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Abstract

The curse of data labeling is a costly bottleneck in supervised deep learning, where
large amounts of labeled data are needed to train intelligent systems. In onboard
perception for autonomous driving, this cost corresponds to the labeling of raw data
from sensors such as cameras, LiDARs, RADARs, etc. Therefore, synthetic data with
automatically generated ground truth (labels) has aroused as a reliable alternative
for training onboard perception models. However, synthetic data commonly suffers
from synth-to-real domain shift, i.e., models trained on the synthetic domain do not
show their achievable accuracy when performing in the real world. This shift needs
to be addressed by techniques falling in the realm of domain adaptation (DA).

The semi-supervised learning (SSL) paradigm can be followed to address DA.
In this case, a model is trained using source data with labels (here synthetic) and
leverages minimal knowledge from target data (here the real world) to generate
pseudo-labels. These pseudo-labels help the training process to reduce the gap
between the source and the target domains. In general, we can assume accessing
both, pseudo-labels and a few amounts of human-provided labels for the target-
domain data. However, the most interesting and challenging setting consists in
assuming that we do not have human-provided labels at all. This setting is known
as unsupervised domain adaptation (UDA). This PhD focuses on applying SSL to
the UDA setting, for onboard visual tasks related to autonomous driving.

We start by addressing the synth-to-real UDA problem on onboard vision-based
object detection (pedestrians and cars), a critical task for autonomous driving and
driving assistance. In particular, we propose to apply an SSL technique known as
co-training, which we adapt to work with deep models that process a multi-modal
input. The multi-modality consists of the visual appearance of the images (RGB)
and their monocular depth estimation. The synthetic data we use as the source
domain contains both, object bounding boxes and depth information. This prior
knowledge is the starting point for the co-training technique, which iteratively labels
unlabeled real-world data and uses such pseudo-labels (here bounding boxes with
an assigned object class) to progressively improve the labeling results. Along this
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process, two models collaborate to automatically label the images, in a way that one
model compensates for the errors of the other, so avoiding error drift. While this
automatic labeling process is done offline, the resulting pseudo-labels can be used
to train object detection models that must perform in real-time onboard a vehicle.
We show that multi-modal co-training improves the labeling results compared to
single-modal co-training, remaining competitive compared to human labeling.

Given the success of co-training in the context of object detection, we have
also adapted this technique to a more crucial and challenging visual task, namely,
onboard semantic segmentation. In fact, providing labels for a single image can
take from 30 to 90 minutes for a human labeler, depending on the content of the
image. Thus, developing automatic labeling techniques for this visual task is of great
interest to the automotive industry. In particular, the new co-training framework
addresses synth-to-real UDA by an initial stage of self-training. Intermediate models
arising from this stage are used to start the co-training procedure, for which we have
elaborate an accurate collaboration policy between the two models performing the
automatic labeling. Moreover, our co-training seamlessly leverages datasets from
different synthetic domains. In addition, the co-training procedure is agnostic to
the loss function used to train the semantic segmentation models which perform
the automatic labeling. We achieve state-of-the-art results on publicly available
benchmark datasets, again, remaining competitive compared to human labeling.

Finally, on the ground of our previous experience, we have designed and im-
plemented a new SSL technique for UDA in the context of visual semantic seg-
mentation. In this case, we mimic the labeling methodology followed by human
labelers. In particular, rather than labeling full images at a time, categories of se-
mantic classes are defined and only those are labeled in a labeling pass. In fact,
different human labelers can become specialists in labeling different categories.
Afterward, these per-category-labeled layers are combined to provide fully labeled
images. Our technique is inspired by this methodology since we perform synth-to-
real UDA per category, using the self-training stage previously developed as part of
our co-training framework. The pseudo-labels obtained for each category are finally
fused to obtain fully automatically labeled images. In this context, we have also
contributed to the development of a new photo-realistic synthetic dataset based
on path-tracing rendering. Our new SSL technique seamlessly leverages publicly
available synthetic datasets as well as this new one to obtain state-of-the-art results
on synth-to-real UDA for semantic segmentation. We show that the new dataset
allows us to reach better labeling accuracy than previously existing datasets, at the
same time that it complements well them when combined. Moreover, we also show
that the new human-inspired SSL technique outperforms co-training.



Resumen

El etiquetado de datos supone un cuello de botella en el aprendizaje profundo
supervisado, donde grandes cantidades de datos etiquetados son necesarios para
entrenar sistemas inteligentes. En percepcion aplicada a la conduccién auténoma,
este coste corresponde a etiquetar datos sin tratar procedentes de sensores como
camaras, LiDARs, RADARSs, etc. En consecuencia, los datos sintéticos con etiquetas
generadas automdticamente han surgido como alternativa para entrenar modelos
de percepcién. Sin embargo, los datos sintéticos sufren comtinmente de discrepan-
cias de dominio entre datos sintéticos y reales. Estas discrepancias necesitan ser
abordadas por técnicas presentes en el &mbito de la adaptacién de dominio (DA).

El paradigma del aprendizaje semi-supervisado (SSL) puede ser usado para
resolver DA. En este caso, un modelo es entrenado usando datos de partida eti-
quetados (en nuestro caso datos sintéticos) y aprovecha el minimo conocimiento
posible de los datos objetivo (en nuestro caso datos reales) para generar pseudo-
etiquetas. Estas pseudo-etiquetas ayudan al proceso de entrenamiento reduciendo
la distancia entre los dominios sintético y real. En general, podemos asumir el
acceso a ambos, tanto a pseudo-etiquetas como a pequefias cantidades de datos
objetivo anotados por humanos. Sin embargo, el escenario mds interesante y desa-
fiante consiste en asumir que no tenemos acceso a etiqueta humana alguna. Este
escenario es conocido como adaptacién de dominio sin supervisién (UDA). Esta te-
sis se centra en aplicar SSL en UDA para tareas visuales destinadas a la conduccién
autéonoma.

Empezamos abordando el problema de sintético a real en UDA para deteccién
de objetos (peatones y coches) en sistema de visién a bordo, que es una tarea cri-
tica en conduccién auténoma y sistemas de conduccién asistida. En particular,
proponemos la aplicacién de una técnica de SSL conocida como co-training (entre-
namiento cooperativo), el cual adaptamos para trabajar con modelos profundos
que procesan datos de entrada multi-modo. La multi-modalidad consiste en la
apariencia visual de imdgenes (RGB) y su estimacién monocular de profundidad.
Los datos sintéticos que usamos como dominio de origen contienen ambos, infor-
macién de profundidad y anotaciones de objetos encuadrados. Este conocimiento
a priori es el punto de partida de la técnica de co-training, que iterativamente
etiqueta datos reales sin etiquetar (pseudo-etiquetas) y las usa (en este caso cua-
driculas alrededor de objetos con clase asignada) para progresivamente mejorar el
resultado del etiquetado. A lo largo de este proceso, dos modelos colaboran para
etiquetar automaticamente las imégenes, de modo que un modelo compensa las



carencias del otro y viceversa, evitando propagacion de errores. Mientras que este
proceso automatico de etiquetado no se hace en caliente, las pseudo-etiquetas
resultantes pueden ser usadas para entrenar modelos de deteccién de objetos que
rinden a tiempo real a bordo de un vehiculo. Ademads, mostramos que el co-training
multi-modo mejora la etiquetacién en comparacion al modo tnico (solo una vista
RGB), manteniéndose competitivo con la etiquetacién por humanos.

Debido al éxito del co-training en deteccién de objetos, también hemos adapta-
do esta técnica a una tarea visual mads crucial y desafiante, llamada segmentacién
semdntica. De hecho, etiquetar una sola imagen puede llevar de 30 a 90 minutos
para un anotador humano, dependiendo del contenido de la imagen. Por este mo-
tivo, desarrollar técnicas de etiquetado automatizado para tareas visuales es de
gran interés para la industria automovilistica. En particular, el nuevo framework
de co-training aborda sintético a real en UDA mediante una fase inicial de auto
etiquetado. Modelos intermedios son creados a partir de esta fase que se utilizan
para empezar el proceso de co-training, para el cual hemos elaborado una politi-
ca de colaboracién entre los dos modelos que realizan el etiquetado automatico.
Nuestro método de co-training aprovecha perfectamente datasets de diferentes
dominios sintéticos. Ademads, este método es agnostico a la funcion de coste usa-
da para entrenar modelos de segmentacion semdntica que realizan la anotacion
automdticamente. Finalmente, mostramos que conseguimos el estado del arte en
datasets disponibles ptiblicamente y seguimos mostrando que nos mantenemos
competitivos con el etiquetado humano.

Finalmente, con la experiencia obtenida previamente, hemos disenado e im-
plementado un nuevo método de SSL para UDA en el contexto de la segmentacién
semadntica. En este caso, imitamos la metodologia de etiquetado que utilizaria un
humano. En particular, en vez de etiquetar toda la imagen de golpe, definimos
categorias de clases semdnticas y solo estas son etiquetadas de una pasada. De
hecho, diferentes etiquetadores humanos se pueden convertir en especialistas para
etiquetar diferentes categorias. A continuacidn, estas capas etiquetadas son com-
binadas para obtener una etiquetacioén global de las imdgenes. Nuestra técnica se
inspira en esta metodologia debido a que aplicamos el marco de sintético a real en
UDA a cada categoria, usando la etapa del self-training previamente desarrollada
como parte de nuestro framework de co-training. Las pseudo-etiquetas obtenidas
para cada categoria son finalmente fusionadas para obtener automaticamente la
imagen totalmente etiquetada. En este contexto, también hemos contribuido al
desarrollo de un nuevo dataset foto-realista de imagenes sintéticas renderizado con
path-tracing. Nuestro nuevo método de SSL aprovecha perfectamente datasets sin-
téticos disponibles ptiiblicamente junto al nuestro para obtener el estado del arte en



resultados para UDA de sintético a real para segmentacién semdntica. Mostramos
que nuestro nuevo dataset nos permite alcanzar mejor precisién en el etiquetado
que con previos datasets existentes, al mismo tiempo que los complementa ade-
cuadamente cuando los combinamos. Ademads, también demostramos que nuestra
nueva técnica SSL inspirada en humanos supera al co-training.
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Resum

Letiquetatge de dades suposa una limitacié en 'aprenentatge profund supervisat,
on grans quantitats de dades etiquetades s6n necessaries per entrenar sistemes
intel-ligents. En percepci6 aplicada a la conduccié autonoma, aquest cost corres-
pon a etiquetar dades sense tractar procedents de sensors com cameres, LiDARS,
RADARs, etc. En conseqiiéncia, les dades sintetiques amb etiquetes generades
automaticament han sorgit com a alternativa per entrenar models de percepci6.
No obstant aix0, les dades sintétiques pateixen habitualment de discrepancies
de domini entre dades sintetiques i reals. Aquestes discrepancies necessiten ser
abordades per técniques presents en ’ambit de '’adaptaci6é de domini (DA).

El paradigma de I'aprenentatge semisupervisat (SSL) pot ser utilitzat per resol-
dre DA. En aquest cas, un model és entrenat usant dades d’inici etiquetades (en
el nostre cas dades sintetiques) i aprofita el minim coneixement possible de les
dades objectiu (en el nostre cas dades reals) per generar pseudo-etiquetes. Aques-
tes pseudo-etiquetes ajuden al procés d’entrenament reduint la distancia entre els
dominis sintetic i real. En general, podem assumir 'accés ambdés, tant a pseudo-
etiquetes com a petites quantitats de dades objectiu etiquetades per humans. No
obstant aix0, 'escenari més interessant i desafiant consisteix a assumir que no
tenim accés a cap etiqueta humana. Aquest escenari és conegut com a adaptacio
de domini sense supervisié (UDA). Aquesta tesi se centra a aplicar SSL en UDA per
tasques visuals destinades a la conduccié autonoma.

Comencem adrecant el problema de sintetic a real en UDA per detecci6 d’ ob-
jectes (vianants i cotxes) en sistemes de visi6 a bord, que és una tasca critica en
conduccié autonoma i sistemes de conducci6 assistida. En particular, proposem
I'aplicacié d'una tecnica de SSL coneguda com a co-training (entrenament coope-
ratiu), el qual adaptem per treballar amb models profunds que processen dades
d’entrada multimode, La multimodalitat consisteix en I'aparenca visual d’'imatges
(RGB) i I'estimacié monocular de profunditat. Les dades sintetiques que utilitzem
com a domini d’origen contenen ambdés, informaci6 de profunditat i etiquetes
d’objectes enquadrats. Aquest coneixement previ és el punt d’inici de la tecnica
de co-training, que iterativament etiqueta dades reals sense etiquetar (pseudo-
etiquetes) i les utilitza (en aquest cas quadricules al voltant d’objectes amb classe
assignada) progressivament per millorar el resultat de |'etiquetatge. Durant el trans-
curs d’aquest procés, dos models col-laboren per etiquetar automaticament les
imatges, de mode que un model compensa les caréncies de 'altre i al revés, evitant
propagaci6 d’errors. Mentre que aquest procés automatic d’etiquetatge no es fa en
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calent, les pseudo-etiquetes resultants poden ser utilitzades per entrenar models
de deteccié d’objectes que rendeixen a temps real a bord d'un vehicle. A més a
més, mostrem que el co-training multi-mode millora I'etiquetaci6é en comparaci6
al mode tnic (només vista RGB), mantenint-se competitiu amb I'etiquetacio6 per
humans.

Gracies a l’exit del co-training en detecci6 d’objectes, també hem adaptat aques-
ta técnica a una tasca visual més crucial i desafiant, anomenada segmentaci6
semantica. De fet, un huma pot trigar a etiquetar una sola imatge de 30 a 90 minuts,
depenent del contingut d’aquesta. Per aquest motiu, desenvolupar técniques d’eti-
quetatge automatitzat per a tasques visuals és de gran rellevancia per a la indtstria
automobilistica. En particular, el nou framework de co-training adreca sintetic a
real en UDA per mitja d'una fase inicial d’auto etiquetatge. Models intermedis s6n
creats a partir d’aquesta fase que s’utilitza per comencar el procés de co-training, pel
qual hem elaborat una politica de col-laboraci6 entre tots dos models que realitzen
I'etiquetatge automatic. A més a més, aquest metode és agnostic a la funcié de cost
utilitzada per entrenar models de segmentaci6 semantica que realitzen etiquetatges
automaticament. Finalment, mostrem que aconseguim I'estat de I'art en datasets
disponibles ptiiblicament i seguim mostrant que ens mantenim competitius amb
l'etiquetatge huma.

Finalment, amb I'experiencia obtinguda préviament, hem dissenyat i imple-
mentat un nou metode de SSL per UDA en el context de la segmentaci6 semantica.
En aquest cas, imitem la metodologia d’etiquetatge que faria servir un huma. En
particular, en comptes d’etiquetar tota la imatge de cop, definim categories de
classes semantiques i tan sols etiquetem aquestes d'una passada. De fet, diferent
etiquetadors humans es poden convertir en experts per etiquetar diferents cate-
gories. A continuaci6, aquestes capes etiquetades sén combinades per assolir un
etiquetatge global de les imatges. Aquesta tecnica s’inspira en aquesta metodologia
perque apliquem UDA en el marc de sintétic a real a cada categoria, utilitzant I'e-
tapa de self-training préviament desenvolupada com a part del nostre framework
de co-training. Les pseudo-etiquetes obtingudes per cada categoria sén finalment
fusionades per obtenir automaticament la imatge totalment etiquetada. En aquest
context, també hem contribuit al desenvolupament d'un nou dataset foto-realista
d’imatges sintetiques renderitzades amb path-tracing. El nostre méetode de SSL
aprofita perfectament datasets sintetics disponibles ptiblicament junts al nostre,
per assolir 'estat de 'art en resultats en UDA de sintétic a real per segmentacio
semantica. Mostrem que el nostre nou dataset ens permet assolir millor precisié
en l'etiquetatge que amb previs datasets existents, al mateix temps que els comple-
menta adequadament quan els combinem. A més a més, també demostrem que la



nostra nova técnica de SSL inspirada en humans supera al co-training.
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|8 Introduction

Since the industrial revolution, humanity advanced technologically from baby steps
to giant strides. The mechanization introduced to alleviate hand labor and improve
production processes was propagated to our daily lives affecting transportation,
sanitation, housing, etc. Furthermore, the digital revolution was the milestone
that allowed us to start automatizing tasks effectively in every aspect of our lives.
The most iconic tool created to automatize tasks was the computer. Computers
allow us to solve complex problems which would be impossible to solve by hand
with a reasonable effort and in a reasonable time. In addition, with electronic
sensors, we can parameterize the inputs required by a computer to automatize
tasks. Since the introduction of the first computers and sensors to nowadays, the
improvements are astonishing. In the beginning, entire rooms were required by
computers to execute basic tasks. Advances in manufacturing electronics enabled
reducing computer size while increasing their performance. These improvements
opened new doors in every aspect of our lives, from our houses (air conditioning,
smartphones, televisions, etc) to our work (industrial manufacturing, administrative
procedures, etc).

It is not surprising that with the irruption of computers in our society, a branch
dedicated to the study of their applications and development was created. We refer
to Computer Science (CS). Nowadays, this is a very broad field with many branches.
This Ph.D. dissertation falls in the CS branch known as Artificial Intelligence (AI)
[117]. Broadly speaking, Al studies how to automatize human intelligence (strong
Al), or at least approach it in specific domains (weak IAs). One important aspect
of intelligent behaviors is the capacity to learn from data or experiences, as living
beings do (genetic heritage, individual learning). Accordingly, we can find Machine
Learning (ML) [69] as a branch of Al This Ph.D. is highly circumscribed in the ML
branch. In addition, we will focus on vision-based perception for autonomous
driving and driver assistance. Thus, Computer Vision (CV) [23], another branch of
IA, is essential in this Ph.D. In fact, nowadays, CV tasks are performed by training
so-called deep models (e.g., neural networks, transformers), where Deep Learning
(DL) [56] is a branch of ML. In short, we will use DL models to perform CV tasks
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Artificial Intelligence

Machine Learning

Computer
Vision

Figure 1.1: Computer science topics most related to this Ph.D.

(e.g., object detection and semantic segmentation) and general ML to elaborate
procedures that aim at simplifying the training of such deep models. The mentioned
application context of this Ph.D., i.e., autonomous driving and driver assistance
can be considered as falling in the field of Robotics. Figure 1.1 summarizes how the
aforementioned branches are related.

1.1 Scene understanding in autonomous driving

The necessity to automatize tasks embraces our daily life and one of the most
challenging necessities to automatize is transportation. As we are aware, urban and
metropolitan areas expand at a high pace due to the technological development
of societies. Hence, traveling distances increase making the citizens the necessity
to use a transportation system. A large number of transport vehicles becomes
an important issue because increases the accident rate [115], travel times due
to traffic jams, and pollution. Furthermore, the human factor is the principal
cause of accidents while driving due to distractions, inadequate experience, mental
state, or unexpected situations. Nowadays, these reasons generate the necessity
to increase security while driving and are one of the fundamental aspects that the
automotive industry is working on and improving constantly. Step by step, better
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Figure 1.2: Example of a 2D object detection displayed on the RGB image on the left
and its respective semantic segmentation prediction on the right.

systems are introduced in vehicles to improve, on the one hand, security from
direct accidents and protect their occupants and, on the other hand, reduce the
possibility of accidents. In addition, more traffic elements and regulations in urban
environments improve cohesion between drivers and pedestrians and lower the
danger while driving. Still, accidents continue to happen due to human factors.
Hence, the best solution to the aforementioned issues would be to replace the
human factor and completely automatize transportation with autonomous driving
vehicles [118].

Unfortunately, the current technology does not allow us to achieve complete
autonomous driving yet. Nevertheless, we are going in a good direction where
companies in collaboration with research centers are developing new systems and
techniques to fulfill this objective. In fact, the scope of this dissertation is to help
industries with novel techniques that would help onboard visual perception for
autonomous driving.

In order to drive autonomously, a multi-sensor suite is needed to perceive the
surrounding environment. Examples of sensors are RGB cameras placed in front of
the ego vehicle and around to cover blind spots and obtaining visual information of
the environment; RADAR and LIDARs sensors that cover 360 degrees around the
ego vehicle, providing the distance to other traffic participants and the velocity of
vehicles (RADAR); IMUs providing heading and displacement information from
the ego vehicle; and GNSS systems for geolocalization. All these data can be used
to generate an Al able to drive the ego vehicle. However, the complexity of the
information received makes this task really challenging. You need to follow the
traffic rules, maintain your vehicle on the right path, and respect the rest of the
traffic participants. The most difficult part of the task is to avoid accidents in front
of unexpected situations, e.g., unexpected elements in your path, other vehicles not
following traffic rules, sensors not working, errors on input data, etc.

As we observe, there are several aspects to take into account that are determined
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with a proper scene understanding, which is the capacity of the vehicle to perceive
and understand the intentions and state of all the elements that are involved in the
surrounding traffic scenario. In our opinion, one of the most important type of sen-
sor to obtain a proper scene understanding are RGB cameras, others give support
to specific tasks and are complementary to the system as a security measure. The
RGB camera sensors are the most similar to the human eyes. Hence, CV methods
would be necessary for a proper scene understanding. Among the numerous ap-
plications of CV, this Ph.D. dissertation focus on two key tasks to perform onboard
vision-based perception for autonomous driving, namely, object detection [62] and
semantic segmentation [17] (see Figure 1.2).

On the one hand, object detection aims to identify elements of interest inside
an image or sequence and frame them as precisely as possible in a rectangular
bounding box (BB). This task comprises the localization of an object inside the
BB and also the proper classification of the detected object in case of multiple
classes. We observe how this task helps in scene understanding because is able
to highlight objects of interest related to autonomous driving. To implement this
method we use convolutional neural network (CNN) [51] architectures composed
by a backbone [20, 38, 40, 96, 98, 126, 135] to extract feature descriptors from the
images and a head to perform the object detection [61, 63, 80-83]. On the other
hand, semantic segmentation aims to assign each pixel of an image to a class. This
task is complex in comparison to object detection due to the necessity to classify
each of the pixels of the whole image, where normally a high amount of categories
are involved and is dependent on the image size. Analogous to object detection,
we implement this method using the same CNN backbones and a head to apply
semantic segmentation [3,11,65,132,134,139].

