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Cover legend 

The cover figure depicts several superimposed cannabinoid receptor 1 (CB1) structures relevant 

in this thesis. An active-like conformation generated during Molecular Dynamics simulations presented 

on Section 5.1 of this thesis is depicted in cyan. This conformation was generated starting from an 

inactive crystal structure of CB1 (from PDB ID 5U09). For clarity purposes, only transmembrane helix 

6 (TM6), and residues F2003.36, F2374.46 and Y3977.53 of the inactive state are depicted in green. Red 

arrows represent the most relevant conformational changes upon receptor activation as described on 

Section 5.1, which include outward movement of TM6, upward axial movement of TM3, and 

conformational shifts of F2003.36 and Y3977.53. The opening of the intracellular cavity upon activation 

forms the G protein binding site. A fully active, G protein-bound crystal structure of CB1 (PDB ID 

6KPG) is also superimposed, and its co-crystallized Gα subunit is depicted in yellow. Superimposed 

onto these structures, coordinates of co-crystallized ligands CP-55940 and ORG27569 from PDB ID 

6KQI are depicted as black sticks, representing the orthosteric binding site and an allosteric binding 

site, respectively. 
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1.1. G protein-coupled receptors 

G protein-coupled receptors (GPCRs) are a family of approximately 800 membrane proteins 

which are classified into six subfamilies or classes: class A (rhodopsin-like receptors), class B (secretin 

family), class C (glutamate receptor family), class D (fungal mating pheromone receptors), class E 

(cyclic AMP receptors) and class F (Frizzled and Smoothened receptors) (Ghosh et al. 2015). In this 

thesis, we focus on class A GPCRs, which is the most extensively studied family of GPCRs. GPCRs 

are involved in the signaling process of the cell in response to a wide range of stimuli, including small 

organic molecules, peptides, proteins or even photons (Lagerström and Schiöth 2008). The signaling 

function of GPCRs usually results in the binding of transducer molecules, such as G proteins, arrestins 

and GPCR kinases (GRKs), which modulate downstream signal transduction. The most studied 

transducers that bind to GPCRs are G proteins, which are heterotrimeric proteins formed by subunits 

Gα, Gβ and Gγ. Gα subunits can function independently of Gβ and Gγ to regulate key effector signaling 

pathways such as adenylyl cyclase and phospholipase C (Wootten et al. 2018) and can be classified into 

4 families: Gs, Gi/o, Gq/11 and G12/13. On the other hand, Gβ and Gγ form an obligate heterodimer (Gβγ) 

that modulates transcription, second messenger molecule generation in organelles, chemotaxis and also 

regulates Gα signaling (Khan, Sung, and Hébert 2016).  

GPCRs are flexible proteins that can adopt multiple conformations. In recent years, technological 

advances have allowed the optimization of crystallization techniques for GPCRs, including enhancing 

the expression levels of recombinant GPCRs in host cells, protein engineering and novel purification 

and crystallization protocols (Ghosh et al. 2015). To date, there are over 700 entries of GPCR crystal 

structures spanning over 100 GPCRs registered in the Protein Data Bank (PDB) according to GPCRdb 

(Isberg et al. 2016), most of which are class A GPCR structures in different activation states, and several 

of them bound to heterotrimeric G protein or G protein mimetic nanobodies. Currently, high resolution 

structures are usually obtained experimentally from X-ray crystallography or cryo-electron microscopy 

methods. This has allowed the identification of structural determinants of ligand binding and receptor 

activation. In general, class A GPRCs share a common structure, formed by seven transmembrane (TM) 

helices connected by three extracellular loops (ECL1-3) and three intracellular loops (ICL1-3). The N-

terminus is located in the extracellular side of the membrane, while the C-terminus extends toward the 

intracellular region of the membrane, and generally contains an additional helical region (helix 8) that 

extends parallel to the intracellular leaflet of the membrane. A schematic representation of the structure 

of cannabinoid receptor 1 (CB1), a class A GPCR, is depicted in Figure 1. 
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Figure 1. Diagram of the sequence and structure of cannabinoid receptor 1 (CB1), a class A GPCR. Highlighted 

residues in red: most conserved residues in each TM (x.50); blue: other conserved residues with a well-known 

role on class A GPCR activation; yellow: residues V3.40 and L6.44 from the non-conserved “transmission switch” 

(with L5.50 represented in red as it is also the most conserved residue in the helix). 

Despite low overall sequence conservation across GPCRs (Isberg et al. 2016), GPCR structure is 

highly conserved, and contains several highly conserved residues in each of the TMs. For this reason, 

it is useful to define a particular numeration scheme that allows comparison between different GPCRs. 

For class A GPCRs, it is common practice to include the Ballesteros-Weinstein numeration scheme 

(Ballesteros and Weinstein 1995). This numeration scheme consists of two parts x.yy, where x is the 

number of the TM in which a residue is located, and yy denotes the position of the residue relative to 

the most conserved residue of the TM. The most conserved residue of each TM is arbitrarily denoted 

as x.50, and in class A GPCRs, these residues are conserved as follows (sequence identity indicated in 

brackets): N1.50 (98%), D2.50 (90%), R3.50 (95%), W4.50 (97%), P5.50 (78%), P6.50 (99%) and P7.50 (88%) 

(Isberg et al. 2015). Ballesteros-Weinstein numbering scheme is denoted as a superscript and will be 

included for all residues located in TMs throughout this thesis. The position of such residues in CB1 

are depicted in red in Figure 1. It should be noticed that, given the conservation of GPCR structure, such 

residues are generally located in similar three-dimensional coordinates. Thus, residues that share the 

same Ballesteros-Weinstein numbering scheme can be located easily across different class A GPCRs 

for comparison. 
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1.2. Class A GPCR activation 

The hallmark of class A GPCR activation is a large-scale outward movement of TM6 which is 

essential in order to open a cavity necessary for the binding of signaling proteins. To a lesser extent, 

TM6 outward movement is accompanied by TM5, while other conformational changes that shape the 

binding site of the signaling protein include an upward shift and rotation of TM3, and an inward 

movement of the intracellular region of TM7 (Katritch, Cherezov, and Stevens 2013). These 

conformational changes are accompanied by shifts in so-called microswitches, which are highly 

conserved residues that are commonly associated with receptor activation (Weis and Kobilka 2018; 

Tehan et al. 2014). These microswitches include the D[E]R3.50Y motif in TM3, the NP7.50xxY motif in 

TM7 and the CWxP6.50 motif in TM6. Another microswitch is constituted by the P5.50 I3.40 F6.44 residues, 

which has been denominated the “transmission switch” residues that communicate the orthosteric site 

with the intracellular region of the receptor to activate the receptor. The location of these well-known 

microswitches is also depicted in Figure 1 in blue. In Section 5.1 (Article 1) we examine the large-scale 

conformational changes and the role of these microswitches on the activation mechanism of 

cannabinoid receptor 1 (CB1), except for the P5.50 I3.40 F6.44 “transmission switch” residues. This is 

because none of these residues is conserved in CB1, and instead these residues are L5.50, V3.40 and L6.44 

in CB1, as shown in yellow (V3.40 and L6.44) and in red (L5.50) in Figure 1. 

