solution using the counter. Hence, the storage cost
for a programmable arbitration is:

ArbCost = (NxM) ·Nports · ((NxM) · bits/entry + log2(NxM)) (4.6)

For instance, in a 4x4 mesh, arbitration would require 16 · 5 · (16 · 2 + 4) = 2880
bits, so 360 bytes only. This design is sketched in Figure 4.6 (right).

A second alternative implementation of the arbitration can be built upon counters,
where 4 counters are set per port, so that each one tracks how many times a given
input port must be granted access to a given output port in each window. In general,
this approach allows a finer-grain allocation of weights, but does not allow controlling
with precision the order in which grants are given. For instance, it may grant access
to the port with the highest count, or in a round-robin fashion across ports with
non-zero counters.

4.4.2 Hardwired NoCs

Some NoC implementations favor efficiency in front of flexibility, and routing and
arbitration choices are hardwired. Adapting such a NoC to implement the EOmesh
would require, at most, duplicating (simple) routing logic in some routers to
implement XY and YX policies for different flows. In practice, since a packet can
be forwarded in any direction depending on its destination at a given router, the
practical cost of an additional check will have a lower cost.

Regarding arbitration, using different weights for a wmesh would require
hardwiring different choices in the arbitration windows, thus not increasing hardware
costs.

Overall, hardware modifications would have limited impact on the overall cost of
the NoC, which is mostly dominated by the buffering required at input ports.

4.5 Evaluation

4.5.1 Methodology

We evaluate EOmesh on a cycle-accurate simulator that is an enhanced version of
SoCLib [126] that we integrated with gNoCsim [127] simulator to simulate a TILED
MC using a 2D mesh NoC [6, 20] (described in detail in Sections 3.2 and 3.3).

We evaluate EOmesh on meshes with 16 cores (4x4) and 36 cores (6x6) to assess
the scalability of our approach.

In our manycore, load (and write-miss) requests comprise four-flit messages from
the core to memory. Given that cache line size is 64-bytes and we need 16-bits for
control data (512+16 bits), memory answers with 4-flit messages over 132-bit wide
links. Evicted line requests require a 4-flit message and a one-flit answer. In our
proposed mesh design, packetization [51], shown to minimize WCD, adds control
data to each of the flits, therefore requiring an extra flit, so 5 instead of 4 (512+5*16
bits over a 132-bit wide channel), leading to 25% overhead.
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For each setup, usually matching one result chart, WCET estimates are shown
normalized to the maximum WCET to those results obtained with the baseline
wmesh. Hence, normalized WCET (nWCET) estimates below 1 are better than
those provided by the default wmesh and vice versa.

nWCET =
WCETEOmesh

max(WCETweighted)
(4.7)

So as to evaluate EOmesh when speeding up the guaranteed execution time
(i.e. reduce the WCET), we evaluate the WCD and WCET evolution in different
scenarios: computing analytical maximum load, running independent apps, running
parallel apps or heterogeneous apps. As the evaluated apps we will use the A − H
self-generated benchmark suit described in Section 3.4 (see LD/ST percentages in
Table 3.2).

• Analytical maximum load. WCD bounds are computed for all cores. This is
the most stressful scenario for the NoC, where requests are assumed to contend
in the worst possible way with other cores’ requests.

• Independent apps. Benchmarks A-D, correspond to high-demanding
benchmarks in terms of BW, whereas E-H benchmarks are their low-demanding
counterparts (25% requests w.r.t. A-D applications).

• Parallel apps. We create 2x2 homogeneous parallel applications where all
threads correspond to the same reference benchmark to study their sensitivity to
the particular mapping of the application in the mesh (e.g. AAAA or CCCC).

• Heterogeneous applications. We have generated heterogeneous parallel
applications comprising several phases and varying the number of tasks in
each of the phases. We have generated 8000 directed acyclic graphs (DAG)
to simulate different coarse-grain parallel applications as the ones supported
by the Ada programming language [133]. Figure 4.7 shows a schematic of the
DAG template we have used to generate the different applications. For each
application DAG tasks are chosen randomly from the workloads in Table 3.2
(e.g. A,CADB,BBB,A with 4 phases).

Figure 4.7: DAG schematic of the heterogeneous applications.
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4.5.2 Analytical Contention Bounds

First, we compute for the flows allocation shown in Figure 4.3 (where all flows target
memory controller in R3, R0 allocates F0, R1 allocates F1 and so one so forth) the
WCD bounds across cores, whose maximum determines the worst contention that any
core request could experience. As shown in Figure 4.8 for a 4x4 mesh, the EOmesh
reduces significantly the WCD (cycles) for those flows (e.g. F4 to F15) with highest
WCD values. This is achieved by a better organization of the traffic (combined XY
and YX routing policy) and an appropriate weight allocation, which slightly increases
the WCD for the fastest nodes (e.g. F0 to F3) to decrease it for the slowest ones (e.g.
F4 to F15 and specially in F4, F5, F8, F12 and F13). In particular, the maximum
WCD for the original wmesh (F12 and F13) decreases by 14.7% in the EOmesh (F13).
Thus, the amount of contention that needs to be added to each request during WCET
estimation is significantly reduced.

Figure 4.8: WCD bounds for all flows (4x4 mesh nodes).

EOmesh is specifically designed to reduce the WCET of the slowest thread in
a parallel application (i.e. is the one that truly impacts the WCET of the entire
application). This is achieved by allocating BW so that the maximum WCD (and so
the imbalance) in the original wmesh is reduced. That is, the WCD (and hence the
WCET) suffered by threads closer to main memory is on-purpose increased to reduce
that of threads farther away from main memory, since those determine the WCET
of the overall application. In this line, Figure 4.8 should not be read in terms of the
number of threads (nodes) for which EOmesh reduces WCD, but instead, on whether
EOmesh reduces the WCET of the slowest thread.

4.5.3 Independent (single-threaded) Applications

In order to assess the impact of WCD reduction of the EOmesh w.r.t. the baseline
wmesh, we have evaluated it using all single-threaded applications. In particular, we
obtain time-composable WCET bounds (thus valid regardless of the tasks running in
the other cores) for each application on each of the cores. WCET estimates have been
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Figure 4.9: WCET estimation reduction.

obtained by considering the execution time in isolation (obtained with measurements
in this particular evaluation) and adding the WCD to each request, where the WCD
depends on the mesh policies (baseline wmesh or EOmesh) and the particular core
where the application is run. Note that other WCET estimation practices applied
during unit testing (aka when contender tasks are unknown) would provide different
in-isolation execution times, but would account for NoC contention analogously to
our work (i.e. considering the worst-case contention per request).

Figure 4.9 shows, for each application, the WCET reduction achieved with the
EOmesh. It has been obtained by comparing the maximum WCET across all cores on
the baseline wmesh and on the EOmesh . As shown, despite the fraction of operations
causing NoC requests decreases from 50% (applications B and C) down to only 5%
(application E), the relative WCET reduction in the range 5%-9% and 15%-28% for
4x4 and 6x6 meshes respectively due to the fact that NoC latency is the dominant
factor in the WCET time. For completeness, we also show the results on a per-core
basis for application A (see Figures 4.10 and 4.11 for 4x4 and 6x6 respectively), as
illustrative example of how the WCET varies across cores for the same flow allocation
described in Figure 4.3 but targeting R3 in 4x4 and R5 in 6x6. As shown, in line
with WCD results, the EOmesh slightly penalizes the WCET for those cores with
lowest in-isolation execution time to decrease appreciably the WCET in the cores
with highest in-isolation execution time.

Figure 4.10: Normalized WCET for application A (4x4).
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Figure 4.11: Normalized WCET for application A (6x6).

4.5.4 Parallel Applications

We have evaluated the relative WCET of a set of parallel applications building on our
reference single-threaded applications on a 4x4 mesh. The first experiment consisted
in building 16-thread parallel applications with all threads being of the same type
(e.g. 16 applications A). As expected, the WCET was dictated by the worst thread,
thus delivering the same results shown in Figure 4.9. Then, we have built 4-thread
parallel applications mapping them in 4 different square regions (2x2 cores) in the
4x4 mesh. Each such square region corresponds to the partition of the mesh into 4
square regions, which we identify with U (upper), B (bottom), L (left) and R (right).
For instance, UR corresponds to the upper-right square, which includes nodes (2,2),
(2,3), (3,2) and (3,3).

Results for those 4-thread homogeneous parallel applications are shown in
Figure 4.12, again, normalized (for each reference application) w.r.t. the maximum
WCET across all parallel applications. As shown, the EOmesh provides significant
gains for the UL mapping, which is the one with the highest WCET estimates. Gains
for the second worst case (BL) are also noticeable. Results for the third worst case
(UR) are slightly worse for the EOmesh. As explained before, the EOmesh decreases
the WCD of the slowest nodes at the expense of increasing the WCD for some (fast)
nodes. Finally, the best square (BR) experiences almost no change (up to 0.3%
WCET variation).

Figure 4.12: nWCET. 4-thread homogeneous apps (4x4 mesh).

Overall, the EOmesh proves to be also beneficial for parallel applications,
decreasing the WCET in those regions that lead to highest WCET estimates.
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Figure 4.13: nWCET for heterogeneous parallel applications.

Figure 4.13 shows results for DAG-based heterogeneous parallel applications on
a 4x4 mesh, whose threads are mapped randomly to cores. We show results for
applications with 1 to 20 phases and processor utilization of 50% and 100%. A 100%
utilization means that all the 16 cores in the manycore are utilized while with 50%
utilization the amount of cores utilized in each of the phases is different but is 50%
on average. As shown in the plot, WCET reductions around 8%-9% are obtained
regardless of the degree of utilization and the number of phases of the parallel
applications. EOmesh effectively homogenizes BW across cores, which ultimately
decreases the imbalance across threads in parallel applications. While some threads
run in cores with lower BW in the EOmesh, since some others run in cores with low
BW in the baseline wmesh allows the EOmesh to speed them up. Hence, by speeding
up the threads in the slowest cores (due to their lower BW), EOmesh improves the
performance of parallel applications.

4.5.5 Average Performance

One of the main side effects when balancing the behavior of applications – QoS
solutions in general – is the loss of throughput, since processor design is tuned to
improve average performance. In order to show that our proposed approach does not
negatively impact average performance, we have run our reference applications in all
cores simultaneously and collected measurements with actual contention. Our results
show that, in general, the discrepancies between the baseline wmesh and the EOmesh
are very low. For illustration purposes, in Figure 4.14 we show the execution time
reduction obtained with the EOmesh in the slowest core in each case. As shown,
EOmesh does not cause any degradation in performance but results in some gains
(around 1%-2% for 4x4 and 11%-15% for 6x6) due to avoiding bubbles in arbitration,
thus removing unnecessary stalls and increasing also average performance.
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Figure 4.14: Average execution time reduction.

4.6 Conclusions

Wmeshes are an effective solution to homogenize BW allocation across cores, which
is of prominent importance for tight WCET estimation in critical real-time systems.
However, as shown in Section 4.5, wmeshes fail to provide homogeneous BW across
cores. In this chapter, we have introduced the EOmesh that provides near-optimal
homogeneous BW allocation across cores by (i) combining XY and YX routing policies
and (ii) allocating weights accordingly. This allows limiting the local BW allocated
to specific ports that cannot use all allocated slots, thus inducing some imbalance.
Our results show large WCD reductions and WCET reductions in the range 5%-28%,
while keeping hardware cost roughly unchanged. Moreover, we show that benefits
hold in the context of parallel applications, whose WCET becomes less sensitive to
the particular cores where they are allocated.
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Chapter 5

Mesh NoC Multidimension
Optimization

5.1 Introduction

Manycores bring several challenges for their adoption in the critical embedded market.
One of those is deriving timing bounds to tasks’ execution times as part of the overall
timing V&V process [99]. In particular, the NoC has been shown to be the main
resource in which contention arises, and hence hampers deriving tight bounds to the
timing of tasks [132].

For widely-used wNoCs [6, 20], several proposals show how to compute latency
upper-bounds to the different flows communicating on the manycore [51, 62]
under some restrictions, e.g. deterministic routing. Unfortunately, WCET
estimates computed with wNoCs are generally pessimistic when – as required to
achieve composable estimates – no restrictions are imposed on when and where
interference occurs in the wNoC. Interestingly, wNoCs offer several software-
controllable parameters that allow optimizing (reduce) the WCD that packets crossing
can suffer. These include mapping, routing, and allocation of weights (referred to as
weighted allocation (walloc)) to arbitration policies in each router. NoC contention
optimization solutions have been proposed for mapping [110, 112] and combining
routing and mapping [111, 134]. Additionally, optimal allocation of weights to achieve
fair BW balancing have been also proposed for TDMA [57] and wNoCs [64]. In
general, those solutions do not tackle all parameters at once, which leads to globally
suboptimal solutions. Overall, reducing WCD in NoCs is indeed a multidimensional
problem and, to make things worse, strong dependencies exist between the different
parameters. For instance, the impact of routing in WCD is heavily affected by the
mapping of tasks to cores. Despite the interdependencies among these parameters,
to our knowledge, no previous work proposes an integral solution to the problem of
WCD reduction simultaneously optimizing mapping, routing and walloc.

In this chapter, we cover this gap by proposing NoCo, a wNoC ILP- and stochastic-
based optimization framework that minimizes WCD estimates (and hence WCET
estimates) of applications running in the wNoC-connected manycores.
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In particular:

1. We analyze the main wNoC parameters that cause variability in WCD
(mapping, routing, and walloc) and how they relate to each other. We propose
a modeling approach that allows deriving the contribution of each wNoC
parameter to WCD.

2. We show that reducing WCD is a multidimensional problem that we decompose
into a stochastic-based optimization and an ILP formulation. The former covers
the optimization of the routing, whereas the latter optimizes mapping and
walloc.

3. We show the effectiveness of NoCo compared to hand-made setups and other
approaches that optimize a subset of the parameters. Our results confirm that
our multidimensional optimization approach achieves performance guarantees
that outperform the other ones evaluated. We also show that optimizing VC
allocation provides a subset of the configurations obtained with walloc, so that
optimizing walloc makes VC not to provide any additional advantage.

5.2 Abstracting sources of jitter (WCD modeling)

We target a standard 2D NxM wormhole mesh NoC as the one described in
Section 2.2.2. Input ports comprise a queue to store flits, or several if VCs are
implemented.

5.2.1 Introduction to WCD modeling

The WCD of the packets of an application, and hence the WCET of the application,
is heavily affected by the NoC parameters. In particular, the NoC has a twofold
impact:

1. It affects the Zero-Load Latency (zll), i.e. the latency experienced by a packet
to traverse the network from source to destination in the absence of contention.

2. More importantly, it plays a key role on the contention delay, bounded by WCD,
that the application can suffer.

Finding an optimal network configuration to minimize WCD/WCET is a
multidimensional problem encompassing several inter-dependent parameters. In order
to make the optimization problem tractable, abstractions are needed to capture the
impact of different parameters in a common modeling framework. This is challenging
since existing abstractions are heterogeneous and not intended to fit ILP models.

In this chapter, we present a particular WCD-centric abstraction to address the
main sources of jitter in a wNoC, namely: placement of tasks (threads) to cores,
routing, and walloc.

Moreover, we also provide an abstraction for VCs that allows us to show that
walloc provides a superset of the configurations obtained with VCs, so removing the
need of having extra VCs to reduce contention if walloc is in place.
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Table 5.1: Definitions used in this chapter.

Term Definition
R(x, y) Router with coordinates (x,y) in the NoC
Fi Flow i: stream of flits traversing the same H -node route

Rj
i For flow Fi is the router at hop j

F̂Xj
i Set of flows targeting the same output port Fi targets at R

j
i

Hi Number of hops in a flow Fi

P j
i No. of requests that may contend for the same Rj

i output
port as Fi under the worst-case contention scenario

ERj
i Rate at which flits of flow Fi can be ejected from Rj

i

in the absence of backpressure

Dj
i Maximum time that a packet of Fi requires to go from

the input port of Rj
i to its destination node

BWi Minimum bandwidth allocated to flow Fi at source node

BW j
i Minimum bandwidth allocated to flow Fi at R

j
i

BW j
i Progated worst-case ejection rate for Fi at R

j
i

NRj
i Number of queues that can potentially contend for an

output port that Fi is targeting at Rj
i

ω(i, j) Function returning the index x of the worst possible desti-

nation flow Fx that starts at Rj+1
i and reaches the worst

destination in terms of indirect blocking of packets of Fi

In order to derive the WCD for a flow Fi we build on the formulation in [51], see
Equation 5.1.

Table 5.1 describes the terms used in this chapter. The first multiplicand provides
an upper-bound to the number of rounds each packet in Fi is stalled until all
contending requests in router Rj

i are able to progress, which is NRj
i − 1 for round-

robin.
The second multiplicand is the indirect contention delay each packet of Fi can

suffer in each hop due to the worst possible destination flow Fω(i,j). The worst

destination of flow Fω(i,j) is the one causing the highest contention to Fi in router Rj
i .

It can be computed iterating all flows until they target their destination [51]. We also
define w(i, j) as a function that returns the index of the worst-destination flow.

WCDi =

Hi∑
j=1

 (NRj
i − 1)︸ ︷︷ ︸

ContendingRequests

×
Hω(i,j)∏
m=1

NRm
ω(i,j)︸ ︷︷ ︸

1/Bandwidth

 (5.1)
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In this chapter, we refactor this expression to capture the impact of walloc in the
WCD of a flow Fi. In an arbitrary network the time required to process a packet,
i.e. its network traversal time, can be computed based on the network BW. Let
BWi be the bandwidth assigned to Fi, then its traversal time can be computed as
1/BWi. Note WCD is the result of adding the time the network requires to process
the NRj

i − 1 corresponding requests at each of the Hi hops traversed. Then, from
Equation 5.1 we can derive the minimum bandwidth BW j

i allocated to any packet at
Rj

i targeting the same output port Fi targets as follows:

BW j
i =

1∏Hω(i,j)

m=1 NRm
ω(i,j)

(5.2)

Alternatively, and with the aim of simplifying ILP formulation, the minimum
allocated BW can be derived building on the concept of worst-case ejection rate
(ERj

i ). ERj
i is the worst ejection rate for flits of flow Fi in router Rj

i through the
output port determined by the routing policy whenever the next router in the path
(Rj+1

i ) can accept an incoming packet. ERj
i can be computed as ERj

i = 1/P j
i where

P j
i equals NRj

i when packets of Fi can be blocked due to contention and 0 otherwise1.
The effect of backpressure is covered by the propagated worst-case ejection rate that

represents the minimum BW allocated to Fi in router Rj
i . Let F̂Xj

i be the set of
flows that contend for the output port targeted by Fi in Rj

i the worst-case propagated

ejection rate BW j
i can be formulated as follows:

BW j
i = min

∀Fx∈F̂X

Hw(x,j)∏
k=j

1

P k
x

 (5.3)

In the formulation above when P k
x is 0 the ejection rate and the corresponding

allocated BW are defined to be ∞, representing there is no contention due to
backpressure and the packets of Fi can progress without contention to the next router.
Note also that once in a given router Rj

i packets of Fi suffer from contention, P k
x values

cannot be equal to 0 in subsequent routers due to backpressure effects.

Building on BW j
i , we can derive the WCD that a packet of flow Fi takes to reach

its destination node from the input port of router Rj
i . To that end, we define Dj

i as
the latency that a packet requires going from Rj

i to destination. Overall, the recursive
definition of Dj

i is as follows:

Dj
i =

1

BW j
i

+Dj+1
i (5.4)

Note that WCDi is then equivalent to D1
i and can be obtained recursively by

adding the time to move from each router to the next one, where the time to move

from one particular router Rj
i to Rj+1

i is upper-bounded by 1/BW j
i and equal to 0

when BW j
i is ∞.

1Note that there are cases in which in spite of the routing does not prevent flows to contend with
Fi, no contention with other flows can occur due to the way the flows are mapped to the network.
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5.2 Abstracting sources of jitter (WCD modeling)

We have thoroughly validated WCD values computed using the expressions above
by observing WCD values obtained for XY routing and round-robin arbitration
match the ones obtained with formulations in [51] and [62] for the analyzed flows.
Furthermore, we have assessed the accuracy of our model in upper-bounding the
actual contention caused in the wNoC by empirically reproducing a worst-congestion
scenario using gNoCsim [127]. To that end, we simulate the traffic generated by a
memory-intensive micro-kernel in which all tasks in the NoC send packets to memory
steadily. We have performed this experiment for 2 different network setups based on
NoC sizes from real systems (e.g. 6x4 in Intel SCC [5] and 6x6 in Tilera-Gx36 [20]).
To ensure a steady congestion state is reached, we have taken measurements once at
least 1,000 packets per node have been injected. We also repeat the measurement
process until all nodes have sent at least 2 million requests. Figure 5.1 shows the
comparison of the analytically computed values with respect the ones obtained with
simulations (e.i. nWCD = computedWCD/obtainedWCD). The comparison is
performed for the flows with the minimum and maximum WCD (referred to as Fmin
and Fmax, respectively), and the average across all flows, referred to as meanF. As
it can be seen in the figure our expressions provide a tight upper-bound of the NoC
contention.

Figure 5.1: Tightness of WCD bounds for a 6x4 and 6x6 wNoC.

5.2.2 Routing

In this work we consider only routing policies with minimal distance routes, that is
those policies forward packets in each router in any direction that guarantees that
the distance to the target decreases by one hop. For instance, XY routing meets this
constraint.