1.2 Synth-to-real domain adaptation

The aforementioned tasks, where we use CNNs to address them, need large amounts
of labeled data to train successfully a model [55]. The most common causes of a
model performing poorly in these tasks are due to inadequate data, e.g. , insufficient
amounts, variability, inadequate labels, different domains, etc. In autonomous
driving, the vehicle needs to respond properly to innumerable amounts of situations
and environments. Thus, datasets incorporating the maximum possible scenarios
are required to train adequate vision-based perception models. Note that, in this
field, any error could be fatal, causing an accident. In our case, the most desirable
data would be from urban scenes composed of all the traffic elements, related to
the geographic area to apply autonomous driving (this could be all over the world),
with different weather and illumination conditions. As we observe, trying to supply
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Figure 1.3: Summary of the properties of acquiring real and synthetic data and a
visual representation of the notorious domain shift existent between both.

these data demands in the real world is going to be challenging. One of the principal
problems, in gathering new real data, is the time needed by a human oracle to label
properly the information captured by the sensors (labeling one image could range
from 15 to 60 minutes). In addition, these labeled data have a certain bias due to
the human factor. Another problem is to recreate situations of interest, where most
of them depend on random factors (e.g. , weather conditions, uncommon vehicles,
near accident cases, etc.). Thus, obtaining real-world data, oriented to autonomous
driving, is time-consuming and expensive [15, 28,29, 70,99, 131]. Synthetic data
[25, 85, 86, 88, 101, 119] are an alternative of great interest that could overcome
the stated problems and is the focus of this dissertation. Synthetic data have the
properties of being easy to generate having practically no limits in amounts, with
labels obtained almost instantly (current hardware takes a few seconds or less)
without the need for a task-oriented human labeler. Moreover, we can create
specific scenes of interest useful to address our task, which may be difficult to
acquire in the real world. Figure 1.3 summarizes the aforementioned properties
of real-world and synthetic data. Nevertheless, synthetic data are still far from
representing perfectly realistic scenarios compared to real-world data. Even when
actual software tools generate more and more photo-realistic images, creating rich
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scenarios similar to the real world is not trivial. Hence, still, a noticeable difference
between real and synthetic domains exists creating what we call a domain shift.

Domain shifts are present between different datasets, it does not matter if they
are real or synthetic, since parameters like different camera resolutions, daytime,
weather, environment illumination, etc, provoke domain discrepancies when train-
ing a CV model with one dataset and testing it in a different one. Normally speaking,
the domain shifts result in poor performance or bad generalization. To address the
domain shift problems we apply domain adaptation techniques.

Domain adaptation (DA) [16] techniques aim at increasing the generalization
capacity of the CV models to perform in different domains. The most popular
scenario is to leverage synthetic data to perform a real-world task (synth-to-real).
Hence, a model trained on synthetic data and tested on a real one need to obtain
useful results. This dissertation addresses synth-to-real DA by proposing new Semi-
supervised learning (SSL) [145] techniques. SSL methods aim at creating automatic
labeling systems, i.e., without human intervention. These methods are of great
interest to labeling real-world data and address the curse of labeling. Moreover,
when in synth-to-real DA we assume that there are no labels from real-world data,
the problem is known as unsupervised domain adaptation (UDA) [26], which is the
actual setting we are going to face along this Ph.D. dissertation.

1.3 Ph.D. objectives and outline

After introducing all the ingredients involved in automatizing a task as complex as
driving, identifying the elements involved, and the main challenges, we are able
to properly define the objectives and methodology of this Ph.D. Performing scene
understanding is essential for autonomous driving. Hence, we aim at improving two
core related tasks, namely, object detection and semantic segmentation. Overall,
we focus on their need for supervised data, which we tackle via synthetic data and,
consequently, by addressing the synth-to-real UDA challenge. More specifically, the
overall goal of this Ph.D. dissertation is to develop new SSL methods to address
the synth-to-real UDA challenge in the context of onboard vision-based percep-
tion for autonomous driving, so contributing to automatizing data labeling. We
address our goal along different research lines organized in chapters that are self-
contained and follow a paper structure composed of an abstract, introduction,
related work, proposed method, experimental results, and conclusions.

In Chapter 2, we design and implement an SSL technique, inspired by the so-
called co-training, to obtain automatically labeled object bounding boxes (pseudo-
labels) relying on multi-modal data views: appearance (RGB) and depth (D). Our
method is purely data-driven, so treats the involved CNN models as a black box,
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which strives for generality. We demonstrate the effectiveness of such a multi-modal
co-training to obtain pseudo-labels and how outperforms single-modal co-training
in the standard SSL and the synth-to-real UDA settings.

In Chapter 3, we design and implement a procedure inspired by co-training
to address onboard semantic segmentation, i.e., to obtain automatically provide
per-pixel semantic labels (pseudo-labels) given an image. Again, we focus on a
synth-to-real setting. Again, our procedure treats the involved CNN models as a
black box. The results show the effectivity of the generated pseudo-labels, obtaining
results close to a human labeler. In addition, we achieve state-of-the-art in several
target datasets.

In Chapter 4, we focus on a two-fold contribution to improve the work done
for the previous chapter. On the one hand, we collaborate with a team of experts
on simulation to generate a new photo-realistic dataset for onboard semantic
segmentation. On the other hand, we propose a new SSL procedure to tackle the
synth-to-real UDA setting, where we produce pseudo-labels inspired by human
labeling protocols. The combination of our new method and dataset produces high-
quality pseudo-labels. It improves co-training, enabling the training of semantic
segmentation models whose accuracy is really close to the case of using human-
provided labels. In other words, obtaining results that have not been seen before in
the synth-to-real UDA setting.

Finally, Chapter 5 reviews the work and main contributions of this Ph.D. disser-
tation, drawing some near-future research actions.






yA Co-training for deep object detection: com-
paring single-modal and multi-modal ap-
proaches

Top-performing computer vision models are powered by convolutional neural
networks (CNNs). Training an accurate CNN highly depends on both the raw
sensor data and their associated ground truth (GT). Collecting such GT is usually
done through human labeling, which is time-consuming and does not scale as
we wish. This data-labeling bottleneck may be intensified due to domain shifts
among image sensors, which could force per-sensor data labeling. In this chapter,
we focus on the use of co-training, a semi-supervised learning (SSL) method, for
obtaining pseudo-labeled object bounding boxes (BBs), i.e., the GT to train deep
object detectors. In particular, we assess the goodness of multi-modal co-training
by relying on two different views of an image, namely, appearance (RGB) and
estimated depth (D). Moreover, we compare appearance-based single-modal co-
training with multi-modal. Our results suggest that in a standard SSL setting
(no domain shift, a few human-labeled data) and under virtual-to-real domain
shift (many virtual-world labeled data, no human-labeled data) multi-modal co-
training outperforms single-modal. In the latter case, by performing GAN-based
domain translation both co-training modalities are on par, at least when using
an off-the-shelf depth estimation model not specifically trained on the translated
images.

2.1 Introduction

Supervised deep learning enables accurate computer vision models. Key for this
success is the access to raw sensor data (i.e., images) with ground truth (GT) for
the visual task at hand (e.g., image classification [95], object detection [83] and
recognition [100], pixel-wise instance/semantic segmentation [111,124], monocular
depth estimation [18], 3D reconstruction [50], etc.). The supervised training of such
computer vision models, which are based on convolutional neural networks (CNNs),
is known to require very large amounts of images with GT [97]. While, until one
decade ago, acquiring representative images was not easy for many computer vision
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Figure 2.1: From top to bottom: samples from KITTI (£'), Waymo (#'), and Virtual-
world (7)) datasets. Middle column: cropped patch from an original image. Left
column: horizontal mirror of the original patch. Right column: monocular depth
estimation [130] from the original patch. Left-middle columns are the views used for
co-training in [110]. Right-middle columns are the views also used in this chapter.

applications (e.g., for onboard perception), nowadays, the bottleneck has shifted
to the acquisition of the GT. The reason is that this GT is mainly obtained through
human labeling, whose difficulty depends on the visual task. In increasing order
of labeling time, we see that image classification requires image-level tags, object
detection requires object bounding boxes (BBs), instance/semantic segmentation
requires pixel-level instance/class silhouettes, and depth GT cannot be manually
provided. Therefore, manually collecting such GT is time-consuming and does not
scale as we wish. Moreover, this data labeling bottleneck may be intensified due
to domain shifts among different image sensors, which could drive to per-sensor
data labeling.

To address the curse of labeling, different meta-learning paradigms are being
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explored. In self-supervised learning

(SfSL) the idea is to train the desired models with the help of auxiliary tasks
related to the main task. For instance, solving automatically generated jigsaw
puzzles helps to obtain more accurate image recognition models [54], while stereo
and structure-from-motion (SfM) principles can provide self-supervision to train
monocular depth estimation models [31]. In active learning (AL) [87,94], there is a
human—model collaborative loop, where the model proposes data labels, known
as pseudo-labels, and the human corrects them so that the model learns from
the corrected labels too; thus, aiming at a progressive improvement of the model
accuracy. In contrast to AL, semi-supervised learning (SSL) [10,107] does not require
human intervention. Instead, it is assumed the availability of a small set of off-the-
shelf labeled data and a large set of unlabeled data, and both datasets must be used
to obtain a more accurate model than if only the labeled data were used. In SfSL,
the model trained with the help of the auxiliary tasks is intended to be the final
model of interest. In AL and SSL, it is possible to use any model with the only
purpose of pseudo-labeling the data, i.e., producing the pseudo-labels, and then
use labels and pseudo-labels for training the final model of interest.

In this chapter we focus on co-training [5, 33], a type of SSL algorithm. Co-
training pseudo-labels data through the mutual improvement of two models. These
models analyze the unlabeled data according to their different views of these data.
Our work focuses on onboard vision-based perception for driver assistance and
autonomous driving. In this context, vehicle and pedestrian detection are key
functionalities. Accordingly, we apply co-training to significantly reduce human
intervention when labeling these objects (in computer vision terminology) for
training the corresponding deep object detector. Therefore, the labels are BBs
locating the mentioned traffic participants in the onboard images. More specifically,
we consider two settings. On the one hand, as is usual in SSL, we assume the
availability of a small set of human-labeled images (i.e., with BBs for the objects of
interests), and a significantly larger set of unlabeled images. On the other hand, we
do not assume human labeling at all, but we have a set of virtual-world images with
automatically generated BBs.

This work is the natural continuation of the work presented by Villalonga &
Lépez [110]. In this previous work, a co-training algorithm for deep object detection
is presented, addressing the two above-mentioned settings too. In [110], the two
views of an image consist of the original RGB representation and its horizontal mir-
ror; thus, it is a single-modal co-training based on appearance. However, a priori,
the higher difference among data views the more accurate pseudo-labels can be
expected from co-training. Therefore, as a major novelty of this work, we explore
the use of two image modalities in the role of co-training views. In particular, one
view is the appearance (i.e., the original RGB), while the other view is the corre-

11
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sponding depth (D) as estimated by a state-of-the-art monocular depth estimation
model [130]. Thus, we term this approach as multi-modal co-training; however,
it can still be considered a single-sensor because still relies only on RGB images.
Figure 2.1 illustrates these different views for images that we use in our experiments.

In this setting, the research questions that we address are two: (Q1) Is multi-
modal (RGB/D) co-training effective on the task of providing pseudo-labeled object
BBs?; (Q2) How does perform multi-modal (RGB/D) co-training compared to single-
modal (RGB)?. After adapting the method presented in [110] to work with both,
the single and the multi-modal data views, we ran a comprehensive set of experi-
ments for answering these two questions. Regarding (Q1), we conclude that, indeed,
multi-modal co-training is rather effective. Regarding (Q2), we conclude that in
a standard SSL setting (no domain shift, a few human-labeled data) and under
virtual-to-real domain shift (many virtual-world labeled data, no human-labeled
data) multi-modal co-training outperforms single-modal. In the latter case, when
GAN-based virtual-to-real image translation is performed [144] (i.e., as image-level
domain adaptation) both co-training modalities are on par; at least, by using an
off-the-shelf monocular depth estimation model not specifically trained on the
translated images.

We organize the rest of the chapter as follows. Section 2.2 reviews related works.
Section 2.3 draws the co-training algorithm. Section 2.4 details our experimental
setting, discussing the obtained results in terms of (Q1) and (Q2). Section 2.5
summarizes the presented work, suggesting lines of continuation.

2.2 Related work

As we have mentioned before, co-training falls in the realm of SSL. Thus, here
we summarize previous related works applying SSL methods. The input to these
methods consists of a labeled dataset, ', and an unlabeled one, Z'¥, with #& % >
#2" and Dg-u = D1, where #Z is the cardinality of the set 2 and Py refers to the
domain from which & has been drawn. Note that, when the latter requirement
does not hold, we are under a domain shift setting. The goal of a SSL method is
to use both ! and Z'* to allow the training of a predictive model, ¢, so that its
accuracy is higher than if only 2 is used for its training. In other words, the goal is
to leverage unlabeled data.

A classical SSL approach is the so-called self-training, introduced by Yarowsky [128]
in the context of language processing. Self-training is an incremental process that
starts by training ¢ on Z; then, ¢ runs on Z'%, and its predictions are used to
form a pseudo-labeled set 2/, further used together with 2! to retrain ¢. This is

repeated until convergence, and the accuracy of ¢, as well as the quality of Z'/, are

12
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supposed to become higher as the cycles progress. Jeong et al. [47] used self-training
for deep object detection (on PASCAL VOC and MS-COCO datasets). To collect L
a consistency loss is added while training ¢, which is a CNN for object detection
in this case, together with a mechanism for removing predominant backgrounds.

The consistency loss is based on the idea that ¢p(I*) ~ gb(I”ﬁ)ﬁ, where I is an un-
labeled image, and " 1" refers to performing horizontal mirroring. Lokhande et
al. [64] used self-training for deep image classification. In this case, the original acti-
vation functions of ¢, a CNN for image classification, must be changed to Hermite
polynomials. Note that these two examples of self-training involve modifications
either in the architecture of ¢ [64] or in its training framework [47]. However, we aim
at using a given ¢ together with its training framework as a black box, so performing
SSL only at the data level. In this way, we can always benefit from state-of-the-art
models and training frameworks, i.e., avoiding changing the SSL approach if those
change. In this way, we can also decouple the model used to produce pseudo-labels
from the model that would be trained with them for deploying the application
of interest.

A major challenge when using self-training is to avoid drifting to erroneous
pseudo-labels. Note that, if 2! is biased to some erroneous pseudo-labels, when
using this set to retrain ¢ incrementally, a point can be reached where & ! cannot
compensate the errors in Z/, and ¢ may end learning wrong data patterns and so
producing more erroneous pseudo-labels. Thus, as alternative to the self-training
of Yarowsky [128], Blum and Mitchell proposed co-training [5]. Briefly, co-training
is based on two models, ¢, and ¢,,, each one incrementally trained on different
data features, termed as views. In each training cycle, ¢, and ¢,, collaborate to
form &' = 3{,,[1 U%Ulz. Where, ﬂf,fi and & are used to retrain ¢y, i €{1,2}. This
is repeated until convergence. It is assumed that each view, v;, is discriminant
enough as to train an accurate ¢,,. Different implementations of co-training, may
differ in the collaboration policy. Our approach follows the disagreement idea
introduced by Guz et al. [33] in the context of sentence segmentation, later refined
by Tur [106] to address domain shifts in the context of natural language processing.
In short, only pseudo-labels of high confidence for ¢,, but of low confidence for
(/),,j, i,j€1{1,2},i # j, are considered as part of %,f in each training cycle. Soon,
disagreement-based SSL attracted much interest [143].

In general, ¢, and ¢, can be based on different data views by either training on
different data samples (%, ,fl X, ,fz) or being different models (e.g., ¢,, and ¢, can
be based on two different CNN architectures). The disagreement-based co-training
falls in the former case. In this line, Qiao et al. [76] used co-training for deep image
classification, where the two different views are achieved by training on mutually
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adversarial samples. However, this implies linking the training of the ¢,,’s at the
level of the loss function, while, as we have mentioned before, we want to use these
models as black boxes.

The most similar work to this chapter is the co-training framework that we
introduced in [110] since we work on top of it. In [110], two single-modal views
are considered. These consist of using ¢, to process the original images from
2" while using ¢, to process their horizontally mirrored counterparts, and analo-
gously for Z!. A disagreement-based collaboration is applied to form & Lfl and &, ,52.
Moreover, not only the setting where & !'is based on human labels is considered,
but also when it is based on virtual-world data. In the latter case, a GAN-based
virtual-to-real image translation [144] is used as pre-processing for the virtual-world
images, i.e., before taking them for running the co-training procedure. Very recently,
Diaz et al. [21] presented co-training for visual object recognition. In other words,
the paper addresses a classification problem, while we address both localization
and classification to perform object detection. While the different views proposed
in [21] rely on self-supervision (e.g., forcing image rotations), here, these rely on
data multi-modality. In fact, in our previous work [110], we used mirroring to force
different data views, which can be considered as a kind of self-supervision too.
Here, after adapting and improving the framework used in [110], we confront this
previous setting to a new multi-modal single-sensor version (Algorithm 1 and Fig-
ure 2.2). We focus on the case where ¢,, works with the original images while ¢,
works with their estimated depth. Analyzing this setting is quite interesting because
appearance and depth are different views of the same data.

To estimate depth, we need an out-of-the-shelf monocular depth estimation
(MDE) model, so that we can keep the co-training as a single-sensor even be-
ing multi-modal. MDE can be based on either LiDAR supervision, or stereo/SfM
self-supervision, or combinations; where, both LiDAR and stereo data, and SfM
computations, are only required at training time, but not at testing time. We refer
to [18] for a review on MDE state-of-the-art. In this chapter, to isolate the multi-
modal co-training performance assessment as much as possible from the MDE
performance, we have chosen the top-performing supervised method proposed by
Yin et al. [130].

Finally, we would like to mention that there are methods in the literature that
may be confused with co-training, so it is worth introducing a clarification note.
This is the case of the co-teaching proposed by Han et al. [35] and the co-teaching+
of Yu et al. [133]. These methods have been applied to deep image classification to
handle noisy labels on & ! However, citing Han et al. [35], co-training is designed
for SSL, and co-teaching is for learning with noisy (ground truth) labels (LNL); as
LNL is not a special case of SSL, we cannot simply translate co-training from one
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Figure 2.2: Co-training pipeline: the left diagram shows the global block structure,
while the right diagram details the collaboration of models block. Symbols and
procedures are based on Algorithm 1. We refer to this algorithm and the main text
for a detailed explanation.
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problem setting to another problem setting.

2.3 Method

In this section, we explain our co-training procedure with the support of Figure 2.2
and Algorithm 1. Up to a large extent, we follow the same terminology as in [110].
Input: The specific sets

of labeled (%,fl, ,fz) and unlabeled (%lf‘l,%,,’;) input data in Algorithm 1 de-
termine if we are running on either a single or multi-modal setting. Also, if we
are supported or not by virtual-world images or their virtual-to-real translated
counterparts. Table 2.1, clarifies the different co-training settings depending on
these datasets. In Algorithm 1, view-paired sets means that each image of one set
has a counterpart in the other, i.e., following Table 2.1, its horizontal mirror or its
estimated depth. Since the co-training is agnostic to the specific object detector
in use, we explicitly consider its corresponding CNN architecture, ®, and training
hyper-parameter, #, as inputs. Finally, /%, consists of the co-training hyper-
parameters, which we will introduce while explaining the part of the algorithm in
which each of them is required.

Output:

It consists in a set of images (¥ 1 ) from &}, for which co-training is providing
pseudo-labels, i.e., object BBs in this work. In our experiments, according to Table
2.1, &, always corresponds to the unlabeled set of original real-world images.
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Table 2.1: The different configurations that we consider for Algorithm 1 in this
work, according to the input datasets. In the single-modal cases, we work only with
RGB images (appearance), either from a real-world dataset (%ggg), or a virtual-
world one (¥zgg), or a virtual-to-real domain-adapted one (¥, rgs), i.€., using a
GAN-based 7gs — Zrgs image translation. One view of the data (v;) corresponds
to the original RGB images of each set, while the other view (v,) corresponds to
their horizontally mirrored counterparts, indicated with the symbol “ 1". In the
multi-modal cases, view v, is the same as for the single-modal case (RGB), while
view v, corresponds to the depth (D) estimated from the RGB images by using an
off-the-shelf monocular depth estimation model.

Modality Domain Shift? s L, Xy oz
No RRrGB RrGB i
Single-modal Yes YRGB /. RrGB
Adapted 7/%9;2 RGB 7/(5% RGB 1
No RRrGB Zp
Multi-modal Yes V2GB 123 RRrGB R
Adapted 7/59@ ,RGB 7{99 D

Since we consider as output a set of pseudo-labeled images, which complement
the input set of labeled images, they can be later used to train a model based on ®
or any other CNN architecture performing the same task (i.e., requiring the same
type of BBs).

Initialize:

First, the initial object detection models (¢, ¢2) are trained using the respective
views of the labeled data (& ,fl X ,fz). After their training, these models are applied
to the respective views of the unlabeled data (% ,}‘] , lf‘z). Detections (i.e., object BBs)
with a confidence over a threshold are considered pseudo-labels. Since we address
a multi-class problem, per-class thresholds are contained in the set T, a hyper-
parameter in #;. The temporary pseudo-labeled sets generated by ¢; and ¢, are
%ll' new a0d 5{21 new Y€SPEctively. At this point no collaboration is produced between
¢1 and ¢,. In fact, while co-training loops (repeat body), the pseudo-labeled sets

resulting from the collaboration are 3[12 and 3%,”2’ , which are initialized as empty.
In the training function, Train(®, #g, ¥ L oply. ¢, we use BB labels (in . Iy and BB
pseudo-labels (in .#!) indistinctly. However, we only consider background samples

from %!, since, as co-training progresses, . ! may be instantiated with a set of
pseudo-labeled images containing false negatives (i.e., undetected objects) which
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could be erroneously taken as hard negatives (i.e., background quite similar to
objects) when training ¢.
Collaboration:

The two object detection models collaborate by exchanging pseudo-labeled im-
ages (Figure 2.2-right). This exchange is inspired in disagreement-based SSL [143].
Our specific approach is controlled by the co-training hyper-parameters N, n, m,
and, in case of working with image sequences instead of with sets of isolated images,
also by
Hseq = 1AL, AL}, Ay, At,. This approach consists of the following three steps.

(First step)

Each model selects the set of its top-m most confident pseudo-labeled images
(& ! ,% ); where, the confidence of an image is defined as the average over the con-
fldences of the pseudo-labels of the image, i.e., in our case, over the object detections.
Thus,

X zl1 c %}new, i €{1,2}. However, for creating ,%ZT, we do not consider all the pseudo-
labeled images in & ! Instead, to minimize bias and favor speed, we only con-

i,new"

sider N randomly selected images from ,%i{ new- I the case of working with image
sequences, to favor variability in the pseudo-labels, the random choice is constrained
to avoid using consecutive frames. This is controlled by thresholds At and Af»;
where At; controls the minimum frame distance between frames selected at the
current co-training cycle (k), and At, among frames at current cycle with respect to
frames selected in previous cycles (< k). We apply At; first, then Aty, and then the
random selection among the frames passing these constraints.

(Second step) Model ¢; processes 3{} . i,j€1{1,2},i # j, keeping the set of the
n less confident pseudo-labeled images for it. Thus, we obtain the new sets %li |

and 3{ i . Therefore, considering the first and second steps, we see that one model
shares w1th the other those images that it has pseudo-labeled with more confidence,
and, of these, each model retains for retraining those that it pseudo-labels with
less confidence. Therefore, this step implements the actual collaboration between
models ¢; and ¢p.

