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Abstract

Monitoring the atmospheric boundary layer (ABL) is a matter of in-
terest for many applications, such as weather forecasting, pollutant-
dispersion models and wind energy. The ABL is the most turbulent
part of the troposphere, and it is directly affected by the earth’s sur-
face characteristics. Thus, monitoring the ABL is a complex task that
requires continuous improvement of the remote sensing techniques.

This PhD thesis tackles remote sensing as the key technology to assess
different ABL parameters in both over-land and over-sea dimensions.
The over-land dimension is oriented to the study of the ABL height
(ABLH), whereas the over-sea dimension is focused in assessment of
surface-layer atmospheric stability from solely wind profiles in the con-
text of wind energy.

In the over-land dimension, a synergistic ABLH estimation method via
a combination of microwave-radiometer and lidar-ceilometer-based es-
timates is presented. The synergistic method uses these two instru-
ments in a cooperative way with the aim of providing an enhanced
high-resolution ABLH estimation. Data gathered by multiple remote-
sensing instruments during the HOPE campaign at Jülich, Germany,
are used to outline the robustness of the synergistic method in relation
to estimates which rely on a single instrument.

In the over-sea dimension, the 2D parametric-solver algorithm is pre-
sented as an alternative method to assess surface-layer parameters from
solely floating Doppler wind lidar measurements. Comparative results
with reference retrievals from the IJmuiden meteorological mast show
that the 2D accurately estimates the friction velocity, and it correctly de-
termines atmospheric stability via its Obukhov length estimation. Ac-
cordingly, the 2D algorithm corroborates to stand the floating Doppler
wind lidar as the wind-energy-industry preferred solution to replace
the off-shore metmast.
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Resumen

La observación de la capa lı́mite de la atmósfera es de interés en difer-
entes aplicaciones como predicciones meteorológicas, energı́a eólica y
modelos de dispersión de partı́culas contaminantes. Esta capa es la más
turbulenta de la troposfera y recibe el efecto directo de la superficie ter-
restre. Por lo tanto, su observación es una tarea compleja y requiere una
mejora continua de las herramientas de teledetección.

Esta tesis doctoral explota la teledetección como tecnologı́a clave para
estimar diferentes parámetros de la capa lı́mite tanto en zonas marı́-
timas como terrestres. En el contexto terrestre se investiga la medida
de la altura de la capa lı́mite y en el marı́timo se estudia la estimación
de la estabilidad atmosférica con solo medidas de perfiles verticales de
viento.

En cuanto al contexto terrestre, se propone un método sinergético para
estimar la altura de la capa lı́mite combinando radiómetros de microon-
das y ceilómetros lidar. El método sinergético utiliza estos dos instru-
mentos cooperativamente para conseguir estimaciones de alta resolu-
ción de la altura de la capa lı́mite. Para validar la robustez del método
se han empleado datos medidos por instrumentos de teledetección du-
rante la campaña de medidas HOPE en Jülich, Alemania, utilizando
radiosondeos como referencia.

En cuanto al contexto marı́timo, se presenta el algoritmo paramétrico
”2D” como método alternativo para estimar diferentes parámetros de
la capa superficial de la atmósfera a partir de medidas del perfil ver-
tical de viento de LiDARs Doppler flotantes. Usando como referencia
medidas del mástil meteorológico IJmuiden, se ha podido validar la ca-
pacidad del método 2D para poder estimar con precisión la ”friction
velocity” ası́ como para clasificar la estabilidad atmosférica a partir de
estimaciones de la longitud de ”Obukhov”. Ası́ pues, el algoritmo 2D
refuerza la posición de los LiDAR Doppler flotantes como tecnologı́a
clave para reemplazar los mástiles meteorológicos marı́timos.

ix





Resum

L’observació de la capa lı́mit de l’atmosfera és d’interès per diferents
aplicacions com ara en prediccions meteorològiques, en energia eòlica
i en models de dispersió de partı́cules contaminants. Aquesta capa és
la més turbulenta de la troposfera i rep l’efecte directe de la superfı́cie
terrestre. Per tant, la seva observació és una tasca complexa i requereix
una millora contı́nua de les eines de teledetecció.

Aquesta tesi doctoral explota la teledetecció com a tecnologia clau per
estimar diferents paràmetres de la capa lı́mit tant en zones marı́times
com terrestres. En el context terrestre s’estudia la mesura de l’alçada
de la capa lı́mit i en el marı́tim s’adreça l’estimació de l’estabilitat at-
mosfèrica amb només mesures de perfils verticals de vent.

Pel que fa al context terrestre, es proposa un mètode sinergètic per es-
timar l’alçada de la capa lı́mit combinant radiòmetres de microones
i ceilòmetres lidar. El mètode sinergètic utilitza aquests dos instru-
ments cooperativament per aconseguir estimacions d’alta resolució de
l’alçada de la capa lı́mit. Per validar la robustesa del mètode s’han em-
prat dades mesurades per instruments de teledetecció durant la cam-
panya de mesures HOPE a Jülich, Alemanya, utilitzant radio sondejos
com a referència.

Pel que fa al context marı́tim, es presenta l’algorisme paramètric ”2D”
com a mètode alternatiu per estimar diferents paràmetres de la capa
superficial de l’atmosfera a partir de mesures del perfil vertical de vent
de LiDARs Doppler flotants. Fent servir com a referència mesures del
màstil meteorològic IJmuiden, s’ha pogut validar la capacitat del mètode
2D per poder estimar amb precisió la ”friction velocity” aixı́ com per
classificar l’estabilitat atmosfèrica a partir d’estimacions de la longitud
d’”Obukhov”. Aixı́ doncs, l’algorisme 2D reforça la posició dels LiDAR
Doppler flotants com a tecnologia clau per a reemplaçar els màstils me-
teorològics marı́tims.
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Chapter 1

Introduction

This chapter gives an overview of the Ph.D. topic and related research objectives in the
state-of-the-art context.

1.1 State-of-the-art context

This PhD thesis tackles atmospheric observation in both over-land and over-sea di-
mensions from a multi-sensor and multidisciplinary perspective thanks to Comm-
SensLab-UPC’s background knowledge acquired in the EU Initial Training for At-
mospheric Remote Sensing (ITARS) (over-land) and the EU NEPTUNE (over-sea)
European projects. And, more recently, through national project ARS (PGC2018-
094132-B-I00) and present project GENESIS (PID2021-126436OB-C21). In addition,
the Ph.D aims to contribute to CommSensLab’s ongoing collaboration with the
Denmark Technical University (DTU) Wind and Energy Systems - Meteorology
and Remote Sensing Section, and University of Massachusetts, Microwave Remote
Sensing Lab. and Purdue University, Department of Earth, Atmospheric and Plan-
etary Sciences in the US.

The over-land and over-sea dimensions share atmospheric stability as common
topic, however, it is tackled with different approaches for each case. In the over-
land dimension, atmospheric stability is related to atmospheric boundary layer
height assessment, and in the over-sea dimension, it is related to wind profile mod-
elling within the surface boundary layer. Next, Sect. 1.1.1 and Sect. 1.1.2 introduce
the over-land and over-sea research fields, respectively.

1
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1.1.1 Over-land dimension

In the land-atmosphere dimension, the PhD thesis is oriented to the study of the atmo-
spheric boundary layer (ABL) height (ABLH) in diurnal conditions.

The Earth’s surface is the bottom boundary of the atmosphere. The portion of
the atmosphere most affected by that boundary is called ABL (Wallace & Hobbs,
2006b). Most of the interactions between the Earth’s surface and atmosphere, such
as, exchange of momentum, heat, humidity, and atmospheric gases, as well as
aerosols transportation, occur in the ABL (Stull, 1988; Fisher, 1998; Kotthaus et al.,
2022). Accordingly, the ABLH is a matter of interest for many applications with
high societal and economic impacts, which include numerical weather prediction,
assessment of air quality, aviation, and wind energy (Kotthaus et al., 2022).

Despite its importance, observational knowledge of the ABL is still scarce (Ci-
mini et al., 2020). Historically, since the 1930s, sensing the boundary-layer ver-
tical profiles of pressure, temperature, water vapour and wind, has been mostly
achieved by means of radiosonde (RS) (Dirksen et al., 2014; Rocadenbosch et al.,
2020). However, although RS launches provide a wealth of information about the
atmosphere, their limited temporal resolution is usually insufficient to monitor the
whole diurnal evolution of the boundary layer. Since each launch relies on an ex-
pensive balloon-borne package of sensors, most of the meteorological stations only
perform RS launches twice daily. Furthermore, the launches are impacted by a sig-
nificant horizontal drift of the balloon during its ascent, therefore, the observations
are affected by spatial variations which can lead to challenging data interpretation
(Kotthaus et al., 2022).

In contrast, the drawbacks of ABL monitoring through RS can be reduced by
increasing the use of existing ground-based remote sensing technologies, such as,
e.g., Radio Detection and Ranging (hereafter, radar), Sound Detection and Rang-
ing, (hereafter, sodar), and Light Detection and Ranging (hereafter, lidar) (Cimini
et al., 2020; Wagner et al., 2019). Remote-sensing profilers enable monitoring vari-
ations in atmospheric conditions that are key to describing the ABL dynamics and
structure at a given location, hence providing a better comprehension of the atmo-
spheric exchange processes (Cimini et al., 2020).

During the day, the warm air near the earth’s surface produces vertical plumes
(thermals) that create convective circulations, producing the so-called mixed layer
(ML). Different kinds of ground-based remote-sensing instruments such as lidar,
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radar, sodar and microwave radiometer (MWR) are employed to monitor atmo-
spheric parameters, namely, aerosol concentration, temperature, or vertical wind
velocity, in which characteristic structures are used as tracers of the ML height
(MLH) (Collaud Coen et al., 2014). Such MLH estimates derived from remote-
sensing technologies are often validated using MLH estimates from radiosonde
(RS) observations, which are usually taken as the standard reference (de Arruda Mor-
eira et al., 2018).

Collaud Coen et al. (2014) and de Arruda Moreira et al. (2018) have shown suc-
cessful results when comparing MLH estimations from MWR- and RS-retrieved
potential-temperature profiles by applying the parcel method (Seibert et al., 2000)
over both. However, the MWR is a passive remote sensing instrument whose spa-
tial resolution becomes coarser with height, thus inserting uncertainty to its mea-
surements

In contrast to the MWR, the lidar ceilometer (LC) is able to retrieve aerosol-
backscatter profiles with high and constant spatial resolution (15 or 30 m). The
MLH retrieval by means of an extended Kalman filter (EKF) applied to aerosol-
backscatter profiles from the LC (hereafter, MLH-LC-EKF) has proven to be an ex-
tremely reliable method. Lange et al. (2014) showed that, when the BL is convective
due to insolation (e.g., in the afternoon), MLH-LC-EKF produced more accurate re-
sults than classical MLH retrieval approaches such as the threshold and gradient
methods (Seibert et al., 2000). However, outside the convective regime, the MLH-
LC-EKF usually tracked the top of the non-convective residual layer (RL).

PhD over-land-dimension focus

Given the importance and complexity of the ML, and the successful results of MLH
tracking obtained from MWR and LC observations in previous works, this PhD
aims to study a synergistic method that combines the MLH-MWR and MLH-LC-EKF.
This synergistic method is aimed at combining the best MLH estimates from MWR
and LC using a maximum likelihood criterion, in order to provide a more robust
MLH estimate at all times of the day. Radiosonde and Doppler wind lidar (DWL)-
derived MLH estimates will be used as references.

The over-land dimension of this PhD benefits from measurements that have
already been carried out during long-term Intensive Observation Periods (IOP)
in the context of European Union (EU)-based measurements campaign. This is
contextualised and exploited in Saeed (2016) PhD guided by Prof. Rocadenbosch,
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which has served as a first step in the present PhD and given rise to different Inter-
national peer-review conference papers (Araujo da Silva et al., 2021; Muñoz-Porcar
et al., 2021; Araújo da Silva et al., 2022b; Araújo da Silva et al., 2022b). Departing
from this background, this PhD specifically focuses on EU campaign HOPE, an
acronym for HD(CP)2 Observational Prototype Experiment (HOPE, Sect. 2.1.4).
The HOPE campaign took place at the Jülich Observatory for Cloud Evolution
(JOYCE), located in Jülich, Germany, which is a super-site equipped with a unique
array of state-of-the-art in situ and remote sensing instruments (Löhnert et al.,
2015a).

1.1.2 Over-sea dimension

The sea-atmosphere dimension of the PhD tackles the floating DWL (FDWL) as key tech-
nology to the assessment of off-shore wind-energy resource and, specifically, atmospheric
stability in the surface layer.

Wind energy is one of the most promising solutions to achieve the worldwide
shift from fossil fuel-based to cleaner energy (Msigwa et al., 2022). With 21.1 GW
commissioned, 2021 was the best-ever year for the global offshore wind market.
The new installations in 2021 led the world’s offshore capacity to 57 GW, which
represents 7% of global installations. Furthermore, it is expected a worldwide
growth of more than 90 GW of offshore capacity from 2022 to 2026 (GWEC, 2022).
Europe and Asia have been the regions with the highest investments in off-shore
wind energy over the last years (GWEC, 2019, 2022). China, United Kingdom,
Denmark, Vietnam, and the Netherlands are the world’s top five markets in 2021
for new offshore installations (GWEC, 2022).

However, off-shore wind farms still have higher production costs than onshore
ones. Besides, costly meteorological masts (metmasts) installed on the seabed have
traditionally been employed for assessing the wind resource in potential wind-
farm deployment sites. In contrast with the metmast, the FDWL emerges as a very
competitive alternative that offers key benefits to the off-shore wind industry such
as lower costs of installation and maintenance, and easier re-deployment (Carbon
Trust, 2018). For these reasons, several researchers and scientists around the world
have joined efforts to convert the FDWL into the preferred atmospheric sensing
tool for wind energy applications. For instance, the International Energy Agency
Wind Technology Collaboration Programme (IEA Wind TCP) has launched the
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Task 32 and Task 52 Missions in 2012 and 2022, respectively. Those are interna-
tional research collaboration projects aimed at improving different DWL applica-
tions and integrating both industry and academia in search of the most innovative
solutions (IEA-Wind, 2023). The Task 52, for example, is divided in four topics:

• Universal inflow characterisation

• Replacing met masts

• Connecting wind lidar

• Accelerating offshore wind deployment

During the last years, the FDWL has primarily been used to measure mean
wind speed and direction. However, overall, FDWLs cannot assess atmospheric
parameters, such as atmospheric stability, friction velocity and turbulence inten-
sity, with the same accuracy as masts. The study of atmospheric stability has been
a subject of interest to the wind energy industry (Holtslag et al., 2014). It can affect
different aspects of the wind power generation, e.g., turbine power performance,
wind shear, and wakes (Subramanian et al., 2018; Kim et al., 2021). Furthermore,
vertical distribution of momentum and hub height wind speed are impacted by
atmospheric stability which is usually classified as convective, neutral or stable
(Holtslag et al., 2014; Archer et al., 2016). Fatigue loads in wind turbines, induced
by turbulence intensity magnitudes variations, are also related to stability regime.
According to atmospheric stability type, turbulence and wind speed can greatly
vary affecting the turbines performance (Wharton & Lundquist, 2012; Holtslag
et al., 2014; Archer et al., 2016).

PhD over-sea-dimension focus

A state-of-the-art report and recommended practices have been developed by the
IEA Wind-Task 32 and 52 (Clifton et al., 2018) to mitigate barriers to the adoption
of wind lidar for wind-energy purposes. In the present PhD, this wide area of research
is focused on the study of the influence of the atmospheric stability on wind profiles by
using over-sea surface-layer observations.

This topic is according to state-of-the-art research interests at leading Univer-
sities in the field such as Denmark Technical University (DTU) in Europe (DTU-
Wind, 2023), and Cornell University (Sibley School of Mechanical and Aerospace
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Engineering) (Cornel-Engineering, 2023) and UMASS Wind Energy Center (UMass,
2023) in the US.

In 2018 the Carbon Trust published the roadmap for commercial acceptance of
lidar technology in the wind industry (Carbon Trust, 2018). Accordingly, it has
been shown that the FDWL offers the capability to monitor wind direction and
vertical wind profile. However, so far other parameters for turbine siting have not
been well explored from FDWL measurements (Peña et al., 2022). The over-sea
dimension of this PhD thesis tackles the potential of FDWL as key enabling tech-
nology to the assessment of off-shore wind-energy resource with focus on atmos-
pheric-stability estimation. Therefore, corroborating the best competitiveness of
the FDWL in relation to the metmast. Towards this end, this thesis investigates
methods for estimating surface boundary layer parameters from FDWL-measured
wind profile, namely, friction velocity and Obukhov length. The latter is often used
to assess atmospheric stability.

1.2 PhD Objectives

The PhD tackles over-land and over-sea atmospheric remote sensing through these
objectives:

1.2.1 Objective 1. Intelligent estimation and time tracking of the
MLH over the daily cycle

This objective aims to investigate a synergistic method to optimize the retrieval
of MLH from individual remote-sensing and in-situ sensors, as well as to intel-
ligently combine the observations from multiple sensors, namely, the MWR and
the lidar ceilometer, to improve the overall retrieval. The measurement data used
to accomplish this objective is part of the HD(CP)2 Observational Prototype Ex-
periment (HOPE) campaign carried out at JOYCE (see Sect. 2.1.4). This objective
comprise the following tasks:

T1.1. Development of the synergistic MLH-estimation method

• Familiarisation, improvement and development of Matlab routines for
MLH estimation using DWL, RS, MWR and lidar-ceilometer HOPE data
and the existing background at CommSensLab-UPC (Saeed, 2016).

• Development of the ceilometer-MWR synergistic method.
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• Validation of the ceilometer-MWR synergistic method against the RS-
reference estimations as well as comparison with other stand-alone meth-
ods.

T1.2. Development of statistical tools to assess the performance of the synergistic
method.

This objective will be in part carried out in collaboration with Dr. Robin Tana-
machi, Department of Earth, Atmospheric, and Planetary Sciences, Purdue Uni-
versity.

1.2.2 Objective 2. Off-shore DWL estimation of atmospheric sta-
bility

The final objective of the over-sea dimension is to obtain a consistent algorithm
based solely on the observed wind profiles in order to retrieve surface-boundary-
layer parameters, namely, the friction velocity, heat flux, and Obukhov length. The
latter will be used to assess atmospheric stability. Algorithm performance is stud-
ied using data from floating Doppler wind lidar (FDWL) observations close to the
reference mast of IJmuiden in the North Sea (see Sect. 2.2.3). This objective is to be
achieved in collaboration with DTU Wind and Wind Energy Systems - Meteorol-
ogy and Remote Sensing Section (see Sect. 1.3). Obj. 2 is divided in three tasks:

T2.1. Numerical estimation of wind profile models in neutral and non-neutral
conditions

• Development of a parametric Matlab solver: estimation of model of fric-
tion velocity, heat flux and Obukhov’s length parameters.

• Numerical estimation of wind profile model.

T2.2. Sensitivity to model parameter errors

• Computation of upper and lower-bound error envelopes in response to
model parameters errors.

T2.3. Application to off-shore measurement campaign data

• FDWL data outlier rejection based on the lidar internal parameters such
as backscatter coefficient, bearing and spatial variation.
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• Reference anemometer data screening in order to avoid metmast shadow
effects.

• Computation of 1-h binned histograms of atmospheric stability classes
over the whole IJmuiden campaign.

• Validation of model parameters (e.g., roughness length, friction velocity
and Obukhov’s length) with reference to metmast-derived parameters.

1.2.3 Objective 3. Transversal tools for big-data statistical analy-
sis

Obj. 3 provides the statistical tools in support of Objs.1 and 2 above. Descrip-
tive statistics will be used to type derive Key Performance Indicators and features
from the big-data measurement databases available. Besides, descriptive statis-
tics provide simple summaries about the sample and the measures. Together with
graphics analysis, they form the basis of virtually every quantitative analysis of
data.

T3.1. Selection of key descriptive statistics indicators

• Central tendency and variability indicators for analysing observational
campaign data (over-land and over-sea measurement campaigns).

• Development of methods for measurements uncertainty assessment and
comparison over large observational periods (e.g., HOPE, Ijmuiden).

T3.2. Database querying tools

• Familiarization with existing Matlab’s Structured Query Language (SQL)
tools in the research group.

• Development of tools to access large databases (∼ 50 GB).

1.3 PhD mobility context

DTU Wind and Energy Systems is a department recognised worldwide in the field
of wind energy because of its extensive integration of research and innovation as
well as its embracing of public-private sector consulting. Marcos P. Araújo da Silva
was hosted for 99 days at Denmark Technical University (DTU) - Wind and En-
ergy Systems through three secondments. During these stays he was under the
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supervision of Senior Scientists Profs. Alfredo Peña and Jakob Mann, who hosted
him at the Meteorology and Remote Sensing Section. In the following, a summary
of each visit is given:

• From 15 November 2020 to 13 December 2020 an assessment of the sensi-
tivity of surface layer variables to the Monin-Obukhov wind profile model
was initiated. Furthermore, the PhD candidate attended the insightful PhD
Summer School: Remote Sensing for Wind Energy.

• From 9 January 2022 to 13 March 2022 the topic of friction-velocity and
Obukhov-length retrieval was tackled (Araújo da Silva et al., 2022a). In ad-
dition, the development of a methodology to retrieve vertical wind speed
gradient (or simply wind-shear) and dimensionless wind-shear from solely
floating-lidar-measured wind profiles was started.

• From 19 September 2022 to 27 September 2022 a short-term scientific mis-
sion to revisit the limitations of the surface-layer parameter-retrieval meth-
ods previously developed as part of the secondments above was done.

1.4 Structure of the PhD thesis

This PhD thesis is structured as follows:
Chapter 1 gives the overall context of this PhD thesis and describes its main

objectives for the over-land and over-sea dimensions.
Chapter 2 reviews atmospheric boundary layer concepts and describes the re-

mote sensing instruments employed.
Chapter 3 presents the synergistic MWR-ceilometer algorithm for MLH re-

trieval and cross-examines it in relation to stand-alone MLH-estimation methods.
This chapter is in line with Obj. 1 (Sect. 1.2.1)

Chapter 4 presents the so-called 2D parametric solver algorithm to assess off-
shore atmospheric stability relying on FDWL-measured wind profiles only. The
acronym ”2D” stands for two-dimensional retrieval, i.e., simultaneous retrieval of
the Obukhov length and friction velocity. This chapter is in line with Objs. 2 and 3
(Sect. 1.2.2).

Chapter 5 revisits the 2D algorithm by comparing it to the well-known Hybrid
Wind algorithm in the state of the art (Basu, 2018) across the IJmuiden test site in
the North Sea. This chapter is in line with Objs. 2 and 3 (Sect. 1.2.2).

Chapter 6 gives concluding remarks and outlook of work.





Chapter 2

Remote sensing foundations relevant
to this PhD thesis

This chapter introduces basic over-land boundary-layer and over-sea surface-layer foun-
dations as well as related remote-sensing instruments and methods relevant to this Ph.D.
thesis. A short overview of the key measurement campaigns sustaining this thesis is also
presented.

2.1 Over-land atmospheric boundary-layer sensing

2.1.1 Atmospheric boundary-layer review

The thickness of the ABL is quite variable in space and time. Normally, it is 1-to-2
km thick, i.e., occupying the bottom 10 to 20% of the troposphere. It can range
from tens of meters to 4 km or more (Wallace & Hobbs, 2006b). The ABL structure
depends deeply on the environmental conditions, one example is the big difference
between the ABL over the land and over the ocean, or the difference between day
and night.

Over land, the ABL has overall a well-defined structure which evolves during
the day due to the change in the Earth’s surface temperature caused by the absorp-
tion of solar radiation. During fair weather days, the ABL behaviour is generally
described by a diurnal cycle with three main structural components:

1. The mixing layer (ML), which develops during the daytime as a result of tur-
bulence generated by solar heating of the land surface. Under this condition
the atmosphere interacts directly with the Earth’s surface through turbulent
mixing. Consequently, chemicals are generally well mixed.

11
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2. The residual layer (RL), which forms around half an hour before local sun-
set as turbulence intensity decays, maintaining residual moisture and heat
character of the ML; and

3. The stable boundary layer (SBL), which is formed by the cold air yielded in
response to the surface cooling throughout the night progress. The SBL is
normally characterized by static stable air that leads to suppress the turbu-
lence (Stull, 1988; Wallace & Hobbs, 2006b).

In Fig. 2.1, a conceptual model of the ABL diurnal cycle representing the struc-
tural components mentioned above is depicted. At the top of the ML, the Entrain-
ment Zone (EZ) acts as a buffer between the ML and the Free Troposphere (FT)
above.

Figure 2.1: Typical diurnal cycle of the ABL over land. Adapted from the daily
cycle models presented in Tanamachi et al. (2019) and Stull (1988).

2.1.2 Review of instruments and methods

Due to the ML complexity, there is no remote sensing instrument that can di-
rectly derive the MLH. Instead, a proxy or tracer for the top of the ABL must
be used. Such proxies include aerosols, temperature or wind profiles as well as
energy fluxes (Seibert et al., 2000; Emeis, 2010).
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Most of the methods to estimate ABLH are based on proxies for the mixing
process, such as temperature, humidity or wind speed. Fig. 2.2 depicts idealized
vertical profiles of such kinds of proxies. These parameters are frequently used in
radiosonde-based retrievals, which are often considered to be the most reliable as
they are based on in situ measured parameters, and are therefore used as reference
in several studies (Löhnert & Maier, 2012; Belegante et al., 2014; Schween et al.,
2014; de Arruda Moreira et al., 2018).

Figure 2.2: Sketch of typical vertical profiles of temperature (T), potential tempera-
ture (θ), specific humidity (q), and wind speed (V) in the bottom of the troposphere.
FT, free atmosphere; EZ, entrainment zone; ML, mixed layer; SL, surface layer; CI,
capping inversion; RL, residual layer; SBL, stable boundary layer; zi, height of the
capping inversion, which equals top of the boundary layer (BL); Vp, geostrophic
wind speed. Adapted from Fig. 9.16 in Wallace & Hobbs (2006b).

However, radiosondes measure properties along their flight path and their data
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might not be representative for the atmospheric column above the measurement
site. Due to the fact that a radiosonde follows the horizontal wind during its as-
cent, it tends to move into regions with convergence and avoids regions with di-
vergence. As a result radiosonde profiles are biased towards properties of rising
plumes in convective situations. In addition, a major shortcoming of radiosondes
for MLH estimation is their coarse temporal resolution.

Many of the radiosonde drawbacks can be overcome by continuously oper-
ating ground-based remote sensing instruments. Combined atmospheric observa-
tions from multiple remote-sensing systems and appropriate data-processing tech-
niques offer insights in to atmospheric phenomena that single instruments cannot
(Wulfmeyer et al., 2015).

The following Sects. 2.1.2 - 2.1.2 briefly review the sensors and retrieval meth-
ods that will be used in this thesis:

Radiosonde

The radiosonde (RS) is a de facto standard for reference in the atmospheric sci-
ences (Eresmaa et al., 2006; Münkel et al., 2007; O’Connor et al., 2010). Radioson-
des measure in situ profiles of the atmospheric thermodynamic state (temperature,
pressure, water vapour and wind), and are usually launched attached to a large
balloon. A radiosonde can rise up to 40 km in height over the course of several
hours, though most water-vapour sensors usually cease to operate properly below
the tropopause (∼ 15 km in the mid-latitudes). The main drawbacks of using ra-
diosondes for MLH determinations are the sparse temporal resolution (owing to
the expense associated with each launch) and horizontal drift on ascent.

Microwave radiometer

The function of a microwave radiometer (MWR) instrument is to receive the bright-
ness intensity in terms of antenna temperature, transduce it in the receiver as detec-
tor voltage and then convert the detector voltage to the source brightness temper-
ature through appropriate calibration. The measured source brightness tempera-
ture can then be used to retrieve the atmospheric parameters of interest (Saeed,
2016). Fig. 2.3 shows a schematic layout of the internal structure of a RPG HAT-
PRO MWR. A parabolic scanning antenna collects the incident brightness power
from atmosphere which is split by a beam splitter into the two receivers. The two
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Figure 2.3: Schematic internal structure of RPG HATPRO radiometers. Source: Fig
2.1 in RPG (2023).

receivers correspond to the K (20-30 [GHz]) and V (50-60 [GHz]) bands for temper-
ature and water-vapour retrievals, respectively.

A MWR measures the radiative emission of atmospheric gases. The emissions
from molecular oxygen, in particular, are proportional to atmospheric temperature
when the water vapor mixing ratio remains constant. Measurements at different
frequency bands and elevation angles can be used to derive several physical quan-
tities such as temperature, water vapor, integrated water vapor, and liquid water
path.

