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Abstract

When the transmitter of a communication system disposes of some Channel State Information

(CSI), it is possible to design linear precoders that optimally allocate the power, inducing high

gains either in terms of capacity or in terms of reliable communications. In practical scenarios,

this channel knowledge is not perfect and thus the transmitted signal suffers from the mismatch

between the CSI at the transmitter and the real channel.

In that context, this thesis deals with two different, but related, topics: the design of a

feasible transmitter channel tracker for time varying channels, and the design of optimal linear

precoders robust to imperfect channel estimates.

The first part of the thesis proposes the design of a channel tracker that provides an accurate

CSI at the transmitter by means of a low capacity feedback link. Historically, those schemes have

been criticized because of the large amount of information to be transmitted from the receiver

to the transmitter. This thesis focuses, thus, the attention in an accurate design of the return

link. The proposed solution is based on the Kalman filter and follows a scheme that reminds

the well known DPCM transmitter. The channel variability is processed by two identical linear

predictors located at the transmitter and at the receiver, and a feedback link that assists the

transmitter with the prediction error. This differential scheme becomes in interest because it

allows to track the channel variations with only two or four bits per complex channel coefficient

even in fast time-varying channels.

The rest of the thesis covers the second topic, studying different robust power allocation

algorithms when the CSI is not perfectly known at the transmitter. For the sake of generality,

the problem is formulated for the general MIMO OFDM case, encompassing the single antenna

transmission, the beamforming schemes and the frequency-flat fading channels as particular

cases.

First, the minimum MSE and the minimum uncoded BER parameters are chosen to be

optimized, evaluating the performance of the algorithms in terms of uncoded BER. The basic

novelty with respect to previous works that consider the same strategies of design is the proposal

of a Bayesian approach for the design of the robust algorithms.
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ii ABSTRACT

Next, the study is extended by proposing robust power allocation strategies focused on

the minimization of the coded BER. For this purpose, information-theoretic criteria are used.

Probably, one of the main contributions in the thesis is the proposal of the cut-off rate as a

parameter of design whose maximization is directly related to the coded BER. This criterion is

introduced as an alternative to the channel capacity and the mutual information for the design

of optimal transceivers in the presence of any channel coding stage.

The last part of the thesis proposes a low complexity adaptive interleaver that, making use of

the CSI available at the transmitter, reallocates the bits not only to combat the bursty channel

errors but also to combat the specific distribution of the faded subcarriers. The design of this

interleaver, named as ”RCPC interleaver”, is based on the Rate-Compatible Punctured Convo-

lutional Codes. As shown by numerical results, the use of this interleaver with convolutional

codes, improves the performance of the algorithms when they are compared with the classical

block interleavers and pseudo-random interleavers.



Resum

En els sistemes de comunicacions on el transmissor disposa de certa informació sobre l’estat del

canal (CSI), és possible dissenyar esquemes lineals de precodificació que assignin la potència de

manera òptima induint guanys considerables, sigui en termes de capacitat, sigui en termes de

la fiabilitat de l’enllaç de comunicacions. A la pràctica, aquest coneixement del canal mai és

perfecte i, per tant, el senyal transmès es veurà degradat degut al desajust entre la informació

que el transmissor disposi del canal i el seu estat real.

En aquest context, aquesta tesi estudia dos problemes diferents però alhora estretament

relacionats: el disseny d’un esquema pràctic de seguiment del canal en transmissió per canals

variants en temps, i el disseny d’esquemes lineals de precodificació que siguin robustos a la

incertesa del canal.

La primera part de la tesi proposa el disseny d’un esquema de seguiment de canal que,

mitjançant un enllaç de retorn de baixa capacitat, proporcioni al transmissor una informació

acurada sobre el seu estat. Històricament, aquest tipus d’esquemes han rebut fortes cŕıtiques

degut a la gran quantitat d’informació que és necessari transmetre des del receptor cap el trans-

missor. Aquesta tesi, doncs, posa especial èmfasi en el disseny d’aquest canal de retorn. La

solució que es proposa, basada en el filtre de Kalman, utilitza un esquema que recorda al trans-

missor DPCM. Les variacions del canal són tractades mitjançant dos predictors lineals idèntics

situats en el transmissor i en el receptor, i un canal de retorn que assisteix el transmissor amb

l’error de predicció. L’interès d’aquest esquema diferencial és que permet seguir les variacions

del canal amb només dos o quatre bits per coeficient complex, fins i tot en canals ràpidament

variants.

La resta de la tesi cobreix el segon objectiu, l’estudi de diferents esquemes d’assignació de

potències quan el coneixement del canal en transmissió no és perfecte. El problema es planteja

per a un sistema MIMO OFDM com a formulació més general, incloent els casos d’una sola

antena, de l’esquema beamforming i del canal multiplicatiu com a casos particulars.
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Primerament s’ha plantejat l’optimització dels criteris de mı́nim error quadràtic mig (MMSE)

i mı́nima BER sense codificar. La innovació en el treball presentat a la tesi, respecte a altres

treballs que segueixen els mateixos criteris de disseny, ha estat la formulació Bayesiana del

problema per al disseny dels algoritmes robustos.

La tesi continua amb el plantejament d’estratègies robustes d’assignació de potència desti-

nades a minimitzar la BER codificada. Per aquesta tasca s’han utilitzat criteris de teoria de la

informació. Possiblement una de les principals contribucions d’aquesta tesi ha estat el plante-

jament del cut-off rate com a paràmetre de disseny. Aquest criteri s’introdueix com alternativa

a la capacitat de canal o a la informació mutual per al disseny del transmissor quan s’inclou

codificació de canal.

La ultima part de la tesi proposa un interleaver adaptatiu de baixa complexitat que, utilitzant

el coneixement del canal disponible en el transmissor, assigna estratègicament els bits no només

per combatre les ràfegues d’errors, sinó també per lluitar contra els esväıments que puguin

presentar les diferents portadores del canal per a una realització concreta de canal. El disseny

d’aquest interleaver, anomenat ”interleaver RCPC” està basat en els codis Rate-Compatible

Punctured Convolutional Codes. Com s’il·lustra a partir del resultats numèrics, l’ús d’aquest

interleaver conjuntament amb codis convolucionals millora les prestacions dels algoritmes quan

es comparen amb les que s’obtindrien si s’utilitzes un interleaver de bloc o un interleaver pseudo-

aleatori.
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Notation

Through the thesis, matrices and vectors are set in uppercase boldface, e.g., A or Φ, and lower

case boldface, e.g., a or φ, respectively. Scalar variables are set in normal typeface, e.g, a or φ.

The subscript k generally denotes that the variable refers to the kth subcarrier, e.g., Fk, Φk

or φk. The accent (̂·) denotes an estimate or measured value of the accented variable, i.e., ĥ

is the estimated value of vector h. In Chapter 3 superscript (·)(t) over the variables that refer

to the channel response will be used to distinguish them from the frequency-domain, i.e., h(t)

is a column vector that contains the channel impulse response, while h is a vector that stores

the complete channel response in the frequency domain. Other notation has been introduced

as follows:

AH , AT , A∗ Conjugate transpose (Hermitian), transpose and conjugate of the matrix A,

respectively.

A−1, A# Inverse and Moore-Penrose pseudoinverse of matrix A, respectively.

det {A} Determinant of matrix A.

|a| Absolute value (modulus) of the scalar a.

|a| Euclidean norm of vector a: |a| =
√

aHa.

Tr {A} Trace of matrix A.

RM×N , CM×N The set of M ×N matrices with real and complex valued entries, respectively.

The dimension of the space can be omitted when it is implicit in the context.

0M×N , 0M , 0 A M × N all-zeros matrix, a M × M all-zeros square matrix, an all-zeros

column vector or matrix of implicit size.

1M×N , 1M , 1 A M×N all-ones matrix, a M×M all-ones square matrix, an all-ones column

vector or matrix of implicit size.

IM , I The M ×M identity matrix and the identity matrix of implicit size.

im Column vector with unit value in its ith entry and zeros elsewhere.

j Imaginary unit: j =
√−1.
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vec (A) The vec operator: if A = [a1 . . . ad] is a M × N matrix, then vec (A) =

[aT
1 · · · aT

d ]T is a MN column vector.

diag (a) Diagonal matrix whose entries are the elements of vector a.

diag (A) Column vector whose elements are the diagonal entries of matrix A.

diag ([A1 . . .AK ]) Block diagonal matrix whose entries are matrices Ak:

diag ([A1 . . .AK ]) =




A1 0 . . . 0

0 A2
. . . 0

...
...

. . .
...

0 0 . . . AK




.

, Defined as.

' Approximately equal.

δ (n− l) Kronecker delta: δ (n− l) =

{
1, n = l

0, n 6= l

δ (t) Dirac delta.

log (·) Natural logarithm.

loga (·) Logarithm in base a.

A⊗B Kronecker product of matrices. If A is M × N and B is P × Q, then the

Kronecker product results in a MP ×NQ matrix:

A⊗B =




[A]1,1 B . . . [A]1,l B
...

...

[A]n,1 B . . . [A]n,l B


 .

A¯B Schur-Hadamard (elementwise) product between matrices A and B (they must

have the same dimensions).

Re {·}, Im {·} Real and imaginary parts. For matrices and vectors are defined elementwise.

minx f (x) Value of x (it can be a scalar, vector or matrix) that minimizes the function

f (x).

maxx f (x) Value of x (it can be a scalar, vector or matrix) that maximizes the function

f (x).

min {x, y} The smallest of x and y.
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max {x, y} The largest of x and y.

PA, P⊥
A Projection matrix onto the subspace spanned by the columns of A and the

orthogonal subspace, respectively.

[a, b] , (a, b) Closed interval (a ≤ x ≤ b) and open interval (a < x < b), respectively.

[x]+ Positive part of x, i.e., [x]+ = max{0, x}. For vectors and matrices the oper-

ator is defined elementwise.

∇xf (x) Gradient of the function f (x) with respect to x (it can be a scalar or vector).

[A][i,j] The (i, j)th element of matrix A.

[A][i,:] The ith row of matrix A.

[A][:,i] The ith column of matrix A.

a(l) The lth element of vector a.

Q(·) The Gaussian Q-function: Q(x) = 1√
2π

∫∞
x e−u2/2du.

J o(x) The zero-order Bessel function of the first kind.

H (x) Entropy of the random variable X.

I (X; Y ) Mutual information of random variables X and Y .

a º 0 Elementwise relation a(i) ≥ 0.

P (x → y) Pairwise error probability of decoding symbol x when symbol y was transmit-

ted.

E {·} Statistical expectation. A subscript can be used to indicate the random vari-

able considered for the expectation.

Ehk|ĥ {·} Statistical expectation over the random variable hk given ĥ.

fh/ĥ Probability density function of the random variable h given ĥ.





Acronyms

ACM Adaptive Coding and Modulation.

AR Auto-Regressive.

ARQ Automatic Repeat Request.

AS Angular Spread.

ASK Amplitude Shift Keying.

AWGN Additive White Gaussian Noise.

2-D, 3-D Two-Dimensional, Three-Dimensional.

BER Bit Error Rate.

BLAST Bell-labs LAyered Space-Time Architecture.

BPSK Binary Phase Shift Keying.

CCDF Complementary Cumulative Distribution Function.

CCM Constant Coding and Modulation.

CDMA Code Division Multiple Access.

CSI Channel State Information.

CSIR Channel State Information at the Receiver.

CSIT Channel State Information at the Transmitter.

DA Data-Aided.

D-BLAST Diagonal Bell-labs LAyered Space-Time Architecture.

DFT Discrete Fourier Transform.

DLC-PDU Data-Link Control Protocol Data Unit.
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Chapter 1

Introduction

The modern communication systems, far from the pioneer systems in the 19th century that

were composite by a single transmitter and a single receiver connected by a dedicated cable,

are given by a combination of multiple transmitters and multiple receivers with multiple users

simultaneously transmitting. It is clear that this higher complexity is accompanied by the

necessity to solve a higher set of technical challenges. While the main handicap in the middle of

19th century was to get the signal to reach the receiver with a satisfactory quality, nowadays, the

demand of high data rates to be provided in very noise environments, which sometimes include

conflicts and interferences between users, set the troubles for the engineers.

This context induces a vast number of research areas. We can list, among others, the design

of novel channel codes whose performance is close to the Shannon channel capacity, the study

of sophisticated receivers based on iterative procedures that jointly decode and demodulate the

signal, the proposal of schemes that exploit the sources of diversity, and the research on new

transmitter and receiver schemes that mitigate the influence of the propagation channel.

The research carried out in this thesis is concerned with the last topic. Specifically, the thesis

contributes to the investigation of algorithms that make use of the channel state information

at the transmitter to improve the performance and reliability of the communications link. This

interesting area of research has emerged during the last decade, and several choices have been

proposed for adapting the transmitter on a given propagation channel (see Section 2.2 for an

overview on this topic).

Doubtlessly, the main difficult to implement those adaptive transmitter schemes is that some

information on the channel state is required at the transmitter, which opens a new topic to be

investigated. The work in this thesis, hence, deals with two independent but related research

problems: the study of transmitter designs that mitigate the influence of the propagation chan-

nel, and the design of feasible schemes that allow an accurate transmitter channel tracking.

1
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1.1 Motivation and objectives

When the transmitter of a communication system disposes of perfect Channel State Information

(CSI), it is possible to design linear precoders that optimally allocate the power inducing high

gains either in terms of capacity or in terms of reliable communications. Those improvements

have been evidenced trough multiple theoretical (e.g., [Fos98, Tel99]) and practical (e.g., [Hon92,

Sca99a, Sca99b, Bar00]) studies. In practice, channel state information is always subject to

misadjustments and, hence, the assumption of perfect CSI does not hold. The main consequence

is that the performances predicted by the algorithms that assume perfect CSI fail because the

transmitted signal suffers from the mismatch between the CSI at the transmitter and the real

channel.

Considering the existence of those misadjustments between the real and the estimated chan-

nel, a reasonable question in this practical context is: How sensitive are the transmitters to the

uncertainty in the channel knowledge?

To answer this question we reproduced the algorithm in [Bar00] designing a linear precoder

that minimized the Mean Squared Error (MSE) for a MIMO OFDM communication system

over a frequency-selective fading channel. To evaluate the loss due the CSI error we assumed

both, perfect CSI and noisy CSI. The values of the channel uncertainty were based on a realistic

assumption of a user moving at 4km/h 1. Figure 1.1 displays the results in terms of coded BER

for different MIMO configurations (i.e., 1x1, 2x2 and 3x3). As it can be seen, the performances

of the algorithms are highly degraded when noisy CSI is used to design the transmitter. This

influence of the channel uncertainty in the performance of the communication scheme motivates

the main objectives of this thesis:

• To study robust algorithms that take into account the possible channel uncertainty when

designing the transmitter schemes.

• To design of a feasible scheme that could provide an accurate channel state information

at the transmitter.

These two objectives can be tackled separately. The dissertation can be roughly divided,

thus, in two independent parts: the design of the algorithm that provides the CSI at the trans-

mitter (Chapter 3) and the design of the robust algorithms (Chapter 4 and Chapter 5).

1It is not the aim of this section to present simulation results, but only motivate the necessity of robust designs.

Hence, we omit here the information of the simulation parameters. The reader interested in this subject is referred

to the first part of Section 4.5 and Section 5.5 where he will found that information.
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Figure 1.1: Illustration of the loss due to CSI errors. (See Section 5.5 for details on the simulation

parameters).

1.2 Thesis outline and research contributions

Below is an outline of the main contributions made in this thesis summarized chapter by chapter,

as well as references to previous presentations of the material at conferences and journal papers.

Chapter 2.

This chapter provides an overview of the history and recent development on channel uncertainty

and transmit precoding designs. The chapter is structured into two sections. The purpose of

the first section is to review the literature on channel uncertainty, focusing the attention on

the design of robust algorithms that mitigate the influence of unreliable channel knowledge.

After analyzing different viewpoints to design those robust algorithms, the chapter motivates

the development of robust algorithms based on a Bayesian approach. The second part of the

chapter presents the state-of-the-art on transmit precoding designs classifying those algorithms

as a function of the channel state information at the transmitter. The aim of the classification

is to provide the reader with an overview of the different transmit precoding algorithms, and

to place the algorithms studied in this dissertation (i.e., the robust algorithms based on linear

precoding schemes) in context with other methods.
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Chapter 3.

This chapter covers the design of a feasible transmitter channel tracker based on some feed-

back information transmitted from the receiver, using a scheme that reminds the well known

Differential Pulse Code Modulation (DPCM) transmitter and allows tracking slow and fast vary-

ing channels. After introducing the basis of the transmit channel tracker scheme, the chapter

reviews some concepts of linear time-varying channels; describes the way to model the time-

varying channel as an autoregressive process; and outlines how to predict the channel variations

by means of a linear predictor. Next, the most novel and interesting technical contributions,

including the design of the transmitter channel tracker using the Kalman filter, are presented.

Among the main results we find the set of the minimum amount of information to be transferred

trough the feedback link, the study of the quantization of this information, and the feedback

channel throughput.

The work of this chapter has been published in a conference paper, in a journal paper that is

under preparation, and as part of a deliverable in an European project founded by the European

IST program:

• F. Rey, M. Lamarca, G. Vazquez, “Transmitter Channel Tracking for Optimal Power

Allocation”, in proceedings of the International Conference on Acoustics, Speech and Signal

Processing ICASSP’01, Salt-Lake City (USA), May 2001.

• F. Rey, M. Lamarca, G. Vazquez, “Transmitter Channel Tracking for Optimal Power

Allocation”, in preparation.

• A. Kuzminskiy, M. Lamarca, J. A. López, I. Modonesi, F. Rey, “Performance analysis of

re-configurable MTMR transceivers for WLAN”, FITNESS IST-2000-30116, Deliverable

D3.2.1 available at http://www.telecom.ece.ntua.gr/fitness, November 2002.

Chapter 4.

This chapter deals with the design of robust power allocation algorithms with imperfect channel

state information. The chapter focuses on two different design criteria: the minimization of the

MSE and the minimization of the uncoded BER. The basic novelty with respect to previous

works that consider the same strategies of design, is the proposal of a Bayesian approach for

the design of the robust algorithms. Both, for the algorithms that minimize the MSE and for

the algorithms that minimize the uncoded BER, a closed-form solution is obtained although

the optimum solution for the algorithm that minimizes the uncoded BER requires an iterative

algorithms.
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The algorithms proposed in this chapter have been previously studied in one journal paper

and diverse conference papers:

• F. Rey, M. Lamarca, G. Vazquez, “Robust Power Allocation Algorithms for MIMO

OFDM systems with imperfect CSI”, in IEEE Transactions on Signal Processing, Vol.

53, no. 3, pags. 1070-1085, March 2005.

• F. Rey, M. Lamarca, G. Vazquez. “A Joint Transmitter-Receiver Design in MIMO sys-

tems Robust to Channel Uncertainty for W-LAN Applications”, in proceedings of the IST

Mobile&Wireless Telecommunications Summit 2002, Thessaloniki (Greece). June 2002.

• F. Rey, M. Lamarca, G. Vazquez. “Optimal Power Allocation with Partial Channel

Knowledge for MIMO Multicarrier Systems”, in proceedings of the 56th Vehicular Tech-

nology Conference VTC’02-Fall. Vancouver (Canada). September 2002.

• F. Rey, M. Lamarca, G. Vazquez. “A Generalized Exponential BER Bound for Power

Allocation With Imperfect Channel Estimates”, in proceedings of the International Confer-

ence on Acoustics, Speech and Signal Processing ICASSP’03. Hong Kong, (China). April

2003.

• F. Rey, M. Lamarca, G. Vazquez. “Transmit Filter Optimization based on Partial CSI

Knowledge for Wireless Applications” in proceedings of the International Conference on

Communications ICC’03. Anchorage (AK-USA). May 2003.

• F. Rey, M. Lamarca, G. Vazquez. “A Robust Transmitter Design for MIMO Multicarrier

Systems with Imperfect Channel Estimates” in proceedings of the IEEE Workshop on

Signal Processing Advances in Wireless Communications SPAWC’2003. Rome (Italy).

June 2003.

Chapter 5.

This chapter extends the study of Chapter 4 to the design of robust power allocation strategies

focused on the minimization of the coded BER. For this purpose, information-theoretic criteria

are used (e.g., channel capacity and mutual information). The main contribution of this chapter

and, under the author’s opinion, one of the main contributions of this thesis, is the proposal of

the cut-off rate as a parameter of design whose maximization is directly related to the coded

BER. Numerical results compare, in terms of coded BER, all the algorithms proposed in this

dissertation and it is shown that, as expected, the algorithm that maximizes the cut-off rate

outperforms the others. Analyzing the channel coding stage, the chapter also exhibits the

importance of the interleaver and proposes an adaptive interleaver that make use of the channel

state information at the transmitter. This result is presented as an alternative to the classical

block interleavers and pseudo-random interleavers when CSI is available at the transmitter.
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The derivation of this adaptive interleaver is previously unpublished, but other parts of the

results in this chapter, specifically those that introduce the cut-off rate as a criterion for power

allocation, have been published in some conference papers and will be submitted to a journal

paper:

• F.Rey, M. Lamarca, G. Vazquez. “A Transmitter Design for Coded Systems in the Pres-

ence of CSI Errors”. in proceedings of the Thirty-seven Asilomar Conference on Signals,

Systems and Computers, Pacific Grove (CA-USA). November 2003.

• F. Rey, M. Lamarca, G. Vazquez, “Coded BER minimization for MIMO Multicarrier

Systems with Imperfect Channel Estimates”, in proceedings of the IEEE Workshop on

Signal Processing Advances in Wireless Communications SPAWC’04, Lisbon (Portugal),

July 2004.

• F. Rey, M. Lamarca, G. Vazquez, “A Robust Transmitter Design Based on Cutoff Rate

for MIMO Multicarrier Systems with Imperfect Channel Estimates”, in proceedings of the

3rd IEEE Sensor Array and Multichannel Signal Processing Workshop SAM’04, Sitges

(Spain), July 2004.

• F. Rey, M. Lamarca, G. Vazquez, “A Transmitter Design for Coded Systems in the

Presence of CSI Errors”, in preparation to be submitted to IEEE Transactions on Signal

Processing.

Chapter 6.

This chapter concludes the dissertation summarizing the main results of this thesis and

comparing the different power allocation strategies that will be studied. Finally, the chapter

outlines some ideas for future research lines.

Other contributions.

Into the framework of the author’s thesis, but out of the scope of this dissertation, the author

had some interesting results in the area of blind equalization and synchronization that were

published in several conference papers:

• F. Rey, M. Lamarca, G. Vazquez. “Blind Equalization Based on Spatial and Tempo-

ral Diversity in Block Coded Modulations”, in proceedings of the 9th IEEE Symposium

on Personal, Indoor and Mobile Radio Communications PIMRC’98. Boston (MA-USA).

September 1998.

• G. Vazquez, F. Rey, M. Lamarca. “Redundancy in Block Coded Modulations for Channel

Equalization Based on Spatial and Temporal Diversity” in proceedings of the International
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Conference on Acoustics, Speech and Signal Processing ICASSP’99. Phoenix (AZ-USA).

March 1999.

• G. Vazquez, F. Rey, M. Lamarca, J.R. Fonollosa. “Diversity in Mobile Communica-

tions for Blind Detection of Block-Coded Modulations” in proceedings of the 49th Annual

International Vehicular Technology Conference VTC’99. Houston (TX-USA). May 1999.

• F. Rey, G.Vazquez. “Blind Equalization of CDMA Systems using Spatial and Temporal

Diversity Receivers”, in proceedings of the Fifth Baiona Workshop on Emerging Technolo-

gies in Telecommunications. Baiona (Spain). September 1999.

• F. Rey, G. Vazquez, J. Riba. “Near-Far Resistant CML Propagation Delay Estima-

tion and Multi-user Detection for Asynchronous DS-CDMA Systems”, in proceedings of

the 50th Vehicular Technology Conference VTC’99-Fall. Amsterdam (The Netherlands).

September 1999.

• F. Rey, G. Vazquez. “Blind Equalization of DS-CDMA and MC-CDMA Modulations in

Time-Variant Frequency Selective Channels”, in proceedings of the 50th Vehicular Tech-

nology Conference VTC’99-Fall. Amsterdam (The Netherlands). September 1999.

• F. Rey, G. Vazquez, J. Riba. “Joint Synchronization and Symbol Detection in Asyn-

chronous DS-CDMA Systems”, in‘proceedings of 10th IEEE Signal Processing Workshop

on Statistical Signal and Array Processing. Pocono Manor, (PA-USA). August 2000.

Reading the dissertation.

Because the thesis need not be read sequentially, Figure 1.2 in the next page summarizes the

logical dependencies between the chapters. A solid line indicates that the chapters are closely

coupled and should be read in the order indicated. Chapters 5 is, however, largely self-contained

and it can be read independently if the reader is interested in the topic that covers: the design

of power allocation strategies that try to guarantee good performances in terms of coded BER.

The author’s recommendation is, however, to read first Section 4.2 to get some insight into the

system and channel model used in that chapter.
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Figure 1.2: Illustration of the dependencies between the chapters.



Chapter 2

Overview

The growing demand for high-capacity communications has required the design of variable trans-

mitter schemes that adapt the signal relative to the the channel state variations. To implement

those adaptive transmission schemes and regulate the adaptive policy at the transmitter, accu-

rate information of the channel state at the transmitter or, equivalently, a precise observation

of the received signal quality, is required. This identifies two interesting research problems: the

study of robust transmitter designs that mitigate the influence of Channel State Information

(CSI) uncertainty and the design of feasible schemes that allow an accurate transmitter channel

tracking in time-varying channels. While the study of closed-loop schemes that assume perfect

or partial CSI at the transmitter has been the subject of numerous publications, the works that

study and optimize the feedback channel link are scarce. This chapter outlines the state of

the art in both topics and refers to Chapter 3 for the contributions on the channel tracking in

time-varying channels, and Chapter 4 and 5 for the proposal of novel robust transmitter designs.

2.1 Channel uncertainty in communications

The purpose of this section is to review the literature on channel uncertainty focusing the atten-

tion on the way to model this unreliable channel and its influence on the digital communication

systems. The section concludes with a survey of the different ways to design robust algorithms

that are expected to perform well in the presence of limited channel knowledge.

2.1.1 Model for channel uncertainty

Before modelling the channel uncertainty is appropriate to review the multiple causes of unreli-

able CSI. These include, as more relevant, the measurement errors, the channel variations, and

the inaccuracy in the channel modelling.

9
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• Measurement Errors

Channel estimation error are the first cause of noisy CSI. Inherent to the estimation

process this source of error can be diminished but never suppressed. The quality in the

channel estimation depends on the channel characteristics (noise level, interference degree,

fading nature, correlation,...) and how the channel estimation is performed. Extensive

efforts have been dedicated to the study of the channel estimators, including blind or

semiblind estimators [Ton98] and data-aided or pilot assisted estimators [Man01, Mor01,

Col02]. Focusing on the pilot assisted schemes, a special attention has been paid in the last

years to the channel estimators based on the Pilot-Symbol Assisted Modulation (PSAM)

technique [Cav91]. This technique inserts the pilot symbols periodically distributed into

the information data providing an effective design to estimate the fading variations. This

technique has been proposed for single transmit antenna systems [Oie04] and also for

Multiple-Input Multiple-Output (MIMO) systems [Zho04]. The specific problem of channel

estimation for OFDM modulation in a MIMO system, which is the scheme considered in

this thesis, is addressed in [Bar02, Lar01, Li99, Li02] (see also [Tun01] for some interesting

mathematical results and a MSE bound for channel estimation in OFDM MIMO systems)1.

• Channel Variation

As the channel varies in time, the algorithms that provide CSI might be continuously esti-

mating the channel response. Otherwise, outdated channel measures would provide noisy

CSI values. This situation is getting worse in modern communication systems. The chan-

nel variability, which depends on the Doppler spread and, consequently, is proportional

to the carrier frequency and mobile velocity, is enlarged because higher frequency bands

and mobile speeds are used. For these fast time-varying channels, CSI can be tracked

at expenses of a throughput reduction since more frequent training sequences must be

required. Hence, there is tradeoff between the channel uncertainty and the spectral ef-

ficiency. Alternatively, channel prediction methods can be used to counteract the time

evolution and, therefore, reduce the degradation in channel estimation [Tsa97, DH00] (see

also Section 3.1 for a review of the state-of-the-art in channel estimation and prediction of

time-varying channels). This topic is extensively covered in Chapter 3 where a transmitter

channel tracking scheme is proposed (see Section 3.5).

1We remark that we do not seek in this thesis to study algorithms that provide accurate measurements of the

channel response. Some references to this area of research can be found in references above. Specifically, we refer

the reader to [Ton98] and references therein for a tutorial on this topic.
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• Inaccurate Model

Even when the channel keeps invariant in time and measurement errors are negligible,

still remains a channel uncertainty due to the mismatch between the real channel and the

channel model. Although this channel uncertainty uses to be inappreciable, when it is

present, it is difficult to evaluate and model.

Previous causes of channel uncertainty immediately affect the receiver. When CSI is considered

at the transmitter there are several ways for which this information can be obtained at this

side of the link. The most disadvantageous in terms of channel quality happens when channel

reciprocity between the uplink and the downlink cannot be assumed [Cav00] 2, and consequently,

a reliable feedback channel is required to guarantee an accurate CSI at the transmitter side.

The degradation in the channel estimate quality is therefore intensified since over the channel

uncertainty degree at the receiver we may add the inherent constraints of the feedback link.

• Feedback

A careful design of the feedback channel link is crucial since it will determine the ac-

curacy in the CSI at the transmitter and, in consequence, the reliability of the digital

communication scheme.

The main impairments in the return channel are the limited capacity of the link [Nar98,

Tsa02], which restricts the amount of CSI available at the transmitter, and the feedback

delay [DH00] (see also references therein), which forces the transmitter to use an outdated

version of the channel state. Another type of feedback nonidealities are the transmission

errors trough the return link. However, these errors are not usually considered as they

can be diminished by introducing some redundancy with Forward Error Correcting Codes

(FEC Codes), or by increasing the feedback delay and using an Automatic Repeat Request

(ARQ) transmission protocol as suggested in [Gol97b]. The complexity of the channel

feedback and its importance to provide accurate CSI at the transmitter is well worth a

study, which can be found in Chapter 3. For a more reading on the state-of-the-art of the

feedback channels, the reader is addresses to the introduction of that chapter.

2Channel reciprocity can be assumed in TDD systems when uplink and downlink experience the same prop-

agation conditions, i.e. the TDD frame is shorter than the coherence time of the channel, or equivalently in

FDD systems when the transmit and the receive frequencies are within the coherence bandwidth of the channel.

Those conditions allow the uplink channel estimates to be used for downlink signal transmission since the channel

variations are sufficiently slow.
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Figure 2.1: Block Diagram for Channel Uncertain Model.

Once we have had a look to the causes of noisy CSI, we will describe the way to model this

channel uncertainty. Given partial CSI, the channel response H is generally modelled as a

random process given by the summation of the measured channel Ĥ and the channel estimation

error E. This channel model is illustrated in Figure 2.1, where x and y denote the channel input

and output, respectively, and n is the additive noise term, which is assumed to be statistically

independent of the channel and the error. Note that this model allows to consider any of the

causes of imperfect CSI previously described.

Several statistical assumptions can be considered for the measured channel and the channel

error. A simple model assumes the measured channel Ĥ as a deterministic parameter whereas

the channel estimation error E is modelled as a zero mean Gaussian random variable [Vis01].

Most of the references found in the literature assume, however, that the channel estimate is

also a Gaussian random process, so that the channel H and its estimate Ĥ are assumed to be

jointly Gaussian [Méd00, Jön02, Rey05] . This second model has advantages over the first one

since it allows to incorporate into the channel model not only the uncertainty over the channel

estimation error, but also over the real channel. Moreover, it allows a Bayesian formulation of

the problem that incorporates the estimated channel as a prior knowledge. The most general

assumption for that model will, hence, consider the channel H as a Gaussian random process

with nonzero mean and nonwhite covariance.

Focusing on the Channel State Information at the Transmitter (CSIT), two extreme cases

can be considered [Vis01]3 : mean feedback and covariance feedback. In the mean feedback

case the transmitter assumes knowledge of the channel mean, which is usually based on a noisy

3Although the same classification could be extended at the receiver, at this side of the link it is not used since

CSIR quality is generally assumed to be almost perfect (only channel estimation errors are considered).
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measurement of the channel, and models the covariance as a diagonal matrix proportional to the

identity. This assumption only makes sense in time-invariant or slow time-varying channels when

the full estimated channel state can be fed back to the transmitter. However, in fast time-varying

channels, the limited capacity of the feedback link does not allow the transmitter to accurately

track the channel. For those fast-varying scenarios the covariance feedback model assumes a

zero mean channel and a non-white covariance that reflects the estimation of the second order

channel statistics provided by the receiver. Examples of optimal transmitter schemes for the

case of mean feedback can be found in [Nar98, Jön02, Zho02]. For the covariance feedback

optimal transmitter algorithms were designed in [Jaf01a, Sam02, Sim03].

Apart from the previous models, which result from a classical channel estimator, other models

could be considered for channel uncertainty. A finite state channel with noisy state information

at both sides of the link is used in [Sal92], where the channel uncertainty is modelled as a defective

binary cell with a certain probability to modify the input variables. In [Kru04] an information

theoretic approach is used to model the channel uncertainty, defining four axioms to qualitatively

describe the influence of channel uncertainty to the time varying channel information. Finally,

authors in [Lap02] (see also [Lap98]) enumerate a list of possible examples of partial CSI.

2.1.2 Influence of channel uncertainty in communications

When perfect CSI is not available either at the transmitter or at the receiver or at both sides

of the link, the performance of the algorithms is severely degraded if it is compared with the

maximum achievable performance. In practice, CSI is always subject to misadjustments and

hence, the study of the effects of this channel uncertainty has motivated the investigation of

many researchers. Figure 2.2 displays the classification of the different schemes as a function of

the degree of channel knowledge, combining the CSI both at the transmitter and the receiver.

Note that, as argued in previous section, the quality of the channel estimation at the receiver is

always assumed to be better than at the transmitter.

A vast number of efforts have been dedicated to evaluate the losses in the achievable data

rates due to imperfect channel knowledge. Pioneering works studied the extreme cases of perfect

CSI at the transmitter and receiver [Sha58, Wol64, Gal68] (see also more recent works in [Gol97a]

and [Méd00]) for the single antenna case. More recently, the case of multiple antennas has been

considered. Special relevance had the works of [Fos98, Tel99] that studied the capacity for the

MIMO systems. On the other hand, the study of capacity when no CSI is available neither at

the transmitter nor at the receiver can be found in [Mar99, Etk03, Lap03].

The case of noisy CSI, although more realistic, has not been studied until recently. Un-

certainties arising from the receiver, and with no CSI at the transmitter, have been studied in

[Méd00] for the case of single antenna, and extended to the MIMO configuration in [Yoo04a].
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Figure 2.2: Classification of the algorithms as a function of the degree of channel knowledge.

Of particular interest is the study carried out by Médard [Méd00], which presents the effects

of the noisy CSI on the mutual information for the simple-user and the multiple-user cases.

Under the same considerations for the CSI, in [Lap02] the authors study when side information

at the receiver can be considered perfect, concluding that this condition holds when the second

moment of the channel uncertainty is negligible compared to the reciprocal of the SNR.

The case of partial CSI at the transmitter due to an imperfect feedback link has been

studied from several points of view. The limits of reliable communications that include the

effects of the feedback channel were investigated in [Cai99] (for uncertain CSIT) and in [Vis99]

(for perfect delayed CSI). When only channel statistics are fed-back to the transmitter (see

covariance feedback in the previous section) the channel capacity for multiple antennas was

studied in [Jaf01a], whereas the case of nonzero mean (see mean feedback in the previous section)

was examined in [Ven03].

Finally, the most general case of partial CSI at the transmitter and receiver was considered

in [Yoo04b], which combines the effect of channel estimation error at the receiver with imperfect

feedback (mean feedback and covariance feedback), and [Kyr02], which studies how the channel

estimation error appears in the capacity formula, and derives mathematically expressions for

the first and second order approximations of the error.
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Apart from the influence of the channel uncertainty on the capacity, the effects of CSIT

imperfections on the performance of the algorithms have been studied in [Agu03, Oie04, Ong01a,

Tsa02, PI04b, Zho04]. In particular, [PI04b] study theoretically the degradation, providing an

upper bound expression for the worst SNIR reduction and evaluating the degradation of the

uncoded Bit Error Rate (BER). In [Ong01a, Tsa02] the performance of the closed-loop schemes

is compared with the open-loop in terms of averaged uncoded BER. The authors examined the

influence of outdated CSI at the transmitter due to the time varying nature of the Rayleigh

[Ong01a] and the Ricean [Tsa02] fading channels. The conclusions that can be drawn are not

surprising. When perfect CSI is available at the transmitter the optimum closed-loop design

always outperforms the open-loop scheme. However, when only a delayed version of the CSI is

available, the gain of closed-loop over open-loop schemes may significantly decrease (for Ricean

channels closed-loop algorithms are more robust than for Rayleigh channels [Tsa02]) or even

become negative at sufficiently fast time-varying channels.

2.1.3 Robustness to imperfect CSI

The influence of channel uncertainty in communications schemes motivates the design of robust

algorithms that perform well in the presence of limited channel knowledge [Kas83]. In general,

robust signal processing procedures do not perform as well as their corresponding nominal

designs (when the nominal model is valid), and hence, an accurate treatment of the channel

uncertainty is of paramount importance. For instance, an excessively conservative design could

be insensitive to the channel variations and thus, although could be labelled as robust, its

performance could be far from the nominal behavior, becoming, thus, a very bad robust design.

Different viewpoints can be followed to design algorithms that perform well when only noisy

CSI is available. One design philosophy is based on the optimization of the worst-case effect of the

channel uncertainty. This problem was formulated in a maximin approach in [Kas85], and more

recently in [Vor03], for the context of robust adaptive beamforming. In [PI04a] this maximin

approach was formulated to design a robust transmitter that combined Orthogonal Space Time

Block Codes (OSTBC) with transmit beamforming. A game-theoretic framework can also be

applied to optimize the worst-case performance as it is shown in [Mar83, Pal03c, Pal03a]. Clearly,

the algorithms designed in this manner are excessively conservative since they assume the worst

possible conditions. In favor of these schemes it can be said that they guarantee a minimum

level of performance and thus a minimum Quality of Service (QoS). However, some information

of how often this worst-case occurs should be also considered in order to avoid too pessimistic

or too restrictive designs that usually spend more power than the strictly necessary.
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Alternatively, a less conservative approach is possible by averaging the objective function

with respect to the channel uncertainty. When the real channel and its estimate are assumed

to be jointly Gaussian, this approach allows a Bayesian formulation that computes the expec-

tation of the objective function with respect to the real channel given the channel estimates

EH|Ĥ {·} [Nar98, Bel00, Jön02, Zho02, Rey05, Lia05]. Contrary to the maximin formulation,

this technique guarantees an averaged QoS reducing the robustness condition and improving the

performance when the channel estimate is far from the worst-case specifications.

2.2 Transmit precoder designs

Because perfect CSI is not possible to be available at the transmitter, an active area of study

relies on the design of optimum transmission strategies when the transmitter has some, but not

perfect, channel knowledge.

The analysis of channel side information at the transmitter was first introduced by Shannon

in 1958 [Sha58]. Some years later Turin [Tur65, Tur66] and Viterbi [Vit65] analyzed the potential

of a feedback channel link to inform the transmitter of the state of the receiver’s uncertainty

regarding which signal was sent in a binary transmission and a white Gaussian noise channel.

Further, Schalkwijk et al. [Sch66b, Sch66a] proposed a coding scheme for additive noise channels.

The first study through a Rayleigh fading multipath channel was done by Hayes at the late 1960’s

[Hay68]. The proposed scheme was quite similar to the current closed-loop schemes: an adaptive

receiver learns the present state of the channel, uses this information to the detection process and

sends to the transmitter, via a feedback channel, the information on the channel state in order

to modify the transmitted signal in such a manner that the probability of error is minimized

subject to a certain power constraint. His results showed that feedback techniques can improve

the performance significantly. Moreover, trying to optimize the feedback link for his proposed

scheme, he concluded that for a given channel state, only the sum of the squares of the channel

gains were required to be fed back, rather than the module of each channel multipath, its phase

an its time-delay.

Figure 2.3 illustrates the classification of the algorithms that adapt the transmitter as a

function of the degree of channel knowledge when a feedback link is employed. In the two

extremes we have the ideal feedback link, which yields algorithms that assume perfect CSIT,

and the case of no feedback link. In between these extremes fall the algorithms that only have

partial CSI at the transmitter, which can be broadly classified into three categories: mean

feedback, covariance feedback and coarse feedback. The two former, defined in Section 2.1.1,

are related with robust algorithms that adapt the resources at the transmitter as a function of

the channel state. The latter use a low capacity feedback link to adapt a set of parameters at

the transmitter like the channel code or the modulation. Next, a brief state-of-the-art on the
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Figure 2.3: Classification of the feedback link as a function of the CSIT degree.

algorithms is described, presenting first the algorithms that do not assume CSI at the transmitter

and then the algorithms that assume perfect or partial CSI.

2.2.1 Open-loop designs: No feedback link

When CSI is not available at the transmitter only open-loop algorithms, which do not take into

account the channel response during the transmission of the data, can be used. In this case,

however, the lack of channel knowledge at the transmitter does not prevent the system to exploit

transmit diversity, since multiple transmit antennas combined with channel coding can be used

to provide this diversity [Tar98]. Depending on the use made with the diversity provided by the

MIMO channel, these algorithms can be classified into two general categories: transmit diversity

and spatial multiplexing. The algorithms in the first category use the additional capacity of the

MIMO channel to improve the quality and robustness of the link, thereby reducing the BER

while keeping constant the data rate. Belong to this first family the space-time codes [Ges03]

which include: Space-Time Trellis Codes (STTC) [Tar98], Space-Time Block Codes (STBC)

[Ala98, Tar99, Jaf01b] and Space-Time Turbo Codes [Ste01a, Su01, Lam03]. On the contrary,

into the second category fall the algorithms that exploit the multiple antennas to increase the

data rate, introducing multiple data substreams on the different antennas. Belong to this second

group the Space Division Multiplexing (SDM) [Nee00] and the layered architectures (BLAST)

like D-BLAST [Fos96] and V-BLAST [Fos99, Loz02].

The decoding of previous algorithms requires the knowledge of the CSI at the receiver. Al-

though this condition commonly holds, when no CSI is available neither at the transmitter nor

at the receiver differential detection schemes can be used. For the specific 2× 2 MIMO config-

uration a limited solution was proposed in [Tar00] based on a differential detection scheme. In

[Hug00, Gan02a] another differential modulation procedure was proposed without the restric-

tions in the number of antennas. Finally [Hoc00b, Hoc00a] proposed a nondifferential approach

that can be decoded without Channel State Information at the Receiver (CSIR) but with the

inconvenient that requires exponential encoding and decoding complexities.
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2.2.2 Discrete adaptation designs: Coarse feedback link

The algorithms that adapt the transmitter scheme as a function of the channel state can be

classified, depending on the discrete or continuous nature of the adaptation, into two categories:

the discrete adaptation schemes and the continuous adaptation schemes.

The discrete adaptation schemes include those adaptive techniques based on a finite set

of transmission modes, which allow to vary, among others, the constellation size, the symbol

transmission rate, the coding rate or the coding scheme, the number of transmit antennas or the

transmitted power according to a finite-state power control policy (see [Vuc91, Gol98, Kos00]

and references therein for studies of discrete adaptive schemes). The main advantage of these

techniques is that they do not require a perfect channel knowledge at the transmitter, allowing to

feedback a coarse quantized version of the channel to configure the best transmission mode. This

schemes also provide the possibility to determine the adaptive policy at the receiver as a function

of the quality of the received signal, and afterwards configure the transmitter using a low-capacity

return channel link. The simplicity of these transmit adaptation schemes makes them feasible

to be proposed in most of the current communication standards [HL201, IEE99, DVBc, DVBa].

The main disadvantage of these schemes is that if the number of finite transmission modes

is small, the transmitted signal is not totally adapted to the channel conditions resulting in

insufficient utilization of the full channel capacity.

