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Abstract
Gliomas are the main common primary brain malignancies and are

the most common type of brain cancer. It comes from glial brain cells
that support nerve cells for a broad category of brain and spinal cord
tumors. Identification of the sub-regions of gliomas before surgery is
critical, which may affect the survival of patients. Different medical
imaging techniques have been used to distinguish brain tumor lesions
such as X-ray, Ultrasound, Positron Emission Tomography (PET), Elec-
troencephalography (EEG), Magnetic Brain Wave Graph (MEG), Single-
Photon Emission Computed Tomography (SPECT), Computed Tomog-
raphy (CT), and Magnetic Resonance Imaging (MRI). However, MRI is
the most comprehensive technique that provides better image quality
and facilitates determining the exact volume and size of the malignant
brain tumor. MRI modalities include Fluid-Attenuated Inversion Re-
covery (FLAIR), T1-weighted (T1), T2-weighted (T2), and T1w contrast-
enhanced (T1CE). Each MRI modality provides different structural in-
formation about brain tissue. Gliomas have complicated pathological
changes such as hemorrhage, necrosis, and edema. Due to these com-
plex pathological changes, gliomas show intricate changes in brightness
and texture on MRI scans. Different tissues may have the same gray
matter values, which makes it difficult to have an accurate, repeatable,
and stable segmentation of gliomas.

Early detection, automatic delineation, and volume estimation are
vital tasks for survival prediction and treatment planning. However,
gliomas are often difficult to localize and delineate with conventional
manual segmentation due to their high variation of shape, location, and
appearance. Moreover, manual mark delineation is laborious and time-
consuming work for a neurosurgeon. In addition, it is difficult to repli-
cate the segmentation results due to certain practical operation factors.
The accurate segmentation of brain tumors can facilitate diagnosis and
help assess the prognosis and severity of the disease.

UNIVERSITAT ROVIRA I VIRGILI 
SELF-SUPERVISED ADVANCED DEEP LEARNING FOR CHARACTERIZATION OF BRAIN TUMOR AGGRESSIVENESS 
AND PROGNOSIS ANALYSIS THROUGH MULTIMODALITY MRI IMAGING 
Moona Mazher 



vi

In recent years, convolution neural networks (CNNs) are widely used
for the automated classification and segmentation of medical images.
For 2D segmentation, the input data is passed slice by slice to the CNN
model while in 3D segmentation the whole volumetric data is fed into
the CNN model. The focus of the present thesis is to develop a system
for automating brain tumor analysis (such as brain tumor segmentation,
and survival prediction), using deep learning techniques and applying
them to the MRI images for segmenting the brain tumor classes (En-
hancing Tumor, Non-enhancing Tumor, and Peritumoral Edema) and
estimating the survival days of the patients for prognosis analysis.

Firstly, we applied the standard 2DCNNmodels including base UNET,
Residual UNET (ResUnet), and DeepLabv3 and then we proposed depth-
wise channel attention (BrainSeg-DCANet) with Binary Cross Entropy
(BCE) loss function for brain tumor segmentation on the BraTS2020 dataset.
The proposed BrainSeg-DCANet model with BCE loss function yields
the best result to segment the combined tumor regions (Enhancing Tu-
mor, Tumor Core, Whole Tumor, in MRI images with overall dice scores
coefficients (DSCs) around 87%, 91%, and 93%, and Hausdorff distance
(HD) around 2.08, 1.32, and 1.94, respectively, outperforming the com-
mon semantic segmentation methods (UNET and Residual UNET).

Secondly, a multiview (axial, sagittal, and coronal) deep inception
residual network segmentation was applied to the 2D MRI images to
segment Brain tumor regions (TC, WT, ET) with the interdisciplinary
dataset for fetal brain segmentation (FETA2021) using Combo loss func-
tion. This method takes 2D images as input and generates a 3D mask
(stacking of 2D masks) as volumetric output. Moreover, survival days
prediction for the BraTS dataset and gestational age prediction for the
FETA dataset were given using multiple feature extraction techniques
including Deep CNN Features, Radiomics Features, Auto Encoder Fea-
tures, and clinical features by applying variant regressions methods (Lin-
ear Regression, Random Forest, Extreme Gradient Boosting).
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The proposed multiview deep inception residual network segmen-
tation model outperformed the state-of-the-art methods for brain tumor
region segmentation as well as for fetal brain segmentation. The gener-
alization capabilities of the proposed method were also tested on Head
and Neck tumor segmentation and patients’ survival days prediction.
The radiomics features yield promising results for survival days predic-
tion tasks along with the deep CNN features. Thereafter, we proposed a
new 3D CNN method for computing the brain tumor segmentation for
all tumor regions including TC, WT, and ET.

Two-stage Self-supervised Contrastive Learning using Parallel Mul-
tiview Multiscale Attention-based CNN Transformers for 3D brain tu-
mor volumetric segmentation was introduced. This method works effi-
ciently for small labeled and large unlabeled data challenges. The pro-
posed model results were compared with the various state-of-the-art
methods for 3D brain tumor segmentation on MRI images. The results
showed, our proposed self-supervised using Parallel Multiview Multi-
scale Attention-based CNN Transformers with contrastive learning ap-
proach outperformed the state-of-the-art methods by yielding the best
DCS and HD scores of 88%, 92%, 93%, 4.78, 5.33 and 8.99 for ET, TC,
and WT tumor regions.

Finally, a 3D MR image-based survival prediction was performed.
Multiple feature extraction techniques are used to extract the features
from the 3D volumetric MRI image and then different regression tech-
niques are applied to the extracted features. It is observed that radiomics
features produced very interesting results like in the previously given
2D MR images case. In this study, a combination of radiomics fea-
tures with 3D CNN deep features from the proposed 3D CNN model
(self-supervised contrastive learning method with semi-supervised ap-
proach) and given clinical features produced the highest concordance
(C-index) value as compared to the other feature extraction methods.
We have validated our proposed solution extensively for real-time med-
ical imaging datasets and won various competitions.
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Overall, this thesis presents the automated deep learning methods
for brain tumor segmentation and survival prediction for prognosis anal-
ysis; This thesis’s findings are promising and showed that the proposed
techniques can produce a clinically helpful computer-aided tool for brain
tumor segmentation and survival prediction by MRI Images.
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Resum
Els giliomes són els principals acomiadaments comuns del cervell pri-
mari i són el tipus més comú de càncer cerebral. Prové de cèllules cere-
brals brillants que recolzen les cèllules nervioses per a una àmplia cat-
egoria de tumors de cervell i medulla espinal. La identificació de les
subregions de gliomas abans de la cirurgia és crítica, que pot afectar la
supervivència dels pacients. S’han utilitzat diferents tècniques de pro-
cessament d’imatges mèdiques per distingir lesions del tumor cerebral,
com ara radiografia, Ultrasound, Tomografia d’emissió Positron (PET),
Electroencefalografia (EEG), Magnetic Brain Wave Graph (MEG), Tomo-
grafia computada per a l’Emissió Única (ESPECT), Tomografia Com-
putada (CT) i Resonance Magnetic Imaging (MRI) ... No obstant això,
la ressonància magnètica és la tècnica més completa que proporciona
una millor qualitat d’imatge i facilita determinar el volum i la mida ex-
actes del tumor cerebral maligne. Les modalitats de ressonància mag-
nètica inclouen Recuperació de la inversió (FLAIR), T1 ponderada (T1),
T2-ponderat (T2) i T1w, amb contrast millorat (T1CE). Cada modalitat
ressonància magnètica ofereix diferents dades estructurals sobre el teixit
cerebral. Els glumes tenen complicats canvis patològics com l’hemorràgia,
la necrosi i l’edema. A causa d’aquests complexos canvis patològics,
els gliomas mostren canvis intricats en la brillantor i la textura en els
escàners de ressonància magnètica. Els diferents teixits poden tenir els
mateixos valors de matèria grisa, cosa que dificulta tenir una segmentació
exacta, repetible i estable de gliomas.

La detecció precoç, la delineació automàtica i l’estimació de volum
són tasques vitals per a la predicció de supervivència i la planificació del
tractament. No obstant, els gliomas sovint són difícils de localitzar i de-
linear amb la segmentació manual convencional per la seva alta variació
de forma, ubicació i aspecte. A més, la delineació manual de marques és
un treball laboriós i amb un temps de consum per a un neurocirurgià. A
més, és difícil replicar els resultats de la segmentació per determinats
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factors de funcionament pràctic. La segmentació exacta dels tumors
cerebrals pot facilitar el diagnòstic i ajudar a avaluar el pronòstic i la
gravetat de la malaltia.

En els últims anys, les xarxes neuronals de convolució (CNN) són
molt utilitzades per a la classificació automatitzada i la segmentació de
les imatges mèdiques. Per a la segmentació en 2D, les dades d’entrada es
passen sector per sectors al model CNN mentre que en la segmentació en
3D s’alimenten totes les dades volumètriques en el model CNN. El focus
de la tesi present consisteix a desenvolupar un sistema per automatitzar
l’anàlisi dels tumors cerebrals (com la segmentació del tumor cerebral i
la predicció de supervivència), usant tècniques d’aprenentatge profun-
des i aplicant-les a les imatges de ressonància magnètica per segmentar
les classes de tumor cerebral (Potenciar el tumor, el tumor no intensi-
ficador i l’Edema Peritumoral) i estimar els dies de supervivència dels
pacients per a l’anàlisi de pronòstic.

En primer lloc, vam aplicar els models estàndard 2DCNN que in-
clouen UNET base, Resdual (ResUnet) i DeepLabv3 i després vam pro-
posar atenció al canal en sentit invers (BrainSeg-DCANet) amb funció
de pèrdua de la Creu binària Entropy (BEC) per a la segmentació del tu-
mor cerebral al conjunt de dades de BraTS200. El model proposat per a
BrainSeg-DCANet amb funció de pèrdua de l’EI dóna el millor resultat
per segmentar les regions de tumor combinades (tumor millorat, Tu-
mor Core, Tumor Core, Tumor Sencer Tumor, en imatges de ressonància
magnètica amb coeficients globals de daus (DSC) al voltant del 87%, el
91% i el 93%, i la distància Hausdorff (HD) al voltant del 2.08, 1.08, i
1.94, respectivament, superant els mètodes de segmentació semàntica
comuna (UNET i UNET Residual).

En segon lloc, es va aplicar a les imatges 2D de ressonància mag-
nètica (axial, sagittal i coronal) una profunda estreta de la xarxa resid-
ual de creació (TC) per segmentar regions tumorals cerebrals (TC, WT,
ET) amb el conjunt de dades interdisciplinàries per a la segmentació del
cervell fetal (FETA2021) usant la funció de pèrdua de Combo. Aquest
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mètode agafa les imatges en 2D com a entrada i genera una màscara en
3D (apilada de màscares en 2D) com a resultat volumètric. A més, les
prediccions dels dies de supervivència per al conjunt de dades BraTS i la
predicció de l’edat gestacional per al conjunt de dades FETA s’han donat
mitjançant múltiples tècniques d’extracció de característiques, incloent
característiques d’extracció de característiques profundes CNN, trets de
Radiomics, característiques de codificador automàtic i característiques
clíniques aplicant mètodes de regressions de la variant (Regressió lineal,
Bosc Aleatori, buidatge de gradient extremeny).

El model de segmentació de la xarxa residual proposada per a l’inici
profund de la xarxa va superar els mètodes d’última generació per a la
segmentació de la regió del tumor cerebral així com per a la segmentació
del cervell fetal. Les capacitats de generalització del mètode proposat
també es van posar a prova en la segmentació del tumor de cap i coll
i en la predicció dels dies de supervivència dels pacients. Les carac-
terístiques de la ràdio donen resultats prometedors per a les tasques de
predicció dels dies de supervivència juntament amb les profundes carac-
terístiques de la CNN. A partir de llavors, vam proposar un nou mètode
de la CNN 3D per a la informàtica de la segmentació del tumor cerebral
per a totes les regions tumorals, incloses el TC, WT i ET.

S’ha introduït l’aprenentatge contradictori amb l’autosupervisió de
dues etapes mitjançant la multivisió parallela dels transformadors de la
CNN multiescala d’atenció de la CNN per a la segmentació volumètrica
del tumor cerebral en 3D. Aquest mètode funciona eficientment per a
petits reptes de dades etiquetats i grans sense etiquetar. Els resultats
del model proposat es van comparar amb els diversos mètodes d’última
generació per a la segmentació del tumor cerebral 3D en imatges de
ressonància magnètica. Els resultats mostrats, la nostra proposta au-
tosupervisada utilitzant els transformadors de la multipantalla múltiple
ParalLel per a l’Atenció dels Transformadors de la CNN amb un enfo-
cament d’aprenentatge contrastat superava els mètodes d’última gen-
eració al cedir les millors puntuacions de DCS i HD del 88%, 92%, 93%,
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4.78, 5.33 i 8.99 per a ET, TC i WT, TC i WT. regions tumorals.
Finalment, es va fer una predicció de supervivència basada en imat-

ges en 3D MR. S’utilitzen múltiples tècniques d’extracció de caracterís-
tiques per extreure les característiques de la imatge de la imatge de la
imatge de la imatge de la imatge de la imatge de la imatge de la imatge
volumètrica 3D i, a continuació, s’apliquen diferents tècniques de re-
gressió a les característiques extretes. S’observa que les característiques
de les radiòmiques produïen resultats molt interessants com en el cas
d’imatges 2D MR prèviament donat. En aquest estudi, una combinació
de trets radiofònics amb trets profunds de la CNN 3D a partir del model
proposat pel 3D CNN (mètode d’aprenentatge contrastat autosupervisat
amb enfocament semisupervisat) i donat que els trets clínics van pro-
duir el valor més alt de concordança (C-index) en comparació amb els
altres mètodes d’extracció de característiques. Hem validat àmpliament
la nostra proposta de solució per a conjunts de dades d’imatge mèdica
en temps real i hem guanyat diverses competicions.

En conjunt, aquesta tesi presenta els mètodes d’aprenentatge pro-
funds automatitzats per a la segmentació del tumor cerebral i la predic-
ció de supervivència per a l’anàlisi de pronòstic. Les troballes d’aquesta
tesi són prometedores i mostren que les tècniques proposades poden
produir una eina clínicament ajudada per ordinador per a la segmentació
del tumor cerebral i la predicció de supervivència per part d’Imatges de
ressonància magnètica.
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Resumen
Los gliomas son las principales neoplasias cerebrales primarias co-

munes y son el tipo más común de cáncer cerebral. Proviene de las
células del cerebro glial que soportan las células nerviosas para una am-
plia categoría de tumores del cerebro y la médula espinal. La identifi-
cación de las subregiones de los gliomas antes de la cirugía es crítica,
lo que puede afectar la supervivencia de los pacientes. Se han uti-
lizado diferentes técnicas de imagen para distinguir lesiones tumorales
cerebrales, como la radiografía, la ecografía, la tomografía por emisión
de positrones (PET), la electroencefalografía (EEG), el gráfico de ondas
cerebrales magnéticas (MEG), la tomografía computarizada por emisión
de fotón único (SPECT), la tomografía computarizada (TC) y la resonan-
cia magnética nuclear (RMN). Sin embargo, la RM es la técnica más com-
pleta que proporciona una mejor calidad de imagen y facilita la determi-
nación del volumen y el tamaño exactos del tumor cerebral maligno. Las
modalidades de RM incluyen recuperación de inversión atenuada con
líquido (FLAIR), T1 (T1), T2 (T2) y T1w con contraste mejorado (T1CE).
Cada modalidad de RM proporciona información estructural diferente
sobre el tejido cerebral. Los gliomas tienen cambios patológicos com-
plicados, como hemorragia, necrosis y edema. Debido a estos cambios
patológicos complejos, los gliomas muestran cambios intrincados en el
brillo y la textura en las resonancias magnéticas. Los diferentes tejidos
pueden tener los mismos valores de materia gris, lo que dificulta una
segmentación precisa, repetible y estable de los gliomas.

La detección temprana, la delineación automática y la estimación
del volumen son tareas vitales para la predicción de la supervivencia
y la planificación del tratamiento. Sin embargo, los gliomas a menudo
son difíciles de localizar y delinear con la segmentación manual con-
vencional debido a su alta variación de forma, ubicación y apariencia.
Además, la delineación manual de marcas es un trabajo laborioso y que
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consume mucho tiempo para un neurocirujano. Además, es difícil re-
producir los resultados de la segmentación debido a ciertos factores
de operación prácticos. La segmentación precisa de los tumores cere-
brales puede facilitar el diagnóstico y ayudar a evaluar el pronóstico y
la gravedad de la enfermedad.

En los últimos años, las redes neuronales de convolución (CNNs)
son ampliamente utilizadas para la clasificación automatizada y seg-
mentación de imágenes médicas. Para la segmentación 2D, los datos de
entrada se pasan porción a porción al modelo CNN, mientras que en la
segmentación 3D todos los datos volumétricos se introducen en el mod-
elo CNN. El objetivo de la presente tesis es desarrollar un sistema para
automatizar el análisis de tumores cerebrales (como la segmentación de
tumores cerebrales, y la predicción de supervivencia), utilizando técni-
cas de aprendizaje profundo y aplicándolas a las imágenes de RM para
segmentar las clases de tumores cerebrales (tumor potenciador, tumor
no potenciador, y edema peritumoral) y estimar los días de superviven-
cia de los pacientes para el análisis de pronóstico.

En primer lugar, se aplicaron los modelos 2DCNN estándar in-
cluyendo UNET base, UNET residual (ResUnet), y DeepLabv3 y luego
se propuso la atención de canal profundo (BrainSeg-DCANet) con la
función de pérdida de entropía cruzada binaria (BCE) para la seg-
mentación de tumores cerebrales en el conjunto de datos BraTS2020. El
modelo propuesto de BrainSeg-DCANet con función de pérdida de BCE
produce el mejor resultado para segmentar las regiones combinadas del
tumor (Enhancing Tumor, Tumor Core, Tumor Completo) en imágenes
de RM con coeficientes de puntuación de dados (DSCs) globales alrede-
dor del 87%, 91% y 93%, y la distancia de Hausdorff (HD) alrededor
de 2,08, 1,32 y 1,94, respectivamente, superando los métodos de seg-
mentación semántica comunes (UNET y UNET residual).

En segundo lugar, se aplicó una segmentación de red residual de ini-
cio profundo multiview (axial, sagital y coronal) a las imágenes de res-
onancia magnética 2D para segmentar regiones de tumores cerebrales
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(CT, WT, ET) con el conjunto de datos interdisciplinarios para la seg-
mentación cerebral fetal (FETA2021) utilizando la función de pérdida
Combo. Este método toma imágenes 2D como entrada y genera una
máscara 3D (apilamiento de máscaras 2D) como salida volumétrica.
Además, la predicción de los días de supervivencia para el conjunto de
datos BraTS y la predicción de la edad gestacional para el conjunto de
datos FETA se dieron utilizando múltiples técnicas de extracción de car-
acterísticas, incluyendo características de CNN profundo, características
de radiomics, características de codificador automático, y características
clínicas mediante la aplicación de métodos de regresión de variantes (re-
gresión lineal, bosque aleatorio, potenciación de gradiente extremo).

El modelo multiview propuesto para la segmentación de redes resid-
uales de inicio profundo superó a los métodos más avanzados para
la segmentación de la región del tumor cerebral así como para la seg-
mentación del cerebro fetal. Las capacidades de generalización del
método propuesto también se probaron en la segmentación de tumores
de cabeza y cuello y en la predicción de los días de supervivencia de
los pacientes. Las características radiómicas arrojan resultados prom-
etedores para las tareas de predicción de días de supervivencia junto
con las características de CNN profundo. Posteriormente, se propuso
un nuevo método de CNN 3D para calcular la segmentación del tumor
cerebral en todas las regiones tumorales, incluyendo CT, WT y ET.

Se introdujo el aprendizaje contrastivo autosupervisado en dos eta-
pas utilizando transformadores CNN basados en la atención multivista
paralela para segmentación volumétrica de tumores cerebrales 3D. Este
método funciona de manera eficaz para los desafíos de datos sin etiqueta
pequeños y grandes. Los resultados del modelo propuesto se compara-
ron con los métodos más avanzados para la segmentación 3D de tu-
mores cerebrales en imágenes de RM. Los resultados mostraron que los
transformadores de CNN basados en la atención en múltiples escalas
paralelas con enfoque de aprendizaje contrastivo, los cuales fueron au-
tosupervisados, superaron a los métodos de vanguardia al obtener las
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mejores puntuaciones de DCS y HD de 88%, 92%, 93%, 4,78, 5,33 y 8,99
para las regiones tumorales ET, TC y WT.

Finalmente, se realizó una predicción de supervivencia basada en
imágenes 3D MR. Se utilizan múltiples técnicas de extracción de car-
acterísticas para extraer las características de la imagen 3D de resonan-
cia magnética volumétrica y, a continuación, se aplican diferentes técni-
cas de regresión a las características extraídas. Se observa que las car-
acterísticas radiológicas produjeron resultados muy interesantes como
en el caso de las imágenes 2D MR previamente dado. En este estu-
dio, una combinación de características radiómicas con características
profundas de CNN 3D del modelo propuesto de CNN 3D (método de
aprendizaje contrastivo autosupervisado con enfoque semisupervisado)
y características clínicas dadas produjeron el valor más alto de concor-
dancia (índice C) en comparación con los otros métodos de extracción
de características. Hemos validado ampliamente nuestra solución prop-
uesta para conjuntos de datos de imágenes médicas en tiempo real y
hemos ganado varios concursos.

En general, esta tesis presenta los métodos automatizados de apren-
dizaje profundo para la segmentación de tumores cerebrales y la predic-
ción de la supervivencia para el análisis del pronóstico; Los hallazgos
de esta tesis son prometedores y mostraron que las técnicas propuestas
pueden producir una herramienta asistida por ordenador clínicamente
útil para la segmentación de tumores cerebrales y la predicción de la
supervivencia mediante imágenes de RM.
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Part I

Introduction
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Chapter 1

Introduction

The objective of this chapter is to situate the thesis in its clinical and tech-
nical context. First, we discuss aspects that are important to understand
the clinical motivations of the proposed methods. We start by defin-
ing brain tumors, which are the focus of this thesis. We then present
the commonly used types of medical images, and we discuss the role
of segmentation tasks in neuro-oncology. Second, we discuss important
aspects related to deep learning, which form the basis of most of the
current state-of-the-art methods for image segmentation. In particular,
we discuss its main advantages and inconveniences in the context of the
segmentation of brain tumors and organs at risk. Finally, we introduce
our main contributions, and we present the organization of the thesis.

1.1 Motivation

1.1.1 Brain Tumor

Brain tumor/cancer is a life-threatening disease involving abnormal
proliferation of cells. It originates from one cell which developed several
characteristics, often called hallmarks of cancer (Hanahan and Wein-
berg, 2011). In particular, cancer cells are able to replicate infinitely and
autonomously, they invade other tissues and ignore natural regulatory
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mechanisms such as programmed cell death. The capacity of invading
neighboring tissues and spreading to distant sites of the body (metas-
tasis) distinguishes malignant tumors (cancers) from benign ones. Ev-
ery year, approximately 9 million people in the world die from different
forms of cancer.

Brain tumors can be malignant or benign. A cancerous brain tumor
is malignant, meaning it can grow and spread to other parts of the body.
The most common types of malignant brain tumors (Mehta, 2011) are
gliomas (Schwartzbaum et al., 2006). Gliomas originate from glial cells,
which are one of the two main components of the nervous tissue (with
neurons) and have several functions related to the support and protec-
tion of neurons. Gliomas represent approximately 80 % of primary ma-
lignant brain tumors and their malignant forms, such as glioblastoma,
are among the most aggressive cancers. More than 11,000 people are
diagnosed with a primary brain tumor in the UK each year, of which
about half are cancerous. Many others are diagnosed with a secondary
brain tumor.

Early detection, automatic delineation, and volume estimation are
vital tasks for survival prediction and treatment planning. The work
presented in this dissertation focused on automatic solutions for the
early detection of malignant brain tumor characterization and survival
days prediction for the prognosis analysis of brain tumor patients.

However, gliomas are often difficult to localize and delineate with
conventional manual segmentation due to their high variation of shape,
location, and appearance. Moreover, manual mark delineation is labori-
ous and time-consuming work for a neurosurgeon.

1.1.2 Medical imaging in neuro-oncology

Medical images are extensively used in oncology for diagnosis, therapy
planning, and monitoring of tumors. Oncologists analyze images to lo-
cate tumors and assess their different characteristics.
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Different types of medical images are used, depending on the task
(search of metastases, radiotherapy planning) and the region of interest
(brain, lungs, digestive system). The commonly used types of imag-
ing include computed tomography (CT), magnetic resonance imaging
(MRI), and positron-emission tomography (PET).

Positron-emission tomographyGambhir, 2002 is based on the injec-
tion of a radioactive tracer in the blood of the patient in order to ob-
serve the metabolism of different tissues. A commonly used tracer is
fludeoxyglucose which is a structural analog of glucose. As cancer cells
need an important glucose supply due to their divisions, the tumoral
tissues may be detected by their abundant absorption of the radioactive
tracer. A PET scan is particularly useful for the diagnosis and staging
of tumors, for detecting cancer metastases, and for monitoring the ef-
fects of therapy. However, due to physical limitations, PET scans have
usually a considerably lower spatial resolution than MRI and CT scans.

Computed tomography measures the absorption of X-rays of differ-
ent tissues in the body. The radiation is emitted from different angles in
order to acquire a series of 2D radiographic images from which a 3D
scan is then reconstructed. Even if CT scans have generally a better
spatial resolution than MRI, they offer a significantly weaker contrast
between soft tissues such as the ones present in the brain. Moreover,
exposure to X-rays may induce cancers by damaging the DNA of body
cells.

Acquisition of MRI Atlas, 2009 is based on the detection of signals
emitted by the nuclear magnetic resonance of atoms in the body. The
detected signal is usually produced by protons of hydrogen, present in
abundance in the human body (water, fat). The atoms are set in a strong
magnetic field and are then perturbed by a radio wave, called pulse se-
quence. By modifying the parameters of the pulse sequence and pulsed
field gradients, different contrasts are obtained, corresponding to spe-
cific MRI sequences. The MRI sequences commonly used for brain tu-
mor imaging are T1, T2, and FLAIR (T2 with suppression of fluids). T1
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Figure 1.1: Four images from T1, T2, T1CE, and Flair MRI modalities
with brain tumors having different shapes, sizes, and textures (Brain
tumor is highlighted in red boxes).

is often acquired after injection of a gadolinium-based contrast agent
Zhou et al., 2013 in the blood of the patient, in particular, to highlight
the tumor angiogenesis, i.e. creation of new vascular networks by the
tumor.

MRI modalities include Fluid-Attenuated Inversion Recovery
(FLAIR), T1-weighted (T1), T2-weighted (T2), and T1w contrast-
enhanced (T1CE). Each MRI modality provides different structural in-
formation about brain tissue. Some brain tumor types such as gliomas
and glioblastoma cells spread rapidly and are difficult to segment due
to low contrast region as compared to meningiomas that can segment
easily. Gliomas show the progression of infiltrative growth of tumor
boundaries and do not have a consistent growth pattern. These tumors
have complicated pathological changes such as hemorrhage, necrosis,
and edema. Due to these complex pathological changes, gliomas show
intricate changes in brightness and texture on MRI scans. Depending
on its severity and aggressiveness, it is divided into four grades rang-
ing from grade I to grade IV(Grade I, II are Low-Grade Glioma(LGG)
and grades III and IV are High-Grade Glioma(HGG)). Different tissues
may have the same gray matter values, which makes it difficult to have
an accurate, repeatable, and stable segmentation of gliomas. Figure1.1
shows examples of brain tumors in different MRI modalities.

Magnetic resonance images are particularly suitable for imaging of
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brain tumors and organs. In particular, they offer a high contrast be-
tween soft tissues in the brain (compared to other types of imaging) and
the use of different MRI sequences offers the possibility to highlight dif-
ferent tumoral compartments (edema, tumor vascularisation, necrosis).

1.1.3 Deep learning in medical imaging & Survival Pre-
diction

The methods presented in this thesis are mainly based on deep learning,
which is a branch of machine learning. In this section, we briefly present
the general principles of deep learning, we motivate its use for segmen-
tation tasks in neuro-oncology and we discuss its limitations, some of
which are addressed in this thesis.

Given an input space X and a label space Y, the objective of super-
vised machine learning is to find a predictive function f : X(Y), using
a database of training examples (xi, yi), where xi ∈ X and yi ∈ Y. To
achieve this goal, three main elements have to be defined:

• Family of candidate functions fθ, parametrized by a vector of pa-
rameters θ ∈ Θ.

• Loss function L: Θ → R, which quantifies the mismatch between
the outputs predicted by a candidate function f θ and the ground truth.

• Training algorithm, which minimizes the loss function (with re-
spect to the parameters θ) over the training data.

The main particularity of deep learning is the nature of the consid-
ered candidate functions. The term deep is related to multiple compo-
sitions of functions. The composed functions are differentiable and or-
ganized in layers, with the idea to progressively transform the input
vector, extracting more and more complex information. The term neu-
ral network is related to the considered family of functions, represented
typically by a graph. Training of the model (minimization of the loss
function) is typically based on iterative optimization with variants of
the stochastic gradient descent.
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Convolutional Neural Networks (CNN) (LeCun, Bengio, et al., 1995)
are a commonly used type of neural network for image processing and
analysis (classification, segmentation). They exploit spatial relations be-
tween pixels (or voxels, in 3D) and are based on the application of local
operations such as convolution, pooling (maximum, average), and up-
sampling. The objectives of such a design are to limit the number of
parameters of the network and to limit computational costs, as images
correspond generally to very large inputs. In fact, an important prop-
erty of the operations used in CNNs is that they can be parallelized and
efficiently computed on a Graphical Processing Unit (GPU).

CNNs for image segmentation are usually trained in an end-to-end
manner, i.e. their input is the image and the output is the segmenta-
tion. With end-to-end training, the model automatically learns to extract
relevant information from images, using the training database. This
property is particularly important for very challenging tasks in medical
imaging, such as tumor segmentation. Most of the current state-of-the-
art methods for image segmentation are based on CNNs, in particular
the methods for brain tumor segmentation (Kamnitsas et al., 2017a).