The MWR-derived temperature profile exhibits a coarse (≥ 50 m) vertical reso-
lution that increases with height (Crewell & Löhnert, 2007; Löhnert & Maier, 2012),
and which is specific to the retrieval algorithm and to the number of measure-
ment channels (sounding frequencies) being used. Because the number of inde-
pendent pieces of information contained in the brightness temperature measure-
ments at different frequencies and scanning angles is limited, the resulting Degree
of Freedom (DoF) is low (≈ 4 for temperature boundary-layer profiling) (Löhnert
& Maier, 2012). As a result, the vertical resolution of the retrieved quantities sub-
stantially decreases (i.e., becomes coarser) with height. As a general rule, the verti-
cal resolution is approximately equal to the height above the surface. For example,
the vertical resolution at 1 km AGL is roughly 1 km (i.e., the retrieved temperature
at 1 km AGL is valid for the 500 – 1500 m layer).
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Lidar ceilometer

A lidar ceilometer is a single-wavelength elastic-backscatter lidar characterised by
a low energy-aperture product. Ceilometers rely on the principle of lidar technol-
ogy, essentially measuring the backscattered light by the aerosols, after the emis-
sion of a laser pulse (Saeed, 2016). Under moderate-to-clear-air atmospheres (op-
tical thickness, τ < 1) and, particularly, towards the near-infrared, the profile of the
attenuated-backscatter coefficient is essentially proportional to the aerosol concen-
tration in the ABL (Lange et al., 2014; Measures, 1992; Schween et al., 2014).

A lidar ceilometer has three main hardware modules, namely, the laser, the tele-
scope, and the detection and processing system as shown in Fig. 2.4. First, short
light pulses with lengths of a few to several hundred nanoseconds are generated
by the laser and transmitted to the atmosphere. At the detection stage, a telescope
collects the photons backscattered from the atmosphere. Then, the collected ra-
diation is directed onto an optical detection hardware, where the received optical
signal is converted into an electrical signal. Finally, the received signal is electron-
ically organised by the acquisition hardware and then, it is stored in a computer
(Weitkamp, 2006).

Optical transmission

hardware 

Optical detection

hardware

Data acquisition 

hardware

Telescope

Data storing system
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Figure 2.4: Block diagram of a basic lidar setup.
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Doppler wind lidar

Driven by the technological progress in the wind energy industry in the last couple
of decades, economical and useful Doppler Wind Lidar (DWL) systems have been
developed (Pearson et al., 2010). DWL provides a wealth of information about
the wind flow and also allows measurement in places which are inaccessible for
standard in-situ anemometry (Tzadok et al., 2022). The DWL measures the velocity
of air particles by knowing the frequency shift between the emitted beam and the
received backscattered. This frequency shift is related to particle velocity by the
Doppler effect

fd = −2vr
c
f0, (2.1)

where fd is the Doppler-shift frequency between the received fr = f0 + fd, and the
emitted frequencies, f0, vr is the radial velocity of the target relative to the lidar
(positive when the target moves away from the lidar), and c is the speed of light
(Villalonga, 2020; Salcedo-Bosch, 2020).

Since DWL provide only the wind component of the radial direction, some data
processing based on mathematical manipulations is required to solve the whole
wind vector. There are different scanning methods for performing measurements
with DWL, such as the velocity azimuth display (VAD), and the Doppler beam
swing (DBS). The DBS is based on a vertical measurement followed by tilted beams
in two perpendicular directions (Tzadok et al., 2022).

The DWL indirectly measures the ABL mixing process by using vertical wind
velocity variance as a tracer of the ML (Schween et al., 2014; Rose et al., 2005).
Because the Free Troposphere (FT) is generally not as turbulent as the ML, vertical
gradients in the standard deviation of velocity can be used as a tracer of the ML
(Cohn & Angevine, 2000; Hogan et al., 2009).

Finally, it is important to clarify that the over-sea dimension of this PhD will
benefit from the ZephIRTM 300 DWL performing the VAD scan, which is further
discussed in Sect. 2.2.2, whereas the over-land dimension here will use a Halo
StreamLine-XR DWL which can perform three types of scan: VAD, DBS and “stare”
scan in the vertical direction.
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2.1.3 MLH estimation from sensors in isolation

Estimation from RS and MWR data

The parcel method is commonly used for MLH estimation using potential temper-
ature data (Holzworth, 1964; Seibert et al., 2000). For a given profile of physical
temperature, T (z), which can be retrieved from both MWR or RS measurements,
the first step is to convert it to potential temperature profile, θ(z). The MLH is
defined as the lowest point in a given potential temperature profile for which,
θ(z) > θ(0), where θ(0) is the surface value of the potential temperature. The
gradient of potential temperature profile with respect to height, dθ

dz
, is indicative of

the stability of the atmosphere as follows:

• The atmosphere is stable when dθ
dz

> 0;

• Neutral when dθ
dz

= 0;

• Unstable when dθ
dz

< 0.

Because the parcel method is very sensitive to the surface temperature, we used
temperature observations from the JOYCE tower at 2 m as reference. The MLH
estimation uncertainty was estimated by perturbing the surface temperature by
±0.5 K (Collaud Coen et al., 2014). Next, Fig. 2.5 shows a case example of potential
temperature profiles and MLH estimates obtained from RS.

Estimation from ceilometer data

The Extended Kalman filter (EKF) estimation method (Rocadenbosch et al., 1999;
Lange et al., 2015, 2014) was applied over measurements obtained by the Jenoptik
CHM-15k ceilometer (see Table 3.2). The EKF is a time-adaptive method based
on Kalman filtering that uses time-successive LC attenuated-backscatter profiles
to track the sharp aerosol gradient occurring in the ML-to-free troposphere (FT)
transition. As a result, the EKF provided an MLH estimate with the same time
resolution as the LC data (15 s) (Araújo da Silva et al., 2022b). Fig. 2.6 depicts a
colour-plot case example of attenuated backscattering measured by a ceilometer
along with MLH estimates obtained through EKF.



2.1. OVER-LAND ATMOSPHERIC BOUNDARY-LAYER SENSING 19

275 280 285 290 295 300 305
Potential temperature [K]

0

500

1000

1500

2000

2500

3000

H
ei

gh
t [

m
]

 (0),
 (0),
 (0),
 (0),
 (0),
 (0),

 (z), 07 UTC
 (z), 09 UTC
 (z), 11 UTC
 (z), 13 UTC
 (z), 15 UTC
 (z), 17 UTC

Figure 2.5: Profiles of the potential temperature along with MLH estimates (black
squares) retrieved via parcel method in response to radio-soundings at 07:00, 09:00,
11:00, 13:00, 15:00, and 17:00 UTC, on 20 April 2013, JOYCE, Germany. The
coloured triangles stand for surface potential temperature measurements.

Figure 2.6: Colour-plot of the attenuated backscatter measured by a Jenoptik
CHM-15 ceilometer on 04 May 2013, JOYCE. Magenta dots (along with noise-
related error bars) represent MLH estimates retrieved through EKF. Black squares
are MLH-RS.

Estimation from DWL data

In order to retrieve the MLH from DWL measurements, the standard deviation of
time-height profiles of vertical velocity are calculated every 5 min by using a ±15
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min window. Second, the standard deviation is corrected for instrumental noise
as described in (Lenschow et al., 1980). Finally, the MLH is calculated as the first
height at which the standard deviation of the vertical velocity falls below a pre-
determined threshold (Tucker et al., 2009). We follow (Schween et al., 2014), who
studied the sensitivity of the mixing layer height derived from different thresh-
olds, and we use a 0.4 m/s threshold. Fig. 2.7 depicts a colour-plot case example
of vertical-wind-velocity standard deviation measured by the Doppler lidar along
with MLH estimates.
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Figure 2.7: Colour-plot of the standard deviation of the vertical wind velocity, σw,
measured by the Doppler lidar on 04 May 2013 at JOYCE. Green circles on are
MLH-DWL, and black squares are MLH-RS.

2.1.4 HOPE measurement campaign

Data used in the over-land dimension of this PhD was collected at the Jülich Ob-
servatorY for Cloud Evolution (JOYCE), which is located in Forschungszentrum,
Jülich, Germany (50◦54′31′′ N, 6◦24′49′′ E, 111 m MSL). The topography in the area
of JOYCE is generally flat apart from large lignite open pit mines. Farming, open-
cast coal mining areas with major power plants and patchy settlements charac-
terised the 50-km periphery. The climate is characterised by a temperate, humid
climate with warm summers (Löhnert et al., 2015b). JOYCE contains a number of
active and passive permanently installed remote sensing, and in-situ instruments
aimed to the study of clouds and atmosphere. The HOPE campaign (Macke et al.,
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2017) was conducted at JOYCE from April 2013 to May 2013. One of the principal
aims of HOPE was to characterize the evolution of the ABL over JOYCE for fore-
casting applications. We chose to examine the data from this campaign because
they contain long-duration, simultaneous observation of MLH tracers by multiple
independent instruments, a situation ideal for validation. For brevity, only those
JOYCE instruments used in HOPE are described below. The reader is referred to
(Löhnert et al., 2015b; CPEX-LAB, 2023) for a complete listing.

Ceilometers

Two LCs are used in this work. The first is a Jenoptik CHM-15k Nimbus (Fig.
2.8b), an 8 − µJ, 1064-nm wavelength, 5-ns-pulse duration, 5-to-7-kHz repetition-
rate ceilometer. Under clear-sky conditions, the maximum sounding range is about
15 km with a range resolution of 15 m. The temporal resolution of the instru-
ment is 15 s. The Jenoptik ceilometer is a bi-axial system with separate optics for
the transmitter and receiver so that the optical overlap is reached at about 350 m.
The instrument provides range- and overlap-corrected profiles of the normalized
backscattered power (i.e., the attenuated backscatter-coefficient profile).

The second LC used in the HOPE campaign was a Vaisala CT25K (Fig. 2.8a),
used to monitor cloud-base height (CBH) and precipitation, and to complement
Jenoptik’s observations below 350 m (night-time and morning/afternoon transi-
tion periods). The Vaisala CT25K is a 1.6 − µJ, 905-nm wavelength, 100-ns pulse
duration, 5.6-kHz repetition-rate LC designed to retrieve profiles of the attenuated-
backscatter coefficient in the sounding range from 60 m to 7 km, with a range res-
olution of approximately 30 m. The temporal resolution of the instrument is 15 s
(including 3.3 s for processing and data transmission). Because of the lower pulse
energy of the Vaisala LC as compared to the Jenoptik (and because both systems
operate in similar, near-infrared wavelengths), Jenoptik’s vertical profiles of the
attenuated backscatter coefficient exhibit a comparatively high SNR.

HATPRO MWR

The Humidity And Temperature PROfiler (HATPRO) MWR (Fig. 2.8c) manufac-
tured by Radiometer Physics GmbH (RPG) (Löhnert et al., 2015b; Rose et al., 2005)
measures the atmospheric brightness temperature at 14 frequencies in two bands
and at six angles (depending on user’s settings). Measurements in the K-band (7
channels), 22− 31 GHz, are used for water vapor and liquid water retrieval, and in
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Figure 2.8: Instruments of JOYCE site used in this PhD thesis. (a) Vaisala CT25k
ceilometer. (b) Jenoptik CHM15k Nimbus ceilometer. (c) HATPRO MWR. (d) Halo
StreamLine XR DWL.

the V-band, 51− 58 GHz, for temperature retrieval. The MWR instrument exhibits
good temporal resolution (about 2.7 minutes). In principle, MWR can operate in
all conditions except for rain, when the radiation measured is dominated by the
emission and scattering from raindrops.

Brightness-temperature measurements are converted into a temperature profile
by means of a statistical retrieval algorithm (Güldner & Spänkuch, 2001; Cimini
et al., 2006; Crewell & Löhnert, 2007; Löhnert et al., 2004) together with auxiliary
atmospheric temperature and pressure data. The latter are measured separately
by surface-based in situ sensors. Ultimately, the retrieved potential temperature
profile is used to estimate the MLH. In this formulation, two main error sources
are delineated: (i) MLH estimation errors, ∆zT , originating as a total uncertainty in
the retrieved temperature profile (∆T (z)) and (ii) MLH errors due to uncertainties
in the auxiliary measurement of surface temperature, ∆zT0 . MLH estimates and
related errors are computed according to the different spatial resolutions of each
instrument.

HALO Photonics Streamline DWL

The DWL used in the HOPE campaign is the HALO Photonics Streamline Wind
Lidar (Fig. 2.8d) (Schween et al., 2014; Pearson et al., 2010; Pearson & Collier,
1999), a coherent system with an average pulse energy of 100 µJ and a frequency
of 15 kHz. The vertical resolution of this system is 30 m, and the maximum range
is about 8 km. However, in practice, its effective maximum range becomes limited
by the reduced aerosol content above the ABL.
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Radiosonde

The radiosonde used in this work is the Graw DFM-09 manufactured by Graw
GmbH, which includes temperature, pressure, humidity and GPS sensors (20 chan-
nels). Wind speed and direction are determined from the changes in the GPS posi-
tion and GPS velocity vector. The transmission rate is one full set of observations
per second. During HOPE campaign, 226 soundings were launched up to a max-
imum of six per day (07:00, 09:00, 11:00, 13:00, 15:00, and 17:00 UTC; local time,
LT=UTC+1h) from a site located 3.8 km southeast of JOYCE.
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2.2 Over-sea surface-layer sensing

2.2.1 Surface boundary-layer review

The surface layer is the region at the bottom of the atmospheric boundary layer
where turbulent fluxes and stress vary by less than 10% of their magnitude. Re-
gardless of whether it is part of a mixed layer or stable boundary layer, the bot-
tom 10% of the boundary layer is called the surface layer (Stull, 1988). Drag at
the ground always causes the wind speed to be reduced, while aloft the winds
are stronger (Wallace & Hobbs, 2006b). Hence, in general, the wind speed pro-
file within the surface layer is nearly logarithmic with height and can be modelled
through three surface layer parameters, namely, aerodynamic roughness, friction
velocity, and Obukhov length (Stull, 1988; Wallace & Hobbs, 2006b) (see Chapter
4 for detailed formulation). These parameters are introduced next:

• The aerodynamic roughness length is defined as the height of zero wind
speed as extrapolated down logarithmically from the stronger winds (Wal-
lace & Hobbs, 2006b). The drag laws over the sea are easier to parameterize
than over the land, because the roughness length associated with ocean wave
height is a known function of surface stress or wind speed, which is called
Charnock’s relationship.

• The frictional force between the air and the ground is called drag. The fric-
tion velocity is a measure of the drag force per unit surface area of the ground
(Stull, 2017). Accordingly, the friction velocity is a velocity scale that repre-
sents the surface stress. Furthermore, it is most applicable to statically neutral
conditions within the surface layer, where the turbulence is mostly mechani-
cally generated (Wallace & Hobbs, 2006b; Stull, 2017).

• Besides the friction velocity and roughness length, there is an additional
length scale that is crucial to describe the wind profile under statically non-
neutral conditions in the surface layer, which is the well-known Obukhov
length. The Obukhov length can be physically understood as the height
above the surface at which buoyant factors first dominate over mechanical
(shear) production of turbulence (Stull, 1988).
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2.2.2 Review of instruments and methods

Offshore atmospheric stability assessment

There are different techniques to study atmospheric stability such as the vertical
profiles of potential temperature, the Obukhov length, turbulence intensity (TI),
and wind-shear exponent (Wharton & Lundquist, 2012). Among them, Obukhov
length, L, is widely used because it relates both temperature and wind parameters.
The stability classification based on L can be, for instance, as described in Table 2.1.
Other classification ranges are further discussed in Chapter 4.

Table 2.1: Stability classes based on the Obukhov length, L (Araújo da Silva et al.,
2022a).

Atmospheric Stability Obukhov length range (m)
Stable 10 < L < 500

Neutral |L| > 500
Unstable −500 < L < −50

Recently, the companion paper by Araújo da Silva et al. (2022a) has introduced
a 2D parametric algorithm along with data screening criteria as a method to assess
the atmospheric stability from solely FDWL-measured wind profiles. Differently
from Beljaars et al. (1989), the 2D algorithm retrieves the stability without using
temperature observations. Moreover, it can be extended to an unlimited number
of measurement heights, which is complementary to Basu (2018). The 2D algo-
rithm estimates Obukhov length and friction velocity by minimising the norm of
residuals between the MOST wind-profile vector and the observed wind-profile
vector via a constrained least-squares optimisation. The 2D method is discussed
in detail in Chapters 4 and 5.

Continuous-wave Doppler wind lidar

The over-sea dimension of this PhD relies on the continuous-wave DWL technol-
ogy. In continuous-wave lidar systems, light is continuously emitted and focused
around a specific height or volume (Gutiérrez-Antuñano, 2019). Thus, a single li-
dar Line-of-Sight (LoS) measurement can only measure the radial component of
the target velocity along the lidar pointing direction. Thereby, in order to retrieve
the three components of the wind vector, U⃗ = [u, v, w], the continuous-wave DWL
takes multiple LoS measurements following a conically-shaped scan. For instance,
the ZephIR TM 300 DWL model performs 50 LoS measurements per 1-s long scan.
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The redundancy of the number of measured LoSs permits the use of the velocity-
azimuth-display (VAD) algorithm. Fig. 2.9 depicts a geometrical representation
of the VAD scanning. According to Fujii & Fukuchi (2005); Gutiérrez-Antuñano
(2019) and Salcedo-Bosch (2020), the VAD algorithm can be explained as follows:

Each LoS measurement of the radial velocity, vr, can be expressed as the dot
product between the lidar pointing direction unitary vector r̂ and the wind vector
U⃗ = [u, v, w]:

vr(ϕ(t)) = r̂(t) · U⃗ = vh sin(θ0) cos [ϕ(t)− ϕ0] + w cos(θ0), (2.2)

where θ0 is the lidar 30 deg aperture angle from zenith, vh is the horizontal wind
speed (HWS), ϕ(t) is the azimuth angle as a function of time, and ϕ0 is the azimuth
angle of the wind vector. The three components of the wind vector can be obtained
from Eq. 2.2 as

u = Acos(ϕ0) csc(θ0), (2.3)

v = Asin(ϕ0) csc(θ0), (2.4)

w = AOS sec(θ0), (2.5)

where vh =
√
u2 + v2, A = vh sin(θ0), and AOS = w cos(θ0). Therefore, by knowing

A, AOS and ϕ0, the wind vector can be retrieved.

Figure 2.9: Geometrical scheme of the coherent lidar VAD scanning. Adapted from
Rocadenbosch (2003).
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Finally, the parameters A, AOS , and ϕ0 are retrieved via a least-squares algo-
rithm that fits the model function (Eq. 2.2) to the LoS (vmeas.

r ), thereby

[A,AOS, ϕ0] = argmax
A,AOS ,ϕ0

||vr(ϕ(t))− vmeas.
r (ϕ(t))||2. (2.6)

2.2.3 The IJmuiden measurement campaign

The IJmuiden observational campaign was carried during 82 days, from April
to June 2015 aimed at validating EOLOSTM FDWL against the metmast reference
(Araújo da Silva et al., 2022a). Fig. 2.10 shows the IJmuiden’s mast and FDWL ge-
ographical positions in the North Sea. Fig. 2.11 shows the instrumental set-up of
the campaign, depicting the instruments location and measurement heights. The
FDWL was collocated 200 m far from the metmast.
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Figure 2.10: Map showing the location of the IJmuiden mast in the North sea. The
zoom plot in the upper part of the map shows the FDWL location.
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Figure 2.11: Instrument set-up at the IJmuiden test site. The FDWL is in the fore-
ground and the metmast is in the background. Labels: S, MetekTM sonic anemome-
ter; C, ThiesTM cup anemometer; DWL, fixed-to-mast DWL; T, temperature sensor;
P, pressure sensor; H, humidity sensor; WB, TRIAXYSTM wave buoy.

The IJmuiden metmast was installed 85 km far from the coast of The Nether-
lands, where the water depth is about 28 meters. Its top was 92 m above the Low-
est Astronomical Tide (LAT), and its structure consisted of three booms pointing
46.5◦, 166.5◦, and 286.5◦, clockwise from cardinal north. Hereafter, all height val-
ues will be assumed as height above LAT. Three ThiesTM First Class Advanced cup
anemometers were installed at 27 and 58.5 m in height (one on each boom), as well
as three MetekTM USA-1 sonic anemometers at 85 m. Wind direction observations
were recorded at 26.2, 57.7 and 87 m by ThiesTM First Class windvanes (one on
each boom). HWS and wind direction at ten different measurement heights (from
90 to 315 m) were measured by a ZephIRTM300 DWL installed on a platform at
20.88 m in height (hereafter called the mast-DWL). This lidar measured 50 LoSs
at equally spaced azimuth angles (7.2º azimuth step between LoSs) at a sampling
rate of 50 Hz along a conical scan with elevation of 30º (Salcedo-Bosch et al., 2021c;
Werkhoven & Verhoef, 2012). Two VaisalaTM HMP155D were installed at 21 and
90 m, which provided temperature and humidity observations every 0.25 s. Air
pressure measurements were recorded at 21 and 90 m by two VaisalaTM PTB210
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every 0.25 s as well. A TRIAXYSTM wave-and-current buoy located near the met-
mast provided measurements of average wave height, wave period, current direc-
tion, and water temperature. The wave-buoy-derived observations were stored as
hourly averaged measurements.

Relevant instruments of the IJmuiden’s mast used in the over-sea dimension
are listed in Table 2.2. The EOLOSTM, ZephIRTM300 and TRIAXYSTM are described
with more details next.

Table 2.2: Main specifications of the instruments from the IJmuiden test site. De-
tailed information about the sensors arrangement and specification can be found
in (Werkhoven & Verhoef, 2012).

Sensor Parameter Unit Sampling
Rate Height (1) Orientation

3 × Metek USA-
1 Sonic Anemome-
ter

Wind
speed m/s 4 Hz 85 m 46.5º,

166.5º and
286.5º6 × Thies First

Class Advanced
Anemometer

Wind
Speed m/s 4 Hz 27 and

58.5 m

9 × First Class
Wind Vane

Wind
Direction deg 4 Hz 26.2, 57.7

and 87 m

2 × Vaisala
PTB210

Air
pressure hPa 4 Hz 21 and 90

m

N (21 m)
and N-E
(90 m)

2 ×
Vaisala
HMP155D

Air tem-
perature

ºC 4 Hz
21 and 90 m

N (21 m)
and N-W
(90 m)

Relative
humidity % 4Hz

TRYAXIS wave
buoy

Water
tempera-

ture
ºC 60 min sea level

2 ×
ZephIR
300 (mast-
DWL and
FDWL)

Wind speed m/s 1 Hz(2)

90-315 m,
every 25
m (mast-

DWL)

S-W

25, 38, 56
and 83 m
(FDWL)

200-m
from the
mast

1 Notes: (1) Measurement heights above the LAT. (2) Averaging rate of the conical scanning per-
formed at each height. (N, N-E, N-W and S-W) stand for North, North-East, North-West, and
South-West, respectively.
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EOLOS Floating Lidar System

The EOLOSTM Floating Lidar System is prepared for higher endurance during
longer measurement campaigns and harsher conditions. In addition, it is designed
to host a ZephIRTM 300 lidar. It had 3.77 m width, weighed 3 tons, and had a similar
modular four-floater structure design as shown in Fig. 2.12 (Gutiérrez-Antuñano,
2019; Salcedo-Bosch, 2020). The EOLOSTM system hosted three wind generators
and multiple solar panels generating a maximum of 2200 W to ensure energy au-
tonomy for long measurement periods. Furthermore, the cover of the buoy cover
was constructed with aluminum-reinforced fiberglass to safeguard the internal
electronic hardware (Salcedo-Bosch, 2020). The system accounted with data ac-
quisition and communication systems able to store and send the measurements
from its different sensors (Gutiérrez-Antuñano, 2019). The data could be acquired
through Iridium satellite and through WiFi communications in a 100-m range. In
the EOLOSTM system design, the lidar was integrated in the buoy structure with-
out a cardanic frame, being the whole structure a rigid body. Therefore, a single
3DM-GX2-45 IMU was needed to track the buoy’s motion (Gutiérrez-Antuñano,
2019).

Figure 2.12: The EOLOS lidar buoy. Source: Fig 5.2 in Gutiérrez-Antuñano (2019).
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ZephIR 300 DWL

The ZephIRTM 300 is a continuous-wave focused Doppler lidar manufactured by
ZX Lidars Ltd. (previously called ZephIR), United Kingdom, which was designed
to be also operated at offshore environment (Salcedo-Bosch, 2020; ZX-Lidars, 2023).
This lidar system can sense the wind speed and direction at user-defined heights
between 10 m to 200 m. Furthermore, it uses the VAD algorithm to retrieve the
wind vector by measuring 50 LoS at equally spaced azimuth angles (7.2deg az-
imuth step between LoSs) along a conical scan of 30-deg aperture width from
zenith (ZX-Lidars, 2023). Fig. 2.13 shows a ZephIRTM 300 model and its location at
the IJmuiden metmast. Table 2.3 lists its data products during the campaign.

Figure 2.13: (a) ZephIRTM 300 DWL system. (b) Top view of DWL lidar at the
IJmuiden metmast. Source: Fig 4.3 and 4.4 in Werkhoven & Verhoef (2012).

Variable Sampling rate Height [m] Units
Measuring points

1Hz 90 to 315

-
Missed points -
Packets in fit -

Wind direction deg
HWS average m/s
VWS average m/s

Spatial variation -
Backscatter -

Horizontal confidence -

Table 2.3: Products summary of the ZephIRTM 300 installed at the IJmuiden met-
mast (Werkhoven & Verhoef, 2012). Vertical wind speed (VWS).
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TRIAXYS Wave Buoy

The TRIAXYSTM Wave & Current Buoy is a 1-metre buoy system that measures
directional waves and currents at a sampling period of 60 min (Fig. 2.14) (TRI-
AXYS, 2018). The buoy hosts 3 accelerometers, 3 gyroscopes, and a compass in
order to measure the most relevant directional and nondirectional wave parame-
ters. Its products include water temperature, wave height, wave period and mean
direction (TRIAXYS, 2018). Table 2.4 summarises the wave buoy data products.

Figure 2.14: TRIAXYSTM wave & current buoy. Source: Fig 4.6 in Werkhoven &
Verhoef (2012).

Variable Sampling rate Height [m] Units
Latitude

60 min
sea level

deg
Longitude deg

Water depth m/s
Water temperature deg C

Speed of sound m/s

Velocity
1 to −50(1)

m/s

Direction deg

Table 2.4: Products summary of the TRIAXYSTM buoy (Werkhoven & Verhoef,
2012). (1) 50 levels of depth.



Chapter 3

Motivating a synergistic mixing-layer
height retrieval method using lidar
and microwave-radiometer
observations

This Chapter introduces the synergistic Mixing-Layer-Height (MLH) retrieval approach
that combines both ceilometer and MWR estimates in order to optimize the benefits of both.
MLH retrieval methods using backscattered lidar signals from a ceilometer and tempera-
ture profiles from a Microwave Radiometer (MWR) are compared in terms of their comple-
mentary capabilities and associated uncertainties. The Extended Kalman Filter (EKF) is
used for MLH retrieval from backscattered lidar signals and the parcel method is used for
MLH retrieval from MWR-derived potential-temperature profiles.

The contents of this Chapter are part of the paper Araújo da Silva et al. (2022b) pub-

lished in IEEE Transac. Geosc. Rem. Sensing. Systematic or multiple reproduction or

distribution to multiple locations via electronic or other means is prohibited and is subject

to penalties under law.

3.1 Introduction

Accurate monitoring of the atmospheric boundary layer (ABL) is a subject of wide
interest. The ABL, by definition is directly affected by interactions with the surface
of the Earth on a time scale of an hour or less (Stull, 1988), and it is also the layer
of the atmosphere within which humans live. The mixed layer height (MLH) is
a parameter of interest for many applications, including weather forecasting, air
quality and chemical dispersion models, and aviation. In fair weather conditions,

33
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the interior of the ABL is well-mixed by convective turbulence (hence the term
“mixed layer”, or ML), and exhibits near-constant potential temperature (θ) and
water vapor mixing ratio (r) throughout most of its depth. However, no remote or
in situ instrument exists that can directly measure MLH. Instead, a proxy or tracer
for the top of the ML must be used. Such tracers include gradients of aerosols, tem-
perature, wind characteristics, or energy fluxes (Emeis, 2010; Seibert et al., 2000).
Ground-based remote-sensing instruments that can detect these tracers include li-
dar, radar, and sodar, which are active, and microwave radiometer (MWR), which
is passive.