(Third step) The pseudo-labeled sets obtained in previous step (% 1 1, ) 1) are

fused with those accumulated from prev10us co-training cycles (% l, 3{ ). This is
done by propertly calling the function Fuse(! y,few) ! for each view. The re-

old’
turned set of pseudo-labeled images, ., contains % olz Y ynle w—Z (e P o and,

old
from & Oll an L., only those pseudo-labeled images in Ynew are added to "
Retrain and update: At this point we have new sets of pseudo-labeled images

17
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@l 3{21 ), which, together with the corresponding input labeled sets (¥ ,,ll X Ulz), are
used to retrain the models ¢; and ¢,. Afterwards, these new models are used to
obtain new temporary pseudo-labeled set (%lly new’ 3{21 new) through their applica-
tion to the corresponding unlabeled sets (%, Z,,). Then, co-training can start a
new cycle.

Stop: The function Stop?(Assp, S, oll d,ﬂ’nlew, k) : Boolean determines if a new co-
training cycle is executed. This is controlled by the co-training hyper-parameters
Hstp = {Kmin» Kmax Ta,p» AK}. Co-training will execute a minimum of Kiyip cy-

cles and a maximum of K;;,4, being k the current number. The parameters .¥, Oll d

and #},,, are supposed to be instantiated with the sets of pseudo-labeled images
in previous and current co-training cycles, respectively. The similarity of these sets
is monitored in each cycle, so that if its stable for more than AK consecutive cycles,
convergence is assumed and co-trained stopped. This constrain could already be
satisfied at k = K, provided K;,;, = AK. The metric used to compute the similar-
ity between these pseudo-labeled sets is mAP (mean average precision) [28], where
7 olz 4 blays the role of GT and ], ., the role of results under evaluation. Then, mAP
is considered stable between two consecutive cycles if its magnitude variation is
below the threshold T4, ,,.
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Input :View-paired sets of labeled images: & ,fl X, lfz
View-paired sets of unlabeled images: !, &
Object detection architecture, and its training hyper-parameters:
@, Sy
Co-training hyper-parameters: #¢; = {T, N, n, m, #p|, #seql}
Output:New labeled images: Z' < %, o

// Initialize models and working datasets.
<xlxlLk> ~ <0,0,0>
brp2  —  Train(®, Ho, X,,, X)), Train(®, Ho, X}, %)

XL o Tl o = Run@1, 2%, T),Run(¢y, 24, T)
repeat ) A
‘%;ld - ‘%ll,new
// Collaboration of models.
3{& .= Sl m, Rnd(%li o NLHseq, K1)
A %211 - smm,m,Rnd(%gﬂew,N[,Jﬁseq,k])) )
X%, — Sl nRun(¢y, &5, 7)), Slet(), n, Run(¢s, &/, 1))
.%'ll,%zl — Fuse(%ll,%{)l),Fuse(%zl,%zlyl)
// Retrain models and Update datasets.
b1,2  — Train((D,J&p,%31,%1i),Train(®,%¢,%lfz,ﬂfzi)
Xl i X e = Run(y, 2, T),Run(g, 22, T)
until Stop?(Hsep, Z.) 1 XL o K+4)
‘%i - ‘%lzynew
return %i

Algorithm 1: pseudo-labeling of object BBs by co-training.
2.4 Experimental results

2.4.1 Datasets and evaluation protocol

We follow the experimental setup of [110]. Therefore, we use KITTI [28] and
Waymo [99] as real-world datasets, here denoted as .£" and #/, respectively. We use a
variant of the SYNTHIA dataset [86] as virtual-world data, here denoted as 7. For £
we use Xiang et al. [123] split, which reduces the correlation between training and
testing data. While this implies that £ is formed by isolated images, #" is composed
of image sequences. To align its acquisition conditions with #", we consider day-
time sequences without adverse weather. From them, as recommended in [99], we
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Table 2.2: Datasets (Z): train (%'") and test (Z'*?) statistics, Z = X" v "1, X" n
X' =9.

oqtr gtt
Images Vehicles Pedestrians Images Vehicles Pedestrians
Virtual (7) 19,791 43,326 44,863
KITTI (&) 3682 14,941 3154 3799 18,194 1333
Waymo (#) 9873 64,446 9918 4161 24,600 3068

Dataset (%)

randomly select some sequences for training and the rest for testing. Furthermore,
we adapt #’’s image size to match £ (i.e., 1240 x 375 pixels) by first eliminating the
top rows of each image so avoiding large sky areas, and then selecting a centered
area of 1240 pixel width. The 2D BBs of # and 7, are obtained by projecting the
available 3D BBs. On the other hand, 7 is generated by mimicking some acquisition
conditions of £/, such as image resolution, non-adverse weather, daytime, and only
considering isolated shots instead of image sequences. Besides, 7’s images include
standard visual post-effects such as anti-aliasing, ambient occlusion, depth of field,
eye adaptation, blooming, and chromatic aberration. In the following, we term as
H ' and & ! the training and testing sets of %, respectively. Analogously, # /" and
# '! are the training and testing sets of # . For each dataset, Table 2.2 summarizes
the number of images and object BBs (vehicles and pedestrians) used for training
and testing our object detectors. Note that 7 is only used for training purposes.
We apply the KITTI benchmark protocol for object detection [28]. Furthermore,
following [110], we focus on the so-called moderate difficulty, which implies that
the minimum BB height to detect objects is 25 pixels for £ and 50 pixels for # .
Once co-training finishes, we use the labeled data (¥ !y and the data pseudo-labeled
by co-training (2'!) to train the final object detector, namely, ¢r. Since this is the
ultimate goal, we use the accuracy of such a detector as metric to evaluate the
effectiveness of the co-training procedure. If it performs well at pseudo-labeling
objects, the accuracy of ¢ should be close to the upper-bound (i.e., when the 100%
of the real-world labeled data used to train ¢ is provided by humans), otherwise,
the accuracy of ¢r is expected to be close to the lower-bound (i.e., when using
either a small percentage of human-labeled data or only virtual-world data to train

¢F).
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2.4.2 Implementation details

When using virtual-world images we not only experiment with the originals but also
with their GAN-based virtual-to-real translated counterparts, i.e., aiming at closing
the domain shift between virtual and real worlds. Since the translated images
are the same for both co-training modalities, we take them from [110], where a
CycleGAN [144] was used to learn the translations G : 7 — Z and Gy : 7V — ¥ .
To obtain these images, CycleGAN training was done for 40 epochs using a weight
of 1.0 for the identity mapping loss, and a patch-wise strategy with patches of 300
x 300 pixels, while keeping the rest of the parameters as recommended in [144].
We denote as Vg, =94 (V) and Vg, = 9y (V) the sets of virtual-world images
transformed by ¢ » and ¥y, respectively. The 2D BBs in 7 are used for ¥, and
Vg, . Furthermore, note that analogously to 7, ¥, and ¥, are only used for
training. For multi-modal co-training, depth estimation is applied indistinctly to
the real-world datasets, the virtual-world one, and the GAN-based translated ones.
In the multi-modal setting, one of the co-training views is the appearance
(RGB) and the other is the corresponding estimated depth (D). To keep co-training
single-sensor, we use monocular depth estimation (MDE). In particular, we leverage
a state-of-the-art MDE model publicly released by Yin et al. [130]. It has been
trained on KITTI data, thus, being ideal to work with .£". However, since our aim is
not to obtain accurate depth estimation, but to generate an alternative data view
useful to detect the objects of interest, we have used the same MDE model for all
the considered datasets. Despite this, Figure 2.3 shows how the estimated depth
properly captures the depth structure for the images of all datasets, i.e., not only for
A, butalso for #,7, 74, and ¥4, . However, we observe that the depth structure
for %g, ’s and 74, s images is more blurred at far distances than for 7, especially for
Ve, .
Following [110], we use Faster R-CNN with a VGG16 feature extractor (backbone)
as the CNN architecture for object detection, i.e., as @ in Algorithm 1. In particular,
we rely on the Detectron implementation [30]. For training, we always initialize
VGG16 with ImageNet pre-trained weights, while the weights of the rest of the CNN
(i.e., the candidates’ generator and classifier stages) are randomly initialized. Faster
R-CNN training is based on 40,000 iterations of the SGD optimizer. Note that these

iterations refer to the function Train(®, #p, % L oply. ¢ in Algorithm 1, not to co-
training cycles. Each iteration uses a mini-batch of two images randomly sampled
from ! u.#!. Thus, looking at how Train(®, #%p, ¥ L oly. ¢ is called in Algorithm
1, we can see that, for each view, the parameter . ! receives the same input in all
co-training cycles, while . changes from cycle-to-cycle. The SGD learning rate
starts at 0.001 and we set a decay of 0.1 at iterations 30,000 and 35,000. In the case
of multi-modal co-training, we use horizontal mirroring as a data augmentation

21



Chapter 2. Co-training for deep object detection: comparing single-modal and
multi-modal approaches

22

Figure 2.3: RGB images with their estimated depth. From top to bottom rows:
samples from %, ¥y, , V, V4,, #. The samples of ¥4, and 74, correspond to
transforming the samples of 7 to £ and # domains, respectively. The monocular
depth estimation model [130] was trained on the £ domain.

technique. However, we cannot do it in the case of single-modal co-training because
both data views would highly correlate. Note that, as it was done in [110] and we
can see in Table 2.1, horizontal mirroring is the technique used to generate one
of the data views in single-modal co-training. In terms of Algorithm 1, all these
settings are part of #g and they are the same to train both ¢; and ¢,. The values
set for the co-training hyper-parameters are shown in Table 2.3.

Finally, note that the final detection model used for evaluations, ¢, could be
based on any CNN architecture for object detection, provided the GT it expects
consists of 2D BBs. However, for the sake of simplicity, we also rely on Faster R-CNN
to obtain ¢r.

2.4.3 Results

To include multi-modality we improved and adapted the code used in [110]. For this
reason, we not only execute the multi-modal co-training experiments but also
redo the single-modal and baseline ones. The conclusions in [110] remain, but by
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Table 2.3: Co-training hyper-parameters as defined in Algorithm 1. We use the same
values for £ and # datasets, but Hseq only applies to #'. N, n, m, Ay, and Af
are set in number-of-images units, Kyin, Kmax and AK in number-of-cycles, Ta,,, ,»
runs in [0..100]. T hyper-parameter contains the confidence detection thresholds
for vehicles and pedestrians, which run in [0..1], and we have set the same value
for both. The setting m = co means that all the images pseudo-labeled at current
co-training cycle are exchanged by the models ¢; and ¢- for collaboration, i.e.,
these will then select the 7 less confident for them.

‘;fstp ”seq
T N n m  Kmin Kmax AK Ta,,, At1i At
{0.8,0.8} 500 100 00 20 30 5 2.0 5 10

repeating these experiments, all the results presented in this chapter are based on
the same code.

Standard SSL setting

We start the evaluation of co-training in a standard SSL setting, i.e., working only
with either the £ or # dataset to avoid domain shift. In this setting, the cardinality
of the unlabeled dataset is supposed to be significantly higher than the cardinality
of the labeled, we divide the corresponding training sets accordingly. In particular,
for " e (&, W'}, we use the p% of ' as the labeled training set (Z'!) and
the rest as the unlabeled training set (Z'*). We explore p =5 and p = 10, where the
corresponding & ! is sampled randomly once and frozen for all the experiments.
Table 2.4 shows the obtained results for both co-training modalities. We also report
upper-bound (UB) and lower-bound (LB) results. The UB corresponds to the case
p =100, i.e., all the BBs are human-labeled. The LBs correspond to the p =5 and
p = 10 cases without using co-training, thus, not leveraging the unlabeled data.
Although in this chapter we assume that ¢ will be based on RGB data alone, since
we use depth estimation for multi-modal co-training, as a reference we also report
the UB and LB results obtained by using the estimated depth alone to train the
corresponding ¢r.

Analyzing Table 2.4, we confirm that the UB and LBs based only on the estimated
depth (D) show a reasonable accuracy, although not at the level of appearance (RGB)
alone. This is required for the co-training to have the chance to perform well. Aside
from this, we see how, indeed, both co-training modalities clearly outperform LBs.
In the p =5 case, multi-modal co-training clearly outperforms single-modal in all
classes (V and P) and datasets (£ and #’). Moreover, the accuracy improvement
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over the LBs is significantly larger than the remaining distance to the UBs. In the
p = 10 case, both co-training modalities perform similarly. On the other hand,
for £, the accuracy of multi-modal co-training with p =5 is just ~2 points below
the single-modal with p = 10, and less than 1 point for #'. Therefore, for 2D object
detection, we recommend multi-modal co-training for a standard SSL setting with
a low ratio of labeled vs. unlabeled images.

SSL under domain shift

Table 2.5 shows the LB results for a ¢ fully trained on virtual-world images (source
domain); the results of training only on the real-world images (target domain),
where these images are 100% human-labeled (i.e., 100% Labeled RGB in Table 2.4);
and the combination of both, which turns out to be the UB. In the case of testing on
#'! and having 7 involved in the training, we need to accommodate the different
labeling style (mainly the margin between BBs and objects) of #''! and 7. This is
only needed for a fair quantitative evaluation, thus, for performing such evaluation
the detected BBs are resized by per-class constant factors. However, the qualitative
results presented in the rest of the chapter are shown directly as they come by
applying the corresponding ¢, i.e., without applying any resizing. On the other
hand, this resizing is not needed for # ! since its labeling style is similar enough to
V.

According to Table 2.5, both co-training modalities significantly outperform
the LB. Again, multi-modal co-training outperforms single-modal, especially on
vehicles. Comparing multi-modal co-training with the LB, we see improvements of
~15 points for vehicles in %', and ~25 in #'. Considering the joint improvement
for vehicles and pedestrians we see ~8 points for £, and ~15 for #, while the
distances to the UB are of ~5 points for £, and ~2 for #'. Therefore, for 2D object
detection, we recommend multi-modal co-training for an SSL scenario where the
labeled data comes from a virtual world, i.e., when no human labeling is required at
all, but there is a virtual-to-real domain shift.

SSL after GAN-based virtual-to-real image translation

Table 2.6 is analogous to Table 2.5, just changing the original virtual-world images
(7) by their GAN-based virtual-to-real translated counterparts (¥, /¥, ). In the
case of testing on #'' and having %y, involved in the training, we apply the BB
resizing mentioned in Section 2.4.3 for the quantitative evaluation. Focusing on
the V&P results, we see that both the UB and LB of Table 2.6 show higher accuracy
than in Table 2.5, which is due to the reduction of the virtual-to-real domain shift
achieved thanks to the use of ¥y, /7, . Still, co-training enables to improve the
accuracy of the LBs, almost reaching the accuracy of the UBs. For instance, in the
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Table 2.4: SSL (co-training) results on vehicle (V) and pedes-
trian ® detection, reporting mAP. From a training set
X e {Z, W'}, we preserve the labeling information for a randomly cho-
sen p% of its images, while it is ignored for the rest. We report results for p
= 100 (all labels are used), p =5 and p = 10. If " = x'"!, then X" = x''";
analogously, when &''f = #''!, then Z'" = #'"', i.e., there is no domain shift in
these experiments. Co-T (RGB) and Co-T (RGB/D) stand for single and multi modal
co-training, respectively. UP and LB stand for upper bound and lower bound,
respectively. Bold results indicate best performing within the block, where blocks
are delimited by horizontal lines. Second best is underlined, but if the difference
with the best is below 0.5 points, we use bold too. A{¢F, vs. ¢r,} stands for mAP of
¢r, minus mAP of ¢F,.

%'ttzltt %tt:th

Training Set

\Y% P V&P \Y% p V&P
100% Labeled (RGB)/UB 83.43 67.77 75.60 61.71 57.74 59.73
100% Labeled (D)/UB 80.80 53.43 67.12 55.14 37.67 46.41
5% Labeled (RGB)/LB 65.20 46.08 55.64 51.69 41.92 46.81
5% Labeled (D)/LB 64.45 26.70 45.58 45.21 29.98 36.70
5% Labeled + Co-T (RGB) 7426 5541 64.84 54.00 56.34 55.17
5% Labeled + Co-T (RGB/D) 78.64 57.40 68.02 58.42 56.98 57.70
10% Labeled (RGB)/LB 7231 4551 58.91 49.53 49.83 49.68
10% Labeled (D)/LB 69.54 4631 57.93 4793 33.98 40.96
10% Labeled + Co-T (RGB) 78.63 60.99 69.81 56.15 60.20 58.18
10% Labeled + Co-T (RGB/D) 79.68 60.55 70.12 59.54 57.17 58.36

A{(5% L. + Co-T (RGB/D)) vs. (5% L. (RGB)/LB)} +13.44 +11.32 +12.38 +6.73 +15.06 +10.89
A{(5% L. + Co-T (RGB/D)) vs. (100% L. (RGB)/UB)} —-4.79 -10.37 -7.58 -3.29 -0.76 -2.03
A{(10% L. + Co-T (RGB/D)) vs. (10% L. (RGB)/LB)}  +7.37 +15.04 +11.21 +10.01 +7.34 +8.68
A{(10% L. + Co-T (RGB/D)) vs. (100% L. (RGB)/UB)} -3.75 -7.22 -5.48 -2.17 -0.57 -1.37

combined V&P detection accuracy, the single-modal co-training is 1.66 points
behind the UB for £/, and 3.59 for #'. Multi-modal co-training is 2.63 points behind
the UB for £, and 4.01 for #. Thus, in this case, single-modal co-training is
performing better than multi-modal. Therefore, for 2D object detection, we can
recommend even single-modal co-training for an SSL scenario where the labeled
data comes from a virtual world but a properly trained GAN can perform virtual-to-
real domain adaptation. On the other hand, in the case of #/, co-training from 7,
gives rise to worse results than by using 7. We think this is due to a worse depth
estimation (see Figure 2.3). In general, this suggests that whenever it is possible,
training a specific monocular depth estimator for the unlabeled real-world data
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Table 2.5: SSL (co-training) results on vehicle (V) and pedestrian (P) detection,
under domain shift, reported as mAP. &'/ refers to the human-labeled target-domain
training set; thus, if ** = # "', then ! = #!", and if ' = W', then ' = w''",
2! consists of the same images as Z/, but pseudo-labeled by co-training. Co-T
(RGB), Co-T (RGB/D), UP, LB, A{¢r, vs. ¢r,}, bold and underlined numbers are
analogous to those in Table 2.4.

qrtt _ gtt qrtt _yytt
Training Set

\Y% P V&P \Y% P v&P
Source (7)/LB 67.46 65.18 66.32 38.88 53.37 46.13
Target (%) 83.43 67.77 75.60 61.71 57.74 59.73
Target + Source (Z''&¥)/UB 87.15 74.69 80.92 59.97 62.86 61.42
Co-T (RGB) + Source (%2&7/) 77.97 71.32 74.65 48.56 56.33 52.45
Co-T (RGB/D) + Source (Z''&¥) 82.90 67.36 75.13 64.40 59.17 61.79

A{(Co-T (RGB/D) + Source) vs. LB}  +15.44 +2.18 +8.81 +25.52 +5.80 +15.66
A{(Co-T (RGB/D) + ASource ) vs. UB} —-4.25 -7.33 -5.79 -0.16 -4.27 -2.21

may be beneficial for multi-modal co-training (recent advances on vision-based
self-supervision for monocular depth estimation [31, 32] can be a good starting
point). For this particular case, training the virtual-to-real domain adaptation GAN
simultaneously to the monocular depth estimation CNN could be an interesting
idea to explore in the future (we can leverage inspiration from [75, 140]).

Analyzing co-training cycles

Figures 2.4 and 2.5 illustrate how co-training strategies would perform as a function
of the stopping cycle, for a standard SSL setting (Figure 2.4), as well as under do-
main shift (Source) and when this is reduced (ASource) by using ¥y, /¥4, (Figure
2.5). We take the pseudo-labeled images at different co-training cycles (x-axis) as if
these cycles were determined to be the stopping ones. The labeled images together
with the pseudo-labeled by co-training up to the indicated cycle are used to train
the corresponding ¢r. Then, we plot (y-axis) the accuracy (mAP) of each ¢r in
the corresponding testing set, i.e., either £ ' or #'''. We can see how co-training
strategies allow improving over the LBs from early iterations and, although slightly
oscillating, keep improving until stabilization is reached. No drifting to erroneous
pseudo-labeling is observed. At this point, the object samples which remain as un-
labeled but are required to reach the maximum accuracy, probably are too different
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Table 2.6: SSL (co-training) results on vehicle (V) and pedestrian (P) detection, af-
ter GAN-based virtual-to-real image translation, reported as mAP. ASource (adapted
source) refers to ¥ € {¥g,,, Vg, }. X', Z', Source, Co-T (RGB), Co-T (RGB/D), UP,
LB, A{¢F, vs. ¢f,}, bold and underlined numbers are analogous to those in Table
2.5.

%tt:Ztt %'ttzy/tt
Training Set
\Y P V&P \Y% P V&P
ASource (¥4)/LB 78.41 65.39 71.90 52.60 56.36 54.48
Target (1) 83.43 67.77 75.60 61.71 57.74 59.73
Target + ASource (% '&7¥4)/UB 86.82 71.59 79.21 64.56 63.44 64.00
Co-T (RGB) + ASource (2 &) 85.17 69.93 77.55 61.49 59.33 60.41

Co-T (RGB/D) + ASource (Z'&¥) 83.68 69.48 76.58 61.49 58.49 59.99

A{(Co-T (RGB) + ASource) vs. LB} +6.76 +4.54 +5.65 +8.89 +2.97 +5.93
A{(Co-T (RGB/D) + ASource) vs. LB} +5.27 +4.09 +4.68 +8.89 +2.13 +5.51
A{(Co-T (RGB) + ASource) vs. UB} -1.65 -166 -1.66 -3.07 —-4.11 -3.59
A{(Co-T (RGB/D) + ASource) vs. UB} —-3.14 -2.11 -2.63 -3.07 -4.95 -4.01

in some aspect from the labeled and pseudo-labeled ones (e.g., they may be under
a too-heavy occlusion) and would never be pseudo-labeled without additional
information. Then, combining co-training with active learning (AL) cycles could be
an interesting alternative, since occasional human loops could help co-training to
progress more. We see also how when the starting point for co-training is at a lower
accuracy, multi-modal co-training usually outperforms single-modal (e.g., in the
5% setting and under domain shift).

Figures 2.6 and 2.7 present qualitative results for ¢p¢’s trained after stopping
co-training at cycles 1, 10, 20 and when it stops automatically (i.e., the stopping
condition of the loop in Algorithm 1 becomes true). The shown examples corre-
spond to the most accurate setting for each dataset; i.e., for £ (Figure 2.6) this is
the co-training from 7, no matter the modality, while for #" (Figure 2.7) this is
the co-training from 7 in the multi-modal case and from 7, in the single-modal.
Note that Tables 2.4-2.6, suggest to combine co-training with virtual-world data to
obtain more accurate ¢r’s.
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Qualitative results

Figure 2.6: Qualitative results of how ¢y would perform on % ‘! by stopping co-
training at different cycles. We focus on co-training and object detection working
from 74, (ASource). There are three blocks of results vertically arranged. At each
block, the top-left image shows the results when using the 100% human-labeled
training data plus ¥y, (Target + ASource), i.e., UB results. Detection results are
shown as green BBs, and GT as red BBs. The top-right image of each block shows
the results that we would obtain without leveraging the unlabeled data (ASource),
i.e., LB results. The rest of the rows of the block, from top-second to bottom,
correspond to stopping co-training at cycles 1, 10, 20, and automatically. In these
rows, the images at the left column correspond to multi-modal co-training (i.e.,
Co-T (RGB/D)) and those at the right column to single-modal co-training (i.e., Co-T
(RGB)).