In crystal structures of G protein-bound class A GPCRs, it can be observed that Gα binds to the 

intracellular surface of receptor, in a cavity formed mainly by residues in TM3, ICL2, TM5, TM6, TM7 

and helix 8 in the active state of the receptor (Carpenter et al. 2017; Rasmussen et al. 2011; Draper-

Joyce et al. 2018; Koehl et al. 2018; Krishna Kumar et al. 2019; Hua et al. 2020). However, the specific 

residues that participate in GPCR-G protein interaction and the orientation of the Gα subunit vary 

depending on the receptor and the Gα subunit. Consequently, the molecular basis for GPCR-G protein 

coupling specificity has not been found, although it has been hypothesized that G protein binding 

specificity is determined at an intermediate state of the formation of the G protein-GPCR complex 

(Krishna Kumar et al. 2019; Koehl et al. 2018) that may be dependent on the degree of the TM6 outward 

movement (Gregorio et al. 2017; Rose et al. 2014). Furthermore, although G proteins have been found 

bound to the active conformation of the receptor in crystal structures, it has been proposed that they 

may also bind to the inactive receptor conformation to promote receptor activation (Mafi, Kim, and 

Goddard 2022). Moreover, G proteins may stabilize active-like conformations of the agonist binding 

site (Renault et al. 2019). 

1.3. GPCR modulation by ligands 

Due to the variety of stimuli and signaling pathways that they are involved in, GPCRs are 

important drug targets. Currently, approximately 33% of marketed drugs target GPCRs (Santos et al. 
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2017). As such, classical approaches in drug design focus on developing small molecules that target the 

same binding site as the endogenous ligand (orthosteric site), by either mimicking the chemical structure 

of the endogenous ligand, using substances existing in nature or by synthesizing new compounds. 

Mathematical models are typically used to fit pharmacological data, and thus allow to obtain parameters 

that are useful to compare and classify the pharmacological properties of those ligands (Roche, Gil, and 

Giraldo 2013). As an example, Figure 2 shows the two-state model of agonism (del Castillo and Katz 

1957) (reviewed in Leff 1995). This model allows to classify orthosteric GPCR ligands by their affinity 

for the receptor (K) and their intrinsic efficacy (α). Ligand affinity (K) refers to the equilibrium 

dissociation constant for the equilibrium between free receptor and ligand-bound receptor, while 

intrinsic efficacy (α) measures the capability of the ligand to shift the equilibrium of conformations 

towards the active state, which translates into stimulating a biological response (α > 1 in case of an 

agonist, α = 1 in case of a neutral antagonist, α < 1 in case of an inverse agonist).  

 

Figure 2. Two-state model of agonism. The receptor is considered in an equilibrium between two states: inactive, 

R and active, R* that can both bind agonist A. Because of the thermodynamic cycle, equilibrium constants are 

determined by only three parameters: K (affinity of ligand A to the inactive receptor), L (propensity of the free 

receptor to form active states, which determines the basal activity of the free receptor) and α (intrinsic efficacy of 

the ligand). K is the equilibrium dissociation constant, defined as K=[A][R]/[AR], and L=[R*]/[R] measures the 

constitutive receptor activity. 

We can see that the model allows us to examine action of ligand A in two ways: (i) comparing 

the horizontal arrows, induction model: the ligand bound-receptor has greater (α  > 1), equal (α  > 1) or 

lower (α < 1 ) capability of activating the receptor than the free receptor itself; (ii) comparing the vertical 

arrows, selection model: the affinity for the receptor active state is greater (α  > 1), equal (α  > 1) or 

lower (α < 1 ) than that for the receptor inactive state.  At saturating concentration, full agonists display 

the maximal response from the receptor, while partial agonists produce a response weaker than the 

maximal response of the system (αpartial agonist < αfull agonist). Neutral antagonists do not affect the activity 

of the receptor (α = 1). Finally, inverse agonists reduce the activity of the receptor below the basal 

activity (α < 1). Concentration-dependent response curves of drugs with different efficacy profiles are 

depicted in Figure 3. Moreover, although not considered by the two-state model of agonism, some 
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ligands display signaling bias, meaning they are capable of stimulating only certain signaling pathways 

(i.e. stimulate G protein binding but not arrestin binding or vice versa), or do so with different efficacy 

(Weis and Kobilka 2018). See Figure 3 for illustration of examples of different GPCR signaling 

pathways. 

 

Figure 3. Different signaling pathways of a GPCR and their regulation, including G proteins (Gs and Gi in 

this case), kinases and arrestins; and drug classification according to their maximal response at saturation 

(efficacy). Taken and adapted from Kobilka 2013. 

The development of drugs that target the orthosteric site has posed several challenges. Due to the 

evolutionary pressure of binding the same endogenous ligand, orthosteric sites are highly conserved in 

GPCR subfamilies and thus it can be difficult to discover or design subtype selective orthosteric ligands 

(Y. Lee, Basith, and Choi 2018; Melancon et al. 2012). Moreover, these ligands do not allow a fine 

tuning of their effects, meaning their effect is always dose-dependent. These limitations have grown the 

interest in the development of allosteric modulators, ligands which bind to alternative, less conserved 

topological binding sites of the receptor (allosteric sites). Allosteric modulators can increase (positive 

allosteric modulator, PAM) or reduce (negative allosteric modulator, NAM) the affinity and/or efficacy 

of orthosteric ligands (Christopoulos and Kenakin 2002). Allosteric modulators can also display 

intrinsic efficacy on their own (ago-allosteric modulators, ago-PAMs) (Schwartz and Holst 2006), or 

increase agonist affinity while reducing their efficacy (PAM-antagonists) (Kenakin and Strachan 2018). 

Allosteric modulators can also bias the functional response towards a particular signaling pathway 
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(biased allosteric modulators, BAMs) (Foster and Conn 2017). Their advantages over orthosteric 

ligands have attracted research of these compounds, and there are several allosteric modulators in 

clinical development (Emmitte 2017; Foster and Conn 2017; Lindsley et al. 2016). 

Mathematical models of the cooperativity between orthosteric and allosteric ligands have also 

been published in the literature (Roche, Gil, and Giraldo 2013). Besides the affinity of the allosteric 

modulator for the free receptor, these models introduce cooperativity factor parameters, which measure 

the mutual effect of ligand binding on the affinity or efficacy of the other ligand. For example, the 

binding cooperativity factor (α, do not mistake with intrinsic efficacy from the two-state model of 

agonism) measures the binding cooperativity between ligands and allow classification between NAMs 

(α < 1), PAMs (α > 1) and silent allosteric modulators or SAMs (α = 1). 

Allosteric modulators may have some advantages over orthosteric ligands (Christopoulos and 

Kenakin 2002; Melancon et al. 2012). First, because the residues at the allosteric sites are not as 

conserved as those at the orthosteric sites, the molecular design of allosteric modulators is not so 

affected by the selectivity limitations between receptor subtypes. Second, allosteric modulators may 

have intrinsic efficacy or not. In the latter case, the functional dependence of allosteric modulators on 

the presence of the endogenous ligand may present temporal and spatial activity advantages over 

orthosteric ligands because they would only affect cells where orthosteric ligands exert their function 

at a physiologically relevant point in time. Moreover, since no effects would be observed in absence of 

orthosteric ligand, allosteric modulators may reduce toxicity and avoid cases of overdose (phenomenon 

known as “ceiling effect”). 