However, even if CNNs have recently obtained state-of-the-art re-
sults in many recognition tasks, they still have important limitations in
the context of segmentation in medical imaging. The objective of the
methodological contributions of this thesis is to address these limita-
tions. Despite the progress of GPU capacities, computational costs still
severely limit the potential of CNNs for segmentation tasks in medical
imaging. A typical segmentation network, such as U-net Ronneberger,
Fischer, and Brox, 2015a performs thousands of convolutions, max-
poolings, and upsampling operations. Outputs of these operations have
to be stored in the memory of the GPU during each iteration of the train-
ing, in order to compute gradients of the loss function by the Backprop-
agation algorithm. A typical MRI is composed of several millions of
voxels. Training of neural networks for an end-to-end segmentation on
entire MRIs requires therefore a huge amount of GPU memory and is
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often may impossible using the currently available GPUs.
For this reason, current segmentation models are usually trained on

subvolumes of limited size and have limited receptive fields. Another
important problem is the cost of the ground truth annotations neces-
sary to train neural networks, and machine learning models in general.
Manual segmentation of tumors is particularly costly as it is not only
time-consuming but also requires medical expertise and therefore has to
be performed by experienced clinicians. Other difficulties are related to
the use of multimodal data. Usually, different types of images (e.g. dif-
ferent MRI sequences) are used in oncology. Most of the current CNN-
based models consider MRIs as 4D tensors and assume the presence of
all modalities for all patients in the training database, which is rarely
the case in practice. Finally, commonly used segmentation CNNs may
produce spatially inconsistent results, as they are based on individual
classification of voxels given their receptive fields. It means that, in gen-
eral, the model does not explicitly analyze aspects related, for instance,
to the connectivity of the output segmentation and the spatial relations
between the different segmentation classes.

The accurate segmentation of brain tumors can facilitate diagnosis
and help assess the prognosis and severity of the disease. Automatic
segmentation and survival rate prediction models will help the diagno-
sis and treatment to be much more accurate and faster.

1.1.4 Survival Prediction

Survival for brain tumors depends on different factors likewise it is dif-
ferent for adults and children. Different types of brain tumors respond
differently to treatment. Some respond better to radiotherapy than oth-
ers. Some types are likely to spread into the surrounding brain tissue.
This may make them difficult to remove with surgery.
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Glioblastoma (GBM) is the most common malignant primary brain
tumor in adults. Prognosis is generally very poor, with a median over-
all survival (OS) of less than 15 months, and a 5-year OS rate of only
10%, even when aggressively treated. Magnetic resonance (MR) im-
ages of glioblastoma patients contain vast amounts of information about
the disease, some of which may carry prognostic value. The literature
on imaging biomarkers for glioblastoma survival prediction is currently
dominated by radiomics, an approach in which hundreds or even thou-
sands of features are extracted from delineated tumor regions of MR
images, each quantifying some shape, texture, wavelet, or histogram
property. This approach has shown good performance in predicting
survival in many studies likely stemming from the correlation between
the tumor’s texture in MR images and its intratumoral heterogeneity
and aggressiveness. However, despite good prediction performance, ra-
diomics suffers from three issues impeding wide-scale practical adop-
tion:

• Lack of interpretability: Radiomic features, instead of aiming to be
interpretable, are designed to be many, to maximize the chance of some
having correlation to the target variable. Consequently, many radiomic
features are seemingly arbitrary and hard to connect in a meaningful
way to the nature of the disease. However, the interpretability of fea-
tures is important: If a model cannot give interpretable explanations
of its predictions, clinicians may not trust the model enough to factor
its predictions into their decisions, even if the model is accurate. Inter-
pretable models may also uncover patterns in the data that give valuable
new insight into the disease, and inspire future research.

• Difficulties generalizing: The reproducibility of studies using ra-
diomics has been shown to be less than ideal, with results failing to gen-
eralize well across scanners and software implementations. Since many
radiomic features depend directly on raw image intensities, they are sen-
sitive to subtle changes in scanning equipment and image acquisition
parameters. Furthermore, both textural and shape features depend on
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the segmentation mask that is used, underlining the importance of us-
ing image segmentation methods that are robust with respect to such
sources of variation.

• Focus on pre-operative data: Compared to pre-operative images
of glioblastoma, relatively little attention has been given to radiomics
and other biomarkers in post-operative images. The reason may be that
post-operatively, tumor shape and textural features are less easily de-
tectable, as a large part of the tumor is usually removed. Nevertheless,
post-operative images are collected closer to the time of disease progres-
sion and contain information about the success of the operation, making
them important to consider in a survival model.

In this dissertation, we proposed deep learning and machine
learning-based approaches that aim to start addressing these shortcom-
ings.

1.2 Thesis overview & Organization

The objective of this thesis is to propose efficient methods for the seg-
mentation of brain tumors and survival prediction for prognosis analy-
sis. The four main chapters correspond to journal articles that have been
published or submitted during the preparation of the thesis while one
chapter is related to the book chapter published on the challenge from
Medical Image Computing and Computer Assisted Intervention (MIC-
CAI 2021). The manuscript is organized as follows.

In Chapter 2, published as a journal article ’BrainSeg-DCANet: Ro-
bust Multimodality Brain Tumor MR Image Segmentation Using Deep
Depth-Wise Channel Attention’ (Accepted: Intelligent Systems 2023),
we introduce a CNN-based system for brain tumor segmentation. Most
existing deep learning-based methods cannot precisely identify small-
scale tumors due to the insufficient feature extraction capability of uti-
lized models. To handle this issue, we propose BrainSeg-DCANet,
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which is a fully automated yet robust deep learning-based multimodal-
ity brain tumor MR image segmentation method. In particular, an ef-
ficient depth-wise attention module is proposed to capture small brain
tumor-relevant features and to localize the small tumor regions accu-
rately. This module can efficiently capture the local cross-channel inter-
action to produce brain tumor contextual feature information using a
dynamic 1D convolution layer. Besides, a discrete wavelet transformed
(DWT) is employed to enlarge the receptive fields. The performance of
BrainSeg-DCANet is assessed on the BraTS2020 multimodal brain tu-
mor segmentation dataset and obtained one of the best performances
over available methods.

In Chapter 3, corresponding to the second journal article (Mazher
et al., 2022), This chapter proposed an end-to-end automatic yet effec-
tive method for a multi-tissues fetal brain segmentation model called IR-
MMNET. It included the Inception-Residual encoder block (EB) and the
dense-spatial attention (DSAM) block that facilitates extracting multi-
scale fetal brain tissue-relevant information from the multi-view MRI
images and enhances feature reuse and substantially reduces the num-
ber of parameters of the segmentation model. Later, this proposed tech-
nique is also applied on the BraTS2020 dataset for examining its out-
come on brain tumor segmentation. Additionally, we proposed three
methods for predicting gestational age (GA) prediction using the 3D
autoencoder, using radiomics features, and using the IRMMNET seg-
mentation model deep features. Our experiments were performed on
a dataset of 80 manually segmented pathological and non-pathological
fetal magnetic resonance brain volume reconstructions across a range of
gestational ages (20 to 33 weeks) into 7 different tissue categories. Sim-
ilar to the segmentation task, these gestational age prediction methods
were also deployed on the BraTS2020 dataset for patients’ survival days
prediction.

In Chapter 4, corresponding to the third journal article (Two-stage
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Self-supervised Contrastive Learning using Parallel Multiview Multi-
scale Attention-based CNN Transformers for 3D Brain Tumour Volu-
metric Segmentation), To reduce the requirement for annotated training
data, self-supervised pre-training strategies on non-annotated data were
designed. Especially contrastive learning schemes operating on dense
pixel-wise representations have been introduced as an effective tool. In
this work, we expand on this strategy and leverage inherent anatomi-
cal similarities in medical imaging data. We apply our approach to the
task of semantic segmentation in a self-supervised setting with limited
amounts of annotated volumes. Trained alongside a segmentation loss
in one single training stage, a contrastive loss aids to differentiate be-
tween salient anatomical regions that conform to the available annota-
tions. We proposed an efficient parallel transformer module using Mul-
tiview multiscale features and depth-wise features. The multiEncoder-
based proposed transformer is trained on a self-supervised approach us-
ing contrastive loss. First, we prepared the proposed transformer with
an unlabelled dataset and fine-tuned one encoder coming from the first
stage and a second encoder trained with a few annotated segmentation
masks. Further, we concatenated the features of both encoders for final
brain tumor segmentation. MultiEncoder-based transformers achieved
excellent results in various medical image segmentation tasks.

In Chapter 5, corresponding to the fourth journal article (Accepted:
Survival Prediction of Brain Tumor Patients Using Attention-Guided 3D
Deep Learning with Radiomics Features from Multimodality MRI Im-
ages), a 3D MR image-based survival prediction task was performed.
Multiple feature extraction techniques including 3D radiomics features,
3D regressor features, and 3D deep CNN features were used to extract
the features from the volumetric MRI images and then different regres-
sion techniques were applied to the extracted features. This method was
used on BraTS 2020 dataset. Also, it was applied to the Head & Neck Tu-
mor dataset (HECTOR2021) to test its generalization capability.
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Chapter 6 frames the validation of the proposed solutions on real-
time medical imaging challenges published as book various chapters
to authenticate the generalization capability of the proposed solutions
which can be applied as automated disease analysis and progression
systems.

Finally, in Chapter 7, we summarize the contributions of the thesis
and we propose directions for future research works.

1.3 Problem statements and challenges

1. Early detection, automatic delineation, and volume estimation are
vital tasks for survival prediction and treatment planning. However,
gliomas are often difficult to localize and delineate with conventional
manual segmentation due to their high variation of shape, location, and
appearance.

2. Manual mark delineation is laborious and time-consuming work
for a neurosurgeon.

3. The accurate segmentation of brain tumors is crucial in facilitating
diagnosis and helping assess the prognosis and severity of the disease.

4. Survival prediction for brain tumor patients relies on multiple
factors that vary from person to person and from child to adult.

5. Different types of brain tumors respond differently to treatment.
Some respond better to radiotherapy than others. Some types are likely
to spread into the surrounding brain tissue. This may make them dif-
ficult to remove with surgery. Therefore, a manual assessment for sur-
vival days is time-consuming, costly, and often not an accurate solution

6. Automatic segmentation and survival rate prediction models will
help the diagnosis and treatment to be much more accurate and faster.
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1.4 Objectives and scope of the research

The main objective of this thesis is to create an advanced ADA (Auto-
matic Disease Analysis) system for the segmentation, characterization,
and survival days prediction for the diagnosis and prognosis of brain
tumor patients from multimodality MRI imaging.

Figure 1.2: Organization of the thesis.
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The significant objective of this thesis detailed is as follows:
1. Developed deep learning models for volumetric multimodalities

MRI dataset for end-to-end automatic brain tumor segmentation. The
manual labeling for supervised segmentation models is time-consuming
and a costly procedure for training large deep-learning models. To over-
come this issue, we have deployed a method that used a large unlabelled
and a small labeled MRI dataset for brain tumor segmentation.

Medical image segmentation has seen significant progress using su-
pervised deep learning. Hereby, large annotated datasets were em-
ployed to segment anatomical structures reliably. We proposed a Two-
stage Self-supervised Contrastive Learning using Parallel Multiview
Multiscale Attention-based CNN Transformers for 3D Brain Tumour
Volumetric Segmentation for handling large unlabelled datasets to ef-
ficiently reduce the procedure cost and time.

We have also proposed 2D and 3D segmentation models with
attention-guided and depth-wise attention approaches for efficient seg-
mentation of brain tumors.

2. We have covered all possible features from the input MRI dataset
of brain tumor patients for survival days prediction that can contribute
to generating vital results including clinical features, radiomics features,
and CNN-based features.

Developed survival time predictive models using radiomics features,
deep features extracted from 3D regressor models, latent features from
3D autoencoder models basic imaging, and clinical features using ma-
chine learning models. We have customized parameters in the classical
machine learning models like the random forest, gradient boosting, and
support vector machine.

3. To analyze the more contributed features for diagnosis and prog-
nosis of the brain tumor from risky patients using multimodalities brain
tumor dataset. To measure and analyze the expandability of proposed
models in feature space and used the most prominent features for
decision-making.
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4. To validate and measure the performance of proposed segmenta-
tion models, participated in several real-time MICCAI (Medical Image
Computing and Computer Assisted Intervention) challenges like brain,
heart, and abdominal CT and MRI datasets and ranked top position in
those challenges.

1.5 Scientific Dissemination

1.5.1 Journal

1. BrainSeg-DCANet: Robust Multimodality Brain Tumor MR Image
Segmentation Using Deep Depth-Wise Channel Attention (IEEE Intelli-
gent Systems) (2023).

2. Fetal Brain Tissue Annotation and Segmentation Challenge Re-
sults. (Medical Image Analysis )(2023).

3. Deep Learning Segmentation of the Right Ventricle in Cardiac
MRI: The M&ms Challenge. (Journal of Biomedical and Health Infor-
matics)(2023).

4. Effective Approaches to Fetal Brain Segmentation in MRI and Ges-
tational Age Estimation by Utilizing a Multiview Deep Inception Resid-
ual Network and Radiomics. (Entropy )(2022).

5. Semi-supervised 3D-InceptionNet for segmentation and survival
prediction of head and neck primary cancers. (Engineering Applications
of Artificial Intelligence )(2023).

6. Two-stage Self-supervised Contrastive Learning using Parallel
Multiview Multiscale Attention-based CNN Transformers for 3D Brain
Tumour Volumetric Segmentation (2023) (Under-review).

7. Survival Prediction of Brain Tumor Patients Using Attention-
Guided 3D Deep Learning with Radiomics Features from Multimodality
MRI Images. (Neural Computing) (2023) (Accepted).
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8. 3D-IncNet: Head and Neck (H&N) Primary Tumors Segmenta-
tion and Survival Prediction. (IEEE Journal of Biomedical and Health
Informatics )(2022).

9. Spontaneous Facial Behavior Analysis using Deep Transformer
Based Framework for Child–Computer Interaction. (ACM Transactions
on Multimedia Computing, Communications, and Applications) (2022).

10. Progressive ShallowNet for large-scale dynamic and sponta-
neous facial behavior analysis in children. (Image and Vision Comput-
ing)(2022).

11. FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy, " Medical Image Analysis " Journal paper.
(Submitted Jun 2022).

1.5.2 Book Chapters

1. Mazher, M., Qayyum, A., Abdel-Nasser, M., & Puig, D. (2023).
Automatic Semi-supervised Left Atrial Segmentation Using Deep-
Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS
2022 Challenge. In Left Atrial and Scar Quantification and Segmenta-
tion: First Challenge, LAScarQS 2022, Held in Conjunction with MIC-
CAI 2022, Singapore, September 18, 2022, Proceedings. (pp. 153-161).
Cham: Springer Nature Switzerland.

2. Mazher, M., Qayyum, A., Benzinou, A., Abdel-Nasser, M., &
Puig, D. (2022, January). Multi-disease, Multi-view and Multi-center
Right Ventricular Segmentation in Cardiac MRI Using Efficient Late-
Ensemble Deep Learning Approach. In Statistical Atlases and Com-
putational Models of the Heart. Multi-Disease, Multi-View, and Multi-
Center Right Ventricular Segmentation in Cardiac MRI Challenge: 12th
International Workshop, STACOM 2021, Held in Conjunction with MIC-
CAI 2021, Strasbourg, France, September 27, 2021, Revised Selected Pa-
pers (pp. 335-343). Cham: Springer International Publishing.
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3. Qayyum, A., Mazher, M., Niederer, S., & Razzak, I. (2023). Seg-
mentation of Intra-operative Ultrasound Using Self-supervised Learn-
ing Based 3D-ResUnet Model with Deep Supervision. In Lesion Seg-
mentation in Surgical and Diagnostic Applications: MICCAI 2022 Chal-
lenges, CuRIOUS 2022, KiPA 2022 and MELA 2022, Held in Conjunction
with MICCAI 2022, Singapore, September 18–22, 2022, Proceedings (pp.
55-62). Cham: Springer Nature Switzerland.

4. Qayyum, A., Mazher, M., Niederer, S., Meriaudeau, F., & Razzak,
I. (2023, January). Automatic Cardiac Magnetic Resonance Respiratory
Motions Assessment and Segmentation. In Statistical Atlases and Com-
putational Models of the Heart. Regular and CMRxMotion Challenge
Papers: 13th International Workshop, STACOM 2022, Held in Conjunc-
tion with MICCAI 2022, Singapore, September 18, 2022, Revised Se-
lected Papers (pp. 485-493). Cham: Springer Nature Switzerland.

5. Qayyum, A., Benzinou, A., Mazher, M., Abdel-Nasser, M., & Puig,
D. (2022). Automatic segmentation of head and neck (H&N) primary
tumors in PET and CT images using 3D-Inception-ResNet model. In
Head and Neck Tumor Segmentation and Outcome Prediction: Second
Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021,
Strasbourg, France, September 27, 2021, Proceedings (pp. 58-67). Cham:
Springer International Publishing.

6. Qayyum, A., Ahamed Khan, M. K. A., Benzinou, A., Mazher,
M., Ramasamy, M., Aramugam, K., & Suresh, M. (2022). An Efficient
1DCNN–LSTM Deep Learning Model for Assessment and Classification
of fMRI-Based Autism Spectrum Disorder. In Innovative Data Com-
munication Technologies and Application: Proceedings of ICIDCA 2021
(pp. 1039-1048). Singapore: Springer Nature Singapore.

7. Qayyum, A., Benzinou, A., Mazher, M., & Meriaudeau, F. (2022).
Efficient multi-model vision transformer based on feature fusion for
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classification of dfuc2021 challenge. In Diabetic Foot Ulcers Grand Chal-
lenge: Second Challenge, DFUC 2021, Held in Conjunction with MIC-
CAI 2021, Strasbourg, France, September 27, 2021, Proceedings (pp. 62-
75). Cham: Springer International Publishing.
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Part II

2D Deep Learning
Approach for Brain Tumor
Segmentation & Survival

Prediction
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Chapter 2

Multimodality Brain Tumor
MR Image Segmentation
Using Deep Depth-Wise
Channel Attention (A 2D
Deep Learning Approach)

Manual brain tumor segmentation is a critical and time taking process.
Accurate brain tumor segmentation is key to better prognosis and treat-
ment planning. Most existing deep learning-based methods cannot pre-
cisely identify small-scale tumors due to insufficient feature extraction
capabilities. To handle this, we propose BrainSeg-DCANet, a fully auto-
mated yet robust deep learning-based brain tumor MR image segmen-
tation method. In particular, an efficient depth-wise attention module is
proposed to capture small brain tumor-relevant features and to localize
the small tumor regions accurately. Besides, a discrete wavelet trans-
form (DWT) is employed to enlarge the receptive fields. The perfor-
mance of BrainSeg-DCANet is assessed on the BraTS2020 multimodal
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brain tumor segmentation dataset. BrainSeg-DCANet outperforms the
state-of-the-art methods in segmenting the whole tumor, and tumor core,
and enhancing tumor (WT, TC, and ET) structures. Interestingly, BrainSeg-
DCANet showed promising results when tested with the SegTHOR2019
dataset, and this proves the generalization capability of BrainSeg-DCANet.

2.1 Introduction

Gliomas are the main common primary brain malignancies and are the
most common type of brain cancer Saut et al., 2014. It comes from glial
brain cells that support nerve cells for a broad category of brain and
spinal cord tumors. Identification of the sub-regions of gliomas before
surgery is critical, which may affect the survival of patients. Differ-
ent medical imaging techniques have been used to distinguish brain
tumor lesions such as X-ray, Ultrasound, Positron Emission Tomogra-
phy (PET), Electroencephalography (EEG), Magnetic Brain Wave Graph
(MEG), Single-Photon Emission Computed Tomography (SPECT), Com-
puted Tomography (CT), and Magnetic Resonance Imaging (MRI). How-
ever, MRI is the most comprehensive technique that provides better im-
age quality and facilitates determining the exact volume and size of the
malignant brain tumor. MRI modalities include Fluid-Attenuated Inver-
sion Recovery (FLAIR), T1-weighted (T1), T2-weighted (T2), and T1w
contrast-enhanced (T1CE). Each MRI modality provides different struc-
tural information about brain tissue.

Some brain tumors such as gliomas and glioblastoma cells spread
rapidly and are difficult to segment due to low contrast region as com-
pared to meningiomas that can segment easily Menze et al., 2014. Gliomas
show the progression of infiltrative growth of tumor boundaries and do
not have a consistent growth pattern. These tumors have complicated
pathological changes such as hemorrhage, necrosis, and edema. Due
to these complex pathological changes, gliomas show intricate changes
in brightness and texture on MRI scans. Different tissues may have the
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same gray matter values, which makes it difficult to have an accurate,
repeatable, and stable segmentation of gliomas.

The importance for a neurosurgeon is to delineate precisely the tu-
mor region. Unfortunately, manual mark delineation is laborious and
time-consuming work for a neurosurgeon. In addition, it is difficult to
replicate the segmentation results due to certain practical operation fac-
tors. The accurate segmentation of brain tumors can facilitate diagnosis
and help assess the prognosis and severity of the disease.

In the last years, 2D and 3D convolutional neural networks (CNNs)
are widely used for the classification and segmentation of medical im-
ages. For 2D segmentation, the input data is passed slice by slice to the
CNN model while in 3D segmentation the whole volumetric data is fed
into the CNN model. Çiçek et al., 2016Isensee et al., 2018 have proved
the better performance of 3D architectures in comparison to 2D architec-
tures. Although, 3D models are better than 2D architectures but due to
having a large number of parameters they are computationally expen-
sive Noori, Bahri, and Mohammadi, 2019.

Deep learning-based brain tumor segmentation techniques can be
categorized as follows: 1) CNNs use a small patch-based classification
method for brain tumor segmentation and 2) CNNs based on the fully
convolutional network (FCN) that comprise encoder and decoder net-
works. UNet Ronneberger, Fischer, and Brox, 2015b has been widely
used to segment biomedical images. The UNet architecture is based on
the FCN concept. Havaei et al., 2017 proposed a CNN-based architec-
ture to extract contextual features using convolutional kernels of various
sizes for brain tumor segmentation regions on BraTS 2013. They used
a patch-based pixel-wise classification technique to segmentation brain
tumors and cascaded multiple models using majority voting methods.
Their method produced a dice score of 0.84, 0.71, 0.57 for WT, TC, and
ET, respectively.

Pereira et al., 2016 used patch-based VGG-Net for automated brain
tumor segmentation on BraTS 2013 dataset. They used different patches
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based on CNN’s for pixel-wise segmentation of brain tumors. They
achieved dice scores of 0.88, 0.83, and 0.77 for the whole tumor (WT),
Tumor core (TC), and Enhancing tumor (ET), respectively.

The patch-based methods are limited with the need for large stor-
age space and a lack of spatial continuity. Moreover, there are some
limitations of patch-wise segmentation methods like they require high
computational cost, and their performance is highly associated with the
patch size of the image. As compared to patch-based CNN, FCN based
methods could produce better performance and handle the spatial con-
tinuity problem Long, Shelhamer, and Darrell, 2014.

Dong et al., 2017 presented a 2D UNet segmentation model with
real-time data augmentation techniques to improve the performance of
brain tumor segmentation on the BraTS 2015 dataset. They obtained dice
scores of 0 .86, 0 .86, and 0 .65 for WT, TC, and ET, respectively. Though,
with the interpretation of the low memory capability, the U-Net model
has limited effective feature learning capacity for complicated images
task like brain tumor segmentation. This limitation could be overcome
by optimizing the network that has widened parameter space to learn
more demonstrative features.

Kong et al., 2018 proposed a UNet-based model with a feature pyra-
mid module by incorporating the detailed location and extracting multi-
scale semantic information to improve the precision of brain tumor seg-
mentation on the BraTS2017 dataset. They achieved dice scores of 0.92,
0.80, 0.76 for WT, TC, and ET, respectively. The feature pyramid ap-
proach consumes a long time and has a computational load.

Wang et al., 2019a proposed the Test-Time Augmentation (TTA) tech-
nique and integrated it with UNet. They used three deep learning mod-
els for axial, sagittal, and coronal with TTA. They achieved dice scores
of 0 .90, 0 .85, and 0 .79 for WT, TC, and ET, respectively. However,
the three models with TTA have higher computational costs than UNet.
In Li, Li, and Wang, 2019, dilated convolution, skip connection, dense
block, and embedding MultiRes block have been used to enhance the
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precision of brain tumor segmentation. The authors of Li, Li, and Wang,
2019 used an inception module that caters to more computational costs
in terms of network parameters. They obtained dice scores of 0 .89, 0 .73,
and 0.72 for WT, TC, and ET on the BraTS2015 dataset. Moreover, var-
ious Attention Gates (AGs) have been integrated with the UNet model
to improve the segmentation performance Schlemper et al., 2019. The
Squeeze-and-Excitation (SE) blocks have been used in UNet for prostate
zonal segmentation on MR images Hu et al., 2017.

The aforementioned methods somehow produced optimal perfor-
mances that would not be sufficient to deploy for clinical brain tumor
segmentation applications. However, most of the aforementioned meth-
ods are not able to identify small brain tumors due to the limited capa-
bility of the deep learning feature extractors to locate the small tumors.
Moreover, these methods are computationally expensive. In an attempt
to handle these two issues, in this chapter, we proposed a depth-wise at-
tention module that helps enhance the extraction of small brain tumor-
relevant features and helps efficiently locate the small tumor regions.

Specifically, a fully automated and robust deep learning-based ap-
proach named ’Depth-wise Channel Attention’ (BrainSeg-DCANet) is
presented to accurately segment the Whole Tumor, Tumor Core, and En-
hancing Tumor (i.e., WT, TC, and ET) structures. The proposed depth-
wise attention module can capture the local cross-channel interaction
in an efficient way to produce more powerful contextual feature infor-
mation using a dynamic 1D convolution layer. Furthermore, a discrete
wavelet transformed (DWT) is used to enlarge the receptive fields of the
segmentation model. The proposed brain tumor segmentation model
can extract the prevailing contextual features and produce a better per-
formance as compared to state-of-the-art brain tumor segmentation meth-
ods with low computational cost.
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2.2 Proposed tumor segmentation model

This section presents architectural details of the proposed deep learning
model BrainSeg–DCANet for brain tumor segmentation.

2.2.1 The proposed BrainSeg-DCANet framework

Figure 2.2 shows the proposed model, which includes encoder and de-
coder networks. In previous studies, multimodal data are stacked like
the multichannel RGB images Pereira et al., 2016Kamnitsas et al., 2017b
from four MRI modalities (T1, T1CE, T2, Flair). Similarly, this model
receives stacked MRI images as input and produces a mask for each
tumor class (enhancing, non-enhancing/necrotic, peritumoral edema)
highlighting the tumor regions. As shown in Figure 2.2, there are seven
main components in the proposed model: DWT, convolutional block,
Max-Pooling blocks, Up-Sampling blocks, 1x1 Conv, depth-wise chan-
nel attention module (DCAM) block.

The raw multimodal MRI images are processed using DWT. The
output of the DWT is passed to the encoder network. The convolu-
tional block consists of convolutional layers with Batch-Normalization
and ReLU activation function to extract the different feature maps from
each block in the encoder side. The 2D max-pooling layer has been used
to reduce the input image spatial size. The 1x1 convolutional layer with
softmax function has been used at the end of the proposed model. In
the encoder block, the spatial input size is reduced with increasing the
number of layers, while on the decoder side, the input image spatial
size is recovered via a 2D upsampling layer using a bilinear upsampling
method.

The proposed DCAM block handles the input feature maps extracted
from each convolutional block in the encoder side and further passed
these feature maps into the proposed residual module (a detailed expla-
nation is given in the next section). The output of each encoder block is
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fed into the proposed DCAM (green lines in Figure 2.1). Later, the out-
puts of DCAMs are passed to the residual blocks before concatenating
them with the corresponding decoder blocks (red dotted lines in Fig-
ure 2.1). The output of the last encoder block is passed to the DCAM
and the resulting feature maps are directly concatenated with the cor-
responding decoder block. Each max-pooling layer receives the output
from DCAM (maroon dotted lines).

Figure 2.1: Diagram of the proposed BrainSeg-DCANet Model with the
proposed depth-wise channel attention module and the residual block.

As shown in Figure 2.1, the spatial size is doubled at each decoder
layer of the proposed model. The feature concatenation is done at each
encoder and decoder block except the last 1x1 convolutional layer. In
the following subsections, the proposed Residual. DWT, DCAM blocks
are explained in detail.

2.2.2 Proposed Residual Block

The Residual network (ResNets) He et al., 2015 has been widely used
for deep learning-based image classification and segmentation. Each
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residual block comprised of two paths, the first path either used iden-
tity mapping or used 1x1 convolutional layer with Batch Normalization
(BN), and the second path consisted of a series of layers such as ReLU,
convolutional, and BN. These two paths are summed together to get
the final output from the residual block. The residual block has three
advantages as compared to traditional CNN-based models: 1) the gra-
dient can flow continuously in deep networks by updating deeper net-
work parameters, 2) introducing identity operation using a single layer
to better optimize parameters of very deep networks. 3), have the robust
capability to perform similar operations in neighboring layers in deeper
networks.

In this chapter, 1x1 Conv with BN is used as a skip connection with a
series of several layers for boundary and structural information preser-
vation in the residual block (see Figure 2.2). The main purpose of such
residual blocks is the preservation of the feature maps within convolu-
tional layer blocks that are used before each encoder block which helps
bridge the semantic gap between the encoder and decoder while main-
taining the same (or little increment) in the computational overhead for
providing accurate segmentations. The structural information for fea-
ture maps could be restored by the addition of the residual blocks that
aimed to preserve the fine-grained structures that would be useful and
play an important role in medical image segmentation.

As shown in Figure 2.2, the proposed residual module consisted of
3x3 Conv, 1x1 Conv, BN, and ReLU activation layers. The 1x1 Conv
layer is used in skip connection along with the BN layer (the bottom
branch). The top branch includes two 3x3 Conv layers with BN and
ReLU activation functions. In the end, the resulting outputs of the two
branches are summed.
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Figure 2.2: Proposed Residual Block.

2.2.3 Proposed Depth-wise Channel Attention Module

Attention mechanisms are used in deep CNNs to enhance the perfor-
mance of image segmentation and classification models. The SE-Net
Hu et al., 2017 was used for the first time as an attention module and
achieved better performance using the channel attention mechanism.
Furthermore, CBAM Woo et al., 2018a employed both average and max
pooling to aggregate features. CBAM also rescales the activations Roy,
Navab, and Wachinger, 2018 which are used to recalibrate the input ten-
sors. Double Attention Networks (A2-Nets) Chen et al., 2018 used a
function for Non-Local (NL) neural networks for video and image clas-
sification tasks. The Dual Attention Network (DAN) Fu et al., 2018 em-
ployed spatial and NL channels attention simultaneously for semantic
segmentation. However, the NL-based attention modules used few con-
volutional layer blocks that could provide high computational complex-
ity while implementing semantic segmentation. Noticeably, the afore-
mentioned methods are used to develop a better attention module, but
these methods are computationally expensive.

