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Abstract 
 
Coastal areas support important ecosystems with great ecological value, giving rise 
to countless resources increasingly exploited by humans. Understanding the 
processes occurring in both inland and aquatic ecosystems, as well as their mutual 
interactions, and with anthropic activities is required. In this line, the new generation 
of high-resolution multispectral Sentinel satellites (Sentinel-2; S2) extend the 
capabilities for the integrated monitoring of coastal areas thanks to their spatial and 
temporal resolutions (up to 10 m and 5 days). However, global remote sensing 
issues/limitations (e.g., cloud screening, spectral mixing, atmospheric correction) and 
regional-specific characteristics (e.g., involved ecosystems, economic fabric, 
interlinkages), make up challenges of diverse nature. The basis of the research 
presented in this thesis is to explore the potential of S2 for the monitoring of coastal 
areas, and the associated technical and scientific questions. The work is focused on 
the processing of S2 imagery for characterizing Ebro Delta (Spain) coastal features 
and their dynamics, involving aquaculture, agriculture, spatial planning, 
environmental monitoring, and preparedness for natural hazards. From atmospheric 
correction and image pre-processing (first steps) to data modelling and analysis (last 
steps), a number of technical and scientific challenges have been addressed. 

 
In coastal waters, different atmospheric correction levels, processors, 

spectral combinations, and statistical models have been used for mapping water 
quality (i.e., chlorophyll-a, Secchi disk depth) and macrophytes (i.e., seagrass, 
macroalgae). For estimating chlorophyll-a (proxy of phytoplankton biomass), the 
best results were obtained using simple ratios including visible and/or red-edge 
bands applied to Rayleigh or full-atmospheric corrected imagery, by fitting either 
linear or 2nd-degree polynomial (MAE ~ 0.6 mg/m3), obtaining time series which 
allowed to relate the distribution of phytoplankton with the environmental and 
anthropic forcing. The relationship between Secchi disk depth and light attenuation 
products (r > 0.75) demonstrated the feasibility of monitoring water clarity with S2. 
In relation to the estimation of macrophytes coverage, machine-learning supervised 
classification of S2 VIS-NIR composites was used for assessing the spatial coverage 
of seagrass and macroalgae communities in shallow waters, unveiling a negative 
impact of agricultural runoff on macrophytes’ communities. Inland, an automatic 
method was developed based on the identification of key points in the combined 
temporal profiles of three common vegetation and land surface water indexes for 
the extraction of rice phenological metrics, irrigation management, and crop yield 
proxy. The results provided information on significant rice phenological stages and 
field status (e.g., rice maturity, hydroperiod), also showing that crop yield is better 
estimated during the rice heading period (r = - 0.8). Finally, for assessing storms’ 
effects with S2, a combined flooding-water quality monitoring method was defined 
and implemented, reaffirming the capabilities of S2 for depicting the different grades 
of land and aquatic environments’ resilience. 
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The conducted research has been applied to the estimation of 
phytoplankton biomass at coastal bays (aquaculture), the generation of information 
on crop dynamics and management (agriculture), the assessment of agriculture 
runoff disturbance in coastal waters (environmental monitoring), and the 
characterization of storms’ effects on land and water ecosystems (natural hazards). 
A work that brings the application of satellite image processing to scientists, 
engineers, coastal managers, and stakeholders by providing results that demonstrate 
the usefulness of these viable and low-cost techniques for high-quality coastal 
monitoring. 
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Resumen 
 

Las zonas costeras albergan importantes ecosistemas de gran valor ecológico, que 
dan lugar a innumerables recursos cada vez más explotados por el ser humano. Por 
ello, es necesario comprender los procesos que ocurren tanto en los ecosistemas 
terrestres como en los acuáticos, así como sus interacciones mutuas y con las 
actividades antrópicas. En esta línea, la nueva generación de satélites multiespectrales 
Sentinel de alta resolución (Sentinel-2; S2) amplía las capacidades para la 
monitorización integrada de las zonas costeras gracias a su resolución espacial y 
temporal (hasta 10 m y 5 días). Sin embargo, los problemas/limitaciones globales de 
la teledetección (e.g., cribado de nubes, mezcla espectral, corrección atmosférica) y 
las características específicas de cada región (e.g., ecosistemas implicados, tejido 
económico del lugar, interrelaciones), componen retos de diversa naturaleza. En este 
sentido, la base de la investigación presentada en esta tesis es explorar el potencial 
de S2 para la monitorización de zonas costaras, y las cuestiones técnicas y científicas 
asociadas. El trabajo se centra en el procesamiento de imágenes S2 para la 
caracterización de aspectos costeros del Delta del Ebro (España) y su dinámica, 
involucrando la acuicultura, la agricultura, la planificación espacial, el seguimiento 
medioambiental, y la preparación ante riesgos naturales. Desde la corrección 
atmosférica y el preprocesamiento de las imágenes (primeros pasos) hasta el 
modelado y el análisis de los datos (últimos pasos), se han abordado distintos retos 
técnicos y científicos. 

En las aguas costeras, se han utilizado diferentes niveles de corrección 
atmosférica, procesadores, combinaciones espectrales y modelos estadísticos para 
cartografiar la calidad del agua (i.e., clorofila-a, profundidad del disco de Secchi) y los 
macrófitos (i.e., praderas marinas, macroalgas). Para estimar la clorofila-a (indicador 
de la biomasa fitoplanctónica), los mejores resultados se obtuvieron utilizando ratios 
simples que incluían bandas visibles y/o del borde rojo aplicados a imágenes 
corregidas por Rayleigh o con corrección atmosférica completa, con un ajuste lineal 
o polinomial de 2º grado (MAE ~ 0,6 mg/m3), obteniendo series temporales que 
permitieron relacionar la distribución del fitoplancton con el forzamiento ambiental 
y antrópico. La relación entre la profundidad del disco Secchi y los productos de 
atenuación de la luz (r > 0,75) demostró la viabilidad de la monitorización de la 
claridad del agua con S2. En cuanto a la estimación de la cobertura de macrófitos, la 
clasificación supervisada por aprendizaje automático de composiciones de bandas 
VIS-NIR de S2 fue útil para evaluar la cobertura espacial de las comunidades de 
praderas marinas y macroalgas en aguas poco profundas, revelando un impacto 
negativo de la escorrentía agrícola en las comunidades de macrófitos. En el interior, 
se desarrolló un método automático basado en la identificación de puntos clave en 
los perfiles temporales combinados de tres índices comunes de vegetación y agua 
superficial de la tierra para la extracción de métricas fenológicas del arroz, la gestión 
de la irrigación y la aproximación al rendimiento de los cultivos. Los resultados 
proporcionaron información significativa sobre las etapas fenológicas del arroz y el 
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estado del campo (e.g., madurez del arroz, hidroperiodo), mostrando también que el 
rendimiento del cultivo se estima mejor durante el período de floración del arroz (r 
= - 0,8). Por último, para evaluar los efectos de las tormentas con S2, se definió e 
implementó un método combinado de monitorización de la calidad del agua e 
inundaciones, reafirmando la capacidad de S2 para representar los diferentes grados 
de resiliencia de los entornos terrestres y acuáticos.   

Esta investigación se ha aplicado a la estimación de la biomasa de 
fitoplancton en bahías costeras (acuicultura), a la generación de información sobre 
la dinámica y gestión de los cultivos (agricultura), a la evaluación de las alteraciones 
de la escorrentía agrícola en el medio marino (vigilancia ambiental) y a la 
caracterización de los efectos de las tormentas en los ecosistemas terrestres y 
acuáticos (riesgos naturales). Un trabajo que acerca las aplicaciones del 
procesamiento de imágenes satelitales a científicos, ingenieros, gestores costeros y 
partes interesadas, proporcionando resultados que demuestran la utilidad de estas 
técnicas viables y de bajo coste para la monitorización costera de alta calidad.  
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Resum 
 

Les zones costaneres alberguen importants ecosistemes de gran valor ecològic, que 
donen lloc a innumerables recursos cada cop més explotats per l’ésser humà. Per 
això, és necessari comprendre els processos que ocorren tant en els ecosistemes 
terrestres com en els aquàtics, així com les seves interaccions mútues i amb les 
activitats antròpiques. En aquesta línia, la nova generació de satèl·lits multiespectrals 
Sentinel d’alta resolució (Sentinel-2; S2) amplia les capacitats per a la monitorització 
integrada de les zones costaneres gràcies a les seves resolucions temporals i espacials 
millorades (fins 10 m i 5 dies). Tanmateix, els problemes/limitacions globals de la 
teledetecció (e.g., triatge de núvols, barreja espectral, correcció atmosfèrica) i les 
característiques específiques de cada regió (e.g., ecosistemes implicats, teixit 
econòmic del lloc, interrelacions), composen reptes de diversa naturalesa.  En aquest 
sentit, la base de la investigació presentada en aquesta tesi és explorar el potencial de 
S2 per a la monitorització de zones costaneres, i les qüestions tècniques i científiques 
associades. El treball es centra en el processat d’imatges S2 per a la caracterització 
d’aspectes costaners al Delta de l’Ebre (Espanya) i la seva dinàmica, involucrant 
l’aqüicultura, l’agricultura, la planificació espacial, el seguiment mediambiental, i la 
preparació front a riscos naturals. Des de la correcció atmosfèrica i el pre-processat 
de les imatges (primers passos) fins el modelat i l’anàlisi de les dades (últims passos), 
s’han abordat diferents reptes tècnics i científics.  

En aigües costaneres, s’han utilitzat diferents nivells de correcció 
atmosfèrica, processadors, combinacions espectrals i models estadístics per a 
cartografiar la qualitat de l’aigua (i.e., clorofil·la-a, profunditat del disc de Secchi) i els 
macròfits (i.e., praderes marines, macroalgues). Per estimar la clorofil·la-a (indicador 
de biomassa fitoplanctònica), els millors resultats es van obtenir utilitzant ratis 
simples entre les bandes visibles i/o del marge vermell aplicats a imatges corregides 
per Rayleigh o amb correcció atmosfèrica complerta, amb un ajust linial o polinomial 
de 2n grau (MAE ~ 0,6 mg/m3), obtenint series temporals que van permetre 
relacionar la distribució del fitoplàncton amb el forçament ambiental i antròpic. La 
relació entre la profunditat del disc de Secchi i els productes d’atenuació de la llum 
(r > 0.75) va demostrar la viabilitat de la monitorització de la claredat de l’aigua amb 
S2. En quan a l’estimació de la cobertura de macròfits, la classificació supervisada 
per aprenentatge automàtic de composicions de bandes VIS-NIR de S2 va ser útil 
per avaluar la cobertura espacial de las comunitats de praderes marines i macroalgues 
en aigües poc profundes, revelant un impacte negatiu de l’escorrentia agrícola en 
comunitats de macròfits. A l’interior, es va desenvolupar un mètode automàtic basat 
en la identificació de punts clau en els perfils temporals combinats de tres índex 
comuns de vegetació i aigua superficial de la terra per a la extracció de mètriques 
fenològiques de l’arròs, la gestió de la irrigació i l’aproximació al rendiment dels 
cultius. Els resultats van proporcionar informació significativa sobre les etapes 
fenològiques de l’arròs i l’estat del camp (e.g., maduresa de l’arròs, hidroperíode), 
mostrant també que el rendiment del cultiu s’estima millor durant el període de 
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floració de l’arròs (r = - 0.8). Per últim, per avaluar els efectes de les tempestes amb 
S2, es va definir e implementar un mètode combinat de monitorització de la qualitat 
de l’aigua i les inundacions, reafirmant les grans capacitats de S2 per a representar 
els diferents graus de resiliència dels entorns terrestres i aquàtics.  

Aquesta investigació s’ha aplicat a l’estimació de la biomassa del 
fitoplàncton en badies costaneres (aqüicultura), a la generació d’informació sobre la 
dinàmica i gestió dels cultius (agricultura), a l’avaluació de les alteracions de 
l’escorrentia agrícola en el medi marí (vigilància ambiental) i a la caracterització dels 
efectes de les tempestes en ecosistemes terrestres i aquàtics (riscos naturals). Un 
treball que apropa les aplicacions del processat d’ imatges de satèl·lit a científics, 
enginyers, gestors costaners i parts interessades, proporcionant resultats que 
demostren la utilitat d’aquestes tècniques viables i de baix cost per a la monitorització 
costanera d’alta qualitat.  
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1.1. BACKGROUND AND RESEARCH JUSTIFICATION 

Coastal areas support highly dynamic and productive ecosystems of great ecological 
and economic value (Ramírez-Pérez et al., 2017). They are key sites for human 
development since more than 40 % of the world’s population inhabit them, 
including 60 % of the world’s major cities (Nicholls et al., 2007). Anthropic and 
natural processes coexist and interact between them mediated by environmental 
fluctuations. Understanding the relationship and the interaction among overlapping 
land uses (e.g., urban areas, tourism, agri-food industry, ecosystem services) is 
essential information for decision-making and the development of an Integrated 
Coastal Zone Management (ICZM) program at local, regional, and global scale 
(Fabbri, 1998). ICZM must include the protection of the coastal environment, 
preserving its integrity and functioning, and leading to the sustainable management 
of the natural resources (European Comission, 2002).  

The development and implementation of ICZM impose the prerequisite of 
understanding inland and aquatic processes, as well as their interactions and their 
relationship with human activities. The high spatiotemporal variability of the 
environment is a challenge for observing systems and monitoring programs 
(surveying methods), and the complex interlinkages with human activities trends 
make it difficult to understand when the system is responding to natural or human-
mediated changes. Consequently, ICZM needs to integrate multiscale observing 
systems, high-frequency information, and complete geographic coverage (Hinton, 
1996; Ramírez-Pérez et al., 2017).  

Satellite remote sensing imagery is increasingly able to satisfy these data needs, 
mainly because of its unique capability for regular and repeated observation of 
specific regions at different spatial scales (Dean and Populus, 2013). In remote 
sensing, the image acquired is related to electromagnetic properties of the Earth and, 
under different conditions, it can be related to real-world parameters (Bakker et al., 
2001). A broad variety of sensing methods exist, using different sources of radiation 
(active and passive sensors) and handling various wavelengths from ultraviolet (UV) 
to infrared (IR) and microwave regions, thus defining the limits of the 
electromagnetic spectrum in which remote sensing operates. 

Among the different sensing methods, multispectral sensors (optical domain) 
including the visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) 
regions of the spectrum are of particular interest for comprehensive monitoring of 
coastal areas. These sensors have been successfully applied to assess the state and 
evolution of land cover, land use, and land inundation (Pekel et al., 2014; Phiri et al., 
2019), ground and aquatic vegetation (Van Niel and McVicar, 2004; Hossain et al., 
2015), water quality (Matthews, 2011; Gholizadeh et al., 2016), and submerged and 
emerged coastal morphology (Lyzenga et al., 2006; Sánchez-García et al., 2020). 
Therefore, multispectral remote sensing can tackle coastal monitoring as a whole, 
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with an important contribution to the management of critical terrestrial and aquatic 
ecosystem assets and services (Ustin, 2004), natural hazards preparedness and 
response (Klemas, 2013), and the surveillance and planning of human-made 
activities such as agriculture (Boschetti et al., 2017), aquaculture (Gernez et al., 2017), 
and dredging operations (Caballero et al., 2018a).  

Since 2014, the Sentinel satellite products of the European Spatial Agency have 
opened new opportunities for remote sensing in coastal areas. The primary purpose 
of the Sentinel satellite constellation series is to support the needs of the Global 
Monitoring for Environmental Security (GMES) program (Berger et al., 2012). 
Sentinel long-term data (>20 years) meets the rigorous requirements of operational 
programs, being free, systematic (Malenovský et al., 2012), and available online at the 
same sensing date. Because of the increase in readiness, coverage, and radiometric, 
spatial and temporal resolutions, Sentinel’s data support a number of operational 
services related to the monitoring of both the aquatic and terrestrial ecosystems, 
being a key tool for the development of ICZM systems. The S2 mission comprises 
a constellation of two polar-orbiting satellites placed in the same sun-synchronous 
orbit (S2-A and S2-B), that is planned to be extended with S2-C in 2024 and S2-D 
in 2025. Its wide swath (290 km), high-resolution (10-20-60 m) MultiSpectral 
Imagery sensor (MSI - Figure 1), and high revisit frequency - 5 days at least and up 
to 2 days where multiple orbits overlap – (ESA, 2017), allow the monitoring of 
environmental changes at the same, or similar, time frame in which they occur.  

Despite the advances in satellite platforms and sensors, there are some limitations in 
the use of multispectral remote sensing. Optical sensors are restricted to day-time 
and cloud-free conditions, since they rely on solar reflectance from the Earth’s 
surface (Matgen et al., 2020). Optical remote sensing cannot penetrate clouds, even 
in partially clear sky conditions, and cloud screening may be a difficult task.  Cloud 
coverage significantly reduces the timeliness and consistency of the observations, 
emphasizing the importance of the native temporal resolution of the satellite 
platforms. Clouds also lead to large uncertainties in many applications due to Earth’s 
Surface shadowing (Zhang et al., 2013). Pixels affected by cloud shadows present 
reduced radiances in reflective bands, and usually are spectrally confused with water 
surface (Wang et al., 2019). Consequently, coastal areas represent a complex scenario 
by including different land and water types, such as agriculture, urban areas, lagoons, 
and wetlands. 
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Figure 1. S2 spectral bands. Bandwidth (rectangles) ranges from 15 nm to 180 nm. 
Adapted from (ESA, 2017).  
 

Another constraint common to different satellite platforms is the spectral mixture 
problem, associated with the spatial resolution of the sensors. Since a sensor 
measures the intensity of radiant flux of electromagnetic energy of portions of the 
Earth’s surface (pixel size), the radiation flux originated is a mixture of different 
fluxes of radiation (i.e. from different features), resulting in a single measure of 
intensity by pixel in each spectral region in which the sensor operates (Shimabukuro 
et al., 2017). This is a critical issue for varied remote sensing applications such as 
landcover classification or submerged vegetation monitoring, particularly in coastal 
areas with high spatial heterogeneity. Thus, misclassification may occur when a pixel 
contains two or more classes, producing a spectral response that does not match the 
characteristics of any of them (Ranson, 1975). This highlights the importance of the 
sensor’s spatial resolution, with S2-MSI being one of the best open-data satellite 
solutions.  

A major issue in the use of multispectral remote sensing data is the removal of the 
atmospheric effects in the signal received at the satellite sensor (the top of the 
atmosphere - TOA). Electromagnetic energy travelling through the atmosphere is 
absorbed, transmitted and/or scattered by the molecules and particles present, 
depending on the atmospheric composition and the wavelength (Baker et al., 2001). 
Thus, atmospheric correction is necessary for the accurate and consistent retrieval 
of surface reflectance at the bottom of the atmosphere (BOA). The fundamental 
philosophy of atmospheric correction is to determine the optical characteristics of 
the atmosphere and apply this to correct imagery data. Atmospheric correction over 
land is the simplest case, with official and standardized processes for most of the 
multispectral satellites, S2 included (Main-Knor et al., 2017). Compared to vegetation 
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or soil, water has lower reflectance - only reflects 10 % of the incoming radiation 
between the VIS and the NIR in oceanic waters (IOCCG, 2010) -, making 
atmospheric correction more difficult. Complexity increases in the land-water 
interaction zone. In coastal areas such as deltas, land runoff propitiates a more 
heterogeneous aquatic environment, where inorganic and/or organic sediments may 
make a dominant contribution to the optical properties (Prieur and Sathyendranath, 
1981), requiring more accurate and precise atmospheric correction algorithms. 
Despite different methods have been proposed, atmospheric correction over coastal 
waters has not been totally solved yet.   

Although remote sensing data can be processed and interpreted without other 
information, the use of ground (or surface) truth data is crucial for the development 
and adjustment of algorithms, and for assessing estimates’ uncertainty (Baker et al., 
2001). The synchronization of ground-based survey data and remotely sensed data 
effectively ensures that the temporal dynamics of the observed variable are 
considered (Liu et al., 2003). Representative field surveys should include data 
collected over all possible scenarios (e.g., seasonal, atmospheric, optical, and site-
specific conditions), which is costly and time-consuming, particularly in coastal areas 
due to the environmental heterogeneity, both in time and space, and the great 
number of parameters to consider (e.g., turbidity, chlorophyll, and vegetation). 

Despite it is still necessary to address scientific and technical questions, because of 
all the above-mentioned features, the S2 constellation has the potential to contribute 
to ICZM planning strategies. In order to fill the gaps, it is recommended to focus 
on a study site with an independent assessment of the considered issues. In this 
sense, the coastal region of the Ebro Delta is an excellent study area. 

The Ebro Delta (NE Iberian Peninsula), with an extension of ca. 32,500 ha, is one 
of the largest deltas in the northwestern Mediterranean Basin (Figure 2). The climate 
is Mediterranean temperate with warm dry summers and cool wet winters, annual 
mean temperature ranges between 5 and 33 °C, and annual precipitation from 500 
to 600 mm, with a maximum in autumn and a minimum in summer. The Ebro Delta 
is a low-lying coastal area (ca. 50 % of the delta surface is below +0.5 m above mean 
sea level) with sandy, silty, and clay supplied by the Ebro River. River flow and 
sediment transport are modulated by the presence of ca. 200 large dams, mainly built 
for hydroelectricity and irrigation purposes. In the lower section, the construction 
of two large dams in the 60’s (about 100 km upstream from the river mouth) has 
reduced ca. 99 % of the sediment transport (Rovira et al., 2012; Ibañez et al., 2019).  
Thus, the delta has reversed the growing trend both seaward and vertically (Sánchez-
García et al., 2019). Currently, the Ebro Delta presents a wave-dominated coast with 
strong reshaping processes (Sayol and Marcos, 2018), highly exposed to storms and 
extreme events, and subjected to massive flooding, beach erosion, and overwash 
episodes (Jiménez et al., 2020). The delta contains a number of natural ecosystems 
(e.g., wetlands, coastal lagoons, sand spits, and freshwater springs) that provide 
suitable habitats for diverse and abundant fauna and flora.  Given the high ecological 
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value, the Ebro Delta is protected by the Natura 2000 network of the European 
Union, as Natural Park, and cataloged as UNESCO Biosphere Reserve. 

 

Figure 2. The Ebro Delta (NW Mediterranean, Spain). 

Freshwater and nutrient inputs from the Ebro River allow the development of 
prosperous fishery, aquaculture, and agriculture activities. Agriculture is one of the 
main economic activities in the area, with ca. 65 % of the delta surface devoted to 
rice production (Genua-Olmedo et al., 2016), in addition to the production of 
bivalves (shellfish aquaculture), and fishery, albeit saltworks are also part of the 
economic fabric of the region (Figure 2). The management of the different economic 
activities has direct implications for themselves, on others, and for the sustainability 
of the surrounding environment. For instance, the discharge from the rice paddies 
to Alfacs and Fangar bays influences the spatial and temporal dynamics of both 
physicochemical and biological water parameters (e.g., salinity, temperature, 
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hydrodynamics, nutrient load, sediment), with significant implications for 
macrophytes development and shellfish aquaculture (Soriano-González et al., 2019 
and 2020). Shellfish farming generates organic matter (i.e., faeces), increasing 
dissolved oxygen demand, and modifying seabed characteristics, the biotope, and 
the biocenosis (i.e., the ecosystem), which can be interfering with fishery.  

Because of the high ecological and economic value of the Ebro Delta, and their 
relationship, it is necessary to implement an ICZM system. It is essential to monitor 
intra- and inter-annual dynamics, particularly at small scales, both in space and time. 
Consequently, Sentinel-2 capabilities to monitor coastal areas and their 
environments need to be assessed, as well as scientific and technical limitations and 
potentialities discussed.  

 

1.2. OBJECTIVES 

The general objective of this thesis is to evaluate the application of S2 imagery for 
coastal monitoring with an integrated approach. With this aim, different strategies 
were combined, focused on covering several scientific and technical gaps in the use 
of S2 in coastal areas (global scale), and site-specific monitoring requirements and 
applications (regional scale). The specific objectives are:  

 

Chapter 2: 

(i) Explore the potential of coupling S2 imagery, different atmospheric 
correction levels, spectral indexes and ground truth measurements for 
chl-a estimates, and its possible contribution to aquaculture 
management.  

(ii) Define a preliminary procedure and its constraints for time series 
mapping of phytoplankton biomass at Alfacs and Fangar bays.  

(iii) Identify the main sources of uncertainty and error, and derive further 
research lines.  

Chapter 3: 

(iv) Evaluate a method for the identification and differentiation of 
macroalgae and seagrass at 20 m spatial resolution. 

(v) Conduct a generalized analysis of rice crop dynamics and management 
and seek the potential relationship with the macrophytes’ 
spatiotemporal dynamics in Alfacs bay. 

(vi) Identify the remaining technical/scientific challenges to be tackled in 
further research.  

Chapter 4: 
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(vii) Exploit a cloud computing platform and implement improved 
methodologies for generating cloud-free time series of S2 imagery. 

(viii) Develop a method for the automatic extraction of key phenological 
features and management practices at field-scale by combining different 
S2-derived spectral indexes. 

(ix) Analyze the identified rice crop dynamics and yield along consecutive 
years in the Ebro Delta, and discuss the potential of the method for 
evolving to pixel-scale and its possible applications/contributions.   

(x) Provide ideas for further research aiming at the improvement of the 
proposed method and at the refinement of the overall image processing 
chain.  

Chapter 5: 

(xi) Assess and compare the performance of the three currently available 
Case 2 Regional Coast Colour (C2RCC) atmospheric correction 
processors for the retrieval of water reflectance in inland and coastal 
waters. 

(xii) Validate the water quality products generated automatically by the 
different atmospheric correction processors with in situ chl-a, Total 
Suspended Matter (TSM), and Secchi Disk depth measurements.  

(xiii) Define potential use cases and the main limitations of the C2RCC 
processors for the operational monitoring of water quality.  

(xiv) Identify gaps of knowledge and propose further research lines 
addressing them.  

Chapter 6: 

(xv) Develop and implement a new procedure for chl-a estimation from S2 
imagery, ensuring the temporal consistency of the results by applying a 
full atmospheric correction.  

(xvi) Devise and test a new semi-supervised method for the rapid mapping 
of inundation for storm periods involving short temporal scales. 

(xvii) Contribute to the definition of requirements (further improvements 
and needed research in the short-mid term) for a workflow for rapid 
mapping and continuous monitoring of storm emergencies in the Ebro 
Delta and similar deltaic areas.  

 

1.3. DOCUMENT OVERVIEW 

This document is divided into eight chapters, and together with the introduction, 
the general discussion, and the conclusions, it includes the edited versions of three 
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international peer-reviewed publications and two peer-reviewed international 
conference papers. Each chapter starts with a preface that links it with the other 
ones. The structure of the chapters and the chronological diagram of the research is 
summarized in Figure 3.  

Briefly, the research started with the retrieval of water quality (i.e., chl-a) for the 
estimation of phytoplankton biomass and its potential applications to aquaculture 
(Chapter 2). Macrophytes and atmospheric correction uncertainty in coastal waters 
appeared among the most important external factors for the accurate retrieval of chl-
a. This led to study the macrophytes detection with S2 and their potential as sentinel 
species (Chapter 3), and to conduct an in-deep exploration of the atmospheric 
correction processors (Chapter 5). The drainage of the rice paddies canals also had 
significant importance in the modulation of the phytoplankton and macrophytes 
dynamics in coastal waters, motivating the study of rice paddies management and 
development (Chapter 4). In this last study, one of the topics was related to the 
identification of flooded and dry rice fields. The findings regarding the capabilities 
of S2 and the methods for surface water discrimination (Chapter 4), together with 
the evolution of the procedure for chl-a estimation (Chapters 2 and 5), were used 
for assessing storm effects in terms of land inundation and coastal water quality 
(Chapter 6).  In Chapter 7, a general discussion of the thesis and different lines of 
further research derived from the work carried out are presented. Chapter 8 
summarizes the overall conclusions of all the research conducted.  

 

Figure 3. Chronological diagram of the research activity. 



