
Hardware/Software solutions to
enable the use of high-performance
processors in the most stringent

safety-critical systems

Sergi Alcaide Portet

Universitat Politècnica de Catalunya

Computer Architecture Department

PhD thesis

Doctoral programme on Computer Architecture

11th of April, 2023

mailto:sapcat7@gmail.com
http://www.upc.edu/en
http://www.ac.upc.edu/en

Hardware/Software solutions

to enable the use of

high-performance processors

in the most stringent

safety-critical systems

Sergi Alcaide Portet

April 2023

Universitat Politècnica de Catalunya

Computer Architecture Department

A thesis submitted in fulfillment of
the requirements for the degree of

Doctor of Philosophy in Computer Architecture

Advisor: Leonidas Kosmidis, PhD, Barcelona Supercomputing Center
CoAdvisor: Jaume Abella, PhD, Barcelona Supercomputing Center

iii

Per la meva Mimi i pares, pel seu infinit suport i per la iaia Mela, que
vas poder veure com començava la tesis i espero que puguis veure com

l’acabo des d’allà on siguis

iv

v

vi

Acknowledgements

Now that the Ph.D. endeavor is reaching its end, I can look back and reflect
on what lifted a lot of the weight of this enterprise from my shoulders.
I want to devote this page to the people that helped me in easing the
hardships of reaching the highest step in the educational stair, my Ph.D.

I want to start by thanking my advisors, Leonidas, Jaume and Carles and
Fran for all the opportunities and knowledge they have given me and all
the trust they have deposited in me. Also to my CAOS colleagues during
the journey, Jordi, Pedro, David, Xavi, Miguel, Jeremy, Mateo, Ivan and
many more who came and went through the group either in Nexus II or in
Til·lers. To my university colleagues Enric, Eric, Carla, Julián, Cristian,
Alberto, Axel, Killian and Raül, guilty of most of the procrastination but
also the moments of relief. I also want to thank my hard-core infancy
friends from my hometown, Vic which whom I share not only moments
but with some of them a home too: Jan, Arnau, Pol, Guillem R., Guillem
O., Sergi and Pere. To my other friends from Vic and Vilanova de Sau and
Girona whom I also shared a home with them too: Pol, Victor P., Judit,
Victor S, Christian, Marc, Edu and Carles. Most of the fun in my life
involved at least one of them. To my current roommates, Laura and Fran
and to Matteo, thanks for those afternoons in ”Sandwichez” that allowed
me to advance in the writing of this Thesis. I also want to dedicate some
words to the multiple basketball friends I met along the way who helped
me to de-stress my mind: In Sara Sevilla games: Natàlia, Adrián, Aitor,
Anna, Isra, Helena, Radek, Lorenzo, Matteo and many more. From Vic,
Sant Julià and Manlleu: Pau, Mart́ı, Marc, Manel, Miki among ohters.
Colleagues from BSC such as Max, Ruben, Victor, Sergi among many
others.

I am also thankful for my grandparents. My grandmothers and grandfa-
thers Iaia Mela, Caterina, Antonio, Jaume for their kindness and benev-
olence And finally, but most importantly, I want to thank my parents M.
Carme, Toni, who raised, taught and bestowed on me an attitude that al-
lows me to pursue higher standards and overcome failures and hardships,
and my sister who always had my back. I want to thank them for their
sacrifices and for giving me everything despite getting much less in return.
Thanks to you I can thrive and be content with my life.
Moltes gràcies a tots, aquesta tesi també és per a vosaltres.
Muchas gracias a todos, esta tesis también es para vosotros.
Thank you all, this thesis is also for you.

vii

Abstract

Future Safety-Critical Systems require a boost in guaranteed performance
in order to satisfy the increasing performance demands of the state-of-the-
art complex software features. An approach to achieve these performance
requirements is the usage of High Performance Computing (HPC) com-
ponents which can deliver more computation power than current safety-
critical components. However, the dependability support of these HPC
components are not the same as that for the safety-critical components,
so HPC components can jeopardize the functional safety of the entire sys-
tem, especially since some of the highest-criticality functionalities may be
executed entirely on top of these components (e.g., neural networks in a
Graphical Processing Unit (GPU)). Based on the safety requirements of
performance-hungry critical applications, such as those for an autonomous
operation, these HPC components must comply with the highest critical-
ity levels, hence including the required dependability support.

The overarching goal of this thesis is to present techniques to achieve
that in different HPC components. In particular, we focus on GPUs and
multicores. The techniques presented aim at providing diverse redundant
execution, as needed to avoid Common Cause Failure (CCF)s, which are
those defeating safety measures (e.g., pure redundancy) as a consequence
of a single-point fault (e.g., a fault affecting both redundant instances
identically). Such a solution is comparable to the lockstep execution em-
ployed on safety-critical processors such as [1, 2].

The first set of contributions of this thesis focuses on enabling diverse
redundant execution on a single GPU. We propose two different solutions:
(1) a slight hardware modification affecting the internal scheduler of the
GPU and (2) a software-only approach that requires knowledge of the
hardware resources of the GPU. In these contributions, we also analyze
the staggering created due to the CPU-GPU inherent interaction.

Finally, the last contribution relates to multicore systems. Similarly to
the previous contributions, we focused on enabling diverse redundant ex-
ecution on this component. However, executing a workload twice in two
different cores is something relatively simple with modern programming
models (e.g., OpenMP, OpenMPI). The real challenge is in using the lim-
ited observability and controllability channels to maintain and guarantee
the (time) diversity between these two redundant executions like the lock-
step approach. Note that lockstep is an expensive approach that hijacks

viii

half of the cores, which are non-visible to the user and cannot be used
for non-critical applications. Instead, if a flexible software-only solution
for COTS multicores existed, all cores could be used by non-critical ap-
plications when not needed for the safety-critical ones. Thus, maximizing
their utilization. To tackle this challenge we proposed a software-only so-
lution with small requirements that can be met by most existing COTS
multicore.

These contributions allow pushing the usage of HPC parts even for appli-
cations with the highest integrity levels by providing solutions to realize
diverse redundancy, a crucial safety requirement for those applications.

ix

x

Contents

Acknowledgements vii

Abstract viii

Contents xi

List of Figures xv

List of Tables xix

List of Listings xxi

List of Acronyms xxiii

1 Introduction 1
1.1 Trends on Safety-Critical Systems . 1
1.2 Challenges in the Automotive Safety-Critical Systems 3

1.2.1 COTS GPUs . 3
1.2.2 COTS Multicores . 4

1.3 Motivation . 6
1.4 Contributions . 7
1.5 Thesis Organization . 9
1.6 List of Publications . 10

2 Background 15
2.1 Basic concepts of Safety-Critical Systems 15

2.1.1 Safety-Critical Systems and their Taxonomy 15
2.1.2 Redundancy and Diversity . 19
2.1.3 Lockstep . 22
2.1.4 Memory and data transmission safety mechanisms 23
2.1.5 Nanoscale Level relevance for reliability 24

2.2 Certification and Automotive Safety Standards 24
2.2.1 ISO26262 - Automotive Safety standard 25

2.3 GPU . 31
2.3.1 GPU Architecture . 31
2.3.2 GPU Software . 33

xi

CONTENTS

2.3.3 GPU in Safety-Critical Systems 34
2.3.4 Path Towards Certification . 35
2.3.5 Power and Reliability Considerations 36

2.4 Multicores . 37
2.4.1 Introduction to Multicores . 37
2.4.2 Multicore Architecture . 37
2.4.3 Multicores in Safety-related systems 39

3 Experimental Setup 45
3.1 Hardware Setup . 45

3.1.1 Server CAOS17 . 46
3.1.2 NVIDIA GTX1050 Ti . 46
3.1.3 NVIDIA GTX1080 Ti . 48
3.1.4 NVIDIA Jetson Tegra TX2 SoC 48

3.2 Software Setup . 48
3.2.1 Rodinia . 48
3.2.2 EEMBC AutoBench v1.1 . 50

3.3 Methodology . 50
3.4 Methodolgy and Setup used in: An Analysis of the Safety-Related Chal-

lenges and Opportunities for GPUs in the Automotive Domain 51
3.5 Methodolgy and Setup used in: GPU scheduling policies 52

3.5.1 GPGPUSim . 52
3.5.2 CUDA Version and Compiler 53

3.6 Methodology and Setup used in: GPU software-only diverse redundant
execution . 53
3.6.1 Slack Measurements . 53
3.6.2 COTS GPU Results for diverse DMR 53
3.6.3 COTS GPU Results for diverse TMR 54
3.6.4 Fault-detection capabilities evaluation using fault injection . . 54
3.6.5 HW and SW-only solutions side by side on the simulator . . . 55

3.7 Methodolgy and Setup used in: Software-only based Diverse Redun-
dancy for ASIL-D Automotive Applications on Embedded HPC Plat-
forms . 56
3.7.1 CPU diverse redundancy execution 56
3.7.2 Executions and versions . 57

4 An Analysis of the Safety-Related Challenges and Opportunities for
GPUs in the Automotive Domain 59
4.1 Introduction . 59
4.2 Safety Assurance: Impact on Hardware 62

4.2.1 ASIL Decomposition . 62
4.2.2 Redundancy and Diversity . 63
4.2.3 Ability to Operate in Harsh Environment 63

4.3 Safety Assurance: Impact on Software 64
4.3.1 Coding Standard and Architectural Design 64

xii

CONTENTS

4.3.2 Generic ML and Black-Box CUDA Libraries 66

4.3.3 Domain-Specific Optimizations 68

4.3.4 Time Predictability . 68

4.4 Conclusions . 69

5 GPU scheduling policies 71

5.1 Introduction . 71

5.2 GPU Design and Operation . 72

5.2.1 Redundancy and Diversity Elements 73

5.3 Scheduling Strategy for Diverse and Redundant GPU Execution . . . 74

5.3.1 Kernel Redundancy . 74

5.3.2 Redundant Kernel Execution Patterns 75

5.3.3 SRRS (Start, Round-Robin, and Serial) policy 76

5.3.4 HALF policy . 77

5.3.5 Diverse Redundancy in the Kernel Scheduler 78

5.3.6 Appropriateness of the Scheduling Policies 78

5.4 Evaluation . 79

5.4.1 Implementation in GPGPUSim 79

5.4.2 Simulation Results . 80

5.4.3 COTS GPU Results . 82

5.5 Related Work . 82

5.6 Conclusions . 83

6 GPU Software-only diverse redundant execution 85

6.1 Introduction . 85

6.2 Enabling ASIL-D GPU Operation . 86

6.2.1 Target Platform . 86

6.2.2 Offloading Process and Software modifications 87

6.2.3 Redundant Kernel Execution Patterns 91

6.2.4 Staggering creation . 92

6.2.5 SM sharing among Kernels . 92

6.2.6 Achieving Diverse Redundancy 93

6.2.7 Heavy-to-Friendly Kernel Reshaping Protocol 96

6.2.8 Diversity Limitations: from DMR to TMR 100

6.3 Experimental Validation . 100

6.3.1 Slack Measurements Results on a COTS GPU 101

6.3.2 COTS GPU Results for diverse DMR 101

6.3.3 COTS GPU Results for diverse TMR 103

6.3.4 Evaluation of the Heavy-to-friendly Protocol 104

6.3.5 Fault-detection capabilities evaluation using fault injection . . 106

6.3.6 HW and SW-only solutions side by side 108

6.4 Related Work . 108

6.5 Conclusions . 109

xiii

CONTENTS

7 Software-only based Diverse Redundancy for ASIL-D Automotive
Applications on Embedded HPC Platforms 111
7.1 Introduction . 111
7.2 Software-based Diverse Redundancy Approach 112

7.2.1 Diverse Redundancy across the entire multicore 112
7.2.2 Specification of the Execution Strategy 112
7.2.3 Realization on an ARM-based Multicore 115
7.2.4 Scope of the proposal and Fault Model 116

7.3 Evaluation . 117
7.3.1 Framework . 117
7.3.2 Overheads Assessment . 118
7.3.3 Performance Assessment . 119

7.4 Related Work . 120
7.5 Conclusions . 122

8 Conclusions 123
8.1 Contributions . 123
8.2 Impact . 124
8.3 Future Work . 125

Bibliography 127

Appendices 150

xiv

List of Figures

2-1 Fault classification based on the eight basic viewpoints, extracted from [3]. 17

2-2 Example of a masked error. The error modified one input of the gate,
but it does not propagate into a failure. 18

2-3 Relationship between Fault, Error, and Failure [3]. 18

2-4 n-Time redundancy scheme . 20

2-5 Dual space redundancy scheme . 20

2-6 An schematic example of a Dual Core Lockstep (DCLS). 23

2-7 Examples of ASIL decomposition. 27

2-8 Hazard decomposition and scope of ISO26262 and SOTIF. 29

2-9 Generic GPU schematic. Inside an SM we can observe the three differ-
ent functional units: (1) Cores which operate with integers and floating
point operands, (2) Memory Operations (load and stores) and (3) Spe-
cial Functions. For space constraints, some components inside the SM
have been omitted (e.g., Register File or operand selection) 32

2-10 Typical CUDA Workflow . 32

2-11 AMD Zen 2 and AMD Zen 3 Multicore Layouts 38

2-12 Example scheme of a Multicore with Big.little architecture. In this
time instant, the BIG cluster is active whereas the little is inactive. . 40

2-13 Bathtub curve with the three distinct regions with the hazard function
of time to failure in the y-axis and the time in the x-axis. Extracted
from [4]. 42

3-1 Diagram of the GTX 1050 Ti (edited from https://www.techpowerup.

com/gpu-specs/nvidia-gp107.g801) 47

3-2 SM diagram of the PASCAL microarchitecture belonging to the GTX
1050 Ti (edited from https://www.techpowerup.com/gpu-specs/nvidia-
gp107.g801) . 47

3-3 NVIDIA Tegra TX2 schematic, with three CPU clusters: the dual-
core NVIDIA Denver 64-bit (blue square), the quad-core ARM Cortex
A57 [5] (green square), and a small Cortex-R5 in charge of (critical
tasks, transparent to the user), edited from [6] 49

4-1 Examples of ASIL decomposition and appropriateness for fail-safe and
fail-operational systems. 62

xv

https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801
https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801
https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801
https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801

LIST OF FIGURES

4-2 Example equivalent code programmed with Brook Auto (top) and
CUDA (bottom). 65

4-3 Code coverage for YOLO v3. 67

5-1 GPU generic schematic. 72

5-2 Kernel categories based on their overlapping. 75

5-3 Round Robin example. Multiple processes share the CPU and each one
is given the same quantum time to execute. In this particular instant,
Process 2 is using the CPU (marked with the red square). 76

5-4 Scheduler simulated cycles using GPGPUSim normalized to the default
simulator scheduler. 80

5-5 SRRS implementation by serializing redundant kernels 81

6-1 Proposed Computing Platform architecture 87

6-2 Common CUDA Workflow . 88

6-3 Original CUDA code and Redundant Kernel execution, side by side . 89

6-4 Example of floating point comparison with a tolerance of FLT EPSILON 90

6-5 Timelines of redundant executions of Rodinia benchmarks [7] extracted
using the NVIDIA Visual Profiler. 91

6-6 Staggered kernel execution of vector addition, obtained using NVIDIA’s
Visual Profiler . 92

6-7 Spatial and time redundancy in a GPU execution. Three redundant
kernels that contain 5 thread blocks each are scheduled in an 8 SM GPU. 93

6-8 Proposed protocol, where TCF = Thread Coarsening Factor and BDF
= Block Division Factor . 98

6-9 Slack observed and subprocedures of the kernel launching for the con-
secutive executions of the Myocyte kernel. 101

6-10 Redundant execution times characterization for the Rodinia bench-
mark suite. Backprop and gaussian are short kernels; nn and bfs are
heavy kernels; and the rest are friendly kernels. 102

6-11 Execution time of diverse DMR and TMR normalized w.r.t. non-
redundant execution. 103