Moreover, due to their suitability for critical real-time systems and their efficiency
in terms of implementation, we further assume deterministic routing policies, so that
a given packet can only be sent to a specific output port in a router, as dictated by the
routing policy. For instance, recalling example in Figure 5.2(a), a packet sent from
R(2, 2) to R(0, 0) with XY routing can only move in the X direction until R(0, 2),
and then in the Y direction until R(0, 0). Note that with deterministic routing, the
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5. MESH NOC MULTIDIMENSION OPTIMIZATION

(a) (b)

Figure 5.2: Mesh basics. (a) Router coordinates in a 4x4 part of a mesh. (b) Ports and
VCs competing for output PE port in a canonical 2D-mesh router.

route to follow by a packet is independent of whether there is contention in the path.
Such contention may delay progress, but not alter the route.

Routing determines for a packet stored in an input port queue of the router the
other input ports can contend for a given output port. To simplify the routing
algorithm implementation, in the routing policies considered, all flows in the wNoC
share the same routing decisions/restrictions. This approach is also followed by
the majority of on-chip routing algorithms including XY, dimension-order-routing,
segment-based routing [135], and derivatives.

Routing restrictions help to determine the exact number of requests (P j
i ) that

might contend at router Rj
i for the same output port as Fi in the worst-case

situation. For instance, P j
i values for a mesh with XY routing and assuming all-

to-all communication are determined as: P j
i = 2 if the destination is X or X− and

P j
i = 4 if the destination is Y or Y− or the PE. For a particular routing policy P j

i

is fixed, with different values across routers. Hence, routing can be abstracted by
replacing P k

x in Equation 5.3 by the actual number of flows that can contend for the
output port used by the routing algorithm at each router Rj

i . Therefore, by setting
specific routing directions in each router, P j

i changes for the output port of each
router and new Dj

i values (per-core WCD) are obtained for each core.

Deadlock Avoidance. Routing algorithms in wormhole have to ensure deadlock
freedom. Deadlock situations in wNoCs occur when packets are waiting on each
other in a cycle. For instance, XY algorithm avoids deadlock situations by prohibiting
certain turns. We prevent deadlocks by ensuring that there are no prohibited cycles
in the generated routing. This can be alternatively achieved by imposing further
restrictions in the routing inputs of the model or using specific VCs to this end.
However, this is orthogonal to our overall formulation just removing some routing
options.
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5.2 Abstracting sources of jitter (WCD modeling)

5.2.3 Weight Allocation (Arbitration)

Wmeshes allow allocating heterogeneous BW in the routers to the different flows to
accommodate the different needs of different communication flows in the weighted
NoC [85]. Weighted arbitration can be employed to achieve a globally-fair
(homogeneous) BW allocation across cores [64]. Conceptually, given a NoC with
NxM nodes, globally-fair wmeshes reduce the BW for nodes whose allocated BW
is above 1

N×M
for a given destination node and increases it for those whose BW is

below. This is achieved by using, for instance, a larger arbitration window in the case
of round-robin, so that a larger number of slots is given to some ports so that the
overall BW allocated to each core to the destination can be arbitrarily chosen.

So far we have assumed round-robin with homogeneous weights across flows, so
that given P j

i flows contending for an output port in a router, each one is allowed
to eject a packet at a rate ERj

i = 1

P j
i

whenever the next router in the path accepts

incoming packets. Hence, the total ejection rate of the output port is 1

P j
i

for each of

the P j
i flows.

For instance, given P j
i = 3 contending flows, the default round-robin arbitration

policy uses arbitration windows with 3 slots, one of which is given to each flow. Hence,
each flow has 1/3 ejection rate. With weighted arbitration, we can set a window with
an arbitrary number of slots (e.g. 5) and allocate them to flows as wanted. For
instance, we could allocate 3 slots to flow 1 and 1 slot to each other flow, so that their
respective ejection rates would be 3/5, 1/5 and 1/5. Appropriate weights can be set
up to modify the WCD of each core. For instance, authors in [64] have shown that
homogeneous BW can be achieved by properly allocating weights in routers, which
homogenizes to some extent WCD values2. In general, weight allocation can be set
as needed – with a granularity limited by the size of the arbitration window size –
and abstracted by using appropriate P j

i values for each flow in each router for the
computation of the Dj

i values.

5.2.4 Virtual Channels

As we stated in the VC part in Section 2.2.2, VCs are used to multiplex physical
channels. In the context of critical real-time, static VC allocation alleviates contention
reducing WCD by providing isolation and reducing the overlapping between the routes
followed by the different flows.

With VCs, two different arbitration rounds take place in the router, see
Figure 5.2(b). A first arbitration determines the input port that is granted access
to the output port. A second arbitration selects the VC that is granted access. For
instance, given a router with 2 VCs that are statically allocated, with 1 flow in the
former (VC1) and 3 in the latter (VC2), the arbiter grants access alternatively to
each VC, and within the second VC in a round-robin fashion to each flow. Hence,
the flow in VC1 has an ejection rate of 1/2, whereas each of the other flows has an

2While weights can homogenize BW, they cannot mitigate the communication cost caused by
physical distance to destination (zll), so in general, WCD cannot be made fully homogeneous.
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Figure 5.3: Example of VCs and its equivalent walloc design.

ejection rate of 1/6. As shown, this formulation is identical to that of the weights for
wmeshes, with the difference that weights can be allocated as needed at a much finer
granularity.

We illustrate how VCs are subsumed by walloc with an example for a XY −RR
3x2 mesh NoC, see Figure 5.3(a). Its representation with no VCs in the form of a
tree to access the memory controller (MC) is shown in Figure 5.3(b), where values
at the edges indicate the ejection rates for each port. Figure 5.3(c) shows the tree
with 2 VCs where node 3 is allocated to VC2 and the rest of nodes are allocated to
VC1. In the mesh without VCs, the BW is evenly shared across input ports, which
makes node 3 to have only 1/12 of the BW (see Figure 5.3(b)). Instead, when we use
the particular VC allocation in Figure 5.3(c), BW is allocated in a different manner
making node 3 enjoy 1/6 of the total BW. This occurs because BW allocation is
modified in the links from 6 to 5 (6to5) and from 4 to 6 (4to6) since two VCs are
multiplexed over the same physical link. In particular, 6to5 BW (1/3) and 4to6 (1/6)
are shared between VC1 and VC2. In 6to5, 1/6 of the BW is allocated to VC1 and
the other 1/6 is allocated to VC2. Thus, the node attached to router 6 gets 1/12 of
the BW and the remaining 1/12 is allocated to the node attached to router 4. On
the contrary, since node 3 uses VC2, its allocated BW is still the one coming from
6to5 (1/6). Finally, once BW per core is determined, it is trivial to set the weights
that lead to that particular BW allocation starting from the destination node and
splitting it as needed. In this particular example, Figure 5.3(d) shows the walloc that
leads to identical behavior to the case of 2 VCs on XY −RR.
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5.3 Formulation

5.2.5 Mapping

The WCET of parallel and single thread applications can be obtained using the
formulation below. For parallel applications WCET is determined by the thread
finishing the latest.

The WCET of an individual thread (application) Ti, WCETi, is computed as
shown in Equation 5.5.

WCETi = ETIji +Nreqi ·Dj
i (5.5)

The ETIji figure corresponds to the classical notion of WCET, defining an upper-
bound for the execution of Ti in isolation, under any possible execution scenario. In
a NoC, however, the ETIji bound depends on the node where Ti executes, and must
be defined for all nodes j in the system (i.e. all different Cartesian distance values).
Since ETIji is independent of contention and we assume routing policies with minimal
distance routes, some nodes will share the same ETIji . Hence, deriving the worst-
case execution time bounds in isolation of Ti just on a subset of the cores will suffice
to represent all potential distances to the memory node. For instance, recalling the
example in Figure 5.2(a), and assuming that memory is located in R(0, 0), we could
run Ti in the cores at routers R(0, 0), R(0, 1), R(0, 2), R(0, 3), R(1, 3), R(2, 3) and
R(3, 3), since, for instance, ETIji will be identical at R(0, 2), R(1, 1) and R(2, 0) since
all them have the same Cartesian distance to the destination.

Similarly to ETIji , Nreqi captures the worst-case number of requests triggered by
Ti under any possible execution conditions, with the difference that it does not depend
on the execution node (i.e., it is constant across cores). The worst-case number of
requests is an essential dimension to consider when bounding contention effects: Nreqi
bounds can be derived either statically [33] or based on measurements [78]. Note that
it is fundamental to conservatively consider WCET and number of requests separately
as the corresponding scenarios (e.g., input data or execution path) do not necessarily
match [78].

Finally, Dj
i is derived according to Equation 5.4. Ultimately, for a given thread-

to-core mapping, Dj
i is constant for each node j (i.e., it is constant once Ti is mapped

to a core).
Therefore, the effect of thread-to-core mapping on WCETi can be abstracted by

using the corresponding ETIji and Dj
i values precomputed for the core where the

thread is mapped.

5.3 Formulation

We propose a hybrid NoC Optimization (NoCo) approach to solve the
multidimensional problem of NoC parameter optimization. Our approach combines
optimization algorithms and ILP formulation to reach its goals. The approach also
comprises a less important post-processing module. In particular, building on the
analysis Section 5.2, the optimization algorithms of NoCo cover the variability of
routing while mapping and walloc are optimized via an ILP formulation.This is
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Figure 5.4: Main stages of NoCo.

sketched in Figure 5.4. The overall goal of NoCo is to derive the WCET of the
application factoring in NoC contention.

Under a given routing, the zll for a given thread is constant given a specific core
c while the WCD for the packets sent by that core (Dc) depends on the particular
routing (r) followed by the packets of the other cores, walloc (w), and VCalloc (v)
used. Formally stated, Dc = f(r, w, v). In fact, as we show later, given a routing r,
the WCD imposed by a given WCD w and VCalloc v can be obtained without using
VC, since there exists a walloc w′ that delivers the same WCD across cores. Hence,
Dc = f(r, w, v) = f ′(r, w′).

It is noted that, a holistic approach modeling also routing as an ILP variable,
would cause the optimization problem to become quadratic as the correlation between
BW quotas assignment and routing cannot be modeled with linear constraints.
In contrast to ILP or MIP (Mixed-Integer Programming) problems, quadratic
optimization problems are generally NP-hard and state-of-the-art solvers are normally
incapable of proving the optimality of any solution possibly found.

For the routing optimization, we opted for a stochastic approach instead of a
heuristic-based one for a two-fold reason. First, heuristic-based solutions present
the problem that in general it is not possible to assess their quality, since they
might be subject to local maxima. Furthermore, the use of routing-only heuristics
to find a (local) solution can result in negative overall results when walloc and
mapping optimization are applied. And second, as detailed later in this section,
a stochastic-based solution allows exploring a restricted number of routes so with
limited exploration time, while allowing to argue that the best evaluated route belongs
to the top X% best routes.

5.3.1 Routing

For time predictability reasons, we stick to static (predictable) routing that must
further avoid deadlocks. In particular, we explore XY, referred to as ‘0’ in the
following figures, and YX (‘1’) routing for each core. Combining both allows for
achieving good malleability in limiting the number of contenting flows P j

i in the
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Figure 5.5: Examples of different routings and pressure on different output ports.

routers of a particular flow Fi. Figure 5.5 illustrates with an example how the
proposed routing determination algorithm works. Figure 5.5(a) sketches the graphical
convention we use to represent the routing selected by each node and the number of
flows contending in each output port. If we apply XY for all nodes, r0 = (000000000),
we obtain the routes in Figure 5.5(b) and the contention per output port as shown
in Figure 5.5(c). We can see that some output ports suffer high contention (up to
6 flows). A different arbitrary routing r1 = (000010010) presents lower maximum
contention per output port, see Figure 5.5(d).

It follows that good routes are those that limit the number of contenting flows P j
i

in the routers used by of a particular flow Fi. However, this is a local (i.e. routing-
only) optimization. When combined with mapping and walloc optimization, routes
that create more contention – and hence are less optimal from the routing point of
view – can result in reduced maxWCD/sumWCD. For instance, let us assume that
under a particular routing one route suffer high contention while the rest suffers low
contention. Further, assume a second routing that much better balance contention.
For an application in which one thread (task) is insensitive to NoC WCD, while the
rest of the threads are, the former (less balanced) routing results in reduced WCD
and hence WCET.

Hence, since a priori we cannot determine what a good route is, it would be hard to
define a standard heuristic approach to address the problem (e.g. genetic algorithms,
simulated annealing). Besides, those heuristics would not allow assessing how far a
solution (routing) is from the optimal one.

In order to cover both issues, we use a stochastic approach based on a Monte-Carlo
experiment. Basically, we produce static routings schemes by selecting randomly
whether each node uses XY or YX routing. Hence, from the finite – but huge
– population of all routings, a sample is selected using random sampling with
replacement. This can be done by following the simple approach shown in algorithm 1:
for every node in the NxM mesh we generate a random integer: if it is odd we
assume XY routing (0) and YX (1) otherwise. We ensure resulting configurations are
deadlock-free by filtering out the samples in which routing cycles are created [135].
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Algorithm 1 Algorithm to generate random routings.

1 procedure gen route random(sd,iter,type, ncount)
2 for (i = 0; i < NxM ; i++; ) do
3 mapping[i] = random() mod 2;
4 end for
5 end procedure

With this approach, we can probabilistically reason on the quality of a given
routing. Let C be the probability that a sample of random routings contains at
least one of the top X (X ∈ [0..1]) routings, i.e. fraction of routing from the entire
population providing the best results for a given target metric (e.g. maximum WCD
across cores). Let C̄ the complementary of C, i.e. 1−C. The probability that a single
random routing is not in the top X of the population is (1 − X). The probability
that all k mappings do not belong to the top X is, therefore, (1 − X)k. Hence,
its complementary, C, is the probability that the best routing choice in the random
sample belongs to the top X routings. Hence, C = 1− (1−X)k.

Table 5.2: C̄ for different random sample sizes.

C̄
X 10−2 10−3 10−4 10−5 10−6

102 0.37 0.90 0.99 0.999 0.9999
103 4.3 · 10−5 0.37 0.90 0.99 0.999
104 < 10−43 4.5 · 10−5 0.37 0.90 0.99
105 < 10−300 < 10−43 4.5 · 10−5 0.37 0.90
106 < 10−300 < 10−300 < 10−43 4.5 · 10−5 0.37

As illustrated in Table 5.2, the probability of not having, for instance, any routing
within the top best 0.01% routings (C̄ = 10−4) with a sample size of 100, 000 is of
around 4.5 · 10−5 (so 0.0045%). Thus, the probability of having at least one of those
top X = 0.0001 routings is C = 0.999955 (above 99.99%). In general, we observe
that a sample size of around 1, 000 random routings allows guaranteeing with very
high confidence that at least one of the top 1% best routings is observed.

Once a routing is fixed, we can derive the WCD for every packet going from a given
node to the memory. The route information is encoded in a route, see Figure 5.4,
passed to the ILP model to optimize mapping and walloc.

5.3.2 Mapping and walloc

The WCD potentially suffered by a task τi upon each performed memory access, when
executing on a wmesh NoC, is determined by the interrelation of several factors:
the router τi is mapped to, the adopted routing configuration (with its inherent
flow constraints) and the BW distribution along the mesh 3. The WCD has to
be accounted for in the definition of the WCET of all tasks. We present an ILP

3In this subsection we refer to the walloc optimization problem as BW distribution problem.
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Table 5.3: ILP model notation.

R = {R0, . . . , Rs} Set of routers in the mesh

N = {N0, . . . , Ns} Set of computational nodes in the mesh

T = {τ0, . . . , τn} Task set to be executed on the mesh

ai Number of memory accesses triggered by τi

cki Execution time in isolation of τi when executed on node Nk

WCET k
i Worst-case execution time of τi when executed on node Nk

WCDk Worst-case delay suffered by a task mapped to node Nk

M : T 7→ Z Mapping of τi to indexes in the node set N
B : {R ∪N} 7→ IR Mapping of Rk and Nk to a bandwidth assignment

WCETM,B
i WCET for task τi under mapping M and bandwidth

allocation B
WCDM(i),B WCD suffered by τi, under mapping M and bandwidth

allocation B.
H : R 7→ P(R) List of routers (hops) a packet needs to traverse to reach a

destination from a given source router

L : R 7→ P(R) Map of active links in the mesh

BWRB
k Bandwidth assigned to the output port of router Rk

BWNB
k Bandwidth assigned to the output port of the computational

node attached to router Rk

formulation for optimizing the WCET of a task by finding an optimal task mapping
and BW assignment, under a given routing configuration.

We consider a 2D mesh NoC comprising a set of routers R = {R0, . . . , Rs}, with
associated computational nodes N = {N0, . . . , Ns} (such that Nk is attached to Rk)
and a set of tasks T = {τ0, . . . , τn}, that need to be executed on the mesh NoC.
Each task τi is characterized by the number of performed memory accesses ai, and
an execution time bound computed in isolation, dependent on the node it executes
on: we use the notation cki to represent the timing bound of τi, when executed on
node Nk (implicitly accounts for the routing policy). The WCET of a task τi when
executed on router Rk, with a given BW quota, is obtained by inflating the execution
time in isolation with a worst-case delay penalty for each memory access ai:

WCET k
i = WCDk ∗ ai + cki (5.6)

In turn, the worst-case delay WCDk potentially suffered by τi when executed on
node Nk is determined in particular by the routing policy in use, and the specific BW
assignment among nodes.

Given a fixed routing policy (configuration), our ILP model leverages on task
mapping and bandwidth assignment to optimize the WCET of tasks.
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B.1. Objective Function

The ILP formulation supports two objective functions representative of two typical
metrics for assessing the performance of a wNoC. We are interested in finding the
optimal task-to-node mapping and bandwidth assignment that minimizes:

• SumWCD. For independent workloads, reducing the addition of the WCD
of all tasks/threads, helps optimizing resource usage and improving overall
guaranteed performance. Reducing SumWCD can be done under some
constraints on the maximum WCD allowed per task. Overall this metric, which
minimizes the WCD experienced by all requests of all threads in the workload,
is particularly relevant to assess the global efficiency of our approach.

• MaxWCD is derived by computing the total WCD experienced by all
requests for each thread, and minimizing the maximum WCD value across
threads. For parallel applications, this metric provides information about the
thread experiencing the highest contention and hence potentially delaying the
completion of the application.

We introduceM(i) : T 7→ Z to define a mapping from tasks to computational nodes
in the mesh, whereM(i) returns the index k that identifies the nodeNk ∈ N such that
τi is mapped to Nk. Note that Nk is by definition attached to router Rk. Similarly,
we define B : {R∪N} 7→ IR, mapping from routers and nodes to a bandwidth quota,
where B(Rk) returns router Rk bandwidth assignment and B(Nk) returns the same
for node Nk. It is worth noting that B depends on the specific routing configuration.

A formulation for the WCET parametric on task mapping and bandwidth
assignment would be as follows, where WCDM(i),B identifies the per-access WCD
potentially suffered by τi, under mappingM and bandwidth allocation B.

WCETM,B
i = WCDM(i),B ∗ ai + c

M(i)
i (5.7)

For maxWCD, the ILP is meant to optimize the time required to execute the
longest activity in the mesh.

min
M,B

max
τi∈T

WCETM,B
i (5.8)

For sumWCD, instead, ILP aims at minimizing the resources required to execute
whole workload.

min
M,B

∑
τi∈T

WCETM,B
i (5.9)

B.2. Modeling WCD

Similarly to the execution time in isolation, WCD is affected by the task location
in the mesh and the routing policy in use. However, while the set of Ck

i is an
input variable to the ILP model, the WCD is indirectly a decision variable, as a
function of BW allocation. The part taken by the routing policy in the computation
of the WCD has to be made explicit, in the same way as the mesh BW assignment.
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The BW allocated to each element in the mesh is modeled by an explicit decision
variable: BWRB

k defines the bandwidth allocated to the output port of router Rk

under bandwidth assignment B, whereas BWNB
k stands for the bandwidth assigned

to the computational node Nk, attached to Rk.
Routing is indeed relevant for determining both the packet route and the feasible

bandwidth split rules. We defined two abstractions, H and L to capture these relevant
aspects.
H : R 7→ P(R) models the list of routers (hops) a packet needs to traverse to reach

a destination from a given source router. This information is necessary to accumulate
the WCD along the end-to-end flow.
L : R 7→ P(R), instead, is a map of the active links in the mesh, in accordance

with the routing rules. This information is fundamental to encode the rules for BW
allocation.

Given a routing policy defined by the pair < H,L >, we model BW allocation
rules and WCD bound as follows. First Eq. 5.10 models the fact that the BW
assigned to the output port of a router Rk is determined by the BW in the node-local
computational node BWNk, and the cumulative BW propagated by other routers
connected to Rk through an active link.

BWRB
k = BWNB

k +
∑

Rt∈L(Rk)

BWRB
t (5.10)

Having defined the bandwidth per router, it is possible to model the WCD for a
router Rk as follows:

WCDM,B
i =

1

BWNB
M(i)

+
∑

Rt∈H(M(i))

1

BWRB
t

(5.11)

As defined in Eq. 5.11, the WCD per-access for a task mapped to router Rk is
determined by the cumulative inverse BW across all hops in the path from source to
destination. The computed WCD can be used for the WCET computation in Eq. 5.7.

B.3. Modeling Constraints
The mesh topology and routing policy allow to derive a set of constraints to guide

BW allocation across routers and task mapping. Some simple constraints can be put
on B by defining the domain space for the ILP variable:

• The WCD is always greater than zero.

WCDM,B
i > 0.0 ∀i,M,B

• Allocated bandwidth per router must be larger than zero.