 

 

 
  



 

 

  



 

 

 

 

 

 

Chapter 2 
 

SENTINEL-2 FOR AQUACULTURE  
FIRST RESULTS ON PHYTOPLANKTON DYNAMICS IN EBRO 

DELTA BAYS 
 

 

 

An edited version of:  
 
Soriano-González, J., Angelats, E., Fernández-Tejedor, M.; 
Diogene, J., Alcaraz, C. First Results of Phytoplankton Spatial 
Dynamics in Two NW-Mediterranean Bays from Chlorophyll-a 
Estimates Using Sentinel 2: Potential Implications for Aquaculture. 
Remote Sensing. 2019, 11, 1756.  
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This chapter evaluates the potential application of Sentinel-2 (S2) imagery within the 
aquaculture industry, discussed from the water quality monitoring point of view in a 
shellfish farming area. A preliminary method for the monitoring of chlorophyll-a 
(chl-a) as a proxy for phytoplankton biomass from S2 data is developed, addressing 
the methods used for in situ samplings, chl-a quantification, the processing of S2 
imagery, and data post-processing including model development and performance 
of chl-a estimates at different levels of atmospheric correction. Both the potential 
and limitations of the proposed methodology are discussed, highlighting the main 
applications and the constraints to be considered in further research for improving 
the methodology and enabling the evolution to a more integrated approach. 

 

2.1. INTRODUCTION 

Shellfish are filter-feeding organisms that feed on different types of suspended 
particles in the water column, thus their production is mainly related to 
phytoplankton availability (Duarte et al., 2012). Spain is the leading producer and 
consumer of bivalves in Europe, Catalonia being the most important producer area 
in the Spanish Mediterranean, with most of the production concentrated in the Ebro 
Delta (Figure 4). The most important species for aquaculture are the Mediterranean 
mussel (Mytilus galloprovincialis) and the Pacific oyster (Crassostrea gigas), but other 
bivalves such as clams (e.g., Ruditapes philippinarum) and cockles (e.g., Venus verrucosa) 
are also harvested. Bivalve culture is mainly developed inside its two bays, Alfacs 
and Fangar, representing 1.8% and 6.5% of their respective surfaces (Ramón et al, 
2005). Since 1990, an official monitoring program carried out by the Regional 
Government of Catalonia establishes a weekly analysis of the phytoplankton 
community and water physicochemical parameters at different locations of both 
bays (12 samples per week). However, the sampling procedure is temporally and 
spatially limited, so global extrapolations are subject to large uncertainties.  

Temporal phytoplankton dynamics are highly influenced by the nutrient input from 
rice fields through the irrigation network (Prat et al., 1988). Furthermore, freshwater 
inputs have a great physicochemical impact in both bays, increasing water column 
stratification and dominating over wind on a seasonal scale (Llebot et al., 2014). 
Therefore, freshwater input imposes a double-layer circulation system like typical 
estuarine circulation patterns. However, when channels are closed (from October to 
April), the water renewal time of the bays increases, forming retention areas that can 
become accumulation zones. Both scenarios may favor phytoplankton growth. On 
shorter time scales (days to weeks), the wind is the main controlling factor of water 
mixing (Artigas et al., 2014) by breaking the vertical stratification. Therefore, water 
circulation patterns, and hence phytoplankton temporal and spatial variability, 
depend on freshwater inputs, meteorology, and coastal geomorphology (Camp and 
Delgado, 1987).  
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Remote sensing allows obtaining information on marine and continental processes 
at different spatiotemporal scales (Forget et al., 2009). Chlorophyll-a (chl-a) is the 
main photosynthetic pigment present in algae and an optically active seawater 
constituent; thus, it is commonly used as an indicator of phytoplankton biomass and 
has significant implications on remote sensing (Gregor et al., 2004; García et al., 2012; 
Del López-Rodríguez, 2016; Kutser et al., 2016). The estimation of chl-a 
concentration from remotely sensed data requires the development of algorithms 
with a maximal sensitivity to chl-a and minimal to the rest of the constituents present 
in the water (Gurlin et al., 2011). Different authors have proposed several 
methodologies to estimate chl-a from satellite remote sensing imagery (see a review 
in Matthews, 2011; Blondeau-Patissier et al., 2014; Gholizadeh et al., 2016); for 
instance, a classical approach is developing relationships between band-ratios 
(namely color indices) or their combinations (Matthews, 2011). Several ratio-based 
and 3-band combination algorithms have been proposed, including the common 
Blue to Green ratios, the Ocean Color-based algorithms (Campbell and O’Reilly, 
2006; Volpe et al., 2007), and those including the red-edge (Gitelson et al., 1996a; 
Gitelson et al., 2008; Odermatt et al., 2012; Le et al., 2013), which take advantage of 
pigment’s absorption maxima (i.e., at 665 nm) (Gitelson and Kondratyev, 1991; 
Oliveira et al., 2016). Other approximations are based on spectral band difference by 
using band triplets from the Red and Near Infrared (NIR), such as the Fluorescence 
Line Height (FLH) (Gower et al., 1999), the Maximum Chlorophyll Index (MCI) 
(Gower et al., 1999), and the Maximum Peak Height (MPH) (Matthews et al., 2012). 
The properties of coastal waters, however, are controlled by complex interactions 
and fluxes of material between land, ocean, and atmosphere, which makes 
challenging to achieve reasonable estimates of water-leaving radiance (removing 
atmospheric contributions from a signal received at the TOA), and to obtain a robust 
relationship between water quality and satellite-based parameters (Joshi et al., 2017) 
integrating the remote sensing and in situ measurements. Although a large amount 
of satellite data is available for remote sensing of chl-a (e.g., SeaWiFS, MODIS, 
MERIS), the fast dynamics of phytoplankton in coastal areas, both temporally and 
spatially, cannot be fully resolved because of either their coarse spectral, spatial 
and/or temporal resolution. Currently, the increased frequency (up to five days 
under ideal conditions) and higher spatial resolution (10 to 60 m) of Sentinel-2 (S2) 
together with its spectral band configuration has opened a new potential to remote 
sensing of chl-a in coastal zones of small geographical extension, and hence as an 
alternative for phytoplankton monitoring in coastal areas. 

The overall purpose of this study was to analyze the potential of S2 multispectral 
imagery (MSI) data as a support tool for the future management of shellfish cultures 
through the monitoring of phytoplankton biomass in the Ebro Delta bays. Thus, 
this work is a first attempt to assess chl-a in a shallow coastal environment with 
Sentinel 2 imagery data, a free public resource. The objectives of this study were to: 

· Generate 20 m resolution chl-a maps from S2 MSI imagery covering the whole 
system; 
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· Understand the spatiotemporal phytoplankton biomass dynamics by using the 
derived chl-a maps and relating them to environmental variables and the rice farming 
year;  

· Assess the applicability of the results to shellfish aquaculture management in the 
area. 

 

2.2. MATERIALS AND METHODS 

2.2.1. Study sites and in situ data 

The study area is located in the two bays of the Ebro Delta (Figure 4). Fangar Bay, 
with an area of 12 km2, is connected to the sea by a narrow mouth (ca. 1 km wide) 
that is currently closing. The maximum depth is ca. 4 m, which makes it very sensitive 
to environmental variations. Water temperature ranges between 6.5 and 32 °C, 
salinity varies from 9 to 37 PSU (Practical Salinity Unit) and renewal time is about 
four days when channels are open (Camp and Delgado, 1987). Alfacs Bay, covering 
an area of 56 km2 and connected to the sea by a channel of 2.5 km wide, has an 
average depth of 3.13 m (maximum depth is 7 m). Water temperature ranges 
between 8 and 32 °C, the salinity varies from 26 to 37 PSU, and the renewal time is 
about 15 days with open channels (Camp and Delgado, 1987).  

 

Figure 4. Location of the study bays, meteorological station, mussel rafts, coastal lagoons, 
irrigation fields, and the discharging channels in Ebro Delta. 
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Eight water samplings campaigns were carried out from April 2016 to August 2017 
coinciding with the S2A satellite pass (Table 1).  

Table 1. Summary of chl-a samples coinciding with S2A pass. Grid 1: routine sampling for 
the official water-quality monitoring program (see orange dots in Figure 5a-b). Grid 2: 
specific sampling grid designed for ground truth of S2 images (green dots in Figure 5a-
2b). Grid 3: sampling grid of the project “Model of water circulation in Fangar Bay from the 
European Maritime and Fisheries Fund (EMFF)” (white dots in Figure 5b). 
 

Date  
Sampling 

Grid 
Bay 

Number of Samples per Method 

in 

vivo 
Fluorimeter Spectrophoto. 

11 Apr 2016 1 Fangar 5 1 0 

20 Jun 2016 1 
Alfacs 7 1 0 

Fangar 5 1 0 

16 Jan 2017 1 Alfacs 7 1 1 

17 Mar 2017 1 
Alfacs 7 7 7 

Fangar 5 5 5 

6 Apr 2017 1 
Alfacs 7 7 7 

Fangar 5 5 5 

26 May 2017 2 
Alfacs 6 6 6 

Fangar 6 6 6 

15 June 2017 2 Alfacs 6 6 6 

25 Jul 2017 3 Fangar 40a 6 0 

4 Aug 2017 3 Fangar 40a 6 0 

a: 20 integrated water column samples, and 20 surface water samples at the same locations.  

Different sampling grids were used (Figure 5) for different days, and not both of the 
bays were sampled every day. Integrated water samples were collected using the 
Lindahl methodology (Sutherland et al., 1992) (N = 106). In addition, on 25 July 
2017 and 4 August 2017, surface water samples were collected (N = 40) with 
polypropylene bottles. Seawater samples were kept in a portable cool box until 
arrival at the laboratory. In the laboratory, three different methods were used to 
measure chl-a concentration, in vivo fluorimetry (Lorenzen, 1996) - hereafter in vivo -
, and after acetone extraction both in a fluorometer (corrected chl-a) - hereafter FL 
- (Yentsch and Menzel, 1963), and in a spectrophotometer (chl-a) - hereafter SP - 
(Jeffrey and Humphrey, 1975). For all samples (N = 106), chl-a was estimated in vivo, 
and in 58 of them, chl-a was measured after acetone extraction. Briefly, water 
samples (550–1000 ml) were filtered using fiberglass filters (GF/F), and filters were 
submerged in 10 ml of acetone inside 15 ml labeled conical centrifuge tubes. After 
24 hours in the fridge (4 °C), they were sonicated for 5 minutes (ultrasonic 
processor) and centrifuged for 10 minutes at 4000 rpm at 4 °C. The chl-a 
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concentration was then measured in a SHIMADZU UV-1800 spectrophotometer 
(Shimadzu Corporation, Kyoto, Japan) and/or in a TURNER Trilogy ® fluorometer 
(Turner Designs, San Jose, California) (Table 1). The datasets generated during the 
current study are available from margarita.fernandez@irta.cat on reasonable request. 

 

Figure 5. Official water-quality monitoring program sampling grid (Grid 1), specific 
sampling grid (Grid 2), and European Maritime and Fisheries Fund (EMFF) project 
sampling grid (Grid 3) at Fangar (a) and Alfacs (b) bays.  
 

2.2.2. Sentinel-2 data 

A set of 47 cloud-free S2A L1C images were downloaded from Copernicus Open 
Acces Hub (https://scihub.copernicus.eu/). Thirteen of them (six from Alfacs and 
seven from Fangar) within the period April 2016–August 2017 were selected for 
calibration and validation purposes (Figure 6). The remaining images between 
January 2017 and January 2018 (Table 1), 18 from Alfacs and 16 from Fangar, were 
used for time series estimation (Figure 6). Although the calibration/validation 
(CalVal) image sets covered mainly spring and summer, the time series was estimated 
for a full year in order to include the full rice-growing season. Additional 
meteorological data, including daily air temperature (°C), wind direction (°), wind 
speed (m/s), and precipitation (mm), were obtained from the Illa de Buda 
meteorological station (Station Id. 11043, located at 1 m above sea level) of the 
Catalan Meteorological Service, http://www.meteo.cat (Figure 4). 
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Figure 6. Temporal distribution of S2 images used in this study for calibration and 
validation and time series development (TSD) at Alfacs and Fangar bays. 
 

2.2.3. Atmospheric Correction: ACOLITE 

S2A L1C imagery were atmospherically corrected with ACOLITE processor. It 
bundles the atmospheric correction algorithms and processing software developed 
by the Royal Belgian Institute of Natural Sciences (RBINS) for aquatic applications 
of Landsat (5/7/8) and S2 (A/B) satellite data. The Dark Spectrum Fitting (DSF) 
(Vanhellemont and Ruddick, 2018), used here, computes the atmospheric path 
radiance based on multiple targets in the scene or sub-scene, with no a priori dark 
band, allowing an aerosol correction. ACOLITE includes a sun glint correction, 
which uses the shortwave infrared (SWIR) bands to estimate a glint signal (Harmel 
et al., 2018) and to establish the threshold to determine which pixels need to be 
corrected (0.05 by default). S2A B11 and B12 bands (SWIR at 1604 nm and 2202 
nm) were used for sun glint correction. The thresholds were set manually image-by-
image after a SWIR analysis that was carried out considering the response of Sentinel 
2A B11 over water pixels compared to non-water pixels. For each day and bay, 
land/water mask and sun-glint correction thresholds were defined, ranging between 
0.0215 and 0.1. Therefore, the atmospheric correction procedure output included, 
for each image, uncorrected (a), partially corrected (b), and fully corrected 
atmosphere (c and d) reflectance data.  

(a)Rhot: top of atmosphere reflectance (TOA) derived from the original input file.  

(b)Rhorc: Rayleigh corrected reflectance. This is the Rhot with removed and 
corrected reflectance for two-way Rayleigh transmittance. An additional pre-
processing step was made to avoid high reflectance pixels by fixing a maximum 
threshold (Rhorc reflectance at 492 nm or 560 nm ≥ 0.11) above which pixels were 
assigned as invalids. 

(c)Rrs: remote sensing reflectance (sr-1) for water pixels (Rrs = Rhow/π).  

(d)Rhow: surface reflectance for water pixels. 
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2.2.4. Chlorophyll-a estimation algorithms 

Seven different spectral algorithms band-ratio and band-combination based, were 
applied to each product resulting of ACOLITE processing (Rhot, Rhorc, Rrs and 
Rhow). Briefly,  

 BG: The Ratio between Blue and Green spectra uses the reflectance at 490 
nm (blue) and 560 nm (green). At 490 nm carotenoids absorb light strongly, while 
at 560 nm the absorption of all photosynthetic pigments is minimal (i.e., green 
reflection). This algorithm was initially proposed by (Morel and Prieur, 1977). R 
stands for Rhot, Rhorc, Rrs, or Rhow reflectance.  

[chl– 𝑎] ∝
𝑅(490)

𝑅(560)
                                      (1) 

BR: The Blue–Red ratio is based on the two chl-a maximal absorption peaks. 

[chl– 𝑎] ∝
𝑅(490)

𝑅(665)
                                               (2) 

 RG: The Green–Red ratio is based on the minimal and maximal absorption 
peaks of chl-a, thus avoiding the use of the blue bands (Gitelson et al., 1986; Gitelson 
et al., 1986; Oliveira et al., 2016).  

[chl– 𝑎] ∝
𝑅(665)

𝑅(560)
                                     (3) 

 NR: The ratio between Red and NIR assumes that the absorption by non-
algal particles, yellow substances and the backscattering are insignificant when 
compared to chl-a absorption at red wavelengths - 665 nm - (Lins et al., 2017).   
Between 700 and 720 nm, the absorption due to water constituents is minimal.  

[chl– 𝑎] ∝
𝑅(705)

𝑅(665)
                                     (4) 

 NDCI: The Normal Difference Chlorophyll Index developed by Mishra et 
al. (Mishra and Mishra, 2012) for turbid productive waters uses the information of 
the reflectance peak centered at 700 nm, which is maximally sensitive to variations 
in chl-a concentration in water. Furthermore, a wide spectral absorption peak 
between 665 nm and 675 nm is generally associated to the absorption by chl-a 
pigments. The normalization through the NDCI eliminates uncertainties in the 
estimation of the remote sensing reflectance, seasonal solar azimuth differences, and 
atmospheric contributions.  

[chl– 𝑎] ∝
[𝑅(705)−𝑅(665)]

[𝑅(705)+𝑅(665)]
                                        (5) 

 DO5: Dall’Olmo and Gitelson (2005) presented a three-band model using 
Red and NIR bands. It assumes that (i) the absorption by coloured dissolved organic 
matter (CDOM) and total suspended matter (TSM) beyond 700 nm is approximately 
equal to that at 665–675 nm and the difference between them can be neglected; (ii) 
total chlorophyll, CDOM, and TSM absorption beyond 730 nm is almost 0; and (iii) 
backscattering coefficient of chl-a is spectrally invariant (Mishra and Mishra, 2012; 
Dall’Olmo and Gitelson, 2005).  
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[chl– 𝑎] ∝ [
1

𝑅(665)
−

1

𝑅(705)
] × 𝑅(740)                    (6) 

 MCI: The Maximum Chlorophyll Index allows the detection of red tides 
and aquatic vegetation (Gower et al., 1999). For S2, it uses the band 5 (705 nm), 
perfectly located to detect high biomass water bodies against the baselines of the 
bands 4 and 6 (665 and 740 nm). In equation 7, k is the thin cloud correction factor 
fixed at 1.005 for thin clouds. 

[chl– 𝑎] ∝ 𝑅(705) −  𝑘 × (𝑅(665) + (𝑅(740) −  𝑅(665)) ×
705−665

740−665
)       (7) 

 

2.2.5. Model Calibration and Validation 

S2A (Level 1C and 2A) images and all in situ chl-a of coinciding days were used for 
model calibration and validation. In order to reduce the effect of noise from the 
sensor and the time difference between the image (20 m resolution) and water 
samples acquisition, the reflectance was averaged over a 3 × 3 pixel-box centered at 
the in situ measurements. However, not all of the nine pixels per in situ sampling 
location could be used as there might be outliers coming from different sources such 
as bottom contamination, different affection of sun glint and adjacency or 
infrastructures as rafts or harbor jetties interfering in some pixels. For this reason, a 
pre-processing step was carried out on each spectral band used and for all 
atmospheric correction levels. For each day and bay, considering together all in situ 
sampling locations, outliers were detected and removed by Tukey’s fences method 
(Boxplot). The criteria flagged as invalid a pixel if in one of the five spectral bands 
(see Equations 1–7) the reflectance value was classified as outlier. A second step to 
clean the remaining outliers was carried out applying the same methodology to each 
3 × 3 pixel-box centered at in situ sampling sites, individually. To ensure the 
possibility of using the averaged reflectance of 2–9 pixels, without corrupting the 
methodology, standard deviation (SD) of the average at each sampling location was 
computed against the number of pixels used for the average.  

After outlier deletion, the seven algorithms were computed using the averaged 
reflectance at each chl-a sampling location. Model calibration was done with 70% of 
the data (with ordinary least of squares fitting, OLS) and the remaining 30% was 
used for model validation. Models were calibrated and validated in two different 
ways: (i) using only those samples where in situ chl-a was measured by the three 
methodologies (i.e., in vivo, FL, SP) and (ii) for each methodology including all the 
available data. In both cases, model development was carried out considering all 
possible combinations of ACOLITE-derived imagery together with two different 
scenarios (individually or both bays together).  

Model performance was assessed graphically by plotting observed and predicted 
values, and efficiency was measured with the Akaike Information Criterion (AIC), 
the Averaged Percentage Difference (APD), and the Mean Absolute Error (MAE). 
AIC combines fit and parsimony (number of parameters) of models, with the best 
fitting model having the lowest AIC. MAE and APD were applied following the 
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criteria of Seegers et al. (2018), who suggested that these metrics account better for 
the accuracy of the models over non-Gaussian distributions by not amplifying 
outliers and precisely reflecting the error magnitude. Models with the lowest AIC, 
MAE, and APD, in this order, were considered better. Although the coefficient of 
determination (i.e., R2) and Normalized Root Mean Squared Error (RMSE) are 
widely used goodness-of-fit measures, they are not recommended for non-Gaussian 
distributions (Seegers et al., 2018). Thus, both measures were only included to allow 
the comparison with previous works. 

 

2.2.6. Time series estimation 

The best model was selected to construct chl-a time series maps with the available 
S2A images in 2017. Pixel-stability was assessed by using an unsupervised 
classification cluster analysis (2 classes) based on the inter-pixel slope of the averaged 
time series chl-a and the coefficient of variation (CV; Equation 8) of chl-a of the 
same set of images.  

𝐶𝑉 =
𝜎

𝑋
            (8) 

 

where σ stands for standard deviation (SD) and 𝑥̅ for the average. 

 
2.2.7. Workflow 

The proposed workflow (Figure 7) started with the selection and download of S2A 
L1C images. The images were processed with ACOLITE after the SWIR analysis, 
including a resampling of all bands to 20 m, image cropping to the region of interest 
(Ebro Delta bays), and the atmospheric correction to derive Rhorc, Rrs, and Rhow 
reflectance (see section 2.2.5). After ACOLITE processing, for the spectral bands 
of interest, outliers were detected and removed. Then, for each image of the 
calibration set, the spectral algorithms were computed, and the resulting values were 
extracted at each chl-a sampling location. Models were calibrated and validated with 
Rhot, Rhorc, Rrs, and Rhow imagery together with ground truth data. The best 
algorithm and methodology were selected, applied to all the available images in 2017, 
and the pixel-stability analysis was carried out. Finally, the resulting time series was 
used to analyze spatiotemporal patterns of chl-a (as indicator of phytoplankton 
biomass dynamics), covering different seasons and the full rice farming cycle.  

All statistical analyses were performed with R version 3.5.2; the packages foreign 
0.8.71, xlsx 0.6.1, xlsxjars 0.6.1, ncdf 1.16.1, and raster 2.8.19 were used to load 
external data with different formats. Packages rgdal 1.4.3, spatstat 1.59.0, and 
maptools 0.9.5 were used to work with geospatial data (create masks, band math 
calculator, and pixel extraction). Packages FSA 0.8.24, NCStats 0.4.7, nlstools 1.0.2, 
and minipack.lm 1.2.1 were used to evaluate the model performance (ROC curves 
and associated statistical parameters).  
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Figure 7. Workflow to derive chl-a time series from S2A multispectral imagery (MSI) data 
at Ebro Delta bays for aquaculture management purposes. 
 

2.3. RESULTS 

2.3.1. In situ data: chl-a 

Overall, chlorophyll-a concentration varied among seasons and sites, with different 
spatial distribution patterns in both bays. In Alfacs Bay, chl-a showed a spatial 
gradient trend defined generally by higher concentrations from the central zone with 
higher concentration values, to the inner area, with minimum chl-a concentrations 
in the shellfish rafts (Figure 4). In Fangar Bay, maximum chl-a concentrations were 
found in the mouth and minimum concentrations in the inner part of the bay, which 
showed similar values to those in the shellfish rafts. Table 2 summarize chl-a results 
per bay. In general, Alfacs Bay showed higher chl-a concentrations.  

Among the different laboratory methodologies used to measure chl-a concentration, 
in vivo results showed moderate correlation values with both FL (Pearson’s r = 0.60, 
N = 55, P < 0.001) and SP (r = 0.62, N = 43, P < 0.001), while these two methods 
(FL and SP) were highly correlated (r = 0.93, N = 43, P < 0.001). The average 
percentage difference (APD) between methodologies was 98% between in vivo and 
FL, 56% between in vivo and SP and 20% between FL and SP. Surface and integrated 
water column (sampled in Fangar Bay on both 25 July and 17 August) in vivo chl-a 
concentrations were strongly correlated (r = 0.80, N = 40, P < 0.001), with an APD 
of 7.6%. 
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Table 2. Descriptive statistics of chl-a concentration (mg/m3) per bay and 
measuring method, during the study period. FL = Fluorometer; SP = 
Spectrophotometer. N is the number of samples, SD is the Standard Deviation, and 
CV is the Coefficient of Variation. 

Bay Method N Min Max Median Mean SD CV 

Fangar 

In vivo 66 0.512 6.553 2.719 2.716 1.497 0.551 

FL 30 0.170 4.992 1.365 1.836 1.278 0.696 

SP 16 0.222 2.597 1.604 1.501 0.732 0.487 

Alfacs 

In vivo 40 0.774 8.880 2.807 3.197 1.867 0.584 

FL 28 1.010 4.750 1.705 2.206 1.131 0.513 

SP 27 1.373 5.596 2.613 2.988 1.291 0.432 

 
2.3.2. Atmospheric Correction and Outlier Removal 

The averaged reflectance at the sampling locations for the different atmospheric 
correction products (i.e., Rhot, Rhorc, Rhow, and Rrs) for each CalVal date and bay 
(Figure 8), and at each S2A band, showed less reflectance from uncorrected to full 
corrected levels, this being more pronounced for shorter wavelengths. Fangar Bay 
showed higher averaged reflectance than Alfacs, when comparing the same day, and 
for all different Level products.  

Averaged reflectance of a 3 × 3–pixel box centered at the in situ sampling points was 
used as the reflectance at each location; however, outlier pixels were removed. After 
outlier detection, 18 sampling points were completely removed and were not used 
in the CalVal process. Sixteen of the 18 removed points corresponded to Fangar Bay 
and were mostly located within the shellfish rafts, the mouth of the bay, and the 
inner area. Two points were removed from Alfacs Bay, both located in the harbor 
on 20 June 2016. The final available chl-a data are summarized in Table 3. In order 
to evaluate the impact of outlier pixels on the reflectance estimation, it was assessed 
the reflectance SD relative to the number of valid pixels (2 to 9), at each sampling 
site, for types of S2A products and all the bands used in algorithm calculation. 
Pearson’s correlation coefficient, in absolute value, ranged between 6.11·10−03 and 
0.23, thus, reflectance values were similar, independent of the size of the pixel-box 
around the sampling point (from 2 to 9), and outliers can be removed without 
introducing significant errors.  

 

2.3.3. Model Calibration and Validation 

All variable combinations resulted in 252 models; chl-a methodology (in vivo, FL, and 
SP) × bay (Alfacs, Fangar, and both bays together) × S2A images (Rhot, Rhorc, Rrs 
and Rhow) × spectral algorithm (BG, BR, RG, NR, NDCI, DO5, MCI). Overall, 
considering all the possible models, the algorithms performed better when applied 
to Rhorc images, although Red-to-Green (RG) and, especially MCI, showed less 
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sensibility to the atmospheric correction and similar results were achieved with Rhot, 
Rhorc, Rrs, or Rhow reflectance. 

Table 3. Summary of in situ chl-a data set used in the calibration and validation process 
of the S2 derived data.  
 

Date  
Sampling 

Grid 
Bay 

Number of Samples per Method 

in vivo FL SP 

11 Apr 2016 1 Fangar 5 1 0 

20 Jun 2016  1 
Alfacs 5 1 0 

Fangar 4 1 0 

16 Jan 2017 1 Alfacs 7 1 1 

17 Mar 2017  1 
Alfacs 7 7 7 

Fangar 4 4 4 

6 Apr 2017  1 
Alfacs 7 7 7 

Fangar 3 3 3 

26 May 2017  2 
Alfacs 6 6 6 

Fangar 6 6 6 

15 Jun 2017 2 Alfacs 6 6 6 

25 Jul 2017 3 Fangar 12 5 0 

4 Aug 2017 3 Fangar 16 5 0 

 

 
Figure 8. Daily averaged reflectance spectra per bay for each band of S2 L1C and 2A 
products on Calibration and Validation dates. Alfacs Bay: solid line. Fangar Bay: dashed 
line. 

 
The best results were obtained combining Rhorc images with spectrophotometer 
chl-a measures (SP). Within the “Rhorc_SP” models, the best performing algorithms 
were BG (Blue-to-Green ratio) for Alfacs Bay and for both bays together, and the 
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NDCI (Normal Difference Chlorophyll Index) algorithm returned the best results 
for Fangar Bay (Table 4). Close results to BG were achieved in Alfacs Bay and both 
bays together with RG (Red-to-Green) band ratio, while worse results in both cases 
were obtained with Maximum Chlorophyll Index (MCI). In Fangar Bay, despite 
differences among the performance of the different algorithms were smaller than in 
Alfacs Bay, NIR-to-Red (NR) band ratio and MCI performed similar to NDCI, 
while BG performed worse.  

Chlorophyll-a was not measured by the three methodologies (in vivo, FL, and SP) in 
all the samples; thus, models had different sample sizes. In order to avoid the 
influence of sample size on results, the models were also fitted using only those chl-
a samples measured by the three methodologies. There were not significant changes 
associated with N, but changes in model performance were more related to the range 
of chl-a covered by the samples (e.g., the lower variability of chl-a in Fangar Bay).  

Table 4. Summary of the best performing models per bay for the calibration dataset. 
“Algorithm” refers to the spectral algorithm applied to Rhorc images and calibrated with 
chl-a spectrophotometer (SP). 