Because of the varying properties of these MLH tracers and estimation meth-
ods, their accuracy varies widely. Different studies have proven the reliability of
MWR retrievals by comparison with radiosoundings. Radiosondes, usually com-
prising an expendable, balloon-borne package of sensors, are a recognized refer-
ence instrument for boundary layer monitoring. Xu et al. (2015) compared MWR-
derived temperature profiles averaged over a 30-min (full-span) window centered
around the radiosonde profiles. Analysing 403 (760) radiosonde launches from
clear-sky (cloudy) days, they obtained correlation coefficients ≥ 0.85 up to ∼ 7

km AGL. Good agreement between MWR- and radiosonde-derived temperatures
is also described by Löhnert & Maier (2012), who reported differences lower than
0.5 K between the profiles up to 4 km AGL. In relation to MLH assessment, Col-
laud Coen et al. (2014) applied the parcel method (Holzworth, 1964) to MWR- and
radiosonde-retrieved θ profiles, obtaining median bias of −25.5 m and coefficient
of determination ρ2 = 0.75 (ρ = 0.87) over 100 samples. In a related study, de Ar-
ruda Moreira et al. (2018) found excellent agreement during convective conditions,
with a root mean square error (RMSE) = 190 m and ρ = 0.96.

The MWR has higher temporal resolution (e.g., a few minutes) than the ra-
diosonde, whose operational frequency may be as low as two launches per day.
However, its vertical resolution decreases with height, hence increasing uncer-
tainty in retrieved quantities. In contrast, the lidar is an active remote sensing
instrument designed to measure vertical profiles of aerosol backscattering with
high spatiotemporal resolution. Aerosol concentrations are usually relatively high
and constant throughout the ML and much lower aloft, thereby enabling lidar-
based MLH estimation. In a fair-weather convective boundary layer (CBL), MLH-
lidar and MLH-MWR tend to converge. Belegante et al. (2014) compared MLH
estimates retrieved from elastic-lidar range-corrected-signal (RCS) profiles aver-
aged over 30-min intervals with those from MWR-derived virtual potential tem-



3.1. INTRODUCTION 35

perature, finding high correlation (ρ ≈ 0.98) in CBL conditions. However, during
evening transition times (ETT; i.e., at and after sunset, when thermally-driven tur-
bulent mixing ceases), MLH-MWR is more accurate than MLH-lidar, which gen-
erally tended to track the RL (i.e., a remnant layer left over from earlier turbulent
mixing) height (Belegante et al., 2014). Cimini et al. (2013), using training data
from multi-frequency, multi-angle MWR and lidar observations, designed a multi-
variate linear regression method to assess the mixing-layer height (MLH) directly
from MWR brightness-temperature observations instead of retrieved profiles.

Lange et al. (2014) (CommSensLab-UPC) estimated MLH by applying an ex-
tended Kalman filter (EKF) (Kalman, 1960) to backscattered lidar returns (here-
after, MLH-LC-EKF). They showed that, for a CBL with moderate-to-low signal-to-
noise ratio (SNR > 5), MLH-LC-EKF was more accurate than classical approaches
such as the threshold (Melfi et al., 1985), gradient (Endlich et al., 1967), logarithmic
gradient (Senff et al., 1996), inflection point (Menut et al., 1999), and variance meth-
ods (Hooper & Eloranta, 1986). Additionally, Banks et al. (2015) showed the MLH-
LC-EKF reliability against radiosonde-derived Bulk Richardson Number profiles
and against Weather Research and Forecasting (WRF) model predictions for clear-
air and pre- convective storm cases. Based upon these works, de Arruda Moreira
et al. (2018) found correlated results among MLH estimates in the CBL derived
from LC-EKF, MWR and Doppler Wind Lidar (DWL) combinations. The EKF
has also been used as an MLH retrieval method when applied to S-band radar
returns (Lange et al., 2015; Tanamachi et al., 2019). In a different context, Barrera-
Verdejo et al. (2016), combined brightness-temperature information from a MWR
and water-vapour mixing-ratio Raman lidar profiles in order to derive absolute
humidity vertical profiles.

Most of the previous work done for ML retrieval using backscattered lidar sig-
nals or temperature profiles has been focused on “stand-alone” retrieval methods
only. However, tentative derivation of a synergistic algorithm spanning the full
diurnal cycle and the study of the uncertainty sources associated to MLH estima-
tion and their statistical impact on the retrievals has not received much attention
(LeMone et al., 2018).

To fill this void, this paper focuses on synergistic retrieval of MLH estimates
with low uncertainty by combining ceilometer and MWR MLH-based retrievals
using the EKF and the parcel method as respective estimators. Towards this end,
this paper aims to study: (i) the performance of these two commonly-used algo-
rithms under different atmospheric scenarios, (ii) the impact of key error sources,
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namely, measurement and retrieval errors, on MLH estimates and (iii) evaluate the
performance of the proposed synergistic ceilometer-MWR method. The simplified
processing chain of the ceilometer and MWR data is summarised in Fig. 3.1.
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Figure 3.1: Block diagram illustrating the ceilometer (top) and MWR (bottom) pro-
cessing chains used to estimate the mixing-layer height (MLH) and related error
estimates. z is the vertical coordinate (height). β(z) is the attenuated backscatter,
ν(z) is the related corrupting noise, zCEILO

MLH is MLH-LC-EKF, ∆zattr is the uncer-
tainty of MLH-LC-EKF due to incorrect layer attribution, and σP

MLH is the MLH er-
ror component due to noise. Tb(ν, ϕ) is the MWR brightness temperature measured
at frequency ν and elevation angle ϕ, T (z) is the retrieved temperature profile, ∆zT
is the MLH-MWR error component due to the total uncertainty of T (z), ∆zT0 is the
MLH-MWR error component due to uncertainty in the auxiliary measured surface
temperature T0. ∆zCEILO

MLH and ∆zMWR
MLH stand for the total estimated error for MLH-

LC-EKF and MLH-MWR, respectively.

This paper is organised as follows: Sect. 3.2 introduces instruments and data
sets. Sect. 3.3 revisits the proposed MLH estimation methods and related error
sources, assesses their uncertainties on the MLH estimates via error propagation
from both ceilometer- and MWR-based methods, and introduces the synergistic
method. Sect. 3.4 presents statistical analysis and discussion of results based on
20 days selected from the HD(CP)2 Observational Prototype Experiment (HOPE)
(Macke et al., 2017) campaign. Finally, Sect. 3.5 gives concluding remarks.

Owing to the various combinations of boundary layer terminology, instruments,
and methods used in this paper, we provide an acronym table for ease of reference
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(Table 3.1).

Table 3.1: List of acronyms and abbreviations used throughout this Chapter.
Acronym Definition

ABL Atmospheric boundary layer
CBL Convective boundary layer
ML (Well-)mixed layer
FT Free troposphere
EZ Entrainment zone
RL Residual layer

MLH Mixed layer height
CBH Cloud base height
MTT Morning transition time
ETT Evening transition time

JOYCE Jülich ObservatorY for Cloud Evolution
HOPE HD(CP)2 Observational Prototype Experiment
MWR Microwave radiometer

LC Lidar ceilometer
DWL Doppler wind lidar

RS Radiosonde
EKF Extended Kalman filter

VVSTD Vertical Velocity Standard Deviation
MLH-MWR MLH estimated by application of the parcel method to

MWR measurements
MLH-LC-EKF MLH estimated by application of the EKF method to

LC measurements
MLH-DWL MLH estimated by application of the VVSTD method

to DWL measurements
MLH-RS MLH estimated by application of the parcel method to

RS measurements
SYN Synergistic method optimally combining MLH-MWR

and MLH-LC-EKF
MLH-SYN MLH estimated by the SYN method

3.2 Instruments and data set

This Chapter uses data from the HOPE campaign. For brevity, the instruments
and parameters used here are summarised in Table 3.2. Refer to Sect. 2.1.4 for a
detailed review of the related instruments.
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Table 3.2: Main specifications of the instruments from the HOPE campaign which
will be used in this PhD. (1) Humidity And Temperature PROfiler. (2) 50 m adjacent
to the surface and 500 m above 5000 m.

Instrument Measured
Parameter

Sounding
range

Wave-
length

Raw
spatial
resolu-

tion

Raw
temporal
resolution

Jenoptik
CHM-15k
ceilometer

Attenuated
backscat-

ter
[m−1sr−1]

350-1000
m

1064 mm 15 m 15 s

Vaisala
CT25K
ceilometer

60-7000 m 1064 nm 30 m 15 s

DWL
(Halo
Stream
Line XR)

Vertical air
velocity
[m/s]

15-10000
m

1500 nm 30 m 2 s

HATPRO
MWR (1)

Brightness
tempera-
ture [ºC]

0-10000 m 6 ∼ 5 mm
(V-band,

51-58
GHz)

50-500 m
(2)

∼2.7 min

3.3 Methods and uncertainties of MLH estimation

When comparing ceilometers and MWRs, the instruments at the focus of this pa-
per, ceilometers typically have higher vertical resolution (e.g., 15 m for the Jenop-
tik CHM-15k Nimbus ceilometer versus 50 m or greater for the MWR). Because
the ceilometer relies on attenuated backscatter returns from atmospheric aerosols
and molecules, which are proxies of the thermodynamic state of the atmosphere,
to identify the MLH, layer-attribution problems are very common. On the other
hand, MWR-derived temperature profiles have a much coarser vertical resolution
than profiles from LCs (Sect. 3.2). Additionally, parcel method-based MLH esti-
mates suffer from uncertainties associated with surface temperature ∆zT0 . We now
explore these sources of uncertainty in greater detail.
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3.3.1 MLH estimation from ceilometer data

MLH estimation method

Several classical methods for LC-based MLH estimation, such as the gradient me-
thod (Endlich et al., 1967; Flamant et al., 1997), the inflection-point method (Menut
et al., 1999) and the variance method (Hooper & Eloranta, 1986), among others
(Melfi et al., 1985; Boers & Eloranta, 1986), are based on the detection of a meaning-
ful ML-to-FT sharp transition in the vertical profile of the attenuated backscatter
coefficient. However, thermal updrafts, intermittent turbulence, and measurement
noise often lead to time-inconsistent MLH retrievals even in single aerosol layer
scenarios. Apart from noise, these fluctuations represent real physical processes in
the atmosphere, but they can complicate MLH tracking. To counteract detrimental
effects of these fluctuations on MLH tracking, backscatter profiles are often time
and/or height averaged (Lange et al., 2014). Therefore, temporal resolution of LC-
based MLH estimates is usually relatively low (∼ 30 min). LC-based algorithms
for MLH estimation (in convective and stable regimes) in recent literature (Collaud
Coen et al., 2014; de Bruine et al., 2017; Poltera et al., 2017) use time-continuity and
morphological criteria based on a combination of empirically-tuned gradient and
variance criteria, signal and SNR conditions, and climatological data.

In this study, we apply the EKF MLH estimation method (Lange et al., 2014,
2015), which departs from previous works of (Rocadenbosch et al., 1999), using
a time-adaptive, optimal predictive model to delineate the shape of the sharp
ML-to-FT transition (Fig. 3.2a). The Kalman filter is essentially the Wiener so-
lution (Wiener, 1964) of the optimal filter problem in which one wants to compute
a statistical estimate of an unknown signal (the MLH as a function of time) us-
ing a related signal (i.e., the ceilometer attenuated backscatter height profile as
a function of time) to produce the estimate as an output. The two main distin-
guishing features of the Kalman filter formulation are: (i) vector modelling of the
random processes under study (i.e., the MLH and shape parameters defining the
ML-to-FT transition as a function of time), and (ii) recursive processing of the in-
put noisy measurements (the ceilometer’s) at each successive discrete time. This
time-adaptive behaviour of the filter is based on minimization of the mean squared
error over time of the so-called a posteriori error covariance matrix (the term a poste-
riori meaning “once the filter is updated with the present-time measurement”, i.e.,
from the ceilometer). The reader is referred to (Lange et al., 2014, 2015) for a com-
plete derivation of the EKF-based method for MLH tracking in LC data (hereafter,
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MLH-LC-EKF), particularly Appendix A of (Lange et al., 2014) for a summary of
the filter’s constitutive equations and proof of its optimality. In following Sect.
3.3.1 the MLH-LC-EKF is briefly summarised for self-contained purposes and no-
tation definition.

As a result, MLH-LC-EKF (Lange et al., 2014) enables consistent time-tracking
of the MLH without need of averaging techniques or training from ancillary clima-
tological records. Because the filter estimates are generated at the same temporal
and spatial resolution of the input measurement data, the filter can even be imple-
mented as a real-time processor. Best performance of the EKF with reference to the
classical methods above has been shown in (Lange et al., 2014; Banks et al., 2015,
2016) with reference to different parameterizations of the WRF model.

Review of the MLH-LC-EKF

Central to the MLH-LC-EKF method is the assumption of the erf-like ML-to-FT
model,

h(z; zMLH , a, A, c) =
A

2

{
1− erf

[
a√
2
(z − zMLH)

]}
+ c, (3.1)

where zMLH is the MLH, a is a scaling factor related to the entrainment zone (EZ)
thickness (2.77a−1) (Flamant et al., 1997; Cohn & Angevine, 2000), A is the total
backscatter coefficient, and c is the free troposphere (FT) molecular backscatter
background, which acts as an offset term to the filter.

The erf model depicted in Fig. 3.2a models the ML-to-FT transition of the at-
tenuated backscatter coefficient measured by the ceilometer. This model is used
as a proxy of the total atmospheric backscatter coefficient under the assumption
of clear-to-moderately cloudy sky conditions (optical thickness, τ < 1). The shape
parameters of this model profile along with the MLH parameter itself give rise to
the formulation of the state vector (to be estimated),

xk = [zMLH,k, ak, Ak, ck]
T , (3.2)

where subscript k is a discrete time. zMLH,k is the key parameter of interest, and
ak, Ak, and ck are auxiliary parameters determining the change in shape of the
ML-to-FT interface with time.

The state-vector model represents the transition of the state vector from time tk

to tk+1. It is formulated as

xk+1 = xk +wk, (3.3)
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Figure 3.2: Example of the MLH-LC-EKF estimation technique (20 April 2013,
0600-1000 UTC). (a) The ML-to-FT transition model. (Grey trace) Example of
background-subtracted attenuated backscatter-coefficient profile measured by the
LC. (Black curve) Fitted erf-model profile described in (Lange et al., 2014). (b)
MLH-LC-EKF a priori error, σP−

MLH , a posteriori error, σP
MLH , and state-noise standard

deviation, σQ
MLH as a function of time. (c) Temporal evolution of search boundaries

z1, z′1, z′2 and z2.

where wk is the state-noise vector with diagonal covariance matrix, Qk = E[wkw
T
k ],

where E denotes the ensemble mean (or expectation) operator (Barlow, 1989).
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For enhanced filter stability (Reif et al., 1999), Qk is modelled in stationary di-
agonal form as Q = diag[σ2

Q],σQ = [σzMLH
, σa, σA, σc], where σzMLH

, σa, σA and σc

are the guessed standard deviations associated with the state-vector components,
zMLH , a, A and c, respectively. For example, σzMLH

models the standard deviation
of the MLH (a random variable) around its mean value. In practice, for simplicity,
the input vector σQ is constructed as

σQ = µQx̂
−
0 , (3.4)

where µQ is the so-called Q-intensity factor (a scalar) and x̂−
0 denotes the initial

guess of the state vector at filter start-up, to be specified by the user. In what fol-
lows, we have used µQ = 0.1 (10%). This means that if we assume an initialization
zMLH,0 = 1500 m then we expect MLH fluctuations of approximately ±150 m (10%)
at 1σ.

Because the state vector is recursively recomputed at each filter step, an inten-
sity factor µQ = 0.1 is usually more than sufficient to search the full ML height
span. Increasing this factor above 10% increases the search “nervousness” of the
filter. This effect is usually not beneficial because it may lead the filter to jump
between different aerosol layers and, hence, be more prone to divergence. The ini-
tial guess vector x̂−

0 can easily be estimated by plotting the erf model against one
measured ceilometer attenuated backscatter profile as in Fig. 3.2a.

The measurement model relates the ceilometer measurement vector, yk, to the
state-vector as

yk = h(xk) + vk, (3.5)

where h is the erf-like ML-to-FT function model given by Eq. 3.5 above, vk is the
observation noise at time tk with noise covariance matrix, Rk = E

[
vkv

T
k

]
, and z is

the vertical range. The measurement vector, yk = (y1,k, y2,k, . . . , yN,k) is the noise-
corrupted ceilometer attenuated backscatter signal at discrete ranges, z = zi, i =

1 . . . N . Because there is only one single measurement realization available at each
time tk, the instantaneous noise covariance matrix Rk is estimated in piece-wise
form over range cells instead of time cells as described in (Lange et al., 2015), Eq.
(19). The nonlinear model of Eq. 3.5 is linearised through its Jacobian, which is
passed to the filter.

Error sources

There are two key sources of uncertainty concerning MLH estimation from ceilome-
ter data: (i) layer-attribution errors and (ii) noise-induced errors.
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(i) Impact of layer-attribution errors on the estimated MLH, ∆zattr

Layer-attribution errors arise from the existence of multiple layers or gradients in
the attenuated backscatter profile. Depending upon the number of layers and their
separation, the estimated MLH can be significantly different from the actual MLH.
For example, during the evening transition time (ETT; also called the afternoon-
to-evening transition or AET, see (Wingo & Knupp, 2015)) under quiescent condi-
tions, the ML is replaced by the residual layer (RL) (Stull, 1988). In this case, it often
happens that the MLH-LC-EKF estimate follows the RL because RL-to-FT aerosol
gradient characteristics are similar to those of the ML top (Haeffelin et al., 2012)
, particularly in the 1–2 hr period following local sunset. Provision of acceptable
initial guesses for the state-vector, x̂−

0 , state-vector covariance, Q , and a priori
state-vector error covariance matrix, P−

0 , are key to preventing layer-attribution
errors. This is especially true during the morning transition time (MTT, i.e., at and
after local sunrise), when the ML starts to develop and there are relatively steep
backscatter aerosol gradients between the ML and the RL or FT above. An exam-
ple of this phenomenon is illustrated in Fig. 3.3a. Previous work on assessing the
uncertainty of the MLH estimate due to layer-attribution errors has been carried
out by (Haeffelin et al., 2012).

The a priori and a posteriori error-covariance matrices are defined as

P−
k = E

[
e−
k e

−T
k

]
, Pk = E

[
eke

T
k

]
, (3.6)

respectively, where e−
k = xk − x̂−

k is the a priori error and ek = xk − x̂k is the
a posteriori error, i.e., before and after assimilating the current measurement (yk).
Here, xk is the true atmospheric state (unknown) and x̂−

k and x̂k are the a priori
and a posteriori state vectors estimated by the filter, respectively.

Covariance matrices P−
k and Pk are updated with each successive step of the

recursive loop of the filter (Fig. 3.2b) as a function of the current information
available to the filter at time tk (actual Kalman or projection gain, Kk, linearised
Jacobian, state vector, xk, state-vector covariance matrix, Pk, and measurement-
noise covariance matrix, Rk) as well as initial settings at t0. The initial guess
of the a priori state-vector error covariance matrix, P−

0 , is a rough estimate of
the uncertainty associated with the initial guess of the state vector, x̂−

0 , in the
form of a diagonal matrix P−

0 = diag [σ2
P ] ,σP = (σe,zMLH

, σe,a, σe,A, σe,c), where
σe,X , X = [zMLH , a, A, c] represents the assumed uncertainty of the initial guess,
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Figure 3.3: (a) Attenuated ceilometer backscatter (in a.u.) measured by the Jenoptik
CHM-15 and (b) MWR-retrieved potential temperature (in K) for 20 April 2013 at
Jülich, Germany. In panel (a), magenta dots (along with noise-related error bars)
represent MLH-LC-EKF. In both panels, white diamonds represent MLH-MWR
with associated uncertainty ∆zMWR

MLH (blue error bars); black squares are MLH-RS;
green dots MLH-DWL; and yellow dots are CBH estimates from the Vaisala CT25.
In both panels, the solid black line represents a lower bound (120 m) on MLH-
DWL.

x̂−
0 = [zMLH,0, a0, A0, c0]

T at 1σ level. σP is shorthand notation for σ
P

−
0

. We com-
pute the input vector σP as

σP = µP x̂
−
0 , (3.7)

where µP denotes the P-intensity factor, to be specified by the user. Factors in the
range µP = 0.1 − 0.3(10 − 30%) have been used in the examples of Sect. 3.4, with
µP = 0.3 the default setting. High/low values (0.3/0.1) tend to increase/decrease
the search span of the filter during the first iterations. For example, assuming
zMLH,0 = 1500 m, the setting µP = 0.3 tells the filter that the user expects the
MLH to be roughly at 1500 ± 450 m at filter start up. P− and Q−intensity fac-
tors are partially coupled parameters because of the recursive nature of the filter
and, therefore, the guidelines above are just orientative. Layer-attribution errors
are common because, irrespective of the user’s initializations for x̂−

0 and σP , suc-
cessful filter operation is always conditioned to the existence of aerosol gradients.
Therefore, ∆zattr can only be known by comparison to a reference instrument (e.g.,
the radiosonde).



3.3. METHODS AND UNCERTAINTIES OF MLH ESTIMATION 45

(ii) Impact of observation noise and resulting a posteriori error on the estimated
MLH, σP

MLH

Noise-induced errors are due to the presence of noise in β′(z) and propagate an
error to the MLH-LC-EKF estimate. The recursive loop of the EKF provides by
itself convenient error estimates (P−

k , Pk and Qk) of the estimated state vector and,
therefore, of the estimated MLH at each discrete time tk.

Fig. 3.2b shows the estimated a priori and a posteriori errors for the case shown
in Fig. 3.3 computed as the time-dependent standard deviations, σP−

MLH,k, σP
MLH,k,

respectively. These are compared to the time-static state noise standard deviation,
σQ
MLH . Standard deviations σP−

MLH,k, σP
MLH,k and σQ

MLH,k are computed as the square
root of the first diagonal element of these matrices during the recursive loop of the
filter. The error of the instantaneous MLH-LC-EKF estimate at time tk is given by
the a posteriori error as

σEKF
MLH,k = σP

MLH,k , (3.8)

which is the key error indicator of interest. In Fig. 3.2b, it can be seen that the a
posteriori error magnitude, σP

MLH,k, is always smaller than the a priori error, σP−

MLH,k.

This variance reduction,
(
σP
MLH,k

)2
<
(
σP−

MLH,k

)2
, means that the assimilation of the

present measurement yk counteracts the detrimental effects of observation noise.
The latter term merges into a single body both measurement noise v(z) (with Rk

being estimated run time) and modelling noise (i.e., approximation of the ML-to-
FT transition by the erf model used in MLH-LC-EKF). σQ

MLH,k is just a reference
baseline of the user’s assumed MLH variability. Fig. 3.2c depicts time evolution
of search boundaries z1, z′1, z′2 and z2 (Fig. 3.2a) during the first four hours of data
processing (Lange et al., 2014).

The error estimates above are obviously subordinated to filter convergence and
tracking of the ML-to-FT interface (i.e., no attribution errors). Otherwise, the total
error from sources (i) and (ii) above can be calculated by using the error superpo-
sition principle as (see Fig. 3.1)∣∣∆zCEILO

MLH

∣∣ =√|∆zattr|2 + |σP
MLH |

2
. (3.9)

3.3.2 MLH estimation from DWL data

To estimate the MLH from DWL measurements, the standard deviation of time-
height profiles of vertical velocity are calculated every 5 min within a ±15 min win-
dow. Second, the standard deviation is corrected for instrument noise (Lenschow
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et al., 1980). Finally, the MLH is estimated as the first height at which the Verti-
cal Velocity STandard Deviation (VVSTD) falls below a predetermined threshold
(Schween et al., 2014; Tucker et al., 2009; Träumner et al., 2011) (hereafter, MLH-
DWL).

Useable thresholds for VVSTD range from 0.2 m s−1 to 0.4 m s−1 (Tucker et al.,
2009; Träumner et al., 2011). Based on the work of (Schween et al., 2014), who
studied the sensitivity of the mixing layer height derived from different thresholds,
here we use a 0.4 m s−1 threshold. Because 0.4 m s−1 is at the high end of the
accepted range, it represents a major source of uncertainty.

DWL-based estimates of ML height (MLH-DWL) are generally limited to day-
time hours, when the boundary layer is turbulent due to solar heating and thermally-
driven ML overturn. MLH-DWLs at night are less reliable because aerosol content
is reduced in stable situations at night. Additionally, mixing layer height values
below 120 m AGL are rejected as the DWL is not sufficiently sensitive below this
height.

The uncertainty associated with the DWL-derived MLH is estimated by ap-
plying a 25% variation to the nominal threshold (th± = 0.4 m·s−1 ±0.1 m·s−1)
(Schween et al., 2014). Upper and lower uncertainty bounds are derived from the
MLH estimations using 0.5- and 0.3-m·s−1 thresholds, respectively, minus the MLH
estimation using the nominal 0.4 m·s−1 threshold. Formally,

σDWL,±
MLH,k =

∣∣∣zDWL (th=0.4±0.1)
MLH,k − z

DWL (th=0.4)
MLH,k

∣∣∣ , (3.10)

where the plus (minus) superscript in σDWL,±
MLH,k denotes the upper (lower) uncertainty

bound, which is computed by inserting threshold th = 0.4 + 0.1 m·s−1 (th = 0.4−
0.1 m·s−1) in the first term of the right hand side of Eq. (3.10) above. A similar
approach was previously employed by Villalonga et al. (2020).

3.3.3 MLH estimation from MWR data

MLH estimation method

The parcel method is commonly used for MLH estimation using potential tem-
perature data (Holzworth, 1964; Seibert et al., 2000). For a given profile of physical
temperature, T (z), retrieved from brightness measurements, the first step is to con-
vert it to potential temperature profile, θ(z), by using

θ(z) = T (z)

(
p0
p(z)

) R
Cp

, (3.11)
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where p0 is the surface atmospheric pressure, p(z) is the atmospheric pressure pro-
file, R = 287 J · K−1 · kg−1 is the universal gas constant, and Cp = 1004 J · K−1 · kg−1

is the specific heat capacity for dry air at a constant pressure (Wallace & Hobbs,
2006b). Physically, the potential temperature represents the temperature an air par-
cel at an altitude z would have if it were lowered, dry adiabatically, to the surface.
In the parcel method, the MLH is defined as the lowest point in a given potential
temperature profile for which θ(z) > θ(0), where θ(0) is the surface value of the
potential temperature. Small scale effects (e.g., surface properties and shielding of
the sensor) can bias the estimate of surface temperature T (0) = θ(0), to which the
parcel method is very sensitive (Collaud Coen et al., 2014; Seidel et al., 2010).

Changes in θ(z) with respect to height, dθ
dz

, are indicative of the stability of the
atmosphere with respect to displacement of unsaturated air parcels. The atmo-
sphere is stable when dθ

dz
> 0, neutral when dθ

dz
= 0, and unstable when dθ

dz
< 0.

Under quiescent conditions in daytime, the mixed layer (ML) is characterized
by continuous convective mixing, driven from below by buoyant thermal plumes
from the relatively warm surface and, sometimes, from above, by evaporatively
driven downdrafts initiated within clouds in the EZ. As a result of this continuous
mixing, the interior of the ML exhibits nearly uniform temperature and moisture
throughout most of its depth. Thus, dθ

dz
= 0 in the ML, and negative in the surface

layer (unstable), dθ
dz

< 0. At the top of the ML, an increase in temperature and
reduction in moisture delineates the EZ, i.e., a transition layer between the ML
and the FA. The MLH is typically computed as falling halfway between the top of
the ML and the bottom of the FA, near where the magnitudes of the temperature
and/or moisture gradients are maximized.

While the parcel method was designed for use with sounding data, Stull (1988)
(p. 474) cautions against estimating MLH using only a single radiosounding. This
is because a single radiosounding may not be representative of average conditions
in a horizontally heterogeneous ML, as would be the case in a convectively active
BL characterized by thermal updrafts and downdrafts. MWR offers a partial solu-
tion to this issue in that it provides a time series of potential temperature profiles.
Temporal averaging can ameliorate to some extent the perturbations caused by in-
dividual updrafts and downdrafts, allowing longer-term (e.g., ∼O(30 min–1 hr))
trends in MLH to be discerned.

To estimate the MLH from MWR data, first, MWR potential-temperature pro-
files are interpolated to a uniform vertical resolution of 10 m. Second, a five-point
(50 m) moving average is applied to smooth the profiles (Schween et al., 2014).
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Then, the MLH-MWR is derived by using as surface temperature reference, θ(0),
that from the JOYCE meteorological tower at 2 m, thus assuring reliable retrievals
(Collaud Coen et al., 2014). The tower-derived temperature, which has a raw tem-
poral resolution of 6 min, is interpolated to the MWR temporal resolution (2.7 min).