6-12 Normalized execution times of the total redundant execution (grey),
the execution time of the first kernel launched (white) and the ini-
tial staggering (black) between the redundant kernels w.r.t. total ker-
nel redundant execution on the default configuration (heavy) of each
benchmark. 105

6-13 Fault injection results for each fault model. Masked: The output
of the execution was correct. SDC detected: An error was found by
the detection mechanism and reflected in the output of the application.
SDC undetected: A mismatch in the output was found which was
not detected. DUE: A detected error prevented finishing the execution.107

6-14 Simulator Cycles of all the solutions 108

7-1 Schematic of the diverse redundancy execution strategy. 113

xvi

LIST OF FIGURES

7-2 Strategy used in the 4-core Jetson TX2 115
7-3 Execution times, in the form of a boxplot, for the different setups

(Baseline, No-Monitor, P = Passive, S = Safe) and Tcheck values
(including EEMBCs and matrix multiplication). 119

7-4 Boxplot of the relative execution times of our approach for Tcheck =
0.001s (1 ms) in the EEMBCs benchmarks. 120

7-5 Execution times of the different setups for basefp01 baseline normalized.121

xvii

LIST OF FIGURES

xviii

List of Tables

1.1 Contributions, the focus of work and publications. 8

2.1 ASIL determination based on the three classes. 26

3.1 EEMBC Automotive benchmarks . 51

6.1 Default configuration of the applications that produces heavy kernels
on the NVIDIA GTX 1050 Ti, and final friendly configuration obtained
using the Heavy-to-friendly protocol 104

7.1 Classification of HW and SW-only fault-tolerant techniques 121

xix

LIST OF TABLES

xx

List of Listings

6.1 Original CUDA code . 89
6.2 Applying Redundant Kernel Execution 89
7.1 Monitor routine to preserve staggering across redundant processes . . 114
1 Myocyte code with the modifications required 151
2 Template call of nvprof tool . 153
3 Nvprof call used for the myocyte application 153
4 Commands that turn off the two Denver cores 155
5 Commands to deactivate the frequency scaling by setting the maximum

and minimum frequency equal . 155

xxi

LIST OF LISTINGS

xxii

List of Acronyms

AD Autonomous Driving. 1, 3, 4, 6, 8, 18, 19, 59–63, 66–68, 71, 82, 85, 109, 111

ADAS Advanced Driver Assistance Systems. 1, 3, 4, 15, 59, 61

ALU Arithmetic Logic Unit. 46

ASIC Application-Specific Integrated Circuit. 82

ASIL Automotive Safety Integrity Level. xv, 4, 8, 25, 26, 61–63, 67, 71–74, 82, 83,
85–88, 94, 95, 108, 109, 111

AUTOSAR AUTomotive Open System ARchitecture. 115

CCF Common Cause Failure. viii, 18, 21, 22, 36, 73, 74, 77, 86, 95, 100, 109, 111,
112, 117

COTS Commercial Off-The-Shelf. ix, 3–5, 8, 9, 27, 37, 71–73, 79, 82, 86, 93, 95,
100, 105, 106, 109, 110, 112, 114, 122–124

CPU Central Processing Unit. viii, 3, 9, 31, 34–36, 38, 45, 49, 53, 54, 56, 73, 74, 76,
79, 82, 86, 90, 94, 99, 101–103, 105, 109, 115

CRC Cyclic Redundancy Check. 6, 23, 73, 74, 87, 95

CRTES Critical Real-Time Embedded Systems. 59, 61, 66, 68

DCLS Dual-Core Lockstep. 71, 74, 88, 115

DMA Direct Memory Access. 88

DMR Dual Modular Redundancy. 100, 103, 104

DNN Deep Neural Networks. 59

DRAM Dynamic Random Access Memory. 72, 96, 97

DUE Detected Uncorrectable Errors. 107

ECC Error Correction Codes. 4, 6, 23, 73, 74, 87, 88, 93, 95, 112, 114

xxiii

List of Acronyms

eHPC Embedded High-Performance Computing. 111, 115

eHPCM Embedded High-Performance Computing Multicore. 112–116, 119, 120,
122

EPI European Processor Initiative. 111

ESA European Space Agency. 7, 124

FIT Failures In Time. 43

FP Floating Point. 90

FPGA Field-Programmable Gate Array. 1, 38, 82, 109

FTTI Fault Tolerant Time Interval. 74, 94, 108

GPU Graphical Processing Unit. viii, 1–4, 6–10, 27, 31, 33–37, 41, 45, 46, 48–50,
52–55, 60–64, 66–68, 71–75, 77–83, 85–88, 90, 93–106, 109, 110, 123–126

GPUs Graphical Processing Units. 1, 3, 7, 15, 38, 45, 60, 61, 63, 64, 67, 69

HPC High Performance Computing. viii, ix, 2–7, 9, 85, 86, 111, 122–124

ISA Instruction Set Architecture. 115

MCU MicroController Unit. 27, 112–117, 122

ML Machine Learning. 59, 60, 66, 67

MPI Message Passing Interface. 115, 116

NRE Non-Recurring Expenses. 71

OS Operative System. 114

PMC Performance Monitoring Counter. 114, 116, 124

PMCs Performance Monitoring Counters. 114–116

QM Quality Management. 26

RAM Random Access Memory. 23

SDC Silent Data Corruption. 107, 110

SECDED Single Error Correction, Double Error Detection. 73

xxiv

List of Acronyms

SM Streaming Multiprocessor. 8, 46, 48, 52, 72–74, 77–83, 86, 93–95, 97–100, 104,
123

SoC System on Chip. 3, 5, 41, 61, 83, 124

SOR Sphere of Replication. 20, 88

TDP Thermal Design Power. 37

TMR Triple Modular Redundancy. 9, 86, 93, 100, 103, 104, 109, 123

WCET Worst-Case Execution Time. 41, 61, 66, 68, 69

xxv

List of Acronyms

xxvi

Chapter 1

Introduction

1.1 Trends on Safety-Critical Systems

In the last decade, the increasing use of Artificial Intelligence (AI) in general, and
Machine Learning techniques in particular, such as Convolutional Neural Networks,
has increased performance demands and, in most cases, influenced the development
of new hardware (ASIC, accelerators) or the diversification of markets for others [8]
(e.g., Graphical Processing Units (GPUs), Field-Programmable Gate Array (FPGA)).
GPUs, for example, time ago were generally used for graphics rendering and gaming
purposes. Nowadays, they can be seen in multiple domains, used to mine cryp-
tocurrencies [9], in the industry 4.0 [10], or even in research to accelerate genome
sequencing methods [11], which validates their viability as a computing element for
parallel algorithms.

Following the same trend, Automotive Safety-Critical Systems have experienced
an increased demand for performance, mostly due to Advanced Driver Assistance Sys-
tems (ADAS) and Autonomous Driving (AD). For instance, ARM predicted in 2015
that vehicle computing performance (i.e., ADAS) would increase by 100x in ten years
(2015-2025) [12]. This has led, in general, to higher complexity for the platforms used,
for example, with the spread of multicores in this type of system. Still, the usage of
different cores introduces a new categorization of the platforms based on the types
of multicores used. Safety platforms includes multicores designed for the automotive
domain such as the Infineon AURIX family [1] among others [13, 14, 15]; Generic
platforms which use only generic multicores mostly used for non-safety functional-
ities such as multimedia and Hybrid platforms which combines generic multicores
with a certifiable ”safety island” (e.g., Zynq UltraScale+ [16]), which has attracted
some interesting researches regarding how these platforms deal with QoS [17]. How-
ever, differently from other domains, safety-critical real-time systems have multiple
constraints that are as relevant as performance or even more important. These are
the constraints related to real-time and safety, since, as the name indicates, these
systems need to be safe to use. Nevertheless, the increased the complexity of the
systems backfires in terms of safety since it makes them even more challenging to get
certified as a safe system, in other words, to prove that they are safe to use.

1

1. INTRODUCTION

Functional safety, which can be seen as the avoidance of unreasonable risk of
failures and malfunction for electronic systems, is an essential aspect of safety-critical
systems since these systems may be in charge of human lives, nuclear plants, trains,
etc. Malfunctions of those systems may result in death, environmental harm or loss,
or severe damage to equipment. To ensure a safe execution, safety-critical systems
need to undergo an exhaustive Verification and Validation (V&V) process, which
guarantees that the safety goals specified in an early stage of the design are met. These
V&V processes and the guidelines to follow at the design, validation and verification
stages are specified in the Functional Safety Standards of each subdomain, as we will
see later on the Background section 2.

This Thesis focuses on the automotive domain mainly, which is a particular sub-
domain in safety-critical systems, but most discussions and contributions can also be
applied to other safety-critical subdomains with similarities such as space, avionics,
or railway.

As discussed, the Automotive domain is entitled to increase its safety-critical sys-
tems’ performance and provide functional safety alongside them. The adoption of
components from other computation domains, mainly from High Performance Com-
puting (HPC), for performance purposes is currently one of the trends being fol-
lowed by both the industry [18, 19] and the research community [20]. Mainly, GPUs
have been one, but not the only (e.g., multicores, FPGA and ASICs) of the high-
performance components introduced into traditional safety-critical systems [21, 22].
However, the safety considerations of these systems cannot be easily achieved with the
level of complexity of these components and their lack of intrinsic safety mechanisms.
This has led to one of the main challenges of the automotive industry as well as a
hot topic for the safety-critical research community. Because of the difficulty of the
challenge, no system has achieved the maximum Automotive Safety Integrity Level
yet, labeled as ASIL-D, following this type of design (HPC Component + Safety-
Critical System). Industrial prototype trial failures are an example of how the safety
implications in these systems are important [23, 24, 25].

2

1.2 Challenges in the Automotive Safety-Critical Systems

1.2 Challenges in the Automotive Safety-Critical

Systems

In the previous section, we have described that the trends in safety-critical systems
impose different challenges for coming years. The increased complexity due to the
performance requirements, and the need for high safety integrity levels because of
the functionalities these systems are in charge of, are aspects tackled by this Thesis.
Notably, we focus on both, software techniques and minimal hardware modifications
that can be employed on Commercial Off-The-Shelf (COTS) products from the High
Performance Computing (HPC) domain to allow them to be used safely in the auto-
motive safety-critical systems, avoiding failures due to a variety of fault types.

An extra challenge that comes along with AD is that these systems must be
fail-operational. This occurs because these systems have an unprecedented level of
control and autonomy and cannot rely on the driver anymore (e.g., there may not even
be a driving wheel). A fail-operational system must guarantee the full or degraded
operation of the given function even in the presence of a failure. An example of a fail-
operational system is the landing system of an aircraft. In the event of a failure, the
remaining part of the automatic system must be able to finish the landing by itself.
This challenge is new since ADAS or less automated systems were not requested to
be fail-operational because they could rely on a safe state; for instance, turning on a
certain red-light on the car light panel and passing the responsibility to the driver.
Therefore, schemes used in those cases, such as employing an external safety monitor
in charge of the HPC component/accelerator, do not apply to the problem presented
if they do not provide fail-operational capabilities to the system.

1.2.1 COTS GPUs

Graphical Processing Units (GPUs) can deliver a tremendous boost in performance
in algorithms that can be parallelized. GPU throughput-oriented nature is based on
having a massive number of threads that can manipulate near data in parallel. For
instance, if we compare a modern CPU against a modern GPU, we see that an HPC
CPU Intel I9 11900KF (11th Generation) has available 16 threads [26] whereas an
HPC GPU, the NVIDIA RTX 3080 [27], has 8704 threads available (although they
have fewer capabilities).

Traditionally, big COTS GPU manufacturer companies, such as NVIDIA or AMD,
were not interested in trying to design GPUs for safety-critical domains. Primarily
due to economic reasons since the costs (designing, V&V processes, etc.) were too
high concerning the benefits (amount of products they could sell in the automotive
market and the price that those markets can afford for GPUs). Nevertheless, both
have become more interested in this business in the last few years. By adapting
their COTS GPUs into SoC with a focus on the automotive domain (e.g., NVIDIA
Xavier [28, 18, 21]), generally combining in the same SoC both a small multicore (up
to 8) with a small COTS GPU. Apart from these two, smaller companies with the
main business in the automotive domain have designed smaller GPUs to be used on

3

1. INTRODUCTION

the car [29]. However, although these GPUs are inside the car, they are used mostly
in the multimedia system, which does not have the same safety requirements – if any
– as other systems inside the car, since it is not considered a safety-critical system or
has not reached high ASIL (e.g., ASIL-B in [22]).

The proliferation of ADAS and AD is responsible for high-performance processing
demand in the most safety-critical systems in modern cars. In AD, there are two
stages of the pipeline where this huge demand occurs, being the perception stage, the
most demanding one. In the perception stage, abundant data from multiple sensors
of the car (e.g., cameras, LIDAR) must be processed within a short timeframe to
detect and classify objects. In particular, several elements need to be determined,
such as the regions where these objects are (e.g., bounding boxes in images), the
object type (e.g., a person, a car), and the confidence of the detection. Complex neu-
ral networks such as, for instance, convolutional neural networks with tens of layers,
are used in this process in the current state-of-the-art in image classification soft-
ware techniques [30, 31]. These detections are later used across multiple perception
iterations to obtain more reliable detections and relevant information about object
trajectories and speed. Based on all that information, driving decisions are taken to
try to reach the destination while avoiding accidents and adhering to driving rules
such as speed limits, signs, and the like.

With this, COTS GPUs are a good fit for the automotive safety-critical systems
at least, to address the performance demand since we have seen their parallel-thread
brute force matches well with the algorithms used to process abundant data arriving at
high frequency. However, as mentioned, safety-critical systems have other constraints
apart from performance, which are the main challenges still to be solved. Safety
mechanisms to provide functional safety are minimum (ECC in modern GPUs) or not
present at all since COTS GPUs were designed for HPC were such a level of safety
(and in particular reliability) is not required. For instance, computing the wrong color
for a pixel in a frame is not a big issue and probably will go unnoticed. Also, the
non-disclosure of the internal structure of the GPUs presents a significant obstacle for
the research community, since internal key elements such as the Kernel Scheduler, are
only theoretically described, but no information of their implementation is disclosed.

The main challenge of this Thesis for GPUs is to present ideas, either by soft-
ware or minimal hardware modifications, that enable them to be used in automotive
safety-critical systems safely and explain the rationale of why with these techniques/-
modifications, those systems will be certifiable for the highest integrity level (ASIL-D
in automotive). With this, we want to lay the foundations of how both the automotive
industry and the research community may develop safe high-performance computing
platforms for AD vehicles in the near future.

1.2.2 COTS Multicores

Another candidate computing component that will remain being used in automotive
safety-critical systems is the COTS Multicore. For instance, AD systems generally
include control tasks for monitoring and supervision, and lowly parallel processes such

4

1.2 Challenges in the Automotive Safety-Critical Systems

as route planning and object list management, which are particularly suitable for mul-
ticore processors. Commercially, multicores appeared in the 2000s as a consequence
of mainly three decisive factors:

1. The Memory wall

2. The Instruction Level Parallelism (ILP) wall

3. The Power wall

Firstly, the gap between processor and memory speed led to the appearance of the
cache hierarchy, but caches are useful as long as they remain small. If the cache size
increases, their speed decreases. Thus, it is faster to have multiple smaller caches
operated independently by multiple cores, rather than a single bigger cache for a
single core. Secondly, the complexity of finding more parallelism at the instruction
level makes it more challenging to keep a high-performance single-core busy. On
the other side, in a multicore system, multiple processes can be executed in parallel
thanks to scheduling them onto different cores. Finally, the frequency increase to
make a single core go faster increased exponentially the amount of power required
and heat produced. Still, thanks to Moore’s Law [32], the number of transistors
available every two years, pushed the system designers to simply replicate the cores
in a SoC since transistors came for free. Although, more complications arose due to
consistency and coherency between the private caches of the multiple processors. The
trend during the last decades has been the usage of multicore processors rather than
single cores.