As an alternative the continuous adaptation schemes allow to adapt more efficiently the

transmitted signal to the channel state. The main handicap of these methods is that an accurate

information of the channel state must be available at the transmitter at expenses of highly

complex feedback schemes. The inefficiency of the feedback channel link, if the entire CSI

is transmitted, reduced the interest of the researchers in the adaptive transmitter techniques.

However, the growing demand for high capacity communications during the last decade has

motivated a new interest in adaptive schemes in MIMO systems that utilize perfect or partial

CSI at the transmitter to adjust a set of transmitter parameters (see next section).

2.2.3 Linear precoding designs: Perfect and partial CSIT

The historical evolution of transmit precoding designs as a function of the degree of channel

knowledge has followed the same steps than the study of the maximum achievable data rates

described in Section 2.1.2. Pioneering works analyzed the potential of channel knowledge at the

transmitter assuming perfect CSI, whereas the more realistic cases of noisy CSI has not been

studied until recently.
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One of the earliest works in this area, assuming perfect CSI, was presented in [Sal85], where a

Minimum Mean Square Error (MMSE) criterion was used to design transmit filters and a linear

equalizers for the MIMO channel assuming uncorrelated data and white noise. Similarly, [Hon92]

focused the design of transmit and receive filters on the suppression of near and far end crosstalk,

generalizing the work in [Sal85] for correlated data symbols and colored noise. In [Yan94] a

complete solution to the joint transmit-receive optimization problem with arbitrary dimensions

and excess bandwidth was investigated following the approach in [Sal85], obtaining an analytical

result for the optimum design in a MMSE sense. Analogous criteria addressing the problem of

joint transmitter and receiver design in the context of wireless multiuser communications were

proposed in [Jan98] and [Rap95]. While previous works required of an iterative procedure to

achieve the optimum design, this was solved in [Sca99b] (see also [Bar00, Sca00]), leading to a

closed-form solution for the design of the optimum transceivers following a discrete time-domain

matrix formulation. Analytical performance results were presented for the zero-forcing and the

MMSE criteria. Although the analysis was derived for the Single-Input Single-Output (SISO)

case, the formulation was quite general, and the extension to multiple antennas was possible

[Sam99]. In most cases, the minimization of the MSE does not reflect good performance in

terms of communications reliability. Hence, other optimization criteria as the average uncoded

BER [Ong02, Din03] or the mutual information [Dha96, Ral98, Sca99a] has been used as the

performance measure, always under the assumption of perfect CSI at the transmitter.

When channel is not perfectly known, robust algorithms, following any of the strategies

described in Section 2.1.3, were studied either satisfying a QoS constraint [Pal04] or satisfying

any of the previous optimization criteria: MMSE [Rey05], average uncoded BER [Ong02, Rey05]

or mutual information [Nar98].

Once the closed-form designs that exploit perfect or partial CSI at the transmitter were

understood, some researchers, motivated by the excellent performance of these schemes, and the

fact that perfect CSI is not available in practice, investigated the performance of hybrid schemes

that combine space-time codes with closed-form precoding schemes. Space-time block codes

combined with beamforming at the transmitter were proposed in [Gan02b, Jön02, Zho02, Lei02,

Sam02, Tak02, Liu03, PI04a], while the union of space-time trellis codes with beamforming can

be found in [Neg99, Li03, Li05]. The main interest in some of these solutions [Neg99, Sam02,

Jön02, Zho02, PI04a] is that the design adapts automatically as a function of CSIT quality,

taking the maximum benefit of the channel knowledge at the transmitter when it is available,

and converging to classical space-time codes when no CSIT is obtained. This feature is common

with the algorithms proposed in this thesis [Rey05, Rey04b, Rey04a], that moves from open-

loop (the same power is allocated across all subcarriers and antennas) to the closed-loop scheme

according to channel uncertainty.
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2.2.4 Nonlinear precoding designs

As an alternative to the previous linear precoding designs, which are based on a linear trans-

formation applied over the symbols to be transmitted, non-linear precoding structures can be

used. The most common nonlinear precoding technique is the Tomlinson-Harashima Precoding

(THP) [Tom71, Har72] (see also more recent work [Wes98]). This precoding technique, based

on the introduction of a nonlinear predistorion stage at the transmitter, was proposed to com-

bat the ISI as an alternative to a decision feedback equalizer, which could suffer from error

propagation. However, this nonlinear structure has also been applied recently in multicarrier

modulation techniques to combat inter-carrier interference [Ben02], MIMO channels to combat

spatial interferences [Fis02, Win04, Sim04] and multiuser systems to combat multi-user interfer-

ence [Win04, Wan05]. Schemes based on THP, like other precoding schemes, require perfect CSI

at the transmitter. When this information is not totally available, robust techniques have been

studied: [Lia05] (assuming delayed CSI and adopting a Bayesian formulation) or [Fis02, Sim04]

(exploiting the channel correlation).

Special interest has the work in [Sim04] because uses a formulation that encompasses linear

and nonlinear precoding techniques, such as THP, layered architectures (BLAST) and linear

preequalization schemes. This generic formulation facilitates a comparison between linear and

nonlinear structures (see also [Win04]). Experimental results show that when only channel

correlation is known at the transmitter, linear precoding combined with a nonlinear equalizer

performs, in general, better than nonlinear precoding schemes.



Chapter 3

Transmitter channel tracking in

MIMO systems for optimal power

allocation designs

Closed-loop techniques can only be applied when the transmitter has accurate knowledge of the

channel response, either by means of a feedback channel from the receiver to the transmitter or

by applying reciprocity between the uplink and the downlink channel responses. In this thesis

we suppose that channel reciprocity cannot be assumed. In this sense, the chapter describes a

feasible scheme to track the channel response based on channel prediction. Moreover, it also

deals with the use of a return channel link as a suitable solution in the presence of Linear Time-

Varying channels (LTV). When channel coefficients do not remain constant in time, it becomes

inefficient to update frequently the Channel State Information (CSI) from the receiver to the

transmitter. Instead, a more interesting design can be achieved if the channel variability is

processed with a scheme containing two identical linear predictors at the transmitter and at the

receiver, and a feedback link to assist the transmitter with the prediction error. This proposed

solution addresses the severe limitations of the feedback channel capacity by means of a scheme

which reminds the well known Differential Pulse Code Modulation (DPCM) transmitter and

allows tracking slow and fast varying channels fitting the predictor to the channel dynamics.

The chapter is organized as follows. Section 3.1 introduces the transmitter channel tracking

scheme proposed in this thesis, and reviews the state-of-the-art on the related topics. Section

3.2 and Section 3.3 introduce the signal model and define the most relevant parameters that

characterize the linear time-varying channels, respectively. The main contributions of this chap-

ter are covered in Section 3.4 and Section 3.5. While Section 3.4 analyze the way to predict the

time evolution and capture the channel dynamics, modelling the LTV channel as a pth-order

autoregressive process, Section 3.5 implements the linear predictor by means of a Kalman fil-

21
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ter. That section also determines the minimum amount of information to be transferred trough

the feedback link, studies the quantization of the prediction error and determines the feedback

channel throughput. According to a rate-distortion criterion an accurate analysis on the return

link channel throughput can be done as a function of the normalized Doppler frequency and

the channel uncertainty degree. Section 3.6 analyzes the performance of the proposed scheme

evaluating the quality of the channel tracker under different conditions. Finally, Section 3.7

summarizes and concludes the chapter.

3.1 Problem statement

The study of the transmitter channel tracking scheme proposed in this thesis (this scheme was

first published in [Rey01]) is decomposed into two stages: a first step that mitigates the feedback

delay by means of channel prediction, and a second step that designs the return channel link

and sets the minimum amount of information required to track the channel. This section briefly

describes the specific channel scheme and summarizes the main advantages when compared

with other alternatives. The last part of the section reviews the state-of-the-art on both topics,

serving as an introduction to the rest of the chapter.

3.1.1 Transmitter channel tracking scheme

The design of feedback schemes that provide reliable CSI at the transmitter shall carefully

address the feedback delay problem and propose efficient schemes that minimize the amount of

information to be exchanged through the feedback link. The first issue is addressed by suggesting

the use of a linear predictor that, advancing the channel dynamics, mitigates the feedback delay.

The second issue is addressed by carefully analyzing the quantization of the feedback link to

minimize the throughput at the feedback channel.

The design of the linear predictor requires an accurate model of the time-varying channel.

We propose, in this chapter, to model the channel as an autoregressive process similar to that

one suggested in [DH00] and references therein. The predictor is implemented by means of a

Kalman filter, an efficient recursive method for computing the minimum variance linear filter

[And79, p.47]. Furthermore, the structure of this filter allows not only to predict a priori the

channel evolution from the transition (or state) equation, but also to estimate a posteriori the

true channel values from the measurement equation and the channel output observations.

As important as the prediction of the channel is the quantization of the feedback link. In

many cases, a quantized version of the predicted channel response at the receiver is employed

to update CSI at the transmitter as illustrates Figure 3.1a (see e.g. [Nar98, Tsa02]). However,

in fast time-varying channels, when high bandwidth constraints exist for the feedback link, it
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Figure 3.1: Return channel link schemes. a) Non-optimum solution: mitigation of the feedback

delay. The predicted channel coefficients obtained from a linear predictor at the receiver are fed

back to the transmitter. b) Optimum solution: mitigation of the feedback delay and minimiza-

tion of the amount of information to be fed back. Identical linear predictors at both sides of the

link are available. Only the prediction error is fed back, reducing, hence, the throughput in the

return link.

becomes inefficient to update frequently the predicted channel fading from the receiver to the

transmitter. Instead, a more interesting design is proposed in this thesis with a scheme based

on two identical linear predictors at the transmitter and the receiver sides, and a feedback link

that assists the transmitter predictor with the prediction error rather than transmitting the

channel coefficients themselves (see Figure 3.1b). The main advantage of this novel structure

is that the dynamic range of the prediction error is much lower than that one of the channel

coefficients. Hence, the amount of information to be transmitted in the feedback link (i.e.,

the channel throughput) is substantially reduced or, equivalently, for the same throughput, the

quality of the CSI at the transmitter is improved. This structure, which reminds the well known

DPCM transmitter, appears in a natural way when identical Kalman filters are implemented at

both sides of the link. The first step in the Kalman filter (see Section 3.5), which predicts the

channel state from the transition equation, can be identically processed at both filters. However,
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the computation of the innovation, which corrects the channel prediction from the measurement

equation, can only be calculated at the receiver since it requires the symbols at the channel

output. Therefore, the Kalman filter at the transmitter has to be aided with this innovation, or

equivalently with the channel prediction error, in order to keep both Kalman filters at the same

state (i.e., with the same CSI prediction). An analysis on the return link channel throughput

can be found in Section 3.5 as a function of the normalized Doppler frequency and the channel

uncertainty degree using the rate-distortion theory.

The feasibility of the proposed transmitter channel tracking scheme depends on how fast the

channel is changing and how frequent the channel predictor is updated. Next, we analyze the

viability of the scheme for two real scenarios: HIPERLAN/2 standard (WLAN applications)

and the DVB-S2 standard (satellite applications in the Ka-Band).

Scenario 1: Channel prediction in HIPERLAN/2 standard

Figure 3.2 illustrates the way to introduce the channel tracking scheme within the HIPERLAN/2

framework. The figure shows two consecutive HIPERLAN/2 MAC frames [HL200], and describes

how the channel identification and the feedback link can be allocated into the MAC frame

structure of HIPERLAN/2.

The MAC in HIPERLAN/2 is based on a TDD/TDMA approach using a MAC frame with

duration of 2ms. This MAC frame includes time slots for data transmission in the downlink and

the uplink phases, which are allocated dynamically depending on the transmission resources.

Focusing on an arbitrary user, the downlink channel can be estimated at the receiver making

use of the transmitted data during the corresponding slot, and the feedback channel can be

allocated in the next uplink slot. Following the previous scheme, CSI is updated each 2ms (this

time is approximate since the uplink and the downlink slots are dynamically allocated and differs

form frame to frame).

In order to evaluate the feasibility of this proposal, a measure of how fast the channel varies

in time (e.g., the normalized Doppler frequency, fd or the coherence time Tc [Rap96, p.165])

must be computed. Assuming a user moving at v = 4km/h, a carrier frequency fc = 5GHz, and

a sampling period T = 2ms, the normalized Doppler frequency becomes:

fd =
fc v

c
T = 0.037 (3.1)

This magnitude is better understood if it is used to compare the channel coherence time Tc with

the period at which the CSI is updated T = 2ms. Defining the coherence time as a function of

the normalized Doppler frequency [Rap96, p.165], the ratio ”time coherence to sampling period”

gives information of how fast the channel varies (Tc) when compared with the update frequency
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Figure 3.2: HIPERLAN/2 MAC Frame structure.

(T ). In our case this ratio is:
Tc

T
=

9
16πfd

= 4.839 (3.2)

which evidences that the time channel evolution is slow enough to be predicted.

It is worth to remark that HIPERLAN/2 standard does not consider either closed-loop

algorithms or MIMO scenarios. Hence the references in this thesis to this standard are limited

to the use of the same modulation and channel coding schemes.

Scenario 2: Channel prediction for satellite channels in the Ka-Band

The geostationary satellite channels, excluding specific cases, have been typically considered

as ideal propagation channels that only introduce a time invariant attenuation and a constant

delay in the communication path. However, for frequencies over 10GHz the propagation channel

is vulnerable to variable weather conditions and, thus, the transmitted signal suffers from time

varying fadings. In consequence, a special attention has to be paid to the satellite channels when

operating over the 10GHz.

Specifically, the DVB-S2 standard operates at the Ka-Band (20-30GHz.), where the rain

attenuation and scintillations are the two dominant factors for signal fading [May97, Cho02].

As it is specified in the draft of the DVB-S2 standard [DVBc], under fast fading conditions,

the SINR variations in the Ka-band may occur as fast as 0.5 to 1dB/s. Thus, these channel

variations may be critical in satellite systems where the time-delay propagation is not negligible

(for geostationary systems 250ms). A possible solution to compensate the time lag is to predict

the channel, using an autoregressive model as that one proposed in this section, in order to

mitigate its variations.

Different arguments can support the use of a channel predictor in the Ka-band. First, the

i.i.d. assumption in the channel evolution is not realistic because its time variation is highly

correlated. Second, the rain and the scintillations can be modelled as Markov processes and

thus, their dynamics are highly predictable. In [Cho02], experimental data have verified that

first or second order autoregressive models, as previously proposed, fit to the channel variations.

It has also been shown that attenuation in the Ka-band due to the rain and scintillations

can be predicted within ±0.5dB one second ahead and ±1dB four seconds ahead. Although
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some dependencies between rain attenuation and scintillation can be found in [May97], it is also

shown in [Gre99] and references therein that this relationship can be neglected in practical cases.

Finally, another source of propagation looses in the satellite link, especially at high frequencies,

is the misalignment between antennas. The tracking algorithm that adjusts the antennas induces

slow variations in the channel looses, and thus, this misalignment could also be introduced into

the prediction model.

3.1.2 State-of-the-art on time-varying channel prediction

In the previous section we have seen the importance of the channel prediction to cope the chan-

nel variations. Next, the state-of-the-art on this topic is reviewed. Feedback delay impairment

creates a need for predicting the channel variability diminishing the outdated CSI at the trans-

mitter. Different methods have been used to address this problem depending on whether a

deterministic model or a stochastic model is use to describe the channel behavior.

The most common approach to predict the channel follows a time-varying deterministic

model based on a composite of sinusoids whose amplitude, frequency and phase are slowly vari-

ant [Jac74, p.46]. An accurate estimation of these parameters allows to extrapolate the channel

evolution according to a deterministic model assuming that the channel structure remains con-

stant. Subspace-based methods have been applied to estimate those channel parameters [Vau00].

Specifically, a modified root-MUSIC algorithm was used in [Hwa98], and an ESPRIT-type algo-

rithm was proposed in [And99] and [Don01]. The deterministic nature of the previous model has

been exploited by some researchers to propose a polynomial approximation method [She03], to

suggest polynomial predictors for the prediction of the channel values [Tan95], or to introduce a

SVD of the channel to separate space and time components, predicting the time evolution com-

ponents and keeping constant the spatial structure [Gui04]. A generalization of the sinusoidal

decomposition of the channel based on a basis expansion of the time varying impulse response

was proposed in [Gia98], and used for channel estimation and prediction in [Tsa97].

The main drawbacks of the deterministic channel model are the misadjustments in the es-

timation of the parameters of the model and the short-range channel predictability that can

be performed. Alternatively, a stochastic model introduces a different approach to predict the

channel evolution, based on a linear prediction algorithm that tracks the channel dynamics us-

ing an autoregressive model. Overviews of the channel predictors based on the Auto-Regressive

(AR) model can be found in [DH00] and references therein. Specifically, in Duel-Hallen works

[Eyc98, DH00] a long-range channel prediction scheme of several tends-to-hundreds of symbols

ahead is developed. The key of the large channel predictability is the low sampling rate of the

channel estimation, which is much lower than the data rate, in combination with a channel

interpolation for an accurate prediction of the channel coefficients. Recently, autoregressive pre-
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diction schemes has been combined with Pilot-Symbol Assisted Modulation (PSAM) technique

[Cav91, Cai05] for single transmit antenna systems [Oie04] and for MIMO systems [Zho04]. The

main advantage of this joint study is that some relevant parameters, like the channel prediction

error or the correlation between the true and the predicted channel, are related with parameters

like the density of the pilot symbols or the amount of power allocated to them. Other forms of

linear predictors include, for example, the design of a continuous time predictor [Lym03].

Opposite to the previous linear predictors, nonlinear schemes has also been investigated for

the channel prediction. In [Gao96, Gao97] neuronal networks were proposed and it was demon-

strated that they perform better than linear predictors when the effects of non-planar waves

are considered. Furthermore, the study and extension of the linear predictor to Volterra filters

was performed in [Zha97, Ekm99b], and the analysis of a nonlinear predictor using multivariate

adaptive regression splines was proposed in [Ekm99a]. It has to be noted that in some cases

(typically in most discrete link adaptation schemes) not the complex channel values, but only

the channel power is of interest and, consequently, a prediction of the channel power becomes

more efficient [Tan95, Gao96, Ste01b, Ekm01, Ekm02, Fal04].

3.1.3 Overview on feedback channel link

Most of the works that effort for accurate CSI at the transmitter focus on the propagation

feedback delay, whereas only a few of them consider the limited capacity of the feedback link.

It is obvious that the estimated or the predicted channel cannot be directly fed back to the

transmitter since it results in an inefficient scheme, specially in fast TV channels when the CSI

must be frequently updated.

The characterization of the feedback channel was studied in [Nar98], which considered the

case in which the side information consists of a N-bit quantization of the fading channel. In that

analysis two measures of performance were used: signal-to-noise ratio and mutual information.

In order to diminish the impairments of the limited feedback bandwidth, special attention was

addressed in the way how the bits were chosen to maximize the expected SNR or mutual in-

formation. The authors proposed the Lloyd algorithm [Llo57] and some heuristic quantization

strategies to obtain the quantization regions and codebooks associated to the CSI. In [Tsa02] the

influence of the number of quantization bits is studied, showing that for a two-element beam-

forming scheme, three bits were enough to quantize a frequency-flat fading channel. The authors

in [Jöt02] developed a cost efficient procedure to feedback the CSI when the total number of bits

available was constrained. The procedure was based on the decomposition of the total channel

information into a slow fading term that was slowly tracked at the transmitter, and a fast fading

term that was frequently updated. Finally, the work in [Mie05] proposed a vector quantization

to reduce the bit rate in the feedback link.
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Figure 3.3: Generic discrete-time MIMO communications system.

3.2 Signal model

This section describes the matrix formulation used in the present chapter for the MIMO channel

model. This model is introduced in its most general formulation and it is next detailed for specific

cases like TDMA, OFDM or frequency flat fading channels.

A generic MIMO communications system with MT transmitting and MR receiving antennas

is depicted in Figure 3.3. Since the main application of the proposed channel tracker is the

design of closed-loop schemes, the formulation introduced in this figure is general and includes

in the scheme the pre-filtering matrix F(n) and the post-filtering matrix G(n). However, neither

the linear transformation matrix F(n) that optimally allocates the information symbols x(n)

into the different antennas, nor the receiver structure that includes the linear receiver G(n) will

be considered in this chapter (see Chapter 4 and Chapter 5 for the design of optimal linear

precoder schemes).

Let si(n) be the complex signal containing the transmitted symbols from the ith antenna,

and let h
(t)
ij (n; l) denote the time-varying channel impulse response from the ith transmitting to

the jth receiving antenna1, where n is the time index, and l ∈ 1 . . . Lij is the tap delay. A linear,

discrete-time, baseband channel model can be introduced to describe the received signal at the

jth antenna rj(n) as:

rj(n) =
MT∑

i=1

Lij−1∑

l=0

h
(t)
ij (n; l)si(n− l) + nj(n) (3.3)

where nj(n) is a zero mean circularly symmetric complex Gaussian sequence with covariance

E
{
nj(n)nj′(m)H

}
= σ2

nδ(n − m)δ(j − j′) that models the Additive White Gaussian Noise

(AWGN) term.

The input-output relationship is usually written in a matrix notation. Denoting h(t)
ij (n) =[

h
(t)
ij (n; 0) . . . h

(t)
ij (n;L− 1)

]T
as the vector that contains the L-length channel impulse response

from the ith transmitting to the jth receiving antenna 2, and collecting in the Q column vector

1Superscript (·)(t) over the variables that refer to the channel response will be used to distinguish them from

the frequency-domain.
2In the MIMO case the length of each specific subchannel pair (Lij) can be different. Hence L will denote the
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rj(n) = [rj(nQ) . . . rj(nQ + Q− 1)]T the received signal at the jth antenna, a linear input-

output relationship can be written as follows:

rj(n) =
MT∑

i=1

Si(n)h(t)
ij (n) + nj(n) (3.4)

where Si(n) is a matrix that contains the complex transmitted symbols from the ith antenna at

the time index n, and nj(n) = [nj(nQ) . . . nj(nQ + Q− 1)]T is the additive noise vector. This

matrix formulation is quite general and encompasses TDMA, OFDM or frequency flat fading

channels as particular cases. Hence, the specific structure of the matrix Si(n) will be latter

described for each individual case.

In order to estimate the channel coefficients and track its time evolution, it will be useful

to store the complete channel response into a column vector h(t)(n) that contains the channel

impulse response for all transmitting and receiving antenna pairs:

h(t)(n) =
[
h(t)

11 (n)T . . .h(t)
1MR

(n)T . . .h(t)
MT 1(n)T . . .h(t)

MT MR
(n)T

]T
(3.5)

Hence, collecting all the channel responses into the vector h(t)(n), defining r(n) =

[rT
1 (n) . . . rT

MR
(n)]T as the column vector that stacks the received symbols over all antennas, the

noise as n(n) = [nT
1 (n) . . .nT

MR
(n)]T and the matrix S(n) = [IMR

⊗ S1(n) . . . IMR
⊗ SMT

(n)], we

are able to write the channel input-output relationship for the general MIMO system as follows:

r(n) = S(n)h(t)(n) + n(n) (3.6)

There is a large variety of situations that can be formulated by the generic MIMO commu-

nications system represented in (3.6). To illustrate the generality of the transmitter channel

tracking scheme proposed in the present chapter, next we will explore some of this modulation

schemes detailing for each case the structure of matrix Si(n).

Case 1: Time-division multiple access (TDMA)

A TDMA-based transmission scheme assumes that a block of Ms consecutive symbols are trans-

mitted followed by guard intervals between successive blocks. Presuming that the length of the

guard interval is appropriately chosen to avoid inter-block interference (at least L trailing zeros

must be appended at the end of each data symbol), and considering that the channel keeps

time-invariant along a block period, equation (3.6) may express the channel input-output rela-

tionship when Si(n) ∈ C(Ms+L)×L, which contains the block of Ms symbols transmitted at the

ith antenna, is characterized by the well known Toeplitz structure whose columns are scrolled

versions of the vector si(n) = [si(nMs) . . . si(nMs + Ms − 1)]T (see Figure 3.4a).

maximum length of all channel impulse responses L = max{Lij} i = 1 . . . MT , j = 1 . . . MR. For the sake of

simplicity the length of all channel impulse responses will be assumed to be equal.
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Si(n) = . . .

si si si si ∈C (Ms+ L−1)× L ∈C Ms× L. . .

si si si siSi(n) =
TDMA (a) OFDM (b)

Figure 3.4: Schematic representation of the structured matrix Si(n) in (3.6) for TDMA-

based transmission schemes (a) and for OFDM modulation (b). The column vector si(n) =

[si(nMs) . . . si(nMs + Ms − 1)]T contains a block of Ms consecutive symbols transmitted from

the ith antenna.

Case 2: Orthogonal frequency division multiplexing (OFDM)

For OFDM, or equivalently for discrete matrix multitone modulation, the previous matrix for-

mulation is also applicable if vectors and matrices are properly defined. To generate the OFDM

time waveform at each transmitting antenna the data symbols are first modulated into K fre-

quency bins or subcarriers with the IFFT. Next a cyclic prefix, whose length is adjusted to the

channel impulse response length L, is appended at the beginning of each data block and the time

waveform is transmitted through the MIMO channel. At the receiver, assuming that the channel

keeps invariant within an OFDM symbol, and after discarding the cyclic prefix, the vector that

contains the received symbols at the jth antenna rj(n) ∈ CK×1 can be written in a similar form

to (3.6). If the inverse discrete Fourier transform matrices for each antenna are included into

the linear precoder matrix F(n), the K symbols at the output of the IFFT, previous to add the

cyclic prefix, can be stacked to generate the first column in matrix Si(n) ∈ C(Ms)×L while the

rest of the matrix appear as a circulant structure (see Figure 3.4b).

Case 3: Frequency Flat Fading Multi-Antenna Channel

For the frequency flat fading channel the MIMO model in (3.6) can be straightforwardly applied

by defining the matrix that contains the transmitted data symbols S(n) is defined as:

S(n) = [s1(n) s2(n) . . . sMT
(n)]⊗ IMR



3.3. LINEAR TIME-VARYING CHANNELS 31

3.3 Linear time-varying channels

Once the signal model has been described, a brief summary of linear time-varying channels

and some general definitions are introduced in this section. If the reader is familiar with the

concepts of WSSUS channel, power delay profile and Doppler power spectrum, he can proceed

to the Section 3.4 where the model used to describe the TV channel is introduced.

A linear time-varying channel can be fully described by the Bello’s model. Denoting the

discrete-time channel impulse response function as h(n; l), where index l ∈ 1 . . . L denotes the

multipath delay, and index n refers to the time evolution, the channel input/output relationship

can be written as:

r(n) =
L∑

l=0

h(n; l)s(n− l) + n(n) (3.7)

where s(n) and r(n) are the transmitted and received symbols, respectively, and n(n) is the

additive noise.

Depending on whether the channel evolution can be captured deterministically or not, a

deterministic model or a stochastic model can be considered for describing the TV channel

[Gia98].

3.3.1 Deterministic model

A deterministic channel may be fully described by the channel impulse response h(n; l). However,

a further representation of the TV channel described by the spectral content of the impulse

response in both n and l variables provides more information on the channel variability. This

representation was worked by Bello [Bel63] who introduced the following set of functions to

describe the TV channel.

Delay-Doppler-spread function. The Delay-Doppler spread function describes

the channel behavior in the Doppler domain as follows 3:

S(ν; l) ,
∞∑

n=−∞
h(n; l)e−j2πνn (3.8)

where a finite 2-D support over ν and l domains is used to describe the channel. While

the multipath delay l is responsible for the time dispersion (i.e., the frequency distor-

tion), the new variable ν corresponds to the normalized Doppler shifts producing the

frequency dispersion (i.e., the temporal variations). The delay-Doppler-spread func-

tion is interesting in that it explicitly illustrates both time and frequency dispersion
3The original Delay-Doppler-spread function defined by Bello in [Bel63] was given for the continuous-time

representation of the channel impulse response S (ν; τ) ,
R∞
−∞ h (t; τ) e−j2πνtdt.
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of a channel. Moreover parameters in the the Doppler domain (e.g. the maximum

Doppler shift) can offer valuable information on the channel variability. Its physical

meaning is better understood if the channel impulse response in (3.7) is replaced

by the inverse Fourier transform of the Delay-Doppler spread S(ν; l) with respect

to the normalized Doppler shift ν . Hence, the channel input-output relationship is

described in terms of S(ν; l) [Gre92]:

r(n) =
∫ νmax

−νmax

L∑

l=0

S(ν; l)s(n− l)ej2πνndν (3.9)

that is, the symbols at the channel output are represented as the sum of delayed and

Doppler shifted replicas of the symbols s(n) at the channel input.

Time variant transfer function. Similar to the Delay-Doppler spread function,

a deterministic TV channel can be represented in the transfer domain with respect

to the delay index l as:

T (n; f) ,
L−1∑

l=0

h(n; l)e−j2πfl (3.10)

The time-variant transfer function has the same physical meaning that its time-

invariant counterpart, describing the channel frequency response for a certain input

signal at time n.

3.3.2 Stochastic model

To fully describe a stochastic model for a time-varying random channel is a difficult task. How-

ever, when the aim is to model the time variability, for example by means of an autoregressive

process, the second order statistics of the channel impulse response are enough to character-

ize the channel evolution. Hence, the autocorrelation function of the randomly time-variant

complex impulse response is introduced:

Rh(n1, n2; l1, l2) = E {h(n1; l1)h∗(n2; l2)} (3.11)

This channel characterization can be extended by the correlation of any of the Bello’s functions.

Hence, when the channel is modelled as an stochastic process, an statistical description of the

Delay-Doppler-spread function based on the correlation becomes:

RS(ν1, ν2; l1, l2) = E {S(ν1; l1)S∗(ν2; l2)} (3.12)

And similarly the correlation function of the time varying transfer function is denoted as:

RT (n1, n2; f1, f2) = E {T (n1; f1)T ∗(n2; f2)} (3.13)
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A common simplification of the time-varying random channel is based on the assumption of

stationarity and uncorrelation between scatters as next introduced.

Wide sense stationary assumption (WSS). A channel is said to accomplish

the wide sense stationary conditions with respect to the time index n if its first two

moments (mean and autocorrelation) do not depend on the reference time. That is:

E {h(n1; l)} = E {h(n2; l)}
Rh(n1, n2; l1, l2)WSS = Rh(∆n; l1, l2)

(3.14)

In the dual Doppler domain, the wide sense stationary assumption gives an uncor-

related function in the variable ν:

RS(ν1, ν2; l1, l2)WSS = PS(ν1; l1, l2)δ(ν2 − ν1), (3.15)

where the function PS(ν1; l1, l2) is the cross spectral density function of h(n, l1)

and h(n, l2), defined as the Fourier transform of the time autocorrelation function:

PS(ν1; l1, l2) =
∑∞

∆n=−∞Rh(∆n; l1, l2)e−j2πν1∆n.

Uncorrelated scattering assumption (US). A channel is said to accomplish the

uncorrelated scattering condition when the impulse response is uncorrelated in the

delay index l:

Rh(n1, n2; l1, l2)US = Rh(n1, n2; l1)δ(l2 − l1) (3.16)

US assumption is sometimes called the dual to WSS assumption in the sense that the

process is wide sense stationary in the frequency domain f (i.e., frequency correlation

of US channels only depends on the frequency separation and not on the absolute

frequency values):

RT (n1, n2; f1, f2)US = RT (n1, n2;∆f) (3.17)

Wide sense stationary uncorrelated scattering assumption (WSSUS).

Combining WSS and US assumptions, a channel is called WSSUS if:

Rh(n1, n2; l1, l2)WSSUS = Rh(∆n; l1)δ(l2 − l1)

RS(ν1, ν2; l1, l2)WSSUS = PS(ν1; l1)δ(ν2 − ν1)δ(l2 − l1)
(3.18)

where PS(ν1; l1) will be defined as the scattering function of the TV channel.

Although WSSUS assumption is commonly applied for mostly fading channels, it is well known

that neither a channel can be rigorously assumed to be stationary, nor US assumption can be

accepted for all channels (e.g., some underwater environments [Ilt91] cannot be considered US).
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Nevertheless, stationary assumption is suitable for restricted time intervals and limited frequency

bands. An accurate model for this channels was suggested by Bello [Bel63] as Quasi-WSSUS. A

Quasi-WSSUS channel becomes a WSSUS channel into a bounded region, and outside this region

correlation functions are not considered to accomplish the stationary conditions. Further on, we

will consider for convenience and simplicity that TV channels satisfy the WSSUS assumptions.

From a practical point of view a set of functions can be introduced to calculate various

channel parameters that characterize the multipath effects and the time channel variations.

Specifically, the scattering function, the power delay profile and the Doppler power spectrum

are next defined:

Scattering function. The scattering function of the TV channel PS(ν; l)4 (also

named power spectral density function), is defined as the Fourier transform of the

time correlation channel under the WSSUS assumption, and provides a measure of

the channel behavior as a function of the time delay l and the normalized Doppler

frequency ν:

PS (ν; l) =
∞∑

∆n=−∞
Rh(∆n; l)e−j2πν∆n. (3.19)

This function fully describes the second order statistics of the TV channel under the

WSSUS conditions and it is a support function to compute the power delay profile

and the Doppler power spectrum.

Power Delay Profile. The Power Delay Profile (PDP) (or multipath intensity

profile) models the power decay over the delay index l in a WSSUS channel, and it

is defined as:

PPDP (l) = E {h(n; l)h∗(n; l)} =
∫ νmax

−νmax

PS(ν; l)dν (3.20)

This function is the basis to calculate the delay spread and coherence bandwidth of

the channel [Rap96, p.160].

Doppler Power Spectrum. Similarly, in the dual frequency domain, the Doppler

Power Spectrum function (DPS) describes the time variability of the channel fadings,

and is related with the scattering function by the equation:

PDPS(ν) =
L−1∑

l=0

PS(ν; l) (3.21)

Some parameters related with this function are the coherence time and the Doppler

spread [Rap96, p.165].

4Suffixes in the variables ν and l have been dropped as they are not involved in the function.
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A typical extension to the WSSUS assumption, to simplify the channel model, is to assume a

separable scattering function:

PS (ν; l) = K · PDPS(ν) · PPDP (l) (3.22)

where K is an irrelevant constant.

3.3.3 Scattering function in MIMO channels

The time correlation of the channel, required to track the channel evolution, can be computed

from the Doppler power spectral density function. Hence, this function is an important charac-

teristic of the channel since it provides both a model for time-varying dynamics and a measure

of the channel time-variability. The computation of this channel variability, requires any as-

sumption for the users and/or scatters mobility. Using the Clarke’s model for flat fading mobile

radio propagation scenarios [Cla68], and assuming a separable scattering function, an expression

for the Doppler power spectral density function can be derived for the single antenna case (see

[Jac74, p.21] or [Rap96, p.180]) as a function of the mobile or scatters velocity v and the carrier

frequency fc:

PS(ν; l) =
PPDP (l)

πfd

√
1−

(
ν
fd

)2
|ν| < fd (3.23)

where fd is the maximum normalized Doppler shift: fd = v
cfcT (T denotes the sampling period of

the channel evolution). From the Doppler power spectral density function, the time correlation

of the process is easily determined by the inverse Fourier transform as:

Rh(∆n; l) = PPDP (l) J o (2πfd∆n) (3.24)

where J o(·) is the zero-order Bessel function of the first kind.

The previous U-shaped Clarke’s Doppler spectrum, widely used in literature, is only applied

under two assumptions:

• The Direction of Arrival (DoA) of the propagation waves is uniformly distributed [−π, π)

• Omidirectional antennas with constant gain are used.

Unfortunately the first assumption can not be, in general, considered for MIMO scenarios where

the waves are confined in restricted incident angles. In consequence, a more general Doppler

power spectral density function has to be computed as a function of the p.d.f. of the Power

Angular Spectrum (PAS) (see [Jac74, p.21] or [Rap96, p.180]):

PS(ν; l) =
PPDP (l)

fd

√
1−

(
ν
fd

)2
[p(α)G(α) + p(−α)G(−α)] |ν| < fd (3.25)
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β
α

v

p(α)

Figure 3.5: Illustration of a scatter impinging the mobile MIMO receiver.

where p(α) is the p.d.f. of the PAS and G(α) is the radiation pattern of the antenna. Note that in

the particular case of omnidirectional antennas and rays isotropically distributed, p(α)G(α) = 1
2π

and thus, equation in (3.25) reduces to (3.23).

A study of the Doppler spectrum knowing the PAS was done by [Pet97] (see also [Qin01])

in the case of directional antennas at the base station. The authors concluded that the Doppler

spectrum converges to the classical U-Shape when the beamwidth is increased, which is not

surprising because under those conditions the PAS tends to be uniform.

A similar analysis is next reproduced for MIMO channels introducing the PAS knowledge

(uniform, Gaussian, Laplacian, etc.) into (3.25). Let us assume that the receiver is moving with

speed v at an angle β with respect to the endfire, and a cluster of rays is impinging the antenna

with a PAS p.d.f. denoted as p(α) as shown in Figure 3.5. Each ray experiences a Doppler shift

as a function of the relative angle between β and α, and consequently the incident angle can be

isolated as a function of the normalized Doppler shift:

ν = fd cos(β − α) ⇒ α = β − cos−1

(
ν

fd

)
(3.26)

Substituting (3.26) in (3.25) under the assumption of omnidirectional antennas, an expression

for the Doppler power spectral density function, which only depends on the p.d.f. of the power

angular spectrum, is derived:

PS(ν; l) =
PPDP (l)

fd

√
1−

(
ν
fd

)2

[
p

(
β −

∣∣∣∣cos−1

(
ν

fd

)∣∣∣∣
)

+ p

(
β +

∣∣∣∣cos−1

(
ν

fd

)∣∣∣∣
)]

|ν| < fd

(3.27)

Figure 3.6 illustrates the Doppler Spectrum according to previous expression when the im-

pinging scatters are modelled as a Laplacian PAS arriving at the endfire direction (DoA=0o).

Several plots are compared for different Angular Spreads (AS) and Directions of Movement

(DoM). Results are compared with the classical U-Shaped Clarke’s model. As it can be seen,
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Figure 3.6: Doppler spectra for Laplacian azimuth power spectrum compared with the U-shaped

Clarke’s model.

when the direction of arrival is constrained in a certain space region (Laplacian PAS), the ma-

jority Doppler shifts are confined around a dominant frequency related with the relative angle

(β − α). Furthermore, the lower the AS is, the narrower the Doppler spectrum becomes.

The above derived expression has assumed a 2-D model, considering that only the azimuth

is relevant to model the multiple rays reaching the mobile. Nevertheless, according to [Rep98]

for indoor channels not only the azimuth, but also the elevation is relevant and has to be

considered to model the whole impinging rays. In accordance, an extended 3-D model should be

considered in indoor scenarios. The first author that proposed a three-dimensional multipath

scenario was Aulin in [Aul79]. More recently, [Cla97, Vat97] derived a statistical 3-D model,

and concluded that assuming uniformly distributed rays in azimuth and elevation, the power

spectral density keeps flat between [−fd, fd]. A generalized Doppler power spectrum for wireless

environments considering a propagation model over the whole space (3-D) is derived in [Nar99].

Those general expressions should be managed to determine an accurate Doppler spectrum shape

if non-uniformly spatial distributed rays were considered in MIMO indoor scenarios. In such a

case, not only the azimuth power spectrum, but also the elevation should be settled, p(θ, φ).

Although it has been shown that the classical U-Shaped Clarke’s model is not the most

appropriate for MIMO scenarios, it will be used as a benchmark channel through this chapter.

The performance for more accurate Doppler spectrum shapes induced by multiple antennas will

be evaluated later, concluding that U-Shaped Doppler spectrum leads to a worst-case design for

the feedback channel.
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3.4 Linear channel prediction using an autoregressive model

As outlined in Section 3.1 the design of the transmitter channel tracking scheme is decomposed

into two stages: the prediction of the channel evolution and the study of the feedback link. The

first stage is further formulated proposing the use a linear predictor based on an autoregressive

model of the LTV channel. The second stage, covered in the next section, will use this linear

predictor as part of a Kalman. Hence, an accurate selection of the channel predictor will be of

paramount importance to ensure a successful design of the return link.

Channel model

The simplicity in the approach of a stochastic model to describe the channel behavior, as well

as its capacity of long-range prediction, were the reasons to choose this kind of model over the

deterministic one. With this choice, and assuming that the channel time-evolution is described

by a lowpass Doppler spectrum, a possible approach in predicting this evolution and capturing

the channel dynamics consists on modelling the TV channel as a pth order Auto-Regressive (AR)

process [Ilt90, Eyc98]. This process satisfies that the present value of the channel state is given

by a linear combination of past values plus an error term. Hence, for a specific tap delay l, the

impulse response h(t)(n; l) can be modelled as:

h(t)(n; l) =
p∑

q=1

wq(l)h(t)(n− q; l) + v(n, l) (3.28)

where wq(l) are the model coefficients and v(n, l) is a circular complex white Gaussian process

with zero mean and variance σ2
v(l). In order to uniquely define the AR model, its parameters

must be properly chosen (i.e., the coefficients wq(l) and the variance σ2
v(l)). These parame-

ters can be fitted to the channel features by solving the Yule-Walker equations [Hay96, p.118].

This set of equations are based on the time correlation sequence of the channel coefficients

Rh (0; l) , . . . , Rh (q; l) and thus, this is the only information required to fit the model.

Note that when classical U-shape Doppler spectrum is assumed, (3.24) shows that the com-

putation of these correlation coefficients is an easy task since only the maximum normalized

Doppler shift fd is necessary. In more complex cases, however, those correlation coefficients

should be estimated [Tsa96].

For simplicity in the notation the model in (3.28) has been written for the case of a SISO

channel and for a specific tap delay. The extension of the model to the whole MIMO channel is

next derived. Using the column vector h(n) defined in (3.5), which contains the channel impulse

response for all transmitting and receiving antenna pairs, the pth order autoregressive process
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in (3.28) can be straightforwardly extended as:

h(t)(n) =
p∑

q=1

Wqh(t)(n− q) + v(n) (3.29)

where the AR coefficients are contained in the set of matrices {W1 . . .Wp}, and v(n) is a

complex white Gaussian process with zero mean and covariance matrix Rvv. This model can

be simplified assuming WSSUS channels and spatial uncorrelated antennas at both transmitter

and receiver sides. Under those assumptions the evolution of each subchannel and tap can be

independently modelled, and hence, matrices Wq and Rvv are diagonal. Moreover, if a separable

scattering function with identical power delay profile and Doppler power spectrum functions for

all subchannels are also assumed, those matrices are structured as follows:

Wq = IMT ·MR
⊗ diag {[wq(0) . . .wq(L− 1)]}

Rvv = IMT ·MR
⊗ diag

{[
σ2

v(0) . . . σ2
v(L− 1)

]} (3.30)

Channel predictor

Independently of the assumptions on the channel model it is necessary to design a channel

predictor that predicts the future value of the channel given a set of past channel values. For

this task we will select, for simplicity, a linear predictor that will compute the predicted channel

value ĥ(t)(n; l) as:

ĥ(t)(n; l) =
p∑

q=1

aq(l)ĥ(t)(n− q; l) (3.31)

where M is the order of the predictor, and aq(l) are the coefficients of the predictor.

To optimize the design of those coefficients under a MMSE sense the Wiener-Hopf equations,

which require the knowledge of the autocorrelation values of the channel, must be solved [Hay96,

p.203]. A simple comparison between those equations, which determine the predictor coefficients,

and the Yule-Walker equations, which set the AR coefficients, shows that both sets of equations

have the same mathematical form. Hence, when the stochastic process to be predicted obeys

a pth order autoregressive model, the best linear predictor, in a MMSE sense, is a pth order

predictor whose coefficients take the same values that those of the AR process (i.e., aq(l) =

wq(l)). Furthermore, under those conditions, the variance of the predictor is the variance of the

white process used in the AR model σ2
v(l).