In Fig. 3.3, we present an example comparison of MLH-LC-EKF (Fig. 3.3a) with
MLH-MWR (Fig. 3.3b). In spite of the relatively coarse spatial resolution (which
decreases with height) of the MWR potential temperature profiles, it can be seen
that MLH-MWR follows the overall trend of the radiosonde-derived MLH, and
particularly during morning (0600-1000 UTC) and evening (1600-1900 UTC) tran-
sition times MTT and ETT, respectively. The MLH-MWR captures the collapse of
the convective BL during the latter period, after sunset, while the MLH-LC-EKF
estimate continues to follow the elevated RL.

Error estimation

The uncertainty associated with MLH-MWR has been approximated by two main
error sources (Fig. 3.1): (a) the total uncertainty in the retrieved temperature profile
T (z) and consequent error propagated to the MLH calculation, which gives rise to
a MLH error, ∆zT , and (b) the uncertainty in the estimated surface temperature, T0

(or, equivalently, θ(0)), which gives rise to a MLH error, ∆zT0 .
(a) Assessment of the MWR-retrieved temperature-profile error in the estimated MLH,

∆zT : A study on the performance of the retrieved temperature profile (Crewell &
Löhnert, 2007) using a long-term data set of representative atmospheric profiles
and noise levels found uncertainty in the 0.1–0.5 K range. A synthetic bright-
ness temperature data set generated from over 10 000 radiosoundings (of which
5334 were used for training and 4954 were used as a validation data set) was used
to test the performance of the statistical retrieval algorithm (analogous to multi-
regression algorithm (Löhnert & Crewell, 2003)). Altitude-dependent temperature
uncertainties, ∆T (z), were generated, varying from 0.44 K on the ground to 1.60

K at 4 km. An example of the height-dependent temperature-retrieval kernels is
given in Fig. 7 of (Löhnert & Maier, 2012).

In order to assess the uncertainty of MLH-MWR due to temperature-retrieval
errors, ∆zT , we adopt the following approach: At each time instant, the retrieved
height-dependent temperature errors, ∆T (z) are converted into potential-tempera-
ture errors, ∆θ(z). These are added to and subtracted from the retrieved poten-
tial temperature profile, resulting in delineation of its “upper” and “lower” error
bounds. In this approach, the uncertainty in the temperature profile acts like a
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bias, i.e., a consistent under- or over-estimation throughout the profile (see also
(Löhnert et al., 2009)).
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Figure 3.4: Overview of MLH-MWR (parcel method) estimation errors (24 April
2013, 1401 UTC, Jülich, Germany). (a) MLH-MWR error arising from the un-
certainty inherent in the MWR retrieval of the temperature profile, ∆zT . Upper
(dashed grey)- and lower (solid grey)-bound profiles are obtained by adding and
subtracting the height-dependent temperature error-perturbation profile, ∆θ(z),
to the nominal potential-temperature profile, θ(z) (solid black line). The white di-
amond represents MLH-MWR obtained from the nominal profile, and the black
squares are corresponding MLH-MWR obtained from the perturbed profiles. (b)
MLH-MWR error due to the uncertainty in the measured surface temperature,
∆zT0 , obtained by adding and subtracting 0.5 K from the reference temperature.
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The parcel method is then applied to all three of these profiles (Fig. 3.4a): (i)
θMWR(z) + ∆θ(z), or the upper error-bound profile for the potential temperature,
(ii) θMWR(z), or the nominal profile, and (iii) θMWR(z)−∆θ(z), or the lower error-
bound profile, and consequently, a MLH error bar is obtained. Fig. 3.4a shows an
example error bar calculation for the temperature profiles retrieved from HATPRO
MWR measurements at Jülich, Germany at 1401 UTC on 24 April 2013. It can be
observed that retrieval errors on the order of less than 2 K throughout the vertical
profile introduce an uncertainty of about ∆zT ≈ 500 m in the MLH estimates.

(b) Assessment of surface-temperature errors on the estimated MLH, ∆zT0 : Follow-
ing a similar perturbation approach, the uncertainty of the estimated MLH due to
surface-temperature errors ∆zT0 is calculated by adding and subtracting the ap-
proximate uncertainty in the surface temperature (±0.5 K) (Crewell & Löhnert,
2007) to T0. Fig. 3.4b shows three resulting MLH estimations. As a result of this
perturbation in the surface temperature T0, the uncertainty in the MLH is about
150–300 m.

Finally, the total error from error sources (a) and (b) above is computed by error
superposition (Fig. 3.1) as

∣∣∆zMWR
MLH

∣∣ =√|∆zT |2 + |∆zT0|
2 (3.12)

3.3.4 MLH estimation from radiosonde data

The procedure to estimate the nominal MLH from RS data is the parcel method
(refer to Sect. 3.3.3). RS-MLH errorbars are derived in similar fashion to Sect.
3.3.3.b assuming ± 0.5 K surface temperature uncertainty. Unlike the uncertainty
for temperature profiles T (z) retrieved from MWR, however, the uncertainty as-
sociated with RS-measured T (z) is not altitude dependent, but constant (± 0.5 K)
with height. Thus,

∣∣∆zRS
MLH

∣∣ = ± 150–300 m.

3.3.5 30-min averaged MLH retrievals and error assessment

In order to inter-compare MLH retrievals in a meaningful statistical sense we stan-
dardize MLH-LC-EKF, MLH-MWR, and MLH-DWL to a common temporal reso-
lution of 30 min via Maximum Likelihood (MaxL) as (Rocadenbosch et al., 2020)

MLHX(th) =

∑
k zk/σ

2
k∑

k 1/σ
2
k

, (3.13)
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where X stands for the instrument or method used (X = EKF , MWR, DWL),
th is the center time of the 30-min time window (th = 0630, 0700, . . . , 2000 UTC),
zk (formally, zk = zXMLH,k) is the instantaneous MLH estimated at time tk ∈ [th −
15 min, . . . , th+15 min], i.e., with the raw temporal resolution of the instrument/me-
thod X , and σk (formally, σk = σX

MLH,k) is the associated uncertainty of MLH es-
timate zk. σk is computed via Eqs. (3.8), (3.12) and (3.10) for the MLH-LC-EKF,
MLH-MWR, and MLH-DWL, respectively.

The associated 30-min MLH uncertainty is computed as

σX(th) =
√

σ2
X1
(th) + σ2

X2
(th), (3.14)

where σX1 is the standard deviation of the estimated MLH by instrument or method
X (a proxy of the instantaneous MLH variability),

σX1 = std(zk) (3.15)

and σX2 is the uncertainty associated with the MLH estimation by instrument or
method X ,

σX2(th) =

√
1∑

k 1/σ
2
k

. (3.16)

In Sect. 3.4, intercomparisons of 30-min MLH will be performed on pairs of
instruments. Bias between instruments X and Y is computed as

biasX,Y (th) = MLHX(th)−MLHY (th), (3.17)

and bias variability as

σX,Y
bias (th) =

√
σX(th)2 + σY (th)2. (3.18)

3.3.6 The ceilometer-MWR synergistic (SYN) method

The MLH-LC-EKF and MLH-MWR methods feature contrasting behaviours as ex-
emplified in Fig. 3.3a. On one hand, MLH-MWR uncertainties span several hun-
dred meters (blue error bars), and expand with height as a consequence of the
MWR coarser spatial resolution at higher altitudes. On the other hand, MLH-LC-
EKF have much smaller uncertainties (magenta error bars), on the order of tens
of meters, which lie within those of MLH-MWR when the ABL is well developed
(e.g., 1000–1400 UTC). However, during the ETT (1500–1800 UTC), MLH-LC-EKF
detaches from the ABL, following the RL, instead.
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Accordingly, we are motivated to introduce a synergistic MLH estimation method
(SYN), which yields an optimal MLH estimate (MLH-SYN) that improves upon
MLH-MWR and MLH-LC-EKF estimates considered in isolation. The SYN method
combines the 30-min MLH retrievals and associated uncertainties of these two
methods as follows: the MLH estimate provided by the synergistic method, MLHSY N ,
is computed as

(i) the maximum likelihood between MLH-LC-EKF and MLH-MWR as

MLHSY N(th) =

MLHEKF (th)

σ2
EKF (th)

+ MLHMWR(th)

σ2
MWR(th)

1/σ2
EKF (th) + 1/σ2

MWR(th)

if IEKF (th) ∩ IMWR(th) ̸= ∅
(3.19)

in two situations:

(a) when their respective MLH uncertainty intervals (Eq. (3.14)),

IEKF (th) = JMLHEKF (th)− σEKF (th),MLHEKF (th) + σEKF (th)K and

IMWR(th) = JMLHMWR(th)−σMWR(th),MLHMWR(th)+σMWR(th)K over-
lap at least partially (i.e., Eq. (3.19)), or

(b) when th falls in a strongly convective period, I = [1000 – 1400] UTC. I
corresponds to mid-afternoon at the JOYCE site, when, assuming qui-
escent atmospheric conditions, the CBL reaches is maximum depth and
maturity. In a more generalized formulation, I would be location-dependent.

The associated uncertainty for the synergistic MaxL estimate of Eq. (3.19)
above is given by

σSY N(th) =

√
1

1/σ2
EKF (th) + 1/σ2

MWR(th)
. (3.20)

(ii) The MLH-MWR estimate elsewhere (i.e., out of statements (i.a) and (i.b)
above). Formally, {

MLHSY N(th) = MLHMWR(th) .
σSY N(th) = σMWR(th)

} (3.21)

In this latter case, the uncertainty of the MLH-SYN is equal to that of MLH-
MWR (Eq. (3.14)).
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Eq. (3.19) is essentially the MaxL definition given by Eq. (3.13) but applied to
each pair of MLH estimates, EKF and MWR, at each 30-min time step, th. The SYN
method is discussed next in Sect. 3.4.1.

In case (i), this formulation balances MLH-LC-EKF and MLH-MWR estimates
by attributing higher weight to the estimates with lower uncertainty. Typically,
MLH-LC-EKF is favored during the mid-afternoon peak in convective boundary
layer growth. Case (ii) typifies MLH development or decay during MTT and ETT,
respectively. During these periods, MLH-LC-EKF and MLH-MWR tend to di-
verge, and the SYN method retains MLH-MWR as the most reliable estimate. This
constraint ensures that the SYN method avoids MLH-LC-EKF tracking the RL (i.e.,
layer-attribution error).

3.4 Discussion

30-min MLH-SYN estimates are compared to MLH-LC-EKF, MLH-MWR and MLH-
DWL (Sect. 3.3) considered in isolation with reference to MLH-RS. The statistical
analysis is limited to the 0600-2030 UTC time interval, which delineates the CBL
diurnal cycle including MTT and ETT over the JOYCE site. Sect. 3.4.1 discusses the
synergistic method in the context of one “textbook” clear-day example, Sect. 3.4.2
gives an overview of the campaign dataset, and Sect 3.4.3 evaluates performance
statistics of the different MLH retrieval methods for the whole campaign.

3.4.1 Synergistic method example

Case day 20 April 2013 (Fig. 3.3a) is used to exemplify the synergistic method re-
trieval in Fig. 3.5a. MLH estimates derived from the different methods are plotted
with 30-min resolution (Eq. 3.13). This day was characterized by a cloud-capped
mixing layer from 0700 to 1100 UTC and by clear sky otherwise. For visual ref-
erence in the plots next, MTT is defined as [0600–1000) UTC, ETT as [1400–2030)
UTC, and peak convective boundary layer growth time as [1000–1400) UTC. Solar
noon at JOYCE is 1130 UTC.

From 0600 to 0800 UTC, MLH-LC-EKF, MLH-MWR and MLH-DWL track closely
with one another but fall below MLH-RS (Fig. 3.5a). The MLH-LC-EKF agreed
well with MLH-MWR, despite the presence of aerosols in the 500–1000 m layer. In
contrast, MLH-DWL fell slightly below MLH-MWR because of the relatively weak
turbulence in the early morning, and the the use of a constant VVSTD threshold
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(Sect. 3.3.2). MLH estimates from all methods coincided from 0800 to 1500 UTC.
In other words, during most of this interval (case (i.a) in Sect. 3.3.6), the MLH-
LC-EKF and MLH-MWR errorbars (computed as the ±3σ value from Eq. (3.14))
partially or totally overlapped and hence, the MLH-SYN) was the MaxL estimate
between the MLH-LC-EKF and MLH-MWR retrievals in isolation (Eq. 3.19) with
an associated uncertainty given by Eq. (3.20).

Figure 3.5: Performance of the SYN algorithm and MLH-LC-EKF, MLH-MWR, and
MLH-DWL methods in isolation with reference to MLH-RS estimates as function
of hour of day (case 20 April 2013, Fig. 3.3). (a) 30-min MLH estimates (Eq. (3.13)).
(b) MLH bias (Eq. (3.17)). (c) MLH bias variability (Eq. (3.18)). Labels A, B, and C
indicate typical MTT, peak convective, and ETT intervals, respectively (Sect. 3.4.1).

During the strongly convective interval, 1000 to 1400 UTC (case (i.b) in Sect.
3.3.6), the ML-to-FT gradient was sharply defined, and reliability of MLH-LC-EKF
increased, with values closer to MLH-RS. In this interval, the ML was free from
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layer attribution errors, and the MLH-SYN was constrained to the MaxL value
between MLH-LC-EKF and MLH-MWR, irrespective of whether their individual
error bars overlapped (e.g., at 1400 UTC). The latter shows the case of thermal
updrafts causing MLH-MWR and MLH-DWL to jump slightly above the smoother
MLH-LC-EKF time series. As a result of the smaller MLH-LC-EKF error bars dur-
ing this interval, the MLH-SYN followed MLH-LC-EKF and inherited its smaller
uncertainty (Eq. 3.20).

After 1500 UTC (i.e., the start of the ETT), each MLH estimate started to de-
velop a distinct behaviour: MLH-DWL fell quickly as thermal turbulence decayed,
whereas MLH-MWR decreased smoothly, thus coinciding with the radiosonde at
1700 UTC. In contrast, MLH-LC-EKF kept on tracking the elevated aerosol layer,
which became the RL. In this situation, MLH-SYN followed MLH-MWR (case
(ii) in Sect. 3.3.6, with MLH-SYN error bars overlapping MLH-MWR error bars
(plotted in dark red and blue, respectively, in Fig. 3.5a), therefore avoiding layer-
attribution errors typical of MLH-LC-EKF in the ETT.

Bias performance of the different MLH estimation methods with reference to
MLH-RS are shown in Fig 3.5b. MLH-SYN and MLH-MWR (labeled SYN-RS
and MWR-RS, respectively) yielded bias (Eq. 3.17) of less than ±150 m during
the whole period (0600–1400 UTC). Additionally, MLH-SYN bias variability (Eq.
3.18) was always lower than that of MLH-MWR (Fig 3.5c, SYN-RS and MWR-RS
bars), which increases our confidence in the SYN algorithm. In the highly convec-
tive time interval B, it is evident that the MLH-LC-EKF bias variability is much
lower than that of MLH-MWR (Fig 3.5c, EKF-RS and MWR-RS bars). MLH-DWL
bias in the 0900–1500 UTC interval (corresponding to the well-developed ML) was
± ∼100 m, comparable to MLH-SYN bias. However, outside of this interval (e.g.,
at 0700 and 1700 UTC, empty green circles) MLH-DWL bias dramatically increased
to 300 and 600 m, respectively. As mentioned in Sect. 3.3.2, this is a consequence
of using a constant VVSTD threshold.

3.4.2 Dataset overview

Having examined a single case day in detail, we now expand our analysis to con-
sider the entire data set from the 31-day HOPE campaign (01 April to 06 June 2013),
which included 80 radiosondes.

Twenty-one days were selected from this set with a total of 55 radiosondes
available. Selected days were either clear-sky days (cloud cover below 3 km lower
than 10%, 8 days) or cloudy days (cloud cover below 3 km not greater than 70%, 13
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days): Clear-sky days included days with single (Fig. 3.5a) or multiple aerosol lay-
ers (Fig. 3.6a) in the transition times. Cloudy days were characterized by a cloud-
capped BL (Fig. 3.6b), sometimes with additional midlevel clouds well above the
BL (Fig. 3.6c). Eight of the selected days included light drizzle events (< 0.5 mm/h,
< 30 min/event, accumulated rain (0600-2000 UTC) < 0.1 mm), which usually oc-
curred during MTT or ETT. Excluded days (10) were days with cloud cover below
3 km greater than 70% (7 days) and rainy days (rain intensity >= 0.5 mm/h, 2
days).

During the period of peak CBL growth (1000–1430 UTC), CBHs are usually
at the same height as the MLH (Fig. 3.6b), as is common in the spring and sum-
mer time (Schween et al., 2014). MLH-RS using the parcel method overestimated
the MLH at 11, 13 and 15 UTC by some 300 m, which motivated us to compare
MLH-RS with the MLH retrieved using another thermodynamically-based alter-
native, the Bulk Richardson Number method (Schween et al., 2014). Like the par-
cel method, the Bulk Richardson Number method is also based on the temperature
profile, but less sensitive to perturbations in the surface temperature, T0. For con-
sistency when computing statistics for the whole campaign, we retain MLH-RS
using the parcel method.

Virga (precipitation streamers attached to the base of the clouds, e.g., in Fig. 3.6c
from 1730-2000 UTC) were also problematic for MLH-LC-EKF, which tended to
track the sharp gradient at the cloud tops from 1800 UTC onwards. Because cloud
cover strongly changes the incoming solar radiation and, consequently, ML growth,
cloudy days are particularly challenging for MLH-DWL, which uses VVSTD as a
proxy of the turbulent mixing. Qualitatively, the SYN algorithm delineated fairly
well the typical ML diurnal cycle (Fig. 3.6a-c).

3.4.3 Performance statistics

In this subsection, statistical measures of central tendency and variability for the
21-day sample considered are used to demonstrate superiority of MLH-SYN over
MLH-MWR and MLH-LC-EKF estimates considered in isolation. Definitions for
the statistical indicators are given in Appendix A.

During the course of this research, it was found that MLH-DWL performance
statistics for the whole campaign are inferior to those of the other MLH estimation
methods, mainly because MLH-DWL is hampered by the use of a fixed VVSTD
threshold. In particular, during MTT and ETT, intermittent turbulence tends to
cause MLH-DWL instability if the threshold is not adjusted. Dynamic adjustment
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Figure 3.6: As in Fig. 3.5a, but representing the three typical atmospheric modes
observed during the HOPE campaign: (a) Clear-sky day (22 April 2013) showing
multiple aerosol layers from 0600 to 1000 UTC; (b) partially cloud-capped bound-
ary layer day (13 April 2013); and (c) midlevel cloud day (16 May 2013) with virga
from 1730 to 2000 UTC. In panel (b), red squares are MLH estimates made us-
ing Bulk Richardson Number (BRN) derived from RS θ(z) profiles. Black and red
stars at 1700 UTC indicate the stable BL height estimates retrieved by the gradient
method and BRN, respectively.

of the VVSTD threshold in MLH-DWL falls beyond the scope of the present work.
MLH-DWL performance characteristics will nonetheless be reported in this study
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Figure 3.7: Means and uncertainties of 30-min MLH estimates over the selected
21 clear-sky days as a function of hour of day in UTC (LT=UTC+1h). (a) (Top
panel) means (Eq. (B.0.1)) of MLH-SYN (red solid trace), MLH-LC-EKF (magenta
dots), MLH-MWR (white diamonds), MLH-DWL (green dots) and MLH-RS (black
squares). (b) Number of case days (out of 21 total days) used to compute mean
values. (c) Median values (markers) and interquartile ranges (bars) of the 30-min
MLH uncertainties (Eq. 3.14).

in order to motivate future research in this area.
I. MLH estimates by the different methods: MLH estimates averaged over the se-

lected 21 days as a function of hour of day (local time) are shown in Fig. 3.7a.
While both MLH-MWR and MLH-EKF methods were based on 21 samples (one
for each hour, each day; Fig. 3.7b), MLH-DWL furnished fewer samples during
MTT (0600-0800 UTC) and ETT (1600-2030 UTC) , open green circles). In these
time intervals, MLH-DWL was often < 120 m, and such estimates were rejected as
outliers by the reasoning discussed in Sect. 3.3.2.
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The best agreement among all MLH estimation methods occurred from 1000 to
1400 UTC. As previously mentioned, this is the interval in which, under quiescent
conditions, intensive, thermally driven convection deepens the CBL and, conse-
quently, MLH reaches its highest altitudes of the daily cycle (Stull, 1988). The
MLH-LC-EKF attribution-layer error clearly evidenced during MTTs and ETTs,
during which the SYN algorithm successfully took over. From 0600 to 0900 UTC,
the MLH-LC-EKF exceeded MLH from other estimators, revealing that MLH-LC-
EKF retrievals were frequently affected by the persistent aerosol layers from the
previous night. During early the morning, the MLH-SYN followed MLH-MWR.
Both rose in concert with MLH-RS 0700 and at 0900 UTC. MLH-SYN, MLH-MWR
and MLH-DWL rose together until 1400 UTC. As exemplified by previously dis-
cussed case of 20 April 2013 (Fig. 3.5), the disagreement among all MLH estimation
methods grew sharply from 1500 UTC onwards (i.e., the start of the ETT), when
the turbulence decayed, the CBL separated from the RL, and the stable boundary
layer began to form in response to the reversal of surface radiative flux. MLH-
LC-EKF tracked this RL. While MLH-DWL properly tracked the turbulence decay,
it exhibited worse agreement than MLH-MWR with MLH-RS at 1700 UTC (Fig.
3.7a).

30-min MLH estimation uncertainty (Eq. (3.14)), as a function of hour of day
is shown in Fig. 3.7c by computing medians and interquartile ranges (25-to-75-th
percentiles) for the total sample of 21 days. MLH-LC-EKF exhibited much lower
medians (by ≈ 40 m) and spreads than MLH-MWR in all hours of the strongly
convective period (e.g., ≈ 140 m, 1000–1400 UTC). This result further favours the
SYN algorithm during this interval.

II. Performance of the SYN method and of MWR and EKF methods in isolation with
reference to RS retrievals:

MLH bias vs. RS - MLH mean bias (Fig. 3.8a, Eq. (B.0.3)) is computed as the
difference between the 21-day means of MLH-SYN, MLH-MWR, MLH-DWL and
MLH-RS estimates in a 30-min time window centred at the RS launch time.

MLH-SYN and MLH-MWR yielded mean biases less than ± 150 m overall
(SYN-RS and MWR-RS labels in Fig. 3.8a, respectively), and -150 m during the
convective interval (B; 1000–1400 UTC). The latter is consistent with the findings
of (Banks et al., 2015) (Fig. 4a therein) who estimated bias of ≈ 200 m for MLH-
LC-EKF. As expected, MLH-LC-EKF (EKF-RS label in Fig. 3.8a) performed poorly
outside the 1000–1400 UTC convective interval (B), during the MTT and ETT. Its



3.4. DISCUSSION 61

-400

-200

0

200

400

M
LH

 m
ea

n 
bi

as
 [m

]

SYN-RS EKF-RS MWR-RS DWL-RS

NA

6 8 10 12 14 16 18 20
Time [hour UTC]

0

200

400

S
T

D
 [m

]

A B CA B CA B CA B C

DWL-RS (-480 m)

(a)

(b) 455 m Out of scale (455 m)605 m

Figure 3.8: Biases relative to MLH-RS of the 30-min MLH estimations over the
selected 21 clear-sky days as a function of hour of day in UTC. (a) Mean biases.
Label “X-RS” (X=SYN, EKF, MWR, DWL) stands for the mean bias µX,RS

bias (th) (Eq.
(B.0.3)) between an instrument/method combination X and MLH-RS. (b) Mean
biases standard deviation σX,RS

bias (th) (Eq. (B.0.4))

V-shaped mean bias curve reaches +200 and +400 m at 0700 and 1700 UTC, respec-
tively.

MLH bias-to-RS variability.- MLH bias-to-RS variability (Fig. 3.8b) is computed
as the standard deviation (STD) given by Eq. (B.0.4). Because all the MLH es-
timates are subject to the same atmospheric, day-to-day variability, comparative
differences in bias STD among them are attributable to their individual perfor-
mance. Therefore, each hourly set of vertical bars ranks the different MLH esti-
mation methods by bias performance with reference to RS. Thus, in the convective
interval (1000-1400 UTC) MLH-LC-EKF and MLH-SYN had the lowest bias STD
(EKF-RS and SYN-RS labels, respectively). In contrast, during TTs, MLH-MWR
and MLH-SYN exhibited the lowest bias STD. In summary, the the SYN algorithm
performed best over the whole daily interval because it inherited the superior per-
formance characteristics of its constituent methods. MLH-LC-EKF performance in
TTs was – as expected – worst (Fig. 3.8a). MLH-DWL only gave usable estimates
between 900-1500 UTC, and even then its performance (green bars) was always
worse than that of the MWR (blue bars). Outside of this interval, there were re-
trieval issues (empty green dots) related either to the selection of a fixed VVTSD
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threshold or MLHs below the instrument minimum measurable height of 120 m.
Correlation and regression analysis.- Fig. 3.9 compares the different MLH re-

trievals to MLH-RS (e.g., X = MLHRS and Y = MLHMWR in panel (a)). Two time
intervals were investigated: (i) One capturing the full daytime diurnal cycle [0600-
2030) UTC, which included 55 radiosondes, and (ii) the shorter, strongly convective
period in the local afternoon [0930-1430) UTC, which included 28 radiosondes. MLH
mean bias (MB) values in each of these two time intervals were comparable for
both SYN and MWR methods. Additionally, the MB obtained in time intervals
(i) and (ii) (red and blue text labels, respectively) for each method approximately
coincided with the average of the hourly biases plotted in Fig. 3.8a in these inter-
vals. The root-mean-square error (RMSE) was slightly lower for the SYN method
(RMSE

(i)
SY N = 247 m, RMSE

(i)
MWR = 278 m, see labels) and relatively high for the

DWL RMSE
(i)
SY N = 393 m. The latter value is in accordance with the RMSE of

359 m (0800-1600 UTC) reported by Schween et al. (2014). All RMSE indicators
improved in convective time interval (ii) because of the lower variability of the
MLH.

The significance of the indicators above warrant some comments. Gross outliers
were particularly abundant during TTs. Gross outliers are defined as biased es-
timates (MLHX-MLHRS , X=SYN, EKF, MWR, DWL) above ±1σ of the mean of
the associated MLH bias histogram computed hourly. To further improve the sig-
nificance of results, gross outliers were removed prior to evaluating correlation
statistics via a similar procedure as that described in (Banks et al., 2015) and (Roca-
denbosch et al., 2020). When Fig. 3.9 was regenerated after gross outliers were re-
moved (not shown), the linear regression lines (”RL” subscript in Fig. 3.9) became
virtually coincident with the 1:1 line, indicating virtually no bias. Furthermore,
MLH-SYN remained superior to MLH-MWR and MLH-DWL. In the diurnal time
interval (i) above, the SYN exhibited ρ

(i)
SY N,1σ = 0.98, RMSE

(i)
SY N,1σ = 76 m, fol-

lowed by the MWR, ρ(i)MWR,1σ = 0.96 and RMSE
(i)
MWR,1σ = 103 m and the DWL,

ρ
(i)
DWL,1σ = 0.95 and RMSE

(i)
DWL,1σ = 157 m. Over the convective time interval

(ii), the SYN achieved ρ
(ii)
SY N,1σ = 0.99 and RMSE

(ii)
SY N,1σ = 41 m (as compared to

ρ
(ii)
MWR,1σ = 0.94 and RMSE

(ii)
MWR,1σ = 86m prior to gross outlier removal).

3.5 Conclusions

A synergistic MLH retrieval algorithm combining MWR and ceilometer-based es-
timates was presented along with performance statistics covering 21 days of the
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Figure 3.9: Scatterplot comparison of 21 clear-sky day, 30-min (a) MLH-MWR, (b)
MLH-LC-EKF, (c) MLH-SYN and (d) MLH-DWL with MLH-RS. Green, blue and
yellow dots depict MLH estimates in the [0600-0930), [0930-1430) and [1430-2030)
UTC time intervals, respectively. Red and blue lines are regression lines over diur-
nal [0600-2030) UTC and convective [0930-1430) UTC MLH estimates, respectively.
RMSERL denotes regression-line root-mean-square error. For reference in all pan-
els, the 1:1 line is drawn as a black dashed line. Mean bias (MB) and RMSE are
annotated in colors corresponding to their respective time intervals.