In the left block of Figure 2.6, we show a case where both co-training modalities
perform similarly on pedestrian detection, with final detections (green BBs) very
close to the GT (red BBs), and clearly better than if we do not leverage the unlabeled
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data (top-right image of the block). We see also that the results are very similar
to the case of using the 100% of human-labeled data (top-left image of the block).
Moreover, even from the initial cycles of both co-training modalities the results are
reasonably good, although, the best is expected when co-training finishes automati-
cally (bottom row of the block), i.e., after the minimum number of cycles is exceeded
(Kimin = 20 in Table 3.1). In the mid-block, we see that only multi-modal co-training
helps to properly detect a very close and partially occluded vehicle. In the right
block, only multi-modal co-training helps to keep and improve the detection of
a close pedestrian. Both co-training modalities help to keep an initially detected
van, but multi-modal co-training induces a better BB adjustment. This is an inter-
esting case. Since 7 only contains different types of cars but lacks a meaningful
number of van samples, and £ only has a very small percentage of those labeled,
we have focused our study on the different types of cars. Therefore, vans are neither
considered for training nor testing, i.e., their detection or misdetection does not
affect the mAP metric either positively or negatively. However, co-training is an
automatic pseudo-labeling procedure, thus it may capture or keep these samples
and then force training with them. Moreover, in this setting, the hard-negatives
are mined only from the virtual-world images (translated or not by a GAN) since
they are fully labeled. Thus, if no sufficient vans are part of the virtual-world im-
ages, these objects cannot act as hard negatives, so that they may be detected or
misdetected depending on their resemblance to the targeted objects (here types of
cars). We think this is the case here. Thus, this is an interesting consideration for
designing future co-training procedures supported by virtual-world data. Alterna-
tively, by complementing co-training with occasional AL cycles, these special false
positives could be reported by the human in the AL loop (provided we really want
to treat them as false positives). On the other hand, in the same block of results, we
see also a misdetection (isolated red BB), which does account for the quantitative
evaluation. It corresponds to a rather occluded vehicle which is not detected even
when relying on human labeling (top-left image of the block). Finally, note the large
range of detection distances achieved for vehicles.

In the left block of Figure 2.7, we see even a larger detection range for the de-
tected vehicles than in Figure 2.6. Faraway vehicles (small green BBs) are considered
as false positives for the qualitative evaluation because these are not part of the #'**
GT (since they do not have labeled 3D BBs from which the 2D BBs are obtained).
Thanks to the use of virtual-world data, these vehicles are detected (second row of
the block) and both co-training modalities do not damage their detection. Note
how the UBs based on virtual-world data and human-labeled real-world data are
not able to detect such vehicles (first row of the block) because human labeling
did not consider these faraway vehicles, while co-training does consider them as
such. Besides, multi-modal co-training enables the detection of the closer vehicle
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Figure 2.7: Qualitative results similar to those in Figure 2.6, but testing on #''’, co-
training from 7 in the multi-modal case (left column of each block), and 7, in the
single-modal case (right column of each block). Since, in these examples, the two
co-training modalities are based on different (labeled) data, the first row of each
block shows the respective UB results, i.e., those based on training with #*" and
either with 7 (left image: Target + Source) or ¥, (rightimage: Target + ASource).
The second row of each block shows the respective results we would obtain without
leveraging the unlabeled data, i.e., the LBs based on training with 7" (left image:
Source) or ¥, (rightimage: ASource). As in Figure 2.6, the rest of the rows of each
block correspond to stopping co-training at cycles 1, 10, 20, and automatically.

since cycle 10. In the next block to the right, multi-modal co-training enables to
detect a close kid since cycle 10, while single-modal does not at the end. In addition,
single-modal co-training also introduces a distant false positive. Similarly to the left
block, in this block both co-training modalities keep an unlabeled vehicle detected
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thanks to the use of the virtual-world data (second row), not detected (first row)
when these data are complemented with human-labeled data (since, again, this
vehicle is not even labeled). What is happening in these cases, is that there is a lack
of real-world human-labeled 3D BBs for distant vehicles, which is compensated by
the use of virtual-world data and maintained by co-training. In the next block to the
right, we see how a pedestrian is detected thanks to both co-training methods since
only using virtual-world data was not possible (second row). In the right block, both
co-training modalities allow for vehicle and pedestrian detections similar to the
UBs (first row). Note that the vehicle partially hidden behind the pedestrian was not
detected by only using virtual-world data (second row), and neither was detected
the pedestrian when using 7 (second row, left) or was poorly detected when using
Vg, (second row, right).

Finally, Figure 2.8 shows additional qualitative results on % " and #'* when
using multi-modal co-training, in the case of £ ! based on ¥z, and ¥ for # ", i.e.,
we show the results of the respective best models. Overall, in the case of % !, we
see how multi-modal co-training (Co-T (RGB/D)) enables to better adjust detection
BBs, and removing some false positives. In the case of #'’, multi-modal co-training
enables to keep even small vehicles that are not part of the GT but are initially
detected thanks to the use of virtual-world data. It also helps to detect vehicles
and pedestrians not detected by only using the virtual-world data, although further
improvements are needed since some pedestrians are still difficult to detect even
with co-training.

Answering (Q1) and (Q2)

After presenting our multi-modal co-training and the extensive set of experiments
carried out, we can answer the research questions driving this study. In partic-
ular, we base our answers in the quantitative results presented in Tables 2.4-2.6,
the plots shown in Figures 2.4 and 2.5, as well as the qualitative examples shown in
Figures 2.6-2.8, together with the associated comments we have drawn from them.

(Q1) Is multi-modal (RGB/D) co-training effective on the task of providing
pseudo-labeled object BBs? Indeed, multi-modal co-training is effective for pseudo-
labeling object BBs under different settings, namely, for standard SSL (no domain
shift, a few human-labeled data) and when using virtual-world data (many virtual-
world labeled data, but no human-labeled data) both under domain shift and
after reducing it by GAN-based virtual-to-real image translation. The achieved
improvement over the lower bound configurations is significant, allowing to be
almost in pair with upper bound configurations. In the standard SSL setting, by only
labeling the 5% of the training dataset, multi-modal co-training allows obtaining
accuracy values relatively close to the upper bounds. When using virtual-world
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data, i.e., without human labeling at all, the same observations hold. Moreover,
multi-modal co-training and GAN-based virtual-to-real image translation have
been shown to complement each other.

Figure 2.8: Qualitative results on % !’ (top block of rows) and # ' (bottom block
of rows). In each block, we show (top row) GT as red BBs, (mid row) detections,
as green BBs, when training with & ! (bottom row) detections with ' u % i . In this
case, i comes from applying C-T (RGB/D) on either & " or #'", and & lis Veg
for #'", whileitis 7 for #'".

(Q2) How does perform multi-modal (RGB/D) co-training compared to single-
modal (RGB)? We conclude that in a standard SSL setting (no domain shift, a few
human-labeled data) and under virtual-to-real domain shift (many virtual-world
labeled data, no human-labeled data) multi-modal co-training outperforms single-
modal. In the latter case, when GAN-based virtual-to-real image translation is
performed both co-training modalities are on par; at least, by using an off-the-shelf
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monocular depth estimation model not specifically trained on the translated im-
ages.

To drive future research, we have performed additional experiments. These con-
sist in correcting the pseudo-labels obtained by multi-modal co-training in three
different ways, namely, removing false positives (FP), adjusting the BBs to the ones
of the GT (BB) for correctly pseudo-labeled objects (true positives), and a combina-
tion of both (FP + BB). After changing the pseudo-labels in that way, we train the
corresponding ¢pr models and evaluate them. Table 2.7 presents the quantitative re-
sults. Focusing on the standard SSL setting (5%, 10%), we see that the main problem
for vehicles in % is BB adjustment, while for pedestrians is the introduction of FPs.
In the latter case, false negatives (FN; i.e., missing pseudo-labeled objects) seem
to be also an issue to reach upper bound accuracy. When we have the support of
virtual-world data, FNs do not seem to be a problem, and addressing BB correction
for vehicles and removing FPs for pedestrians would allow reaching upper bounds.
In the case of #', we came to the same conclusions for vehicles, the main problem
is BB adjustment, while in the case of pedestrians the main problem is not that
clear. In other words, there is more balance between FP and BB. On the other hand,
regarding these additional experiments, we trust more the conclusions derived
from £ . The reason is that, as we have seen in Figures 2.7 and 2.8, co-training was
correctly pseudo-labeling objects that are not part of the GT, so in this study, these
are either considered FPs and so wrongly removed (FB, FP + BB settings), or would
not have a GT BB to which adjust them (BB, FP + BB settings).

After this analysis, we think we can explore two main future lines of research.
First, to improve BB adjustment, we could complement multi-modal co-training
with instance segmentation, where using Mask R-CNN [37] would be a natural
choice. Note that virtual-world data can also have instance segmentation as part of
their GT suite. Second, to remove FPs, we could add an AL loop where humans could
remove even several FP with a few clicks (note that this is much easier than delin-
eating object BBs). On the other hand, additional CNN models could be explored to
avoid FPs as a post-processing step to multi-modal co-training. Besides these ideas,
we think that, whenever is possible, the monocular depth estimation model should
be trained on the target domain data, rather than trying to use an off-the-shelf
model. Since we think that not doing so was damaging the combination of multi-
modal co-training and GAN-based virtual-to-real image translation, an interesting
approach would be to perform both tasks simultaneously.
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Table 2.7: Digging in the results throw three post-processing settings applied to
co-training pseudo-labels: (FP) where we remove the false positive pseudo-labels;
(BB) where we change the pseudo-labels by the corresponding GT (i.e., in terms of
Figures 2.6-2.8, green BBs are replaced by red ones); (FP + BB) which combines both.
This table follows the terminology of Tables 2.4-2.6. Ax, X € {FPBB,FP+BB}, stands
for difference of setting X minus the respective original (i.e., using the co-training
pseudo-labels). Moreover, for each block of results, we add the #FP/FP% row, where
#FP refers to the total number of false positives that are used to train the final object
detector, ¢r, while FP% indicates what percentage they represent regarding the
whole set (labeled and pseudo-labeled BBs) used to train ¢r.

qtt— gt qrtt —gytt
Training Set
v P V&P \% P V&P
Target + ASource (UB) 86.82 71.59 79.21 64.56 63.44 64.00
5% Labeled + Co-T (RGB/D) 78.64 57.40 68.02 58.42 56.98 57.70
5% Labeled + Co-T (RGB/D)/FP 79.29 60.50  69.90 59.28 55.89 57.59
5% Labeled + Co-T (RGB/D)/BB 85.18 58.87  72.03 63.25 56.58 59.92
5% Labeled + Co-T (RGB/D)/FP + BB 85.61 58.75  72.18 62.49 57.63  60.06
App +0.65 +3.10 +1.88 +0.86 -1.09  -0.11
ABB +6.54 +1.47 +4.01 +4.83 -040  +2.22
AEP+BB +6.97 +1.35 +4.16 +4.07 +0.91 +2.36
#FP/FP% 1723/13.65% 275/16.33% 5952/10.39% 731/11.33%
10% Labeled + Co-T (RGB/D) 79.68 60.55 70.12 59.54 57.17 58.36
10% Labeled + Co-T (RGB/D)/FP 79.81 61.65  70.73 60.24 57.38 58.81
10% Labeled + Co-T (RGB/D)/BB 85.28 59.21 72.25 63.01 56.07 59.54
10% Labeled + Co-T (RGB/D)/FP + BB 83.23 61.03 72.13 63.20 56.99  60.10
App +0.13 +1.10 +0.61 +0.70 +0.21 +0.45
ABB +5.60 -134  +2.01 +3.47 -1.1 +1.18
AEP+BB +3.55 +0.48 +2.01 +3.66 -0.18  +1.74
#FP/FP% 1998/14.06% 408/16.83% 4553/7.42%  547/7.30%
Co-T (RGB/D) + Source 82.90 67.36 75.13 64.40 59.17  61.79
Co-T (RGB/D) + Source/FP 83.37 7095  77.16 57.68 56.04 56.86
Co-T (RGB/D) + Source/BB 88.94 61.69 75.32 62.14 57.22 59.68
Co-T (RGB/D) + Source/FP + BB 89.07 71.88  80.48 62.56 56.59 59.58
App +0.47 +3.59  +2.03 -6.72 -313  -4.93
ABB +6.04 -567  +0.19 -2.26 -1.95  -2.11
AEP+BB +6.17 +4.52 +5.35 -1.84 -258  -221
#FP/FP% 3281/3.57%  883/0.87% 18293/21.06%  970/2.02%
Co-T (RGB/D) + ASource 83.68 69.48 76.58 61.49 59.33  60.41
Co-T (RGB/D) + ASource/FP 83.07 7040  76.74 60.67 57.72 59.20
Co-T (RGB/D) + ASource/BB 89.27 68.63  78.95 62.06 57.64 59.85
Co-T (RGB/D) + ASource/FP + BB 88.93 71.45  80.19 64.67 55.27 59.97
App -0.61 +0.92 0.16 -0.82 -1.61 -1.21
ABB +5.59 -0.85  +3.61 +0.57 -1.69  -0.56
AEP+BB +5.25 +1.97 +3.61 +3.18 -406  —0.44
#FP/FP% 3097/5.59%  479/1.03% 20949/23.15% 816/1.70%
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2.5 Conclusions

In this chapter, we have addressed the curse of data labeling for onboard deep object
detection. In particular, following the SSL paradigm, we have proposed multi-modal
co-training for object detection. This co-training relies on a data view based on
appearance (RGB) and another based on estimated depth (D), the latter obtained
by applying monocular depth estimation, so keeping co-training as a single-sensor
method. We have performed an exhaustive set of experiments covering the standard
SSL setting (no domain shift, a few human-labeled data) as well as the settings
based on virtual-world data (many virtual-world labeled data, no human-labeled
data) both with domain shift and without (using GAN-based virtual-to-real image
translation). In these settings, we have compared multi-modal co-training and
appearance-based single-modal co-training. We have shown that multi-modal
co-training is effective in all settings.

In the standard SSL setting, from a 5% of human-labeled training data, co-
training can already lead to a final object detection accuracy relatively close to
upper bounds (i.e., with the 100% of human labeling). The same observation
holds when using virtual-world data, i.e., without human labeling at all. Multi-
modal co-training outperforms single-modal in standard SSL and under domain
shift, while both co-training modalities are on par when GAN-based virtual-to-real
image translation is performed; at least, by using an off-the-shelf depth estimation
model not specifically trained on the translated images. Moreover, multi-modal
co-training and GAN-based virtual-to-real image translation have been proved to
be complementary.

Moreover, our results suggest that in the standard SSL setting and under virtual-
to-real domain shift, multi-modal co-training outperforms single-modal. In the
latter case, when GAN-based virtual-to-real image translation is performed both co-
training modalities are on par; at least, by using an off-the-shelf depth estimation
model not specifically trained on the translated images. Overall, multi-modal
co-training significantly improves over lower bounds, actually not being too far
from upper bounds when relying on virtual-world data too. GAN-based virtual-
to-real image translation and co-training complement each other. For the future,
we plan several lines of work, namely, improving the adjustment of object BBs
by using instance segmentation upon detection, removing false-positive pseudo-
labels by using a post-processing AL cycle, and coupling the training of monocular
depth estimation and GAN-based virtual-to-real image translation to train on the
target domain. Besides, we would like to extend co-training experiments to other
classes of interest for onboard perception (traffic signs, motorbikes, bikes, etc.),
as well as adapting the method to tackle other tasks such as pixel-wise semantic
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segmentation.

For the future, we plan several lines of work, namely, improving the adjust-
ment of object BBs by using instance segmentation upon detection and removing
false-positive pseudo-labels by using a post-processing AL cycle. Moreover, we
believe that the monocular depth estimation model should be trained based on
target domain data whenever possible. When GAN-based image translation is
required, we could jointly train the monocular depth estimation model and the
GAN on the target domain. Besides, we would like to extend co-training experi-
ments to other classes of interest for onboard perception (traffic signs, motorbikes,
bikes, etc.), as well as adapting the method to tackle other tasks such as pixel-wise
semantic segmentation.



13 Co-training for unsupervised domain adap-
tation of semantic segmentation models

Semantic image segmentation is a central and challenging task in autonomous
driving, addressed by training deep models. Since this training draws to a curse of
human-based image labeling, using synthetic images with automatically gener-
ated labels together with unlabeled real-world images is a promising alternative.
This implies to address an unsupervised domain adaptation (UDA) problem. In
this chapter, we propose a new co-training procedure for synth-to-real UDA of
semantic segmentation models. It consists of a self-training stage, which pro-
vides two domain-adapted models, and a model collaboration loop for the mutual
improvement of these two models. These models are then used to provide the
final semantic segmentation labels (pseudo-labels) for the real-world images. The
overall procedure treats the deep models as black boxes and drives their collab-
oration at the level of pseudo-labeled target images, i.e., neither modifying loss
functions is required, nor explicit feature alighment. We test our proposal on
standard synthetic and real-world datasets for onboard semantic segmentation.
Our procedure shows improvements ranging from ~13 to ~31 mloU points over
baselines.

3.1 Introduction

Semantic image segmentation is a central and challenging task in autonomous
driving, as it involves predicting a class label (e.g., road, pedestrian, vehicle, etc)
per pixel in outdoor images. Therefore, non surprisingly, the development of deep
models for semantic segmentation has received a great deal of interest since deep
learning is the core for solving computer vision tasks [3,11,12,14,65,111,125]. In
this chapter, we do not aim at proposing a new deep model architecture for on-
board semantic segmentation, but our focus is on the training process of semantic
segmentation models. More specifically, we explore the setting where such models
must perform in real-world images, while for training them we have access to auto-
matically generated synthetic images with semantic labels together with unlabeled
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Figure 3.1: Co-training procedure for UDA. &'/ is a set of labeled synthetic images,

2" a set of unlabeled real-world images, and 2 is the set x of real-world pseudo-
labeled images (automatically generated). Our self-training stage provides two
initial domain-adapted models (#1, #2), which are further trained collaboratively
by exchanging pseudo-labeled images. Thus, this procedure treats the deep models
as black boxes and drives their collaboration at the level of pseudo-labeled target
images, i.e., neither modifying loss functions is required, nor explicit feature align-
ment. See details in Sect. 3.3 and Algorithms 2—4.

real-world images. It is well-known that training deep models on synthetic images
for performing on real-world ones requires domain adaptation [16, 112], which
must be unsupervised if we have no labels from real-world images [116]. Thus, this
chapter falls in the realm of unsupervised domain adaptation (UDA) for semantic
segmentation [9,27,36,57,67,77,103,114,127,137,146,147], i.e., in contrast to assum-
ing access to labels from the target domain [13,113]. Note that the great relevance of
UDA in this context comes from the fact that, until now, pixel-level semantic image
segmentation labels are obtained by a cumbersome and error-prone manual work.
In fact, this is the reason why the use of synthetic datasets [85, 86, 119] arouses great
interest.

In this chapter, we address synth-to-real UDA following a co-training pattern [5],
which is a type of semi-supervised learning (SSL) [104, 107] approach. Essentially,
canonical co-training consists in training two models in a collaborative manner
when only few labeled data are available but we can access to a relatively large
amount of unlabeled data. In the canonical co-training paradigm, domain shift
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between labeled and unlabeled data are not present. However, UDA can be instanti-
ated in this paradigm.

In previous works, we successfully applied a co-training pattern under the
synth-to-real UDA setting for deep object detection [34,110]. This encourages us to
address the challenging problem of semantic segmentation under the same setting
by proposing a new co-training procedure, which is summarized in Figure 3.1. It
consists of a self-training stage, which provides two domain-adapted models, and a
model collaboration loop for the mutual improvement of these two models. These
models are then used to provide the final semantic segmentation labels (pseudo-
labels) for the real-world images. In contrast to previous related works, the overall
procedure treats the deep models as black boxes and drives their collaboration
only at the level of pseudo-labeled target images, i.e., neither modifying loss func-
tions is required, nor explicit feature alignment. We test our proposal on synthetic
(GTAV [85], Synscapes [119], SYNTHIA [86]) and real-world datasets (Cityscapes [15],
BDD100K [131], Mapillary Vistas [70]) which have become standard for researching
on onboard semantic segmentation. Our procedure shows improvements rang-
ing from ~13 to ~31 mean intersection-over-union (mloU) points over baselines,
being less than 10 mIoU points below upper-bounds. Moreover, up to the best of
our knowledge, we are the first reporting synth-to-real UDA results for semantic
segmentation in BDD100K and Mapillary Vistas.

Section 3.2 contextualizes our work. Section 3.3 details the proposed procedure.
Section 3.4 describes the experimental setup and discusses the obtained results.
Finally, Section 3.6 summarizes this work.

3.2 Related works

Li et al. [60] and Wang et al. [114] rely on adversarial alignment to perform UDA.
While training a deep model for semantic segmentation, it is performed adversarial
image-to-image translation (synth-to-real) together with an adversarial alignment
of the model features arising from the source (synthetic images) and target domains
(real-world images). Both steps are alternated as part of an iterative training process.
For feature alignment, pseudo-labeling of the target domain images is performed.
This involves to apply an automatically computed per-class max probability thresh-
old (MPT) to class predictions. Tranheden et al. [103] follow the idea of mixing
source and target information (synthetic and real) as training samples [86]. How-
ever, target images are used after applying ClassMix [72], i.e., a class-based collage
between source and target images. This requires the semantic segmentation ground
truth, which for the synthetic images (source) is available while for the real-world
ones (target) pseudo-labels are used. Such domain adaptation via cross-domain
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mixed sampling (DACS) is iterated so that the semantic segmentation model can im-
prove its accuracy by eventually producing better pseudo-labels. Gao et al. [27] not
only augment target images with source classes, but the way around too. Their dual
soft-paste (DSP) is used withing a teacher-student framework, where the teacher
model generates the pseudo-labels. Zou et al. [146] propose a self-training proce-
dure where per-cycle pseudo-labels are considered by following a self-paced cur-
riculum learning policy. An important step is class-balanced self-training (CBST),
which is similar to MPT since a per-class confidence-based selection of pseudo-
labels is performed. Spatial priors (SP) based on the source domain (synth) are also
used. The authors improved their proposal in [147] by incorporating confidence
regularization steps for avoiding error drift in the pseudo-labels.