In real scenarios the channel evolution does not obeys an AR process. In such cases, however,

although the AR model is only an approximation, low order AR processes can provide accurate

channel tracking performances when the Doppler power spectrum has a narrowband lowpass

characteristic. This condition holds when the sampling frequency is significantly higher than

the maximum Doppler shift.
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w1(l) w2(l) σ2
v(l)

Random-walk 1 - PPDP (l) · 2 (1− J o (2πfd))

AR(1) J o (2πfd) - PPDP (l) (1− J 
o (2πfd))

AR(2) J o (2πfd)
[J o(2π2fd)−1
J 

o(2πfd)−1

] J 
o(2πfd)−J o(2π2fd)
J 

o(2πfd)−1

PPDP (l) (1− J o (2πfd)w1(l)

−J o (2π2fd)w2(l))

Table 3.1: Parameters of the linear channel predictor in (3.31) using random-walk process, first

AR process: AR(1) and second order AR process: AR(2).

Hence, the following items can be considered to set the channel model and the linear predictor:

• When no information is available on the channel fluctuations, a simple random-walk pro-

cess, which is modelled assuming that the next channel state equals the previous one, can

be considered for slow to moderate LTV channels.

• When more accurate approaches are required, typically, first or second order autoregressive

processes are enough to track the channel.

Table 3.1 summarizes the AR parameters/predictor coefficients for the random-walk process and

for the AR(1) and AR(2) models under the U-shape Doppler spectrum and separable scattering

function assumptions.

3.5 Design of the transmitter channel tracking based on the

Kalman filter

In this section we complete the study of the transmitter channel tracking scheme describing

the design of the transmitter and the receiver channel predictors using the Kalman filter. The

interest in the Kalman filter is motivated by the fact that it is the optimal filter in a minimum

variance sense. Moreover, its structure will yield, in a natural way, an interpretation to the

minimum amount of information to feedback through the return link.

First, the channel model introduced in the previous section is used to set the Kalman filter

equations and variables. These equations will be the used as the basis to predict the channel

response using past values of the channel and present observations at the channel output. Later,

in the core of this section, it will shown that the prediction error is the minimum amount of

information required to track the channel variability at the transmitter. Finally, the last part of

the section will discuss the way to transfer this information through the feedback link diminishing

the effect of the quantization error.
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3.5.1 Statement of the Kalman filter equations

The Kalman filter problem is mathematically formalized from a pair of equations denoted as

state equation and measure equation [And79, p.37], [Hay96, p.307]. Those equations are next

introduced for the specific case of the linear time-varying channel model. For the sake of clarity

in the notation superscript (·)K will be used to denote the Kalman variables whereas superscript

(·)(t) will be used to refer to the channel impulse response.

The state equation, which describes the evolution of the state parameter to be tracked,

will be obtained from the AR process introduced in the previous section to model the channel

dynamics (3.29). Note that when the AR parameters {W1 . . .Wp} and the noise covariance

Rvv are known, this channel model can be written as:




h(t)(n)

h(t)(n− 1)
...

h(t)(n− p + 1)




=




W1 W2 . . . Wp

I 0 . . . 0
...

. . . . . .
...

0 . . . I 0







h(t)(n− 1)

h(t)(n− 2)
...

h(t)(n− p)




+




v(n)

0
...

0




(3.32)

Comparing this equation with the structure of the Kalman state equation, it is shown that

(3.32) can be understood as the Kalman state equation. Specifically, if the state vector hK(n),

which typically contains the information to be estimated, the state transition matrix WK , which

relates the state of the system at times n and n−1, and the noise process vK(n), which contains

the uncertainty of the model, are defined as follows:

hK(n) =




h(t)(n)

h(t)(n− 1)
...

h(t)(n− p + 1)




; WK =




W1 W2 . . . Wp

I 0 . . . 0
...

. . . . . .
...

0 . . . I 0




; vK(n) =




v(n)

0
...

0




(3.33)

the Kalman state equation can be written as:

State equation : hK(n) = WKhK(n− 1) + vK(n) (3.34)

Of special interest is the Kalman state vector hK(n). Note that this vector contains in its first

rows the channel impulse response to be predicted/estimated, i.e., h(t)(n). Hence, in each step

special attention will be focused on these rows since contain the information required to design

later the linear transmitter F(n).
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On the other hand the measurement equation, which provides a noisy observation of a linear

transformation applied over the state vector hK(n), can be obtained from the channel output

r(n). According to equation (3.6) the vector r(n) can be expressed as:

r(n) = [S(n) 0 . . .0]




h(t)(n)

h(t)(n− 1)
...

h(t)(n− p + 1)




+ n(n) (3.35)

Then, defining the measurement matrix SK(n) as:

SK(n) = [S(n) 0 . . .0] (3.36)

we may write the measurement equation as follows:

Measurement equation : r(n) = SK(n)hK(n) + n(n) (3.37)

Notice that the transmitted symbols s(n) are needed to generate the observation matrix

SK(n) according to the structure defined in Section 3.2. Thus, the information symbols x(n)

(and the linear transformation F(n)) must be known at the receiver in order to generate this

matrix. In tracking mode, those symbols can be obtained at the output of the decoder. However,

during the acquisition period symbols at the receiver are not reliable, and hence, any auxiliary

deterministic blind equalizer or a training sequence might be introduced.

The Kalman model must also consider information about the uncertainties in the state

equation (vector vK(n)) and the measurement equation (vector n(n)). This uncertainties are

described by zero mean, white Gaussian processes with known covariances. Specifically, the

noise vectors vK(n) and n(n) are statistically independent, so that E
{
vK(n)n(m)H

}
= 0 for

all n and m, the covariance of the measurement noise is E
{
n(n)n(m)H

}
= Rnδ(m− n) where

Rn = σ2
nI, and the covariance of the noise process is given by E

{
vK(n)vK(m)H

}
= RK

vvδ(m−n)

where:

RK
vv =




Rvv 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0




(3.38)
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and the covariance matrix Rvv was defined in (3.30). Both, the noise process and the mea-

surement noise are assumed to be stationary. Hence, its covariances do not depend on the time

index n. This assumption will allow us to make use of the steady-state solution of the Kalman

filter and it will also allow to compute some matrices before the Kalman filter starts to operate

as it is referenced at the end of Section 3.5.3.

It is worth to note that the covariance matrix Rvv, given by the process noise in (3.32), only

considers the uncertainty in the AR model of the channel. A more accurate description of the

state equation (3.34) might consider the quantization error induced by the quantization of the

information transmitted through the feedback link modifying the definition of vK(n) in (3.33).

For the sake of simplicity, however, we will ignore this error at this point.

3.5.2 Channel prediction using the Kalman state equation

The first step in the Kalman filter aims to predict the CSI at time n using all the measurements

up till time n − 1. This task is described in the state equation (3.32) in which the transition

matrix WK establishes, in the absence of new channel observations, a relationship between the

state vector estimated at time n − 1 and the future value at time n. Using the same notation

that [And79] we shall denote these vectors by ĥK
n−1|n−1 and ĥK

n|n−1, respectively. The prediction

error equation that describes this step, is written as:

ĥK
n|n−1 = WK ĥK

n−1|n−1 (3.39)

Note that this equation simply describes, in a matrix notation, the channel predictor introduced

in (3.31) in which the past values of the channel impulse response have been substituted by their

estimations at time n − 1, and the predictor coefficients are the coefficients of the AR model

(see Section 3.4 for a formal justification of this last assignment).

Once the channel has been predicted, it will be necessary to know how good this prediction

is. The parameter that measures the quality of this prediction is the covariance matrix Σn|n−1,

which is given by:

Σn|n−1 = E

{(
hK(n)− ĥK

n|n−1

)(
hK(n)− ĥK

n|n−1

)H
}

= WK Σn−1|n−1WKH + RK
vv

(3.40)

where Σn−1|n−1, in accordance with the notation used, is the covariance of the estimation error

of the vector ĥK
n−1|n−1. Note that the covariance in (3.40) is formed by two terms. The second

term contain the uncertainty due to noise process, which is simply the MSE of the used channel

predictor (see Section 3.4). Of more interest is, however, the first term. Note that this term

adds to the prediction error the propagated error due to the uncertainty in the estimation of

the state vector ĥK
n−1|n−1.
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Thanks to the structure of the Kalman state vector ĥK(n), which stacks in a column vector

the last pth values of the channel impulse response (see equation (3.33)), the covariance matrix

Σn|n−1 can be structured as a block matrix divided as:

Σn|n−1 =




Σ1,1
n|n−1 Σ2,1

n|n−1 . . . Σp,1
n|n−1

Σ1,2
n|n−1 Σ2,2

n|n−1

. . . Σp,2
n|n−1

...
...

. . .
...

Σ1,p
n|n−1 Σ2,p

n|n−1 . . . Σp,p
n|n−1




(3.41)

where each one of the blocks Σi,j
n|n−1 is given by:

Σi+1,j+1
n|n−1 = E

{(
h(t)(n− i)− ĥ(t)

n|n−1(n− i)
)(

h(t)(n− j)− ĥ(t)
n|n−1(n− j)

)H
}

(3.42)

This structure provided to the covariance matrix will be used in the next sections to simplify

and facilitate the interpretation of some of the derived equations.

3.5.3 Channel estimation using the innovation

When the channel state vector at time n can be observed by means of the measure r(n), the

prediction of the vector ĥK
n|n−1 can be refined making use of that observation. The key to improve

the prediction is to make use of the new information contained in the measure at time n which

was not available from the observations up till time n − 1. The fact is that the observation

vector r(n) does not contributes by itself with all the information of vector hK(n) since all the

predictable information was already contained in ĥK
n|n−1 thanks to the observations up till time

n − 1. In consequence, this new information provided by the present measure, named as the

innovation, is defined by the prediction error between the real measure r(n) and the predicted

value of this vector at time n using the past observations. Hence:

α(n) = r(n)− r̂K
n|n−1

= r(n)− SK(n) ĥK
n|n−1

(3.43)

This equation is better understood if the structure of matrix SK(n) and vector ĥK
n|n−1 are used.

According to the definition of these two variables (3.33), the equation for the innovation is

simplified as follows:

α(n) = r(n)− S(n) ĥ(t)
n|n−1 (3.44)

Note that this new equation reflects the fact that the innovation only provides information of

the channel impulse response at time n since the observation r(n) only depends on h(t)(n) and

not on the past values of the channel.
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Next, we present some properties of the innovation whose derivations are omitted because of its

simplicity [Hay96, p.307]:

Property 1 The innovation associated with the observed random variable r(n) is

orthogonal to the past observations r(1) . . . r(n− 1). Thus:

E {α(n)r(m)} = 0 1 ≤ m ≤ n− 1

Property 2 The innovations α(1) . . . α(n) are orthogonal to each other. Thus:

E {α(n)α(m)} = 0 n 6= m

Property 3 There is a one-to-one correspondence between the observation and the

innovations in the sense that the set of observation vectors [r(1) . . . r(n)] and

the set of innovations [α(1) . . . α(n)] share the same information. In conse-

quence, the Kalman state vector hK(n) can be estimated indistinctly for any

of the two sets of data. This property is the basis to deduce the Kalman filter

equations in [Hay96, p.304].

Property 4 The innovation is a zero mean random process. Hence:

E {α(n)} = 0

Property 5 The covariance of the innovation is given by:

E
{
α(n)α(n)H

}
= SK(n)Σn|n−1S

K(n)
H

+ Rn

Once the innovation has been introduced, this parameter will be used to update the prediction

with the measurement r(n). The equation that refines the prediction is given by:

ĥK
n|n = ĥK

n|n−1 + K(n) α(n) (3.45)

Note that updated value of the state vector is obtained by adding to the predicted Kalman

state ĥK
n|n−1 the new information provided by the innovation α(n). This information is given by

the term K(n) α(n), where the matrix K(n), known as the Kalman gain, is defined as follows:

K(n) = ΣH
n|n−1 SK(n)H

(
SK(n) Σn|n−1 SK(n)H + Rn

)−1
(3.46)

and using the structure of the covariance matrix Σn|n−1 given in (3.41), and the fact that the

measurement matrix SK(n) contains a large number of zeros (3.36), the Kalman gain can be

simplified:

K(n) =




Σ1,1
n|n−1

Σ1,2
n|n−1
...

Σ1,p
n|n−1




S(n)H
(
S(n) Σ1,1

n|n−1 S(n)H + Rn

)−1
(3.47)
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This simplification in the Kalman gain allows to uncouple the correction equation (3.45) into

a set of p independent equations. Hence, the estimated channel vector ĥ(t)
n|n can be written as

follows:

ĥ(t)
n|n(n) = ĥ(t)

n|n−1(n) + Σ1,1
n|n−1 S(n)H

(
S(n) Σ1,1

n|n−1 S(n)H + Rn

)−1

α(n)

ĥ(t)
n|n(n− 1) = ĥ(t)

n|n−1(n− 1) + Σ1,2
n|n−1 S(n)H

(
S(n) Σ1,1

n|n−1 S(n)H + Rn

)−1

α(n)
...

ĥ(t)
n|n(n− p + 1) = ĥ(t)

n|n−1(n− p + 1) + Σ1,p
n|n−1 S(n)H

(
S(n) Σ1,1

n|n−1 S(n)H + Rn

)−1

α(n)
(3.48)

Let us now comment the significance of this set of equations. As it was previously shown,

the innovation only provides information of the CSI at time n. This fact is clearly displayed

in the first equation of the previous set, in which the predicted value of the CSI ĥ(t)
n|n−1(n) is

updated thanks to the innovation to get ĥ(t)
n|n(n). More surprising can be the result given by

the rest of equations. As it is shown, the innovation at time n is also used to update the past

channel impulse responses ĥ(t)
n|n−1(n − 1) . . . ĥ(t)

n|n−1(n − p + 1). This relationship between the

innovation and the past channel responses is due to the dependence of the present CSI with

the past values of the channel (3.34). Those impulse responses, although they are not required

to design the linear transformation F(n), they are necessary to predict the channel response at

time n + 1 (see equation (3.39)) and thus, its update at both, the transmitter and the receiver,

is mandatory.

The last step in the Kalman filter consist in computing the covariance of the estimation error

of vector ĥK
n|n. This covariance is given by:

Σn|n = E

{(
hK(n)− ĥK

n|n
)(

hK(n)− ĥK
n|n

)H
}

= Σn|n−1 −K(n) SK(n) Σn|n−1

= Σn|n−1 −K(n) S(n)
[
Σ1,1

n|n−1 Σ1,2
n|n−1 . . .Σ1,p

n|n−1

]
(3.49)

where the last equality has used the structure of matrices SK(n) and Σn|n−1.

With the computation of (3.49) finishes the nth iteration of the Kalman filter. At this

point, hence, the algorithm is ready to start the next iteration by computing from (3.39) a

new prediction of the CSI at time n + 1 with the observation at time n, i.e.,ĥK
n+1|n. Table 3.2

summarizes the Kalman equations introduced in these sections as well as the initial conditions for

the iterative algorithm. Note that in our concerning problem, the computation of the prediction

error covariance Σn|n−1, the Kalman gain K(n) and the correction error covariance Σn|n do not

depend on the observation r(n). Hence, these three variables can be computed and stored before

the filter starts to operate, simplifying, in consequence, the computational complexity.
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Initial Conditions: Σ0|0 = α I ; α À 1

ĥK
0|0 given by: h

(t)
i,j (0; l) = δ(l) i = 1 . . .MT j = 1 . . . MR

h
(t)
i,j (n; l) = 0 n < 0

Iteration n:

Prediction equation: ĥK
n|n−1 = WK ĥK

n−1|n−1

Prediction error covariance: Σn|n−1 = WK Σn−1|n−1WKH + RK
vv

Innovation: α(n) = r(n)− SK(n) ĥK
n|n−1

Kalman gain: K(n) = ΣH
n|n−1 SK(n)H

(
SK(n) Σn|n−1 SK(n)H + Rn

)−1

Correction equation: ĥK
n|n = ĥK

n|n−1 + K(n) α(n)

Correction error covariance: Σn|n = Σn|n−1 −K(n) SK(n) Σn|n−1

Table 3.2: Summary of the Kalman filter equations.

3.5.4 Feedback link

The application of the previous Kalman state representation for the design of the transmitter

channel tracking scheme described in Section 3.1.1, needs to identify the minimum amount of

information to be fed back to the transmitter. Note that the prediction equation (3.39) can

be computed at both, transmitter and receiver. However, the correction equation (3.45), which

makes use of the unpredictable information of the channel evolution, can only be computed at

the receiver since it is based on the innovation α(n). In accordance, the information contained

on the innovation must be fed back to the transmitter to compensate at this side of the link the

differences between the real and the predicted channel values.

In order to determine which is the minimum amount of information to feedback we enumer-

ate, next, a set of conditions that must accomplish:

Condition 1 The number of elements to be fed back must be the same that the

number of degrees of freedom of the problem. In our particular case this number

is given by the length of the CSI vector h(t)(n), i.e., L ·MT ·MR elements.

Condition 2 The elements to be fed back must be zero mean. Otherwise, it is

obvious that unnecessary information would be transmitted.

Condition 3 The elements to be fed back must be uncorrelated. Otherwise, it is

obvious that redundant information would be transmitted.
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Condition 4 In order to ensure the channel response can be uniquely identified,

the matrix that contains the transmitted symbols S(n) ∈ C(Ms+L)MR×MT MRL

must be a tall matrix, i.e., (Ms + L)MR ≥ MT MRL. Hence, the number of

elements to be transmitted Ms must be appropriately chosen.

According to equation (3.45), it seems that the innovation α(n) must be transmitted through

the feedback channel link to appropriately track the channel at the transmitter. The feedback

of all the elements of α(n), however, does not constitutes the minimum information required to

update the CSI since the length of this vector, (Ms + L)MR, exceeds the number of elements

set in Condition 1.

The term that updates the channel prediction in (3.45), i.e., K(n)α(n), could be also pro-

posed as a candidate to be fed back. Nevertheless, its length does not satisfies Condition 1

either, and hence its validity is also refused.

A subset of the elements in K(n)α(n), however, could provide this minimum amount of

information. Having in mind the structure in hK(n) (see equation (3.33)) it can be seen that

the first MT MRL elements in K(n)α(n) are related with the rest of elements. This relationship is

clearly displayed in the set of equations (3.48), where the correction equation has been uncoupled

into p independent equations. A simple inspection of these equations shows that there is a part

of the expression common to all the equations, S(n)H
(
S(n)Σ1,1

n|n−1S(n)H + Rn

)−1
α(n), and

another part obtained from the covariance matrix Σn|n different for each equation. Whereas

the common part depends on the innovation α(n), and thus it can only be computed at the

receiver, the other part does not depend on the observation, and thus it can be computed both

at the transmitter and at the receiver. Hence, if only the common term to all the equations,

which fulfils Condition 1, were fed back to the transmitter, all the elements in hK(n) could

be satisfactory updated. This term, however, lacks of a clear interpretation. Alternatively, the

whole updating term in the first equation, which also satisfies Condition 1, could be regarded

as the vector that defines the prediction error of the channel impulse response at time n.

Defining this vector as:

e(n) = Σ1,1
n|n−1S(n)H

[
S(n)Σ1,1

n|n−1S(n)H + Rn

]−1
α(n) (3.50)

the set of equations in (3.48) could be rewritten as:

ĥ(t)
n|n(n) = ĥ(t)

n|n−1(n) + e(n)

ĥ(t)
n|n(n− 1) = ĥ(t)

n|n−1(n− 1) + Σ1,2
n|n−1

(
Σ1,1

n|n−1

)−1
e(n)

...

ĥ(t)
n|n(n− p + 1) = ĥ(t)

n|n−1(n− p + 1) + Σ1,p
n|n−1

(
Σ1,1

n|n−1

)−1
e(n)

(3.51)
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Although we have concluded that the elements in e(n) contain all the information required to

update the Kalman state, we have not proven yet that this vector contains the minimum amount

of information to be transferred across the feedback channel. To prove this characteristic, it is

necessary to show that the vector e(n) satisfies Condition 2 and Condition 3.

P1: The prediction error e(n) has zero mean

Proof. First, it can seen that Condition 2 is accomplished by computing the mean of the

vector that can be obtained as:

E {e(n)} = Σ1,1
n|n−1S(n)H

[
S(n)Σ1,1

n|n−1S(n)H + Rn

]−1
E {α(n)} = 0 (3.52)

where the Property 4 of the innovation E {α(n)} = 0 has been used. ¥

P2: The elements of the prediction error e(n) are uncorrelated

Proof. This condition can be proven showing that the covariance matrix is diagonal (under

some reasonable assumptions). This covariance matrix is derived from:

Σe(n) = E
{
e(n)e(n)H

}

= Σ1,1
n|n−1S(n)H

[
S(n)Σ1,1

n|n−1S(n)H + Rn

]−1
E

{
α(n)α(n)H

}×
[
S(n)Σ1,1

n|n−1S(n)H + Rn

]−1
S(n)Σ1,1

n|n−1

= Σ1,1
n|n−1S(n)H

(
S(n)Σ1,1

n|n−1S(n)H + σ2
nI

)−1
S(n)Σ1,1

n|n−1 (3.53)

where the last equality has been obtained plugging the covariance of the innovation (Prop-

erty 5) into the previous expression. Next, applying the matrix inversion lema, the covari-

ance matrix can be written as:

Σe(n) = Σ1,1
n|n−1

S(n)HS(n)
σ2

n

Σ1,1
n|n−1 − (3.54)

Σ1,1
n|n−1

S(n)HS(n)
σ2

n

[(
Σ1,1

n|n−1

)−1
+

S(n)HS(n)
σ2

n

]−1 S(n)HS(n)
σ2

n

Σ1,1
n|n−1

Note that the contribution of the transmitted symbols into the covariance matrix is given

by S(n)HS(n). This matrix can be shown to be diagonal both when a training sequence

and when i.i.d. data symbols are transmitted. In the case of training sequences this is a

common constraint for the design of the sequences [Tun01], whereas in the case of data

symbols, this assumption applies asymptotically for long data sequences thanks to the

independence of the symbols. Hence, assuming S(n)HS(n)
σ2

n
= SNR ·Ms I, where Ms is the
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number of symbols transmitted in a block, the covariance Σe(n) becomes diagonal, and it

can be expressed as:

Σe(n) = SNR ·MsΣ
1,1
n|n−1

(
Σ1,1

n|n−1SNR ·Ms + I
)−1

Σ1,1
n|n−1 (3.55)

¥

At this point, once we have shown that Condition 2 and Condition 3 are accomplished, it can

be concluded that the elements in vector e(n) contain the minimum information required to

compute the correction equation (3.45), and to track the LTV channel at the transmitter site,

with independence of the order of the autoregressive model.

3.5.5 Application to closed-loop schemes

Once the minimum amount of information has been derived, Figure 3.7 and Tables 3.3 and

3.4 briefly summarize the procedure to implement the proposed transmitter channel tracking

algorithm in closed-loop schemes. Note that both, the transmitter and the receiver, work with

the same CSI (i.e., ĥ(t)
R n|n−1

= ĥ(t)
T n|n−1

and also ĥ(t)
R n|n

= ĥ(t)
T n|n

). Although the receiver has

whole information on vector e(n), a quantized version of this vector is used to update the

channel prediction (see the 4th step in Table 3.3) in order to monitor the same CSI that the

transmitter. Otherwise, the small differences between the estimated channel at the transmitter

and at the receiver due to the cumulative quantization error will induce different CSI’s at both

sides of the link.

Channel estimation error at the receiver. According to the procedure proposed in Table

3.3 to estimate the CSI at the receiver, the channel estimation error at this side can be obtained

from the correction error covariance in (3.49) as:

ΣRx(n) = E

{(
h(t)(n)− ĥ(t)

R n|n

)(
h(t)(n)− ĥ(t)

R n|n

)H
}

= Σ1,1
n|n (3.56)

where Σ1,1
n|n, using the same matrix partition that for the covariance Σn|n−1 in (3.41), is a block

of the covariance matrix Σn|n. Hence, using this structure for both, Σn|n and Σn|n−1, and

according to (3.49), it can be shown that Σ1,1
n|n is given by:

Σ1,1
n|n = Σ1,1

n|n−1 −Σ1,1
n|n−1S(n)H

(
S(n)Σ1,1

n|n−1S(n)H + σ2
nI

)−1
S(n)Σ1,1

n|n−1 (3.57)

Next, we summarize some easy, but lengthy manipulations that apply three times the matrix

inversion lema, and assume S(n)HS(n)
σ2

n
= SNR · Ms I in the second equality (as argued in the

previous section, this is a realistic assumption both for long data sequences and for training
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Transmitter Receiver

Feedback LinkPrediction  error
hn|nˆ K

F(n) TransmitterPrefiltering r(n) PredictionErrorS(n)
e(n) eq(n)

hn|nˆ Khn|n-1ˆ K Q{e(n)}LinearPredictorhn+1|nˆ K LinearPredictor 12 3 412
3

Figure 3.7: Transmitter channel tracking algorithm. Block diagram using the Kalman filter.

The numbers into the boxes indicate the order in which the operations are done.

sequences). From (3.57) we have:

Σ1,1
n|n = Σ1,1

n|n−1 −
Σ1,1

n|n−1S(n)H

σ2
n

[
I− S(n)

((
Σ1,1

n|n−1

)−1
+

S(n)HS(n)
σ2

n

)−1 S(n)H

σ2
n

]
S(n)Σ1,1

n|n−1

= Σ1,1
n|n−1 + SNR ·MsΣ

1,1
n|n−1

(
I +

(
SNR ·MsΣ

1,1
n|n−1

)−1
)−1

SNR ·MsΣ
1,1
n|n−1

− SNR ·MsΣ
1,1
n|n−1Σ

1,1
n|n−1

= Σ1,1
n|n−1 −Σ1,1

n|n−1

(
Σ1,1

n|n−1 +
I

SNR ·Ms

)−1

Σ1,1
n|n−1

=
[
SNR ·Ms I +

(
Σ1,1

n|n−1

)−1
]−1

(3.58)

From this result, and observing the dependence between the covariances Σn|n−1 and Σn−1|n−1

(see Table 3.2), it can be concluded that the covariance matrix, which sets the channel estimation

error at the receiver, is diagonal. Hence, only the diagonal elements, denoted as [·][k,k], have to

be computed:

Σ1,1
n|n [k,k] =

1

SNR ·Ms +
1

Σ1,1
n|n−1 [k,k]

(3.59)

The previous equation gives a recursive sequence whose solution converges to the steady-state

covariance matrix of the estimated channel. This steady-state covariance matrix is not difficult

to be derived in the particular case of a first order autoregressive model, which accomplishes

Σ1,1
n|n−1=Σn|n−1 and Σ1,1

n|n=Σn|n. Substituting Σn|n−1 [k,k] by its definition (3.40), and assuming

that Σn|n [k,k] reaches the the steady-state condition: Σn|n [k,k] = Σn−1|n−1 [k,k] = Σ [k,k] (note

that the index n has been omitted since the covariance matrix becomes constant), the diagonal

elements in Σ, are given by:

Σ[k,k] =
1

SNR ·Ms +
1∣∣W1 [k,k]

∣∣2 Σ[k,k] + Rvv[k,k]

(3.60)
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Next, some particular comments can be made on this result:

• A closed form solution exists for the the values of Σ[k,k]. This solution can be found by

solving a simple second order equation derived from (3.60). It can be shown that only

one of the two solutions is valid for our concerning problem, since the other one is always

negative.

• In the hypothetic case in which the model for the evolution of the channel is perfectly

known, i.e., Rvv = 0, the steady-state covariance matrix is Σ[k,k] = 0. This results, as

expected, says that if the Kalman model is perfectly adjusted to the real channel evolution,

the variance on the estimation error can be as small as desired by simply enlarging the

number of iterations, which implies to average a large number of observations.

Table 3.3: Transmitter channel tracking algorithm. Procedure at the receiver.

1. Predict new channel state ĥ(t)
R n|n−1

from the from the first elements of the Kalman state

vector as defined in (3.39).

ĥ(t)
R n|n−1

(n) =
p∑

q=1

Wqĥ
(t)
R n−1|n−1

(n− q)

2. Making use of the observation r(n), the matrix with the transmitted symbols S(n), and

the covariance Σn|n−1, compute the innovation and the prediction error.

α(n) = r(n)− S(n)ĥ(t)
R n|n−1

e(n) = Σ1,1
n|n−1S(n)H

[
S(n)Σ1,1

n|n−1S(n)H + Rn

]−1
α(n)

3. Feedback to the transmitter the quantized prediction error.

eq(n) = Q{e(n)}

4. Update the CSI with the observation at time n and the covariance Σn|n−1.

ĥ(t)
R n|n

(n) = ĥ(t)
R n|n−1

(n) + eq(n)

ĥ(t)
R n|n

(n− i) = ĥ(t)
R n|n−1

(n− i) + Σ1,i
n|n−1

(
Σ1,1

n|n−1

)−1
eq(n)

i = 1 . . . p− 1

(*) Expressions for the covariance matrix Σn|n−1 are given in (3.40) and (3.41)
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• In the case in which there is a large uncertainty in the model used to describe the channel

evolution, i.e., Rvv −→ ∞, the steady-state covariance tends to: Σn|n [k,k] −→ 1
SNR·Ms

.

In this case, the Kalman model does not help the receiver to estimate the channel, and

thus, the performance cannot be improved when it is compared with algorithms that only

use an instantaneous observation to estimate the channel (see e.g., [Tun01]). In other

words, this result says that because the Kalman model is very uncertain, the algorithm, in

opposite to the previous case, cannot improve its performance when increasing the number

of iteration.

Channel estimation error at the transmitter. Following the steps proposed in Table 3.4

to track the channel evolution at the transmitter, the covariance of the channel estimation error

ΣTx(n) can be defined as follows:

ΣTx(n) = E

{(
h(t)(n)− ĥ(t)

T n|n−1

)(
h(t)(n)− ĥ(t)

T n|n−1

)H
}

= Σ1,1
n|n−1 + ΣQ (3.61)

where the first term contains the estimation error due to the channel evolution, and ΣQ is the

covariance due to the quantization error.

Table 3.4: Transmitter channel tracking algorithm. Procedure at the transmitter.

1. Update the channel prediction using the feedback channel and the covariance Σn|n−1.

ĥ(t)
T n|n

(n) = ĥ(t)
T n|n−1

(n) + eq(n)

ĥ(t)
T n|n

(n− i) = ĥ(t)
T n|n−1

(n− i) + Σ1,i
n|n−1

(
Σ1,1

n|n−1

)−1
eq(n)

i = 1 . . . p− 1

2. Predict next channel state ĥ(t)
T n+1|n

.

ĥ(t)
T n+1|n

=
p∑

q=1

Wqĥ
(t)
T n+1−q|n

3. Design the linear precoder matrix F(n) making use of the predicted channel. See next

chapters for the design of linear precoder matrices.

(*) Expressions for the covariance matrix Σn|n−1 are given in (3.40) and (3.41)
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3.5.6 Quantization of the feedback channel

As the prediction error e(n) is the minimum required information to track the LTV channel

modelled as an autoregressive process, we analyze the statistics of the vector and the optimal way

to quantize and encode its elements in a finite number of bits according to information theoretical

principles. To encode the elements in vector e(n) without loosing information an infinite number

of bits should be required. Alternatively, when a finite number of bits is employed, a quantization

distortion is unavoidable. The rate-distortion theorem, which aims at reducing the distortion

for a given target bitrate by optimally allocating the bits, is next defined.

Rate-distortion. Defining D as the mean square-error distortion produced when

quantizing a random variable x with Q (x): D = (x−Q (x))2, and employing R bits

to quantize the variable, the minimum number of bits required to quantize a source

with distortion less or equal to D is given by the rate-distortion function.

As a consequence of the central limit theorem, real and imaginary elements in vector e(n)

are approximately Gaussian random processes whose mean and variance have been derived

in Section 3.5.4. Hence, the vector to be quantized, e(n), is a circularly symmetric complex

Gaussian random vector of length MT ·MR ·L, and whose elements are i.i.d. with zero mean. In

the particular case of a first order autoregressive model, and under the steady-state condition:

Σ = Σn|n = Σn−1|n−1, an expression for the covariance matrix Σe simpler than that one

presented in (3.55) is next derived. The expression given in (3.53) for the error covariance Σe

coincides with the second term in (3.57). Hence, this matrix can be easily computed as:

Σe(n) = Σ1,1
n|n−1 −Σ1,1

n|n

Note that the covariance of the channel prediction error can be understood as the amount of

improvement in the knowledge of the state vector (i.e., the improvement in the estimation of the

CSI) between the prediction provided by the observations up till time n− 1 and the estimation

provided with the observation up till time n.

Next, substituting the covariance matrix Σ1,1
n|n−1 by its definition for a first order AR model

(3.40), and assuming that the covariance matrices reach the steady-state condition Σ = Σn|n =

Σn−1|n−1 we get:

Σe(n) = W1Σn−1|n−1W
H
1 + Rvv −Σn|n (3.62)

Finally, assuming that these matrices are diagonal (this assumption hold true if S(n)HS(n) is

diagonal), we obtain a constant value for the covariance matrix Σe(n) given by:

Σe(n) =
[(
|W1|2 − I

)
Σ + Rvv

]
(3.63)
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For the specific case of a zero mean Gaussian source with variance σ2
x the rate-distortion only

depends on the variance and is given by [Pro94, p.245]:

R(D) =





1
2 log2

σ2
x

D 0 ≤ D ≤ σ2
x

0 D > σ2
x

(3.64)

or equivalently:

D(R) = σ2
x2−2R (3.65)

and thus, this value could be easily computed for the elements of vector e(n) according to results

given in (3.55) or (3.63).

The rate-distortion function is a theoretical bound in the sense that it can only be achieved

by increasing the encoding-decoding complexity. Vector quantization is the optimal solution

to attain (3.65) making use of the Lloyd algorithm [Llo57]. Nevertheless, vector quantization

design is extremely complex and only attains the optimal limit when the number of elements to

quantize is large. Instead, a suboptimum solution, considering individually real and imaginary

parts, and quantizing each vector element separately, is proposed. Hence the total number

variables to encode is 2 ·MT ·MR · L. Because the elements in vector e(n) are approximately

Gaussian random processes, an optimum non-uniform quantizer for Gaussian sources designed

by Max [Max60] will be applied. Numerical methods were employed in that paper to minimize

the distortion (3.65) when the signal to quantify follows a normal distribution.

Table 3.5 summarizes the values of the optimum quantizer for different number of bits,

displays the expected distortion of the quantization process, and compares the result with the

theoretical distortion given by (3.65). The difference between the theoretical distortion and the

real distortion using the non-uniform Max’s quantizer is justified as the difference between a

scalar quantization (based on the quantization single elements) and an optimal quantization

(based on the vector quantization), respectively.

It results in interest to evaluate the theoretical gain in terms of bits when the prediction

error, instead to the channel impulse response coefficients, is quantized and fed back. In order

to evaluate this growth in the number of bits we will first compute the distortion produced by the

quantization of the prediction error with Re bits, and then we will calculate the number of bits

Rh that would be required to quantize the channel coefficients producing the same distortion.

From (3.65) the minimum distortion due to the quantization of a random variable with variance

σ2
e and Re bits is:

D = σ2
e2
−2Re ,

Next, if this distortion value is introduced into (3.64) to guess the number of bits Rh required

to quantize the channel coefficients, whose variance is σ2
h, we get:

Rh =
1
2

log2

σ2
h

D
,
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±0.4528 ±1.510
0 ±0.9816

0.1175R=2
x
y

D/σe2 [Max60]
0.0625D/σe2 D(R)

0 ±0.5006 ±1.050 ±1.748
±0.2451 ±0.7560 ±1.344 ±2.152

0.03454R=3
x
y

D/σe2 [Max60]
0.0156D/σe2 D(R)

0 ±0.2582 ±0.5224 ±0.7996 ±1.099 ±1.437 ±1.844 ±2.401
±0.1284 ±0.3881 ±0.6568 ±0.9424 ±1.256 ±1.618 ±2.069 ±2.733

0.009497R=4
x
y

D/σe2 [Max60]
0.0039D/σe2 D(R)

x2y1
±0.7980
0

0.3634R=1
x
y

D/σe2 [Max60]
0.25D/σe2 D(R)

x3y2x1 y3
x’s mark the input interval end points.
y’s mark the output levels.

Table 3.5: Minimum mean-squared quantization scheme for Gaussian sources with zero mean

and unit variance [Max60].

Finally, combining both equations, a relationship between the number of bits required to quantize

the channel coefficients, Rh, and the number of bits required to quantize the prediction error,

Re, can be derived:

Rh = Re +
1
2

log2

σ2
h

σ2
e

(3.66)

Note that because the variance of the prediction error σ2
e has a dynamic range lower than the

channel coefficients σ2
h, i.e., σ2

h > σ2
e (most of the times σ2

h À σ2
e), as it was expected, the number

of bits required to quantize the channel impulse response coefficients is always greater than the

the number of bits required to quantize the channel prediction error. In the next section this

difference will be evaluated for each one of the scenarios simulated (see Figures 3.8d, 3.9d and

3.10d).
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OFDM symbols and frame structure According to HiperLAN/2 standard

MIMO configuration MT = 2 MR = 2

Channel Exponential PDP with Delay spread 50 ns

SNR 10dB

Normalized Doppler frequency fd=0.037

Training sequence 1 symbol OFDM

Doppler Spectrum Classical U-shape

Table 3.6: Simulated parameters.

3.6 Simulation results

This section illustrates the performance of the proposed scheme to track the TV channel, as a

function of the normalized Doppler frequency, the SNR and the length of the training sequence.

All the simulations have been computed for different AR models (p=1 and p=2), as well as for the

random-walk predictor. All plotted simulations in this section refer, without loss of generality,

to the first elements in vector h (i.e., the first tap l = 1 of the channel impulse response).

A MIMO wireless scenario has been considered, and the simulated parameters has been

selected according to the physical layer of the HIPERLAN/2 standard [HL201]. Table 3.6

summarizes the parameters used in the simulations.

In Figures 3.8-3.10 the subplot labelled as (a) displays the channel estimation error at the

transmitter (3.61), the subplot (b) displays the channel estimation error at the receiver (3.56),

the subplot (c) displays the variance of the prediction error e(n) (3.55), and the subplot (d)

displays the number of additional bits required to feedback the channel coefficients instead of

the prediction error without increasing the distortion (3.66).

3.6.1 Performance evaluation for different normalized Doppler frequencies

Figure 3.8 compares the transmitter channel tracking algorithm as a function of the normalized

Doppler frequency while the rest of the simulation parameters are those shown in Table 3.6.

Vertical line at fd = 0.037 only denotes the normalized Doppler frequency for HIPERLAN/2

assuming that the user is moving at 4km/h. Figure 3.8d illustrates the gain in terms of bits

when the prediction error is fed back instead of the channel coefficients themselves. Note that

always exists a gain, and it is inversely proportional to the prediction error variance (figure

3.8c). Hence, the lower the prediction error is, the greater the gain in number of bits we get by

transmitting only the prediction error.
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Analyzing the performance as a function of the linear predictor order it can be shown that the

random-walk predictor and the AR(1) predictor have similar performances for all the simulated

range. As it was expected, the AR(2) always outperforms the first order model. See for example

the channel estimation error at the transmitter (Figure 3.8a) and at the receiver (Figure 3.8b).

There exists, thus, a trade-off between the complexity of the linear predictor and the variance

in the channel uncertainty.

Analyzing the performance in terms of the channel estimation error at the receiver, it can be

seen in Figure 3.8b that when the normalized Doppler frequency increases (i.e., channel tends

to be fast time varying) the channel estimation error tends to be constant. The explanation can

be found analyzing the steady-state covariance for the AR(1) model (3.60) (the same arguments

are valid for higher AR orders). Note that when channel is fast time varying, the second term in

the denominator of the channel estimation error vanishes and thus the channel estimation error

at the receiver tends to:

Σn|n [k,k] =
1

SNR ·Ms
(3.67)

As said in Section 3.5.5, in this case the linear predictor does not help the receiver to estimate the

channel, and the estimation can only be done making use of the observed sequence. Nevertheless,

when channel is slow time varying, the Kalman linear predictor aids the channel estimator

reducing the variance of the estimation error.

The present simulation also allows to set the number of required bits to quantize e(n).

This information can be induced from the channel estimation error at the transmitter (Figure

3.8a). As it can be shown, the gain is inappreciable when more than 3 bits are used, whereas

if only 1 bit is used the performance degradation due to quantization error can be appreciated.

Consequently, it can be concluded that 2 or 3 bits are enough to get a performance that is close

to the unquantized solution.

3.6.2 Performance evaluation for different SNR’s

Figure 3.9 compares the transmitter channel tracking algorithm as a function of the noise level,

keeping constant the rest of the simulation parameters according to Table 3.6. As in the pre-

vious simulation, the random-walk predictor and the AR(1) predictor have close performances,

whereas the AR(2) model exhibits a better performance.

The most important conclusion of this simulation is drawn from the channel estimation

error at the receiver (Figure 3.9b). The plotted results corroborate that the dominant term to

determine the channel estimation error at the receiver is the noise level, obtaining a proportional

relationship between the SNR and the channel estimation error as given in (3.67).
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Figure 3.8: Performance evaluation of the first tap in the channel impulse response for different

normalized Doppler frequencies. Subplot (a): Channel estimation error at the transmitter (3.61).

Subplot (b): Channel estimation error at the receiver (3.56). Subplot (c): Variance of the

prediction error e(n) (3.55). Subplot (d): Number of additional bits required to feedback the

channel coefficients instead of the prediction error without increasing the distortion (3.66).
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Figure 3.9: Performance evaluation of the first tap in the channel impulse response for different

SNR’s. Subplot (a): Channel estimation error at the transmitter (3.61). Subplot (b): Channel

estimation error at the receiver (3.56). Subplot (c): Variance of the prediction error e(n) (3.55).

Subplot (d): Number of additional bits required to feedback the channel coefficients instead of

the prediction error without increasing the distortion (3.66).
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It is also relevant to note that when the random-walk predictor is used, the variance of the

prediction error e(n) keeps independent of the noise level (see Figure 3.9c). This is straightfor-

wardly justified form equation (3.63). Note that when W1 = I, the covariance matrix Σe(n) [k,k]

only depends on the channel variability and thus, it is insensitive to the rest of parameters.

Finally, the number of bits to quantize the linear prediction error does not depends on the

SNR and as previously deduced, 2 or 3 bits are enough to track the channel (see Figure 3.9a).

3.6.3 Performance evaluation for different training sequence lengths

Figure 3.10 compares the performance of the transmitter channel tracking algorithm when the

number of OFDM symbols in the training sequence is changed. We can drawn the same conclu-

sions that in Section 3.6.2 referring to the relation between the random-walk, the AR(1) and the

AR(2) predictors. Moreover, Figure 3.10c illustrates that the variance of the prediction error

e(n) keeps independent of the training sequence length when the random-walk predictor is used.

The influence of the number of OFDM symbols employed in the training sequence is observed

in the channel estimation error at the transmitter (Figure 3.10a) as well as at the receiver (see

Figure 3.10b). As expected from equation (3.59), the variance of channel estimation error at

the receiver reduces approximately 3dB when the number of OFDM symbols is doubled. This

result applies, as argued in Section 3.5.5, at high SNR’s or large uncertainties in the model used

to describe the channel variability. In both cases, Σn|n [k,k] −→ 1
SNR·Ms

3.6.4 Performance evaluation for different normalized Doppler spectrum

For the design of the linear predictor we have assumed that the Doppler spectrum obeys the

classical U-shaped Clarke’s Doppler spectrum. However, as analyzed in Section 3.3.3 this as-

sumption only holds when the direction of arrival is isotropically distributed, and omnidirectional

antennas with constant gain are used. Otherwise, different Doppler spectra are obtained. Under

a 2-D assumption of the impinging rays, the p.d.f. of the power angular spectrum (PAS), the

Direction of Arrival (DoA), the angular spread (AS) and the Direction of Movement (DoM) of

the mobile determine the final Doppler spectrum.

To evaluate the mismatch effects on the channel tracker when the classical U-shaped, instead

of the real Doppler spectrum, is used to design the linear predictor, we present a set of simulations

for different Doppler spectra. The uniform Doppler spectrum labeled as ’Doppler spectrum:

Uniform’ and the Doppler spectrum derived under a Laplacian PAS with DoA: 0o, DoM: 70o

and AS: 20o labeled as Doppler spectrum: Laplacian (see Section 3.3.3) are next simulated as

a function of the normalized Doppler frequency and assuming an AR(1) predictor. The rest of

the simulation parameters are in Table 3.6.
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Figure 3.10: Performance evaluation of the first tap in the channel impulse response as a function

of the number of OFDM symbols in the training sequence. Subplot (a): Channel estimation

error at the transmitter (3.61). Subplot (b): Channel estimation error at the receiver (3.56).