BWRB
k > 0.0 ∀k,B
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• The cumulative amount of bandwidth allocated to all computational nodes must
be exactly one ∑

Rk∈R

BWNB
k = 1

Similarly, several constraints can be defined onM.

• Each router cannot be assigned to more than one thread

M(i) ̸=M(j) ∀i, j

• Each thread can only be assigned to one router

|M(i)| = 1

B.4. Putting it all Together

NoCo optimizes routing with a stochastic approach that allows assessing the
quality of the explored routes. The alternative approach of expressing the routing as
a decision variable in the problem formulation has the notable drawback of breaking
the linearity of the model. Modeling the routing as the combination of two new
variables, representing the BW distribution and the flow configuration, would turn the
computation of both the router BW quotas and, ultimately, the WCD into a quadratic
optimization problem. For each route, an ILP model optimizes mapping and walloc
(bandwidth allocation) to minimize eithermaxWCD or sumWCD. In the next section,
we empirically assess the benefits of NoCo over other existing approaches.

5.4 Experimental Evaluation

We conduct the evaluation of NoCo on SoCLib [126] and gNoCSim [127] described
in Section 3.3. In this case, we model the TILED MC where each tile comprises L1
cache memory and a core that communicates with the rest of tiles and memory using
a NoC router (see Section 3.2 for more details.).

The manycore also includes a unified distributed shared L2 cache memory, so
that each core has a local partition of the L2 cache. To increase the predictability
of the cache hierarchy the L2 cache is partitioned and each core is provided with a
64KB region with 64B per cache line. L2 partitioning does not only avoid inter-task
interferences in the L2 but allows both isolating cache coherence between different
critical and non-critical tasks [136] and/or to disable coherence support to avoid
further NoC interferences.

Memory requests access main memory through the NoC. Each memory request
operates at a granularity equal or smaller to a L2 cache line, thus transferring up
to 16B (128 bits) per NoC packet, which also has 16 control bits. Overall, packets
with up to 144 bits are sent in a single flit through a 144-bit link width, which
allows all NoC packets affecting our tasks to have one flit. Despite one-flit packets
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are preferred to reduce contention, our model is also able to deal with other packet
lengths by computing worst-case ejection rates considering packets of the maximum
length.

Note that routers are connected through 2 links, each one sending data in one
direction. Hence, whereas memory accesses may experience contention, memory
responses cannot since, at every router only one input port (the one used for
responses) contends for the corresponding output port (the one to move the response
to destination).

To evaluate NoCo when reducing the WCET of parallel applications supported
by the ADA programming language [133] but also when consolidating single-task
applications, we use the A−H self-generated benchmark suit described in Section 3.4.

From this set of benchmarks, we have generated workloads with NxN benchmarks
for each mesh size analyzed. Some workloads are homogeneous, thus having all
benchmarks of the same type (so 8 workloads in total), whereas others (4 workloads)
are heterogeneous by choosing the NxN benchmarks randomly (with replacement)
out of our set of 8.

5.4.1 Reference techniques

As reference approaches to compare NoCo against, we use:

• XY − RR deploys predictable XY routing with standard predictable round-
robin arbitration in each router.

• XY −WRR is analogous to XY −RR except that we modify weights to balance
the BW across all nodes [64]. This makes the WCD of all nodes accessing
memory more homogeneous than in XY − RR, effectively mitigating mapping
as a source of variability.

In the rest of this section we refer to our technique as rILP (m,w) since NoCo
optimizes routing, r, first using the stochastic approach in Section 5.2.2 with samples
of size 10 for 3x3 experiments and 100 for 4x4 experiments, and mapping and walloc
using the ILP approach, ILP (m,w), presented in Section 5.3. Results are shown in
the form of WCET reduction w.r.t. the XY −RR case. For instance, the maxWCET
improvement of ILP (m,w) is obtained as:

1−
maxWCETILP (m,w)

maxWCETXY−RR

(5.12)

5.4.2 Incremental evaluation

In order to assess the benefits of optimizing each individual parameter of a NoC
(mapping, routing, and walloc), we present the results obtained with our approach
as it incrementally optimizes them. In particular, we compare these setups:

(a) XY − WRR − ILP (m). Both routing (XY) and weights (WRR) are fixed.
Therefore, NoCo only optimizes mapping, i.e. it explores the different mappings
of tasks to cores (ILP (m)).
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(b) XY−ILP (m,w). Only routing is fixed (XY) and NoCo explores (i.e. optimizes)
both mapping and weight allocation at the arbitration level (ILP (m,w)).

(c) rILP (m,w). All three NoC parameters are optimized by NoCo: routing,
mapping and walloc.

With this incremental approach we can derive the benefits of optimizing each
parameter: (a) gives the benefits of optimizing mapping; (b)-(a) the benefits of
optimizing walloc; and finally (c)-(b) the benefits of optimizing routing.

Figure 5.6: Effect of incremental optimizations: mapping, walloc, and routing.

Figure 5.6 shows the impact of applying the optimization of the different
parameters incrementally. In particular, we evaluate the 4 heterogeneous 9-task
workloads, which we refer to as MIX1 to MIX4 on a 3x3 mesh NoC. Note that the
chart shows the maxWCET reduction that each technique obtains over the baseline
XY −RR.

Compared to the baseline XY − RR, we can see that XY −WRR [64] obtains
similar results (−1%) for three of the workloads, while for one workload it is 16%
better.

Effect of mapping. Compared to the baseline XY −RR, XY −WRR−ILP (m)
obtains maxWCD reductions of 23% on average, showing the benefits of optimizing
task mapping.

Effect of mapping and walloc. The combined effect of mapping and walloc
XY − ILP (m,w) results in further reductions of maxWCD across all workloads.
On average improvements 37%, so that the benefit of optimizing only walloc is 14
percentage points.

Full optimization. When NoCo optimizes all three NoC parameters it produces
the tightest WCET estimates, with maxWCET reductions of 46% on average, so that
the benefit of routing optimization is 9 percentage points.

Overall can see that results are consistent across all workloads ranging from 40% to
50%. These results show the benefits of simultaneously optimizing routing, mapping,
and walloc and how this provides the best WCET reduction results.

We evaluate rILP (m,w) in the rest of this section without further breaking down
experiments incrementally.
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5.4.3 Optimal routing

In this section, we compare the random routing selection to exploring all possible
routings. While the latter is not feasible in general due to its huge execution time
overheads, for the small set of experiments we evaluate it provides evidence on the
benefits of the stochastic approach to optimize routing.

Figure 5.7 shows the maxWCET obtained with random routing selection
normalized so that 100% corresponds to the lowest maxWCET and 0% to the highest
maxWCET. Thus, we show how close to the optimal is the best solution so far.

Figure 5.7: Normalized maxWCET of random routing w.r.t the best routing.

We have performed two experiments for 3x3 and 4x4 respectively. In both cases,
we take 5 samples (S1 to S5), each of which with just 5, 10, 25 and 50 of all possible
routings, i.e. 512 for 3x3 and 65,536 for 4x4. Across all five samples, we can see that
the maxWCET results obtained with random routing are very close to those obtained
with the best routing with samples of 50 observations. In the case of 3x3, sample
sizes of 10 already find optimal results. For 4x4, samples for size 10 get on average a
solution 85.2% optimal. With samples of 50, the average is 94.6% and the worst case
88.7%. With samples of 100 (not shown in the plot), the average is 98.6% and with
samples of up to 330 (0.5% of the population), the optimal solution is found in the 5
samples.

5.4.4 Homogeneous Workloads

For homogeneous workloads, the optimization goal we set for NoCo is reducing the
WCET of the thread with the longest WCET (maxWCET). For parallel applications
using coarse-grain parallelism, the thread with the lowest performance is usually
the one determining the WCET of the application and thus, optimizing maxWCET
minimizes the overall WCET of the parallel applications.
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It is also worth mentioning that for homogeneous workloads thread mapping plays
no role since all threads are identical. Hence, gains come from walloc and routing
optimization only.

(a) 9 threads. (b) 16 threads.

Figure 5.8: rILP(m,w) maxWCET results for 9- and 16-thread applications.

Figure 5.8(a) and Figure 5.8(b) compare the WCET reduction of the full NoCo
optimization, i.e. rILP (m,w), against the reference XY − RR and XY − WRR
designs for 9-thread and 16-thread applications, respectively. For those applications
we map to a 3x3 and 4x4 mesh NoCs respectively.

For 9-thread workloads, rILP (m,w) achieves average 74% WCET reductions
w.r.t. XY − RR and 26% w.r.t. XY −WRR. The rationale behind these results is
as follows:

• WCD values for XY − RR are highly heterogeneous and hence, the WCD
experienced by the thread at the core with highest contention is far higher than
that of most of the other threads.

• By using WRR, WCD values become more homogeneous, thus significantly
decreasing the opportunities for optimization in the context of homogeneous
workloads. Yet, even in this case, rILP (m,w) decreases maxWCET
significantly (26% on average).

Results across workloads show that those with higher access frequencies obtain
higher benefits with NoCo, since the impact of WCD on their WCET is higher. Still,
we observe that decreasing NoC requirements by 4x only decreases gains from 26%
to 22%, thus showing the importance of optimizing NoC configuration to improve
performance.

For 16-thread applications maxWCET reduction follows the same trend, though
improvements are more noticeable. In particular, rILP (m,w) decreases maxWCET
by 88% and 29% on average w.r.t. XY − RR and XY −WRR respectively, with
increased gains occurring consistently across all workloads.
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5.4.5 Heterogeneous Workloads

For heterogeneous workloads, NoCo focuses on reducing sumWCET, hence actually
reducing the overall impact – and wasted resources due to contention. While in the
experiments in this section, NoCo optimizes all three NoC parameters to reduce
sumWCET with unrestricted per-task WCET, our formulation supports setting
specific bounds to the WCET for some tasks. Unlike homogeneous workloads, for
heterogeneous ones, (task) mapping plays a role in optimizing performance – as it
was analyzed in Section 5.4.2.

(a) 9 threads. (b) 16 threads.

Figure 5.9: rILP(m,w) sumWCET results for 9- and 16-task workloads.

Figure 5.9 shows the sumWCET reduction of NoCo with respect to XY − RR
and XY −WRR designs for 9-task workloads (Figure 5.9(a)) and 16-task workloads
(Figure 5.9(b)).

For the 9-task workloads, rILP (m,w) we observe pretty consistent improvements.
In particular, with respect to XY −WRR improvements are similar to those obtained
for homogeneous workloads ranging from 17% to 22% (19% on average). We also see
that for the heterogeneous workloads, the results of RR are not as bad as for the
homogeneous. Yet NoCo improves XY − RR by 30% on average. Results for the
16-task workloads support that rILP (m,w) achieve consistent reduction w.r.t. the
other two techniques.

5.4.6 Other Metrics

In previous sections, we have used two optimization criteria sumWCET and
maxWCET. NoCo also supports other criteria such as, for example, limiting the
maximum WCET/WCD of tasks. This is better illustrated with an example that
uses the homogenous 9-thread workload A that we run in a 3x3 network under a fixed
mapping. In a first experiment we run NoCo minimizing sumWCET. This produces
the WCET shown in the upper part (1) of Table 5.4. In a second experiment we run
NoCo, still minimizing sumWCET, but also enforcing that τ8 cannot exceed 11.56
(million cycles). The result of this experiment is shown in the lower part (2) of
Table 5.4. As it can be seen, the WCET of τ8 is indeed 11.55, which is achieved
by maintaining its WCD below 3.3. As a side effect, we observe a small increase in
sumWCET, from 87.9 to 88.2.
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Table 5.4: Effect of limiting the WCET of one thread. ET stands for execution time in
isolation. Time show in million cycles.

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

ET 4.99 5.81 6.63 5.81 6.63 7.44 6.63 7.44 8.26

1 WCD 2.27 2.89 3.57 2.56 2.97 3.83 2.89 3.28 3.98

WCET 7.26 8.70 10.20 8.37 9.59 11.28 9.51 10.72 12.24

ET 4.99 5.81 6.63 5.81 6.63 7.44 6.63 7.44 8.26

2 WCD 2.55 2.93 3.80 2.56 3.18 3.86 3.07 3.29 3.29

WCET 7.54 8.74 10.43 8.36 9.80 11.30 9.69 10.73 11.55

5.5 Conclusions

In this chapter, we have analyzed the impact that wNoC configuration parameters’
have on the WCD and thus to the WCET estimates in multicore and manycore
systems. While several proposals focus on minimizing wNoC parameters impact in
WCET individually or in pairs, in this chapter we have shown that the optimal setup
only can be achieved when optimizing mapping, routing and walloc with arbitration
at the same time. To that end, we have presented NoCo, a framework that leverages
the configuration potentials of wNoCs via a hybrid stochastic/ILP approach. NoCo
finds the best routing configurations with a stochastic approach and applies ILP to
the generated routing policies to find the optimal mapping and weights allocation
for each of them. We show that NoCo achieves significant improvements over other
optimization strategies that focus on just a subset of the NoC parameters. NoCo
outperforms reference XY-RR and XY-WRR wNoC designs for both heterogeneous
and homogeneous workloads, and also in the context of parallel and single-thread
workloads.
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Chapter 6

Accurately Measuring Contention
in Mesh NoCs

6.1 Introduction

The trend towards more autonomous software-centric functionalities is on the rise in
CRTES in relevant industrial domains such as automotive. Major CRTES industry
players have adopted (or are on the way to doing so) small multicores, such as the
Infineon AURIX family [137] in automotive and the Xilinx Zynq UltraScale+ [138]
in avionics, which include few cores (e.g. 3 to 6). For the interconnection, manycores
build on NoCs as they provide good scalability and high flexibility to set appropriate
topologies, routing algorithms, arbitration policies, etc. Multiple processors targeting
CRTES already deploy NoCs (e.g. to connect 10 to 20 nodes), such as the Kalray
MPPA 256 SoC [7] (e.g. a 4x4 mesh) and the Xilinx VERSAL [26].

The other side of the coin is that hardware-shared resources in general, and NoCs
in particular, cause the timing of an application (and the bounds derived to it) to
depend on the activity of its co-runner tasks, i.e. their usage of shared resources.
When considering NoCs, several solutions bounds to the worst-case contention in
NoCs [52, 55, 60] classify contention into direct or indirect depending on whether
contending flows share resources over their paths in the NoC or not [61]. However,
these methods aim at deriving upper bounds to contention, needed during verification,
rather than tracking the actual contention during the testing phase, needed for
validation, and hence, they cannot be used for validation/testing purposes.

In this work, we contend that the ability to accurately track the contention a task
suffers in each node of a NoC-connected manycore by each other CT is instrumental to
validate the timing behavior of CRTES to a sufficient extent and properly diagnosing
software timing overruns. Overruns can otherwise go unnoticed if we just track the
cumulative contention a task suffers by all its CTs. More in detail, accurately tracking
per-node and per-task contention brings the following advantages:

• Detection. It allows detecting situations in which a given task incurs longer
contention than expected by a contender task, even if this effect is hidden or
compensated by another contender task causing less contention than expected.
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This anomalous behavior, which does not arise just by analyzing end-to-end
timings [69], must be detected during testing.

• Correction. It allows determining the point of the mesh where the contention
occurs and the tasks’ contribution to this contention, which is also fundamental
to propose and apply corrective measures in case of detected misbehavior.

In this line, the goal of this work is to set the foundations of a fine-grained
contention tracking approach that aims at capturing the actual contention tasks
generate to each other in a wmesh, as a building block for the timing validation
for wmesh NoCs. Our contribution develops in the following three axes:

(a) We define a golden metric called PairWise Contention (PWC) that captures
the slowdown the packets generated by the TuA suffer when accessing the
wmesh due to packets from the Contender Tasks (CTs). The main challenge
in deriving PWC emanates from the distributed nature of the wmesh NoCs
that causes contention to happen in different nodes (locations), as opposed to
centralized interconnects where all contention occurs at a single location. For
wmesh, simple ways exist to trace contention information locally in each router.
That information only reflects the packet (including its source core) that stalls
another packet. However, it does not reflect whether the blocking packet is
effectively causing such contention or is, in turn, blocked by another packet.
Ascribing all contention suffered by the TuA only to packets arbitrated in that
same router leads to incorrectly ascribing contention effects to the contenders.
Instead, in order to effectively capture the source of the contention, PWC defines
local and remote contention that is to be applied to each pair of tasks running.

(b) We define and formulate for the first time a Golden Reference Value (GRV) for
PWC. GRV is a criterion to derive the local and remote PWC components for
tasks running in a wmesh-centric processor. GRV fairly ascribes the contention
the TuA suffers in the wmesh to its CTs. GRV builds around the idea of
ascribing contention experienced by an analyzed packet to the actual contending
packet causing the contention, whether it shares (local) or not (remote) nodes
with the packet causing contention. GRV is complete, meaning that it is able
to classify all types of contention packets may suffer, distinguishing the source
and location of each contention case.

(c) We propose a particular implementation of GRV via an offline method for timing
validation. For each test, our method processes execution traces of a set of
tasks executed on a wmesh-centric multicore to break down the contention each
task suffers in each router. We assess the effectiveness of GRV in controlled
scenarios (including a variety of wmesh sizes and setups) in which contention
can be ascribed to the cores issuing packets. Our method, for every single cycle
of contention experienced by a packet, identifies the core that issued the packet
ultimately causing such contention, the router where contention occurred, and
hence, whether such contention is local or remote. Finally, we also assess the
scalability of the proposed approach to large NoCs (e.g. 5x5 and 6x6 meshes),
which are already larger than those NoCs in current and evaluated COTS
manycores for CRTES [7, 26].
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6.2 Defining Pairwise Contention (PWC)

Previous works in the literature have focused on providing bounds to NoC contention,
but they provide no information about the actual NoC contention tasks suffer. This
is better illustrated with an example. We model a 2x2 2Dmesh NoC with XY routing,
see Figure 6.3, in which all cores target the same memory controller located in the
right output port of R3. For simplicity, we assume that all routers have one virtual
channel, ports have a 2-entry queue that can store two packets and traversing a NoC
link and a router takes 1 cycle.

The left bar in Figure 6.1 shows the WCET estimate for τA that sends 1000
packets to the NoC derived assuming that the other three tasks are larger than τA so
that they send packets at their maximum rate during τA execution time. The WCET
estimate is derived as the addition of the execution time in isolation of τA (i.e. with
no contention), Tiso, and the WCD derived for each packet [61, 51]. In this case,
Tiso = 7000 cycles and WCD varies for each contending task based on the core in
which they run and the path followed to reach the memory controller WCDB = 2000
cycles, WCDC = 5000 cycles, WCDD = 5000 cycles. So that WCD and WCET
are derived analytically and built on information about the contention τA packets
suffer in each link, buffer and routing information, and the number of requests each
contenting task sends.

For the purpose of illustration, we then run τA in three different scenarios: S1, S2,
and S3. In all of them, the number of requests each task generates is the same 1000,
but the tasks take different times to execute in each experiment. Bars labeled S1, S2,
and S3 in Figure 6.1 show the actual contention suffered by τA from the other tasks
in each scenario. In S1 requests from τA and τD do not overlap in time so the latter
does not generate any contention on τA, while τB and τC only partially overlap. In
S2 the situation is similar with the exception that τB and τA request do not collide
and the request from τC and τD only partially collide with τA. Finally, in S3, tasks
send requests to the NoC so that they do not collide with each other.

Figure 6.1: Comparison between worst-case and observed contention CTs generate on
τA under scenarios S1, S2 and S3 as introduced early in this Section.
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Hence, τA’s WCET analytical computation that builds on WCD (bounds) caused
by τA worst potential arbitration packets alignment does not reflect the actual
contention suffered by the packets of τA in scenarios S1 to S3 nor correctly determines
which tasks are creating more contention to τA. In fact, the WCD and WCET derived
for τA are only valid as a global contention upperbounds for all three scenarios but not
as a method to bound the maximum contention contribution each task can create to
τA. The actual contention τA suffers depends on how requests align with the requests
of other tasks, which varies across experiments. Hence, techniques deriving bounds
to contention (WCD) cannot be used to measure the actual contention tasks suffer.

That is so because bound-based approaches, in general, assume certain traffic
conditions (e.g. worst-case packets alignment with a certain packets arrival
distribution) that may not reflect the real traffic behavior in execution. However,
as they do not analyze fine-grain real traffic from a run, these techniques cannot
provide any feedback other than whether the final WCET is accomplished or not
(not reliable in validation). Similarly, bound-based approaches that rely on static
arbitration policies (e.g. round-robin) to compute the shares between tasks (i.e.
bandwidth distribution), cannot capture bandwidth distribution variation over time
in tasks’ runs. This can occur, for instance, when one or more tasks of the system do
not use the entire bandwidth assigned by the arbitration policy used. In that case,
the remaining unused bandwidth is distributed among the NoC and can be used by
the other CTs. That can lead to a scenario where a task generates more contention
to other tasks than the expected one assuming a computed bandwidth distribution
independently if it exceeds or not the global WCET. In these kinds of scenarios, only
fine-grain packet analysis methods such as PWC and GRV can detect and provide
precise information useful for validation and verification purposes.

Detailed information about actual contention suffered by a task in the mesh
allows detecting any unexpected timing behavior during the validation phase, even
if no deadline violation occurs but tasks individually exceed their quota (i.e. the
contention they are expected to cause on the TuA). This may happen, for example,
when contention caused by τB on τA exceeds its estimated bound, but the total
contention caused by all contenders on τA happens to stay within the admitted
threshold. Such diagnosis information also helps to identify the root cause of a timing
misbehavior during operation and promptly react by applying the appropriate safety
measure like switching to a different precomputed task-to-core mapping or adjusting
the interconnect configuration [139]. Safety standards and reference documents like
CAST-32A and A(M)C 20-193 in avionics advocate identifying each interference
channel and provide evidence that it has been removed or mitigated. This cannot be
easily achieved with end-to-end measurements and requires per-resource (interference
channel) contention tracking.