Lockstep strategy as a way to implement redundancy has been known for a long
time [33]. (dual-core) lockstepping employs two redundant cores to work as one.
However, since only one core is visible from the user’s perspective, it has not been
considered a multicore. Multicores’ adoption has been delayed with respect to the
HPC domain because of the numerous challenges that arose for their usage on the
safety-critical domain. The main reasons are:

� The shared resources’ timing interference due to concurrent cores running tasks
on the same chip. This introduces non-functional dependencies that imply
counting for additional delays, which can violate the timing constraints of the
tasks.

� COTS HPC multicore products (and HPC components in general) tend to im-
prove the average execution time rather than the worst-case execution time.
Generally, this leads to hard-to-determine worst-case execution times and pro-
duces a more complex scenario for verification phases such as timing analysis.

Still, multicores adoption in safety-critical systems appeared commercially after
the 2010s [15, 34] and has been a hot topic for the research community during all these
years [35, 36, 37, 38] and still presents many challenges which need to be addressed
such as counting and limiting the interferences in the shared resources or trying to find
the worst-case execution time for a task in such a complex system. However, in this

5

1. INTRODUCTION

Thesis, we will focus on enabling safe execution, by providing functional safety, with
software-only techniques. We will address this challenge not only on single-threaded
applications, but we will also extend it to multi-threaded applications as well.

1.3 Motivation

The challenges described in Section 1.2 open the door to multiple research lines. Out
of those, the main focus of this Thesis is to analyze the design and execution of specific
HPC components, mainly GPUs, and multicores, from the reliability/safety perspec-
tive. The main target is to offer the chosen HPC components with fault-tolerance
capabilities with minimal modification. The type of faults considered is the transient
fault, faults that escape the testing phase and require to be dealt with during on-field
execution due to their random nature. For this, we commit to the ISO26262 au-
tomotive safety standard [39], which imposes the use of some source of independent
redundancy to provide detection for these faults. Thus, the main target for each com-
ponent is to provide and guarantee the independent redundancy for the execution of
safety-critical functionalities. The independent term relates to the diversity required
between the two redundant executions enforced to avoid common cause failures due
to the same fault affecting both executions similarly. Whereas storage/memory and
communication elements are considered protected with the usage of ECC and CRC,
computational elements require the usage of lockstep. Still, lockstep can be applied at
different granularities. As shown in commercial lockstepped multicores devices [34],
the most efficient granularity is on-chip. However, HPC components such as GPU or
multicores lack support for lockstep. The goal of this Thesis is to bring such support
in the form of software-only solutions compatible with existing HW technology and
lightweight HW changes to improve the efficiency of our solution.

With this, specific areas will benefit from our proposals: introducing new tech-
niques/strategies to GPU software designers to achieve a safe execution, improving
the safety features in hardware designs inherited from the HPC domain, especially in
GPUs, but also in multicores, vector accelerators, etc. Moreover, the automotive in-
dustry may benefit by adopting designs/strategies, which can improve the reliability
characteristics of their systems (e.g., introducing fail-operational capabilities) with
HPC components. In more detail, the expected benefits of this Thesis are as follows:

� GPU software safe strategies. GPUs software frameworks such as OpenCL
[40], CUDA [41] or even BrookAuto [42] may integrate some of the techniques
proposed in this Thesis. This would allow deploying their frameworks in safety-
related domains such as Automotive or Space. With this, platforms in these
domains would boost in terms of computational power and, thanks to our tech-
niques, still ensure functional safety. All together would make a one step closer
to the idea of the Autonomous Driving (AD).

6

1.4 Contributions

� GPU hardware designers. Specific minimal-hardware modifications will be
introduced in one of our contributions for GPUs. As explained in the con-
tribution, this technique can be integrated into GPUs from different vendors.
Allowing multiple vendors the opportunity which allows them to reuse their
products in the safety-critical domain with lower modifications.

� Other Safety-Critical domains Traditionally, the safety-critical systems’ do-
main has avoided the usage of HPC in their systems for several reasons explained
earlier in the introduction. Nevertheless, embracing the contributions of this
Thesis, domains with similar characteristics to the Automotive, such as the
Space domain, which is also researching for new technologies to meet the per-
formance requirements for future missions, may also consider employing the
solutions proposed in this Thesis. In fact, there are already some ESA projects
that are already in this direction [43, 44, 45].

� Other hardware and software designers Parts of our safety analysis on
GPUs and multicores can also be extrapolated to other hardware components
or software programming models. With a particular emphasis, not only on
vector-based accelerators, because of their similarities with GPUs designs.

1.4 Contributions

This Thesis advances the safety techniques on HPC components to be used in the
most stringent safety-critical systems safely, despite faults, and improve the overall
computing performance of these systems thanks to the performance delivered by the
HPC components. The main HPC components focused on this Thesis are the GPUs
and multicores. However, based on the analysis and the techniques shown, other HPC
components could use similar approaches.

The main focus of the work in this Thesis is to achieve a safe execution on the
HPC components analyzed which can enable their usage on safety-critical systems.
Since HPC components do not have the same safety properties as the rest of the
systems, several challenges arise to make sure that these components are safe to use
in the safety-critical system’s domain. Hence, different solutions have been proposed
to tackle these challenges. For instance, for GPUs, a hardware minimal-modification
and a software-only solution have been proposed, which have similar capabilities but
have different requirements. Hardware designers can employ the hardware solution
on newer systems, while software engineers can employ the software-only solution on
current systems.

The six contributions of this Thesis are divided into two major topics, based on the
HPC component focused. As a summary, Table 1.1 shows the two different Topics,
GPUs and Multicores, together with their contributions. For each contribution, we
can see the subtopic or strategy used for each one together with the name of the
Conference if the publication was published in conference proceedings or the name of
the Journal for the journal publications. Below, we list and give more details about
each contribution.

7

1. INTRODUCTION

Table 1.1: Contributions, the focus of work and publications.

Topic Subtopic Focus Publications

1

GPUs

Challenges
Introduction to the AD challenges
for safety-critical systems

IEEE Micro 2018

2 Hardware Diverse-redundant execution DATE 2019
3 Software Diverse-redundant execution IOLTS 2019
4 Software Triple diverse-redundant execution DSN 2020

5 Hardware & Software
Diverse-redundant execution
Triple diverse-redundant execution

IEEE Transactions
on emerging topics
in computing

6 Multicores Software
Diverse-redundant execution,
Single-thread execution

DFTS 2020

1. To start the Thesis, we begin with a contribution in which we discuss the main
challenges in hardware and software design to embrace the usage of the GPUs
in AD when satisfying safety regulatory standards. With an emphasis on the
ISO 26262 functional safety requirements.

2. The next contribution tackles the COTS GPU from the Hardware perspective.
More precisely, it proposes minor modifications of the scheduling policies of
GPUs that allow guaranteeing by construction diverse redundancy, thus reach-
ing ASIL-D compliance efficiently without the need of increasing design and/or
procurement costs. In particular, it shows how the explicit control of the SMs
used for a given kernel, together with the serialization of redundant execution
in some cases, allows achieving diverse redundancy with low cost with respect
to uncontrolled redundancy.

3. Analogously to the previous contribution, this one addresses the challenge from
the software perspective. It analyzes how COTS GPUs can be used to pro-
vide diverse redundancy by means of qualitative and quantitative assessments,
reaching the following findings:

� ① GPUs offer the degree of physical redundancy needed to enable some
form of loose lockstep execution. In particular, plenty of redundant com-
putation units are in place, and storage and communication means could
be protected analogously to those in the microcontroller (e.g., with ECC
and CRC).

� ② Some kernels can be executed redundantly and simultaneously in a
staggered manner in a GPU, thus achieving diverse redundancy naturally,
whereas others cannot be executed simultaneously due to being either too
short or too resource-demanding.

8

1.5 Thesis Organization

� ③ For those kernels failing to achieve diversity, appropriate software trans-
formations allow them to achieve it, either by reducing the number of
resources used simultaneously or by executing them on the serial micro-
controller if they are too short.

4. This contribution extends the work of the previous one and analyzes the suit-
ability of COTS GPU to deliver fault tolerance by implementing software-only
diverse TMR. It also shows how employing the different subprocedures intrinsic
of the CPU-GPU interaction for kernel offloading, a minimum initial staggering
(10µs) between the redundant executions is guaranteed.

5. A Journal extension of the previous contributions was published to conclude the
GPU contributions. This work not only contains a summary of the previous
contributions but also includes new research material. In particular, the pre-
vious software-only solutions required an early inspection of the kernel and its
behavior on the desired platform since only friendly kernels are guaranteed to
be executed in a diverse redundant manner. This contribution presents a pro-
tocol and his formal validation to modify a GPU kernel from heavy to friendly.
It also includes the result of a GPU fault-injection campaign to test the fault
tolerance capabilities of the software solutions. Finally, it wraps up all the GPU
solutions and compares them side by side on a GPU simulator.

6. The last contribution tackles the COTS Multicores and provides a flexible and
efficient strategy to achieve diverse redundancy on COTS multicores and ac-
celerators. The solution imposes low requirements on the platform, which are
met by most existing HPC COTS platforms, thus facilitating the integration
of the proposed strategy. The evaluation confirms that diversity is achieved
by construction when the mechanism presented is in place and execution time
overheads are low and can be traded off easily by increasing/decreasing the
monitoring frequency.

1.5 Thesis Organization

The thesis is organized as follows:

� Chapter 1 - Introduction: We start by introducing the main topic, describing
the different contributions and listing the publications that have been produced
as a result of the work done in this Thesis.

� Chapter 2 - Background: Next, we describe the background required to
understand the rest of the Thesis. It illustrates the basics of Safety-Critical Sys-
tems as well as a brief introduction to the automotive safety standard (ISO26262).
Next, follows a short background on the two components addressed in this The-
sis: GPUs and Multicores.

9

1. INTRODUCTION

� Chapter 3 - Experimental Setup: Describes the experimental setup used in
this Thesis. We first describe the different hardware setups used in the contri-
butions. Then due to the diverse methodologies employed for each contribution,
a dedicated section is used for each contribution.

� Chapter 4 to 7 - Contributions: Following, we have the chapters devoted
to the contributions: First, we have the GPU contributions, and lastly the
Multicore one. GPU contributions start with the contribution that discusses the
challenges and opportunities for GPU in the Automotive domain. The next one
proposes a hardware solution. Then, the three remaining GPU contributions
have been merged in a single chapter. Finally, we finish with the Multicore one.
The organization inside each contribution chapter follows the same structure:

1. Introduces the topic and the opposing challenges.

2. Faces the main problem, explaining the issues and the proposed solution

3. The setup and evaluation are detailed

4. Collects the related work on the topic

5. Conclusions summarizing the contribution

� Chapter 8 - Conclusions: We finish with the chapter that summarizes the
work done in this thesis and discusses the potential work that could be inspired
in the future.

1.6 List of Publications

As a product of the work done in this thesis, 6 publications have been made (5
in international conferences and 1 in a journal) and 1 more publication has been
submitted to an international conference.

1. Safety-Related Challenges and Opportunities for GPUs in the Auto-
motive Domain [46]
Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez, Jaume
Abella, Francisco J. Cazorla
IEEE Micro (Volume: 38, Issue: 6, Nov.-Dec. 1 2018), 2018
DOI: 10.1109/MM.2018.2873870

2. High-Integrity GPU Designs for Critical Real-Time Automotive Sys-
tems [47]
Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, Jaume Abella
Design, Automation and Test in Europe Conference & Exhibition(DATE), 2019
DOI: 10.23919/DATE.2019.8715177

10

1.6 List of Publications

3. Software-only Diverse Redundancy on GPUs for Autonomous Driv-
ing Platforms [48]
Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, Jaume Abella
IEEE International Symposium on On-Line Testing and Robust System Design
(IOLTS), 2019
10.1109/IOLTS.2019.8854378

4. Software-Only Triple Diverse Redundancy on GPUs for Autonomous
Driving Platforms [49]
Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, Jaume Abella
50th Annual IEEE-IFIP International Conference on Dependable Systems and
Networks-Supplemental Volume (DSN-S), 2020
10.1109/DSN-S50200.2020.00045

5. Achieving diverse redundancy for GPU Kernels [50]
Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, Jaume Abella
IEEE TETC (2022) Transactions on Emerging Topics in Computing - Special
Section on Defect and Fault Tolerance in Nanoscale Systems for Emerging Com-
puting Paradigms and Applications, April 2022
10.1109/TETC.2021.3101922

6. Software-only based Diverse Redundancy for ASIL-D Automotive
Applications on Embedded HPC Platforms [51]
Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, Jaume Abella
IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2020
10.1109/DFT50435.2020.9250750

The authors would like to list some publications that although not part of this Thesis,
are a set of contributions the candidate has worked on during the development of the
Thesis. Some publications used the work done in this Thesis’ contributions as their
basis and others are related to the same domain.

7. GPU4S: Major Project Outcomes, Lessons Learnt and Way For-
ward [52]
Leonidas Kosmidis, Iván Rodriguez, Alvaro Jover-Alvarez, Sergi Alcaide, Jérôme
Lachaize, Olivier Notebaert, Antoine Certain and David Steenari
Design, Automation & Test in Europe Conference & Exhibition(DATE) 2021

11

1. INTRODUCTION

8. GPU4S: Embedded GPUs in Space - Latest project updates [45]
Leonidas Kosmidis and Iván Rodriguez and Álvaro Jover and Sergi Alcaide and
Jérôme Lachaize and Jaume Abella and Olivier Notebaert and Francisco J. Ca-
zorla and David Steenari
Microprocessors and Microsystems Volume 77, 2020

9. A Software-Only Approach to Enable Diverse Redundancy on Intel
GPUs for Safety-Related Kernels(To appear)
Nikolaos Andriotis, Alejandro Serrano, Sergi Alcaide, Jaume Abella, Francisco
J. Cazorla, Yang Peng, Andrea Baldovin, Michael Paulitsch, Vladimir Tsymbal
SAC 2023 38th ACM/SIGAPP Symposium On Applied Computing, 2023

10. SafeDE: a flexible Diversity Enforcement hardware module for light-
lockstepping [53]
Francisco Bas, Sergi Alcaide, Ruben Lorenzo, Guillem Cabo, Guillermo Gil,
Oriol Sala, Fabio Mazzocchetti, David Trilla and Jaume Abella
IEEE 27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2021

11. Security, reliability and test aspects of the RISC-V ecosystem [54]
Jaume Abella, Sergi Alcaide, Jens Anders, Francisco Bas, Steffen Becker, Elke
De Mulder, Nourhan Elhamawy, Frank K. Gürkaynak, Helena Handschuh, Car-
les Hernandez, Mike Hutter, Leonidas Kosmidis, Ilia Polian, Mathhias Sauer,
Stefan Wagner, Francesco Regazzoni
IEEE European Test Symposium (ETS), 2021

12. SafeDE: A low-cost hardware solution to enforce diverse redundancy
in multicores [55]
Francisco Bas, Sergi Alcaide, Guillem Cabo, Pedro Benedicte, Jaume Abella
IEEE Transactions on Device and Materials Reliability, vol. 22, no. 2, pp.
111-119, June 2022

13. Assessment of redundant kernel execution on embedded GPU under
proton irradiation(To appear)
Sergi Alcaide, Alejandro Serrano-Cases, M.A. Romero, Y. Morilla, and Sergio
Cuenca-Asensi
Special issue of the IEEE Transactions on Nuclear Science

12

1.6 List of Publications

14. SafeX: Open Source Hardware and Software Components for Safety-
Critical System [56]
Sergi Alcaide, Guillem Cabo, Francisco Bas, Pedro Benedicte, Francisco Fuentes,
Feng Chang, Ilham Lasfar, Ramon Canal, Jaume Abella
FDL 2022 17th Forum on Specification & Design Languages (invited to the
special session on Safety and Security in Cyber-Physical Systems)

15. SafeDX: Standalone Modules Providing Diverse Redundancy for Safety-
Critical Applications [57]
Ramon Canal, Francisco Bas, Sergi Alcaide, Guillem Cabo, Pedro Benedicte,
Francisco Fuentes, Feng Chang, Ilham Lasfar, Jaume Abella
SAMOS 2022 22nd International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation

16. SafeSoftDR: A Library to Enable Software-based Diverse Redun-
dancy for Safety-Critical Tasks [58]
Fabio Mazzocchetti, Sergi Alcaide, Francisco Bas, Pedro Benedicte, Guillem
Cabo, Feng Chang, Francisco Fuentes, Jaume Abella
FORECAST 2022 Functional Properties and Dependability in Cyber-Physical
Systems Workshop (held jointly with HiPEAC 2022 Conference)

17. Software-only Light Lockstepping for Critical Automotive Multi-threaded
Applications on Embedded HPC Platforms(To appear)
Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, Jaume Abella

13

1. INTRODUCTION

14

Chapter 2

Background

This chapter provides the domain’s essential knowledge to understand this Thesis
and later, introduces the functional elements used. It is divided into four blocks:
First, we introduce safety-critical systems’ concepts and taxonomy, as well as relevant
mechanisms and safety properties. Secondly, we briefly introduce the certification and
automotive safety standards regulating automotive safety-critical systems. Last, we
detail the two computing components studied in this Thesis: the Graphical Processing
Units (GPUs) and the multicores.