 

Different algorithms performed better in Alfacs and Fangar Bay. The low number 
of available SP data and the good results obtained calibrating and validating the 
model including both bays together suggest the use of “Rhorc_SP” configuration 
(Figure 9) until more data are available. Despite BG performance in Fangar Bay 
being worse than that achieved with other algorithms (i.e., NDCI, NR, and MCI), it 
was probably due to the lack of variability towards higher concentrations and the 
weight of few extreme values over a small dataset. In fact, the linear distribution of 
chl-a SP in Fangar fit with the trend of Alfacs (Figure 10). Also, the trend line using 
data from both bays or using data only from Alfacs Bay was almost equal, denoting 
that Fangar samples were in agreement with the global trend described (Figure 10). 
These results support the idea of using both bays together and reinforce the 
assumptions for applying the same model to both bays.  

 

2.3.4. Chlorophyll-a Timeseries 

According to previous results, chl-a time series was generated from the Blue-to-
Green ratio (BG) model using partially corrected images (Rhorc) for both bays 
together, and chl-a measured by spectrophotometer (SP). Two pre-processing steps 
were applied to reduce the sources of error on the bottom of Rayleigh corrected 

Bay Algorithm Min chl-a Max chl-a Intercept Slope N MAE APD R2 AIC  

Fangar NDCI 0.46 2.39 0.56 –12.80 9 0.41 0.27 0.43 17.12  

Alfacs BG 1.83 5.12 13.88 –12.24 18 0.71 3.30 0.61 49.54  

Both BG 1.37 5.60 13.93 –12.50 27 0.63 5.58 0.58 72.17  
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reflectance. First, although images were selected according to cloud absence, in two 
of them, small areas at the extremes of Alfacs Bay were contaminated by clouds. 
There, the threshold applied to the Rhorc images removed pixels associated with 
thick clouds (Figure 11), but the thinnest clouds were not successfully detected, and 
the ground information was not restored in either case. 

 

Figure 9. Calibration (a) and Validation (b) results of the Blue-to-Green ratio (BG) 
algorithm, chl-a SP, and both bays together over the set of Rhorc images. The 95% 
prediction (dashed line) and the 95% confidence interval (dotted line) are also shown. 
 

 
Figure 10. Linear relationship between all available chl-a SP and BG per bay. The 95% 
prediction (dashed line) and the 95% confidence interval (dotted line) are also shown.  
 

The second pre-processing step consisted on the generation of a mask to avoid areas 
where BG did not respond only to chl-a, but to other sources such as bottom 
reflectance or macrophytes (Figure 12). The clustering used to make the mask 
highlighted the boundaries where maximum changes occurred, namely, shallow 
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waters with bottom or seagrass contribution, hard structures such as rafts, and semi-
static objects like the ships in the Alfacs Bay harbor. Finally, before chl-a time series 
estimation, a 20 m buffer (i.e., 1 pixel) was applied, around each raft, created in order 
to delete mixed border pixels. 

 
Figure 11. Masking Rhorc high reflectance over blue and green bands (threshold = 0.11). 
Exempla of cloud presence in Alfacs Bay on 22 November. 
 

Both for Fangar and Alfacs bays, one-year chl-a time series were processed (Figure 
13). Overall, during winter and early spring, higher concentrations of chl-a were 
observed in Alfacs Bay. From April to October, chl-a concentrations were 
comparable between bays; after, in Fangar Bay, chl-a concentrations decreased more 
sharply. Despite the differences in chl-a concentration, the general trend was similar 
in both bays almost all the year, but chl-a peaks differed. In Alfacs Bay, chl-a peaked 
during February–April and October–November, achieving maximum 
concentrations in March. In Fangar Bay, chl-a peaked in May and September–
October, being the most productive of the year in this last period. Minimum chl-a 
concentrations were found in winter in both bays, January and November for Alfacs 
and Fangar Bay, respectively. The coefficient of variation (CV) of chl-a (Figure 14 
a-b) along the year showed, in general, higher CV in Fangar than in Alfacs Bay. In 
Fangar, higher variability was observed in the mouth of the bay, associated with 
higher chl-a concentrations, while lower CV values were found in the inner area and 
within the shellfish rafts, where the lowest values of chl-a were found. Conversely, 
in Alfacs Bay, higher CV was observed in the eastern half of the bay, especially in 
the inner area and the eastern half of the rafts polygon, with a lower average chl-a 
concentration. The harbor area and its surroundings, including the western half of 
rafts and the mouth of the bay, showed lower values of CV, related to higher 
concentrations of chl-a. 
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Figure 12. Time series pixel-stability mask. (a) Fangar Bay; (b) Alfacs Bay. 

The time series (Figure 13) was revised according to the four different rice-paddies 
irrigation network scenarios (i.e., Closed channels in winter, semi-closed channels in 
spring, opened channels in summer, and semi-opened channels in autumn) and 
aquaculture production. The closure of the discharging channels (closed, semi-
closed, and semi-opened) propitiated a more eutrophic environment, reaching 
higher chl-a concentrations than during the opened channels stage, this 
phenomenon being more evident in Alfacs Bay. During the closed and semi-closed 
stage (from January to April), chl-a tended to increase in both bays, but the increment 
was much more pronounced and long-lasting in Alfacs. During these months rice 
paddies are dry and so, the supply of water from the channels is minimum. Regarding 
the chl-a within the shellfish rafts, while Fangar Bay showed similar chl-a 
concentrations inside and outside the rafts (more homogeneous bay), in Alfacs Bay, 
lower concentrations of chl-a were observed inside the rafts’ polygon. During the 
opened channels stage (from April to September), chl-a concentration decreased in 
Alfacs and remained the same in Fangar Bay, compared with the prior period. 
However, from late July, both bays showed an increase in chl-a concentration that 
lasted until the end of September, when chl-a dropped sharply, achieving values 
close to 0 mg/m3 in both bays. The opened channels stage is characterized by high 
freshwater inputs with the maximum occurring in September–October. Despite 
shellfish filtering more actively during the warm months, no significant differences 
in chl-a were observed between the rafts and their surroundings in neither of the 
two bays. Finally, the semi-opened channel’s stage (from October to December) 
started with a strong increase of chl-a at both bays in October, which lasted until late 
November, when chl-a concentrations dropped close to 0 at both bays. During 
December, Alfacs Bay recovered chl-a concentrations similar to those of the opened 
channels stage, but Fangar Bay kept low chl-a values. The semi-opened channels 
stage implies that water is still being discharged in the bay, but contributions decrease 
with time. Most of the shellfish are harvested during summer, so the bivalve grazing 
pressure is reduced during the last months of the year. Although similar chl-a 
concentrations were found between the rafts and the rest of the bays, lower values 
of chl-a tended to aggregate in the middle area of the Alfacs rafts’ polygon, and the 
Northern rafts of Fangar Bay. 
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Figure 13. Time series of chl-a maps for the year 2017 (a-aq). 

 

 



Improving monitoring and management of coastal areas with Sentinel-2 

 58 

2.4. DISCUSSION 

2.4.1. In situ data: chl-a 

Three different laboratory methods for chl-a quantification from water samples were 
compared. Chlorophyll-a concentration measured by spectrophotometer (SP) after 
acetone extraction was better correlated with satellite data. The in vivo method is only 
used as a fast qualitative proxy of chl-a due to its sensibility to errors with unknown 
uncertainty (i.e., overestimation due to non-phytoplanktonic contribution), while 
extracting the pigment with a solvent (i.e., alcohol-based or acetone) and measuring 
it with the fluorometer or spectrophotometer is the common procedure in remote 
sensing of chl-a (Cannizzaro and Carder, 2006; Gitelson et al., 2008; Gons et al., 
2008). Regarding the use of surface or integrated water samples for ground truth chl-
a quantification, the vertical distribution of the phytoplankton biomass might have 
a significant impact on the remote sensing signal. In Fangar Bay, significant 
differences were not found between surface and integrated water column chl-a 
concentrations. This finding is in agreement with Ramón et al. (2007) who found 
homogeneous chl-a concentration by depth in 10-month study (1 sample per month) 
in the same bay. These results suggest the use of an integrated water column chl-a 
for remote sensing model calibration and validation in coastal shallow waters, but 
further research should include data of both bays under different scenarios to prove 
the validity of this assumption during the year. 

 

2.4.2. Atmospheric Correction and chl-a Estimation Algorithms 

ACOLITE was used for atmospheric correction of Sentinel 2A L1C images using 
the Dark Spectrum Fitting (DSF) based on the SWIR bands. The results showed 
that TOA contributed over 50% for all MSI over surface reflectance of water pixels 
(Rhow). This might be related to non-negligible water reflectance in the SWIR band. 
According to (Dogliotti and Ruddick, 2011), the invalidity of the SWIR black pixel 
assumption could lead to an overcorrection of the reflectance (SWIR reflectance for 
water pixels was up to 10 times larger when solar zenith < 42˚; i.e., spring and 
summer). In this study, it was not possible to validate the atmospheric correction 
with field radiometric measurements, but the drop of reflectance of Rhow images 
compared to Rhot in the blue bands was noticeable. However, a strong reflectance 
peak was observed in the green part, independent of the level of atmospheric 
correction applied. Similar results were obtained by Caballero et al. (2018b) using 
ACOLITE without sun glint correction in an estuarine area, and they also found 
higher water reflectance in all bands in areas with a higher concentration of total 
suspended matter. In the Ebro Delta, Fangar Bay always showed larger reflectance 
at all spectrum compared to Alfacs Bay. Fangar is shallower and thus is more 
susceptible to wind-driven mixing and sediment resuspension. However, the 
increased reflectance of Fangar Bay might be also related to bottom reflectance or 
contamination due to adjacency effects. As suggested by other authors (Novoa et al., 
2017; Sei, 2015), adjacency effects have a significant impact in coastal waters due to 
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typical lower reflectance in relation to their neighbourhood surfaces (i.e., sand 
beaches and rice paddies), increasing the apparent brightness. This effect might be 
more pronounced in Fangar Bay due to its geomorphological characteristics 
(smaller, shallower, and more closed). 

Figure 14. Time series coefficient of variation (CV) of chl-a. (a) Fangar; (b) Alfacs. 
 

The simplified atmospheric correction procedure, which normalizes the TOA signal 
for Rayleigh effects, was preferred in favor of a full aerosol atmospheric correction 
given the large uncertainties associated with water leaving reflectance over turbid 
waters. Vanhellemont and Ruddick (2018) found a similar performance between the 
median spectra derived for full atmospheric correction and only Rayleigh correction. 
Our models showed better performance using Rhorc images instead of Rhow. For 
both bays together, the best performing algorithm was the BG ratio. Common ocean 
color algorithms based on the ratio of blue and green bands do not perform well in 
optically complex coastal waters due to less sensitivity to chl-a concentration changes 
(Gons et al., 2002; Mishra and Mishra, 2012; Le et al., 2013; Oliveira et al., 2016). 
However, Gons et al. (2002) suggested that, in case 2 oligotrophic waters ([chl-a] < 
4 mg/m3), the use of blue and green wavelengths is more appropriate. In the present 
study, averaged chl-a concentrations (measured in situ) were 1.50 and 2.99 mg/m3, 
with maximums of 2.60 and 5.60 mg/m3, for Fangar and Alfacs Bays, respectively, 
and the results achieved were in agreement with (Busch, 2013; Gernez et al., 2017). 
The chl-a estimates were reasonably well derived (MAE = 0.63 and APD < 10%) 
using the BG ratio. 

 

2.4.3. Model Calibration and Validation 

In order to reduce noise and minimize temporal gap effects, ground truth chl-a data 
were averaged over a 3 × 3–pixel box, centered on the sampling point. Despite the 
averaged reflectance is commonly used, it might be a poor measure of central 
tendency if the set of pixels used for its calculation contains outliers. Here, outliers 
were removed before averaging the 3 × 3 pixel box. Although the number of valid 
pixels differed among locations and dates, the number of valid pixels (between 2 and 
9) was not correlated with the mean standard deviation, thus demonstrating the 
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suitability of the results. After model selection, the BG applied over Rhorc images 
was preferred and used to make a “pixel-stability mask” to identify and reject those 
areas where the values obtained with the integration of the remote sensing and the 
model were not responding to the changes of chl-a. Based on k-means clustering, 
the applied methodology allowed us to distinguish the boundaries where maximum 
changes occurred, thus defining the edges for the delimitation of the mask. In Alfacs 
Bay, better results were achieved, able to differentiate each raft individually (rafts 
more separated than in Fangar) and masking the shallow waters (confined only to 
the margins of the bay).  

The applied model was based on algorithms specifically tuned for Alfacs and Fangar 
bays. Despite the good results achieved for the CalVal dates, the suitability of the 
model depends on the ratio between the range of remote sensing and the range of 
the available ground data and its representativeness along with different seasons or 
scenarios. In our study, not many samples were available, but their spatial 
distribution covered a wide range of in-day scenarios at each bay. However, most of 
the samples for CalVal purposes included only the seasons of summer and spring so 
the application of the models over winter and autumn was subjected to higher 
uncertainty. Indeed, the range of chl-a measured in situ included low number of 
samples with concentrations under 1 mg/m3, which are highly representative of the 
winter season. This fact coupled with the linearity of the developed models, increases 
the error related to low chl-a concentrations, tending more rapidly to negative 
numbers (e.g., Figure 13 b). 

 

2.4.4. Spatiotemporal chl-a Dynamics 

The time series of chl-a covered all year 2017, including the different channel stages 
at both Fangar and Alfacs bays. Overall, the temperature increased from winter 
(Tmean ~ 14.4 ˚C) to summer (Tmean ~ 27.7 ˚C), and in autumn, the temperature 
(Tmean ~ 22.5 ˚C) was similar, even higher, than in spring (Tmean ~ 20.1 ˚C). The 
most frequent winds during the year came from the NW sector, predominantly in 
the morning, with a strong influence of southern winds (spring and summer), 
switching to SSE (winter and summer) and to SSW (spring and autumn) from noon 
onward. Within the dates included in this study, the highest intensities were 
registered in March and December, both related to directions of 300–360˚ (NW and 
NNW). The rainiest month of the year was January (72.4 mm in seven days), 
followed by March (36.5 mm in 14 days), and within the days included in the time 
series, it rained on 4 August between 4:30 and 5:00 am (accumulated precipitation 
of 0.1 mm) and on 23 September from 4:30–6:30 am (accumulated precipitation of 
0.3 mm).  

Regarding the variability of chl-a inside each bay (in terms of CV), Fangar Bay 
showed higher heterogeneity along time, but more homogeneity along space than 
Alfacs Bay. Fangar Bay is smaller and shallower, which makes it more susceptible to 
environmental variations, making the changes faster and affecting more of the bay’s 
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area. In this study, it has been observed that in Fangar maximum variations were 
related to more energetic areas with more chl-a (mouth), while in Alfacs, higher 
variabilities were associated with less energetic areas where chl-a dynamics depend 
largely on the wind-driven mixing (inner NE area). These findings are related to the 
renewal time of the bays (higher in Alfacs) and linked to the capacity for developing 
larger phytoplankton populations (higher chl-a concentrations). In this sense, Alfacs 
Bay characteristics (larger and deeper bay more perpendicular to NW and N winds 
with higher water residence times) allow nutrients to sink and get stored in the 
sediment of the bay and, at the same time, allow them to be released and suspended 
during more time (increased nutrient availability for phytoplankton). Conversely, 
quicker changes in Fangar Bay make chl-a being diluted faster by the Mediterranean 
water inputs (less productive waters). 

In relation to chl-a concentrations, besides the seasonal temperature-driven 
dynamics, wind was the environmental parameter more related to the maximum 
variations of chl-a inside the bays. In terms of temporal dynamics, overall, chl-a 
increased more with prolonged NW and N strong winds episodes occurred on 17 
March both bays (Figure 13 e-f), 25 July both bays (Figure 13 u-v), 13 September 
Fangar Bay (Figure 13 a-b), 23 October both bays (Figure 13 ag-ah), and 12 
November Alfacs Bay (Figure 13 ai). The highest accumulations of chl-a at both bays 
occurred on March (Figure 13 e-f), October (Figure 13 ae-ah), and early November 
(Figure 13 ai), when channels were closed or semi-closed. Conversely, weaker winds 
from southern components were related to decreases in chl-a concentrations as 
happened on 15 July both bays (Figure 13 s-t), 23 September both bays (Figure 13 
ac-ad), and 22 November both bays (Figure 13 aj-ak). The reduction of chl-a 
concentration in both bays was enhanced after rainy events as those of 23 September 
(Figure 13 ac-ad) and 22 November (Figure 13 aj-ak). These results suggest that wind 
plays a major role in the nutrient load of the water column. On one hand, mixing 
the water re-suspending the sediment, thus making the nutrients available (wind-
induced turbulence). On the other, enhancing water renewal which increases the 
flushing cells ratio and does not allow time enough for the development of large 
phytoplankton populations (Llebot et al., 2011) - wind-enhanced circulation -. 
Therefore, higher chl-a concentrations are expected to occur when the estuarine 
circulation is weakened and the turbulence increases. This effect might be enhanced 
at the end or after drainage of the irrigation channels stage (August–November) 
which increases the nutrients stored in the bays. In the time series presented in this 
study, this occurred in August at both bays (Figure 13 w-aa) and 23 October at both 
bays (Figure 13 ag-ah), especially when winds blow from land (NW and N). In 
general, the observed trend was in agreement with previous studies (Llebot et al., 
2011), which found high chl-a concentrations in October in Alfacs Bay and from 
July to November in Fangar Bay. 

In terms of spatial dynamics (in-day scenarios), high chl-a concentrations were 
related more frequently to the mouth area of both bays. There, the exchange with 
the Mediterranean Sea leads to a more unstable scenario in which, despite water 
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renewal might be higher, increased turbulence favors phytoplankton growth 
prevailing over the wind’s regime. High concentrations in the mouth of Fangar Bay 
were related with more chl-a within the central channel of the bay (northern face of 
rafts), while in Alfacs Bay there was not so clear relation. In this bay, the highest chl-
a concentrations were also found in the inner area (NE), which is more retentive and 
concentrates more nutrients (Artigas et al., 2014).  

Because of all the aforementioned, shellfish aquaculture in the bays benefits from 
increased chl-a concentrations compared to the open sea. However, the 
retentiveness that characterizes the bays becomes a double-edged sword due to the 
high temperatures that water reaches during summer (>30 ˚C), which negatively 
affects the feeding rate of shellfish, becoming lethal when temperatures above 28 ˚C 
are maintained for days (Ramón et al., 2007). In order to develop a feasible method 
for aquaculture management by means of remote sensing monitoring, temperature 
must be included as one of the main factors, together with chl-a, controlling shellfish 
growth and conditioning the sustainability of the cultures.  

In this work, the first results have been presented, and measures to enhance 
aquaculture can be proposed. However, the feasibility of implementing them is 
subjected to the availability of bio-geophysical models considering longer time series, 
which would allow making a more integrated and robust approach. Including more 
data (parameters considered, increased number of data, wider dynamic range) and 
integrating them into the models would lead to carrying out studies in line with 
(Grant et al., 2009; Gernez et al., 2017), which coupled remote sensed chl-a with other 
environmental parameters to establish shellfish farming suitability index, to 
determinate the load capacity of the bays, and to rezoning the rafts’ locations. 

 
2.5. CONCLUSION 

High spatial resolution (10–60 m) Sentinel-2 (S2) imagery offers a new opportunity 
for remote sensing of water quality in small coastal geographic areas. In the Ebro 
Delta bays, the main Spanish Mediterranean shellfish production site, S2 imagery 
has demonstrated the potential to become a suitable tool for resolving the fast 
dynamics of phytoplankton in the area (in terms of chl-a concentration), within short 
space and time-frames. The monitoring using satellite remote sensing improves the 
standard in situ sampling-based methodology, allowing moving from punctual to full 
coverage, thus enabling holistic analyses (time series) to enhance coastal 
management (e.g., aquaculture).  

After testing different levels of atmospheric correction, it is not feasible to use 
uncorrected atmosphere images (TOA), but the full correction of the atmosphere is 
still highly uncertain. The results obtained suggest the use of Rayleight corrected S2 
imagery together with a simple Blue-to-Green ratio for chl-a estimation until a full 
correction is completely solved/validated. With this configuration, credible chl-a 
maps of the bays were derived, including the preservation of some information 
within the rafts polygons.  
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Despite the aforementioned success, remote sensing of small complex coastal 
geographic areas still faces several challenges. The main limitations found in this 
study were (i) full atmospheric correction accounting for aerosol, Rayleigh, sun glint, 
and adjacency effects and (ii) uncertainties associated with shallower areas 
contaminated by bottom reflectance, contributions of seagrasses to the total chl-a 
concentration, and validity of the results out the range of derivation of the model 
(location of ground truth data, wider range of chl-a concentrations, and seasonality). 
Further research should be directed to solve these shortcomings by improving the 
atmospheric correction and gathering more field data covering a higher number of 
scenarios. With these, a sensitivity test should be conducted for algorithm bounding, 
and, ideally, specific tunned models should be developed for each scenario 
(bay/season/water optical properties). 
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One of the main limitations in mapping phytoplankton biomass in coastal areas 
using multispectral satellite data is related to the presence of macrophytes in shallow 
waters. The different spectral indices applied in Chapter 2 showed that macrophytes 
overlap phytoplankton in terms of chl-a spectral response, thus leading to an 
overestimation and uncertainty in the retrieval of phytoplankton biomass in 
presence of macrophytes. In this chapter, a methodology focused on the 
classification of shallow seabed cover (i.e. macrophyte presence) is implemented in 
Alfacs Bay. Using a supervised machine learning classification approach, trained with 
a small set of in situ data and a subset of S2 spectral bands, a time series of seabed 
cover maps (i.e., macroalgae and seagrass) is presented, and the first insights on 
macrophytes dynamics are shown.  In addition, the response of macrophytes in 
relation to rice crop dynamics is explored. The results highlight the potential for the 
assessment of agriculture impact on coastal processes through biological proxies 
derived from S2.  

3.1. INTRODUCTION 

Coastal regions are highly dynamic and productive ecosystems with high ecological 
and economical value. They are subjected to considerable anthropogenic pressures 
such as urban and industrial development, pollution, tourism, aquaculture, and 
agriculture (Ramírez-Pérez et al., 2017). Hence, to ensure their conservation, 
sustainable development, and the protection of their resources, it is necessary to 
implement Integrated Coastal Management (ICM) programs (European Comission, 
2002). Agriculture is a good example of a system not only with economic interests 
but also with ecological benefits and social elements, although these components are 
not generally considered together (Fulton 1993). For instance, the impacts of 
agriculture on aquatic ecosystems include both direct and indirect effects. Direct 
effects include habitat loss due to channelization and wetlands conversion, and 
indirect effects involve water quality (e.g., salinity and temperature) and habitat 
impacts of sediment, nutrients, and other pollutants in agricultural runoff, as well as 
hydrologic alteration (i.e., volume and timing). Thus, leading to changes in aquatic 
habitats, nutrient cycle, oxygen availability, and faunal composition (Blann et al., 
2009). Understanding these relations and determining the underlying mechanisms is 
essential information for integrated management planning (Fabbri, 1998).  However, 
because of the range of potential interactions and effects with and on the 
environment, it is necessary to use a proxy for measuring the overall impact. In this 
sense, within the macrophyte community, seagrass composition, distribution and 
abundance are often used as a measure of ecosystem health and functioning, 
although they are often not considered in management decisions (Nordlund et al., 
2016). Seagrasses are marine flowering plants forming extensive meadows in shallow 
coastal waters by providing many important ecosystem services such as coastal 
protection, nursery habitats, carbon sequestration, and sediment trapping and 
stabilization (Hemminga and Duarte, 2000; Green and Short, 2003). The location of 
most seagrass ecosystems (i.e., coastal shallow habitats) expose them to both 
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terrestrial and marine-based threats and could serve as a sentinel community for 
agriculture impacts (Knudby and Nordlund, 2011).   

In the Ebro Delta the monitoring of rice crop and macrophyte community (i.e., 
seagrass and macroalgae), may provide useful information on the interaction 
between systems and support both environmentally and economically responsible 
decision-making by policy-makers. Because of the spatiotemporal variability and 
coverage of both ecosystems, remote sensing supposes an improvement of 
conventional monitoring programs by reducing cost, increasing the frequency of 
data acquisition, and covering the whole system (Dekker et al., 2006; Petus et al., 
2014). Multispectral satellites including the visible (VIS) and NIR regions of the 
spectrum allow monitoring of land and aquatic vegetation (Van Niel and McVicar, 
2004; Hossain et al., 2015). From this perspective, Sentinel-2 Multispectral imager 
(S2-MSI) is a suitable tool for monitoring the spatiotemporal dynamics of the whole 
system. The spectral indexes most commonly used for assessing rice crops are the 
Normalized Difference Vegetation Index (NDVI), based on photosynthetic activity 
(Huete et al., 2002), and the Normalized Difference Water Index (NDWI), which 
combined with NDVI is used to detect harvest period and hydroperiod (Tornos et 
al., 2015). Remote mapping of macrophytes includes the use of vegetation indexes 
based on green, red and/or NIR spectral bands, in addition to traditional 
classification procedures based on fieldwork sampling (Gullström et al., 2006; 
Knudby and Nordlund, 2011; Pu et al., 2012). Thus, the main objectives of this study 
were to analyze rice crop, seagrass, and macroalgae spatiotemporal dynamics by 
using S2-MSI imagery, to assess the potential relationships between them, and to 
discuss the usefulness of S2-MSI imagery for coastal monitoring. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Study Area 

The study area is centered in Alfacs Bay (Figure 15), which receives the freshwater 
inputs from the southern delta irrigation network.  

Inland, rice is grown from late April to September and left fallow during the rest of 
the year (Figure 16). In the growing season, water management consists of 
permanent flooding from sowing time (late April-early May) to two weeks before 
harvest (September). During the vegetative and early reproductive stages, short 
periods of drainage can take place as a requirement for the application of herbicides. 
After harvest, fields are re-inundated for the incorporation of rice straw into the soil. 
Thereafter fields are either flooded (from October to December) or left to 
progressively drain, according to the farmers' preferences. From January to March 
rice fields are left dry for soil labour operations (harrowing and fertilizer application) 
and re-flooded in Mid-April, at the beginning of the next cultivation period. Standard 
mineral fertilization is applied with average N doses ranging from 170 to 200 kg N· 
ha-1. Consequently, Alfacs Bay receives the water drained from ca. 115 km2 of 
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cultivated rice fields from April to late December (Tornos et al., 2015; Martínez-
Eixarch et al., 2018). 

As seen in previous chapters, Alfacs Bay ecology and hydrology are mediated by 
freshwater, nutrient and organic matter inputs from the irrigation network. Irrigation 
inputs impose a double layer flow, like a typical estuarine circulation pattern 
(Cerralbo et al., 2019). Macrophyte communities, mainly dominated by Cymodocea 
nodosa (seagrass) and Caulerpa prolifera (macroalgae), are distributed in shallow areas 
(0 – 2 m depth) along the inner shoreline (Pérez and Camp, 1986; Mascaró et al., 
2014). Bottom in the northern shore is silty and it is highly influenced by nutrient 
and organic matter inputs from rice crop discharges. The southern shore is sandy, 
and it is influenced by marine waters from the open sea (Sanmartí et al., 2018) and, 
consequently, the zone is oligotrophic, similar to Mediterranean waters.   

 

Figure 15. Southern Ebro delta plain and Alfacs bay (NW Mediterranean, Spain). 
 

3.2.2. Sentinel-2 Data 

Different data sets were used for analyzing rice crop variation and macrophyte 
communities (Figure 17). A set of 621 S2 (A and B) L2A images (i.e., cloud cover < 
30 %) were used as input in Google Earth Engine for monitoring rice paddies.  
Google Earth Engine (GEE) is a cloud-based platform, which can be used to 
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execute large-scale and long-term geospatial analysis (Gorelick et al., 2017).  GEE 
allows direct access to different levels of S2-MSI images, the possibility of filtering 
satellite imagery (e.g., region of interest, date, cloud cover), and cloud computing 
band maths generating spectral indexes maps. The level 2A (L2A) official products 
available on the Copernicus Open Access Hub provide atmospherically corrected 
images applying Sen2cor processor (Müller-Wilm, 2016). In addition, a set of 56  
S2 (A and B) L1C images (i.e., not cloud covered) were downloaded from Copernicus 
Open Access Hub (https://scihub.copernicus.eu/) and atmospherically corrected 
with POLYMER v4.12. The polynomial-based algorithm applied to MERIS 
(POLYMER), applicable to S2-MSI, is an atmospheric correction algorithm 
specifically designed for processing of oceanic waters with and without the presence 
of sun-glint (Steinmetz et al., 2011) outputting water surface reflectance images, 
resampled to 20 m. Note that for rice paddies monitoring, images from different 
orbits were used, while for macrophytes classification only orbit 51 images were 
selected (differences in number of images; Figure 17). 