In an attempt to solve this issue, an efficient yet lightweight atten-
tion module is proposed in this article for brain tumor segmentation.
The proposed DCAM module shown in Figure 2.3 can capture the local
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cross-channel interaction in an efficient way and channel-wise convolu-
tions by replacing (fully connected) layers in the channel attention mod-
ule with a 1D convolution layer after channel-wise global average pool-
ing without dimensionality reduction. The depth-wise convolutional
module with BN and Swish activation effectively capture the features as
compared to the standard convolutional module. It is inspired by some
convolutional-based methods like group convolutions Xie et al., 2016
and depth-wise separable convolutions Ma et al., 2018.

Figure 2.3: Diagram of the proposed depth-wise channel attention mod-
ule (DCAM).

The group-wise convolutional layer extracts the high-dimensional
channels involved in long-range convolutions to provide the fixed num-
ber of groups. Based on the group-based convolutional idea, the kernel
size in 1D CNNs is proportional to the channel dimension.

The depth-wise convolutional layer consists of two layers. In the
first layer, a single convolutional filter is used for each input channel to
achieve lightweight filtering. At the second layer, there is a pointwise
convolution is applied by using a 1x1 convolution. This layer builds a
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new feature by computing linear combinations of input channels. Depth-
wise convolution produced an efficient solution as compared to the stan-
dard convolutional layers. The Swish activation function proposed by
Ramachandran, Zoph, and Le, 2017a effectively works in automatic search
techniques based on reinforcement learning.

The Swish function would provide a better capability of generaliza-
tion and optimization in training deep learning models Ramachandran,
Zoph, and Le, 2017a due to non-monotonic and smoothness properties.
As shown in Eq. (2.1), the Swish function is simple and it provides a
better improvement in accuracy as it does not suffer from the vanishing
gradient problems during training the deep learning models.

Swish = x.sigmoid(x) =
x

1 + e−x (2.1)

The swish activation function is used after the batch normalization
in the proposed DCAM module as shown in Figure 2.3.

Assume that X ∈ RW×H×G is the input volume that comes from the
residual block in the proposed encoder module, and W, H, and C are
the height, width, and the number of channels of input volume X. The
channel-wise global average pooling can be expressed as:

GAP(X) =
1

W × H ∑W,H
i=1,j=1 Xij (2.2)

Y = GAP(X) (2.3)

Where Y is the output features achieved from the global average
pooling layer.

Yc = Conv1 × 1(Y) (2.4)

Yc is the output of the 1x1 Conv layer, where there can be used a
dynamical number of filters and several features.
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Ycs = σ(Yc) (2.5)

The Ycs is the output of the sigmoid activation function σ.

YSBD = Swish(BN(Convd(X))) (2.6)

Where YSBD is the output of the depth-wise convolutional layer with
BN and Swish activation function and convd is the depth-wise convolu-
tional layer.

Y+ is the output of the summation of Ycs and YSBD.

Out = X ∗ Y+ (2.7)

Out is the output of the proposed module.

2.2.4 Enlarging the Receptive Fields Using DWT

DWT uses filter banks for identifying both time and frequency resolu-
tions at the same time. The frequency components information based on
DWT is used to process the raw multimodalities of MRI brain images for
brain tumor segmentation.

In this chapter, we employed DWT to extract contextual information
from the raw multimodalities of MRI brain images. It would preserve
the image’s spatial and contextual information. Moreover, it will also
extend the receptive fields. To decompose the MRI images into four
different sub-bands i.eXLL, XLH , XHL , XHH the Haar filters are used.
The decomposition process is expressed below:


XLL = X(2i − 1, 2j − 1) + X(2i − 1, 2j) + X(2i, 2j − 1) + X(2i, 2j)

XLH = −X(2i − 1, 2j − 1)− X(2i − 1, 2j) + X(2i, 2j − 1) + X(2i, 2j)
XHL = −X(2i − 1, 2j − 1) + X(2i − 1, 2j)− X(2i, 2j − 1) + X(2i, 2j)
XHH = X(2i − 1, 2j − 1)− X(2i − 1, 2j)− X(2i, 2j − 1) + X(2i, 2j)

(2.8)
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where X is the stacked image of the images from four MRI modalities
(T1, T1CE, T2, Flair).

The DWT method used the low and high pass filters to decompose
the MRI input into the time and frequency domain. Hence, the same
frequency content is represented by the outputs of the low and high
branches as the input MRI image. It is worth mentioning that DWT is
associated with dilated filtering and pooling operation Liu et al., 2019.
The dilating filtering is related to the decomposition of the input images
into their sub-images.

2.2.5 Loss Function

In this chapter, the Combo loss function proposed by Taghanaki et al.,
2019a is used for training the proposed models in multiclass class set-
tings for brain tumor segmentation. Combo loss function can be ex-
pressed as follows:

L = α

(
− 1

N

N

∑
i=1

β(ti − ln pi) + (1 − β)[(1 − ti) ln(1 − pi)]

)

−(1 − α)
K

∑
i=1


2

N
∑

i=1
piti + S

N
∑

i=1
pi +

N
∑

i=1
ti + S


(2.9)

where N is the number of classes and ti is the ground truth, pi is the
predicted segmentation map, α controls the amount of Dice term con-
tribution in loss function L, and β[0, 1] controls the level of model that
penalized for false positives/negatives. The S term is added to prevent
division by zero (S is added in both the denominator and numerator
of the dice term). All models are trained using Adam optimizer with a
learning rate of 0.000116, ρ = 0.95, ∈= 1e − 8, and decay = 0.
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Experimentally, we found that α = 0.5 Dice and cross-entropy terms
lead to better segmentation results. We tried different β values with all
used brain tumor segmentation datasets, finding that β = 0.5 is the best
value for our proposed model.

The proposed models have been developed in the PyTorch library
and trained from scratch. We optimized the hyperparameters of the
models and used Adam optimizer with a learning rate of 0.0001. The
number of epochs was 500 and the batch sizes were 16. An NVIDIA
GTX 1080 GPU having 12GM memory is used for the training and opti-
mization of the proposed model.

2.3 Experimental Results and Discussion

2.3.1 Dataset

Three datasets are used in our experiments to validate the efficacy of the
proposed BrainSeg-DCANet model.

1. Brats 2020 dataset: The total number of subjects in the training
set of BraTS 2020 with their masks is 369. This set is divided into two
sets one for training and one for testing the proposed model. A ratio
of 80:20 is used for training and testing set division. The total training
set holds 295 subjects and the testing set holds 74 subjects. Each sub-
ject has nifti volumes for Flair, T1, T1CE, and T2 MRI modalities. There
are three classes of tumor given in the ground truth (GT) masks includ-
ing enhancing tumor (ET) (labeled as class-4 in GT), peritumoral edema
(ED) (labeled as class-2 in GT), and non-enhancing tumor/ narcotic tu-
mor (NCR) (labeled as class-1 in GT). In our experiment, all four MRI
modalities are stacked for brain tumor segmentation using the proposed
model. Figure 5 shows the Flair, T2, T1, T1CE, and the corresponding
segmentation GT of a subject from the BraTS dataset (2020).
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Figure 2.4: The four MRI modalities were used in this study. (a) shows
the Flair image, (b) shows the T2 image, (c) shows the T1 image, (d)
shows the T1CE image, and (e) shows the ground truth mask.

Here, the green color in the GT segmentation represents the ET class,
the yellow color stands for ED, and the red color stands for the NCR
tumor class.

2. Brats 2019 dataset: Similarly, the same training and testing sam-
ple distribution was used for the training dataset of 335 cases as for the
BraTS2020 dataset. BraTS 2019 dataset is a publicly available dataset
and can be accessed at www.med.upenn.edu/cbica/brats2019/data.html
Wang et al., 2020.

3. SegTHOR 2019 dataset: The SegTHOR 2019 Ke et al., 2021 dataset
contains 40 cases in training and 20 cases in testing. In our experiments,
32 CT (computed tomography) cases (the number of patients) are used
for training, and 8 for validation from the training dataset on a ratio of
80:20. There are four classes for each subject in the dataset including the
aorta, esophagus, trachea, and heart.

2.3.2 Image pre-processing

To enhance the quality of the MRI scans and to remove the undesired
noise, the following preprocessing steps are performed:

1. Center cropping of each slice and the zero slices are removed from
all subjects of the BRATS2020 dataset.

2. After center cropping, the dataset is normalized by the standard
normalization method with subtraction of the mean and the division
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of the standard deviation on non-zero-pixel values in all channels for
providing the same scale data. The range of intensities is between 0
and 5000, and after normalization, the range of intensities of each slice
becomes [-1,1].

3. BraTS2020 MRI images contain most of zero pixel values in the
background. To separate these background zero pixel values from other
regions, the histogram normalization techniques have been used to shift
the pixel values to another bin range [-1, 1]. Size of bin -9 is used as it
has provided better performance in our experiments experiment.

The same steps are repeated for the BraTS 2019 dataset.

2.3.3 Ablation Study

This section will present the proposed BrainSeg-DCANet model and its
variants for WT, TC, and ET structures and the different hyperparame-
ters used to measure the robustness of the proposed model.

In this ablation study, different variants of the proposed BrainSeg-
DCANet model are studied: 1) RUNet: residual block residual blocks
are inserted before decoder blocks, and 2) BrainSeg-DCANet-Last: resid-
ual blocks are inserted before decoder block, and DCAMs are inserted
after the last encoder block. In the case of the proposed BrainSeg-DCANet
model, residual blocks are inserted before each decoder block, and DCAMs
are inserted after each encoder block.

The dice scores coefficients (DSCs) and Hausdorff distance (HD) of
the variants of the proposed model (RUNet, BrainSeg-DCANet-Last,
and BrainSeg-DCANet) as well as UNet and DeepLabv3 models when
segmenting the three sub-regions (i.e., ET, WT, and TC) are shown in
Table 2.1. The higher the dice coefficient in segmentation means higher
performance and the lower the HD distance represents better perfor-
mance. The BrainSeg-DCANet produced better performance in terms of
DSCs for ET, TC, and WT brain tumor classes.
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Table 2.1: Investigating the performance of different configurations of
the proposed method (mean ± standard deviation). The best results are
in bold.

Models Dice HD
ET TC WT ET TC WT

BrainSeg-DCANet
(proposed) 0.870 0.913 0.930 2.08 ±

0.571
1.32 ±
0.525

1.94 ±
0.453

BrainSeg-DCANet-Last 0.862 0.914 0.925
2.11 ±
0.576

1.34 ±
0.507

1.97±
0.471

RUNet 0.857 0.909 0.917
2.22 ±
0.883

1.36±
0.526

2.08 ±
0.803

UNet 0.846 0.904 0.919
2.25 ±
0.518

1.41 ±
0.511

2.10 ±
0.425

DeepLabv3 0.810 0.871 0.876
5.09±
0.950

3.74±
1.190

5.83±
0.778

Table 2.1 show that the DeepLabv3 achieved the lowest dice and HD
scores than the base UNet model and all variant of the proposed model.
Similarly, the base UNet model achieved the dice score and HD scores of
0.84, 0.90 and 0.91 and 2.25, 1.41, and 2.10 for ET, TC, and WT which are
less than the achieved scores of all three proposed model variants. The
RUNet in comparison to its enhanced versions of BrainSeg-DCANet-
Last and the proposed model BrainSeg-DCANet achieved less dice and
HD scores. Lastly, the proposed BrainSeg-DCANet achieved the high-
est dice and HD scores in comparison with the base UNet and proposed
model variants. It generated the highest dice score of 0.930 for WT seg-
mentation and the smallest Hausdorff distance (HD) of 1.32 ± 0.525 for
TC segmentation. It reveals that our proposed model outperforms the
baseline UNet model and the other two models from the ablation study
on brain tumor segmentation tasks.

The model hyperparameters such as width, depth, and training strate-
gies are kept the same for a fair comparison with other deep learning
models. It shows that the proposed DCAM module with residual blocks
helps to produce larger Dice scores and smaller Hausdorff distances on
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ET, WT, and TC segmentation and substantially improved the perfor-
mance for all metrics. The different hyperparameters have been used
for ablation study to measure the robust performance of the proposed
model such as different loss functions. The loss function plays an im-
portant role in the optimization of training deep neural networks.

Figure 2.5: The evaluation of the BRAINSEG-DCANET with different
loss functions on the test set (mean ± standard deviation). BCE stands
for binary cross-entropy.

In Figure 2.5, the proposed hybrid (combo) loss function has been
compared with other loss functions such as dice loss, and dice plus bi-
nary cross-entropy (Dice+BCE). The Dice Loss and the Dice+BCE loss
functions achieved almost similar dice scores for ET and TC classes while
it is noticed that for WT both loss functions provided variant responses.
The proposed hybrid (combo) loss function produced the best dice scores
of 0.87, 0.91, and 0.93 for all three tumor classes of ET, TC, and WT in
comparison to the other mentioned loss functions. A similar pattern is
achieved in the case of HD scores. It is seen that for both dice and HD
scores the proposed combo loss function produced better results than
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other common loss functions with 2.08, 1.32, and 1.94 scores for ET, TC,
and WT classes.

2.3.4 Performance analysis of proposed model

The 3D visualization of the predicted segmentation map with axial slices
and whole 3D volume for five cases is shown in Figure 2.6. The 2D-
predicted segmentation maps are stacked to generate the 3D volume.
The first column shows the GT segmentation map and the second col-
umn shows the segmentation map of the proposed BrainSeg-DCANet
model. The third, fourth, and fifth columns show the predicted seg-
mentation map of BrainSeg-DCANet-Last, RUnet, and baseline UNet
models.

The proposed model predicts more pixels of necrotic/non-enhancing
tumor core in 3D view of the whole volume as compared to base UNet
and the other variants of the proposed BrainSeg-DCANet model. The
validation from visualization results shows that our proposed model
produced a better performance as compared to the other models from
the ablation study. Both qualitative and quantitative results demonstrate
the effectiveness of the proposed model for 2D segmentation of the brain
tumor classes.

Figure 2.7 represents the feature maps using proposed BrainSeg–
DCANet, BrainSeg-DCANet-Last, RUNet (baseline with residual block),
and base UNet models. The feature maps produced by the BrainSeg-
DCANet model that used proposed residual and DCAM modules at ev-
ery stage of the encoder highlighted far better contextual information
as well as positions of brain tumor sub-regions than the other presented
models. The proposed DCAM module can capture the local cross-channel
interaction efficiently and channel-wise convolutions layers in the pro-
posed module would effectively capture the features of the small region
tumors that can be seen in activation maps. It can highlight the distinct
boundaries in the tumor region, which would be useful for achieving

UNIVERSITAT ROVIRA I VIRGILI 
SELF-SUPERVISED ADVANCED DEEP LEARNING FOR CHARACTERIZATION OF BRAIN TUMOR AGGRESSIVENESS 
AND PROGNOSIS ANALYSIS THROUGH MULTIMODALITY MRI IMAGING 
Moona Mazher 



42

Figure 2.6: Segmentation results obtained by the proposed BrainSeg-
DCANet, baseline UNet model, UNet model with the residual block
(RUNet), and the proposed DCAM module at the last Conv block of
the encoder with residual blocks (BrainSeg-DCANet-Last) to the five
cases on the BraTS2020 dataset. From left to right: (a) 2D ground truth
overlaid on FLAIR slices, (f) 3D ground truth of tumor, and the 2D and
3D segmentation results of (b,g) the proposed BrainSeg-DCANet model,
(c,h) the (BrainSeg-DCANet-Last), (d, i) the RUNet, and (e,j) the baseline
UNet model. Here, green color is the enhancing tumor class, yellow is
the peritumoral edema while red shows the necrotic/non-enhancing tu-
mor core.

better segmentation results. Therefore, BrainSeg-DCANet is potentially
good for better performance in brain tumor segmentation.

Furthermore, descriptive statics of Dice and Hausdorff is given for
the evaluation of the proposed model efficacy. Boxplots of Dice coeffi-
cients and Hausdorff distance achieved by BrainSeg-DCANet and the
other presented models on BraTS2020 for each tumor class and their av-
erage for validation samples are shown in Figure 2.8. For the validation
set of 74 samples, the proposed model has 2 outliers in the average dice
coefficient plot in Figure 2.8(a) with high mean value than the UNet and
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Figure 2.7: Visualization of feature maps produced by different models.
All the feature maps are extracted from the output of 2nd last stage in
the decoder. From top to down: (GT) Flair brain MRI slices with ground
truth as input, and feature maps produced by (a) BrainSeg-DCANet (b)
BrainSeg-DCANet-Last, (c) RUNet (baseline with residual block), and
(d) baseline (UNet) model.

RUNET. Certainly, BrainSeg-DCANet-Last has a slightly high mean but
it has a greater number of outliers and a small upper limit range than
the proposed BrainSeg-DCANet. Likewise, it is observed that in Figure
2.8(b) the proposed model has the five outliers in the average Hausdorff
distance like UNet but it has the lowest mean and standard deviation
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Figure 2.8: (a) and (b) show the Dice coefficients and Hausdorff distance
for each tumor class and their average based on the proposed BrainSeg-
DCANet model with other implemented models. The horizontal black
lines inside the boxes show the mean values. The plots represent the
upper and lower whiskers and the outliers. The whiskers are computed
as 1.5 times the distance of the upper and lower limits of the box. The
(♢) symbol represents the outliers, values outside the whiskers range.

value than the UNet, RUNET, and also the BrainSeg-DCANet-Last.

2.3.5 Comparison of proposed BrainSeg-DCANetmodel
on other datasets

The proposed model evaluated on the BRATS2019 dataset is shown in
Table 2.2.

Table 2.2: The performance analysis of the proposed model on the
Brats2019 dataset.

Performance Metrics Classes
ET TC WT

Accuracy 0.985 0.992 0.990
Dice 0.572 0.645 0.745
Hausdorff 3.50± 0.426 2.38 ± 0.667 3.08 ± 0.379
Sensitivity 0.494 0.327 0.576
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The hyperparameters of the proposed model such as width, depth,
and training strategies are kept the same as for BraTS 2020 dataset fair
comparison.

2.3.6 Comparison of proposed BrainSeg-DCANet model
with state-of-the-art methods

In BraTS 2020, the whole tumor (WT), tumor core (TC), and enhanc-
ing tumor (ET) regions Menze et al., 2014 are used for the evaluation
of the segmentation instead of given class labels as enhancing tumor,
non-enhancing/ necrotic tumor, and peritumoral edema. Since the op-
timization of these regions is more fruitful for the performance analysis
Wang et al., 2018. The WT is a union of all given labels and the TC only
holds enhancing and non-enhancing/necrotic tumor region while the
ET is the hyperactive tumor area.

Table 2.3: The performance comparison of the proposed model with
state-of-the-art methods using the brats2020 dataset.

Models DSC
WT TC ET

Two-Stage Cascade Model( Lyu and Shu, 2020) 0.904 0.835 0.795
nnU-Net( Isensee et al., 2020) 0.889 0.850 0.820
Self-ensembled, deeply-supervised
3D U-net( Henry et al., 2020) 0.910 0.850 0.810

Automatic Hard mining in 3D
CNN Architecture( Anand et al., 2021) 0.850 0.815 0.776

Deep Layer Aggregation( Silva et al., 2021) 0.880 0.820 0.790
Proposed Model 0.930 0.913 0.870

The performance comparison of the proposed model with existing
models on the BRATS2020 dataset is shown in Table 2.3. The highest
DSC achieved by above mentioned state-of-the-art methods for ET was
82% while our proposed model achieved an 87% score. Similarly, for the
TC class, the highest score achieved by state-of-the-art methods was 85%
while the proposed model achieved 91%. Lastly, the proposed model
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also outperformed in the WT class by yielding the highest DCS score of
93% than other existing models.

Likewise, the comparison between proposed and existing models on
the BraTS2019 dataset in terms of DSC is shown in Table 2.4. The highest
DSC scores achieved by the state-of-art methods for ET, TC, and WT
classes were 80%, 83.4%, and 89.4% while the proposed model outpaced
the existing methods here also by achieving the high scores of 86%, 89%,
and 92%.

Table 2.4: Comparison of the proposed model with existing methods on
brats 2019 dataset

Models DSC
ET TC WT

Wang et al. (UNet) Wang et al., 2020 0.737 0.807 0.894
Naceur et al. (DCNNs) Ben Naceur et al., 2020 0.740 0.760 0.850
Pei et al. (CANet) Pei et al., 2020 0.800 0.834 0.894
Proposed Model 0.860 0.890 0.920

2.3.7 Analyzing the generalization capability of the pro-
posed model

To demonstrate the generalization capability of the proposed model, we
trained and tested it on the SegTHOR2019 dataset that includes different
segmentation tasks than brain tumor segmentation, namely Esophagus,
Heart, Trachea, and aorta. The average DSC and HD scores of all classes
are shown in Table 2.5. The proposed model achieved DSCs higher than
0.88 with Esophagus, Heart, Trachea, Aorta segmentation tasks. It also
achieved HD values lower than 0.3 with all tasks. These excellent results
prove the generalization capability of the proposed model. However,
due to a 2D-based model, it cannot capture the spatial consistency which
will be addressed in the future by replacing the proposed model with a
3D approach.
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Table 2.5: The performance analysis of the proposed model on the
segthor 2019 dataset

Performance
Metrics

Classes
Esophagus Heart Trachea Aorta

Dice 0.8844 0.9463 0.9366 0.9667
Hausdorff 0.2434 0.1377 0.1204 0.1168

The validation of the proposed BrainSeg-DCANet model with the
other state-of-the-art methods on the SegTHOR2019 dataset is shown in
Table 2.6. The proposed model produced an excellent performance as
compared to existing deep learning models for SegTHOR2019 similar
to the BraTS2020 and BraTS 2019 datasets. From the abovementioned
results, it can be proven that the proposed BrainSeg9-DCANet is a gen-
eralized model for the brain tumor segmentation field.

Table 2.6: Dice score of proposed and existing models on segthor 2019
dataset

Models DSC

Esophagus Heart Trachea Aorta

He et al., 2020 0.859 0.950 0.920 0.948

Wang et al., 2019b 0.859 0.945 0.921 0.943

Vesal, Ravikumar, and Maier,
2019

0.858 0.941 0.926 0.938

Chen, P. , Xu, C. , Li, X. , Ma,
Y. , Sun, 2019

0.816 0.932 0.891 0.923

(U-Net) Ronneberger, Fischer,
and Brox, 2015b

0.838 0.915 0.887 0.911

(DS-Net) Hasan et al., 2020 0.851 0.927 0.900 0.908

Proposed Model 0.884 0.946 0.936 0.966
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2.4 Conclusion

The segmentation of brain tumors in MR images is a complex and time-
consuming task. Although various deep learning models have been pro-
posed for brain tumor segmentation, small tumor segmentation is still
challenging due to the loss of location and spatial information because
of the neural network’s constant convolution and transformation op-
eration. Therefore, BrainSeg-DCANet has been proposed in this chap-
ter to address this issue and improve the brain tumor semantic seg-
mentation of MR images. The BrainSeg-DCANet has incorporated an
efficient depth-wise attention module to preserve the important infor-
mation from the feature’s maps (i.e., brain tumor-relevant features) at
each encoder stage. DWT has been also used to enlarge the receptive
fields of the segmentation model. These modules can extract the local
cross-channel interaction efficiently and generate powerful contextual
feature information, and thus it can segment and localize small brain tu-
mors accurately. The ablation study showed the effectiveness of the pro-
posed attention module on different brain tumor datasets such as BraTS
2020, BraTS2019, and the SegTHOR 2019 multiclass medical segmen-
tation dataset. The proposed model produced an outstanding perfor-
mance as compared to the existing state-of-the-art methods. BrainSeg-
DCANet has also outperformed its baseline UNet architecture. In the
future, small and lightweight attention modules and 3D deep learning
models will be explored to further improve the performance of the pro-
posed model.
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Chapter 3

Effective Approaches for
Survival Prediction based
on the 2D-3D Deep
Learning Approach

To completely comprehend neurodevelopment in healthy and congeni-
tally abnormal fetuses, quantitative analysis of the human fetal brain is
essential. This analysis requires the use of automatic multi-tissue fetal
brain segmentation techniques. This Chapter proposes an end-to-end
automatic yet effective method for a multi-tissue fetal brain segmenta-
tion model called IRMMNET. It includes an inception residual encoder
block (EB) and a dense spatial attention (DSAM) block, which facilitate
the extraction of multi-scale fetal-brain-tissue-relevant information from
multi-view MRI images, enhance the feature reuse, and substantially re-
duce the number of parameters of the segmentation model. Addition-
ally, we propose three methods for predicting gestational age (GA), GA
prediction by using a 3D autoencoder, GA prediction using radiomics
features, and GA prediction using the IRMMNET segmentation model’s
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encoder. Our experiments were performed on a dataset of 80 patholog-
ical and non-pathological magnetic resonance fetal brain volume recon-
structions across a range of gestational ages (20 to 33 weeks) that were
manually segmented into seven different tissue categories. The results
showed that the proposed fetal brain segmentation model achieved a
Dice score of 0.791±0.18 , outperforming the state-of-the-art methods.
The radiomics-based GA prediction methods achieved the best results
(RMSE: 1.42 ). We also demonstrated the generalization capabilities of
the proposed methods for tasks such as head and neck tumor segmen-
tation and the prediction of patients’ survival days.

3.1 Introduction

Congenital disorders are some of the leading causes of infant mortal-
ity worldwide Ebner et al., 2020. Recently, in-utero magnetic resonance
imaging (MRI) of the fetal brain has emerged as a valuable tool for inves-
tigating the neurological development of fetuses with congenital disor-
ders to aid in prenatal planning. Fetal MRI requires clinical and techni-
cal expertise and is a challenging imaging modality due to the ability to
move freely. T2-weighted single-shot fast spin echo (ssFSE) sequences,
such as ultra-fast MRI sequences, can be used to attain information in
all planes.

Super-resolution (SR) reconstruction algorithms, including outlier re-
jection and motion correction strategies (Ebner et al., 2020), can then be
applied in order to combine several low-resolution images into a single
high-resolution volume that can be used for further quantitative analy-
sis. Automated quantification of the highly complex and rapidly chang-
ing brain morphology in MRI data could improve the diagnostic and
decision-making processes.

Image segmentation is an early step for the volumetric quantifica-
tion of the fetal brain. Shape or volume information could be relevant
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to the developing cortex, cerebellum, brainstem, white matter, and cere-
brospinal fluid spaces Egaña-Ugrinovic et al., 2013; Jarvis, Finney, and
Griffiths, 2019. The automatic segmentation of the developing human
brain is a primary step for analysis, as manual segmentation is time-
consuming and may be prone to human error. However, fetal brain
segmentation based on SR fetal brain volumes is still challenging due
to artifacts that are blurry or caused by motion, rapidly changing fetal
brain anatomy and the effects of partial volume.

Various atlas-based methods have been developed for brain tissue
segmentation Habas et al., 2010. However, these methods need an atlas,
which now only exists for normally developing fetuses. Falick Michaeli
et al., 2019 used single-class high-resolution fetal brain volumes for fe-
tal brain segmentation, but multiclass segmentation still needs to be ex-
plored. Deep-learning-based segmentation models have recently been
employed to segment the fetal brain into different tissue types by using
low-resolution coronal-direction slices to handle fetal brain tissue seg-
mentation problems Khalili et al., 2019.

Faghihpirayesh et al., 2022 used an encoder-decoder UNet model
with multiple branches and skip connections to maintain high accuracy
while devising a parallel combination of convolution and pooling oper-
ations. They used a private dataset to train their proposed model. How-
ever, they only handled the single-class segmentation problem by using
2D slices, which is not challenging and quite simple. A 2D segmentation
model for volumetric 3D segmentation cannot handle temporal relation-
ships, unlike 3D segmentation models. Moreover, they used only binary
class segmentation, while the proposed model addresses the problem of
multi-tissue fetal brain segmentation.

Asis-Cruz et al., 2022 used an end-to-end generative adversarial neu-
ral network (GAN) to segment the fetal brain in functional magnetic
resonance images (rs-fMRI). They segmented the full fetal brain and
handled binary class problems by using a private dataset. Unlike the
models in these works, the proposed multi-view segmentation model
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can handle the 3D segmentation of volumetric data by using a stacking
approach to multi-view segmentations.

Zhao et al., 2022 trained a patch-based 3D segmentation model for
fetal brain segmentation by using an in-house dataset. This 3D seg-
mentation model required powerful computational resources. However,
the 3D-CNN holds great potential for fully utilizing the 3D informa-
tion from MRI data, which also contains multi-view information. How-
ever, 3D-CNN-based segmentation greatly increases the network scale
and computational cost Prasoon et al., 2013. It should be noted that
the major bottleneck in the development of segmentation algorithms for
medical imaging is the lack of data—either the availability of atlases for
atlas-based segmentation or that of training data for supervised machine
learning methods. In addition, there is still a need to explore and imple-
ment deep-learning-based approaches, no clear benchmark is available
for fetal brain segmentation.

In turn, the dating of the precise gestational age (GA) is essential
for assessing pregnancy, fetal development, and neonatal care. Before
sonography, obstetricians routinely relied on the last menstrual period
for the dating of the gestational age in pre-birth life Falick Michaeli et
al., 2019. The crown–rump length (CRL) method is used in the first
trimester to estimate gestational age. Other methods are used in the
last two trimesters, such as brain bi-parietal diameter, head circumfer-
ence, femur length, and abdominal circumference. These methods were
reported decades ago and are still used today Falick Michaeli et al., 2019.

Though sonographic assessment during the first trimester is the most
well-known and accurate method for estimating gestational age, it shows
large variations in the second and third trimesters due to the variability
in organ size. According to previous studies, the assessment of gesta-
tional age by combining the above-mentioned biometric data can achieve
an accuracy of ±7 to 10 days for the second trimester and ±21 to 30 days
for the third trimester. Various methods, such as the measurement of the
cerebellar length and the trans cerebellar diameter, accurately predict
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gestational age in singleton and twin pregnancies Chavez et al., 2006;
however, they require good visualization of the cerebellum by special-
ized sonographers.