2.1 Basic concepts of Safety-Critical Systems

This section briefly introduces the essential concepts of this Thesis, which include the
Safety-Critical Systems domain and its terminology, which is essential to understand
the contributions of this Thesis and their value to the Safety-Critical domain.

2.1.1 Safety-Critical Systems and their Taxonomy

The main topic of this Thesis is the Safety-Critical Systems domain in general, and
automotive Safety-Critical Systems in particular. Safety-Critical Systems are systems
whose malfunction or failure may lead to casualties or severe injury, loss or severe
damage to equipment/property, or produce environmental harm. The most crucial
goal of those systems is to operate correctly and timely, despite faults. In the Auto-
motive domain, electronic Safety-Critical Systems are all those systems inside vehicles
that can produce any of the severe consequences described before upon malfunction
(e.g., the braking system or the steering system).

The trend in the last years has been to automate more and more driving func-
tionalities to assist and guide the driver. All these new intelligent functionalities
have been grouped into what is known as the Advanced Driver Assistance Systems
(ADAS). Currently, cars with level three of autonomous driving can already be pur-
chased [59, 60]1. The expectation is to reach the fourth level by 2030 [61]. However,

1Note that J3016 [60] describes 6 automation levels ranging from 0 (no automation at all) to 5
(full automation).

15

2. BACKGROUND

this has increased the computing requirements of the electronic systems inside the
car, and will further increase in the foreseeable future. In addition, other systems
inside the car that does non-relate to Safety (e.g., the infotainment systems) are also
expected to require more computing power and more connectivity outside the car.
With this escalation of computing requirements, traditional and more simple systems
(e.g., single core) cannot deliver the amount of performance demanded and an in-
crease in the overall complexity of the systems inside a car is expected by using more
complex components such as multicore or accelerators.

Next, we introduce some background concepts related to safety-critical systems,
these are:

Safety and Functional Safety

Safety is a dependability attribute used to express the absence of unacceptable risk [3],
which may lead to the fatal consequences described earlier. In this Thesis, we focus
on the Safety of electronic control systems, which is introduced as Functional Safety
in most safety standards [62, 39].

Faults, errors, and failures

A fault is a defect within the system that may (or may not) lead to a logic, timing or
electrical error. In the literature, it is described as “the adjudged or hypothesized cause
of an error” [3]. Faults can be classified according to eight basic viewpoints, as we
can see in Figure 2-1. These viewpoints include the dimension of the fault, whether
is there a malicious objective etc. The eight viewpoints lead to the elementary fault
classes [3, 63].

A fault may affect or not affect the internal state of the system. For instance, a
cosmic ray may affect the voltage of an internal circuit, but if this modification does
not modify the electronic interpretation of the value, (modifying the voltage such as
a 0 is now considered a 1 or vice versa), the fault was not activated, and no error
was produced, named as a dormant fault in the literature. Instead, if it modifies
the internal state of the system (e.g., changing a bit in a register), the fault has
caused an error and is named an active fault. Then, the definition of an error is the
modification of the correct internal state of a system due to a fault.

Errors can still be masked, meaning that the error does not affect the system
service. For instance, imagine a cosmic ray creates a bitflip, a type of error that
changes the internal state in a single element, in a register that used to store a 0 and
now stores a 1. The output of this register is then used as the input in an AND gate.
If the other AND gate input was already a 0, it would not modify the original/correct
output (see Figure 2-2). Other bitflips may affect memory bits that are not currently
read, but since eventually they may be used, they modify the internal state of the
system. This type of error is classified as Single-Data Corruption (SDC) and is one
of the most challenging errors to track down because usually, they remain hidden or
are activated a long time after the fault happened. Soft errors are the term used
when errors are activated by transient or intermittent faults, whereas hard errors are

16

2.1 Basic concepts of Safety-Critical Systems

Development faults
[occur during (a) system development, (b) maintenance during the use phase,
and (c) generation of procedures to operate or to maintain the system]

Operation faults
[occur during service delivery of the use phase]

Internal faults
[originate inside the system boundary]

Phase of creation
or occurrence

External faults
[originate outside the system boundary and propagate errors into the system
by interaction or interference]

System boundaries

Natural faults
[caused by natural phenomena without human participation]

Human-Made faults
[result from human actions]

Phenomenological
cause

Hardware faults
[originate in, or affect, hardware]

Software faults
[affect software, i.e., programs or data]

Dimension

Malicious faults
[introduced by a human with the malicious objective or causing harm to the
system]

Non-Malicious faults
[introduced without a malicious objective]

Objective

Deliberate faults
[result of a harmful decision]

Non-Deliberate faults
[introduced without awareness]

Intent

Accidental faults
[introduced inadvertently]

Incompetence faults
[result from lack of professional competence by the authorized human(s), or
from inadequacy of the development organization]

Capability

Permanent faults
[presence is assumed to be continuous in time]

Transient faults
[presence is bounded in time]

Persistence

Faults

Figure 2-1: Fault classification based on the eight basic viewpoints, extracted from [3].

17

2. BACKGROUND

Figure 2-2: Example of a masked error. The error modified one input of the gate, but it
does not propagate into a failure.

Error Failure FaultFault
Activation Propagation Causation

Figure 2-3: Relationship between Fault, Error, and Failure [3].

those errors that are reproducible since their activation is permanent. An error, or
modification of the correct internal state of a system, may lead to a service failure,
often abbreviated as a failure. A failure occurs when the system fails to perform its
required operation/service or deviates from the correct service.

To understand the taxonomy of the relationship between faults, errors, and fail-
ures, we have included a diagram in Figure 2-3. When a fault modifies the correct
behavior of a system, it is defined as activated, and the consequence of this activation
is an error. This error can then be masked if it does not produce a system’s failure
(i.e., bad result, timing). If it does, and the system cannot deliver the correct result
inside the timing specified, we say that the error has been propagated and created a
failure, as we can see in the arrow in the middle of the Figure. Finally, the relation
between the final failure and the original fault is defined as causation, as it is the
causality of it.

It is also important to understand situations involving multiple faults and/or
failures. Given a system, a single fault is a fault only caused by one harmful human
action or one adverse physical event. Multiple faults are two or more concurrent,
overlapping, or sequential single faults whose activation, i.e., errors overlap in time.
This means that the activations of these faults are concurrently present in the system.
Then, classification is made based on the causality of these faults. If the faults are
attributed to different causes are referred to as independent faults, whereas faults
attributed to a common cause are referred to as related faults. Related faults
generally cause similar errors, while independent faults usually cause distinct errors,
meaning that detection mechanisms can identify multiple fault sources. The failures
caused by similar errors are named common-mode failures or Common-cause
failures (CCF for short) and are very relevant to this Thesis since they require a
peculiar property in the safety mechanism in order to be detected: diversity.

Fail-operational

A fundamental term that needs to be described to understand this Thesis is fail-
operational. A fail-operational system is a system that must continue to operate
correctly and timely despite a failure in the system itself. This is crucial for Au-
tonomous Driving (AD) since the highest levels of autonomy cannot rely on a fail-safe

18

2.1 Basic concepts of Safety-Critical Systems

state. For instance, upon a failure in a critical system, non-autonomous driving cars
may detect the failure and turn on a specific light in the driving panel and rely on the
driver to notice it and take proper action. Instead, on AD, the systems cannot rely on
a driver and need to continue operating despite the failure detected. Therefore, AD
systems or components employed on the AD operations must be fail-operational to
guarantee, for instance, that the car will not stop driving in the middle of a highway
despite the presence of a failure in the decision system.

2.1.2 Redundancy and Diversity

Two mechanisms are required to provide fault tolerance to a system: (1) fault detec-
tion and (2) recovery mechanisms. The approach used to protect a system from faults
is the following; first, we need a mechanism that can detect faults and avoid their
propagation to other systems/components, which is the fault-detection mechanism.
Then, a second mechanism is required to correct the error or recover the system’s
internal state into the correct one, the recovery mechanism. In this Thesis, we will
provide proposals and solutions for the first of the two mechanisms, fault detection.
Next, we describe two of the strategies used for that purpose, namely Redundancy
and Diversity:

Redundancy

Safety measures often build upon redundancy. Redundant execution has been re-
garded as a practical approach for error detection, either by means of time or space
replication. Mainly, it is well suited to detect soft errors caused by random hard-
ware faults. Since these faults can appear anytime, continuously-active detection
mechanisms are required. As its name indicates, the redundancy approach is based
on replicating the computation. However, two strategies diverge based on how the
redundant computation occurs:

① The first approach can be seen in the Figure 2-4. Since most of the faults
are temporary (except permanent faults), the concept is that by re-executing the
same operation n times, the majority of these executions will be fault-free (time
redundancy). Thus, by saving the results of all the executions and performing a
comparison of these results, we can detect one of the executions has experienced a
fault since the the same result was expected from all the replicated executions and
only a fault/error can explain why they differ2. Then recovery/restarting actions will
need to be considered.

② In contrast, space redundancy requires replicating the component which
executes the functionality we desire to protect, Original Module in 2-5. Similarly,
in this case, the fault will likely only affect one or a small subset of the replicas. A
comparison of the computed results is required, like in the time redundancy approach.

2Note that such assumption holds as long as redundant executions are provided with identical
inputs, including the processor state since, otherwise, executions could diverge due to other reasons
(e.g., consuming data from a random number generator whose state differs across re-executions).

19

2. BACKGROUND

Figure 2-4: n-Time redundancy scheme

Figure 2-5: Dual space redundancy scheme

Time redundancy (e.g., re-execution in the same core) [64, 65] is particularly
suitable to detect soft errors. Still, it requires important hardware modifications for
simultaneous re-execution in a simultaneously multi-threaded core. Instead, for a
single-thread core, the same program can be executed serially twice, but this will
roughly double the execution time. Either way, errors produced due to permanent
and intermittent faults (e.g., those caused due to degradation or “telegraph radio
noise” [66]) are very likely to repeat in both executions, thus remaining undetected.
On the other hand, space redundancy requires the execution of the program in two
computing elements (cores), typically simultaneously, which in comparison with the
time redundancy scheme is better in terms of execution time, but requires increasing
the costs and area because of including a replica of the protected component.

The Sphere of Replication (SOR) is a term used to denote the elements that
are replicated and thus protected in space redundancy. Since elements inside the
SoR will be replicated, the inputs for all these elements must be replicated as well (if
signals transporting the inputs cannot be considered safe or are not protected). The
replicated elements’ output needs to be compared before exiting the SoR to detect
any error inside the SoR.

There is a tradeoff in selecting the granularity at which the SoR is defined. Smaller
granularities may protect specific components more susceptible to errors and have
shorter fault detection latencies. However, they incur higher overheads (timing,
power, etc.) since the comparisons are more frequently performed (e.g., at every
cycle) and, are also more likely to raise many false positives due to faults that will

20

2.1 Basic concepts of Safety-Critical Systems

not become errors due to fault masking. Furthermore, more intrusiveness, and fine-
grained hardware modifications, are required, which increases costs due to three main
reasons: 1) large IP modifications are required, 2) lack of flexibility to use the cores
in non-lockstep modes (for mixed-criticality systems) and, 3) increases the validation
complexity of the circuitry in charge of performing a number of comparisons across
cores every cycle [67]. Instead, larger granularities, such as core granularity, do not
require those many intrusive hardware modifications. Although comparisons are not
as frequent as for smaller granularities, which reduces the timing overheads w.r.t.
smaller granularities, it also means that the fault detection latency is increased.

Diversity

In the context of safety-critical systems, diversity is a technique employed to mitigate
CCFs. CCFs, as detailed in Section 2.1.1, occur for those faults that can affect redun-
dant components in a similar manner, which defeats the purpose of space redundancy
for error detection. To avoid this scenario, diversity is implemented along with redun-
dancy to ensure that faults affecting redundant components will not produce errors
in both components or will create different errors. With diversity, the comparison
mechanism will detect the fault. While qualitatively diversity is a well-understood
concept, quantifying diversity is still an open challenge [68, 69, 70, 71, 72]. Common
methods to quantify diversity employed in the industry include fault injection cam-
paigns against CCF [73] and detailed inspection by specialized engineers. Diversity
may be achieved in different ways:

� Technology: Two different technologies could be employed to perform the same
functionality (e.g., LIDAR vs RADAR)

� Providers: Employ two software companies to develop the same functionality

� ISA: Use two different Instruction Set Architecture (ISA) for the same compo-
nent (e.g., PowerPC vs x86)

� Design: Design two different chips to perform the same functionality

� Library: Link the software with two different libraries

� ...

The methods mentioned above deliver two diverse components by design. How-
ever, these strategies are very costly and increase the complexity of the verification and
validation (V&V) processes, thus not practical for many domains. From the electrical
perspective, a distinct strategy to achieve diversity is to use different lithographies
for two replicated components, which will induce them with different electrical capa-
bilities/behavior in front of faults but also introduces many challenges that difficult
its adoption. Instead, one of the most popular techniques to achieve a diverse redun-
dancy solution for computing cores is the lockstep approach, which we will discuss in
the next section.

21

2. BACKGROUND

2.1.3 Lockstep

Lockstep execution [33] is a common approach that combines, space redundancy
and time diversity. It is used on safety-critical processors [74, 75] to achieve the
most stringent certification levels such as ASIL-D in automotive [39] or DAL-A in
avionics [76]. Lockstep uses two identical cores as redundant cores. However, only
one of them is visible from the user’s perspective. The non-visible (shadow) core
executes the same software with a forced delay/staggering (i.e., one core runs N
cycles ahead of the other). Only one core effectively sends and receives external
signals (e.g., load/store data, interrupts, etc.) The outputs of the other core are just
used for comparison for error detection reasons. A schematic of a lockstep processor
is shown in Figure 2-6, where checkpointing and rollback can be implemented either
at the hardware level (as shown) or at the software level by raising an interrupt upon
a comparison mismatch. With this, Common Cause Failure (CCF) will affect the
two executions differently since the internal state of the cores will be different (e.g.,
executing different instructions) at any time. Thus, if two errors are produced due
to a common fault, very likely those errors will be different and will be detected by
means of comparison.

Similar to plain space redundancy, different SoR can also be applied in a lockstep
approach. Commercially, HP nonstop servers [77] perform lockstep execution at a
very coarse SoR since full boards are replicated. In the opposite direction, some
examples exist which used lockstep at instruction or even processor stage SoR [78].
For the latter, different strategies exist to perform the comparison [79]. For instance,
either each core can access memory, hence duplicating memory accesses, or a single
core accesses memory and addresses and data to be sent/received to/from memory
are compared when received or prior to being sent to memory.