Actual contention bounds can also be used as additional evidence that the derived
contention bounds are correct since small changes in the configuration in the NoC
can invalidate the derived bounds. To that end, benchmarks generating high load
on the network are executed against reference applications to compute the observed
contention and the theoretical bound.
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In both cases, detailed information about actual contention can provide accurate
diagnostics in specific (and relevant due to causing overruns) scenarios that are
unlikely to be easily reproducible due to the difficulties to control application
execution at a sufficiently fine grain. Hence, overruns may easily occur sporadically
and mechanisms to diagnose the causes without needing re-execution, which may not
reproduce the overrun, become of prominent importance. However, the challenge lies
in determining the information that is required and how to combine it to produce a
metric that captures the actual contention that tasks generate on each other.

6.2.1 Centralized interconnects

For centralized interconnects, like buses, PWC can be defined as the contention a
request from a core (master) CB causes on a request from another core CA. It can be
derived as the time interval in which CB is granted access to the interconnect and CA

has its request signal active. Hence, in centralized interconnects, contention-related
information is available in a single location and, since contention occurs locally in the
centralized interconnect, reasoning about the cause and effects of contention (‘who’
causes it and ‘who’ experiences it) is relatively simple.

Intuitively, PWC for wmesh could be defined as for centralized interconnections
by applying it locally in each router. As an input port can be shared by multiple
packets belonging to different flows from different cores, the contention is tracked
per packet and classified per flow. The rule to account for contention is relatively
straightforward: every cycle a given packet Pj from Fj (terms are defined in Table 6.1)
in a given input port in Rn is granted access to the output port during the header flit
arbitration, the other packets (e.g. Pi and Pk from Fi and Fk) that lose the arbitration
are accounted for an additional cycle of contention, see Figure 6.2 left router (Rn).
This contention is also accounted for while Pj is using the output port during the
transmission of body flits, and the flits in the other input ports, e.g. Pi and Pk, or
the PME are waiting to get access to the same output port. In both scenarios, every
cycle contRn

j▷i and contRn
j▷k are incremented1.

Figure 6.2: Backpressure example.

1Note that, a flow is composed of packets, and each packet is composed of flits. However, in
several discussions in this chapter, some of these terms can be used indistinctly. For instance, a
(header) flit may suffer contention, but we can also state that the packet suffers contention.
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Table 6.1: Definitions used in this contribution.

Term Definition

R Set of N ×M routers in the mesh

Rn A router in R
Fi Stream of packets (Flow) traversing the same route

Pi A generic packet belonging to flow Fi

PTTPi
Packet Traversal Time of a packet Pi

PTTRn

Pi
Packet Traversal Time of a packet Pi in router Rn

FTTFj
Flow Traversal Time of all packets in Flow Fj

Ĥi Ordered set of Rn routers that define Fi’s path

zllRn

Pi
Traversal time of packet P when traversing router Rn without contention

contRn

Pi
Contention a packet Pi suffers due to all other contending packets in
router Rn

contRn
j▷i Contention a packet Pi in suffers due to a packet Pj in router Rn

contRn
τx Contention task τx suffers from all other tasks in Rn

contlrcτx Local Router contention task τx suffers due to all other tasks

contrrcτx Remote Router contention task τx suffers due to all other tasks

contlrc,Rn
τx Local Router contention task τx suffers due to all other tasks in Rn

contrrc,Rn
τx Remote Router contention task τx suffers due to all other tasks in Rn

lrcRn

Pi
Local Router Contention a packet Pi suffers due to all other contending
packets in router Rn

rrcRn

Pi
Remote Router Contention a packet Pi suffers due to all other contending
packets in router Rn

lrcRn
j▷i Local Router Contention Fi suffers due to Fj in router Rn

rrcRn
j▷i Remote Router Contention Fi suffers due to Fj in router Rn

contτi Total contention suffered by τi

contτj▷τi Total contention τi suffers due to τj

However, this approach that considers local router information only fails to capture
the contention caused due to propagated backpressure, which is common in wmeshes.
It arises, for instance, when a packet Pj in the output port under analysis in Rn cannot
access Rm because it is busy. For instance, in Figure 6.2, Pi and Pk are delayed by
Pj who wins the arbitration for X+ in Rn but awaits to win X+ arbitration in Rm.
Propagated backpressure can happen when the output port in Rm that Pj is willing
to use is occupied by another packet Pr. In this scenario, if we only use local router
information, contRn

j▷i and contRn
j▷k in Rn would be incremented every cycle Pi and Pk

are stalled because Pj cannot be transmitted due to backpressure from Pr in the
following router. However, in reality, Pj is not ascribable for stalling Pk and Pi,
which are instead stalled in Rn because of Pr’s backpressure in Rm. Accordingly, if
we consider the state beyond the local router, contRn

r▷i, cont
Rn
r▷k and contRn

r▷j should be
updated instead as Pr is the ‘guilty’ packet that prevents Pi, Pk and Pj to traverse
Rn.
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6.2.2 PWC for NoCs

We illustrate PWC for NoCs via the scenario depicted in Figure 6.3 in which four
tasks (τA-τD) run in a 2x2 wmesh-connected multicore, with τA being the TuA and
τB, τC and τD the CTs. τA runs in (the core at) R0, τB in R1, τD in R2 and τD in R3.

For this example, let us assume that the upper gray area in the left bar of Figure 6.4
represents the cumulative contention experienced by the packets of τA (the bottom
stripped area is the time in isolation of τA). The contention part of the τA execution
time is incremented every cycle a packet of τA is stalled by a contending packet of a
different task, whether the other contending packet is either in the same router as the
stalled packet of τA (local contention) or in another router propagating contention
through backpressure (remote contention).

Figure 6.3: 2x2 2Dmesh
XY-routing setup.

Figure 6.4: Synthetic example breaking down of
contention into its PWC components.

The contention time that τA’s packets experience can be broken down following
different criteria, as shown in the different bars in Figure 6.4. From left to right, (i) per
contender task delaying τA in the wmesh; (ii) per router where τA suffers contention;
and (iii) a combination of both, i.e. per router and contending task. Section 6.3
details how the information gathered by PWC and GRV allows producing those and
many other breakdowns. The latter breakdowns let us understand that τA is suffering
contention mainly in R0, R1, and R3 by τB, τC , and τD, respectively, capturing the
requirements for validation described in previous sections.

Overall, to properly capture propagated backpressure our proposed PWC
differentiates between local contention and remote contention.

• Local router contention (lrc) is experienced by a packet Pi in one of the routers

Rn to its destination, i.e. Rn ∈ Ĥi where its header flit is and the contention
(guiltiness) can be ascribed to a packet Pj that gains the arbitration or is
traversing one of the output ports in Rn.

• Remote router contention (rrc) is experienced by a packet Pi in one of its routers
Rn and can be ascribed to propagated backpressure in another router in the
mesh. Hence, the contention is not ascribable to any other packet in the same
router (which would instead fall into the lrc category). As a distinguishing
factor, in this scenario, the contention guiltiness cannot be ascribed within
the same router Rn where the contention takes place, but is to be assigned to
another packet Pj in one of its routers Rm ∈ Ĥj.
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6. ACCURATELY MEASURING CONTENTION IN MESH NOCS

Both lrc and rrc are identified as part of PWC and defined per pair of tasks (i.e.
a task causes lrc and/or rrc on another task). Also, the rrc suffered by Fi can be
further broken down per router, allowing to identify where contention originates.

It is worth noting that the same breakdown principle we apply to local/remote
contention can be applied to direct/indirect contention classification [61, 55]. That
is, our proposal is transversal to both. Direct/indirect contention has been proposed
to classify the contention that packets suffer from other flows depending on whether
those other flows share or not physical resources in their paths with the flow of the
TuA. Beyond the fact that direct/indirect classification has been used so far only for
contention estimates or upper bounds (i.e. expected maximum contention), it can also
be applied to measured (observed) contention. However, in our view, the local/remote
classification is more naturally applied as it provides insightful information about
where and who delayed the packets of a given task’s flow, rather than capturing
whether the flow delaying the TuA’s flow shares or not routers with it. Hence, and
without loss of generality, during the rest of this work, we apply our approach to
local/remote contention.

It is also worth mentioning that contention tracking approaches can be
applied to any wmesh NoC configuration that uses deterministic routing setups
whereas techniques to derive NoC contention bounds typically require more specific
configurations so as to contain NoC contention estimates. That is, under an
unsatisfactory NoC configuration for which no bounds can be derived, contention
tracking allows determining, for a specific run, how tasks affect each other in the
NoC. For a NoC configuration for which bounds can be derived, contention tracking
allows validating the bounds derived for each flow/task and assessing how far the real
case is from the worst case. In that line, while our solution is not restricted to wmesh
NoCs, they offer a favorable application scenario because it has been shown that tight
bounds can be produced for specific configurations thereof.

6.3 Defining a Golden Reference Value (GRV)

Building on PWC, we define a GRV that correctly captures the sources of contention
in a mesh NoC. GRV aims at enabling effective diagnosis of the root causes of
potential timing task violations, as well as identification of individual contention
bounds for tasks. Moreover, tailoring PWC metrics to specific COTS multicores
where monitoring support is limited requires a reference value to assess their accuracy.
GRV fills this gap by allowing the comparison of the specific PWC metric for such
a COTS processor against GRV (e.g. in a timing simulator), thus allowing to tune
of the PWC metric. For the definition of GRV, we identify several properties that a
reliable GRV to breakdown contention in wmesh NoCs must exhibit.

(a) Completeness. The criterion must classify as contention all the additional time,
w.r.t. to isolation time, that each packet of τA needs to traverse the NoC due
to interaction with its CTs.
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6.3 Defining a Golden Reference Value (GRV)

(b) Source and accuracy of the contention. The criterion must be capable of
identifying the packets causing contention on any given packet of task τA, thus
allowing to know where contention occurred (router), what task caused it, and
whether it was lrc or rrc. This per-packet information can be aggregated to
have per-task figures.

In order to show that our proposed GRV achieves these goals, we perform an
analysis at packet level, where the source of each contention cycle can be singled out
unequivocally. We focus on the NoC contention. Thus, the contention that occurred
in other shared resources is not considered in the analysis. Note that, in this chapter,
we implicitly use the term time to refer to a discrete number of cycles, putting aside
any further consideration about the duration of each cycle (i.e. as if all the analysis
was performed under constant operating frequency). Considering cycles of different
duration would require expanding each term in each formula into as many terms as
potential cycle durations were possible, which would be against the clarity of our
already complex formulation.

We define the Packet Traversal Time of a packet Pi, denoted as PTTPi
, as the

cumulative time spent by Pi in all routers Rn ∈ Ĥi it traverses. Accordingly, we
define the Flow Traversal Time of a flow Fx, denoted as FTTx, as the addition of the
traversal time of all packets Pi ∈ Fx.

FTTx =
∑
Pi∈Fx

PTTPi
=
∑
Pi∈Fx

∑
Rn∈Ĥi

PTTRn
Pi

(6.1)

More in detail, PTTRn
Pi

is the result of the packet Pi traversal time when traversing

router Rn without contention, also called Zero Load Latency (zllRn
Pi

), plus the

increased traversal time due to other packets contention (contRn
Pi

).

PTTRn
Pi

= zllRn
Pi

+ contRn
Pi

(6.2)

On the one hand, zllRn
Pi

depends on the router architecture implementation (e.g.
number of pipeline stages). It can be obtained measuring the time a packet Pi takes
to traverse router Rn in isolation2. On the other hand, contRn

Pi
is determined by the

interference caused by other packets on packet Pi in router Rn. As introduced in
Section 6.2.2, we classify the contention a packet Pi suffers in router Rn into two
different types of contention:

• local router contention (lrcRn
Pi

) when the packet causing a delay to Pi is in router
Rn.

• remote router contention (rrcRn
Pi

) when the packet delaying Pi is in another
router when Pi suffers contention in router Rn.

2In many NoCs, zllRn

Pi
= zllRm

Pj
for all packets Pi and Pj of any flow, and all routers Rn and Rm

in the NoC, so we could refer simply to zll, but we keep zllRn

Pi
for the sake of generality.
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Accordingly, we can define contRn
Pi

as follows:

contRn
Pi

= lrcRn
Pi

+ rrcRn
Pi

(6.3)

In order to fulfill the identified mandatory properties on the PWC metric
(completeness, source, and accuracy of the contention), we bound the classification of
lrc and rrc for a given packet Pi ∈ Fx in a router Rn to a specific time (cycle) t, where
t ∈ stalled(Pi, Rn). Note that stalled(Pi, Rn) is the set of cycles when Pi is stalled in
Rn and its cardinality is |stalled(Pi, Rn)| = PTTRn

Pi
− zllRn

Pi
. That is, stalled(Pi, Rn)

is the Pi traversal time of router Rn minus the zero load latency. It is worth noting
that contRn

Pi
and stalled(Pi, Rn) terms are closely related. The former one identifies

the cumulative effect of contention that Pi suffers in Rn whereas the second one is
used to identify, in the formulations, the specific set of cycles where the contention
happens. For example, stalled(Pi, Rn) = {3, 4, 5} contains the set of cycles where the
contention occurs and contRn

Pi
= 3 contains the count of these cycles.

For each t ∈ stalled(Pi, Rn), there exists exactly one guilty packet Pj ∈ Fy that
causes such cycle of contention on Pi.

We can define contRn
Pi

(t) with the lrc and rrc parameters, i.e. the contention a
packet Pi suffers in a router Rn at time t (Eq. 6.4) with respect to a guilty packet Pj

(Eq. 6.5), as follows:

contRn
Pi

(t) =
∑
Pj

contRn
j▷i(t) (6.4)

contRn
j▷i(t) = lrcRn

j▷i(t) + rrcRn
j▷i(t) (6.5)

where lrcRn
j▷i(t) and rrcRn

j▷i(t) represent the PWC unfolding of the local and remote
contention terms in Eq. 6.3. Note that, for a given t ∈ stalled(Pi, Rn), exactly one
of the two terms in Eq. 6.5 is one and the other is zero for packet Pj. Those terms
are both zero for any other packet different from Pj. We can model the cumulative
contention suffered by a task τx building on FTTx as follows:

contτx =
∑
Pi∈Fx

∑
Rn∈Ĥi

t∈stalled(Pi,Rn)

contRn
Pi

(t) (6.6)

We can build on Eq. 6.4 and 6.5 to narrow the scope of Eq. 6.6 to model the PWC
suffered from τx because of τy (per contender breakdown in Figure 6.4):

contτy▷τx =
∑
Pi∈Fx

∑
Rn∈Ĥi

t∈stalled(Pi,Rn)

∑
Pj∈Fy

(
lrcRn

j▷i(t) + rrcRn
j▷i(t)

)
(6.7)

By restricting Eq. 6.6 and 6.7, we can also obtain different contention breakdowns,
such as those shown in Figure 6.4 or combinations thereof, for instance considering
only lrc or rrc, considering only a given router Rn, or considering only a given
contender τy. In particular, we can model the cumulative contention suffered by
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a task τx per router Rn, denoted as contRn
τx , building on Eq. 6.6 as follows (per router

breakdown in Figure 6.4):

contτx =
∑

Rn∈Ĥi

contRn
τx (6.8)

contRn
τx =

∑
Pi∈Fx

∑
t∈stalled(Pi,Rn)

contRn
Pi

(t) (6.9)

where contRn
Pi

(t) is the PWC suffered by each packet Pi of flow Fx from all other
tasks unfolded per router Rn.

Similarly, we can model the cumulative contention suffered by a task τx per
contention type, denoted respectively as contlrcτx and contrrcτx , as follows:

contτx =
∑
Pi∈Fx

∑
Rn∈Ĥi

t∈stalled(Pi,Rn)

(
lrcRn

Pi
(t) + rrcRn

Pi
(t)
)

(6.10)

contlrcτx =
∑
Pi∈Fx

∑
Rn∈Ĥi

t∈stalled(Pi,Rn)

(
lrcRn

Pi
(t)
)

(6.11)

contrrcτx =
∑
Pi∈Fx

∑
Rn∈Ĥi

t∈stalled(Pi,Rn)

(
rrcRn

Pi
(t)
)

(6.12)

where lrcRn
Pi

(t) and rrcRn
Pi

(t) are respectively the amount of local and remote router
contention each packet Pi from a flow Fx suffers from all other packets in router Rn

in cycle t.
The finest grain cumulative contention analysis breakdown using the 3 parameters,

namely task, type of contention and router, can be obtained building on Eq. 6.10 in
the following manner:

contlrc,Rn
τx =

∑
Pi∈F̂x

t∈stalled(Pi,Rn)

(
lrcRn

Pi
(t)
)

(6.13)

contrrc,Rn
τx =

∑
Pi∈F̂x

t∈stalled(Pi,Rn)

(
rrcRn

Pi
(t)
)

(6.14)

where lrcRn
Pi

(t) and rrcRn
Pi

(t) are respectively the lrc and rrc contention suffered by
each packet Pi of Fx in Rn in cycle t.

6.3.1 Defining lrc

For the sake of clarity, in this section, we use Pi to refer to the packet under analysis,
and Pj and Pk to other packets in the same router.
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Table 6.2: Functions used in this chapter.

Term Function

stalled(Pi, Rn) Given a packet Pi in a router Rn it returns the cycles where Pi is
stalled suffering contention in Rn.

PH(Pi, Rn, t) Given a packet Pi in a router Rn at time t, it returns the packet Pj

that is the packet at the head of Pi input port.

PSO(Pi, Rn, t) Given a packet Pi in a router Rn at time t, it returns the packet
Pj that is targeting the same output port Pi targets, and granted
permission to move forward (e.g. to the next router), if any.

HN(Pi, Rn+1, t) Given a packet Pi at router Rn in time t, it returns the packet Pj

that is the head packet of the targeted input port of Pi in the next
router Rn+1.

SP (Pi, Rn, t) Given a packet Pi at router Rn in time t, it returns the packet Pj

that causes contention on Pi in a router Rm different to Rn due
to backpressure. Such packet Pj is found following the procedure
described in steps (S3a), (S3b) and (S3c) detailed in Section 6.3.2.

Lrc is defined over the set of packets that are ready to be arbitrated, and it
identifies the contention a given packet Pi ∈ Fi suffers due to the arbitration of
another packet Pk ∈ Fk in the same router Rn. A packet is considered ‘ready to be
arbitrated’ whenever it could leave the router in a no-contention scenario.

We identify two scenarios. S1 captures lrc when Pi is ready to be arbitrated
and is waiting for another packet Pk to traverse its targeted port (i.e. Pi loses the
arbitration). S2 considers lrc when Pi is not the first packet of an input port and there
is at least one packet Pj in that input port that is currently suffering lrc contention
due to another packet Pk in another input port. As in this section we deal with lrc,
all scenarios take place in the same router Rn. Note that we build on the definitions
of PH() and PSO() in Table 6.2.

(S1) At a given time t in router Rn ∈ Ĥi, a packet Pi is queued and ready to be
arbitrated at the head of its corresponding input port (Pi = PH(Pi, Rn, t)). Pi

suffers contention from another packet Pk that is currently traversing the same
target output port as Pi, i.e. ∃Pk|Pk = PSO(Pi, Rn, t). Therefore, lrc

Rn
k▷i(t) = 1.

(S2) At a given time t, a packet Pi is not the head of its corresponding input

port in Rn ∈ Ĥi such that ∃Pj = PH(Pi, Rn, t), with Pj ̸= Pi. If Pj is
granted access to traverse the output port, denoted Pj = PSO(Pj, Rn, t), then
lrcRn

j▷i(t) = 1. Alternatively, Pj could be in turn delayed by another packet Pk

from another input port that is granted access to traverse Pj’s output port,
denoted Pk = PSO(Pj, Rn, t). In this case, Pk is the one causing contention,
i.e. lrcRn

k▷i(t) = 1.

Note that when Pi = PH(Pi, Rn, t) and Pk = PSO(Pi, Rn, t) = ∅ but the target of
Pi is not a router (i.e. it is a PME) then no packet is causing NoC contention as
contention may arise from the PME.
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6.3.2 Defining rrc

As for Section 6.3.1, in this section, we use Pi to refer to the packet under analysis,
Pj and Pk to other packets in the same router. Besides we use Pf and Pg to refer to
other packets in a remote router.

As introduced before, rrc captures the contention a packet Pi suffers in router Rn

due to the arbitration of another packet Pg in a router Rm ̸= Rn. That is, those
scenarios in which a packet is ready to be arbitrated to an output port but suffers
contention delay without this being ascribable to any other packet traversing any
output port of the same router (which would fall into the lrc category instead). With
this rrc definition, we address the same corresponding scenarios already explained in
lrc but with the relevant difference that contention actually arises in a remote router.

(S3) At a given time t in router Rn ∈ Ĥi, a packet Pi is queued and ready to be
arbitrated at the head of an input port, i.e. Pi = PH(Pi, Rn, t), and no packet is
granted to traverse the output port because of backpressure from the destination
input port (∅ = PSO(Pi, Rn, t)). The packet causing such contention needs to
be looked up with the following recursive procedure:

(S3a) If the packet Pg at the head of the target input port in the following router
Rm is granted access to traverse its output port, then Pg causes contention
on Pi.

(S3b) If the packet Pg at the head of the target input port in the following router
Rm is stalled because another packet Pf in another input port in Rm is
granted access to traverse its output port, then Pf causes contention on
Pi.