Subplot (c): Variance of the prediction error e(n) (3.55). Subplot (d): Number of additional bits

required to feedback the channel coefficients instead of the prediction error without increasing

the distortion (3.66).
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Figure 3.11 illustrates the channel estimation error at the transmitter (Figure 3.11a) and at

the receiver (Figure 3.11b), and the variance of the prediction error (Figure 3.11c), comparing

its performance with the classical U-shaped simulations presented in previous subsections.

As it can be seen, the worst performance for the channel estimation error at the transmitter,

as well as the higher variance of e(n), occur for the classical U-shape Doppler spectrum. To un-

derstand this behavior, Figure 3.11d displays the time channel correlation for the tree simulated

scenarios. This correlation, denoted by Rh (∆n; l), is given by the inverse Fourier transform of

the scattering function (see Section 3.3.2). The results shown in this Figure 3.11d reveal that

the channel is more correlated for the Laplacian and uniform Doppler spectrum when compared

with the U-shape and consequently, the time variability of those channels is slower. This result

justifies that the variance of e(n) and the channel estimation error at the transmitter is lower

for the new Doppler spectra because the channel evolution is easier to be predicted.

Another conclusion that can be drawn form this figure is that when the channel is fast time

varying, the channel estimation error at the receiver is insensitive to the Doppler spectrum

(Figure 3.11b). This result, as argued in Section 3.5.5, reveals that when channel state changes

rapidly, its estimation at the receiver is independent of the time evolution (i.e., insensitive to

the specific Doppler spectrum), and tends to the channel estimation error given in (3.67).

3.7 Conclusions

This chapter has introduced a suitable scheme to assist the transmitter with the CSI in optimal

transmitter-receiver equalization designs. The proposed solution is based on two identical linear

predictors at both sides of the link, which are based on the Kalman filter, and a feedback channel

to aid the transmitter to track the channel variations.

Considering the severe limitations of the feedback channel capacity, this chapter has focused

efforts to set the minimum amount of information required to track the channel and to determine

the return link throughput. It has been shown that the prediction error contains the minimum

information to be transferred through the feedback link. Moreover, it has also been shown that

it is possible to track fast fading channels with a low rate feedback link (two or four bits per

complex channel coefficient).

The complexity of the channel predictors has also been considered. Simulations have shown

1st order predictors are good in slow LTV channels, while second order predictors are required

in fast LTV channels at the expense of higher complexity. Although it has not been considered

in the chapter, in the presence of very fast time-varying channels the study could be extended

to higher orders.
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Figure 3.11: Performance evaluation of the first tap in the channel impulse response for different

Doppler spectra (U-Shape, Uniform and Laplacian). Subplot (a): Channel estimation error at

the transmitter (3.61). Subplot (b): Channel estimation error at the receiver (3.56). Subplot

(c): Variance of the prediction error e(n) (3.55). Subplot (d): Time correlation of the channel

for different Doppler spectra.



Chapter 4

Robust power allocation algorithms

for MIMO OFDM systems with

imperfect CSI

The design of power allocation criteria in fading channels improves the performance of the digital

communication systems. A large variety of criteria can be chosen to be optimized, including the

zero-forcing, the Minimum Mean Square Error (MMSE) or the minimum uncoded and coded

BER. These criteria has been widely studied in the literature when perfect CSI is available

at the transmitter. However, the study of closed-loop schemes when channel estimates are

noisy is still an open area. As suggests this thesis, the performance degradation due to the CSI

uncertainty can be diminished by proposing a Bayesian approach to the design of the transmitter

prefiltering matrices in closed-loop schemes that becomes robust to the channel estimation errors.

The design of these robust linear transmitters, like their nonrobust counterparts, are based on

the Singular Value Decomposition (SVD) of the channel response (in multicarrier schemes the

SVD is independently a applied over each subcarrier). The SVD decomposition is particularly

convenient for the OFDM modulation since it allows to allocate power or bits on a subcarrier

basis.

This chapter pays slight attention to the channel coding stage, even though, for the sake

of completeness, the performance of the proposed algorithms has been compared in terms of

coded BER for the particular channel code described in the HIPERLAN/2 standard. Relevant

contributions to this topic are left to the next chapter, where robust power allocation strategies

related with the minimization of the coded BER will be studied.

65
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The chapter is organized as follows. First, Section 4.2 describes the system architecture un-

der analysis and the channel model. This section introduces the named equivalent channel that

exploiting the correlation between the subcarriers and the channel uncertainty structure will try

to mitigate the degradation due to the CSI errors. Afterwards, the design of the linear transmit-

ter that minimizes the MSE is presented in Section 4.3 with the following structure: derivation

of the cost function, closed-form solution and asymptotic analysis of the solution for very high

and very low uncertainty. Section 4.4 is concerned with the design of the linear transmitter that

minimizes the uncoded BER. The first part of the section derives, after introducing the cost

function, a closed-form solution for the specific case of beamforming, whereas the second part

of the section extends the study for the spatial multiplexing case. As other previously proposed

solutions in the literature it will be shown that this algorithm converges to the uniform power

allocation for very poor CSI estimates. Finally, Section 4.5 and 4.6 report some simulation

experiments comparing the performance of the two algorithms in terms of uncoded BER and

coded BER, respectively. In order to focus the comparison on the different designs proposed for

the transmitter, a Maximum Likelihood (ML) receiver has been always used.

4.1 Introduction

The problem of power allocation for single and multiple antenna transmission in fading chan-

nels has been widely studied in the literature under a variety of criteria, including zero-forcing

and Minimum Mean Square Error (MMSE) schemes [Bar00, Teh98], maximum information rate

[Sca99a] and also minimum uncoded Bit Error Rate (BER) [Ong02, Din03] providing in all cases

a design based on the SVD of the channel estimate. However, all these algorithms assume that

the channel is perfectly known at the transmitter. This hypothesis does not hold in real systems,

since neither the transmitter nor the receiver have access to ideal CSI. As it was shown in the

previous chapter, the errors in the channel estimates can be originated from several sources, in-

cluding the estimation variance due to noise, the time lag between channel estimation/prediction

and its use for transmitter design, and the quantization error in the feedback channel. While the

first one is common to the transmitter and the receiver, the second and third ones only appear

in the transmitter. Thus, depending on the pace of channel variation and depending on the

dimensioning of the feedback channel, the channel uncertainty at the transmitter can be larger

than that one at the receiver, but in any case none of them will have perfect CSI.

If the errors in the CSI are not taken into account in the transmitter design, the perfor-

mance of the closed-loop algorithm will degrade and, eventually, may get worse than that one

of open-loop transmission. Thus, the potential of linear precoding can only be fulfilled when

the reliability of the channel estimates is considered in the cost function [Nar98]. The design of

algorithms that take into account partial knowledge of the CSI can be grouped into two cate-
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gories: a first group that considers imperfect estimates of the channel impulse response to design

the transmitter [Ong02, Jön02], and a second group that designs optimal transmitter schemes

based only on the knowledge of the channel statistics [Ong02, Sam02]. The major contribution

in [Ong02] was the design of wide-band signaling schemes under a minimum uncoded BER crite-

rion. It was shown that when perfect CSI is available at the transmitter, a beamformer focused

to the most dominant channel mode achieves the optimal solution, whereas a set of linearly

independent signature codes that transmit on all channel modes are required when CSI is poor.

Readers are also referred to [Sam02] and [Jön02] for the design of linear precoders for space-time

coded systems.

In the framework on this thesis we propose a Bayesian approach to design the optimal

linear transformation when the channel estimates at the transmitter are noisy. Following the

structure proposed in the previous chapter, where the receiver predicts and estimates the channel

response and feeds back this information to the transmitter, unbalanced CSI quality between

the transmitter and the receiver can be assumed. We introduce the idea of the a priori design,

as the design carried out at the transmitter and based on the predicted channel at this side, and

the a posteriori design, as the design carried out at the receiver and based on the updated CSI

from the observation of the channel output.

As it will be shown in the following sections, the Bayesian formulation leads to a design

based on the SVD decomposition of the equivalent channel, that is the result of averaging

the channel estimate over the channel uncertainty. The two criteria studied in this chapter

(MMSE and minimum uncoded BER) lead to closed-form solutions whose complexity is similar

to their non-robust counterparts, although in the case of the uncoded BER some constraints

must be introduced. Besides, the algorithm for minimum uncoded BER can be regarded as

a transmitter design that adapts automatically to the channel knowledge, moving from the

open-loop scheme (the same power is allocated across all subcarriers and antennas) to the

closed-loop scheme according to channel uncertainty. This feature is in common with the results

in [Ong02, Sam02, Jön02]. Another characteristic of the proposed algorithms is that they can

accept different transmission rates, so they can use the space diversity (MIMO channel) to

improve channel reliability or to increase the transmission rate.

4.2 System and channel model

This section describes the signal model for a MIMO OFDM communications system over a

frequency-selective fading channel expanding the generic discrete-time MIMO communication

system introduced in Chapter 3. This formulation is quite general, encompassing the single

antenna transmission, the beamforming schemes and the frequency flat fading channels as par-

ticular cases.
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Figure 4.1: Block diagram of the proposed MIMO OFDM system.

The application of the OFDM modulation will allow us to design the optimum precoders in

the frequency domain and, hence, the system model will be directly formulated in this domain.

According to the scheme in Figure 4.1, the MIMO configuration consists of MT transmit antennas

and MR receive antennas, M denotes the number of symbols to be transmitted per subcarrier

into a transmit block that is bounded by M ≤ min {MT , MR}, and K is the total number of

subcarriers.

Let x be the KM×1 vector containing the KM symbols that are simultaneously transmitted

in the MT OFDM symbols (i.e., one OFDM symbol per antenna). The data are assumed to

be i.i.d. symbols in a constellation {s1 . . . sN } of cardinality N , with zero mean and variance

E
{
xxH

}
= σ2

xI. If the channel keeps invariant within one OFDM symbol and the cyclic prefix

(whose length is appropriately chosen) is removed at the receiver, the system model can be

written as follows:

r = GHFx + Gn (4.1)

where H is a KMR ×KMT block diagonal channel matrix containing the frequency responses

of the MIMO channels, F is a KMT ×KM matrix that denotes the linear precoder matrix and

allocates the power across the K subcarriers and MT antennas, G is a KM × KMR matrix

that combines the signal received at the MR antennas, and n is the KM × 1 noise vector in the

frequency domain, which has the same Gaussian statistic as its time-domain counterpart (i.e.,

zero mean and covariance E
{
nnH

}
= σ2

nI).

Imposing a certain structure in the transmitter and receiver matrices, the frequency-selective

MIMO channel can be decoupled into K independent MIMO frequency-flat fading channels,

simplifying the design of the linear transformations F and G at expenses of perform a suboptimal

solution. As shown in Figure 4.1, these linear transformations are split into K submatrices that

process each subcarrier independently. Hence, G,H,F matrices and x,r vectors involved in (4.1)
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can be structured as:

H = diag {[H1H2 . . .HK ]}
F = diag {[F1F2 . . .FK ]}
G = diag {[G1G2 . . .GK ]}
xT = [xT

1 . . .xT
K ]

rT = [rT
1 . . . rT

K ]

(4.2)

where Fk,Hk, and Gk are, respectively, MT ×M , MR ×MT , and M ×MR matrices processing

the kth subcarrier, and xk, rk are M×1 vectors containing the transmitted and received symbols

by the kth subcarrier through the different antennas. Following the structure in (4.2), the input-

output relationship in (4.1) is rewritten as a set of equations that contain only one subcarrier

each:

rk = GkHkFkxk + Gknk k = 1 . . . K (4.3)

The architecture proposed in (4.3) is the basis for the study of the power allocation algo-

rithms followed in this thesis. Note that the block diagonal structure proposed for the linear

transformations F and G in (4.2) has the advantage of providing a scheme where the spatial

prefiltering matrix is applied individually to each subcarrier, reducing to the classic OFDM

scheme when only one antenna is used at the transmitter.

A more general scheme could have been possible if the linear transformations F and G had

been considered as unstructured matrices. Under this condition the transmitted symbols could

have been mixed among all subcarriers and antennas reducing the restrictions in the design at

expenses of a greater complexity. This complexity, and the fact that this unconstrained design

breaks the OFDM structure, justify the structure proposed for F and G matrices.

It is worth mentioning that the receiver filtering matrix G has been included in the model for

the sake of completeness and because it is required in the design of the minimum MSE algorithm,

although the simulation results do not implement it because a ML detector was used to make a

fair comparison of the proposed algorithms. This issue is reviewed in Section 4.3 when the cost

function for minimum MSE is addressed. It is also worth to observe that although most of the

communication systems incorporate a channel code scheme, this stage has not been taken into

account in this chapter and it has not been considered in the design of Fk and Gk matrices.

The evaluation of the proposed algorithms in terms of coded BER is left to the next chapter.

During subsequent developments, it will be useful to store the complete channel response in

a vector. The MIMO channel response for the kth subcarrier and for the multicarrier system
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will be denoted hk and h, respectively:

hk = vec (Hk)

h =
[

hT
1 . . . hT

K

]T
(4.4)

According to this new notation, and making use of the identity vec (ABC) =
(
CT ⊗A

)
vec (B)

[Mag99, p.30], the received vector for the kth subcarrier rk can be rewritten as:

rk = Akhk + Gknk k = 1 . . .K (4.5)

where the matrix Ak is defined as:

Ak = (Fkxk)
T ⊗Gk (4.6)

4.2.1 Channel model

This section introduces the model for the channel response and channel estimates used to design

and simulate the power allocation algorithms. The propagation channel is modelled as a fading

channel with uncorrelated coefficients for all taps in the impulse response (i.e., US assumption)

and identical power delay profile for all subchannels. This model encompasses the Rayleigh

fading and Ricean fading channels as particular cases. For the sake of completeness, spatial

correlation is considered in the channel model and also introduced into the formulation of the

algorithms (assuming identical correlation for all the channel taps), although the uncorrelation

assumption will be required to derive closed-form solutions for the proposed algorithms. The

channel vector h defined in (4.4) is modelled as a multivariate Gaussian process with mean and

covariance derived in Appendix 4.A:

E {h} = mh

E
{

(h−mh) (h−mh)H
}

= Chh = P⊗R (4.7)

where matrix R is the antenna correlation matrix, and matrix P is an Hermitian Toeplitz

matrix whose first row is the Discrete Fourier Transform (DFT) of the variance in the channel

impulse response coefficients, which is assumed to be known (both matrices are clearly defined

in Appendix 4.A).

The design of the linear precoder in the presence of channel estimation errors requires the

definition of a model for the estimated channel ĥ. It will be assumed that the channel estimation

error ε can be modelled as an additive term as follows:

ĥ =

√
σ2

h

σ2
h + σ2

ε

(h + ε) (4.8)
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where σ2
h = E

{
hHh

}
, σ2

ε = E
{
εHε

}
and the term into the squared-root is a terms that keeps

the power of the estimated channel independent of the power of ε.

The equation in (4.8) is valid to CSI errors both at the transmitter and at the receiver (see

Chapter 3 for details). The transmitter may update CSI based on a feedback link and the

prediction of the future channel state from previous CSI when channel is time-varying; thus,

the feedback delay and the prediction error are the most important causes of imperfect channel

estimates at this side. At the receiver side, the degradation of channel estimate quality is mainly

caused by the additive noise. These sources of CSI degradation can be collected in the channel

estimation error ε, which is modelled as a zero mean Gaussian process independent of the true

channel h and with covariance matrix (see Appendix 4.A):

E
{
εεH

}
= E⊗ I (4.9)

where matrix E, with the same structure as matrix P, contains the DFT of the variance of the

channel estimation error for each tap, and it is also assumed to be known.

The Bayesian approach adopted in this thesis relies on the hypothesis that the channel h

and its estimate ĥ are jointly Gaussian. Under this assumption the statistics of h given ĥ are

also Gaussian with conditional mean mh|ĥ and conditional covariance Ch|ĥ defined as [Kay93,

p.324]:

mh|ĥ = mh + ChĥC
−1

ĥĥ

(
ĥ−mĥ

)

Ch|ĥ = Chh −ChĥC
−1

ĥĥ
Cĥh

(4.10)

In our particular case, following (4.7)-(4.9), the conditional mean and conditional covariance

have been derived in Appendix 4.A:

mh|ĥ =

√
1 +

σ2
ε

σ2
h

(
(P⊗R) (P⊗R + E⊗ I)−1

)
ĥ

+ (E⊗ I) (P⊗R + E⊗ I)−1 mh

(4.11)

Ch|ĥ = (P⊗R) (P⊗R + E⊗ I)−1 (E⊗ I) (4.12)

and for the particular case of uncorrelated antennas (i.e., R = I), these conditional mean and

conditional covariance expressions reduce to:

mh|ĥ =

√
1 +

σ2
ε

σ2
h

(
P (P + E)−1 ⊗ I

)
ĥ +

(
E (P + E)−1 ⊗ I

)
mh (4.13)

Ch|ĥ =
(
P (P + E)−1 E

)
⊗ I (4.14)

Next sections will focus on the conditional covariance for a specific subcarrier hk under the

hypothesis of uncorrelated antennas. In that case matrix, Chk|ĥ is given by:

Chk|ĥ =
[
P (P + E)−1 E

]
[k,k]

I = ωI (4.15)
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where subindex [·][k,k] refers to the (k, k)th element and, the second equality, which proves that

the conditional covariance is given by the scalar ω is the same for all subcarriers, follows from

the circulant structure of P and E matrices (see Appendix 4.A) that forces all the elements in

the diagonal of P (P + E)−1 E to be equal. The asymptotic values when channel is perfectly

known and when it is completely unknown are:

ω =





0 Perfect CSI at the Transmitter

σ2
h No CSI at the Transmitter

(4.16)

4.2.2 Equivalent channel

A detailed analysis of (4.13) shows that the conditional mean can be understood as an equivalent

channel that exploits the correlation between subcarriers and the channel uncertainty structure

to mitigate the degradation due to CSI errors (see Figure 4.2). We will denote this equivalent

channel as ĥeq
k = mhk|ĥ. As shown in Figure 4.2 the equivalent channel for a particular subcar-

rier, under the assumption of uncorrelated antennas, can be expressed as a linear combination

of the channel mean mh and channel estimates ĥ for all subcarriers:

ĥeq
k =

K∑

l=1

β̂k(l) ĥl + β̄k(l) mhl
(4.17)

where β̂k(l) and β̄k(l) are the coefficients for the linear combination. As shown in Figure 4.2

those coefficients are defined as follows:

β̂k(l) =
√

1 + σ2
ε

σ2
h

P[k,:] (P + E)−1
[:,l]

β̄k(l) = E[k,:] (P + E)−1
[:,l]

(4.18)

where A[l,:] denotes the lth row of matrix A, and similarly, A[:,l] denotes its lth column.

The weighting coefficients β̂k(l) and β̄k(l) exploit the subcarrier correlation structure defined

by the power delay profile to mitigate the mismatch between the real and the estimated channels.

Note that when perfect channel knowledge is available (i.e., matrix E = 0), the coefficients β̄k(j)

are all zero, and β̂k(j) = δ (k − j), leading to the equivalent channel: ĥeq
k = ĥk. In all other

cases, the coefficients β̂k(j) and β̄k(j) weight vectors ĥj and mhj for all subcarriers to reduce

the uncertainty in the specific kth subcarrier. The asymptotic values when channel is perfectly

known and when it is completely unknown are:

ĥeq
k =





ĥk = hk Perfect CSI at the Transmitter

0 No CSI at the Transmitter
(4.19)
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Figure 4.2: Graphical structure of the first term in the conditional mean. A[l,:] denotes the lth

row of matrix A whereas A[:,l] denotes its lth column. A similar structure can be found for the

second term

Hereafter we will refer to the equivalent channel in any of its two forms: ĥeq
k = vec

(
Ĥeq

k

)
,

and its SVD will be denoted as:

Ĥeq
k = UkΛkVH

k (4.20)

4.2.3 Unbalanced CSI between the transmitter and the receiver

Some algorithms, as will be the case of the minimum MSE criterion, allow to design, in a single

step, the linear transformations Fk and Gk when the same imperfect CSI is assumed at both

sides of the link. However, when the CSI quality is unbalanced between the transmitter and the

receiver, there is no way to introduce, into the transmitter cost function, different levels of CSI.

Alternatively, we divide the design in two steps:

• A first step is carried out at the transmitter, which we will call the a priori design, and

whose aim is to design the transmitter matrix Fk based on the prediction of the channel

impulse response before the signal is actually transmitted (see Chapter 3 for details on

how the transmitter is aided from the receiver by means of the feedback channel link).

• A second step is carried out at the receiver and it is called the a posteriori design, whose

aim is to design the optimal receiver based on the channel knowledge at the receiver and

the specific linear transformation Fk, once the transmitted signal has been received and

the CSI has been updated.
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4.3 MMSE design

This section aims at designing the linear transmitter Fk that minimizes the MSE at the output of

the linear receiver Gk subject to an average power constraint across all subcarriers and antennas

when channel estimates are noisy. According to the classification of the a priori and a posteriori

designs introduced at the end of the previous section, we focus, here, on the a priori design,

whereas the a posteriori design, which designs the optimal receiver based on the ML receiver, is

described in Section 4.5. The MMSE cost function requires a linear receiver Gk which implicitly

assumes that the same CSI quality is available at the transmitter and at the receiver. However,

in most cases, the CSI quality in unbalanced, and thus, the linear transformations Fk and Gk

can not be designed in a single step. That is the case of our concerning problem. To solve this

situation, in this section we introduce into the optimization problem the linear receiver Gk but

this matrix is never used at the receiver because finally an ML receiver will be used.

Using the system model introduced in (4.3) the objective function that minimizes the MSE

between the transmitted symbols xk and the received symbols rk is given by:

min
Fk,Gk

K∑

k=1

E
{
|rk − xk|2

}
subject to

K∑

k=1

Tr
{
FkFH

k

}
= P0 (4.21)

where the expectation is computed over the additive Gaussian noise nk, the discrete-time se-

quence xk, and the true channel impulse response hk given the channel estimate at the trans-

mitter ĥ. For the sake of generality, it is first assumed that the transmitted symbols are known,

which is a realistic assumption when training sequences are used, and the purpose is to improve

the channel estimation (i.e., in Data-Aided (DA) schemes), and the result is later averaged over

the vector xk to extend the solution to schemes where the transmitted sequences are not known

at the receiver. For the sake of clarity we will use the superscript ’Robust-DA’ to refer to the

first solution and ’Robust’ to denote the second one.

Under the previous premises, the design of matrices Fk and Gk given a transmitted sequence

xk and a channel estimate ĥk is done minimizing:

min
Fk,Gk

K∑

k=1

Ehk|ĥ
{

Enk

{
|rk − xk|2

}}
subject to

K∑

k=1

Tr
{
FkFH

k

}
= P0 (4.22)

Note that this minimization problem differs to those proposed in [Bar00] and [Sam01] on the

conditional expectation Ehk|ĥ {·}, which mitigates the impact of the channel uncertainty on the

algorithm performance, providing a robust design that adapts to the channel estimation quality.

4.3.1 Cost function

This section expands the cost function in (4.22) making use of the conditional mean and co-

variance given in (4.11) and (4.12). Assuming that the transmitted symbols are known, and
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substituting vector rk by the expression introduced in (4.5), the expectation over the true chan-

nel impulse response hk and the additive Gaussian noise nk is given by:

ξRobust−DA

k = Ehk|ĥ
{

Enk

{
|rk − xk|2

}}

= Ehk|ĥ
{

Enk

{
|Akhk + Gknk − xk|2

}}

= Ehk|ĥ
{
|Akhk − xk|2

}
+ Enk

{
|Gknk|2

}
(4.23)

where the independence between the transmitted symbols and the noise has been used in the

last equality. Next, we will compute the two expectation separately. The first term can be

written as:

Ehk|ĥ
{
|Akhk − xk|2

}
= Ehk|ĥ

{∣∣∣
(
Ak

(
hk − heq

k

)
+ Akh

eq
k

)
− xk

∣∣∣
2
}

= Ehk|ĥ
{∣∣Ak

(
hk − heq

k

)∣∣2
}

+
∣∣Akh

eq
k − xk

∣∣2

= Tr
{
AkEhk|ĥ

{(
hk − heq

k

) (
hk − heq

k

)H
}

AH
k

}
+

∣∣Akh
eq
k − xk

∣∣2

= Tr
{
AkChk|ĥA

H
k

}
+

∣∣Akh
eq
k − xk

∣∣2
(4.24)

where Ehk|ĥ
{(

hk − heq
k

)}
= 0 has been used in the second equality. The second expectation

becomes:
Enk

{
|Gknk|2

}
= Tr

{
GH

k GkEnk

{
|nk|2

}}

= σ2
nTr

{
GH

k Gk

} (4.25)

And, substituting (4.24) and (4.25) into the cost function in (4.23) the contribution of kth

subcarrier to the robust cost function is given by:

ξRobust−DA

k =
∣∣∣Akĥ

eq
k − xk

∣∣∣
2
+ σ2

nTr
{
GH

k Gk

}
+ Tr

{
AkChk|ĥA

H
k

}
(4.26)

A simple comparison of equations (4.3) and (4.5) shows that the term Akĥ
eq
k can be written as

GkĤ
eq
k Fkxk. Hence, a more understandable expression for (4.26) can be written as follows:

ξRobust−DA

k =
∣∣∣
(
GkĤ

eq
k Fk − I

)
xk

∣∣∣
2
+ σ2

nTr
{
GH

k Gk

}
+ Tr

{
AkChk|ĥA

H
k

}
(4.27)

and the optimization criterion is finally expressed as:

min
Fk,Gk

K∑

k=1

ξRobust−DA

k subject to
K∑

k=1

Tr
{
FkFH

k

}
= P0 (4.28)

This cost function is only useful when sequence xk is known at the receiver; however, in

most cases, the transmitted symbols are not known. Hence, when only the statistics of the

transmitted symbols are known at the receiver, the expectation of (4.27) over the transmitted

sequence allows the design of optimal linear transformations Fk and Gk independently of the

specific information symbols:

ξRobust
k = Exk

{∣∣∣
(
GkĤ

eq
k Fk − I

)
xk

∣∣∣
2
+ σ2

nTr
{
GH

k Gk

}
+ Tr

{
AkChk|ĥA

H
k

}}
(4.29)
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Next, we compute the expectation over the first and third terms separately. The expectation of

the first term is a simple task:

Exk

{∣∣∣
(
GkĤ

eq
k Fk − I

)
xk

∣∣∣
2
}

= Tr
{(

GkĤ
eq
k Fk − I

)H (
GkĤ

eq
k Fk − I

)
Exk

{
|xk|2

}}

= σ2
xTr

{(
GkĤ

eq
k Fk − I

)H (
GkĤ

eq
k Fk − I

)}

(4.30)

whereas the expectation of the third term requires to substitute Ak by the expression given in

(4.6) and use the Kronecker product identity (A⊗B) (C⊗D) = AC⊗BD. Therefore:

Exk

{
Tr

{
AkChk|ĥA

H
k

}}
= Exk

{
Tr

{(
(Fkxk)

T ⊗Gk

)
Chk|ĥ

(
(Fkxk)

T ⊗Gk

)H
}}

= Exk

{
Tr

{
Chk|ĥ

(
(Fkxk)

∗ ⊗GH
k

)(
(Fkxk)

T ⊗Gk

)}}

= Tr
{
Chk|ĥ

(
Exk

{
F∗kx

∗
kx

T
k FT

k

}⊗GH
k Gk

)}

= σ2
xTr

{
Chk|ĥ

(
F∗kF

T
k ⊗GH

k Gk

)}

(4.31)

Substituting (4.30) and (4.31) into the cost function in (4.29) the contribution of kth subcarrier

to the robust cost function is given by:

ξRobust
k = σ2

xTr
{(

GkĤ
eq
k Fk − I

)H (
GkĤ

eq
k Fk − I

)}
(4.32)

+σ2
nTr

{
GH

k Gk

}
+ σ2

xTr
{
Chk|ĥ

(
F∗kF

T
k ⊗GH

k Gk

)}

and the whole cost function is finally expressed as:

min
Fk,Gk

K∑

k=1

ξRobust
k subject to

K∑

k=1

Tr
{
FkFH

k

}
= P0 (4.33)

It is interesting to analyze the similarities between the derived expression and the cost

function appearing in the nonrobust solution in [Bar00] and [Sam01], where the MSE for the

kth subcarrier is written as:

ξNonrobust
k = σ2

xTr
{(

GkĤkFk − I
)H (

GkĤkFk − I
)}

+ σ2
n Tr

{
GH

k Gk

}
(4.34)

The nonrobust cost function, as shown in (4.34), contains two terms: The first one is a

measure of the ISI, whereas the second one introduces into the cost function the contribution

of the noise. Note that the residual ISI and the noise also appear in the robust cost function

derived in (4.32), but there, the channel estimate Ĥk has been replaced by the equivalent channel

Ĥeq
k . Thus, the robust cost function exploits the correlation between subcarriers to mitigate the

channel uncertainty, improving its performance. A second difference between the robust and the
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nonrobust solutions is the third term in (4.32) that does not appear in (4.34). As the covariance

matrix Chk|ĥ is a measure of the channel estimation error, the third term introduces into the

score function the mismatch between the real and the estimated channel due to the estimation

errors.

4.3.2 Closed-form solution

A solution for the optimization of (4.32) can only be obtained by means of numerical techniques.

Unfortunately, a closed-form solution is feasible only for uncorrelated antennas. Hence, in this

section, we will assume that the channel is spatially uncorrelated. Substituting covariance

matrix Chk|ĥ given in (4.15) into the third term in (4.32) and using the identity Tr {A⊗B} =

Tr {A} ⊗ Tr {B}, we get:

σ2
xTr

{
Chk|ĥ

(
F∗kF

T
k ⊗GH

k Gk

)}
= ωσ2

xTr
{(

F∗kF
T
k ⊗GH

k Gk

)}

= ωσ2
xTr

{
F∗kF

T
k

}⊗ Tr
{
GH

k Gk

}

= ωσ2
xTr

{
FkFH

k

}⊗ Tr
{
GH

k Gk

}
(4.35)

and hence, the cost function for the specific case of uncorrelated antennas simplifies to:

ξRobust
k = σ2

xTr
{(

GkĤ
eq
k Fk − I

)H (
GkĤ

eq
k Fk − I

)}
(4.36)

+σ2
nTr

{
GH

k Gk

}
+ ωσ2

xTr
{
FkFH

k

}
Tr

{
GH

k Gk

}

In Appendix 4.B, it is shown that using the SVD of the equivalent channel matrix Ĥeq
k for each

subcarrier Ĥeq
k = UkΛkVH

k , the cost function in (4.36) is minimized when Fk and Gk matrices

have the following structure:

Fk = VkΦkTk Gk = TH
k ΓkΛ

#
k UH

k (4.37)

where Tk is an irrelevant unitary matrix (for the sake of simplicity we chose Tk = I), Φk is

a diagonal matrix that sets the power distribution policy (the square of the elements of the

diagonal φ2
k(l) define the power allocated to each channel mode), and Γk is also a diagonal

matrix applied to the symbols at the channel output. According to the SVD decomposition in

(4.37), the function to minimize, including all the constraints, becomes:

min
Γk,Φk

K∑

k=1

σ2
xTr

{
(ΓkΦk − I)H (ΓkΦk − I)

}
+ σ2

nTr
{
ΓkΓH

k Λ#2
k

}

+ ω σ2
xTr

{
ΦH

k Φk

}
Tr

{
ΓkΓH

k Λ#2
k

}

subject to
K∑

k=1

Tr
{
ΦH

k Φk

}
=

K∑

k=1

M∑

j=1

φ2
k(j) = P0

φ2
k(l) ≥ 0 k = 1 . . . K l = 1 . . . M

(4.38)
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It can be easily proven the convexity of the objective function both in Γk and Φk since

the Hessian if always semipositive definite. Hence, the optimization problem can be solved by

imposing the Karush-Kuhn-Tucker (KKT) conditions [Boy04, p.243]. Denoting γk(l) and λeq
k (l)

as the elements of the diagonal matrices Γk and Λk, respectively, the KKT conditions are written

as follows:

ω σ2

x

M∑

j=1

γ2
k(j)|λeq

k (j)|−2 − νkl + µ


φk(l) + σ2

xγ2
k(l)φk(l)− σ2

xγk(l) = 0 (4.39a)


ω σ2

x

M∑

j=1

φ2
k(j) + σ2

n


 |λeq

k (l)|−2γk(l) + σ2
xφ2

k(l)γk(l)− σ2
xφk(l) = 0 (4.39b)

K∑

k=1

M∑

j=1

φ2
k(j)− P0 = 0 (4.39c)

φ2
k(l) ≥ 0 k = 1 . . .K l = 1 . . . M (4.39d)

νkl ≥ 0 k = 1 . . . K l = 1 . . . M (4.39e)

νklφ
2
k(l) = 0 k = 1 . . . K l = 1 . . . M (4.39f)

where the first and second conditions can be found differentiating the Lagrangian associated

with the problem (4.38) with respect to φk(l) and γk(l), respectively, and equating them to zero;

µ is the Lagrange multiplier for the equality constraint (4.39c) and νkl are the multipliers for

the inequality constraint (4.39d); finally, the two last equations (4.39e) and (4.39f) are given by

the complementary slackness condition.

In order to solve this equations we will first collapse the first and second conditions into a

single equation. Multiplying the first equation by φk(l), and second equation by γk(l), we get

the following identity:

ω σ2

x

M∑

j=1

γ2
k(j)|λeq

k (j)|−2 + µ


φ2

k(l) =


ω σ2

x

M∑

j=1

φ2
k(j) + σ2

n


 |λeq

k (l)|−2γ2
k(l) (4.40)

where the constraint (4.39f) has been considered to eliminate the dependency with respect to

νkl variables. From this point µ can be solved as:

µ =
σ2

n

P0

K∑

k=1

L∑

j=1

γ2
k(j)|λeq

k (j)|−2 (4.41)

Replacing µ into (4.40), the next relation between γk(l) and φk(l) is derived:

φk(l) = Ck|λeq
k (l)|−1γk(l) (4.42)

where Ck is a scalar that must be found. Substituting (4.42) in (4.40), it can be seen that the

equality is only accomplished when the scalar Ck is constant for all subcarriers, i.e., Ck = C.
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Introducing (4.41) and (4.42) into (4.39a), and after some manipulations, it is straightforward

to derive an equivalent expression to be solved:

ω
M∑

j=1

φ2
k(j) +

σ2
n

σ2
x

− νkl + φ2
k(l)|λeq

k (l)|2 = C|λeq
k (l)| (4.43)

Next we will eliminate the slack variables νkl by forcing the conditions (4.39e)-(4.39f):

• If φ2
k(l) = 0 hence, according to (4.39e), the variables νkl must satisfy νkl > 0. Substituting

this condition into (4.43) we get the next inequality:

C|λeq
k (l)| < ω

M∑

j=1
j 6=l

φ2
k(j) +

σ2
n

σ2
x

(4.44)

• If φ2
k(l) > 0 we have νkl = 0 in order to satisfy (4.39f). And thus (4.43) becomes:

ω
M∑

j=1

φ2
k(j) +

σ2
n

σ2
x

+ φ2
k(l)|λeq

k (l)|2 = C|λeq
k (l)| (4.45)

Next we will solve equation (4.45) assuming that φ2
k(l) satisfies φ2

k(l) > 0 and we will use the

inequality in (4.44) to force φ2
k(l) = 0 when we will get a negative solution. For each subcarrier

k, the equality in (4.45) provides a set of M equations that are linear on the M + 1 unknowns

given by the M elements φ2
k(l) (l = 1 . . .M) and the scalar C. Hence, all the unknowns can

be found when simultaneously solving the sets of equations given by (4.45) combined with the

power constraint. Alternatively, their resolution can be simplified by solving the problem for

each subcarrier in two stages, as next shown.

First, (4.45) is solved for each subcarrier:




ω + |λeq
k (1)|2 ω . . . ω −|λeq

k (1)|
ω ω + |λeq

k (2)|2 . . . ω −|λeq
k (2)|

...
...

. . .
...

...

ω . . . . . . ω + |λeq
k (M)|2 −|λeq

k (M)|







φ2
k(1)
...

φ2
k(M)

C




=




−σ2
n/σ2

x

...

...

−σ2
n/σ2

x




(4.46)

Storing the φ2
k(l) values that correspond to the same subcarrier in vector φ2

k, and defining B

matrix, the set of equations can be written as:

B


 φ2

k

C


 = −σ2

n

σ2
x

1M×1 (4.47)
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The solution to the set of equations can be found as the summation of the particular solution

given by (4.47) and the kernel of matrix B:


 φ2

k

C


 = −σ2

n

σ2
x

B#1 + Dkv (4.48)

where v is a vector spanning the null-space of matrix B and the scalar Dk is an arbitrary

constant. Afterwards, the values for the constant Dk are found by solving a second set of

equations including the power constraint:

N−1∑

k=0

1T φ2
k = P0 (4.49)

Notice that the power allocated to each subcarrier in vector φ2
k should satisfy φ2

k(l) ≥ 0.

If any of the components obtained when solving (4.48) were negative, the power allocated to

that subcarrier should be set to zero φ2
k(l) = 0 and the described procedure should be repeated

for the rest of subcarriers until all the elements in vector φ2
k satisfy φ2

k(l) ≥ 0. A rigorous

justification of this step can be found in the inequality (4.44). It is easy to analyze that when

φ2
k(l) < 0 this inequality holds and thus to satisfy (4.39e)-(4.39f) conditions: φ2

k(l) = 0.

A study of the complexity of this robust solution, as well as a comparison with the nonrobust

one, can be found in [IST03]. In that report it is shown that a closed-form solution can be found

to solve the problem in (4.47)-(4.49) as a function of |λeq
k (l)|−1, |λeq

k (l)|−2, |λeq
k (l)|−3, |λeq

k (l)|−4

l = 1 . . . M without the need to solve the set of equations in (4.47).

4.3.3 Asymptotic performance

In this section, the robust MMSE algorithm is analyzed for the extreme cases where the un-

certainty is very high or very low. When channel knowledge at the transmitter is perfect, i.e.,

when Ĥeq
k = H and ω = 0 [see equations (4.16) and (4.19)], the robust cost function in (4.32)

converges to the nonrobust solution in equation (4.34) and, therefore, both coincide. When the

channel uncertainty is very high, the MMSE design is meaningless since the design is based on

the assumption that neither the transmitter nor the receiver know the channel.

4.4 Minimum uncoded BER design

This section proposes the a priori design (see Section 4.2.3) for the set of linear precoder matrices

Fk that minimize the uncoded BER in a ML receiver subject to an average power constraint.

This algorithm considers the reliability of channel estimation in the cost function, adapting to
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the channel uncertainty and providing a solution that goes from the configuration for open-loop

to the closed-loop with perfect CSI as estimation errors diminish (in a similar way as [Ong02] and

[Jön02]). The filtering matrix at the receiver is set to the identity matrix Gk = I since the BER

cannot be improved by means of a linear filtering stage at this side. The design is formulated

for the general MIMO OFDM case, including single antenna transmission and beamforming

[Ong02],[Jön02] as particular cases.

The cost function to be optimized is described for a general constellation {s1 . . . sN } of size

N , even though final equations are shown for the particular case of QPSK modulation. In order

to be able to derive a closed-form solution, two main assumptions have been made:

A1) The receiver is operating at high SNR.

A2) The function Q (
√

x) can be approximated with small error as (see Appendix 4.C):

Q (√
x
) ' δe−αx (4.50)

For a given channel realization Hk, the uncoded BER for the ML receiver can be written

in terms of the Pairwise Error Probability (PEP) of detecting symbol xkj when the symbol xki

was transmitted:

BER(H1 . . .HK) =
1

N 2MK

K∑

k=1

NM∑

i=1

NM∑

j=1

B(xki,xkj)P (xki → xkj | H1 . . .HK) (4.51)

where B(xki,xkj) denotes the number of bits that are different in vectors xki and xkj .

The robustness of the algorithm is obtained averaging the uncoded BER over the channel un-

certainty using a Bayesian formulation. Hence, the optimization criterion subject to an average

power constraint across all antennas and subcarriers becomes:

min
Fk

1

N 2MK

K∑

k=1

NM∑

i=1

NM∑

j=1

B(xki,xkj)Eh/ĥ {P (xki → xkj | H1 . . .HK)}

subject to
K∑

k=1

Tr
{
FH

k Fk

}
= P0

(4.52)

4.4.1 Cost function

The pairwise error probability in (4.52) can be written in terms of the Euclidean distance between

the transmitted codewords xki and xkj as they appear at the receiver, and is upper bounded by:

P (xki → xkj) ≤ Q
(√

1
2σ2

n

|HkFkdijk|2
)

(4.53)
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where vector dijk = (xki − xkj) contains the distance between the codewords at the transmitter

before the prefiltering. In order to simplify the evaluation of the expectation over the channel

response, we introduce the assumption A2) that allows to approximate the pairwise probability

by the exponential function1:

Q
(√

1
2σ2

n

|HkFkdijk|2
)
' δijke

−αijk
1

2σ2
n

|HkFkdijk|2
= δijke

−γijk|HkFkdijk|2 (4.54)

This equation can be rewritten in a more compact form in order to simplify the notation in the

subsequent equations:

Q
(√

1
2σ2

n

|HkFkdijk|2
)
' δijke

−hHMijkh (4.55)

where Mijk is the KMT MR ×KMT MR matrix defined as:

Mijk = γijk




0
...

IMT MR

...

0




[(
(Fkdijk) (Fkdijk)

H
)
⊗ IMR

] [
0 . . . IMT MR

. . . 0
]

(4.56)

and 0 is a square all zero matrix, IMT MR
is the identity matrix, both of size MT MR and IMR

is

the identity matrix of size MR.

Using the results of the conditional mean (4.13) and the conditional covariance (4.14), and

the fact that the channel is modelled as a Gaussian process, the expectation over the channel

response, i.e., Eh/ĥ {·} can be computed using the probability density function (p.d.f.) fh/ĥ(h):

fh/ĥ(h) =
1

πK det
(
Ch/ĥ

) e
−

(
h− ĥeq

)H
C−1

h/ĥ

(
h− ĥeq

)
(4.57)

and thus, the averaged PEP becomes:

Eh/ĥ {P (xki → xkj)} ≤
δijk

πK det
(
Ch/ĥ

)
∫

h∈C
e−hHMijkh e

−
(
h− ĥeq

)H
C−1

h/ĥ

(
h− ĥeq

)
dh

(4.58)

1Although an upper bound of the Q(
p

(·)) function should strictly be used to minimize (4.53), we propose the

use of this lower bound since it greatly reduces the mathematical complexity of the problem. The tightness of

this lower bound (approximation) guarantees its correct use in (4.53) (see Appendix 4.C).
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where ĥeq, as defined in (4.17), denotes the equivalent channel over all subcarriers. This integral

can be easily solved rewriting its integrand as:
∫

h∈C
e− (h− µ)H β (h− µ)− ηdh (4.59)

where: β = Mijk + C−1

h/ĥ

µ =
(
MijkCh/ĥ + I

)−1
ĥeq

η = ĥeqH
(
MijkCh/ĥ + I

)−1
Mijkĥeq

(4.60)

The solution to the integral in (4.59) can be found by comparing its integrand with a complex

Gaussian p.d.f., whose integral equals to one. Thus, the averaged PEP in (4.58) becomes:

Eh/ĥ {P (xki → xkj)} ≤
δijk

det
(
Ch/ĥMijk + I

) e
−ĥeqH

(
MijkCh/ĥ + I

)−1
Mijkĥeq

(4.61)

The derivation of a closed-form solution for this cost function is only feasible when antennas

are uncorrelated, requiring numerical techniques to solve the optimization problem for a general

spatial correlation between antennas. Hence, the conditional covariance Ch/ĥ will be hereafter

specified for the particular case of uncorrelated antennas. Replacing Mijk and Ch/ĥ by its values

in (4.56) and (4.15), respectively, the constrained minimization problem becomes:

min
Fk

1
N 2MK

K∑

k=1

NM∑

i=1

NM∑

j=1

B(xki,xkj) δijk(
1 + γijkω |Fkdijk|2

)MR
e
−

γijk

∣∣∣Ĥeq
k Fkdijk

∣∣∣
2

1 + γijkω |Fkdijk|2

subject to
K∑

k=1

Tr
{
FkFH

k

}
= P0

(4.62)

where the Kronecker product identity vec (ABC) =
(
CT ⊗A

)
vec (B) has been applied.