Usually, when the two cores are used, like in the schematic (Figure 2-6), the
solution is known as Dual-Core Lockstep (DCLS). An alternative is to use three
core replicas instead [79, 80, 2], also known as Triple-Core LockStep (TCLS). In
this approach, instead of performing just a comparison between the three results,
a major vote decision is used. Upon a fault affecting one of the executions, TCLS
is able to detect which one of them is the erroneous one since the other two will
have the same (correct) output. As said, in DCLS, the system cannot know which
one of the executions is the correct one. In front of a mismatch, DCLS requires re-
executing the same computation for both cores, whereas, in the TCLS, the execution
can continue with the remaining two non-faulty cores executing as DCLS. Eventually,
the internal state of a non-faulty core can be transferred to the faulty core without
stopping the execution of the non-faulty cores. TCLS is most costly in terms of
area and costs as it requires, not just another replica, but more complex logic for
comparison. However, it avoids re-execution. TCLS is often employed in systems
where re-execution time is higher than the deadline, and re-execution cannot be
employed, or where safety regulations already impose higher protection than that
offered by DCLS (e.g., avionics).

22

2.1 Basic concepts of Safety-Critical Systems

Memory

Master
CPU

Checker
CPU

Input data and
Instructions

X cycle
delay

Compare
Unit

X cycle
delay

Output data

Output
data

Rollback

Checkpoint

Figure 2-6: An schematic example of a Dual Core Lockstep (DCLS).

In general, lockstep execution is the most cost-effective way to achieve a diverse-
redundant execution and certify it, since a single design of the protected element needs
to be developed easing not only the design but also the Verification and Validation
(V&V) effort. Also, since it is a hardware mechanism, it has a smaller fault-detection
latency than any software-based approach, which reduces the timing overheads. Fur-
thermore, to obtain higher coverage against CCFs, it is required the use of inde-
pendent power and clock sources, the electrical isolation of interfaces and may also
require physical separation to avoid CCFs. Using two identical cores facilitates these
last requirements, since identical – yet independent – redundant power and clock
sources can be used.

2.1.4 Memory and data transmission safety mechanisms

Aside from the computing components, memory and data transmissions are also
vulnerable to errors. In data transmissions, Crosstalk is one of the fault sources.
Crosstalk is a phenomenon by which a signal transmitted creates an undesired effect
in another circuit or channel due to undesired capacitive, inductive, or conductive
coupling from one circuit to another. These effects can be easily detected by the
usage of Cyclic Redundancy Checks (or CRC for short). CRC is an error-detecting
code that is computed before the transmission of data and sent together as a check
value. This value is often computed as a polynomial division of their contents. Later,
the receiver may perform the same computations with the data received and check
that the result matches the check value received.

Random Access Memory (RAM) and memory technologies have historically needed
to face reliability issues since their appearance in the 1970s-80s [81]. Thus, error
detection and correction solutions have been in place for a long time ago. Gener-
ally, hamming codes [82] are employed for Error Detection and/or Correction Codes
(EDC/ECC for short). These are a set of algorithms used on the data itself, which
produce some bits depending on the data values. A bit-flip can be detected when

23

2. BACKGROUND

performing a check, and the computed codes do not match the stored ones. There
is a tradeoff between the number of bits used for encoding, and detection and cor-
rection capabilities. The more bits used, the more capabilities can be provided. Of
course, this comes at the expense of requiring more space in memories to store the
extra bits and the complexity of computing these bits. For instance, a popular coding
used is SECDED (Single-Error Correction and Double-Error Detection), which allows
detecting two bit-flips and even correcting when only one bit-flip occurs. However,
these coding approaches require several bits to be stored for the codes (e.g., 7 code
bits used to protect 32-bit data).

In modern RAMs, the ECC and the logic required are managed internally and
are non-visible from the core view, commonly known as ECC RAM. Nonetheless,
faster memory technologies, such as cache memory, with lower latencies, may not
use these codes due to the latency of computing the code and the bit overhead they
require since they are often smaller memories. Instead, it is common to use parity
bits that allow detecting single bit-flips in exchange for only one-bit of overhead, and
the computation is performed in just one cycle. A single bit is computed with the
data’s parity (if the amount of ’1’s is even or odd). Modern level-1 cache memories
often employ parity, whereas level-2 or level-3 may employ more costly ECC codes.

2.1.5 Nanoscale Level relevance for reliability

The advances in the manufacturing process, electronic design tools, and CMOS down-
scaling technology enable the production of 7nm and even smaller devices. However,
this increased integration exacerbates several threats to reliability such as Process,
Voltage, and Temperature (PVT) variability, device aging, transient faults, and per-
manent faults [83]. This leads to two opposite trends: decreased reliability due to the
use of smaller devices and lower supply voltage, thus increasing the susceptibility to
particle strikes and small defects, and increased reliability by applying process-level
fault mitigation strategies (e.g., improved lithographic process), or deploying fault-
tolerant solutions (e.g., hardening, redundancy). With this, the resulting FIT rates,
in general, are kept low, but the need for solutions like diverse redundancy increases,
particularly for safety-critical systems.

2.2 Certification and Automotive Safety Standards

The release of safety-critical systems into the market needs to adhere to the legal
regulations of each country or state, typically set on a per-domain basis. The re-
lease depends on a certification process where, depending on the target market, (a)
an independent certification authority must approve that the system is suitable and
safe enough (acceptable low risks levels) for its intended functionality (e.g., avion-
ics), or (b) the system developer itself develops the product according to the relevant
regulations without any certification authority having to approve the process (e.g.,
automotive). This certification process implies high development costs, where gener-
ally, the higher the safety integrity level, the higher the cost of safety certification.

24

2.2 Certification and Automotive Safety Standards

For instance, the highest criticality systems must ensure an extremely low probability
of failure, below 10−9 [76] per hour of operation (approximately less than once every
114,155 years).

Certification is generally performed against domain-specific standards. In the case
of functional safety, most of them derive from the generic international IEC61508 [62]
standard for the Functional Safety of Electrical/Electronic/Programmable Electronic
safety-related systems, which is suitable for various industrial sectors. Following we
can be seen a small list of safety standards from different domains:

� ISO26262 [39] - Automotive

� DO178C [76] - Avionics

� EN50126-2 [84] - Railway

� IEC 62304:2006/AMD 1:2015 [85] - Medical Device (Software)

� IEC62061 [86] - Manufacturing

� IEC61513 [87] - Nuclear

2.2.1 ISO26262 - Automotive Safety standard

ISO26262 is the Automotive Safety standard which is very relevant to this The-
sis. Now, we are going to see a brief introduction to the standard, including the
requirements imposed and which guidelines are given for developing an automotive
safety-critical system. Next, we will introduce the Automotive Safety Integrity Level
(ASIL) concept, its different levels, and the ASIL decomposition technique. Finally,
we are going to show how the autonomous driving challenge has required the creation
of another safety standard, the ISO/PAS 21448 [88] and which relation has with the
ISO26262.

ISO26262 is an adaptation of the IEC61508 [62] to comply with the needs specific
to the application sector of electrical and electronic systems within road vehicles. In
particular, the main difference between both standards is that IEC61508 assumes
that safety monitoring is performed aside from the system design, whereas ISO26262
describes a development process where safety monitoring is integrated into the system
design itself.

ASIL in ISO26262

ISO26262 uses risk-based integrity levels named as Automotive Safety Integrity Level
(ASIL) to classify items. By classifying them in different ASILs, it provides per-level
applicable safety requirements to avoid unreasonable residual risk. It also provides
requirements for validation and confirmation measures to ensure a sufficient and ac-
ceptable safety level.

25

2. BACKGROUND

Severity class Probability class
Controllability class
C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

Table 2.1: ASIL determination based on the three classes.

Four different levels are defined being ASIL A, the lowest safety integrity level,
and ASIL D the highest one (in order ASIL A, ASIL B, ASIL C, ASIL D). Another
level is defined, which denotes no safety requirements to comply with ISO26262, the
Quality Management (often abbreviated as QM). These levels are determined based
on three classes:

� Severity: The potential harm in case of the hazardous event (3 levels)

� Probability of exposure: The probability of exposure for each operational
situation for each hazardous event (4 levels)

� Controllability: Upon the hazardous event, the controllability by the driver
or other persons potentially at risk (3 levels)

With the following classes defined, the ASIL level of an element is calculated based
on Table 2.1.

ASIL decomposition

Under a given ASIL, some random failure rates are considered acceptable (e.g., <
10−8h−1 for ASIL-D, < 10−7h−1 for ASIL-C ... [39]), and some specific diagnostic
coverage must be achieved, being these levels more stringent for the highest ASIL.
Since reaching certain coverage levels and failure rates may impose excessive costs
(e.g., requiring expensive safety measures), specific ASIL can be reached with the
appropriate combination of lower ASIL components. This solution is often employed
since lower ASIL components are cheaper to design and verify than higher ASIL
ones. This process is named ASIL decomposition and has its own constraints. In
order to build a higher ASIL component based on two lower ASIL components, the
two lower ASIL components employed must provide sufficient independence. This is

26

2.2 Certification and Automotive Safety Standards

Figure 2-7: Examples of ASIL decomposition.

to prove that both mechanisms are protected against common cause failures (e.g.,
using two clock signals). A typical example consists of building an ASIL-D MCU by
using two ASIL-B cores operating in lockstep. In the case of computing components,
diversity is typically achieved using identical cores and software stacks running with
some staggering, as we have seen in the lockstep section 2.1.3.

Furthermore, ASIL decomposition is also used for cost reduction trading off avail-
ability for fail-safe systems. In particular, a component of a given ASIL (e.g., ASIL
D) can be decomposed into, for instance, one ASIL-D component and one or sev-
eral QM ones, as shown in the right-most example in Figure 2-7. In this case, the
ASIL-D component must be able to preserve safety despite the failures of the other
components. This could be employed, for systems using High-Performance Com-
puting components, working as QM, as long as an ASIL-D MCU guarantees error
management for errors occurring in the HPC component.

When architecting the system and decomposing it into multiple components (e.g.,
redundant channels), a key characteristic of the system determines the feasibility of
some options: whether a safe state exists. If such a state exists (e.g., timely notify
the driver and disable the faulty system), then faults can be managed by reaching the
safe state within the deadline, thus trading safety for availability. An example of this
outcome is, again, the rightmost ASIL decomposition in Figure 2-7, where an ASIL-D
system can be built using an COTS GPU regarded as QM and an ASIL-D Micro-
Controller Unit (MCU) operating as a watchdog which inherits all the safety require-
ments, monitoring the GPU execution. The MCU could implement native Dual-Core
Lockstep (DCLS), bringing diverse redundancy and means to diagnose faults in the
MCU. The MCU, however, must be able to detect faults in the GPU. Appropriate
fault detection means are, in general, application-dependent. For instance, software
components running on the GPU may run without any type of redundancy as long as
the MCU is capable of diagnosing errors in the output coming from software running
on the GPU (e.g., output values are compatible with previous output values and with
the used input values). Alternatively, software running on the GPU may build upon
software-based diverse redundancy orchestrated from the MCU. Such a solution is
more generic and usable for any application.

While most systems related to braking and steering resort to some sort of driver
intervention to manage potentially hazardous situations, for the highest autonomy
levels in AD – levels 3 to 5 as described in J3016 standard [89] – control can only be

27

2. BACKGROUND

transferred to the driver in some circumstances (levels 3 and 4) or simply can never
be transferred (level 5). With this, the example of using an ASIL-D monitor with a
QM device in charge only of these functionalities is not valid anymore since, upon
an error in the QM device, the ASIL-D monitor will be unable to carry out the task
timely. Hence, such a system – a fail-operational system – will require fault tolerance.

If the deadline permits it, we may build on the same solutions for fault detection
as for fail-safe systems, combined with appropriate safety measures to keep the GPU
providing service (e.g., re-run with the same or newer inputs). Note that if the FTTI
is too tight to tolerate re-execution, then we may need to build on diverse redundancy
with 2oo3 (2 out of 3) redundancy levels on the GPU, being the MCU the one acting
as the voter. In both cases, either with fail-safe or fail-operational systems, the
MCU itself might not suffice to provide fault tolerance and redundant GPUs may be
needed or the accelerator used must be certified to reach ASIL-D on its own and be
fail-operational.

ISO26262 and ISO21448 (SOTIF)

Safe road vehicle development was first introduced in the ISO26262 standard [39].
The standard was built on the implicit assumption that system control and managed
data could be regarded as separate elements. With this, a control system, despite
being aware of the type of data that will be processed (e.g., range values, frequency of
arrival, etc.), is designed without needing the data. Thus, with respect to the safety
requirements, casuistic control can be implemented and specified without the need for
actual data. Instead, data is required for the verification and validation processes as
a way to gather evidence on the safety requirements compliance of the design. Some
functionalities in the autonomous driving process, such as perception and prediction,
require going through a safety life cycle because they inherit safety requirements.
These functionalities do not follow the usual specification, design, and implementation
process of conventional automotive functionalities. Alternatively, the accurate and
efficient implementations of some functionalities (e.g., camera-based object detection)
are mainly realized by employing machine learning and, in particular, deep learning
using neural networks.

Neural networks in particular, and machine learning in general, come with three
challenges not considered in the definition of ISO26262.

First, neural networks cannot separate control and data as opposed to usual auto-
motive functionalities. The data itself greatly specifies the decision algorithms. The
data dictates the weights of the different network layers performing processes like
object recognition. Therefore, data needs to be used during the training phase, and
the weights and the neural network itself form the control algorithm.

Second, the accuracy of a neural network is determined by the scenarios and
data used for training. For instance, a neural network trained with highway driving
conditions may decide poorly or erroneously in an urban scenario and vice versa.
Hence, special care must be taken to select the appropriate training scenarios so
that the neural network’s functionalities operate correctly in real driving conditions.

28

2.2 Certification and Automotive Safety Standards

Figure 2-8: Hazard decomposition and scope of ISO26262 and SOTIF.

Usually, a tradeoff exists between generalization and specialization: the broader the
set of scenarios required to operate, the more general the training must be, and the
less optimal under each specific scenario the performance will be. On the contrary,
specialized training for very few scenarios may make the system highly accurate and
optimal for these scenarios, but ineffective or dangerous to drive in other scenarios
not considered.

Last, neural networks are stochastic in nature. Their outcome comes in the form
of multiple outcomes with different confidence levels for each one. Although those
confidence levels can be categorized into deterministic outcomes using thresholds
(e.g., if confidence is above a certain level, the object is detected as real or otherwise
discarded), their current behavior does not conceptually match with the expected be-
havior of systems described in ISO26262. Instead, in ISO26262, results expected are
to be binary, correct, or erroneous, with the latter requiring some sort of safety mea-
sures to prevent failures. Still, those characteristics bring opportunities for specific
safety measures that are not well-matched to deterministic systems.

Overall, the use of data-defined systems, with training scenarios determining the
system’s behavior, and with stochastic behavior, do not match well with ISO26262.
Therefore, an appropriate safety standard has been released recently with those sys-
tem characteristics in mind: ISO/PAS 21448 “Safety Of The Intended Functionality”,
also known as SOTIF [88].

With the release of SOTIF, hazards can now be divided among the two safety
standards (and security), depending on their source. We can see a schematic in Fig-
ure 2-8. As shown, the scope of ISO26262 includes the hazards caused by malfunctions
whose source is, to some extent, internal (i.e., related to the system’s control logic).
This includes systematic failures, either hardware or software related, which must be
avoided by design so that the remaining risk can be regarded as residual. Moreover,

29

2. BACKGROUND

ISO26262 considers random hardware faults, which cannot be avoided and can occur
during operation. ISO26262 imposes the deployment of safety measures to guarantee
with enough confidence that those faults will not lead to a system failure.

On the other side, the scope of SOTIF spans mainly external factors. This in-
cludes input data either from the environment or from driver commands. Particularly,
SOTIF is designed so that the system is intended and trained considering expected
input data. Differently from ISO26262, SOTIF needs the data for its specification
and design. While in ISO26262, data is used for testing only, and limits the cov-
erage of the test campaign of a correct-by-design item, in SOTIF, data determines
the system’s design. Thus, lacking relevant data may lead to a failure to operate
correctly and/or timely. For instance, from time to time, test cases in real scenarios
end with accidents, such as the Uber autonomous car, which crashed and killed a
pedestrian [90].