 

Figure 16. Rice farming calendar in the Ebro Delta. Adapted from (Martínez-Eixarch et al., 
2018). 
 

3.2.3. Reference Data 

Two sources of ground truth data were used in this study. Rice farming practices 
and water management including rice sowing, fertilization, and harvesting, were 
obtained from farmers. Macrophyte field data were gathered from two field 
campaigns (23.05.19 and 27.12.19) carried out within a time-window of 3 and 0 days 
with respect to the satellite pass. This data consisted in a set of 52 points (locations 
within Alfacs Bay), located with Global Navigation Satellite System (GNSS) receiver, 
where seabed typology was characterized within polygons accounting for five 
different categories (turbid, seagrass at high and low densities, algae and ‘deep’ 
water). It is important to note that there was no differentiation between epiphyted 
and epiphyte-free macrophyte meadows. 

 

3.2.4. Monitoring of Rice paddies 

Four spectral indexes were computed, the Normalized Difference Vegetation Index 
(NDVI; eq.9) and three different Normalized Difference Water Indexes (NDWI1, 
NDWI2, and NDWI3; eq.10-12) were computed. Monthly averaged spectral indexes 
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were calculated with GEE (Figure 17). The Resulting products were 96 images (2 
years × 12 months × 4 spectral indexes) at 20 m spatial resolution. 

 

Figure 17. Temporal distribution of S2-MSI images used in this study for rice paddies 
(green) and macrophytes (blue) time series development. 

 

𝑁𝐷𝑉𝐼 =  
(𝑅842−𝑅665)

(𝑅842+𝑅665)
                                                 (9) 

𝑁𝐷𝑊𝐼1 =  
(𝑅842−𝑅1600)

(𝑅842+𝑅1600)
                                               (10) 

𝑁𝐷𝑊𝐼2 =  
(𝑅842−𝑅2200)

(𝑅842+𝑅2200)
                                               (11) 

𝑁𝐷𝑊𝐼3 =  
(𝑅560−𝑅842)

(𝑅560+𝑅842)
                                               (12) 

 

NDVI is a good indicator of vegetation growth and has been widely used to assess 
phenological information (Wang et al., 2012) such as the heading date, and it is also 
related with culture hydroperiod (Tornos et al., 2015). NDWI is sensitive to leaf 
water content and soil moisture, describing surfaces of water and vegetation with 
water content or land of scarce humidity areas. Thus, NDWI may help to define 
harvest date and to assess changes in flooding stages (Tornos et al., 2015). NDWI 
maximizes the vegetation reflectance and minimizes the reflectance of water. The 
common form of NDWI (here, NDWI3) uses NIR bands as the longest, but in this 
study, SWIR bands were used too to exaggerate the response of the spectral index 
in flood-based agriculture. Modified NDWI using SWIR bands (here, NDWI1 and 
NDWI2) are known as Land Surface Water Index (Xiao et al., 2005). The 
summarized workflow is presented in figure 18. 
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3.2.5. Macrophytes’ monitoring 

After atmospheric correction was conducted with POLYMER, images of water 
reflectance at 20 m spatial resolution were processed in R 3.6 and QGIS 3.4. The 
processing followed five main steps. (i) the building of a merged composite of bands 
B3 (560 nm), B4 (665, nm) and B7 (783 nm); (ii) the computation of green NDVI 
(GNDVI; eq. 13); (iii) the supervised classification using ground truth data for 
Support Vector Machine technic (SVM); (iv) time series of seabed type; and (v) 
monthly averaged seabed-class coverage per bay shore (northern and southern).  

The GNDVI is related to the leaf area index (Yang and Yang, 2009) and due to the 
use of the NIR band (eq. 13) it is very sensible to bottom reflectance. Thus, GNDVI 
has been used to differentiate shallow waters with a higher probability to harbour 
macrophytes than deep waters. 

𝐺𝑁𝐷𝑉𝐼 =  
(𝑅842−𝑅560)

(𝑅842+𝑅560)
                                           (13) 

Bands B3, B4, and B7 include wavelengths from the green to the NIR edges, which 
are sensitive to seagrass coverage and biomass. These were merged into a single 
composite as the main input for seabed-type classification. Support Vector Machine 
(SVM) was used as the classification method of the seabed cover. SVM is 
implemented with Orfeo ToolBox (Grizonnet et al., 2017) in QGIS. SVM is based 
on a supervised machine learning algorithm that uses a linear model for data 
classification. The algorithm creates a hyperplane that separates data into classes. 
The data used as input for the SVM consisted in the polygons for which seabed-type 
was defined (truth data) and the related pre-processed and merged composites of 
S2-MSI images (23/05/19 and 27/12/19). The ratio of training and validation 
polygons was set to 50 %, and kernel type model was selected because of the non-
linearity of the data. Finally, we obtained an image of classified seabed accounting 
for the 5 classes defined (i.e., Seagrass high and low density, algae, water, and turbid 
environments) per date. The summarized workflow is presented in Figure 18. 

 

3.2.6. Coupling of rice paddies development and seabed-cover 

In order to simplify the analysis of the results, monthly data of rice paddies stages 
and macrophyte coverage were used. For rice paddies, the similarity of the curves 
described by each index at each pixel was checked with a k-means clustering. Finally, 
spectral indexes were averaged per pixel within each category and month. Regarding 
seagrass dynamics, the area of the 5 different classes (in percentage) was computed 
for each date and then monthly averaged. Three months (March 2018, November 
2018, and April 2018) were not included in the analyses because of the high water 
turbidity and the uncertainty associated.  Finally, spatiotemporal trends of spectral 
index of rice paddies and seabed-type and coverage were coupled. The summarized 
workflow of both land and water monitoring is presented in Figure 18. 
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Figure 18. Workflow chart to assess induced-agricultural disturbance over macrophyte 
communities in Alfacs Bay. 
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3.3. RESULTS 

3.3.1. Water management and crop phenology 

All the considered spectral indexes (i.e., NDVI and NDWs) did not show significant 
differences among the five categories identified in the cluster analysis (Figure 19).  

 
Figure 19. Monthly average of the spectral index for the 5 different clusters. 

Land surface water indexes (NDWI1 and NDWI2) were more variable, especially in 
autumn and winter (October-January), but differences were not so large. Both 
NDWI1 and NDWI2 showed a similar pattern, but NDWI3 presented a different 
pattern completely opposite to NDVI. Thus, according to NDVI and NDWI1 
temporal patterns, different key farming stages were identified regarding 
hydroperiod (farming practices) and crop phenology (rice growth). Consequently, 
flooding, drying, heading, and harvest dates could be properly identified (Figure 20) 
by following the scheme in Table 5.  Despite similar trends in NDVI and NDWI1 
in 2018 and 2019, some differences were observed between years. For instance, in 
2018 changes in both NDVI and NDWI1 occurred faster (sharper shapes) than in 
2019, thus, in 2018, the first flooding and harvesting were finished in one month 
compared to the two months observed in 2019. In addition, when comparing both 
annual cycles, a delay of one month in heading date (July 2018 vs August 2019) was 
observed. 
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Table 5. Agricultural practices, crop stage and hydroperiod detected by using NDVI and 
NDWI1 of rice paddies in southern Ebro Delta along single year. 

 NDVI NDWI1 

Absolute Maximum Heading date 1st Flooding 

Absolute Minimum 1st Flooding Dry fields 

Relative minimum I - End of Flooding - Harvest 

 

 
 

Figure 20. Rice spectral index monthly averaged within whole study area (left axis). 
Farming practices derived from scheme in Table 5. Macrophytes coverage at the whole 
bay (right axis). 

 

3.3.2. Classification of seabed cover 

Overall, macrophyte cover showed a seasonal pattern in both northern and southern 
shores, increasing their surface area during warm months (August-October) and 
decreasing during cold periods (December-February). Macrophyte coverage ranged 
between ca. 30 and 80 % of the shallow area along the sampling period (years 2018 
and 2019), with higher coverage in 2019. 

Macrophyte cover also showed significant differences between shores (Figure 21).  
The northern shore was dominated by green macroalgae, with higher coverage in 
summer (from June to August), and minimum in winter (December and January), 
and the peak in seagrass coverage occurred in September-October, following the 
maximum in macroalgae. However, seagrass cover was higher and dominated the 
southern shore of Alfacs Bay. The most abundant class was ‘low density’, and 
seagrass maximum coverage was observed in September and minimum between 
April and May. In the southern shore, green macroalgae coverage showed a 
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maximum in February and a minimum in October and December in 2018 and 2019, 
respectively. 

Water depth (i.e., distance to the shoreline) was also an important factor affecting 
macrophyte seasonal dynamics. In winter, seagrass was more abundant in deeper 
waters (i.e., distant from the shoreline) with algae on the surface. In early spring, the 
increase in water turbidity led to the almost disappearance of macrophytes (both 
algae and seagrass), with seagrasses recovering in mid-late spring, the recovery being 
faster in shallow waters for ‘low density’ meadows and in deep waters for ‘high 
density’ seagrass. In summer, algae overgrown on the northern shore, with seagrass 
abundance limited to the margins of algal mats (Figure 22). In the southern shore, 
seagrass spread all over the bottom, with lower densities present in shallower areas 
and higher densities in deeper areas distant from the coast. Finally, in autumn, both 
seagrass and algae coverage decreased. Interestingly, seabed coverage showed large 
variability in 2018 than in 2019. Algae density varied more in the northern shore, 
while seagrass presented more variations in the southern shore (Figure 21). 

 

3.4. DISCUSSION AND CONCLUSIONS 

Our results support the feasibility to characterize different aspects related to 
agricultural practices, crop phenology, and hydroperiod characteristics by 
monitoring the NDVI and NDWI, useful in rice farming monitoring. These results 
are in agreement with those reported by (Tornos et al., 2015), the only previous 
similar study in the area.  The multi-temporal S2-MSI dataset covering the southern 
Ebro delta for 2018-2019 includes more than 600 images based on the availability 
of clear-sky conditions and low-glint contamination risk. S2-MSI produces more 
accurate estimates due to its enhanced channel configuration, and its increased 
combined spatial (20 m) and temporal (5 days) resolution than other multispectral 
satellites, such as Landsat or MERIS. Thus, allowing precise determination of both 
inter and intra-annual crop dynamics. Among the tested spectral indices (i.e., NDVI, 
NDWI1, NDWI2, and NDWI3), the combination of NDVI and NDWI1 provided 
the most useful values, with each index showing different possibilities along the crop 
cycle. According to both indexes, the Ebro Delta was homogeneous in terms of rice 
farming practices and crop development during the study period. However, 2019 
showed a delayed crop calendar of ca. ~1 month when compared to 2018, these 
differences between years could be due to climatic conditions such as temperature 
(2018 was warmer than 2019) or rain. For instance, at the start of the growing season, 
in May, rainfall was 10.4 and 31.3 mm in 2018 and 2019, respectively. Consequently, 
in order to improve our results, further work should include climatic data. 
Furthermore, we used monthly averages of spectral indexes, which probably do not 
fit crop practices, thus further improvement should allow including more detailed 
crop practices and management information (e.g., start of flooding, fertilizers 
application, harvest) by reducing temporal averages of spectral indexes. 
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Figure 21. Rice spectral indexes (NDVI and NDWI1) and averaged per cent macrophyte-
class. SGD: Seagrass dense, SGL: Seagrass low density and Algae) along the study 
period. In red, months not considered in the analysis due to higher water turbidity. 
 

In relation to seabed classification, the proposed methodology (i.e., S2-MSI merged 
composites and SVM-based classification) is effective in classifying macrophyte 
groups (algae and seagrass), as well as in identifying bare, sparse, and dense 
vegetation zones.  Overall, our results were coherent with the literature. For instance, 
Sanmartí et al., (2018) found that following the overgrowth of opportunistic 
macroalgae, seagrasses are displaced to deeper-water areas, thus explaining the 
replacement dynamic observed between seagrass and algae in the northern shore of 
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Alfacs Bay (Figure 22). However, some aspects need to be improved in order to 
improve the vegetation classification. For instance, given the similar spectral 
response, the class turbidity may include turbid-waters environments, sandy 
bottoms, and sparse macrophyte areas. In addition, epiphytes (organisms growing 
on the surface of plants) and water depth may increase the uncertainty of seabed 
classification by modifying the spectral reflectance response of seagrass and algae 
(Hwang et al., 2019). It is needed to improve truth data classification (i.e., get more 
field data and increase the number of classes). 

 

Figure 22. Examples of summer (A, C) and autumn (B, D) scenarios of flooding on the 
southern side of Ebro Delta and macrophytes in Alfacs bay. 
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In the Ebro Delta, rice farming is the main economic activity and provides important 
ecosystem services, but it is also a major mediator of the environmental conditions 
in the coastal bays (see Chapters 2 and 3). This shows the need of an integrated 
monitoring of the Ebro Delta considering the interaction among environment and 
human activities. In this chapter, an automatic method for accurately defining crop 
dynamics (i.e., phenology monitoring), agricultural practices (irrigation 
management), and indicators of crop yield from regional to field scale is developed. 
By combining different spectral indices computed in Google Earth Engine and S2 
imagery, under a rule-based extraction scheme, different key dates and metrics are 
derived for two consecutive years. This study improves the limitations found in 
Chapter 3 in terms of rice monitoring, with key implications for further research 
based on the integrated approach for characterizing the evolution of the coastal 
system. The results presented can be useful for decision-making and the 
management of rice paddies. 

 

4.1. INTRODUCTION 

Rice provides food for more than half of the world’s population, occupying more 
than 12 % of the world crop area, providing important ecosystems services such as 
habitat for fauna, prevention of saline intrusion and soil erosion, subsidence 
mitigation, and nutrient cycling (Tornos et al., 2015). Accurate information on crop 
practices (e.g., water management, hydroperiod, crop performance) along space and 
time is crucial for planning agricultural and environmental policies (Mosleh et al., 
2015). However, vegetation dynamics and hence rice yield, vary temporally and 
spatially due to several factors such as differences in soil properties, climatology, and 
management practices (Casanova, 1998; Bradley et al., 2007). Thus increasing the 
difficulty to assess the spatial variability of the agricultural practices through field 
surveys, which is also costly and time-consuming. Sometimes, the only available 
information comes from farmers’ declarations (Courault et al., 2020). With the rapid 
development of geospatial technology in the last years, the acquisition of high-quality 
spatial and temporal data has become cost-effective and efficient, offering 
opportunities for land monitoring and management. In particular, multispectral 
satellite remote sensing has proved its usefulness in monitoring rice crops, water 
regime, and estimating yield production (Mosleh et al., 2015; Dong and Xiao, 2016). 
Usually, spectral indices (SI) are used as a proxy for vegetation, flooding regime, and 
crop efficiency because they integrate the information of two or more spectral bands 
which are sensitive to different plant or soil characteristics (e.g., plant pigments or 
water content) (Zeng et al., 2020). Coarse-resolution sensors such as MODIS, 
AVHRR, SPOT-VEGETATION, and MERIS have been widely used since high-
quality datasets are readily available and easier to process (Bolton et al., 2020, Zhu et 
al., 2019). However, because of their coarse spatial resolutions (from 250 m), it is 
difficult to differentiate management practices at single-field level (Liu et al., 2020). 
Therefore, remote sensing data with better spatial resolution is preferred; for 
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instance, Landsat is able to provide images up to 30 m but at low temporal resolution 
(16 days) which is still an important constraint (Fernández-Beltrán et al., 2021). 

The Sentinel-2 (S2) satellites constellation provides accurate, timely, and easily 
accessible information of the land surface, with improved capabilities for vegetation 
mapping and monitoring, and phenology estimation (reviewed in Misra et al., 2020). 
However, the use of S2 still presents some limitations related to time series 
development, including noise and data gaps (e.g., atmospheric correction errors, 
decreased reflectance by shadows, cloud presence). In this sense, a common practice 
with multispectral remote sensing data is the usage of multi-temporal images 
composites derived from the combination of best quality pixels from images within 
a defined period (Sakamoto et al., 2005; Wang et al., 2012; Tornos et al., 2015). 
Nevertheless, finding noise-free values may be complicated for short periods of 
time, and increasing the compositing period may lead to the loss of information 
(Zeng et al., 2020). In some cases, there is insufficient cloud-free information present 
in the multi-temporal data to compose a cloud-free image (Schmitt et al., 2019), and 
it is necessary to smooth data by filter-based methods or function fitting methods 
to fill temporal gaps and minimize the residual noise (Bradley et al., 2007; Geng et al., 
2014). A complementary approach is the integration of data from different platforms 
(e.g., Landsat, Sentinel-2), to reduce temporal gaps in multi-temporal composites (Liu 
et al., 2020). However, data-fusion complexities (i.e., temporal gaps, spectral 
harmonization, heterogeneity in cloud-masking methods, and spatial registration) 
make the possibility of using single-platform remote sensing data very attractive.  

After completing the spectral index (SI) time series, the analysis of vegetation 
phenology, irrigation regime, and crop yield estimation will depend on the ability to 
characterize intra- and inter-annual dynamics at optimal scales. For the monitoring 
of rice-growing areas, it is crucial to differentiate key phenological stages (e.g., 
heading date, maturity) and management practices (e.g., flooding, harvest), both in 
space and time, particularly at small spatial scales. The main aim of this study is to 
assess the capability of Sentinel-2 to monitor rice crops in a Mediterranean growing 
area. Specific objectives are  

(i) to generate cloud-free spatiotemporal time series of four SI (NDVI, NDWIMF, 
NDWIGAO, and BSI) along two consecutive crop seasons (2018 and 2019); 

(ii) to automatically identify the main phenological stages and management practices 
at different scales (from regional to field);  

(iii) to provide estimates of rice yield. 
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4.2. MATERIALS AND METHODS 

4.2.1. Study area 

As shown in Chapter 1, the 65% of Ebro Delta area (21,125 ha) is devoted to rice 
farming (Figure 23), constituting the main economic activity in the region and 
providing important ecosystem services. Rice is grown from late April to September 
and left fallow during the rest of the year (Figure 24). The cultivars grown in the 
Ebro Delta, are japonica-type with medium grain size and growth cycle of ca. 120 to 
140 days from sowing to maturity. In general, the variability of cultivars grown in 
the area within a year is low, ca. 5 different rice cultivars cover most of the cultivation 
area. 
 

 
 

Figure 23. Location of the Ebro Delta and coverage of rice paddies under study. Fields I 
and II are used in support of sections 4.3 and 4.4. 
 

4.2.2. Study design 

The study was carried out over two consecutive years (2018-2019). Annual cadastral 
data of all rice parcels were obtained from the Department of Agriculture, Livestock, 
fisheries, and food of the regional government (http://agricultura.gencat.cat). Four 
scenarios, considering different spatial scales, were analyzed:  Scenario ‘A’ included 
all rice fields in the Ebro Delta; Scenario ‘B’ and ‘C’ considered all paddies in the 
northern and southern hemidelta, respectively; and in Scenario ‘D’ 67 subsets of rice 
fields were analyzed (Figure 23) for which field and crop information, including at 
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least cultivar, agricultural practices (i.e., sowing, harvesting dates), or yield (kg·ha-1), 
were obtained from the owner. In Scenario ‘D’, Field I and Field II (Figure 23) were 
chosen as an example to facilitate results interpretation. Field I (10.8 ha) is close to 
the Ebro River (Figure 23) and seeded with Mare cultivar in both 2018 and 2019. 
Field II is the largest field in scenario ‘D’ (37.4 ha), Bomba and Sirio cultivars were 
grown in 2018 and 2019, respectively. 

 
Figure 24. Rice farming calendar in the Ebro Delta. Adapted from (Martínez-Eixarch et al., 
2018). 

 

4.2.3. Satellite data 

Google Earth Engine (GEE), a cloud-based platform for long-term geospatial 
analysis (Gorelick et al., 2017), was used for data access, clouds and clouds shadows 
detection, image pre-processing (i.e., image subset, mosaicking of tiles, and image 
resampling), and spectral index calculation. In GEE, image collections of both 
Sentinel-2 A/B (S2) top of atmosphere (L1C, TOA) and atmospherically corrected 
for surface reflectance (L2A, BOA) from 1st of January 2018 to the 31st of 
December 2019 were used. All images were obtained from the same orbit (051) and 
tiles (TCF31 and TBF31) to homogenize remote sensing measurements and ensure 
the full coverage of the study area. First, all available BOA images within the study 
period were loaded (Nimages = 138); then, TOA images were selected based on the 
available BOA dates. TOA images were needed as the base of the method used for 
masking clouds and cloud shadows (adapted from Schmitt et al., 2019).  Water 
masking was not applied to avoid interferences with flooded rice paddies and, only 
the second module of the Schmitt et al. (2019) method was used (i.e., image quality 
score module). This generates a pixel scoring for each independent TOA image and 
date by combining the probabilities of cloud presence given different assumptions 
about brightness, moisture, and snow. Cloud masks were derived with a threshold 
of 0.3 on the pixel score. Then, the cloud masks, in conjunction with the TOA 
images metadata (sun azimuth and zenith) and a range of possible cloud heights 
(from 200 m to 10000 m) were used to generate shadow scores images and shadow 
masks. The threshold on the sum of infrared bands to include as possible shadows 
was lowered from 0.3 (default) to 0.1 for reducing the miss-classification of flooded 
paddies. For more detailed information on the cloud and shadow masking method 
see Schmitt el al. (2019). 
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The computed masks for TOA images were applied to the BOA collection, and after 
clouds and clouds shadows masking, S2 BOA images were cropped to the region of 
interest (Figure 23), daily mosaicked (merging of same-date tiles), and resampled to 
20 m spatial resolution. For each scenario images were filtered according to cloud 
and shadow mask percent coverage over rice fields. Only those images with at least 
80 % of valid pixels per scenario were included in the posterior analysis and, for each 
valid S2 image (Figure 25) SI were computed (see section 4.2.4) at pixel level (i.e., 20 
m x 20 m) and then averaged at different scenarios scales. 

 
Figure 25. Valid and rejected S2 images. 

 

4.2.4. Spectral indices 

Four SI were calculated according to their utility in estimating rice development, 
water management, or production (Table 6). These two and three-band normalized 
difference indices are dimensionless, range between -1 and 1, and exploit the VIS, 
NIR, and SWIR regions of the spectrum (Table 6). The Normalized Difference 
Vegetation Index (NDVI) exploits the chlorophyll light absorption in the VIS-red 
region of the spectrum and the high reflectance of vegetation in the NIR (Rouse et 
al., 1974). The Normalized Difference Water Index proposed by McFeeters (1996), 
here referred to as NDWIMF, was developed for delineating open water bodies by 
making use of the NIR and VIS-green light. The Normalized Difference Water 
Index by Gao (1996), here referred to as NDWIGAO, was developed for the remote 
sensing of vegetation liquid water by using the NIR and SWIR channels. The Bare 
Soil Index (BSI) is used to identify bare soil areas and fallow lands, by combining 
information from the VIS-blue, VIS-red, NIR, and SWIR channels (Rikimaru et al., 
2002). 

4.2.5. Data smoothing 

For each S2 valid image and considered scenario, SI data were smoothed with a 
cubic spline fitting method, thus estimating daily data at different scenario scales, 
and reducing multi-factorial noise in the original data (e.g., atmospheric correction or 
cloud/shadows miss-detection derived errors). Cubic spline fitting is based on the 
minimization of quadratic errors with curvature type regularization by joining 
piecewise polynomials smoothly at selected knots from the original data points 
(Wang, 2011). Thus, the fit is not limited by any method-constrained shape, but 
phenological shape is driven entirely by the data (Bradley et al., 2007). The cubic 
spline smoothing was done in R version 3.6 (R Core Team, 2017) by using the 
smooth.spline function; all data were included as possible knots and the spar 
smoothing parameter was fixed to 0.65. 
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Table 6. SI used in this study. The R(λ) in equations stands for Surface Reflectance at S2 
band with centered wavelength λ in nm. 
 

Spectral Index Equation 

Normalized Difference Vegetation 
Index  NDVI (Rouse et al. 1974) 

𝑅(842) − 𝑅(665)

𝑅(842) + 𝑅(665)
 

Normalized Difference Water Index 
NDWIGAO (Gao et al., 1996) 

𝑅(842) − 𝑅(1610)

𝑅(842) + 𝑅(1610)
 

Normalized Difference Water Index 
NDWIMF (McFeeters et al., 1996) 

R(560) − R(842)

R(560) + R(842)
 

Bare soil index                                         
BSI (Rikimaru et al., 2002) 

(R(1610) + R(665)) − (R(842) + R(490))

(R(1610) + R(665)) + ((842) + R(490))
 

4.2.6. Rice phenology, hydroperiod and yield 

Smoothed NDVI and NDWIGAO time series were combined to assess rice 
phenology, crop evolution, and flooding practices. The BSI was computed as an 
additional state indicator complementing the analysis of NDVI and NDWIGAO, but 
it was not included in the feature extraction system. The NDWIMF was only used for 
crop yield estimates. The method for automatic extraction of key features consisted 
on the assumption that the presence of local maximums, minimums, and critical 
points (inflection points) in spectral index trends is related to changes in soil, 
flooding, or vegetation stages (Zheng et al., 2016; Liu et al., 2017).   For the different 
scenarios considered, SI time series were smoothed, and all minimums and 
maximums were identified from the first derivative analysis; and all possible 
inflection points were identified for NDVI, NDWIGAO and BSI. Then, local and 
critical points of interest were selected (Table 7).  

First, the absolute maximum NDVI was associated with the middle heading date 
(HD) of each growing season as proposed in (Wang et al., 2014; Tornos et al., 2015; 
Zhang et al., 2019). From the HD, other key features were derived for each year 
following the identification steps and order presented (Table 7 and Figure 26). The 
order was based on the expected occurrence of events (e.g., Active tillering occurs 
before HD; End of flooding of one growing season occurs before flooding of the 
following one), allowing to automatize the process by avoiding unwanted 
minimum/maximum and inflection points. Key features related with rice status were 
extracted first from NDVI, and then NDWIGAO was used to assess water 
management (Table 7 and Figure 26).  

For scenario ‘D’, Pearson’s correlation coefficient (r) was used for assessing the 
relationship with available ground truth data of i) Sowing date and NDWIGAO-
derived flooding (F), ii) Harvest date and NDVI-derived maturity (M) and, iii) 
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Annual rice production (kg·ha-1) and the value of the four SI at all dates within the 
study period. 

Table 7. Key phenological and field-status features identified in this study. 

Acronym Key feature Description Identification 

HD 
Heading 

Date 

Phenology: Vegetative 
development of rice is 

maximum. 
Absolute maximum NDVI 

T Tillering 
Phenology: Active tillering. 

The number of leaves 
increases rapidly 

1st inflection point of NDVI 
before HD 

M Maturity 
Phenology and 

Management: Close to end 
of maturation stage 

1st inflection point of NDVI after 
HD 

F Flooding 
Management: Flooding of 

rice fields have started 

1st inflection point of NDWIGAO 
before T & after minimum 

NDWIGAO 

EF 
End of 

Flooding 

Management: Water in fields 
is emptied before the land 

preparation 

1st inflection point of NDWIGAO 
before minimum NDWIGAO of 2nd 

year 

RF Re-Flooding 
Management: Optional re-

flooding of fields during the 
fallow season. 

Inflection point of   NDWIGAO 
after M and before EF. 

VP 
Vegetative 

Phase 

Phenological phase: From 
germination to panicle 

initiation 
Period between F and T 

RP 
Reproductive 

Phase 

Phenological phase: From 
panicle initiation, till 

flowering 
Period between T and HD 

MRP 
Maturity-
Ripening 

Phase 

Phenological phase: From 
flowering and ripening till M 

Period between HD and M 

PF 
Permanent 
Flooding 

Management: Fields are 
always flooded but level of 

water may vary due to 
punctual drainages. 

Period between F and EF. 