(S3c) If the packet Pg at the head of the target input port in the following
router Rm is stalled and no packet in Rm is granted access to traverse Pg’s
output port, then the packet causing contention on Pi needs to be looked
up recursively in router Ro repeating the process from (S3a), where Ro is

the next router for Pg in Ĥg. If the next target of Pg is not a router (i.e. it
is a PME), then no contention guiltiness is ascribable to the NoC. Hence,
no NoC contention is suffered by Pi

3.

Note that, with this procedure, we find a packet Pg in the NoC causing rrc on
Pi, if it exists. We define such packet as Pg = SP (Pi, Rn, t), where SP (Pi, Rn, t)
performs the recursive search described in steps (S3a), (S3b) and (S3c). Overall,
rrcRn

g▷i(t) = 1.

(S4) The previous scenario can be extended to also cover the cases in which Pi is
not ready to be arbitrated. First, we identify the packet at the head of Pi’s
input port Pj = PH(Pi, Rn, t), as in (S2). Then, we find out the packet causing
remote contention on Pj, namely Pg = SP (Pj, Rn, t), which in turn causes
contention on Pi. Therefore, rrc

Rn
g▷i(t) = 1.

3Notice that even though Pi does not suffer contention ascribable to the NoC, it can be suffering
contention in other shared resources as the PME
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6.3.3 Multiple VC impact on lrc and rrc

Generally, VCs are implemented to minimize the contention caused by packets that
are in the same router’s input port but that go to different output ports. That allows,
for instance, to avoid head of line (HoL) blocking effect when possible maximizing
routers’ packets ejection. To do so, an input queue per port is assigned to each
VC. VCs can be dynamically or statically allocated. With static VC allocation, the
idea is to isolate certain communication flows which improve time predictability. With
dynamic VC allocation, HoL blocking is reduced and average performance is improved
but time predictability is more difficult to achieve which usually leads to pessimistic
WCET estimates. Multiple VC’s implementations in routers exist depending on the
domain where they are applied.

In the high-performance domain, input port arbitration and VC arbitration are
done together or in multiple rounds so as to maximize input ports and VCs requests
matching with the available output ports. However, in CRTES with different area
and energy constraints, simpler solutions [140] are usually implemented favoring also
the systems’ time predictability. For instance, VCs are usually implemented in on-
chip routers by performing two arbitration rounds. In the first round, the input port
that is granted access to the output port is selected and, in the second one, the VC
for the already selected input port is chosen4.

The extension of PWC and GRV to include VCs with static or dynamic allocation
assuming a hierarchical two-round arbitration can be done by slightly modifying the
functions already defined in Table 6.2. Functions that initially refer to the head
packet of the input port, now need to provide the head packet of the VC in the same
input port that has the turn for granting the VC arbitration. More in detail:

• PH(Pi, Rn, t): PH function that initially was returning the Pj packet head of
Pi packet input port for Rn in time t, now returns the packet Pj that is the
packet that has won or has the turn to win the VC arbitration inside packet’s
Pi input port.

• PSO(Pi, Rn, t): PSO function as PH, needs to return the packet Pj that is the
head packet that has won the VC arbitration inside packet’s Pj input port,
target the same output port of Pi and granted permission to move forward to
the next router, if any.

• HN(Pi, Rn+1, t): HN function also should return the packet Pj that is the head
packet of the targeted input port and VC of Pi in the next router Rn+1.

• SP (Pi, Rn, t): SP function definition, in contrast, keeps being correct as it
recursively refers to other scenarios (S3a, S3b and S3c in Section 6.3.2) that are
now compatible with the hierarchical static-VC allocation adoption.

PWC formulation and scenarios can also be extended to more complex VC
router implementations by modifying functions according to the VC and input port
arbitration criterion used in systems’ routers (e.g. each function returns a set of
packets in the head of each VC of an input port).

4Notice that in the lrc and rrc formulation presented, we only consider the first arbitration round
mentioned.
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6.4 Deriving GRV

The use of GRV for PWC can be leveraged in two different stages of the software
development cycle. First, during the timing validation phase for each test performed
the breakdown provided by GRV complements the raw execution time measurements
to determine whether the contention tasks generate each other stay within the
allocated budget. GRV helps to distill the root causes for those cases with a test
failing, i.e. resulting in a timing violation. It also captures hidden contention effects
that compensate each other in the test but can potentially arise during operation. And
second, GRV can be exploited during operation in case of overruns so that appropriate
safety measures are applied, based on the root cause of the timing violation.

While the definition of GRV remains unchanged, regardless of the application
scenario, the same cannot be said about its implementation. During the validation
phase, execution time information of the packets/flows is collected whilst tests are
executed. This information is analyzed off-line, reporting back any contention-related
issue. Instead, during the operation phase, the analysis shall be performed on-
line, which is more challenging since information is distributed in the wmesh, and
a computation node or hardware, would be required to derive GRV. In this work,
we target timing validation and hence, we focus on the former use of GRV (off-line
analysis).

6.4.1 Off-line Analysis

In this case, GRV works with an execution trace containing information about packet
ingress and egress in each router. Each generated trace contains: packet time
information including arrival and leaving time to/from a router in the 2Dmesh, its
source packet (i.e. the flow to which it belongs), destination, identifier, the router
identifier in which the packet is stored at the time of the recording. We generate traces
with the gNoCsim simulator [126], as shown in Section 6.5. We added regular monitors
capturing traffic information in the NoC similar to how they can be implemented in
any COTS multi/many-core based system. This allows us to compare GRV against
PWC to assess its accuracy.

The information in the traces is used to determine the (contending) packet
delaying the progress of any other (stalled) packet in the NoC. To that end, GRV
checks for every flow, i.e. core, the packets that enter and leave each router and
compares their timing with the ideal case (i.e. the packet is never stalled inside
the router). When a packet is stalled, GRV identifies the source of the stall and
classifies the contention delay as caused by the contending packet/flow. GRV also
records the router where the stalled packet is so that every single cycle of contention
experienced by any packet can be tagged with the contending flow, the router where
it is experienced, and whether it fits the lrc or rrc case.

The outermost level of the GRV implementation is shown in Algorithm 2. The
algorithm operates on the set of routers in the mesh (R) and accumulates the
information on contention in specific data structures (lrc and rrc).
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Algorithm 2 GRV offline implementation.

1 procedure Compute GRV( lrc, rrc)
2 for each time t in Time do
3 for each router Rn in R do
4 GRV(Rn, t, lrc, rrc)
5 end for
6 end for
7 end procedure

Algorithm 3 GRV routine.

1 procedure GRV(Rn, t, lrc, rrc) ▷ Call for Router Rn at time t
2 Pready(Rn, t)← packets ready to be arbitrated in Rn at time t
3 for pi ∈ Pready(Rn, t) do
4 < CONT,Rguilty, pguilty > = GRVrec(pi, Rn, t)
5 if CONT then
6 if Rguilty == Rn then
7 lrc[Rn][pi.src][pguilty.src] + +
8 else
9 rrc[Rn][pi.src][pguilty.src] + +

10 end if
11 end if
12 end for
13 end procedure

For every time instant t, which corresponds to cycles in a discrete approximation,
the algorithm considers the packets’ status at time t (e.g. packets position in the
buffers, packets traversing routers,..) and calls GRV routine (see Algorithm 3) on all
routers in R to populate the lrc and rrc data structures with contention information.

GRV routine builds on a recursive approach to compute lrc and rrc calling GRVrec.
As a base step, the algorithm iterates over all packets ready to be arbitrated and
queued in all Rn router input ports (they were not granted access to their output
port): the recursive step GRVrec is invoked on those packets to determine the source
of contention, if any. GRVrec eventually returns the guilty packet pguilty causing
contention to the packet under analysis (pi) and the router Rguilty where pguilty packet
has been found as the actual source of contention. Note that CONT is a boolean
indicating whether any packet effectively causes NoC contention on pi.

• If Rguilty corresponds to Rn, then pguilty causes the contention in the same
router where p suffers the contention (Rn). Hence, contention is classified as
local router contention (lrc).

• Otherwise, if Rguilty identifies a different router than Rn, the contention suffered
by p must be classified as remote router contention (rrc).

In both cases (lrc and rrc) contention is accounted in the router where pi suffers the
contention (Rn). Per-flow information on what flow causes contention and what flow
suffers it is directly obtained from the tasks owners of p and pguilty.
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Algorithm 4 GRV Recursive function.

1 function GRVrec(p, Rn, t) ▷ Call for packet p in Router Rn at time t
2 ph ← PH(p,Rn, t)
3 pg ← PSO(ph, Rn, t)
4 if pg ̸= ∅ then ▷ pg traverses the output port
5 return < TRUE,Rn, pg >
6 else
7 if target(ph) is a router then
8 pnext ← HN(ph, Rn+1, t)
9 return GRVrec(pnext, Rn+1, t)

10 else
11 return < FALSE,Rn, ph > ▷ Target is a PME
12 end if
13 end if
14 end function

Function GRV rec (see Algorithm 4) implements the core search for the pguilty in
router Rguilty that is causing contention to p at time t. The function implementation
exhaustively captures the lrc and rrc scenarios detailed in sections 6.3.1 and 6.3.2
respectively.

6.4.1.1 lrc

As a first step, GRV rec retrieves the head packet at the input port targeted by
p (i.e. the packet passed to GRV rec as input), which could be p itself. In line 3, the
algorithm gets the packet granted access to the output port targeted by the input port
head ph. Packet pg (line 4), if it exists, is the one that causes contention to the others.
In the very first invocation to GRV rec from GRV , pg in line 4 is in the same router
Rn as p (i.e. pi in GRV ) and hence, generates lrc on p. By definition, if pg = ph,
then ph would be granted access to the output port, and hence, would experience no
contention but cause contention on p. A special scenario is where p = ph = pg: in
that case p experiences no contention at all.

The lrc scenarios described in Section 6.3.2 are exhaustively modeled by
Algorithm 4 as follows:

• (S1): if PH(p,Rn, t) = p and pg ̸= p, the packet under analysis is stalled in the
head of the input port suffering lrc contention because of another packet, from
another input port in Rn, being arbitrated in the same output port.

• (S2): if PH(p,Rn, t) ̸= p and pg ̸= p, the packet under analysis is stalled
suffering contention because the packet at the head of the same input port is
currently being arbitrated, or the latter is itself stalled by another packet, from
another input port in Rn, being arbitrated in its output port.

Conversely, if pg is empty in the first call (line 6), but the target of p is not a router
(line 10), then no other packet in the NoC is blocking p. Hence, no NoC contention
needs to be accounted for.
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6.4.1.2 rrc

If pg is empty in the first call (line 6), then the packet causing contention is in
a different router and we fall into the rrc scenario. Hence, we obtain pnext, which
corresponds to the head packet in the input port of p’s next router (Rn+1). This is
shown with function HN(ph, Rn+1, t) in line 8. Then, we trigger the recursive call
to GRV rec over pnext (line 9) to find the blocking packet in Rn+1 or beyond. The
recursion ends as soon as the PSO returns a non-null value or the next target of
the packet under analysis is a PME. The rrc scenarios described in Section 6.3.2 are
exhaustively modeled by Algorithm 4 as follows:

• (S3a-c): if in the first iteration PH(p,Rn, t) = p but PSO(ph, Rn, t) = ∅ then
the packet under analysis is suffering contention because of a packet in another
router. The packet causing contention could be either: pnext that is the head
of the target input port for p in the following router Rn+1 (S3a), or the packet
blocking pnext, which can be either the packet being granted access to pnext
output port (S3b) or a packet in another router down the chain of routers
(S3c).

• (S4): if PH(p,Rn, t) ̸= p and PSO(ph, Rn, t) = ∅, then we fit exactly in the
same scenarios as in the previous point, with the only difference that p is not
suffering contention directly but through the packet ph at the head of p’s input
port.

Note that in a deadlock-free NoC, we will eventually find a packet making progress
or a PME. So, the algorithm eventually finds the blocking packet causing NoC
contention for pi in GRV .

6.4.2 GRV for different wmesh setups and NoCs

Besides the wmesh setup we have used in this work, several other setups can be
adopted. In this section, we cover the most relevant ones along with how PWC-GRV
covers them.

Several wmesh features can cause predictability (budgeting) problems, including
non-predictable arbitration policies, virtual channel allocation, and maximum packet
length, which depending on whether they are allocated dynamically or statically can
result in huge contention bounds [64]. However, this does not have any effect on
the functioning of our PWC-GRV contention measuring approach. Hence, hard-to-
predict features only affect the number of cycles accounted as PWC among each pair
of tasks. In fact, even in a NoC setup in which starvation can occur our PWC-GRV
would work and help to identify this issue.

Our PWC-GRV proposal targets measuring contention for timing validation and
optimization in wNoCs systems using deterministic routing algorithms, as these
are the preferred policies to allow the WCD estimation CRTES [141]. We do not
target the applicability of PWC-GRV in systems using non-deterministic routing
algorithms as adaptive or dynamic routing. These kinds of non-deterministic routings,
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even though they increase NoC performance, bring unpredictability to the NoC and
hamper the time V&V required for CRTES, as NoC WCD can become too pessimistic
to be useful. Hence, the presented PWC-GRV does not directly support adaptive or
non-deterministic routings which are out of the scope of this work.

Regarding other NoCs, PWC-GRV can also be applied to other types of
distributed NoCs and network configurations such as the ones using virtual cut-
through switching [142]. Indeed, we present PWC reference in a way that eases
the adaptation of our proposal to other NoC topologies that for instance have routers
with more or fewer ports, routing setups, and multiple or single destination flows.

6.5 Results

We evaluate GRV on 2DMesh wNoCs of different dimensions, ranging from 3x3 to
6x6, hence including the dimensions of COTS manycores (e.g. 4x4 in the case of
the Kalray MPPA 256 [7]) and beyond. We use gNoCsim [126] cycle-accurate NoC
simulator that injects both synthetic and real traffic in the NoC. We model an XY-
routing mesh network with 5 bidirectional input/output ports (X+, X-, Y+, Y- and
PME) of 10 flits capacity (i.e. we use 2 buffers per router port: one used as input and
the other as an output, each of them with a capacity of 10 flits). Routers implement
round-robin arbitration, XY-routing, and wormhole switching. Flit traversal latency
in the no-contention scenario is 1 cycle to traverse the router and 1 cycle to traverse
the link between routers. Cores are connected to each router and send requests to
different memory modules attached to boundary routers, which serve one request per
cycle.

(a) Synthetic traffic: we use gNoCSim as a standalone simulator that injects self-
generate synthetic traffic in the NoC. We inject packets in the PME input ports
that we have named as synthetic cores Cx with a given IR, in some cases limiting
the number of in-flight requests to mimic the impact of contention experienced
by a task τx executing in Cx.

(b) Hybrid traffic: we use SoCLib [126] SoC simulator, which we integrate with
gNoCsim so that the latter works in slave mode. In this experimental setup,
SoCLib simulates real code being executed in an NGMP Sparc-based core [50],
whose memory petitions traverse the NoC (implemented with gNoCsim) to
reach memory. We model a TILED MC with each tile comprising L1 cache
memories and a core that communicates with the rest of tiles and memory
using a NoC router. Processor cores implement an in-order pipeline with
32KB 4-way 16B/line IL1 and DL1 caches, where DL1 is write-through, in
line with NGMP multicore for the space domain. The manycore architecture
also includes a unified memory, so that each core targets a shared memory.
For the sake of controllability to assess high-contention scenarios, in this setup,
we have some of the cores running real benchmarks and hence, injecting the
corresponding petitions in the NoC, whereas the remaining cores inject synthetic
traffic generated by gNoCsim according to given specifications (e.g. sustained
write traffic to memory).
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In this section, we mainly focus on packets of 1 flit size (i.e. all flits are
header flits and switching and arbitration can take place every cycle), in line with
recommendations in [51] to minimize maximum contention. We discuss packets with
multiple sizes specifically in Section 6.5.2.

From gNoCsim, either standalone or integrated with SoCLib, we generate an
execution (timing) trace with the information presented in Section 6.4.1. In order to
compute the GRV of the experiments, we have implemented a C++ trace parser based
on the pseudocode described in Section 6.4. The results reported in this section are
obtained by applying GRV, as formalized in Section 6.3, on simulator traces to obtain
contention breakdowns. It is worth noting that the same methodology can also be
applied to PMCs or event traces collected from real NoC-based systems operation.

6.5.1 Synthetic Traffic

We have performed several experiments with different mesh architectural setups and
different IRs intended to create high contention in meshes using synthetic traffic. The
particular evaluation choices taken allow for determining a priori where contention
should occur and what core causes it, thus allowing to validate GRV. The setups
chosen intend to be representative of different traffic patterns with varying sources of
contention, thus challenging GRV capabilities.

For the synthetic traffic and for the sake of simplicity, the task under analysis,
TuA or (τ0), is placed in C0 and has exactly one packet in-flight. Hence, whenever
the packet reaches memory, a new packet is inserted. The remaining cores, instead,
inject packets at a high injection rate (IR = 1) with no packets in-flight restriction.

(a) Setup 1. (b) Setup 2.

Figure 6.5: Illustrative 3x3 mesh setups evaluated.

3x3 wmesh: the first setup (see Setup 1, Figure 6.5a), has 2 memory modules,
one attached to R2 targeted by packets from C0, and the other to R8 targeted by
packets from cores C1 to C8. Setup 2 (see Figure 6.5b) is like Setup 1 but with C8

targeting the 3rd memory module attached in R6.
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(a) Setup 3. (b) Setup 4.

Figure 6.6: Illustrative 4x4 mesh setups evaluated.

4x4 wmesh. In Figure 6.6a (Setup 3) we define a 4x4 2DMesh with two memory
controllers, analogous to Setup 1. Setup 4 (see Figure 6.6b) corresponds to a more
complex scenario where the NoC has 4 memory modules. The first memory module
is attached to R3, and is targeted by packets from cores C0 and C1. The second and
third memory modules, attached to R7 and R11, are targeted respectively by packets
from C2 and C3. Finally, the fourth memory module is attached to R15 and is targeted
by packets from the rest of the cores in the mesh (C4 to C15).

5x5 mesh and 6x6 mesh. In order to analyze the scalability of our approach,
we have defined setups for bigger meshes analogous to Setups 3 and 4 for 4x4, i.e.
with two memory modules (one for C0 and one for the rest of cores), and with one
memory module per row where cores C0 and C1 target the memory module in the
first row, and each other core in the first row one memory module in another row. In
this latter setup, cores not in the first row target the memory module in the last row.

For each experiment we analyze the contention the TuA suffers (contτ0) due to
the other tasks:

(a) We can break down contτ0 per each router where the contention takes place.
This information can be obtained with both, the baseline contention breakdown
metric and GRV.

(b) Baseline contention breakdown metric: where the owner of the last packet
granted access to the target output port in a router is regarded as the one
causing contention, thus strictly at local router level.

(c) contτ0 broken down per contention type (lrc and rrc).

(d) The contention τ0 suffers from all the other co-running tasks (contτj▷τ0) following
our PWC definition.

(e) A simultaneous break down (contτj▷τ0) per contender, showing lrc and rrc cycles.

Note that the baseline contention breakdown metric can only provide the first two
breakdowns, and only GRV can provide the last three.
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6.5.1.1 Setup 1 (3x3 Mesh) Result Analysis

Packets from τ0 (TuA) in C0, traverse routers R0, R1, R2 to reach memory, as
shown in Figure 6.5a. The high contention experienced by the other cores to reach
the memory module at R8 is expected to translate into high contention in the TuA
due to backpressure. This is so since, despite C0 targets memory module in R2 and
traffic from C1 and C2 target memory module in R8, C0 and C1 share the X− input
port in R2 with C0 targeting the X+ output port and C1 the Y+ output port. Hence,
if cores C2 to C8 experience high contention in their path to R8, this contention will
be back-propagated to C1 packets by R2 Y− port and at the same time will end
affecting C0 packets.

Consistent with that analysis, Figure 6.7a shows that packets from τ0 mostly suffer
contention in R2 (even if they also traverse R0 and R1). That happens, as we have
already explained, because R2 is the router, from the C0 path, which aggregates more
traffic. R2 receives traffic from C0, C1 and C2 but also backpressure from packets
from C3 to C8 in R3 and R8. Hence C0’s packets are only stalled at the router that
aggregates more traffic (R2).

(a) Contention per router. (b) Baseline contention per task.

(c) GRV. PWC per contention
type.

(d) GRV. PWC per task. (e) GRV. PWC per task and
cont. type.

Figure 6.7: 3x3 2DMesh contτ0 analysis (Setup1).

The baseline contention breakdown, see Figure 6.7b (y-axis shared with the other
figures), ascribes contention to packets from C1 and C2 for stalling packets from C0

as these are the only two cores that physically share links with C0 path. However,
an analysis of the PWC shows that these cores are mostly experiencing backpressure
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from other cores attempting to reach R8 memory module, as shown in Figure 6.7c.
We see that most of GRV, PWC is rrc, so C1 and C2 are not the real source of
contention. In fact, if we decrease IR down to 0.1 for C1 and C2, contention remains
roughly unchanged since C0 packets have C1 and C2 packets in front all the time, but
the latter are stalled due to backpressure from the other cores.