30

2.3 GPU

2.3 GPU

A Graphical Processing Unit (GPU) is a computing device specialized for computer
image processing acceleration and output display. Because the provided high com-
puting capacity enables the acceleration of parallel computationally-demanding al-
gorithms, its usage has expanded in the last decades from its original purpose (e.g.,
GPUs for image processing and gaming) to other domains such as safety-critical au-
tonomous systems [91, 92], high-performance general-purpose computing (including
supercomputers [93]), or even to mine cryptocurrencies. The main philosophy of GPU
architectures is to maximize throughput, namely the volume of data processed per
time unit. With this goal, GPUs are built with a significant amount of threads able to
operate different data and with a memory able to feed all those threads if appropriate
data access patterns are employed.

2.3.1 GPU Architecture

Following NVIDIA (and OpenCL) terminology, the GPU fundamental processing
units are the Streaming Multiprocessors (or compute units), SMs for short which we
can see in orange in the left part of Figure 2-9. Each SM contains several scalar cores
(or processing elements) and other resources such as a register file, shared memories,
and warp schedulers. A scalar core is a pipelined Arithmetic Logic Unit (ALU) capa-
ble of executing integer and floating-point instructions (in yellow, on the right side).
With this, SMs can execute multiple, usually 32, threads simultaneously, grouped in
warps (or wavefront). Other specialized units coexist with the scalar cores in the exe-
cution pipeline, such as the Load/Store units used by memory instructions (in green),
the special function units (SFU), optimized for certain mathematical functions, or the
tensor cores in most modern GPUs, among others (in magenta).

GPUs cannot be the only computing component in a system since they lack some
key features (e.g., interrupts, I/O support) to perform all the functions required in a
system. Instead, they are mainly used as accelerators and require a host, composed
of one or more CPU cores or CPU for short, to send both the data and the com-
mands, and perform all these functionalities that GPUs cannot do. GPU functions
are launched asynchronously from the host; functions are known as kernels.

A schematic of a typical CUDA workflow can be seen in Figure 2-10. Before
launching a kernel, the user must prepare the data to be processed. ➊ Allocating
the required memory on the GPU and ➋ transferring the data from the CPU (host)
memory to the GPU (device) memory. Once the GPU has finished the ➌ kernel
execution, the reverse memory transfer operation is required, ➍ allocating space for
the result data in the host memory, and transferring the results back from the device
to the host. Finally, ➎ deallocation of the data allocated in the GPU memory is also
required.

When launching a kernel, the user specifies a grid configuration, with the number
of blocks and threads per block to be executed. Hence, the user selects the number of
threads and splits them into blocks. The kernel/global scheduler (in green in the left

31

2. BACKGROUND

Figure 2-9: Generic GPU schematic. Inside an SM we can observe the three different
functional units: (1) Cores which operate with integers and floating point operands, (2)
Memory Operations (load and stores) and (3) Special Functions. For space constraints,

some components inside the SM have been omitted (e.g., Register File or operand
selection)

CPU
(HOST)

GPU
(DEVICE)Host Launches a Kernel

CPU Memory GPU Memory

cudaMemcpy
HtoD

cudaMemcpy
DtoH

1

2

3

4

5

Figure 2-10: Typical CUDA Workflow

32

2.3 GPU

part of 2-9) then distributes the blocks into SMs based on the scheduling algorithm,
which considers the current occupancy of the SMs. Finally, the warp-scheduler(s)
inside the SM, fetches, decodes and issues instructions to the execution pipelines.
During the execution, resources like shared memory and the register file within an
SM are shared by the threads executed in the same SM.

GPU specialization

Currently, available GPU devices go beyond the basic definition of GPUs since, due to
their utilization in different domains, they have been specialized with some differences.
For instance, GPUs can be found as part of SoCs (System-on-Chip) in embedded
systems, which means that both the host (CPU) and the device (GPU) are literally
in the same chip. The particularity of these systems is that typically there is no
dedicated memory for the GPU; instead, the memory is shared between the host
(CPUs) and the GPU. For that purpose, for example, it is possible to use OpenCL
Shared Virtual Memory (SVM) and CUDA Unified Virtual Memory (UVM) features,
but taking into consideration the need to manage memory coherency. The NVIDIA
Xavier [18] is an example of these systems, which contains 512 scalar cores inside
the GPU and 8 CPU Cores (NVIDIA Carmel Armv8.2). This product targets the
industrial, automotive, and space domains. Other examples are the GPUs used in
scientific computing, where power consumption is not as relevant as throughput and
larger GPUs (in terms of SM count) are used despite their higher power consumption.

2.3.2 GPU Software

GPU software programming is commonly based on standardized APIs or associated
industry-standard programming languages, such as Compute Unified Device Archi-
tecture (CUDA), Open Computing Language (OpenCL), Open Graphics Library
(OpenGL) variants, Vulkan, Open Multi-Processing (OpenMP), and Open Accel-
erators (OpenACC).

Some of them are primarily built for graphics, such as OpenGL variants, while
others are for general-purpose computations (e.g., CUDA, OpenCL, OpenMP, Ope-
nACC). Some of them support both graphics and computing, such as Vulkan.

OpenGL SC (Safety-Critical) is the only one of these APIs designed to comply
with safety-critical systems’ requirements, but it is primarily intended for graph-
ics processing. All the aforementioned general-purpose GPU programming models
present challenges for their use in critical systems since they violate design guidelines
used in critical systems’ software development and certification. In particular, all
these programming models require dynamic GPU memory allocation and pointers,
whose use is discouraged by several safety-critical standards and language subsets for
critical systems. For this reason, Kosmidis et al. [42] proposed the use of a subset of
Brook [94], a CUDA-like language that is the predecessor of CUDA and OpenCL. This
subset, Brook Auto, is shown to be appropriate for the development of safety-critical
GPU applications and eases their certification [95].

33

2. BACKGROUND

2.3.3 GPU in Safety-Critical Systems

GPUs are increasingly considered for the development of safety-critical systems in
multiple domains such as transportation (e.g., automotive [96, 97, 98], railway [99],
avionics [100, 95], space [101, 44, 91], and industrial machinery [102, 103]). This
trend answers the incremental computational requirements for the systems in those
domains. Multiple papers exist in the literature discussing safety strategies and po-
tential applications of COTS GPUs in those domains. For instance, Xie et al. [104]
summarize recent advances in automotive functional safety design methodologies and
discuss ISO26262 [39], SOTIF [88] and the trends in functional safety design method-
ologies. In [96], Olmedo et al. discuss some of the challenges that system engineers
have to face in terms of real-time constraints and functional safety when the GPUs
are chosen as accelerators for ADAS. A technical report from NASA [91] was written
by E. Wyrwas, providing some insight into GPU architecture and its potential appli-
cations in the Space domain. In Europe, Kosmidis et al., [43] presented the project
GPU4Space, in which the usage of GPUs in space has been evaluated together with
the European Space Agency (ESA).

Dos Santos et al. [105] proposed the concepts of KVF (Kernel Vulnerability Factor)
and LVF (Layer Vulnerability Factor), metrics relating reliability and GPU architec-
ture. Later they applied a fault injection campaign using SASSIFI [106], an NVIDIA
open-source framework to perform error injection campaigns for NVIDIA GPUs, by
inserting instructions. Moreover, a selective hardening of the well-known algorithms
YOLO [31] and HOG are proposed and later evaluated. Yang et al. [107] identified
common pitfalls when using NVIDIA GPUs for real-time tasks in autonomous sys-
tems, which later Amert et al. [108] benefit by reverse-engineering the kernel schedul-
ing in the NVIDIA TX2, which is a crucial factor for evaluating the contentions
suffered by the GPU applications (kernels).

Following this trend, in the last years, many works have been presented evaluating
the safety capabilities of the GPUs. For instance, Oliveira et al. [109] performed a
radiation evaluation using a neutron beam. The efficiency and efficacy of the proposed
duplication with comparison (DWC) strategies were experimentally evaluated and
compared with the chip’s ECC mechanism. As demonstrated, ECC is efficient in
reducing the SDC rate in modern GPUs but significantly increases the occurrence of
functional interruptions (FI). DWC strategies can be more effective than ECC when
input data are duplicated. Memory is also evaluated, in [92]; an in-depth analysis of
GPU radiation sensitivity both at low-level – by accessing the raw memory structures
error rate – and at operative-level – by measuring the silent data corruption and the
Functional Interruption rate of a representative set of parallel applications. Moreover,
in [110], Cini et al. evaluate the memory interference effects of multicore CPUs and
GPUs.

Other fault injection works include [111, 112] and [113], where GUFI is presented
as a fault injection tool running on top of the well-known GPU simulator, GPGPU-
sim [114, 115]. Furthermore, in order to evaluate the resilience of the GPU in real

34

2.3 GPU

scenario conditions, a fault injection campaign was performed using accelerated neu-
tron beams in [116] on a GPU while it was running a deep neural network (DNN)
used by object detection algorithms.

Another set of papers proposes to improve GPU’s reliability. The most extended
approach is by applying a redundant execution, either by utilizing sleeping threads
[117] or adding an extra Streaming Processor to execute the redundant work [118]
among other techniques [119, 120, 121]. Another approach is to reduce the accuracy of
the applications, which improves the reliability against SDC in the register file [122].
In [123], Pilla et al. applied software hardening when executing the Fast Fourier
Transform (FFT). Wadden et al. [124] proposed compiler-managed techniques to cre-
ate redundant threads at different granularities. Finally, Condia et at. [125] evaluated
a hardening technique in the register file by performing a fault injection.

2.3.4 Path Towards Certification

Including high-performance devices such as GPUs in safety-relevant products is al-
ready an ongoing challenge in several industries, including the automotive one, which
has been successfully tackled under very specific circumstances, such as specific GPU
devices and runtimes. We refer the interested reader to the survey in [126] for further
details on the state of the art. However, the general adoption of those devices in
safety-relevant products has still some challenges ahead.

The techniques proposed in this thesis, and those targeting GPUs in particu-
lar, are subject to a large subset of those challenges affecting the general adoption of
GPUs in safety-relevant products, such as the use of devices fabricated with tiny tech-
nology nodes, and using practices uncommon in the fabrication of ASIL-D certified
microcontrollers. However, those challenges are not specific to the solutions presented
in this thesis and, instead, we assume that they will be eventually solved. This is
analogous to the integration and evaluation in automotive systems of GPUs whose
power consumption largely exceeds power targets for the domain, expecting power
to decrease generation after generation so that it is low enough by the time those
GPUs are fully embraced by commercial automotive autonomous driving systems.
However, the solutions in this thesis bring some new certification challenges when
compared to the current practice to deploy GPU-based safety-critical systems. The
current assumption is that GPU devices are fully duplicated for diverse redundancy
purposes, bringing independence through the use of separated devices, potentially
installed in separated boards and potentially with separated power sources to gain
independence. However, GPUs used are identical, hence meaning that solutions exist
(or are foreseen) to manage systematic errors that could relate to the GPU design
itself. Our assumption is that an ASIL-D compliant CPU orchestrates the redundant
execution on the GPUs, and also monitors execution for error detection. Upon an
error, such CPU takes corrective actions such as, for instance, resetting those GPUs
and re-executing. If the error relates to a physical defect, such defect is highly likely
to manifest analogously in both GPUs, and hence, either it is assumed that such an
error cannot happen or, if regarded as possible, system-level measures can preserve
safety anyway.

35

2. BACKGROUND

In our case, we consider a single GPU to achieve diverse redundancy, which brings
important advantages in terms of reliability due to having only one instead of two
devices (hence halving the exposure to transient faults). On the other hand, such a
solution brings the following risks:

1. Using a single device instead of two.

2. Having some shared component across redundant kernels.

Regarding the former risk, it is analogous to the use of a single ASIL-D compliant
CPU where diverse redundancy is implemented internally by using replicated cores,
and ECC-protected memories. Therefore, we assume that the same considerations
used for such CPU can be used for our single-GPU-based solution. Note that those
solutions may include an external watchdog to check aliveness and reset the device
upon an error, which in the case of the GPU would be the CPU itself. The implica-
tions of an unrecoverable permanent fault in the GPU would be comparable to those
of an unrecoverable permanent fault in the CPU in CPU-based systems. Hence, we
assume that the same assumptions hold in both cases (e.g., regarding such a scenario
as too unlikely, or using alternative methods to preserve safety). Regarding the latter
risk, our method imposes the use of different computing resources by construction,
hence avoiding CCFs in the computing components. Shared intra-GPU memories
and interconnects are expected to be ECC-protected, hence providing intrinsic di-
verse redundancy against CCFs. However, some parts of the logic may be shared
and non-replicated, such as the hardware scheduler, as explained before. For those
components, we assume that one of the following two alternatives is needed:

1. Managing faults in such a shared component in the same way as faults affecting
other shared parts of the device (e.g., the power and clock networks).

2. Replicating (with some form of diversity) such hardware component to avoid
CCFs by design. Note that combinational logic excluding computing parts is
tiny in a GPU, so replicating them would incur negligible costs.

Overall, we foresee no extra certification risks for our contributions in the context
of GPUs, and all considerations should have a manageable impact.

2.3.5 Power and Reliability Considerations

GPUs offer a tradeoff between specialization and general purpose to realize acceler-
ation. For instance, they are more efficient than CPUs for massively parallel com-
putations (i.e., lower energy per FLOP), but still are sufficiently general-purpose to
ease programmability and use across different problems, which typically implies sac-
rificing power efficiency to keep such malleability. Moreover, the number of GPUs
needed in the automotive domain is orders of magnitude lower than those needed for
laptops, desktops, servers, and data centers. Hence, while some chip vendors have
tailored their designs for the automotive domain (e.g., NVIDIA Jetson GPU fam-
ily [127]), changes to the architecture have been limited in practice, and automotive

36

2.4 Multicores

GPUs inherit the main characteristics of their counterparts for the mainstream mar-
kets, where performance is maximized within relaxed Thermal Design Power (TDP),
and reliability is a less critical concern than in automotive systems since faulty parts
can be replaced more easily.

In the context of automotive systems, instead, performance is not the main driver
for GPUs, and they must be deployed aiming at minimizing energy consumption and
reliability concerns. Hence, while some safety requirements require duplication of the
computation, such duplication must be much preferably performed on the chip, as
for DCLS (Dual-Core LockStep) CPUs to avoid having 2 GPUs, whose joint energy
consumption would be higher than having a single device, and whose reliability would
be a concern due to having two parts plus some wiring to interconnect them instead
of a single integrated device. Therefore, the target of our work is deploying diverse
redundancy on a single chip, even for GPUs.

2.4 Multicores

In this section, we will discuss Multicores and their solutions in the safety-critical
domain. First, we will start with an introduction of Multicores, later we are going to
review their general architecture and finally review their applications in the context
of safety-critical systems.

2.4.1 Introduction to Multicores

The usage of single-core devices with higher frequency is not considered competitive in
several domains due to multiple reasons: the increased sensibility to Electromagnetic
Interference (EMI) [128], lower reliability of thermal dissipation fans [129, 130] and
cooling systems volume and weight [131]. Instead, Commercial Off-The-Shelf (COTS)
Multicore devices are becoming dominant in silicon manufacturer roadmaps [132,
133, 134, 135, 1, 136, 137] and can provide a cross-domain potential solution, e.g.,
automotive [138, 139, 140], avionics [132, 141], railway [142, 143], industrial control
[144, 145] and medical applications [83]. In the context of this discussion, dual-core
devices that operate in lockstep mode are considered single-core devices since, from
the user’s perspective there is only one core available.