4.4.2 Closed form solution for beamforming

This section derives a closed-form solution for the minimization of (4.62) by the method of

Lagrange multipliers when multiple antennas are used for beamforming (i.e., only a single symbol

is spreaded on all antennas for each subcarrier: M = 1). For this particular case the high

SNR assumption A1) implies that the error probability is dominated by the minimum distance

between any pairs of symbols (xki,xkj). Therefore, the summation in (4.62) can be approximated

considering the terms where xki − xkj = d, where d is a scalar that refers to the minimum

distance between any two constellation symbols. Using this approximation in (4.62), the new
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optimization problem can be written as follows:

min
Fk

1
N 2MK

K∑

k=1

δk(
1 + γkω d2FH

k Fk

)MR
e
−

γk d2
∣∣∣Ĥeq

k Fk

∣∣∣
2

1 + γkω d2FH
k Fk

subject to
K∑

k=1

Tr
{
FkFH

k

}
= P0

(4.63)

where δk and γk are the parameters that fit the approximation in (4.54).

Appendix 4.D shows that the cost function is minimized when Fk focuses the transmitted

symbols in the direction of the right singular vector vk associated to the largest singular value

λeq
k of the equivalent channel Ĥeq

k . Thus:

Fk = vkφk (4.64)

where φk is a real positive value related to the power allocated to the kth subcarrier.

Expanding the problem in (4.63) according to the structure of the matrix Fk, the new

minimization problem becomes2:

min
φk

1
N 2MK

K∑

k=1

δk(
1 + γkω d2φ2

k

)MR
e
−γk d2

∣∣λeq
k

∣∣2 φ2
k

1 + γkω d2φ2
k

subject to
K∑

k=1

φ2
k − P0 = 0

φ2
k ≥ 0 k = 1 . . .K

(4.65)

The problem in (4.65) is a convex optimization problem and, consequently, the optimum

2Since the function to be minimized depends on |φk|2 we will choose φk as a real positive value and thus |φk|2
will be hereafter denoted as φ2

k without loss of generality.
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values of φk can be found deriving the solution that satisfies the KKT conditions:

− 1
N 2MK

δkγk d2φk(
1 + γkω d2φ2

k

)MR+1
e
−γk d2

∣∣λeq
k

∣∣2 φ2
k

1 + γkω d2φ2
k ×

[
MRω +

∣∣λeq
k

∣∣2 − γkω d2
∣∣λeq

k

∣∣2 φ2
k

1 + γkω d2φ2
k

]
− νk + µ = 0 (4.66a)

K∑

k=1

φ2
k − P0 = 0 (4.66b)

φ2
k ≥ 0 k = 1 . . . K (4.66c)

νk ≥ 0 k = 1 . . . K (4.66d)

νkφ
2
k = 0 k = 1 . . . K (4.66e)

where the first condition can be found equating to zero the gradient of the Lagrangian associated

with the problem (4.65) with respect to φ2
k, the Lagrange multiplier for the equality constraint

(4.66b) is denoted as µ, and νk are the multipliers for the inequality constraints (4.66c).

In order to solve these equations we first eliminate the slack variable νk. Note that if φ2
k > 0

then (4.66e) can only hold when νk = 0, which implies that the first condition becomes:

− 1
N 2MK

δkγk d2φk(
1 + γkω d2φ2

k

)MR+1
e
−γk d2

∣∣λeq
k

∣∣2 φ2
k

1 + γkω d2φ2
k

[
MRω +

∣∣λeq
k

∣∣2 − γkω d2
∣∣λeq

k

∣∣2 φ2
k

1 + γkω d2φ2
k

]
+ µ = 0

(4.67)

After some easy manipulations the following equation must be solved:

−γk d2φ2
k

∣∣λeq
k

∣∣2
1 + γkω d2φ2

k

−(MR + 1) log
(
1 + γkω d2φ2

k

)
+log

(
MRω +

∣∣λeq
k

∣∣2
1 + γkω d2φ2

k

)
= µ̄−log

(
δkγk d2

)

(4.68)

A closed-form solution for this identity cannot be derived. However, under the assumption that

the channel uncertainty is low, the following approximations can be used: log (1 + x) ' x and

1/ (1 + x) ' 1. Thus (4.68) is simplified as:

−γk d2
∣∣λeq

k

∣∣2 φ2
k − (MR + 1) γkω d2φ2

k + log
(
MRω +

∣∣λeq
k

∣∣2
)

= µ̄− log
(
δkγk d2

)
(4.69)

obtaining a closed-form solution for the power allocated to the kth subcarrier φ2
k:

φ2
k =


−

µ̄− log
(
δkγk d2

)− log
(
MRω +

∣∣λeq
k

∣∣2
)

γk d2
(
(MR + 1)ω +

∣∣λeq
k

∣∣2
)




+

(4.70)

where the function [x]+, introduced to satisfy (4.66c)-(4.66e), is defined as max {x, 0} and µ̄,
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that is determined forcing the average power constraint (4.66b), is given by:

µ̄ = −
P0 −

K∑

k=1

log
(
δkγk d2

)
+ log

(
MRω +

∣∣λeq
k

∣∣2
)

γk d2
(
(MR + 1)ω +

∣∣λeq
k

∣∣2
)

K∑

k=1

1

γk d2
(
(MR + 1)ω +

∣∣λeq
k

∣∣2
)

(4.71)

4.4.3 Solution for spatial multiplexing

This section derives a suboptimal closed-form solution for the minimization of (4.62) and also

proposes an iterative solution based on the Frost algorithm [Fro72]. As the direct optimization

of (4.62) leads to very intricate equations, the minimization of the cost function has been ob-

tained under the assumption that the linear transformation at the transmitter has the following

structure:

Fk = VkΦkTk (4.72)

where matrix Vk contains the right singular vectors of the equivalent channel matrix, Φk is a

diagonal matrix and Tk is a M ×M unitary matrix whose properties are described next.

Appendix 4.D proves that this configuration is optimal for minimum uncoded BER in a ML

receiver when multiple transmit antennas are used for beamforming (i.e., M = 1). The same

configuration has been shown to be optimal for minimum uncoded BER in a zero forcing receiver

with perfect CSI [Din03], and it has also been shown to be optimal in a MMSE receiver when Tk

is set to the DFT matrix [Cha02]. Although it has not been proved to be optimal when multiple

symbols are transmitted at the same time, there are several reasons to support its choice. It

keeps the same structure as the MMSE solution used in Section 4.3 and other works published

previously (see e.g., [Pal03b, Pal03a] and references therein). Besides, a suboptimum solution

leads to the same closed-form design given for the beamforming case, as will be shown next.

Finally, from the point of view of uncoded BER minimization, it can also be argued that the

introduction of matrix Tk alleviates the main drawback of the use of matrices Vk and Φk: the

loss of space diversity caused by the decomposition of the MIMO channel into a set of parallel

multiplicative subchannels. If Tk = I and matrix Gk is selected as the left singular vectors of the

equivalent channel matrix, then the MIMO channel reduces to a set of KM parallel independent

flat fading subchannels:

rk(i) = λeq
k (i)φk(i)xk(i) + wk(i) (4.73)

so that the symbols corresponding to small values of λeq
k (i)φk(i) are systematically lost. In the

context of frequency flat Rayleigh fading channels, it was shown in [Rai96], [Lam97], [Bou98]

that the receiver could benefit from the diversity of the fading channel, provided the transmitter

used a linear transformation that spreads the symbols in time is used, obtaining significant
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performance gains both in terms of uncoded and coded BER. Similar conclusions would be

obtained here if the Rayleigh fading channel statistics were replaced by those of the eigenvalues

of ĤeqH
k Ĥeq

k matrix, but to the best of the author’s knowledge the statistics of the eigenvalues

of non-central Wishart matrices are not known. We set the unitary matrix Tk to the DFT

matrix, given that it was shown in [Lam97] that the DFT or the Walsh-Hadamard matrices

could provide the desired fading diversity with minimum complexity, and besides, the same

condition was required for the design of the optimal matrix Tk in the zero forcing receiver

[Din03] and for the minimum MSE design in a linear receiver [Rai96].

Forcing this structure the design of Fk reduces to the design of the diagonal matrix Φk.

Next sections will derive the diagonal elements of this matrix. First, in next section, a closed-

form solution which only is valid when Tk = I is derived. Then, in Section 4.4.3.2, an iterative

solution is proposed when this unitary matrix is different to the identity.

4.4.3.1 Closed-form solution

Repeating the procedure used to derive the closed-form solution for beamforming, we can derive

a closed-form solution for the cost function resulting from (4.62) when more that one sym-

bol is transmitted per subcarrier. It will be shown, however, that this closed-form solution is

suboptimum since uses an inequality that only holds for high SNR.

Expanding the function to be minimized in (4.62) according to the structure of the matrix

Fk, and forcing all the unitary matrices to be equal, i.e., Tk = T, the new objective function,

subject to the average power constraint, becomes:

min
Fk

1
N 2MK

K∑

k=1

NM∑

i=1

NM∑

j=1

B(xki,xkj) δijk(
1 + γijkω |ΦkTdijk|2

)MR
e
− γijk

∣∣Λeq
k ΦkTdijk

∣∣2
1 + γijkω |ΦkTdijk|2

subject to
K∑

k=1

Tr
{
ΦkΦH

k

}
= P0

(4.74)

An upper bound of the convex functionQ (
√

x) based on the application of Jensen’s inequality

will allow to simplify the previous cost function and derive the closed-form solution. As it shown

in the Appendix 4.E the following inequality holds for high SNR:

1
N 2M

NM∑

i=1

NM∑

j=1

B(xki,xkj)Q



√
|ΛkΦkTdijk|2

2σ2
n


 ≤ 1

N 2M

NM∑

i=1

NM∑

j=1

B(xki,xkj)Q



√
|ΛkΦkdijk|2

2σ2
n




(4.75)

where equality applies if and only if the product matrix ΛkΦk is proportional to the identity

matrix (zero forcing solution) or T = I. Therefore, if the true uncoded BER depending on
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|ΛkΦkTdijk| is replaced by an upper bound depending on |ΛkΦkdijk|, an expression is obtained

that does not depend on matrix T. Using this replacement in the cost function (4.74) (i.e.,

substituting T = I in the cost function) we get a simple expression that will help us to derive a

solution for the diagonal matrix Φk.

Under the high SNR assumption A1) and for T = I, the error probability is dominated by

the minimum distance between any pairs of symbols (xki,xkj). Therefore, the summation in

(4.74) can be approximated, considering the terms where xki − xkj = di(l), where i(l) is one of

the columns of the identity matrix, and d is a scalar that refers to the minimum distance between

any two constellation symbols. Using this approximation the cost function can be rewritten as:

min
φk

1
N 2MK

K∑

k=1

M∑

l=1

δk(l)(
1 + γk(l) ω d2φ2

k(l)
)MR

e
−γk(l) d2

∣∣λeq
k (l)

∣∣2 φ2
k(l)

1 + γk(l) ω d2φ2
k(l)

subject to
K∑

k=1

M∑

l=1

φ2
k(l)− P0 = 0

φ2
k(l) ≥ 0 k = 1 . . . K l = 1 . . . M

(4.76)

where δk(l) and γk(l) are the parameters that fit the approximation in (4.54).

Note that previous minimization problem and that one derived for the beamforming case

(4.65) are identical except for the summation over the index l. Because a nonnegative weighted

sum of convex functions is itself a convex function [Boy04, pp.79], this summation does not

modifies the convexity of the objective function. Hence, repeating the equations (4.67)-(4.70)

we can derive a closed-form solution for the power allocation parameters:

φ2
k(l) =


−

µ− log
(
δk(l) γk(l) d2

)− log
(
MRω +

∣∣λeq
k (l)

∣∣2
)

γk(l) d2
(
(MR + 1)ω +

∣∣λeq
k (l)

∣∣2
)




+

(4.77)

and similarly µ can be determined as in equation (4.71) forcing the average power constraint.

4.4.3.2 Iterative Algorithm

When the unitary matrix T is set to the identity matrix (i.e., T = I) it has been shown that

the Jensens’s inequality (4.75) becomes an equality and, consequently, the previous closed-form

solution is a valid solution for high SNR’s. However, when matrix T is a unitary matrix that

combines the transmitted symbols per subcarrier over all the antennas this closed-form solution

is suboptimum and leads to a very poor performance as it will be shown in Section 4.5.2. For

this case an iterative algorithm must be therefore considered to derive the optimum solution.

Optimization problems that include inequality constraints can be solved by means of interior-

point methods [Boy04, p.561] (e.g. barrier methods) that transform the inequality constrained
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problem into an equality constrained problem to which a gradient method can be applied.

The growth in the computational complexity of these methods when the number of inequality

constraints is large has motivated, in this thesis, the proposal of a simpler algorithm for solving

the optimization problem based on the Frost algorithm [Fro72] (see Appendix 4.F).

When the matrix T is set to an unitary matrix different from the identity matrix, the

objective function remains convex if perfect CSI is available at the transmitter (i.e., ω = 0).

However, when only partial CSI is available at the transmitter (i.e., ω 6= 0) we cannot prove the

convexity of this function. Under these conditions, although convexity fails, numerical results

have proven that the simple Frost algorithm, focused on a minimum local search following a

gradient method, results in excellent performance. Consequently, without any claim to get the

optimum solution in the objective function (4.74), we will consider as a satisfying algorithm

in terms of uncoded BER the solution proposed in this section, which converges to the global

minimum when perfect CSI is available at the transmitter and to a local minimum when CSI is

noisy.

Let φk be a vector that stores the diagonal terms of the matrix Φk and L(φk, µ) be the

Lagrangian associated to the optimization problem (4.74), which is defined as:

L(φk, µ) =
1

N 2MK

K∑

k=1

NM∑

i=1

NM∑

j=1

B(xki,xkj) δk(l)(
1 + γk(l) ω |Dijkφk|2

)MR
e
− γk(l)

∣∣Λeq
k Dijkφk

∣∣2
1 + γk(l) ω |Dijkφk|2

−µ

[
K∑

k=1

φH
k φk − P0

]
(4.78)

where Dijk is a diagonal matrix defined as Dijk = diag {Tdijk} and µ is the Lagrangian mul-

tiplier. The gradient of L(Φk, µ) with respect to the vector φ2
k (defined as a vector that stores

the diagonal terms of the matrix Φk
HΦk) is given by:

∇φ2
k
L(Φk, µ) =

1
N 2MK

NM∑

i=1

NM∑

j=1

−B(xki,xkj) δk(l) γk(l)(
1 + γk(l) ω |Dijkφk|2

)MR+1
e
− γk(l)

∣∣Λeq
k Dijkφk

∣∣2
1 + γk(l) ω |Dijkφk|2

×DH
ijk

[
MRωI + Λeq

k
HΛeq

k −
∣∣Λeq

k Dijkφk

∣∣2 γk(l) ωI

1 + γk(l) ω |Dijkφk|2
]
Dijk1M − µ1M×1 (4.79)

=ak(φ2
k)− µ1M×1 (4.80)

Stacking all the power allocation parameters into the vector φ2 =
[

φ2
1
T

. . . φ2
K

T
]T

the

gradient of the cost function with respect to this vector can be written with the same structure

that the gradient obtained in Appendix 4.F:

∇φ2ξ = a
(
φ2

)− µC (4.81)
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where:

a
(
φ2

)
=

[
ak(φ2

1)
T

. . . ak(φ2
K

T )
]T

C = 1KM×1 (4.82)

Hence, according to (4.135)-(4.139) in Appendix 4.F, the iterative equation that minimizes the

cost function is given by 3:

φ2
(n+1) = P⊥

C

[
φ2

(n) + λa
(
φ2

(n)

)]
+ C

(
CHC

)−1
P0 (4.83)

where P⊥
C is the projection matrix onto the orthogonal subspace spanned by the columns of C.

From the inequality constraint φk(l) ≥ 0 all the elements in the vector φ2 must be non-negative.

Thus, if any of the elements obtained after an iteration were negative, this element should be

set to zero before proceed with the next iteration. In accordance, the iterative equation (4.83)

should be modified as follows:

A(n+1) =P⊥
C

[
φ2

(n) + λa
(
φ2

(n)

)]
+ C

(
CHC

)−1
P0 (4.84)

φ2
(n+1)(l) =

[
A(n+1)(l)

]+

where φ2
(n+1)(l) is the lth element of the vector φ2 at the iteration n + 1 and the operator

[x]+ = max{0, x} is applied independently at each element of the vector An+1. Note that

by means of this operator we avoid the use of the barrier functions to include the inequality

constraints φk(l) ≥ 0 into the optimization problem. It is worth to remark that this adjustment

in the iterative equation perturbates the average power constraint and, consequently, the final

solution would violate this equality constraint. As discussed in the Appendix 4.F, the Frost

algorithm solves this problem since the algorithm guarantees the constraints in every iteration

and admits modifications in the optimum solution from one iteration to the next.

Since we cannot guarantee the convexity of the objective function the initialization of the it-

erative algorithm can determine the final solution. Next we present the performance achieved by

the iterative algorithm for different initialization values. The initialization labelled as ’Uniform’

allocates the same power to all the subcarriers and antennas; the ’Max. Eigv.’ allocates more

power in the direction of to the maximum singular value; the ’MMSE’ initializes the algorithm

with the MMSE solution derived in Section 4.3; finally ’Random’ initializes the algorithm at a

random point using a Gaussian random variable. Specifically, for the 3× 3 MIMO configuration

φ2
k is initialized as shown in Table 4.1. Note that in all cases the initial value satisfies the average

power constraint (for the ’Random’ initialization a normalization is applied once the random

values are generated to guarantee this constraint).

The performance of the iterative algorithm for the different initialization values has been

analyzed for the 3× 3 MIMO configuration (see Section 4.5 for a description of the simulation
3Do not confuse the vector φ2

(n+1) that refers to the nth iteration of the vector φ2 with the vector φ2
k defined

as a vector that contains the power allocation coefficients for the kth subcarrier
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Initialization φ2
k

’Uniform’ φ2
k = [1/3 1/3 1/3]

’Max. Eigv.’ φ2
k = [0.8 0.1 0.1]

’MMSE’ See (4.48)

’Random’ φ2
k(l) = N (1/3, 0.004)

s.t.

KX

k=1

MX

l=1

φ2
k(l) = P0

Table 4.1: Different initialization values.

Initialization BER at Eb/No=6dB Eb/No required for BER≤ 10−3

’Uniform’ 3.476 · 10−3 6.92 dB

’Max. Eigv.’ 3.638 · 10−3 7.36 dB

’MMSE’ 3.719 · 10−3 7.21 dB

’Random’ 3.410 · 10−3 6.93 dB

Table 4.2: Performance of the iterative algorithm in terms of uncoded BER for different initial-

ization values.

parameters and scenarios) evaluating the uncoded BER for Eb/No=6dB and the minimum

Eb/No required to achieve an uncoded BER≤ 10−3. Table 4.2 summarizes the results after 50

iterations. Note that the performances of the algorithm for the different initialization values

are quite similar. For the sake of simplicity we will initialize the algorithm with the ’Uniform’

value after evidencing that the iterative algorithm is quite insensitive to the initialization values

presented in Table 4.1.

4.4.4 Asymptotic performance

In this section the robust uncoded BER algorithm is analyzed for the extreme cases where the

uncertainty is very high or very low. When channel knowledge at the transmitter is perfect, i.e.,

when Ĥeq
k = H and ω = 0 [see equations (4.16) and (4.19)], and only one symbol is transmitted

per subcarrier (i.e., M = 1), the solution for the robust cost function in (4.70) coincides with

that one of [Ong01b]. Note that the solution does not coincide with the solution proposed in

[Din03], since one assumes a ML receiver and the other one a zero-forcing receiver. When the

channel uncertainty is very high, in the extreme case of Ĥeq
k = 0 and ω = 1, the average PEP

function converges to:

Eh/ĥ {P (xki → xkj)} =
δijk(

1 + γijk |Fkdijk|2
)MR

(4.85)
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which is the same one found in [Sam02] for uncorrelated antennas. Note that in this case the

optimization criterion is simpler, and therefore, there is no need to resort to the high SNR

approximations in order to get a closed-form solution. Indeed, it can be seen that the power

allocation tends to the open-loop solution (i.e., the same power is allocated to all antennas and

subcarriers), as it will be shown in the next section.

4.5 Simulation results

In order to illustrate the performance of the proposed closed-loop algorithms in the presence of

imperfect channel estimates, several simulations are presented for different scenarios and chan-

nel estimation errors, assuming that CSI quality is unbalanced between the transmitter and the

receiver. The aim is to validate the cost function solution given for the MMSE algorithm (4.48)

and the solutions proposed for the minimum uncoded BER algorithms when only one symbols is

transmitted per subcarrier (4.70) and when more than one symbol is transmitted (4.77),(4.84).

In accordance, uncorrelated antennas are always assumed. The two optimization criteria pro-

posed in this chapter, (i.e., MMSE and minimum uncoded BER) are simulated, comparing the

differences between the robust algorithms (solid lines) and their nonrobust counterparts (dotted

lines) that assume ω = 0. For the specific case of minimum uncoded BER, in order to compare

the Chernoff bound with the approximation of the Q(
√

(·)) function presented in Appendix 4.C,

that bound has also been included in the analysis. However, unless the contrary is said, the

algorithms that minimize the uncoded BER are based on the exponential approximation given

in that Appendix. The labels used to denote the different closed-loop algorithms are: ’MMSE

Robust’ and ’MMSE Non-Robust’ for MMSE criteria; ’BER ApproxQ Robust’ and ’BER Ap-

proxQ Non-Robust’ for minimum uncoded BER using the exponential approximation given in

Appendix 4.C; ’BER Chernoff Robust’ and ’BER Chernoff Non-Robust’ for minimum uncoded

BER using the Chernoff bound. To evaluate the gains of these algorithms tanks to the channel

knowledge at the transmitter, the ’Open-loop’ solution, that allocates the same power to all the

subcarriers and antennas, has also been simulated.

The simulation parameters are selected according to the HIPERLAN/2 standard [HL201].

As depicted in Figure 4.1 the bit stream to be transmitted, which has been mapped into a

QPSK constellation, is multiplexed in the K subcarriers (grouping M symbols per subcarrier),

prefiltered by the matrices Fk, and finally modulated in OFDM symbols (including pilot tones

and empty subcarriers according to HIPERLAN/2). Although the HIPERLAN/2 standard

includes a channel code scheme, specifically a convolutional code is included, this stage has not

been taken into account because it has not been considered in the design of Fk and Gk matrices.

The evaluation of the proposed algorithms in terms of coded BER is left to a further discussion

(see Section 4.6) and a detailed study can be found in the next chapter.
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In order to have a fair comparison, all algorithms are simulated using a ML detector that

takes into account the channel uncertainty at the receiver. As the channel is not perfectly known

at the transmitter and/or the receiver, the relationship between the transmitted and the received

data (4.3) is not equivalent to a set of independent flat fading subchannels (i.e., GkHkFk is not

diagonal). Therefore, the optimum receiver requires the joint estimation of all bits transmitted

in the same symbol xk. This procedure is used to evaluate the uncoded BER, detecting the

symbol x̂k that maximizes:

frk|ĥ
(
rk | x̂k, ĥ,Fk

)
= K e

−

(
rk − Ĥeq

k Fkx̂k

)H (
rk − Ĥeq

k Fkx̂k

)

ωx̂H
k FH

k Fkx̂k + σ2
n (4.86)

where K refers to a non-relevant constant and the channel uncertainty ω and the equivalent

channel Ĥeq
k are computed making use of the channel uncertainty at the receiver.

The simulated Rayleigh MIMO channel obeys an exponential power delay profile with 50ns

of delay spread (RMS delay spread of the discrete channel 45.6ns [Rap96, p.160]), modelling

a typical office indoor scenario. The simulations model the channel uncertainties due to the

errors in the channel estimation process and the errors in the channel prediction when channels

are time-varying. In both cases, the variance in the channel estimation error is assumed to be

constant for all taps of the channel impulse response. For the sake of clarity, we will denote in

this section σ2
εTx

and σ2
εRx

the variances in the channel estimation error at the transmitter and

at the receiver, respectively. It is assumed that the main contribution to channel uncertainty

at the transmitter is the channel tracking error in fast linear time-varying channels; hence, it

is considered to be independent of the SNR, as would be the case of a channel tracker based

on a linear predictor (see Chapter 3). Simulations are carried out with σ2
εTx

= 0.12.4 At the

receiver the main contribution to channel uncertainty is the estimation variance due to the

presence of additive noise. Hence, σ2
εRx

is proportional to the noise variance σ2
n, as would be the

case of a linear channel estimator [Tun01], where the factor of proportionality depends on the

training sequence length. Simulations are carried out with σ2
εRx

= 0.375σ2
n, which approximately

corresponds to the estimation of the simulated channel from a linear channel estimator when

the training sequence consists on one OFDM symbol according to HIPERLAN/2 [IST02].

4This values has been computed as σ2
εT x

= L · σ2
ε1 where L = 6 is the number of channel taps and σ2

ε1 = 0.02,

obtained from Figure 3.8 in Section 3.6 (under the assumption that the mobile was moving at 4km/h), is the

channel uncertainty at the transmitter for the first tap when an AR(1) model is used. This value of σ2
εT x

is

pessimistic since we are assuming that channel uncertainty is uniform for all taps whereas it can be shown from

equations in Section 3.5 that the channel uncertainty at the transmitter has a decreasing profile if the power delay

profile decreases.
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Figure 4.3: An example of λiφi values (sorted in decreasing order of the equivalent channel

subcarriers λi i = 1 . . . K) for a specific channel realization (a) and (c), and its associated p.d.f.

(b) and (d). MT = 1, MR = 1, M = 1. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1).

SNR=0dB [(a) and (b)] and SNR=20dB [(c) and (d)].

Eb/No
MMSE

Non-Robust

MMSE

Robust

BER

ApproxQ

Non-Robust

BER

ApproxQ

Robust

BER

Chernoff

Non-Robust

BER

Chernoff

Robust

1x1 0dB 7.0 6.0 6.27 <0.05 14.6 11.4

20dB <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Table 4.3: Number of null subcarriers.
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4.5.1 Power allocation strategies

Before analyzing the performance of the different algorithms in terms of the uncoded BER we

will study the power allocation strategies followed by each one of the algorithms analyzed in

this section in order to better understand the results. Next figures display an example of the

values of λiφi (sorted in decreasing order of the equivalent channel subcarriers λi i = 1 . . . K)

for a specific channel realization and its associated probability density function (p.d.f.). Two

SNR values have been considered to analyze the performance of the different algorithms in low

and high SNR scenarios.

Figure 4.3 illustrates the power allocation strategies for the specific configuration MT =

MR = 1. A comparative study between the MMSE and the uncoded BER algorithms illustrates

that the algorithms that minimize the uncoded BER assign less power to the stronger subcarriers

and more power to the deepest faded ones, trying to compensate the fading, whereas the MMSE

algorithms assign less power to the faded subcarriers. This way to allocate the power, as it will

be shown next, will lead the MMSE algorithms to have a very poor performance in terms of

uncoded BER for certain subcarriers. This behavior is clearly displayed at high SNR (curves

at the bottom), where the algorithms that minimize the uncoded BER tend to force λiφi to be

independent to the channel response values. Figure 4.3(c) exhibits that these curves are quasi-

flat, whereas the sharpness of the p.d.f. curves in Figure 4.3(d) also reveal that the algorithms

tend to force λiφi to be constant.

A second study that results in interest is to compare the power allocation policies followed by

the robust and nonrobust algorithms. As expected, the robust algorithms are more conservative

to allocate the power as a function of the channel response. This can be seen both, in the

smoothness of the robust curves when they are compared with the nonrobust ones, and also

in the number of subcarriers that are nulled (see Table 4.3). It is also worth to note that the

’BER ApproxQ Robust’ algorithm is more conservative that the ’MMSE Robust’ one (compare,

for example, the number of null subcarriers for each case), which will have direct consequences

in the behavior of each algorithm when the CSI knowledge at the transmitter will tend to be

scarce. Finally it can be seen that the differences between the robust and nonrobust algorithms

are more evident at high SNR. This behavior can be explained noting that at low SNR the noise

influence hides the CSI quality at the transmitter and thus, robust and nonrobust algorithms

are quite similar. However, at high SNR, the CSI uncertainty is critical and thus, the robust

algorithms, unlike the nonrobust ones, try to diminish its effect.

In order to conclude the study of the results displayed in Figure 4.3 we compare the power

allocation strategies followed by the minimum uncoded BER algorithms when the Q(
√

(·))
function is approximated by the exponential function given in Appendix 4.C, and when this

function is upper bounded with the Chernoff bound. As it can be seen, both algorithms follow
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similar power allocation policies at high SNR, whereas there are great differences at low SNR.

This can be explained because the Chernoff bound is not a tight bound at low SNR as it can be

seen in the Appendix. In terms of uncoded BER it will be shown that at low SNR the algorithms

that use the Chernoff bound will have a worse performance when they are compared with the

algorithms that make use of the exponential approximation. We can expect this performance

by noting that at low SNR the algorithm that uses the Chernoff bound forces a higher number

of subcarriers to be zero.

Figure 4.4 displays the power allocation strategies when more that one antenna is used at

the transmitter and at the receiver. Specifically, the MIMO configuration MT = MR = 3

has been simulated for two different number of symbols transmitted per subcarrier: M = 1

and M = 3. Aside from the main conclusions drawn in the previous paragraphs for the SISO

configuration, which still hold in this case, we can add some comments that are specific for

the MIMO configurations. When M = 1 it can be seen that the dissimilarities between the

different algorithms have been substantially reduced and, hence, all the algorithms will have

similar performances in terms of uncoded BER.

On the other hand, comparing the different algorithms when more than one symbol is trans-

mitted per subcarrier, the importance of the unitary matrix T is revealed. When matrix T

is omitted the MMSE algorithms perform like the well-known water-filling algorithm [Ral98],

[Sca99a], which allocates the majority of the power to the best subcarriers. On the contrary, the

algorithms that minimize the uncoded BER, trying to compensate the fading, assign less power

to the stronger channel modes and more power to the deepest faded ones. This behavior is ob-

served in the sharpness of the uncoded BER algorithms of Figure 4.4(d) when T is the identity

matrix and it can also be seen in Figure 4.4(c) when comparing, for the different algorithms,

the values of λiφi for the best channel modes (i.e., i ∈ [1 . . . 48]). This way to allocate the power

will lead the MMSE algorithms to have a very high uncoded BER in some of the subcarriers as

it will be shown next.

On the contrary, when M > 1 and matrix T is set to the DFT matrix, as the unitary matrix

combines all symbols into all channel modes, the optimal way to distribute the power for all

the algorithms, including those that minimize the uncoded BER, is to allocate more power to

the stronger channel modes, just as ’BER ApproxQ Robust’ (when T is the DFT matrix) and

’MMSE Robust’ algorithms do. This change in the power allocation policy, specifically for the

’BER ApproxQ Robust’ algorithm, can be seen when comparing the different number of null

subcarriers for the two different choices of the matrix T. Note that when the unitary matrix is

used (i.e., T is the DFT matrix) the algorithms increases the number of null subcarriers, which

are always the weakest ones, spending the power to improve the quality of the best channel

modes (see in Figure 4.4(c) the values of λiφi for i ∈ [1 . . . 48]). A remarkable behavior has

the ’BER Chernoff Robust’ algorithms that nulls a large number of subcarriers even when the
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Figure 4.4: An example of λiφi values (sorted in decreasing order of the equivalent channel

modes λi i = 1 . . . M ·K) for a specific channel realization (a) and (c), and its associated p.d.f.

(b) and (d). MT = 3, MR = 3. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1). M = 1

SNR=0dB [(a) and (b)] and M = 3 SNR=5dB [(c) and (d)].

M
MMSE

Non-Robust

MMSE

Robust

BER

ApproxQ

Robust

T = I

BER

ApproxQ

Robust

T = DFT

BER

Chernoff

Robust

T = I

BER

Chernoff

Robust

T = DFT

3x3 1 0 0 0 0 0 0

3 16.8 17.8 <0.1 18.4 15.4 24.2

Table 4.4: Number of null subcarriers.
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matrix T is the identity matrix. This abnormal behavior will be studied in the next chapter

(see Section 5.6) showing that this algorithm, though designed to minimize the uncoded BER,

has excellent performances in terms of coded BER.

4.5.2 Uncoded BER performance vs Eb/No

Following the same structure given in Section 4.4 we will first analyze the proposed closed-loop

schemes for beamforming (i.e., only one symbol is transmitted per subcarrier M = 1) and later

we will extend the study for the spatial multiplexing case.

Figure 4.5 shows the performance of the different algorithms for the most simple configu-

ration: MT = MR = 1. In order to focus on the transmitter design when CSI is noisy at this

side, it is assumed that the receiver has perfect CSI knowledge, whereas the channel estimate

at the transmitter has a constant variance equal to σ2
εTx

= 0.12. As it is expected the robust

solutions (solid lines) have best performance than the nonrobust ones (dotted lines). We can

profit from the simplicity of this scenario to evaluate the exponential expansion of the Q(·)
function proposed in (4.50). Hence, Figure 4.5 compares the performance of the the generalized

uncoded BER bound solution (αijk and δijk obtained according to (4.123)) (’BER ApproxQ Ro-

bust’ ), and the Chernoff bound solution (αijk = δijk = 1/2 (’BER Chernoff Robust’ ). As it can

be seen, the proposed exponential uncoded BER bound always outperforms others, specifically

at low SNR’s, where the Chernoff bound exhibits a lower performance. This performance was

predicted in the previous section when comparing in Figure 4.3 the power allocation policy of

the ’BER ApproxQ Robust’ and ’BER Chernoff Robust’ algorithms. Accordingly, the proposed

bound becomes an appropriate alternative to the Q(·) function extensive to any SNR ratio.

Figure 4.6 displays the performance of the algorithms for the same scenario and transmission

rate (only one symbol is transmitted per subcarrier M = 1) but increasing the number of

transmit and receive antennas. Two conclusions can be drawn from this result. First note, as

expected, that all the algorithms improve their performance when the number of antennas is

increased. It is also worth to note in this results that when the number of antennas is increased,

all the algorithms have similar performances. This behavior can be explained looking at the

power allocation strategies in Figure 4.4. As it can be seen, the different power allocation

algorithms tend to the same solution when the number of antennas is increased. Roughly

speaking we can say that the channel quality of the channel transmission (note that only the

best channel mode is used to transmit the symbols) diminishes the influence of how the total

power is allocated.

Finally, Figure 4.7 illustrates the performance of the two proposed algorithms in terms of

uncoded BER for the 3 × 3 antenna configuration when more than one symbol is transmitted

per subcarrier. The robust (solid lines) and nonrobust (dotted lines) algorithms are plotted for
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Figure 4.5: Uncoded BER comparison between different power allocation strategies. MT = 1,

MR = 1. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1) Receiver uncertainty: Perfect CSI

M = {2, 3}. For this configuration different results can be obtained as a function of the unitary

matrix T. Hence, the performance of the algorithms is compared when this unitary matrix is

omitted (i.e.,T = I) and when the matrix T is set to the DFT matrix. In the particular case of

T = I the elements of the diagonal matrix Φk are obtained according to (4.48) for the MMSE

solution and according to (4.77) for the uncoded BER solution. When matrix T is set to the

DFT matrix, the same solution provided by (4.48) is used because, as it has been proved in

Appendix 4.B, the MMSE cost function is insensitive to any unitary matrix at the right side of

the linear transformation Fk. On the contrary the minimum uncoded BER algorithm has been

minimized applying the iterative solution (4.84) since (4.77) is suboptimum when the matrix T

is different from the identity matrix.

The performance comparison in terms of M exhibits the tradeoff between uncoded BER and

transmission rate. Observe that the differences between the algorithms is greater as M increases.

Unlike the results given in Figure 4.6, when the number of symbols per subcarrier is increased

(i.e., M = 2 or M = 3), the algorithms exhibit different performances, showing that the way to

distribute the total power is crucial in these cases.

Some conclusions can also be drawn on the importance of the unitary matrix T when analyz-

ing the performance losses if this unitary matrix is omitted. As it can be shown, the performance
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Figure 4.6: Uncoded BER comparison between different power allocation strategies.

MT × MR = {1× 1; 2× 2; 3× 3}, M = 1. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1)

Receiver uncertainty: Perfect CSI

losses are greater as M or, equivalently, the dispersion of the channel singular values increases.

This result confirms that the unitary matrix alleviates loss of space diversity caused by the

channel diagonalization.

Finally, Figure 4.7 shows that the ’BER ApproxQ Robust’ algorithm has best performance

in terms of uncoded BER, as it was expected. The poor performance of the ’MMSE Robust’

algorithm when the unitary matrix T is omitted is explained analyzing in Figure 4.4 how this

algorithm allocates the power resource.

4.5.3 Performance vs CSI quality at the transmitter

To test the performance of the proposed algorithms when channel uncertainty increases, Figure

4.8 shows the minimum Eb/No required to achieve an uncoded BER≤ 10−3. The required

Eb/No is plotted as a function of the channel uncertainty degree at the transmitter ρ, defined

as:

ρ =
σ2

εTx

σ2
εTx

+ σ2
h

(4.87)
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Figure 4.7: Uncoded BER comparison between different power allocation strategies. MT = 3,

MR = 3, M = {1; 2; 3}. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1) Receiver uncertainty:

Perfect CSI

where ρ = 0 denotes perfect CSI, whereas ρ = 1 means no channel knowledge. The channel

uncertainty at the receiver is proportional to the noise variance. As a reference, the point

ρ = 0 was simulated assuming perfect CSI at both transmitter and receiver. Two simulations

are presented. A first plot analyzes the minimum uncoded BER design for different MIMO

configurations: 1×1; 2×2; 3×3 assuming the maximum transmission rate (i.e., M = {1; 2; 3}).
A second simulation evaluates the MMSE and the minimum BER algorithms for the MIMO

configuration 3× 3 with M = {1; 3}.

As shown in Figure 4.8a, the robustness of the proposed algorithm is evidenced since the

’BER ApproxQ Robust’ solution always outperforms ’BER ApproxQ Non-Robust’ one. Note

that when CSI quality at the transmitter degrades (i.e., ρ → 1) the ’BER ApproxQ Robust’

design tends to the open-loop solution (i.e., equally power allocation for all subcarriers and

antennas) whereas the performance of the ’BER ApproxQ Non-Robust’ algorithm is degraded.

Comparing in Figure 4.8b the MMSE and the minimum uncoded BER algorithms, it is shown

that the ’MMSE Robust’ algorithm only exhibits a good performance in terms of uncoded BER

for low channel uncertainties. Note that for M = 3 the performance of the ’MMSE Robust’

algorithm is very close to the ’BER ApproxQ Robust’ algorithms when the CSI quality is high
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(i.e.,ρ < 0.2), but it performs worse than open-loop when the CSI quality degrades. When the

transmission rate is decreased (i.e., M = 1) the difference in the performances is reduced, but

still, when ρ → 1, the ’MMSE Robust’ algorithm degrades rapidly. According to the previous

results, and recalling that the ’BER ApproxQ Robust’ algorithm has been computed applying an

iterative solution since the closed-form solution in (4.77) is suboptimum when M > 1, it can be

concluded that when CSI quality at the transmitter is good (i.e.,ρ < 0.2), the ’MMSE Robust’

algorithm, which is computed by means of the closed-form solution given by (4.48)-(4.49), is an

alternative to the ’BER ApproxQ Robust’ algorithm in terms of uncoded BER. On the contrary,

when the CSI quality is decreased, the performance of the ’MMSE Robust’ algorithm degrades

rapidly, especially for M = 3, and thus, the best solution is the ’BER ApproxQ Robust’ algorithm

that adapts to the channel uncertainty and tends to the open-loop solution.

4.6 Discussion on coded BER

Despite the fact that neither the MMSE algorithm nor the minimum uncoded BER algorithm

have been optimized taking into account a channel code, it is interesting to evaluate the proposed

algorithms in terms of coded BER since most communication schemes include this stage.

The performance of the algorithms has been compared for the specific channel code described

in HIPERLAN/2. For the evaluation of the coded BER, due to the presence of the block

interleaver, it is too complex to jointly estimate all the bits transmitted in the symbol xk as it

was done to evaluate the uncoded BER (4.86). Instead, as the goal is not focused on the receiver

architecture but on the design of the transmitter, a simplified decoder has been implemented

that provides a bound on the performance achieved by practical decoding schemes. The coded

BER results subsequently presented have been obtained using a genie decoder that computes

the log-likelihood of a symbol xk(l) assuming that all other symbols that were transmitted

simultaneously in in vector xk are known to the receiver. The coded BER achieved by this

scheme bounds and iterative decoder like the one proposed in [Ton00], performing an infinite

number of iterations and assuming that no decoding errors where made.

Figure 4.9 depicts the performance of the proposed algorithms in terms of coded BER at the

decoder output for the 3×3 (M = 3) antenna configuration when the receiver has an estimation

variance proportional to σ2
n (the study in terms of coded BER of the algorithm that minimizes

the uncoded BER using the Chernoff bound is left to the next chapter). It can be seen that when

matrix T is omitted, ’MMSE Robust’ algorithm achieves best performance, followed by ’MMSE

Non-Robust’, ’BER ApproxQ Robust’ and ’BER ApproxQ Non-Robust’ solutions, whereas when

matrix T is set to the DFT matrix, the ’BER ApproxQ Robust’ algorithm outperforms others.

This behavior can be intuitively understood comparing, in Figure 4.4, the power allocation

strategy followed by the different algorithms. Note that the best algorithms in terms of coded
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Figure 4.8: Minimum Eb/No that achieves an uncoded BER ≤ 10−3 vs the transmitter uncer-

tainty ρ. Receiver uncertainty: σ2
εRx

= 0.375σ2
n. (a) Uncoded BER algorithm comparison for

different MIMO configurations: 1× 1 M = 1; 2× 2 M = 2; 3× 3 M = 3. (b) Uncoded BER

and MMSE algorithms comparison for 3× 3 M = {1, 3}.
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BER are those that allocate more power to the good subchannels and penalize the weakest ones.

This strategy, as opposite to that one followed by the algorithms that minimize uncoded BER,

induces some systematic errors in the deepest faded channels. However, if the amount of errors

is within the correcting capability of the channel code, these errors can be corrected, explaining

the overall increased performance at the decoder output in terms of coded BER.

To get more insight in the performance of the proposed power allocation algorithms in terms

of coded BER, Figure 4.10 evaluates the capacity and cut-off rate for each algorithm. Both

parameters can be used as an indicator of the coded BER performance that is independent of

the specific channel code. While the capacity is the theoretical upper limit on data rates where

arbitrarily small coded BER can be achieved with coding, from the practical point of view,

it is difficult to attain this upper limit. However, the cut-off rate provides a lower bound on

the capacity and, until the proposal of turbo codes, it was considered to be the limit for the

coding techniques that had practical interest. Figure 4.10 shows the Complementary Cumulative

Distribution Function (CCDF) curves of the capacity (in bps/Hz), which is computed as:

C =
1
K

K∑

k=1

log2

(
det

(
I +

FH
k HH

k HkFk

σ2
n/σ2

x

))
(4.88)

and the cut-off rate (in bits/channel use), which is computed as (see Chapter 5 for more details):

R0 = − 1
K

K∑

k=1

log2


 1
N 2M

NM∑

i=1

NM∑

j=1

e
−

1
4σ2

n

|HkFkdijk|2

 (4.89)

When the unitary matrix T is omitted, the MMSE algorithms outperform the algorithms that

minimize the uncoded BER in terms of capacity and cut-off rate, which explains why the MMSE

solutions result in better performance than minimum uncoded BER solutions. To explain the

behavior of the solutions when the unitary matrix T is set to the DFT, note that the capacity in

(4.88) is insensitive to any unitary matrix at the right side of the linear transformation Fk, and

hence, this parameter cannot be used in our case as a measure of the coded BER performance.