HOPE campaign. The SYN method used a maximum-likelihood algorithm (Sect.
3.3.6) that combined MLH-LC-EKF and related error uncertainties in the strongly
convective BL time interval (local afternoon, which at JOYCE is 1000–1400 UTC)
with MLH-MWR and associated uncertainties outside of this interval. MLH-LC-
EKF were derived from the ML-to-FT gradient in the attenuated backscatter profile
by using a Kalman filter, yielding time-adaptive MLH estimates with a tempo-
ral resolution equal to that of the LC. MLH-MWR were estimated by the parcel
method applied to MWR-derived temperature profiles.

The motivation for creating MLH-SYN, which combined MLH estimates by
different methods, was the inherent weaknesses each method exhibited in isola-
tion. Specifically, MLH-LC-EKF tends to track aerosol gradients, which led the



3.5. CONCLUSIONS 64

filter to follow RLs during MTT and ETT. The latter was the most common layer-
attribution error. In experiments, the EKF was able to detect gradients as low as 1.5
to 1 times the mean FT level (Fig. 3.2a). Assuming no attribution errors, the MLH
uncertainty was given by the a posteriori error of the filter (Sect. 3.3.1). We therefore
formulated MLH-SYN to equal MLH-LC-EKF in the strongly convective afternoon
interval (1000-1400 UTC). Outside this interval, MLH-MWR proved more reliable,
with an uncertainty given by the inherent error in the MWR-retrieved temperature
profile and parcel-method surface-temperature error (Sect. 3.3.3). MLH-DWL was
excluded from the formulation of MLH-SYN; intermittent turbulence, particularly
during the ETT, along with the assumption of a fixed VVSTD threshold, were ma-
jor issues.

The variability in MLH estimation uncertainty matched that of its component
algorithms (MLH-MWR and MLH-LC-EKF) as a function of time of day (Fig. 3.7b).
Specifically, during the strongly convective interval (1000–1400 UTC), the MLH-
SYN exhibited ≈ 40 m (median) as compared to ≈ 140 m by MLH-MWR, which
indicates that SYN inherited the steady tracking performance of the MLH-LC-EKF.
Outside this interval, the variability of MLH-SYN approached that of MLH-MWR.

Comparative performance of the different MLH estimation methods with ref-
erence to MLH-RS was also addressed. Statistical analysis over the 21-day sample
showed that MLH mean bias was inflated by gross outliers associated with TTs
and day-to-day atmospheric variability. Additionally, the parcel method (used in
both MLH-MWR and MLH-RS) was particularly sensitive to the accuracy of sur-
face temperature T0. Non-representativeness of T0 on specific days involving com-
plex micrometeorological effects was a challenging difficulty. Nonetheless, with
reference to radiosoundings (with and without outlier removal from the data col-
lection), the SYN algorithm outperformed all other MLH estimation methods in
isolation. In the diurnal(i)Jconvective(ii)K time interval, MLH-SYN achieved a corre-
lation coefficient ρ(i)(ii)SY N,1σ ≥ 0.98 and RMSE, RMSE

(i)
SY N,1σ = 76m (RMSE

(ii)
SY N,1σ =

41 m). These results compare favorably to MLH-MWR alone: ρ(i)(ii)MWR,1σ ≥ 0.94 and
RMSE

(i)
MWR,1σ = 103m (RMSE

(ii)
MWR,1σ = 86m).

To sum up, although SYN used the simplistic assumption of a fixed strongly
convective time interval (1000–1400 UTC), the time-adaptive combination of two
largely independent methods for MLH tracking, one based on aerosol gradient-
based observations (MLH-LC-EKF) and the other temperature-based (MLH-MWR)
has shown superior MLH tracking skill. Further research is planned to extend this
methodology over the whole diurnal cycle, as well as to explore further synergy
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with DWL sensors. Besides, a comparison of all the sources of uncertainty in terms
of how they balance and propagate would be an interesting study for the remote
sensing community.





Chapter 4

Assessing Obukhov length and
friction velocity from floating lidar
observations

This Chapter presents a parametric-solver algorithm - the so-called 2D method - for esti-
mating atmospheric stability and friction velocity from floating Doppler wind lidar (FDWL)
observations. The focus of the study is two-fold: (i) to examine the sensitivity of the compu-
tational algorithm to the retrieved variables and derived stability classes (the latter through
confusion-matrix theory), and (ii) to present data screening procedures for FDWLs and
fixed reference instrumentation at the IJmuiden test site.

The contents of this Chapter are part of the paper Araújo da Silva et al. (2022a) pub-

lished in MDPI Remote Sens. Systematic or multiple reproduction or distribution to mul-

tiple locations via electronic or other means is prohibited and is subject to penalties under

law.

4.1 Introduction

Over the past decades, wind energy (WE) has achieved an important position in
the global energy market due to its technical improvements and relevant advan-
tages in terms of environmental impact (Council, 2019; Gutiérrez-Antuñano, 2019).
In particular, interest has been rising in offshore WE due to the strong homoge-
neous winds over the ocean (GWEC, 2016). Nowadays, offshore WE is one of the
core technologies of the European roadmap to becoming carbon neutral (Carbon
Trust, 2018). However, offshore wind farms still have very high production and
deployment costs compared to onshore facilities (Hevia-Koch & Jacobsen, 2019a).
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In order to reach the European goal of 150 GW of installed offshore WE capacity
by 2030, efforts toward commercial competitiveness are being dedicated by the WE
industry and research institutions (IRENA, 2019). Traditionally, the wind resource
of potential wind farm areas has been characterized using meteorological masts
planted on the seabed (Sathe & Mann, 2013). In some cases, the instrumentation
on the masts can be used to assess the state of the atmosphere together with the
wind resources. However, they also have very high production and deployment
costs and cannot be re-placed once installed (WindPower, 2018).

In the past few years, Doppler wind lidars (DWLs) have been introduced as
an alternative for masts due to their flexibility and cost-effectiveness (Gottschall
et al., 2014). When deployed offshore atop buoys, floating DWLs (FDWLs) have a
series of advantages over metmasts: an offshore metmast can easily cost millions
of Euros and requires a long planning and construction period. FDWLs costs are in
the hundreds of thousand Euro range and are not as demanding regarding the soil,
environmental constraints, and construction time frames (Nicholls-Lee, 2013; Peña
et al., 2013). In addition, a FDWL can easily be redeployed to other locations and
thus cover larger areas (Pichugina et al., 2012). In the past few years, commercially
available FDWLs have widely been deployed around the world and the reliability
of their data has been proven, either as standalone instruments or collocated with
masts to measure atmospheric- and sea-related parameters (Salcedo-Bosch et al.,
2021b).

On the other hand, FDWLs suffer the influence of wave motion, which in-
creases the variances of the reconstructed wind by the lidar (Salcedo-Bosch et al.,
2021a; Tiana-Alsina et al., 2017; Kelberlau et al., 2020). However, within averaging
periods typical of atmospheric measurements, i.e., 10 or 30 min, the error due to
wave motion on the mean reconstructed wind vector are negligible (as they cancel
out within such periods), as shown by multiple validation campaigns (Gutiérrez
et al., 2015; Gutierrez-Antunano et al., 2017; Schuon et al., 2012; Mathisen, 2013;
Gutiérrez-Antuñano et al., 2018).

FDWLs cannot generally assess the same number of atmospheric parameters as
masts. Masts can host multiple sensors to assess several different atmospheric pa-
rameters, such as, temperature, pressure, humidity and turbulent fluxes, whereas
FDWLs are generally limited to observe wind speed and wind direction (Camp-
bell Scientific, 2016). Several authors have reported the influence of atmospheric
stability on different aspects of the wind power generation, e.g., turbine power per-
formance, wind shear, and wakes (Subramanian et al., 2018; Machefaux et al., 2016;



4.1. INTRODUCTION 69

Kim et al., 2021). Ghaisas et al. (2017) compared different power laws to retrieve
the wind-shear coefficient in order to extrapolate the wind speed to the turbine hub
height. They concluded that when atmospheric stability information was included
when extrapolating the wind speed, the results substantially improved, yielding
to a predicted hub-height wind speed at worst biased by 5%.

Alblas et al. (2014) studied two offshore wind farms, Egmond aan Zee (OWEZ)
and North Hoyle, and found that unstable conditions led to smaller wake losses,
thereby yielding higher power output than near-neutral conditions. Fatigue loads
over the wind turbine structure are often estimated by considering turbulence in-
tensity and wind shear. However, many studies have reported a dependency of
fatigue loads on atmospheric stability, which can be used in order to improve the
load calculation accuracy (Kretschmer et al., 2018; Holtslag et al., 2016; Sathe et al.,
2013).

The Obukhov length, L, a key parameter within the Monin–Obukhov simi-
larity theory (MOST, (Monin & Obukhov, 1954)) is nowadays employed in wind
energy to predict the vertical behavior of wind and to classify periods in different
atmospheric stabilities (Subramanian et al., 2018; Barthelmie, 1999; Holtslag et al.,
2015; Sathe et al., 2011). Computation of the Obukhov length requires the measure-
ment of momentum and heat fluxes, which can be directly calculated from sonic
anemometers.

There are different suggestions to estimate the Obukhov length in situations in
which the experimental setup is limited. Beljaars et al. (1989) proposed a method
to retrieve the Obukhov length based on MOST relationships by using the rough-
ness length, the wind speed at one reference height, and the difference between
air and sea-level temperatures. Their method was used, for instance, by Motta
et al. (2005), who studied the influence of atmospheric stability on the power out-
put of a potential wind farm. A similar approach, which relies on temperature
and wind measurements at different levels, was extensively described by Holt-
slag et al. (2014). Basu (2018) proposed an optimization method to estimate the
Obukhov length (without temperature measurements) from wind profile measure-
ments at three heights. The method consists of Obukhov length optimization to-
wards MOST. The optimization is achieved by a root finding algorithm accounting
for the monotonic behavior of the vertical wind speed ratio with respect to the
Obukhov length.

In the present work, we constructed a parametric solver algorithm along with
a basic data screening procedure that, relying on FDWL measurements only and
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MOST, enables the estimation of the Obukhov length and friction velocity. Ad-
ditionally, a sensitivity study was conducted for the retrieved variables and esti-
mated atmospheric stability classes. In contrast to the approaches by Holtslag et al.
(2014) and Beljaars et al. (1989), the parametric algorithm assesses the atmospheric
stability without needing temperature inputs. Complementary to the method pro-
posed by Basu (2018), the proposed algorithm can be extended to an unlimited
number of measurement heights.

The work is structured as follows: Section 4.2 describes the 3-month measure-
ment campaign carried out at IJmuiden as well as the instrumental setup. Section
4.3.1 introduces the notation used in this work, Section 4.3.2 revisits MOST and
atmospheric stability classifications. Section 4.3.3 describes the parametric solver
algorithm. Sections 4.3.4 and 4.3.5 outline the derivation of the Obukhov length
and friction velocity. Section 4.3.6 describes the data screening methods used to
enhance measurement precision and data quality for both FDWL and the mast.
Section 4.4 provides a discussion of the results and, finally, Section 4.5 provides
our concluding remarks.

4.2 Materials

This Chapter uses data from the IJmuiden observational campaign. Refer to Sect.
2.2.3 for a detailed review of the related instruments.

4.3 Methods

4.3.1 Wind notation conventions

Wind measurements from the instruments above provided the three instantaneous
wind vector components (u, v, and w) corresponding to the components in the hor-
izontal x and y, and vertical z directions, respectively. Fluctuations u′, v′, and w′

are defined as the difference between the actual instantaneous velocity compo-
nents and their respective mean velocities, e.g., u′ = u − U , where U is the mean
value of u. Although we often use a Cartesian coordinate system so that the x, y,
and z axes point north, east, and south, here, we align x along the wind direction.
We skip usage of U to denote the mean wind component in order to avoid con-
fusion with the vector notation

−→
U , which is used to denote a specific set of HWS

measurements in subsequent sections. We retain, however, usage of the over-bar,
(.), to denote mean over time (10 min) for all other variables.
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4.3.2 Surface-layer theory

The vertical wind gradient for a neutral, homogeneous, and stationary flow can
expressed as (Panofsky, 1973)

∂U

∂z
=

u∗

l
, (4.1)

where u∗ is the friction velocity and l is the mixing length (Peña et al., 2008). In
the surface layer, which corresponds to the lowest 5–10% of the boundary layer,
the magnitudes of stress and turbulent fluxes generally vary by less than 10% with
height (Stull, 1988). Thus, within the surface layer, two assumptions are commonly
made: (i) the friction velocity variation with height is negligible, and (ii) the mixing
length increases with height as l(z) = κz (Peña & Gryning, 2008), where κ ≈ 0.4

is the von Kármán constant. The logarithmic wind profile for neutral atmospheric
conditions is the integral of Equation (4.1):

U(z) =
u∗

k
ln

(
z

z0

)
, (4.2)

where z0 is the roughness length, which is the height at which the mean wind
speed becomes zero. Over sea, the roughness length is commonly expressed using
the Charnock’s relation,

z0 = αc
u2
∗
g
, (4.3)

where g = 9.81 m/s2 is the gravitational acceleration and αc is the Charnock’s
parameter, αc ≈ 0.012 (Charnock, 1955).

According to MOST, the influence of atmospheric stability over the wind speed
gradient within the surface layer is expressed by the dimensionless wind shear,
ϕm, as

∂U

∂z
= ϕm

u∗

κz
. (4.4)

The dimensionless wind shear takes different functional forms depending on
the atmospheric stability conditions. It is usually described by the experiment-
based Businger–Dyer functions (Businger et al., 1971; Dyer, 1974):

ϕm =


1 + β z

L
, for z

L
> 0 (stable)

1, for z
L
= 0 (neutral)(

1− γ z
L

)− 1
4 , for z

L
< 0 (unstable)

, (4.5)

where L is the Obukhov length, z
L

is the dimensionless stability parameter, and
β = 6.0 and γ = 19.3 are empirical constants (Högström, 1988), later validated by
Holtslag et al. (2015) for the IJmuiden site.
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Thus, under non-neutral conditions the diabatic wind profile can be expressed
as

U(z) =
u∗

κ

[
ln

(
z

z0

)
−Ψm

( z
L

)]
, (4.6)

where Ψm

(
z
L

)
is the stability correction function (Stull, 1988; Barthelmie, 1999)

Ψm

( z
L

)
=


−β z

L
z
L
> 0 (stable)

0 z
L
= 0 (neutral)

2 ln(1+x
2
) + ln(1+x2

2
)− 2 arctan(x) + π

2
z
L
< 0 (unstable)

, (4.7)

where x =
[
1− γz

L

]1/4. Although the Businger–Dyer functions were empirically
derived from data collected over land, their applicability has been successfully
tested and validated for the estimation of the offshore wind profile (Holtslag et al.,
2015; Lange et al., 2004).

The Obukhov length can be used to classify atmospheric stability conditions,
classified into stable (L > 0), neutral (L → ±∞), or unstable (L < 0). With a view
to Section 4.4 two atmospheric stability classifications are listed in Tables 4.1 and
4.2 according to the definition classes for L of Van Wijk et al. (1990) and Gryning
et al. (2007).

The behavior of the stability correction Ψm

(
z
L

)
as a function of the Obukhov

length L is depicted in Figure 4.1.
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Figure 4.1: Stability correction function Ψm(
z
L
) as a function of Obukhov’s length

for z = 25 m (thick solid line) and z = 83 m (dashed line). The vertical grey
shaded area delimits the interval from L = −50 to L = 10 m. Vertical lines delimit
Gryning et al. (2007) stability classification thresholds per Table 4.2. Labels: vu,
very unstable; u, unstable; nnu, near-neutral unstable; n, neutral; nns, near-neutral
stable; s, stable; and vs, very stable.

Table 4.1: Van Wijk et al.’s stability classes based on the Obukhov length, L.
Adapted from (Van Wijk et al., 1990).

Atmospheric Stability Obukhov Length Range (m)
Very Stable—vs 0 < L ≤ 200

Stable—s 200 < L < 1000
Neutral—n |L| ≥ 1000

Unstable—u −1000 < L < −200
Very Unstable—vu −200 ≤ L < 0

Table 4.2: Gryning et al.’s stability classes based on the Obukhov length, L.
Adapted from (Gryning et al., 2007).

Atmospheric Stability Obukhov Length Range (m)
Very Stable—vs 10 ≤ L < 50

Stable—s 50 ≤ L < 200
Near-Neutral Stable—nns 200 ≤ L < 500

Neutral—n |L| ≥ 500
Near-Neutral Unstable—nnu −500 < L ≤ −200

Unstable—u −200 < L ≤ −100
Very Unstable—vu −100 < L ≤ −50

Finally, we introduce the wind-speed ratio between HWSs at two heights, z1
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and z2, z2 > z1, is therefore,

WSR(z1, z2, L) =
U(z2)

U(z1)
=

ln
(

z2
z0

)
−Ψm

(
z2
L

)
ln
(

z1
z0

)
−Ψm

(
z1
L

) . (4.8)

The wind-speed ratio is a proxy of wind shear that will be used to analyze the
dependence of wind shear on the dimensionless stability, z

L
, further.

4.3.3 Parametric wind model estimation

We estimate atmospheric stability based on FDWL HWS profiles measured at a
discrete number of heights. We propose solving Equations (4.6) and (4.7) for model
variables L, u∗, and z0. The algorithm’s sensitivity to these three variables and
consequent dimensionality reduction of the problem (two-variable problem, L and
u∗) is provided in Section 4.4.2.

The optimization problem can be formulated as

(L , u∗ , z0) = argmin
L,u∗,z0

||U⃗FDWL − U⃗(z, L , u∗ , z0)||2, (4.9)

where the function U⃗(z, L , u∗ , z0) is the parametric wind profile model formulated
by Equation (4.6) and piece-wise by Equation (4.7). Below, functions are assimi-
lated into vectors and treated indistinctly. A constrained nonlinear least squares
(NLSQ) method is used to solve the model parameters, L, u∗, and z0, minimiz-
ing the error norm between the model vector, U⃗(z), and the FDWL-measurement
vector, U⃗FDWL.

The diabatic correction function Ψm(
z
L
) (Equation (4.7), Figure 4.1) becomes ill-

posed for Obukhov lengths close to zero (L = 0) and exhibits a nearly flat behavior
for large values of the Obukhov length (|L| → ∞). Additionally, Ψm(

z
L
) is a piece-

wise function. To facilitate NLSQ convergence, we define upper and lower search
bounds for each of the parameters to be optimized as

• L ∈ [−2000,−1] ∪ [1, 2000] m,

• u∗ ∈ [0, 1.4] m/s, and

• z0 ∈ [10−5, 10−2] m.

The limiting bounds for the roughness length z0 in offshore environments fol-
low (Golbazi & Archer, 2019; Stull, 1988). The friction velocity bounds are in agree-
ment with those found in different experimental campaigns in the literature (Emeis
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& Türk, 2009; Vickers et al., 2015) and represent roughly a factor 1.5 over the range
of practical friction velocities retrieved by the sonic anemometers (Section 4.3.5,
Equation (4.14)). The search bounds for the Obukhov length, L, are, e.g., a fac-
tor two and four over the practical neutral stability thresholds given by Van Wijk
et al. (1990) (Table 4.1) and Gryning et al. (2007) (Table 4.2), respectively. Larger
values do not tend to substantially improve the algorithm search performance (see
Section 4.4.2).

Optimization starting vector. Two start points, one positive, L+ ∈ [1, 2000], and
one negative, L− ∈ [−2000,−1], are set to L+ = 500 m and L− = −500 m, re-
spectively, as initial guesses for the Obukhov length. This allows us to avoid the
asymptotic discontinuity of Ψm(

z
L
) at L = 0 (Figure 4.1). The initial guesses for the

friction velocity, u∗, and roughness length, z0, are set to 0.7 m/s and 5× 10−3 m, re-
spectively, which are the mean values of these variables in the above search ranges.
From these two starting vectors, (L+, u∗, z0) and (L−, u∗, z0), a positive and a neg-
ative search is started by the NLSQ algorithm and two candidate solution vectors
are obtained. The vector with the smallest error norm is chosen as the solution.

4.3.4 Reference measurements: atmospheric stability

Reference metmast-derived Obukhov length and friction velocity are needed in or-
der to assess the performance of the proposed algorithm in Section 4.3.3 above. In
the present and following subsection (Section 4.3.5), different methods to estimate
such reference parameters are presented.

Conventionally, the Obukhov length is directly computed from turbulence fluxes
measured (from wind and temperature observations at similar heights), e.g., with
a sonic anemometer (Stull, 1988). However, the sonic anemometer at 85 m avail-
able only recorded velocity observations. Alternatively, the method by Grachev
& Fairall (1997) to estimate the Obukhov length, L, provides a way out when air
and sea temperature observations are available, as is the case. They found empir-
ical dependency between the bulk-Richardson number, Ri, and the dimensionless
stability parameter. Their method has been used in recent studies (Holtslag et al.,
2015; Borvarán et al., 2021).

The bulk Richardson number is an approximation of the gradient Richardson
number in which actual local gradients in an atmospheric layer are approximately
computed by measurements at a couple (or a series of) discrete heights. The bulk
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Richardson number is defined as (Stull, 1988)

Ri =
g∆θv∆z

θvU2
, z ∈ [zbottom, ztop], (4.10)

where ∆θv = θv(ztop)−θv(zbottom) is the difference between the mean virtual poten-
tial temperature at the top layer height, ztop, and bottom layer height, zbottom and
∆z = ztop − zbottom. Here, ztop = 21 m above LAT and zbottom = 0 m above LAT. θv
is the mean potential temperature in the layer and U is the mean wind observed at
ztop (at this point we note that U is formally defined as ∆U = U(ztop)−U(zbottom) =

U(ztop) on account of the fact that U(zbottom) = 0). In practice, U is the 10 min
averaged wind observed at 27 m.

The potential temperature is estimated from the expression (Stull, 1988; Wallace
& Hobbs, 2006a)

θv(z) = T (z)

[
P0

P (z)

]R/Cp

[1 + 0.61r(z)] , (4.11)

where T (K) is the temperature, P0 = 1000 hPa is the reference pressure, P is the
air pressure, R ≈ 287 J/(K·kg) is the gas constant of air, Cp ≈ 1004 J/(K·kg) is
the specific heat capacity at a constant pressure for air, and r is the mixing ratio
(unsaturated air).

In this study, we computed the mean potential temperature θv at 21 m from the
mast temperature, pressure, and humidity data at 21 m. θv at sea-level was com-
puted from the wave-buoy-measured 60 min mean water temperature (MacIsaac
& Naeth, 2013), which was interpolated down to 10 min resolution, according to
wind-energy standards (Peña et al., 2013). The pressure and relative humidity at
sea level were calculated by extrapolating the mast pressure and humidity vertical
profiles from the sensors at 21 m and 90 m (Figure 2.11) down to 0 m. Pressure and
relative humidity at 0 m as well as water-temperature at 10 min resolution were
computed via shape-preserving piecewise cubic interpolation (Fritsch & Carlson,
1980; Kahaner et al., 1989).

Subsequent to the calculation of Ri, the dimensionless stability parameter ζ =

z/L is computed as

ζ =

{
10Ri Ri ≥ 0
10Ri
1−5Ri

0 < Ri < 0.2
. (4.12)

The constants 10 and 5 above are empirical values (Grachev & Fairall, 1997).
The latter implies a critical stable Ri of 0.2 so the theory has a limitation when the
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conditions are very stable. Besides, when using the bulk Richarson number ap-
proximation, the thicker the layer, the more likely to smooth out large gradients in
the layer and, therefore, to misestimate the occurrence of turbulence (Stull, 1988).

When we derive L from Equation (4.12) we refer to it as LRi,

LRi(z
′) =

z′

ζ
, (4.13)

where z′ is a reference height ensuring the validity of the bulk Richardson model
(Equation (4.10)) above in the layer [zbottom, ztop]. In the standard methodology
(Grachev & Fairall, 1997), z′ is taken as the sonic-anemometer observational height
(11 m). However, in the case of IJmuiden, temperature and particularly the wind-
speed observational heights are relatively high, 21 and 27 m, respectively. Al-
though a rough estimation of the reference height can simply be taken as the mean
height between the air observational height and sea level (Holtslag et al., 2015), in
this case, z′ ≈ (ztop+zbottom)/2 = 10.5 m, accurate estimation of the reference height
is more involved.

In order to estimate the most accurate meaningful reference height, z′, the fol-
lowing procedure was carried out: different estimations of LRi(z

′) were retrieved
from
Equation (4.13) by varying z′ from the layer top observational height (ztop = 21 m)
to the rough reference height (10.5 m) in steps of 0.5 m, i.e., z′ = 21, 20.5, . . . , 10.5 m.
As a result, we obtained 22 different sets of LRi(z

′) values, each one corresponding
to a z′. Next, the MOST model wind-speed ratio of Equation (4.8) was computed
for all sets of the LRi(z

′) as well as the coefficient of determination, ρ2, between
the measured and modeled wind-speed ratios. The z′ (equivalently, LRi(z

′)) with
the highest ρ2 yielded the sought-after reference height. Thereby, z′ = 15.5 m was
found to be the reference height ensuring the highest ρ2 after the outlier screenings
applied over LRi(z

′) and the measured wind-speed ratio (see the outlier screening
and the results in Section 4.4.3).

4.3.5 Reference measurements: friction velocity

The friction velocity is a form by which a shear stress may be rewritten in units of
velocity such as the velocity that relates wind shear between layers of flow, e.g., for
neutral condition u∗ = κ (U(z2) − U(z1))/ln(z2/z1) (Equation (4.2)). Two reference
methods are considered for comparison:
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The first solves Equation (4.6) for u∗ given the Obukhov length LRi estimated
from the bulk Richardson number using Equation (4.13) and mast HWS measure-
ments at 27 m. The roughness length z0 is computed from Equation (4.3). This
method can be viewed as ”mast” 1D (u∗1−D

).
The second uses directly the measured turbulent fluxes (Stull, 1988),

u∗sonic
=
(
u′w′2 + v′w′2

)0.25
. (4.14)

For these computations, we used the sonic measurements at 85 m.

4.3.6 Data screening

To begin with, FDWL, mast-sensors and mast-DWL data were averaged to a com-
mon uniform time resolution of 10 min, which is according to WE standards (Peña
et al., 2013). Accordingly, the wave-buoy-derived water temperature was resam-
pled from 60 to 10 min as already mentioned in Section 4.3.4.

Regarding anemometers’ data, the screening procedure relied on selection of
the true wind direction (TWD) (Werkhoven & Verhoef, 2012). To do this, WD and
HWS measurements from all the three anemometers at each of the three metmast
measurement heights (27, 58.5 and 85 m) were checked. Figure 4.2 sketches a top-
view of mast depicting the positions of the wind vanes and anemometers at each
height. First, the middle WD (MWD) was computed as the median of the WD
measurements by the three anemometers. Then, the TWD was derived following
these criteria (see Figure 4.2a):

• If the MWD lay on the red crown, the TWD was computed as the mean WD
between vanes HxxB240 and HxxB120,

• If (. . . ) on the blue crown, (. . . ) between vanes HxxB0 and HxxB120, and

• If (. . . ) on the green crown, (. . . ) between vanes HxxB240 and HxxB0.

Finally, the true wind speed was chosen as the one retrieved from the anemome-
ter over which the TWD was within a confidence angle range (the wake-free range)
of 90◦ ± 30◦ (Figure 4.2b) in relation its boom orientation.

Concerning the lidar instruments, HWS measurements lower than 2 m/s or
higher than 100 m/s were rejected on account of the ZephIR-300 manufacturer’s
specifications (Campbell Scientific, 2016). Regarding the FDWL, it is well-known
that motion-induced effects on the retrieved wind vector become prominent at
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a 1-s temporal resolution but are negligible at the 10 min level. For the latter
case, motion effects increase fluctuations on the wind speed (Gutiérrez-Antuñano
et al., 2018; Salcedo-Bosch et al., 2020, 2021c). At the 10 min level, it was shown
(Gutiérrez-Antuñano et al., 2017; Arranz, 2011) that the spatial variation (SV) pa-
rameter (see below) can be used as a threshold to filter data as it represents a trade-
off between key performance indicator (KPI) improvements and data availability.

Figure 4.2: Top view of the mast at IJmuiden. (a) Wind vanes and anemometers
on each boom (B0, B120, and B240) at the three measurement heights, Hxx (xx
= 27, 58.5 and 85 m). Angles indicate boom orientation. (Red, green, and blue)
Color-coded circular crown sectors represent the wake-free angle ranges for each
anemometer (90◦ ± 30◦, panel (b)) in relation to boom orientation. Adapted from
(Werkhoven & Verhoef, 2012).

FDWL measurement outliers were identified by plotting the HWS differences
between the metmast and FDWL measurements as a function of different FDWL
internal parameters, namely, the backscatter, bearing (compass), points in fit out
of the 50 radial velocities within a full scan (see below), SV, precipitation, and vis-
ibility. For each internal parameter, we considered as outliers the samples which
yielded differences higher than 2 m/s in relation to metmast reference. The same
analysis was conducted with the mast-DWL, which served as the reference lidar.