1.4. GPCRs can form oligomers 

The first evidence of GPCR dimerization was shown for gamma-aminobutyric acid (GABA) 

receptors, which form heterodimers (GABAB1-GABAB2) (Kaupmann et al. 1998; Jones et al. 1998). 

GABAB receptors belong to the class C GPCRs, and it is well accepted that class C GPCRs form 

obligate dimers in vivo and are required for receptor function (Kniazeff et al. 2011). On the contrary, 

class A GPCRs are functional as monomers. Although the presence of class A GPCR oligomers has 

been under debate (Lambert and Javitch 2014), there is increasing evidence that class A GPCRs are 

able to form oligomers that display different ligand binding, signaling, trafficking and pharmacological 

properties compared to the monomeric receptor (Bouvier and Hébert 2014; Gaitonde and Gonza 2017). 

As an example, conformational changes in one of the protomers can be transmitted to another, which 

are thus able to modulate ligand affinity and signaling function (Hiller, Kühhorn, and Gmeiner 2013). 

Although oligomers have not been studied in this thesis at the structural level, it is important to consider 
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that changes in the conformational space of monomers may affect the propensity of the receptor to form 

oligomers. 

1.5. GPCRs are allosteric proteins 

Here, we understand allosteric communication as a mechanism by which GPCRs can transmit a 

conformational change when a perturbation is introduced in a different site, far from the region where 

the effect is observed. Allosteric communication between sites can be observed due to the 

conformational flexibility of GPCRs, which can explore a wide range of states. In fact, allosteric 

perturbations can alter the dynamical properties of proteins such as the conformational entropy without 

manifesting structural changes (Tzeng and Kalodimos 2012). In this regard, it has been shown that it is 

important to consider ensembles of protein conformations when studying allosteric communication, as 

allosteric perturbations may change the free energy landscape of allosteric proteins. Thus, the effect of 

allosteric perturbations is a combination of contributions over the full ensemble of conformations of the 

protein, meaning they can alter the probabilities of visiting the states of the ensemble due to their effect 

on their free energy (Motlagh et al. 2014). 

Many different sites capable of allosteric communication can be found in GPCRs. In the sections 

above, several cases of allosteric communication have been presented and are summarized in Figure 4. 

First, an orthosteric ligand can shift the equilibrium of conformations towards particular receptor 

species, which alter their signaling properties. The orthosteric site and the signaling protein binding site 

of GPCRs are generally far from each other, and the resulting conformational change upon agonist 

binding has been observed in crystal structures of class A GPCRs (see Section 1.2). Thus, this 

constitutes an allosteric perturbation transmitted between orthosteric and signaling protein binding site. 

Second, an allosteric ligand can modify the orthosteric ligand affinity and/or efficacy, which would 

ultimately affect the conformational properties of the receptor. Interestingly, native allosteric 

modulators of GPCRs exist such as cholesterol (McGraw et al. 2019; Nguyen and Taub 2003; Hanson 

et al. 2008; Bari et al. 2005) and sodium ions (Katritch et al. 2014). Third, receptor can form oligomers 

that also alter the pharmacological properties of the receptor. Consequently, GPCRs are allosteric 

proteins by nature. In this regard, GPCRs respond to different molecules such as neurotransmitters and 

hormones to promote different signaling pathways. This results in a complex picture on the 

pharmacology of GPCRs, as they can be modulated by orthosteric and allosteric ligands, ions, 

membrane lipids or other proteins such as G protein or other protomers in a receptor oligomer, as well 

as receptor mutations that may be present in disease. 
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Figure 4. Examples of allosteric communication in GPCRs. Communication between: i) orthosteric site 

A and G protein binding site B; ii) orthosteric site A, mutation site (red star) and G protein binding site 

B; iii) orthosteric site A, G protein binding site B and allosteric site C; iv) orthosteric site A and G 

protein binding site B in a receptor dimer. 

1.6. Structural data and Structure-based Drug Design 

High-throughput screening has become one of the standard and universal procedures in drug 

discovery programs since its inception (Pereira and Williams 2007). This approach is based on the assay 

of large collections of molecules (libraries) against selected drug targets. Molecules identified by this 

approach (“hits”) are then used to develop drug leads and, ultimately, potentially viable drug 

compounds. As such, this process can be lengthy and expensive, which is often a consequence of low-

quality composition of compound libraries (MacArron et al. 2011).  

The increasing amount of available structural data has allowed the application of an alternative 

or complementary approach to high-throughput screening called structure-based drug design (SBDD). 

SBDD has emerged as a computational tool that can assist drug discovery programs to identify drug 

candidates using the structural information of the drug target provided by crystal structures and has 

been successfully applied to several drug targets in the past (Anderson 2003; Wlodawer and Vondrasek 

1998; Rutenber and Stroud 1996). The most common methods employed in SBDD consist of molecular 

docking, virtual screening and molecular dynamics (MD) simulations, which allow to characterize 

ligand-receptor interactions and predict conformational changes that occur in the drug target upon 

ligand binding (Batool, Ahmad, and Choi 2019). Collectively, these methods allow the design of ligands 

that contain desired chemical features for pharmacological function or are used to curate large libraries 

of compounds for high-throughput screening. They can also be used to provide insights into their 

mechanisms of function, which then translates into a better understanding when applying SBDD 

methods. The methods employed in this thesis are described in the following sections. 
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1.6.1. Molecular docking 

Molecular docking is a frequently used method to predict the conformation of a molecule within 

the binding site of the target when the molecule has not been co-crystallized with the target. This method 

is based on a scoring system, usually derived from semiempirical parameters and functions. Using this 

scoring system, docking probes the conformational space of ligand-receptor with the aim to minimize 

the free energy of binding for a resulting docking pose, although other approaches to obtain docking 

poses have also been developed (Ferreira et al. 2015; J. Li, Fu, and Zhang 2019). Many docking 

algorithms are currently available. Among them, commonly used software for docking small drug-like 

ligands include Autodock (Morris et al. 2009), GOLD (Verdonk et al. 2003) and Glide (Friesner et al. 

2006). Molecular docking has the benefit of generally being a fast process. However, it has several 

weaknesses (Chen 2015): first, algorithms are designed and optimized for different conditions and thus 

different scores may be found with different algorithms depending on the target; second, the accuracy 

of docking is highly dependent on the reliability of the structure; third, molecular docking is not able to 

discriminate the function of the bound molecule by itself; fourth, minimization of the free energy of 

binding can converge towards a local minimum rather than a global minimum and thus provide a 

suboptimal docking conformation, although this can be partially overcome by starting the 

conformational search from different starting points. Moreover, although there is a general agreement 

between high docking scores and finding drug leads, it should be considered that the highest docking 

scores do not necessarily provide the best drug leads. Thus, molecular docking requires validation by 

other approaches, such as binding experiments or MD simulations. 