Chao et al. [9] assume the existence of a set of semantic segmentation models in-
dependently pre-trained according to some UDA technique. Then, the pseudo-label
confidences coming from such models are unified, fused, and finally distilled into a
student model. Zhang et al. [137] propose a multiple fusion adaptation (MFA) pro-
cedure, which integrates online-offline masked pseudo-label fusion, single-model
temporal fusion, and cross-model fusion. To obtain the offline pseudo-labels, ex-
isting UDA methods must be applied. In particular, so-called FDA [127] method is
used to train two different models which produce two maps of offline pseudo-labels
for each target image. Other two models, m; &my, are then iteratively trained. Corre-
sponding temporal moving average models, 11; &1, are kept and used to generate
the online pseudo-labels. The training total loss seeks for consistence between class
predictions of each m; and both offline pseudo-labels and class predictions from
the corresponding #1;. Moreover, consistence between the online pseudo-labels
from ri1; and the predictions from mj, i # j, is used as a collaboration mechanism
between models. Offline and online pseudo-labels are separately masked out by
corresponding CBST-inspired procedures. He et al. [36] assume the existence of dif-
ferent source domains. To reduce the visual gap between each source domain and
the target domain there is a first step where their LAB color spaces are aligned. Then,
there are as many semantic segmentation models to train as source domains. Model
training relies on source labels and target pseudo-labels. The latter are obtained
by applying the model to the target domain images and using a CBST-inspired
procedure for thresholding the resulting class confidences. The training of each
model is done iteratively so that the relevance of pseudo-labels follows a self-paced
curriculum learning. Collaboration between models is also part of the training. In
particular, it is encouraged the agreement of the confidences of the different models
when applied to the same source domain, for all source domains. Qin et al. [77]
proposed a procedure consisting of feature alignment based on cycleGAN [144],
additional domain alignment via two models whose confidence discrepancies are
considered, and a final stage where the confidences of these models are combined
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to obtain pseudo-labels which are later used to fine-tune the models. Luo et al. [67]
focused on the lack of semantic consistency (some classes may not be well aligned
between source and target domains, while others can be). Rather than a global
adversarial alignment between domains, a per-class adversarial alignment is pro-
posed. Using a common feature extractor, but two classification heads, per-class
confidence discrepancies between the heads are used to evaluate class alignment.
The classification heads are forced to be different by a cosine distance loss. Com-
bining the confidences of the two classifiers yields the final semantic segmentation
prediction. This approach does not benefit from pseudo-labels.

In contrast to these methods, our proposal is purely data-driven in the sense of
neither requiring changing the loss function of the selected semantic segmentation
model, nor explicit model features alignment of source and target domains via loss
function, i.e., we treat the semantic segmentation model as a black box. Our UDA is
inspired in co-training [5], so we share with some of the reviewed works the benefit
of leveraging pseudo-labels. In our proposal two models collaborate at pseudo-
label level for compensating labeling errors. These two models arise from our
previous self-training stage, which share with previous literature self-paced adaptive
thresholding inspired by MPT and CBST, as well as pixel-level domain mixes inspired
by ClassMix. Our proposal is complementary to image pre-processing techniques
such as color space adjustments and learnable image-to-image transformations. In
case of having multiple synthetic domains, we assume they are treated as a single
(heterogeneous) source domain, which has been effective in other visual tasks [79].

3.3 Method

In this section, we explain our data-driven co-training procedure, i.e., the self-
training stage, and the model collaboration loop for the mutual improvement of
these two models, which we call co-training loop. Overall, our proposal works at
pseudo-labeling level, i.e., it does not change the loss function of the semantic
segmentation model under training. Global transformations (e.g., color corrections,
learnable image-to-image transformations) on either source or target domain im-
ages are seen as pre-processing steps. Moreover, in case of having access to multiple
synthetic datasets, whether to use them one at a time or simultaneously is just a
matter of the input parameters passed to our co-training procedure.
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Input :Set of labeled images: 2
Set of unlabeled images: 2%
Net. init. weights & training hyp.-p.: #, #o
Self-t. hyp.-p.: #sr = {F,N,n,Km,KM,J[df}
Output:Two refined models: #%.,, #x,,
// Initialization
Wy < BasicModelTraining(# , # o, Z h
<ZLk Ve, W > —<@,0,0,# >
repeat
/1 Self-training Loop
<xl.Ve,> —Run(#,Rnd(Z*, N),k,J)
! < Fuse(%l,Select(n,%I(,))
W — Train(Wo, oy, XX, Map, Ver)
if (k ==K;,) then #x,, — W
elseif (k == Kj/) then #%,, — # endif
until (k == Kyz; k++)
return #x,, , #x,,

Algorithm 2: Self-training Stage

3.3.1 Self-training stage

Algorithm 2 summarizes the self-training stage, which we detail in the following.

Input & output parameters. The input 2! refers to the set of fully labeled source im-
ages; while " refers to the set of unlabeled target images. In our UDA setting, the
source images are synthetic and have automatically generated per-pixel semantic
segmentation ground truth (labels), while the target images are acquired with real-
world cameras. # refers to the weights of the semantic segmentation model (a CNN)
already initialized (randomly or by pre-training on a previous task); while # are
the usual hyper-parameters required for training the model in a supervised manner
(e.g., optimization policy, number of iterations, etc). #5; ={9, N, n, Ky, K, Mg f}
consists of parameters specifically required by the proposed self-training. K, is
the number of self-training cycles, where we output the model, #%,,, at the final
cycle. K;;;, K, < Ky, indicates an intermediate cycle from where we also output
the corresponding model, #%,,. N is the number of target images used to generate
pseudo-labels at each cycle, while n, n < N, is the number of pseudo-labeled images
to be kept for next model re-training. #; also contains I~ = {p;, pas, AP, Cim, Cor},
a set of parameters to implement a self-paced curriculum learning policy for ob-
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taining pseudo-labels from model confidences, which is inspired in MPT [57] and
CBST [146]. Finally, .#,¢ = {pmB, pcm} consists of parameters to control how
source and target images are combined.

Initialization. We start by training a model, #5, on the (labeled) source images,
2!, according to # and #. At each self-training cycle, #; is used as pre-trained
model.
Self-training cycles (loop). Each cycle starts by obtaining a set of pseudo-labeled
images, & ]{, For the shake of speed, we do not consider all the images in Z'* as
candidates to obtain pseudo-labels. Instead, N images are selected from Z'* and,
then, the current model # is applied to them (run). Thus, we obtain N semantic
maps. Each map can be seen as a set of confidence channels, one per class. Thus,
for each class, we have N confidence maps. Let’s term as 7, the vector of confidence
values > 0 gathered from the N confidence maps of class c. For each class c, a
confidence threshold, Cr,, is set as the value required for having p% values of vector
V. over it, where p = min(p,, + kAp, pa). Let’s term as ¥, the vector of confidence
thresholds from all classes. Now, 7¢; is used to perform per-class thresholding on
the N semantic segmentation maps, so obtaining the N pseudo-labeled images
forming & 1(/ Note how the use of p,, + kAp, where k is the self-training cycle, acts
as a mechanism of self-paced curriculum learning on the thresholding process.
The maximum percentage, pj, allows to prevent noise due to accepting too much
per-class pseudo-labels eventually with low confidence. Moreover, for any class c,
we apply the rule C7, — max(C,, min(Cr,, Cp)); where, irrespective of p%, C,, pre-
vents from considering not sufficiently confident pseudo-labels, while Cy; ensures
to consider pseudo-labels with a sufficiently high confidence. Then, in order to set
the final set of pseudo-labels during each cycle, only n of the N pseudo-labeled
images are selected. In this case, an image-level confidence ranking is established
by simply averaging the confidences associated to the pseudo-labels of each image.
The top-n most confident images are considered and fused with images labeled in
previous cycles. If one of the selected n images was already incorporated in pre-
vious cycles, we kept the pseudo-labels corresponding to the highest image-level
confidence average. The resulting set of pseudo-labeled images is termed as 2.
Finally, we use the (labeled) source images, & !, and the pseudo-labeled target
images, 2!, to train a new model, #/, by fine-tuning #; according to the hyper-
parameters #p and .#;¢. A parameter we can find in any # is the number of
images per mini-batch, Nj;p. Then, given Mar ={pmB, Pcm} for training # we

use pppNyp images from & i and the rest from Z!. In fact, the former undergo
a ClassMix-inspired collage transform [72]. In particular, we select py;p Nyp im-
ages from & and, for each one individually, we gather all the class information
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(appearance and labels) until considering a pcy% of classes, going from less to
more confident ones, which is possible thanks to 7¢,. This information is pasted at
appearance level (class regions from source on top of target images) and at label
level (class labels from source on top of the pseudo-label maps of the target images).

Input :Sets of pseudo-labeled images: & ! . X ]@2
Vectors of per-class conf. thr.: ¥¢, 1, ¥cy
Amount of images to exchange: n
Image-level confidence threshold control: A

Output:New sets of ps.-lab. images: ‘%1{/1 new’ ‘%I{/z,new

// ClassSort(v) returns the vector of sorted v indices after
/1 sorting by v values, so that A;[k] is a class index.

Ay < ClassSort(Vcro —Ver)

Ay« ClassSort(Vcr — Vo)

/1 ClassImageList(Z') returns a vector so that .%;[k] is the
/1 list of images in & containing pseudo-labels of class k.
A «— ClassImageList(¥ ]{,1),

%  « ClassImageList(%¥ 1{,2)
i ]
‘%Nl,new"%Ng,new — 2,98

k,N; <« 0,Num. Classes

repeat
/11 F;[A;[k]] > t applies element-wise.
// Images from %162 move to ‘%]zh,new'
fe = Amax(A A (K] + (1~ 1) min( [Az[k]])
,%]ill,new hAppend(%I{,lyqew,tSﬁ [Az[k]]A> tc)
// Images from 3{](,1 move to %](,Z,new.
~ fe = Amax(S[A1[k]]) + (1 - A) min(S2[A1 [K]])
,%](Iz,new <—Append(gr’flilz,new,eyﬁz[Al[k]] > 1c)
until ((|3{1{h;new == |%I{fz,new| ==n)ll(k == Nc); k++)
return &‘fi I

Nl,new'%Nz,new
Algorithm 3: Collaboration of models
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Input :Set of labeled images: 2

Set of unlabeled images: &%

Net. init. weights & training hyp.-p.: #, #p

Self-t. hyp.-p.: #sr ={J, N, n,Km,KM,ﬂdf}

Co-t. hyp.-p.: #¢r = {K, w, A}
Output:Refined model: #

// Initialization
Wor, Woo — SelfTraining(XL, X W, Ho, Hst)

%‘ll,t%'zl, k;WCTerCTZJ%;% - ®,¢,0,0,0y7//0,1»7//0,2

repeat
/1 Co-training Loop
X ]3 — Rnd(Z%, N)
<Xy, Vor1 > — R, 24k, )
<Xy, Verp>  — R, 23k T)
3{]{,1 s Sr‘flilz — Combination(ﬂf{1 , 3{]{,2)

xl j%i — Collaborfltior}(3?/”1(,1 Ver i %&2 VergnA)
%ll,.%zl — Fuse(%l,.%]ih),Fuse(%Al,%](,Z)
Wy —Train(Wo, #y, X, %], Mar, Vo)
Wo —TrainWoo, #oy, X, XL, Maf, Vory)
until (k== K; k++)
W — LastTrain(w,%,%,WW,%I,%”,ﬂdf)
return #
Algorithm 4: Co-training procedure Uses: Algorithms 2 & 3.

3.3.2 Co-training procedure

Algorithm 4 summarizes the co-training procedure supporting the scheme shown
in Figure 3.1, which is based on the previous self-training stage (Algorithm 2), on
combining pseudo-labels, as well as on a model collaboration stage (Algorithm 3).
We detail Algorithm 4 in the following.

Input & output parameters, and Initialization. Since the co-training procedure in-
cludes the self-training stage, we have the input parameters required for Algorithm
2. As additional parameters we have #,; = {K, w, 1}, where K is the maximum
number of iterations for mutual model improvement, which we term as co-training
loop, w is just a selector to be used in the last training step (after the co-training
loop), and A is used during pseudo-label exchange between models. The output
parameter, #/, is the final model. The co-training procedure starts by running the
self-training stage.
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Co-training cycles (loop). Similarly to self-training, a co-training cycle starts by
obtaining pseudo-labeled images. In this case two sets, Xy I &3{ I ,» are obtained
since we run two different models, #; &#5. These are apphed to the same subset,
Z, of N unlabeled images randomly selected from 2. As for self-training, we

not only obtain &, I &3{ I , but also corresponding vectors of per-class confidence

thresholds, 7/CT1&7/CT2- Slnce, X Zzh &X' ]62 come from the same & ﬁ but result from
different models, we can perform a simple step of pseudo-label combination. In

particular, for each image in & ](,i, if a pixel has the void class as pseudo-label, then,

if the pseudo-label for the same pixel of the corresponding image in & 1{]]_ is not
void, we adopt such pseudo-label, i € {1,2}, j € {1,2},i # j. This step reduces the
amount of non-labeled pixels, while keeping pseudo-labeling differences between
X 1{,1 && ]{,2 at non-void pseudo-labels.

Note that co-training strategies assume that the models under collaboration
perform in a complementary manner. Therefore, after this basic combination of
pseudo-labels, a more elaborated collaboration stage is applied, which is described

in Algorithm 3. Essentially, n pseudo-labeled images from & Ii[i will form the new
X K,j after such collaboration, i € {1,2}, j € {1,2},i # j. Thus, along the co-training
cycle, pseudo-labeled images arising from #; will be used to retain #/. In particular,

visiting first those images containing classes for which &’ ](, is more confident than
Xy ! x sufficiently high confident images in &, I . are selected for the new &, I set

unt11 reaching n. The class confidences of & I{Ii & 1{, are given by the respectlve

Ver18¥Vc, 5, while the confidence of a pseudo-labeled image is determined as the
average of the confidences of its pseudo-labels. Being sufficiently high confident
means that the average is over a dynamic threshold controlled by the A parameter.
Once this process is finished, we have two new sets of pseudo-labels, &, i &y, I
which are used separately for finishing the co-training cycle. In partlcular each
new &; lis used as its self- training counterpart (see & Lin the loop of Algorithm
2),i.e, perforrnlng the fusion with the corresponding set of pseudo-labels from
previous cycles and fine-tuning of #4 ;. Finally, once the co-training loops finishes,
alast train is performed. In this case, the full Z'* is used to produce pseudo-labels.
For this task, we can use an ensemble of #7 and #5 (e.g., averaging confidences),
or any of these two models individually. This option is selected according to the
parameter w. In this last training, the ClassMix-inspired procedure is not applied,
but mixing source and target images at mini-batch level still is done according to
the value pyp € # ;5. It is also worth noting that, inside co-training loop, the two
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Run() operations can be parallelized, and the two Train() too.

3.4 Experimental results

3.4.1 Datasets and evaluation

Our experiments rely on three well-known synthetic datasets used for UDA semantic
segmentation as source data, namely, GTAV [85], SYNTHIA [86] and Synscapes [119].
GTAV is composed by 24,904 images with a resolution of 1914 x 1052 pixels directly
obtained from the render engine of the videogame GTA V. Synscapes is composed
by 25,000 images with a resolution of 1440 x 720 pixels of urban scenes, obtained by
using a physic-based rendering pipeline. SYNTHIA is composed by 9,000 images of
urban scenes highly populated, with a resolution of 1280 x 760 pixels, generated by a
videogame-style rendering pipeline based on the Unity3D framework. As real-world
datasets (target domain) we rely on Cityscapes [15], BDD100K [131] and Mapillary
Vistas [70]. Cityscapes is a popular dataset composed of onboard images acquired
at different cities in Germany under clean conditions (e.g., no heavy occlusions
or bad weather), it is common practice to use 2,975 images for training semantic
segmentation models, and 500 images for reporting quantitative results. The latter
are known as validation set. Cityscapes images have a resolution of 2048 x 1024
pixels. Another dataset is BDD100K, which contains challenging onboard images
taken from different vehicles, in different US cities, and under diverse weather
conditions. The dataset is divided into 7,000 images for training purposes and 1,000
for validation. However, a high amount of training images are heavily occluded
by the ego vehicle, thus, for our experiments we rely on a occlusion-free training
subset of 1,777 images. Image resolution is 1280 x 720 pixels. Finally, Mapillary
Vistas is composed by high resolution images of street views around the world.
These images have a high variation in resolutions and aspect ratios due to the fact
that are taken from diverse devices like smartphones, tablets, professional cameras,
etc. For simplicity, we only consider those images with aspect ratio 4:3, which, in
practice, are more than the 75%. Then, we have 14,716 images for training and 1,617
for validation.

As is common practice, we evaluate the performance of our system on the
validation set of each real-world (target) dataset using the 19 official classes defined
for Cityscapes. These 19 classes are common in all the datasets except in SYNTHIA
that only contains 16 of these 19 classes, additional dataset-specific classes are
ignored for training and evaluation. Note that, although there are semantic labels
available for the target datasets, for performing UDA we ignore them at training
time, and we use them at validation time. In other words, we only use the semantic
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Table 3.1: Hyper-parameters of our method (Sect. 3.3 and Alg. 2-4). Datasets: GTAV
(G), Synscapes (S), STNTHIA (SIA), Cityscapes (C), BDD (B), Mapillary Vistas (M).

J”df ‘ Fst Fot
Source Target| N n Ap C, Cuy Nump|pmuB Pcm|Pm Py Km Ku|Pm Pu K w A
SIA C 500 100 0.05 0.5 0.9 4 075 05|05 06 1 10|05 06 5 1 08
S, G+S C,M |500 100 0.05 0.5 0.9 4 075 05 |05 06 1 10|05 06 5 1 0.8
G C 500 100 0.05 0.5 0.9 4 075 0503 05 1 10|05 06 5 1 08
G+S B 500 100 0.05 0.5 0.9 2 05 05]03 05 1 10|05 06 5 1 08

labels of the validation sets, and with the only purpose of reporting quantitative
results. All the synthetic datasets provide semantic labels, since they act as source
domain, we use them. In addition, we note that for our experiments we do not
perform any learnable image-to-image transform to align synthetic and real-world
domains (like GAN-based ones). However, following [36], we perform synth-to-real
LAB space alignment as pre-processing step.

As is standard, quantitative evaluation relies on PASCAL VOC intersection-over-
union metric JoU = TP/(TP + FP + FN) [22], where TP, FP, and FN refer to true
positives, false positives, and false negatives, respectively. IoU can be computed per
class, while using a mean IoU (mIoU) to consider all the classes at once.

3.4.2 Implementation details

We use the Detectron2 [121] framework and leverage their implementation of
DeepLabV3+ for semantic segmentation, with ImageNet weight initialization. We
chose V3+ version of DeepLab instead the V2 because it provides a configuration
which fits well in our 12GB-memory GPUs, turning out in a x2 training speed over
the V2 configuration and allowing a higher batch size. Other than this, V3+ does
not provide accuracy advantages over V2. We will see it when discussing Table
3.2, where the baselines of V3+ and V2 performs similarly (SYNTHIA case) or V3+
may perform worse (GTAV case). The hyper-parameters used by our co-training
procedure are set according to Table 3.1. Since their meaning is intuitive, we just
tested some reasonable values, but did not perform hyper-parameter search. As
we can see in Table 3.1 they are pretty similar across datasets. This table does not
include the hyper-parameter related to the training of DeepLabV3+, termed as ./
in Algorithms 2-4, since they are not specific of our proposal. Thus, we summarize
them in the following.

For training the semantic segmentation models, we use SGD optimizer with a
starting learning rate of 0.002 and momentum 0.9. We crop the training images
to 1024 x 512 pixels, 816 x 608, and 1280 x 720, when we work with Cityscapes,
Mapillary Vistas, and BDD100K, respectively. Considering this cropping and our
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available hardware, we set batch sizes (V) of 4 images, 4, and 2, for these datasets,
respectively. Moreover, we perform data augmentation consisting of random zooms
and horizontal flips. For computing each source-only baseline model (#; in Al-
gorithm 2) and the final model (returned #  in Algorithm 4) we set the number of
iterations to 60K when we work with Cityscapes and Mapillary Vistas, and 120K for
BDDI100K to maintain consistency given the mentioned batch sizes. The number of
iterations for the self-training stage and the co-training loop are equally set to 8K
for Cityscapes and Mapillary Vistas, and 16K for BDD100K.

In addition, on training only using GTAV, a class balancing sample policy (CB)
is applied. Due to the scarcity of samples from several classes (e.g., bicycle, train,
rider and motorcycle), these are under-represented during training. A simple,
yet efficient, method to balance the frequency of samples from these classes is
computing individual class frequency in the whole training dataset and apply a
higher selection probability for the under-represented classes. The other synthetic
datasets in isolation and the combination of GTAV + Synscapes are already well
balanced and we do not need to apply this technique.
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3.4.3 Comparison with the state of the art

In Table 3.2 we compare our co-training procedure with state-of-the-art meth-
ods when using Cityscapes as target domain. We divide the results into four
blocks according to the source images we use: SYNTHA, GTAV, Synscapes, or
GTAV+Synscapes. Most works in the literature present their results only using
GTAV or SYNTHIA as source data. We obtain the best results in the SYNTHIA case,
with 56 mIoU (19 classes), and for GTAV with 59.5 mIoU. On the other hand, each
proposal from the literature uses their own CNN architecture and pre-trained mod-
els. Thus, we have added the mloU score of the baseline that each work uses as
starting point to improve according to the corresponding proposed method. Then,
we show the difference between the final achieved mIoU score and the baseline one.
In Table 3.2 this corresponds to column A(Diff.). Note how our method reaches 20.6
and 31.0 points of mIoU increment on SYNTHIA and GTAYV, respectively. The highest
for GTAV, and the highest for SYNTHIA on pair with ProDA proposal. Additionally,
for the shake of completeness, we have added the mIoU scores for the 13 classes
setting of SYNTHIA since it is also a common practice in the literature. We can
see that co-training obtains the best mIoU too. On the other hand, we are mostly
interested in the 19 classes setting. Using Synscapes as source data we achieved
state-of-the-art results in both A(Diff.) (13.3 points) and final mIoU score (58.3).
Note that, in this case, our baseline score is similar to the ones reported in previous
literature.

By performing a different LAB transform for each synthetic dataset individually,
our co-training procedure allows to joint them as if they were one single domain.
Thus, we have considered this setting too. Preliminary baseline experiments (i.e.,
without performing co-training) showed that the combinations GTAV + Synscapes
and GTAV + Synscapes + SYNTHIA are the best performing, with a very scarce
mloU difference between them (0.62). Thus, for the shake of bounding the number
of experiments, we have chosen GTAV + Synscapes as the only case combining
datasets, so also avoiding the problem of the 19 vs. 16 classes discrepancy when
SYNTHIA is combined with them. In fact, using GTAV + Synscapes, we reach a
A(Diff.) of 20.2 points, with a final mIoU of 70.2, which outperforms the second
best in 11.2 points, and it clearly improves the mIoU with respect to the use of these
synthetic datasets separately (15.6 points comparing to GTAV, 11.9 for Synscapes).
Again, in this case, our baseline score is similar to the ones reported in previous
literature.
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3.4 Experimental results

Table 3.8: Contribution of the main components of our proposal. Case study: GTAV
+ Synscapes — Cityscapes.

Co-training Procedure

Self-training Stage

Baseline +LAB + MixBatch + ClassMix + Co-trainingloop Upper-bound

mloU 50.01 59.32 66.18 67.47 70.23 78.18
Gain - +9.31 +6.86 +1.29 +2.76 -

3.4.4 Ablative study and Qualitative results

In Tables 3.3, 3.4,3.5 and 3.6 we compare co-training results with corresponding
baselines and upper-bounds. We also report the results of applying LAB adjustment
as only UDA step, as well as the results from one of the models obtained after our
self-training stage (we chose the model from the last cycle). Overall, in all cases
the co-training loop (which completes the co-training procedure) improves the
self-training stage, and this stage, in turn, improves over LAB adjustment. Moreover,
when combining GTAV + Synscapes we are only 7.95 mIoU points below the upper-
bound, after improving ~ 20.22 mlIoU points the baseline.