Cores close to the target (e.g. C8) are expected to produce a larger fraction of
the BW in those routers, causing more backpressure on other packets from C1 and
C2, which propagate backpressure to the packets of the TuA5. GRV (Figure 6.7d)
shows exactly that this is the case. Contention contribution is mostly dominated by
cores in the path of C1 and C2 to R8 memory module (C1, C2, C5 and C8) and those
cores with higher BW to such memory module due to the locally-fair globally-unfair
round-robin arbitration (C5, C6, C7 and C8). Since C8 is dominant in both causes of
contention, it is naturally the core causing the largest fraction of contention on the
TuA. Notably, GRV accurately reflects those effects. For completeness, we also show
Figure 6.7e, where we see that GRV provides information broken down per contender
and contention type (lrc/rrc), being such contention only rrc for cores C3 to C8.

6.5.1.2 Setup 2 (3x3 Mesh) Result Analysis

Under this setup, C8 sends packets to a different memory module (the one attached
to R6). As a result, it cannot cause any contention on C1 and C2 (and hence the
TuA) due to backpressure. In Figures 6.8a and 6.8b, we observe how τ8 contention on
τ0 disappears, which matches with the rrc contention (backpressure) τ8 was creating
in setup 1 (see Figure 6.7d purple color). Contention caused by the other cores on the
TuA remains roughly the same except for τ3 and τ4 contention contribution reduction
to the TuA caused by the alignment variation between packets coming from these two
tasks w.r.t τ0’s packets. That is confirmed by comparing Figure 6.7 and Figure 6.8.

(a) Baseline contention per task. (b) GRV. PWC per task.

Figure 6.8: 3x3 2DMesh contτ0 analysis (Setup2).

5Notice that in all the synthetic traffic scenarios analyzed in this section, CTs contribution to
the TuA contention matches the expected BW distribution given by the XY routing and round-
robin arbitration used. This is so because NoCs work in a saturation state (e.g. Injection Rate ¿
Ejection Rate) and CTs have a uniform homogeneous synthetic IR=1 using their assigned BW and
potentially the remaining BW unused from the TuA.
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6.5.1.3 Setup 3 (4x4 Mesh) Result Analysis

The peculiarity we observed in this experiment w.r.t the one shown in Setup 1
(3x3) is that the contention that τ0 suffers because of its co-runners is around 9 times
bigger since it has to traverse an additional router, thus with much-decreased BW to
reach R3, and the number of cores creating backpressure is also much higher. This
can be observed, for instance, in Figure 6.9a for the baseline contention assignment.
As before, with the baseline technique contention is only ascribed to cores sharing
routers with the TuA, namely C1, C2 and C3 (see Figure 6.9a). Instead, GRV properly
captures the fact that backpressure from other cores is, instead, the one causing
contention in the TuA, as shown in Figure 6.9b. Since no further insights are obtained
from this setup, we do not deepen on its analysis.

(a) Baseline contention per task. (b) GRV. PWC per task.

Figure 6.9: 4x4 2DMesh contτ0 analysis (Setup3).

6.5.1.4 Setup 4 (4x4 Mesh) Result Analysis

Figure 6.10a shows that packets from the TuA suffer contention mostly in R2 and
R3. In comparison to Setup 1, R3 stalls decrease noticeably in favor of R2 stalls since
now C0, C1 and C2 share the X+ input port in R3 whereas in Setup 1 R2 input port
was only shared among C0 and C1. That means that when backpreassure is suffered
by R3 output port Y−, as before packets from C0 have higher chances to be stalled
in R2 than before because they are sharing the X+ input port of R3 with 1 more flow
than in Setup 1.

In Figure 6.10b, the baseline solution ascribes contention to tasks τ1, τ2 and
τ3 directly sharing links with task τ0 path, omitting once again that most of the
contention that τ0 incurs is rrc, as captured by GRV in Figure 6.10c. In that case,
most of the collisions that packets from τ0 suffer are due to packets coming from τ1 (τ1
predominance in Figure 6.10b). Note also that backpressure makes, again, cores with
higher BW in R15 memory module cause higher backpressure (rrc) on the TuA (τ0),
with trends similar to those of Setups 1 and 3 (Figure 6.10d). Also, the contention
caused by τ4, τ5 and τ6 is negligible due to the fact that their packets do not compete
with τ2 ones, and only do it with τ3 ones in a router (R7) still distant from R15, thus
with little BW. Overall, packets in cores out of the path to the memory modules
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produce largely decreasing contention on the TuA as we move from bottom to top
in the mesh. Similarly, Figure 6.10e shows at fine grain that only tasks τ1, τ2 and τ3
cause lrc and rrc contention as they directly share links with τ0, whereas tasks τ4 to
τ15 only contribute with rrc.

(a) Contention per router. (b) Baseline contention per
task.

(c) GRV. PWC per contention
type.

(d) GRV. PWC per task. (e) GRV. PWC per task and cont. type.

Figure 6.10: 4x4 2DMesh contτ0 analysis (Setup4).

(a) PWC metric per task (5x5).

Figure 6.11: 5x5 2DMesh τ0 contention analysis.
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6.5.1.5 Larger wmesh (Setup 5 and Setup 6)

These larger scenarios, see Figure 6.11a (5x5), show, as in the previous
experiments, that the contention τ0 incurs depends strongly on the BW assignment
each task in the wmesh has. When the TuA experiences remote contention, this
remote contention matches the BW distribution the co-runner tasks that generate
this remote contention have). More in detail, we observe that tasks running in cores
closer to their targeted memory module (R24) namely C24, C23, C19, C14 are the ones
that generate remote contention to τ0 because of their bigger BW assignation. Still,
GRV with PWC, independently on the mesh size, keeps being able to detect and
correctly capture contention a TuA incurs because of other co-runner tasks in the
system even if these other co-running tasks do not share any physical link with the
TuA (remote contention). Note that results for a 6x6 setup are omitted since they
do not provide any further insight.

6.5.2 Synthetic Traffic with multiple size packets

PWC and GRV also support analyzing and providing contention breakdowns in NoC
setups where packets have variable sizes (e.g. packet size bigger than 1 flit). As
shown in the previous sections, PWC is defined at packet level so that the contention
suffered and caused by packets is ascribed between packets regardless of their size.
Similarly, GRV contention classification criteria are defined at packet level or higher
level (e.g. router, flow,...) making packet size orthogonal to GRV. We have analyzed
contention setups and scenarios already shown in the previous section using multiple
packet sizes. Results obtained do not change substantially. In this section, and for
the sake of reducing repetitiveness, we provide results for Setup 4 only. Figure 6.12
shows the contention analysis for Setup 4 (see Figure 6.6b) when synthetic cores
send packets with packetsize = 2 and packetsize = 6 flits (50% of the times each
size). Results with bigger packet size than 1 flit in Figures 6.12 show a relevant
contention increase for the same number of packets (around 2.4 times) with respect
to contention observed in contention analysis (packetsize = 1 flit). The increase
is explained by the fact that now packets are longer, more flits need to be injected
than in the packetsize = 1 scenarios, which increases contention, ultimately enlarging
arbitration turns. More in detail, Figure 6.12a shows that τ0 contention still mainly
takes place in R2 despite now part of the contention suffered by the TuA occurs in
R1 instead of R2. Packets need to wait more time for gaining the arbitration due to
other long packets. That favors packets to easily spread into different routers, thus
possibly creating and suffering contention in many of them at the same time.

Figure 6.12b does not show any relevant change compared to the packetsize = 1
flit analysis while Figure 6.12c shows that rrc portion type is even bigger than before,
because of the same effect described in Figure 6.12a.

Figure 6.12d shows that contention suffered by τ0 still mainly comes from τ15,
τ14, τ7 and τ3 even though now τ4 to τ6 also contribute (i.e. packets size change
arbitration alignments and tasks that in some scenarios do not collide with the TuA
in others they do). Figure 6.12e confirms the merged effect of increasing rrc contention
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and each task contention contribution, as already shown in Figures 6.12c and 6.12d,
respectively.

Although the size of the packets is transparent for PWC and GRV when analyzing
and classifying contention, scenarios with multiple packet sizes are the ones where
PWC and GRV can be more useful as the gap between the potential WCD that
packets can suffer and the real contention that packets end suffering in operation is
bigger. This is so because to compute WCD, the worst-case contention case arises
when the packet under analysis always collides with the longest possible packet from
other tasks in the NoC (e.g. packetsize = 6 flit in this analyzed scenario).

(a) Contention per router. (b) Baseline contention per
task.

(c) GRV. PWC per
contention type.

(d) GRV. PWC per task. (e) GRV. PWC per task and
cont. type.

Figure 6.12: 4x4 2DMesh contτ0 analysis (Setup4) with multiple packet sizes.

Figure 6.13 shows, from left to right, the WCD τ0 can suffer when running in Setup
4 with packetsize = 2 and packetsize = 6, the WCD τ0 can suffer when running in
Setup 4 with packetsize = 1 and the GRV. The PWC per task, instead, is already
shown in Figure 6.12d. In Figure 6.13 we observe that the WCD global bound with
packetsize = 2 and packetsize = 6 flits (WCD PS2&6) is 6 times bigger than the
WCD global bound with packetsize = 1 (WCD PS1). That matches with the fact
that WCD PS6 always considers τ0 contention caused by other tasks’ packets with
long size (packetsize = 6). Moreover, contention observed in Setup 4 with packet
sizes 2 and 6 (right bar in Figure 6.13), is far from the maximum contention that τ0
can suffer shown in WCD PS2&6). It is worth mentioning that WCD computation
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Figure 6.13: Average analysis time per packet in experiments.

techniques aim at bounding worst-case global contention that a task (e.g. τ0) can
suffer because of other tasks. However, they are not meant to compute bounds to the
individual maximum contention contribution each task can create on a specific task.
This is because WCD is derived under a specific BW distribution (e.g. round-robin
arbitration) and, based on that, we can also derive tasks contribution to that WCD.
Nevertheless, during tasks’ execution, BW distribution can vary (e.g. a task generates
fewer petitions not using their assigned BW so that other tasks use their remaining
BW) and hence, so will vary tasks’ contribution to a specific task without exceeding
the global WCD computed.

6.5.3 Hybrid traffic

We have performed several experiments with hybrid traffic based on one mesh
architectural setup in order to show how GRV works when NoC has high, medium
and low contention using real and synthetic traffic.

As in the previous section, in all cases the TuA (τ0), which in this case runs
a MatMul benchmark, is placed in C0, but it does not have any packet in-flight
restriction. The remaining cores, instead, inject packets at a high, medium and low
injection rate (IR = 1, 0.14, 0.11 respectively) also with no packets in-flight restriction.
The latter two IRs have been carefully chosen to lead to saturation and no-saturation
scenarios respectively as discussed next.

3x3 wmesh: When analyzing real traffic behavior, we define a simpler setup
than the ones already shown (see Setup 5, Figure 6.14) that has 1 memory module
attached to R8 targeted by packets from all cores (i.e C0 to C8). The aim of this
setup and experiments is to show how GRV works when the NoC is working under
maximum contention (IR = 1 which makes total contender IR be IRcont = 8) due to
the IR of the cores from C1 to C8, medium saturation (IR = 0.14, IRcont = 1.12) and
no saturation scenario (IR = 0.11, IRcont = 0.88).

Note that, when the total injection rate of the NoC IRtotal (IRtotal = IRcont+IRτ0)
is greater than the NoC maximum ejection rate (1 packet/cycle), packets saturate the
NoC and accumulate in the routers’ buffers causing high contention. Otherwise, if the
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Figure 6.14: Illustrative 3x3 mesh setup evaluated (Setup5).

total injection rate is smaller than the NoC ejection rate, packets do not accumulate
and cause lower contention than in the previous case.

In terms of the results, for setup 5 we show contτ0 due to the other co-runner
tasks when varying their IR = 1, 0.14 and 0.11 respectively in Figures 6.15a-6.15c.
As expected, contτ0 experienced by τ0 decreases ad IR for the CTs decreases. In
particular, contention is around 6,200,000 cycles for IR = 1; 2,700,000 cycles for
IR = 0.14; and 18,000 cycles only for IR = 0.11.

(a) MatMul vs contend
IR = 1.

(b) MatMul vs contend
IR = 0.14.

(c) MatMul vs contend
IR = 0.11.

Figure 6.15: 3x3 2DMesh PWC contτ0 per task analysis (Setup5).

Figure 6.15a for IR = 1 shows that, since all tasks target the same memory
controller, tasks that are closer to memory, and consequently have more BW according
to the round-robin arbitration (τ8, τ7, τ6, τ5), cause more contention to τ0. Indeed,
tasks contribution perfectly matches round-robin BW distribution to tasks along the
NoC.

However, when co-runner tasks IR decreases to IR = 0.14 (see Figure 6.15b),
tasks contention distribution tends to equalize. That is explained because with lower
IR (still sufficient to cause saturation), packets from the routers with the highest BW
(e.g. above 0.14) are generated at a lower rate than they are granted in the arbiters.
Hence, all routers in general, but those with higher BW in particular, generate lower
interference, and since saturation needs contribution from more routers, those receive
higher BW. For instance, tasks in cores C3 to C8 cause a cumulative IR of 0.84.
Therefore, cores C0 to C2 have a cumulative BW of at least 0.16 sustainedly. At
a lower scale, the very same effect is captured again in Figure 6.15c, where the
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contention is very low. In that case, TuA packets practically traverse the NoC without
contending with packets from other tasks. Hence, contention relates more to whether
injected packets collide with others unluckily rather than to saturation. GRV also
captures this effect in the lrc and rrc contention types classification (see Figures 6.16a-
6.16c). When CTs have high IR (see Figure 6.16a), most of the contention is rrc and is
created by the tasks that have more BW in the NoC. However, when the contenders’
IR is low (see Figure 6.16c), rrc contention is residual and the low contention that
takes place in the NoC is lrc.

(a) MatMull vs contend
IR = 1.

(b) MatMul vs contend
IR = 0.14.

(c) MatMul vs contend
IR = 0.11.

Figure 6.16: 3x3 2DMesh lrc and rrc PWC contτ0 per task analysis (Setup5).

Another relevant result of this setup is that the injection rate of the TuA is not
limited by construction. Hence, a packet of the TuA may be produced when older
TuA packets are still traversing the NoC. As a consequence, especially for high IR
scenarios, one packet of the TuA is more likely to generate backpressure on other
packets from the TuA. This is reflected in Figures 6.15a-6.15c, where we see that τ0
(the TuA) causes contention on τ0 itself.

6.5.4 Off-line algorithm analysis

We have implemented the off-line GRV computing algorithm described in Section
6.4, where the trace is processed sequentially. The execution time required by the
algorithm depends mainly on: (1) the number of packets analyzed with the algorithm,
and (2) the size of the mesh where these packets are analyzed. In Figure 6.17 we show
the execution time/packet (µseconds/packet) of the experiments done in 3x3, 4x4,
5x5 and 6x6 meshes. Results have been obtained in a laptop with an Intel i7-8650U
processor with 16GB of DRAM.

Those per-packet execution times led to 2 seconds to process ≈35,000 packets for
Setup 1, and to up to 1 hour and 6 minutes to process more than 14 million packets
for 6x6 setups, in all cases requiring less than 200MB of main memory. Moreover,
scenarios with a packet size bigger than one flit can be treated as a particular case of
increasing the number of flits or packets (in the case of packetsize = 1 flit). Note that,
for instance, the NoC of the SiPearl Rhea processor from the EPI [29] implements a
6x6 mesh NoC, so setups considered in this chapter are in line with those NoC sizes.
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Figure 6.17: Average analysis time per packet in experiments.

6.5.5 Assessment of the GRV properties

As shown in Section 6.3, a reliable GRV must adhere to several properties which we
review in light of the results obtained. First, GRV successfully classifies every single
cycle of contention attributing it to an appropriate source of such contention, so
no contention cycle remains unclassified or is classified twice. And second, unlike the
baseline metric, which fails to properly attribute contention to tasks, GRV successfully
determines the cores causing such high contention whether it occurs in a given specific
router. Hence, GRV allows carrying precise validation and optimization information
for tasks running on a mesh-based manycore. Last but not least, our results show the
scalability of our approach to derive GRV by considering 3x3 up to 6x6 meshes.

6.6 Conclusions

In this chapter, we define PWC for wmesh, a golden metric that allows ascribing
actual shares of the contention a given task suffers from the other co-runner tasks in
the wmesh at packet-level. We analyze the challenges of measuring and classifying
PWC at packet-level in wmeshes, where the contention is split across the mesh routers
and contending flows. We also discuss how this information needs to be combined
to be useful for validation & verification purposes. We present GRV, a criterion to
fairly break down the contention suffered by a task among its co-runner tasks. GRV
ascribes contention cycles to the actual contending packet causing it in the local
or remote nodes. Overall, GRV can provide valuable information for performance
validation, debugging, and optimization by revealing accurately how contention arises
in wmeshes.
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Chapter 7

Software Timing Diagnosis on
NoC-based Manycores

7.1 Introduction

The use of NoC-based manycores in CRTES demands appropriate support for timing
Verification and V&V to provide evidence of compliance against safety guidelines. In
this line, while some solutions have been devised for bus-based small multicores [76],
they do not match the characteristics of NoCs, whose decentralized arbitration nature
and distributed traffic with multiple interdependent contention locations (e.g. routers
and buffers) challenges their timing V&V.

This chapter describes a new approach for timing V&V of NoC-based multicores
for CRTES. In particular, we show that appropriate statistics and trace-based
information, obtained with very limited hardware support, can be exploited to
quantify the contention each task produces on each other task in a NoC-based
multicore. Such evidence has a twofold use: (1) in the scope of offline analysis,
it allows performing timing V&V prior to deployment, as needed for certification
purposes; (2) for online analysis, the same information, if collected periodically during
execution, allows for detecting potential deadline violations before they actually occur,
so that corrective actions can be taken timely before failures can compromise system
safety. Overall, these are the main contributions:

• We motivate the need for timing V&V support in NoC-based multicores for
CRTES, and how end-to-end execution times fail to detect risky scenarios.

• We define a strategy to accurately estimate contention in NoC-based multicores
for CRTES, so that, if high contention occurs, the cause of such contention can
be diagnosed.

• We analyze how our proposed approach can be applied to existing NoC
specifications.

• We show illustrative applications of our approach and highlight the advantages
it brings for accurate modeling of timing interference.
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7.2 Timing V&V on NoC-based CRTES

In this chapter, we outline a strategy that must be developed to perform the timing
V&V for NoC-based CRTES. In particular, we introduce the system organization,
the objective, and the challenges to be faced to realize such a strategy.

7.2.1 System organization

While NoC-based multicores become mandatory to execute safety-related real-time
tasks, functional safety requirements impose the use of some hardware support, which
is neither available in high-performance multicores, nor expected to be implemented,
such as watchdogs and domain-specific safe and secure I/O interfaces. Hence, the
usual way to achieve both, functional safety and high performance, consists in
connecting a safety-critical MicroController Unit (MCU) as master, and a high-
performance device with limited support for safety as slave. This is already the
system organization chosen by the Intel-Go platform for the automotive domain [5],
where Infineon AURIX and Intel Atom MCUs manage an accelerator card (e.g. based
on Intel Arria technology with FPGAs).

7.2.2 The Objective

Timing V&V requires the collection of sufficient evidence to size timing budgets
(resource planning), verifying that they hold upon system integration (offline testing),
and monitoring during operation (safety measures) that overruns do not occur.
Moreover, such timing information must allow diagnosing precisely the cause of an
overrun to take corrective actions, both at analysis and during operation, and optimize
system integration at analysis time.

To that end, we aim at collecting detailed contention information in the NoC,
where all traffic from all PMEs is visible. In particular, we envision collecting
information about how much each PME (and so the task using it) delays each other
PME, and in what NoC location. This allows obtaining the following certification-,
diagnosis-, and optimization-relevant information.

• How much each task uses each part of the NoC, and so, where and to what
extent each task is sensitive to experience contention, and by whom. This
information is key for WCET estimation to factor in NoC contention.

• How much contention is experienced in practice in each NoC location and what
PME caused that contention, either directly or indirectly. During testing, this
information helps to gain confidence and produce evidence for certification
supporting that overruns cannot occur, or, if they occur during testing, this
information will facilitate the diagnosis of the causes, thus helping to fix the
issue. Moreover, collecting this information periodically during operation allows
for detecting and/or preventing overruns, and eases the process of taking
corrective actions so that overruns do not occur again.
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Figure 7.1: General view for resource planning, offline testing and online monitoring.

Overall, the goal is to collect detailed information during resource planning
and offline testing. As shown in Figure 7.1, information can be collected (and/or
processed) by the MCU or directly dumped into a log file for post-processing. During
operation, monitoring must be performed by the MCU periodically.

Figure 7.2: Steps of our strategy for offline/online processes.

The steps of this strategy are summarized in Figure 7.2. First, configuring the
PMU and tracing support in the NoC. Second, start recording information, either by
sending it back to the MCU or to a log file. And third, offloading the task(s) onto
the high-performance NoC-based multicore for its execution. These three steps are
shared for resource planning, offline testing, and online monitoring. Then, in the case
of resource planning and offline testing, the process of recording information stops
upon execution completion, and information collected is processed, either for WCET
estimation (resource planning) or for diagnosis/optimization (offline testing). In the
case of online monitoring, information is collected by the MCU periodically during the
execution of the tasks in the NoC-based multicore, and analyzed online for overrun
detection or prevention.
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7.2.3 NoC-related Challenges

This strategy based on collecting abundant information, while effective by
construction, poses a number of challenges to be tackled before being implemented
in practice.

Contention classification. The challenge lies in identifying, for each packet
experiencing contention, the packet that causes such contention and providing
the contention classification at flow level. This information shows the contention
breakdown one flow experiences from the other tasks in the system.