DLP 
Dry Land 

Preparation 

Management: rice fields are 
dry and land is being 

prepared 

Period between EF and F. Related 
to minimum NDWIGAO and 

maximum BSI 
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Figure 26. Extraction scheme of phenology and irrigation management practices from 
combined NDVI and NDWIGAO dynamics. Numbers stand for the order of identification of 
key features, × Inflection Points, ● Local Points. List of acronyms in Table 7. 

 

4.3. RESULTS 

4.3.1. Cloud and shadow masking 

We did not conduct a systematic validation of cloud and 
shadows masking, but it was visually observed that the 
adaptation of the Schmitt et al. (2019) method improved 
the default Quality Assessment (QA) cloud mask of S2 
L2A imagery (QA60 band), particularly in the presence 
of disperse or patched clouds (Figure 27). However, in 
this situation, problems related to the detection of 
smallest, thinner clouds and shadows were also 
observed. These limitations were not addressed from an 
image processing perspective. In such cases (e.g., Figure 
27), the study relied on second filtering (80% of valid 
pixels within each scenario which include only pixels 
covering rice paddies), the averaging of pixels and the 
smoothing of the time series to decrease the impact 
from the misclassification of clouds and shadows. 

 

Figure 27. The S2 BOA Image clipped to the area of study 
on 30th July 2019 as viewed in GEE. A) RGB, B) QA60 
band-based method, C) Adapted method. Black pixels 
correspond to not-masked areas. Red squares: Examples 
of possible overestimation of shadows over water.   

 

Overall, 53 of 138 images (ca. 38.5 %) had more than 20 % of pixels affected by 
clouds or shadows and were discarded; most of them within the period October-
December, after the rice growing cycle (Figure 25). 
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4.3.2. Spectral indices time series 

The cubic spline smoothing filled gaps for fitting time series with daily information 
of each spectral index derived from S2 imagery at different scenarios scales. The 
metrics of the spline fitting (i.e., Pearson’s r and Root Mean Squared Error, RMSE), 
and thus the relationship between observed (i.e., satellite-derived) and predicted 
values, differed among SI. Considering all the scenarios, the weaker correlations 
were found for NDWIGAO (0.77 < r < 0.94, 0.12 > RMSE > 0.05), and the strongest 
correlations were for BSI (0.84 < r < 0.98, 0.073 > RMSE > 0.032), NDWIMF (0.93 
< r < 0.99, 0.08 > RMSE > 0.04), and NDVI (0.95 < r < 0.99, 0.09 > RMSE > 
0.04).  These differences were particularly evident during the rice-growing season, 
and particularly, the variability of NDWIGAO at the beginning of the growing season 
was not totally retained by the smoothing (Figure 28C).  

At spatial scale, the number of valid images was lower for smaller scenarios (i.e., 
scenario ‘D’), and at temporal scale, the number of available images was lower during 
the post-harvest season, in the autumn-winter period (Figure 25 and Figure 28), thus 
affecting the accuracy of the smoothing. To reduce the uncertainty in these extremes 
of the smoothed time series, the phenology and hydroperiod phases (see section 
4.3.3) were only classified from the 2018 flooding to the 2019 mature-ripening stage, 
excluding the initial pre-flooding and final post-harvest periods (Figure 29). SI 
showed common patterns among the different scenarios considered, and significant 
differences were not observed among Scenarios ‘A’, ‘B’ and ‘C’. Scenario ‘D’ showed 
higher variability, mainly due to differences among individual paddy fields, but with 
common characteristics among them (Figure 29). 

Overall, both NDVI and NDWIGAO minimum values were observed between the 
winter and the middle-spring period, coinciding with maximum BSI. The maximum 
rate of increase of NDWIGAO, associated with flooding, occurred around April-May. 
Along the growing season, the NDVI reached its maximum in July-August, with the 
BSI showing an inverse pattern (Figure 29). After the growing season (autumn and 
winter) the differences among fields (Scenario ‘D’) were more evident, and three 
main SI trends were found: NDVI stabilization with an increase in NDWIGAO and 
a decrease in BSI; a reduction in both NDVI and NDWIGAO (Field I) with BSI 
increasing (Figure 29A); and an increase in both NDVI and NDWIGAO (Field II) 
associated to a marked decrease in BSI (Figure 29B). 
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Figure 28. Spline smoothing of SI at different spatial scales. A) Mean NDVI in Scenario 
‘A’; B) Mean NDVI in Field I of Scenario ‘D’; C) Mean NDWIGAO in Scenario ‘A’. Root Mean 
Squared Error (RMSE), number of data points (N) and Pearson’s r are provided. 
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Figure 29. Rice phenology and hydroperiod at two different sub-scenarios in the Ebro 
Delta derived from NDVI and NDWIGAO. The BSI trend is shown as supporting information. 
A) Field I; B) Field II (Figure 23). 

 

4.3.3. Phenology and hydroperiod detection  

A selection of maximum/minimum and inflection points in NDVI and NDWIGAO 
time series were used to extract phenology and hydroperiod dynamics for the 
different scenarios considered (Table 7 and Figure 26). Flooding (F), active Tillering 



Improving monitoring and management of coastal areas with Sentinel-2 

 92 

(T), Heading Date (HD), Maturity (M), End of Flooding (EF), Vegetative Phase 
(VP), Reproductive Phase (RP), Mature-Ripening Phase (MRP), Permanent 
Flooding (PF), Re-Flooding (RF), Dry Land and Land Preparation (DLP) crop 
phases were identified. Comparing the global trends in 2018 and 2019 at different 
scenarios scales, HD was delayed in 2019 and MRP was shorter in 2019. The 
temporal variation of NDVI and NDWIGAO indexes were more related to factors 
such as water management, type of sowing, field characteristics or climate, than to 
rice cultivar. See for instance Field II (Figure 29B), where different rice cultivars 
were sowed in 2018 and 2019. 

The consistency of the results was achieved when only fields with more than 40 valid 
Sentinel-2 images (during the two years) were included in the analysis (Table 8). On 
average, Flooding was detected 9 and 12 days before the ground truth sowing date 
(late April to late May), and Maturity was observed 6 and 8 days before the ground 
truth harvest date (late August to early October), in 2018 and 2019 respectively. 
Despite the larger variability observed between flooding and sowing occurrence, the 
relationship was > 0.6 (Pearson’s r) for all evaluated fields with more than 40 
Sentinel-2 images (Table 8).  

Table 8. Relationship between estimated flooding date (F) and ground truth sowing and 
between estimated maturity date (M) and ground truth harvest data by year. Only fields 
with more than 40 valid Sentinel-2 images were included. 

 

4.3.4. Rice yield estimates  

In Scenario ‘D’, SI were correlated (Pearson’s r) with yield production (kg·ha-1). The 
strongest correlations were found in the growing season, mainly between July and 
middle-August (Figure 30), with rice yield significantly correlated with all SI. The 
best correlations observed in 2018 and 2019, respectively, were r = 0.69 and r = 0.74 
with NDVI, 0.82 and 0.66 with NDWIGAO, -0.84 and -0.86 with NDWIMF, and -0.81 
and -0.71 with BSI. Along the summer season, the most consistent relationships 
with yield production were obtained with NDWIMF and NDVI (Figure 30). 

For this reason, the study focused on the relationships between rice yield and the 
annual NDVI maximum (at the HD), and the annual NDWIMF minimum (closest 
local point to HD).  Best results (Figure 31) were obtained when considering only 
rice fields with mean NDVI > 0.4 (r = 0.72) or NDWIMF < -0.4 (r = -0.80). 

Year 
Nimages                     

(min-max) 
Key 

feature 
Ground 

data 
Nfields 

Mean 
difference     

(days) 

Standard 
deviation 

(days) 
r 

2018 60 - 82 Flooding Sowing 19 -12.26 3.57 0.79 

2018 60 - 82 Maturity Harvest 19 -8.37 7.75 0.61 

2019 41 - 82 Flooding Sowing 23 -9.04 11.68 0.66 

2019 41 - 82 Maturity Harvest 23 -6.57 3.42 0.93 
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Figure 30. Absolute Pearson’s correlation (r) between parcels production (Kg·ha-1) and SI 
daily values along the period studied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. Scatter plot and Pearson’s correlation (r) between yearly production by sub-
scenarios in ‘D’ and; A) Maximum yearly NDVI for the corresponding parcels; B) Minimum 
yearly NDWIMF for the corresponding parcels. 
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4.4. DISCUSSION 

4.4.1. Methodological requirements and limitations 

The study has been conducted on a small homogeneous area were rice is the 
dominant crop. Cadastral information is annually updated from farmers’ official 
declarations. Furthermore, for the assessment on individual fields (Scenario ‘D’), 
ground truth data included yearly information of rice parcels, with single cultivar and 
crop management in each one. This information was used to conduct a retrospective 
analysis based on a ‘unit’ approach (pixels averaged within fields under the same 
conditions) in a single-season and low-yielding system. The proposed methodology 
has not been tested in other types of rice systems and it is not intended for near real-
time monitoring. Additional land cover classification is needed in absence of 
ancillary data, with particular importance under mixed crops scenarios, thus moving 
from ‘unit-field’ to ‘pixel-based’ approach and using, for instance, classification 
methods based on the detection of the particular practice of field flooding, for 
differentiating rice-growing areas/pixels (Boschetti et al., 2014; Boschetti et al., 2017). 
These, may be later aggregated by means of different criteria such as proximity 
(distance between pixels) or spectral trends’ similarity.   

In this study, the main limitation were satellite data gaps since 40 % of the available 
S2 images for the selected orbit and period had less than 80 % of valid pixels. The 
number of rejected images increased in smaller scenarios. Although the selection 
criterion discarded a large number of S2 images, it was necessary for reducing the 
uncertainty related to cloud and cloud shadow miss-detection and reducing the noise 
of final mean SI values. Cloud presence and cloud shadow masking is a key issue in 
optical remote sensing, and the default operational Sentinel-2 QA60 has been shown 
to commit high errors in presence of thin or patched clouds (Coluzzi et al., 2018). 
Thus, we preferred the adapted masking method of Schmitt et al. (2019), which has 
the advantage that can be easily tuned, making it suitable for a wide range of 
scenarios. The mean gap between consecutive images was 9 days, usually ranging 
between 5 (S2 temporal resolution) and 10 days, thus improving other similar 
platforms such as Landsat, with a best temporal resolution of 16 days.  The largest 
gaps due to cloud presence were of 25 days (November 2019), 30 days (November 
2018), and 40 days (December 2019), but in these months a lower variability in rice 
fields is expected (the growing season is from mid-April to early September) and a 
reduced temporal resolution during this period did not affect the results significantly. 
Increasing temporal resolution is more important in the growing season when 
changes occur within days or weeks. In this case, further research should consider 
improving the methodology for thin cloud and clouds shadows masking for 
reducing data gaps, particularly, at field scale. Although it can provide valuable 
information, our results indicate that Sentinel-2 alone is not enough for an accurate 
phenology monitoring for crop management. In this sense, it is suggested the use of 
multi-platform data. In the optical domain, the fusion of Sentinel-2 and Landsat-8 
is recommended (Liu et al., 2020; Boschetti et al., 2018), since both platforms’ pixel 
sizes are smaller than individual rice fields. A complementary approach is generating 
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cloud-free time series of synthetic high-resolution images (e.g., Sentinel-2, Landsat-
7/8) from moderate resolution data such as MODIS imagery (Wu et al., 2018, Gao 
et al., 2015). However, image processing of data from multiple satellites/sensors is 
challenging, for instance, due to differences in their orbital, spatial, spectral response 
functions, and image processing chains (Campos-Taberner et al., 2017). 

 

4.4.2. Application of spectral indices 

The NDVI and NDWIGAO were combined to estimate key cropping phases (i.e., 
Flooding, Tillering, Harvest, Maturity, and Re-Flooding), and NDWIMF was related 
to crop yield.  

NDVI was limited to the rice-growing season for assessing rice phenology, mainly 
Tillering, Heading Date, and Maturity. In previous studies, NDVI has been used for 
showing the transition from bare flooded soil to rice emergence (Tornos et al., 2015). 
In this study, this transition was not clearly identified since the canopy cover is scarce 
at the beginning of the cropping and soil-related factors may affect NDVI values 
(Zhang et al., 2019). In relation to the identification of the Tillering stage, the 
temporal gap between Flooding and Tillering agreed with the common rice farming 
calendar in the Ebro Delta (Figure 24). Although the proposed method 
differentiated small variability between nearby fields’ dynamics (Scenario ‘D’), no 
phenological field data were available for validating its accuracy. We used the NDVI 
inflection point before the Heading Date for defining the start of the active Tillering 
stage as previous works have reported that active Tillering is associated with the 
maximum increase rate of NDVI, related to the fast growth of rice plants during this 
stage (Zheng et al., 2016). The Heading Date has been related to the maximum in 
NDVI, which is associated with a peak in Leaf Area Index (LAI), showing an 
increase in plant biomass (Wang et al., 2014). The maturity date (M) is associated 
with a rapid decrease of NDVI at the end of this stage (Zheng et al., 2016) and it was 
significantly related to the harvest date (r > 0.6). The delay observed between the 
maturity date (S2-derived) and the harvest date (reference data) could be related to 
farmers’ harvest practices, since harvest is mediated not only because the ripening 
state of rice but also considers other external factors (e.g., weather, machinery 
availability).  However, more ground truth data including also additional information 
(e.g., HD, T) and covering a larger extension (ground truth data in this study was 
limited to a subset of spatially aggregated fields) is further needed for deeply 
assessing the accuracy on the identification of key phenology features through the 
proposed extraction scheme. NDWIGAO variations were associated with 
hydroperiod and can be applied as an indicator of flooding management in rice 
paddies (i.e., Flooding, End of Flooding and Re-Flooding). Our results were similar 
to those reported in Tornos et al. (2015) in the Ebro Delta and Boschetti et al. (2014) 
in rice fields from Italy, both using data derived from MODIS. The NDWIGAO 
responds to water level fluctuations from flooding to rice tillering, and after the rice 
is harvested. However, with the increase in leaf coverage during the reproductive 
and rice ripening phases, NDWIGAO could be more associated with the canopy 
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structure and mediated by plant water content and metabolic activity (Serrano et al., 
2019; Zhang et al., 2019). For the same reason, the identified Re-flooding (RF) 
should be carefully considered in presence of a second NDVI peak after harvest (e.g., 
Figure29B). This peak may be related to the presence of weed or rice regrowth 
(Tornos et al. 2015) with an expected impact on the NDWIGAO dynamics.  
Consequently, NDWIGAO is useful for complementing NDVI-derived phenology 
and vegetation status in rice fields, but the index variability increases in the presence 
of vegetation, highlighting the need to improve data frequency. The NDWIGAO 
derived flooding results are a promising estimator of the sowing date (r > 0.6), with 
sowing occurring, on average, 9 to 12 days after flooding (Table 8). Despite these 
differences are in agreement with the general rice farming calendar in the Ebro Delta 
(Figure 24), high variability was observed (up to ±11 days). This variability may be 
explained by different types of sowing (e.g., direct seeding, transplanting, dry-
seeding) and farmer’s decisions on sowing time, which increase the uncertainty in 
their relationship. These issues must be further tackled, but ground truth data 
regarding water management practices and sowing management are needed.  

The BSI was mainly used as a reference for complementing the analysis of NDVI 
and NDWIGAO results, under the assumption that maximum BSI occurs when a rice 
field has no water and no vegetation. Applying the first and second derivatives 
analysis on BSI showed that minimum and maximum were related with HD and dry 
land, respectively; while inflection points in BSI were closer to the identified flooding 
and maturity-harvest (Figure 29). A further assessment of BSI capabilities within the 
proposed extraction scheme is planned, since it may combine important key features 
of both NDVI and NDWIGAO for the management of rice-growing areas.   

Finally, NDWIMF temporal pattern was similar but inverse to NDVI, thus no 
additional information on crop cycle was obtained. However, minimum NDWIMF 
was highly correlated to crop yield in the Ebro Delta (r = -0.80), showing good 
agreement between fields with different yields and cultivars (Figure 31). NDWIMF 

includes the same spectral bands as the Green NDVI (Gitelson et al., 1996a) which 
has been used before for crop yield estimates (Moreno-García et al., 2018). In low-
yielding rice systems (< 9000 Kg·ha-1), such as the Ebro Delta, two spectral bands 
SI are not affected by the saturation phenomenon due to low crop biomass (Xue et 
al., 2014), thus explaining the strong relationship observed between NDWIMF and 
yield. Different from the relationship achieved for sowing and harvest, crop yield 
estimates were not strictly related to the number of valid satellite images of the study 
period. It is explained because the minimum NDWIMF used occurs close to the HD, 
in summer, when smaller data gaps are expected. Nevertheless, previous studies have 
shown that from tillering to harvest, different stages of rice are suitable for crop yield 
estimation (Xue et al., 2014; Cao et al., 2016; Moreno-García et al., 2018), but these 
stages can be more complex to identify. 
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4.4.3. Ebro Delta Rice Development (2018-2019) and Management 
Implications 

In terms of rice paddies dynamics, similar results were obtained in Scenarios ‘A’, ‘B’, 
‘C’, and in most of the fields in Scenario ‘D’, thus showing the homogeneity of 
agricultural practices in the Ebro Delta along the study period (2018-2019). Those 
results are similar to those reported by Tornos et al. (2015) from 2001 to 2012, which 
suggested not only spatial but also temporal homogeneity in rice management in the 
Ebro Delta. Considering Scenarios ‘A’, ‘B’ and ‘C’, the main differences between 
both years related to rice development were a delay in heading date and a larger 
ripening phase in 2019, which might be mediated by climatologic factors. For 
instance, before the start of the growing season, the total precipitation in April varied 
between 40.5 mm in 2018 to 8.9 mm in 2019 (Meteorological Service of Catalonia, 
https://www.meteo.cat/wpweb/climatologia). Although different meteorological 
factors (e.g., air, solar radiation) or soil features may affect the crop (Sánchez et al., 
2013; Zhao et al., 2016), heavy rains increase fields’ water level, which mitigates heat 
and salinity stress to the crop (Martínez-Eixarch et al., 2018), contributing to 
modulate the length of the different phenological phases of the crop.  

At small spatial scales, our study provides an insight into the potential of S2-derived 
SI for the characterization and assessment of the dynamics of rice fields and crop 
yield estimates in low-yielding rice farming systems. The proposed method allowed 
to capture small dynamics variations among fields (Scenario ‘D’), automatically, with 
importance from a management/planning sight. For instance, yearly crop yield 
estimates at field-level or different field management practices after harvest (e.g., re-
flooding, progressive drying or rice regrowth) are key aspects for the development 
of agro-environmental policies and productive and sustainable wetlands. Further 
research will focus on increasing both satellite and ground truth data for addressing 
the main limitations found and being able to provide relevant information for 
authorities at a regional scale. 
 

 4.4.4. Basis for a pixel-wise approach: A first insight on method, potential 
and limitations 

This subsection is beyond the edited version of the paper and is added to show the 
potential and applicability of the proposed method. Annual maps, as example of key 
dates and minimum NDWIMF as proxy for rice yield, have been generated at pixel 
scale (20 m). Annual cadastral data were used for masking rice fields. The method 
described in section 4.2.6 only produced results in a ‘unit’ base (i.e., pixels averaged 
within field). Thus, metrics extraction can fail in pixels which spectral response is 
not only related to intensive rice farming (e.g., mixing of pixels in field margins, 
cadastral errors). The proposed methodology will provide reliable estimations only 
under homogeneous crop conditions. In this context, it is needed to identify those 
pixels more likely to fit system requirements (classification of valid rice pixels), and 
then apply the extraction-scheme for those pixels, avoiding uncertainties. Thus, we 
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developed rule-based methods to identify a rice field when clear and unambiguous 
flood conditions are detected before consistent and rapid vegetation growth, among 
other assumptions on characteristic rice crop dynamics (Xiao et al., 2005, Boschetti 
et al., 2014; Boschetti et al., 2017).  

Adaptation of the extraction-scheme method to pixel resolution  

Accounting for the requirements of the automatic extraction method presented, a 
preliminary flags’ system has been applied for selecting valid rice pixels and 
extracting pixel-wise information on Tillering date (T), Heading Date (HD), 
Flooding date (F), and the minimum NDWIMF. With them, the pixel-wise adaptation 
of the extraction method and the potential of the producible results are discussed. 
Including the constraints previously defined for the ‘unit’ base approach (see 4.3 and 
4.4.1), six conditions have been fixed for simplifying the production of the example 
maps (Table 9). Each condition is a flag, excluding pixels from the automatic 
extraction of key dates and features. The flags increase the reliability of data 
smoothing by increasing the number of points, and enhance the performance of the 
automatic extraction method, allowing inter-annual comparisons of rice dynamics at 
pixel scale. In this context, the presence of inflection points related to T and F, as 
well as the thresholds of NDVI and NDWIMF (Table 9), reduce the probability that 
a pixel does not belong to the intensive low-yielding rice pixel class, for which the 
extraction scheme was initially developed. Other authors proposed similar 
approaches by either using different vegetation indexes such as the Enhanced 
Vegetation Index, with improved sensitivity in high biomass regions (Boschetti et al., 
2017), or by identifying the Heading period instead of HD, and other additional key 
information such as the NDVI trend just after the harvest period (Chen et al., 2011). 

Approximately 19 % of pixels inside the rice masks were flagged for 2018 and 2019 
(Figure 32). Most of pixels were flagged due to the low number of valid images or 
dates along the two-years period (ca. 78 %). The ‘wrong flooding trend’ flag was the 
third most probable in both 2018 and 2019 (about 14 and 18 %, respectively). 
Overall, more than 80 % of the total number of pixels were accepted. 

 

Table 9. Nomenclature and definition of flags for invalid pixels. 

 

 

Flag Meaning 

< 40 images Less than 40 valid dates of S2 imagery for the 2 years-period 
1 year or IQR S2 cloud-free data within the rice masks along the two years 

of the study was not available or the Interquartilic range of 
dates was negative 

NDVI at the HD < 0.4 For each year, the NDVI at HD was lower than 0.4 
Minimum NDWIMF > -0.4 For each year, the minimum NDWIMF was greater than -0.4 
Wrong vegetation trend Tillering was not found between minimum NDVI and HD 
Wrong flooding trend Flooding was not detected between minimum NDWIGAO 

and T 
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Potential of the pixel-based rice dynamics identification and mapping for Management 

The produced maps (Figures 33-36) show the capabilities of the proposed approach 
for enhancing management decisions at the regional level, although validation is 
needed.  Phenology-based maps such as the HD and the Tillering date (e.g., Figures 
34-35) are a valuable resource for evaluating the evolution of the rice system under 
the climate change scenario, as well as serving as indicator of the effects of both 
environment and management practices on the development of rice, in the short-
mid term. These key dates and the length of the period between them may be of 
importance for cultivar classification purposes, increasing the potential of satellite-
based studies for supporting decision-making at regional level, through observation-
driven methods. The use of the minimum NDWIMF as proxy for crop yield estimates 
(Figure 36) offers information in crop efficiency, which is crucial in crop 
management, mainly under a climate change scenario and the loss of productivity 
due to sea level rise and soil salinity increase. The intensity or yield potential of the 
individual fields, or even pixels, might be crucial in decision-making related to the 
reclassification of land-use or agricultural adaptation to fast weather changes and soil 
characteristics due to both climate change and human impacts.  
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Figure 32. Flagged pixels in 2018 and 2019. Rice masks added for reference. 
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Figure 33. Flooding date in 2018 and 2019. Rice masks added for reference. 
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Figure 34. Tillering date in 2018 and 2019. Rice masks added for reference. 
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Figure 35. Heading date in 2018 and 2019. Rice masks added for reference. 
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Figure 36. Minimum NDWIMF in 2018 and 2019. Rice masks added for reference. 
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4.5. CONCLUSION 

Atmospheric conditions (e.g., cloud presence) and differences in rice fields 
characteristics (e.g., area, soil properties, management practices) increase the 
difficulty of using coarse resolution or low-frequency multispectral satellite data (e.g., 
MODIS, Landsat) for the effective monitoring of agricultural practices and crop 
efficiency. For these purposes, in this study, we used three different spectral indexes 
(NDVI, NDWIMF, NDWIGAO) derived from Sentinel-2 (temporal frequency of 5 
days). At different spatial scales, key rice farming features were identified (i.e., 
Flooding, Tillering, Heading Date, Maturity, End of Flooding and Re-Flooding after 
harvest), thus defining the main phenological phases of the crops (i.e., Vegetative 
Phase, Reproductive Phase, Maturity-Ripening Phase), identifying flooding regimes 
(flooded or dry), and producing accurate estimates of rice yield. However, few 
ground truth data were available and satellite data gaps due to cloud cover limited 
significantly the applicability of the method, restricting its capabilities in several 
fields. Further research must address these issues by increasing the density of satellite 
data (e.g., multi-platform data, enhanced cloud, and shadows masking), and reference 
data, for fully assessing the accuracy of the proposed key features’ extraction scheme 
and its extended applicability to all the Ebro Delta region and other similar areas 
(deltaic low-yielding rice systems).  
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Atmospheric correction is one of the main challenges for an accurate retrieval of 
water reflectance, deriving the water optical properties, estimating water quality 
parameters, and identifying submerged vegetation from satellite imagery. In 
Chapters 2 and 3, different atmospheric correction processors have been used (i.e., 
ACOLITE, POLYMER), but the validation of the atmospheric correction 
performance was not possible due to the unavailability of above-water radiometry 
measurements. Evaluating the performance of the atmospheric correction and 
uncertainties is crucial for retrieving precise information from water spectral 
response, models development, and the generation of time series. It is particularly 
important in coastal and inland waters, for which there is not a standardized 
approach yet. This chapter focuses on the evaluation of the retrieval of remote 
sensing reflectance and key water quality parameters from S2, validated with a great 
field dataset of above-water radiometry and water quality measurements. The three 
currently available Case 2 Regional Coast Colour (C2RCC) atmospheric correction 
processors are assessed in 12 inland and coastal waters with varying water features 
(i.e., Chlorophyll-a, TSM, Secchi disk depth). Potential use cases and the main 
constraints for a C2-Nets-based operational water reflectance retrieval and water 
quality monitoring are discussed. Results are of interest for both the ocean colour 
community and third-party end-users less familiarized with the processing of remote 
sensing data. 
 

5.1. INTRODUCTION 

The quality of inland and coastal waters is increasingly threatened by human-driven 
activities and climate change (Dörnhöfer et al., 2018), requiring timely and accurate 
information on the water quality parameters to understand ecosystem dynamics 
(Kutser et al., 2016) and achieve the Sustainable Development Goals (Mostert, 2003). 
Water quality involves the measurement of the concentration of many parameters, 
including phytoplankton biomass, total suspended matter, and water transparency. 
These are key indicators of changes in the water column that provide valuable 
information on, for instance, the trophic and ecological status, the nutrient surplus, 
and the particulate load in the water column (Gholizadeh et al., 2016). Due to the 
high spatiotemporal variability, water quality monitoring requires frequent, global, 
and systematic measurements. 

Accomplishing these demands, the new generation of Earth observation satellites 
such as Landsat and Sentinels constellations provide free systematic data with 
enhanced radiometric, spatial, and temporal resolutions with respect to the previous 
generation of Earth observation satellites. In particular, the Sentinel-2 satellites (S2A 
and S2B) operated by the European Space Agency (ESA) have opened up new 
potential for monitoring water quality in a wide range of geographical scopes 
(Toming and Kutser, 2016; Soriano-González et al., 2019). However, achieving 
realistic and systematic water reflectance and, thus, water quality estimates from 
satellite remote sensing is challenging. Low reflectance of water in the visible–near 
infrared (VIS–NIR) regions of the spectrum (Bakker et al., 2001) prevents water-
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leaving reflectance from reaching more than 20% of the total reflectance sensed at 
the top of the atmosphere (TOA), while atmospheric contribution can reach up to 
90% (IOCCG, 2010). Correcting the contribution of atmospheric constituents (such 
as gases and aerosols) in the captured images (radiance at the satellite sensor) for 
each date and location is a major issue in remote sensing of aquatic environments. 
Atmospheric correction is also challenged by additional effects such as the presence 
of sun glint (specular reflection of sunlight over water) or land adjacency (radiance 
from surrounding land affecting closest water pixels), which are complex to estimate 
and site-specific (Hoepffner and Zibordi, 2009). In coastal and inland waters these 
effects are frequently coupled with high variability and low covariance in optically 
active constituents. In these waters, classified as case-2, the inorganic and/or organic 
sediments make an important or dominant contribution to the optical properties 
(Gordon and Morel, 1983), requiring high accuracy and precision in the atmospheric 
correction algorithms to successfully retrieve water constituents. 