Backscatter refers to the intensity of the Doppler lidar echo. Bearing refers to
the lidar pointing direction with respect to the Earth’s magnetic North. Points in fit
and SV are parameters related to the Velocity Azimuth Display (VAD) algorithm
used by the lidar to retrieve the wind vector under the assumption of uniform
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wind. The SV is an indicator of the goodness of the VAD fitting of the radial ve-
locities within the lidar scanning circle used to retrieve the wind vector at a given
height. Therefore, the SV can be understood as a turbulence parameter describ-
ing the variation degree of the radial wind speeds within the scan (Wagner et al.,
2009). High SV values are associated to measurements for which the hypothesis of
uniform wind during the lidar scan is no longer valid (Salcedo-Bosch et al., 2021c).
This leads to outlier measurements, which must be removed.

Numerical analysis showed that the largest differences in HWS between the
mast anemometer and FDWL measurements were attributable to bearing and SV
of the FDWL. Therefore, we applied the following outlier rejection criteria:

• (i) HWS < 2 m/s or HWS > 70 m/s,

• (ii) bearing = 0◦ (FDWL compass issue, see Section 4.4.1), and

• (iii) 95th percentile spatial-variation threshold.

4.4 Results and discussion

4.4.1 Data screening and quality assurance

Now, we discuss our results for outlier criteria (ii) and (iii) which were introduced
in Section 4.3.6 above. Figure 4.3a shows the HWS difference between the cup
anemometer and the FDWL measurements at 83 m as a function of the FWDL
bearing. Similar results were found for the two other FDWL heights, 25 and 56 m
(not shown). Figure 4.3b shows a similar plot but for the mast-DWL. As expected,
the FWDL bearing covers the full range of motion, whereas the mast-DWL bearing
remains mostly fixed at ≈ 3◦. The largest HWS differences occur for bearings equal
to zero, which lacks physical consistency and might show an issue in the data
acquisition system.



4.4. RESULTS AND DISCUSSION 81

(a) (b)

Figure 4.3: Lidar data screening: bearing. (a) HWS differences between the cup
anemometer and the FDWL measurements as a function of FDWL bearing at a 83
m height. (b) Same as in panel (a) but compared to the fixed DWL on the mast.
Black and grey dots indicate valid and outlier samples, respectively (Section 4.3.6).
Dashed red line indicates the zero-bias baseline.

Figure 4.4 shows the histogram of SV from the FDWL at 25 m and the HWS
differences as a function of the SV between the 27-m cup anemometers and the
FDWL, respectively. In Figure 4.4a, the border line between the white and grey
shades delimits the 95th percentile of the one-tailed spatial-variation distribution.
This percentile corresponds to a SV threshold, SV= 0.055 and SV≈ 0.055 − 0.065

for the other measurement heights of the lidar (data not show). For the mast-DWL,
the 95th percentile corresponds to the threshold SV≈ 0.07 (data not shown). The
SV thresholds used here for 10 min data were found to be more conservative than
those used in previous studies (SV≈ 0.1) (Gutiérrez-Antuñano et al., 2017; Arranz,
2011), in which the FDWL measurements were compared against metmast values
for quality assurance (QA).
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Figure 4.4: Lidar data screening: spatial variation. (a) SV histogram for the FDWL
at a 25 m height (refer to Figure 2.11). Grey shading indicates the upper tail of
the 5% area corresponding to the rejected outliers in the SV distribution (95th to-
100th percentiles). (b) Same format as in Figure 4.3 but using SV as the dependent
variable. The dashed vertical line indicates the 95th percentile of the SV threshold.

The appropriateness of the SV filtering criterion is re-encountered in Figure
4.4b, which shows that HWS differences between the FDWL and the metmast mea-
surements started to deviate from the ideal 0-m/s bias (dashed red line) for SVs
above approximately 0.05, which justifies our choice for criterion (iii) in Section
4.3.6.

Regarding the anemometers, Figure 4.5 shows the HWS differences between
the cup anemometers and the lidars as a function of direction. The reduction on
the scattering of data after application of the TWD screening criterion is well no-
ticed (black versus grey dots). Quantitatively, after outlier rejection, peak HWS
differences were below ±1 m/s at all heights, which shows that the mast effects
were effectively removed.
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(a) (b)

Figure 4.5: Anemometer data screening: WD. (a) HWS differences between the
cup anemometer and the FDWL measurements as a function of wind direction at
a 87 m height. (b) Same as in panel (a) but compared to the DWL on the mast.
Vertical blue lines indicate the directions of the mast booms (46.5◦, 166.5◦, and
286.5◦, Figure 4.2).

The 82-day IJmuiden campaign produced a dataset with 10,833 10 min sam-
ples. After the filtering procedure described in Section 4.3.6, we obtained 8263 10
min samples. Figure 4.6 shows that both the cup anemometers and the fixed and
floating lidars measured very closed HWSs with determination coefficients higher
than ρ2 = 0.996 and slopes of the regression lines between 0.985 and 1.010 at all
measurement heights, as expected from previous studies (Gutiérrez et al., 2015;
Gutierrez-Antunano et al., 2017; Schuon et al., 2012; Mathisen, 2013; Gutiérrez-
Antuñano et al., 2018). These values are within the KPIs defined by the Carbon
Trust’s Offshore Wind Accelerator (OWA) (Carbon Trust, 2018).



4.4. RESULTS AND DISCUSSION 84

0 5 10 15 20 25 30

Umast (27 m) [m/s]

0

5

10

15

20

25

30

U
F

D
W

L (
25

 m
) 

[m
/s

]

0.985x +0.019, 2 =0.996,
 RMSE = 0.245 m/s

0 5 10 15 20 25 30

Umast (58.5 m) [m/s]

0

5

10

15

20

25

30

U
F

D
W

L (
56

 m
) 

[m
/s

]

0.998x +0.018, 2 =0.998,
 RMSE = 0.199 m/s

0 5 10 15 20 25 30

Umast (85 m) [m/s]

0

5

10

15

20

25

30

U
F

D
W

L (
83

 m
) 

[m
/s

]

1.004x -0.056, 2 =0.998,
 RMSE = 0.224 m/s

0 5 10 15 20 25 30

Umast (85 m) [m/s]

0

5

10

15

20

25

30
U

m
as

t-
D

W
L
 (

90
 m

) 
[m

/s
]

1.010x -0.180, 2 =0.997,
 RMSE = 0.257 m/s

(a) (b)

(c) (d)

Figure 4.6: Quality assurance. (a–c) Comparison between FDWL HWS (denoted
UFDWL) and cup anemometer HWS (Umast) at the at different heights (see labels).
(d) Same as (a) but for the DWL on the mast at 90 m. The red line indicates the
regression line. ρ2 is the coefficient of determination.

4.4.2 Sensitivity to the wind model parameters

In order to analyze the sensitivity of the parametric wind model presented in
Section 4.3.2 with respect to Equation (4.9) model parameters, a sensitivity sim-
ulator was implemented (Figure 4.7). The simulator inputs are the model param-
eters Obukhov length L, friction velocity u∗, and roughness length z0, denoted as
L0, u0

∗, and z00 , respectively. These inputs were perturbed by an intensity factor
±P%(±10%). Then, the perturbed inputs were used to compute the non-neutral
wind correction Ψm

(
z
L

)
using Equation (4.7). Finally, the perturbed wind profile,

U(z) + ∆U(z), was simulated as a function of the perturbation intensity on the in-
put variables through Equation (4.6). Five different atmospheric stability scenarios
were considered: very unstable, unstable, neutral, stable, and very stable, based on
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Obukhov length values denoted by L0
vu, L0

u, L0
n, L0

s, and L0
vs, respectively.

Figure 4.7: Sensitivity simulator block diagram. L0, u0
∗, and z00 denote the nomi-

nal values for L, u∗ ,and z0, respectively. Subscripts vu, u, n, s, and vs stand for
very unstable, unstable, neutral, stable, and very stable atmospheric stability con-
ditions, respectively. The non-neutral wind correction block implements Equation
(4.7) and the parametric wind profile model block refers to Equation (4.6).

The error propagated on the model wind profile was found to be insensitive to
perturbations in the roughness length z0. Therefore, practical implementation of
the algorithm embeds Equation (4.3) into Equation (4.6) as

U(z) =
u∗

κ

[
ln

(
z

αc
u2
∗
g

)
−Ψm

( z
L

)]
. (4.15)

Thus, the model dimension reduces from three (L, u∗, and z0) to two (L and u∗),
hereafter called the 2D algorithm. Likewise, slight deviations in the Charnock’s
constant (Equation 4.3) have low impact on the retrieved wind model parameters
(L and u∗). Furthermore, as expected from correction function Ψm(

z
L
) (Figure 4.1),

the sensitivity of the model wind profile with respect to the Obukhov length was
found to be proportional to 1/|L|. Further discussion is given in Section 4.4.4, in
line with the statistical results encountered.

4.4.3 Wind shear dependence on dimensionless stability

The dependence of the wind speed ratio (Equation (4.8)) on the dimensionless sta-
bility computed from both the 2D Obukhov length ( z

′

L̂
) and from the Ri reference

( z′

LRi
) enabled us to quantify the performance of the 2D algorithm. The wind speed

ratio was computed between the top and bottom measurement heights of both the
FDWL (83 and 25 m) and the mast (85 and 27 m). As described in Section 4.3.4,
z′ = 15.5 m was taken as the reference height. We used 8,263 10 min clean data
records (Section 4.3.6). Additionally, two successive levels of outlier filtering were
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considered: (i) retrieved Obukhov lengths in the interval (−50 < LRi < 10) m were
rejected because these values were outside the stability limits in Table 4.2, and (ii)
wind speed ratios were histogram-filtered. To achieve the latter, the dimensionless
stability range was divided into 0.01-width bins and, in each bin, the wind-speed
ratios outside of the µ± 1σ (with µ being the mean and σ being the standard devi-
ation of the wind-speed ratio distribution in the bin) were rejected as outliers.

Figure 4.8a,b plots FDWL and metmast wind-speed ratios as a function of di-
mensionless stability parameter z′

L̂
, respectively. Figure 4.8c plots metmast wind-

speed ratio as function of z′

LRi
.

The FDWL wind-speed ratio as a function of z′

L̂
(Figure 4.8a) yielded the best

statistical indicators either if all or nonoutlier samples were considered (ρ2all =

0.965, RMSEall = 0.029; ρ21σ = 0.988, RMSE1σ = 0.016, respectively). This was
expected because the FDWL-derived HWSs were used to retrieve the estimated
Obukhov length L̂ using the 2D method, which, in turn, relies on the Businger–
Dyer functions. Figure 4.8b provides tiebreaker proof confirming the successful
performance of the 2D algorithm. Thus, in Figure 4.8b, the mast-derived wind
speed ratios are compared to the estimated L̂ values, and the statistical indicators
found (ρ21σ = 0.974 and RMSE1σ = 0.023) are virtually coincident with those in
Figure 4.8a. Additionally, when comparing the distribution of the points along the
horizontal axes in Figure 4.8b,c ( z

′

L̂
and z′

LRi
, respectively), figures that share identi-

cal mast data, the spread along the z′

L̂
axis (2D algorithm) is narrower than along

the z′

LRi
(Richardson reference). Again, this confirms the superior performance of

the 2D algorithm. Regarding Figure 4.8c, and despite the clear dependence ob-
tained between the wind-speed ratio and dimensionless stability z′

LRi
, the huge

number of outliers suggests that not all measured wind profiles were acceptably
modeled by the MOST model (Equation (4.6)).

In non-MOST situations, e.g., low-level jet and storm events, the estimates of
the 2D-algorithm may be highly biased. The residual norm between the measured
and fitted wind profiles has been used to quantitatively assess the 2D-algorithm
accuracy. The residual norm is indicative of the quality of the fitting and is defined
as the norm of the error between the parametric and the measured wind profiles.
Most of the records showed residual norm values between 0 m/s and 2.21 m/s.
Occurrences with a residual norm higher than the residual norm 95th percentile,
corresponding to a value of 0.42 m/s, were filtered out (413 records). In the vast
majority of cases, the 2D-algorithm is able to converge because most of experimen-
tal wind profiles measured by the FDWL are well predicted by MOST.
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Figure 4.8: (a,b) The FDWL and mast wind-speed ratios as a function of z′

L̂
, re-

spectively. (c) The mast wind-speed ratio plotted as a function of z′

LRi
. Black and

grey dots represent valid and outlier samples, respectively. z′ = 15.5 m. ρ is the
coefficient of determination. Subscripts “all” and “1σ” represent all samples and
samples at µ ± 1σ (see body text), respectively. Red line, wind-speed ratio refer-
ence model (Equations (4.8) and (4.7)). Blue lines, stability classification thresholds
from Gryning et al. (2007) (see Table 4.2). vu, very unstable; u, unstable; nnu, near-
neutral unstable; n, neutral, nns near-neutral stable; s, stable; and vs, very stable.

4.4.4 Performance statistics: friction velocity and stability

The performance of the 2D algorithm with regard to friction velocity u∗ was as-
sessed by comparing the velocity estimated using the 2D algorithm, û∗ with the
two reference velocities described in Section 4.3.5, namely, the reference u∗sonic

com-
puted by the sonic anemometer and the mast-derived u∗1−D

computed by the 1D
method (Figure 4.9).
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Figure 4.9: Scatter plot of the 2D-estimated friction velocity û∗ against the two
references provided in Section 4.3.5: (a) sonic anemometer reference velocity u∗sonic

,
at 85 m; and (b) 1D method reference velocity u∗1−D. Green line is the reference 1:1
line.

Figure 4.9a shows that the points (u∗sonic
, û∗) were scattered widely. This was

further corroborated by numerical analysis, which yielded a linear regression (LR)
û∗ = 0.813 · u∗sonic

+ 0.113, coefficient of determination ρ2 = 0.731, and RMSE =

0.077 m/s. These comparatively modest indicators are due to the fact that the sonic
anemometer was located at a height of 85 m, which may well be beyond the sur-
face layer. Above the surface layer, the proposed model is not valid, which leads
to biased estimations (Stull, 1988). Worse results were attained when considering
alternative values for Charnock’s parameter, αc, which is a site-dependent param-
eter here assumed as αc = 0.012 based on previous studies (Cheynet et al., 2017;
Kelly, 2021; Peña & Gryning, 2008; Holtslag et al., 2015)

When comparing û∗ against mast-derived u∗1−D
(Figure 4.9b), a much better

agreement is found. This is supported by a LR as good as û∗ = 0.965 ·u∗1−D
+0.022,

which is virtually the ideal 1:1 line; ρ2 = 0.956; and RMSE = 0.031 m/s.
The performance of the 2D algorithm for the estimated Obukhov length, L̂, was

tested against the Richardson reference, LRi, for the whole campaign. For this task,
two well-accepted stability classification criteria in the literature were considered:
(i) Van Wijk’s (Table 4.1), and (ii) Gryning’s criteria (Table 4.2).

Van Wijk’s classification. Figure 4.10 compares classification results among the
Obukhov lengths estimated by the 2D algorithm, L̂, and by the Ri estimate, LRi.
The type criteria are provided in Table 4.1. Figure 4.10a,b shows similar but not



4.4. RESULTS AND DISCUSSION 89

identical results. For example, the hourly evolution of the stable and neutral classes
is nearly identical for both estimators. However, this is not the case for very un-
stable class, which was overestimated by the 2D algorithm to the detriment of the
unstable class when compared to the Richardson reference. Similar results can be
derived from Figure 4.10c,d. Thus, the 2D method yielded 33% of very unstable
cases, whereas the Richardson reference yielded 25%.

(c) (d)

Figure 4.10: Overall campaign stability classification results (Van Wijk et al. (1990)
criterion). (a,b) Stability histograms showing the relation between frequency of
occurrence of each stability class clustered by hour of the day. (c,d) Corresponding
stability pie charts showing the estimated Obukhov length, L̂ (c), and the Richard-
son reference, LRi (d).

Gryning’s classification. A similar analysis was conducted for the Gryning clas-
sification (Table 4.2). This criterion essentially breaks down the Van Wijk stability
classes into subclasses in order to create room for the near-neutral stable and near-
neutral unstable subclasses.

Figure 4.11 compares the classification results yielded by the 2D algorithm, L̂,
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and Ri estimate, LRi. Figure 4.11a,b shows similar temporal behavior for the very
stable and stable classes over the course of the day. The latter class became promi-
nent during the last hours of the day. In contrast, as occurred with the Van Wijk
classification, the neutral class and all the unstable classes estimated by the 2D al-
gorithm exhibited larger variations compared to the Richardson reference. When
comparing L̂ to LRi in the pie charts, 5% (L̂ chart) vs. 3% (LRi chart) of the cases
were classified as very unstable, 11% vs. 15% were classified as unstable or near-
neutral unstable. In contrast, the following classes remained essentially the same:
31% (L̂ panel) vs. 31% (LRi panel) for the neutral case, 19% vs. 19 % for the near-
neutral stable case, 28% vs. 27% for the stable case, and 4% vs 4% for the very
stable class.

(c) (d)

Figure 4.11: Overall campaign stability classification results (Gryning et al. (2007)
criterion) using the same format as in Figure 4.10.

Next, we quantified classification performance by rating the one-to-one sta-
bility class correspondence between L̂ and LRi. This one-to-one correspondence
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is expressed via a confusion matrix, in which each matrix row represents the in-
stances in an actual reference stability class (LRi), and each column represents the
instances in an estimated stability class (L̂). 4.12 depict the matrix obtained when
considering the Gryning classification criterion. An ideal predictive method would
have all instances along the main diagonal of the confusion matrix. Thus, bluish
cells represent instances in which the estimated stability class matches the Richard-
son reference class, whereas reddish cells represent misclassifications. In order to
quantitatively assess performance of the 2D algorithm, we define the hit rate (HR)
as

HR[%] =
no. of correct estimations

no. of estimations
× 100. (4.16)
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Figure 4.12: Confusion matrix between L̂ and LRi for Gryning’s stability classes
(Table 4.1). The summary matrix on the right totals the HR (bluish) and miss rate
(1-HR, reddish) for each stability class. vs, very stable; s, stable; nns, near-neutral
stable; n, neutral; nnu, near-neutral unstable; u, unstable; vu, very unstable.

The miss rate is simply the complementary function 1−HR. Figure 4.12 depicts
the confusion matrix considering Gryning’s stability classes (Table 4.2). We found
that the estimated classes lay along a band formed by the main diagonal, the first
diagonal below this, and the first diagonal above the main diagonal. Thus, an
overall HR of 62.59% was obtained and the remaining 29.21% corresponded to
the classes estimated by the 2D algorithm that were adjacent to the correct ones
given by the Richardson reference. The summary matrix shows a very high miss
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rate in unstable atmospheres with the HRs ranging from 18.8% to 40.7%. The low
HRs attained for the nnu, u, and vu classes occurred due to the low sensitivity
of the wind shear model in Equation (4.6) with respect to the Obukhov length for
unstable atmospheres. This is re-encountered in Figure 4.13a, in which the median
wind profiles and related 25th to 75th percentiles are plotted parameterized by
stability condition. For the nnu, u, and vu classes, the percentile bars overlap
(dark green, red, and magenta traces, respectively), which makes it impossible for
the 2D algorithm to discern them.
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Figure 4.13: Median and percentiles of the u∗-normalized wind profiles measured
by the metmast during IJmuiden campaign clustered by atmospheric stability
classes. (a) Clusters by Gryning’s classes. (b) Clusters by Van Wijk’s classes. Error
bars depict the 25th to 75th percentiles at each height.

In contrast, “s”, “nns”, and “n” classes scored HRs of 83.7%, 58.1%, and 69.3%,
respectively, on account of their higher sensitivity, which, in turn, led to higher
discernability among these classes. It is also worth noting the low HR (35.9%)
achieved by the “vs” class. One reason accounting for that is the comparatively
short span of Obukhov lengths included in the “vs” class (10 ≤ L < 50) in Table
4.2. This was a too short span for the NSLQ solver to estimate the Obukhov length
at such fine level of accuracy, which eventually led to miss-classification between
the “vs” and “s” classes. This is also evidenced in Figure 4.13a by overlapping
percentile bars for these classes.

Analogously to Figure 4.12, Figure 4.14 represents the confusion matrix con-
sidering the Van Wijk stability classes (Table 4.1). An overall HR of 66.07% and a
misclassification rate of 33.93% were observed. The estimation performance varied
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widely, ranging from HRs of 26.2% for the u class to 88.3% for the vs class. Again,
the low HRs were due to the low sensitivity of the wind shear model with respect
to the Obukhov length in unstable conditions, as evidenced in Figure 4.13b.

(a) (b)

Figure 4.14: Confusion matrix between L̂ and LRi for Van Wijk’s stability classes
(Table 4.1) in the same format as in Figure 4.12.

By comparing Figures 4.14 and 4.12 (equivalently, Figures 4.10 and 4.11) Van
Wijk’s classification criterion shows better performance than Gryning’s. Although
both have similar HRs (66.07% for Van Wijk and 62.59% for Gryning), the Van Wijk
confusion matrix (Figure 4.14a) scores higher HRs than Gryning’s in all but the u
class, as indicated by the reddish cell in the summary matrix.

This, however, warrants some comments. For example, the good match be-
tween the estimated and reference stability classes in the pie chart in Figure 4.11
for the Gryning classification hides a population inversion between the right- and
left-adjacent classes to the main diagonal (Figure 4.12). This also applies to Figure
4.14a.

Experiments also showed that wind profiles often became indistinctly misclas-
sified into adjacent classes, as shown by the overlapping error bars in Figure 4.13.
A method to mitigate this issue involves collapsing all unstable subclasses into an
aggregated class named ”unstable”. Specifically, this aggregation leads to vs, s, n,
and u classes in the Van Wijk classification (Figure 4.14b), and to vs, s, nns, n, and
u classes in Gryning’s classification (figure not shown). As a result, a much better
agreement between the estimated and reference stability classes was achieved, as
indicated by the higher HRs attained in all classes. Quantitatively, the overall HR
increased to 73.6% for the Van Wijk classification. Similar results were achieved for
the Gryning classification (figure not shown), which scored an HR of 72.6%.
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It is important to mention that although we use LRi as the reference, it cannot
be considered as the ground-truth reference for one-to-one comparison with L̂, be-
cause it was not derived exactly as proposed by Grachev & Fairall (1997) due to
the absence of turbulent fluxes measurements in the surface layer and the differ-
ent instrumental measurement heights available. However, it is a good indicative
of the method goodness in terms of atmospheric classification. In order to vali-
date the method against a third party, the stability estimated by the 2D-algorithm
was compared against the stability estimated by means of virtual potential tem-
perature gradient (dθv/dz) between 90 and 21 m. Virtual potential temperature
was retrieved using temperature, pressure and relative humidity data from the IJ-
muiden mast via Equation (11). The potential temperature gradient indicator is
only able to discern between two stability classes: unstable (dθv/dz < 0) and sta-
ble (dθv/dz > 0). Considering these categories, HRs higher than 82% were found
for the comparison between L̂ and dθv/dz, further proving the goodness of the 2D
algorithm.

4.5 Summary and conclusions

In this study, we suggested an 2D algorithm that accurately estimated both the
Obukhov length and the friction velocity, hence, correctly determined atmospheric
stability from FDWL measurements at four different heights. We used the spa-
tial variation within the lidar scans as an important filtering parameter of the
FDWL (Figure 4.4). The parameter is a proxy of turbulence; high spatial varia-
tion is associated to nonuniform wind during the scan. The latter can originate
either from apparent turbulence (i.e., induced by sea motion) or from true wind
turbulence (Gutiérrez-Antuñano et al., 2017). When comparing FDWL to mast-
based wind speeds, we found that the mean winds were biased less than 1.5% (LR,
UFDWL = 0.985 · Umast + 0.018) with a determination coefficient, ρ2 = 0.996, and
a RMSE as low as 0.25 m/s. Similar values were found for the fixed DWL on the
mast.

The algorithm assumes that the measured FDWL wind profiles follow MOST
and the Charnock’s relation is used to parameterize the roughness length. Over
the sea, with such low roughness, the sensitivity of the roughness on the estimated
parameters can be neglected. A parametric sensitivity study showed that unstable
wind profiles exhibited lower sensitivity than stable wind profiles to variations of
the Obukhov length (Figure 4.13).
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The 2D-estimated Obukhov length and friction velocity were compared with
reference to the mast-derived Obukhov length using the Richardson number, to
the sonic-anemometer-derived friction velocity, and the 1D-model-derived friction
velocity. Thus, the 2D-estimated friction velocity was largely in agreement with
the sonic-anemometer-derived and the 1D-model-derived friction velocities, with
coefficients of determination of 0.72 and 0.94, respectively (Figure 4.9).

We also examined the performance of the algorithm by classifying atmospheric
stability in a number of classes. When comparing the relative frequencies of occur-
rence of each class of the Van Wijk classification, differences occurred between 0%
and 10% (Figure 4.10) and between 0% and 4% for Gryning’s classification (Figure
4.11). Notwithstanding these results, analysis through confusion matrices showed
HRs of 65.24% for the Van Wijk and 62.63% for the Gryning classification. Higher
HRs were attained for stable regimes than for unstable ones due to the lower sen-
sitivity of the 2D algorithm to the Obukhov length in unstable regimes. This issue
was addressed by collapsing the unstable sub-classes into a unique aggregated
class named ”unstable”. For the Van Wijk’s, this reclassification improved the HR
up to 72.9% and up to 72.4% for the Gryning’s. The confusion matrix study also
showed that although simple pie chart statistics (Figure 4.11) indicate a very good
one-to-one correspondence between the estimated stability class (through L̂) and
the Richardson reference class (through LRi), this correspondence is only appar-
ent because cross-correspondences occur frequently between classes adjacent to
the main diagonal (Figures 4.12 and 4.14). This effect became more prominent for
classes falling in an Obukhov length interval in which Businger–Dyer’s correc-
tion function had a flatter derivative (i.e., less gradient). Other misclassifications
were attributable to anomalous profiles such as those associated with low-level
jets. Moreover, the bulk Richardson number methodology used to compute the
gradient Richardson number is just a two-point approximation of the derivative of
the local wind and temperature gradients in the surface layer. Finally, the perfor-
mance of the algorithm in terms of stability classification was compared against the
virtual potential temperature gradient method acting as a proxy of stability. HRs
higher than 82% were encountered, further validating the algorithm performance.

Overall, we aimed to show the potential of FDWLs for offshore wind resource
assessment as a standalone instrument and the ability of an algorithm to estimate
atmospheric stability from the FDWL wind speeds only. As further steps, we
would like to evaluate the algorithm’s performance against direct measurements
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of both momentum and heat fluxes taken over the same range of heights. Ad-
ditionally, a comparison between the 2D-algorithm and other methods based on
MOST relationships is still required.



Chapter 5

On the retrieval of surface-layer
parameters from lidar wind-profile
measurements

This Chapter revisits two recent methodologies based on Monin-Obukhov Similarity The-
ory (MOST), the 2D method by Araújo da Silva et al. (2022a) and Hybrid-Wind (HW) by
Basu (2019), which are aimed at estimation of the Obukhov length, friction velocity and
kinematic heat flux within the surface layer. Both methods use wind-speed profile measure-
ments only and their comparative performance requires assessment.

The contents of this Chapter are part of the paper Araújo da Silva et al. (2023) submitted

to MDPI Remote Sens. Systematic or multiple reproduction or distribution to multiple

locations via electronic or other means is prohibited and is subject to penalties under law.

5.1 Introduction

Wind energy is one of the most cost-efficient renewable power-generation tech-
nologies nowadays. Accordingly, the amount of onshore and offshore wind farms
being installed worldwide has greatly increased over the last years (GWEC, 2022).
Nevertheless, the onshore sector has become comparatively less attractive in terms
of wind conditions and capacity factor as well as it has faced resistance by popu-
lations from potential deployment areas that may be affected by the farm instal-
lation and operation, hence the industry development has been moving towards
offshore (Hevia-Koch & Jacobsen, 2019b; WindEurope, 2020). However, despite of
the abundant wind resource that can be found over the seas, offshore wind farms
harvesting remains more expensive than its onshore counterpart. Additionally, the

97



5.1. INTRODUCTION 98

site’s feasibility still relies on offshore meteorological masts (metmasts), which are
very expensive to install and maintain (Peña et al., 2022).