In summary, estimations made with sonographic measurements are
strongly affected by the inherent variability in organ size and the in-
trinsic signal properties of ultrasonography Wu et al., 2015. The inac-
curacy of sonographic assessment has driven the need to find different
approaches that can be used to accurately determine gestational age.
MRI is gradually being recognized as a powerful helper for ultrasonog-
raphy in the evaluation of the fetal brain. MRI-based methods provide
a high resolution, soft-tissue contrast, and visibility of the whole brain
independently of fetal presentation Kyriakopoulou et al., 2017; Blondi-
aux and Garel, 2013. As pregnancies advance, the biological variations
among normal fetuses increase, and the ranges of values of each bio-
metric measurement associated with a specific GA also increase. This
means that while the predictive error at ±10 days GA is considered ac-
ceptable in most clinical settings, the predictive error at ±18 days is es-
timated to offer little clinical value Namburete et al., 2015. Therefore,
when screening occurs in the second and third trimesters, the error mar-
gins produced by current methods are highly increased; thus, they are
not clinically useful. Accordingly, there is a need to develop an alterna-
tive technique for estimating the GA.

Fung et al., 2020 developed a machine learning (ML) model for es-
timating the GA and predicting future growth. They utilized multi-
center, international, and population-based project data from the Inter-
national Fetal and Newborn Growth Consortium for the 21st Century
(INTERGROWTH-21st). Kojita et al., 2021 developed VGG-based trans-
fer learning models for GA prediction. They employed an in-house (pri-
vate) dataset. The deep learning model was trained with T2-weighted
images from 126 training cases and 29 validation cases. The remaining
29 cases were utilized as test data, with the fetal age being estimated
by the model and by using BPD (biparietal diameter) measurements.
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They drew a relationship between the estimated and standard gesta-
tional ages by using Lin’s concordance correlation (ρc). The model’s
outcome in terms of concordance was significant (ρc = 0.964).

Lu et al., 2019 developed machine learning models that could pro-
vide accurate estimations for obstetricians alongside traditional clini-
cal practices and an efficient and effective supporting tool for pregnant
women for self-monitoring. A total of 4212 intrapartum recordings were
selected, of which 3370 samples were used as the training set and 842
samples were used as the test set. In addition, several simple and pow-
erful machine learning algorithms were trained, and their performance
was evaluated with real test data. The experimental results showed an
intersection over union (IoU) of 0.64 between the predicted range of fetal
weight at any gestational age from the ensemble model and that from ul-
trasound. Using their private dataset, they used simple clinical features
with traditional machine learning models for the prediction of gesta-
tional age and weight. No deep-learning-based models were used as
a comparison with the machine-learning models. No efficient feature
engineering approaches were used to predict gestational age.

Maternal et al., 2021 developed a novel method based on machine
learning models and used each subset of predictors based on an ensem-
ble model constructed by using the Super Learner algorithm. The result-
ing model was a weighted average of multivariate adaptive regression
splines, random forests, gradient boosting, support vector machines,
and multiple linear regression. They assessed the diagnostic accuracy
by using the receiver operating curve (AUC) and Bland–Altman analy-
sis. They collected datasets from population-based cohorts in five coun-
tries (Bangladesh, Ghana, Pakistan, Tanzania, and Zambia). Women at
<20 weeks of gestation according to ultrasound-based dating were used
as a study case for the prediction of gestational age. A total of 7428 live-
born infants were included. This dataset is not publicly available. The
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resulting model was a weighted average of multivariate adaptive re-
gression splines, random forests, gradient boosting, support vector ma-
chines, and multiple linear regression. They achieved the highest AUC
of 0.96. They used only clinical features with traditional machine learn-
ing models for the age prediction. No imaging-based features were used
to evaluate the performance of the machine learning or deep learning
models for the prediction of gestational age.

Payette et al., 2021 employed deep learning models such as ResNet-
18 and ResNet-50 with a combination of different layers for the predic-
tion of gestational age. They collected 741 fetal brain MRIs in order to
predict fetal gestational age (in days). The authors proposed a basic
ResNet18-based regressor model that used a private dataset, and they
did not use any other segmentation-based or 3D volumetric-based fea-
tures for gestational age prediction. They used cropped 2D images cov-
ering the fetal area only in the input images to train the basic ResNet18
with overall global features, and this could efficiently help in the extrac-
tion of local image features for the prediction of fetal gestational age.

Shen et al., 2022 used attention-guided, multi-plane ResNet-50 mod-
els trained on Stanford data to predict the gestational age. They trained
various CNN models based on only imaging features for the prediction
of gestational age. Imaging features might not be sufficient to accurately
predict gestational age. However, we used various feature extraction
approaches, including imaging, radiomics, 3D latent space autoencoder-
based features, and deep features extracted from the last layer of multi-
view 2D image slices from segmented brain tissues, to extract more
localized features for the prediction of gestational age. The fusion of
multi-scale segment-based deep features achieved better performance
than that of the state-of-the-art methods.

There is a further need to investigate different methods with deep
learning models for GA prediction. The existing methods are based on
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single-feature extraction techniques that use basic deep-learning mod-
els. Correspondingly, the datasets used for the existing methods are in-
house and private. There is a need to set a benchmark on a publicly
available dataset for further comparisons and enhancements in deep
learning/machine learning for the prediction of gestational age and seg-
mentation of the fetal brain.

To solve the above-mentioned issues, we propose effective yet auto-
matic methods for the segmentation of fetal brain tissue and the predic-
tion of gestational age. To the best of the authors’ knowledge, this is the
first method to propose an end-to-end solution for fetal brain segmen-
tation in MRI images and GA prediction. Deep learning is the basis for
the proposed fetal segmentation method, IRMMNET (inception resid-
ual multi-scale multi-view network). By effectively combining segmen-
tation maps from the axial, coronal, and sagittal views to create a 3D
segmentation volume, IRMMNET incorporates important insights from
multi-view MRI. IRMMNET consists of several layers with the capac-
ity to reuse features and information at several scales and depths. The
inception residual encoder block (EB) and the dense spatial attention
(DSAM) block are two proposed blocks that are part of IRMMNET. The
EB aids in extracting information from multi-view MRI scans that are
pertinent to multi-scale fetal brain tissue. The DSAM improves feature
reuse while lowering the model’s parameter count. The EB and DSAM
help segment small lesions that have a small number of semantic pix-
els that are missed by traditional encoder-decoder networks. Then, we
propose three methods for GA prediction—GA prediction using the IR-
MMNET segmentation model’s encoder, GA prediction using a 3D au-
toencoder, and GA prediction using radiomics features.

The following is a list of this chapter’s major contributions:

1. Proposal of a novel multi-view multi-scale 3D fetal brain segmen-
tation method named IRMMNET. It combines the key insights from
multi-view MRI, including the axial, coronal, and sagittal views.
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IRMMNET comprises different layers with feature reuse capabili-
ties and with various depths and multi-scale information. An ef-
ficient method for fusing segmentation maps of the axial, coronal,
and sagittal views to develop a 3D segmentation volume is also
presented.

2. Presentation of two effective blocks: the inception residual en-
coder block (EB) and the dense spatial attention (DSAM) block.
The EB helps the fetal brain segmentation network extract multi-
scale fetal-brain-tissue-relevant information from multi-view MRI
images. The DSAM block enhances feature reuse and substantially
reduces the number of parameters of the segmentation model. Ex-
tensive experiments were performed with various combinations
and settings of the fetal brain segmentation model.

3. Proposal of three approaches to predicting GA: GA prediction by
utilizing the IRMMNET segmentation model’s encoder, GA pre-
diction by utilizing a 3D autoencoder, and GA prediction by uti-
lizing radiomics features. The explainability and importance of the
radiomics features are also presented.

4. Demonstration of the generalization capabilities of the proposed
fetal brain segmentation and GA prediction methods on two dif-
ferent tasks: the segmentation of head and neck tumors and the
prediction of patients’ survival days.

The rest of this Chapter is presented as follows: Section 3.2 intro-
duces the proposed multi-view multi-scale 3D fetal brain segmentation
method and the proposed fetal age prediction method. Section 3.3 presents
the datasets used in our study, the proposed fetal brain segmentation
model’s results, and the GA prediction method’s results. Section 3.3.5
discusses the generalization capabilities of the proposed methods. Sec-
tion 3.4 discusses the findings of the study and its limitations. Section
3.5 concludes the Chapter and presents the future work.
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3.2 Methodology

In this section, we explain the proposed multi-view multi-scale 3D fetal
brain segmentation method (Section 3.2.1) and the proposed fetal age
prediction method (Section 3.2.2).

3.2.1 Proposed Multi-View Multi-Scale 3D Fetal Brain Seg-
mentation Method

Figure 3.1 presents a schematic diagram of the proposed multi-view
multi-scale 3D fetal brain segmentation method. The three available
views—axial, coronal, and sagittal—are inputted into the proposed seg-
mentation model to generate a 2D segmentation mask for each view.
Then, the resulting segmentation masks are combined to construct a 3D
segmentation map. Specifically, we stack a 2D segmentation mask of
each view to form a predicted 3D segmentation mask. This process can
be expressed as follows:

OA = orgmax (Sigmoid (LA)) ,

OS = orgmax (Sigmoid (LS)) ,

OC = orgmax (Sigmoid (LC))

(3.1)

3DV[:, :, A] =
N

∑
i=1

OA,

3DV[:, S, :] =
N

∑
i=1

OS,

3DV[C, :, :] =
N

∑
i=1

OC

(3.2)

where LA represents linear-layer neurons using the axial view, LS using
the sagittal view, and LC using the coronal axis view.
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3DV[:, :, :] = 3DV[:, :, A] + 3DV[:, S, :] + 3DV[C, :, :] (3.3)

where OA stands for the output prediction of the proposed model when
using axial slices, OS is the prediction of the proposed model when us-
ing the sagittal view, and OC is the output when using coronal slices;
3DV is the 3D prediction volume that is reconstructed by stacking up
the predicted 2D slices from each 2D view (OA, Os, and Oc).

Figure 3.1: A schematic diagram of the proposed method for 3D fetal
brain segmentation from the axial, coronal, and sagittal views.

3.2.1.1 Multi-View Multi-Scale Segmentation Network

Figure 3.2 presents the proposed multi-view multi-scale segmentation
network. The proposed model is designed based on the concept of an
encoder-decoder with skip connections. The proposed inception resid-
ual encoder block (EB) and dense spatial attention (DSAM) block are
used in the encoding path. In contrast, an efficient yet simple 2D convo-
lutional layer module with 2D upsampling layers, including regulariza-
tion layers, is used on the decoding path.
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Figure 3.2: The proposed IRMMNET multi-view multi-scale segmenta-
tion network.

In the encoding path, a DSAM block is used in each encoder block,
which sends information at every block from each encoder layer to the
bottom layer. The number of channels is doubled at each EB block, and
the input size of the feature maps is reduced by half based on the depth-
wise convolutional layer in the encoding path. An increasing number of
feature map blocks are used in each stage of encoder blocks; the number
of EB blocks progressively increases at each stage of the encoder side.
The first encoder block uses one EB block. Similarly, the second, third,
and fourth blocks employ 2, 3, and 4 inception residual blocks, respec-
tively.

The red lines in Figure 3.2 highlight the multi-scale feature maps
from each encoder block fed to the model’s bottom layer. This strategy
increases the efficiency of the feature maps by reusing and fusing the
feature information at the level of downsampling. In the proposed seg-
mentation model, the features are extracted from three levels (red lines),
which enables the model benefit from the multi-scale transformation of
high-level semantic information and low-level information of the posi-
tion and texture. Three downsampling layers that carry features’ infor-
mation are passed to the bottom-layer module to guarantee an improved
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cross-level feature connection and complementarity in cross-level infor-
mation.

In the decoding path, the size of the feature maps increases after each
2D upsampling layer, and the original size of the training input images
returns in the output in the final layer. The first 2D upsampling layer
comprises two efficient convolutional layers (2D 1 × 1 Conv, 2D 3 × 3
Conv) with a BN and ReLU layer. To reconstruct the semantic informa-
tion, the feature maps are concatenated with each encoder and decoder
block. The BN and ReLU regularization layers are used with 2D up-
sampled layers and 2D 3 × 3 Conv layers for smooth optimization and
training of the proposed model. The 1 × 1 Conv layer and sigmoid acti-
vation function are used for the reconstruction of the segmentation map.

Below, we explain the architectures of the proposed EB and DSAM
blocks.

3.2.1.2 Inception Residual Encoder Block (Eb)

Figure 3.3 depicts the proposed inception residual encoder block. Unlike
in the Inception-Res architecture (Szegedy et al., 2017), we introduce a
batch normalization (BN) layer after each convolutional layer, except for
the bottleneck layers. In addition, we use 1 × 1 and 1 × 3 kernels with
a 1 × 5 kernel branch, which was inspired by the DeepLab architecture
(Chen et al., 2017).

It should be noted that the batch normalization layer produces smooth
training and can avoid gradient vanishing while retaining the convolu-
tional layers. The feature maps are aggregated by convolving them with
three kernels: 1 × 1, 1 × 3, and 1 × 5. It is assumed that xl is the input
and xl+i is the output of the ith layer. c1×n is a 1× n kernel convolutional
layer and cb represents the batch normalization layer. c1×1 denotes the
bottleneck layer. The output of each EB module from the encoder path
can be expressed as follows:

xl+1 = l1 × l2 × l3 × l4 (3.4)
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Figure 3.3: The schematic diagram of the proposed inception residual
encoder block (EB).

l1 = cb(c1×1(k)) (3.5)

l2 = Maxpool(cb(c1×1(k))) (3.6)

l3 = cb(c1×3(cb(c1×3(c1×1(k))))) (3.7)

l4 = cb(c1×5(cb(c1×5(c1×1(k))))) (3.8)

where k = xl .

3.2.1.3 The Proposed Dense Spatial Attention Module (DSAM)

It should be noted that the attention modules that are often used in im-
age segmentation and object detection models are mainly divided into
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channel-wise attention and point-wise attention modules, and the repre-
sentatives of these two attention models are squeeze and excitation (SE)
and the spatial attention module (SAM) (Woo et al., 2018b). A chan-
nel attention map exploits features’ inter-channel relationships, and the
feature map obtained from the channel attention is considered a feature
detector. The spatial attention module focuses on what is meaningful
given an input image through the benefit of the combination of aver-
age pooling and max pooling. Figure 3.4 shows a schematic diagram
of the DSAM. As shown, we modified the SAM by replacing the point-
wise convolutional layer with a basic dense layer (DL). We also used the
swish activation function instead of the sigmoid function (Ramachan-
dran, Zoph, and Le, 2017b), as swish is less prone to vanishing gradient
problems. The swish activation function can be expressed as follows:

Swish(x) = x/(1 + e − x)) (3.9)

where x is the input feature map.
DL is a basic dense layer. The input x is multiplied by the DL and by

the swish activation function.
In the DL, the feature maps of all preceding layers are used as inputs,

and their feature maps are used as inputs for all subsequent layers. The
output of each dense block is concatenated with every previous dense
block. The operation of the DL can be expressed as follows:

DL = [x, B1(x), B2([x, B1(x)]), B3(x, B1(x), B2([x, B1(x)])), . . . ] (3.10)

where B1(x) is dense block 1, B2 is dense block 2, and so on. x is the
input feature map. We used 12 dense blocks in our case. The output of
the proposed DSAM block, DSAMout, can be formulated as follows:

DSAMout = x ∗ (Swish(DL(x))) (3.11)

UNIVERSITAT ROVIRA I VIRGILI 
SELF-SUPERVISED ADVANCED DEEP LEARNING FOR CHARACTERIZATION OF BRAIN TUMOR AGGRESSIVENESS 
AND PROGNOSIS ANALYSIS THROUGH MULTIMODALITY MRI IMAGING 
Moona Mazher 



64

Figure 3.4: A schematic diagram of the proposed dense spatial attention
module (DSAM).

The key advantages of the DL are (1) the alleviation of the vanish-
ing gradient problem, (2) the strengthening of feature propagation, (3)
the encouragement of feature reuse, and (4) the substantial reduction in
the number of parameters. The feature maps are concatenated from the
previous layer to the next layer to build the dense block in the proposed
dense layer. The feature maps keep the relevant information from every
layer and are reused in the final layer to get semantic information. The
proposed DSAM uses the dense block to provide better semantic infor-
mation and improves the flow of gradient information for easy training
of the proposed model. The DSAM block reduces the problem of overfit-
ting with smaller training set sizes by using dense connections. DSAM
blocks also provide direct access to the gradients from the loss function
and the original input signal, which leads to implicit deep supervision.
It is worth noting that all layer weights in the proposed model were
trained from scratch with the FeTA dataset.
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3.2.1.4 Loss Function and Implementation Details

In this Chapter, we employ the Combo loss function Taghanaki et al.,
2019b to train the proposed model with multi-class settings for fetal
brain tissue segmentation. Combo loss can be expressed as follows:

L = α

(
− 1

N

N

∑
i=1

β (ti − ln pi) + (1 − β) [(1 − ti) ln (1 − pi)]

)
− (1

−α)
K

∑
i=1

(
2 ∑N

i=1 piti + S

∑N
i=1 pi + ∑N

i=1 ti + S

)
(3.12)

where ti is the one-hot-encoded target or ground truth, pi is the pre-
dicted probability, N is the number of classes multiplied by the number
of samples, and the S is a small constant number that is added to pre-
vent division by zero. α controls the amount contributed by the Dice
term in the loss function L. β ∈[0,1] controls the level of penalization of
the model for false positives/negatives. The S term is added to prevent
division by zero. The S constant is added in both the denominator and
the numerator of the Dice term.

All models were trained using an Adam optimizer with a learning
rate of 0.0001, ρ = 0.95, ϵ = 1 ∗ 10−8, and decay = 0. Based on the ex-
perimental evaluations, it was found that α = 0.5 for the Dice and cross-
entropy terms produced the best results. Different values of β were tried
for all datasets, and it was found that β = 0.5 was the best value for the
proposed dataset for the segmentation task.

3.2.2 Approaches to the Prediction of Gestational Age (GA)

This subsection proposes three approaches to predicting GA: (1) GA pre-
diction by utilizing the IRMMNET segmentation model’s encoder, (2)
GA prediction by utilizing a 3D autoencoder, and (3) GA prediction by
utilizing radiomics features.
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3.2.2.1 GA Prediction by Utilizing the Encoder of IRMMNET Seg-
mentation Model

The encoder of the proposed IRMMNET segmentation model can au-
tomatically learn multiple filters in parallel and extract low- and high-
level features, such as edges, intensities, and textures. Different filters
capture various characteristics of the input images that are used in GA
prediction. Figure 3.5 presents the proposed framework for GA predic-
tion by utilizing the IRMMNET segmentation model’s encoder. As one
can see, deep features are extracted from the trained encoder of each
view’s trained segmentation model. Each view’s encoder generates a
feature vector with dimensions of 1 × 256. It should be noted that the
feature vectors of all slices of each volume are combined to produce one
feature vector that represents the whole volume. The feature vectors of
the three views are concatenated to form one single feature vector with
dimensions of 1 × 768. Different regression algorithms are trained with
the extracted feature vector in order to predict the GA.

Figure 3.5: GA prediction by utilizing the IRMMNET segmentation
model’s encoder.
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3.2.2.2 GA Prediction by Utilizing a 3D Autoencoder

Figure 3.6 presents the proposed approach to GA prediction by utiliz-
ing a 3D autoencoder. The 3D autoencoder consists of an encoder- and
decoder-based model. A 3D volume is fed to the proposed 3D autoen-
coder to extract latent space features. As shown in Figure 3.6, the en-
coder part of the 3D autoencoder consists of a 3D convolutional layer,
batch normalization layer, ReLU layer, and 3D maxpool layer, and the
decoder side of the 3D autoencoder comprises a 3D transposed layer at
each level on that side along, with a 3D convolutional layer and a batch
normalization layer.

On the encoder side, the volume is reduced at each encoder block,
while the volume is increased at each decoder block. The 3D transposed
layer is used to upsample the feature maps at each decoder block. The
bottom layer represents the 3D volume in the lower dimension. After
flattening the lower dimension, a latent vector is produced. Different
regression algorithms are trained with the latent features to predict the
GA, as shown in Figure 3.6.

Figure 3.6: GA prediction by utilizing a 3D autoencoder. The latent fea-
tures are extracted by using input image volumes for GA prediction.
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3.2.2.3 GA Prediction by Utilizing Radiomics Features

Figure 3.7 shows the proposed approach to GA prediction by utilizing
radiomics features. Here, we also extract 2D slices of the axial, sagit-
tal, and coronal views from a 3D volume dataset. We train the proposed
segmentation model for the dataset containing the three views and stack
the output of each 2D view to reconstruct a 3D volume. The radiomics
features are extracted from the input volumes of the dataset. The ra-
diomics features used include shape-based, statistical, and wavelet fea-
tures. Among the 108 radiomics features, a set was chosen based on
a correlation-based feature selection technique (Gopika and ME, 2018).
The selected radiomics features were elongation, flatness, major axis
length, minor axis length, max 3D diameter, sphericity, surface area, en-
ergy, entropy, kurtosis, mean, skewness, coarseness, contrast, correla-
tion, inverse-diff moment, complexity, and strength. The radiomic fea-
tures were extracted from Feta MRI images by using the Pyradiomics
package (Van Griethuysen et al., 2017). Different regression algorithms
were trained with the extracted radiomics features to predict the GA.

Figure 3.7: GA prediction by utilizing radiomics features.
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3.2.2.4 Regression Techniques for GA Prediction

Different regression techniques were tested on the features extracted
with the three approaches mentioned above for the prediction of the GA.
We found that four regression techniques give acceptable results: ran-
dom forest (RF) (Almalki et al., 2021), regression trees (RT), linear regres-
sion (LR), and extreme gradient boosting (XGB) (Fernández-Delgado et
al., 2019). RF is supervised by traditional machine learning and is widely
used for classification and regression problems. It uses a bootstrapped
dataset as a subset, picks random subsets of features, and runs random
trees in parallel while building the trees. We set the number of trees
to be from 100 to 1000 to create the forest. LR is a linear model that
builds a linear relationship between input variables and a single out-
put variable. RT is a tree-based regression model that trains a model by
observing the input object’s features and generating a continuous out-
put. The gradient-boosting regressor is a method that uses an additive
forward model and allows arbitrary differentiable loss functions for op-
timization during training. The gradient-boosting model is an ensem-
ble model that can be used for regression, classification, and predictive
modeling problems. Extreme gradient boosting (XGB) is an open-source
approach to gradient-boosting regression.

3.3 Experimental Results and Discussion

In this section, we explain the dataset used in our study (Section 3.3.1),
present and discuss the results of the proposed fetal brain segmentation
model (Section 3.3.3), and analyze the results of the GA prediction mod-
els (Section 3.3.4).

3.3.1 Dataset Description

The dataset included 80 T2-weighted fetal brain reconstructions with
a corresponding label map that was manually segmented into seven
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different tissue labels (Payette et al., 2021). The seven labels were ex-
ternal cerebrospinal fluid (ECF), fluid gray matter (FGM), white matter
(WM), ventricles (VCs), cerebellum (CBM), deep gray matter (DGM),
and brainstem (BSTM). The dataset consisted of clinically acquired fetal
brain reconstructions of both neurotypical and pathological brains with
a range of gestational ages. The data were acquired using 1.5T and 3T
clinical GE whole-body scanners (Signa Discovery MR450 and MR750)
with either an eight-channel cardiac coil or a body coil. T2-weighted
single-shot fast spin echo sequences were acquired with an in-plane res-
olution of 0.5 mm × 0.5 mm and a slice thickness of 3 to 5 mm. The
sequence parameters were the following: TR: 2000–3500 ms; TE: 120 ms
(minimum); flip angle: 90◦; sampling percentages: 55%.

Figure 3.8 shows the class-mapping function for the axial, sagittal,
and coronal slices. The different colors show the seven classes used to
predict fetal tissue segmentation.

Two different methods were used to create a super-resolution recon-
struction of the fetal brain for each case from the acquired low-resolution
axial, coronal, and sagittal images. Equal numbers of cases were used in
the training and evaluation datasets for each reconstruction method. For
each case, the gestational age in weeks and the neurotypical/pathological
label was given, in addition to the label maps.

The dataset was divided into 80% for training and 20% for testing.
There were totals of 64 subjects in training and 16 subjects in the testing
phase.

3.3.2 Evaluation Metrics

In this study, four metrics were used to assess the performance of the fe-
tal brain segmentation models: Dice (DSC), Hausdorff distance (HD95),
sensitivity, and specificity, which is commonly used for the validation
of medical volume segmentation approaches (Qayyum, Lalande, and
Meriaudeau, 2020). This is also called the overlap index. It measures the
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Figure 3.8: The class-mapping function for the axial, sagittal, and coro-
nal slices.

overlap between ground truth (GT) and predicted segmentation masks.
For the GT and predicted masks, DSC is defined as follows:

Dice(X, Y) = 2|X ∩ Y|/|X ∪ Y| (3.13)

Hausdorff distance (HD95): The HD95 is calculated as the mean of
two directed 95% Hausdorff distances:

HD95 =
d⃗H, 95(X, Y) + d⃗H, 95(Y, X)

2
(3.14)

where X is the ground truth (GT) and Y is the predicted mask. HD is
the maximum distance between the sets of points X and Y and between
Y and X.

Sensitivity is used to compute the positive portion of voxels by using
the ground-truth (GT) and predicted segmentation masks.

Sensitivity = TRP = TP/(TP + FN) (3.15)
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where TRP is the true positive rate, TP is true positive, and FN is
false negative.

Specificity is also called the true negative rate (TNR), and it is used
to compute performance based on the GT and predicted segmentation
masks.

Specificity = TNR = TN/(TN + FP) (3.16)

where TP is true positive, FP is false positive, TN is true negative, and
FN is false negative.

In addition, we use the root-mean-square error (RMSE) and concor-
dance (C-index) to evaluate the GA prediction models. The C-index is
used to compute the correlation between the predicted gestational age
and ground-truth gestational age. The RMSE can be expressed as fol-
lows:

RMSE =

√
∑(GApre − GAGT)2

N
(3.17)

The C-index can be formulated as follows:

C-index = concordance − index(GAGT , GApre) (3.18)

where GApre is the predicted value, GAGT is the ground-truth value for
the ith observation in the dataset, and N is the sample size.

3.3.3 Performance Analysis of the Proposed Segmenta-
tion Model

3.3.3.1 Ablation Study

Table 3.1 tabulates the DSC, HD95, sensitivity, and specificity values of
the proposed segmentation model, IRMMNET, with the axial, sagittal,
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and coronal views (IRMMNET-Axial, IRMMNET-Sagittal, and IRMMNET-
Coronal). IRMMNET-Coronal obtained better performance for all classes
than IRMMNET with the axial and sagittal planes. It achieved DSC,
HD95, sensitivity, and specificity scores of 0.789, 21.56, 0.818, and 0.976,
respectively.

Table 3.1: Performance of the proposed segmentation model with the
axial, sagittal, and coronal views.

Model DSC HD95 Sensitivity Specificity
IRMMNET_Axial 0.778 24.06 0.8126 0.974
IRMMNET _Sagittal 0.781 22.80 0.817 0.974
IRMMNET _Coronal 0.789 21.56 0.818 0.976

Figure 3.9: The segmentation maps of the proposed model with different
views.

Figure 3.9 shows the proposed IRMMNET model’s segmentation maps
for the axial, sagittal, and coronal planes. In addition, 2D and 3D vol-
umetric views of the segmentation images are shown in Figure 3.9 for
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the axial, sagittal, and coronal planes. It can be visibly noticed that the
coronal-view model generated accurate segmentation masks, in which
the predictions for the deeper and smaller classes were close to the GT.
It should be noted that the proposed model was initially tried on the 2D
axial slices, but the predicted segmented images yielded a bad predic-
tion for the deep classes. Therefore, the proposed segmentation model
was applied to the three views’ 2D slices (axial, sagittal, and coronal) for
fetal brain segmentation. Among the predicted segmentation results for
the fetal brain, the 2D coronal view produced the best results.

In Table 3.2, we compare the proposed model with different seg-
mentation models. Specifically, the basic UNet (BaseUNet) for 2D brain
tissue segmentation was trained by using the axial, coronal, and sagit-
tal views (BaseUNet-Axial, BaseUNet-Sagittal, and BaseUNet-Coronal).
As one can see, BaseUNet-Coronal yielded the highest DSC score (0.728)
and the lowest HD95 score (29.042). In addition, different ResUnet mod-
els were trained by using the axial, coronal, and sagittal views (ResUnet-
Axial, ResUnet-Sagittal, and ResUnet-Coronal) for 2D brain tissue seg-
mentation. In the ResUnet model, the residual blocks were added to
the base UNet model. The results of the three ResUnet models were
better than those of the BaseUNet models. Finally, we added squeeze-
and-excitation (SE) blocks into ResUNET (SE-ResUNet) and trained it
on the three views, yielding SE-ResUNet-Axial, SE-ResUNet-Sagittal,
and SE-ResUNet-Coronal. However, SE-ResUNet-Coronal had an im-
proved DSC score compared to that of ResUnet-Coronal; its HD95 and
specificity values were worse. As shown in Table 3.2, the proposed IR-
MMNET model comparatively produced a better performance with the
axial and sagittal views. However, IRMMNET-Coronal achieved a DSC
score of 0.789 and HD95 score of 21.565, which were better than those of
all models used for comparison.

To enhance the proposed model’s prediction, we fused the axial,
sagittal, and coronal outputs of the proposed model to create a so-called
multi-view model, which provided a 3D segmentation map. Later, the
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Table 3.2: Comparing IRMMNET with different segmentation models.