On the contrary, the cut-off rate is sensitive to the matrix T and justifies the relevance of this

matrix. As shown in Figure 4.10, when the unitary matrix is set to the DFT, the cut-off rate

is increased, which justifies that the coded BER is decreased. Moreover, the performance of the

’BER ApproxQ Robust’ algorithm when T is the DFT as the best solution in terms of coded

BER is explained since this algorithm exhibits the best cut-off rate.

Further the aim of this chapter, the study of the closed-loop algorithms when a channel code

is introduced in the communication scheme opens a new line of research based on the design of

appropriate transceivers that guarantee good performances in terms of coded BER. The results

of the analysis and the conclusions drawn in this section for the MMSE and the minimum

uncoded BER algorithms raise interesting questions about how to design an algorithms that

minimize the coded BER.
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Figure 4.9: Coded BER comparison between different power allocation strategies. MT = 3,

MR = 3, M = 3. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1). Receiver uncertainty:

σ2
εRx

= 0.375σ2
n

A first question to consider is how to design the objective function or, equivalently, which

might be the parameter to be optimized. Information theoretic criteria could be used for this

purpose. A possible choice is to design algorithms based on the channel capacity or the mutual

information for a finite constellation, as limits of reliable communications. An alternative to

these theoretical limits is the design of an algorithm based on the maximization of the cut-off

rate, which has been considered a practical bound when sequential decoding strategies are used.

Both, the mutual information and the cut-off rate parameters will be fully studied in the next

chapter to answer the question.

A second question that arises, specifically from the power allocation strategies given in

Section 4.5.1, is how the null and highly faded subcarriers are arranged in time. As it will be

shown in the next chapter an appropriate distribution of the channel errors in the code-word can

greatly improve the performance of the error correcting code. In this arrangement the interleaver

plays an important role and, hence, the accurate design of new interleavers offers another line

of research that will also be treated in the next chapter.
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4.7 Conclusions and future work

This chapter has presented a Bayesian approach for the design of linear precoding schemes that

are robust to channel estimation errors. The proposed linear transformations have been designed

according to a minimum MSE and a minimum uncoded BER criterion, both of them subject to

an average power constraint across all antennas and subcarriers.

Closed-form solutions that are based on the SVD of the so called equivalent channel have been

derived for both algorithms. The prefiltering matrix derived for the minimum MSE criterion

has been shown to be optimum, whereas the matrix structure given for the minimum uncoded

BER cost function is optimum when one symbol per subcarrier is transmitted (i.e., M=1) and

SNR is high. The algorithms converge to the results published previously in the literature in

the extreme cases of very high or very low uncertainty in the CSI. Besides, it has been shown

that the uncoded BER design can be regarded as a reconfigurable algorithm that adapts the

transmitted signal to the available channel knowledge, providing a solution that converges to

the open-loop design (i.e.,the same power is allocated across all antennas and subcarriers) for

the case of no channel knowledge and to the closed-loop design with perfect CSI for the case of

no uncertainty. The minimum uncoded BER design has been formulated based on a generalized

exponential bound of the function Q(
√

x) that includes the Chernoff bound as a particular case.

The two algorithms have been compared in terms of uncoded BER and coded BER for

the specific channel code described in the HIPERLAN/2 standard using a ML detector at the

receiver. Moreover, the capacity and the cut-off rate have also been used as measures of the

coded BER performance, which are independent of the specific channel code. The results have

shown that the robust algorithms exhibit a lower sensitivity to channel estimation errors when

compared with the nonrobust techniques. In terms of uncoded BER it has been proved that,

although the algorithm that minimizes the uncoded BER has the best performance, the MMSE

algorithm exhibits a good performance for low uncertainty in the CSI. Finally, in terms of coded

BER, it has been shown that the robust algorithm that minimizes the uncoded BER outperforms

the rest of algorithms.

The performances observed when a channel coding stage is introduced, open a new line

of study based on the search of appropriate parameters to be optimized that guarantee good

performances in terms of coded BER. This parameters will be widely studied in the next chapter

and the performance of the derived designs will be compared with those presented in this chapter.
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Appendix 4.A Derivation of some channel statistics

This appendix derives the expression for some channel statistics introduced in Section 4.2.1 and

used in Sections 4.3 and 4.4.

Channel mean:

For the sake of completeness in the channel model we will assume that may exist a

line-of-sight between the transmitter and the receiver, and hence, the first coefficient

in the channel impulse response is non-zero mean. This non-zero mean channel im-

pulse response will force the vector h, which contains the complete channel response

in the frequency domain, to be non-zero mean. Hence, the mean of the vector h will

be denoted as:

mh = E {h} (4.90)

Channel covariance:

Due to the structure of vector h, whose elements contain the frequency response

of the MT MR channels given by the MIMO channel, the covariance of the channel

vector h will be defined by the correlation between the subcarriers and the correlation

between the antennas. Denoting matrix P as a matrix whose entries contain the

DFT of the variance in the channel impulse response, and matrix R as the antenna

correlation matrix (a clear definition of both matrices can be found below), the

covariance of the vector h is given by:

Chh = E
{

(h−mh) (h−mh)H
}

= P⊗R (4.91)

Proof. To prove the result in (4.91) we will first compute the covariance between

two arbitrary elements of vector h. Denoting hi,j
k as the kth subcarrier frequency

response for the channel between the ith transmitting and the jth receiving antenna:

hi,j
k =

L−1∑

l=0

h
(t)
ij (l)e−j 2π

K
kl (4.92)

the covariance E
{(

hi,j
k −m

hi,j
k

)(
hm,n

q −mhm,n
q

)∗}
is next derived under the follow-

ing assumptions:

1. The L coefficients of the channel impulse response are supposed to accomplish

the uncorrelated assumption (see Section 3.3).

2. Denoting ρ
(i,m)
Tx as the spatial correlation coefficient between antennas i and

m at the transmitter, and ρ
(j,n)
Rx as the spatial correlation coefficient between
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antennas j and n at the receiver, the correlation between two different sets of

antenna pairs (i, j) and (m,n) is assumed to be ρ
(i,m)
Tx · ρ(j,n)

Rx [Ped90].

3. The expectation of the lth tap of the channel impulse response h
(t)
ij (l) is denoted

as h
(t)
ij (l) = E

{
h

(t)
ij (l)

}
.

and the covariance is computed as follows:

E
{(

hi,j
k −m

hi,j
k

)(
hm,n

q −mhm,n
q

)∗}

= E

{
L−1∑

l=0

(
h

(t)
ij (l)− h

(t)
ij (l)

)
e−j 2π

K
kl

L−1∑

l′=0

(
h(t)

mn(l′)− h
(t)
mn(l′)

)∗
e+j 2π

K
ql′

}

= E

{
L−1∑

l=0

(
h

(t)
ij (l)− h

(t)
ij (l)

) (
h(t)

mn(l)− h
(t)
mn(l)

)∗
e−j 2π

K
(k−q)l

}

=
L−1∑

l=0

E

{(
h

(t)
ij (l)− h

(t)
ij (l)

)(
h(t)

mn(l)− h
(t)
mn(l)

)∗}
e−j 2π

K
(k−q)l

= ρ
(i,m)
Tx · ρ(j,n)

Rx

L−1∑

l=0

E

{∣∣∣h(t)(l)− h
(t)(l)

∣∣∣
2
}

e−j 2π
K

(k−q)l

= ρ
(i,m)
Tx · ρ(j,n)

Rx P (k − q)
(4.93)

where assumptions 1, 2 and 3 have been used in the second, fourth and first equalities,

respectively, and P (k) has been defined as the kth element of the DFT of the variance

in the channel impulse response coefficients:

P (k) =
L∑

l=0

E

{∣∣∣h(t)(l)− h(t)(l)
∣∣∣
2
}

e−j 2π
N

k l (4.94)

where subindex ij that denote the transmitter-receiver antenna pair have been omit-

ted because identical power delay profile is assumed for all the subchannels.

Next, the derivation of the covariance in (4.93) will be expanded to the covariance

of vector hk, which contains the MIMO channel responses for the kth subcarrier.

Defining this vector as:

hk = vec {Hk} =
[
h1,1

k . . . h1,MR

k . . . hMT ,1
k . . . hMT ,MR

k

]T
(4.95)

the solution in (4.93) can be used to compute the covariance:

E
{

(hk −mhk
)
(
hq −mhq

)H
}

= R P (k − q) (4.96)
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where R is the antenna correlation matrix defined as:

R =




ρ
(1,1)
Tx . . . ρ

(1,MT )
Tx

...
. . .

...

ρ
(MT ,1)
Tx . . . ρ

(MT ,MT )
Tx


⊗




ρ
(1,1)
Rx . . . ρ

(1,MR)
Rx

...
. . .

...

ρ
(MR,1)
Rx . . . ρ

(MR,MR)
Rx


 (4.97)

Finally, the covariance of the whole channel vector h is given by:

E
{

(h−mh) (h−mh)H
}

=




P (0) R P (1) R . . . P (K − 1) R

P (1)∗ R P (0) R . . . P (K − 2) R

...
...

. . .
...

P (K − 1)∗ R P (K − 2)∗ R . . . P (0) R




=




P (0) P (1) . . . P (K − 1)

P (1)∗ P (0) . . . P (K − 2)

...
...

. . .
...

P (K − 1)∗ P (K − 2)∗ . . . P (0)



⊗R

= P⊗R

(4.98)

where P has been defined as the Hermitian Toeplitz matrix whose first row is the

DFT of the variance in the channel impulse response coefficients. Note, moreover,

that since the variance in the channel impulse response is real, the elements of matrix

P satisfy: P (K − l)∗ = P (l) and thus matrix P is a circulant matrix. ¥

Error covariance:

Denoting ε as the channel estimation error in the frequency domain, whose entries

are given by:

εi,j
k =

L−1∑

l=0

e
(t)
ij (l)e−j 2π

K
kl (4.99)

and assuming that the channel estimation error for each one of the taps in the

channel impulse response and for each one of the antenna pairs are uncorrelated, the

covariance of the vector ε is given by:

E
{
εεH

}
= E⊗ I (4.100)

Proof. To prove this covariance it suffices to repeat the previous steps followed to

derive the channel covariance Chh substituting the channel response by the channel
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estimation error, assuming uncorrelated antennas (i.e., R = I), and defining matrix

E with the same structure as matrix P whose entries contain the DFT of the variance

of the channel estimation error for each tap:

E(k) =
K−1∑

l=0

E
{
|e(t)(l)|2

}
e−j 2π

K
(k)l (4.101)

¥

Conditional mean and conditional covariance:

The Bayesian approach adopted in this thesis is based on the definition of the next

model for the estimated channel:

ĥ =

√
σ2

h

σ2
h + σ2

ε

(h + ε) (4.102)

and assumes that the channel h and its estimate are jointly Gaussian.

Under previous assumptions the conditional mean and conditional covariance of the

channel h given ĥ will be computed. Prior to the derivation of those expressions let

us to introduce some intermediate results that will be latter used:

¥ mĥ = E
{
ĥ
}

= E

{√
σ2

h

σ2
h+σ2

ε
(h + ε)

}

=
√

σ2
h

σ2
h+σ2

ε
E {(h + ε)}

=
√

σ2
h

σ2
h+σ2

ε
mh

(4.103)

where the assumption of zero-mean channel estimation error has been used,

and mh, as introduced in (4.90), is the channel mean.

¥ Chĥ = E

{
(h−mh)

(
ĥ−mĥ

)H
}

= E

{
(h−mh)

√
σ2

h

σ2
h+σ2

ε
(h + ε−mh)H

}

=
√

σ2
h

σ2
h+σ2

ε
E

{
(h−mh) (h−mh)H

}

=
√

σ2
h

σ2
h+σ2

ε
Chh

(4.104)

where the result in (4.103) and the assumption of zero-mean channel esti-

mation error has been used in the second and third equalities, respectively.
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¥ Cĥĥ = E

{(
ĥ−mĥ

)(
ĥ−mĥ

)H
}

= E

{√
σ2

h

σ2
h+σ2

ε
(h + ε−mh)

√
σ2

h

σ2
h+σ2

ε
(h + ε−mh)H

}

=
(√

σ2
h

σ2
h+σ2

ε

)2 (
E

{
(h−mh) (h−mh)H

}
+ E

{
εεH

})

= σ2
h

σ2
h+σ2

ε
(Chh + Cεε)

(4.105)

where the result in (4.103) and the assumption of zero-mean channel esti-

mation error has been used in the second and third equalities, respectively.

Under the assumption that the channel h and its estimate are jointly Gaussian, the

conditional mean is defined as [Kay93, p.324]:

mh|ĥ = mh + ChĥC
−1

ĥĥ

(
ĥ−mĥ

)
(4.106)

and using the intermediate results in (4.103)-(4.105) this conditional mean can be

straightforwardly computed as follows:

mh|ĥ = mh + ChĥC
−1

ĥĥ

(
ĥ−mĥ

)

= ChĥC
−1

ĥĥ
ĥ +

(
I−

√
σ2

h

σ2
h+σ2

ε
ChĥC

−1

ĥĥ

)
mh

=
√

σ2
h+σ2

ε

σ2
h

Chh (Chh + Cεε)
−1 ĥ +

(
I−Chh (Chh + Cεε)

−1
)
mh

=
√

σ2
h+σ2

ε

σ2
h

Chh (Chh + Cεε)
−1 ĥ +

(
(Chh + Cεε)−Chh

)
(Chh + Cεε)

−1 mh

=
√

σ2
h+σ2

ε

σ2
h

Chh (Chh + Cεε)
−1 ĥ + Cεε (Chh + Cεε)

−1 mh

=

√
1 +

σ2
ε

σ2
h

(
(P⊗R) (P⊗R + E⊗ I)−1

)
ĥ + (E⊗ I) (P⊗R + E⊗ I)−1 mh

(4.107)

Under the jointly Gaussian assumption of h and ĥ, the conditional covariance is

given by [Kay93, p.324]:

Ch|ĥ = Chh −ChĥC
−1

ĥĥ
Cĥh (4.108)

and using the results in (4.103)-(4.105) this expression becomes:

Ch|ĥ = Chh −ChĥC
−1

ĥĥ
Cĥh

= Chh −Chh (Chh + Cεε)
−1 Chh

= Chh (Chh + Cεε)
−1

(
(Chh + Cεε)−Chh

)

= Chh (Chh + Cεε)
−1 Cεε

= (P⊗R) (P⊗R + E⊗ I)−1 (E⊗ I)

(4.109)
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The conditional mean and conditional covariance expressions for the particular

case of uncorrelated antennas (i.e., R = I), reduce to:

mh|ĥ =

√
1 +

σ2
ε

σ2
h

(
P (P + E)−1 ⊗ I

)
ĥ +

(
E (P + E)−1 ⊗ I

)
mh (4.110)

Ch|ĥ =
(
P (P + E)−1 E

)
⊗ I (4.111)

where the following identities for the Kronecker product has been used [Mag99, p.27]:

A⊗ I + B⊗ I = (A + B)⊗ I

(A⊗B) (C⊗D) = AC⊗BD

(A⊗B)−1 = A−1 ⊗B−1

(4.112)

Appendix 4.B Optimum decomposition of Fk and Gk matrices

to minimize the MSE

This Appendix proves that the optimum decomposition of Fk and Gk matrices to minimize the

MSE cost function:

ξMMSE
k = σ2

xTr
{(

GkĤ
eq
k Fk − I

)H (
GkĤ

eq
k Fk − I

)}
(4.113)

+σ2
nTr

{
GH

k Gk

}
+ ωσ2

xTr
{
FkFH

k

}
Tr

{
GH

k Gk

}

is based on the SVD of the equivalent channel Ĥeq
k = UkΛkVH

k :

Fk = VkΦkTk Gk = TH
k ΓkΛ

#
k UH

k (4.114)

where Tk is any irrelevant unitary matrix and Φk, Γk are diagonal matrices.

Proof. It can be easily shown that the cost function (4.113) is convex both in Fk and Gk

matrices since the Hessian is semipositive definite. Hence, differentiating the objective function

with respect to the matrix GH
k and equating the result to zero, the function to minimize is

solved for Gk to obtain:

Gk = FH
k ĤeqH

k

(
Ĥeq

k FkFH
k ĤeqH

k + σ2
nI + ωσ2

xTr
{
FkFH

k

}
I
)−1

(4.115)

For the sake of simplicity in the notation let us denote the matrix A = Ĥeq
k Fk and the

scalar K = σ2
n + ωσ2

xTr
{
FkFH

k

}
. Using this new notation, matrix Gk can be written as:

Gk = AH
(AAH +KI

)−1. Next, substituting matrix Gk in (4.113), the MSE becomes:
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ξMMSE
k = Tr

n
AH

`AAH +KI
´−1AAH

`AAH +KI
´−1A

o
− 2Tr

n
AH

`AAH +KI
´−1A

o
+ Tr {I}

+ωσ2
xTr

˘
FFH

¯
Tr
n
AH

`AAH +KI
´−2A

o
+ σ2

nTr
n
AH

`AAH +KI
´−2A

o

= Tr
n
AH

`AAH +KI
´−1AAH

`AAH +KI
´−1A

o
− 2Tr

n
AH

`AAH +KI
´−1A

o
+ Tr {I}

+KTr
n
AH

`AAH +KI
´−2A

o

= Tr
n
AH

`AAH +KI
´−1A

o
− 2Tr

n
AH

`AAH +KI
´−1A

o
+ Tr {I}

= −Tr
n
AH

`AAH +KI
´−1A

o
+ Tr {I}

= −Tr
n`AAH +KI

´−1 `AAH +KI−KI
´o

+ Tr {I}
= −Tr

n
I− `AAH +KI

´−1K
o

+ Tr {I} = KTr
n`AAH +KI

´−1
o

And finally, substituting A and K by its original values, the new cost function, that only

depends on the linear transformation Fk, is:

ξMMSE

k =
[

σ2
n

σ2
x

+ ωTr
{
FkFH

k

}]
Tr

{(
Ĥeq

k FkFH
k ĤeqH

k + σ2
n

σ2
x
I + ωTr

{
FkFH

k

}
I
)−1

}

−µ

[(
K∑

k=1

Tr
{
FH

k Fk

}
)
− P0

] (4.116)

Next, the optimum linear transformation Fk will be obtained differentiating (4.116) with respect

to the matrix FH
k and equating the result to zero. Isolating the matrix Fk we arrive at:

Fk = K2 ĤeqH
k

(
Ĥeq

k FkFH
k ĤeqH

k +K1I
)−2

Ĥeq
k︸ ︷︷ ︸

PF

Fk (4.117)

where K1 and K2 are non relevant scalars and the underbraced matrix PF is the projection

matrix of Fk. Substituting matrices Fk and Ĥeq
k by its SVD decompositions, denoted as 5

Fk = UFΛFVH
F and Ĥeq

k = UkΛkVH
k , the projection matrix PF must satisfy PF = UFUH

F

and, consequently, the next equality must be accomplished:
1
K2

UFUH
F = VkΛH

k UH
k

(
UkΛkVH

k UFΛFΛH
F UH

F VkΛH
k UH

k +K1I
)−2

UkΛkVH
k (4.118)

This equality only holds if VH
k UF = P, where P is any permutation matrix, and the elements

in the diagonal matrix ΛF (denoted in (4.114) as Φk) are appropriately defined. In particular,

if the permutation matrix P is set to the identity matrix, therefore, UF = Vk as shown in

(4.114). Note that equation (4.118) is independent of the unitary matrix VF and, consequently,

any unitary matrix (denoted in (4.114) as Tk) can be chosen.

Once the optimum structure for Fk has been derived, the optimum structure for Gk can be

found substituting into equation (4.115) the matrix Fk by its SVD decomposition for the par-

ticular case of Fk = VkΦkTk. Hence, after some manipulations, it is straightforward to verify,

as shown in (4.114), that the SVD decomposition of the matrix Gk satisfy Gk = TH
k ΓkΛ

#
k UH

k

where elements in the diagonal matrix Γk are appropriately chosen to satisfy (4.115).

¥
5For the sake of clarity in the notation the subindex k and the label eq have been both omitted.
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Appendix 4.C Exponential expansion of the Q (
√

x) function

The Gaussian Q-function, or equivalently, the complementary error function, are required for

the computation of error probability performances in multiple applications. The solution of the

problems formulated by means of this functions are often analytically complex to be solved if

the classical definition of this function is used:

Q (x) =
1√
2π

∫ ∞

x
e−

t2

2 dt (4.119)

A large study has been done for this function in order to simplify the analysis of such problems.

Craig showed a different form of the Gaussian Q-function [Cra91] that allows to average this

function over some random parameters [Sim98]. Alternatively, some approximations and bounds

can be found for this functions. One of the widely used approximations is the Chernoff bound:

Q (x) =
1
2

e−
x2

2 (4.120)

However, tighter bound can be found (see e.g., [Erm04] and references therein). In this chapter,

we propose an expansion of the Q (
√

x) function in the neighborhood of the point x = a. By a

generalized exponential expansion, the Q (
√

x) function can be expressed as:

Q (√
x
) ' δe−αx (4.121)

where constants α and δ can be chosen to set certain constraints. The derived expressions can

be applied for any value of δ and α including the Chernoff bound as a particular case for α = 1/2

and δ = 1/2. However, it is possible to derive a lower bound for Q (
√

x) that is very tight in a

wide range of values around a. This bound is obtained from a Taylor expansion of ln (Q (
√

x))

in the neighborhood of the point a:

Q (
√

x) = eln(Q(√x))

' e

»
ln(Q(√a))− e−|a|/2

2
√

2πaQ(
√

a)
(x−a)

–

= eln(Q(√a))e
e−|a|/2

2
√

2πaQ(
√

a)
a
e
− e−|a|/2

2
√

2πaQ(
√

a)
x

= δe−αx

(4.122)

Where α and δ are given by:

α =
e−|a|/2

2
√

2πaQ (
√

a)
; δ = Q (√

a
)
eαa (4.123)

It is straightforward to show that (4.122) provides a lower bound for the Gaussian Q-function.

Proof. As the exponential function is monotonically increasing, the lower bound is ensured if

the Taylor expansion in (4.122) is always lower than ln (Q (
√

x)), a condition that always holds

since ln (Q (
√

x)) is a convex function. ¥
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Figure 4.11: Comparison of the obtained exponential bound with the exact Gaussian Q-function

and the Chernoff bound.

Figure 4.11 compares the obtained bound with the exact curves and the Chernoff bound. As

it can be seen, the proposed bound is tighter than the Chernoff bound in a wide range of values

in the neighborhood of the point where the approximation is derived.

Appendix 4.D Optimum decomposition of Fk matrix to mini-

mize the uncoded BER for beamforming

This Appendix proves that the optimum decomposition of Fk to minimize the uncoded BER

cost function:

ξBER = K
K∑

k=1

δk(
1 + γkω d2FH

k Fk

)MR
e
−

γk d2
∣∣∣Ĥeq

k Fk

∣∣∣
2

1 + γkω d2FH
k Fk − µ

[
K∑

k=1

Tr
{
FH

k Fk

}− P0

]
(4.124)

for the particular case of M = 1 is obtained selecting Fk to be in the direction of the right

singular vector of the equivalent channel Ĥeq
k associated to the largest singular value.

Proof. The proof follows easily substituting the SVD decomposition of Fk and Ĥeq
k , denoted as
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Fk = uFk
φk and Ĥeq

k = UkΛkVH
k , into the cost function (4.124) to obtain:

ξBER = K
K∑

k=1

δk(
1 + γkω d2 |φk|2

)MR
e
−γk d2 |φk|2 uH

Fk
VkVH

k uFk

1 + γkω d2 |φk|2 − µ

[
K∑

k=1

|φk|2 − P0

]
(4.125)

Since all terms in the summation of the previous equation are always positive, and each unit-

norm vector uFk
contributes independently into the cost function, the optimum design of these

vectors must be done minimizing each summation term separately. Hence, the minimization

of the cost function is achieved selecting the vectors uFk
that maximize the argument of the

exponential term, focusing the transmitted symbols in the direction of the singular vector vk

associated to the maximum singular value of the channel. In consequence, it must be that

uFk
= vk and, therefore:

Fk = vkφk (4.126)

¥

Appendix 4.E Jensen’s inequality to the convex function Q (
√

x)

In this Appendix we show that for high SNR the following inequality holds

1
N 2M

NM∑

i=1

NM∑

j=1

B(xki,xkj)Q



√
|ΛkΦkTdijk|2

2σ2
n


 ≤ 1

N 2M

NM∑

i=1

NM∑

j=1

B(xki,xkj)Q



√
|ΛkΦkdijk|2

2σ2
n




(4.127)

Proof. Let si and sj bet two elements of a given constellation, let R(b, d) denote the number

of symbol pairs (si, sj) that differ in b bits and d = |si − sj | any of the D possible values of

the difference between two constellation symbols. Let im denote the mth column of the identity

matrix of size M . Under the high SNR condition (assumption A1), the average BER can be

approximated taking into account only the pairwise error probability between those pairs of

symbols that differ in one coefficient. Thus, for high SNR, the BER for the kth subcarrier can

be written as follows:

BERk =
1

N 2M

NM∑

i=1

NM∑

j=1

B(xki,xkj)Q



√
|ΛkΦkT (xki − xkj)|2

2σ2
n




' 1
N 2M

M∑

m=1

log2N∑

b=1

D∑

l=1

bR(b, dl)Q



√
|ΛkΦkTimdl|2

2σ2
n




(4.128)
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and reduces to the following expression for T = I:

BERk =
1

N 2M

NM∑

i=1

NM∑

j=1

B(xki,xkj)Q



√
|ΛkΦk (xki − xkj)|2

2σ2
n




' 1
N 2M

M∑

m=1

log2N∑

b=1

D∑

l=1

bR(b, dl)Q



√
|ΛkΦkdlim|2

2σ2
n




(4.129)

Comparing equations (4.128) and (4.129) it is clear that proving the inequality in equation

(4.127) is equivalent to proving a similar expression for the Q (·) function that appears in them.

It can be shown [Lam97], [Din03] that the DFT matrix satisfies that |ΛkΦkTim| is constant for

all m. Therefore,

1
M

M∑

m=1

Q



√
d2

l

2σ2
n

|ΛkΦkTim|2



= Q



√√√√ d2
l

2σ2
n

1
M

M∑

m=1

|ΛkΦkTim|2



= Q



√
d2

l

2σ2
n

1
M

Tr
{
ΛkΦkTTHΦH

k ΛH
k

}



= Q
(√

d2
l

2σ2
n

1
M Tr

{
ΛkΦkΦH

k ΛH
k

}
)

= Q



√√√√ d2
l

2σ2
n

1
M

M∑

m=1

|ΛkΦkim|2



≤ 1
M

M∑

m=1

Q



√
d2

l

2σ2
n

|ΛkΦkim|2



(4.130)

where equality in second line applies because T is a unitary matrix, and last inequality is a

result of the application of Jensen’s inequality [Cov91, p.25] to the convex function Q (
√

x).

The combination of equations (4.130) and (4.128)-(4.129) leads to equation (4.127). ¥

Appendix 4.F The Frost algorithm

The Frost algorithm is a constrained adaptive algorithm that has the ability to keep in each

iteration the constraints over the vector of parameters to design. In its essence this algorithm is

a simple LMS-type algorithm that includes a set of linear equality constraints in the optimiza-

tion problem. It was first proposed by O.L. Frost for adaptive array processing [Fro72]. The

minimization problem, keeping the notation of the aforementioned paper is formulated as:

min
w

wHRw subject to wHC = FH (4.131)
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where the full rank matrix C and the vector FH define the set of linear constraints, w is the

vector of weights to be designed and R is a correlation matrix. This optimization problem can

be solved by the method of Lagrange multipliers. Hence, the function to be minimized is:

ξ = wHRw − (
wHC−FH

)
µ (4.132)

where µ is a vector that contains the Lagrange multipliers.

Taking the gradient with respect to wH we get:

∇wH ξ = Rw −Cµ (4.133)

Equaling this gradient to zero and isolating the vector w a closed-form solution can be found for

the minimization of (4.131). However, in some optimization problems this closed-form solution

cannot be derived (as is the case of our concerning problem) or requires a computational

complexity that makes the solution not suitable for a practical implementation (as was the case

of the original work in [Fro72]). Instead, a gradient-descendent algorithm that includes the set

of linear constraints can be implemented to find the optimum solution. The main handicap of

the constrained iterative algorithms is that although the solution is initialized with a vector that

satisfies the constraints, they do not prevent the deviation of the solution from the constraints

due to the accumulation of numerical errors (roundoff or truncation errors) in each iteration.

The algorithm proposed by Frost solved this problem forcing the Lagrange multipliers to satisfy

the constraints in every iteration.

Rewriting the gradient expression as:

∇wH ξ = a (w)−Cµ (4.134)

the iterative algorithm can be written as:

wn+1 = wn − λ ∇wH ξ (4.135)

= wn − λ [a (wn)−Cµ]

where λ is a constant that sets the step-size of the iterative algorithm.

The Lagrange multiplier must be chosen to satisfy the set of linear constraints:

wH
n+1C = wH

n C− λa (wn)H C + λµHCHC = FH (4.136)

and isolating µ the next expression is found:

µ =
(
CHC

)−1
CHa (wn)− 1

λ

(
CHC

)−1 (
CHwn −F

)
(4.137)
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Finally, substituting the Lagrange multiplier into the iterative equation (4.135) we get:

wn+1 = wn−λa (wn)+λC
(
CHC

)−1
CHa (wn)−C

(
CHC

)−1
CHwn+C

(
CHC

)−1F (4.138)

that can be easily simplified defining the orthogonal projection matrix P⊥
C = I−C

(
CHC

)−1 CH

as follows:

wn+1 = P⊥
C[wn − λa (wn)] + C

(
CHC

)−1F (4.139)

Note that in the derivation of this iterative equation it has not been assumed that the solution

at time n satisfies the linear constraints (i.e., wH
n C 6= FH) whereas it guarantees the constraints

after the nth iteration (i.e.,wH
n+1C = FH). This simple tricky distinguishes the Frost algorithm

from the conventional LMS algorithm and allows to modify the optimum solution from one

iteration to the next either due to numerical misadjustments or due to external adjustments as

is the case of our concerning problem. The differences between the conventional LMS algorithm

and the constrained adaptive algorithm can also be regarded analyzing the iterative equation

in (4.139). The expression in the brackets corresponds to the conventional LMS solution. Pre-

multiplying this solution by the projection matrix P⊥
C all the components orthogonal to the

constraint plane are removed, and adding the second term, which is the minimum norm vec-

tor that satisfies the linear constraints, the solution is returned to the constraint plane. For a

detailed geometrical interpretation of this solution see [Fro72].



Chapter 5

Robust power allocation algorithms

based on information theoretic

criteria. Minimization of the coded

BER

Extending the study of Chapter 4, this chapter analyzes robust power allocation strategies

related with the minimization of the coded BER. The linear transmitter designs that minimize

the MSE or the uncoded BER do not guarantee good bit error performance when any channel

correction code is introduced and the QoS is measured in terms of Packet Error Rate (PER).

Instead, information theoretic criteria could be used for this purpose. A possible choice is to

design algorithms based on the channel capacity or mutual information. The drawback of this

criterion is that channel capacity represents a theoretical limit of reliable communications that

does not take into account the transmitter and the receiver complexity.

The main contribution of this chapter is the proposal of the cut-off rate as a parameter

of design whose maximization is directly related to the coded BER. The cut-off rate has been

considered for a long time as the practical bound on the performance that could be achieved by

feasible codes, providing an exponential upper bound on the error probability for the average

over the ensemble of codes with block length N. The goal is, thus, to present a robust power

allocation strategy that maximizes the cut-off rate using partial CSI at the transmitter. As in the

previous chapter, a Bayesian formulation is used to design an optimal transmitter based on noisy

CSI estimates. The result is an algorithm that adapts to the CSI, as other previously proposed

solutions, converging to the open-loop transmission scheme for very poor CSI estimates. The

maximization of the mutual information can also be considered as a possible design to optimize

the coded BER, although a more complex solution is found for it.

121
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The chapter is organized as follows. First, the system and the channel models, which are the

same that those employed in the previous chapter, are briefly reviewed in Section 5.1. The main

difference in the system model is given by the introduction of a channel coding scheme. Next,

two power allocation designs based on the maximization of the cut-off rate and the maximization

of the mutual information are presented in Section 5.2 and Section 5.3, respectively. Since this

chapter is specifically focused on the first criterion, more emphasis is dedicated to it. Not

only analytical results are provided, but also an illustrative interpretation that, making use

of the Kullback-Leibler pseudo-distance, relates the maximization of the cut-off rate to the

minimization of the pairwise error probability taking into account the CSI reliability. Section

5.4 outlines a comparative study between the different optimization strategies proposed in this

chapter and in the previous chapter focusing on their impact on the error probability. Simulation

results concerning the algorithms compared in that section can be found in Section 5.5. As it will

be shown the cut-off rate provides a good performance in terms of coded BER for the specific

channel code used in the simulations. The chapter is ended by studying some surprising results

found when comparing the performance of the algorithms in terms of coded BER. Specifically,

Section 5.6 justifies the excellent performance of one of the algorithms proposed in Chapter 4 to

minimize the uncoded BER: the algorithm that minimizes the uncoded BER using the Chernoff

bound. On the other hand, Section 5.7 analyzes the importance of the interleaver and shows

that the performance of the algorithms, specifically those that aim to minimized the coded BER,

can be improved if an adaptive interleaver that uses the channel knowledge at the transmitter

is introduced. Finally, Section 5.8 concludes the chapter.

5.1 System and channel models

As it is shown in Figure 5.1 the same OFDM MIMO communications system considered in the

previous chapter (see Section 4.2) is now assumed. Recalling that section, the input-output

relationship can be written in terms of matrices that involve only one subcarrier each as:

rk = HkFkxk + nk k = 1 . . . K (5.1)

In this case the linear transformation at the receiver, denoted with matrix Gk, has been omitted

since this linear receiver was only introduced for the specific MMSE design.

For the design of the linear precoder in the presence of channel estimation error, the same

Rayleigh propagation channel is also considered, modelling the channel estimation error ε as an

additive term:

ĥ =

√
σ2

h

σ2
h + σ2

ε

(h + ε) (5.2)

and assuming that the channel h and its estimate ĥ are jointly Gaussian.
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Figure 5.1: Block diagram of the proposed MIMO OFDM system with channel coding scheme

Hence, using the same Bayesian formulation proposed in the previous chapter to design an

optimal transmitter based on noisy CSI estimates, the robust design will also depend on the

statistics of the channel h given ĥ. More specifically, it will depend on the conditional mean,

denoted in Section 4.2.2 as the equivalent channel mh|ĥ = ĥeq
k (Eq.4.17), and the conditional

covariance, which under the hypothesis of uncorrelated antennas it was shown to be Chk|ĥ = ωI

(Eq.4.15).

The novelty of this chapter is the incorporation, in the system model, of a channel coding

scheme. As shown in Figure 5.1 this stage comprises a convolutional encoder and an interleaver

at the transmitter and a Viterbi decoder at the receiver. In a first study the specific channel

code described in HIPERLAN/2 [HL201] and IEEE 802.11a [IEE99] standards has been chosen.

According to these standards, the bit stream to be transmitted is first encoded with a convolu-

tional code k = 7, r = 1/2 and next the encoded data bits are interleaved prior to be multiplexed

into the different subcarriers. Although a block interleaver is first used, as it is proposed in the

standard, the last part of this chapter (Section 5.7) analyzes the influence of the interleaver in the

performance of the different power allocation algorithms in terms of coded BER and proposes

an adaptive interleaver based on the Rate-Compatible Punctured Convolutional Codes (RCPC)

codes, and thus named ’RCPC interleaver’, which outperforms the classic block interleaver.

5.2 Maximum cut-off rate

This section presents the cut-off rate as an alternative to the channel capacity or mutual infor-

mation criteria [Sca99b] for the design of optimal transceivers in the presence of channel coding.

This parameter was first proposed by [Woz66] and [Mas74] as a sensitive criterion for the de-

sign of coded-modulations, arguing that, rather than using the uncoded BER as a modulation

criterion, an appropriate parameter could be the cut-off rate. More recently, the cut-off rate

has been considered in [Rai96] in the context of open-loop transmission schemes, in [Her01] for

the design of space-time codes under the assumption that no CSI is available neither at the
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transmitter nor at the receiver, and in [Nab03] for the design of a diagonal matrix that applies

a phase shift to each of the symbols to be transmitted exploiting the knowledge of the channel

statistics.

The Channel Coding Theorem [Cov91, p.198] states that for any transmission rate below the

Shannon channel capacity, the word error probability can be arbitrarily low by increasing the

encoder / decoder complexities. The channel capacity defines, hence, the upper bound of reliable

data transmission rates. Alternatively, a useful measure of achievable rates can be obtained if

the word error rate is upper bounded by an exponential bound. For any discrete memoryless

channel, the word error probability Pw(e) averaged over the ensemble of binary block codes of

length N and rate Rc, is bounded by [Gal65] (a similar result has been proven for convolutional

codes in [Vit67]):

EC {Pw(e)} ≤ 2−NE(Rc) (5.3)

where EC {·} denotes the expectation over the ensemble of random codes and the exponent E (Rc)

is called the Reliability Function of the channel, which is a positive function that depends on both

the channel and the coding rate, but it does not depend on the specific channel code. Note that an

accurate study of the exponent in (5.3) could provide a clear relationship between the bound on

the word error probability, the coding rate, the length of the code and the channel characteristics.

However, in most scenarios, the reliability function may be difficult to be computed.

A simpler exponential upper bound can be derived if the Reliability Function is lower

bounded by a tangent to the function with a negative unitary slope [Woz66]. Thus:

EC {Pw(e)} ≤ 2−N(Ro−Rc) if Rc ≤ Ro (5.4)

where Ro is defined as the cut-off rate of the transmission scheme. Until the proposal of the

turbo codes , this parameter set an upper bound for the rates where it was possible to operate

with arbitrarily small probability, and determined also an exponent upper bound of the error

probability [Big98, Cos98] (the best exponent upper-bound for rates near to Ro).

Several reasons justify the use of the cut-off rate as an alternative to the channel capacity

as a criterion for the linear precoder design:

• The cut-off rate is a lower bound on the channel capacity as will be next analyzed in the

simulation results section.

• The cut-off rate provides a useful measure of achievable rates when a feasible coding scheme

is used, whereas the channel capacity is a theoretical limit only on the system performance.

Contrary to past beliefs, the cut-off rate cannot be considered an upper bound on practical

achievable rates since with the advent of the turbo codes, the LDPC codes and the iterative

decoding schemes, rates grater than Ro can be achieved [Cos98]. However, the cut-off rate

parameter still remains in interest when sequential decoding strategies are used.
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• The cut-off rate provides an upper bound on the error probability which does not depend

on the specific code. Note that if Rc < Ro, the error probability can be arbitrarily

reduced by increasing the length of the channel code N →∞. The use of this parameter

allows, hence, to compare different channels in terms of error probability while keeping

the comparison independent of the channel code. Moreover, its maximization will offer a

good performance in terms of PER for the average over the ensemble of codes.

• Finally, the cut-off rate will allow us to derive a closed-form solution for the robust power

allocation strategy using partial CSI at the transmitter.

Next, we provide the expression of Ro for the ensemble of binary block codes. Its derivation

makes use of the Pairwise Error Probability (PEP) and the Chernoff bound to obtain the final

expression. Alternatively, the same expression can be obtained via the union Bhattacharyya

bound and also as a specific case of the Gallager bound [Vit79, p.136]. The derivation assumes

a general constellation {s1 . . . sN } of size N , the MIMO OFDM structure described in (5.1),

and a ML detector implemented at the receiver. Those assumptions make the derivation to be

quite general, encompassing the single antenna transmission, the frequency flat fading channel

and the AWGN channel as particular cases.

Let us consider a specific block encoder that maps a set of NRc information bits to be encoded

into one of the 2NRc possible codewords of length N defined by the block code. Denoting X
as the codeword that was transmitted over the channel, and applying the Theorem on Total

Probability, we have that the dependence of the word error probability Pw(e) on the codewords

is given by:

Pw(e) =
∑

X
Pw(e/X )P (X ) (5.5)

where Pw(e/X ) is the conditional word error probability assuming that the codeword X is

transmitted.

Because the computation of this word error rate is of prohibitive complexity due to the large

number of codewords, we will alternatively compute the average of Pw(e) for all codes of a given

rate and length. Hence

EC {Pw(e)} = EC

{
1

2NRc

∑

X
Pw(e/X )

}
(5.6)

where under the random code hypothesis, it can be assumed that each one of the 2NRc code-

words is equally likely P (X ) = 2−NRc . At the receiver the function of the decoder is to decide

which one of the possible codewords was transmitted, Hence, the conditional word error rate

can be substituted by the pairwise error probability of deciding the codeword X̂ when X was

transmitted:

EC {Pw(e)} = EC





1
2NRc

∑

X

∑

X̂ 6=X
P (X → X̂ )



 (5.7)
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Next, assuming the ML detector, an upper bound on the PEP is given by the Chernoff Bound

(see Section 4.4.1) and, thus, the error probability is bounded by:

EC {Pw(e)} ≤ EC





1
2NRc

∑

X

∑

X̂ 6=X
e
−

1
4σ2

n

∣∣∣HF
(
X − X̂

)∣∣∣
2




(5.8)

At this point we introduce the MIMO OFDM structure described in (5.1). Assuming that the

codeword X is transmitted through N/K OFDM symbols, assuming that the channel response

can only take K different values (i.e. one per subcarrier), and applying the OFDM structure

that allows to decouple the MIMO channel into K subcarriers, (5.8) can be written as:

EC {Pw(e)} ≤ EC





1
2NRc

∑

X

∑

X̂ 6=X

N/K∏

s=1

K∏

k=1

e
−

1
4σ2

n

∣∣∣HkFk

(
Xsk − X̂sk

)∣∣∣
2




< EC





1
2NRc

∑

X

∑

X̂

N/K∏

s=1

K∏

k=1

e
−

1
4σ2

n

∣∣∣HkFk

(
Xsk − X̂sk

)∣∣∣
2




(5.9)

where the first inequality has been upper-bounded by including X̂ = X in the second summation,

and Xsk and X̂sk are parts of the codewords X and X̂ , respectively.

We now carry out the average over the ensemble of block codes. The random coding hy-

pothesis sets up that:

• two different codewords X and X̂ are assumed to be i.i.d. random variables;

• the elements into a codeword, say X or X̂ , are also i.i.d. random variables.

Under those hypothesis the vectors Xsk and X̂sk, and also its elements, can be assumed to be

i.i.d., and consequently, subindexes s and k are dummy variables in those vectors. Hence (5.9)

can be rewritten as:

EC {Pw(e)} < 2NRc
1
NM

1
NM

∑
x

∑

x̂

K∏

k=1





e
−

1
4σ2

n

|HkFk (x− x̂) |2




N/K

(5.10)

where x and x̂ are i.i.d vectors of length M (where M denotes the number of symbols to be

transmitted per subcarrier) whose elements are also i.i.d and belong to a constellation of size N .