In a NoC, once a request is injected, the information about which initiator (e.g.
cores and other I/O masters such as DMAs) is responsible of that petition is lost
unless such information is explicitly encapsulated in the request. Actually, in AXI-
based NoCs there is no explicit field to incorporate the information about the initiator
creating the request. Luckily, more advanced NoC specifications like the AMBA CHI
used in the ARM CNM [25] capture that information in one of the mandatory request
fields. We elaborate on the accuracy of contention classification for different NoC
setups in Section 7.4.

Tracing and monitoring limitations. To properly classify contention, detailed
information about when packets arrive at the routers, when they leave, arbitration
choices, input/output queues occupancy at the routers, etc. may help to determine
what PME causes contention on what other PME and where. In general, either
such information is not available or, if available, there are limitations to collecting it.
For instance, as discussed before for the case of the CMN NoC, tracing features may
provide all information needed to properly classify contention, but not simultaneously
due to limited tracing capabilities (i.e. buffering space and BW). Instead,PMUs have
the ability to accumulate information in the form of counters at arbitrarily high
rates. However, PMUs for decentralized NoCs may lack either sufficient information
to classify contention properly, sufficient counters to count all different casuistic, or
both of them.

In general, limitations with existing hardware support relate to tracing BW and
PMU support. This can be leveraged, to some extent, by deploying software-based
solutions able to infer contention details out of limited information (e.g. combining
information collected in different runs or incomplete data). To what extent such an
approach can be successful is strictly related to the actual hardware support and the
computation time that can be devoted to this task offline or online. In Sections 7.3
and 7.4, we analyze and evaluate to what extent contention can be effectively
measured with worst-case analysis methods, with basic performance monitors, or
using exhaustive tracing information.
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7.3 Contention metrics analysis

To analyze the contention we have mainly two different approaches. First, an
analytical approach similar to the one presented in [51] to quantify worst-case
contention. Second, to collect contention information in the NoC by using NoCs
PMUs or using NoC tracing tools.

7.3.1 Worst-Case Delay

Analytical methods to account for the worst-case contention accurately account for
the worst-case scenario [51]. However, actual contention is generally much lower than
the worst-case one.

Figure 7.3: WCD vs observed contention comparison.

Let us illustrate this with the example in Figure 7.3(a). Consider that flow starting
at C0 (flow of interest) located at R(0, 0) (blue flow) sends packets to PME in R(0, 3)
and C2 in R(0, 2) (green flow) and C6 in R(1, 2) (red flow) (contending flows of C0)
send packets to the PME at R(2, 3). To compute the worst contention packets from C0

can suffer from packets of C2 and C6, we traverse all the routers of the flow of interest
path looking for flows that physically share resources with C0. As only C0 traverses
R(0, 0) and R(0, 1), it cannot suffer contention from any other flow. However, in
R(0, 2) C0 flow directly shares the link with C2 when going to (0, 3). So, C2 causes
direct contention to C0. In order to account for the maximum contention C2 can
create to C0 we need to consider potential flows that can create contention to C2

as in turn will be creating contention to C0. So, taking C2 as if it was the flow of
interest, a direct physical link sharing between C2 and C6 is found in R(1, 3). Hence,
C0 suffers direct contention from C2 and indirect contention from C6 in R(0, 2). The
same reasoning done for R(0, 2) will apply in R(0, 3).

Considering which flows interfere with the flow of interest, the routing algorithm
and the arbitration protocol used, we can compute the maximum contention a flow
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can suffer from the other flows. Unfortunately, there is no golden criterion to account
for and classify contention for the observed contention that occurs in a real execution.
However, if we can access to PMUs or trace information online or offline, we can derive
accurately the observed contention breakdown one flow of interest suffers from the
other flows in the NoC.

In Figure 7.3(b), we compare the contention breakdown values per core and per
router obtained when computing the WCD computed for the Figure 7.3(a) example
w.r.t. the contention values obtained when analyzing contention that occurred in an
execution trace. Contention breakdown values show that contention values observed
in practice are always lower than the computed WCD. The same happens when
comparing the TOTAL WCD values (265 cycles) w.r.t. the observed contention
values (190 cycles). Moreover, worst-case analysis is not useful to identify which
task created more contention to another task in a specific scenario. We observe that
behaviour in Figure 7.3(b) TOTAL C2 and C6 values since WCD values blame core
C2 from causing most of the contention that C0 suffers (145 cycles) when in practice
is C2 the one that causes most of the contention to C0 (105 cycles).

7.3.2 PMU counters

NoCs simulations but also real NoCs as the CMN NoC come with configurable PMCs
that allow accumulating pre-configured events that occur in specific routers of the
NoC. For instance, CMN NoC provides per task injected packets information in
the PMU XP TXFLIT VALID counter. These kinds of counters can provide NoC
utilization information if the counter information is collected by the MCU during
execution, in a log file, or in the tasks ending. The amount of contention a task
experience from its contending tasks is quite related to the NoC utilization these
contending tasks make when the delayed task is running. Thus, one can combine
PMCs with analytical models [51] to estimate NoC contention. Unfortunately, despite
NoC utilization metrics accurately capturing contention effects in highly utilized
NoCs, these metrics fail to capture contention in low utilization NoCs.

7.3.3 Trace metrics

Most of the current NoCs as the CMN NoC often offer debug tracing capabilities that
allow the creation of watch-point-initiated transactions or event-based interrupts that
provide low detail execution information and ease the debug process. These tools also
can be used to collect contention information in order to identify the precise cycle, the
NoC location, and which packet creates contention with another one. To be able to
accurately decompose contention, one of the most relevant information is the packet
source information. Even though the last CHI protocol includes a specific request
field in NoC petitions to encode the packet source identifier, other AMBA versions
and other protocols only provide some width limited fields where this can information
can be encoded (e.g. the 4 QoS bits in AXI4). This limitation drastically impacts
in the contention breakdown accuracy in systems with more than 16 NoC packet
senders.
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7.4 Evaluation

In this section, we analyze the impact that different NoC features can have on the
accuracy of contention metrics. More in detail, we evaluate the worst-case contention
analysis and the measurement-based metrics described in Section 7.3 in different NoC
setup scenarios.

7.4.1 Contention Analysis Framework

To analyze the contention, we use two different approaches. First, we use an analytical
approach similar to the one presented in [51] to quantify worst-case contention.
Second, we derive an iterative methodology that accounts for actual (i.e. not worst-
case) contention measurements in the NoC using NoC traces and PMUs counters
already presented in Chapter 6.

We evaluate our approach on 2DMesh wNoCs of sizes 4x4 and 6x6 (see NoC setup
in Figure 7.3(a) (see TILED MC architecture in Section 3.2). To ease the analysis
of the contention occurring in these setups, we build on a 2DMesh wNoCs where all
CX cores target the same Memory module located in R(3,3), in the 4x4 setup, and
in R(5,5), in 6x6 mesh size. We assume that all cores in the NoC are running a task
and our analysis focuses on the task that runs in C0 that we name from now on TuA.

For the analytical contention analysis, we computed the WCD packets from the
TuA can suffer from packets of all other co-runner tasks in the system as we show in
detail in Chapter 4 (see Section 4.2).

To obtain contention measurements, we use gNoCsim [127] modeling the Tile-
based architecture described in Section 3.2.

Furthermore, we implemented the PMU XP TXFLIT VALID counter [25] and
we use it as a way to approximate how the BW distributes along the mesh
(packets injected per core/total packets injected). Then, applying the worst-case
contention analytical model, the contention breakdown can be computed using these
measurements. We refer to this metric as PMU.

Traces have been generated with the simulator containing full information about
3 triggered packet events: packet injection in the NoC, packet input buffer arrival in
each router, and packet arrival in the targeted PME. Specifically, full information
includes the execution cycles when the event has been triggered and the packet
information (source and targeted PME ID and router ID location including virtual
channel and virtual network).

Gathered traces information allows for comparing contention-free scenarios with
the real scenario traced. Moreover, traced events allow recreating other relevant
information to accurately detect and classify contention as buffers occupancy, packets
ordering in the buffers and arbitration decisions taken at router level.

So as to evaluate the impact of the packets source 4-bits width encoding of the
AXI4 protocol, we created two trace metrics variants: TS COMP that contains the
contention breakdown when all packet information is available in the events traced,
and TS INC that contains the 4 bit limitation. For TS INC values, contention
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information is provided in groups of cores. For example for the 6x6 setup contention
is provided for groups C0-C2, C3-C5, C6-C8, C9-C11, C12-C13, C14-C15, and so on and
so forth.

7.4.2 WCD vs Trace vs PMU accuracy impact

Figures 7.4 and 7.5 show the contribution of all tasks in a 6x6 mesh NoC to the
worst-case contention suffered by the TuA. As expected, the XY routing and the
round-robin arbitration setup give more BW to tasks that are mapped closer to their
target in R(5, 5) (i.e. C35,C34,C29,C33), which are the ones that can contribute more
to the worst-case contention of the TuA.

Figure 7.4: 6x6 2DMesh core Trace vs PMU guilty distribution percentages.

When comparing WCD w.r.t PMU and TS COMP metrics in saturation mode
(see Figure 7.4 WCD, PMU(sat) and TS COMP(sat)), we observe that all metrics are
accurate as NoC contention is recreating the worst-case contention scenario. Actually,
we observe negligible differences across WCD, PMU and TS COMP. All metrics show
that C35 is the core creating the highest contention to the TuA. However, when
the NoC works below the saturation threshold (see Figure 7.4 WCD, PMU(nosat)
and TS COMP(nosat)), the PMU(nosat) values no longer represent cores’ contention
contribution to the TuA as NoC utilization is not bounded to packets contention
anymore. PMU(nosat) values show how each core injects ≈3% of the packets in the
NoC but only packets from some of the cores (e.g. C7, C8, C13) cause contention
to C0 due to their packets arbitration alignment, as shown by TS COMP(nosat).
Similarly, as already explained in Figure 7.3, WCD no longer represents observed
contention in the NoC as the cores that potentially can create more contention to the
TuA in the worst-case contention scenario (e.g. C35, C34, C29, C33 in Figure 7.4) are
not the ones that in practice contribute more to the TuA contention (e.g. C8, C13

TS COMP(nosat) values in Figure 7.4). Trace source complete metric (TS COMP)
is the only contention metric that accurately identifies which tasks contribute more
to the TuA contention.
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7.4.3 SRC accuracy impact

In Figure 7.5, we show the impact in accuracy when analyzing the contention
decomposition of the TuA in a 6x6 mesh size when packets source ID only can be
encoded in 4 bits (TS INC) (e.g., using QoS bits of AXI4) and compare it against the
case with unrestricted bits for source ID encoding (TS COMP). T INC contention
results in the figure are the addition of the contention contribution that all cores have
to the C0 group (C0, C1 and C2) as all of them share the same source ID. T INC
contention of a group is depicted in the first core of the group (e.g., in C34 for the
group including C34 and C35).

Figure 7.5: 6x6 2DMesh core SRC accuracy impact distribution percentages.

In a saturated NoC (see Figure 7.5 WCD, TS COMP(sat) and TS INC(sat)), TS -
INC(sat) values seem to provide quite accurate contention information about each
core group contribution to the TuA w.r.t. TS COMP(sat) values. For instance, C34

and C35 group contention contribution provided in T INC(sat) C34 matches with the
addition of T COMP(sat) contention contribution of C34 and C35. Since all cores in
C0’s group have a very similar contention contribution from the other cores of the
NoC, results remain being sufficiently accurate.

In a non-saturated NoC (see Figure 7.5 WCD, TS COMP(nosat) and TS -
INC(nosat)), TS INC(nosat) values do not match TS COMP(nosat) values as the
group contention breakdown resolution of TS INC(nosat) is not enough to provide
useful contention information. We have also evaluated other grouping setups but the
observed results are similar to the ones presented.
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7.5 Conclusions

NoC-based multicores and manycores challenge the timing V&V of critical real-time
tasks in CRTES, such as those in the avionics and automotive domain, to name a
few. Hence, new approaches are needed to achieve high-performance using NoC-based
multicores while adhering to safety regulations.

This chapter analyzes the impact of the available NoC-related information on the
contention estimates and breakdown, and shows that detailed information (per core,
per router, etc.) is key to achieveing sufficient accuracy, as needed for V&V, system
optimization, and overrun diagnostics during operation.
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Contention Aware Optimizations
in Enforcement stage
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Chapter 8

Maximum-Contention Control
Unit (MCCU)

8.1 Introduction

In CRTES, the techniques to derive bounds to the contention tasks can suffer
in multicore build on resource quota monitoring and enforcement. Interestingly,
SQME have been proposed to handle multicore contention in more generic processors
with limited hardware support for time predictability [33, 67]. In general, SQME
approaches build on limiting per task (core) maximum shared resources utilization. To
that end, the operating system monitors task’s activities using the available hardware
PMCs and suspends tasks execution when their assigned budget is exhausted. In
this chapter, we show that current software-only solutions work well when there is a
single resource and type of request to track and bound, but do not scale to the more
general case of several shared resources that accept different request types, each with
a different associated latency. To handle this (more general) case, we propose a low-
overhead hardware support called Maximum-Contention Control Unit (MCCU). The
MCCU performs fine-grain tracking of different types of requests, preventing a core to
cause more interference on its contenders than budgeted. In this process, the MCCU
also helps verifying that individual requests duration does not exceed their theoretical
bounds, hence dealing with scenarios in which requests can have an arbitrarily large
duration.

In more detail, we make the following contributions to the field of multicore
contention bounding in CRTES:

(a) We identify key limitations of SQME. On the one hand, SQME work well only
when are applied to one single shared resource in which all request types are
assumed to have the same (worst) access latency. However, for the general
case where several hardware shared resources accept different request types
with different latencies, SQME generate unnecessary interrupts to determine
whether tasks have consumed their budget, not only increasing task WCET
but also hampering deriving bounds to WCET. On the other hand, SQME
build on maximum per-request latency estimates that are derived empirically in
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real processors [115], but the lack of means to verify that those estimates actual
bound maximum latencies which brings some uncertainty on the estimates built
on top of those bounds. Moreover, in some AMBA bus implementations, a single
request can potentially hold the bus for an unbounded duration. That means
that setting quotas on request access counts, as done by SQME, does not suffice
to bound contention time.

(b) To overcome the limitations of SQME, we propose to include in multicore
processors a Maximum-Contention Control Unit (MCCU). The MCCU is a
software-controllable low-overhead hardware unit able to ➀ accurately handle
several resources dealing with several request types. Unlike SQME that may
need to trigger several interrupts or perform frequent checks to handle utilization
quotas, the MCCU only requires to trigger one interrupt when the quota
allocated to a task is actually exhausted, allowing to significantly reduce the
overheads of the enforcement mechanism. The MCCU, by monitoring requests
duration, also ➁ allows monitoring seamlessly whether theoretical latency
bounds derived empirically are effectively respected at all times and preserves
quota enforcement even in the presence of requests with unbounded duration.
The MCCU also ➂ handles those (AMBA-compliant) scenarios in which a
core/master can hold the bus for long time, preventing quota violations.

(c) We show the effectiveness of the MCCU tailoring it for a 4-core multicore setup
resembling the Cobham Gaisler NGMP processor for the space domain [50].
Our results for MediaBench show that while SQME can easily generate in the
order of dozens of unnecessary interrupts to control quota on access counts,
our proposed MCCU generates only interrupts when the task consumes all its
contention quota removing any overheads and simplifying timing V&V.

(d) In terms of implementation, the MCCU is a FUB connected as a slave to the
AMBA interconnection network, thus it does not require any modification on
existing FUBs. In particular, the MCCU interface only needs some addressable
space for being configured, snooping AMBA signals and raising specific
interrupts whenever appropriate. This is arguably simpler than introducing
small modifications in existing FUBs such as caches and memory controllers,
which would require expensive and time-consuming re-verification costs.

8.2 SQME Problem Statement

As we introduced in Section 2.2.3.3, existing SQME focus on a single shared resource
– usually the memory as it concentrates a big fraction of the contention tasks can
suffer – and a single type of request accessing that resource. However, in general,
multicores comprise several shared resources R each of which can accept different
types Yr of requests. Also requests can have different access times and hence, cause
different contention delays. The worst-case (longest) contention τb can cause on τa,
i.e. ∆cont

b→a, is computed as shown Equation 8.1.
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Lbus,lh
max Lbus,sh

max Lbus,lm
max Lbus,sm

max

5 10 50 100

Table 8.1: Event and latency values.

∆cont
b→a=

∑
r∈R

∑
y∈Yr

crr,yb→a × Lr,y
max (8.1)

The contention τa can suffer from its contenders c(τa) is:

∆cont
a =

∑
τx∈c(τa)

∑
r∈R

∑
y∈Yr

crr,yx→a × Lr,y
max (8.2)

For the single request type model, a contender task τb is suspended once it
consumes its quota, i.e. it performs crb→a accesses. In other words, if τb requests
are below crb→a, its contention time quota is not exhausted.

When there are several types of requests, there are several combinations of event
counts that lead to a quota violation and hence, event counts need to be conservative
to detect any potential violation. This is better explained with an example. Let
er,yi be the event monitor that counts the number of accesses of type y to resource r
from core i and ebr,yi the respective budget allocated to a given task. For the sake of
this example, let us assume a multicore processor with the bus connecting the cores
with a shared L2 cache as the only shared resource. Further assume that the L2 is
partitioned and each core accesses its own private memory controller, so contention
can only happen in the bus. Four types of requests can be sent to the bus: load
or store (write) accesses that can hit or miss in the L2 (lh, sh, lm, sm). Each of
these requests has a different maximum latency as shown in Table 8.1. Finally, let us
assume that τb is assigned a contention budget ∆cont

b→a = 2000 cycles.
Iteration 1: Row 1 in Table 8.2 (quota columns) shows one potential way in which

quotas on access counts can be set to prevent τb to cause at most ∆cont
b→a contention

cycles on τa. In particular (ebbus,lh=20, ebbus,sh=40, ebbus,lm=14, ebbus,sm = 8) that for
short we represent as (20,40,14,8). Once these values are programmed in the PMCs,
τb is allowed to run concurrently with τa.

Let assume that, during its execution, τb makes accesses (evbus,lh=20,evbus,sh=10,
evbus,lm=2, evbus,sm = 1) that we represent as (20, 10, 2, 1). When τb makes its 20th

load hit access to the bus, an interrupt is raised since the ebbus,lh quota is exhausted.
The remaining contention budget is derived as:

∆cont
b→a=2000−(20× 5 + 10× 10 + 2× 50 + 1× 100)=1600

Iteration 2: Row 2 in Table 8.2, under quota, shows one potential way in which
quotas on access counts can be set so that once τb runs again, it cannot create more
contention than allowed, i.e. ∆cont

b→a ≤ 1600: (16, 22, 8, 9). At the end of this
second step the accesses performed by τb are (6,22,5,2) leaving a contention budget
of 1600− 700 = 900 cycles.
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Quota (ebbus,xx) Consumed (evbus,yy) ∆cont
b→a

xx=lh xx=sh xx=lm xx=sm yy=lh yy=sh yy=lm yy=sm

20 40 14 8 20 10 2 1 1600

16 22 8 9 6 22 5 2 900

10 15 6 4 8 15 4 3 210

4 4 1 1 3 2 0 1 75

Table 8.2: Example of the evolution of the quota assigned to τb. Each row corresponds
to an iteration of the SQME solutions.

This process repeats, generating an interrupt per iteration, until the contention
budget is lower than the highest Lmax.

In general, the need for pre-programming all ebr,yi leads to cases where one counter
is exhausted earlier than the others, thus raising an interrupt despite contention
budget is not yet exhausted. This process repeats until the remaining budget is
small enough not to be worth continuing with the execution. In fact, the smaller
the remaining quota is, the more often interrupts are generated normally. Overall,
monitoring the use of multiple shared resources in software (i.e. with SQME) just
triggering interrupts only when actually exceeding contention quota is not possible.
This results in significant overheads as we quantify in Section 8.4.

8.3 MCCU

We propose the MCCU, a software-controllable low-overhead hardware unit to
accurately handle several shared resources dealing with several request types, each
with different access latency. We implement the MCCU as a new SoC component
that is attached to the on-chip bus (e.g. AMBA). This avoids introducing additional
modifications to the rest of processor components (FUBs), thus drastically reducing
the costs of re-design and re-verification.

8.3.1 Control logic and hardware

For each resource and request type to be tracked, the MCCU keeps Lr,y
max in a register

so a total of ||R|| · ||Yr|| registers are needed, see Figure 8.1. Also, one quota register
per core is required to save the remaining quota cycles ∆cont.

Prior to the execution of the program (e.g. at boot time), all Lr,y
max are initialized

➀ sequentially via a single write port, see Figure 8.1. Since this step is done once, its
overhead – in the order of dozens or hundreds of processor cycles – is negligible.

At task boundary, or software partition boundary like those in avionics ARINC
653 [143], ➁ the Operating System (OS) programs the MCCU with the corresponding
quota, ∆cont. The MCCU can be attached to the on-chip bus as a slave, e.g. AMBA
Peripheral Bus (APB) slave, so that the quota counter and the registers storing the
contention associated to each resource and access type can be configured and accessed
using specific memory addresses, the APB addressable space.
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While less frequent in CRTES, some deployments may allow task migration across
cores. This requires that, whenever a task is swapped out, the OS saves its quota
register in the corresponding task struct that the OS uses for the task. When the
task is swapped back in, the OS restores the quota register. Note that Lr,y

max values are
intrinsic to the processor and hence, the OS can keep a single copy that can restore
at boot time.