To complement our experimental analysis, we summarize in Table 3.8 the con-
tribution of the main components of our proposal for the case GTAV + Synscapes —
Cityscapes. First, we can see how a proper pre-processing of the data is relevant. In
particular, performing synth-to-real LAB space alignment already allows to improve
9.31 points of mIoU. This contribution can also be seen in Tables 3.3-3.6 and 3.7,
where improvements range from 2.59 mloU points (GTAV+Synscapes—Mapillary
Vistas) to 9.34 (GTAV—Cityscapes). This LAB adjustment is a step hardly seen in
synth-to-real UDA literature which should not be ignored. Then, back to Table 3.8,
we see that properly combining labeled source images and pseudo-labeled target
images (MixBatch) is also relevant since it provides an additional gain of 6.86 points.
Note that this MixBatch is basically the cool world idea which we can trace back
to work of our own lab done before the deep learning era in computer vision [109].
In addition, performing our ClassMix-inspired collage also contributes with 1.29
points of mIoU, and the final collaboration of models returns 2.76 additional points
of mIoU. Overall, the main components of our synth-to-real UDA procedure con-
tribute with 10.91 points of mIoU and LAB alignment 9.31 points. We conclude that
all the components of the proposed procedure are relevant.

In order to confirm these positive results, we applied our method to two addi-
tional target domains which are relatively challenging, namely, Mapillary Vistas
and BDD100K. In fact, up to the best of our knowledge, in the current literature
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sidewalk  building wall

person riger car

Figure 3.2: Qualitative results using GTAV + Synscapes as source domain. From left
to right, the two first columns correspond to Cityscapes in the role of target domain,
next two columns to BDD100K, and last two to Mapillary Vistas. Top to bottom rows
correspond to SrcLAB, self-training stage, full co-training procedure, upper-bound,
and ground truth, respectively.

there are not synth-to-real UDA semantic segmentation results reported for them.
Our results can be seen in Table 3.7, directly focusing on the combination of GTAV
+ Synscapes as source domain. In this case, the co-training loop improves less
over the intermediate self-training stage. Still, for BDD100K the final mIoU is only
8.22 mloU points below the upper-bound, after improving 24.13 mlIoU points the
baseline. For Mapillary Vistas our methods remains only 9.14 mIoU points below
the upper-bound and improves 16.11 mIoU points the baseline. Up to the best of
our knowledge, this are state-of-the-art results for BDD100K and Mapillary Vistas
when addressing synth-to-real UDA semantic segmentation.

Figure 3.2 presents qualitative results of semantic segmentation for the different
real-world (target) datasets, when using GTAV + Synscapes as source domain. We
observe how the baselines have problems with dynamic objects (e.g., cars, trucks)
and some infrastructure classes like sidewalk are noisy. The self-training stage
mitigates the problems observed in the only-source (with LAB adjustment) results
to a large extent. However, we can still observe instabilities in classes like truck or
bus, which the co-training loop (full co-training procedure) achieves to address
properly. Nevertheless, the co-training procedure is not perfect and several errors
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JProady FProad  FNroad [HEESIH

Figure 3.3: Qualitative results (GTAV + Synscapes — Cityscapes) focusing on TP/F-
P/FN for road and sidewalk classes. Columns, left to right: SrcLAB, self-training
stage, co-training loop (full co-training procedure). Blue boxes highlight areas of
interest.

PDersonfFP personFN person FPcar  FNcar

Figure 3.4: Analogous to Figure 3.3 for the classes Person and Car.

are observed in some classes preventing to reach upper-bound mloU. In fact, upper-
bounds are neither perfect, which is due to the difficulty of performing semantic
segmentation in onboard images.

Figures 3.3 and 3.4 exemplify these comments by showing the pseudo-labeling
evolution for several classes of special interests such as Road, Sidewalk, Pedestrian,
and Car. In Figure 3.3, we see how the SrcLAB model has particular problems to
segment well the sidewalk, however, the self-training stage resolves most errors
although it may introduce new ones (mid-bottom image), while the co-training loop
is able to recover from such errors. In Figure 3.4, we can see (bottom row) how the
self-training stage improves the pseudo-labeling of a van, while the co-training loop
improves it even more. Analogously, we can see (top row) how self-training helps to
alleviate the confusion between pedestrian and riders, while the co-training loop
almost removes all the confusion errors between these two classes.
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Table 3.9: Content statistics for the considered datasets. For each class, we indicate
the percentage (%) of: (1) Images containing samples of the class, and (2) Pixels in
the dataset with the class label.
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3.5 Supplementary work

3.5.1 Additional datasets information

Table 3.9 presents statistics about the content of the different datasets. Focusing on
the synthetic datasets, we observe that GTAV have few cases of Bicycle and Train,
so explaining why the semantic segmentation baseline performs poorly on these
classes. On other hand, SYNTHIA and Synscapes are overall well balanced, however,
in Synscapes, the examples of Bus, Train, and Truck are very similar in terms of
global shape. On other hand, SYNTHIA is less photo-realistic than Synscapes.
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3.5.2 Additional co-training information

Figure 3.5 shows the confusion matrix of the co-training model trained with GTAV +
Synscapes as source data and Cityscapes as target data. We can see how background
classes like Road, Building, Vegetation and Sky reach a ~ 95% accuracy. All classes
corresponding to dynamic objects show a ~ 90% accuracy, except for Motorbike
and Rider with ~ 70%. Riders may be confused with pedestrians (Person class) and
motorbikes with bicycles. This problem could be addressed injecting more rider
samples in the source data, including corner cases where they appear with pedestri-
ans around. Analogously, having more synthetic samples showing motorbikes and
bicycles may help to better differentiate such classes.

Figure 3.6 shows the confusion matrix of the co-training model trained with
GTAV + Synscapes as source data and BDD100K as target data. Again, most classes
corresponding to environment (Road, Building, Vegetation and Sky) have a high
accuracy. However, there are some environment classes with a large magin for
improvement. For instance, the Sidewalk class tends to be labeled as Road, which
we think is due to lacking real-world images with sidewalks; in Table 3.9, we can
see that only the ~ 66% of training images show sidewalks, while this statistics
reaches the ~ 98% in the case of Cityscapes. Wall, Fence, and Pole classes form
a sort of local cluster of confusion. Sometimes, pixels of these classes are also
labeled as Vegetation because instances of this class use to occlude instances of
Wall/Fence/Pole or vice versa. Traffic lights and signs are frequently labeled as
Building/Pole/Vegetation. In here, a different labeling policy may also be introduc-
ing confusion on the trained model. While the rear part of traffic lights and signs
is not labeled in Synscapes and Cityscapes, they are in BDD100K. Other classes
such as Truck, Motorbike and Bike, tend to be labeled as Car. The Truck class is also
under a discrepancy in labeling policy, since pick-up cars are labeled as Truck in
BDDI100K but as Car in the others datasets.

Figure 3.7 shows the confusion matrix of the co-training model trained with
GTAV + Synscapes as source data and Mapillary Vistas as target data. The diagonal
scores and confusion cases are similar to those of Cityscapes. Focusing on difficult
specifics, we can observe cases of high accuracy but mid IoU. For instance, the
class Terrain shows ~ 93% and ~ 47%, respectively. Other classes showing a similar
pattern are Truck, Bus, and Motorbike. We think this can be at least partially due to
differences in labeling policies. Mapillary Vistas accounts for around one hundred
different classes, which cannot be easily mapped to the 19 classes of Cityscapes.
Then, using only 19 classes while mapping as unlabeled the rest, leaves a ground
truth with less information per training image than in cases like Cityscapes and
BDD100K.
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Figure 3.5: Confusion matrix of the co-training model trained with GTAV + Syn-
scapes as source data and Cityscapes as target data.

3.5.3 Additional qualitative analysis

GTAV + Synscapes — Cityscapes: In Figures 3.8 and 3.9 we show additional qualita-
tive results obtained on Cityscapes, when using GTAV+Synscapes as source domain.

Figure 3.8 remarks where several improvements from the co-training model vs.
self-training one appear. In the example at the left column, we see that the baseline
and self-training models have problems labeling a bus while co-training one labels
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Figure 3.6: Confusion matrix of the co-training model trained with GTAV + Syn-
scapes as source data and BDD100K as target data.

all the dynamic objects accurately as the upper-bound model does. In the mid
column, the co-training model improves the labeling of the sidewalk, the closest
person and rider. Last column shows a challenging case where several pedestrians
mixed with cyclists are crossing the road. The baseline and self-training models
are poor at distinguishing riders from pedestrians. The co-training model is able to
improve on classifying riders over the baseline and self-training models, but not
reaching the performance of the upper-bound model in this case.
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Figure 3.7: Confusion matrix of the co-training model trained with GTAV + Syn-
scapes as source data and Mapillary Vistas as target data.

Figure 3.9 shows examples of wrong labeling even from the co-training model.
The left column shows a building erroneously labeled by all models except by the
upper-bound one. A large area of the building is labeled as fence. Which we believe
is due to the reflections seen in the facade windows. Furthermore, the variability
of buildings in the synthetic data are not enough to cover these variants seen in
the real-world scenarios. The upper-bound model properly labels most of the
building, but still labels part of its bottom as fence. The mid column shows an usual
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troublesome case in Cityscapes, where a stone-based road is labeled as sidewalk.
Note that stones are also used to build sidewalks. The right column shows a bus
with some kind of advertising in the back, which induces all the models (including
the upper-bound one) to label the bus as a mixture of Traffic Sign and Building. We
note that, overall, there are not sufficient training samples of this type.

GTAV + Synscapes — BDD100K: In Figures 3.10 and 3.11 we present qualitative
results changing the target to BDD100K.

Figure 3.10 shows how noisy is the baseline model in this case. This is due to
variability regarding weather conditions, lighting, and onboard cameras. Note that,
contrarily to the case of Cityscapes, BDD100K cameras are not even installed in
the same position from car to car, not even in the same car model in all the cases
(see Figure 3.12). In the left column of Figure 3.10, we see how both self-training
and co-training models clearly perform much better than the baseline, in fact,
similarly to the upper-bound one. In the mid column, co-training model is the one
performing most similarly to the upper-bound. In the last column, self-taining,
co-training, and upper-bound models have problems labeling the bus cabin, which
is confused with a truck cabin (upper-bound), a car cabin (co-training), and a bit of
both (self-training as coming from the baseline).

Figure 3.11 shows examples of wrong labeling even from the co-training model.
The left column shows an example where a far bus is confused with a Truck (base-
line) or a Car (self-training and co-training), and the sidewalk is largely confused
with Terrain/Road (baseline and co-training), Road (self-training), even the upper-
bound confuses part of the sidewalk with Terrain. Traffic lights are also miss-
classified. The mid column also shows failures on sidewalk classification for self-
training and co-training models, although both label the road better than the base-
line. These models label the closest car even better than the upper-bound model.
The right column shows a extreme case where all models have difficulties labeling
a case of rider-with-bicycle. The baseline model provides some insufficient cues,
self-training one improves them, but co-training model labels the rider-with-bicycle
partially as Car and partially as Road. Even the upper-bound model misses the rider,
only properly labeling the bicycle.

GTAV + Synscapes — Mapillary: In Figures 3.13 and 3.14 we introduce qualitative
results changing the target to Mapillary Vistas.

Figure 3.13 aims to show cases where the co-training model performs similarly
or even better than the upper-bound one. In the left column, the co-training model
performs better than the rest of models by avoiding parts of the wall being labeled
as Fence. In the mid column, only the co-training and the upper-bound models
perform relatively well labeling the sidewalk, being the co-training model even
better. In the right column, only the co-training model is properly labeling the wall
and relatively well the close truck. Note how the upper-bound model labels the wall
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as Fence.

Figure 3.14 shows examples of wrong labeling from the co-training model. In
the left column, some buildings are labeled as Train, in fact, these building have a
shape and are arranged in a way that resemble train wagons. In the mid column, we
see that the co-training model is labeling some vegetation as Terrain, performing a
bit worse than the self-training model. In the right column, the co-training model
partially labels two buses as Car, while the self-training model performs a better
labeling in these cases.

3.6 Conclusions

In this chapter, we have addressed the training of semantic segmentation models
under the challenging setting of synth-to-real unsupervised domain adaptation
(UDA), i.e., assuming access to a set of synthetic images (source) with automatically
generated ground truth together with a set of unlabeled real-world images (target).
We have proposed a new co-training procedure combining a self-training stage and
a co-training loop where two models arising from the self-training stage collaborate
for mutual improvement. The overall procedure treats the deep models as black
boxes and drives their collaboration at the level of pseudo-labeled target images,
i.e., neither modifying loss functions is required, nor explicit feature alignment. We
have tested our proposal on standard synthetic (GTAV, Synscapes, SYNTHIA) and
real-world datasets (Cityscapes, BDD100K, Mapillary Vistas). Our co-training shows
improvements ranging from ~13 to ~31 mloU points over baselines, remaining
very closely (less than 10 points) to the upper-bounds. In fact, up to the best of
our knowledge, we are the first reporting such kind of results for challenging target
domains such as BDD100K and Mapillary Vistas. Moreover, we have shown how
the different components of our co-training procedure contribute to improve final
mloU. Future work, will explore collaboration from additional perception models at
the co-training loop, i.e., not necessarily based on semantic segmentation but such
collaborations may arise from object detection or monocular depth estimation.
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Self-training

Co-training

Ground truth

road sidewalk  building wall fence pole
K i car truck bus

Figure 3.8: Qualitative results on the validation set of Cityscapes, when relying on
GTAV + Synscapes as source data. The baseline model is trained using only these
source data, the upper-bound model uses these source data and all the labeled
training data of Cityscapes. Self-training and co-training models rely on the source
data and the same training data from Cityscapes but without the labeling informa-
tion.
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Figure 3.9: Analogous to Figure 3.8, focusing on problematic examples.
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Figure 3.10: Qualitative results similar to Figure 3.8 when using BDD100K as target.
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Figure 3.11: Analogous to Figure 3.10, focusing on problematic examples.
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Figure 3.12: Image samples from BDD100K dataset.
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Figure 3.13: Qualitative results similar to Figure 3.8 when using Mapillary Vistas as
target.
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Figure 3.14: Analogous to Figure 3.13, focusing on problematic examples.
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Human-inspired semantic pseudo-labeling
with synthetic images generated by path-
tracing

We face an unsupervised domain adaptation (UDA) setting for semantic segmen-
tation. Our contribution is two-fold. On the one hand, we propose a new SSL
framework inspired by human labelers. In particular, semantic classes are cate-
gorized. Then, self-training is applied per category. In this way, each image has
different per-category layers of pseudo-labels produced by corresponding self-
trained models. Then, we fuse the pseudo-labels by an ordered composition. We
denote this SSL technique as ordered composition of specialized models (OCSM).
As human labelers usually do, we order (stack) the layers of pseudo-labels ac-
cording to the prior area size of the semantic categories, so that pseudo-labels
from higher layers prevail in case of labeling conflict in a pixel. After applying this
fusion of layers, we obtain fully labeled images. On the other hand, we have also
contributed to the generation of a new synthetic dataset for supporting the auto-
matic semantic labeling of onboard images. It is photo-realistic since it is based on
path-tracing rendering, proper 3D assets in terms of geometry and materials, and
realistic illumination environments. OCSM seamlessly leverages publicly avail-
able synthetic datasets as well as this new one to obtain state-of-the-art results
on synth-to-real UDA for semantic segmentation. We show that the new dataset
allows us to reach better labeling accuracy than previously existing datasets, while
it complements them well when combined. Moreover, we also show that OCSM
outperforms co-training. In the Cityscapes validation set, we reach mIoU=73.8,
only 6 points behind the upper bound based on human labeling.

4.1 Introduction

Real-world data are difficult to label, thus, having real-world data supervised for
particular tasks is time-consuming and expensive. Synthetic data are presented
as an alternative to simulate scenarios related to these particular tasks. However,
recreating the same properties of the real data with synthetic ones is a challenging
procedure difficult to accomplish, propitiating a critical domain shift between
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synthetic and real domains. On the one hand, the advances in computer graphics
allow us to create more photo-realistic scenarios [85, 108, 119]. On the other hand,
domain adaptation (DA) methods aim at reducing the domain shift [67,90, 113]
and make affordable systems to properly perform across domains. Furthermore,
unsupervised domain adaptation (UDA) methods rely on the knowledge obtained
from labeled source data (synthetic data in our case) to reduce the domain shift
using the real-world data without knowledge of it (unlabeled target) [66,93, 102].
Thus, UDA methods are of great interest for leveraging synthetic data. More in detail,
UDA self-training frameworks for semantic segmentation (27,60, 103, 146, 147] rely
on iteratively generating good pseudo-labels of the target data to include them on
the training procedure. Obtaining robust initial pseudo-labels from models trained
on synthetic data is challenging due to the domain shift, hence good policies to
select and filter pseudo-labels are needed.

In this chapter, we address synth-to-real UDA for onboard semantic segmen-
tation focusing on two different aspects to improve the generated pseudo-labels.
On the one hand, we aim at improving our framework for automatic labeling. More
specifically, we propose a human-inspired labeling procedure where we use several
specialized models to compose a fully pseudo-labeled image. Each of these models
is trained on categorized semantic classes, similarly to how humans label semanti-
cally an RGB image using Al tools [1, 89] (first background, then large objects, and
finally small ones). On the other hand, in collaboration with a team of experts, we
are developing a new photo-realistic synthetic dataset for urban scenarios similar
to [85, 86, 119]. Our aim with this new dataset is at improving our automatically
generate semantic labels.

This work leverages the knowledge and framework from co-training (see section
3.3) for semantic segmentation. The results obtained with the co-training method
were satisfactory, achieving state-of-the-art in each of the synthetic datasets used
as a source. However, the clear difference between single-source and multi-source
scenarios opened new doors to explore. In fact, combining two free and available
datasets such as GTAV [85] and Synscapes [119] to train a baseline model, outper-
formed a considerable amount of related UDA techniques. Thus, our new synthetic
dataset proposal uses path-tracing rendering, high-quality 3D assets in terms of
geometry and materials, and realistic illumination environments, so that we obtain
images of a large visual fidelity. We defined two urban scenes by adding setups
uncommon in publicly available synthetic datasets, which are populated by a rich
set of 3D assets for each class involved in Cityscapes dataset. A model trained with
our new dataset alone surpasses equivalent models trained on GTAV and Synscapes
individually, in particular, by a margin of ~7 mean intersection-over-union (mloU)
on Cityscapes validation set. Furthermore, in combination with them pushes the
multi-source baseline score to ~66 mloU points.
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Our next natural step was to apply the co-training method to see how it per-
formed with the addition of our new synthetic data. While the self-training step
with GTAV + Synscapes + Our data, reached ~71 mIoU in Cityscapes validation, the
co-training step could not improve to the same degree (only ~2 mIoU points over
self-training). We believe that we reached the maximum capacity of co-training.
Hence, in this work, we propose a new methodology to obtain pseudo-labels, which
we call ordered composition of specialized models (OCSM). It leverages the self-
training stage from co-training. Specialized models are trained on a predefined
set of categorized semantic classes, using synthetic data. Thus, we divide the 19
official classes defined in Cityscapes into several categories, e.g., category Vehi-
cles: Car, Truck, Bus, and Train. Each of these specialized models is refined by
self-training. Finally, we obtain fully pseudo-labeled images by an ensemble-like
method inspired by human labeling. In particular, we stack the pseudo-labels from
each specialized model ordered by the usual area size of the categories (from larger
categories to smaller ones). With this simple yet effective combination of category-
specialized pseudo-labels and the available synthetic data, we train a final model
which achieves a mIoU of ~74 on Cityscapes validation set, only ~6 mIoU points
below the upper bound. Up to the best of our knowledge, we obtain the best result
reported until now on synth-to-real UDA. In addition, we improve the co-training
results for the other real-world datasets evaluated, BDD100K and Mapillary Vistas.

Section 4.2 contextualizes our work. Section 4.3 explains the proposed pseudo-
labeling method. Section 4.4 details the dataset generation process. Section 4.5
describes the experimental setup and discusses the obtained results. Finally, Section
4.6 summarizes this work.

4.2 Related works

As we have mentioned previously, our work proposes a new synthetic dataset and a
novel UDA procedure. Thus, we divide this section accordingly to review the works
related to each topic.

4.2.1 Synth-to-real UDA

Section 3.2 summarizes works on synth-to-real UDA at the time we designed our
co-training method. Here, we review more recent related works. Hoyer et al. [41]
successfully use the novel vision-transformers [20] to solve UDA semantic segmenta-
tion in a teacher-student self-training framework with additional training strategies
as computing ImageNet feature distances among others. Furthermore, several
new works propose techniques on top of the already existing frameworks (teacher-
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student, self-training, etc.) to improve further performance. Zhang et al. [136]
introduce a spectrum transformer that mitigates inter-domain discrepancies and
multi-view spectral learning to learn useful representations. Huang et al. [44] pro-
pose a Category Contrast technique (CaCo) that uses semantics-aware dictionaries
to apply category contrastive learning for domain-invariant class representations.
Hoyer et al. [42] define a multi-resolution training approach combining feature
information from small high-resolution image crops and large low-resolution ones
to capture context dependencies. We consider our method complementary to other
techniques too, where we apply it on top of a self-training stage, but it could be
applied to the aforementioned frameworks.

Ensembling models is a powerful tool where we combine multiple model out-
puts in a single prediction. Classic approaches include bagging [7], boosting [91]
and AdaBoost [24] are applied to today’s CNN methods. One of the first works
on CNNs for semantic segmentation using ensembles was Marmanis et al. [68]
modifying an FCN network to improve the deconvolution step and then train mul-
tiples instances to obtain an ensemble averaging the predictions. However, the
high complexity and computational of ensembling models were drawbacks to be
addressed. Several recent works, try to address computational issues sharing part
of the networks between models. Bousselham et al. [6] propose a self-ensemble
approach using the multi-scale features produced by a spatial pyramid network to
feed different decoders and compose an ensemble by different strategies (averaging,
majority vote, and hierarchical attention). In a similar fashion, Cao et al. [8] use
different semantic heads sharing the same backbone to compute an ensemble
using cooperative learning. Khirodkar et al. [53] propose a sequential ensembling
method where models are trained in cascade and each model output is fed to the
next one. These approaches have less impact on memory and complexity. Our new
proposal falls inside the ensemble-of-models techniques due to the aforementioned
pseudo-label composition strategy using specialized models by categories. In our
case, we combine the semantic predictions computed off-line to generate the full
pseudo-labeled image, thus we reduce the computational complexity to only train
several semantic segmentation models (one per category) simultaneously.