Atmospheric correction in case-2 waters has not been solved yet. As a result, huge 
efforts have been made to develop atmospheric correction processors, covering a 
wide range of different methods (Pereira-Sandoval et al., 2019; Warren et al., 2019; 
Renosh et al., 2020). However, the performance of the processors may differ 
depending on the scenario (sun and observation geometry, atmospheric, optical, and 
site-specific conditions), and there is no standardized approach yet, but atmospheric 
correction processors keep evolving as new approaches and more data become 
available. This makes it necessary to continue validating different atmospheric 
correction approaches as well as water quality retrieval methods with in situ data 
accounting for a wide variety of water types and environmental conditions.  

The atmospheric correction Case 2 Regional Coast Colour (C2RCC) processor has 
been updated. The C2RCC is a development of the original Case 2 Regional 
processor (Doerffer and Schiller, 2007) adapted to different multispectral satellites 
(e.g., Sentinel-2, Landsat-8). The most recent update (available since February 2021) 
includes a new processor trained for atmospheric correction in complex waters. The 
C2RCC thus currently accounts for three processors (i.e., C2-Nets: C2RCC, C2X, 
and C2X-COMPLEX) using different training datasets within a neural network 
(NN) approach.  

This study focuses on the validation of the remote sensing reflectance and key water 
quality parameters retrieved from Sentinel-2 Multispectral Imagery (S2-MSI) 
processed with the different C2-Nets. The validation datasets include in situ 
measurements of above-water radiometry (bottom of atmosphere reflectance, 
BOA), chlorophyll-a concentration ([Chl-a]) data as an indicator of phytoplankton 
biomass, total suspended matter ([TSM]) as an indicator of particulate load, and 
Secchi disk depth (ZSD) measurements related to water transparency. The study areas 
comprise a set of 12 different inland reservoirs and transitional and coastal waters at 
the Eastern Iberian Peninsula (Spain). The objectives of the study were to:  
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(i) assess and compare the performance of C2-Nets for atmospheric correction of 

case-2 waters;  

(ii) validate C2-Nets-derived water quality products (i.e., [Chl-a], [TSM], and ZSD); 

(iii) define potential use cases and main constraints for C2-Nets-based operational 

water quality monitoring.  

 

5.2. MATERIALS AND METHODS 

5.2.1. Study areas 

Ten freshwater reservoirs (ca. 1 PSU), a coastal bay (Alfacs bay, ca. 35 PSU), and 
Pétrola, an endorheic saline lagoon (ca. 60 PSU) were included in this study (Figure 
37); all of them are located in the Eastern Iberian Peninsula (Spain). The study areas 
have different altitudes with respect to the sea level and include diverse 
morphological and biophysical characteristics, covering a wide variety of trophic 
states (Table 10). The monitoring of water quality in these areas is challenging for 
remote sensing due to the complex and variable characteristics of these 
environments (e.g., high spatiotemporal variability, small, shallow waters, and land 
adjacency effects). 
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Figure 37. Study areas. Basemap source: Esri, DigitalGlobe, GeoEye, Earthstar 
Geographics, CNES/AIRbus DS, USDA, USGS, AeroGrid, IGN, and GIS User community. 
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Table 10. Descriptors of study areas by location, including the number of valid S2 images and in situ measurements (Nxxx), the altitude 
(elevation), surface, salinity, atmospheric pressure, ozone (O3), and the ranges within S2 dates of [Chl-a], [TSM], and ZSD. 
 

Location 
N   

Dates 
Elevation 

(m) 
Surface 
(km2) 

Salinity 
(PSU) 

Pressure (hPa) O3 (DU) 
N      

Radiometry 
N     

[Chl-a] 
[Chl-a] 

(mg/m3) 
N    

[TSM] 
[TSM] (g/m3) 

N    
ZSD 

ZSD (m) 

Alarcón 2 814 68.4 1 1015.37±1.27 249.5±2.5 10 10 [1.1–5.26] - - 10 [1.75–4.6] 

Bellús 3 159 8 1 1007±0.86 251.5±0.5 6 6 [13.86–68.01] 6 [18.66–22.13] 6 [0.45–0.63] 

Benagéber 2 530 12 1 1011.56±0.18 263±14 7 6 [2.49–12.40] 6 [1.82–2.72] 6 [4–7.7] 

Beniarrés 2 321 2.6 1 10150.39±1.85 269.5±11.5 6 6 [8.36–17.17] 6 [4.42–6.97] 6 [1.15–1.8] 

Contreras 6 679 27.1 1 1008.57±5.91 257.5±22.5 23 21 [0.79–2.47] 15 [1.4–28.02] 21 [0.95- 7.3] 

María Cristina 1 138 3.3 1 1004 245 2 2 [2.72–2.92] 2 [10.32–11.87] 2 0.75 

Pedrera 1 111 12.7 1 1014.01 255 5 5 [0.86–1.19] - - 5 [2.95–3.25] 

Regajo 3 407 0.8 1 1012.70±3.27 267.5±3.5 10 10 [4.03–10.21] 10 [2.95–9.12] 10 [0.95–4.25] 

Sitjar 2 584 3.2 1 1009.78±5.78 260±15 4 4 [0.59–0.68] 4 [2.28–2.71] 4 [2.2–3.15] 

Tous 4 163 9.8 1 1011.70±3.95 262±11 9 9 [0.58–1.72] 6 [0.67–1.13] 9 [6–9.1] 

Alfacs 2 0 56 35 1005.56±5.78 246±3 9 9 [3.65–6.73] - - 9 [1.55–3] 

Pétrola 1 852 3.4 60 1012.18±2.90 253±14 5 5 [77.58–309.2] 3 [142.27–162.33] 5 [0.17–0.45] 

Total N 29   - -  -         -     -  96  93      -   58        -   93       - 
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5.2.2. Field radiometry 

Water-leaving radiance was obtained by the measurement of the above-water 

radiometry taken within a three-hour interval before or after the satellite pass. 

An ASD FieldSpec® HandHeld2 spectroradiometer and an Ocean Optics (HR 

4000) spectrometer were used (Table 11). The measurement procedure to obtain 

water-leaving radiance was carried out following the methodology described by 

Mobley (1999), with a zenith angle of 40° and an azimuth angle of 135° to 

minimize sun-glint perturbations. For each point, five measurements of the 

water-leaving radiance and total downward irradiance were taken using a 

reflectance panel made of Spectralon® (25% nominal reflectance). With this data, 

remote sensing reflectance (Rrs) of each measurement (Table 10) was obtained 

according to Mobley (1999) and convolved to the S2-MSI spectral bands using the 

Sentinel-2 Spectral Response Functions (ESA S2-SRF v2.0). 
 
Table 11. Spectroradiometers’ specifications. 

 

5.2.3. Water quality measurements 

Water quality parameters included Secchi disk depth (ZSD), chlorophyll-a ([Chl-a]), 
and total suspended matter [TSM] concentrations. The ZSD data were measured by 
submerging the Secchi disk vertically and slowly into the water until it was no longer 
visible. The ZSD was then defined as the maximum visible Secchi disk depth. For 
[Chl-a] determination, water samples were filtered through 0.4–0.6 µm GF/F glass 
fiber filters, extracted using standard methods (Shoaf and Lium, 1976), and 
calculated with Jeffrey and Humphrey’s (1975) equations. The [TSM] was measured 
using the gravimetric method (APHA, 1998). All water quality measurements were 
carried out coinciding with above-water radiometry measurements, but not all types 
of in situ measurements were available for all dates and locations (Table 10).  
 

5.2.4. Sentinel-2 data 

The Sentinel-2 constellation consists of two satellites (S2A and S2B). Each one has 
on-board the MultiSpectral Instrument (S2-MSI). The S2-MSI TOA Level-1 (L1C) 
imagery includes information along 13 spectral bands centered at different 

Instrument Ocean Optics HR4000 
ASD FieldSpec®  

HandHeld 2 

Manufacturer 
Ocean Optics, Inc; FL, 

Orlando, USA 

Analytical Spectral Devices, 

Inc.; CO, USA 

Acceptance angle 8° 8° 

Spectral sampling interval 0.2 nm 1 nm 

Spectral range 200–1100 nm 325–1075 nm 
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wavelengths (~443–2200 nm) and with different spatial resolutions of 10, 20, and 
60 m (Table 12). A set of 30 S2-MSI TOA (L1C) cloud-free images were downloaded 
from Copernicus Access Hub coinciding with field radiometry measurements 
(Figure 38) and resampled to 20 m using the Graph Processing Tool (GPT) of the 
Sentinel Application Platform (SNAP v8.0).  

 
Figure 38. Temporal line of cloud-free S2 A/B images matching field measurements by 
study area. 

 

Table 12. S2A and S2B spectral bands, central wavelength (λ), spatial resolution, and 
application. Data from Copernicus Sentinel-2 MSI user guide. The field ‘C2-Nets’ indicates 
the spectral bands outputted by C2-Nets (Y = Yes, N = No). 

Bands ID 
Spectral 
Region 

Spatial 
resolution 

(m) 

λS2A 

 (nm) 
λS2B  
(nm) 

Bandwidth 

S2A - S2B 
(nm) 

C2-
Nets 

B1 B443 Coastal aerosol 60 442.7 442.2 21 – 21 Y 

B2 B490 Blue 10 492.4 492.1 66 – 66 Y 

B3 B560 Green 10 559.8 559 36 – 36 Y 

B4 B665 Red 10 664.6 664.9 31 – 31 Y 

B5 B705 Red-edge1 20 704.1 703.8 15 – 16 Y 

B6 B740 Red-edge2 20 740.5 739.1 15 – 15 Y 

B7 B783 Red-edge3 20 782.8 779.7 20 – 20 Y 

B8 B842 NIR 10 832.8 832.9 106 – 106 N 

B8A B865 NIR narrow 20 864.7 864 21 -22 Y 

B9 B945 Water vapour 60 945.1 943.2 20 – 21 N 

B10 B1620 SWIR / Cirrus 60 1373.5 1376.9 31 – 30 N 

B11 B1620 SWIR1 20 1613.7 1610.4 91 – 94 N 

B12 B2200 SWIR2 20 2202.4 2185.7 175 - 185 N 
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5.2.5. Atmospheric correction approaches 

The Case 2 Regional Coast Colour is a development of the original Case 2 Regional 
processor (Doerffer and Schiller, 2007), based on a multi-sensor per-pixel artificial 
neural network (NN) method (Warren et al., 2019). It processes TOA images of a 
variety of sensors, including S2-MSI, and generates atmospherically corrected 
images. The output data include Rrs, as well as a set of automatic products for water 
quality such as [Chl-a] (conc_chla) and [TSM] (conc_tsm), and the depth of the water 
column from which 90% of the water-leaving irradiance is derived (Kd_z90max). 

The Case 2 Regional Coast Colour includes different processors (C2-Nets) which 
differ in the NN training ranges of inherent optical properties (IOPs; Table 13). The 
C2RCC-Net (here C2RCC) is the original net covering typical ranges of coastal 
IOPs. C2RCC was complemented with the CoastColour dataset to extend the range 
for coastal waters including extreme cases (Brockman et al., 2016) resulting in the 
C2X-Net (C2X). The C2X-COMPLEX-Net (C2XC) was trained with intermediate 
ranges of IOPs, larger than C2RCC and tighter than C2X (ESA Step Forum). C2-
Nets do not include specific correction for sun glint or land adjacency. The three 
C2-Nets were applied on all valid S2-MSI images (Figure 38) through the GPT of 
SNAP v8.0. The parametrization for the atmospheric correction of each image 
included: pressure (hPa) from NCEPR2 data (Kanamitsu et al., 2002) and O3 (DU) 
from AuraOMI data (NASA, 2018) downloaded for each location and date from the 
ocean data archive of NASA Ocean Color Data. Salinity (PSU) was estimated in each 
location by approximation with more frequent field measurements (Table 10). 
Despite the salinity of Pétrola being ~60 PSU (Table 10), it was set to 40 PSU, the 
maximum value accepted by the C2-Nets. Given the unavailability of water 
temperature measurements, it was left as default on all dates (15 °C). These site-
specific parameters may influence atmospheric correction calculations introducing 
uncertainty in the estimation of the aerosol optical depth and are an inherent part in 
the C2-Nets NN processing (Brockman et al., 2016); thus, it is recommended to 
consider them for reducing estimation uncertainty. For land/water segmentation, 
the valid pixel expression was set as a threshold on the SWIR band B11 (Table 12) 
of S2-MSI L1C images. The threshold ranged between 0.025 and 0.11, and it was 
heuristically defined for each location and date according to the trade-off between 
keeping the maximum number of pixels of interest (water pixels inside study areas) 
and the minimum noise (e.g., mountain shadows, land). From each C2-Net, bands of 
TOA reflectance, remote sensing reflectance (Rrs), and Kd_z90max were extracted. 
The conc_chla and conc_tsm products were also generated, with the default factors 

and exponents (conc_chla = 21 ∗ a_pig ^ 1.04; conc_tsm = 1.72 ∗ b_part + b_wit 

∗ 3.1). In addition, C2-Nets flags (Pereira-Sandoval et al., 2019), which include codes 
for quality control of pixels, were exported. 
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Table 13. IOPs’ training ranges of the C2-Nets. 

IOPs (m-1) Description C2RCC C2X C2XC 

a_pig 
Absorption coefficient of phytoplankton 

pigments. 
[≈0, 5.3] [≈0, 51.0] [≈0, 30.81] 

a_det Absorption coefficient of detritus. [≈0, 5.9] [≈0, 60.0] [≈0, 17.0] 

a_gelb 
Absorption coefficient of gelbstoff (CDOM 

absorption). 
[≈0, 1.0] [≈0, 60.0] [≈0, 4.25] 

b_wit 
Scattering coefficient of white particles 

(calcareous sediments). 
[≈0, 60.0] [≈0, 590.0] - 

b_part Scattering coefficient of typical sediments. [≈0, 60.0] [≈0, 590.0] - 

b_tot 
Scattering coefficient of typical sediment and 

white particles. 
- - [≈0, 1000.0] 

*adapted from Borckman et al. (2016) and ESA Step Forum 

 

5.2.6. Match-up exercise 

The match-up exercise was performed for the three C2-Nets Rrs separately and 
applied to each validation dataset (i.e., in situ Rrs, [Chl-a], [TSM], and ZSD).  

(i) A 3x3 pixel window, centered at the coordinates of in situ measurements, was 
extracted for each date and location, and C2-Nets were quality-checked in all 
extracted pixels by applying the recommended flags (Warren et al., 2019). These 
quality flags indicate issues related to the scope of the training range of the used 
NN and/or cloudy conditions (Brockman et al., 2016; Pereira-Sandoval et al., 
2019) and should be considered for reducing potential artifacts and uncertainty.  

(ii) Flagged pixels, as well as pixels with negative Rrs at bands B443, B490, B560, 
and B665 (Table 12), were removed from the analysis (Cui et al., 2010), and the 
number of remaining pixels within each pixel window was checked. Windows 
with fewer than 5 remaining pixels were removed from the analysis.  

(iii) Outliers were defined through boxplot analysis applied separately to each pixel 
window and available spectral bands (B443-B783 and B865; Table 12).  

(iv) Pixels with outliers in any of the bands were removed. The number of pixels 
within the pixel windows was revised once more, and those with fewer than 5 
pixels remaining were removed from the analysis.  

(v) The coefficient of variation (CV in Equation 14) of B560 was computed for each 
remaining pixel window, removing those with CV > 15% (Cui et al., 2010). 

CV = σ/𝑥̅ * 100                                             (14) 
where σ is standard deviation and 𝑥̅ is the mean. 
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5.2.7. Performance assessment of C2-Nets 

From the validation dataset to the analysis of the performance of the C2-Nets, the 
workflow is summarized in Figure 39.  

5.2.7.1 Validation of remote sensing reflectance (Rrs) 

Validation of Rrs was broadly based on the scoring scheme proposed in (Müller et 
al., 2015). However, match-up criteria and the number of statistics differed. In 
addition, all available C2-Nets spectral bands (Table 12) were included, validated, 
and used for the ranking in this study. The assessment was carried out with the 
maximum possible number of match-ups for each C2-Net.  
The scoring scheme extends the common validation strategy of comparisons 
between above-water measurements and satellite spectral bands by a ranking system. 
  
(i) Bands scoring 

For each C2-Net Rrs and TOA reflectance band, a set of 5 statistical parameters and 
their 95% confidence intervals were calculated for each available spectral band 
independently. The Root Mean Squared Error (RMSE), the Relative RMSE 
(RMSErel), the Bias, the RMSE of the Residual Error (RMSERE), and the Pearson’s 
r, were computed and transformed into relative scores as in (Müller et al., 2015), 
evaluating the relationship of quality dependent on the C2-Net. For scoring 
purposes, Bias was used in absolute terms (|Bias|) and r was transformed to a 
negative orientated value (1–r). The RMSE, RMSErel, and RMSERE were used 
directly. To each property, the evaluation scores were assigned by band separately. 
The C2-Net with the smallest value in the statistical property received 2 points. 
Then, if a value corresponding to another C2-Net fell within the confidence interval 
of the best, this C2-Net received 2 points as well. If the value of a C2-Net was 
outside the confidence interval of the best but their confidence intervals overlapped, 
this algorithm received 1 point. Else, the C2-Net was given 0 points. See Müller et 
al. (2015) for detailed information on the scoring-based method. 
  

(ii) Spectral shape fitting 

First, the spectral bias was removed by normalizing in situ and satellite-a-derived 
spectra to 560 nm (B560 in S2) before the evaluation. Chi-square tests (χ²) of the in 
situ and C2-Nets-derived spectral shapes (including all available C2-Nets bands) were 
conducted for each match-up, and the percentage of chi-square values lower than 

the 95% confidence level (Nχ² 95) was calculated. Finally, the mean χ² (χ²̅) for each 
C2-Net Rrs and TOA match-ups were derived. 
 

(iii) Match-up efficiency 

The relative number of valid match-ups (Rmatchs) was calculated as the ratio between 
the valid observations after the match-up exercise for each C2-Net and the potential 
initial match-ups with in situ radiometry  
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5.2.7.2 Validation of water quality products 

The conc_chla and conc_tsm derived from C2-Nets with default factorization were 
validated with in situ [Chl-a] and [TSM]. The performance metrics selected for these 
parameters were the Mean Average Error (MAE; Equation 15), the Root Mean 
Squared Error (RMSE; Equation 16), the Bias (Equation 17), and the Pearson’s r (r). 
The kd_z90max is a variable strongly correlated with the ZSD (Poole and Atkins, 
1929; Holmes, 1970), however, being different variables, only the r was used for the 
comparison with the measured ZSD. In addition, the coefficient of determination 
(R2), the slope (m), and intercept (b) of linear regression were calculated. 
 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑀𝑖 − 𝑂𝑖|𝑁

𝑖=1        (15) 

𝑅𝑀𝑆𝐸 = √∑
(𝑀𝑖−𝑂𝑖)2

𝑁

𝑁

𝑖=1
          (16) 

𝐵𝐼𝐴𝑆 =
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖

𝑁

𝑖=1
)        (17) 

where 𝑀𝑖 are the estimated values from C2-Nets and 𝑂𝑖 the field measured ones. 

 
Figure 39. Workflow. 
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5.3. RESULTS 

5.3.1 In situ water quality 

The inclusion of different locations and dates involved wide ranges of water quality 
(Table 14). Most of the measurements corresponded to [Chl-a] < 3 mg/m3 and 
[TSM] < 4 g/m3 (median in Table 14). Minimum [Chl-a] and [TSM] (0.58 mg/m3 
and 0.74 g/m3) were found in the Tous reservoir related with maximum ZSD (9.1 m). 
Contrarily, maximum [Chl-a] and [TSM] (309.62 mg/m3 and 162.33 g/m3) were 
associated with the minimum ZSD (0.17 m) in the hypertrophic salty lagoon of 
Pétrola. 
 

Table 14. Number of water quality measurements by type (N), their concentration ranges 
(Min, Max), median, mean and standard deviation (σ). 

WQ parameters N Min Max Median Mean σ 

[Chl-a] (mg/m3) 93 0.58 309.6 2.72 20.55 61.5 

ZSD (m) 93 0.17 9.10 3.00 3.34 2.4 

[TSM] (g/m3) 58 0.67 162.3 3.65 13.70 33.5 
 

5.3.2 Match-ups exercise 

The match-up exercise was carried out in a strict manner, thus maximizing the 
quality of the performance of each C2-Net. After the quality check, the number of 
match-ups was reduced by between ~12% to ~66% depending on the C2-Net and 
the type of in situ measurement (Figure 40). Most of the rejected match-ups were 
due to pixel windows having CV > 15% in B560. For all in situ datasets, a higher 
number of valid match-ups was found with C2RCC, while the lowest number was 
found for C2X (Figure 40). 
 

5.3.3 Validation of Rrs 

Comparing C2-Nets, disregarding the different number of match-ups, the bands’ 
statistical results (Table 15) were translated into the similar scoring of C2RCC and 
C2XC in B443-B490, highest scoring of C2RCC in B560-B665, highest scoring of 
C2XC in B705-B783, and C2X ranking first in B865 (Figure 41a). Despite the 
winner’s variability in single bands scoring, C2XC was the unique C2-Net scoring at 
all bands, ranking first in the total band score (Figure 41b). C2X did not score in 
B665 and C2RCC and did not achieve any point from B740-B865 (Figure 41a).  
 
In general terms, all C2-Nets tended to underestimate Rrs of blue and green bands, 
with most of the errors within the [−50, 50]% interval (Figure 42). Relative errors 
were more dispersed between B665-B865 and C2XC, and C2X clearly improved 
C2RCC in cases with greater NIR Rrs (Figure 42). These led to better fitting of C2X 
and C2XC Rrs in NIR wavelengths (Figure 43) and contributed to making C2XC 
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(which included higher relative number of match-ups with greater NIR Rrs) the most 

capable of retaining the spectral shape with χ²̅ closest, to 0 (χ²̅ = −0.02) and 
maximum Nχ² = 1 (Figure 41b). However, with C2RCC more radiometry match-
ups (85%) were kept than with C2XC (53%) and C2X (33%). Match-ups with high 
reflectance pixels with peaks in B560 and B705 and/or greater NIR Rrs were more 
susceptible to rejection with C2RCC (e.g., Pétrola in Figure 44g), and potential 
match-ups related to more clear waters with lower Rrs along the spectrum and/or a 
single peak in B560 were more likely rejected with C2X and C2XC (e.g., Tous in 
Figure 44f). This was visible even from TOA reflectance (Figure 45), although all 
C2-Nets included match-ups with different types of spectrums (e.g., Figure 44a,c). 
 

 

Figure 40. Match-up exercise by sub-dataset and C2-Nets: (a) Radiometry, (b) [Chl-a], (c) 
[TSM], (d) Secchi disk. Final match-ups for each C2-Net are highlighted with a red square. 
 

 

Table 15. Band statistics for TOA and Rrs derived from C2-Nets datasets. Best results for 
each band and statistic are highlighted. 

C2Net Band RMSE RMSErel RMSERE |BIAS| r 
C2RCC_TOA 

B1 

0.1260 30.900 0.0139 0.1250 0.615 

C2RCC_Rrs 0.0043 0.548 0.0030 0.0031 0.817 

C2X_TOA 0.1250 20.200 0.0109 0.1240 0.672 

C2X_Rrs 0.0052 0.4970 0.0044 0.0029 0.568 

C2XC_TOA 0.1250 28.200 0.0159 0.1240 0.682 

C2XC_Rrs 0.0036 0.806 0.0035 0.0004 0.739 
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Table 15. (continued). 

C2Net Band RMSE RMSErel RMSERE |BIAS| r 
C2RCC_TOA 

B2 

0.1020 14.850 0.0193 0.0997 0.639 

C2RCC_Rrs 0.0051 0.552 0.0036 0.0036 0.853 

C2X_TOA 0.1010 10.300 0.0140 0.0998 0.717 

C2X_Rrs 0.0059 0.476 0.0049 0.0033 0.728 

C2XC_TOA 0.1030 14.100 0.0207 0.1006 0.642 

C2XC_Rrs 0.0041 0.886 0.0041 0.0000 0.814 

C2RCC_TOA 

B3 

0.0819 8.490 0.0235 0.0785 0.740 

C2RCC_Rrs 0.0047 0.587 0.0040 0.0025 0.894 

C2X_TOA 0.0849 5.720 0.0189 0.0828 0.794 

C2X_Rrs 0.0062 0.517 0.0061 0.0010 0.747 

C2XC_TOA 0.0861 8.290 0.0226 0.0831 0.635 

C2XC_Rrs 0.0051 0.921 0.0050 0.0003 0.809 

C2RCC_TOA 

B4 

0.0557 20.720 0.0252 0.0496 0.517 

C2RCC_Rrs 0.0022 0.543 0.0017 0.0014 0.972 

C2X_TOA 0.0551 11.080 0.0212 0.0509 0.720 

C2X_Rrs 0.0039 0.600 0.0038 0.0006 0.863 

C2XC_TOA 0.0579 20.600 0.0251 0.0522 0.332 

C2XC_Rrs 0.0018 0.710 0.0018 0.0000 0.921 

C2RCC_TOA 

B5 

0.0519 29.300 0.0262 0.0449 0.581 

C2RCC_Rrs 0.0036 0.560 0.0033 0.0015 0.845 

C2X_TOA 0.0524 14.226 0.0237 0.0467 0.798 

C2X_Rrs 0.0026 0.793 0.0026 0.0004 0.949 

C2XC_TOA 0.0593 29.300 0.0283 0.0520 0.690 

C2XC_Rrs 0.0024 0.753 0.0024 0.0004 0.985 

C2RCC_TOA 

B6 

0.0467 78.200 0.0257 0.0391 0.282 

C2RCC_Rrs 0.0014 4.690 0.0014 0.0005 0.741 

C2X_TOA 0.0422 42.000 0.0209 0.0367 0.476 

C2X_Rrs 0.0007 0.761 0.0006 0.0004 0.975 

C2XC_TOA 0.0508 86.300 0.0263 0.0435 0.347 

C2XC_Rrs 0.0013 0.673 0.0012 0.0004 0.990 

C2RCC_TOA 

B7 

0.0468 65.640 0.0268 0.0384 0.281 

C2RCC_Rrs 0.0014 4.332 0.0013 0.0004 0.728 

C2X_TOA 0.0423 40.990 0.0222 0.0361 0.460 

C2X_Rrs 0.0009 0.753 0.0007 0.0005 0.977 

C2XC_TOA 0.0506 84.802 0.0272 0.0427 0.289 

C2XC_Rrs 0.0007 0.576 0.0007 0.0001 0.996 

C2RCC_TOA 

B8A 

0.0430 246.000 0.0274 0.0332 0.194 
C2RCC_Rrs 0.0007 0.635 0.0006 0.0004 0.694 
C2X_TOA 0.0371 55.900 0.0224 0.0296 0.313 
C2X_Rrs 0.0004 0.659 0.0003 0.0001 0.957 
C2XC_TOA 0.0455 291.000 0.0277 0.0361 0.077 
C2XC_Rrs 0.0006 0.591 0.0005 0.0003 0.985 
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Figure 41. (a) Band Scoring per C2-Nets Rrs. (b) Summary of the Validation of Rrs. For 

representation, χ²̅ is presented in absolute values and all bands’scores have been 
summed and divided by the number of available bands (Nbands = 8) for computing the Total 
bands’ score. 
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Figure 42. The relative error between measured and C2-Nets derived Rrs at all available 
spectral bands for each C2-Nets. Relative error was computed for representation as 
[(measured Rrs - C2-Nets Rrs)/measured Rrs × 100]. 
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Figure 43. Scatter plots between measured and C2-Nets estimated Rrs at all available 
spectral bands. Dashed line corresponds to reference (1:1) line. 
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Figure 44. TOA reflectance spectrums (left column) and in situ and C2-Nets estimated 
Rrs (right column) for different scenarios (a-h). Availability of C2-Nets Rrs depends on the 
pixel flagging criteria described in the paper. 
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Figure 44. (continued). 
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Exploring the relation of the performance of C2-Nets with TOA reflectance, a k-
means classification (4 classes) was conducted including TOA reflectance, in situ Rrs, 
and C2-Nets Rrs separately for C2-Nets (Figure 46). Clusters found for different 
C2-Nets were grouped by similarity (proximity) in cluster centers. In general terms, 
the clusters C1 and C4 (Figure 46) grouped those pixels with TOA and C2-Nets 
peaks at 560 and 705 nm, frequently associated with increasing NIR Rrs (e.g., Figure 
44b,d,e). Clusters C* and C** fit in the same category, although the small numbers 
of match-ups (Figure 46a) mainly highlight the trends of four locations and dates 
which were included in C1 or C4 with the C2RCC dataset (e.g., Figure 44c) or only 
accepted with C2XC (Figure 44g). 
 