Upon each access of type y to resource r ( < r, y >), the corresponding Lr,y
max

latency for that access is retrieved ➂. Then, ➃ the upper-bound latency of the access
is subtracted from the remaining quota, which is properly updated. If the quota
remaining is zero or it is close enough (e.g. it is below the latency of some access
types), ➄ an interrupt is triggered by forwarding this signal to the interrupt controller,
indicating that the quota of τb has been exhausted.

Figure 8.1: Main blocks of the MCCU.

8.3.2 Extension for Several Contenders

Interestingly, when dealing with several tasks, the table with maximum contention
values per resource and access type does not need to be replicated. Instead, we only
need to set a quota register per task, and use the task identifier (AMBA master signal)
to retrieve the appropriate quota value and update it conveniently, see Figure 8.2.
This approach allows setting specific quotas for each task so that, if one of them
overruns its budget, the appropriate interrupt is triggered, but the other tasks remain
unaffected. This approach is also suitable for scenarios with several critical tasks and
contenders since the MCCU allows to set quotas for all (monitored) contending tasks
and the maximum contention they could generate is independent of the particular
TuA. Hence, the MCCU does not monitor contention for each TuA and contender
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task pair, but instead, it only monitors contention generated per task individually.
For instance, let us assume a 4-core processor where τa is allowed to run without any
quota control, τb – despite being critical – has a specific quota to limit the contention
it may cause on τa (e.g. 10,000 cycles), and τc and τd are non-critical tasks.

In this context, contention quota for τc and τd must be set as the lowest contention
they are allowed to produce individually on τa and τb. Also τb quota corresponds to
the maximum contention it is allowed to cause on τa. Finally, since τa has no quota,
it is programmed either with a special value so that it is ignored, or it is simply set
to the maximum value possible (e.g. 232 − 1) so that it cannot overrun its quota in
practice. Overall the contention each task τx can generate (∆x→) is:

∆a→ = 232 − 1 ∆b→ = 10, 000;

∆c→ = min(∆c→a,∆c→b); ∆d→ = min(∆d→a,∆d→b)

Figure 8.2: MCCU for multiple tasks.

8.3.3 Seamless verification of Li,j
max bounds

Li,j
max is estimated empirically in real architectures, which always leaves some residual

risk that estimates do not bound maximum latencies. While extensive testing helps
reducing this residual risk, the MCCU allows for a seamless verification of Li,j

max

bounds with a minor extension. In particular, upon each access to shared resources,
the MCCU receives as input the request type and retrieves the corresponding Li,j

max

bound. As shown in the bottom part of Figure 8.3, by simply monitoring when
requests start and finish with a request duration counter, rdc, the request duration
can be compared with Li,j

max and, upon an exceedance, raise an interrupt.
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This allows for detecting inaccuracies in the derivation of Lr,y
max that might not be

detected during the testing phase, which could affect the reliability of the software-
estimated quotas.

In the context of AMBA, locked transfers allow masters to keep the ownership of
the bus until the transfer completes. This enables masters to keep the bus locked
indefinitely, without the arbiter being able to relinquish the grant from that master.
Lock transfers are typically used to manage atomic operations such as read-modify-
write, needed for synchronization. To handle locked transfers with the MCCU, we can
set up a specific Lmax register for locked transfers (or several of them if multiple types
of locked transfers exist), and manage them as any other type of request. Additionally,
since locked requests may be unbounded, we keep track of the duration of the in-flight
request with a request duration counter (rdc), see Figure 8.3. At request completion
time, we check whether it exceeds the corresponding Lr,y

max. We also check whether
the locked request takes longer than any Lr,y

max even if it is not yet finished. In both
cases, an interrupt is raised, indicating that evidence has been found that the derived
bounds have been violated. This is fundamental to increase confidence – reduce the
residual risk in accordance with standards such as ISO 26262 in automotive.

Figure 8.3: Blocks to check Li,j
max is not exceeded.

8.3.4 Hardware Cost Analysis

Area. the MCCU requires ➀ a Lr,y
max register for each resource and request type to be

tracked. Note however, that registers are not replicated per core. Hence the number
of registers needed is given by ∆cont

b→a and ||R|| · ||Yr||. In addition, a ➁ ‘quota’ register
is needed per core to keep the contention budget each core has available. Also ➂ a
request duration counter, rdc, per core is needed. In our reference SoC architecture,
see Figure 8.4, the access to the bus does not implement split bus transactions so
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that by controlling the access to the bus we also control the access to memory. If
split bus transactions are implemented, then the MCCU is also connected to the L2-
to-memory interface for monitoring purposes. The L2 cache is partitioned as it is the
case in many commercial architectures (e.g. NGMP [50] and ARM A9 [144]). Overall
the MCCU tracks 4 bus access types: loads/stores that hit/miss in the L2. The 4
Lmax registers (often tens of cycles) are normally encoded with just 1 byte each. Also,
few bytes are needed (e.g. 4) for the quota register for each of the Nc = 4 cores.
Thus, hardware overhead is negligible (up to 24 bytes in our reference SoC: 2 × 4
bytes for maximum latencies and 4× 4 bytes for quota registers).

Figure 8.4: Reference SoC architecture. PMU keeps the events and PMCs.

Delay. As shown in Figure 8.3, combinational logic consists of few decoders,
multiplexors and comparators, as well as a subtractor one of whose operands (Lmax)
has few bits (at most 1 byte). Hence, the area and latency of this logic is well
below that of an integer Arithmetic Logic Unit, whose number, size and complexity
of combinational blocks is fairly larger.

The use of a MCCU has other implications in terms of latency similar in nature
to those of a PMU, but of lower magnitude. In particular, a PMU has low complexity
itself, but its input consists of signals monitoring events occurring all along the
processor, thus potentially taking several cycles to arrive to the PMU, which leads
to event counts that can never be up-to-date and reflect event counts with some (yet
limited) delay. In the case of the MCCU, events monitored are typically available
as part of the AMBA AHB bus interface shown in Figure 8.4. Thus, connecting the
MCCU to the AHB, either directly as a slave or as part of another slave (e.g. along
with the PMU), makes input signals available almost immediately when they arrive at
the AHB bus. The internal processing of the MCCU, Figure 8.3, is simple enough to
fit in one cycle or, if needed, be pipelined when the target processor frequency is high.
Finally, on a quota violation there may be some delay to propagate the interrupt to
the interrupt controller which, again, is limited to very few cycles in practice.

Overall, the end-to-end delay since an access starts until a potential interrupt is
triggered may be in the order of 10 cycles, which could at most allow another access
(e.g. the slowest one) to start, thus leading to a slight quota overrun of some tens of
cycles. In the context of microcontrollers operating at several hundreds of MHz at
least, such quota overrun could cost at most around 100ns, which is an insignificant
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impact for systems whose response time is in the order of hundreds of milliseconds
(e.g. a braking system).

Scalability. For larger multicores, the Lr,y
max registers do not depend on the

number of cores, but on the number and type of requests. Only one quota register
is needed per core. Hence, the absolute hardware cost increases negligibly. Latency
wise, signal propagation may increase MCCU latencies. Also, MCCU accesses latency
can increase due to access serialization to the MCCU to keep a single read/write port.
This can delay by few cycles MCCU access, in the worst case, when several cores try
to access the MCCU simultaneously. In both cases, the impact of the increase of few
processor cycles is negligible as described in the previous paragraph.

8.4 Evaluation

8.4.1 Experimental framework

We evaluate the MCCU (see Figure 8.4) on the reference NGMP multicore
architecture [50] described in Section 3.2. In particular, we use its implementation in
a SoCLib-based [126] (see Section 3.3) that allows the L2 cache to be way-partitioned
so that each core receives one way.

The MCCU tracks the 4 access types in Section 8.2: lh, sh, lm and sm. Since the
L2 is writeback, L2 misses evicting dirty data generate two memory accesses: one to
write back dirty data and one to retrieve the data requested.

Following the methodology of previous works [21, 115], the latencies for the
different types of request to the bus have been derived empirically, resulting in these
values: Lbus,lh

max = 10, Lbus,sh
max = 3, Lbus,lm

max = 32, and Lbus,sm
max = 37.

We use the MediaBench benchmark suite [130] described in Section 3.4. We
only excluded mpeg2.encode benchmark due to issues executing it in our reference
platform.

8.4.2 Scenarios evaluated

As explained in Section 8.3.2, the contention quota assigned to each (contender) task
is determined by the minimum amount of contention its sibling tasks can afford.

We analyze several scenarios in which each (contender) task is allowed to cause
variable contention on the TuA. In some scenarios, the contender task does not exceed
its assigned contention quota (and hence should not be suspended). In particular, we
allocate a quota 5%, 10%, ...25% higher than needed, represented in the corresponding
figures as 1.05, 1.1, ... 1.25 respectively. In other scenarios, the contender task exceeds
its quota, so it must be suspended. In particular, it is allocated a quota smaller
than the actual contention it generates according to the model (Equation 8.2). In
particular, we cover the values 0.8, 0.85, 0.9, 0.95, 1.0.

For SQME, given a maximum contention budget τb can generate on τa, ∆
cont
b→a,

there are several ways in which bounds to access counts can be assigned. For instance,
assuming a single resource with two request types of latencies 10 and 20 cycles, and a
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contention quota of 100 cycles, the possible ways in which bounds to access counts can
be assigned are: (10, 0), (8, 1), (6, 2), (4, 3), (2, 4), (0, 5). Determining the best access
bounds a priori is challenging since the number of accesses of each type of a program
can depend on factors such as input data and vary throughout program execution.
Hence, any a-priori choice, which we refer to as request bound breakdown scenarios
(rbbs), is arbitrary.

We have explored two rbbs. In both cases, in the first iteration, we distribute
contention quota homogeneously across request types. Hence, each request type yr is
given a FairShare of the overall quota: FairShare = (∆cont

b→a)/(||R|| · ||Y∇||).
For each request type ebr,y, requests are allowed as defined next: ebr,y =

⌊FairShare/Lr,y
max⌋. Whenever the quota for a given request type is exhausted, in the

following iterations we either follow the same approach based on a fair quota share
(rbbsfair−fair), or we assign the quota proportionally to the consumed quota across
accesses so far (rbbsfair−prop).

For instance, let us assume that the quota is 1,000 cycles and two request types
with Lr,y

max 10 and 20 cycles respectively. In this case, we allocate 500 cycles to each
request type in the first iteration, thus granting 50 and 25 accesses respectively. Let
us now assume that the task performs 50 and 5 accesses respectively, thus exhausting
the quota for the first access type. The remaining quota would be 400 cycles. Under
rbbsfair−fair, we would allocate 200 cycles to each request type, so 20 and 10 accesses.
Under rbbsfair−prop, instead, we would take into account that each access type has
used 500 and 100 cycles respectively, so we would split the remaining 400 cycles
keeping the same ratio, so 333 and 67, thus granting 33 and 6 accesses of each type
respectively.

8.4.3 Sufficient contention quota

SQME results

Figure 8.5 shows the number of interrupts raised by each task under the different
scenarios in which tasks have sufficient budget. It is worth mentioning that the
latency of an interrupt is the time between the start of an Interrupt Request (IRQ)
and the completion of the respective Interrupt Service Routine (ISR). The direct cost
of interrupts together with their impact on processor state (e.g. cache state) impact
execution time (and WCET) in non-obvious ways. Moreover, just predicting a priori
the number of interrupts to account for them in the WCET is challenging. Therefore,
in addition to their actual cost, unnecessary interrupts caused by SQME challenge
the derivation of reliable and tight WCET estimates.

In Figure 8.5, the z-axis shows the quotas that range from 1.05x to 1.25x of the
actual quota each benchmark (on the x-axis) would need in practice. As shown, the
number of unnecessarily-generated interrupts is high for both rbbsfair−fair (top plot)
and rbbsfair−prop (bottom plot) software approaches and increases as the contention
quota decreases down to 1.05. For rbbsfair−fair, interrupts are quite stable around
5, while for rbbsfair−prop, on average, the number of interrupts decreases, and in
many cases is just 1. For some benchmarks such as epic.d and pgp.e, they increase
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Figure 8.5: Number of interrupts generated by SW solutions.

significantly due to the varying behavior of the benchmarks over time. In either
case, software-only solutions (SQME) need to allocate quota statically to request
types, thus causing unnecessary interrupts due to their inability to allocate quota
dynamically to the request types that occur in practice.

Resorting back to the single-request solution. A simple approach overcomes
the problem of distributing the quota across request types, consists of assuming a
minimal hardware support that adds the desired events in a given counter. In our
case, evcomb = evlh+evsh+evlm+evsm. That is, all requests are assumed to be of the
same type. In the CRTES domain, this necessarily means to assume that all requests
are from the worst type, so with the highest latency, which requires reformulating
Equation 8.2 as follows.

∆cont
b→a= max

r∈R,y∈Yr

(Lr,y
max)×

(∑
r∈R

∑
y∈Yr

crr,yb→a

)
(8.3)

While this solution would certainly avoid generating unnecessary interrupts,
assuming that all requests are from the worst type implies that quota is consumed –
pessimistically – much faster, leading to a single (but much earlier) interrupt.
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Figure 8.6: Increase in ∆cont
b→a due to the simple support for the single-request approach

w.r.t. MCCU.

In order to show the impact of this approach in our reference architecture, we
have measured in Figure 8.6 the increment in contention delay, ∆cont

b→a in Equation 8.3,
with respect to Equation 8.1, the latter of which is captured by the hardware model
in the MCCU.

The observed increase for MediaBench in our reference architecture is 9.6x on
average and as high as 12.3x. This indicates that quota is consumed at a 9.6x higher
rate with this approach, which is simply an unaffordable overhead that makes this
solution not attractive either. In fact, this would require that the TuA could afford
9.6x higher contention than with the MCCU.

MCCU

For the MCCU, zero unnecessary interrupts are generated. Since quota suffices, the
contender task will always complete its execution before exhausting its quota.

8.5 Conclusions

Existing SQME techniques focus on reducing the impact of contention on WCET
estimates of monitored tasks when accessing on a single shared resource with a single
type of request accessing this resource (e.i same latency). Nevertheless, they do not
scale well when tracking contention coming from multiple shared resources each with
multiple petition types. To cope with this case, we have presented the MCCU, a low-
overhead hardware component that allows allocating contention quotas to tasks for
shared hardware resources and monitoring whether those quotas are exhausted. The
MCCU raises one interrupt only when strictly needed, hence avoiding the limitations
of software-only solutions that allocate individual quotas per resource and access type
resulting in frequent unnecessary interrupts. Moreover, the MCCU allows assessing
seamlessly whether the maximum latency per request type estimated is exceeded, thus
detecting potential issues in the WCET estimation process. Finally, the hardware
overhead of the MCCU is quite limited and does not require re-designing or re-
verifying existing FUBs, which would challenge its adoption due to cost reasons.
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Chapter 9

Conclusions and Future Work

Satisfying the increasing demand for performance in CRTES calls for the use of
NoC-based multicores and manycores. While these kinds of systems are popular in the
high-performance domain due to their high average performance, they challenge the
entire V&V process and hamper deriving evidence of systems’ timing and functional
correctness.

Focusing on the timing correctness, the adoption of COTS high-performance
hardware and particularly of interconnects, specially NoCs, challenges the entire
software timing development process:

• timing analysis when deriving tight WCET estimates during budgeting and
verification,

• timing violations detection and correction during validation,

• deploying safety measures (i.e. enforcement) to prevent timing failures at
operation.

These difficulties are caused by the contention to which tasks are exposed in the
interconnect, which tasks execution time behavior dependent on each other, and are
exacerbated by the distributed nature of NoCs.

9.1 Contributions

In this Thesis, we tackle all these three challenges by developing strategies to tightly
derive WCET estimates that favor systems’ performance fairness and by proposing
practical solutions to monitor and control contention in CRTES. More in detail:

Timing Validation (WCET reduction)

• Our first contribution, EOmesh, overcomes the inability of wmeshes trying to
fairly distribute BW to minimize WCET estimates when using XY routing. Our
proposal uses a smart combination of XY-YX routing that correctly balances
the number of flows mapped in each router along with a weighted arbitration
re-computation that fairly distributes (global) BW increasing performance

141



9. CONCLUSIONS AND FUTURE WORK

and reducing WCET of single-thread and parallel applications. EOmesh also
alleviates the number of flit stalls by correctly mapping in a balanced way the
flows in the mesh (XY-YX routing) and accordingly recomputing the arbitration
weights. These changes have a noticeable impact in reducing the obtained WCD
and WCET while increasing the system’s guaranteed performance.

• On our second contribution, NoCo, we have gone one step further in reducing
WCET estimates in 2Dmesh-based CRTES. While other solutions only target
optimizing one or two NoC parameters at the same time, our NoCo solution is a
stochastic ILP optimization that finds mesh NoC configurations with minimal
WCD by optimizing the three main NoC parameters (tasks’ mapping, NoC
routing and arbitration weights allocation) at the same time. With this work,
we can conclude that minimal WCD and WCET can only be obtained when
optimizing mapping, routing and arbitration weights at the same time after
exhaustively modeling their interrelations and feasible NoC configurations.

Timing Verification (Monitoring, testing and contention analysis)

• In our third contribution, PWC-GRV, we focus on defining techniques for
measuring and analyzing actual contention in 2Dmesh NoC-based systems.
Whereas a lot of research has been done to tightly derive WCET, less effort has
been devoted to developing techniques that monitor and control that estimated
budgets are met in the testing phase. Since the budgeting techniques are not
valid to measure actual contention in NoCs, our work develops a new metric
(PWC) that bounds packets’ slowdown from one task (contention) to packets
from other tasks causing the slowdown. Furthermore, we propose a criterion
(GRV) that allows breaking down contention suffered by a task distinguishing
the source of the task causing the contention and the location in the NoCs where
the contention occurs. With this work, we propose to our knowledge, one of the
first methodologies to measure and classify actual contention for detection and
correction testing purposes in mesh NoCs. We can conclude that monitoring
and classifying contention in NoCs is possible when fine-grain information about
the packets’ status along the NoC can be traced or monitored. PWC-GRV
contention classification proves to be useful both in simple and complex NoC
setups with multiple memory controllers.

• On the fourth contribution, ACMNoC, we identify monitoring and tracing
limitations in real NoCs when building contention metrics, and we quantify
the accuracy impact these limitations have on the contention metrics used
to detect and correct timing violations. We also compare our PWC-GRV
methodology w.r.t other typical NoC metrics. We conclude that only when
fine-grain information is available (per core, per router, etc.) at a sufficient
speed, contention breakdowns obtained are accurate enough to be useful for
V&V and timing diagnostics.
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Safety Measures (Enforcement, monitoring and contention control)

• Our last contribution, MCCU, focuses on contention monitoring and
enforcement in bus-based CRTES. We propose a SW/HW solution that tracks
and limits fine-grain contention preventing cores to create more contention than
the one budgeted to other cores. MCCU improves existing SQME techniques
as it only raises an interrupt when the global quota is finally exhausted. With
this work, we can show that solutions to enforce contention such as MCCU,
can be achieved by introducing limited hardware overhead without requiring
re-designing or re-verifying existing FUBs.

Overall, the set of proposed solutions ease the adoption of NoC interconnects to
fully exploit its performance benefits and contain the impact they have on timing
budgeting and verification, time validation, and timing enforcement.

9.2 Impact and Future Work

The work done in this Thesis complements and extends some research lines already
opened by other PhD students in the Universitat Politècnica de Catalunya (UPC)
that were also targeting the same challenges in CRTES. At the same time, this
Thesis also opens other new research lines regarding monitoring, enforcing and
analyzing contention in distributed NoCs. The work carried out in this Thesis has
had a significant impact in the scientific community as reflected by the high-quality
publications carried out that are summarized in Table 1.1.

The EOmesh and NoCo proposals are extensions to the previous works carried
out on wmeshes in the same research group. This work has been done related to
the real challenge that processor designers will face when adopting NoCs in their
CRTES and then try to obtain evidence of the systems’ timing correctness required
by CRTES before deployment. The results of this Thesis will be very valuable to the
CRTES industry when moving from simple multicores to higher node count manycore
platforms.

The work presented in proposals PWC-GRV and ACMNoC represents a new
research line started in the scope of the EPI [29]. The goal of this research was
to analyze the timing behavior of the interconnects of the EPI GPP to ease its
applicability in the context of safety-related applications. These two contributions
are a starting point for further works as it sets the baseline for monitoring and
analyzing contention in distributed NoCs. More in detail, our work provides hints
and shows that indeed is it possible to analyze timing behavior and contention at
fine grain by monitoring NoCs for validation purposes. However, there is still a long
way to go in implementing these metrics and methodologies in real NoCs facing the
tracing/monitoring limitations and using the currently available information provided
by the NoCs. With the work done in this Thesis, we expect to somehow influence the
design of the next-generation GPP EPI processors. We have shown that including
or extending PMCs that take into account the basic information needed to create
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the timing breakdowns has little overheads and enables the possibility of using such
devices in the context of time-critical applications.

The work done in the MCCU proposal has pioneered the design of hardware
quota monitoring units, and has set the ground for other works [145, 146, 147].
Actually, the MCCU mechanism has been implemented in RTL in multiple industry-
ready platforms supported by partners like Cobham Gaisler in the De-RISC [148] and
SELENE SoCs [149]. This mechanism is currently being tested by relevant industrial
partners in the safety-critical systems domain in the context of the H2020 SELENE
project [150]. Thus, we consider that is very likely that the MCCU or a similar
mechanism will be incorporated in the next generation of SoCs targeting safety-
related applications. Furthermore, the MCCU in combination with the analysis we
have done at X and Y sets the ground for the design of new enforcement techniques
to control and monitor the contention in distributed NoCs. We consider this new line
of research that originates from this Thesis will be very relevant in the near future.
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