In addition, ensemble models are applied to solve UDA tasks like our method.
Extensive works were addressed on image classification [2, 49, 71, 78, 120, 142].
However, our interest falls in synth-to-real UDA for semantic segmentation where
the available works are scarcer. Piva et al. [74] propose a framework similar to [60]
where an image translation module feeds 3 different semantic networks and an
ensemble layer aggregate the information to generate pseudo-labels, then the
process continues with a self-training step. Yi et al. [129] train several GANs in
parallel with different discrepancy and segmentation loss functions under different
upsampling strategies. Finally, our pseudo-labeling procedure is motivated by the
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work by Chao et al. [9], where they propose an end-to-end ensemble-distillation
framework for UDA. They compare several ensemble approaches and propose a
pixel-wise fusion and channel-wise fusion policy to generate the final pseudo-labels
from different CNN models. In our case, our ensemble fusion is simplified to a
stacked combination ordered by category, and in addition to our synthetic dataset,
we generate better pseudo-labels than using other ensemble methodologies.

4.2.2 Synthetic datasets

We summarize the work related to synthetic dataset generation on outdoor en-
vironments and autonomous driving. One of the first synthetic environments
popularized to train Al agents was TORCS [122], an open racing car simulator game
released in the late 90s that became later an important tool to train Al models for
autonomous driving. A more modern approach to training Al agents was intro-
duced by Dosovitskiy et al. [19]. They present one of the most relevant synthetic
environments for end-to-end driving named CARLA, an open-source simulator for
urban driving on Unreal Engine 4. CARLA provides an API with all the tools needed
to record video scenes with different kinds of vehicle sensors for autonomous driv-
ing. [4,46,52,92] are examples of works that generate their own data from CARLA.

Our dataset is inspired by real-world cities, similar works are, Gaidon et al. [25]
presented Virtual KITTI, a small photo-realistic synthetic video dataset generated
using the Unity3D platform. This dataset was created simulating some scenarios of
the real dataset KITTI [28], with the objective to perform object detection and object
tracking evaluation. In the same line, Wrenninge et al. [119] proposed an even
better photo-realistic dataset called Synscapes, composed by 25K images designed
procedurally to match the structure and contents of the Cityscapes dataset [15].
Ros et al. [86] created SYNTHIA using Unity3D, composed of 213K images for
semantic segmentation with a wide variety of scenes and environmental conditions
simulating New York City. In addition, Hernandez et al. [39] expanded SYNTHIA
recreating scenarios from San Francisco.

Other works leverage video game engines to create new datasets. Johnson et
al. [48] were the first to use Grand Theft Auto V (GTA V) video game to collect high
amounts of data (200K) to train object detection models. In addition, Richter et
al. [84,85] proposed GTAV and VIPER datasets obtained also from this game, with
25K and 250K images respectively, with fully labeled semantic segmentation. More-
over, VIPER had optical flow, instance segmentation, 3D scene layout, and visual
odometry information. Hurl et al. [45] also used GTA V and added a precise LIDAR
simulator to obtain synthetic point cloud representations in their PreSIL dataset
for 3D object detection. Saleh et al. [88] proposed VEIS created using Unity3D, a
virtual environment for instance segmentation with additional foreground classes
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common in Cityscapes. Li et al. [58] created a synthetic dataset, using also Unity3D,
of foggy urban scenes focused on roads.

In addition, our work uses OpenStreetMaps to obtain real-world layouts. A simi-
lar dataset created this way is from Tian et al. [101], who developed a multipurpose
framework to generate synthetic data known as ParallelEye. ParallelEye leverages
the 3D city batches generation capabilities from Esri CityEngine [43] to generate
data from the OpenStreetMaps platform. Furthermore, Khan et al. [52] proposed
a pipeline that models real-world urban environments and in combination with
CARLA adds photo-realism and other elements to solve semantic segmentation. Fi-
nally, Li et al. [59] proposed the AADS framework that augments real-world pictures
with simulated traffic flow to solve diverse AD tasks. They gather real-world data
with LIDAR and cameras of streets to recreate the traffic flows.

Our dataset aims to contribute to onboard semantic segmentation. The most
popular datasets in this task, SYNTHIA, GTAV, and Synscapes, have important
deficiencies that we address. First, SYNTHIA dataset lacks the realism of the other
two and do not have all 19 classes of Cityscapes. GTAV dataset lacks balance among
classes and images are not enough populated due to game engine limitations.
Finally, Synscapes lacks scenario variability where the layouts are a straight road and
a crossroad. Thus, our dataset is characterized by better photo-realistic images than
these datasets, properly balanced classes (we use the 19 Classes from Cityscapes),
populated images, several urban layouts not seen in Synscapes or SYNTHIA, and a
set of different illumination profiles.

4.3 Ordered composition of specialized models

Our new pseudo-labeling proposal is motivated by our previous work on co-training
for semantic segmentation (Section 3.3). The qualitative results obtained during
the self-training and co-training steps revealed an improvement margin on several
classes represented in the pseudo-labels. The principal issue regarding the pseudo-
labeling method is the per-class thresholding technique that we used, inspired
by [60, 146, 147], to decide which pixels compose the pseudo-label and which pixels
are filtered. Usually, these methods are conservative (low precision, high recall)
and need the model to be overconfident to show rich pseudo-labels, making the
model missing important information. Our co-training method, took these issues
into account relaxing the decision boundaries and implementing a self-paced
curriculum learning policy. However, relaxing the thresholds could increase the
noise (lower recall) of several classes in the pseudo-label, becoming complex to find
the parameters trade-off in the unsupervised scenario.

We address the aforementioned issue by proposing our ordered composition of
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Figure 4.1: Framework of our ordered composition of specialized models (OCSM)
method to generate pseudo-labels. ! is a set of labeled synthetic images grouped
by categories (related classes) and ' is a set of unlabeled real-world images.
We define four related categories: Vehicles (Car, Truck, Bus, and Train), Traffic
(Poles, Traffic lights, and Traffic signs), humans/cycles (Pedestrian, Rider, Bike, and
Motorbike), and Background (Road, Sidewalk, Building, Fence, Wall, Vegetation,
Terrain, and Sky); so comprising the 19 classes defined in Cityscapes. We train
one model for each category and apply a self-training step on them to generate
pseudo-labels. Finally, we compose a fully pseudo-labeled image stacking each of
these pseudo-labels ordered by area size (similar to a human labeler), background,
vehicles, pedestrian/cycles, and traffic, respectively. These fully pseudo-labeled
images are used to train a final model in combination with the source data.

specialized models framework, Figure 4.1, which we detail in the following.

Class categorization. We reduce the problem difficulty creating categories of
classes, & Il(, from the source data Z!. This step consists of generating new pixel-
wise semantic segmentation labels with the categories specified and assigning a
priority order similar to how a human labels (K). We define four coherent categories
based on the 19 classes used in Cityscapes evaluation grouped by how related are
the classes among them. We establish the priority order by the average area size of
the classes that compose a category (from larger to smaller): Background (K = 0)
groups static classes as Road, Sidewalk, Building, Wall, Fence, Sky, Vegetation, and
Terrain; Vehicles (K = 1) groups Car, Truck, Bus, and Train; Humans/Cycles (K = 2)
groups Pedestrian, Rider, Bicycle and Motorcycle; Traffic (K = 3) groups Pole, Traffic
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sign and Traffic lights. Additionally, for each category, we generate a new source
ground truth with its respective classes where classes that do not belong to this
category are relabeled as Unlabeled.

Baseline. For each category, we train a model, 7//0K , using the aforementioned new
source ground truths, & ! to obtain a baseline. We guarantee that each specialized
model trained with these new ground truths also learns to separate category classes
from the rest through the Unlabeled class. Learning the Unlabeled class is essential
to remove undesired noise and avoid the necessity to apply a complex thresholding
technique.

Self-training. We apply the self-training step, Algorithm 2 from chapter 3.3.1, in
each WOK obtained from the baseline step with its respective hyper-parameters,
Hst =19, N, n, Ky, Kpp, A4 ¢}, and we keep the weights from the last cycle, WKKM.

Pseudo-label composition. We compute the pseudo-labels, Z/, of the target im-
ages, 2 “, composing the pseudo-labels, 22X, of each # X k- In Equation 4.1 we
formulate the composition process, where I denotes an image from Z'“, p are pixel
coordinates, and C is the composition operation. The pixel value of the composed
pseudo-label, & Il (p) is obtained following the formula:

Viex", Vpel, Zl(p)=C@MUp),c@ " Up),..)

L, if L#U 4.1

Clh k) = {lz, otherwise

where Kjs = 3. In plain words, when there is a labeling conflict for a given pixel, the
assigned label corresponds to the one indicated by the larger category ID, provided
the label is different than U. In our case, this means that classes with instances of
smaller area size have higher priority.

The &' generated from Z* are used to train a final model analogous to the
co-training final step. In other words, we train a model combining at batch time 2

data and 2 * with its respective Z'*.

4.4 Qur dataset

In collaboration with a team of experts in computer graphics and technical artists,
we develop the tools needed to generate our own synthetic data. Our proposal gen-
erates new photo-realistic synthetic images modeling a set of urban scenarios aimed
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at the training and validation of vision-based models in the context of autonomous
driving. We set the number of classes to the 19 classes specified in the training of
Cityscapes to facilitate the experimental setup on semantic segmentation.

Dataset Description

Our virtual scenarios are assembled by grouping assets into layers. Alayer Lincludes
assets that either belong to the same class or, while belonging to different classes,
they typically appear together (i.e. traffic-sign and pole). We distinguish three
types of layers: L = {E, S, D}, where E represents the environment lighting present
in the scene, S are the layers belonging to static agents, and D are those layers
representing dynamic agents. Within each layer we exploit procedural and/or semi-
automated scattering tools to place the assets within the scenario, varying their
appearance and/or poses. We will refer to these variations as intra-class variations.
In addition, we handle layers containing elements from classes that could interfere
with each other by ensuring that their respective intra-class variations never overlap
with other layer variations (right now this is a human-in-the-loop task susceptible
to further automation). As a result, our system can combine different inter-class
variations to generate a whole range of scenarios.

We generated 2 different scenarios that act as template layouts for our scenarios,
which are mainly defined by our static layers (S). We included (i) a roundabout; (ii)
a main straight street with slight curves and L-intersections; and (iii) a street with
a 4-ways intersection. Those static scenarios are finally populated with variations
of the dynamic layers (D). While it is already easy to unintentionally introduce
undesired bias in 2D datasets, even more often through 3D assets, so we ensured
to achieve a minimum degree of variety for certain critical classes (i.e. gender and
race for pedestrians).

The procedure for assembling the whole scenarios is performed through a
sampling process exploiting all the available intra-class variations. While multiple
choices are possible for this sampling procedure we adopted a simple random
sampling strategy for now since it has already shown enough variability in the
generated scenarios. Finally, we adopted modern GPU-accelerated path-tracing
algorithms to render complex light transport phenomena relying on physically-
based definitions for the geometries and materials within our recreated virtual
worlds.

Scenario content creation

Our scenario layouts are inspired by real locations in the real world. We use Open-
StreetMaps in order to get georeferenced map data with realistic building lot dis-
tributions. Then, for each layout, we use the third-party software RoadRunner to
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refine the main road layout (parking lots, number of lanes, sidewalks, etc.) and the
location of fixed traffic signs and/or traffic lights. These data are exported into the
OpenDrive format. Currently, our set of modeling tools is devised to assemble the
main scenario layout using the Unity game engine. Next, we proceed to detail how
the 19 different classes, are currently being treated in our content creation pipeline:

Sky (scene illumination). Our lighting setup mainly relies on using a real
captured High-Dynamic Range (HDR) environment image that is mapped on
a sphere surrounding the virtual scenario. We usually prefer to use pure sky
images.

Roads and sidewalks. We start from the main geometry authored in Road-
Runner and increase their amount of detail and realism with our own custom
tessellation and decal-projection tools.

Traffic signs and traffic lights. Our system can either utilize locations defined
by RoadRunner, labeled by humans, or a combination of both.

Poles. They may belong to different objects like street lamps, thick posts, or
bollards. We simply instantiate predefined models in the scene.

Buildings. We created our own asset in Houdini which is in charge of sampling
and adapting subsets of available Unity prefabs modeling building block
variations and assembling the final building configuration. Our asset also
takes care of assigning different materials. We have distinguished basements
from standard building floors as well as modeled some representative roof
elements.

Vegetation, terrain, fences, and walls. Vegetation is currently instantiated
by hand depending on the scenario and terrain layouts. In some cases, a
variation in the terrain may require reconsidering a different arrangement in
terms of the inter-class compatible variations. Fences and walls can be easily
placed to not overlap with other elements in the scene.

Vehicles (includes cars, vans, buses, trucks, and trains). We begin with an
original 3D asset and create several variations mainly related to their material
appearance (color, dust level, wetness, etc.). Using an in-house tool we posi-
tion those resulting vehicles based on the available OpenDrive specifications
for the road (i.e. according to the number of lanes, lane direction, parking
lots, etc.). Thus, we can easily generate variations by simply running our tool
several times and exporting the various results. We typically need to account
for the results in the generation of vehicles before generating other dynamic
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elements in the scene (i.e. pedestrians, riders, etc.). The rendered views are
often sampled by placing our cameras in the virtual cars.

¢ Motorbikes, bicycles, and riders. We typically exploit empty positions in the
road to place elements of these classes. Some bikes are often placed also in
sidewalks since this is also common in the real world.

* Pedestrians. We leverage our own tool to place humans across our scene.
Right now, human intervention is needed particularly when creating very
crowded scenarios like crosswalks, etc. For shared spaces like the roads, these
variations are tuned to be compatible with existing vehicle variations.

¢ Urban or miscellaneous elements. Variations of other elements in the scene
(i.e. benches, terrace chairs, umbrellas, tables, etc.) are usually scattered
over the place, taking care of not overlapping with other classes of interest
potentially present in the scenario.

The final format describing our scenarios is simply a text file pointing to the
specific intra-class variation files (stored in a render-friendly format). The sampling
process can be guided by constraining the picking probability of some of the classes
or even specifying the inter-class dependency of some variations (i.e. among the
motorbike and rider classes). Since we are mostly interested in observing as many
different image layouts as possible that contain the main classes of interest, the
images generated in our dataset do not follow any driven path through the virtual
world. Instead, we build our scenarios through a mixture of procedural genera-
tion techniques, partially hand-crafted intra-class variations, and a recombination
process of all those variations through a statistical sampling procedure.
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4.4 Our dataset

Figure 4.3: Image samples of our dataset for the Poblenou layout.

Our image dataset

Since the proposed system can already generate a large number of scenarios by
just shuffling intra-class variations, we just randomly sampled a subset of all those
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Figure 4.4: Image samples of our dataset for the Torstrasse layout.

possible scenarios distributed among the two main template layouts proposed
in the scenario content creation. Then, we generated a finite number of images
representative of the different image layouts that the proposed system can generate.
A summary of the proposed scenarios and some of the meaningful numbers and
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Figure 4.5: Qualitative comparative between an image from GTAV (top) and another
from our dataset (bottom).

observations related to their creation process are provided in Figure 4.2. Figures
4.3 and 4.4 display several examples of the photo-realism of our data. In addi-
tion, figures 4.5 and 4.6 compare visually our data versus GTAV and Synscapes,
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Figure 4.6: Qualitative comparative between an image from Synscapes (top) and
another from our dataset (bottom).

respectively.
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Table 4.1: Content statistics for the considered datasets. For each class, we indicate
the percentage (%) of: (1) Images containing samples of the class, and (2) Pixels in
the dataset with the class label.
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Mapillary

4.5 Experimental results

4.5.1 Datasets and evaluation

We selected two well-known realistic synthetic datasets, GTAV [85] and Synscapes
[119], to compare and combine them with our synthetic dataset (source domain).
GTAV is composed by 24,904 images with a resolution of 1914 x 1052 pixels directly
obtained from the render engine of the videogame GTA V. Synscapes is composed
of 25,000 images with a resolution of 1440 x 720 pixels of urban scenes, obtained by
using a physic-based rendering pipeline. Our dataset is composed of 6,236 images
with a resolution of 2048 x 1024 pixels. As real-world datasets (target domain)
we select Cityscapes [15], BDD100K [131] and Mapillary Vistas [70]. Cityscapes
is a dataset well-known for its semantic segmentation challenge, composed of
3,475 labeled images split in 2.975 for training and 500 for validation, with an
additional 1,525 non-labeled images for testing purposes. The images are obtained
from different cities in Germany with the car onboard cameras under favorable
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conditions (e.g., no heavy occlusions or bad weather). Cityscapes images have
a resolution of 2048 x 1024 pixels. Another dataset is BDD100K, which contains
challenging onboard images taken from different vehicles, in different US cities,
and under diverse weather conditions and daytime. The dataset is divided into
7,000 images for training purposes and 1,000 for validation with a resolution of
1280 x 720 pixels. Due to the layout of the synthetic datasets used, we filter manually
the training images for our experiments and select daytime images, without heavy
occlusions and favorable weather obtaining a subset of 1,777 images. The last
dataset used is Mapillary Vistas composed of a large number of images around
the world. These images were obtained with different camera devices generating
a large variety of resolutions and aspect ratios. For simplicity, we only consider
those images with an aspect ratio of 4:3, which, in practice, comprises more than
75% of all the dataset images. Hence, we have 14,716 images for training and 1,617
for validation. In Table 4.1 we summarize the composition of the datasets by the
percentage of images and pixels of each class in all the datasets.

On other hand, we evaluate the results of our experiments on the validation set
of each real-world dataset (target) using the 19 official classes defined for Cityscapes
that are common in all our datasets. Any other classes that do not belong to these
19 classes are ignored during training and evaluation. Note that, even when we
have available the labels of the target datasets, we are performing UDA and only use
them on their respective validation sets to report exclusively quantitative results.

As is standard, we use the PASCAL VOC intersection-over-union metric IoU =
TP/(TP+ FP+FN) [22], where TP, FP, and FN refer to true positives, false positives,
and false negatives, respectively. IoU can be computed per class while using a mean
IoU (mloU) to consider all the classes at once. In addition, we display a confusion
matrix to show the precision and recall metrics of each class. We display precision
in a confusion matrix checking which pixels of all the pixels from the ground truth
are matched by the predictions (predictions w.r.t ground truth) and recall checking
which pixels of all the pixels from the prediction are matched by the ground truth
(ground truth w.r.t predictions).

4.5.2 Implementation details

We use the Detectron2 [121] framework and leverage its implementation of DeepLabV3+
for semantic segmentation. Analogously, we apply similar hyper-parameters initial-
ization for self-training and co-training specified in section 3.4.2 of this dissertation,
we specify the hyper-parameters in Table 4.2. Furthermore, DeeplabV3+ follows ex-
actly the same hyper-parameters specified in its original repository. Only adjusting
the learning rates and training duration to our needs.

For training the semantic segmentation models, we use SGD optimizer with a
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Table 4.2: Hyper-parameters of our framework from Sect. 3.3 and Alg. 2-4. Datasets:
GTAV (G), Synscapes (S), Ours (O), Cityscapes (C), BDD (B), Mapillary Vistas (M).

-/ﬂdf Hst Fet
Source Target| N n Ap Cn Cy Nmp|pum Pcm|Pm Pu Km Ku|Pm Py K A
G+S C 500 200 0.05 0.5 0.9 4 05 05 |05 07 1 10 |05 05 5 0.8
G+S B 500 200 0.05 0.5 0.9 4 05 05 |04 06 1 10 |05 05 5 0.8
G+S M 500 200 0.05 05 0.9 16 05 05 |05 07 1 10 |05 05 5 0.8
G+S+0 C 500 200 0.05 0.5 0.9 4 05 05 |05 07 1 10 |05 05 5 0.8
G+S+0 B 500 200 0.05 0.5 0.9 4 05 05 |05 07 1 10 |05 05 5 0.8
G+S+0 M 500 200 0.05 05 09 16 05 05 |05 07 1 10 |05 05 5 0.8

starting learning rate of 0.002 and momentum 0.9. We crop the training images to
1024 x 512 pixels, 816 x 608, and 1280 x 720; and batch sizes to 4, 16, and 4 images
when we work with Cityscapes, Mapillary Vistas, and BDD100K, respectively. Note
that we set Mapillary Vistas batch size to 16 instead of 4 because receives a notable
boost in performance, thus we updated all the related experiments with this dataset.

All baselines for DeepLabV3+ are trained during 90K iterations. Self-training
and co-training training during 8K iterations targeting Cityscapes and BBD100K;
and 4K iterations targeting Mapillary Vistas.

The hyper-parameter values of our self-training step of the specialized models
are analogous to the self-training ones from section 3.3.1, the only difference is the
number of cycles set to five (Kj; = 5). In addition, analogous to co-training, the final
model trained with the pseudo-labels from the training set of the target data uses
the same values used to compute the baselines.

Note that all the experiments apply LAB adjustment of the source data with
respect to to the target and multiple data sources are treated as a single (heteroge-
neous) source.

4.5.3 Study of our synthetic data

In Table 4.3 we compare the results obtained on Cityscapes as the target domain
and the different synthetic datasets as a source: GTAV, Synscapes, and Ours. The
first block of the table compares the results obtained from training models in a
single source scenario and evaluates them on the Cityscapes validation set. We
obtain the best mloU with ~53 points, ~7 and ~10 points above Synscapes and
GTAV, respectively. We surpass the other datasets in several background classes
(Building, Sky, Sidewalk, Road, Fence, and Terrain), Truck, and Traffic lights. Our
only drawback appears in the Car class. In fact, if we observe Figure 4.7 that displays
the confusion matrix of the recall, class Car has a low recall, being confused by road
(we do not account for the Void/Unlabeled class because is ignored in the metrics).
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Other classes with low recall are Truck, Bus, and Train which are mostly confused by
Building due to the sizes of these vehicles. In addition, Figure 4.8 shows qualitative
results for each of these models on two samples of the Cityscapes validation set.
Our results are less noisy in the background classes (Sky, Building, and Road) as we
observed with the IoU metrics. Moreover, we visualize the problem with Cars where
due to a bias in our dataset, the ego vehicle in cityscapes propagates noise as Class
Car in the center of the road, explaining the lower IoU and recall. Nevertheless, the
accuracy of Cars is as good as in the other datasets.