Model DSC
(%)

HD95
(mm3)

Sensitivity
(%)

Specificity
(%)

BaseUNet-Axial 0.727 29.401 0.806 0.952
BaseUNet-Sagittal 0.723 31.381 0.790 0.947
BaseUNet-Coronal 0.728 29.042 0.813 0.963
ResUNet-Axial 0.748 26.111 0.827 0.968
ResUNet-Sagittal 0.756 27.334 0.818 0.969
ResUNet-Coronal 0.752 26.014 0.828 0.977
SE-ResUNet-Axial 0.762 28.262 0.809 0.973
SE-ResUNet-Sagittal 0.769 28.888 0.808 0.978
SE-ResUNet-Coronal 0.773 27.101 0.879 0.969
IRMMNET-Axial 0.778 24.062 0.819 0.972
IRMMNET-Sagittal 0.781 22.801 0.817 0.974
IRMMNET-Coronal 0.789 21.565 0.818 0.976

performance was evaluated by using the predicted 3D segmentation
map achieved with our three multi-view models and a GT segmenta-
tion map. It resulted in a better estimation in terms of the Dice, HD95,
sensitivity, and specificity scores. We constructed a 3D segmentation
map from the three views of the proposed model and evaluated the
performance by using the predicted 3D segmentation map (achieved
with our three multi-view models) and ground-truth segmentation map.
Table 3.3 presents an ablation study of the proposed IRMMNET. Al-
though the baseline Multi-view-2D-Inception+Residual model achieved
optimal performance, its performance was upgraded when the DSAM
module (i.e., Multi-view-2D Inception + Residual + DSAM) was system-
atically added. However, adding the multi-scale feature approach to
the Multi-view-2D-Inception+Residual+DSAM model with the fusion
of multiple views (i.e., IRMMNET) produced the highest performance
scores in comparison with those of all of the state-of-art-methods and
the baseline model for the fetal brain segmentation task when using the
FeTA 2021 dataset. IRMMNET achieved DSC, HD95, sensitivity, and
specificity scores of 0.791, 21.66, 0.819, and 0.980, respectively.
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Table 3.3: Performance of various configurations of the proposed IR-
MMNET model.

Model DSC HD95 Sensitivity Specificity

UNet 0.733 28.58 0.817 0.968

Multi-view_2D Inception
+ Residual 0.778 25.42 0.8178 0.967

Multi-view_2D Inception
+ Residual + DSAM 0.783 23.26 0.8101 0.976

IRMMNET 0.791 21.66 0.819 0.980

We also studied the efficacy of different loss functions with the pro-
posed model. As tabulated in Table 3.4, the proposed Combo loss func-
tion achieved better performance than that of the binary cross-entropy
(BCE) and Dice loss functions. No big improvements were noticed when
we combined the Dice loss and BCE loss. However, the Dice loss pro-
duced the lowest scores.

Table 3.4: Performance of IRMMNET with different loss functions.

Loss Function DSC
(%)

HD95
(mm3)

Sensitivity
(%)

Specificity
(%)

BCE 0.789 23.88 0.671 0.812
Dice 0.776 24.51 0.668 0.795
BCE + Dice 0.780 22.83 0.682 0.809
Combo 0.791 21.66 0.691 0.818

The training and validation times were also estimated for the pro-
posed and state-of-the-art methods for a comparison of the computa-
tional costs. The training time of our proposed solution was 55 min, and
the time taken for validation was less than 2 min. The computational
times for training and validation are given in Table 3.5.
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Table 3.5: Estimations of the training and validation times for the pro-
posed and state-of-the-art methods.

Segmentation Models Training Time
(min)

Validation Time
(min)

BaseUNet-Axial 45 2
BaseUNet-Sagittal 50 2.1
BaseUNet-Coronal 55 2.01
ResUNet-Axial 60 2.23
ResUNet-Sagittal 62 2.45
ResUNet-Coronal 61 2.11
SE-ResUNet-Axial 63 2.53
SE-ResUNet-Sagittal 65 1.95
SE-ResUNet-Coronal 64 1.88
IRMMNET-Axial 53 1.3
IRMMNET-Sagittal 55 1.4
IRMMNET-Coronal 52 1.5

We applied a Mann–Whitney U test or Wilcoxon Rank Sum test to
compute the p-values between the predicted masks and their correspond-
ing ground truths (Qayyum et al., 2020; Zabihollahy et al., 2020). In seg-
mentation tasks, the p-value must be higher than 0.05 to be statistically
significant, unlike in classification tasks. A comparison of the statistical
analyses of the proposed IRMMNET and the state-of-the-art methods is
given in Table 3.6. In the table, a p-value that is greater than 0.05 repre-
sents a more remarkable similarity between the predicted and ground-
truth segmentation maps. Similarly, a higher p-value also represents an
accurate segmentation. The table shows that the proposed IRMMNET
had consistent results, and it statistically validates the segmentation re-
sults.

To validate the results of the proposed fused model (i.e., Multi-
view-IRMMNET), we also applied the same fusion technique to the Re-
sUNet and SE-ResUNet models, which yielded Multi-view-ResUNET
and Multi-view-SE-ResUNET. The predicted 2D slices and 3D volumes
of the proposed model, ResUnet, and SE-ResUNet are shown in Figure
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3.10. Although ResUNet and SE-ResUNet successfully predicted outer
classes, such as external cerebrospinal fluid (ECF), they failed to predict
inner/deeper classes, like deep gray matter (DGM). It is conspicuous
that the proposed model’s predictions for all classes were close to the
given GT.

Figure 3.10: The segmentation results of the proposed Multiview IRMM-
NET, Multiview-ResUNET and Multiview-SE-ResUNET models.

Table 3.7 presents the Dice, HD95, sensitivity, and specificity
scores of the proposed Multi-view-IRMMNET, Multi-view-ResUNET,
and Multi-view-SE-ResUNET models. The proposed Multi-view-
IRMMNET model achieved the best segmentation results with a DSC
of 0.791, HD95 of 21.66, sensitivity of 0.819, and Specificity of 0.980.
The Multi-view-ResUNET model achieved less performance scores than
those of Multi-view-IRMMNET. This model achieved a DSC of 0.758,
and Multi-view-SE-ResUNET achieved a maximum DSC of 0.772. We
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Table 3.6: Comparison of the statistical analyses of the proposed IRMM-
NET and the state-of-the-art methods.

Segmentation Models p-Value
BaseUNet-Axial 0.65
BaseUNet-Sagittal 0.68
BaseUNet-Coronal 0.72
ResUNet-Axial 0.89
ResUNet-Sagittal 0.87
ResUNet-Coronal 0.97
SE-ResUNet-Axial 1.15
SE-ResUNet-Sagittal 1.10
SE-ResUNet-Coronal 1.01
IRMMNET-Axial 1.63
IRMMNET-Sagittal 1.7
IRMMNET-Coronal 1.9

Table 3.7: Comparing the segmentation results of the proposed Multi-
view-IRMMNET, Multi-view-ResUNET, and Multi-view-SE-ResUNET
models.

Model Dice HD95 Sensitivity Specificity
Multi-view_ResUNET 0.758 27.39 0.826 0.97
Multi-view_SE-ResUNET 0.772 27.56 0.812 0.973
Multi-view_ IRMMNET 0.791 21.66 0.819 0.980

can conclude that our proposed Multi-view-IRMMNET achieved the
highest DSC score in comparison with the other models, namely, Multi-
view-ResUNET and Multi-view-SE-ResUNET. Similarly, Multi-view-
IRMMNET achieved the lowest HD95 score of 21.66, as compared to
those of Multi-view-ResUNET and Multi-view-SE-ResUNET.
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Figure 3.11: Box plots of the DSC, HD95, sensitivity, and specificity
scores of the proposed Multi-view-IRMMNET, Multi-view-ResUNET,
and Multi-view-SE-ResUNET models.

Figure 3.11 shows the box plots of the DSC, HD95, sensitivity,
and specificity scores of the proposed Multi-view-IRMMNET, Multi-
view-ResUNET, and Multi-view-SE-ResUNET models. Multi-view-
IRMMNET showed the highest Q3 quartile in the DSC and specificity
plots. In contrast, Multi-view-IRMMNET’s median and maximum val-
ues remained higher in all plots compared to those of the Multi-view-
ResUNET and Multi-view-SE-ResUNET models.
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Figure 3.12: Density plots of the predicted 2D DSC for the pro-
posed Multi-view-IRMMNET, Multi-view-ResUNET, and Multi-view-
SE-ResUNET models.

Figure 3.12 overlays the density plots of the predicted 2D DSCs of
the proposed Multi-view-IRMMNET, Multi-view-ResUNET, and Multi-
view-SE-ResUNET models for each class. First, the distribution of the
predicted 2D DSCs for Multi-view-IRMMNET was always significantly

UNIVERSITAT ROVIRA I VIRGILI 
SELF-SUPERVISED ADVANCED DEEP LEARNING FOR CHARACTERIZATION OF BRAIN TUMOR AGGRESSIVENESS 
AND PROGNOSIS ANALYSIS THROUGH MULTIMODALITY MRI IMAGING 
Moona Mazher 



82

different from those of the Multi-view-ResUNET and Multi-view-SE-
ResUNET models for all classes. This was especially the case for VC,
CBM, DGM, and BSTM, which were the classes opposite to EFC, FGM,
and WM. It is worth noting that when a class was absent in a segmented
slice, the predicted 2D DSC was zero for that slice. This showed a small
trend of zero appearing for all classes, especially for deep classes, such
as VC, CBM, DGM, and BSTM.

Similarly, the distribution scores of all classes with Multi-view-
IRMMNET were greater than those with Multi-view-ResUNET and
Multi-view-SE-ResUNET. However, regardless of the class, the 2D DSC
distributions of the Multi-view-ResUNET and Multi-view-SE-ResUNET
models were always significantly different, were more shifted to the left,
and had a larger standard deviation compared to that of the distribution
of the proposed solution. The proposed solution was always shifted to-
ward the higher values on the right.

3.3.3.2 Comparing the Proposed Segmentation Model with Existing
Methods

There has not been much research on the FeTA dataset and fetal
brain segmentation, as private datasets are most commonly used in
research. Table 3.8 compares the performance of the proposed Multi-
view-IRMMNET with that of two state-of-the-art methods called DA-
FaBiAN-Baseline presented in (Dumast et al., 2022) and TopoCP (2D)
presented in (Dumast et al., 2021) in terms of DSC scores. As shown,
Multi-view-IRMMNET achieved the best results, with a DSC score of
0.791. However, DA-FaBiAN-Baseline and TopoCP (2D) produced the
same DSC score (0.70), but TopoCP (2D) obtained the smallest standard
deviation.
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Table 3.8: Comparison of the performance of the proposed
Multi-view-IRMMNET model with that of two existing methods
DA_FaBiAN_Baseline and TopoCP (2D).

Model DSC (%)
DA_FaBiAN_Baseline 0.70 ± 0.24
TopoCP (2D) 0.70 ± 0.14
Multi-view-IRMMNET 0.791± 0.18

3.3.4 GA Prediction Results

3.3.4.1 Analyzing the Performance of GA Prediction Models

As mentioned in Section 3.2.2, three different methods were used to ex-
tract features from the MRI images of the fetal brain, and then these
features were fed into a regression algorithm to predict the GA. Four
different regression techniques were used for the regression of the input
features: LR, XGB, RF, and RT. The first feature set, which was called
IRMMNET Deepfeat, was extracted from the last encoder layer of the
proposed IRMMNET model, as depicted in Figure 3.5. The second fea-
ture set, the so-called 3D deep autoencoder features, was extracted from
the autoencoder depicted in Figure 3.6. The third feature set included
radiomics features (Figure 3.7).

Table 3.9 shows that the RF regressor produced the lowest RMSE val-
ues with the radiomics, IRMMNET Deepfeat, and 3D deep autoencoder
features. The RF regressor achieved the best GA prediction results with
the radiomics features, with an RMSE score of 1.42 and a C-index score
of 0.888. These results indicate that the proposed radiomics features
used with the RF regressor were the most reliable method for predict-
ing GA.
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Table 3.9: Analyzing the performance of different feature types and re-
gression techniques for GA prediction.

Models Linear Regressor XGB Regressor Random Forest Decision Tree
RMSE C-index RMSE C-index RMSE C-index RMSE C-index

Radiomics 1.70 0.837 1.477 0.854 1.42 0.888 1.44 0.858
Deep Features 4.56 0.465 4.10 0.252 3.46 0.371 5.97 0.542
3D Autoencoders 4.51 0.418 3.71 0.427 3.26 0.512 4.64 0.517

Figure 3.13: Kaplan–Meier plots of the radiomics, IRMMNET Deepfeat,
and 3D deep autoencoder features with RF.

Figure 3.13 presents Kaplan–Meier plots of the radiomics, IRMM-
NET Deepfeat, and 3D deep autoencoder features. These plots show
the gestational days predicted by the proposed GA prediction model
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in comparison with the ground truth for the validation datasets. Fig-
ure 3.13a shows the days predicted with the radiomics features with
RF, Figure 3.13b shows the days predicted with the IRMMNET Deepfeat
with RF, and Figure 3.13c shows the days predicted with the 3D deep au-
toencoder features with RF. As shown, the curves of the predicted days
were very close to the GT curve for the radiomics-based features, un-
like the curves for the IRMMNET Deepfeat and 3D deep autoencoder
features. The curve of the predicted days that was produced based on
the 3D deep autoencoder features was far from the curve based on the
GT days. Hence, these curves prove the efficacy of the proposed GA
prediction method based on radiomics features and RF.

3.3.4.2 Analyzing the Explainability of the Radiomics Features

As shown above, the radiomics features yielded the best GA prediction
results. Here, we employ the SHAP explainability method (SHapley Ad-
ditive exPlanations) in order to analyze the most explainable radiomics
features and their importance. SHAP is a game-theoretic approach to
explaining the output of any machine learning model (Antwarg et al.,
2021). Figure 3.14 shows the feature importance of the radiomics fea-
tures for the further analysis of the approach to using the radiomics
features for GA prediction. We used the 18 best-explainable radiomics
features with RF and obtained better scores than with all 108 extracted
radiomics features. It was shown that the max 3D diameter and major
axis length had the highest feature importance. We can say that the max
3D diameter and minor axis length were the most important features for
GA prediction in comparison with the other features, which can help in
future planning.
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Figure 3.14: Feature importance of the radiomics features for GA pre-
diction. The colors from red to blue represent the significance of the
features in model prediction.

3.3.5 Generalization Capabilities of the Proposed Fetal
Brain Segmentation and GA Prediction Models

To demonstrate the generalization capabilities of the proposed fetal
brain segmentation model, we tested it on the Hecktor 2021 dataset (An-
drearczyk et al., 2022). A total of 224 training samples were provided.
This dataset also contained clinical values and imaging samples. The
dataset was divided into 80% for training and 20% for testing. The Heck-
tor 2021 dataset was converted into axial, coronal, and sagittal views.
We trained the proposed IRMMNET fetal brain segmentation model
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with the axial, coronal, and sagittal views from a head and neck tumor
dataset. Each volume in the Hecktor 2021 dataset had a spatial reso-
lution of 144 × 144 × 144. The segmentation masks of the IRMMNET
model for each view were fused to construct the 3D segmentation of the
tumors in the head and neck dataset. Table 3.10 compares the results
of the proposed model with those of existing state-of-the-art methods in
terms of the DSC and HD95 scores. IRMMNET achieved a DSC score
of 0.77 and an HD95 score of 3.02, which were better than those of the
methods used for the comparison.

In addition, the proposed GA prediction method was tested on the
the Hecktor 2021 dataset for the prediction of the patients’ survival days.
The progression-free survival outcomes for all patients were provided in
the CSV files with their clinical data and with various clinical variables.
The head and neck tumor progression was based on the RECIST criteria:
either an increased size of a known tumor (change in N and/or T) or
the existence of a new tumor (change in M and/or N). Death due to a
specific disease was also considered the progression of a disease that
was previously considered stable.

Table 3.10: Analysis of the generalization capabilities of the proposed
fetal brain segmentation model on the Hecktor 2021 dataset.

Method DSC (%) HD95 (mm3)
IRMMNET 0.77 3.02
(Andrearczyk et al., 2021) 0.65 4.07
(Bourigault et al., 2021) 0.75 3.27

Clinical variables, such as the patient age, patient gender, center ID,
TNM group, M-stage, N-stage, T-stage, TNM edition, and chemother-
apy status, were given with different values, and some variables had
missing values. We used imputation to complete the missing values for
all clinical features. We mapped integer values to each the individual
N-, M-, and T- staging datum as follows: T-stage (Tx: 0, T1: 1, T2 : 2, T3:
3, T4: 4, T4a: 5, T4b: 6), N-stage (N0: 0, N1: 1, N2:N2a: 3, N2b: 4, N2c: 5,
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N3: 6), and M-stage (Mx: 0, M0: 0, M1:1). In addition, the TNM group
was also mapped to an ordinal categorical variable, which was based on
the corresponding TNM stage information (7 I: 0, 8 I: 0, 7 II: 1, 8 II: 1, 7
III: 2, 8 III: 2, 7 IV: 3, 8 IV: 3, 7 IVA: 4, 8 IVA: 4, 7 IVB: 5, 8 IVB: 5, 7 IVC: 6,
8 IVC: 6).

The min/max normalization method provided by the scikit-learn
Python package was used to normalize the clinical features’ values. A
scaler was instantiated by using only the training data and then applied
to the test set.

In these experiments, the RF regression technique was employed. As
tabulated in Table 3.11, the clinical features obtained a C-index of 0.692.
However, the C-index of the clinical features was lower than those of
the radiomics, DeepFeat (deep features extracted from the encoder of
the proposed IRMMNET model), and 3D deep autoencoder features,
but it was better than those in existing studies, such as (Starke et al.,
2020; Aerts et al., 2014). The Clinical + DeepFeat + Radiomics combina-
tion led to a C-index of 0.786, which was lower than the Deep-Features +
Radiomics combination, meaning that we could achieve accurate predic-
tions of patients’ survival days without employing clinical data. Table
3.11 also demonstrated that the features based on radiomics and Deep-
Feat achieved the highest C-index scores (0.821) compared to those of
methods that were specially designed for the prediction of patients’ sur-
vival days, such as (Bourigault et al., 2021; Juanco-Müller et al., 2021;
Starke et al., 2020; Aerts et al., 2014).

3.4 Discussion

Image segmentation is the first stage in the volumetric quantification
of the developing fetal brain, which is used to examine the neurologi-
cal growth of fetuses with congenital abnormalities and inform prenatal
planning. The predicted delivery date is crucial for an accurate estima-
tion of gestational age when managing any pregnancy. The timing of
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Table 3.11: Analysis of the generalization capabilities of the proposed
feature extraction methods on the Hecktor 2021 dataset for the predic-
tion of patients’ survival days.

Method C-Index
Clinical features 0.692
Radiomics 0.791
DeepFeat 0.771
3D deep autoencoder features 0.723
Deep-Features + Radiomics 0.821
Clinical + DeepFeat + Radiomics 0.786
(Bourigault et al., 2021) 0.810
(Starke et al., 2020) 0.470
(Aerts et al., 2014) 0.690

appropriate obstetric treatment and the scheduling and interpretation
of some antepartum diagnostics that assess the appropriateness of fetal
growth and measures of development in order to prevent preterm births
and associated morbidities depend heavily on accurate knowledge of
the gestational age. We must create an automated, accurate, and precise
procedure for fetal brain segmentation and gestational age calculation.

This Chapter tackled the tasks of fetal tissue segmentation and ges-
tational age prediction. The 2D-based multi-view (axial, coronal, and
sagittal) models were analyzed for fetal brain tissue segmentation. The
end-to-end fetal tissue segmentation and GA prediction models were
trained and tested with the FeTA 2021 MRI dataset. Initially, we trained
our segmentation model on only axial slices. However, the results were
not convincing, especially in brain tissues in which the number of class
pixels was small. In addition, we acquired all axial, sagittal, and coronal
slices from the 3D fetal brain input volume. We trained the model on
those particular view slices. The coronal view model performed better
than the sagittal and axial models based on the experimental results and
observations. Later, the fusion of the predictions of the axial, sagittal,
and coronal views was combined to enhance the model’s outcome.
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Various regression techniques were developed for GA prediction by
using different feature extraction methods, including a 3D autoencoder,
radiomics features, and features extracted from the IRMMNET encoder.
The IRMMNET encoder’s features were used with different regressors
(LR, RF, RT, and XGB) to predict gestational age. Radiomics- and 3D-
autoencoder-based features were also used for GA prediction. Exten-
sive experiments were performed to achieve the optimal performance
in optimal segmentation and gestational age prediction. Metrics such as
those of the Kaplan–Meier and the SHAP explainability methods were
used to study the explainability of the proposed GA models. Different
comparisons and datasets were utilized to validate the generalization of
the proposed models.

The main limitation of our study is that the sample size for each GA
period in the held-out validation dataset was relatively small. There-
fore, validating the proposed GA estimation model with data from
larger populations and settings will be critical in order to extend the
current use of this MRI-based biometric measurement prediction model
to clinical application scenarios. Since fetal growth is influenced by each
mother’s previous gestational history, body condition, and composition,
future studies should consider mothers’ demographics as variables or
covariables in their models, which might be useful for improving the
precision of gestational dating.

We chose multi-view multi-scale deep learning segmentation models
in order to deliver the complete volumetric information and to provide
an efficient application to fetal brain segmentation, gestational age pre-
diction, and head and neck tumor segmentation and survival analysis.
Our proposed approach consisted of various modules for predicting 3D
segmentation maps with a limited dataset and lower computational re-
sources. Our proposed approach produced a more efficient and faster
response on the validation dataset for the task of fetal brain segmenta-
tion.
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The imaging features might not be sufficient to accurately pre-
dict gestational age. However, we used various feature extrac-
tion approaches, which included imaging, radiomics, 3D latent space
autoencoder-based features, and deep features extracted from the last
layer of multi-view 2D image slices from segmented brain tissues, to ex-
tract more localized features for gestational age prediction. The fusion
of multi-scale segment-based deep features achieved better performance
than that of state-of-the-art methods. There is a further need to inves-
tigate different methods with deep learning models for GA prediction.
The existing methods are based on single-feature extraction techniques
that use basic deep learning models. Correspondingly, the datasets used
in existing methods are in-house and private. There is a need to set
a benchmark on a publicly available dataset for further comparisons
and enhancements in deep learning/machine learning for gestational
age prediction and fetal brain segmentation.

We developed a couple of imaging-based features and validated
them on two different medical imaging datasets for segmentation, fetal
age prediction, and head and neck survival analysis. This is a compre-
hensive end-to-end solution for fetal brain segmentation and gestational
age prediction. Three types of features radiomics features, clinical fea-
tures, and latent features from the 3D autoencoder were used for the
prediction of gestational age with various regression models. These re-
gression models were applied together with various feature fusion com-
binations for the prediction of gestation age. Our proposed model has
also used in head and neck cancer segmentation. The head and neck seg-
mentation features were used in the prediction of the survival age, and
the performance of the proposed model was compared with the perfor-
mance of state-of-the-art models for the tasks of head and neck cancer
segmentation and survival prediction.
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3.5 Conclusion

This Chapter proposed an end-to-end, fully automated, and effective
method for multi-tissue fetal brain segmentation called IRMMNET. We
found that the proposed fetal brain segmentation model obtained the
best results with the Combo loss function, achieving a DSC score of 0.791
and an HD95 score of 21.66, outperforming other state-of-the-art mod-
els. In addition, the density plot analysis demonstrated that with the
proposed segmentation model, the distribution scores of all classes were
greater than those with other models.

In the GA (Gestational Age) estimation task, different regression
techniques (LR, RF, RT, and XGB) were assessed in combination with
three feature extraction approaches (3D autoencoder, radiomics, and IR-
MMNET encoder). We found that when used with RF, the radiomics
features led to the best GA prediction results, with an RMSE score of
1.42 and a C-index score of 0.888. Further, we studied the explainability
and the importance of the radiomics features, and we found that the max
3D diameter and minor axis length were the most important features in
GA prediction in comparison with the other features.

Finally, we studied the generalization capabilities of the proposed
fetal brain segmentation and GA prediction methods for two tasks,
namely, head and neck tumor segmentation and the prediction of pa-
tients’ survival days. When applied to head and neck tumor segmen-
tation, we found that the proposed segmentation model outperformed
existing models that were specifically designed for this task.

In future work, we will use different patch-based 3D segmentation
models and 3D transformers for the task of fetal brain segmentation in
order to further enhance the system’s performance. In addition, we will
validate the GA estimation method with data from larger populations
and settings.
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Part III

3D Deep Learning
Approach for Brain Tumor
Segmentation & Survival

Prediction
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Chapter 4

3D Brain Tumour
Segmentation Based on
Self-supervised Contrastive
Learning and Transformers

Medical image segmentation has seen significant progress using super-
vised deep learning. Hereby, large annotated datasets were employed
to segment anatomical structures reliably. To reduce the requirement
for annotated training data, self-supervised pre-training strategies on
non-annotated data were designed. Contrastive learning schemes op-
erating on dense pixel-wise representations have been introduced as
an effective tool. In this work, we expand on this strategy and lever-
age inherent anatomical similarities in medical imaging data. We apply
our approach to the task of semantic segmentation in a self-supervised
setting with limited amounts of annotated volumes. Trained along-
side a segmentation loss in one single training stage, a contrastive
loss aids in differentiating between salient anatomical regions that con-
form to the available annotations. We proposed an efficient parallel
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transformer module using Multiview multiscale features and depth-
wise features. The multiEncoder-based proposed transformer is trained
on a self-supervised approach using contrastive loss. First, we pre-
pared the proposed transformer with an unlabelled dataset and fine-
tuned one encoder coming from the first stage and a second encoder
trained with a few annotated segmentation masks. Further, we concate-
nated the features of both encoders for final brain tumor segmentation.
MultiEncoder-based transformers achieved excellent results in various
medical image segmentation tasks. We have validated our proposed so-
lution on interdisciplinary real-time medical imaging datasets. Compre-
hensive experiments demonstrate the proposed model has potential as a
versatile segmentation model as outperformed on brain tumor datasets
as well as other interdisciplinary datasets.

4.1 Introduction

With the advent of supervised deep learning, semantic segmentation
of anatomical structures became possible with high accuracy in various
medical imaging modalities Isensee et al., 2021. Nonetheless, providing
accurate and consistent manual annotations in sufficient amounts for
algorithm training remains a challenging and tedious task Tajbakhsh et
al., 2020. With an ever-increasing abundance of available imaging data,
the lack of high-quality annotations impedes their automated analyses.

To decrease the necessity for annotated training data, new train-
ing schemes using the paradigm of self-supervised learning (SSL) have
gained recent interest. Hereby, vector embeddings of image information
are learned that are applicable for various tasks, including natural lan-
guage processing Devlin et al., 2018, computer vision, or medical imag-
ing Bai et al., 2019. Contrastive learning (CL) Bardes, Ponce, and LeCun,
2022 as a specific form of SSL has been shown to enable state-of-the-art
algorithm performance in the case of substantially reduced amounts of
given annotations.
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Most prominent realizations of CL use differently augmented pairs
of input samples (positives), that are encouraged to be encoded with
similar representations, whereas the representations of distinct samples
(negatives) are forced to be dissimilar. The resulting neural network
parameters are suitable as initialization for subsequent tasks, whereby
the learned embeddings are adapted to the respective downstream task
by fine-tuning. Naturally, this approach has been expanded to dense
pixel-wise imaging data, enabling semantic segmentation with limited
amounts of data Xie et al., 2021. However, recent approaches of CL limit
themselves to a two-stage procedure. In the first stage, a general em-
bedding of samples is established. This is followed by a second stage,
where task-dependent finetuning is performed on a downstream task.
The second stage may be detrimental to the learned embedding which
is progressively altered to be conducive to the enforced objective. In
practice, this makes the availability of separate validation samples a ne-
cessity to avoid overfitting to a (sparsely annotated) downstream task
and thereby to ensure adequate generalization to unseen data. The sep-
arate training stages hinder jointly learning the objectives of both stages,
which may aid in providing a more robust embedding. Another draw-
back is that contrastive approaches rely on a separation into positive and
negative examples. This results in embeddings that follow pre-defined
or heuristic local or global separations. Therefore, this leads to rigid rep-
resentations that adhere to the induced structural bias. To improve on
these limitations, we make use of inherent structural similarities of the
underlying human anatomy and proposed Multi transformer encoder
parallel transformer-based solution in a self-supervised approach.

Transformers models have been widely used in many computer vi-
sion applications Vig, 2019. However, the transformer required more
training data as compared to the convolutional neural network. Very
long sequence length is another issue that needs to be addressed in the
medical imaging field, especially for 3D volume for segmentation and
classification tasks. Several works attempt to introduce inductive bias
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into Transformer to reduce the requirement of training data such as CvT
Wu et al., 2021 and CoAtNet Dai et al., 2021. Vision transformer used
patches of images into tokens that would discard all structural informa-
tion within the patch. The self-attention based on quadratic complexity
requires a long sequence and this would be difficult to get dense pre-
diction in the segmentation task. Various researchers proposed different
directions to handle the computational complexity while using trans-
former architectures. SwinTransformer proposed Liu et al., 2021 a local
region of convolution-based self-attention using non-overlap window-
based multi-head self-attention. CCNet Huang et al., 2019 decomposed
2D attention to 1D attention. UTNet Gao, Zhou, and Metaxas, 2021 and
concurrent work CvT Wu et al., 2021, and PvT Wang et al., 2021 pro-
posed methods to reduce the tokens in key and values to improve the
performance in terms of computational complexity. We have proposed a
Multiview approach to use multiscale input features in the self-attention
module to reduce the complexity. Furthermore, we also used a depth-
wise convolutional layer block in parallel with the Multiview atten-
tion block to further improve the performance of the proposed solution.
There are attempts to apply Transformer in the medical image segmenta-
tion field. TransUNet Chen et al., 2021 and UNETR Hatamizadeh et al.,
2022 add a 2D or 3D convolutional decoder to a ViT-like encoder into
medical image segmentation. SwinUNet Cao et al., 2022 and VTUNet
Peiris et al., n.d. proposed a pure Transformer model based on Swin-
Transformer for 2D or 3D segmentation. nnFormer Zhou et al., 2021,
SwinUNETR Hatamizadeh et al., 2021 and HiFormer (Heidari et al.,
2023) use Swin-like hybrid architectures. These models are used to train
with large training datasets or to be initialized with pre-trained weights
on large-scale natural image datasets or longer training epochs, other-
wise they prospective achieve inferior performance on medical image
datasets.

The main contributions of this chapter are:
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1. We proposed an efficient parallel transformer module using Mul-
tiview multiscale features and depth-wise features.

2. The multiEncoder-based proposed transformer trained in self-
supervised using contrastive loss. First, we prepared the proposed
transformer with an unlabelled dataset and fine-tuned one encoder com-
ing from the first stage and a second encoder trained with a few anno-
tated segmentation masks. Further, we concatenated the features of both
encoders for brain tumor segmentation.

3. Multiencoder-based transformer achieved excellent results in var-
ious medical image segmentation tasks.

4.2 Material & Methods

This section discusses the datasets and the methodologies used in this
manuscript. The datasets include the labeled and unlabelled data for
training the proposed self-supervised contrastive learning approach.