2.4.2 Multicore Architecture

As mentioned in the Introduction (see Section 1.2), Multicores became commercial
when the single-core systems development was no longer economically viable, and the
transistor count continued scaling following Moore’s Law [32]. To quickly provide a
new competitive system inside the timing constraints of the market, and due to the
number of transistors available, system designers conceived the idea to replicate the
cores already used and include them in the same SoC. Using exact replicas was the
most efficient strategy to produce Multicores since they avoided designing multiple
cores, and integrating them is easier and more efficient. With this, only one core

37

2. BACKGROUND

(a) AMD Zen 2 Layout (b) AMD Zen 3 Layout

Figure 2-11: AMD Zen 2 and AMD Zen 3 Multicore Layouts

needed to be developed and, compared to using diverse cores, the verification and
validation processes were easier. For instance, resources such as the clock generator
or the power system may also be shared or duplicated. However, some parts (e.g.,
memory systems) of the system became more complex due to having multiple cores
having access to them. Memory coherence is an example, as at any point in time,
reading a memory position should have the same value no matter which core performs
the reading. Therefore, private caches are more problematic than before. Arbiters
and schedulers of shared resources got a vital role to play in multicores since now
they have to manage the accesses to shared resources reasonably.

Generally, Multicore systems group cores in clusters. Each core has a certain
number of private cache memories (usually L1 data and L1 instructions), other cache
memories shared among the cores within the cluster (usually the L2 or parts of it), and
the rest is shared among all the system clusters. There are many different strategies
when dealing with the grouping of the cores and how they access/share memory. We
can see a comparison of two different cluster examples in Figure 2-11. On the left
side, AMD Zen 2 released in 2019, groups the CPUs in clusters of 4 cores and shares
16 MB of L3. Differently, Zen3, released in 2020, arranges cores in clusters of 8 cores
and shares 32 MB of L3.

The term heterogeneous computing is employed to define platforms that include
different (heterogeneous) computing elements. It appeared as a consequence of the
generality of the computation in general cores. Generic cores can execute any compu-
tation but because of their generality, some computations may have limited efficiency.
On the other hand, accelerators are built to be very computational or power efficient
for very specific tasks, thus accelerating them. In a system, once a particular task
is very often executed and is not very efficiently executed, it may be interesting to
design a particular component to perform this task faster and more efficiently. For
instance, a long time ago, floating-point units (FPUs) were not inside the pipeline and
were considered accelerators. Due to their extended use in many applications, system
engineers included them directly in the pipeline. Nowadays, almost all CPUs include
FPUs inside the pipeline in the execution stage due to their considerable utilization in
most applications. Heterogenous computing includes dedicated accelerators, GPUs,
FPGA, vectorial units, but also clusters (groups of cores) with different cores (for

38

2.4 Multicores

different purposes). These other components may be memory coherent or not with
the rest of the system. Memory coherent means that any modification made by these
components can be seen automatically by any other component of the system, whereas
non-coherent does not. The reliability of these components is also an important issue.
Firstly, because they can perform computations that belong to a critical task which
means that they inherit safety requirements as well. Instead, if not used for a critical
task, they can still affect the execution of critical tasks from different angles. For
instance, they can create contention on a shared resource used by a core running a
critical real-time task and increase its execution beyond its deadline. Alternatively,
they could also suffer a fault that can lead to a modification outside their memory
space, potentially jeopardizing the entire system. As we will see, these characteristics
fall under the description of mixed-criticality systems that we are going to discuss in
Section 2.4.3.

Recently, a new trend in HPC has been the usage of the BIG.little architecture
(e.g., Apple’s new SoC M1 [146], Intel i9 12900K [147]) after several years of homoge-
nous Multicore clusters; this is using multiple clusters of the same cores. Instead, the
BIG.little architecture [148] was first created by ARM to be used on SoC-targeting
smartphones. Generally, it contains two types of cores divided into two heterogeneous
clusters: including big cores with high computing power and high power consumption
and smaller cores with modest computational power but more energy-efficient and,
therefore, lower power consumption. Ideally, when the system requires high compu-
tational power, the BIG cores are powered-up, and the little ones are powered off.
Whenever higher computational requirements are not required, a switch is performed
by powering off the BIG cores and powering up the small ones. This is particularly
useful on smartphones and battery devices to deliver high computing performance
when needed and save battery when not needed; an example schematic can be seen in
Figure 2-12. This trend is currently emerging in safety-critical systems, for instance,
with the adoption of platforms such as the Xilinx Zynq UltraScale+, which includes
an Arm Cortex A53 core cluster and an Arm Cortex R5 core cluster. Such a platform
is being considered in a number of avionics and railway projects, among others [149].

2.4.3 Multicores in Safety-related systems

The usage of Multicore devices, not counting lockstep as a Multicore device, for
safety-critical functionalities, has been a research trend in the last 15 - 20 years [150,
151, 132, 152, 153, 154, 155]. Having multiple cores available in the system allows to
execute of more than one process simultaneously or use them for parallel applications
[156], hence improving the computing power substantially with respect to a single-core
system.

However, Multicore devices also present new challenges, which have delayed their
adoption in real-time and safety-critical systems. These challenges are mainly, but not
only, due to the real-time guarantees that these systems need to provide as dictated
by the safety standards. For instance, some resources are shared among cores, such as
a bus or the main memory. These shared resources may be accessed simultaneously

39

2. BACKGROUND

Figure 2-12: Example scheme of a Multicore with Big.little architecture. In this time
instant, the BIG cluster is active whereas the little is inactive.

by multiple cores. However, in general, they cannot serve all requests simultaneously
and introduce some form of serialization. Therefore, the core(s) granted access creates
contention on the other cores waiting to access the resource.

A good example is the use of shared caches across multiple cores. The execution
time of an application in a Multicore can lead to worse execution time than in a
single core due to competition for the cache space. Core A can evict a line from
the cache that, otherwise, would be hit by Core B in the near future. Later, core B,
upon missing in the cache due to the evicted line, could produce further evictions also
affecting any core (including core B itself), hence with a cascade effect. Moreover,
such behavior can repeat pathologically (e.g., due to the regular and iterative nature
of programs).

Other challenges include, for instance, reaching the diagnostic coverages imposed
by the safety standards, which is a challenging task due to the increased complexity
of Multicore systems, where testing some components or states may require specific
synchronization across cores, which may be hard – if at all possible – to enforce. Re-
garding timing, standard computer architecture is driven by the following paradigm:
make the common case fast and the uncommon case correct. This design approach
leads to architectures where computer architects optimize the average-case execution
time at the expense of the worst-case execution time (WCET). Modeling the dynamic
features of current processors, memories, and interconnects for WCET analysis often
result in computationally infeasible problems. The bounds calculated by the analysis
are, therefore, overly conservative. Hence, some WCET-amenable designs have been
devised [157], yet they are not broadly adopted by end users due to their limited per-
formance and complex programmability (e.g., using software controlled scratchpads
instead of cache memories).

40

2.4 Multicores

In the case of COTS processors, instead, timing analysis can become very de-
manding since the number of sources that can introduce timing variations to execu-
tion makes it more complex to determine the WCET for a given application due to
the number of uncertainties. For instance, accessing shared resources is a source of
timing uncertainty since this access is not only affected by the software executed in
the core under analysis but also by the software being run on the other cores. Thus,
engineers need to consider the entire system as an entity and make decisions based
on it.

Some solutions such as time partitioning or space partitioning can help with some
of these timing problems, but we will not go further since they are out of the scope
of this Thesis.

Since the general solution for single-core systems is to use lockstep as the means to
achieve diverse redundancy, the straightforward idea for a Multicore system is to use
lockstep on multiple cores. However, this comes at the expense of only using half of
the area devoted to the cores for performance reasons since the rest are just executing
the same instructions redundantly. Still, while half of the cores are not user-visible,
multicores improve the performance capabilities of single-core safety-critical systems.

Mixed-criticality systems

Since now a single device has more computing power and can handle multiple tasks
in parallel, mixed-criticality systems are on the order of the day. Mixed-criticality
systems are safety-critical systems that simultaneously execute multiple criticality-
level tasks. These systems need to prioritize the higher criticality applications in
the scheduling of the shared resources while applying their best effort to reduce the
contention or slowdown suffered by other less critical (or non-critical at all) tasks.

In this scenario, safety-critical system developers of Multicore device-based mixed-
criticality systems must deal with two conflicting or contradictory constraints. These
are, on the one hand, conservative functional safety standards that are based on
the historical best safety industrial practices of the last decades, which have very
limited consideration of Multicore devices such as Chapter 11 in ISO26262 [39]. On
the other hand, a fast-evolving and highly innovative semiconductor industry that is
continuously evolving its shrinking technologies and capable of integrating more and
more cores in its systems [158]. Further details on the challenges brought by those
conflicting constraints can be found in here [159].

Hetereogenous computing in safety-critical domains

We can also find heterogenous computing in safety-related platforms as well. For in-
stance, this is the case of the Xilinx Zync Ultrascale+ [16], popular in the avionics
domain [149], which includes two different Multicore clusters. These are the Applica-
tion Core Unit (APU), a quad-core ARM Cortex-A53 and the Real-Time Processing
Unit (RPU), a dual-core with ARM Cortex R5. Moreover, inside the SoC we can
also find a small GPU and programmable logic that can be used to implement an-
other accelerator. Another example, this one targeting the automotive domain, is the

41

2. BACKGROUND

Figure 2-13: Bathtub curve with the three distinct regions with the hazard function of
time to failure in the y-axis and the time in the x-axis. Extracted from [4].

Jetson AGX Xavier Industrial, which contains an 8-core Nvidia Carmel cluster and
a dual-core with ARM Cortex R5, operating as lockstep. Both platforms execute the
safety functionalities in the R5 cores, while non-safety functionalities can be executed
on the other cluster.

Semiconductor Industry Trend

As presented by Corradi [134], while evolving, the semiconductor industry has reached
a mature level that faces a technological and economic challenge. At the industry
level, fewer companies (chip makers) can afford the investments required to produce
chips with smaller transistors. This has led to a reduction in the number of lead-
ing semiconductor companies and a general trend toward the mass-production of
Multicore SoC optimized for maximum average performance that targets multiple
domains with a single SoC (e.g., servers, desktop, gaming) [134]. Only the automo-
tive domain, from the safety-related semiconductor, has a niche market big enough
to provide economically competitive safety-specific solutions compliant with previous
safety certification standards. Therefore, it is expected that Multicore devices used
in the development of safety-related systems will have a higher dependency on fewer
manufacturers producing chips for non-safety-related markets.

Functional safety techniques in Multicore devices in Safety-critical systems

Safety techniques are in general divided into four main categories based on the chal-
lenge they address:

42

2.4 Multicores

� Reliability: Described as the probability that the device will operate correctly
during a period of time. The most relevant metric is the failure rate of the
device (λ), which is expressed in Failures In Time (FIT), the number of failures
expected in a billion (109) cumulative hours of the product’s operation. To
briefly introduce the concept and illustrate the variables that affect Reliability,
we will use the curve (bathtub shape [4]) to characterize the operation of a
population of devices. In the curve (Figure 2-13), we can easily see the 3
distinct periods. Next, we describe them very briefly:

1. Infant Mortality: Models the earlier failures due to design or manufac-
turing defects that have not been completely removed after testing, this
subpopulation is often referred to as the “weak siblings”.

2. Random Failures: The second period models the interval in which the
“weak siblings” have disappeared and the only source of hazards (failures)
are the random faults.

3. Wearout Failures: The last period models the stage in which failures
due to aging start to appear in concurrence with the random faults. The
increasing failures due to aging are responsible for the increment of the
function.

� Diagnostic Coverage: DC for short, denotes the effectiveness of diagnosis
techniques to detect dangerous errors, expressed in coverage percentage with
respect to all possible dangerous errors. DC is classified as low (60% to 90%),
medium (90% to 99%) and high (>= 99%) [62]. DC is calculated as the ratio
between the dangerous detected failure rate (λdd) and dangerous failure rate
(λd), which includes both dangerous detected (λdd) and dangerous undetected
failure rates (λdu). The diagnostic coverage of digital circuits can be calcu-
lated and measured using methods such as Failure Mode and Effects Analysis
(FMEA) and fault injection [160]. Dangerous detected errors usually require the
definition of an associated reaction (e.g., activate safe state, error correction).

� Temporal independence: Is defined as the characteristic to ensure that “one
element shall not cause another element to function incorrectly by taking too
high a share of the available processor execution time, or by blocking the exe-
cution of the other element by locking a shared resource” [62] so “that elements
will not adversely interfere with each other’s execution behavior such that a
dangerous failure would occur” in the time domain [62].

� Spatial independence: Defined as the attribute which allows that “data used
by one element shall not be changed by another element” so “that elements
will not adversely interfere with each other’s execution behavior such that a
dangerous failure would occur” [62].

Safety techniques can be applied at different levels as well. Therefore, another cat-
egorization is based on the device granularity at which they are applied. Next, we
show a small description as well as examples of the safety techniques based on this
categorization:

43

2. BACKGROUND

� Nanoscale level: This scope includes circuit-level techniques as well as tech-
niques implemented during the product fabrication to prevent specific physical
effects from happening, such as aging, or include thermal and voltage man-
agement. For instance, run-time diagnosis of soft and aging errors is used to
improve diagnostic coverage (e.g., monitoring circuits, self-tests).

� Component level: To improve reliability in this scope, common techniques
for all types of components include hardening, or redundancy. Whereas re-
dundancy usually provides the highest reliability increase, it also has a higher
hardware overhead (e.g., 300% for triplication) than hardening (e.g., 15% for
the LEON3FT space processor [161]). Particularly, to improve the diagnostic
coverage at the core level, the most relevant technique for this Thesis, since the
contributions presented are built on top of it, is the Lockstep redundant execu-
tion. This technique provides a safety standard compliant (e.g., ISO 26262, IEC
61508) medium to high diagnostic coverage with a high hardware overhead cost
(e.g., >= 200%) and minimum performance overhead [162, 163]. Lockstep re-
dundant execution is a cost-competitive and common technique used in COTS
safety devices. However, dual-core devices that operate in lockstep to increase
the core Diagnostic Coverage are considered single-core devices, as explained
before. Other techniques include software validation of specific execution invari-
ants (e.g., Argus [164]) and other generic software techniques such as control
flow checking [62, 163] or anomaly detection techniques that use dedicated or
modified circuits to detect errors (e.g., [165]).

� Device level: Device-level reliability is composed by the addition of safe and
dangerous failure rates of all components or at least the components that take
part in the execution of safety functions. Thus, device-level reliability is de-
fined by the device architecture and building components’ reliability. Diagnos-
tic coverage is generally addressed from three main perspectives (1) temporal
diagnosis, (2) spatial diagnosis, and (3) safe start-up/shut-down. Examples for
(1) include time constraint monitoring, trapping unexpected interrupts, watch-
dogs [102, 145, 130] and run-time monitoring diagnosis [166, 167]. (2) Spatial
diagnosis is required to ensure that data of a given function is not modified by
another element or function. This is generally performed by dedicated built-in
components (e.g., Snoop Control Unit [168]) in Multicore devices. Cache and
memory coherency diagnosis can be performed by built-in hardware diagno-
sis [169], or generic software techniques (e.g., [170, 168]).

44

Chapter 3

Experimental Setup

This Chapter covers the experimental setup and methodology that have been used in
the development of this Thesis. The structure of the sections of this chapter is the
following:

The contributions in this thesis tackle a similar challenge (enable a diverse redun-
dant execution) from two angles: whether to use a GPU or a CPU, and whether to
provide software-only or hardware/software solutions.

As such, we use heterogeneous frameworks across chapters such as a GPU sim-
ulator and GPU-relevant benchmarks for hardware solutions on GPU. COTS GPUs
and GPU-relevant benchmarks are employed for the software-only solutions on GPU.
Lastly, COTS CPUs and CPU-relevant benchmarks are used by the software-only
solutions on CPU.