 

Figure 45. (a) Mean (lines) and standard deviation (bars) of TOA reflectance spectrums 
describing, by C2-Net, the set of rejected pixels during the match-ups exercise steps ii-v; 
(b) Mean TOA spectrums of rejected pixels in all C2-Nets. Rejected pixels by the C2-Nets 
flags are not included.   
 

The C3 class grouped more than 50% of the valid match-ups of the three C2-Nets 
(Figure 46a), including smoother TOA reflectance spectrums generally related to 
lower NIR Rrs and/or presence of a single/dominant C2-Nets B560 peak (e.g., 
Figure 44f,h). The match-ups of the C2 class were only included with C2RCC and 



ATMOSPHERIC CORRECTION IN INLAND AND COASTAL WATERS 

 

 
129 

C2XC (Figure 46), and all of them correspond to the same location and date. These 
spectrums were characterized by high TOA reflectance in all spectral regions (Figure 
46a), including relatively high SWIR reflectance (Figure 44d), although the in situ Rrs 
was similar to the measurements in C3 (Figure 46b). 

 
Figure 46. K-means clustering including TOA reflectance, measured and C2-Nets derived 
Rrs (a-c). Lines represent, by C2-Nets (columns), clusters centres for (a) TOA reflectance; 
(b) in situ Rrs, (c) C2-Nets Rrs and, (d) mean relative error of cluster members’ in situ and 
C2-Nets Rrs. For ease of representation, clusters have been coloured according to the 
similarity between C2-Nets classes. 
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5.3.4 Validation of water quality 

For [TSM] and [Chl-a], the MAE, RMSE, Bias, and Pearson’s r analysis were 
conducted. For assessing the Kd_z90max and ZSD relationship, only Pearson’s r was 
calculated. Both for [TSM] and [Chl-a], C2RCC achieved the lowest MAE and 
RMSE, with BIAS closest to 0, followed by C2X and C2XC (Table 16). However, 
the C2XC dataset included extreme measured [Chl-a] and [TSM] (Table 16), for 
which high underestimation was observed (Figure 47a,b). Such extreme match-ups 
had a high impact on C2XC-derived MAE, RMSE, and Bias (Table 16), but higher 
relationships between measured and derived [Chl-a] (r = 0.94) and [TSM] (r = 0.81) 
from the C2XC dataset were observed (Table 14). Despite this, relative errors were 
highly variable even for [Chl-a] < 25 mg/m3 and [TSM] < 25 g/m3, leading to 
uncertain retrievals, especially for [Chl-a]. Regarding ZSD, the highest correlation was 
observed with Kd_z90max derived from C2XC (r = 0.94), but r > 0.75 was retrieved 
with all C2-Nets (Table 16). The Kd_z90max from C2RCC included a subset of the 
in situ ZSD measurements corresponding to increasingly clear waters with ZSD > 6 m 
(match-ups mainly included by C2RCC). The Kd_z90max was lower than ZSD for 
this set of points (Figure 47c). 
 
Table 16. Summary of validation of [Chl-a], [TSM], and Kd_z90max derived from C2-Nets. 
The m and b stand for slope and intercept of the linear regression. 
 

C2Net Param. 
In situ      
min-max 

C2-Nets 
min-max 

MAE RMSE BIAS r R2 m b 

C2RCC 

[Chl-a] 

0.58 – 68.01 0.43 – 23.68 
5.7 11.5 -1.16 0.72 0.52 

0.26 4.38 

C2X 0.61 – 68.01 1.84 – 100.25 10.2 17.3 5.85 0.81 0.66 1.16 3.96 

C2XC 0.59 – 309.20 0.01 – 139.56 17.8 48.1 -12.1 0.94 0.88 0.45 5.03 

C2RCC 

[TSM] 

0.74 – 28.02 0.93 – 19.13 2.9 4.6 -0.13 0.75 0.56 0.65 2.17 

C2X 
2.28 – 28.02 3.84 – 56.22 

10.9 14.9 8.77 0.68 0.46 
1.42 3.95 

C2XC 2.28 – 162.33 0.33 – 58.52 13.1 29.0 -2.76 0.81 0.65 0.33 9.71 

C2RCC 

ZSD 

0.45 – 9.1 0.45 – 7.03 - - - 0.77 0.59 1.09 0.08 

C2X 
0.45 – 5.80 0.27 – 4.00 

- - - 0.82 0.67 1.09 0.29 

C2XC 
0.17 – 7.70 0.27 – 6.63 

- - - 0.94 0.88 0.88 0.12 



ATMOSPHERIC CORRECTION IN INLAND AND COASTAL WATERS 

 

 
131 

 
Figure 47. Scatter plots of in situ and C2-Nets estimated (a) [Chl-a], (b) [TSM], and (c) 
ZSD. Plots in (a) and (b) are shown in logarithmic scale for ease of interpretation. Dashed 
is the reference (1:1) line. 
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5.4. DISCUSSION 

To date, only C2RCC and C2X have been previously explored for retrieval of water 
surface reflectance or water quality (e.g., Warren et al., 2019; Pahlevan et al., 2021). 
This study evaluates the new C2XC processor, comparing it to the previous C2RCC 
and C2X. 
 

5.4.1 Performance on Retrieval of Rrs with C2-Nets 

Comparing C2-Nets scoring (Figure 41), C2X and C2XC retained the spectral shape 
better than C2RCC, with C2XC outperforming C2X in all bands except B560 and 
B865 (Figure 41a) and showing greater consistency than other C2-Nets in the relative 
errors of B443-B783 through different types of waters (Figure 46d). However, with 
C2X and C2XC, a great number of pixel windows were rejected (Figure 40), mainly 
related to oligotrophic–mesotrophic waters. Most of these match-ups were only kept 
with C2RCC. Contrarily, the match-ups rejected with C2RCC were related to higher 
Rrs and associated with green (B560) and NIR (B705) peaks (C1 and C2 in Figure 
46). In these scenarios, C2RCC tended to highly underestimate Rrs, even 
overlooking spectral peaks, limiting the use of this processor in eutrophic–
hypertrophic waters. In those scenarios, C2X and C2XC retrieved the peaks more 
accurately, especially in the NIR (e.g., Figure 44c,e), although they tended to 
mismatch in the green peaks, especially in the presence of large B705 reflectance 
(e.g.,  Figure 44b,e,g). This may be related to the absorption of colored dissolved 
organic matter (CDOM), as found in (Niroumand-Jadidi et al., 2021) in lakes with 
high concentrations of optically active constituents, where CDOM absorbs most of 
the light in the blue part of the spectrum (Ligi et al., 2017), complicating the optimum 
retrieval of IOPs and leading to mismatching of peaks in green bands. Even so, C2X 
and C2XC provided for a better representation of the overall spectral shape in more 
turbid waters. 
The different performances of C2-Nets along different scenarios could be explained 
by the different range of training datasets (Table 13) and the minimization of adverse 
effects by the NN (Tavares et al., 2021). The C2RCC showed better performance in 
oligotrophic–mesotrophic waters, but in ultraoligotrophic waters (clear waters with 
ZSD > 3 m and [Chl-a] < 2.5 mg/m3) accurate retrieval of Rrs was complicated (e.g., 
Figure 44f) as also observed in (Pereira-Sandoval et al., 2019). The C2XC was suitable 
for more complex waters (up to hypereutrophic reservoirs) but also improved the 
performance of C2RCC in some mesotrophic scenarios, such as coastal waters in 
Figure 44h. Although C2X has been observed to be more suitable for coastal and 
complex waters than for clear waters (Pereira-Sandoval et al., 2019; Pahlevan et al., 
2021; Tavares et al., 2021), the reduced number of valid match-ups (33%) and lower 
consistency in the accuracy along the spectrum observed with this processor made 
it the most uncertain C2-Net. This could be related to the large training range of 
IOPs of C2X, which may allow good Rrs retrievals to be achieved in different types 
of scenarios (e.g., Figure 44b,e) - including oligotrophic–clear and eutrophic–turbid 
lakes (Soomets et al., 2020) - although the width of IOP ranges may also introduce a 
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risk of diverging from the actual solution from the inversion, leading to confusion 
(Niroumand-Jadidi et al., 2021). 
 

5.4.2 Recommendations on the selection of C2-Nets 

The aforementioned suggests combining C2-Nets to improve Rrs estimates in a wide 
range of scenarios. The choice of the C2-Nets could be limited to C2RCC and C2XC 
for most of the scenarios observed in the studied areas targeted. Different studies 
have proposed to switch between atmospheric correction methods depending on 
optical water types (OWTs). To define OWT, Uudeberg et al. (2019) developed a 
classification based on key features of the Rrs reflectance spectrum, such as the 
location of the spectral maximum, slopes, and amplitude. However, the choice of 
the atmospheric correction processor strongly affects the OWT classification and 
has to be performed after the atmospheric correction process. In Pereira-Sandoval 
et al. (2019), it was observed that the accuracy of several atmosphere correction 
processors improved markedly after the prior classification of water types defined 
by [Chl-a] and ZSD ranges of in situ measurements. However, this kind of 
classification implies prior knowledge on dynamic ranges of water quality 
parameters, and biophysical characteristics are not always the unique factor defining 
the performance of C2-Nets (see Figure 44a,b). 
To improve these approaches, we suggest that research focused on the classification 
of TOA optical types might be useful for selecting the optimum C2-Net, improving 
accuracy in the retrieval of Rrs. The TOA measurements do not require prior 
knowledge of the conditions of the studied area and somehow include information 
on the atmosphere, the optical properties of water, and additional effects such as 
sun glint or land adjacency. A simplistic classification of the TOA reflectance 
spectrum and its relationship with C2-Nets choice is shown (Figure 46). Further 
research including more data and deeper classification analysis should also be 
conducted attending to the severity of sun glint and the effect of land adjacency, 
which have a larger impact in small inland waters (Ansper and Alikas, 2019). After 
selection and processing with the optimum C2-Net, methods accounting for spectral 
shape, magnitude, and distinctive Rrs spectral features (e.g., ; Moore et al., 2014; 
Spyrakos et al., 2018; Uudeberg et al., 2019) will be further evaluated for accurately 
defining the OWT. 
 

5.4.3 Recommendations on water quality estimation with C2-Nets 

For estimation of ZSD, the Kd_z90max band derived from C2-Nets showed great 
potential (Figure 42c), particularly with C2XC (Table 16). Despite this, estimating 
the ZSD in clear waters seems more challenging, while in other meso-eutrophic 
waters, light attenuation-related products have already demonstrated great accuracy 
(Soomets et al., 2020). Other studies proposed to use the B560/B705 ratio (Sòria-
Perpinyà et al., 2021) for estimating ZSD, but this approach should be more limited 
to mesotrophic–eutrophic waters since in hypereutrophic waters accuracy in green 
reflectance decreases, which may lead to higher uncertainty of this band ratio in 
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turbid waters. Regarding [Chl-a] and [TSM], both conc_chla and conc_tsm bands 
from C2-Nets did not provide acceptable estimations, and their use with default 
parameters (factors and exponents) is not suitable for the whole range of optically 
active constituent concentrations and scenarios targeted here. The performance of 
C2-Nets’ [Chl-a] and especially [TSM] products could be improved by recalibrating 
with in situ data the factors used in the C2-Nets for their computation, but they might 
need to be adapted for specific locations. A common alternative approach is to 
switch between different empirical and bio-optical algorithms depending on the 
optical water type (OWT). Algorithm blending based on OWT has proven to be 
superior to single algorithms when considering the entire dynamic range of 
environmental conditions (Moore et al., 2014). 
In general terms, for estimation of [Chl-a] in more complex waters, it would be 
recommended to avoid the use of blue and green bands, with higher uncertainty in 
the presence of peaks in B705. Also, in eutrophic waters, the reflectance peak of 
phytoplankton shifts towards longer wavelengths, and the use of B705 is 
recommended (Gons et al., 2005; Toming et al., 2016; Caballero et al., 2020). Thus, 
in those cases, the combined use of red and NIR bands - for which C2XC and C2X 
showed better agreement with in situ Rrs in these types of waters - must be 
considered. For instance, band ratios based on red–NIR combinations have been 
demonstrated to be able to accurately retrieve [Chl-a] in turbid eutrophic waters 
(Gitelson et al., 2008; Mishra and Mishra, 2012; Caballero et al., 2020). In more clear 
waters, related to oligo-mesotrophic status, empirical standard algorithms based on 
VIS combinations such as OC2, OC3, and OC4 are frequently applied with an 
accurate estimation of [Chl-a] (Pereira-Sandoval et al., 2019; Moore et al., 2014; 
Caballero et al., 2020). The use of blue and green bands is appropriated in 
oligotrophic waters (<4 mg/m3), although red bands contain relevant information 
for retrieving [Chl-a] in these types of waters too (Pahlevan et al., 2021), and the 
retrieval of [Chl-a] through the combination of red and green bands has shown less 
sensitivity to the atmospheric correction in oligotrophic to mesotrophic waters 
(Soriano-González et al., 2019). 
For the estimation of [TSM], the optimal spectral range is located between 680 and 
730 nm (Nechad et al., 2010), and different studies propose to exploit the B705 band, 
alone or in combination with VIS bands, with which linear relationships have been 
observed for a wide range of TSM concentrations (Gernez et al., 2015; Alvado et al., 
2021; Sòria-Perpinyà et al., 2021). 

 

5.5. CONCLUSION 

This study highlights the potential of the combination of C2-Nets processors for 
improving the accuracy and consistency of water surface reflectance estimates on a 
pixel-wise basis. Within the processors, this study is one of the first attempts to test 
the capabilities of C2XC, the most recent evolution of the C2RCC. The results 
suggest that combining the use of C2RCC and C2XC — depending on the pixel 
optical type in the TOA — would lead to improved accuracy in the retrieval of Rrs 
in a wide range of waters, along with several different scenarios. Regarding the 
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retrieval of water quality parameters, the C2-Nets Kd_z90max product 
demonstrated great capabilities as a proxy of ZSD. However, for estimating [Chl-a] 
and [TSM], the use of the products included in the output of the C2-Nets, with 
default factors and exponents, is limited and site-specific. Thus, different approaches 
might be selected, including the recalibration of the constants in the C2-Nets 
parametrization or the blending of different algorithms, depending on the optical 
water type and the related performance of the atmospheric correction. An in-depth 
exploration of TOA reflectance classification could contribute to an accurate 
selection and combination of C2-Nets and their further evolution, which suggests a 
promising future for supporting the monitoring of inland and coastal waters. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Chapter 6 
 

MONITORING COASTAL STORM EFFECTS 
WITH SENTINEL-2 

A LAND-AQUATIC INTEGRATED APPROACH  

 
 

Edited version of:  
 
Angelats, E., Soriano-González, J., Fernández-Tejedor, M., 
Alcaraz, C. Combined inundation and water quality monitoring 
during short extreme events using Sentinel-2: The case of study of 
Gloria storm in Ebro Delta. XXIVth ISPRS Congress 2022 (Nice).  
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From an integrated monitoring approach of coastal areas, it is essential to understand 
land and aquatic environments dynamics, and the relationships and interactions 
between them. This approach is of major importance when assessing the effects of 
extreme events such as high-intensity and/or long-duration coastal storms. In this 
sense, most of the studies focus on flooding risk assessment and the morphological 
changes in the coastal front, but the integration of both land and sea processes is 
not common. This chapter presents a methodology for the monitoring of land 
inundation and water quality (i.e., chl-a) dynamics before and after an extreme storm 
in a coastal area from S2 imagery, applied to Alfacs Bay (Ebro Delta) during the 
Gloria storm (January 2020). The proposed methodology combines some of the 
methods described in Chapters 2-5. Despite it is an initial study, its future 
development will be of interest for understanding future impacts of extreme 
meteorological events, which frequency will increase because of climate change, and 
consequently to develop management practices for preserving ecosystem services 
and integrity. 

6.1. INTRODUCTION 

The nature of coastal areas makes them highly dynamic and susceptible to extreme 
variations under anomalous weather circumstances. Particularly, low-lying areas such 
as deltaic systems are highly vulnerable to extreme storms. The impact of the storms 
and associated hazards (e.g., wave-driven, sea-level rise hazards) in this kind of 
environment induce morphodynamic processes such as beach erosion or overwash 
(Jiménez et al., 2011) and flooding episodes that may affect large extensions where 
multiple uses coexist (e.g., urban areas, agri-food industry, ecosystem services). In 
addition to the physical impacts in the terrestrial ecosystem, significant rainfall and 
strong winds related to extreme storms lead to increased run-off from land and 
turbulence in coastal waters, with an expected impact on the water quality and 
aquatic ecosystems (Hernández et al., 2020). A better understanding of the relation 
between storm events and landscape/ecosystem development is needed. This is a 
key step for improving territorial and emergency management strategies on storm-
induced hazards assessment, preparedness, response, and environmental resilience 
monitoring.  

The Ebro Delta area is an excellent case of study because it harbours important 
terrestrial and aquatic ecosystems, as well as several related economic activities 
sensitive to extreme storms. It is a subsident area with an unprotected coastline 
enclosing two coastal bays with high ecological and socio-economical value. The 
importance of storm hazards in Ebro Delta in terms of magnitude and recurrency 
has been increasing since the 90’s with most hazardous storms characterized by low-
pressure systems off the Ebro Delta coast and eastern wave storms, usually 
accompanied by storm surges and heavy rainfall. Such events lead to a compound 
flooding that affects most of the Ebro Delta surface and induces morphological 
disturbance in the coastal front and bays (Jiménez et al., 2011). Furthermore, 
increased discharge of Ebro River, land run-off, and sediment suspension and 
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transport in coastal waters suppose a direct impact on the aquatic ecosystems and 
related economic activities such as fisheries or aquaculture (Berdalet et al., 2020).   

This, together with the expected exacerbation of these trends under climate change 
scenario, has led to several studies assessing the effect of these events in the area.  
Some studies have been focused on reporting and documenting the events with 
social media and media pictures, visual interpretation of airborne imagery, and 
reporting of the consequences (González et al., 2020; Jiménez et al., 2020). 
Alternatively, most scientific research efforts have been focused on the investigation 
of flooding risk and coverage, and morphodynamics through numerical model 
simulations under storm and climate change scenarios, and do not include reports 
on water quality dynamics (Alvarado-Aguilar et al., 2012; Garcia et al., 2013; Amores 
et al., 2020). All this information is a highly valuable source of knowledge for 
assessing the consequences of the storm-induced hazards in the delta contributing 
to improving risk, land, and emergency management strategies. However, there is 
still a gap for improvement in terms of observation-driven methods for the 
monitoring of storm-induced hazards, complementing and/or enhancing the 
current approaches in the area. Especially, on the assessment of flooding events and 
associated morphodynamic changes under high-intensity storms over large areas, 
and the monitoring of water quality parameters (e.g., Total Suspended Solids (TSS) 
or chlorophyll-a concentration (chl-a)), when access to in situ measurements may be 
limited. From this perspective, spaceborne multispectral remote sensing is a unique 
source of data as it provides a synoptic view over large areas and frequent systematic 
observations.  

Among remote sensing platforms, the Sentinel-2 multispectral imagery satellites (S2) 
represent a breakthrough in terms of flooding and water quality monitoring 
(Caballero et al., 2020; Goffi et al., 2020; Sobel et al., 2020; Cavallo et al., 2021). 
Detection of flooding and land surface water change based on multispectral satellite 
imagery generally relies on the use of water-related indicators proposed as 
combinations in the VIS, NIR, or SWIR spectral regions in form of spectral index 
(Pekel et al., 2014). Overall, combinations of VIS/SWIR and NIR/SWIR spectral 
bands provide for a clear diagnostic of water surfaces, having positive values for 
flood conditions and negative values for soil, both wet and dry (Boschetti et al., 
2014). However, as the selected index response varies as a function of the study area, 
water characteristics, environmental and atmospheric conditions, the combination 
of multi-source data is recommended for improving classification accuracy (Acharya 
et al., 2018). Multiparameter classification methods aim to reinforce the 
characterization by exploiting redundancy or complementarity provided by multiple 
spectral features (Goffi et al., 2020). In this regard, the integration of different band 
combinations has been reported to improve the accuracy of land cover mapping 
(including flooding and classification of dry and mixed surfaces) through different 
segmentation techniques (e.g., Cavallo et al., 2021; Tavus et al., 2020). 

Extensive research can be found related to the retrieval of water quality parameters 
such as TSS or chl-a from remote sensing reflectance (Rrs). The common 
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approaches rely on empirical and/or bio-optical algorithms that exploit spectral 
signatures of different water constituents, along with different band combinations 
depending on the water optical properties (Moore, et al., 2014; Caballero, et al., 2020). 
All of them use a set of in situ values to calibrate and validate the different models. 
The performance of the different algorithms depends mainly on the type of water 
of the study and the accuracy of the atmospheric correction, but also on the dynamic 
range of concentrations of water quality parameters within the area of study. Some 
research has been done in relation to the monitoring of the impact of short extreme 
events on water quality. Sobel et al. (2020) used S2 imagery to evaluate the impact of 
several Hurricanes in the Gulf of Mexico in terms of TSS concentration. Several 
studies suggest that water quality recovers relatively quickly from severe events 
(Huang et al., 2011; Chen et al., 2017) while others indicate long-term impacts (Beaver 
et al., 2013; Wetz and Yoskiwitz, 2013).  

This study presents a methodology for the monitoring of the inundation and water 
quality (i.e., chl-a) dynamics from S2 imagery under extreme storms in coastal areas. 
In particular, the proposed methodology has been applied in a coastal bay of the 
Ebro Delta (Catalonia, NE Spain) to evaluate jointly the impact in terms of land-
flooding and water quality in Alfacs bay during and after the Gloria storm (January 
2020). The study aims to demonstrate how S2 imagery together with appropriate 
modelling can be used as a tool for assessing the ecosystem response of a coastal 
area in the aftermath of an extreme climatic event, through an integrated approach. 
Moreover, this study presents the first steps of an overall goal that is to set the bases 
in a long term, for a workflow for rapid response and continuous monitoring of 
storm emergencies in low deltaic and highly vulnerable areas such as the Ebro Delta.  

 
6.2. MATERIALS AND METHODS 

6.2.1 Study area 

The results presented in this chapter are focused on Alfacs bay (Figure 48), the 
southern coastal bay, where many of the threats driven by storms in the Ebro Delta 
are observed. In this sense, Alfacs bay concentrates an aquaculture activity, an 
extremely vulnerable piece of coast heavily affected by erosion (Trabucador barrier), 
and La Banya spit, a special Protection Area for birds including a dune system that 
is part of Ebro Delta Natural Park. 
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Figure 48. Summarized depiction of the study area. 

 

6.2.2 Gloria storm 

Gloria storm was a marine storm affecting the Ebro Delta region in January 2020 
(19.01.20 – 23.01.20). It has been classified as one of the most intense among the 
events in the region during the last decades with immediate economic losses of 
several millions of euros. During the event of storm Gloria, the situation was 
dominated by a southern deep low-pressure system that generated sea level surface 
elevation (up to 1 m) and strong easterly winds which induced wind waves in the sea 
surface (Amores et.al, 2020) with high significant height (maximum Hs > 7m) and 
heavy rainfall on land (maximum cumulative precipitation > 130 mm). The Gloria 
storm had devasting effects on urban areas, agriculture fields, the natural 
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environment, and different crucial infrastructures such as road nets, becoming the 
most hazardous event in Ebro Delta in the last decades. 

6.2.3 Inundation mapping 

A set of 11 S2A/B L2A (atmospherically corrected surface reflectance) cloud-free 
images were visually filtered and downloaded from Copernicus Open Acces Hub 
(https://scihub.copernicus.eu/) accounting for dates pre-, during, and post-Gloria 
storm. All S2 L2A images were subset to the Ebro Delta area (Figure 48) and 
resampled to 20 m pixel using the Sentinel Application Platform (SNAP v8.0). The 
same tool was then used for deriving two variants of Normalized Difference Water 
Index (NDWI), namely, NDWIGAO (Gao et al., 1996) and NDWIXU (Xu et al., 2006). 
The NDWIGAO combines NIR (B8 band centered at 832 nm) and SWIR (B11 band 
centered at 1614) bands of S2 (eq. 18), while the NDWIXU applies a VIS/SWIR 
approach combining Green (B3 band centered at 560 nm) and SWIR (B11) S2 bands 
(eq. 19).  

𝑁𝐷𝑊𝐼𝐺𝐴𝑂 =
B8−B11

B8+B11
                                               (18) 

 

𝑁𝐷𝑊𝐼𝑋𝑈 =
B3−B11

B3+B11
                                               (19) 

These indexes were used later as input in an unsupervised k-means clustering to 
generate 4 classes for each image. Then, the mean and standard deviation of pixels 
within each class and SI (4 classes × day-1 × number of dates; N = 44) were 
extracted and reclassified into two classes by means, again, of unsupervised k-means 
clustering. The NDWIXU cluster centers were then used for defining water (positive 
NDWIXU) and non-water classes (negative NDWIXU) resulting in binary maps. This 
method aimed to first differentiate 4 classes which may be water or non-water and 
then solve the uncertainty of single images classification by time series analysis of 
different classes accounting for different types of water and surface state. It was 
implemented using a customized script developed for R software v3.6 (R Core 
Team, 2017). 

6.2.4 Chl-a mapping 

The chl-a maps during the Gloria storm are part of a longer time series (October 1st 
2019, to September 30th 2021) in the area of Ebro Delta (Figure 48 top). This 
subsection summarizes the methodology used to generate this time series of chl-a 
maps. 

All available S2 L1C orbit R051 images during the two-year period of interest were 
downloaded from the Copernicus Services Data Hub 
(https://cophub.copernicus.eu/dhus/#/home). After image-by-image visual 
checking for clouds and shadows over the Ebro Delta coastal waters, the valid 
images (Nimages = 210) were pre-processed. This step included the resampling of the 
bands to 20 m pixel, the subset to the extent of the area of interest, and the 
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atmospheric correction specific for coastal waters, all implemented through the 
Graph Processing Tool of SNAP v8.0. The atmospheric correction was done with 
the latest version of the Case 2 Regional Coast Colour processor (Doerffer, et al., 
2007; Brockman et al., 2016), here referred as to C2XC. It was applied on all valid 
S2 images, with a fine-tuning of daily auxiliary data (pressure, ozone, altitude, salinity, 
and water temperature). For land/water segmentation, the valid pixel expression was 
set as a threshold on band B11 of S2 L1C images. The threshold was defined 
independently for each image with the histogram-based triangle method. The output 
of C2XC included Rrs at VIS-NIR S2 bands. 

Field measurements (N = 146) were conducted along 26 dates, at different locations 
including waters in Alfacs bay, Fangar bay, and the surrounding exterior 
Mediterranean sea. The measurements corresponded to integrated water column 
samples, taken within a window of ±3 hours of S2 pass. For chl-a determination, 
water samples were filtered through 0.4-0.6 µm GF/F glass fiber filters, extracted 
using standard methods (Shoaf and Lium, 1976), and calculated with Jeffrey and 
Humphrey’s (1975) equations.  

Then, the match-up exercise between field-measured chl-a data and C2XC Rrs was 
done using a quality-check procedure based on 3x3 pixel-window centered at field 
measurements. The quality check included the removal of pixels flagged inherently 
by C2XC, an additional outlier filtering using boxplot analysis, and the removal of 
negative Rrs pixels. Only pixel windows with more than 4 pixels remaining were 
accepted for posterior analysis. After this step and the rejection of cloud-affected S2 
images, the number of valid field chl-a data was 73, ranging between 0.1 – 8 mg/m3, 
along 14 different dates.  