4.2.1 Dataset

There are two datasets from BraTS are used in this manuscript.
1. To handle the unlabelled part of the proposed solution the

BraTS2021 training dataset Baid et al., 2021 Menze et al., 2014 Bakas
et al., 2017 without labels was used for training the encoder part of the
self-supervised contrastive learning approach. The total number of sub-
jects is 1200 which is further divided into training and testing sets on
80:20 ratio. The total training set holds 960 subjects, and the testing set
holds 240 subjects. Each subject has nifti volumes for Flair, T1, T1CE,
and T2 MRI modalities. There are three tumor labels have been given in
the ground truth (GT) masks including enhancing tumor (ET) (labeled
as class-4 in GT), peritumoral edema (ED) (labeled as class-2 in GT), and
non-enhancing tumor/ narcotic tumor (NCR) (labeled as class-1 in GT).
All given four modalities are stacked and given to the model for training
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and testing. Figure 4.1 shows the Flair, T2, T1, T1CE, with their corre-
sponding segmentation GT of a subject from the BraTS 2021 dataset.

Figure 4.1: The four MRI modalities overlayed with their respective
ground-truth (a) shows the Flair image, (b) shows the T1 image, (c)
shows the T1CE image, and (d) shows the T2image.

2. The labeled BraTS2020 dataset has been used in this manuscript
for training the second part of the proposed segmentation solution. The
total number of subjects in the training set of BraTS 2020 with their
masks is 369 Menze et al., 2014. Similar to the BraTS 2021 dataset each
subject has nifti volumes for Flair, T1, T1CE, and T2 MRI modalities.
There are three classes of tumor given in the ground truth (GT) masks
including enhancing tumor (ET) (labeled as class-4 in GT), peritumoral
edema (ED) (labeled as class-2 in GT), and non-enhancing tumor/ nar-
cotic tumor (NCR) (labeled as class-1 in GT). In our experiment, all four
MRI modalities are stacked for brain tumor segmentation using the pro-
posed model. Here, the green color in the GT segmentation represents
the ET class, the yellow color stands for ED, and the red color stands for
the NCR tumor class.
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4.2.2 Proposed Self-Supervised Learning model

The proposed two-stage self-supervised learning for brain tumor seg-
mentation has two main parts. We named the proposed model ‘Mul-
tiview Multiscale Parallel Attention Transformer UNET’ (MMPATran-
sUNet).

In the first stage of the model, augmentation has been used to mutate
the data and secondly, it utilizes regularized contrastive loss Chen et al.,
2020 to learn feature representations of the unlabeled data. The multi-
ple augmentations are applied on a randomly selected 3D foreground
patch from a 3D volume. Two augmented views of the same 3D patch
are generated for the contrastive loss as it functions by drawing the two
augmented views closer to each other if the views are generated from
the same patch, if not then it tries to maximize the disagreement. Con-
trastive learning offers this functionality on a mini-batch. We have used
masked volume inpainting, contrastive learning, and rotation prediction
as proxy tasks for learning contextual representations of input images.

The primary task of the network is to reconstruct the original im-
age. The different augmentations used are classical techniques such as
in-painting Pathak et al., 2016, out-painting, and noise augmentation to
the idea by local pixel shuffling Chen et al., 2019. The secondary task of
the network is to simultaneously reconstruct the two augmented views
as similar to each other as possible via regularized contrastive loss Chen
et al., 2020 as its objective is to maximize the agreement. The term reg-
ularized has been used here because contrastive loss is adjusted by the
reconstruction loss as a dynamic weight itself. Multiple patches having
size 64x64x64 are generated and used in different views based on the
augmentation via the transforms on the same cubic patch. The objective
of the self-supervised learning (SSL) network is to reconstruct the orig-
inal image. The contrastive loss is driven by maximizing agreement of
the reconstruction based on the input of the two augmented views. For
the first stage proposed model, 960 subjects from Brats 2021 dataset are
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used.
In the second stage, the pre-trained encoder weights from the first

stage are used in the proposed 3D Multiview and multiscale parallel at-
tention transformer (MMPTtransNet) for brain tumor segmentation on
BraTS 2021 dataset. We trained our proposed model using a training-
supervised dataset based on patches. We randomly generated patches
with size 64x64x64 from input volume and used different augmenta-
tion to train the proposed model. We used a sliding window with 64
strides to generate the prediction volume. The training transforms such
as RandCrop, RandGaussianNoise, RandGaussianSmooth, RandShift-
Intensity, RandAdjustContrast, and RandZoomd was used to train the
second stage proposed model. For the second stage proposed model,
369 subjects from Brats 2020 dataset are used. The complete architecture
of the Two-stage self-supervised contrastive learning for brain tumor
segmentation ((MMPATransUNet) is given in Figure 4.2.

Multiview and multiscale parallel attention block This manuscript
proposes an efficient multiscale Multiview parallel attention trans-
former block for 3D volumetric segmentation.

The inpv feature maps from the decoder side of the proposed module
are passed to the DConv layer before the proposed attention module.
Therefore, the proposed attention transformer block used a full token
map and passed this token map to the depth-wise convolutional layer.
We use the depth-wise separable convolution as an efficient version of
convolution implemented by: depthwise conv → pointwise conv, where
the depth-wise convolution gathers the spatial information. In contrast,
the pointwise convolution gathers along the channel dimension. Given
token sequence Att f after the attention module, we first reshape them
back to 2D and transform them with convolutional blocks as shown in
the equation. The proposed convolutional projection and feed-forward
network are a generalized version of the origin Transformer design that
is implemented using a 1 × 1 convolution layer in both modules.
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Figure 4.2: Two stages Self-supervised learning for BraTS segmentation.

F = DConv(inpv) (4.1)
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Vf = Fv (4.2)

Q f = Fq (4.3)

K f = Fk (4.4)

Att f =
QT

f
⊗

K f
√

dk

⊗
Vf (4.5)

F̃ = F + DConv

(
Reshpe2D

(
QT

f
⊗

K f
√

dk

⊗
Vf

))
(4.6)

In the second branch, The feature obtained from three views (sagit-
tal, coronal, and axial) is passed to three Conv layers with BN and ReLU
using different kernel sizes such as 3 × 1 × 1, 1 × 3 × 1, and 1 × 1 × 3
in each convolutional layers to produced three feature maps. The acti-
vation maps from Q(sagittal view), K(coronal view), and V are passed
to the softmax layer. The importance of each feature is performed and
these multi-scale feature maps to get the output of the proposed module
as shown in Eq. 4.11

Qsagittal = Conv(:, :, ksize = (1, 3, 1), pad = (0, 1, 0)) (4.7)

QCoronal = Conv(:, :, ksize = (3, 1, 1), pad = (1, 0, 0)) (4.8)

Qaxial = Conv(:, :, ksize = (1, 1, 3), pad = (0, 0, 1)) (4.9)

MVf = HF + so f tmax(QsagittalT

⊗
KCoronal)

⊗
Vaxial (4.10)
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PMVF = F̃ + MVf (4.11)

where
⊗

represents matrix multiplication and MVf represented
Multiview feature maps. By adopting the proposed module using MVf ,
F̃ depth-wise attention-based features used in the proposed model can
enhance the capability and efficiency of the proposed solution. The pro-
posed MMPA transformer block is shown in Figure 4.3.

Figure 4.3: The efficient parallel Multiview Multiview multiscale and
depth-wise features attention block.

A framework of the second stage proposed model is presented as an
encoder, decoder, and a baseline module is shown in Figure 4.4. The 1x1
convolutional layer with softmax function has been used at the end of
the model. The 3D MMPTtranNet from each block on the encoder side.
In the encoder block, the spatial input size has been reduced with an
increasing number of feature maps, and on the decoder side, the input
image spatial size has been increased using a 3D Conv-Transpose layer.
The input features’ maps that are obtained from every encoder block are
concatenated with every decoder block feature map to reconstruct the
semantic information. The convolutional (3x3x3conv-BN-ReLu) layer
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used the input feature maps extracted from every convolutional block
in the encoder side and further passed these feature maps into the pro-
posed residual module. The spatial size doubled at every encoder block
and feature maps are halved at each decoder stage of the proposed
model. The feature concatenation has been done at every encoder and
decoder block except the last 1x1 convolutional layer. The three-level
deep-supervision techniques are applied to get the aggregated loss be-
tween ground truth and prediction.

Figure 4.4: The proposed model used for Brain tumor segmentation.
MMPATransformer module used at encoder and 3D conv with 3D up-
sampling layer used in decoder.

Training and optimization of the proposed solution: The learning
rate of 0.0001 with the Adam optimizer has been used for training the
proposed model. The cross-entropy and dice function is used as a loss
function between the output of the model and the ground-truth sam-
ple. 2 batch-size with 1000 epochs has been used with 20 early stopping
steps. The best model weights have been saved for prediction in the
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validation phase. The 64x64x64 input image patch was used for train-
ing and a sliding window with stride 64 was used as prediction. The
Pytorch library is used for model development, training, optimization,
and testing. The V100 Tesla NVidia-GPU machine is used for training
and testing the proposed model. The data augmentation methods men-
tioned in Table 1 are used for self-supervision and proposed model train-
ing and optimization. The dataset cases have different intensity ranges.
The dataset is normalized between 0 and 1 using the max and min inten-
sity normalization method. The detail of the training protocol is shown
in Table 4.1

Table 4.1: Training protocols.

Data augmentation methods

RandCrop, RandGaussianNoise,
RandGaussianSmooth,
RandShiftIntensity,
RandAdjustContrast, RandZoomd

Initialization of the network “he” normal initialization
Batch size 2
Patch size 64x64x64
Total epochs 1000
Optimizer Adam
Initial learning rate 0.0001
Stopping criteria, and
optimal model selection
criteria

The stopping criterion is reaching
the maximum number of epochs (20).

Training time 16 hours

4.3 Experimental Results & Discussion

4.3.1 Results

This section of the manuscript covers the ablation study of the proposed
MMPATransUNet (Multiview Multiscale Parallel Attention Transformer
UNET) with its variants also its comparison with state-of-the-art meth-
ods. Moreover, to evaluate the generalization capability of the model
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we have given the comparison of two other interdisciplinary medical
imaging datasets with our proposed methods.

4.3.1.1 Results on Brain Tumor Segmentation (BraTS)

We have compared the performance of our proposed approach using
the testing dataset of BraTS 2021 on 240 subjects with its variants and
state-of-the-art deep neural networks. We have used an ablation study
in this chapter and used a systematic approach to assess our method.
Firstly, we have used the only Multiview approach with transformer
UNET module and named it as MVATransNet. Secondly, we used a
Multiscale attention module with a single encoder and named it as MM-
SATransNet and then we proposed our final Multiview Multiscale Par-
allel attention using the multi-encoder transformer Unet (MMPATran-
sUNet) approach. Table 4.2 shows the ablation study scores in terms of
dice and HD coefficients for all three tumor regions ET, TC, and WT.
The proposed MMPATransUNet produced the best performance scores
in comparison to the MVATransNet and MMSATransNet.

Table 4.2: Comparison of proposed brain tumor segmentation model
with its variants on BraTS 2021 dataset.

Model Dice-ET Dice-TC Dice-WT H95-WT H95-TC H95-ET
MVATransNet 83.42 86.67 90.08 5.04 6.12 8.10
MMSATransNet 85.24 88.12 91.92 7.33 7.89 9.01
Proposed
self-supervised
MMPATransUNet

86.08 88.98 92.95 4.88 5.46 8.88
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Table 4.3: Comparison of proposed and existing state-of-the-art models
for Segmentation of Brain tumor on BraTS 2021 Data.

Model Dice-ET Dice-TC Dice-WT H95-WT H95-TC H95-ET
3D U-Net [6] 78.94 84.31 85.52 10.30 11.32 14.13
SwinUNet [5] 83.15 84.53 89.86 8.51 9.35 13.09
TransBTS [10] 80.35 85.35 89.25 7.83 8.21 15.12
UNETR [11] 80.77 84.61 86.06 9.37 10.29 12.83

nnFormer [12] 84.24 85.72 89.54 7.74 8.51 10.07
VT-UNet-S [13] 83.14 86.86 91.02 8.25 8.03 11.46
VT-UNet-B [13] 85.59 87.41 91.20 6.23 6.29 10.03
Proposed Model 86.08 88.98 92.95 4.88 5.46 8.88

The comparison of the proposed self-supervised contrastive learning
approach MMPATransUnet with the state-of-the-art methods is given in
Table 4.3. The proposed method has given the highest dice scores of
86.08, 88.98, and 92.95 for ET, TC, and WT tumor regions in compari-
son with the existing methods. Likewise, the lowest HD scores of 4.88,
5.46, and 8.88 for WT, TC, and ET labels are produced by the proposed
brain tumor segmentation model in conjunction with the state-of-the-art
approaches.

4.3.1.2 Results on Interdisciplinary Medical Imaging Datasets

We have tested our proposed segmentation solution on two different
Medical Image Computing and Computer Assisted Interventions (MIC-
CAI) challenge datasets to evaluate the generalization capability of our
proposed solution. The proposed method has shown the above state-of-
the-art performance in all MICCAI datasets. The results are shown in
Table 4.4, and Table 4.5.

1. Results on HEad and neCK TumOR (HECKTOR) segmentation on
PET/CT images 2021:

HECKTOR2021 CT/PET dataset of (254+71) H&N cancer patients
collected from 6 different centers consisting of PET, CT images, and
patient information including gender, age, sex, and acquisition center.
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Table 4.4: The comparison of proposed MMPATransUNet with state-of-
the-art methods for HECKTOR 2021 dataset.

Models DSC HD
Proposed self-supervised MMPATransUNet
with Multiencoder contrastive learning 0.79 2.97

Base 3DUNet 0.70 3.88
(Andrearczyk et al., 2021) 0.65 4.07
(Bourigault et al., 2021) 0.75 3.27

In comparison to HECKTOR2020, 71 patients were added in HECK-
TOR2021 with an addition of 101 test cases and 224 training cases. The
patient included in the dataset are histologically proven H&N cancer-
diagnosed patients. The test set belongs to two different CHUP and ta
CHUP centers. For consistency, expert radiation oncologists annotated
gTVt (primary gross tumor volume) from multiple centers. The dataset
is provided in NIFIT volume and binary contour of GTVt for segmen-
tation of GTVt. PET and CT images are stored in SUVs and Hounsfield
Units, respectively. Besides, a bounding box of testing and training sets
is also provided in CSV. The evaluation is performed based on the DSC
score computed within the bounding box at the original resolution of CT
images. Further detail of the dataset can be found at Andrearczyk et al.,
2022.

Table 4.4 shows the performance of the proposed method on the
HECKTOR2022 dataset. The proposed MMPATransUNET has per-
formed better in comparison with the state-of-the-art approaches. The
highest mean dice score value of 0.76 and the lowest HD score of 3.03
have been achieved with a proposed solution.

2. Results on Myocardial Segmentation with Automated Infarct
Quantification Challenge (MYOSAIQ) 2023:

Similar to the HECTOR, the proposed MMPATransUNET is tested
on MYOSAIQ 2023 dataset to evaluate the efficacy of the proposed so-
lution. This dataset holds the four cardiac classes including left ventri-
cle (LV), Left ventricle Myocardium (MYO), Left ventricle Myocardium
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Infarction (MI), and Microvascular obstruction (MVO). The full dataset
is composed of 467 LGE exams from two different cohorts to quantify
MI lesions at different phases of the longitudinal evolution of the dis-
ease: 4-8 days post-MI (MIMI cohort) and 1 month / 12 months post
MI & reperfusion (HIBISCUS cohort). This dataset is divided into 3
subgroups. The first group consisted of 123 patients with LGE im-
ages of acute myocardial infarction up to 8 days post-MI (MIMI cohort).
These patients were treated by two different procedures: i) with Percu-
taneous Coronary Intervention (PCI) and immediate stenting or ii) with
the Minimalist Immediate Mechanical Intervention approach. The sec-
ond group has 204 patients with LGE images obtained at 1 month post-
PCI and reperfusion (HIBISCUS-STEMI cohort), and the third group
contains 140 patients with LGE images obtained at 12 months post-
PCI and reperfusion (HIBISCUS-STEMI cohort). The 374 training sam-
ples were used for training and 93 for testing the proposed model.
The full dataset description is given as ‘https://www.creatis.insa-
lyon.fr/Challenge/myosaiq/databases.html’.

Table 4.5 shows the performance results of the proposed method on
the MYOSAIQ dataset in terms of dice and HD scores for all given labels.

Table 4.5: The Average Dice & HD coefficients for MYOSAIQ 2023
dataset using proposed MMPATransUNet approach

Classes DICE HD
Left ventricle (LV) 0.953 6.021
Left ventricle Myocardium (MYO) 0.893 11.207
Left ventricle Myocardium Infarction (MI) 0.702 15.871
Microvascular obstruction (MVO) 0.801 13.994
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Table 4.6: HD comparison of proposed MMPATransUNet approach with
other teams’ scores on leaderboard for LV, MYO, MI and MVO class
labels

Leaderboard
positions

Left
ventricle (LV)

Left ventricle
Myocardium

(MYO)

Left ventricle
Myocardium

Infarction (MI)

Microvascular
obstruction

(MVO)
Team1 0.937 0.822 0.684 0.720
Team2 0.935 0.819 0.660 0.629
Team3 0.935 0.817 0.658 0.615
Team4 0.934 0.817 0.656 0.599
Our Results 0.953 0.893 0.702 0.801

Table 4.7: HD comparison of proposed MMPATransUNet approach with
other teams’ scores on leaderboard for LV, MYO, MI and MVO class
labels

Leaderboard
positions

Left
ventricle (LV)

Left ventricle
Myocardium

(MYO)

Left ventricle
Myocardium

Infarction (MI)

Microvascular
obstruction

(MVO)
Team1 6.406 12.214 16.746 16.548
Team2 6.471 12.301 18.201 21.871
Team3 6.667 11.787 19.790 14.539
Team4 6.641 11.794 18.770 16.705
Our Results 6.021 11.207 15.871 13.994

The performance analysis of the proposed model and other team so-
lutions is shown in Table 4.6 and Table 4.7. The challenge organizer
announced ranking based on the method’s novelty and achieved better
performance. Our proposed model achieved comparable performance
as compared to the top four teams. These are leaderboard scores using
93 test samples. For the Blood pool/ left ventricle, our proposed solu-
tion almost achieved better results as compared to other teams for all
classes.

4.3.1.3 Qualitative Results based on proposed model

In this section, we have provided the results of the brain tumor seg-
mentation 2021 dataset and recently participated MYOSAIQ challenge
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to show the qualitative performance of the proposed solution.
1. 3D visualization of proposed and existing models for BraTs seg-

mentation:
Figure 4.5 shows a 2D and 3D visualization of the input image with

its ground-truth and prediction masks on proposed MMPATransUNet
and other state-of-the-art methods for brain tumor segmentation. Here,
the green color in the segmentation represents the ET class, the yellow
color signifies ED, while the red color denotes the NCR tumor class.
The 3D visualization of GT and the proposed MMPATransUNet are very
close to each other. The enhancing tumor class is always comparatively
bigger than the peritumoral edema and necrotic tumor class while at the
time of diagnosis, these tumors show heterogeneous contrast enhance-
ment, often with a necrotic center, and peritumoral edema. The pro-
posed model effectively segmented all three classes also as presented in
terms of dice and HD scores in Table 4.3.
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Figure 4.5: Segmentation results obtained by the proposed MMPATran-
sUNet and existing state-of-the-art methods on the BraTS2021 dataset
for two subjects. First row from left to right: (a) ground truth, (b) pre-
diction MMPATransUNet, (c) prediction VT-UNet-B, (d) SwinUNet, and
(e) 3D UNet overlayed on corresponding T1 images. The second row
represents the 3D masks of the corresponding 2D views from the first
row.

The performance analysis of the proposed model is compared with
other state-of-the-art models given in Figure 4.6 and Figure 4.7. Our pro-
posed solution achieved the highest dice as compared to existing meth-
ods as shown in Figure 4.6. Figure 4.7 shows the HD of proposed and
existing state-of-the-art models.
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Figure 4.6: The Dice coefficient comparison of proposed MMPATran-
sUNet with its variants and existing state-of-the-art methods on Brats
2021 dataset.

Figure 4.7: The HD comparison of proposed MMPATransUNet with its
variants and existing state-of-the-art methods on the BraTS 2021 dataset.

Furthermore, descriptive statics of Dice and Hausdorff are given for
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the evaluation of the proposed model efficacy. Figure 2 and Figure 3
show the boxplots for Dice and HD comparison of the proposed model
with its variants and state-of-the-art approaches of ET, TC, WT, and av-
erage tumor regions. The horizontal black lines inside the boxes show
the mean values. The plots represent the upper and lower whiskers and
the outliers. The whiskers are computed as 1.5 times the distance of the
upper and lower limits of the box. The (⋄) symbol represents the out-
liers, values outside the whiskers range. These plots are presented on
the test set of 240 samples from the BraTS 2021 dataset. In Figure 4.7,
the proposed MMPATransUNet has a higher mean value for all tumor
regions and the average tumor label in comparison with other methods.
Similarly, it can be clearly seen in Figure.. that the proposed model has
the lowest mean values for all tumor regions as well as their average in
compassion with other methods.

2. 3D visualization of the proposed model on MySEQ challenge:
The prediction visualization of the proposed model with the exist-

ing vision transformers is shown in Figure 4.8. The green color shows
the LV class, the yellow label characterizes the MYO class, the brown
color represents the MI label and the red color embodies the MVO class.
The proposed MMPATransUNet achieved better performance and well-
segmented the left ventricle, MYO, and infarction labels as compared to
the other 3D Swin and Vision Transformers. Similarly, we can see that
our proposed model efficiently segmented the MVO class where other
models were not able to do so as shown 4.8 (b).

The performance of the proposed model on the interdisciplinary
datasets shows that it is a well-generalized model. Therefore, it is a suit-
able versatile approach for medical image segmentation tasks with the
capability of efficiently addressing small lesions issues.
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Figure 4.8: Comparison of proposed MMPATransUNet model with
other vision transformer-based models for test subject 32.

4.3.2 Discussion

The proposed model has been validated on different challenging
datasets such as heart, brain, head and neck cancer, and infant seg-
mentation, and the proposed solution achieved state-of-the-art results
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in a self-supervised setting. After systematically comparing the per-
formance of Transformers and CNN-based models in a broad range of
medical image segmentation tasks, we found that previously proposed
Transformer models do not consistently outperform CNN models. The
reasons behind this finding are multifaceted. Although Transformers
have a greater capacity for modeling complex structures, ViT-like Trans-
formers face computational complexity constraints that lead to exces-
sive downsampling of the input, rendering them unsuitable for dense
prediction tasks such as segmentation. Swin-based Transformers, lack-
ing inductive bias, struggle to effectively train on limited medical image
data.

Furthermore, we verified that large-scale pre-trained weights on nat-
ural images do not transfer well to medical images, especially in 3D
settings. On the other hand, CNNs excel at capturing local textures
and can learn with a small amount of data due to their inherent induc-
tive bias. As a result, hybrid architectures like MedFormer successfully
combine the strengths of both approaches, leveraging their advantages
and demonstrating improved segmentation performance across various
medical imaging scenarios. It is essential to carefully assess the individ-
ual contributions of the Transformer and CNN components in hybrid
models. For example, although TransUNet introduces ViT to the ResNet
backbone, adding numerous parameters, its performance is compara-
ble to R50-UNet. Second, establishing solid core-model baselines is cru-
cial for unbiased model evaluations. Reporting results for Transformers
with auxiliary techniques (e.g., data augmentation, advanced optimiz-
ers, or model ensembles) does not faithfully assess the fairness of core
architectures.

Our results, obtained through a consistent evaluation framework, in-
dicate that the core-architecture performance of previous Transformer
models does not consistently outperform CNN baselines. Third, eval-
uating task-agnostic datasets is vital for measuring the generalization
ability of segmentation models. Current Transformer-related studies are
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highly task-dependent, whereas CNN-based U-Net models have been
verified across various tasks.

Our study highlights the importance of using multi-dataset evalu-
ations with diverse anatomies for assessing generalization. Addition-
ally, incorporating datasets from multi-center, multi-vendor, or differ-
ent scanning protocols is crucial for a robust evaluation against med-
ical domain shifts. We have designed models and investigated the
utility of large-scale foundation models for medical imaging that can
learn through a multi-view, multi-encoder, and multi-body training
paradigm. An effective model should possess strong transfer learning
and few-shot learning capabilities. We will explore human-in-the-loop
learning, refining the model based on doctors’ feedback on the model’s
prediction. This approach will help to improve the model’s performance
while ensuring that the model’s prediction is consistent with medical
professionals in real-world settings.

4.4 Conclusion

In this study, we presented a hybrid Transformer segmentation model
that is scalable across data amounts, ranging from small-scale to large-
scale data without pretraining. The proposed model showcases its po-
tential for generalization by establishing new state-of-the-art baselines
across seven widely used datasets and targeting anatomies (e.g., healthy
organs, diseased tissue, and tumors). The strong performance of the
proposed can be attributed to the desirable inductive bias introduced
by the unified architecture and the efficient parallel Multiview attention
and depth-wise based attention module, which learns global semantics
information. Further, we designed two encoders in a self-supervised
learning approach and fused the features from a pre-trained encoder
and an encoder trained from scratch. These key designs enable the
proposed model to capture boundary details, fuse global information
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in a hierarchical manner, and exhibit robustness against data distribu-
tion shifts. Furthermore, we provide a comprehensive analysis for a fair
comparison of different architectures across a wide range of medical im-
age segmentation tasks.
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Chapter 5

Survival Prediction of
Brain Tumor Patients Using
Attention-Guided 3D Deep
Learning with Radiomics

Automatic survival prediction of gliomas from brain Magnetic Reso-
nance Imaging (MRI) volumes is an essential step for a patient’s progno-
sis analysis. Radiomics research delivers beneficial feature information
from MRI imaging which is substantially required by clinicians and on-
cologists for predicting disease prognosis for precise surgical treatment
and planning. In recent years, the success of deep learning has been vast
in the field of medical imaging, it shows state-of-the-art performance in
applications like segmentation, classification, regression, and detection.
Therefore, in this chapter, we proposed a collective method using deep
learning and radiomics techniques for the survival prediction of brain
tumor patients. We first propose a hierarchical channel attention (HAM)
module and a multi-scale-aware feature enhancement (MSAFE) to effi-
ciently fuse adjacent hierarchical features in the proposed segmentation
model. After segmentation, deep/latent features (LCNN) are extracted
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from the bottom layer of the proposed segmentation model. Later, we
extracted selected radiomics features (histogram, location, and shape)
using input images and segmented masks from the proposed segmenta-
tion model. Further, the 3D deep learning regressor has been trained for
3D regressor-based deep feature extraction. We proposed the method
of overall survival prediction for the brain tumor patients by combin-
ing all the meaningful features including clinical features (age) that also
favorably contribute to the survival days prediction for the glioma pa-
tients. To predict the survival days for each patient, the selected features
are trained to analyze the performance of various regression techniques
like Random Forest (RF), Decision Tree (DT), and XGBoost.

Our proposed combined feature-based method achieved the highest
performance for survival days prediction over the state-of-the-art meth-
ods. We also perform extensive experiments to show the effectiveness
of each feature extraction method. The experimental results infer that
deep learning-based features along with radiomic features and clinical
features are truly vital paradigms to estimate survival days.

5.1 Introduction

Gliomas are the most common brain tumor disease developed from glial
cells with the greatest mortality rate. There are 190,000 glioma cases
annually occurring worldwide Castells et al., 2009. Approximately 12
months Furnari et al., 2007 is the average survival time of glioma pa-
tients and 24 months after surgical resection Louis et al., 2007, roughly
90% of patients unluckily died due to this disease. For automatic sur-
vival prediction and treatment planning, automatic delineation, early
detection, and volume estimation are important tasks to detect gliomas.
Due to the high variation of shape, appearance, and location of gliomas,
it is a challenging task to localize and delineate the gliomas using con-
ventional segmentation methods. Moreover, human experts need to
closely monitor the manual segmentation annotation of tumor tissue
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that is a tedious and time-consuming task. Consequently, there is al-
ways a need for automatic, accurate and faster methods for segmenta-
tion and survival rate prediction that could be helpful for the diagnosis
and treatment of the gliomas.

Magnetic resonance imaging (MRI) is used as an effective non-
invasive predictive tool for assessment and initial diagnosis of treat-
ment response in neuro-oncology. Based on different research, MRI pro-
vides distinctive information that would be a better choice to predict
survival autonomously based on pathologic and clinical data. The vol-
ume, shape, textural and intensity extracted from radiographic images
is known as radiomics Chaddad et al., 2019.

Radiomics includes numerous important disciplines, incorporating
computer vision for quantitative feature extraction, radiology for imag-
ing interpretation, and machine learning for classifier assessment and
regression Seow et al., 2018. Various radionics-based models have been
presented for survival prediction Yao et al., 2016, and distant metasta-
sis prediction Coroller et al., 2015. Shboul et al., 2019 proposed texture,
area, volume, and Euler characteristics-based radiomics features from
different intra-tumor parts using Extreme Gradient Boosting (XGBoost)
regressor for survival prediction. They achieved 0.519 accuracies in sur-
vival prediction tasks in Brain Tumor Segmentation (BraTS) 2018 test
data. Feng et al., 2020 proposed basic machine learning-based algo-
rithms such as simple linear regressors using some volume, surface area,
and directional gradient features for survival prediction. Their method
was overfitted due to a small set of feature extraction and did not opti-
mize well for survival prediction.

Chaddad et al., 2019 used a gradient boosting algorithm and ran-
dom forest machine learning methods based on multi-scale texture fea-
tures for survival prediction. Furthermore, they combined clinical fac-
tors with different seven radiomics features for survival prediction. Os-
man, 2019 presented 147 sets of radiomics image features using three
tumor subregions and used the Least Absolute Shrinkage and Selection
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Operator (LASSO) regression model for survival prediction. Further,
they used the Cox model to select features to enhance the survival pre-
diction performance. Sun et al., 2019 presented 4,524 radiomic features
from the segmented area of the tumor and used a decision tree machine
learning model for survival prediction. Baid, Shah, and Talbar, 2020 pro-
posed a gray-level co-occurrence matrix, shape features, and first-order
statistics features, they used Artificial Neural Network (ANN) model
for survival prediction. Baid et al., 2019 introduced radiological fea-
tures from MR images and used the LASSO model for survival days
prediction. Weninger, Haarburger, and Merhof, 2019 proposed volume,
distance, the center of the mass tumor, and age radiomics feature us-
ing linear regression for survival prediction. Bae et al., 2018 proposed
radiomics analysis software to extract 43 unique quantitative features
and Support Vector Machine (SVM) machine learning model used for
survival prediction.