1.6.2. Molecular Dynamics simulations 

At high resolution, crystal structures provide an accurate representation of the three-dimensional 

coordinates of proteins, and thus they can offer insights into their mechanisms of biological function. 

However, these structures are only snapshots of highly stabilized conformational states and are 

commonly obtained after modification of the receptor with protein engineering methods. These 

modifications include the use of fusion proteins (which usually involves the removal of ICL3) and 

thermostabilizing mutations (Ghosh et al. 2015). Moreover, the experimental conditions of the 

crystallization process are generally far different from native-like conditions. For this reason, molecular 

dynamics (MD) simulations have emerged as a complementary tool to experimental findings, as they 

allow to model the receptor in native-like conditions and to examine many intermediate or metastable 

conformations, not only low energy conformational states (Torrens-Fontanals et al. 2020). MD 

simulations is a computational method used to analyze the time-dependent physical movement of atoms 

and molecules. Currently, the most employed MD simulation methods in GPCRs use atomistic or 

coarse-grained models, but more detailed Quantum Mechanical (QM) models or more simplified 
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Continuum Electrostatic models can also be employed (Y. Lee, Basith, and Choi 2018). In this thesis, 

we focus on the use of atomistic, Molecular Mechanics (MM) models. In MM models, three-

dimensional coordinates are represented for each atom and are connected to others by means of a 

potential energy function called force field. Then, the motion of each atom is calculated according to 

Newton’s laws of movement. Force fields contain the functions and parameters used to model bonded 

terms (bonds and angles are modeled after a harmonic potential function) and nonbonded terms 

(including van der Waals and Coulombic interactions), which are fitted to reproduce experimental data. 

The most commonly used MM force fields for simulating protein dynamics are AMBER (Case et al. 

2005), CHARMM (J. Huang and MacKerell 2013) and GROMOS (Schuler, Daura, and van Gunsteren 

2001). The potential energy function adopts similar forms in MM force fields. As an example, Equation 

1 shows the form of the potential energy function in CHARMM. 

Equation 1. Potential energy function in CHARMM22, which includes bonded terms: bond stretches (constants 

kb and b0), angles (constants kθ and θ0), dihedrals (constants k𝛷, n and δ), impropers (out of plane bendings, 

constants kω and ω0), Urey-Bradley (cross-term accounting for angle bending, constants ku and u0); and nonbonded 

terms: van der Waals (calculated by 12-6 Lennard-Jones potential, constant Rmin) and electrostatic potential 

(Coulombic potential, constants qi, qj and ε). Constants in this function (parameters) are usually derived or 

adjusted to fit empirical data. 

 

MM approaches are limited by the simplification of the potential energy function, by how their 

parameters are derived, and by the atomistic approach itself. The main limitations of the atomistic 

approach lie in 1) the inability to model chemical reactions because electron potentials are not defined, 

and 2) achievable timescales. Usually, MM allows to study GPCR systems in MD simulations at the 

timescale of microseconds at a practical computational speed in current typical workstations. However, 

GPCR motions can occur at a timescale ranging from fs to ns for side chain movements, µs to ms for 

large-scale conformational changes such as receptor activation, and seconds to minutes for receptor-G 

protein complex formation or dimerization (Vilardaga et al. 2003; Y. Wang et al. 2018; Lohse, 

Maiellaro, and Calebiro 2014). While QM approaches include the definition of electron potentials and 

thus is possible to observe chemical reactions, they are very computationally demanding (Y. Lee, 

Basith, and Choi 2018). On the contrary, coarse-grained models allow to study larger timescales by 

𝑉 =  𝑘𝑏(𝑏 − 𝑏0)
2 +  𝑘𝜃(𝜃 − 𝜃0)

2 +
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 𝑘𝜙 [1 + cos 𝑛𝜙 − 𝛿 ]
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𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑
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considering groups of atoms (e.g. all atoms of a residue) as a single unit, increasing the uncertainty 

(Sengupta et al. 2016). While coarse-grained models are useful in order to study protein-lipid 

interactions (Sengupta et al. 2018) or protein-protein interactions in GPCRs such as those present in 

GPCR-G protein complexes (Alhadeff et al. 2018) or predicting GPCR oligomer interfaces (Altwaijry 

et al. 2017), MM methods are a reasonable compromise between structural accuracy and achievable 

timescales for studying mechanisms of GPCR function at a monomeric level without including G 

protein. 

One of the main advantages of MD simulations is that they allow to easily control the system 

conditions in such a way that additional perturbations can be introduced, i.e. ligand or protein binding, 

receptor mutation or alternative membrane or solute conditions, which might model physiological, 

pathophysiological or pharmacologically relevant conditions. This allows the examination of 

mechanisms of conformational change, which can lay a foundation for SBDD methods described above 

(Y. Lee, Basith, and Choi 2018). 
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OBJECTIVES 

  



 

14 

 

In this thesis we examine examples of allosteric communication between different sites of the 

receptor, including receptor activation, where the orthosteric site and the intracellular site (binding site 

of the signaling protein) communicate, the allosteric effects of mutations in the GPCR activation state 

located at an allosteric modulator binding site, with the aim of understanding the mechanisms of 

allosteric communication at a structural level in order to provide a general framework to facilitate the 

use of SBDD approaches in GPCRs. As a model of class A GPCR, we will focus on cannabinoid 

receptor 1 (CB1). CB1 is a class A GPCR involved in the modulation of pain, mood, behavior and 

appetite, and as such it has received attention as a drug target (Thakur et al. 2009; Pertwee 2005; Janero 

and Makriyannis 2009; Seltzman et al. 2016). Despite some cannabinoid medications are currently 

marketed in the US and EU (Lipnik-Štangelj and Razinger 2020), their development has faced 

difficulties associated to negative side effects (Giraldo 2010). Moreover, selective drugs towards 

homologous CB2 have promising application on the treatment of inflammation and neuropathic pain 

(Lucchesi et al. 2014; Romero-Parra et al. 2016). Thus, understanding the mechanisms of function of 

cannabinoid ligands can be useful for the design of novel molecules or the modification of currently 

known drug leads to improve their pharmacology. 

Objectives 

1. Identify residues involved in agonist-mediated activation of CB1 and key agonist-

receptor interactions. 

2. Evaluate the structural effects of allosteric perturbations introduced in CB1. 

3. Identify key residues involved in the mechanism of allosteric communication between 

orthosteric and allosteric ligand binding sites in CB1. 

4.  Examine mathematical models that include ligand cooperativity parameters at the level 

of the binding kinetics.  

5. Offer perspectives on new computational methods applicable to structure-based drug 

design.  
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OF THE THESIS 
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This thesis is organized as an article compendium, where each article corresponds to at least one 

of the objectives of the thesis. 