To simplify (5.10) we introduce the error vector d = (x− x̂) of length M and the expectation

Ed {·} = 1
NM

1
NM

∑
x

∑
x̂ (·) so that:

EC {Pw(e)} < 2NRc

K∏

k=1

Ed





e
−

1
4σ2

n

|HkFkd|2




N/K

(5.11)
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Equaling previous expression with the upper bound given in (5.4), a mathematically expres-

sion is derived for the cut-off rate in bits per channel use:

Ro = − 1
K

K∑

k=1

log2 Ed





e
−

1
4σ2

n

|HkFkd|2




(5.12)

5.2.1 Interpretation of the cost function

This section proposes a robust to CSI design for the linear precoder Fk that maximizes the

cut-off rate (assuming that a ML detector is implemented at the receiver), and analyzes the

derived cost function evidencing that the cut-off rate is related with the error probability. When

perfect CSI is available at the transmitter, the expression in (5.12), subject to an average power

constraint, is the function to be maximized. However, when the channel response is not perfectly

known at the transmitter, the performance of the solution obtained with (5.12) will be degraded

due to the CSI errors. Alternatively, a solution robust to the CSI errors should be used. The

robustness is introduced by averaging the cost function over the channel uncertainty using a

Bayesian formulation Ehk|ĥ {·}. Hence, the function to be maximized, given a channel estimate,

and subject to an average power constraint, becomes:

max
Fk

Ehk|ĥ




− 1

K

K∑

k=1

log2 Ed





e
−
|HkFkd|2

4σ2
n









subject to
K∑

k=1

Tr
{
FH

k Fk

}
= P0

(5.13)

A detailed analysis of the objective function in (5.13) gives an illustrative interpretation

of the maximization of this cost function evidencing that its maximization is related to the

minimization of the pairwise error probability taking into account the CSI reliability. Denoting

f0 (Fk) as the function to be maximized in (5.13), the expectation over the cost function can be

rewritten as:

f0 (Fk) = − 1
K

K∑

k=1

∫

hk∈C
fhk/ĥ(hk) log2 Q (hk,Fk) dhk (5.14)

where fhk/ĥ(hk) is the conditional probability density function of the equivalent channel given

the channel estimate, and Q (hk,Fk) is defined as:

Q (hk,Fk) = Ed





e
−
|HkFkd|2

4σ2
n





(5.15)
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After some straightforward manipulations, the cost function to be maximized, subject to a power

constraint, becomes:

f0 (Fk) =
1
K

K∑

k=1

∫

hk∈C
fhk/ĥ(hk) log2

fhk/ĥ(hk)

Q (hk,Fk)
−

∫

hk∈C
fhk/ĥ(hk) log2 fhk/ĥ(hk) (5.16)

Notice that the second term can be regarded as the differential entropy of the prior information

about the channel hk given a channel estimate ĥ. This term is irrelevant since it does not contain

information of the parameter to design (i.e., matrix Fk). Consequently, the analysis focuses on

the first term. The structure of this first term corresponds to the Kullback-Leibler pseudo-

Distance (KLD) between two probability density functions [Cov91, p.231]. Strictly speaking,

we cannot say that this term is a Kullback-Leibler pseudo-distance because a KLD is defined

over probability density functions, and Q (hk,Fk) is not a p.d.f. Regarding, however, this term

as the KLD between fhk/ĥ(hk) and Q (hk,Fk) functions, its contribution into the cost function

in (5.14) could be understood as a measure of the discrepancy between this two functions.

Consequently, because the aim is to maximize the cut-off rate, and thus maximize this pseudo-

distance, the function Q (hk,Fk) must be as dissimilar as possible to the channel distribution

fhk/ĥ(hk). As a result, for the most likely channel values (i.e., when fhk/ĥ(hk) is maximum)

the function Q (hk,Fk), which is related with the pairwise error probability, must be minimized

(i.e., the error probability is minimized).

5.2.2 Quadratic approximation of the cost function

It can be proven that the objective function in (5.13) is concave for the specific case of beam-

forming when CSI is perfectly known at the transmitter. However, it cannot be proven to be

concave in a most general case. Therefore, since the concavity of the maximization problem

cannot be ensured, an optimization technique for non-concave (non-convex) functions should be

used to achieve the optimum solution (e.g., the simulated annealing technique).

We will, however, discard this techniques proposing, as alternative, the maximization of a

simple quadratic approximation of the cost function based on the second order Taylor approx-

imation of the cut-off rate (5.20). As it will be shown in the numerical results, this simplified

procedure provides a solution that, though it does not necessarily achieves the optimum solution,

exhibits good performance in terms of coded BER.

To derive the approximation of the cost function (5.13), we first substitute in (5.13) the expec-

tation over the error vector d as the summation over all possible values Ed {·} = 1
N 2M

∑N 2M

i=1 (·)
subject to the power constraint:

max
Fk

Ehk|ĥ




− 1

K

K∑

k=1

log2

1
N 2M

N 2M∑

i=1

e
−
|HkFkdi|2

4σ2
n





(5.17)
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Next, focusing on the contribution of each subcarrier into the objective function, i.e.:

ξk = log2

N 2M∑

i=1

e
−
|HkFkdi|2

4σ2
n

the log-sum-exp term can be approximated by a Taylor expansion in the neighborhood of any

arbitrary point ai as follows:

ξk = log2

N 2M∑

i=1

e−θi

∣∣∣
θi=

|HkFkdi|2
4σ2

n

' C0 +
∑

i

C1i (θi − ai) +
1
2

∑

i

C2i (θi − ai)
2 +

1
2

∑

i,j
i6=j

C3ij (θi − ai) (θj − aj)
(5.18)

where C0, C1i, C2i, C3ij are the Taylor expansion coefficients given by:

C0 = f(a) = log2

∑
i e
−ai

C1i = ∂f(θ)
∂θi

∣∣∣
θi=ai

= − e−ai

∑
i e
−ai

C2i = ∂2f(θ)
∂θ2

i

∣∣∣
θi=ai

=
e−ai

∑
i e
−ai

− e−2ai

(
∑

i e
−ai)2

C3ij = ∂2f(θ)
∂θi∂θj

∣∣∣θi=ai
θj=aj

= − e−(ai+aj)

(
∑

i e
−ai)2

(5.19)

Finally, substituting the Taylor expansion into the objective function (5.17) a quadratic approx-

imation in the neighborhood of any arbitrary point ai is obtained as:

max
Fk

Ehk|ĥ



−

1
K

K∑

k=1


D0 +

N 2M∑

i=1

D1i

4σ2
n

|HkFkdi|2 +
D2i

(4σ2
n)2

(|HkFkdi|2
)2 +

N 2M∑

i=1

N 2M∑

j=1

D3ij

(4σ2
n)2

(|HkFkdi|2
) (|HkFkdj |2

)







subject to
K∑

k=1

Tr
{
FH

k Fk

}
= P0

(5.20)

where D0, D1i, D2i, D3ij , which are related with the Taylor expansion coefficients, are defined

as follows:

Di =
e−ai

∑
i e
−ai

D1i = −Di [1 + ai −
∑

l Dlal]

D2i =
1
2
Di

D3ij = −1
2
DiDj

D0 = −2M log2N + log2

∑
l e
−al +

∑
l Dlal +

∑
l

Dl
2 a2

l −
∑

l,n
DlDn

2 alan

(5.21)

This approximation allows to compute the expectation over the channel estimation error in order

to derive the final cost function (see Appendix 5.A).
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5.2.3 Power allocation design

This section analyzes the design of the linear transformation at the transmitter Fk. The max-

imization of the cost function in (5.13) is obtained assuming the following structure, which is

identical to that one proposed in the previous chapter for the MMSE (see Section 4.3.2) and the

minimum uncoded BER (see Section 4.4.3) designs:

Fk = VkΦkTk (5.22)

where Vk contains the right singular vectors of the equivalent channel Ĥeq
k , Φk is a diagonal

matrix and Tk is a M ×M unitary matrix. The aim of Vk is to optimally match the power into

the best channel modes, leading to the decomposition of the channel into a set of M parallel

subchannels. The diagonal matrices Φk distribute the total power among all subcarriers and

antennas. Finally the unitary matrix Tk recovers the loss of space diversity caused by the

decomposition of the MIMO channel into a set of parallel multiplicative subchannels by the use

of matrices Vk and Φk. This structure is optimal for the specific case of beamforming when

the channel is perfectly known at the transmitter (see Appendix 4.D in the previous chapter).

Otherwise, a suboptimal solution has been developed based on the selection of the same unitary

matrix for all subcarriers. As in the previous chapter Tk = T matrices has been set to the DFT

matrix.

Once the structure of Fk is forced to be (5.22), the design of the linear transformation at the

transmitter reduces to the design of matrix Φk. In accordance, substituting previous structure

into the cost function derived from the quadratic approximation (5.20), a closed-form solution

based on a set of linear equations is obtained. Appendix 5.A derives the maximization problem

that can be written in a compressed expression as follows (where irrelevant constants have been

omitted):

max
φk

− 1
K

K∑

k=1

(
vT

k φ2
k + φ2T

k Akφ
2
k

)

subject to
K∑

k=1

1T φ2
k − P0 = 0

φ2
k º 0 k = 1 . . .K

(5.23)

where vector vk and matrix Ak are both derived in Appendix 5.A, and φ2
k is a vector that

stores the diagonal elements of matrix ΦkΦH
k .
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To find the solution in (5.23), we define the Lagrangian associated with the problem as:

L(φk, µ,ν) = − 1
K

K∑

k=1

((
vT

k φ2
k + φ2T

k Akφ
2
k

)− µ
(
1T φ2

k − P0

)− νφ2
k

)
(5.24)

where µ is a scalar that denotes the Lagrangian multiplier for the equality constraint and ν is a

vector that contains the multipliers for the inequality constraints. This is a convex optimization

problem and hence, by imposing the Karush-Kuhn-Tucker (KKT) conditions [Boy04, p.243],

the optimization problem can be analytically solved. Eliminating the slack variables ν, which

force all the elements in vector φ2
k to be positive, the gradient of the Lagrangian with respect

to φ2
k must vanish. In consequence, for each subcarrier a set of M equations must be solved to

derive the optimal solution for φ2
k:

φ2
k = − (

Ak + AT
k

)#
vk + µ

(
Ak + AT

k

)#
1 k = 1, . . . , K (5.25)

where µ is determined forcing the power constraint as:

µ =
Po +

∑K
k=1 1T

(
Ak + AT

k

)# vk∑K
k=1 1T

(
Ak + AT

k

)# 1
(5.26)

The power allocated to each subcarrier in vector φ2
k should satisfy the inequality constraint

φ2
k º 0. If any of the components obtained when solving (5.25) were negative, the power

allocated to that subcarrier should be set to zero φ2
k(l) = 0 and the set of equation should be

solved again for the rest of subcarriers, until all the elements in vector φ2
k satisfy φk(l)2 ≥ 0.

Note that, in general, the maximum of the cost function (5.13) differs from the maximum

of the quadratic approximation (5.20). Hence, in order to achieve the solution that maximizes

(5.13) from the derived closed-form expression, the next procedure must be followed. First

the quadratic approximation (5.20) is derived in the neighborhood of an arbitrary point and

(5.25) is solved in order to obtain its maximum. The given solution (that does not achieve the

maximum cut-off rate) is next used to obtain a new approximation of the cost function (5.13)

in the neighborhood of the given solution. Then (5.25) is again solved to obtain a solution that

it is close to the maximum of (5.13). This procedure is repeated until the maximum of the

quadratic approximation coincides with the maximum of the cost function (5.13). Simulation

results have shown that in most cases two or three iterations are enough to achieve the solution

that maximizes the cut-off rate.1

1In the specific case of beamforming, when channel is perfectly known at the transmitter, this procedure can be

interpreted as a maximization algorithm based on the Newton’s method with equality constraints [Boy04, p.526].
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5.3 Mutual information

Although this chapter emphasizes the maximization of the cut-off rate as an algorithm that

guarantees good performances in terms of coded BER, other information theoretic criteria could

also be used. This section studies, for that purpose, the channel capacity and the mutual

information constrained to a specific constellation.

Next we derive a lower bound of the error probability that proves that the maximization of

mutual information between the transmitter and the receiver could be considered as a possible

design to optimize of the coded BER. Let us consider the following sequence of assumptions:

1. We have a message to be transmitted, W, compound by a sequence of NRc information

bits chosen according to a uniform distribution so that: P (W) = 2−NRc.

2. We have an arbitrary block encoder with rate Rc that maps a specific message W into a

codeword X .

3. We have a memoryless channel through which the codeword X is received as random

sequence Y.

4. We define the word error probability as Pw(e) = P (Ŵ 6= W).

From the Fano’s inequality [Cov91, p.205], which bounds the entropy H(W | Y):

H(W | Y) ≤ 1 + Pw(e) N Rc, (5.27)

and after some manipulations on the conditional entropy, we get that the mutual information is

related to a lower bound on the error probability as follows [Cov91, p.206]:

Pw(e) ≥ N Rc − 1− I (X ;Y)
N Rc

(5.28)

Clearly, to improve the lower bound on the error probability, we should maximize the mutual

information I (X ;Y) between the channel input and the corresponding received data. This state-

ment provides a possible strategy to design linear precoders that is related with the optimization

of the coded BER.

Next, the maximization of the mutual information constrained to a specific constellation and

the maximization of the channel capacity are studied. The first criterion will be preferred since it

takes into account the constellation structure and it is sensitive to the unitary matrix Tk (see the

structure forced to the linear transformation Fk in Section 5.2.3), which plays an important role

in the coded BER as it was shown in the previous chapter (Section 4.6). Unfortunately, to the

best of the author’s knowledge, a robust power allocation algorithm was not able to be derived

neither for the capacity nor for the mutual information constrained to a constellation. Hence,
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for the capacity, we present the closed-form solution derived in the literature when prefect CSI is

available [Sca99a], [Sca00], whereas for the mutual information we propose a complex numerical

solution which is only feasible in simple scenarios (e.g., for beamforming configurations).

5.3.1 Mutual information constrained to a constellation

The mutual information between the transmitted and the received data I (Fkxk; rk) can be

understood as the reduction of uncertainty of the transmitted information Fkxk due to the

knowledge of the received data rk, and is given by [Cov91, p.231]:

I (Fkxk; rk) = H (rk)−H (rk|Fkxk) (5.29)

where H (·) is the entropy function. While H (rk|Fkxk) corresponds to the entropy of a Gaussian

random variable: H (rk|Fkxk) = MR
η log2(ηπσ2

ne), the entropy H (rk) = −E {log2 p (rk)} is more

difficult to be computed and, generally, it does not leads to a closed-form solution. In our

particular case, because the AWGN channel model, the mutual information in (5.29) can be

written as follows [Ung82, Hoc03]:

I (Fkxk; rk) = M log2N − MR

η
log2 e− E





log2

NM∑

j=1

e
− 1

ησ2
n

|HkFk (xki − xkj) + nk|2




(5.30)

where η = 2 for real constellations (e.g., BPSK or M-ASK) and η = 1 for complex constellations

(e.g., QPSK, 8-PSK, M-QAM). Using a Gaussian random number generator, the mutual infor-

mation can be evaluated by Monte-Carlo simulations, running the expectation over the additive

Gaussian noise nk and the discrete symbols xki.

Cost function

Forcing the structure in (5.22), which has been proven to be optimal for the specific case of

beamforming when the channel is perfectly known at the transmitter, the maximization problem,

eliminating some irrelevant constants, can be written as follows:

max
φk

− 1
K

K∑

k=1

E





log2

NM∑

j=1

e
− 1

ησ2
n

|HkVkDijkφk + nk|2




subject to
K∑

k=1

1T φ2
k − P0 = 0

φ2
k º 0 k = 1 . . . K

(5.31)

where φk is a vector that stores the diagonal terms of the matrix Φk, φ2
k stores the diagonal

terms of ΦkΦk
H , and Dijk is a diagonal matrix defined as Dijk = diag {Tk (xki − xkj)}.
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Iterative algorithm

The expectation over the noise is a handicap in the derivation of the closed-form solution for

(5.31). Alternatively, an iterative search of the solution is next suggested.

Let L(φk, µ) be the Lagrangian associated to the optimization problem (5.31), which is defined

as:

L(φk, µ) = − 1
K

K∑

k=1

E





log2

NM∑

j=1

e
− 1

ησ2
n

|HkVkDijkφk + nk|2



− µ

[
K∑

k=1

φH
k φk − P0

]
(5.32)

where µ is the Lagrangian multiplier. The gradient of L(φk, µ) with respect to the vector φH
k

is given by:

∇φH
k

L(φk, µ) = E

8
>>>>>>><
>>>>>>>:

NMX
j=1

e
−|HkVkDijkφk + nk|2

ησ2
n 2Re

n
DH

ijkΛk2Dijkφk + DH
ijkV

H
k HH

k nk

o

σ2
nK log 2

NMX
j=1

e
−|HkVkDijkφk + nk|2

ησ2
n

9
>>>>>>>=
>>>>>>>;

− µφk

= a(φk)− µφk

(5.33)

Defining φ =
[

φ1
T . . . φK

T
]T

as the vector that stacks all the power allocation parameters,

and vector A(φ) =
[

a(φ1)
T . . . a(φK)T

]T

an iterative algorithm to derive the final solution

can be written as 2:

φ(n+1) = φ(n) − λ∇φH L(φ, µ)

= φ(n) − λ
(
A(φ(n))− µ(n)φ(n)

) (5.34)

where λ is a constant that sets the step-size of the iterative algorithm. The Lagrange multiplier

at each iteration must be chosen to satisfy the average power constraint φH
(n+1)φ(n+1) = P0 and

therefore, µ(n) is given by the solution of the next second order equation:

P0 =
(

φ(n) − λ
(
A(φ(n))− µ(n)φ(n)

))H(
φ(n) − λ

(
A(φ(n))− µ(n)φ(n)

))
(5.35)

Both, the expectation over the noise nk and the symbols xk are computed numerically using

the Monte-Carlo method. Hence, this computation is only feasible when the dimensions of these

vectors are not too large.

2Do not confuse the vector φ(n+1) that refers to the nth iteration of the vector φ with the vector φk whose

entries contain the square root of the power allocation coefficients for the kth subcarrier
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5.3.2 Capacity

The mutual information in (5.29) is maximized when the transmitted symbols are assumed

to be Gaussian rather than constrained to a specific constellation. In that case, the mutual

information, denoted as C is given by [Tel99]:

C =
1
K

K∑

k=1

log2

(
det

(
I +

σ2
x

σ2
n

FH
k HH

k HkFk

))
(5.36)

When perfect CSI is available at the transmitter, the optimal linear transmitter that maximizes

(5.36), subject to an average power constraint, has been widely studied (see, e.g., [Sca99a],

[Sca00] for the specific case of SISO configuration, and [Tel99] for the multi-antenna case) but

its generalization to the case with imperfect CSI is not straightforward.

Using the structure given in (5.22) for the linear transformation Fk, the optimum solution

for 5.36 is given by:

φk(l) =




Po/σ2
n +

K∑

k=1

M∑

l=1

|λk(l)|−2

KM
− 1
|λk(l)|2




+

(5.37)

where [x]+ = max{0, x}. Note that the optimum solution is not unique since any unitary matrix

Tk can be used due the insensitivity of the capacity to this matrix (for the sake of simplicity

Tk = I is generally chosen).

The independence of the capacity with the matrix Tk, which was shown to be relevant to

the performance in terms of coded BER, calls into question the validity of the capacity as a

power allocation criterion when the assumption of Gaussian symbols does not hold. As argued

in [Sca00] the assumption of Gaussian symbols does not provides good performances in terms of

BER when a specific constellation is fixed since the power is not used efficiently. Alternatively,

in order to take the maximum benefit to this algorithm, different constellation should be used

on each subcarrier depending on the goodness of the channel.

5.4 Comparative study

Before presenting some numerical results that evaluate the power allocation designs studied

in this thesis, an accurate analysis of the different cost functions will allow to compare the

optimization strategies and their impact on the error probability. The comparison includes not

only the algorithms based on information theoretic criteria, but also those studied in the previous

chapter. Hence, the objective functions to be compared are those that maximize the cut-off rate,
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minimize the uncoded BER, minimize the MSE and maximize the mutual information. For the

sake of simplicity in the comparison, all the objective functions are rewritten in Table 5.1.

Possibly the most remarkable difference between the cost functions is the different treatment

done to the modulation. While the cut-off rate, the mutual information and the uncoded BER

are optimized for a specific constellation, the MSE design is insensitive to the modulation and

the channel capacity is maximized assuming that the transmitted symbols follow a Gaussian

distribution. Next, the different designs are compared taking as a reference the design that

maximizes the cut-off rate.

Table 5.1: Summary of the objective functions.

Maximum cut-off rate (c.f. (5.12))

max
Fk

− 1
K

K∑

k=1

log2 Ed





e
−

1
4σ2

n

|HkFkd|2




Minimum uncoded BER (c.f. (4.62))

min
Fk

1
K

K∑

k=1

Ed

{
B(xk, x̂k) δk e−γk|HkFkd|2

}

Minimum MSE (c.f. (4.34))

min
Fk

K∑

k=1

σ2
xTr

{
(GkHkFk − I)H (GkHkFk − I)

}
+ σ2

n Tr
{
GH

k Gk

}

Maximum Mutual Information (c.f. (5.31))

max
Fk

− 1
K

K∑

k=1

E





log2

NM∑

j=1

e
− 1

ησ2
n

|HkFk (xki − xkj) + nk|2




Maximum Capacity (c.f. (5.36))

max
Fk

1
K

K∑

k=1

log2

(
det

(
I +

σ2
x

σ2
n

FH
k HH

k HkFk

))
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5.4.1 Minimum uncoded BER vs maximum cut-off rate

The main difference between the maximization of the cut-off rate and the minimization of the

uncoded BER is how the different subcarriers are combined. Notice that the structure is quite

similar in both cost functions except for the treatment given to the subindex k. While the cost

function that minimizes the uncoded BER is given by the summation over all the subcarriers

of the independent pairwise error probabilities (i.e., the arithmetic mean of the PEP), the cost

function that maximizes the cut-off rate can be formulated by means of the product over all

the subcarriers of the function that is related with the PEP (i.e., the geometric mean of the

PEP). An easy understanding of how the power resources are allocated in both algorithms can

be done keeping in mind that in the arithmetic mean the most relevant values are the largest

ones, whereas that in a geometric mean the smallest terms are the most relevant. In accor-

dance, the maximization of the cut-off rate will take care of the best subcarriers (i.e., minimize

PEP for the subcarriers with low error probabilities), taking into account that the correcting

capability of the channel code will allow to correct some systematic errors in the deepest faded

subcarriers. On the contrary, the minimization of the uncoded BER must compensate the faded

subcarriers allocating more power in them (i.e., minimize PEP for the subcarriers with large

error probabilities) in order to guarantee a certain performance in terms of uncoded BER for

each subcarrier.

5.4.2 Minimum MSE vs maximum cut-off rate

The minimum MSE cost function includes the summation over all the subcarriers of the MSE

for each specific subcarrier. Consequently, the optimum design will preserve the performance of

each subcarrier. This behavior influences the performance of the MMSE algorithm in terms of

coded BER. As it will be shown in the next section, its performance is much worse than previous

power allocation strategies.

5.4.3 Minimum MSE vs maximum mutual information

Recent works published by Verdu et al. showed a simple connection between the mutual in-

formation and the MMSE [Guo05]. That paper founds that the mutual information and the

MMSE satisfy a very simple relationship. Considering the Gaussian channel y =
√

snr x + n,

and for any statistical distribution of the information symbols x, it can be proven that:
d

d snr
I

(
x;
√

snr x + n
)

= mmse(snr) (5.38)

where mutual information is given in nats and the mmse(snr) is the MSE achieved by the

conditional mean estimator. This representation of the mutual information has some interesting

applications listed in [Guo05].
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Next, it is proven that the fundamental relationship in (5.38) also applies to our concerning

problem. Let us denote C(φ2
k) as the objective function used to maximize the mutual infor-

mation for the particular case of Gaussian symbols (5.36); MMSE(φ2
k(l)) as the function that

contains the contribution of the power allocation values φ2
k(l) into the objective function that

minimizes the MSE (i.e.the contribution of the kth subcarrier and lth subchannel mode); and

let us decompose the linear transformation at the transmitter as Fk = VkΦk, which it has been

shown to be optimal both for the maximization of the channel capacity and for the minimization

of the MSE. Then, the mutual information and the MMSE satisfy:

∂

∂φ2
k(l)

=
1
K

σ2
x

σ2
n

|λk(l)|2MMSE(|φk(l)|2) (5.39)

Proof. Let us first focus the attention on the objective function used to minimize the MSE.

In general, the optimal MMSE solution is given by a non-linear receiver. Only in the specific

case of Gaussian symbols the optimal receiver is linear. In accordance, because of a linear

transformation has been placed at the receiver, we shall assume Gaussian symbols in order to

make use of the objective function presented in Chapter 4. Recalling the cost function that

minimizes the MSE (4.34):

ξMMSE
k = σ2

xTr
{(

GkĤkFk − I
)H (

GkĤkFk − I
)}

+ σ2
n Tr

{
GH

k Gk

}
(5.40)

replacing the matrix Gk by the optimal linear receiver that minimizes the MSE (see equation

(4.115) in Appendix 4.B), and decomposing the linear transformation Fk = VkΦk, we get:

ξMMSE
k =

M∑

l=1

1

1 + σ2
x|λk(l)|2φ2

k(l)

σ2
n

=
M∑

l=1

MMSE(φ2
k(l))

(5.41)

On the other hand, let us consider the mutual information for Gaussian symbols (i.e., the

channel capacity) introduced in (5.36). Using the decomposition Fk = VkΦk the channel

capacity is given by:

C(φ2
k) =

1
K

K∑

k=1

log2

(
det

(
I +

σ2
x

σ2
n

Λ2
kΦ

2
k

))

=
1
K

K∑

k=1

M∑

l=1

log2

(
1 +

σ2
x

σ2
n

|λk(l)|2φ2
k(l)

) (5.42)

where the second equality uses the diagonal structure of matrices Λ2
k and Φ2

k.

Finally, computing the derivative of the capacity with respect to the power allocation φ2
k(l)

we proof the relationship in (5.39). ¥
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Among the multiple consequences of this result, we discuss, next, those that are directly

related with the design of power allocation algorithms:

1. The input distribution that maximizes the mutual information (i.e. Gaussian inputs) max-

imizes the MSE [Guo05].

2. To find closed-form expressions for the gradient of the mutual information with respect to

arbitrarily parameters. [Pal05].

Specifically those results could be useful to formulate power allocation policies that min-

imize the mutual information without the use of the explicit mutual information expres-

sion (difficult to obtain for some specific constellations). In that sense [Loz05] derives the

power allocation policy that maximizes the sum mutual information achieved over paral-

lel independent Gaussian channels with arbitrarily (and not necessarily identical) input

constellations.

5.5 Simulation results

This section presents some numerical results that conclude the comparative analysis carried out

in Section 5.4 and validates the cut-off rate as a criterion that is related with the coded BER.

All the algorithms studied in this thesis are compared in terms of maximum data rates (cut-off

rate, capacity and mutual information constrained to a QPSK constellation) and in terms of

packet error rate at the decoder output for a specific channel code.

The algorithm that maximizes the cut-off rate based on a Taylor expansion of the cost func-

tion (5.25) is labelled as ’Ro Robust’. The algorithms ’MI-QPSK’ and ’MI Gaussian’ maximize

the mutual information constrained to the QPSK constellation (5.34) and the channel capacity

(under the assumption of Gaussian symbols) (5.37), respectively. The ’Open-loop’ solution allo-

cates the same power to all the subcarriers and antennas. Finally, the robust algorithms derived

in the previous chapter to maximize the MSE ’MMSE Robust’ and minimize the uncoded BER

’BER Chernoff Robust’ and ’BER ApproxQ Robust’ are also evaluated in terms of coded BER.

It is worth to note that although the ’BER Chernoff Robust’ algorithm was shown to be irrel-

evant in terms of uncoded BER, it will be an algorithm of great significance in terms of coded

BER.

The simulation parameters have been selected according to the HIPERLAN/2 standard

[HL201]. As depicted in Figure 5.1 the bit stream to be transmitted is applied to the classical

convolutional code of rate 1/2 and generator polynomials 133OCT and 171OCT
3. The encoder

is initialized to the zero state and returned to it after encoding 864 bits (i.e. 2 DLC-PDUs
3This channel code is not specific for HIPERLAN/2 but it is widely used in several standards as for example

the IEEE 802.11a standard [IEE99]
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of 54 bytes - according to HL/2) by appending 6 tail bits. The coded bits are mapped into a

QPSK constellation and interleaved with a symbol-block interleaver. Afterwards, the symbols

are multiplexed in the K = 48 subcarriers (grouping M symbols per subcarrier), prefiltered

by the matrices Fk and finally modulated in OFDM symbols (including pilot tones and empty

subcarriers according to HIPERLAN/2).

All the algorithms are simulated using a ML detector that takes into account the channel

uncertainty at the receiver. For the evaluation of the coded BER the presence of the interleaver

makes difficult the computation of the Viterbi metrics. Hence, as the goal is only focused on the

design of the transmitter, a genie decoder is used that computes the log-likelihood of a symbol

xk(l) assuming that all other symbols that were transmitted simultaneously in in vector xk are

known to the receiver.

When more than one symbol is transmitted per subcarrier (i.e., M > 1) the unitary matrix

Tk, whose importance was revealed in the previous chapter, is set to the DFT matrix except

for the ’Open-loop’ algorithm (the unitary matrix is omitted).

Two Rayleigh MIMO channels have been considered obeying an exponential power delay

profile. A first channel with 50ns. of delay spread models a typical office indoor scenario, whereas

a second channel with 150ns. of delay spread (close to maximum channel length permitted by the

cyclic prefix of the OFDM modulation) models an outdoor scenario. As in Chapter 4 the variance

of the channel estimation error is assumed to be constant for all the taps and independent of

the SNR at the transmitter. For both channel scenarios the simulations are carried out with a

channel estimation error at the transmitter σ2
εTx

= 0.12 and with a channel uncertainty at the

receiver proportional to the noise variance σ2
εRx

= 0.375σ2
n (see results in Section 3.6 for details

on these chosen values).

5.5.1 Power allocation strategies

Before analyzing the performance of the different algorithms in terms of coded BER we will

proceed to analyze the power allocation strategies followed by the different algorithms as we

did in the previous chapter. Next figures display an example of the values of λiφi (sorted in

decreasing order of the equivalent channel subcarriers λi i = 1 . . .K) for a specific channel

realization and its associated p.d.f. We will only focus on the parameters that are relevant for

the coded BER and, consequently, we will not repeat in this section some studies that were

carried out in the previous chapter (cf. Section 4.5.1). Specifically, the analysis of the different

algorithms for several noise levels has been omitted since the main conclusions drawn in that

section still hold for the new algorithms introduced in this chapter. On the other hand, the

comparison between robust and nonrobust algorithms has also been omitted and only robust

algorithms are considered when partial CSI is available at the transmitter.
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Figure 5.2 illustrates the power allocation strategies for the specific configuration MT =

MR = 1 (SNR=0dB) comparing the results for two different channel profiles. Focusing the

analysis on the algorithm that maximizes the cut-off rate, it can be seen that it allocates the

majority of the power to the best subcarriers. This power allocation policy reinforces the highest

subcarriers neglecting the weakest ones. This can be appreciated in the curves of Figures 5.2b

and 5.2d, where it can be seen that comparing the ’Ro Robust’ algorithm with the rest of

algorithms, large values of λiφi are more likely for the algorithm that maximizes the cut-off

rate (see for example the values λiφi > 1.5). The number of nulled subcarriers also reveals this

behavior. Note, in Table 5.2, that the ’Ro Robust’ algorithm nulls a number of subcarriers much

larger than the ’MMSE Robust’ and ’BER Chernoff Robust’ algorithms. This way to allocate

the power is coherent with the comparative study carried out in Section 5.4, where it was argued

that the maximization of the cut-off rate, related with the geometric mean of the pairwise error

probability, will take care of the best subcarriers assuming that the symbols transmitted in the

faded subcarriers will be recovered by the channel code.

Figure 5.3 displays the power allocation strategies for the same channel profiles but increasing

the number of antennas MT = MR = 3 and the number of symbols transmitted per subcarrier

M = 3 (SNR=5dB). The same conclusions drawn for the SISO configuration still hold for the

MIMO case, noting that the algorithms that allocate more power to the best subcarriers, or

equivalently null more subcarriers, are the ’Ro Robust’ and ’BER Chernoff Robust’ algorithms.

This result will explain the good performances of the ’BER Chernoff Robust’ design in terms

of coded BER since its power allocation policy is similar to that one followed by the algorithm

that maximized the cut-off rate.

5.5.2 Rate vs SNR

Since the cut-off rate is a lower bound on the channel capacity, it is appropriate to evaluate, for

the different algorithms, the channel capacity (serving as a benchmark) (5.36) and the cut-off

rate (5.12). However, practical modulation schemes are restricted to discrete distributions (in

our particular case QPSK modulation). Hence, as argued in Section 5.3, a fair comparison

between the different design criteria must be done evaluating, also, the mutual information for

the QPSK constellation (5.30).

Figures 5.4 and 5.5 show, in bits per channel use, the ergodic cut-off rate and the ergodic

capacity as a function of the SNR and for the channel with 150ns. of delay spread(for the sake

of clarity in the figures the ergodic mutual information constrained to the QPSK modulation

has not been plotted and this information is only summarized in the tables). The results for the

SISO case are displayed in Figure 5.4, whereas the 3x3 configuration is illustrated in Figure 5.5.

In both cases the curves average 500 channels and are plotted when perfect CSI is available at

the transmitter and when the channel estimation has a variance equal to σ2
ε = 0.12.
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Figure 5.2: An example of λiφi values (sorted in decreasing order of the equivalent channel

subcarriers λi i = 1 . . . K) for a specific channel realization (a) and (c), and its associated p.d.f.

(b) and (d). MT = 1, MR = 1, M = 1. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1).

SNR=0dB. Channel Delay Spread 50ns. [(a) and (b)] and 150ns. [(c) and (d)].

Eb/No Ro Robust MMSE Robust
BER ApproxQ

Robust

BER Chernoff

Robust

1x1 DS:50ns. 14.8 6.0 <0.05 11.4

DS:150ns. 15.7 6.7 <0.10 8.2

Table 5.2: Number of null subcarriers.
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Figure 5.3: An example of λiφi values (sorted in decreasing order of the equivalent channel

subcarriers λi i = 1 . . .K) for a specific channel realization (a) and (c), and its associated p.d.f.

(b) and (d). MT = 3, MR = 3, M = 3. Transmitter uncertainty: σ2
εTx

= 0.12 (ρ = 0.1).

SNR=5dB. Channel Delay Spread 50ns. [(a) and (b)] and 150ns. [(c) and (d)].

Eb/No Ro Robust MMSE Robust
BER ApproxQ

Robust

BER Chernoff

Robust

3x3 DS:50ns. 37.6 17.8 18.4 24.4

DS:150ns. 25.2 12.2 12.1 15.6

Table 5.3: Number of null subcarriers.
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As it can be shown, the cut-off rate is a lower bound on the channel capacity. Comparing

the cut-off rate and the capacity limits, we can see that for a certain data rate, the capacity

gives an additional coding gain of 3-4dB over the prediction of the cut-off rate. A comparison

of the curves when the channel is perfectly known at the transmitter and when the CSI is noisy,

exhibits the robustness of the algorithms. As it can be shown, the performance of the different

algorithms only degrades slightly due to the channel uncertainty.

Tables 5.4 and 5.5 illustrate the performance of the different pre-filter design algorithms in

terms of cut-off rate (Ro), mutual information for QPSK constellation (MI-QPSK) and channel

capacity assuming Gaussian symbols (Capacity), listing the SNR required to achieve a value

of Ro, MI-QPSK and Capacity of 66% of the maximum data rate (i.e., 1.33 bits per channel

use for the 1x1 configuration, and 4 bits per channel use for the 3x3 configuration). The SNR

values are referred to the values required by the ’Ro Robust’ algorithm. Note that, as expected,

the ’Ro Robust’ and the ’MI-QPSK’ designs have best performances in terms of Ro and the

MI-QPSK, respectively.

Somewhat surprisingly, the ’BER ApproxQ Robust’, the ’BER Chernoff Robust’ and the

’MMSE Robust’ designs have better performance in terms of mutual information for QPSK

constellation when channel is perfectly known at the transmitter, but this gain vanishes when

only unreliable CSI estimates are available. It can also be shown that the gain of the closed-

loop algorithms compared to the open-loop transmission increases with the number of antennas,

thanks to the efficient exploitation of the diversity increase provided by the spatial channel.

However, the relative gain of the ’Ro Robust’ design to the ’BER Chernoff Robust’ diminishes

with the number of antennas because the presence of the unitary matrix Tk, which breaks

the direct link between the apparition of a deep fade and the loss of a constellation symbol.

Nevertheless, this gain is preserved for noisy CSI’s.

A more accurate analysis of these results will allow to predict poor performances for some

algorithms in terms of coded BER. First, note that although the ’MI Gaussian’ design has the

best performance in terms of capacity, it is outperformed by the rest of designs in terms of Ro

and the MI-QPSK. This result, in accordance with the conclusions given in Section 5.3.2 and

[Sca00], explains the very poor performance of this algorithm in terms of coded BER when a

specific constellation is forced (see numerical results in the next section). On the other hand,

it is also worth to remark that the ’MMSE Robust’ design performs worse than ’Open-loop’ at

high SNR’s (see Figure 5.5) and, consequently, as it will be justified in the next section, the

’MMSE Robust’ design degrades when noise is reduced.
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Figure 5.4: Ergodic cut-off rate and channel capacity for different power allocation strategies.

MT = 1, MR = 1. Channel: exponential power delay profile with delay spread 150ns. Perfect

CSI at the transmitter (a) and noisy CSI at the transmitter σ2
εTx

= 0.12 (ρ = 0.1) (b).

CSI Algorithm: Ro Unc. BER Unc. BER MI MI MMSE Open-loop

Uncertainty Robust Chernoff ApproxQ Gaussian QPSK Robust

Ro 6.21 (dB) +0.33 +0.43 +0.83 +0.27 +0.35 +0.76

σ2
εT x

= 0 MI - QPSK 4.71 (dB) -0.29 -0.21 +0.77 -0.30 -0.22 +0.24

Capacity 2.37 (dB) +0.35 +0.61 -0.19 +0.30 +0.40 +0.64

Ro 6.78 (dB) +0.17 +0.19 +0.04 +0.19

σ2
εT x

= 0.12 MI - QPSK 4.84 (dB) -0.04 +0.02 -0.04 +0.11

Capacity 2.73 (dB) +0.32 +0.53 +0.17 +0.28

Table 5.4: SNR required to achieve the 66% of the maximum data rate (1.33 bits per channel

use) for different information theoretic parameters (Cut-off rate, Mutual Information for QPSK

and Channel Capacity). The SNR values are given with respect to the SNR required for the

algorithm that maximizes the cut-off rate. MIMO configuration 1x1. Channel: exponential

power delay profile with delay spread 150ns.
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Figure 5.5: Ergodic cut-off rate and channel capacity for different power allocation strategies.

MT = 3, MR = 3. Channel: exponential power delay profile with delay spread 150ns. Perfect

CSI at the transmitter (a) and noisy CSI at the transmitter σ2
εTx

= 0.12 (ρ = 0.1) (b).

CSI Algorithm: Ro Unc. BER Unc. BER MI MMSE Open-loop

Uncertainty Robust Chernoff ApproxQ Gaussian Robust

Ro 4.19 (dB) +0.14 +0.34 +0.09 +1.40 +1.74

σ2
εT x

= 0 MI - QPSK 2.41 (dB) -0.02 -0.02 -0.05 +0.65 +1.45

Capacity 1.79 (dB) +0.12 +0.19 -0.04 +0.74 +1.31

Ro 2.04 (dB) +0.12 +2.77 +3.51 +3.89

σ2
εT x

= 0.12 MI - QPSK 2.59 (dB) +0.03 +0.09 +0.62 +1.27

Capacity 2.04 (dB) +0.12 +0.23 +0.62 +1.06

Table 5.5: SNR required to achieve the 66% of the maximum data rate (4 bits per channel

use) for different information theoretic parameters (Cut-off rate, Mutual Information for QPSK

and Channel Capacity). The SNR values are given with respect to the SNR required for the

algorithm that maximizes the cut-off rate. MIMO configuration 3x3 channel: exponential power

delay profile with delay spread 150ns.
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5.5.3 Coded BER vs Eb/No

This section analyzes the performance of the different algorithms in terms of Packet Error Rate

(PER), where the PER has been evaluate over a packet length of 54 bytes, for different channel

profiles and MIMO configurations while keeping constant the channel code.

Figure 5.6 shows the PER for the 3x3 antenna configuration and for the different channel

delay spreads: 50ns. and 150ns. In both cases the variance of the channel estimation error at the

transmitter was set to σ2
εTx

= 0.12 and the CSI at the receiver was assumed to be proportional

to the noise variance σ2
εRx

= 0.375σ2
n. As it is shown in these figures, the ’Ro Robust’ and ’BER

Chernoff Robust’ algorithms have similar performances in terms of coded BER and exhibit a

remarkable improvement when they are compared with the rest of algorithms. This performance

was announced in Section 5.5.1 where the power allocation strategies followed by the different

algorithms were analyzed. Several conclusions can be drawn from this result. First, note that

the algorithms with the best packet error rate are those that exhibit the best cut-off rate in

Table 5.5, evidencing that there exist a direct relationship between the cut-off rate and the

performance in terms of the coded BER. In accordance, the maximization of the cut-off rate,

although it cannot be used as an optimum algorithm to minimize the coding rate for a specific

channel code, guarantees satisfying performances in terms of coded BER. On the other hand,

focusing on the ’BER Chernoff Robust’ algorithm, its behavior can result surprising. Note that

this algorithm, explicitly designed to minimize the uncoded BER, has excellent performances in

terms of coded BER and outperforms the ’BER ApproxQ Robust’ algorithm, whose performance

in terms of uncoded BER was superior. The unexpected similarities between the ’Ro Robust’ and

’BER Chernoff Robust’ algorithms are more appreciable in Figure 5.6a (50ns of delay spread)

and they will be justified in Section 5.6. In Figure 5.6b it can be seen how at high SNR’s the

’BER Chernoff Robust’ algorithm approaches the ’BER ApproxQ Robust’ algorithm, a behavior

that is explained from the results given in Section 4.5.1 and Appendix 4.C, where it was shown

that at high SNR’s both algorithms have similar performances.

It is also worth to analyze the poor performance of the ’MMSE Robust’ algorithm, specifically

when the channel delay spread is 150ns. (see Figure 5.6b). This behavior, raised in the previous

section, can be understood by noting that for high SNR’s the ’MMSE Robust’ solution tends

to the zero-forcing solution, resulting in a power allocation policy that assigns less power to the

stronger subcarriers and more power to the deepest faded ones. This strategy, opposite to that

one followed by the algorithm that maximizes the cut-off rate, is the cause of this unsatisfactory

coded BER.

Figure 5.7 shows the PER performance for the SISO case (i.e., MT = MR = M = 1). In this

case perfect CSI was assumed in order to include in the comparison the ’MI Gaussian’ algorithm.

Some remarkable results can be found in this figure. First, note that the ’MI Gaussian’ design
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Figure 5.6: PER comparison between different power allocation strategies. MT = 3, MR = 3,

M = 3. Transmitter uncertainty:σ2
εTx

= 0.12 (ρ = 0.1). Receiver uncertainty: σ2
εRx

= 0.375σ2
n.

Channel Delay Spread 50ns. (a) and 150ns. (b)
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has the worst performance in terms of coded BER. This result was predicted from the results

given in the previous section where it was shown that this algorithm has the worst performance

in terms of cut-off rate and MI-QPSK. As argued in [Sca00] the performance of this design could

be improved if different constellations were used on each subcarrier depending on the goodness

of the channel.

On the other hand, note that the ’Ro Robust’ is outperformed by the ’MMSE Robust’ algo-

rithm and by the algorithms that minimize the uncoded BER. The explanation for this discour-

aging result can be found in Table 5.2, where it is shown that the ’Ro Robust’ algorithms nulls

much more subcarriers than the rest of the algorithms. Under such conditions the correcting

capability of the specific channel code employed in the simulations is not enough to restore the

large number of lost symbols that where transmitted in those subcarriers and, consequently, the

PER is increased. A simple solution to this problem can be found introducing a more complex

channel code with a higher correcting capability. In this thesis we will propose, however, an

alternative to improve the performance of the algorithms that null a large number of subcar-

riers based on the modification of the interleaver while keeping constant the channel code. In

accordance, Section 5.7 analyzes the importance of the interleaver and proposes an adaptive

interleaver to provide good performances of the ’Ro Robust’ algorithm in terms of coded BER.

Finally, it is worth to remark that this results cannot be conclusive for other channel codes

like turbo codes and LDPC codes since those codes allow to achieve data rates greater than Ro.

For this kind of channel codes new simulations should be computed to draw any conclusions.

5.5.4 Performance vs CSI quality at the transmitter

Figure 5.8 illustrates the minimum Eb/No required to achieve a PER ≤ 10−2 as a function of

the degree of the channel uncertainty at the transmitter, measured by the coefficient ρ:

ρ =
σ2

ε

σ2
ε + σ2

h

(5.43)

where ρ = 0 denotes perfect CSI, whereas ρ = 1 means no channel knowledge. The simulated

scenario was a 3x3 MIMO channel with 50ns of delay spread.