Recently deep learning models achieved state-of-the-art perfor-
mance in medical image analysis for regression Mazher et al., 2022, clas-
sification Noreen et al., 2020, segmentation Payette et al., 2023,Lalande et
al., 2022, and detection application Bano et al., 2022. The deep learning-
based models produced an excellent performance to recognize objects
and diagnose diseases from medical images Vente et al., 2023. The key
advantage of deep learning models is that they extract the features au-
tomatically from images without manual intervention. However, prior
approaches like radiomics always use manually engineered features like
tumor size/shape. Though, one downside of deep learning is that it
generally requires large, annotated datasets to work well.

Iqbal et al., 2019 proposed deep learning-based segmentation mod-
els to extract CNN features and combined handcrafted features such as
texture, histogram, volume, area, and run length. They used a random
forest regression model for survival prediction. Banerjee, Mitra, and
Shankar, 2019 presented a deep learning-based method for survival pre-
diction using BraTs 2019 dataset. They extracted semantic and agnostic
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features using multi-planner spatial convolutional neural networks and
trained multilayer perceptron (MLP) neural networks for survival pre-
diction. Their approach did not achieve better performance in overall
survival prediction task. Jungo et al., 2018 proposed a residual convo-
lutional neural network segmentation model to extract volume, hetero-
geneity, rim width, and surface irregularity features from the segmented
tumor. They used an ANN using segmented features for survival pre-
diction. Islam et al., 2020 proposed a CNN model and extracted volume,
heterogeneity, rim width, and surface irregularity from the segmented
tumor. Further, they combined imaging and clinical features for sur-
vival prediction. They used various machine learning regressors such
as SVM, ANN), Random Forest, and XGBoost for survival prediction.

Huang et al., 2021 proposed a non-Local module-based VNet model
to segment brain tumors. Further, they have extracted CNN based deep
features and imaging radiomics features. They combined clinical fea-
tures with radiomics and deep features for survival prediction. They
tested their method using BraTS 2020 dataset and achieved a 79% dice
score for segmentation and 311.5 RMSE values in survival days predic-
tion.

Pálsson et al., 2022 proposed imaging features and used a machine-
learning model for survival prediction. They used an atlas-based seg-
mentation model with an autoencoder to extract segmented features.
They proposed an automatic method that is contrast-adaptive and ro-
bust to missing modalities, making the features generalizable across
scanners and imaging protocols. They used a random forest ma-
chine learning model on segmented features for survival prediction.
They added other clinical features with segmented features for survival
days prediction. They tested their method on BRaTs 2020 dataset and
achieved a 0.61 C score between predicted and ground-truth survival
days.

Regardless of the different correlations between survival, genomic
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expression and imaging features proven in the literature, no single anal-
ysis is significant enough to deploy in clinical practice. Therefore, vari-
ous radiomic features depending on the nature of the disease are hard to
connect in a meaningful way. Interpretation of features is also important
and sometime clinicians may not trust the model prediction even though
the model produced accurate results because the model does not give in-
terpretable explanations of its prediction. Interpretable models may also
reveal patterns in the data that provide effective new intuition into the
disease and encourage future research.

The studies based on radiomics are not ideal to reproduce because
of failing to generalize the solution across different scanners and im-
plementation of software. Therefore, radiomics features use raw image
characteristics that would sensitively depends on image acquisition en-
vironment and different scanning equipment. Other issues remain ac-
tive though computer technology has been used in the field of brain
tumor survival prediction and segmentation, there are still challenges
exists to fully automate the solution in clinical practice. First, brain tu-
mors vary from patient to patient in size, shape, and location. Second, in
most cases, lesion of brain MRI is very small that creates the imbalance
voxel between background and lesion area. The aforesaid challenges can
create hurdles in survival prediction. Lastly, the other information such
as genes, age not used during radiomic feature extraction that would
restrict the ability to identify predictions.

Therefore, radiomics features are not solely enough for survival pre-
diction tasks. CNN-based features are robust and automatically ex-
tracted from images without manual intervention. In contrast, the tra-
ditional methods used handcrafted features like radiomics, the data-
driven based approach extract imaging features automatically like for
complex segmentation tasks. It validated from literature that high-
level features like shapes extract global semantic information and low-
level features like contours extract details spatial structural information.
Hence, the features from different neural networks layers are used to
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combine effective features from previous cascaded layers intuitively.
Deep Learning based models can synergistically and comprehen-

sively explore efficient features from high-level features to low-level per-
spectives. Combining the CNN-based deep features and meaningful ra-
diomics features along with the clinical feature improves the accuracy
of survival prediction.

In this article, we proposed an attention-based convolutional neural
network (CNN). We propose a multi scale-aware feature enhancement
(MSAFE) module that adjusts the receptive fields dynamically to pro-
duce efficient features effectively, so improving the feature representa-
tion capability of the network. Later, we extracted the deep/latent CNN
features (LCNN) from the trained proposed CNN model along with the
specifically selected radiomics feature (histogram, location, and shape)
using input images and segmented masks. These features enhanced the
performance of our proposed solution. A better segmentation mask pro-
duced better radiomics features that boost the performance of the pro-
posed solution for survival days prediction.

Furthermore, we proposed our final method of overall survival pre-
diction by combining all the meaningful features including clinical fea-
tures (age) that contribute to the number of days of survival left for the
patient. To predict the survival days for each patient, the selected fea-
tures are trained to analyze the performance of various regression tech-
niques. Details about how the features are selected and various exper-
iments that are run for finding the best regression technique have been
discussed in the next sections. To assess the generalization capability
of our proposed solution is also given on Head Neck Tumor dataset
(HECTOR2021).
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5.2 Proposed tumor segmentation model

This section presents the dataset and architectural details of the pro-
posed deep learning models and radiomics features for brain tumor seg-
mentation and survival days prediction.

5.2.1 Dataset

The brain tumor segmentation(BraTS) has been published since 2012 at
Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI) conference Menze et al., 2014. The overall survival prediction task
is included from 2017 until 2020 BraTS challenges. In this article, BraTS
2020 dataset was used for the initial segmentation of brain tumor classes
for later overall survival prediction of the patients. The total number of
subjects in the training set of BraTS 2020 with their masks is 369 and
dataset was taken from different institutions using different scanners
and clinical protocols Menze et al., 2014.

This dataset is divided into two sets, one for training and one for test-
ing the proposed model. A ratio of 80:20 is used for training and testing
set division. The total training set holds 295 subjects, and the testing set
holds 74 subjects. Each subject has nifti volumes for Flair, T1, T1CE, and
T2 MRI modalities of size 240 × 240 × 155. The manual annotation pro-
vided by one to four raters and validated by experienced neurologists
having 15 years’ experience. There are three classes of tumor given in
the ground truth (GT) masks including enhancing tumor (ET) (labeled
as class-4 in GT), peritumoral edema (ED) (labeled as class-2 in GT), and
non-enhancing tumor/ narcotic tumor (NCR) (labeled as class-1 in GT).
In our experiment, all four MRI modalities are stacked for brain tumor
segmentation using the proposed model. Further, the resection status,
age, and survival in days were also provided for overall survival pre-
diction. Figure 5.1 shows the Flair, T2, T1, T1CE, and the corresponding
segmentation GT of a subject from the BraTS dataset (2020).
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Figure 5.1: The four MRI modalities were used in this study. (a) shows
the Flair image, (b) shows the T2 image, (c) shows the T1 image, (d)
shows the T1CE image, and (e) shows the ground truth mask.

Here, the green color in the GT segmentation represents the ET class,
the yellow color stands for ED, and the red color holds for the NCR tu-
mor class. The segmentation labels in this dataset are enhancing tumor
region (ET), tumor core (TC) and whole tumor (WT).

5.2.2 Proposed Method for Survival Prediction

The training and validation datasets use stacked images of four MRI
modalities. A 3D deep learning segmentation model has been proposed
to segment brain tumors and is further used in survival prediction. The
deep features (LCNN) are extracted from the bottom layer of the en-
coder from trained segmentation masks. Furthermore, the input volume
and predicted segmentation masks have been used to extract radiomics
features. We also have used some feature selection techniques to select
the best radiomics and LCNN for survival days prediction.

The variance-based feature selection technique is used to select the
best features. Moreover, the features are normalized and fed into tradi-
tional machine learning-based classifiers such as random forest, gradi-
ent boosting, etc. Furthermore, the 3D deep learning-based CNN regres-
sor (3DReg) model has been trained for deep feature selection. There-
after, a feature selection is also applied to select the useful 3DReg fea-
tures.
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Figure 5.2: Overall proposed technique for survival days prediction
based on deep and non-deep learning feature s extraction methods.
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Different performance metrics have been used for survival days pre-
diction. The overall schematic diagram of the proposed methodology is
given in Figure 5.2. The detailed description of each module is explained
in the following subsections.

5.2.3 The proposed Segmentation Framework

Figure 5.3 illustrates the proposed CNN model for brain tumor segmen-
tation, which includes encoder and decoder networks.

Figure 5.3: Diagram of the proposed Model with the proposed MSAFE
module and the HAM block.

Four MRI modalities (T1, T1CE, T2, Flair) have been stacked as the
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input, and predicted masks are produced for each tumor class (enhanc-
ing, non-enhancing/necrotic, peritumoral edema) highlighting the tu-
mor regions. The convolutional block consists of 3D convolutional lay-
ers with Batch-Normalization and ReLU activation functions to extract
the different feature maps from each block on the encoder side. The 3D
max-pooling layer has been used to reduce the input image spatial size.
In the encoder block, the spatial input size is reduced with increasing
the number of layers, while on the decoder side, the input image spatial
resolution is recovered via a 3D upsampling layer using a bilinear up-
sampling method. Each MRI modality has a 160x160x80 input size. The
number of input channels is 4 (stacked four modalities of input dataset).
The number of feature maps for each encoder block is 32, 64, 128, and
256. The kernel size of 3x3x3 is used for each Conv layer in the encoder
and decoder block. The kernel size 2x2x2 for the 3DmaxPool layer is
used to downsample the spatial resolution on the encoder side. The
transpose3D convolutional layer with 2x2x2 kernel size with stride 2 is
used to upsample each decoder size.

Figure 5.4: Schematic diagram of hierarchical attention module (HAM).

We introduced two special modules for our 3D CNN model. First,
we have proposed a 3D hierarchical attention module (HAM) module
for the proposed brain tumor segmentation model as shown in Figure
5.4. The HAM block has been used after each encoder block to concate-
nate with their corresponding decoder blocks. The 1x1 convolutional
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layer with softmax function has been used at the end of the proposed
model to generate the final output.

We add the reweighted low-level features to the high-level features
to yield the result Featj The mathematical representation of the proposed
module is given below:

Featj
c = Concat(Fj

low, upsample(Fj+1
high) (5.1)

Featj = sigmoid
{

Lmlp

(
Lgap

(
Featj

c

))
+ Lmlp

(
Lgmp

(
Featj

c

))}
⊗

Fj
low + Fj+1

high
(5.2)

where Concat represents the concatenation operation, Featmlp de-
noted as MLP operator, Featgap denoted the global average pooling,
Featgmp represents the global max pooling, and

⊗
represents element-

wise multiplication. The proposed module is used to progressively
guide the fusion between high-level and low-level features that could
help to suppress irrelevant background noise and preserve more seman-
tic information.

The proposed HAM module is used to progressively guide the fu-
sion between high-level and low-level features that could help to sup-
press irrelevant background noise and preserve more semantic informa-
tion. High- and low-level features from the encoder and decoder have
rich semantic and spatial information that would be suitable for accu-
rate segmentation. We designed an attention module with weighting
vectors and used a channel attention module to capture rich semantic
information from low-level features and high spatial information from
high-level features. The features are concatenated between low-level
and up-samples of the high-level features. This HAM module would
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be useful to exploit the useful features between high- and low-level fea-
tures. Further, the combined features are passed to the channel attention
with a weighting function to suppress the irrelevant background noise.
The channel attention coefficient with sigmoid is used with multi-layer
perceptron (MLP) and pooling layers to preserve relevant features as
shown in Figure 5.4.

Second, we propose a multi-scale-aware feature enhancement
(MSAFE) module. We embed the MSAFE module at the bottom of
the framework which makes the model capable of extracting hidden
multi-scale contextual information as well as able to aggregate multi-
scale features efficiently. In a result, MSAFE) considers ample feature
maps and can handle scale variations among different image instances.
Specifically, the feature map produced by the bottom encoder module is
equally divided into four parallel feature groups, named by fi, i ϵ 1, 2, 3,
4. The size of features in each group fi is the same as of input features,
however, the number of channels is 1/4th of the original. To obtain a
more abundant feature map consisting of various receptive fields, we
applied dilated convolutions with different dilation rates to all four par-
allel groups. As a result, the proposed network can extract adequately
precise features at different scales. The detailed structure configuration
of the MSAFE module is shown in Figure 5.5.

f mi = sigmoid(Dratei
c ( fi))

⊗
Dratei

c ( fi) (5.3)

HF = Concat( f m1, f m2, f m3, f m4) (5.4)

where, Dratei
c represents the dilated convolution layer with dilated

rate of ratei (r1 = 1, r2 = 2, r3 = 3, and r4 = 4)
Finally, these hierarchical features HF are concatenated and deliv-

ered to the adaptive feature aggregation component to further model
the importance of each feature.
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Figure 5.5: Multi-Scale aware feature enhancement (MSAFE) module for
brain tumor segmentation.

The feature obtained from three view (sagittal, coronal, and axial) are
passed to three Conv layers with BN and ReLU using different kernel
sizes such as 3 × 1 × 1, 1 × 3 × 1, and 1 × 1 × 3 in each convolutional
layers to produced three feature maps. The activation maps from Q, K
and V are passed to the softmax layer. The importance of each feature
is performed and aggregate these multi-scale feature maps to get the
output of the proposed module is shown in Eq. (5.5)

BFeatures = HF + so f tmax(QueryT ⊗Key)
⊗

Value (5.5)

where
⊗

represents matrix multiplication and BFeatures repre-
sented bottom feature maps. Adopting the proposed module at the bot-
tom layer after the last layer of the encoder can enhance the capability
of the proposed model.
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5.2.4 Radiomics Feature and Imaging Feature selection
for survival prediction

In this work, we have extracted different multiscale features from input
MRI 3D volumes and segmented tumor masks. The radiomics features
are categorized as volume features, intensity-based features, and Geo-
metrical features.

Figure 5.6: The radiomics features extraction from deep learning seg-
mentation masks for survival rate prediction.

The intensity-based features are Kurtosis, Entropy, and Histogram.
The Geometrical features are Length Coordinates, First axis, Second
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axis, Third axis, Centroid coordinates, Eigenvalues, Equatorial eccen-
tricity, and Meridional eccentricity. The further textural radiomics fea-
ture extracted from 3D MRI modalities input volume are (1) first-order
statistics/statistical features (FOS/SF), gray level co-occurrence matrix
(GLCM/SGLDM), gray level difference statistics (GLDS), neighborhood
gray-tone difference matrix (NGTDM), statistical feature matrix (SFM),
Laws texture energy measures (LTE/TEM), fractal dimension texture
analysis (FDTA), gray level run length matrix (GLRLM), Fourier power
spectrum (FPS), gray level size zone matrix (GLSZM), higher order spec-
tra (HOS), and local binary pattern (LPB) Mazher et al., 2022. These
radiomics features approach is shown in Figure 5.6.

5.2.5 Deep Features Extracted from the Bottom Layers of
the Segmentation Model

Deep CNN features (LCNN) were extracted from the bottom layer of
the trained encoder of the proposed segmentation model shown in Fig 3.
The extracted feature vector has a 1x256 dimension extracted for each in-
put 3D volume from the trained segmentation model. The performance
of deep features is then analyzed using classical machine learning mod-
els.

5.2.6 3D Deep Regressor model

We have built a 3D regressor model based on the 3D convolutional, 3D
Batch-Norm, and 3D ReLU layers. These three Layers (3DConv-BN-
ReLU) formed one block. The proposed 3D-CNN network is a combina-
tion of these repeated layers followed by max pooling layers. After each
convolution layer with the filter size of 3 × 3 × 3, there is a max-pooling
layer of size 2 × 2 × 2. The 3D maxpooling layer is inserted after each
block to downsample the spatial resolution of input feature maps. The
first convolutional layer has a filter size of 16, and the number of filters
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in every next block is doubled to gain a rich feature vector of images.
The number of feature maps increased by 32, 64, 128, and 256, and spa-
tial resolution decreased by 160, 80, 40, 20, and 15. One flattened layer
and two fully connected layers have been used to get the final feature
output. Like the LCNN feature vectors, a total of 1 x 256 size of fea-
ture vector has been extracted for each input 3D volume. The proposed
model is shown in Figure 5.7. L1 loss function has been used to compute
the loss between predicted and ground-truth survival days. All model
layers have been optimized from scratch using PyTorch.

Figure 5.7: The proposed 3D deep learning regressor for survival days
prediction using a brain tumor dataset.

5.2.7 Regression Models for Survival Days Prediction

The various regression models used for survival days prediction. From
experimental evaluation, the four regression models like random for-
est (RF) Taghanaki et al., 2019b, regression trees (RT), linear regression
(LR), and extreme gradient boosting (XGB) produced acceptable per-
formance. RF is widely used in machine learning based classification,
regression problems and it used bootstrapped dataset to build various
number of trees in parallel. LR is another famous regression model
that is used to find linear behavior between input and out variables.
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RT and Extreme gradient boosting (XGB) are also famous classical ma-
chine learning models, and these models optimize the parameters dur-
ing training and find the best parameters for better decision masking of
the model.

All regressors have been implemented using
the scikit-learn tool with default setting (https :
//scikitlearn.org/stable/supervisedlearning.html).

5.2.8 Loss Function

The Combo loss function proposed by Taghanaki et al., 2019b has been
used for optimization and training the proposed segmentation models.
The loss function is defined as:

L = α

(
− 1

i = 1

N

∑
N

β (ti − lnpi) + (1 − β) [(1 − ti) ln (1 − pi)]

)

− (1 − α)
K

∑
i=1

(
2 ∑N

i=1 piti + S

∑N
i=1 pi + ∑N

i=1 ti + S

) (5.6)

where ti represented target labels, pi denoted as prediction mask, α ,
βϵ [0, 1] and S are used as hyperparameters. All models are trained using
Adam optimizer with a learning rate of 0.000116, ρ = 0.95, ϵ = 1 ∗ 10−8,
and decay = 0. Experimentally, we found that Dice and cross-entropy
terms lead to better segmentation results. We tried different β values
with all used brain tumor segmentation datasets, finding that β = 0.5
is the best value for our proposed model. For the survival prediction
task, we have chosen root mean squared error (RMSE) as the evaluation
indicator. The RMSE is shown in Eq. (5.7).
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RMSE =

√
∑n

i=1
(
Xobs,i − Xpre,i

)2

n
(5.7)

Using the Adam optimizer, the proposed 3D segmentation model
is optimized at the learning rate of 0.0001. The loss function between
the prediction mask and the ground truth was created using the combo
loss function. We have set epochs to 1000 and used a batch size of 2.
The proposed model is trained using the early stopping criteria, and the
training was ended after a maximum of 20 epochs on similar validation
dice. The nifty data volume is read and written using SimpleITK. The
data visualization is accomplished using the ITK-SNAP, Since the inten-
sity ranges of the dataset cases vary, we used the max and min intensity
normalization methods to normalize the dataset between 0 and 1. Each
input image size is set as 80x160x160, and for each validation volume,
the prediction mask is resampled to its original shape (224x224x155) us-
ing the nearest-neighbor interpolation approach. The prediction mask
generated by the proposed model has been resampled to have the same
size and spacing as the original image and copies all the meta-data, in-
cluding origin, direction, and orientation.

The proposed models have been developed in the PyTorch library
and trained from scratch. An NVIDIA GTX 3070 GPU having 12GM
memory is used for the training and optimization of the proposed
model.

5.3 Experimental Results and Discussion

This section covers in detail the results and their discussion on our pro-
posed survival prediction techniques for brain tumor patients.
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5.3.1 Results

We described various feature extraction techniques and utilized mul-
tiple regression models for survival days prediction using BraTS 2020
medical imaging dataset. Initially, we designed a segmentation model
and later we used this model for deep/latent CNN (LCNN) feature ex-
traction as well as the prediction masks of the model are used for the
radiomics (RD) feature extraction method. From the trained segmenta-
tion model the LCNN features are extracted from the bottom layer of
the model encoder block. Moreover, we also trained a separate 3D deep
learning model called 3D regressor (3Dreg) using L1 loss for survival
days prediction.

We have compared our proposed model with base UNet and ResNet-
based UNet models. The base UNet is a simple encoder and decode-
based model and RUNet is the ResUNet base model. The 3D HAM
modules are inserted in each decoder side of the base UNet. The dice
scores coefficients (DSCs) and Hausdorff distance (HD) of the proposed
model as well as RUNet and UNet models when segmenting the three-
brain tumor sub-regions (i.e., ET, WT, and TC) are shown in Table 5.1.
The higher DSCs as well as the lower the HD in segmentation means
elevated model performance.

Table 5.1 shows that the base UNet model achieved the dice score
and HD scores of 0.83, 0.86, and 0.87 and 8.78, 7.90, and 3.88 for ET, TC,
and WT which are less than the achieved scores among all models. Simi-
larly, the RUNet in comparison achieved fewer dice and high HD scores
to its enhanced version of the proposed model. Therefore, the proposed
model benefiting from the proposed MSAFE module and additional
HAM blocks reached the ultimate performance scores by generating the
highest dice score and smallest Hausdorff distance (HD) scores. It re-
veals that our proposed segmentation model outperforms the baseline
UNet model and the other two comparison models on brain tumor seg-
mentation tasks. The higher segmentation performance scores are key
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to better survival predictions as they produce good-quality prediction
masks.

For performance analysis, various machine learning regressors have
been trained for survival predictions as shown in Table 5.2, the perfor-
mance is given in c-index. The random forest regressor produced a bet-
ter performance as compared to other regressor models like Decision
Tree (DTR), X-Gradient Boosting (XGBR), Gradient Bagging Regressor
(GBR), extended Tree Regressor (ETR), Bagging Regressor (BR), etc.

Table 5.1: The performance comparison of proposed and existing deep
learning models for brain tumor segmentation

Models DSCs HD
ET TC WT ET TC WT

Proposed Model 0.883 0.891 0.902 4.18 ± 0.822 3.62 ± 0.689 2.89 ± 0.253
RUNet 0.868 0.872 0.886 6.33 ± 0.995 5.45 ± 0.887 4.35 ± 0.911
UNet 0.838 0.864 0.874 8.78 ± 0.989 7.90 ± 0.945 3.88 ± 0.673

Table 5.2: The performance comparison of different regression methods
for survival days prediction.

Algorithm 3D Regressor
features

Clinical
features

Latent 3D CNN
features

Radiomics +
Clinical features

Combined
features

RF 0.49 0.56 0.59 0.61 0.63
XGBR 0.54 0.56 0.6 0.57 0.62
DTR 0.51 0.55 0.57 0.56 0.61
GBR 0.53 0.53 0.53 0.55 0.6
ETR 0.55 0.51 0.58 0.53 0.62
BR 0.54 0.54 0.52 0.56 0.59

Table 5.3 displays the results of the random forest model for the pro-
posed feature extraction techniques in comparison with state-of-the-art
methods in terms of the c-index. It is seen that when the radiomics fea-
tures are combined with the clinical feature (Age) it achieves a state-of-
the-art performance score. The idea of combining the extracted features
from all methods produced generous results and yields a higher per-
formance score than state-of-the-art methods. It could be because com-
bining many features into a single feature led to generalizability that is
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Table 5.3: C-index-based performance measured for survival days pre-
diction.

Algorithms C-index
3D Deep Regressor (3DReg) 0.49
Clinical 0.56
Radiomics 0.57
3D Deep CNN Features (LCNN) 0.59
Radiomics + Clinical (RDCL) 0.61
Clinical + Radiomics + 3D Latent CNN + 3D Deep Regressor 0.63
Hd95 + Clinical + CoM + CEV (Pálsson et al., 2022) 0.61

derived via integrated inference skills shared across numerous feature
sets.

Further, we estimated the RMSE scores for our proposed feature ex-
traction methods using random forest regressor results and draw a per-
formance comparison with existing state-of-the-art survival prediction
methods as shown in Table 5.4. The proposed combined feature solu-
tion produced the lowest RMSE values as compared to state-of-the-art
methods.

Table 5.4: Performance of proposed and existing methods for survival
days prediction.

Method RMSE MAE

Existing method \hl{[28]}

CNN+ Radiology+ Clinical 316.31 240.05

Radiology+ Clinical 392.51 284.54

CNN (RF) 378.85 284.13

CNN(DL) 358.92 269.37

Proposed method

3D Deep Regressor (3DReg) 400.11 300.10

Clinical 390.10 290.70

3D Deep CNN (LCNN) 377.89 255.66

Radiomics 321.23 247.56

Combined + Clinical 310.11 243.99
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5.3.2 Performance Analysis of the Proposed Model

The Kaplan–Meier curves based on ground truth and predicted survival
days using proposed feature extraction techniques are shown in Figure
5.8. We have used a random forest regressor to predict survival days
using clinical, radiomics, and latent CNN features from the proposed
segmentation model and deep CNN features from the trained 3D re-
gressor. The curves show survival days prediction based on combined
extracted features with random forest algorithms produced more accu-
rately as compared to individual feature techniques for survival days
prediction.

Figure 5.8: Kaplan–Meier plots of the (a) combined features radiomics,
(b) radiomics features using RF classifier, (c) 3D deep extracted from
segmentation model features with RF, (d) 3D deep learning regressor.

Figure 5.8. shows the survival days prediction curve with ground
truth survival days using combined features (clinical, radiomics, deep
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features). The random forest machine learning model based on ra-
diomics features shows better performance after the combined feature
approach is shown in Figure 5.8 (b). Figure 5.8 (c) shows results based
on latent deep 3D CNN features using random forest. The 3D Regressor
model using random forest is shown in Figure 5.8 (d).

Figure 5.9: Bland Altman plot between predicted survival days and
ground-truth survival days. (a) Combined (b) Radiomics + Clinical (c)
Latent 3D CNN (d) 3D Regressor.

The combined feature approach produced better performance and
predicted curves are very close to the target curves in terms of survival
days as compared to individual based features. Therefore, the curves
produced by proposed models validated the effectiveness of the sur-
vival days prediction method based on combined deep learning-based
and radiomics features along with the clinical feature.

To investigate agreement between algorithm-generated and manu-
ally determined survival days, we used a Bland–Altman plot, which
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graphs the mean difference of measured survival versus manual sur-
vival days and constructs limits of agreement. Bland Altman represents
the distribution of survival days output for clinical, radiomics, deep
learning features, and deep learning 3D regressor features. Bland Alt-
man’s plot shows the agreement between predicted and ground truth
survival days. Figure 5.9 (a) based on the combined feature extrac-
tion approach represented the most agreement of predicted and ground
truth survival days as compared to other bland Altman plots. Similarly,
the other plots are based on radiomics, and deep features are shown in
Figure 5.9 (b, c, d).

Figure 5.10: Density plots of the survival days prediction for the ex-
tracted features from 3D Regressor (3DReg), latent 3D CNN (LCNN),
Radiomics + Clinical (CLRD), and their combined features (Combine).
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Figure 5.10 shows the density plot for all survival prediction meth-
ods. Firstly, the distribution of the predicted survival days using com-
bined features from all extracted feature techniques is significantly dif-
ferent from their separate outcomes. Similarly, the distribution score of
predicted survival days with the combined feature approach is greater
than their separate execution methods. However, prediction distribu-
tions of the 3D regressor distributions and latent 3D CNN techniques
have larger standard deviations and more shifts towards left as com-
pared to the distribution of the Radiomics + Clinical feature approach.

The proposed combined feature solution is always shifted toward
the higher values on the right as shown in Fig 11. The SHAP explainabil-
ity method (SHapley Additive exPlanations) Juanco-Müller et al., 2021
has been used to measure the importance of deep CNN and radiomics
features. SHAP is used game theoretic approach and now widely used
to explain the machine learning model feature importance Starke et al.,
2020. The red color shows the high features and blue color presented the
low feature values.

Figure 5.11 (a, b) shows the radiomics and deep features importance.
It was shown that the skew, skew difference, and kurtosis achieved
higher feature importance than the other features. We can say that the
skew and kurtosis achieved higher feature importance as compared to
other radiomics features. Out of 256 extracted features from the deep
CNN method which produced the highest feature importance as com-
pared to others are shown in Figure 5.11 (b).
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Figure 5.11: Radiomics feature importance for survival prediction. The
red color presented high and blue color presented low features in pre-
diction of model (a) radiomics feature generation, (b) Deep Latent 3D
CNN.

5.3.3 Generalization Capability Analysis

To see the generalization capability of our proposed solution for survival
days prediction we used the Hecktor2021 dataset.

I. Dataset: The head and neck tumor dataset proposed in MIC-
CAI2021 has been used to validate our proposed solution. It consisted of
224 total training patients and 101 total testing acquired from 5 different
centers. The primary gross tumor volume (GTVt) along with survival
days was annotated by experts. The dataset was provided in NIfTI for-
mat with binary segmentation masks. The bounding boxes at the origi-
nal CT resolution were also provided to compute DSC scores for evalua-
tion. A detailed description of the dataset can be found Bourigault et al.,
2021.

II. Results: To estimate the number of survival days, we considered
four previously mentioned feature extraction methods for the internal
validation dataset: including clinical, CT/PET with radiomics, 3D deep
segmentation-based features, and 3D regressor characteristics.
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Results showed that the combined feature set (radiomics, clinical,
and deep) gave the best performance when compared to the method us-
ing separate features. The combined features extraction strategy yields
the best results for the RF model, as shown in Table 5.5 in terms of the
c-index.

Table 5.5: The various regressor models for survival prediction in terms
of C-index.

Algorithms C-index
Clinical features 0.692
Deep segmentation features (LCNN) 0.788
Radiomics Features (RD) 0.757
Deep 3D regressor features (3DReg) 0.794
Combined (Clinical + RD + LCNN + 3DReg) features 0.845

We compare the performance of our given method in terms of c-
index with existing methods for survival days prediction using the
HECTOR dataset as shown in Table 5.6. It is observed that our pro-
posed combined feature approach outperformed the other state-of-the-
art methods by yielding a c-index score of 0.84.

Table 5.6: Performance comparison with state-of-the-art methods Algo-
rithms C-index.