First Article: Revealing the mechanism of agonist-mediated cannabinoid receptor 1 (CB1) 

activation and phospholipid-mediated allosteric modulation 

Reference: Díaz, Dalton, and Giraldo 2019b 

In this first article, we examine the mechanism of agonist-mediated activation of CB1, in 

particular, classical cannabinoid AM-11542 and non-classical cannabinoid CP-55940, with the 

objective of identifying key residues involved in the activation process and critical ligand-receptor 

interactions. Moreover, we evaluate allosteric modulation exerted by membrane phospholipid 1,2-

dioleoyl-sn-glycero-3-phosphoglycerol (DOPG), a net negatively charged phospholipid that has been 

shown to promote β2 adrenergic receptor both in experiments (Dawaliby et al. 2015) and in MD 

simulations performed by our research group (Bruzzese et al. 2018). 

Second Article: Evaluating allosteric perturbations in cannabinoid receptor 1 by in silico single-

point mutation 

Reference: Díaz, Renault, and Giraldo 2022 

Following the previous work on CB1, we introduced an additional allosteric perturbation in the 

form of F237L mutation. This mutation has been shown to increase CP-55940 affinity for CB1 while 

F2374.46 was proposed to have a role on the activation process (Shao et al. 2019). This residue is located 

neither at the orthosteric nor G protein binding site, but rather at an allosteric site, where is a contact 

residue for CB1 PAM-antagonist ORG27569 (Shao et al. 2019) and cholesterol (Hua et al. 2017). 

Although this mutation has not been associated to diseases in patients, its mechanism of function can 

provide insights into the mechanism of allosteric modulation by ORG27569, as their proposed effects 

(increase in CP-55940 binding and decrease in receptor signaling) are seemingly analogous. 

Third Article: Allosteric binding cooperativity in a kinetic context  

Reference: Díaz et al. 2023 

In this article, we examine allosterism of GPCRs using a mathematical model in the context of 

the equilibrium rate constants, in particular, the allosteric ternary complex model and a heterodimer 

receptor model. This allowed us to derive a relationship between cooperativity rate constant parameters 
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that supports many values for these parameters for a single binding cooperativity parameter, which is 

relevant in order to explain experimental and computational results.  

Fourth Article: Artificial Intelligence: A Novel Approach for Drug Discovery 

Reference: Díaz, Dalton, and Giraldo 2019a 

As seen by the exponential growth of available crystal structures of GPCRs with an increasing 

variety of co-crystallized ligands with different pharmacological properties, and by the fact that MD 

simulations can generate very large collections of data about the dynamics of GPCRs, novel machine 

learning (ML) methods are being developed to identify molecular determinants associated to the 

pharmacological profile of the bound ligand(s). In this brief spotlight article, we provide an opinion on 

the use of machine learning techniques in drug discovery programs. 

Supporting Information 

The supporting information for the research articles is presented in Appendix 1 and 2.  
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CHAPTER 4. GENERAL 
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4.1. Structure preparation 

The work presented in this thesis is based on publicly available experimentally determined crystal 

structures. Receptor coordinates were obtained from Protein Data Bank (PDB) (rcsb.org) (Berman et 

al. 2000). In general, crystal structures were selected according to their resolution, their activation state 

or due to the co-crystallization of relevant ligands. Then, a receptor model was generated from these 

coordinates. In general, this involves the following steps: 1) removal of fusion protein and co-

crystallized lipids; 2) reverting mutations in the structure to the wt sequence obtained from Uniprot 

database (The UniProt Consortium 2021); 3) modeling missing regions from the crystal structure. 

Missing regions of the receptor (in particular, ICL3 is usually replaced by a fusion protein or not solved 

in crystal structures of GPCRs due to its flexibility) were modeled ab initio using MODELLER (Webb 

and Sali 2014). TM ends were defined according to secondary structure prediction tools PSIPRED 

(Buchan et al. 2010) and JPRED (Drozdetskiy et al. 2015). N- and C-termini were modeled (ab initio) 

only if a short sequence of residues was missing (<10). Otherwise, a truncated receptor was generated. 

In the case of single-point mutant receptor models, the mutation was inserted by replacing the wt residue 

with the highest probability score rotamer of the mutant residue according to Dunbrack rotamer library 

(Shapovalov and Dunbrack 2011). Disulfide bridges, solved in crystal structures of the presented 

models in this study, were maintained in all cases. 

After generating the receptor model, it was energy-minimized in CHIMERA (Pettersen et al. 

2004) in the AMBER14SB force field (Case et al. 2005) using steepest descent (1000 steps) and 

conjugate gradient (100 steps) algorithms (unless otherwise indicated). If co-crystallized ligands were 

not within the interests of the study, their coordinates were removed, generating a free receptor (apo) 

model. Then, in order to introduce a ligand of interest, if that ligand was co-crystallized in any crystal 

structure of the receptor or homologous receptors, they were inserted into the receptor by coordinate 

superposition in CHIMERA. Otherwise, they were docked into the receptor model using AUTODOCK 

(Morris et al. 2009). The docking pose was selected according to the docking score and considering 

experimental data that would indicate critical ligand-receptor interactions, generally in the form of 

mutational data published in the literature. In any case, the model was further energy-minimized as 

described above. 

4.2. Preparation of Molecular Dynamics simulations systems 

The MD simulation systems were built in CHARMM-GUI (Jo et al. 2008). To do this, receptors 

were oriented according to Orientations of Proteins in Membranes (OPM) database (Lomize et al. 2006) 

and embedded in homogeneous membranes composed by 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) unless otherwise indicated, since POPC is the most widely used membrane 

phospholipid in MD simulations of GPCRs (Plazinska, Plazinski, and Jozwiak 2015; Niesen, 



 

21 

 

Bhattacharya, and Vaidehi 2011; Hu et al. 2016; Song et al. 2017; Che et al. 2018; Filipek et al. 2014; 

Pérez-Benito et al. 2017; Robert B. Laprairie et al. 2016; B. Li et al. 2012; Shim, Bertalovitz, and 

Kendall 2011; Dalton, Lans, and Giraldo 2015; Bruzzese et al. 2018). The protonation state of the 

receptor residues at pH 7.4 was predicted using PROPKA (Olsson et al. 2011), but alternative 

protonation states were also considered due to their potential conformational selection properties (Lans, 

Dalton, and Giraldo 2015; Bruzzese et al. 2018). MD systems were solvated using the TIP3P model for 

water molecules and K+ and Cl- ions were used for charge neutralization of the system, generally at a 

0.15 M concentration unless otherwise indicated. The use of Na+ ions was avoided due to potential 

sodium-mediated allosteric modulation (W. Liu et al. 2013; White et al. 2018; Katritch et al. 2014; Tao 

and Abood 1998). 

CHARMM36 force field (or the revised CHARMM36m force field published during the 

development of this thesis) (J. Huang and MacKerell 2013) was selected for performing MD 

simulations in this study due to their extensive use (Song et al. 2017; Jaiteh et al. 2020; X. Liu et al. 

2017; Koehl et al. 2018; Jung, Cho, and Yu 2018; Mafi, Kim, and Goddard 2022; Krishna Kumar et al. 