For chl-a estimation, a set of 11 band combinations (2 to 4 spectral bands) in form 
of spectral indices (SI) were computed for all valid match-ups. These SI included 
bands B1 (centered at 443 nm) to B6 (centered at 740 nm) and exploit specific chl-a 
absorption peaks in Blue and Red spectral regions, and/or use red-Edge information 
for mitigating the effect of absorption by non-algal particles and yellow substances. 
For instance, common ocean colour algorithms based on Blue to Green ratios 
(O'Reilly and Werdell, 2019), the three-band model of Gitelson et al. (2011), and the 
Normalized Difference Chlorophyll Index (Mishra and Mishra, 2012) were included 
among the tested SI. Chl-a was modelled with all of them. A 70% of chl-a data was 
used for model calibration (cal), and 30% for validation (val). The cal/val datasets 
were generated randomly. Models were developed for raw and log-transformed 
(when possible) Rrs and chl-a data (i.e., raw-raw, log-raw, log-log). Linear, linear 
piecewise (1 breakpoint), polynomial (2nd, 3rd, and 4th order), logarithmic, power, 
and exponential models were tested. All the process was repeated through 100 
iterations, with varying cal/val datasets. For each model (Band Combination × Type 
of Fitting × Iteration), performance was evaluated by means of the following 
statistics: the Mean Average Error (MAE), the Root Mean Squared Error (RMSE), 
the Average Percentage Difference (APD), the BIAS (eq.20-23) and the Pearson’s r 
(r). The statistics were computed including calibration and validation datasets.  
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To generate the chl-a maps, all flagged pixels (C2XC flagging) or pixels with negative 
Rrs in any of the spectral bands of each valid S2 image were removed. A mask was 
applied for avoiding most shallow waters and the presence of macrophytes, which 
make the retrieval of chl-a more uncertain. Then, the model with the best 
performance was applied to all valid images and pixels. Those with negative chl-a 
value (residual) were set to 0 mg/m3 and pixels with chl-a > 30 mg/m3 were removed 
(noData) given the higher uncertainty in so high concentrations. Pixels 
corresponding to the mussel rafts were masked out with a rafts’ shapefile (Figure 48 
– Shellfish rafts). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑀𝑖  − 𝑂𝑖 |

𝑁
𝑖=1                             (20)  

𝑅𝑀𝑆𝐸 = √∑
(𝑀𝑖 − 𝑂𝑖 )

2

𝑁

𝑁

𝑖=1
                            (21)  

𝐴𝑃𝐷 = ∑
|𝑀𝑖−𝑂𝑖|

𝑂𝑖

𝑁

𝑖=1
∗ 100                            (22)  

𝐵𝐼𝐴𝑆 =
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)𝑁

𝑖=1                             (23) 

Where 𝑀𝑖 are the estimated values and 𝑂𝑖  the field measured ones. 
 

6.3. RESULTS AND DISCUSSION 

6.3.1. Chl-a estimates 

Overall, models that performed better were related to Rrs bands combinations 
including B2 (centered at 490 nm) or B3 (centered at 560 nm), and B4 (centered at 
665 nm) or B5 (centered at 705 nm). The best model for chl-a estimation was found 
with a simple B5/B2 band ratio fitted with a 2nd polynomial (eq. 24). The 
performance metrics of the model were MAE = 0.60 mg/m3, APD = 36.22 %, 
RMSE = 0.89 mg/m3, BIAS = 0.05 mg/m3, and r = 0.89. 

        𝑐ℎ𝑙 − 𝑎 = −0.62 + 10.88 ∗ (
𝐵5

𝐵2
) + 8.07 ∗ (

𝐵5

𝐵2
)2                       (24) 

Despite the implemented model achieving good agreement within the full range of 
derivation ~ 0 - 8 mg/m3 (Figure 49), overestimation of retrieved chl-a 
concentrations in scenarios with great concentrations of TSS is expected. Empirical 
algorithms, as the one used, can perform well only inside their range of derivation 
and for the area for which they are derived. They are more limited in their ability to 
discriminate between non-unique signals from parameters that may be covariant 
with chl-a, for instance, TSS (Matthews et al. 2012), which increases particularly 
during storm events. This could not be validated because no chl-a nor TSS data were 
available in such cases, but it was observed in RGB composites that after strong 
winds or storm events, the water of the bays turns darker brownish or whitish, 
suggesting higher TSS (e.g., in Figure 50 and 51B). In these cases, the selected model 
will tend to overestimate chl-a since the reflectance on B5 increases with great TSS, 
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overlapping the absorption of chl-a in the Blue (Soriano-González et al., 2019). In 
these cases, other empirical or semi-analytical algorithms may be more accurate. 
However, it is important to highlight that the proposed methodology for chl-a 
retrieval is easy to replicate, and straightforward using several software tools such as 
SNAP, which may be important for a wide part of the scientific community related 
with ecosystems monitoring and modelling response but with few or no remote 
sensing skills.  

Nevertheless, further research should move towards a multi-algorithm combination, 
suitable across different types of water optical properties. The development of a 
blending algorithm requires accurately defining the optical water type (Moore et al., 
2014) accounting for the spectral shape, magnitude, and distinctive Rrs spectral 
features. Furthermore, a greater amount of field data is needed, covering all different 
scenarios, which were not represented in the current chl-a dataset.  

 
Figure 49. Linear regression of estimated and measured chl-a. 

 

6.3.2. Inundation mapping 

Systematic validation of inundation maps was not conducted, albeit a visual 
comparison of the resulting maps showed good agreement with what can be 
interpreted from the 10 m RGB composites of S2 in Alfacs bay (e.g., in Figure 50).  
The method allowed us to assess the evolution of the main morphological 
phenomena that occurred during the Gloria storm in the bay, the breaching of the 
Trabucador barrier. From visual interpretation, the main limitations of the method 
arise from; i) small features (e.g., shellfish rafts, borders between dry and flooded 
surfaces) which may be misclassified due to the pixel mixing with the flooded 
surrounding environment; ii) increasing uncertainty in presence of emerged or 
submerged vegetation and continuous succession of small emerged and submerged 
patches (Ozesmi and Bauer, 2002). 
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Figure 50. Delineation of emerged land and water surface two weeks after Gloria storm 
(05.02.20) with the proposed methodology (black line) superposed to the S2 RGB 
composite. 

 
Additional research is needed for further validating the accuracy and exploring 
possible unseen corners of the proposed methodology. For instance, the minimum 
number of images to be used must be defined. Also, the 4-initial k-means classes 
may be a constraint in more heterogeneous environments, needing to explore the 
increasing of clusters number. Regarding the improvement in the detection of small 
features, suitability for resampling to 10 m instead of 20 m pixel can be studied, 
albeit it will strongly depend on the native resolution of S2 bands. In addition, 
information on the sea level simultaneously to the S2 pass must be considered in 
deeper analysis.   

In spite of all that, the proposed method does not depend on large time series, avoids 
the difficulty of finding stable thresholds as in decision trees or rule-based 
approaches, is fast and unsupervised, and requires simple computation, allowing for 
rapid mapping in the aftermath of a storm, which is a key pillar in the management 
of extreme events.   

6.3.3. Chl-a and morphology response to Gloria storm in Alfacs bay 

For assessing the dynamics of water quality and flooding in the Alfacs bay, three 
status-maps (Figure 51) and three change-maps (Figure 52) were generated within a 
period of one month encompassing the Gloria storm (21.01.20). 
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Figure 51. Water quality and inundation mapping in the area of Alfacs bay before and after 
Gloria Storm. A) 16.01.20; B) 05.02.20; C) 10.02.20. 

 
The Gloria Storm caused breaching of the Trabucador barrier, without showing 
signs of recovery after 20 days (Figure 51B). The thin line that seems to reconnect 
the delta with La Banya spit (Figure 51C and 52B) was the ongoing reconstruction 
of the road for in/out of the trucks transporting salt from the saltworks (Figure 1). 
La Banya spit remained disconnected from the delta during all the period shown 
(Figure 4C and 5C), preventing the passage of vehicles and the transport of goods 
to and from the saltworks. It can be observed in the change maps that the 
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Trabucador barrier breached from the center and receded back into the bay. The 
setback was evident in the extremes of the barrier as observed in Figures 5A and 5C 
corresponding to the difference between the 15th and 20th days after the storm and 
the image of 5 days before the Gloria storm. 

In La Banya spit (Figure 48), the most important effects of Gloria storm were 
observed on the eastern side, at the dune fields. In this area, the barchan dunes in 
the shoreline side showed stability, with no inundation detected (Figure 5). The inner 
dunes, however, showed a more dynamic behaviour, alternating flooding, and drying 
of the northern and southern faces during the period of study (Figure 52A-B).  
Where flooding is more intense, the inner parts of La Banya spit are subjected to 
loss of volume (Rodríguez-Santalla et al., 2021). The drying out of some of these 
parts may be explained by the accretion due to sand blown from the beach and dunes 
and trapped by vegetation growing on the foredune. This phenomenon is observed 
in Figure 52C, with most of the dried area concentrated behind barchan dunes. This 
highlights the importance of the barchan dunes for maintaining the shoreline during 
a storm (Rodríguez-Santalla et al., 2021). 

Regarding water quality dynamics associated with the Gloria storm, water turbulence 
increased, particularly in the inner north-eastern Alfacs bay, related to the 
Trabucador breaching (Figure 51B) and the shallow shelf formed behind it. This led 
to increased chl-a concentrations, although the model could be overestimating them 
in this scenario, as high TSS concentration is expected in this area behind the 
Trabucador barrier breaching stretch. In the last date shown (10.01.20 – Figure 51C), 
chl-a concentrations were again closer to pre-storm concentrations (Figure 52C). 
Different from the Trabucador barrier, the water quality showed signs of recovery 
in a short term. In the long-term, water quality dynamics should be revised again 
since the breaching of the Trabucador barrier has important implications in the 
morphodynamics and hydrodynamics of the bay (Gracia et al., 2013). These are 
major factors for the development of phytoplankton populations related to the 
modulation of chl-a inside Alfacs bay, with a direct effect on the farming of shellfish 
(Soriano et al., 2019). 

6.4. CONCLUSIONS 

This study presents a methodology for chl-a (in water) and inundation mapping (on 
land) based on parallel processing of Sentinel 2 multispectral imagery. The 
methodology has been applied to the assessment of impacts of an extreme coastal 
storm affecting the Ebro Delta in January 2020. The Ebro Delta is a suitable place 
to apply the methodology developed here since it shares common threats with other 
coastal regions and, more specifically, with other deltas. 

Despite constraints related to the validation of inundation maps and the uncertainty 
of chl-a retrieval under optical water types out of the range of development of the 
model, the results obtained are promising. The model presented for chl-a mapping 
will normally produce chl-a estimates with accuracy greater than 70% and, the 
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methodology proposed for mapping of land water surface changes demonstrated 
great agreement with visual interpretation from 10 m RGB imagery. 

 

Figure 52. Changes in water quality and inundation related to the Gloria storm. Differences 
between A) 05.02.20 -16.01.20; B) 10.02.20 - 05.02.20; C) 10.02.20 – 16-01.20. 
 

The exposed methodological development allowed assessing changes both in water 
and land, through a well-explained processing chain which can be easily 
implemented almost with SNAP open software. Both, inundation delineation and 
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water quality mapping methodologies can be applied fast, allowing for rapid 
evaluation of storm-related perturbances on terrestrial and aquatic ecosystems, with 
particular importance in the management of coastal areas. Sentinel 2 demonstrated 
great capabilities for complementing current methods and supporting management 
in diverse environments, through the potential for conducting studies with 
integrated approaches, which is currently a line to follow for achieving the 
sustainable development goals.   

The research presented in this paper is one of the first steps with Sentinel 2 of a 
long-term strategy to understand the ecosystem response in Ebro Delta both in 
space and time in front of short extreme events. Further research should include an 
improvement of the current water quality modelling aiming to de-coupling TSS from 
chl-a. The inundation mapping must be validated, assessing the accuracy of the 
method and arising potential constraints or improvements not included in this 
preliminary study. The proposed methodology is planned to be extended to all Ebro 
Delta region, and tested also in other short extreme events that occurred recently 
such as Filomena storm (January 2021). 
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In a context of climate change characterized by accelerated sea-level rise, sea-water 
temperature increase, and the exacerbated frequency of extreme events, Integrated 
Coastal Zone Management (ICZM) is an immediate priority. ICZM provides 
enabling mechanisms, facilitates capacity building and the implementation of 
sustainable policies, among other benefits (O'Mahony et al., 2022).  An integrated 
monitoring is thus essential. In this thesis, the potential of Sentinel-2 (S2) as an 
efficient monitoring tool for coastal areas (low cost, systematic, high-resolution, and 
long-term) has been demonstrated. We addressed several technical and scientific 
issues related to the estimation of a variety of key coastal parameters, from 
atmospheric correction and image pre-processing (first steps) to data modelling and 
analysis (last steps).  

 

Image pre-processing and data expansion 

The detection of clouds and shadows and their effect on the temporal distribution 
of data are an important constraint in optical remote sensing. Detecting and 
removing clouds and shadows is challenging, and may lead to misdetection. In this 
thesis, cloud cover reduced significantly the temporal frequency of useful S2 data, 
and highlighted the misclassification effect on data timeliness consistency (e.g., 
confusion between flooded rice paddies and shadows). Although we implemented 
an enhanced method for clouds and shadows masking (Chapter 4), misdetection of 
dispersed clouds and overestimation of shadows persisted. It is needed to further 
explore approaches such as the Water Pixel Extraction algorithm (Ngoc et al., 2019), 
or similar ones, focused on the removal of shadows over water pixels, and applicable 
to different satellite sensors (e.g., S2 MSI, Landsat-8 OLI). 

Multi-platform approaches contribute to increase the temporal frequency of good-
quality observations (Li and Roy, 2017). In this context, the integration of Landsat-
8, -9, and S2 data is recommended due to the similarities in pixel resolution and the 
VIS-NIR-SWIR spectral configuration. Furthermore, the thermal infrared bands of 
the Landsat series provide additional physical information, which is highly valuable 
for a number of applications such as the cloud discrimination process (Mateo-García 
et al., 2018). In the Ebro Delta, by combining Landsat -8, -9, and S2 data, the number 
of available images increases 60 % (covering the full area), compared to only using 
Sentinel-2. Averaged frequency is reduced to 2.8±1.3 days (Figure 53), and it is 
expected to further improve with S2-C and S2-D, expanding the possibilities for 
finding cloud-free images, concurrent satellite and in situ measurements, and 
improving data-filling methods based on timeseries analysis.  

Regarding atmospheric correction, a validation of the C2RCC processors (C2-Nets), 
in both inland and coastal waters, was conducted using above-water radiometry 
measurements (Chapter 5). However, increasing the dataset of above coastal-water 
radiometry measurements is needed, since most of those used in our study were 
conducted in inland reservoirs. Because the C2-Nets rely on Neural Networks 
trained with different ranges of inherent optical properties, the appropriate selection 
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of the C2-Nets is a key step for the accurate estimation of water surface reflectance, 
and hence water quality parameters. The results in Chapter 5 show that the 
combination of the C2-Nets should be conducted on a pixel-wise, based on the 
classification of the signal received at the Top Of Atmosphere (TOA), needing to 
further explore the TOA response to different atmospheric conditions, variable 
Optical Water Types (OWT), and additional effects such as sun glint or land 
adjacency.  

  

 

Figure 53. Example of increased data frequency in the integration of Landsat-8, -9 and 
Sentinel-2 images covering the full Ebro Delta in November 2021.  

 

Considering other atmospheric correction methods, ACOLITE (Vanhellemont and 
Ruddick, 2018) and POLYMER (Steinmetz et al., 2011) use a single processor, 
reducing the complexity of the classification of the ‘TOA optical types’. They do not 
depend on Neural Networks, but are image based atmospheric correction processors 
and include methods for sun glint removal (Steinmetz et al., 2011, Harmel et al., 
2018), improving the accuracy of water surface reflectance retrievals along with 
different satellite platforms. Another alternative is the Icor atmospheric correction 
processor (De Keukelaere et al., 2018), which includes the SIMilarity Environment 
Correction module (SIMEC) for counteracting the effects of land adjacency, which 
may have a greater impact in Ebro Delta bays during the rice growing season (red-
edge increase in typical vegetation spectra). Therefore, different processors exist and 
further research should be intended to explore the methods, procedures, and use 
cases for a simplified and systematic retrieval of accurate water surface reflectance 
estimates in coastal waters.  

 

Water quality estimation 

The accuracy on the estimation of water quality parameters with Sentinel-2 depends 
largely on water composition (type and concentrations). Different processing chains 
and algorithms have been successfully implemented in the Ebro Delta bays 
(Chapters 2, 5, and 6) for the retrieval of Secchi disk depth (ZSD) and chlorophyll-a 
(chl-a) from Sentinel-2. In this context, the diffuse attenuation coefficient of light at 
490 nm derived from the C2-Nets showed a high relationship (r > 0.75) with ZSD 
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measurements (Chapter 5). Other authors propose to use VIS-NIR combinations, 
switching to longer wavelengths along with the increase in turbidity (Alikas et al., 
2015). In the same line, turbidity algorithms such as the proposed by Dogliotti et al., 
2015 may also be used as proxy for ZSD, given the close relationship between the 
two variables. Regarding chl-a concentration, spectral indices based on simple band 
ratios including blue and green or red-edge bands (Chapters 2 and 6) provided for 
estimates with acceptable accuracy (MAE ~ 0.60 mg/m3). However, the 
performance of the developed models out of their range of derivation, in terms of 
chl-a concentration (Ebro Delta bays - typically mesotrophic waters) and the 
scenarios for which they were derived (e.g., water column composition and optical 
depth), requires an in-deep assessment to define their scope of application. The 
developed models are less reliable in conditions of high concentration of Total 
Suspended Matter (TSM) and/or Coloured Dissolved Organic Matter (CDOM), 
which may occur due to increased water turbulence, sediment resuspension or land 
runoff (Chapter 6). In these cases, the selected model tends to overestimate chl-a 
concentration, leding to unreliable results, and other empirical or semi-analytical 
algorithms may be more accurate. Further research should focus on the pixel-wise 
classification of Optical Water Types (OWT) and the development of a multi-
algorithm blending approach, which has proven to be superior to single-algorithms 
across different water optical properties (Moore et al., 2014, Caballero et al., 2020).  

Monitoring of water quality from remote sensing data enables the evaluation of its 
variability worldwide, overcoming the lack of data from new, remote, or large marine 
areas, with several applications in shellfish aquaculture such as definition of farming 
suitability index for site selection or zoning (Habbane et al., 1997, Radiarta and 
Saitoh, 2009). Among the different water quality parameters of interest that can be 
measured by sensors from satellites, chl-a concentration is commonly used in 
shellfish aquaculture because it is considered the best proxy of phytoplankton 
biomass (Huot et al., 2007). With this approach, we showed the potential of S2 for 
monitoring phytoplankton biomass in Alfacs and Fangar bays (Chapter 2). However, 
including additional water quality parameters and increasing data frequency is 
essential for developing bio-physiological models and deriving carrying capacity 
estimates, needed for proposing adequate and feasible management strategies. In 
this context, it is necessary to further explore the remote estimation of other water 
quality parameters such as CDOM, indicator of organic matter, and surface water 
temperature, key in the biocenosis and physical processes.  

 

Monitoring of submerged vegetation 

Remote sensing of submerged vegetation, including its detection and classification, 
is possible to a certain extent, in shallow and/or transparent waters by using 
combinations of VIS-NIR bands and supervised classification methods (Chapter 3). 
However, there are some constraints in relation to the spectral and spatial resolution 
of satellite platforms such as the pre-conditions imposed by the minimum allowable 
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extension and the heterogeneity of vegetation meadows (mixed classes and small 
patches are more difficult to discriminate), the interference of water turbidity and 
leaf shadowing in the sensed signal, the effect of growing depth and background, 
and the effect of epiphytes or microphytobenthos on spectral signature (dampening 
in the VIS spectrum). These aspects need further study, as well as an improvement 
of the algorithms for submerged vegetation classification under these different 
circumstances. Recent advances on deep learning-based segmentation and 
classification methods might provide new insights on this topic. In the Ebro Delta, 
Sentinel-2 showed the potential for the estimation of macrophyte and macroalgae 
coverage (discrimination capabilities), and its use as environmental proxy for 
agricultural run-off disturbance, albeit expanding the dataset of field 
measurements/observations is needed to validate the applied methodology. To 
improve it, we propose to explore approaches accounting for vegetation leaf area 
and/or substrate induced variations (Yang and Yang, 2009; Pu et al., 2015), 
exploiting the spectral peak around 700 nm, which is differently influenced by 
seagrass types, and it is located beyond the wavelengths usually affected by epiphytes 
(Hwang et al., 2019).  

Agricultural monitoring 

It is possible to automatize the monitoring of rice paddies (phenology, management, 
and crop yield) by combining cloud computing platforms and remote sensing data. 
In Chapter 4, we proposed an automatic extraction scheme using S2 which 
demonstrated great capabilities, albeit it needs further validation by increasing the 
ground truth dataset (e.g., sowing date, irrigation period, rice yield, cultivar). In 
addition, because data frequency is critical for ensuring consistent timeseries at all 
rice fields, similarly to previous reported issues, cloud and shadows masking, data 
recovery, and multi-platform approaches are necessary to be addressed. Tackling 
these, time series smoothing can be improved by weighting data according to cloud 
contamination scores or other parameters related to spectral index uncertainty (e.g., 
saturation). Additional improvements of the developed methodology include 
exploring different vegetation and land-surface inundation indexes, improving the 
rice paddies identificacion pixel-wise, and evolving from the proposed rice yield 
proxy to more sophisticated approach. We suggest to assess vegetation spectral 
index accounting for background effects (optimum for initial rice stages) and/or 
having a higher performance in stages with increased rice biomass;  and land-surface 
inundation indexes combining VIS and SWIR bands (e.g. NDWIXU in Chapter 6) to 
increase the accuracy of hydroperiod estimates (Boschetti et al., 2014 and 2017). For 
pixel-type discrimination purposes, the use of Synthetic Aperture Radar (SAR) 
imagery such as Sentinel-1 (SAR C-Band) in combination with multispectral data 
from S2 and Landsat series can help. Despite of a complex processing chain, 
Sentinel-1 SAR offers cloud penetration capacity, thus ensuring systematic 
measurements, and  shows particular spectral response of water and the spiky 
structure of rice - at SAR wavelengths and S1 observation modes -, thus making rice 
fields more distinctive. These characteristics are useful in timeseries analysis for rice 



GENERAL DISCUSSION and FURTHER RESEARCH 

 

 159 

discrimination and monitoring purposes (Campos-Taberner et al. 2017). For rice 
yield quantification, it is required to move towards approaches in line with the 
multidisciplinary simulator for standard crops (STICS, Brisson et al. 2003), including 
auxiliary data such as daily weather (e.g., temperature), soil descriptions (e.g., organic-
inorganic ratio), and considering Leaf Area Index profiles (Courault et al., 2021).  

Assessment of Storm effects 

Extreme storms events can significantly affect coastal areas. In Chapter 6 we 
assessed the changes in water quality and land inundation in the southern hemi-delta 
of Ebro River as a consequence of the Gloria Storm by means of a simple 
methodology based on S2 imagery. Although the research is still preliminary, we 
showed the potential for the integrated assessment of storms disturbance through 
satellite remote sensing. Further research must focus on improving water quality 
assessment (following the methods described previously), and land inundation, 
which could benefit from methods proposed for the assessment of rice paddies 
flooding and cloud and shadow detection over water pixels, landcover mapping 
methodologies, and by combining multi-source data for improving classification 
accuracy (Acharya et al., 2018, Huang and Jin, 2020). In this sense, the integration of 
vegetation spectral indexes using the red-edge (e.g., NDVI, SAVI), water spectral 
indexes including SWIR and VIS or NIR spectral bands (i.e. NDWI’s), combinations 
in the HSV colour space, and the coupling of multispectral and SAR sensors data, 
can improve the accuracy of land cover mapping, including flooding and 
classification of dry and mixed surfaces (e.g. Goffi et al., 2020, Tavus et al., 2020, 
Cavallo et al., 2021). 

Further research must include additional geomorphological effects of storms on the 
emerged beach. In this context, the position of the land-water boundary is 
determined by several factors (e.g., sea level, waves regime), thus serving as an 
integrated and dynamic proxy of state (reference) and impact (change), contributing 
to understand coastal functionality, response, and resilience to extreme events. For 
this purpose, the CoastSat tool (Vos et al., 2019) is of particular interest since it is an 
open and cloud-based solution that offers transparent and adaptative processing 
chains for shoreline extraction in sandy beaches from multiple satellites (including 
Sentinel-2, Landsat-7, -8, -9, PlanetScope). Tools alike open the possibility of 
gathering massive collections of shoreline positions at sandy beaches along large 
periods (from to late 90’s to the present) world-wide. The inclusion of the shoreline 
dynamics in the coastal monitoring system will be a key contribution to the 
development of ICZM model.  

Further considerations 

ICZM must be developed from an ecosystemic approach, considering the structure 
and functioning of the whole ecosystem, and the relationships among its different 
components, for contributing to the sustainable management of the ecosystem and 
its resources. This requires the generation of huge volumes of information, a task in 
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which remote sensing contributes, as shown in this thesis. The development of 
methods to merge all these data and derive comprehensive and integrated products 
will be the next steps for the implementation of ICZM. In this sense, proposed 
solutions need to be supported by coordinated and multidisciplinary processes 
(Politi et al., 2019), leveraging a combination of cross-disciplinary technologies 
including remote sensing, Big Data, and data-science methods (Gambín et al., 2021). 
In this context, the amount of data generated by different monitoring systems (field 
surveys, automatic samplers, remote sensing, ancillary data) create the perfect 
backdrop for the use of Artificial Intelligence (AI) approaches (i.e. Machine-
Learning, Deep Learning). Among the different AI methods, unsupervised and 
semi-supervised learning (data classification, feature extraction, anomaly detection, 
pattern recognition), knowledge fusion (combination of theory/physical and data-
driven methods), and transfer learning (extrapolatable methods, in situ data 
independence) deserve special attention to exploit the integration of multi-platform, 
multi-scale and multi-parameter data towards the development of feasible ICZM 
models. To implement them, combined efforts between agencies, research 
institutions and regional governments are needed, promoted to develop coordinated 
models that will yield actionable and reliable information to constitute the future of 
decision-making systems (Sit et al., 2020).
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❖ Sentinel-2 allowed the monitoring of key coastal features close to the time and 
spatial frames at which they develop, both on land and in aquatic environments. 
Multiplatform approaches will contribute to overcome the main limitations 
found in the single-constellation approach (e.g., decreasment of data gaps). 

❖ Atmospheric correction of Sentinel-2 imagery is required for surface reflectance 
consistency across space and time. For applications in coastal waters, C2XC was 
the most accurate C2-Net, compared to C2RCC and C2X, which translated into 
greater reliability for the retrieval of water quality features. A potential blending 
of C2RCC and C2XC would improve their individual performance.   

❖ Sentinel-2 has the potential to derive credible key water features’ estimates. The 
diffuse attenuation coefficient of light at 490 nm showed high relationship with 
the Secchi disk depth (proxy for water transparency), albeit it weakens in optically 
deep waters.  

❖ Spectral indexes including blue or green, and red or red-edge spectral bands 
provided for chlorophyll-a estimates (proxy for phytoplankton biomass) with 
acceptable accuracy. To overcome uncertainties due to increased suspended 
particulate and dissolved matter, algorithm-binding approaches based on pixel-
wise classification of optical water types are recommended.  

❖ Sentinel-2 is capable of detecting and distinguishing submerged vegetation under 
certain conditions, modulated by features such as water transparency, vegetation 
depth, and meadows homogeneity. In clear shallow waters (0-2 m), supervised 
classification of VIS-NIR composites allowed to depict macroalgae and seagrass 
coupled dynamics. 

❖ Sentinel-2 has great capabilities for measuring agricultural asset dynamics. The 
derivative analysis on temporal profiles of common spectral indexes (i.e., NDVI, 
NDWIs) combined with a rule-based key crop features selection, proved to be a 
feasible methodology for automatic monitoring of rice phenology, crop yield, 
and flooding regime up to pixel scale.  

❖ Sentinel-2 is useful for understanding the compound impact of coastal storms. 
Land inundation mapping, based on semi-supervised classification of NDWI’s, 
and in-water chlorophyll-a monitoring, derived from blue to red-edge ratio, 
provided a holistic overview of Gloria storm’ effects in Alfacs bay (e.g., sand 
barrier breaching, and increased phytoplankton biomass).  

❖ Overall, Sentinel-2 allowed to relate spatiotemporal dynamics of key ecosystem 
variables with natural and anthropic forcings, with importance for the integrated 
management of coastal zone resources (e.g., agri-food industry, protected areas). 
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