During the last decade, floating Doppler wind lidars (FDWLs) have emerged
as the wind-energy-industry preferred solution to replace the metmast because
of its accuracy and attractive cost-benefit of installation and maintenance. Many
studies have shown that 10-min averaged wind-speed measurements from FD-
WLs are numerically equivalent to reference observations from anemometers or
fixed Doppler wind lidar (DWL) (Peña et al., 2022; Araújo da Silva et al., 2022a;
Gutiérrez-Antuñano et al., 2017). However, FDWLs cannot measure a number of
the atmospheric parameters that instruments mounted on meteorological masts
can, which restrains commercial acceptance of FDWLs as stand-alone sensing in-
strument.

The surface layer is the lowest part of the atmospheric boundary layer (ABL)
where turbulent fluxes vary by less than 10% of their magnitude (Stull, 2015).
Thus, under stable stability conditions, ABL heights are of a few hundreds of me-
ters or less. Under convective (i.e., unstable) stability conditions, ABL heights can
be up to of a few kilometers. A measure of atmospheric stability is the Obukhov
length, which has been used to extend the logarithmic wind profile to account for
atmospheric stability conditions (Holtslag et al., 2015). The Obukhov length is
directly related and very sensitive to the friction velocity. The latter is a funda-
mental velocity scale of atmospheric flow and can also be used to estimate the
wind-speed standard deviation, which determines, together with the mean wind
speed, turbulence intensity (Türk & Emeis, 2010). The role of the Obukhov length
and friction velocity has been investigated in different wind-energy studies related
to wind-turbine wake modelling (Göçmen et al., 2016), power production (Lopez-
Villalobos et al., 2022), and structural loading (e.g., wind-turbine aeroelastic de-
sign) (Gao et al., 2021). It is worth noting that the eddy-covariance method, from
which one can derive the friction velocity and heat flux is up-to-date the most
accurate way to derive the Obukhov length (Stull, 1988, 2015). Estimations, how-
ever, can be alternatively performed using, e.g., the Richardson number (Grachev
& Fairall, 1997).

Multiple sensors, such as sonic anemometers installed on metmasts, provide
high-frequency measurements, which can be used to derive turbulent fluxes. Other
sensors can provide air-pressure and air-humidity observations. However, alter-
native methods are needed in scenarios with limited instrumentation (Berkowicz
& Prahm, 1982; Klug, 1967; Swinbank, 1964; Lo, 1979; Beljaars et al., 1989; Basu,
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2019; Araújo da Silva et al., 2022a). A good number of these methods use Monin-
Obukhov similarity theory (MOST), which implies a wind-speed profile that is
monotonically increasing with height. The assumptions in MOST are valid within
the surface layer only; therefore, MOST-based methods can normally be used to
predict wind speeds up to approximately 100 m (Gryning et al., 2007; Holtslag
et al., 2015).

The methods for estimation of surface fluxes of momentum and heat (i.e., surface-
layer parameters) by Beljaars et al. (1989) and Berkowicz & Prahm (1982) require
both temperature and wind-speed measurements, and that by Klug (1967) the
aerodynamic roughness length in addition. When looking for studies utilising
only wind-speed measurements as a feasible alternative to be applied using FDWL
observations the number of surface-layer-retrieval methods are limited to four
(Swinbank, 1964; Lo, 1979; Basu, 2019; Araújo da Silva et al., 2022a). Neverthe-
less, the reliability of the optimisation method proposed by Lo (1979) can be con-
sidered questionable because of different mathematical issues reported by Zhang
(1981). Of the remaining three methods, the recent one by Basu (2019) –the so-
called Hybrid-Wind (HW) method–is an enhanced version of the Swinbank (1964),
in which the surface-layer wind profile follows an exponential profile instead of
MOST (Businger et al., 1971; Dyer, 1974; Peña et al., 2009; Holtslag et al., 2015;
Araújo da Silva et al., 2022a). HW estimates the Obukhov length from three levels
of wind speed measurements. Once the Obukhov length is obtained, the friction
velocity and surface heat flux can be derived. In contrast to HW, the 2D method
by Araújo da Silva et al. (2022a) enables a simultaneously retrieval of the Obukhov
length and friction velocity by using a two-dimensional (2D) parametric-solver
algorithm. Besides, the 2D algorithm can be extended to any number of measure-
ment heights describing the wind profile.

In the present work, we aim at assessing the performance for retrieval of surface-
layer parameters of both the 2D and HW methods. Performance evaluation is
twofold: First, we use reference synthetic noise-corrupted wind-profile realiza-
tions with characteristic parameters inherited from FDWL observational datasets.
And, second, we use sonic-anemometer estimates from the IJmuiden metmast. Fo-
cus is also given to the stand-alone capability of these methods for atmospheric
stability estimates.

This paper is structured as follows. Section 5.2 presents the observational cam-
paign at the IJmuiden site. Section 5.3 reviews MOST and revisits the 2D and HW
retrieval algorithms. Section 5.4 studies the comparative performance of both the
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2D and HW methods as a function of the noise-corrupting intensity and stabil-
ity condition with reference to synthetic and observational data. And, Section 5.5
provides concluding remarks.

5.2 Materials

This Chapter uses uses data from the IJmuiden observational campaign. Refer to
Sect. 2.2.3 for a detailed review of the related instruments.

The numerical simulations (Sect. 5.3.4) were performed using the High Per-
formance Computing environment CALCULA. CALCULA uses as a basis the re-
source management system Slurm Workload Manager, a scheduler of open source
tasks widely used in supercomputing environments, and the system of GlusterFS
distributed files for data management.

5.3 Methods

5.3.1 MOST wind profile

According to MOST, the diabatic wind profile (i.e., under non-neutral conditions)
within the surface layer is expressed as

UMOST (z) =
u∗

κ

[
ln

(
z

z0

)
−Ψm

( z
L

)]
, (5.1)

where z is the height [m], u∗ is the friction velocity [m/s], κ ≈ 0.4 is the Von
Kármán constant, z0 is the roughness length, L is the Obukhov Length, and Ψm

(
z
L

)
is an stability-correction function (Stull, 1988; Barthelmie, 1999):

Ψm

( z
L

)
=


−β z

L
z
L
> 0 (stable)

0 z
L
= 0 (neutral)

2 ln(1+x
2
) + ln(1+x2

2
)− 2 arctan(x) + π

2
z
L
< 0 (unstable)

, (5.2)

where x =
[
1− γz

L

]1/4, and β = 6.0 and γ = 19.3 are empirical constants sug-
gested by Högström (1988), which where already validated by Araújo da Silva
et al. (2022a) and Holtslag et al. (2015) for the IJmuiden site.

The Obukhov length is a scaling parameter that is proportional to the height
above the surface layer at which buoyant factors first dominate over mechanical
production of turbulence (Stull, 1988). The Obukhov length can be computed from:
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L =
−θvu

3
∗

κg(w′θ′v)s
, (5.3)

where θv is the virtual potential temperature, w is the vertical wind component,
(w′θ′v)s is the surface-layer virtual kinematic heat flux, and g = 9.8m/s2 is the
gravitational acceleration. The overbar indicates average over time (normally 10
min). The “prime” in w′ and θ′v denotes the fluctuating part of these components,
i.e., the deviations from their respective mean values.

Offshore, the roughness length can be modelled through the Charnock’s rela-
tionship as (Charnock, 1955)

z0 = αc
u2
∗
g
, (5.4)

where α = 0.012 is the Charnock’s constant and g = 9.81 [m/s2] is the gravitational
acceleration (Peña & Gryning, 2008; Holtslag et al., 2015). By inserting Eq. 5.4 into
Eq. 5.1, the latter equation can be written as a function of only variables Obukhov
length and friction velocity as

U(z, L, u∗) =
u∗

κ

[
ln

(
z

αc
u2
∗
g

)
−Ψm

( z
L

)]
. (5.5)

Despite the simplicity of Charnock’s model (Eq. 5.4), this model has the ad-
vantage of only depending on one of the variables that are being searched for (u∗).
Physically, because of the overall low roughness over water, the sensitivity of any
retrieval method to the roughness length per se is very small (and hence to the
Charnock’s constant).

Figure 5.1 revisits MOST, i.e., Eq. 5.1, for different stability conditions and sen-
sitivity analysis in these two variables. Figure 5.1a shows that the wind profile in
neutral stability conditions appears as a straight line with logarithmic height. In
stable conditions the wind profile is concave downwards, while in unstable con-
ditions is concave upwards. Note that MOST models wind profiles in which the
wind speed monotonically increases with height, i.e., the wind profile has positive
gradients at all heights (Basu, 2019, 2018). Figure 5.1b and c) show that the wind
profile is much more sensitive to friction velocity u∗ than to the Obukhov length
L. The wind profile is virtually insensitive to perturbations in the sea roughness
length.
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Figure 5.1: MOST wind profiles (Eq. 5.1) and numerical sensitivity. (a) MOST
model for different stability conditions. (u) is unstable, (n) is neutral and (s) is
stable. (b) Sensitivity to the friction velocity, u∗. (c) Sensitivity to the Obukhov
length, L. (All panels) Simulation parameters: z0 = 0.01 m, u∗ = 0.45 m/s and
L = −200, 10000, and 200 m (see legends). Error bars computed by applying a 10%
perturbation to the nominal value of the variable under study.

5.3.2 Surface-layer parameter retrieval methods based solely on
wind speed profiles

The 2D method

The 2D parametric solver algorithm simultaneously estimates the friction velocity,
u∗, and Obukhov length, L, relying on MOST and wind-profile measurements only
(Araújo da Silva et al., 2022a). The algorithm estimates model parameters (L,u∗)
by minimising the norm of residuals between the model vector U⃗MOST (L, u∗), Eq.
5.5, and the observed wind-profile vector U⃗obs, via constrained least-squares opti-
misation. Thereby, the optimisation problem is formulated as

(L̂, û∗) = arg min
L,u∗

||U⃗obs − U⃗MOST (L, u∗)||2. (5.6)

Two optimisation branches, one for Ψm

(
z
L

)
> 0 and another for Ψm

(
z
L

)
< 0, are

considered for enhancing the sensitivity of the algorithm and avoiding the asymp-
totic discontinuity, |Ψm

(
z
L

)
| → 0. The branch that yields the smallest residual

norm is chosen as the solution. Once L and u∗ are obtained, the heat flux is esti-
mated from the definition of L (Eq. 5.3) as

wθ = −θ0u
3
∗

κgL
, (5.7)

where θ0 = 300K is assumed as the reference potential temperature (Basu, 2018).
Equation 5.7 is just a plausible approximation of the surface-layer heat flux (w′θ′v)s
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in Eq. 5.3, whose calculation would require sonic-anemometer and humidity-
sensor measurements.

The Hybrid-Wind method

The HW method is a MOST-based algorithm that primarily retrieves the Obukhov
length from three height levels of a horizontal wind speed (HWS) profile (Basu,
2018). Given the Obukhov length and MOST profile Eq. 5.1, the friction veloc-
ity and heat flux are also obtained. Because the HW method is also reliant on
MOST, the assumption of monotonic wind behaviour is inherent to the method
(Sect. 5.3.1).

The HW reduces the number of MOST wind-profile parameters from three,
namely, Obukhov length (L), friction velocity (u∗) and roughness length (z0), to
one primary parameter, the Obukhov length (L), by resorting to the ratio of the
vertical wind-speed differences, which are formulated as (Basu, 2018)

∆U21 = U(z2)− U(z1) =
u∗

κ

[
ln

(
z2
z1

)
−Ψm

(z2
L

)
+Ψm

(z1
L

)]
, (5.8a)

∆U31 = U(z3)− U(z1) =
u∗

κ

[
ln

(
z3
z1

)
−Ψm

(z3
L

)
+Ψm

(z1
L

)]
, (5.8b)

where U(zi) is the HWS at the height zi. Then, the ratio of wind speed differences
is defined as

R(L) =
∆U31

∆U21

=
ln
(

z3
z1

)
−Ψm

(
z3
L

)
+Ψm

(
z1
L

)
ln
(

z2
z1

)
−Ψm

(
z2
L

)
+Ψm

(
z1
L

) . (5.9)

The ratio R(L) is only function of Obukhov length L, which is retrieved via a non-
linear least squares that fits the observed to the modelled vertical wind-speed ratio.
Then, this retrieved Obukhov length L is used to solve friction velocity u∗ from the
formulation of HWS differences ∆U31(u∗, L) and ∆U21(u∗, L) expressed in Eq. 5.8
above via ordinary linear least squares. After estimating L and u∗ the heat flux can
also be estimated via Eq. 5.7. This procedure is identical for the 2D method once L

and u∗ are known.

5.3.3 Observational reference retrievals

10-min averages of the observations from the Ijmuiden metmast are used to deter-
mine the reference data as:
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(i) Reference Richardson-number-estimated Obukhov length, LRi.- Because high-fre-
quency temperature data from the sonic anemometers were not stored, the
Obukhov length was estimated via bulk Richardson number using the method-
ology proposed by Grachev & Fairall (1997). LRi was computed as described
in Araújo da Silva et al. (2022a) (see Sect. 4.3.4).

(ii) Reference friction velocity.- The sonic anemometers were installed at 85 m in
height, which may well lie above the surface layer. Therefore, two approximate
reference friction-velocity values were computed:

(ii.a) The local friction velocity at 85 m via the sonic-anemometer measurements
as (Stull, 2015):

u∗sonic
=
(
u′w′2 + v′w′2

)1/4
, (5.10)

where u, v, and w denote the longitudinal, lateral and vertical wind com-
ponents, respectively.

(ii.b) The so-called 1D friction velocity, denoted u∗1D . The 1D friction velocity
was numerically derived by solving Eq. 5.5 for u∗ given the Richardson-
number-estimated Obukhov length (LRi, refer to Sect. 4.3.4) and the
measured wind-speed at 27 m, which is the lowest height available from
the metmast. Accordingly, u∗ becomes the only unknown in Eq. 5.5
(hence the one-dimensional (1D) suffix used), which is solved via least-
squares optimisation.

5.3.4 Synthetic data generation

2D and HW retrieval accuracies were examined by using random sets of synthetic
wind profiles, U syn(z), generated for different atmospheric conditions. Monte-
Carlo simulation was used to generate synthetic pairs (usyn

∗ , Lsyn) compliant with
MOST (Eq. 5.1). This is explained next:

Generation of Obukhov length and friction velocity random pairs

The variables Obukhov length and friction velocity are physically related via Eq.
5.3. Consequently, random sets for these variables cannot be created using the
customary assumption of independent Gaussian random variables. To circumvent
this problem, in Eq. 5.3 we recognise that L is proportional to the cube of the
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friction velocity and the ratio θv/(w′θ′v)s, which is denoted factor c in what follows.
Hence, Eq. 5.3 can be rewritten as

L = − c

kg
u∗

3. (5.11)

From Eq. 5.11 above, it arises that Obukhov length L is unambiguously defined
by friction velocity u∗ and factor c or, equivalently, that random values for u∗ and c

must be generated from the Probability Density Functions (PDFs) of independent
random variables U∗ and C, respectively. Here upper-case letters denote random
variables and lower-case letters denote the values for these variables. Because the
PDFs for random variable friction velocity U∗ and random variable C-factor are ”a
priori” unknown, they have to be estimated. This was done from the whole set
of IJmuiden metmast measurements recorded during the campaign (8,278 records,
hereafter ”the statistical sample”) as follows: the PDF for U∗ was approximated
by that of local friction velocity U∗sonic

computed via Eq. 5.10 over the statistical
sample. The PDF for C was derived from the estimates of this variable computed
as C ≈ − kgLRi

U∗sonic
3 over the statistical sample, where LRi is the Richardson-number-

estimated Obukhov length (see Sect. 4.3.4).
Different PDFs models were experimentally fitted to the estimated friction ve-

locity U∗ and factor-C distributions in order to obtain the PDFs that best described
the observations. As a result, it could be observed that both U∗ and C followed a
log-normal distribution or the combination of a log-normal with a folded version
of it. The log-normal PDF for a random variable X is formulated as

fX(x) =
1

σX

√
2π

e
− [ln(x)−µX ]2

2σ2
X , x > 0, (5.12)

where µX and σX are the PDF constitutive parameters.
Because the log-normal PDF is positive defined, it becomes an appropriate dis-

tribution to describe the friction velocity PDF, denoted fU∗(u∗). In contrast, because
variable C can have positive and negative values, its PDF is defined log-normal
piecewise as

fC(c) =

{
fCp(cp), cp = c, if c > 0,

fCn(cn), cn = −c, if c < 0,
(5.13)

where fCp(cp) and fCn(cn) are the log-normal (X = Cp, Eq. 5.12) and folded log-
normal (X = Cn) PDFs associated to positive and negative values of C, denoted
cp and cn, respectively. As mentioned, upper-case letters denote random variables
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and lower-case letters denote values for these variables. In what follows, this no-
tation formality is skipped unless otherwise necessary for understanding.

By fitting: (i) Eq. 5.12 PDF with X = U∗ to the statistical sample of local friction-
velocity values measured at 85m (U∗sonic

, Sect. 5.3.3), and (ii) Eq. 5.13 PDF to the
C-factor sample computed as C ≈ − kgLRi

U∗sonic
3 , then PDF characteristic parameters,

µX = µu∗ and σX = σu∗ for fU∗(u∗), and µX = µC,p, µC,n and σX = σC,p, σC,n for fC(c)
can be estimated. Once PDFs fU∗(u∗) and fC(c) are characterised, random values
usyn
∗ and csyn can be generated computationally. Most data-processing software

packages provide built-in algorithms able to generate log-normal-distributed ran-
dom values. Alternatively, log-normal distributions can be obtained by transform-
ing uniformly distributed random values through the inverse log-normal cumula-
tive distribution function. Thus, log-normal distributed values y can be obtained
using the transformation (Devroye, 2013)

y = eµ+
√
2σ2erf−1(2x−1), (5.14)

where x are random values from a uniformly distributed random variable, and
erf−1 is the inverse Gauss error function. Once random values usyn

∗ and csyn have
been generated, Lsyn values can readily be computed from Eq. 5.11.

Generation of synthetic wind profiles

Model wind profiles, UMOST (z), can be generated from the pairs (usyn
∗ , Lsyn) via

MOST (Eq. 5.1). However, model profiles are noiseless and, in practice, there
are always deviations from the MOST profile. In order to emulate these devia-
tions, height-independent zero-mean Gaussian-noise realizations are added to the
noiseless model profiles. This can be expressed as

Usyn(zi) = UMOST (zi) + σnν(zi), i = 1 . . . N, (5.15)

where Usyn is the noise-corrupted wind profile (hereafter, the synthetic wind pro-
file), UMOST is the MOST profile (Eq. 5.1), ν is zero-mean, unit-standard-deviation
Gaussian noise, zi is the i-th metmast anemometer-measurement height (zi = 27, 58.5, 85

m, Sect. 5.2), and N is the number of measurements heights.
We quantify the intensity of these perturbations by means of the normalised

root-mean-squared error (NRMSE , hereafter, the normalised noise level), which is de-
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fined in percentage units as

NRMSE = 100×

√√√√ 1

N

N∑
i=1

[UMOST (zi)− Umast(zi)]2

Umast

, (5.16)

where Umast is the measured wind profile from the metmast anemometers at height
zi.

The noise-corrupting amplitude is defined as the standard deviation,

σn =
NRMSEUmast

100
, (5.17)

where the overbar indicates average over the measurement heights 27, 58.5 and 85
m. From Eq. 5.17, it follows that the normalised noise level (Eq. 5.16) quantifying
the noise-corrupting perturbational amplitude in synthetic wind profiles can also
be rewritten as NRMSE = σn

Umast
100[%].

Figure 5.2 block diagram summarizes the procedure for synthetic wind-profile
generation. First, random pairs (usyn

∗ , csyn) are generated from PDFs fU∗(u∗) and
fC(c) as described in Sect. 5.3.4. Then, Lsyn values are computed from usyn

∗ and
csyn values via Eq. 5.11. Next, each “seed” pair (usyn

∗ , Lsyn) is used to produce
a noiseless MOST profile, UMOST (z), via Eq. 5.1. Finally, zero-mean, σn-standard-
deviation Gaussian noise ν(z) (Eq. 5.17) is added to the model wind profile UMOST (z)

in order to yield noise-corrupted wind profile Usyn(z).

Figure 5.2: Block diagram summarising the procedure to generate synthetic pairs
(usyn

∗ , Lsyn) and corresponding noise-corrupted wind profiles, Usyn(z).

The absolute relative error between the estimated and the synthetic friction ve-
locity, the latter taken as reference, is computed as:

ϵu∗ =
|û∗ − usyn

∗ |
usyn
∗

(5.18)

where û∗ is the estimated friction velocity and usyn
∗ is the synthetic one.
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5.4 Results and Discussion

We study the comparative performance of 2D and HW methods as a function of
the noise level and atmospheric stability conditions. First, Sect. 5.4.1 shows the
synthetic generation of the friction-velocity-to-Obukhov-length distribution proxy
for the Ijmuiden dataset, which becomes our synthetic ”truth” reference for compar-
ison. Sections 5.4.2 and 5.4.3 evaluate the performance of the 2D and HW methods
with reference to synthetic and observational data, respectively.

5.4.1 On the generation of synthetic wind profiles

To begin with, a dataset consisted of 5,000 randomly-generated samples, where
each sample stands for one pair friction velocity and Obukhov length, (usyn

∗ , Lsyn),
and its respective noisy wind profile. Each of these pairs is represented by a red dot
in Fig. 5.3, which, in turn, is associated to a MOST profile (i.e., noiseless). MOST
profiles were generated using the same measurement heights as for the FDWL
(i.e., 25, 38, 56 and 85 m, see Sect. 5.2). To obtain a sample noisy wind profile, a
noise realization with noise level NRMSE was added to the MOST profile (Eq. 5.15).
Based on the measured distribution of the normalised noise level (NRMSE) shown
in Fig. 5.4d (explained next), in our simulations, we considered 20 noise levels (Eqs.
5.16–5.17) spanning from NRMSE = 0 to 60%. For each of these 20 noise levels,
a noise realization was added to each of the 50 5,000-sample datasets in order to
ensure statistical significance. Therefore, the total number of generated samples
was: 20noise levels 50 dataset

noise level
5, 000 samples

dataset
= 5, 000, 000 samples.

Practical generation of the synthetic wind profiles in relation to Ijmuiden cam-
paign is described in Sects. 5.4.1–5.4.1 next: Section 5.4.1 details estimation of the
characteristic parameters of PDFs fU∗(u∗) and fC(c) (so-called “seed” PDFs), and
generation and quality assurance of the synthetic random pairs (usyn

∗ , Lsyn); Sect.
5.4.1 addresses estimation of the distribution the of noise level, NRMSE , from Ij-
muiden campaign; and Sect. 5.4.1 tackles the issue of outlier rejection for synthetic
samples versus MOST.

Inference of “seed” PDF characteristic parameters and quality assurance

The IJmuiden campaign consisted of 8,278 measurement records after outlier re-
jection (refer to (Araújo da Silva et al., 2022a), pp. 10–11 for details; in short, re-
jected measurements were: (i) FDWL-measured HWS values lower than 2 m/s
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and higher than 80 m/s, and (ii) FDWL-measured spatial variation values higher
than 0.055).

First, the PDFs for the friction velocity, fU∗(u∗), and C-factor, fC(c), were in-
ferred from the measured distributions of the sonics-derived friction velocity (U∗sonic

)
and Richardson-number-estimated Obukhov length (LRi) as described in Sect. 5.3.4.
When fitting model PDF Eq. 5.12 to the measured friction-velocity, characteristic
parameters µu∗ = −1.36 and σu∗ = 0.52 were obtained, which described fU∗(u∗).
Analogously, when model PDF Eq. 5.13 was fitted to the measured C-factor dis-
tribution, µC,p = 10.29 and σC,p = 0.52, and µC,n = 10.96 and σC,n = 1.11 resulted,
hence completely describing fC(c). Next, once model PDFs fU∗(u∗) and fC(c) were
found, random pairs (usyn

∗ , Lsyn) were generated.
Concerning quality assurance, in order to ensure trustworthy synthetic datasets

in comparison to the observational ones gathered at Ijmuiden, we generated 8,278
(usyn

∗ , Lsyn) pairs and compared the usyn
∗ -to-1/Lsyn (i.e., the friction-velocity-to-reci-

procal-Obukhov-length) distribution to the u∗sonic
-to-1/LRi distribution measured

at IJmuiden. The outcome of this exercise is depicted in Fig. 5.3. As it can be
observed in Fig. 5.3a, the distribution of the synthetic pairs (red dots) virtually
overlaps that of the measured pairs (black dots), which validates the synthetic gen-
eration method described in Sect. 5.3.4. In addition, Fig. 5.3b shows the histogram
of the reciprocal of the Obukhov length distribution for both the synthetic and
measured datasets, which are virtually identical.

Estimation of the noise level distribution from observational data

In Sect. 5.3.4 we found that the normalised noise level (NRMSE , Eq. 5.16) could
be understood as an indicator of the average noise level in the wind profile. In
order to estimate typical values for this normalised wind-perturbance intensity
indicator, we computed the normalised RMSE between the MOST-predicted and
metmast-measured wind profiles.

The MOST-predicted wind profile was computed through the 1D friction veloc-
ity, u∗1D , and Richardson-number-derived Obukhov length, LRi, in Eq. 5.1 (refer
to Sect. 5.3.3 and Sect. 4.3.4). Figure 5.4 compares the MOST-predicted to the
metmast-measured wind speed at the three measurement heights (Fig. 5.4a-c) and
derives the resulting normalised RMSE distribution (Fig. 5.4d). The virtually ideal
1:1 regression line obtained at 27-m height (Fig. 5.4a) is because u∗1D was numeri-
cally retrieved using the metmast-measured wind-speed at this same height. Since
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Figure 5.3: Synthetic data quality assurance. (a) Comparison between synthetic (red
dots) and measured (black dots) distributions of friction-velocity and Obukhov-
length as (usyn

∗ , 1/Lsyn) pairs. (b) Obukhov-length histograms for the measured
and synthetic pairs. X-axis plots reciprocal Obukhov length in 0.005 m−1-width
bins.

the uncertainty of the MOST model increases with height, linear regression indi-
cators tend to decrease with it. Thus, at 58.5 m, Fig. 5.4b, slope = 0.90, intercept =
0.15, ρ2 = 0.97; at 85 m, Fig. 5.4c, slope = 0.83, intercept = 0.46, ρ2 = 0.93. By merg-
ing all the measurement samples from Figs. 5.4a-c into Eq. 5.16, the histogram bar
chart for the normalised RMSE could be derived (Fig. 5.4d). The mean and median
normalised RMSE were, NRMSE = 12% and 8%, respectively, which is descriptive
of the statistical noise levels found in real practice in Ijmuiden.

MOST monotonicity and outlier rejection criteria

Synthetic samples (refer to italicised words at the beginning of Sect. 5.4.1 for termi-
nology) were filtered out according to the following outlier rejection criteria:

• (i) Because MOST inherently assumes that wind speed monotonically in-
creases with height, synthetic noisy wind profiles that did not fulfil this as-
sumption were excluded from the dataset.
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Figure 5.4: Estimation of normalised noise level NRMSE from metmast observa-
tions. (a), (b) and (c) Comparison between the MOST-predicted (Eq. 5.1) and mast-
measured wind speed at the three measurement heights. Dashed green line is the
ideal 1:1 line. Red line is the linear regression line. (d) Distribution of normalised
noise level NRMSE (Eq. 5.16), computed between predicted and reference wind-
speed profiles for the whole observational campaign.

• (ii) Obukhov-length values in the −50 m < L < 50 m interval were rejected
as outliers in order to avoid Eq. (5.2) singularity when L → 0 m (Kretschmer
et al., 2018; Araújo da Silva et al., 2022a; Gryning et al., 2007).

Although some authors (Araújo da Silva et al., 2022a; Gryning et al., 2007) pro-
pose the −50 m < L < 10 m interval, our choice (Kretschmer et al., 2018) enables
symmetrical rejection of samples from the stable and unstable regimes. In addi-
tion, when the −50 m < L < 50 m rejection interval is expressed in inverse form
(|1/L| > 0.02 [1/m]), this interval approximately corresponds to the 5th and 95th
percentiles of the inverse Obukhov-length distribution, in which statistically less
representative values occur (see Fig. 5.3b).

As a result from the outlier rejection criteria, the number of valid statistical
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samples became smaller than the nominal simulation value of 5,000. Thus, Fig.
5.5 depicts the number of valid samples as a function of noise level NRMSE . Valid
samples were counted from all the 50 datasets generated for a given perturbational
noise level (Sect. 5.4.1). For both the 2D and HW methods, the number of valid
samples decreased with increasing noise level because the higher this level was,
the higher the likelihood of occurrence of a non-monotonic wind profile was. Be-
sides, the reduction in the number of valid samples was larger for the unstable
condition (L < 0 m) on account of the fact that unstable wind profiles have lower
wind shear (i.e., lower vertical wind-speed gradients) as compared to stable ones
(L > 0 m). As a result, unstable profiles are more sensitive to noise perturbations
and prone to turn non-monotonic. In addition, the HW had fewer valid samples
than the 2D because a larger number of HW Obukhov-length estimates fell in the
outlier interval −50m < L < 50m.
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Figure 5.5: Distribution of the number of valid samples (i.e., after rejecting outliers)
from all 50 datasets for a given noise level as a function of perturbational noise
level NRMSE (Eq. 5.16). Symbols indicate median levels. Lower and upper error
bars depict 25th and 75th percentiles, respectively. (Blue and red lines) respectively
correspond to the median (8%) and mean (12%) noise levels shown in Fig. 5.4d.