2019; Shim, Khurana, and Kendall 2016; Miao et al. 2018; Latorraca et al. 2018) and native membrane 

lipid parameters. Parameters for ligands were generated in ParamChem, which derives parameters from 

the CHARMM General Forcefield (CGenFF) (Vanommeslaeghe and MacKerell 2012). Before 

performing MD simulations, energy minimization in the CHARMM36 forcefield was performed with 

position restraints set for all ligand and receptor heavy atoms, allowing membrane lipids, solvent and 

protein and ligand hydrogen atoms to optimize their configuration using conjugate gradient 

minimization algorithm (2000 steps). MD simulations were performed using ACEMD (Harvey, 

Giupponi, and De Fabritiis 2009) at 300 K and 1 atm and were divided into two main stages: 

equilibration and production. During equilibration, MD simulation was run on the NPT ensemble with 

position restraints on protein and ligand heavy atoms progressively released over ~8 ns, after which a 

~20ns step was run without restraints. Then, pressure control was released (Harvey, Giupponi, and De 

Fabritiis 2009) for the production runs. Production runs (at least 2 replicas, but generally 3) were 

simulated without restraints for 1-3 µs each. 

MD trajectories were visually inspected in Visual Molecular Dynamics (VMD) (Humphrey, 

Dalke, and Schulten 1996). The software used for analysis varied depending on the objective of the 

measure. In general, properties were measured using VMD and associated plugins, GROMACS 

(Lindahl, Hess, and van der Spoel 2001) or Bio3D in R (Grant et al. 2006).  

Protein-protein docking was performed to validate the capability of G protein binding to assess 

the presence of active-like receptor conformations. To do this, receptor snapshots were selected and 
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their ICL3 was removed due to its flexibility. G protein coordinates from available crystal structures 

were superimposed to receptor coordinates and then translated 5Å in the Z axis (perpendicular to the 

membrane) away from the receptor to generate a gap. After that, protein-protein docking was performed 

in Rosie web server (Lyskov et al. 2013). The resulting docking positions with highest docking score 

and lower RMSD were visually inspected and compared to available crystal structures of receptor-G 

protein complexes. 
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In this thesis we have examined mechanisms of allosteric communication in GPCRs involving 

allosteric perturbations in order to provide a conceptual framework that includes structural and 

mathematical pieces potentially useful for drug design. The nature of allosteric perturbations is varied 

and can be exerted by ligand binding, receptor mutation, ion concentration, membrane lipids and protein-

protein interactions. We have focused our study on cannabinoid receptor 1 (CB1). 

We first started by identifying key residues involved in the activation mechanism of CB1 (Article 

1). To do this, a model of the inactive state of CB1 was generated from an available crystal structure 

(Shao et al. 2016). To examine the dynamics of the activation process, MD simulations of inactive CB1 

bound to full agonists CP-55940 and AM-11542 were performed. Active-like structures were generated 

during MD simulations, as shown by the outward movement of TM6, conformational change of the 

intracellular region of TM7 and upward axial movement of TM3. The degree of receptor activation was 

validated by comparing those conformations to active crystal structures and by G protein docking. We 

found active-like states at particular MD snapshots, but they were not stable for more than a few 

nanoseconds, possibly due to the absence of G protein in the MD system. Nevertheless, this allowed to 

identify intermediate states and thus propose the role of residues involved in the activation process. In 

general, the residues involved in the activation process can be classified into three groups according to 

their position in the receptor: 

I. Ligand contact residues. These include the W3566.48/F2003.36 double-rotameric switch and 

S3837.39. W3566.48 (from the CWxP motif) and F2003.36 form aromatic stacking interactions in 

the inactive state that are broken in active states. The conformational shifts of W3566.48 (from 

the CWxP motif) and F2003.36 upon activation were described before in CB1 (McAllister et al. 

2004). However, by examining intermediate states in our MD simulations we proposed that 

W3566.48 and F2003.36 form a microswitch in CB1 that acts as a lock for the upward movement 

of TM3. Although the conformational change of W3566.48 might be facilitated by clashes 

between flexible regions of the ligand bound to the inactive state of the receptor (in this case, 

CP-55940 and AM-11542 have a flexible alkyl chain), the shift of W3566.48 was also observed 

in the free receptor. In addition to the W3566.48/F2003.36 double rotameric switch, CP-55940 

forms a hydrogen bond with S3837.39 in TM7. Hydrogen bonds with TM7 residues have been 

associated with agonism in GPCRs (Dalton, Lans, and Giraldo 2015) and S3837.39 is critical for 

CP-55940 binding and function (Kapur et al. 2007). We proposed that the stability of this 

hydrogen bond mediates conformational changes in TM7 that lead to the approach between 

residues at the core of TM7 and TM3 with consequent outward movement of TM6 and 

rearrangement of an internal water network at the receptor core.  
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II. Core residues. At the receptor core, we observed the uncoupling of hydrophobic residues of 

TM3 and TM6, together with the approach of TM7 towards TM3. This involves the 

rearrangement of an internal water network that connects polar core residues D1632.50, S3907.46, 

S2033.39 to intracellular residues such as N3937.49 and Y3977.53 from the NPxxY motif. This 

suggests that the hydrogen bond between CP-55940 and S3837.39 mediates TM7 conformational 

change through a network of interactions that communicates TM2, TM3 and TM7. 

III. Intracellular residues. Conformational changes observed in the intracellular side of the 

receptor are consistent with the opening of the G protein binding cavity, which includes outward 

movement of TM6 with consequent separation of ionic lock residues R2143.50 (from the DRY 

motif) and D3386.30, and shift of Y3977.53 from the NPxxY motif towards Y2945.58.  

The large-scale conformational changes observed upon activation of CB1 are in agreement with 

the known mechanism of activation of class A GPCRs (Weis and Kobilka 2018; Katritch, Cherezov, and 

Stevens 2013; Tehan et al. 2014). However, the PIF residues of the “transmission switch”, which have 

been proposed to play the role of transmitting conformational changes between orthosteric site and core 

of the receptor in other class A GPCRs, are not conserved in CB1. It should be noticed that these 

described conformational changes have been widely studied for class A GPCRs, but they are not 

universal across all GPCR classes. For example, work published in our laboratory found differences in 

the activation mechanism between class A and class C GPCRs (Dalton, Pin, and Giraldo 2017; Lans et 

al. 2020) where outward movement of TM6 was not necessary to achieve active-like states. This proposal 

was later validated by the crystallization of metabotropic glutamate receptor 2 and 4 (class C GPCRs) in 

their active conformation bound to G protein (Lin et al. 2021; Seven et al. 2021). 