As it can be shown, the robustness of the ’Ro Robust’ and ’BER Chernoff Robust’ algorithms

is evidenced since both solutions adapt the power allocation to the CSI uncertainty, leading to

a solution that tends to ’Open-loop’ when no channel information is available. The similarities

between the ’Ro Robust’ and ’BER Chernoff Robust’ algorithms are also displayed. Note that

only a slight difference is appreciated for intermediate values of ρ. Figure 5.8 also exhibits the

poor performance of the ’MMSE Robust’ algorithm. This algorithm is largely outperformed by

the ’Ro Robust’ and ’BER Chernoff Robust’ and it performs worse than ’Open-loop’ when the

CSI quality degrades as it was already observed in the previous chapter (cf., Section 4.5.3).
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5.6 Minimum uncoded BER with the Chernoff bound

This section continues with the analysis of the numerical results presented in the previous section

providing a detailed study of the surprising behavior of the ’BER Chernoff Robust’ algorithm

in terms of coded BER. As it was shown in Chapter 4 this algorithm was explicitly designed

to minimize the uncoded BER, with the particularity that the Gaussian Q-function was upper

bounded by the widely used Chernoff bound. It was also shown in the chapter that, although the

Chernoff bound is not a tight bound of the Q-function, this algorithm has good performances

in terms of uncoded BER (see, e.g., the comparison between the ’BER Chernoff Robust’ and

’BER ApproxQ Robust’ algorithms in Section 4.5.2). This result, however, is not conclusive

of the behavior of the algorithm in terms of coded BER. It could be expected, a priori, an

acceptable but not optimal behavior of the algorithm when a channel code is introduced (see,

e.g., the performance of the ’BER ApproxQ Robust’ algorithm in Figure 5.6). However, this

algorithm, compared with algorithms that have been explicitly designed to minimize the coded

BER, exhibits similar performances. Details of this behavior can be found in the power allocation

policy used by this algorithm (see Figure 5.3), the performance in terms of coded BER (see Figure

5.6) and the maximum achievable rates given by the information theoretic parameters (see Table

5.5).

Next, some arguments that justify this excellent performance in terms of coded BER are

presented. First, it is shown that, for the specific case of beamforming and QPSK constellation,

the ’BER Chernoff Robust’ algorithm is equivalent to the algorithm the maximizes the cut-off

rate. It will also be shown that the power allocation policy followed by this algorithm is similar

to that one followed by an algorithm that maximizes the mutual information constrained to

a finite constellation. Finally, it will be proven that for the particular case of OFDM, the

approximation of the uncoded BER by its Chernoff bound is directly related with the coded

BER by means of the union bound on the word-error rate (a criterion that takes into account

the distance spectrum of the channel code).

Comparison between the objective functions for ’BER Chernoff Robust’ and ’Ro

Robust’ at high SNR’s

The ’BER Chernoff Robust’ design optimizes the cost function presented in Section 4.4.2 for the

specific case of beamforming (i.e., M = 1). Particularizing this cost function for high SNR’s,

the error probability is dominated by the minimum distance between any pairs of symbols.

Therefore, the objective function in (4.63) can be written for the specific QPSK constellation as
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follows:

ξUncBER =
1

N 2MK

K∑

k=1

1
2

e
−2σ2

x |HkFk|2
4σ2

n (5.44)

where the Chernoff bound has been considered in the computation of the Q (·) function (i.e.

αk = δk = 1/2) and perfect CSI has been assumed (i.e. ω = 0).

Similarly, the cut-off rate expression (5.12) is next derived under the same conditions and

assumptions. For the specific QPSK constellation, and assuming that only one symbol is trans-

mitted per subcarrier (i.e., M = 1), the error vector d becomes an scalar whose values belong

to the finite alphabet: d ∈ {0,±2A,±2Aj,±2A± 2Aj}, where A is the amplitude of the trans-

mitted symbols. For this specific case the expectation over the error vector d can be easily

computed noting that d2 ∈ {
0(4), 2σ2

x(8), 4σ2
x(4)

}
, where the number in parenthesis represents

the frequency of the different values. Hence, (5.12) can be simplified as follows:

Ro = − 1
K

K∑

k=1

log2

1
16

4


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−
2σ2

x

4σ2
n

|HkFk|2
+ e

−
2σ2

x

4σ2
n
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
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(5.45)

Next the approximation log2 (1 + x) ' x/ log(2) can be used to simplify Ro when assuming high

SNR:

ξRo = 2− 2
K · log(2)

K∑

k=1

e
−

2σ2
x

4σ2
n

|HkFk|2
(5.46)

Note that under the same assumptions (i.e., high SNR and perfect CSI at the transmitter)

previous equation is the same, apart from irrelevant constants, that the objective function used

to minimize the uncoded BER under the Chernoff bound assumption. Hence, at high SNR’s,

the algorithm that maximizes the cut-off rate is equivalent to the algorithm that minimizes the

uncoded BER using the Chernoff bound in the design.

Comparison between the power allocation policy for ’BER Chernoff Robust’ and

’MI-QPSK’

Repeating the same procedure followed in Section 5.5.1 to compare the power allocation strate-

gies followed by the different designs, we compare in this section the ’BER Chernoff Robust’

with the ’MI-QPSK’. The complexity in the derivation of the design that maximizes the mutual
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Figure 5.9: Comparison of power allocation strategies for the ’BER Chernoff Robust’ and ’MI-

QPSK’ algorithms. MT = 1, MR = 1, M = 1. Perfect CSI at the transmitter and the

receiver. Channel delay spread 150ns. An example of λiφi values (sorted in decreasing order of

the equivalent channel subcarriers λi i = 1 . . . K) for a specific channel realization (a), and its

associated p.d.f. (b)

information restricts the comparison to the SISO configuration and makes use of the iterative

algorithm and the Monte-Carlo simulations proposed in Section 5.3.

Figure 5.9 compares the power allocation strategy followed by the two algorithms. As it

can be appreciated, the ’BER Chernoff Robust’ design follows the same power allocation policy

than the ’MI-QPSK’, an algorithm that is based on information theoretic criteria. This result,

although not conclusive by itself, reinforces the excellent behavior of the ’BER Chernoff Robust’

design in terms of coded BER.

Union Bound on the Word Error Rate

The power allocation algorithms proposed in this thesis do not take into account neither the

time/frequency structure of the channel (e.g., how the the fading coefficients are arranged in

time or in frequency) nor the structure of the specific channel code that is employed. The

consideration, in this thesis, of any design that could be focused on this aspects, was unestimated

due to the complexity of its implementation. In [Lam05] a possible criterion that takes into

account the distance spectrum of the specific channel code, although not the time/frequency

correlation of the channel is outlined for the OFDM modulation. Surprisingly, the algorithm,

which evaluates the Union Bound on the Word Error Rate (UB-WER), has a one-to-one mapping

with the ’BER Chernoff Robust’ algorithm under certain conditions. In particular, this direct
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relationship applies when the maximum distance between two codewords (c, ĉ) used to compute

the Union Bound on the Word Error Rate does no exceeds the total number of OFDM symbols,

a condition that is not difficult to accomplish in our case 4. That result is conclusive to justify

the excellent performance of the ’BER Chernoff Robust’ in terms of coded BER, since, in the

particular case of OFDM, this uncoded BER metric has an interpretation from the perspective

of coded BER.

5.7 Adaptive interleaver

This section analyzes the importance of the interleaver and shows that the performance of

the algorithms, specifically those that aim to minimize the coded BER, can be improved if an

appropriate interleaver is introduced. A simple study of the channel in an OFDM modulation,

shows that when the channel is assumed to be constant for several OFDM symbols, it appears

a channel structure that is repeated with a periodicity equal to the number of subcarriers.

This cyclic structure, inherent to the OFDM modulation, systematically introduces a fixed

pattern of damaged symbols and a fixed pattern of good symbols. A specific design of the

interleaver should consider this structure to break, not only the bursty channel errors, but also

this periodicity. Note, for example, that a simple symbol-block interleaver with deep equal to

the channel periodicity, would be totally ineffective to randomize the channel errors. Hence,

considering the necessity to design appropriate interleavers, and assuming that CSI is available

at the transmitter, we propose the design of an adaptive interleaver well suited for OFDM

systems.

The design of this interleaver requires a preliminary analysis of the power allocation strate-

gies followed by the different algorithms. As argued in Section 5.5.1, the algorithms that are

focused on information theoretic criteria (i.e., those that maximize the cut-off rate or maximize

the mutual information) tend to allocate scarce or null power to the worst channel modes, re-

distributing this power among the remaining subchannels. This procedure, assuming that the

correcting capability of the channel code will restore the information lost in the worst channel

modes, results in a power allocation policy that takes care of the bits allocated to the weaker

subchannels, neglecting the bits transmitted through the deepest ones (see, e.g., results in Figure

5.2). It is worth to remark, however, that the transmitter design has not been optimized for a

specific channel code. In consequence, when a particular code is employed, the power allocation

policy previously described could result in an unsatisfactory performance if the code is not able

to correct the large number of damaged bits. An example of this can be found in Figure 5.7

where the algorithm that maximizes the cut-off rate (supposedly one of the best algorithms in

4It has been proven by simulation, an for the specific scenario considered in this thesis, that although this

condition does not holds, the dissimilarities between the two algorithms are inappreciable.
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terms of coded BER) is outperformed by the several algorithms. This undesired degradation of

the code performance can be diminished if the interleaver rightly decides which are the bits to

be allocated in the worst subcarriers and which ones to be allocated to the best ones, a feasible

task if the CSI is available at the transmitter. Next, we propose the design of such interleaver

while keeping unalterable the channel code.

5.7.1 RCPC interleaver

Block interleavers and pseudo-random interleavers are based on the assumption that no CSI

is available at the transmitter. However, when the channel impulse response is available, this

information can be used to reallocate the bits and improve the performance of the error correcting

code. The adaptive interleaver proposed in the last part of this thesis, named ’RCPC interleaver’,

is based on the Rate-Compatible Punctured Convolutional Codes (RCPC codes). This family

of codes, introduced by Hagenauer in [Hag88], extend the concept of punctured convolutional

codes by puncturing a low rate 1/N code (in our concerning problem rate 1/2) to obtain a family

of codes with rate P/(P + l) where l can be varied between 1 and (N − 1)P (in our case we can

get the rates 8/9, 8/10, 8/12, 8/14 and 8/16). A restriction in the puncturing tables ensures

that all code bits of a high rate code are used by the lower rate codes. Hence, if a high rate

code is not enough powerful to decode the bits with the desired error rate, it suffices to transmit

some additional bits, which were previously punctured, to decode the information with a lower

error rate.

The ’RCPC interleaver’ does not introduce any puncturing in the encoded bits but uses

the puncturing tables reported in [Hag88] to reallocate the bits to the different subcarriers.

Following the principle that the bits allocated in the deepest subcarriers will be the worst bits

at the receiver, the interleaver will assign the coded bits in the same order as they would be

punctured in a RCPC code. Thus, the bits that are first punctured in this family of codes are the

candidates to be allocated in the worst subcarriers, whereas the bits that are never punctured

are allocated in the best subcarriers.

Figure 5.10 displays the procedure employed to deduce the interleaver pattern. For the sake

of simplicity we show the pattern for the specific BPSK constellation, but a similar pattern with

a sequence of 96 coded bits is easily designed for a QPSK constellation. First, the encoded

bits are grouped according to the puncturing sequence given in [Hag88] for the RCPC code.

Specifically, for the mother code with rate 1/2 and memory M = 6 (i.e., k = 7) the first group

of bits is constituted by the encoded bits that should be eliminated to obtain the punctured code

of rate 4/7, which correspond to the bits Y4, Y8, Y12, Y16, Y20, Y24 in a sequence of 48 encoded

bits. Similarly, a second and third groups, with 6 bits each, and a fourth group, with 3 bits, are

composed by the bits that should be punctured to obtain the codes of rate 2/3, 4/5, and 8/9,
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Figure 5.10: Adaptive Interleaver: RCPC Interleaver.

respectively. The remaining bits, which are never punctured, constitute the last group of 27

encoded bits. Next, since there is no priority in the bits that belong to the same group, for each

group, a pseudo-random interleaver randomizes the position of the different bits inside its group.

Finally, the resulting sequence of 48 interleaved bits are allocated to the different subcarriers in

ascending order, so that the first bits to be punctured are allocated to the worst subcarriers,

whereas the best subcarriers are assigned to the bits that are never punctured.

Figure 5.11 displays the gain in terms of PER when the symbol-block interleaver (Figure

5.11a) is substituted by the adaptive interleaver (Figure 5.11b). The 1x1 antenna configuration

with perfect CSI and channel delay spread of 150ns. has been considered. As it can be seen,

all the algorithms improve their performance when the RCPC interleaver is employed. Table

5.6 lists the gain in terms of the Eb/No required to achieve a PER = 10−1. Note, as expected,

that the algorithms that experiment a larger gain are those that null more subcarriers (i.e., the

’Ro Robust’ and ’MI-QPSK’ algorithms), whereas the ’Open-loop’, which does not nulls any

subcarrier, is the algorithm with the lower gain.
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Figure 5.11: PER comparison between different power allocation strategies for two different

interleavers. MT = 1, MR = 1, M = 1. Perfect CSI at the transmitter and the receiver.

Channel delay spread 150ns. Bloc Interleaver (a) and Adaptive Interleaver (RCPC) (b)

Interleaver
Ro

Robust

MMSE

Robust

BER

ApproxQ

Robust

BER

Chernoff

Robust

MI

Gaussian
Open-loop

Bloc 6.47 6.32 6.31 6.27 7.17 6.76

RCPC 5.36 5.71 5.61 5.39 5.94 6.21

Gain (dB) 1.11 0.61 0.70 0.88 1.23 0.55

Table 5.6: Eb/No required to achieve a PER = 10−1

5.8 Conclusions

This chapter has proposed a Bayesian approach for the design of linear precoding schemes

that are robust to channel estimation errors. Contrary to the previous chapter, the algorithms

that have been proposed were based on information theoretic criteria and the goal has been the

minimization of the coded BER. Specifically, three different cost functions have been considered:

the maximization of the cut-off rate, the maximization of the mutual information constrained

to a specific constellation and maximization of the channel capacity, assuming, in all cases, that

a ML detector is implemented at the receiver.

An extensive study has been made for the maximization of the cut-off rate, since it achieves

the best performance in terms of coded BER, and because a closed form solution has been

obtained for it. This solution, based on the SVD of the so called equivalent channel, has been

found by means of a quadratic approximation of the cost function using a Taylor expansion.



158 CHAPTER 5. POWER ALLOCATION: MINIMUM CODED BER

The approximation has been validated by simulations. The derived design can be regarded

as a reconfigurable algorithm that adapts the transmitter to the available channel knowledge,

providing a solution that converges to the open-loop design (i.e the same power is allocated

across all antennas and subcarriers) for the case of no channel knowledge and to the closed-loop

design with perfect CSI for the case of no uncertainty.

The mutual information and the channel capacity has also been studied. However, the cost

functions resulted in complex analytical expressions and, consequently, the channel capacity has

only been studied when perfect CSI is available, and a complex numerical solution has been

proposed for the mutual information that is only feasible in simple scenarios.

All the precoder designs proposed in this thesis has been compared, analyzing the differences

in the objective functions, the different power allocation policies, and the performance in terms

of data rates and coded BER. The simulation results exhibit that the design that maximizes

the cut-off rate, although it is an algorithm that has been optimized based on random coding,

provides good performances for the specific convolutional code defined in the HIPERLAN/2

standard. The experiments also reveal that the design that minimizes the uncoded BER using

the Chernoff upper bound for the pairwise error probability exhibits excellent performances in

terms of coded BER. The behavior of this algorithm has been, thus, accurately studied, and it

has been shown that under certain conditions it is related with the maximization of the coded

BER.

Finally, this chapter has also analyzed the importance of the interleaver and its influence

when the power allocation policy does not allocate power in a large amount of symbols. Assuming

that CSI is available at the transmitter, an adaptive interleaver based on the RCPC codes is

proposed. Numerical results have shown that all the algorithms improve their performance when

the adaptive interleaver is used, specially those that follow a power allocation policy that nulls

more subcarriers.
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Appendix 5.A Objective function to maximize the cut-off rate

This Appendix derives the maximization problem given in (5.20). First, the expectation over

the channel estimation error is computed to derive the quadratic optimization problem. Later,

imposing the structure given in (5.22) for the matrix Fk the final objective function is found.

Recalling the quadratic approximation in (5.20), where the irrelevant constant D0 has been

eliminated, we have:
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The expectation over the channel estimation error reduces to the computation of the following

terms:

Ehk|ĥ
{
dH

i FH
k HH

k HkFkdi

}
(5.48a)

Ehk|ĥ
{(

dH
i FH

k HH
k HkFkdi

) (
dH

j FH
k HH

k HkFkdj

)}
(5.48b)

Ehk|ĥ
{(

dH
i FH

k HH
k HkFkdi

)2
}

(5.48c)

In order to simplify these computations, the channel matrix Hk can be expressed as: Hk =

Ĥeq
k + H̃k, where Ĥeq

k is the conditional mean of the channel derived in Section 4.2.2 and H̃k is

a Gaussian random variable that accomplishes: Ehk|ĥ
{
H̃k

}
= 0 and Ehk|ĥ

{
H̃H

k H̃k

}
= MRωI.

Substituting this decomposition into (5.48a) this term can be evaluated as follows:
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(5.49)

A more complicate derivation is required to compute the second expectation (5.48b). Making

use of the identity vec (ABC) =
(
CT ⊗A

)
vec (B) this term can be written as follows:
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{(

dH
i FH

k HH
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(5.50)

Next, the channel matrix Hk is decomposed as: Hk = Ĥeq
k + H̃k and, thus, the derivation of the
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expectation over the channel estimation error is given by:
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k Ĥeq
k

)H

+ vec
(
H̃H

k H̃k

)
vec

(
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where only the non-null terms have been considered in the second equality. Substituting this

expression into (5.50) and after some straightforward derivations, a final expression for (5.48b)

is given by:
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Finally, (5.48c) can be computed as the previous derivation for the specific case i = j. In

accordance, this expectation is given by:
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k ĤeqH

k Ĥeq
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(5.53)

Once the expectation over the channel estimation error has been computed, the final objective
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function is derived substituting (5.49), (5.52) and (5.53) in the quadratic approximation (5.47):
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Next, a closed-form solution for this problem is derived forcing the structure given in (5.22):

Fk = VkΦkT, where the same unitary matrix T has been fixed for all the subcarriers:
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This expression can be simplified making use of the following identities:

Identity 1 Let D be a diagonal matrix whose diagonal entries are given by vector d and A a

generic matrix with the appropriate dimensions, the following equality holds

Tr {DA} = diag (A)T d

where diag (A) is a column vector whose elements are the diagonal entries of matrix A

Identity 2 Let D1 and D2 be two diagonal matrices whose diagonal entries are given by vec-

tors d1 and d2, respectively, and let A and B be two generic matrices with the appropriate

dimensions, the following equality holds

Tr {D1AD2B} = dT
1

(
A¯BT

)
d2
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In accordance with these identities, the cost function in (5.55) can be rewritten as a function

of vector φ2
k, which stores the diagonal elements of matrix ΦkΦH

k :
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Although this expression seems to be a little bit confused, it can be compressed as follows:

f0 (Fk) = − 1
K

K∑

k=1

(
vT

k φ2
k + φ2T

k Akφ
2
k

)
(5.57)

where vector vk and matrix Ak are given by:
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Chapter 6

Conclusions and future work

This thesis has dealt with two different, but related, topics: the channel tracking at the trans-

mitter and the design of linear precoders robust to imperfect CSI. At the beginning of this

dissertation the first topic was studied. It was proposed the design of a transmitter channel

tracker based on a feedback channel. Efforts were made to minimize the throughput at the

feedback channel. The novelty was the proposal of two identical linear predictors at both sides

of the link with a return link that only updates the minimum amount of information required to

track the channel impulse response when the channel is time varying. The rest of the thesis cov-

ered the second topic studying different robust power allocation algorithms when the CSI is not

perfectly known at the transmitter. First, the minimum MSE and the minimum uncoded BER

parameters were chosen to be optimized, evaluating the performance of the algorithms in terms

of uncoded BER. Next, the study was extended by proposing robust power allocation strategies

that minimized the coded BER making use of information theoretic criteria. On this topic we

find one of the main contribution of this thesis: the proposal of the cut-off rate as a parameter

of design whose maximization is directly related to the coded BER. Next we summarize the

results in these subjects and enumerate some open research lines for future works.

6.1 Transmitter channel tracking

The first topic studied in this thesis was the design of a feasible scheme to track the CSI at the

transmitter by means of a low capacity feedback link. This problem was formulated and solved

in Chapter 3. Historically, those schemes have been criticized because of the large amount of

information to be transmitted from the receiver to the transmitter, specially in fast TV channels

when the whole channel impulse response is supposed to be transmitted. The work in Chapter 3

focused, thus, the attention in an accurate design of the return channel. The proposed solution

was based on a scheme that reminding the well known DPCM transmitter only fed back the

prediction error and allowed to track the channel variations with only two or four bits per

complex channel coefficient.

163
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The design was divided into two stages. First, a model to predict the channel variations

was proposed. After reviewing the different alternatives proposed in the literature, a pth order

autoregressive model was suggested. This model was next used to design two identical linear

predictors located at the transmitter and at the receiver to predict the future values of the

channel given the past channel knowledge. Finally, those linear predictors were placed as part

of a Kalman filter to design the transmitter channel tracker. Special attention was paid on the

minimum amount of information required to aid the linear predictor at the transmitter. It was

shown that the prediction error provides this information. Once the information to be fed back

was derived, closed-form expressions for the channel estimation error at the transmitter and at

the receiver were provided. The last part of the chapter studied the quantization of the feedback

link. Theoretical results of the minimum distortion produced when quantizing the information

with a certain number of bits, as well as practical quantization procedure were detailed.

6.2 Power allocation algorithms

Minimum MSE. The design of a robust power allocation strategy that minimizes the MSE

was covered in Chapter 4. This was one of the first criterion used in the literature to design linear

transmitters. It has been widely studied when perfect CSI is available at the transmitter but no

when CSI was degraded. Chapter 4, hence, extended the derivation of this criterion when only

imperfect CSI is available, proposing a Bayesian approach to design the linear transformation

at the transmitter assuming a ML detector at the receiver.

A detailed study of the robust objective function manifested that the optimization procedure

takes into account, apart to the noise and the ISI, the mismatch between the real and the

estimated channel due to the imperfect CSI. A closed form solution was found based on a set of

linear equations whose complexity is comparable with the nonrobust solution.

The analysis of this power allocation strategy showed that this optimization criterion assigns

more power to the strongest channel modes and penalizes the deepest ones. This way to allocate

the power explains the behavior of the algorithm both in terms of uncoded BER and coded BER.

As it was shown, in terms of uncoded BER the algorithm exhibits a poor performance mainly

due to the decomposition of the channel into a set of parallel multiplicative subchannels that

results in a loss of space diversity. This drawback was alleviated introducing a unitary matrix

that spreads the transmitted symbols over all the subcarriers. In the presence of this unitary

matrix the performance of the algorithm in terms of uncoded BER was shown to be similar to

that one of the algorithms designed to minimize the uncoded BER with the benefit of have a

solution substantially simpler.
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Despite this good performance in terms of uncoded BER, we cannot conclude that the min-

imization of the MSE is, in general, a good optimization criterion, specially in MIMO channels,

because of several reasons:

• In terms of coded BER the results in Chapter 5 showed that the algorithm is significantly

outperformed by other optimization criteria like the minimization of the uncoded BER or

the maximization of the cut-off rate.

• Unlike other algorithms studied in this thesis, the algorithm that minimizes the MSE does

not tends to the open-loop solution (i.e., the same power is allocated to all the subcarriers

and antennas) when the channel uncertainty grows. Hence, when the transmitter only

disposes of a poor CSI, the algorithm is highly degraded and it can perform worse that

the open-loop solution as it was shown in some simulation results of Chapter 5.

• The poor performance of the algorithm at high SNR’s and MIMO channels was also

evidenced when the performance of the algorithm was evaluated in terms of theoretic

information parameters (cut-off rate or capacity). As it was shown in Figure 5.5 and

Table 5.5 the behavior of the algorithm that minimizes the MSE is worse that the rest of

the power allocation strategies studied in the thesis.

Minimum uncoded BER. The design of linear transmitters based on the minimization of the

uncoded BER was proposed in Chapter 4. The first drawback that we found was the presence

of the not easily tractable Gaussian Q-function Q (
√

x) in the objective function. As a solution,

two different algorithms were proposed based on the approximation of that error function by

an exponential function. A first solution used the well known Chernoff bound while a second

solution was based on a tighter approximation of the Q (
√

x) function. In both cases a closed

form solution was derived for the beamforming case while an iterative solution was required for

the spatial multiplexing. Similarities and differences between both algorithms were displayed

by numerical results. In terms of uncoded BER it was shown that both solutions have similar

performances at high SNR’s while they perform in a different way in noisy environments. This

behavior was explained after analyzing the approximation of the Q (
√

x) function and the power

allocation policy of both algorithms.

In terms of CSI quality at the transmitter it was shown that, contrary to the algorithm

that minimizes the MSE, the algorithms that minimize the uncoded BER provide a solution

that converges to the open-loop design (i.e.,the same power is allocated across all antennas and

subcarriers) for the case of no channel knowledge and to the closed-loop design with perfect CSI

for the case of no uncertainty.
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Somewhat surprising was the performance of the algorithm based on the Chernoff bound

in terms of coded BER. Numerical results showed that the algorithm had similar performances

when compared with algorithms that were explicitly designed to minimize the coded BER. In

Chapter 5 this algorithm was studied in detail and its excellent behavior in terms of coded BER

was justified from different points of view.

The main conclusions that can be drawn for these algorithms are:

• The algorithm based on the Chernoff bound is preferred against the algorithm that uses a

tight approximation of the Q (
√

x) function. Although the second one slightly outperforms

the first one in terms of uncoded BER the small differences are only appreciable at low

SNR’s. On the contrary, in terms of coded BER the second one highly degrades its

performance when compared with the first one.

• The algorithm based on the Chernoff bound has an excellent behavior either in terms of

uncoded BER and in terms of coded BER.

• Despite its good performance, it does not results an interesting algorithm (when compared

with other algorithms like the algorithm that maximizes the cut-off rate) since an iterative

algorithm is, in general, required to found the optimal power allocation.

Maximum cut-off rate. The cut-off rate was proposed in Chapter 5 as a power allocation

algorithm whose maximization was directly related with the coded BER. This criterion was

introduced as an alternative to the channel capacity and the mutual information for the design

of optimal transceivers in the presence of any channel coding stage. An interpretation of the

objective function based on the Kullback-Leibler pseudo-Distance, as well as an accurate analysis

of that function, evidenced that its maximization is related with the minimization of the pairwise

error probability taking into account the CSI reliability. Because the original cost function did

not allowed an analytical treatment, a quadratic approximation based on a Taylor expansion was

proposed to derive the cost function. Numerical results confirmed the correspondence between

the maximization of the cut-off rate and the satisfactory performances in terms of coded BER.

It was shown that the power allocation strategy followed by the algorithm that maximizes the

cut-off rate allocates the majority of the power to the best subcarriers, neglecting the weakest

ones. This power allocation policy can be understood in terms of coded BER noting that

the transmitter does not takes care of the symbols transmitted in the more fades subcarriers,

assuming that this information will be recovered at the receiver thanks to the channel code. This

strategy involves a certain amount of risk since the transmitter design has not been optimized for

a specific channel code. In consequence, when a particular code is employed, the power allocation

policy previously described could result in a unsatisfactory performance if the channel code is
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not able to correct the large number of damaged symbols. To confirm this situation Section

5.7 simulated a specific scenario in which the algorithm that maximizes the cut-off rate was

outperformed by other algorithms. This undesired behavior was, however, solved by introducing

an adaptive interleaver.

Maximum mutual information. Apart from the maximization of the cut-off rate, Chapter

5 studied other information theoretic criteria for the design of the power allocation algorithms.

Specifically, the mutual information constrained to QPSK and capacity (mutual information

assuming Gaussian symbols) were considered. However, to the best of our knowledge, none

of these criteria become feasible for the design of robust power allocation algorithms. For

the mutual information constrained to QPSK constellation only an iterative algorithm, whose

complexity grows with the number of symbols transmitted per subcarrier, was derived. This

solution, hence, was only used to justify the behavior of the rest of the algorithms. On the other

hand, for the capacity a closed form solution was derived only when perfect CSI is available.

Its performance, however, was shown to be unsatisfactory in terms of coded BER. This poor

performance could be explained because a specific constellation (i.e., QPSK) was used, whereas

the algorithm was designed assuming Gaussian symbols.

Adaptive interleaver. The last part of Chapter 5 proposed a low complexity adaptive

interleaver that making use of the CSI available at the transmitter, reallocated the bits not

only to combat the bursty channel errors but also to combat the specific distribution of the

faded subcarriers. The design of this interleaver, named ’RCPC interleaver’, was based on the

Rate-Compatible Punctured Convolutional Codes (RCPC codes). Simulation results showed,

as expected, that the performance of all the algorithms was improved in the presence of the

new interleaver, which results an interesting alternative to the classical block interleavers and

pseudo-random interleavers when CSI is available at the transmitter. It was also shown that the

larger gain was experiment in those algorithms that null more subcarriers, in which we find the

algorithm that maximizes the cut-off rate.
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Robust? Closed-form
solution?

High
uncertainty

Uncoded
BER

Coded
BER

MSE Yes Yes High degradation 3rd 4th

Unc. BER
(Chernoff)

Yes Only for
beamforming

Open-loop 2nd 2nd

Coded BER
(Approx Q)

Yes Only for
beamforming

Open-loop 1st 3rd

Cut-off rate Yes Yes
(Taylor expansion)

Open-loop - 1st

MI Gaussian No No - 4th 5th

Summary. The table summarizes and compares the main characteristics of the algorithms

studied in this thesis. The column labelled as Robust indicates if robust to CSI solution has

been found. The column labelled as Closed-form solution refers to the disposal of a closed-form

solution to design the power allocation strategy. The third column, labelled as High uncertainty

summarizes the performance of the algorithm when the CSI quality degrades: Open-loop reveals

that the power allocation policy tends to the open-loop solution. Finally, the algorithms are

sorted as a function of its performance both in terms of uncoded BER and coded BER.

6.3 Other future research topics

Besides the specific research topics that have already been outlined in the previous section, other

more general research lines, beyond the scope of this thesis, can be devised and listed below.

The two first items are related with the first part of the thesis, which proposed the transmitter

channel tracking scheme, whereas the rest of the topics make reference to the study of the power

allocation strategies.

1. Introduce constraints or external conditions in the feedback channel.

Chapter 3 studied the minimum amount of information to be fed back; the way to quantize

this information; the distortion produced when quantizing the data with a certain number

of bits; and its impact on the channel estimation error at the transmitter. This information

was used to set the return link channel throughput assuming that all the channel coeffi-

cients were updated with the same number of bits at each time interval. Alternatively,

the number of bits could be modified either using more bits to quantize certain channel

coefficients, or freezing the update of some channel coefficients during a certain lag of time.

This procedure would allow, for example, a jointly design of the channel estimation error

at the transmitter and the throughput at the return link, given some external constraints

or cost/benefit conditions.
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2. Feedback the minimum amount of information required by the transmitter to design the

linear transformation F.

Chapter 3 proposed an algorithm to track the channel impulse response at the transmit-

ter. A detailed analysis of the use of this channel response at the transmitter manifests,

however, that not all the information contained in the channel response is used to design

the linear transformation matrix. A fast reviewing of the algorithms studied in this thesis

shows that the dependence of the cost function with respect to the channel is given by the

hermitian matrix HHH. This result, in accordance with the first works in [Hay68] and the

results in [Fan04], evidences that only the channel correlation and not the whole channel

impulse response is required. Moreover, the hermitian structure of this matrix would allow

to reduce the amount of information to be fed back.

3. Analyze the behavior of the algorithms proposed in this thesis in the presence of other

channel codes different that the convolutional code.

As it was said in Chapter 5, in the presence of iterative decoding schemes, the cut-off rate

cannot be considered anymore an upper bound on the practical achievable rates. Hence,

the results of the different algorithms, specially that one that allocates the power under

the maximization of the cut-off rate, cannot be conclusive when other codes are used. An

immediate research line should be, thus, to review the conclusions drawn for the different

algorithm by new simulations with other codes like turbo codes or LDPC codes.

4. Determine the best design criterion for the minimization of the coded BER or PER.

Several criteria were analyzed in Chapter 5 to define the power allocation policy under

a minimum coded BER or PER criterion when the transmitter has perfect or partial

knowledge of the channel response. However, as none of the optimization criteria studied

in the Chapter has a direct relationship with the ultimate goal of minimizing the coded

BER or PER, the discussion on what is the best design criterion remains still unclear until

the quality of each parameter as a PER indicator will be analyzed.

In [Lam05] the name of PER indicator was used to refer to a metric or parameter that

summarizes in a single value the dependence of all the parameters that have influence on the

coded BER or PER (e.g., the Eb/No, the channel statistics like Doppler or delay spread,

the specific channel impulse response, ...). Under this definition, an indicator is said to be

reliable when there is a one-to-one relationship between the parameter and the coded BER

or PER. The works that in the literature study those indicators [Lam02, Ale02, Lam05]

evaluate its reliability by simulations, plotting the correspondence between the simulated

coded BER or PER and the indicator values, and measuring somehow the fuzziness of the

curve (e.g, by means of visual criteria, variance measures or mutual information measures).
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Note that the study of different power allocation strategies as quality indicators of Coded

BER or PER could determine a systematic procedure to conclude what is the best criterion

to optimize the coded BER or PER for a given scenario: if there is a one-to-one relationship

between the coded BER or PER and the parameter, the minimization of the first could be

obtained by minimizing or maximizing the corresponding metric. The election of the best

indicator, however, remains still open because all the parameters that have been studied,

mainly those proposed in this thesis for the design of power allocation strategies, exhibit

some deficiencies in their ability to predict the coded BER or PER for certain scenarios

and there is no clear criteria for selecting the most appropriate.

The relevance of this line of research goes beyond the scope of this thesis since the selection

of a reliable PER indicator could be used not only to design power allocation policies, but

also to solve link adaptation problems [Lam02] or to set an interface between physical layer

and system level simulations that will allow to significantly reduce the complexity of the

simulations [IST03, Ale02].

5. Use the Gallager function as alternative to the cut-off rate.

The Gallager’s random coding bound for block codes and for a discrete memoryless channel

states as follows [Gal65]:

Consider a discrete memoryless channel with an input alphabet of K symbols

xi for i = 1 . . . K; an output alphabet of J symbols: xj for j = 1 . . . J ; and

a transition probabilities P (yj | xi). For any block length N, any number of

codewords M = 2NR, and any probability distribution on the use of the code

words, the average block error probability of these codes for a ML decoding

satisfies:

EC {Pw(e)} ≤ 2−N(E0(ρ,Q)−ρRc)

where E0(ρ,Q), denoted as the Gallager function, is given by:

E0(ρ,Q) = − log2

∑

j

(∑

i

P (yj | xi)
1

1+ρ Qi

)1+ρ

,

ρ is an arbitrary number 0 ≤ ρ ≤ 1, and Qi is an arbitrary probability value

0 ≤ Qi ≤ 1.

In particular, the tightest bound for the error probability can be found by minimizing the

exponent over ρ and Qi. Hence:

EC {Pw(e)} ≤ 2−NEG(Rc)

where the exponent function, denoted as the Gallager exponent, is given by:

EG(Rc) = max
ρ

max
Q1...QK

{E0(ρ,Q)− ρRc}
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The cut-off Ro rate can be devised as a particular case of the Gallager function for ρ = 1:

Ro = EG(0) = max
Q1...QK

{E0(1, Q)}

that satisfies:

EG(Rc)
Rc — Ro

Ro C

Ro

Rc

EG(Rc) ≥ Rc — Ro

Notice that while the cut-off rate yields a simpler exponential upper bound of the word-

error rate averaged over the ensemble of block codes, the Gallager function yields a tighter

bound. Hence, if a solution could be found to manipulate the Gallager function, a tighter

bound for the the averaged block error probability could be used. Moreover, other bounds

like the expurgated exponent could also be interesting for further research.

6. Apply the connections between estimation theory and information theory to the power al-

location strategies.

Recent works published by Verdú et al. showed a simple connection between the mutual

information and the MMSE [Guo05]. This novel result may open a line of research and new

interpretations for the design of power allocation strategies. A first example can be found

in [Loz05] where the authors derive a power allocation policy, named mercury/waterfilling,

that maximizes the sum mutual information over parallel channels with arbitrary input

constellations.

7. Combine the power allocation strategies with the adaptive coding and modulation schemes.

In this thesis the system has been constrained to keep the same constellation and channel

code for all the subcarriers, modifying only the amount of power allocated to each channel

mode. Alternatively, an unconstrained system could be constrained at expenses of a higher

complexity. This more general scheme, which would allow to adapt not only the power

but also the constellation and channel code, would allow to combine the discrete and the

continuous adaptation schemes (see Section 2.2.2) to fully adapt the transmission rate to

the channel capacity as a function of the CSI. Moreover, the extension of the single-user

problem to a multi-user scenario, and the extension of the point-to-point connection to ad

hoc networks, would open up a whole new range of areas of potential future research that
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could include, among others, scheduling and routing schemes aimed to reach the maximum

achievable rate by the network.

Observing the natural evolution of some standards, for example the Digital Video Broad-

casting (DVB) standards that has evolved from the Constant Coding and Modulation

(CCM) [DVBb] to the Adaptive Coding and Modulation (ACM) [DVBc], we can expect

that this topic of research will be of interest in a next future since it could set the basis

for future communication standards.
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[Loz05] A. Lozano, A.M. Tulino, S. Verdú, “Mercury/Waterfilling: Optimum Power Alloca-
tion with Arbitrary Input Constellations”, Proceedings of ISIT’05 , pags. 1773–1777,
Adelaide (Australia), Set. 2005.

[Lym03] R.J. Lyman, “Optimal Mean-Square Prediction of the Mobile-Radio Fading Enve-
lope”, IEEE Trans. on Signal Processing, Vol. 51, no 3, pags. 819–824, Mar. 2003.

[Mag99] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statis-
tics and Econometrics,, John Wiley, 1999.

[Man01] J.H. Manton, “On Optimal Channel Identification by use of Training Sequences and
Pilot Tones”, International Symposium on Signal Processing and its Applications,
pags. 599–602, Aug. 2001.



BIBLIOGRAPHY ix

[Mar83] J.C. Martin, M.Mintz, “Robust Filtering and Prediction for Linear Systems with Un-
certain Dynamics: A Game-Theoretic Approach”, IEEE Trans. on Automatic Con-
trol , Vol. 28, no 9, pags. 888–896, Sep. 1983.

[Mar99] T.L Marzetta, B. Hochwald, “Capacity of a Mobile Multiple-Antenna Communication
Link in Rayleigh Flat Fading”, IEEE Trans. on Information Theory, Vol. 45, no 1,
pags. 139–157, Jan. 1999.

[Mas74] J.L. Massey, “Coding and Modulation in Digital Communiations”, Proc. of Int.
Zurich Seminar , pags. E2.1–E2.4, Zurich, Mar. 1974.

[Max60] J. Max, “Quantizing for Minimum Distortion”, IRE Trans. on Information Theory,
Vol. 6, pags. 7–12, Mar. 1960.

[May97] C.E. Mayer, B.E. Jaeger, R.K. Crane, Xuhe Wang, “Ka-band scintillations: measure-
ments and model predictions”, Proceedings of the IEEE , Vol. 85, no 6, pags. 936–945,
Jun. 1997.

[Méd00] M. Médard, “The Effect upon Channel Capacity in Wireless Communications of Per-
fect and Imperfect Knowledge of the Channel”, IEEE Trans. on Information Theory,
Vol. 46, no 3, pags. 933–946, May 2000.

[Mie05] B. Mielczarek, W. Krzymien, “Flexible Channel Feedback Quantization in Multiple
Antenna Systems”, Proceedings of VTC-Spring’05 , Stockholm (Sweeden), Jun. 2005.

[Mor01] M. Morelli, U. Mengali, “A Comparison of Pilot-Aided Channel Estimation Methods
for OFDM Systems”, IEEE Trans. on Signal Processing, Vol. 49, no 12, pags. 3065–
3073, Dec. 2001.

[Nab03] R.U. Nabar, H. Bolcskei, A.J. Paulraj, “Cut-off Rate Based Transmit OPtimization
for Spatial Multiplexing on General MIMO Channels”, Proc. of ICASSP’03 , pags.
61–64 (Vol.5), Hong Kong, Apr. 2003.

[Nar98] A. Narula, M.J. Lopez, M.D. Trott, G.W. Wornell, “Efficient Use of Side Information
in Multiple-Antenna Data Transmission over Fading Channels”, IEEE Journal on
Selected Areas in Communications, Vol. 16, no 8, pags. 1423–1436, Oct. 1998.

[Nar99] R. Narasimhan, D.C. Cox, “A Generalized Doppler Power Spectrum for Wireless
Environments”, IEEE Communications Letters, Vol. 3, no 6, pags. 164–165, Jun.
1999.

[Nee00] R. van Nee, A. van Zelst, G.A. Awater, “Maximum Likelihood Decoding in a Space
Division Multiplex System”, Proceedings of VTC-Spring’00 , Tokyo (Japan), May
2000.

[Neg99] R. Negi, A.M. Tehrani, J. Cioffi, “Adaptive Antennas for Space-Time Coding over
Block-Time Invariant Multipath Fading Channels”, Proceedings of VTC-Spring’99 ,
pags. 70–74, Houston (TX-USA), May 1999.

[Oie04] G.E. Oien, H. Holm, K.J. Hole, “Impact of Channel Prediction on Adaptive Coded
Modulation Performance in Rayleigh Fading”, IEEE Trans. on Vehicular Technology,
Vol. 53, no 3, pags. 758–769, May. 2004.



x BIBLIOGRAPHY

[Ong01a] E. N. Onggosanusi, A. Gatherer, A.G. Dabak, S. Hosur, “Performance Analysis of
Closed-Loop Transmit Diversity in the Presence Of Feedback Delay”, IEEE Trans.
on Communications, Vol. 49, no 9, pags. 1618–1630, Sep. 2001.

[Ong01b] E. N. Onggosanusi, A. M. Sayeed, B. D. Van Veen, “High Throughput Wideband
Space-Time Signaling Using Channel State Information”, Proceedings of ICASSP’01 ,
pags. 2421–2424, Salt-Lake City (USA), May. 2001.

[Ong02] E.N. Onggosanusi, A.M. Sayeed, D. Van Veen, “Optimal Antenna Diversity Signal-
ing for Wide-Band Systems Utilizing Channel Side Information”, IEEE Trans. on
Communications, Vol. 50, no 2, pags. 341–353, Feb. 2002.

[Pal03a] D.Perez Palomar, A Unified Framework for Communications through MIMO Chan-
nels, PhD Thesis, UPC, May. 2003, Advisor : M.A. Lagunas.

[Pal03b] D.Perez Palomar, J.M. Cioffi, M.A. Lagunas, “Joint Tx-Rx Beamforming Design for
Multicarrier MIMO Channels: A Unified Framework for Convex Optimization”, IEEE
Trans. on Signal Processing , Vol. 51, no 9, pags. 2381–2401, Sep. 2003.

[Pal03c] D.Perez Palomar, J.M. Cioffi, M.A. Lagunas, “Uniform Power Allocation in MIMO
Channels: A Game-Theoretic Approach”, IEEE Trans. on Information Theory,
Vol. 49, no 7, pags. 1707–1727, Jul. 2003.

[Pal04] D.Perez Palomar, M.A. Lagunas, J.M. Cioffi, “Joint Tx-Rx Beamforming Design for
Multicarrier MIMO Channels: A Unified Framework for Convex Optimization”, IEEE
Trans. on Signal Processing , Vol. 52, no 5, pags. 1179–1197, May 2004.
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