5.4.2 2D and HW performances with reference to synthetic data

Sensitivity to friction velocity

Figure 5.6 shows the retrieval error (Eq. 5.18) associated to the 2D- and HW-
retrieved friction-velocity estimates (û2D

∗ and ûHW
∗ , respectively) as a function of

reference synthetic friction velocity usyn
∗ for two noise levels, NRMSE = 10% (high
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intensity) and NRMSE = 2% (low). Because of the inherently stochastic nature
of the perturbational noise, large dispersion in the error estimates (Eq. 5.18) is evi-
denced. To alleviate this issue, median error (50th percentile) lines are also plotted.

Prominently, it emerges that 2D retrievals consistently exhibited lower errors
than HW ones for all friction velocities and noise levels. Thus, 2D estimates (Fig.
5.6a) showed median (peak) errors of ≃ 5%(30%) for usyn

∗ = 0.1 m/s, whereas HW
estimates (Fig. 5.6b) yielded median (peak) errors as high as ≃ 200%(1, 000%).
When regarding the absolute relative error versus noise level, the higher the noise
level was, the higher the error was, as expected. Comparatively, the 2D median
error at NRMSE = 2% lay between 0.5% and 1%, and at NRMSE = 10% between 2%
up to 5%, whereas the HW median error at NRMSE = 2% and NRMSE = 10% lay
between 30% and 150%, and 40% and 200%, respectively. The worse performance
of the HW is due to the fact that this algorithm does a two-step estimation: first,
L is estimated from the ratio of wind speed differences (Eq. 5.9) and, second, u∗

is retrieved from the previously estimated Obukhov length (Eq. 5.8). As a result,
the error incurred in the estimation of the Obukhov length propagates down to the
friction velocity estimate. In contrast, the 2D algorithm retrieves both variables at
once using a single multi-variate optimization process (Eq. 5.6), which does not
propagate error between them.

Furthermore, for both algorithms, the error reduced with increasing friction
velocity. This is in accordance with the study by Basu (2019) (p. 37, Fig. 4), who
previously studied the sensitivity of the HW method to friction velocity under
four different noise cases. In that study, case-4 scenario consisted of a multivariate
Gaussian noise distribution with standard deviation σ = 0.05 m/s and the assump-
tion of noise-correlated heights with correlation coefficient ρ = 0.5. That standard
deviation (σ = 0.05 m/s) is equivalent to our noise level NRMSE = 2% representing
HWS deviations from MOST up to ± 0.2 m/s. Quantitative results are as follows:
On one hand, Fig. 4 in Basu (2019) reported median errors between ≈50% and
8% for friction velocities between 0.1 and 1 m/s. On the other hand, we found
(Fig. 5.6b) that the HW method attained median errors between 150% and 30%
for NRMSE = 2% within the same range of friction velocities. Therefore, both Basu
(2019) and our study yield similar quantitative results, albeit a factor three higher
error in our simulations due to the conservative assumption of uncorrelated noise.
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Figure 5.6: Absolute relative error between the estimated and reference synthetic
friction velocity (Eq. 5.18) for two different noise levels (see legends). (a) 2D
method. (b) HW method. (Blue trace) Median error at noise level NRMSE = 2%.
(Black trace) Median error at NRMSE = 10%. N stands for number of samples.

Sensitivity to the perturbational noise level

Numerical analysis was used to assess 2D and HW algorithm performances for
friction velocity, Obukhov length, and heat flux estimation. Towards this purpose,
both algorithms computed these three parameters from each of the 50 datasets
generated for each noise level (Sect. 5.4.1). The coefficient of determination (ρ2)
enabled to calculate the degree of correlation between each of the estimated pa-
rameters and their corresponding synthetic reference in each dataset. As a result,
for each parameter and noise level a set of 50 coefficients of determination was
obtained.

Figure 5.7 shows ρ2 as function of noise level for the three parameters above. It
can be observed that both the 2D and HW algorithms exhibited ideal performance
(ρ2 = 1) in the absence of noise (NRMSE → 0) for all three parameters As expected,
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the coefficients of determination decreased with increasing noise, being the 2D
method more robust to noise perturbations as shown by ρ2 values higher than
those from the HW algorithm.

Friction velocity (Fig. 5.7b) became the least sensitive parameter to noise as ev-
idenced by much higher coefficients of determination than those obtained for the
Obukhov length and heat flux. This is because friction velocity is proportional to
the mean wind speed. As found in Sect. 5.4.2, 2D friction-velocity estimates were
more accurate than HW ones. Thus, the 2D method yielded coefficients of determi-
nation ρ2 > 0.75 for all simulated noise levels, whereas the HW dropped below 0.5
for noise levels higher than NRMSE = 5%. 2D friction-velocity estimates were un-
affected by atmospheric stability, as evidenced by the stable-condition trace (L > 0

m, black solid) overlapping the unstable one (L < 0 m, grey dashed). On the other
hand, HW friction-velocity exhibited higher performances in unstable conditions.

With regards to the Obukhov length (actually to its inverse 1/L, Fig. 5.7a), the 2D
algorithm was able to acceptably estimate of the Obukhov length in stable regimes
(L > 0 m), yielding ρ2 ≃ 0.8 at NRMSE = 8% (which is the mean noise level,
NRMSE , found during the IJmuiden campaign, Fig. 5.4d). At this same noise level,
the HW method showed ρ2 ≈ 0. The higher accuracy of the 2D algorithm in stable
conditions was already reported by Araújo da Silva et al. (2022a). On the other
hand, none of the methods was able to successfully estimate the Obukhov length
in unstable conditions (L < 0 m). Quantitatively, ρ2 values were virtually zero for
NRMSE > 4%.

As far as the heat flux is concerned (Fig. 5.7c), the coefficients of determination
obtained were similar to those for the Obukhov length in Fig. 5.7a, because the
heat flux is a secondary parameter derived from u∗ and L through Eq. 5.7. ρ2

values were slightly higher for the Obukhov length than for the heat-flux retrievals
when using the 2D algorithm, particularly, for high noise levels (NRMSE > 5%).
A suitable explanation for that is propagation of the Obukhov-length estimation
error to heat-flux estimates via Eq. 5.7.

5.4.3 2D- and HW-algorithm performances with reference to ob-
servational data

Performance of the two surface-layer retrieval algorithms was also evaluated with
reference to metmast observational data gathered during the IJmuiden campaign
(Sect. 5.2). 8,263 10-min FDWL-measured wind profiles were used as the sole in-
put for the 2D and HW methods after prior removal of high spatial-variation data,
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Figure 5.7: Performance statistics as a function of perturbational noise level
NRMSE . (a) Inverse of Obukhov length, 1/L. (b) Friction velocity, u∗. (c) Kine-
matic heat flux, wθ. Symbols and error bars: Same format as in Fig 5.5. ρ2 is the
coefficient of determination.

and HWS values outside the range 2–80 m/s (refer to (Araújo da Silva et al., 2022a)
for detailed FDWL outlier-filtering procedure). We verified that the coefficients of
determination were higher than ρ2 = 0.996 between the FDWL and anemometer
measurements for the three metmast reference heights closest to the lidar (27, 58.5
and 85 m Sect. 5.2). After this verification step, the observational data collection
was submitted to the same outlier rejection criteria as the ones applied over syn-
thetic data (Sect. 5.4.1).

The first part of our analysis consisted of testing the capabilities of the 2D and
HW algorithms for typing the observational wind profiles into three main atmo-
spheric stability classes (Table 5.1) (Araújo da Silva et al., 2022a; Kretschmer et al.,
2018): unstable (u), neutral (n), and stable (s). The L values used for the classifi-
cation were the corresponding 2D- and HW-retrieved Obukhov lengths, denoted
L2D and LHW , respectively.
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Category L range [m]
Stable (s) 50 < L < 500

Neutral (n) |L| > 500
Unstable (u) −500 < L < −50

Table 5.1: Relationship between atmospheric stability classes and the Obukhov
length (refer to Sect. 5.4.1 (ii)).

Figure 5.8 plots the measured median normalized wind-speed profiles (nor-
malized the wind speed at the lowest height, U(z1)) for cluster categories u, n,
and s derived from the 2D- and HW-retrieved Obukhov lengths (L2D and LHW ,
respectively) over the whole campaign. As observed, both 2D and HW algorithms
were able to discern among the different stability types. The 2D algorithm enabled
clearer discrimination among the three stability types and showed narrower non-
overlapping error bars as compared to the HW. Further, the median wind-speed
profiles in Fig. 5.8 follow MOST. For the 2D algorithm the behavior of the wind
shear is clearly different for the number of stability classes.
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Figure 5.8: (Observational data, Sect. 5.4.3, part I) 2D and HW atmospheric stabil-
ity typing performance (82-day time resolution): median wind-speed profiles mea-
sured by the FDWL during IJmuiden campaign clustered by stability classes (Table
5.1). Panels (a) and (b) show classifications based on the 2D- and HW-retrieved
Obukhov lengths, L2D and LHW , respectively. (u) stands for unstable, (n) for neutral
and (s) for stable. Error bars depict 40th-to-60th percentiles at each height (note that
median is the 50th percentile in the very middle of the error bar).

The second part of our analysis tackled numerical evaluation of the 2D and HW
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retrieval performances through direct comparison with reference metmast retrievals.
The Richardson-number-based Obukhov-length, LRi (see Sect. 4.3.4), numerically-
solved friction velocity, u∗1D (see Sect. 5.3.3), and heat flux, wθ, computed through
Eq. 5.7 using LRi and u∗1D, were the references used in this study (Sect. 5.3.3).

Scatter plots comparing 2D- and HW-retrievals to the mast-derived reference
estimates are shown in Fig. 5.9. Aimed at limiting linear regression (LR) analy-
sis to the most meaningful samples, an additional de-noising filtering procedure
named histogrammed filtering was applied as follows: the range for X-axis data (ref-
erence reciprocal-Obukhov-length range, −0.05 [1/m] < 1/LRi < 0.05 [1/m]) in
Fig. 5.9a and Fig. 5.9d was divided into 0.002 [1/m]-width bins and, in each bin,
the corresponding Y-values (estimated reciprocal-Obukhov-length values 1/L2D in
Fig. 5.9a, or 1/LHW in Fig. 5.9d) outside the 15th-to-85th-percentile interval were
rejected as outliers, therefore, excluded from the LR. At this point we note that the
15th-to-85th percentile is approximately one standard deviation of the mean in a
normal distribution. For consistency, rejected samples in the Obukhov-length esti-
mates (grey dots in Fig. 5.9a and d) were also rejected in the friction-velocity and
heat-flux estimates (Fig. 5.9b-c and Fig. 5.9e-f, respectively).

After histogrammed filtering, the 2D method remained with N = 2, 426 and
N = 1, 230 samples for the stable (1/L2D > 0 [1/m]) and unstable (1/L2D < 0 [1/m])
classes, respectively (see legends in Fig. 5.9) whereas the HW remained with 1,118
(1/LHW > 0 [1/m]) and 441 (1/LHW < 0 [1/m]) samples, respectively. Overall,
the results of Fig. 5.9 agree with the previously found in Fig. 5.7 using synthetic
data and show that the 2D excels the HW algorithm. Thus, the 2D-derived fric-
tion velocity, u∗2D , outperformed all other retrievals regardless of the atmospheric
stability condition (Fig. 5.9b using observational data and Fig 5.7b using synthetic
data). And the HW-estimated friction velocity, u∗HW

, yielded coefficients of deter-
mination ρ2 = 0.47 and 0.15 (ρ2 = 0.39 and 0.12 without histogrammed filtering)
for unstable and stable cases (Fig. 5.9e) in rough agreement with the 1D friction ve-
locity results of Fig 5.7b, in which coefficients ρ2 = 0.25–0 were respectively found
at NRMSE = 8% (the observational median noise level, Fig. 5.4d).

Finally, in the third part of our study we compared the 2D and HW friction-
velocity estimates (u∗2D and u∗HW

) against the corresponding sonic-anemometer
measurements (u∗sonic

), Fig. 5.10. For consistency, histogrammed outliers identi-
fied in Fig. 5.9a,d were also excluded in Fig. 5.10. Similar to the results found
in Sect. 5.4.2, the 2D algorithm attained the best numerical indicators in both the
stable and unstable atmospheric regimes, whereas the HW algorithm could only
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Figure 5.9: (Observational data, Sect. 5.4.3, part II) 2D and HW quantitative re-
trieval performances (10 min resolution): estimated reciprocal Obukhov length,
friction velocity and heat flux against reference metmast retrievals. (a, b, c) 2D-
algorithm performance. (d, e, f) HW-algorithm performance. (Red and blue dots)
Colour-coded reference Obukhov length as 1/LRi > 0 [1/m] and 1/LRi < 0 [1/m],
respectively. (Red and blue lines) Corresponding regression lines. (Black-dashed
line) 1:1 ideal reference line. (Grey dots) Outlier samples. ρ2 is the coefficient
of determination. N stands for number of samples used in the linear regression.
RMSE stands for root-mean-squared error.

assess the friction velocity in the unstable one. Without histogrammed filtering,
the HW-retrieved friction velocity results yielded coefficients of determination of
ρ2 = 0.26 and ρ2 = 0.1 for the unstable and stable types, respectively, which are
virtually the same results as those found with synthetic data at 8% noise level (ob-
servational median noise level) in Fig. 5.7b (ρ2 = 0.25 and ρ2 = 0.0, respectively).
Note that u∗sonic

is the local friction velocity at 85 m, which might be different from
the surface-layer value (Sect. 5.3.3). Therefore, reference sonic-anemometer re-
trievals closer to the surface would be necessary to increase the validity of our
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findings.
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Figure 5.10: (Observational data, Sect. 5.4.3, part III) 2D and HW friction-velocity
estimates versus reference sonic-anemometer ones (10 min resolution, Eq. 5.10).
(a) 2D estimates. (b) HW estimates. Same format as in Fig. 5.9.

5.5 Summary and conclusions

Two retrieval algorithms aimed at estimating surface-layer parameters from solely
wind profiles, namely, the 2D and the Hybrid-Wind methods, were compared.
Their performances for estimating the Obukhov length, friction velocity and heat flux
were assessed by means of synthetic data and observational data gathered at the
IJmuiden meteorological site.

In order to assess 2D and HW performances with reference to synthetic data,
a method to computationally generate surface-layer parameters was devised. By
modelling the so-called c-factor (i.e., the proportionality factor between the Obukhov
length and the cube of the friction velocity, Eq. 5.11) and the friction velocity as
random variables with log-normal-like PDFs, statistically meaningful Obukhov-
length and friction-velocity pairs were reproduced (Fig. 5.3). Synthetic noisy wind
profiles were generated from these pairs via MOST and the addition of Gaus-
sian perturbational noise to the theoretical MOST profiles. For algorithm inter-
comparison, 5,000,000 synthetic wind profiles with 20 noise levels spanning from
NRMSE ≃ 0.01% to NRMSE = 60% were generated.

As for the assessment of 2D and HW performances with reference to obser-
vational data, FDWL-measured wind profiles were used as the only input to the
algorithms. Reference parameters were retrieved from the metmast instrumenta-
tion (Sec. 5.3.3).
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Retrieval performance of the 2D and HW methods as a function of the noise level was
studied by using both synthetic and observational data. It was found that:

(i) Regarding synthetic data, performance results obtained are summarised in
Figs. 5.6-5.7. For noise-free synthetic profiles (NRMSE → 0), the 2D and the
HW performed equally. Out of this idealised condition, 2D and HW friction-
velocity retrievals were more accurate than Obukhov-length and heat-flux ones
(Fig. 5.7). Moreover, neither the 2D nor the HW were able to satisfactorily esti-
mate the Obukhov length (L) or the kinematic heat flux (ωθ) in unstable regimes
(Fig. 5.7a,c). Conversely, under stable conditions, the 2D was the only method
able to retrieve meaningful Obukhov-length and heat-flux estimates. Overall, the
2D outperformed the HW for the three surface-layer parameters considered.

From a numerical perspective, the smaller errors obtained in the retrieval of the
friction velocity by both algorithms (Fig. 5.1) obey to the fact that the MOST model
(Eq. 5.1) is very sensitive to the friction velocity. Concerning the HW, there are two
key reasons accounting for its poorer performance: First, the HW is a two-step
processing algorithm itself, in which a variable Obukhov length is first estimated
and, subsequently, a variable friction velocity from the previous Obukhov-length
estimate, hence propagating errors. Second, the HW algorithm relies on the MOST
assumption of nearly constant momentum and heat fluxes within the surface layer
(Stull, 1988), which is used to compute the ratio of the wind-speed differences and,
eventually, to estimate the Obukhov length from this ratio (Eq. 5.9). Instead, the
2D algorithm directly fits the MOST wind-profile model to the measured profile,
which is equivalent to extrapolating the model up to the highest measurement
height.

(ii) Regarding cross-examination with observational data, Figs. 5.9–5.10 were
in agreement with the results derived from synthetic data (Fig. 5.7), hence vali-
dating the representativeness of the latter. Thus, at NRMSE = 8%, which was the
observational median noise level in Ijmuiden campaign, 2D friction-velocity re-
trievals from either observational or synthetic data showed ρ2 > 0.9 under stable
and unstable atmospheric conditions (Fig. 5.7b). In contrast, HW friction-velocity
retrievals from observational data yielded coefficients of determination of ρ2 = 0.1

(stable) and ρ2 = 0.26 (unstable) [ρ2 = 0.15 (s) and ρ2 = 0.47 (u) with histogrammed
filtering, Fig. 5.9e] versus ρ2 = 0.0 (s) and ρ2 = 0.25 (u) from synthetic data
(Fig. 5.7b). As for the Obukhov-length and heat-flux estimates, the 2D was the
only method able to achieve acceptable performance in stable regimes (ρ2 ≃ 0.8).
Furthermore, the 2D also prevailed over the HW when comparing their estimates
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against reference sonic anemometer measurements or derived Richardson-number
approximations (see Sect. 4.3.4) from the sonics (Fig. 5.10 and Fig. 5.9, respec-
tively).

When addressing 2D and HW atmospheric stability typing performance, our re-
sults are two-fold: On the long time scale (82-day average, i.e., the Ijmuiden cam-
paign duration) observational data showed that both methods output similar me-
dian wind-speed profiles for each stability class (Fig. 5.8), the 2D exhibiting nar-
rower error bars. On the short time scale (10-min estimates), observational data
(Fig. 5.9a) showed that the 2D method was the only one able to achieve acceptable
performance in stable regimes (see point (ii) above).

As far as data availability is concerned, it is important to highlight that the 2D
method can fit a lidar wind profile with any number of measurement heights
whereas the HW is limited to about three. Because of MOST implicit assump-
tion that wind speeds monotonically increase with height, the larger the number
of heights, the more likely measurement samples break the monotonicity require-
ment, therefore, risking to run out of valid MOST-compliant samples.

All in all, we highlight the 2D algorithm as an attractive method for estimating
the Obukhov length, friction velocity and turbulent fluxes utilizing only wind-
speed profile measurements in and close to the surface layer (25 to 85 m in this
work). As further steps, comparisons against momentum and heat flux at lower
altitudes (i.e., below 25 m) would be advisable.



Chapter 6

Conclusions and Outlook

Concluding remarks and future research lines concerning the over-land and over-sea di-
mensions of this Ph.D. are given in the following.

6.1 Conclusions

This PhD thesis focused on the investigation of remote-sensing techniques and re-
trieval methods for over-land atmospheric boundary-layer and over-sea off-shore
surface-layer observation:

I. Over-land dimension.- Regarding the over-land dimension of this work (Chap-
ter 3), this PhD presented a synergistic MLH retrieval algorithm for optimally
tracking the ABL diurnal cycle based on combined ceilometer and MWR obser-
vations and compared the synergistic performance of the method against the indi-
vidual performances of the involved instruments and methods in isolation.

MLH retrieval methods using backscattered lidar signals from a ceilometer
(Jenoptik CHM-15k Nimbus) and temperature profiles from a Microwave Radiome-
ter (MWR, HATPRO RPG) were compared in terms of their complementary capa-
bilities and associated uncertainties. The Extended Kalman Filter (EKF) was used
for MLH retrieval from backscattered lidar signals and the parcel method was used
for MLH retrieval from MWR-derived potential-temperature profiles.

The two principal sources of uncertainty in ceilometer-based MLH estimates
were: (i) incorrect layer attribution (∼ hundreds of meters) and (ii) noise-induced
errors (about 50 m). MWR MLH uncertainties comprised: (i) the total uncertainty
in the retrieved potential temperature profile and (ii) ±0.5 K uncertainty in the
surface temperature. Ceilometer- and MWR-based MLH estimates were in turn
compared with reference to MLH estimates from radiosoundings. Twenty one
measurement days from the HOPE campaign at Jülich, Germany, were considered.

123



6.1. CONCLUSIONS 124

It was shown that the MWR can track the full Mixed Layer (ML) diurnal cy-
cle (i.e., including morning and evening transitions) with height-increasing error
bars. The ceilometer-EKF MLH estimates yielded much smaller error bars than
those from the MWR under the well-developed clear-sky ML. The ceilometer-EKF
is prone to ambiguous tracking some multilayer scenarios (e.g., the residual layer).
We therefore introduced the synergistic MLH retrieval approach that combines
both ceilometer and MWR estimates in order to optimize the benefits of both.

The SYN method used a maximum likelihood algorithm to combine the MLH-
MWR and MLH-LC-EKF methods in order to come up with new estimate (MLH-
SYN) that overcame the inherent weaknesses of these two methods in isolation. In
summary, the MLH-SYN algorithm makes the most of the fine spatial resolution
of the MLH-LC-EKF in the convective time interval, and falls back on the MLH-
MWR outside of this interval. In this way, MLH can be tracked automatically and
reliably, around the clock.

II. Over-sea dimension.- As far as the off-shore over-sea dimension is concerned
(Chapters 4 and 5), this PhD conceived a new method based on MOST, the so-
called the 2D parametric-solver algorithm for estimating the Obukhov length (as
key atmospheric stability indicator), friction velocity and kinematic heat flux from
solely floating Doppler wind lidar (FDWL) observations. The PhD also developed
a new methodology for studying the sensitivity of the 2D-algorithm retrievals with
reference to synthetic and observational data. Specific data-screening procedures
were also detailed.

In Chapter 4, the performance of the stability estimates derived from the 2D al-
gorithm was assessed with reference to wind-speed and temperature observations
from the IJmuiden metmast (North Sea) during the 82-day campaign of the same
name. A fixed-to-mast Doppler wind lidar (DWL) was also available, which pro-
vided a reference for wind-speed observations free from sea-motion perturbations.

When comparing FDWL- and mast-derived mean wind speeds, the obtained
determination coefficient was as high as that of the fixed-to-mast DWL against
the mast (ρ2 = 0.996) with a root mean square error (RMSE) of 0.25 m/s. From
the measurement campaign at IJmuiden (10,833 10 min records), the 2D algorithm
showed that the atmosphere was neutral (31% of the cases), stable (28%), or near-
neutral stable (19%) during the campaign. These figures satisfactorily agreed with
values estimated from the mast measurements (31%, 27%, and 19%, respectively).

The procedure to generate synthetic wind profiles was presented in Chapter 5.
This High-Performance-Computing procedure generates synthetic noise-corrupted
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wind profiles based on estimation of the probability density functions for MOST-
related variables (e.g., friction velocity) and the statistics of the noise-corrupting
perturbational amplitude found during the IJmuiden observational campaign.

Furthermore, in Chapter 5 the 2D algorithm was compared with the well-known
Hybrid-Wind (HW) algorithm by using both synthetic and observational data for
their quantitative assessment. Both the HW and the 2D algorithms retrieve surface-
layer parameters from only wind-profile observations at different heights. Overall,
the 2D algorithm outperformed the HW in the estimation of all the three param-
eters above (i.e., Obukhov length, friction velocity and heat flux). For instance,
when assessing the friction-velocity retrieval performance with reference to sonic
anemometers, determination coefficients of ρ22D = 0.77 and ρ2HW = 0.33 were found
under unstable atmospheric stability conditions, and ρ22D = 0.81 and ρ2HW = 0.07

under stable conditions. Therefore, we highlight the 2D algorithm as an attractive
method for estimating these surface-layer parameters utilising only wind-speed
profile measurements in and close to the surface layer (25 to 85 m in this work).

All in all, the over-land dimension of this Ph.D. thesis showed the importance
of synergistic remote-sensing techniques for ABLH estimation, which, when com-
bined with advanced signal-processing techniques such as the Kalman filter and
maximum likelihood estimation, provide unprecedented features of high-spatial
resolution and high accuracy. The over-sea dimension of this thesis successfully
demonstrated the potential of FDWLs for offshore wind resource assessment as
stand-alone instruments and the ability of specific algorithms (the 2D algorithm)
to estimate surface-layer parameters from the FDWL wind-profiles only.

6.2 Outlook

In the over-land dimension, future work regarding the MLH synergistic method
should extend this methodology over the whole diurnal cycle, particularly during
the night-time stable boundary layer. Towards this end, the synergistic approach
could be expanded by incorporating other instruments to the standard method-
ology, for instance, the case of synergistic MLH estimation based on ceilometer,
MWR and DWL retrievals. Moreover, it would be advisable to explore the syn-
ergy with other pairs of instruments (e.g., ceilometer-DWL, MWR-DWL) accord-
ing to the observational site availability in order to identify their pros and cons
and, therefore, the most robust combination. Not to mention validation in other
sites and multi-layer scenarios. In the stable boundary layer, ABLH estimation
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blending Kalman-filter predictive analytics with a minimum-variance-based deci-
sion threshold is also a prospective line.

As to the over-sea dimension, the 2D parametric-solver algorithm should be tested
against: (i) direct measurements of both momentum and heat fluxes taken over the
same range of heights as those of the FDWL, and (ii) at lower altitudes (i.e., below
25 m) where sonic-anemometer-derived fluxes were available. Application of the
2D method to mast-based wind observations from e.g., FINO-1 or FINO-3, the re-
search platforms in the North Sea, and FINO-2 in the Baltic Sea, would be highly
valuable and work is under way.

Furthermore, the methodology developed for the 2D-algorithm could be ex-
plored for the onshore case. Nonetheless, that would mean a “3D” formulation
instead, in which three MOST wind-model variables rather than two would have
to be optimised, namely, friction velocity, Obukhov length and roughness length.
The Charnock relation only is valid over the sea.
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Appendix B

Measures of central tendency and
variability

The mean of the 30-min MLH for the instrument/method combination, X, denoted
µMLH,X(th), is computed at time th as

µMLH,X(th) =
1

N

N∑
i=1

MLHX(th, di), (B.0.1)

where N = 21 is the total number of selected days (statistical sample) and di de-
notes the i-th day, i = 1, . . . , N . The variability of the estimated MLH in Eq. (B.0.1)
above is computed as the standard deviation over the sample population,

σMLH,X(th) =

√√√√ 1

N

N∑
i=1

(MLHX(th, di)− µMLH,X(th))
2. (B.0.2)

The mean of the MLH bias (Eq. 3.17) between MLH estimates from two differ-
ent instruments/datasets denoted X and Y is computed at each time th as

µX,Y
bias (th) =

1

N

N∑
i=1

biasX,Y (th, di). (B.0.3)

The variability of the MLH bias given by Eq. (B.0.3) above is computed as the
standard deviation,

σX,Y
bias (th) =

√√√√ 1

N

N∑
i=1

(
biasX,Y (th, di)− µX,Y

bias (th)
)2
. (B.0.4)
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Rose, T., Crewell, S., Löhnert, U., & Simmer, C. (2005). A network suitable mi-
crowave radiometer for operational monitoring of the cloudy atmosphere. At-
mospheric Research, 75, 183–200.

RPG (2023). Rpg-radiometer physics gmbh - technical instrument manual.
https://www.radiometer-physics.de/downloadftp/pub/PDF/Radiometers/
General documents/Manuals/2015/RPG MWR STD Technical Manual 2015.
pdf. (accessed, Feb. 2023).

Saeed, U. (2016). Atmospheric-Boundary-Layer Height Retrieval using Microwave Ra-
diometer and Lidar Sensors: Algorithms and Error Estimation. Universitat Politècnica
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