Interestingly, conformational changes in the microswitches did not always proceed towards 

receptor activation. As an example, shifts in the W3566.48/F2003.36 double rotameric switch were 

observed in the free receptor despite not leading towards active-like conformations. This is likely due to 

the intrinsic conformational flexibility of the receptor, and is a key concept of conformational selection 

(Van Eps et al. 2018; Schafer and Farrens 2015; Niesen, Bhattacharya, and Vaidehi 2011), a widely 

studied category of mechanisms of protein function. Conformational selection implies the presence of 

different receptor conformations in the ensemble that the agonist binds selectively and thus redistributes 

the population of conformations at the equilibrium. On the contrary, the fact that transition from the 

inactive to active-like states was only observed when the agonist was bound to the receptor would 

support an induced fit mechanism, by which the agonist binds to the inactive state of the receptor and 

triggers receptor activation. In the two-state model of agonism (Equation 1), conformational selection is 

represented by an agonist-mediated shift in the vertical chemical equilibria (agonist A stabilizes active 



 

72 

 

AR* by binding selectively to active R*), while induced fit is represented by the agonist-mediated shift 

in the horizontal chemical equilibria (agonist A increases the propensity of forming active AR* relative 

to inactive AR) (Giraldo 2004). Our MD simulations suggest that both mechanisms may coexist. Further 

studies are needed to evaluate the importance of one mechanism over the other, which has been a subject 

of debate (Redhair and Atkins 2021), but we hypothesize that GPCR mechanism of activation is 

promiscuous, and the propensity of one over the other may depend on the specific ligand and receptor. 

Despite agreement in the observed conformational changes in the microswitches and large-scale motion 

of TM6, attributing a unique time-sequence of structural changes was not possible from the MD 

trajectories. Instead, we interpret the conformational changes that lead towards activation of the receptor 

as a collective rearrangement that may follow a multitude of pathways with variable probabilities 

depending on the receptor and the bound ligand. This is consistent with the notion that allosteric 

communication has been selected in evolution in such a way to confer robustness to the signaling process 

of proteins (Buchenberg, Sittel, and Stock 2017), and is further supported by NMR experiments that 

show many intermediate conformations exist in the ensemble of conformations of CB1, described as an 

equilibrium between at least four states (apo, pre-active, active-like and active) that can be modulated 

by ligands (X. Wang et al. 2021). 

Observing the transition from inactive to active-like states of CB1 allowed to perform further 

studies on this receptor by introducing additional perturbations. First, we evaluated the effect of a 

different membrane phospholipid on the activation process, in this case DOPG. DOPG is a net-

negatively charged phospholipid that has been previously described to promote receptor activation in 

homologous class A GPCRs (Dawaliby et al. 2015; Neale et al. 2015) through charge-charge interaction 

with positively charged residues can be found in other class A GPCRs such as CB1. In our MD 

simulations, interactions with ICL3 were stably present in MD simulations of CB1 in membranes 

composed of DOPG, but not in membranes composed of net neutral phospholipid POPC, and have been 

proposed to provide an additional “pull” that favors outward movement of TM6 (Bruzzese et al. 2018). 

This effect was reflected in the higher frequency of outward conformations of TM6 and in the increased 

stability of full agonist CP-55940 bound to CB1, which indicates higher stabilization of active-like states. 

Thus, membrane composition can alter CB1 conformational space and as such, its function might be 

differentially modulated in different cell types or in regions of the membrane with different membrane 

composition. One of such regions of the membrane is lipid rafts, where cholesterol is a highly abundant 

lipid. There is evidence that suggests cholesterol behaves as a NAM for CB1 (Bari et al. 2005), and that 

cholesterol can bind to CB1 in an allosteric pocket that partially overlaps the binding site of CB1 

allosteric modulator ORG27569 (Hua et al. 2017; Shao et al. 2019). Thus, this site in CB1 appears to be 

sensitive to allosteric perturbations. 
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We studied the effect of allosteric perturbations in this site by introducing single point F237L 

mutation (Article 2). This mutation has been shown to increase CP-55940 binding and it has been 

proposed that F2374.46 has a role in the activation process (Shao et al. 2019). Moreover, F2374.46 is located 

far from the orthosteric site and the G protein binding site, in a cavity formed by TM2, TM3 and TM4, 

where it is a contact residue for CB1 allosteric modulator ORG27569. Consequently, it is likely that 

F2374.46 is involved in the mechanism of ORG27569 allosteric modulation. Thus, we examined the effect 

of F237L mutation in the context of an allosteric perturbation using the same approach as we did when 

observing the CP-55940-mediated activation mechanism of CB1. We observed impaired outward 

movement of TM6 and TM7 conformational change in MD simulations of F237L CB1 compared to wt 

CB1 with bound CP-55940, which supported the concept that allosteric perturbations have a global effect 

on the conformational properties of the receptor. Indeed, many residues located in distant regions were 

affected by F237L mutation. Moreover, we highlighted residues D1632.50, Y2945.58, S3907.46 and L3496.41 

as key residues that have a role in the collective dynamics of CB1 and are affected by F237L mutation. 

This is in agreement with the core and intracellular residues identified in Article 1 as key residues for 

CB1 activation. 

Among the methods employed in SBDD, MD simulations stand out as they can describe the 

dynamical behavior that is intrinsic in the field of allosteric modulation. Many efforts have been directed 

towards the characterization of the pharmacological profiles of ligands from MD trajectories, including 

their affinity (Lagarias et al. 2018; Y. Lee, Basith, and Choi 2018; Miller et al. 2012) and efficacy (Jung, 

Cho, and Yu 2018; Ricarte, Dalton, and Giraldo 2021). Given the technological advances in the last few 

decades in the field of computation, more sophisticated simulation methods are being developed 

(Limongelli, Bonomi, and Parrinello 2013). These methods would allow more precise estimations of 

pharmacological parameters such as ligand affinity, and thus optimize virtual screening techniques or de 

novo drug design. Unsurprisingly, because their capability of observing mechanistic aspects of 

physiological and pharmacological processes, as shown in Articles 1 and 2, MD simulation methods 

have also been applied to the estimation of kinetic parameters of drugs (S. Huang et al. 2020). In this 

context, we highlight the importance of the kinetics of allosteric modulation when studying MD 

simulations starting from a receptor bound to both an orthosteric and an allosteric ligand.  

In Article 3, we show that an allosteric ligand may increase or decrease the residence time of the 

orthosteric ligand and vice versa, regardless of positive or negative binding cooperativity. For example, 

a PAM may increase the dissociation rate constant of an orthosteric agonist (decreasing residence time) 

while still exerting positive binding cooperativity. In other words, two ligands A (orthosteric) and B 

(allosteric) can have opposite effects on the binding kinetics of the other for a single binding 

cooperativity. This is due to the found equation α+/α-=β+/β-, where α+ and β+ are the cooperativity rate 
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constant parameters of association and α- and β- are the cooperativity rate constant parameters of 

dissociation for ligands A and B, which is derived from the relationship between rate constants of the 

equilibrium (k-1k+4)/(k+1k-4) = (k-2k+3)/(k+2k-3). This is in contrast with the binding cooperativity 

parameter α = β, which is mutual, and derived from the relationship between equilibrium binding 

constants K1/K4 = K2/K3. Furthermore, the found equations are equivalent for a receptor heterodimer, 

where ligands A and B are both orthosteric ligands of a receptor heterodimer R1R2. Consequently, the 

effects of allosteric communication on the binding rate constants can alter the efficacy and potency of a 

ligand, which may be exerted through increasing or decreasing residence time. As such, careful 

interpretation of equilibrium parameters derived from MD simulations is required, especially when the 

timescale of the simulation is smaller than that required to obtain equilibrium conditions, which is 

common in current state of the art atomistic MD simulations of GPCRs.  