Algorithms C-index
Proposed Method 0.84
(Bourigault et al., 2021) 0.82
(Juanco-Müller et al., 2021) 0.59
(Starke et al., 2020) 0.47
(Aerts et al., 2014) 0.69

The diagnosis of squamous cell carcinoma requires the discovery of
malignancy and the evaluation of prognostic outcomes. Effective detec-
tion may aid in better decision-making. Even if the segmentation and
quantitative analysis of head and neck cancer is a notably complex task,
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the performance of the proposed framework is sufficient to be consid-
ered for automated diagnosis and survival rate prediction. Our com-
bined radiomics and deep learning extracting features from the trained
segmentation and regressor model for survival days prediction, which
performs noticeably better than state-of-the-art techniques in terms of
all assessment metrics for the tested dataset.

5.4 Discussion

In this chapter, we have proposed radiomics and deep learning-based
methods for survival days prediction for brain tumor survival days and
further validate our method on the Hecktor2021 dataset to compare and
validate the performance of our proposed model.

We have trained a 3D segmentation model with different proposed
modules to first segment the tumor regions and generate the predicted
masks. The proposed model yielded the best scores for DSCs and HD
as the proposed MSAFE module in the segmentation model achieved
better feature maps based on parallel dilated convolutional layers with
different dilation rate by focusing different receptive fields. The pro-
posed block extracts feature information dynamically based on differ-
ent spatial scales and covered situation where brain tumor widely vary-
ing the size and shape. Later, the input 3D volumes and segmented
masks are passed for the radiomics feature extraction and selection.
Also, we extracted the latent CNN features from the last encoder block
of the trained segmentation model. Furthermore, we trained a 3D deep
learning-based regressor model and extracted deep features from the
last layer of the trained regressor model to predict survival days. We
also used clinical features such as age and recission time provided in
BraTS 2020 training data to train the random forest and other machine
learning regressors.
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Interestingly, adding a clinical training set did not significantly al-
ter the results, which implies that the gap may be explained by clini-
cal characteristics that are more pertinent when combined with differ-
ent feature concatenation-based models. For the analysis of compli-
cated tasks, feature ensembling or features concatenation approaches
are well recognized to be quite effective. Contrary to most of the pre-
vious research on medical image diagnosis, in which clinical features
play a significant role in prediction and diagnosis, we have discovered
the fascinating fact that clinical features do not much contribute to per-
formance improvement, indicating that most of the data is based on im-
ages. The geometric feature based on intensity, geometry and location
contributed more to predict the survival days prediction. This study
validated that the smaller the shape of the tumor produced the higher
overall survival and the immediacy of the tumor to the center of the
brain achieved lesser performance for overall survival. The radiomics
using images and masks produced higher explainable features for sur-
vival days prediction. Kurtosis and skewness achieved overall better
performance and played a better role for predicting the overall survival
days showes in the explainable feature plots. The performance of la-
tent CNN deep learning-based features is almost comparable to the ra-
diomics survival days prediction by observing the c-index scores.

The overall performance of the 3D deep learning regressor is not
good as compared to radiomics and LCNN feature results. A deep
learning-based regression model needs more input data for training,
and we have used only 295 input samples. Therefore, it is observed
we need more data to fully obtain the robustness in the results based
on a 3D CNN-based regressor. Radiomics-based features may have bet-
ter interpretable advantages and generally more robust results can be
obtained as compared to deep learning-based features.

However, our main objective is to propose imaging features that can
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be replicated based on various MR preprocessing, contrasts, and scan-
ning equipment. To attain efficient and robust solution using MR modal-
ities based on variations in scanners or acquisition protocols deep LCNN
features are obtained with a method that was designed to have these
properties. Automatically computing detailed LCNN features make it
easy to analyze the relative properties of tumor and their classes for sur-
vival prediction, as we have done in our experiments.

Our combined based feature method produced better performance
and accurately measured the survival days on two different medical
imaging datasets. It could be because combining many features into
a single feature led to generalizability that is derived via integrated in-
ference skills shared across numerous feature sets.

As demonstrated in our experiments, the features proposed in our
chapter readily generalize across different datasets like BratS 2020 and
Hecktor 2021. The proposed approach produced an excellent perfor-
mance in Hecktor 2021 dataset within the same feature set. However,
BraTS, it didn’t outperform that well. Though, one possible reason could
be the BraTS20 dataset consisted of anaplastic astrocytoma’s, glioblas-
toma or both that have various survival characteristics. The circum-
stance that BraTS20 has pre-operative that may play an essential role
as well as the influences of surgery cannot be considered.

The segmentations model caters to the information from directly
multi-contrast MRI scans using f tumor region and the surrounding
brain. In this work, the focus is to extract radiomics features from the
tumor region itself and rest of the brain. We analyzed that the skewness,
and kurtosis of deformation field amplitudes around the tumor together
with conventional clinical and deep learning-based auto-generated fea-
tures significantly improves survival models. Future work may there-
fore explore transformer-based deep learning methods along with ra-
diomic features to further improve model accuracy. Since the transform-
ers adopt the mechanism of self-attention, differentially weighing the
significance of each part of the input data. Conclusion In this chapter, we
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have proposed a hybrid deep learning and radiomics-based method for
survival days prediction of brain tumor patients. Further, the proposed
hybrid solution is validated on the Hecktor2021 dataset for head and
neck tumor segmentation to compare and substantiate the performance
of our proposed approach. We trained the proposed 3D segmentation
model with two distinct proposed modules (HAM, MSAFE). Later, we
extracted radiomics and deep features from the trained segmentation
deep learning model. Further, we trained a 3D deep learning-based re-
gressor model and extracted the deep features from the last layer of the
trained regressor model to predict survival days of the brain tumor pa-
tients. A variety of classical machine learning models have been trained
using several sets of extracted imaging features while achieving the bet-
ter performance with the combined imaging features with non-imaging
(Age) features. We have also presented the explainability of the given
set of features. It has been observed that combined radiomics and deep
features can also have strong interpretability and clinical applicability
for survival days prediction in brain tumors. In the future, transformer
and generative learning-based deep learning models will be explored to
further improve the performance of the proposed approach for survival
days prediction in brain tumor prognosis.

5.5 Conclusion

In this Chapter, we have proposed a hybrid deep learning and
radiomics-based method for survival days prediction of brain tumor pa-
tients. Further, the proposed hybrid solution is validated on the Heck-
tor2021 dataset for head and neck tumor segmentation to compare and
substantiate the performance of our proposed approach. A variety of
classical machine learning models have been trained using several sets
of extracted imaging features while achieving better performance with
the combined imaging features with non-imaging (Age) features. We
have also presented the explain ability of the given set of features. It has
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been observed that combined radiomics and deep features can also have
strong interpretability and clinical applicability for survival days predic-
tion in brain tumors. In the future, transformer and generative learning-
based deep learning models will be explored to further improve the per-
formance of the proposed approach for survival days prediction in brain
tumor prognosis.
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Part IV

Validation of Proposed
Methods
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Chapter 6

Validation of the proposed
solutions on real-time
medical imaging challenges

6.1 Introduction

In this chapter, we will explain the validation or assessment of our pro-
posed solution for this dissertation in various MICCAI (Medical Image
Computing and Computer Assisted Intervention) challenges. We have
tested our proposed solution on real-time MICCAI datasets and com-
pared the performance of our proposed solution with other international
teams in a real-time environment.

Furthermore, most of the MICCAI challenges require solutions in
docker containers for deployment in remote systems to test the mod-
els on hidden test sets. We have prepared docker containers for most
of the challenges to be deployed in real time. MICCAI conference pro-
vided a dataset for various challenges every year and top world cen-
ters or deep learning engineers and researchers participated in different
challenges and provided their solutions to compare the performance of
their proposed solutions. These challenges are posted on the respective
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websites and on MICCAI’s main website. We have participated in MIC-
CAI 2021, 2022, and 2023. The detailed description and ranking of each
challenge that we have obtained are explained in this chapter. We have
presented one of our MICCAI challenge CuRIOUS2022 in this chapter
that has been published as a book chapter in MICCAI proceedings.

In the CuRIOUS2022 challenge, we have proposed a self-supervised
contrastive learning two-stage model for the Intraoperative ultrasound
(iUS) task. In the first stage, we trained the encoder of our proposed
3DResUNet model using self-supervised contrastive learning. The un-
labeled dataset was used in self-supervision to train the encoder of the
proposed 3DResUNet model and utilized this encoder as a pre-trained
weight. In the second stage, the pre-trained weighted-based 3DResUNet
proposed model was used to train on the labeled training dataset for iUS
segmentation.

We achieved 1st position in CuRIOUS2022 and this solution was
further extended using 3D MultiEncoder shared 3D transformer-CNN
models in a self-supervised contrastive learning framework for this
Ph.D. work on brain tumor segmentation task. We have explained a
detailed analysis of our proposed approach in Chapter 4.

6.1.1 Position ranking of challenges

The position achieved in participating in MICCAI competitions is
shown in Figure 6.1 and the position ranking for ISBI competition is
shown in Figure 6.2. We have divided the ranking into three portions.
The red color represents the ranking in the first 5 positions, mustard
shows the top 6 to 10 positions, and the diagonal green color represents
more than 10 rankings that we have achieved.
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Figure 6.1: Proposed Deep Learning models validated on various MIC-
CAI Competitions.

Figure 6.2: Proposed Deep Learning models validated on various ISBI
(2022-2023)Competitions.
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6.2 Challenges

6.2.1 Segmentation of Intra-operative Ultrasound us-
ing Self-Supervised Learning based 3D-ResUnet
Model with Deep Supervision

The work presented in this section is published in Qayyum et al., 2023.
Intra-operative ultrasound (iUS) is a robust and relatively inexpensive
technique to track intra-operative tissue shift and surgical tools. Auto-
matic algorithms for brain tissue segmentation in iUS, especially brain
tumors and resection cavity can greatly facilitate the robustness and
accuracy of brain shift correction through image registration, and al-
low easy interpretation of the iUS. This has the potential to improve
surgical outcomes and patient survival rates. In this paper, we have
proposed a self-supervised two-stage model for the Intraoperative ul-
trasound (iUS) task. In the first stage, we trained the encoder of our
proposed 3DResUNet model using self-supervised contrastive learning.
The self-supervised learning offers the promise of utilizing unlabeled
data. The training samples are used in self-supervision to train the en-
coder of the proposed 3DResUNet model and utilized this encoder as
a pre-trained weight for the Intra-operative ultrasound (iUS) segmenta-
tion. In the second stage, the pre-trained weighted-based 3DResUNet
proposed model was used to train on the training dataset for iUS seg-
mentation. Experiment on the CuRIOUS -22 challenge showed that our
proposed solution showed significantly better performance before, dur-
ing, and after Intra-operative ultrasound (iUS) segmentation. The code
is publicly available.

6.2.1.1 Introduction

Intra-operative ultrasound is a high-energy sound wave surgical proce-
dure that is bounced off internal tissues and organs. It is a low-cost dy-
namic imaging modality that provides provides interactive and timely
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information during surgery which helps the surgeon to find tumors or
other problems during the procedure. As the transducer is in direct con-
tact with the organ being examined, hence, it can guide the surface in-
cisions for deep lesion resection, limit the extent of surgical resection,
accurately guide intraoperative biopsies, localize the pathology and we
can obtain high-resolution images which are not degraded by air, bone,
or overlying soft tissues.

For most cancers, the survival at one and five years is much higher if
it is detected early (stage 1) than at a later stage. When a cancer diagnosis
is delayed or inaccessible, the survival chances decrease significantly,
and it may have greater problems associated with treatment and much
higher costs of care i.e., 90% of patients have a 10+ year survival rate
after being diagnosed in early stages in comparison to 5% for those who
are diagnosed at a later stage (stage 4).

Automatic algorithms for brain tissue segmentation in iUS, espe-
cially brain tumors and resection cavities can greatly facilitate the ro-
bustness and accuracy of brain shift correction through image registra-
tion and allow easy interpretation of the iUS. The resection quality and
safety are often affected by the intra-operative brain tissue shift due to
several factors i.e. intracranial pressure change, drug administration,
gravity, and tissue removal. Such shift in tissue may results in the dis-
placement of the target and vital structures during the surgical proce-
dure while the displacements may not be directly visible to the surgeon,
however, it renders the surgical plan invalid. Live ultrasound overlaid
onto preoperative data which allows for assessment and visualization of
brain shift. The images from intra-operative ultrasound contain biologi-
cal information possibly correlated to the tumor’s behavior, aggressive-
ness, and oncological outcomes. Deep Learning has been widely used in
overall medical image segmentation tasks Payette et al., 2023, Ma et al.,
2022.

To tackle the discrepancies of iUS at different surgical stages, in
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this work, we present an efficient segmentation of intra-operative ul-
trasound using self-supervised learning-based 3D-ResUnet with deep
supervision. We trained the encoder of our proposed 3DResUNet
model using the self-supervised contrastive learning method. The self-
supervised learning offers the promise of utilizing unlabeled data. The
training sample is used in self-supervision to train the encoder of the
proposed 3DResUNet model and utilized this encoder as a pre-trained
weight for the Intra-operative ultrasound (iUS) segmentation task. In
the second stage, the pre-trained weighted-based 3DResUNet proposed
model was used to train on the training dataset for iUS segmentation.
Our proposed solution produced optimal performance on the valida-
tion dataset for three tasks (before, during, and after Intra-operative ul-
trasound (iUS) segmentation).

6.2.1.2 Methods

In self-supervised learning sitting, First, it uses augmentation to mutate
the data, and second, it utilizes regularized contrastive loss Chen et al.,
2020 to learn feature representations of the unlabelled data. The mul-
tiple augmentations are applied on a randomly selected 3D foreground
patch from a 3D volume. Two augmented views of the same 3D patch
are generated for the contrastive loss as it functions by drawing the two
augmented views closer to each other if the views are generated from the
same patch, if not then it tries to maximize the disagreement. We have to
use masked volume inpainting, contrastive learning, and rotation pre-
diction as proxy tasks for learning contextual representations of input
images. the primary task of the network is to reconstruct the original
image. The different augmentations used are classical techniques such
as in-painting Pathak et al., 2016, out-painting, and noise augmentation
to the image by local pixel shuffling Chen et al., 2019. The secondary
task of the network is to simultaneously reconstruct the two augmented
views as similar to each other as possible via regularized contrastive
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loss Chen et al., 2020 as its objective is to maximize the agreement. The
term regularized has been used here because contrastive loss is adjusted
by the reconstruction loss as a dynamic weight itself. Multiple patches
having sizes 128x128x128 are generated and used different views based
on the augmentation via the transforms on the same cubic patch. The
objective of the SSL network is to reconstruct the original image. The
contrastive loss is driven by maximizing the agreement of the recon-
struction based on the input of the two augmented views.

Figure 6.3: Self-supervised learning based 3DResUNet model for iUS
segmentation.

The pre-trained encoder weights are used in the proposed
3DResUNet with deep supervision before, during, and after the iUS
segmentation task. We trained our proposed model using a training-
supervised dataset based on patches. We randomly generated patches

UNIVERSITAT ROVIRA I VIRGILI 
SELF-SUPERVISED ADVANCED DEEP LEARNING FOR CHARACTERIZATION OF BRAIN TUMOR AGGRESSIVENESS 
AND PROGNOSIS ANALYSIS THROUGH MULTIMODALITY MRI IMAGING 
Moona Mazher 



164

with size 128x128x128 from the input volume and used different aug-
mentations to train the proposed model. We used a sliding win-
dow with 128 strides to generate the prediction volume on the vali-
dation dataset. The training transforms such as RandCrop, RandGaus-
sianNoise, RandGaussianSmooth, RandShiftIntensity, RandAdjustCon-
trast, and RandZoomd was used to train the proposed 3DResUNet
model. All transformations were used from MONAI Library ′https :
//github.com/Project − MONAI/MONAI′.

3D-ResUnet with Deep Supervision: A framework of the proposed
model is presented as an encoder, a decoder, and a baseline module.
The 1x1 convolutional layer with softmax function has been used at the
end of the proposed model. The 3D strides convolutional layer has been
used to reduce the input image spatial size.

The convolutional block consists of convolutional layers with Batch-
Normalization and ReLU activation function to extract the different fea-
ture maps from each block on the encoder side. In the encoder block, the
spatial input size has been reduced with an increasing number of feature
maps, and on the decoder side, the input image spatial size will increase
using a 3D Conv-Transpose layer. The input features’ maps that are ob-
tained from every encoder block are concatenated with every decoder
block feature map to reconstruct the semantic information.

The convolutional (3x3x3conv-BN-ReLu) layer used the input fea-
ture maps extracted from every convolutional block on the encoder side
and further passed these feature maps into the proposed residual mod-
ule. The Residual block has been inserted at every encoder block. Each
3d residual module consisted of a 3x3 convolutional, batch norm, and
Relu layer with identity skip connection. The spatial size doubled at ev-
ery decoder block and feature maps are halved at each decoder stage of
the proposed model. The feature concatenation has been done at every
encoder and decoder block except the last 1x1 convolutional layer. The
three-level deep-supervision techniques are applied to get the aggre-
gate loss between ground truth and prediction. The proposed method is
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shown in Figure 6.3.

6.2.1.3 Dataset

The challenge organizers provided 23 subjects for training using Intra-
operative Ultrasound (iUS) images. They organized a challenge for
three tasks (pre-resection, during, and after). All medical images used
for the challenge were acquired for routine clinical care at St Olavs
University Hospital (Trondheim, Norway) after patients gave their in-
formed consent. The imaging data are available in both MINC-2 and
NIFTI-1 formats and the segmentations are available in NIFTI-1 format.
All images, MRI, iUS, and segmentations are in the same referential
space. A detailed description can be found Xiao et al., 2017. We have
used the following preprocessing steps for data cleaning:

• Cropping strategy: Yes
• Resampling Method for anisotropic data: The nearest neighbor in-

terpolation method has been applied for resampling.
• Intensity Normalization method: The dataset has been normalized

using a z-score method based on mean and standard deviation.

6.2.1.4 Implementation Details

The learning rate of 0.0004 with Adam optimizer has been for training
the proposed model. The cross-entropy and dice function is used as
a loss function between the output of the model and the ground-truth
sample. 2 batch-size with 1000 epochs has been used with 20 early stop-
ping steps. The best model weights have been saved for prediction in the
validation phase. The 128x128x128 and other input image patches were
used for training and the sliding window with stride 8 was used as the
prediction. The Pytorch library is used for model development, train-
ing, optimization, and testing. The V100 Tesla NVidia-GPU machine is
used for training and testing the proposed model. The data augmenta-
tion methods mentioned in Table 6.1 are used for self-supervision stage
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Table 6.1: Training protocols.

Data augmentation methods

RandCrop, RandGaussianNoise,
RandGaussianSmooth,
RandShiftIntensity,
RandAdjustContrast,
RandZoom

Initialization of the network “he” normal initialization
Patch sampling strategy None
Batch size 2
Patch size 128x128x128
Total epochs 300
Optimizer Adam
Initial learning rate 0.0001
Learning rate decay schedule None
Stopping criteria, and
optimal model selection criteria

The stopping criterion is reaching the
maximum number of epochs (300).

Training time 8 hours

1 and the proposed model stage 2 for training and optimization. The
dataset cases have different intensity ranges. The dataset is normalized
between 0 and 1 using the max and min intensity normalization method.
The detail of the training protocol is shown in Table 6.1.

The same preprocessing has been applied at testing time. The train-
ing size of each image is fixed (128x128x128) and used linear interpola-
tion method to resample the prediction mask to the original shape for
each validation volume. The sliding window with has been used to get
the prediction. The prediction mask produced by our proposed model
has been resampled such that it has the same size and spacing as the
original image and copies all of the meta-data, i.e., origin, direction, ori-
entation, etc.

6.2.1.5 Results of a Validation dataset

Figure 6.4 results in visualization of some validation cases. One bad
and one good example for different subjects has been shown in Figure
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6.4. The proposed model achieved good performance in some cases and
predicted a good segmentation map. The Dice value for before, dur-
ing, and after tasks based on the proposed model is shown in Table 6.2.
The dice score in a few cases is very bad, especially during and after the
stage. We will try to optimize the model in the future to get a better Dice
score. The results on the test dataset are shown in Table 6.3 and Table
6.4. We have evaluated our proposed model using different patch sizes.
The proposed model with a self-supervised module achieved better per-
formance on task1 and task2.

Figure 6.4: 2D visualization using our proposed model.
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Table 6.2: The performance of the proposed model on five validation
cases for before, during, and after tasks,

S1 S2 S3 S4 S5 Average
Before 0.825905 0.898576 0.882049 0.310432 0.730627 0.729518
During 0.918594 0.769752 0.237226 0.505755 0.53811 0.593887
After 0.896442 0.895569 0.811527 0.055052 0.532311 0.63818

Table 6.3: The performance of the proposed model using Task 1(Brain
tumor segmentation in intra-operative ultrasound) dataset.

Models Dice Hd95 Recall Precision
3DResUNet (128x128x128) 0.4769 99.69 0.5409 0.6230
3DResUNet+SSL (128x128x128) 0.5746 35.26 0.5845 0.7958
3DResUNet+SSL (64x64x64) 0.5430 42.40 0.5929 0.7829
3DResUNet+SSL (256x256x256) 0.5618 86.59 0.6275 0.5814

Table 6.4: Performance of proposed models using Task 2 (Resection cav-
ity segmentation in intra-operative ultrasound) dataset.

Models Dice Hd95 Recall Precision
3DResUNet+SSL (128x128x128) 0.7027 24.54 0.6568 0.7829
3DResUNet+SSL (64x64x64) 0.6859 31.42 0.6213 0.8604
3DResUNet+SSL (256x256x256) 0.6791 22.66 0.6033 0.8686

6.2.1.6 Conclusion

In this work, we presented self-supervision segmentation of Intra-
operative Ultrasound and presented a 3D-ResUnet model with deep
supervision. Experiments conducted on s CuRIOUS-2022 showed sig-
nificantly better performance at 0.729, 0.594, and 0.638 ((before, during,
and after Intra-operative ultrasound (iUS) segmentation). The overall
results on the test dataset showed better performance and our proposed
solution could be used as the first step towards correct diagnoses and
prediction of iUS segmentation. In the Future, we will develop the 3D
transformer-based model.
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6.3 Chapter summary

In this chapter, we have explained the positions and descriptions of our
proposed solutions in different MICCAI challenges to validate our pro-
posed solution on interdisciplinary datasets for segmentation tasks. We
proposed different 2D and 3D segmentation models using various tricks
and achieved optimal performance in various segmentation tasks. One
of our MICCAI challenges CuRIOUS2022 is explained in detail as this
method had been further extended for the brain tumor segmentation
task for this Ph.D. dissertation.

We have participated in various MICCAI as well as ISBI challenges
other than those explained in this chapter that are mentioned in Figure
6.1 and 6.2. In most of the challenges, we achieved top ranking posi-
tion as compared to the performance with the top world teams. The en-
hanced version of the CuRIOUS2022 challenge using 3D MultiEncoder
shared 3D transformer-CNN in a self-supervised contrastive learning
framework was used in Chapter 4 for the brain tumor segmentation
task.

We have also worked on the docker deployment in those challenges
as explained previously. This docker experience will be used in the fu-
ture for deploying this Ph.D. work into a real-time brain tumor detection
and survival prediction application.
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Part V

Concluding Remarks and
Future works
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Chapter 7

Conclusion and Future
works

This dissertation covers the segmentation of the brain tumor and the sur-
vival prediction of tumor patients in terms of survival days. A common
and most perilous form of brain tumor is glioma which forms when glial
cells grow out of control. Gliomas are malignant (cancerous), but some
can be very slow growing. They’re primary brain tumors, meaning they
originate in the brain tissue. Normally, these cells support nerves and
help your central nervous system work.

Gliomas don’t usually spread outside of the brain or spine but are
life-threatening because they can be hard to reach and treat with surgery
and grow into other areas of the brain. Therefore, early detection, au-
tomatic delineation, and volume estimation are vital tasks for survival
prediction and treatment planning. Moreover, manual mark delineation
is laborious and time-consuming work for a neurosurgeon. The accurate
segmentation of brain tumors can facilitate diagnosis and help assess the
prognosis and severity of the disease.
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7.1 Summary of Contributions

The main goal of this doctoral dissertation project was to develop
fully automated segmentation and survival prediction schemes for MRI-
based brain tumor images using deep learning-based methods to over-
come the challenges of manual mark delineation, accuracy, cost, and
time consumption. The findings presented in this doctoral dissertation
are promising and show that the proposed techniques can produce a
clinically helpful computer-aided digital tool for brain tumor segmen-
tation and survival prediction analysis by using MRI modality. The
present thesis makes several noteworthy contributions to the literature
on developing innovative algorithms based on machine learning and
deep learning techniques to improve and increase the accuracy of fully
automated MRI-based computer-aided design (CAD). In addition, this
research has several practical applications, which are presented in five
chapters and summarized below. The first chapters cover the fully au-
tomated 2D, 2D to 3D, and 3D deep learning-based methods for brain
tumor segmentation and survival days prediction. Moreover, a brief set
of validation is presented in the sixth chapter on all proposed solutions.
This chapter covers the results and publications from real-time medical
imaging challenges on interdisciplinary datasets to elucidate the gener-
alization capability and the worth of the proposed solutions presented
in this dissertation.

1. Chapter 2 proposes a new methodology based on a fully auto-
mated and robust 2D deep learning-based method named Depth-wise
Channel Attention Deep Learning (BrainSeg-DCANet) framework pre-
sented to accurately segment the Whole Tumor, Tumor Core, and En-
hancing Tumor (i.e., WT, TC, and ET) structures in brain tumor MRI
images. A special depth-wise attention module has been introduced
that helps enhance the extraction of small brain tumor-relevant features
and improves efficiently locating the small tumor regions. The proposed
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depth-wise attention module can capture the local cross-channel inter-
action in an efficient way to produce more powerful contextual feature
information using a dynamic 1D convolution layer. Furthermore, a dis-
crete wavelet transformed (DWT) is used to enlarge the receptive fields
of the segmentation model. The proposed brain tumor segmentation
model can extract the prevailing contextual features and produce a bet-
ter performance as compared to state-of-the-art brain tumor segmenta-
tion methods with low computational costs.

2. In Chapter 3, we proposed a novel 2D to 3D multi-view multi-scale
segmentation method, the so-called IRMMNET. It combines the key in-
sights from multi-view MRI, including axial, coronal, and sagittal views.
IRMMNET comprises different layers with feature reuse capability with
various depths and multi-scale information. An efficient method for
fusing segmentation maps of the axial, coronal, and sagittal views
to develop a 3D segmentation volume presentation. In this chapter,
there have been two effective blocks were presented named Inception-
Residual encoder block (EB) and dense-spatial attention (DSAM) block.
EB helps the brain segmentation network to extract multi-scale brain
tissue-relevant information from the multi-view MRI images. DSAM
block enhances feature reuse and substantially reduces the number of
parameters of the segmentation model.

Extensive experiments are performed using various combinations
and settings of the proposed segmentation model. Moreover, we pro-
posed three approaches for survival prediction tasks including predic-
tion utilizing IRMMNET segmentation model encoder, utilizing 3D au-
toencoder, and utilizing radiomics features. The explainability and im-
portance of the radiomics features are also presented.

3. In Chapter 4, we proposed a new fully 3D CNN method for
computing the brain tumor segmentation for all tumor regions includ-
ing TC, WT, and ET on BraTS 2020 and BraTS2021 datasets. A novel
In Chapter 4, we proposed a new fully 3D CNN method for comput-
ing the brain tumor segmentation for all tumor regions including TC,
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WT, and ET on BraTS 2020 and BraTS2021 datasets. A novel two-stage
self-supervised contrastive learning using parallel multiview multiscale
attention-based CNN Transformers for 3D brain tumor volumetric seg-
mentation approach was introduced. This method works efficiently for
small labeled and large unlabelled datasets. The proposed model re-
sults were compared with the various state-of-the-art methods for 3D
brain tumor segmentation on MRI images.

4. Chapter 5 is based on the survival prediction analysis for brain
tumor patients. A 3D MR image-based survival prediction task was per-
formed. Multiple feature extraction techniques including 3D radiomics
features, 3D regressor, and 3D deep CNN features called latent feature
technique were used to extract the features from the volumetric MRI
images, and then different machine learning-based regression methods
were applied to the extracted features. This method was applied to
BraTS 2020 dataset. Also, it was tested on the Head Neck Tumor dataset
(HECTOR2021) to test its generalization capability.

5. Chapter 6 covers the validation of our proposed solutions on real-
time medical imaging challenges (i.e. MICCAI) and their outcomes on
the proposed and designed models for this dissertation to evaluate the
generalization capacity and efficacy of proposed solutions. The best
method from the tested solutions in these challenges was further en-
hanced and used for the brain tumor segmentation task in this disserta-
tion mentioned in Chapter 4.

7.2 Future Directions

The work presented in this dissertation addresses the interpretation of
brain tumor segmentation and survival prediction of tumor patients for
their prognosis analysis. We believe this is a crucial field of AI research.
Several directions of future work have been identified during this work
We couldn’t investigate some of them due to time limitations.
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1. The deep neural network could not detect small tumors due to
small tumor size. The deep neural network would introduce some un-
certainty, especially at the boundary of the tumor with surrounding tis-
sues. We need to explore probabilistic deep neural networks to measure
the uncertainties in deep neural networks.

2. We did not explore joint registration and segmentation models for
brain tumor segmentation. Registration of multimodality could enhance
the performance in segmentation tasks.

3. We could not explore the multiple models using multiple modal-
ities. Each modality would be used in an individual model and trained
in multiple models with joint loss function in a single training function.
Multiple models could potentially be the future direction for brain tu-
mor segmentation.

4. The current state-of-the-art brain tumor-based CAD systems only
accept images without considering the patient’s clinical data. Yet, in
practice, the patient’s clinical history and laboratory data enable medi-
cal doctors or neurosurgeons to interpret imaging findings in the appro-
priate clinical context leading to higher and more accurate diagnostics.
Different data fusion techniques can be applied to combine the brain tu-
mor images with patients’ clinical and laboratory data to achieve this
goal and improve the accuracy of the diagnostics.

5. Joint training and optimization of segmentation and survival pre-
diction models for survival time prediction and analysis could be an-
other future direction for the diagnosis and prognosis of brain tumors.
We need to deploy proposed models using docker technology for real-
time analysis, diagnosis, and prognosis of brain tumors in a real-time
clinical setting.
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