The second block of Table 4.3 compares the multi-source scenario where we
combine multiple source datasets to train the models. As we expect, the addition
of our dataset to Synscapes and GTAV boosts the final performance notably by ~7
points of mIoU in comparison to Synscapes + GTAV. More in detail, GTAV + Syn-
scapes is the best combination of two sources with the best global mlIoU, followed
by Ours + Synscapes, only ~1 point behind. In addition, there are some noticeable
properties to remark on with the possible combinations of these datasets. One of
the most notable properties appears in class Train where we combine Syncapes
and GTAV, the IoU jumps from less than ~5 points individually to ~40 points when
combined. If we add our data improves even further, reaching ~62 points. The
fact that the model is able to learn the class Train when we combine Synscapes
and GTAV is not due to an increment of samples or variability of this class (GTAV
samples of trains are scarce and highly occluded) but a disentangle between similar
classes like Bus or Truck (more variability in theses classes help the model to learn
Train). However, using our data does not produce the same outcome with Train,
thus the variability from Synscapes and GTAV is needed for this class. Nevertheless,
using our dataset boosts several other classes when we combine it with one of the
other two, e.g.traffic sign, Sky, and Rider. In addition, we notice how important is
GTAV to boost performance in Truck and Bus when combined with others. The
variability added in these classes is better with GTAV than combining Synscapes
and Our dataset, where we do not improve the single-source scenario. Analogous
to the GTAV case, we found similar behavior in Synscapes with classes like Fence,
Terrain, and Car. In conclusion, combining all the synthetic data bring benefits and
mitigates the drawbacks of each one.
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Figure 4.7: Confusion matrix of the recall of the baseline trained with our synthetic
data and evaluated on Cityscapes. The recall is computed as a percentage of all the
pixels from a class predicted which pixels match with the ground truth. Category 19
corresponds to the Void class.
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4.5.4 Using our dataset for synth-to-real UDA

In Tables 4.4, 4.5 and 4.6; we summarize the results obtained in the multi-source
scenario (with and without adding our data to Synsapes + GTAV) and applying
co-training on Cityscapes, BDD100K and Mapillary Vistas as a target. We redo all
the baselines, final models, and upper bounds, using Synscapes + GTAV as the
source on BDD100K and Mapillary Vistas, to match the new hyper-parameters
with larger training steps and batch sizes. These new hyper-parameters improve
considerably the upper bounds and baselines in comparison to the previous chap-
ter of this dissertation (see Table 3.7 from chapter 3.4.4), where the upper bounds
were slightly under-trained for a deeplabV3+ model. In addition, increasing the
batch sizes have a considerable improvement, especially on Mapillary Vistas where
either baselines and upper-bounds increase ~7 mloU points in comparison to
previous chapters ones. Note, that as we stated previously, in the UDA scenario
we do not rely on knowledge from the target (we only use labels to report results),
thus the hyper-parameters selected do not rely on target information. These hyper-
parameters changes are motivated by more resources available. Analogously, the
hyper-parameters selection for our co-training method is done qualitatively, ana-
lyzing intermediate results in the pseudo-labeling process.

The impact of our dataset is clear in all the experiments done, where we boost
globally the mIoU in all the baselines and co-training steps, being consistent with
the results obtained in section 4.5.3. More in detail, Table 4.4 shows how co-training
is still effective when we add our data to Syncapes + GTAV and target Cityscapes.
However, the initial difference of ~6 mIoU points between baselines (SrcLAB) is
reduced to only 2.47 points between co-trainings. We are above or similar in practi-
cally all the classes, except in Sidewalk and Terrain. We observe that the baseline,
using our data, is better in all the classes, including Sidewalk and Terrain. Thus, dis-
crepancies in these classes on co-training, emerge during the unsupervised process,
where performance oscillations are common during self-training/co-training stages
due to randomization in the training process. Furthermore, the self-training step is
only 1.59 points below the co-training. These results indicate that we are reaching
the upper bound in several classes with the pseudo-labeling methodology used.
Several classes like Car, Bus, Building, Sky are only ~1 point from the upper-bond,
others are between 2 to 8 points and the ones with the most improvement margin
are Truck, Train, Sidewalk, Terrain, and Fence, where the distance is above 10 points.

In Table 4.5 differences using our dataset on BDD100K as a target are similar
to the Cityscapes scenario. We are 5.24, 3.61, and 2.71 mloU points better in base-
lines, self-training, and co-training, respectively, similar to Table 4.4. Analogous
to the Sidewalk and Terrain case on Cityscapes with co-training, we are below in
Traffic light and Sidewalk compared to the baseline. In addition, the gap with the
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Ours Synscapes GTAV
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Figure 4.8: Qualitative results using the single-source models trained on GTAV,
Synscapes, and Ours, respectively, on two samples of the Cityscapes validation set.
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upper bound increased, in comparison to our previous chapter due to the hyper-
parameters improvements, leaving a clear improvement margin in classes like
Traffic lights, Traffic signs, Vegetation, Sidewalk, Bus, and Truck. This gap difference
compared to the Cityscape scenario, can be explained because BDD100K is more
challenging as we state in section 4.5.1. Moreover, all real datasets have impor-
tant labeling bias (e.g. discrepancies between labels like Pickup vehicles labeled as
trucks or cars depending on the Dataset) aggravating discrepancies between them,
difficult to replicate in the synthetic scenario where the labels are objectives. These
discrepancies generate lower upper bounds than expected in several classes that
are difficult to label manually.

Finally, in Table 4.6 we analyze the same cases on Mapillary Vistas as a target. In
this case, we improve by 8.64, 4.50, and 2.53 points in baselines, self-training, and
co-training, respectively; then using only GTAV + Synscapes. In this scenario, we are
above in practically all the classes, except Train, where the co-training step messed
up obtaining a really low score. In addition, the gap between co-training and the
upper bound is wider than the other real-world datasets, probably due to higher
discrepancies in the labeling policies in comparison to the synthetic datasets. Thus,
addressing the labeling discrepancies from Mapillary Vistas and the synthetic data
could reduce the gap with respect to the upper bound.

4.5.5 OCSM experimental results

A large amount of diverse synthetic data available from the three synthetic datasets
give us really good baselines. We found it interesting to explore the viability of
category-specialized models. The reasoning behind this is to reduce the complexity
of the problem expecting that a system trained with fewer classes should respond
better to them, than a model trained with all the classes (global model). For this
purpose, in Figures 4.9-4.11 we compare the confusion matrices of specialized
models versus a single global model with all the classes, instead of relying only on
the mIoU that can be misleading. In these figures, we show the accuracy and recall
confusion matrices of the specialized model in each category (vehicles, humans/cy-
cles, and traffic) and compare it with the confusion matrices of the global model.
The most notorious characteristic of the specialized models is that generally are less
accurate than the global model, but they have a higher recall. In fact, a high recall
maintaining a reasonable accuracy is more desirable to improve the pseudo-label
generation. In Figure 4.9 the recall of Cars, Truck, Bus, and Train is clearly higher
than the global model and the accuracy is only slightly lower. Analogous in Figure
4.10, where class Traffic lights have better precision than its global counterpart, and
in Figure 4.11 Rider present the same particularity.
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Predictions w.r.t ground truth (accuracy)

Car  Truck Bus  Train Car  Truck Bus  Train

0.01 0

Train

Specialized model Global model

Ground truth w.r.t predictions (recall)

Car  Truck Bus  Train Car  Truck Bus  Train

0

Truck 0.71 0 0

0.01 0.02 Bus 0.04 0.01 0.01

Train 0.01 0

Bus  0.05

Tein 0,04 0 0.02 NS 0.01 | 0.37

Specialized model Global model

Figure 4.9: Confusion matrix of the specialized model trained grouping the vehicle
categories (Car, Truck, Bus, and Train) compared to the confusion matrix of the
global model trained on the 19 classes of Cityscapes. The left part represents the
accuracy showing the confusion matrix comparison of the percentage of pixels from
the ground truth properly classified (predictions w.r.t ground truth). Analogously,
the right part represents the recall showing from all the pixels from a class predicted
which percentage match with the ground truth (ground truth w.r.t predictions).

Predictions w.r.t ground truth (accuracy)

Pole T. Light  T. Sign T. Light T. Sign

Pole 0.01 0 Pole 0.01 0.01
T.Light 0.02 0 T.Light 0.03 0
T.sign 0.01 0 T.sign  0.01 0 0.67

Global model

Pole

Specialized model

Ground truth w.r.t predictions (recall)

Pole  T.Light T.Sign Pole  T.Light T.Sign
N 0.77 0 0 N 0.68 0 0.01
T.Light 0.04 0.01 T.Light 0.05 0.01
T.sign  0.01 0 0.81 T.sign  0.02 0 0.76

Specialized model Global model

Figure 4.10: Analogous to Figure 4.9, comparing the specialized model trained
grouping the traffic-related categories (Pole, Traffic light, and Traffic sign) versus its

respective classes on the global model.
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Figure 4.11: Analogous to Figure 4.9, comparing the specialized model trained
grouping the human-related categories (Pedestrian, Rider, Motorcycle, and Bicycle)
versus its respective classes on the global model.

Ground Truth

Certainty

road sidewalk  building wall
K Derson rider for:

Figure 4.12: Pseudo-label sample generated by four different methods. Majority,
Certainly, and PLF (Priority) are ensemble methods from [9], ordered composition
of specialized models is our proposal.
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After asserting that our specialized models could be useful to generate better
pseudo-labels, we apply our method of ordered composition of specialized models
(OCSM). First, we compare our approach with the ensemble methods applied to
UDA from Chao et al. [9], where they show three different ensemble methods in
their end-to-end ensemble distillation framework: Certainty, Majority, and Prior-
ity (PLF). In Figure 4.12 we show a pseudo-label sample generated by these three
methods using the outputs of our specialized models and our OCSM method. Ma-
jority (bottom-left) method fills all the pseudo-label introducing a not desired high
amount of false positives (e.g. Train patch on the right) and prioritizing larger classes
over smaller ones (e.g. Building over Pole). Certainly, solves the false positives from
the majority but keeps prioritizing larger classes. PLF is more conservative and
has a low recall. These ensemble methods are not suitable to combine specialized
models, where an Unlabeled class is learned with high confidence and pixel con-
flicts are related to this class, they were designed to ensemble global models. Thus,
our OCSM method generates more accurate pseudo-labels because avoids larger
classes overriding smaller ones and leverages the Unlabeled class learned in the
models to reduce the introduction of false positives.

in Table 4.7, we detail the results obtained with our OCSM method using GTAV
+ Syncapes + our dataset evaluated on Cityscapes validation set. In the first block
of the table, we compare the global model (baseline model trained with all the
source data) with a model trained with the OCSM pseudo-labels before the self-
training step. We are able to improve by ~5 mIoU points compared to the global
model. More in detail, categories where the specialized model responded better
like Vehicles, Humans/Cycles, and Traffic: are the ones that receive the highest
boost. Overall, the mIoU obtained equalizes the score obtained by applying the
self-training step to the global model. The second block of the table compares both,
the global model and the OCSM pseudo-labels scores, after a self-training step.
As we expected, applying a self-training step to each specialized model benefits
them in the same degree as applying it to a global model and therefore, the OCSM
step surpasses clearly the global model by ~3 points. Finally, in the last row, we
compare our OCSM before and after the self-training step to have a clear view of
which classes have improved. The major contributions of the self-training stage
fall in the Background category, where Sidewalk receives the most important boost;
the vehicle category follows this improvement on Train and Bus; finally, Traffic and
Human/Cycle categories receive little to non-improvement.
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Figure 4.13: Qualitative results on Cityscapes validation samples of Baseline, Co-
training, OCSM, and Upper-bound models using GTAV + Synscapes + Ours data as
a source.
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Figure 4.14: Analogous to Figure 4.13 on BDD100K validation samples.
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Figure 4.15: Analogous to Figure 4.13 on Mapillary Vistas validation samples. 109
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4.6 Conclusions

To conclude this line of experiments, Table 4.8 shows the results obtained with
the OCSM method after the self-training step also on BDD100K and Mapillary Vistas
as a target, using all the synthetic data. We compare them with the reported results
of our co-training using the same source data. Overall, the OCSM improves by
roughly 1-2 points over the co-training, being a notable improvement, seeing how
close to the upper bounds are all the results. More in detail, the category Traffic
(Pole, Traffic Lights, and Traffic Signs) is the most beneficial of our pseudo-labeling
procedure because we prioritize it over the other categories due to its size during the
composition process. In co-training, small classes tend to have lower confidence
and be filtered by the thresholding step. Thus, pseudo-labels with these small
classes are less accurate. Other benefited classes, analogous to the Traffic category,
are Motorbike and Bike because these are objects relatively small and with certain
shape complexity. The rest of the classes are a trade-off depending on the target
dataset.

We can appreciate the aforementioned details in the qualitative analysis of
Figures 4.13, 4.14 and 4.15, where class Pole is better represented in the OCSM case
versus co-training. In general terms, the qualitative results show how the baseline
models are noisy in certain background classes (e.g. Sky, Road, Sidewalks), but
already segment properly foreground objects. It is difficult to find clear differences
between co-training and OCSM, the performance differences are in tiny details,
and difficult to appreciate qualitatively. Nevertheless, we selected a few helpful
samples to appreciate several discrepancies between models. Figure 4.13 shows
validation samples on Cityscapes, where OSCM refined certain details like Pole
and Sidewalk and the results are similar to the upper-bound. Figure 4.14 shows
the analogous case for BDD100K, we selected two different illuminated samples
expecting differences, however, co-training and OCSM are solid and visually close to
the upper bound. We can appreciate tiny differences in Traffic sign and Pole, where
OCSM is better than co-training. Last case, Figure 4.15 on Mapillary Vistas shows
how the baseline is noisier and how co-training solves successfully this noise, but
introduces a problem with class Train on the sides, explaining the poor performance
seen in this class. In contrast, OSCM responds close to the upper bound in all the
cases.

4.6 Conclusions

In this chapter, we have proposed OCSM to address the synth-to-real UDA challenge.
Moreover, by collaborating with a team of experts on the creation of synthetic
environments, we have also introduced a new photo-realistic synthetic dataset
which allows obtaining better baselines for semantic segmentation compared to
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publicly available datasets, both in isolation and combining all of them.

Our experimental setup revealed how a semantic segmentation model trained
on our photo-realistic dataset outperforms the equivalent models trained on GTAV
and Synscapes, when testing on the Cityscapes validation set. Moreover, for the
same validation set, a baseline model trained according to the multi-source setting,
i.e., combining our dataset with GTAV and Synscapes, even outperforms a large
amount of UDA techniques that assume a single synthetic source (somehow ignor-
ing today’s data availability for synth-to-real UDA). In fact, these observations also
apply when testing on BDD100K and Mapillary Vistas sets. Moreover, using the
multi-source synthetic data and OCSM allows reaching unprecedented results in
the synth-to-real UDA setting. Overall, in the multi-source scenario we improve
our co-training results by up to ~3 mloU points in the different target datasets and
OCSM outperforms co-training by more than 1 mIoU points.



¥ Conclusions

The use of synthetic data is widely extended to solve numerous computer vision
tasks. Synthetic worlds allow configuring scenarios and moving on them to capture
large amounts of data with all kinds of automatically generated labels. However,
when training models using synthetic data which must later perform on real-world
data, there is a significant drop on the accuracy of these models. This is known as
the synth-to-real domain shift. Domain adaptation techniques (DA) are applied to
overcome this problem. In general, in synth-to-real DA it is assumed that there are
no labels for real-world data, so we face a specially challenging setting known as
unsupervised domain adaptation (UDA). Overall, this has been the topic addressed
in this Ph.D. dissertation since it is still an open problem. In particular, we focus
on an application context where real-world data labeling is especially costly and
time-consuming, namely, vision for autonomous driving and driver assistance. We
address object detection and semantic segmentation tasks, which are core onboard
tasks. Thus, the overall goal of this Ph.D. is the development of techniques to
perform synth-to-real UDA for object detection and semantic segmentation. In
particular, we have focused on leveraging and adapting ideas from the general semi-
supervised learning (SSL) paradigm. As we are going to summarize, in Chapter
2 we proposed the SSL technique known as co-training for developing a multi-
modal synth-to-real UDA procedure for object detection, in Chapter 3 we develop
a co-training procedure for semantic segmentation, and in Chapter 4 we reach
current state-of-the-art on synth-to-real UDA for semantic segmentation by the
combination of a new photo-realistic dataset and a new SSL technique.

In Chapter 2 we focus on onboard object detection, i.e., the image labels we
have to produce (pseudo-labels) are object bounding boxes (BBs). We assume
that for any image we can use their appearance (RGB) and depth (D), the latter
obtained by monocular depth estimation (MDE). Then, we address the synth-to-real
UDA challenge following the idea of co-training, where two models collaborate to
produce better pseudo-labels as they would do by working in isolation. Both models
use synthetic data as prior knowledge, however, one of the models focuses on image
appearance and the other on depth. Accordingly, in this chapter, the main goal is to
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answer these two questions: (Q1) Is multi-modal (RGB/D) co-training effective on
the task of providing pseudo-labeled object BBs?; (Q2) How multi-modal (RGB/D)
co-training does perform compared to single-modal (RGB) co-training? In order to
answer the aforementioned questions we developed our research as follows:

* We generated the MDE view of our synthetic data (SYNTHIA dataset) and the
real-world datasets (KITTI and Waymo datasets) from the RGB images using
MDE. In addition, we performed GAN-based synth-to-real image translation
of the synthetic data to approach their appearance to the corresponding
real-world datasets.

* We designed and implemented a multi-modal co-training for object detection,
treating the involved convolutional neural network (CNN) architectures as
black boxes, so becoming a general procedure.

* We performed an exhaustive set of experiments using different proportions
of human-labeled real-world data but without having synthetic data (stan-
dard SSL setting), and not having human-provided labels but having labeled
synthetic data and unlabeled real-world data (UDA setting).

The obtained results indicate that multi-modal co-training is effective for label-
ing object BBs. Multi-modal co-training outperforms single-modal co-training in
the standard SSL and the synth-to-real UDA settings. By performing GAN-based
synth-to-real image translation both co-training modalities are on par, at least when
using an off-the-shelf MDE not specifically trained on the translated images.

In Chapter 3 we focus on onboard semantic segmentation, where the image
pseudo-labels produced consist of a class label per pixel. We designed and imple-
mented a protocol following the co-training idea too. Thus, again, our synth-to-real
UDA is purely data-driven, so treating the semantic segmentation model (CNN
architecture) as a black box. Moreover, our method seamlessly leverages multiple
synthetic datasets (source domains). We developed this research as follows:

* We designed and implemented a robust self-training procedure for synth-
to-real UDA. In all cases, synthetic data is calibrated with real-world data in
terms of LAB space, which turned out to be a simplified but effective synth-
to-real appearance translation.

* We designed and implemented a co-training procedure that uses the previous
self-training as the initial stage to provide two different views for co-training;
i.e., two deep models which must collaborate following a co-training policy
to provide the expected semantic pseudo-labels.
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¢ Additional steps such as proper class balancing, domain mixes, and domain
collages, have been also crucial to have effective self-training and co-training
procedures.

* We performed an exhaustive set of experiments considering single-source
and multi-source settings (SYNTHIA, GTAV, and Synscapes datasets) and
different real-world target domains (Cityscapes, BDD100K, and Mapillary
Vistas datasets). Ablation studies were carried out to validate the need for the
different steps included in the overall co-training procedure.

The obtained results were state-of-the-art in the single- and multi-source settings,
with improvements ranging from ~13 to ~31 mloU points over baselines (mloU
ranges here from 0 to 100, the higher the better). The multi-source scenario com-
bining GTAV + Synscapes achieved ~70 mloU on the validation set of Cityscapes,
just ~8 below the upper bound, which uses the synthetic data and the 100% of
human-labeled data. For BDD100K and Mapillary Vistas there were no previous
works reporting results. Moreover, the mentioned ablation studies confirmed that
all the steps forming our co-training procedure are helping to improve the final
results.

According to our experience in previous chapters, it was clear that improving the
source-only baselines and performing some sort of muli-view/model collaborative
self-training (co-training in our case), are good strategies to reach the labeling
accuracy of upper bounds in the synth-to-real UDA problem. Accordingly, Chapter
4 focuses on a two-fold contribution. On the one hand, we have collaborated with
a team of experts on simulation (programmers and technical artists) to design a
new synthetic environment from which we have generated a new photo-realistic
dataset to support the training of onboard visual models. This dataset complements
previously existing ones, so eventually enabling better source-only baselines. On
the other hand, we have designed and implemented a new SSL procedure, which
is inspired by human labelers. Overall, it consists of an ensemble of category-
specific self-trained models, which we call ordered composition of specialized models
(OCSM). We developed this research as follows:

¢ As mentioned we collaborated in the generation of a photo-realistic dataset
based on path-tracing rendering, proper 3D assets in terms of geometry
and materials, and realistic illumination environments. As ground truth for
semantic segmentation, we use the same semantic classes as Cityscapes.

¢ We group the semantic classes into categories. This is inspired by layer-based
human labeling, where images are labeled per layer rather than fully at a time.
Different human labelers can focus on different layers. Then, to have a fully
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labeled image, these layers are combined. In our case, a category is composed
of a set of semantic classes to be labeled at a time, so labeling an image for a
category has a layer of labels as a result.

* We rely on the self-training procedure developed in Chapter 3 to perform
synth-to-real UDA per category. Our categories consider the usual size (in
pixels) of the instances of the semantic classes in the onboard images, which
can be considered a useful inductive bias that our proposal can leverage. In
increasing size order, we define the following four categories: Traffic (Poles,
Traffic lights, and Traffic signs), humans/cycles (Pedestrian, Rider, Bike, and
Motorbike), Vehicles (Car, Truck, Bus, and Train), and Background (Road,
Sidewalk, Building, Fence, Wall, Vegetation, Terrain, and Sky).

* After applying self-training to these categories, we run our OCSM policy to
obtain fully labeled images. When self-training each category, we consider the
class unlabeled to represent all the image content corresponding to classes
not belonging to the category. When applying the OCSM policy, if a pixel
can gather a class label different than unlabeled from different self-trained
models, it prevails the label corresponding to the category of smaller size.

* We performed an exhaustive set of experiments to assess OCSM, considering
single- and multi-source settings, including the new photo-realistic dataset.
Other than this, the same source and target dataset used in Chapter 3 are
considered in this chapter, so that we can also compare the obtained results
to co-training.

The obtained results show that both our OCSM proposal and the new dataset
help to establish the current state-of-the-art in the synth-to-real UDA setting for
semantic segmentation. On the one hand, when comparing the new dataset with
existing ones in a single-source setting, we see that it gives rise to more accurate
baselines. On the other hand, when combined with others, it allows pushing the
accuracy of such multi-source baselines by ~5 mIoU points. In this multi-source
setting, the co-training method itself is able to improve ~2 mloU points thanks
to the new synthetic dataset. Finally, when replacing co-training by OCSM, we
improve more than ~1 mloU points, so establishing unseen performance in the
synth-to-real UDA problem. In fact, since we are approaching the upper bound
mloU, improvements tend to be lower but significant.

Overall, in this PhD, we have developed SSL methods that have reached state-
of-the-art accuracy in the synth-to-real UDA setting, both for object detection and
semantic segmentation. We consider especially relevant the semantic segmentation
task, which is critical for onboard perception in the context of autonomous driving



and driver assistance. This is why we have also contributed to the creation of a new
photo-realistic dataset. In fact, as future work, we want to keep working on the se-
mantic segmentation task since we have not yet reached the upper bound accuracy
in real-world target domains such as Cityscapes, BDD100K, and Mapillary Vistas
datasets. The immediate actions must focus on incorporating better base deep mod-
els for semantic segmentation. In this Ph.D., we have used DeepLab V3+ for being
one of the top-performing frameworks for semantic segmentation. However, new
frameworks incorporating transformers (e.g., SegFormer [125]) should be tested.
Note that performing automatic labeling of images in real-time on lightweight hard-
ware is not a constraint, since the pseudo-labeled images can be used to train any
semantic segmentation model. However, so far, the training of transformer-based
semantic segmentation models has been too expensive for the hardware available
to run this Ph.D. research.
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