In recent years, the field of GPCRs has experimented a series of breakthroughs due to the growth 

of publicly available databases, ranging from static crystal structures deposited in databases such as the 

Protein Data Bank (Berman et al. 2000) and structural alignment, drug and signaling protein binding 

databases such as GPCRdb (Isberg et al. 2016) and, more recently, databases for MD trajectories of 

GPCRs such as GPCRmd (Rodríguez-Espigares et al. 2020). The large amount of data opens the door 

for the use of machine learning (ML) and artificial intelligence (AI) methods for drug discovery, a field 

that has grown exponentially in recent years. Currently, this field includes promising applications such 

as accurate prediction of protein structure (Jumper et al. 2021; C. Lee, Su, and Tseng 2022), drug binding 

sites (Kandel, Tayara, and Chong 2021; Kozlovskii and Popov 2020) and exploration of the chemical 

space for novel drug discovery (Maragakis et al. 2020). ML methods have also been applied with the 

aim of analyzing MD trajectories (Plante et al. 2019; Noé 2018; Noé et al. 2020), but also for the 

development of force fields with faster algorithms (Doerr et al. 2021), which allows to increase the 

accuracy and/or achievable timescales of MD simulations. A perspective on the use of ML methods for 

the analysis was discussed in Article 4, and we expect these methods to grow with the availability of 

public databases and computational resources. 
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In this thesis, we have identified key residues that affect the structural dynamics of CB1. As such, 

it is important to examine the behavior of those residues when applying structure-based drug design 

methods. We have limited our approach to the classical cannabinoid AM-11542 and non-classical 

cannabinoid analog CP-55940, which are both agonists that share a similar structural scaffold. It would 

be interesting to evaluate the dynamical behavior of these residues in presence of an inverse agonist or 

a chemically different agonist to examine how these residues are affected and/or identifying common 

residues involved in the signaling process. Indeed, crystal structures of CB1 bound to diverse ligands 

are available, which provide accurate coordinates to facilitate this endeavor. These include crystal 

structures of CB1 bound to agonists CP-55940 (X. Wang et al. 2021), MDMB-Fubinaca (Krishna Kumar 

et al. 2019) and THC analogues AM841 (Hua et al. 2020; 2017) and AM11542 (Hua et al. 2017); 

antagonist AM6538 (Hua et al. 2016) and inverse agonist taranabant (Shao et al. 2016). Moreover, there 

are crystal structures of homologous CB2 available bound to antagonist AM10257 (X. Li et al. 2019), 

THC-like agonist AM12033 (Hua et al. 2020) and CB1/CB2 agonist WIN55,212-2 (Xing et al. 2020). 

In a similar manner, it would be interesting to examine how allosteric modulators affect the behavior of 

key residues for the dynamics of CB1. In this regard, there is a crystal structure of CB1 bound to ago-

PAM ORG27569 (Shao et al. 2019) and a more recent crystal structure of CB1 bound to PAM ZCZ-011 

published (Yang et al. 2022), which may provide insights into the allosteric modulation of CB1. 

The structural determinants of efficacy and subtype receptor selectivity remain to be well 

understood. For this thesis it is relevant to consider ligand selectivity towards CB1 or CB2, as selective 

CB2 drug targets have been facing challenges in their development due to their lack of efficacy and/or 

CB1-mediated effects resulting from low CB2 selectivity (Bow and Rimoldi 2016). In this regard, 

ligands with intriguing pharmacology in that they are CB1 antagonists but CB2 agonist (Dhopeshwarkar 

et al. 2016) may be helpful for the identification of determinant chemical features of efficacy and 

selectivity. On the other hand, allosteric modulators may present a more practical solution to receptor 

subtype selectivity, as allosteric sites are generally less conserved. Among allosteric modulators of CB1, 

ORG27569 has an interesting pharmacological profile in that of a PAM-antagonist (Ahn, Mahmoud, and 

Kendall 2012; Shao et al. 2019), but insights into the allosteric modulation of CB1 may be gained from 

studying others (see Kulkarni et al. 2017 for a review of different CB1 allosteric modulators). As an 

example, cannabidiol is a non-psychoactive compound that is currently marketed as a blend of Δ9-

tetrahydrocannabinol/cannabidiol (Sativex® (Keating 2017)) and is a NAM with estimated affinity of 

302 nM for CB1 (R B Laprairie et al. 2015). The new crystal structures of CB1 bound to allosteric 

modulators (Shao et al. 2019; Yang et al. 2022) and the crystallization of CB2 (X. Li et al. 2019; Hua et 

al. 2020; Xing et al. 2020) may assist in the design of further studies directed on improving the 

pharmacology of CB1 and CB2 allosteric modulators. As an example, understanding the molecular 
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determinants for efficacy and selectivity is critical for the curation of large libraries of compounds by 

structure-based virtual screening, which is a typical computational method employed to select potential 

candidates for biological assays (Ripphausen, Nisius, and Bajorath 2011; Ferreira et al. 2015). 

In addition to performing MD simulations to understand CB1 allosterism under different 

conditions, we have developed a mathematical modeling approach under a kinetic perspective. Our aim 

was to set the basis of a mathematical framework in which relevant data from MD simulations could be 

later included. This mathematical approach is being further developed in our laboratory by solving the 

ordinary differential equations associated to the time-dependent models. Moreover, to connect MD 

simulations with time-dependent mathematical modeling, reliable parameter estimation is needed. To 

this end, we expect that the next future MD simulations will deliver more accurate estimates of the 

energy barriers associated to ligand-receptor interactions. These energies could be used to simulate the 

effects on the variation of the values of the rate constants included in the mathematical models. It is 

worth noting, that the mathematical models shown in (Ó. Díaz et al. 2023) can give a mechanistic 

explanation to the widely applied drug combination therapy. The fact that the combination of drugs A 

and B, with particular concentrations, may result in a better treatment than that coming from doubling 

the concentration of A or doubling the concentration of B can be explained by the synergistic effects 

resulting from the crosstalk between the physically interacting protomers in a heterodimer or by those 

resulting from the crosstalk between downstream signaling pathways. The former explanation was 

developed in (Zhou and Giraldo 2018; Ó. Díaz et al. 2023), the latter is currently being developed in our 

group. 

In the longer term, our binding kinetics models might be integrated within the pharmacodynamics 

part of a pharmacodynamics/pharmacokinetics (PK/PD) generalized model aimed to provide a 

mechanistic framework for different medical treatments, in particular, drug combination therapy. For 

example, in an attempt to understand GPCR biology by complementary mathematical and biophysical 

methods, our mathematical modeling for receptor heteromerization is performed in parallel with coarse-

grained MD simulations of the self-assembly of two different protomers. These studies are expected to 

identify the optimal interfaces between the two protomers in the heterodimer and, thus, provide the right 

model for subsequent all-atom MD simulations of heterodimers including different combinations of 

drugs (none, A, B, or A and B, in which A binds protomer 1 and B binds protomer B) for which 

allosterism can be studied at the atomic level. 

We expect that these molecular and mathematical studies may help a better understanding of 

GPCR complexity and, consequently, be useful for a mechanism-based drug discovery and 

mechanistically explained drug therapies. 
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