This chapter is divided into three main blocks. Firstly, we describe the different
hardware setups that we have used in the contributions, including details and block
diagrams of the platforms. Second, we describe the two different benchmark suites
employed, one for the GPU contributions and the other one for the CPU. The third
block consists of the methodology. Due to the variance of the setups for each con-
tribution, we have divided the methodology block into small sections, one for each
contribution.

3.1 Hardware Setup

This section details the different hardware setups used for the contributions of this
Thesis. Firstly, in subsection 3.1.1, we describe the Server CAOS17, which has con-
nected the two GPUs used in the GPU-related contributions. The GTX 1050 Ti and
GTX 1080 Ti are both described in their subsections 3.1.2, and 3.1.3, respectively.
Lastly, we detail the platform employed for the last contribution Software-only based
Diverse Redundancy for ASIL-D Automotive Applications on Embedded HPC Plat-
forms, the NVIDIA Jetson Tx2 3.1.4.

Note that, in some of our experiments, we have used high-end GPUs that may
not be suited for an automotive platform due to their power usage. However, both,
the availability of these GPUs in our lab, along with the need for higher performance

45

3. EXPERIMENTAL SETUP

GPUs for the workloads at hand (Rodinia benchmarks are, in many cases, larger
versions of automotive workloads), led to the use of these GPUs for some of our
works.

3.1.1 Server CAOS17

The server of our research group, named CAOS17, has the two GPUs employed
connected through PCI Express, the specifications of the server are the following:

� CPU: AMD Ryzen 7 1800X Eight-Core Processor

� Memory: 64 GB at 2133 MHz

� OS: Ubuntu 18.04.6 LTS (Kernel version 4.15.0-189-generic)

� GPU1: NVIDIA GTX 1050 Ti

� GPU2: NVIDIA GTX 1080 Ti

Executions on the real hardware have been executed multiple times and programmed
to launch at night to avoid interference and slowdowns due to other users’ tasks
running at the same time. The results shown are the average of those executions.
Instead, since simulation results are not affected by the system load, simulations did
not have this limitation and were able to be executed at any time.

3.1.2 NVIDIA GTX1050 Ti

The GPU selected for most of our experiments and modeled in GPGPUSim, is the
NVIDIA GTX1050 Ti [171]. We chose this GPU due to multiple factors. First, it is
a relatively large GPU with 6 Streaming Multiprocessor (SM), which allowed us to
design and test our scheduling proposals. Second, due to its availability in our lab.

The NVIDIA GTX1050 Ti is a Pascal GPU, Pascal is the codename of a GPU
microarchitecture developed by NVIDIA and first introduced in April 2016 as the
successor of the Maxwell architecture, and it is the same GPU micro-architecture
used in the NVIDIA PX2 AutoChauffer product, found in modern high-end cars,
which is only available to affiliated NVIDIA automotive partners. The chipset used
for the GTX 1050 Ti is named GP107. It was manufactured using Samsung’s 14 nm
finFET process. This GPU contains 768 CUDA cores divided into 6 SM and 4 GB
GDDR5 memory with a 128-bit interface, we can see that in the block diagram in 3-1.

In each of the six SMs of the 1050Ti we can see structures shared by all the
threads executing simultaneously, such as the instruction buffer, the warp scheduler
or the register file, and units used individually by each thread, basically the replicated
functional units: the LD/ST (load/store) units, the NVIDIA Cores (similar to an
ALU), or the Special Function Units (SFU). All of them can be seen in Figure 3-2.

46

3.1 Hardware Setup

Figure 3-1: Diagram of the GTX 1050 Ti (edited from
https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801)

Figure 3-2: SM diagram of the PASCAL microarchitecture belonging to the GTX 1050
Ti (edited from https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801)

47

https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801
https://www.techpowerup.com/gpu-specs/nvidia-gp107.g801

3. EXPERIMENTAL SETUP

3.1.3 NVIDIA GTX1080 Ti

In the Triple Modular Redundancy experiments, we used a different GPU since the
GTX 1050 Ti was, in some cases, too small to contain three instances of a given kernel
at the same time. Instead, we chose the NVIDIA GTX 1080 Ti [172]. The 1080 Ti
is an NVIDIA GPU of the same microarchitecture as the 1050 Ti, the Pascal. The
chipset used is different; its codename is GP102 and has a different manufacturing
process than the 1050 Ti, the TSMC 16 nm process. The internals of the SMs are
the same on both GPUs since they belong to the same microarchitecture. However,
1080 has a total of 28 SMs in comparison to the 6 in 1050. This means a total of
3584 CUDA cores versus the 768 in 1050. To support the increased memory load, the
amount of memory is also larger with 11GB and a bus interface of 352 bits.

3.1.4 NVIDIA Jetson Tegra TX2 SoC

In the proposal Software-only based Diverse Redundancy for ASIL-D Automotive
Applications on Embedded HPC Platforms we have used the NVIDIA Jetson TX2
SoC [127] as an evaluation platform. The Jetson TX2 SoC has the following charac-
teristics:

� Three CPU clusters: dual-core NVIDIA Denver 64-bit, quad-core ARM Cortex
A57 [5] and a small Cortex-R5

� 256-core NVIDIA Pascal GPU

� 8 GB 128-bit LPDDR4 Memory

We can observe a schematic of the Tegra TX2 in Figure 3-3, where the different
CPU clusters are highlighted using colored squares. We can see that the Cortex-
R5 is shown multiple times due to their multiple tasks. However, the Cortex-R5
cluster(red color) is not visible from the user’s perspective and thus not-relevant for
the contributions to this Thesis. Similarly, the Pascal GPU in this SoC is non-relevant
for the corresponding contribution since it only focuses on the CPU clusters, and it
is too small (i.e., only two SMs) for the GPU contributions.

3.2 Software Setup

To evaluate our contributions we have mainly used two different benchmarks. For the
GPU contributions we selected the Rodinia benchmark suite whereas for the multicore
contribution, we selected the EEMBCs Autobench suite.

3.2.1 Rodinia

The Rodinia Benchmark Suite [7, 173] is a widely used benchmark suite in the
GPGPU domain. Rodinia is a heterogeneous-computing, very recognized benchmark
suite, and its original scientific paper, published in 2009, already has more than 3000

48

3.2 Software Setup

Figure 3-3: NVIDIA Tegra TX2 schematic, with three CPU clusters: the dual-core
NVIDIA Denver 64-bit (blue square), the quad-core ARM Cortex A57 [5] (green square),
and a small Cortex-R5 in charge of (critical tasks, transparent to the user), edited from [6]

citations. It is a collection of parallel scientific applications which target heteroge-
neous computing platforms with both multicore CPUs and GPUs. All applications
have support for CUDA [41], OpenCL [40] and OpenMP (API for shared-memory
parallel programming in C/C++) depending on the compilation flags used.

However, the baseline applications do not support redundant kernel execution.
Since this is a requirement of our proposal, we have manually modified the code to
add it. We added preprocessor directives such as #ifdef REDUNDANT so that we
could compile and obtain different versions of our code with the same source codes.
Thanks to these preprocessor directives, we can easily compile different versions by
defining these variables when running the compiling command using the -D flag
(i.e., -DREDUNDANT). The versions used are the baseline application (BASELINE),
the application with redundant kernel execution with comparison (REDUNDANT),
and the redundant kernel execution serialized with the comparison that we use later
(REDUNDANT SERIALIZE).

An example of the modifications can be seen in the Annex in Listing 1, where all
the modifications are prefixed by the #ifdef clauses commented above. These clauses
are omitted on purpose for the sake of clarity in the code listing shown in the proposal
section (Section 6.2.2) of the contribution chapter (see Listing 6.2). The original code
shown is extracted from one of the applications (myocyte) from Rodinia, and the
modifications are the following:

� Input replication and allocation (if needed), not shown in the listing

49

3. EXPERIMENTAL SETUP

� Output replication and allocation are also not shown in the listing

� Creation of CUDA streams to allow concurrent redundant kernel execution
(lines 5-7)

� Kernels calls:

1. BASELINE : Original kernel launch (line 18)

2. REDUNDANT : Add the two kernel launches using different CUDA Streams
and different arguments (lines 12 & 16)

3. REDUNDANT SERIALIZE : Add the call to cudaStreamSynchronize, which
waits until all tasks assigned to the specified queue have finished (line 13-
15)

� Getting results back from the GPU memory (BASELINE: lines 28-29, REDUN-
DANT and REDUNDANT SERIALIZE: lines 28-32)

� The result comparison which only happens in the REDUNDANT and
REDUNDANT SERIALIZE versions (lines 38-46)

We also employ Rodinia in the contribution GPU Software-only diverse redundant
execution. Similarly, we add the #ifdef TRIPLE for the Triple Modular Redundancy
Kernel execution.

3.2.2 EEMBC AutoBench v1.1

The EEMBC automotive suite [174, 175] v1.1 is developed by the Embedded Micro-
processor Benchmark Consortium with the objective of measuring the performance of
Embedded Systems with the use of programs used commonly in automotive systems.
In Table 3.1 we can see the list of benchmarks included in this suite. The structure of
these benchmarks is the following: each program has a main loop, executed a number
of iterations (configurable by the user) with some calls in the loop body. The number
of iterations we use is the default one provided for each benchmark. The input data
for each benchmark is already included in the benchmark suite.

3.3 Methodology

The rest of the chapter is divided into subsections, one for each contribution, in
which we detail the methodology followed in the evaluation step of each contribution.
Detailed information on the tested applications is also described in each subsection
or referenced if already described.

50

3.4 Methodolgy and Setup used in: An Analysis of the Safety-Related
Challenges and Opportunities for GPUs in the Automotive Domain

Table 3.1: EEMBC Automotive benchmarks

Name Description
a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache ”Buster”
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matric Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

3.4 Methodolgy and Setup used in: An Analysis

of the Safety-Related Challenges and Oppor-

tunities for GPUs in the Automotive Domain

The first contribution, presented in Chapter 4, is substantially theoretical. Thus, few
tools have been required for this contribution. In particular, to distinguish between
statement and branch code sections, we use the tool RapiCover [176] in one of the
state-of-the-art real-time object detection systems, the You only look once or Yolo [31]
(for short) version 3.

RapiCover is a tool from RAPITA systems used to collect code coverage for dif-
ferent programming languages, which is used to simplify verification and produce
evidence for DO-178 and ISO26262, safety certification for avionics and automotive,
respectively. RapiCover works by ”injecting instrumentation code into source code
and executing the native build system so that the coverage results are collected during
program execution” [176].

As said, we apply RapiCover to Yolo version 3 [31]. Yolo is an open-source object
detection system developed by Josep C. Redmon under the supervision of Ali Farhadi
from the University of Washington. Yolov3 is an upgraded version of the original Yolo,
including some design changes to improve efficiency.

51

3. EXPERIMENTAL SETUP

3.5 Methodolgy and Setup used in: GPU schedul-

ing policies

To evaluate the proposals of this contribution, we are required to modify the hardware
of a GPU. Due to the unviably of doing it in a real GPU, we implement our proposals
on a GPU simulator. On top of the simulator, we executed a set of applications from
a known heterogeneous benchmark suite (Rodinia). Furthermore, we also ran some of
the modified applications on top of a real GPU available in our department to mimic
the timing behavior of one of our proposals.

Next, we describe and discuss these tools and the modifications we made to adapt
them to our work.

3.5.1 GPGPUSim

The scheduling policies proposed in this contribution are integrated and evaluated in-
side GPGPUSim [114, 115] (version 3.2.2). GPGPUSim was created by Tor Aamodt’s
research group at the University of British Columbia. It is a Graphical Processing
Unit (GPU) cycle-level simulator which provides a detailed simulation model of con-
temporary GPUs. More precisely, it models the features of a modern graphic processor
that are relevant to non-graphics applications. It can run GPU computing workloads
written in both CUDA [41] or OpenCL [40]. However, this particular version of the
simulator only supports up to CUDA 8 [177] (so 8 and below).

With the simulator, we model the NVIDIA 1050Ti [171] (see section 3.1.2). To do
this, we use the configuration files for the NVIDIA PASCAL architecture [178], and
we adapt them to the target GPU by modifying the amount of SMs and the amount
of memory, which are commonly the main differences among different GPU models
of the same architecture. Once modeled, we need to make some modifications to the
simulator to integrate our proposed scheduling policies.

To implement the two proposed scheduling policies, we modify the default schedul-
ing policy according to the requirements that each proposed policy imposes on the
way the available SMs have to be assigned. For one, we use the default scheduling
policy implemented in the GPGPUSim and restrict each kernel execution to 3 dedi-
cated SMs (half of the available ones), whereas for the other one, it requires limiting
the number of concurrent kernels to 1. To evaluate the proposals, we compare the
performance of the proposed policies against the default GPGPUSim scheduler that
can allocate all GPU SMs (6) to the kernels without any constraint. More details on
the implementation are explained in Section 5.4.1.

To verify that the modifications work correctly, GPGPUSim has a special log file
that indicates internal information about the simulation execution. In our case, we
are interested in a particular message: A message appears when a thread block is
scheduled to an SM, including both the information related to the thread block (i.e.,
thread block identification number and kernel identification) and the SM assigned
to. We validate in the executions that these messages were correct according to the
scheduler policy implemented.

52

3.6 Methodology and Setup used in: GPU software-only diverse
redundant execution

3.5.2 CUDA Version and Compiler

In general, in our methodology, we attempt to select the latest stable release of a
compiler since it may include fixes of old bugs, features of the latest architectures, and
better performance. However, in this case, GPGPUSim only works with particular
versions for both the GCC compiler and the CUDA version. Instead, for the software
executed directly on the real GPU, we employ the latest versions of both the GCC
compiler and CUDA.

3.6 Methodology and Setup used in: GPU software-

only diverse redundant execution

Some of the tools and benchmarks introduced in the previous contribution have also
been employed for this one, as we explain in this section. There are some others
that, instead, are used in this contribution exclusively. As for the software we use,
we have employed the same benchmarks, the Rodinia benchmark suite [7, 173] (see
section 3.2.1). Since some of the experiments have required ad-hoc environments, we
review the methodology and setup for each one of them separately.

3.6.1 Slack Measurements

When a GPU kernel is launched in CUDA (and similarly in OpenCL), the NVIDIA
Runtime API has to execute a set of functions (ConfigureCall, KernelSetupArguments
and CudaLaunch) which pass the information of the kernel to the GPU as explained
in section 6.3.1. In order to measure the timing of these functions, we use the NVIDIA
profiler (known as nvprof), from the NVIDIA toolkit in our CAOS17 server setup (see
Section 3.1.1). To be able to see these functions, we need to compile the code using
the debugger option -g [179] which exposes debugging symbols to be captured for
debugger programs such as GDB or the nvprof. Then, instead of executing the binary
in a regular form, we use the nvprof tool. An example together with a description
of the nvprof options description can be seen in the Appendix in Chapter 8.3. We
execute 100 times each experiment, and then we extract the execution times of the
NVIDIA runtime API function from the trace files produced by nvprof.

3.6.2 COTS GPU Results for diverse DMR

Similarly to the previous section, we use the same setup, in the server CAOS17
(see 3.1.1) and launch the kernels in th same GPU, the GTX 1050 Ti (see 3.1.2).
However, an extra modification is required in the code to measure the CUDA calls
shown in the plot 6-9. This occurs because the CUDA calls (i.e., memory transfers
and kernel calls) are asynchronous by default. This means that, when the CPU
performs these calls, it assigns tasks to the memory controller and the GPU, but it
does not wait for them to finish. Instead, continues executing the next instructions.

53

3. EXPERIMENTAL SETUP

Therefore, in order to measure the execution time of these calls, we need to add some
synchronization mechanism so that in the CPU side we can know the instant when
they finish.

We added a synchronization method available in CUDA named
CudaDeviceSynchonize(), which stalls the CPU until all operations in the GPU (in-
cluding memory transfers) have finished. Since this can make the execution time
higher than in the regular execution, we enclosed the synchronization method be-
tween #ifdef calls (like we did in 3.2.1), in a new binary setup named TIMING,
where we only gathered the timing of these calls. In the comparison, synchronization
is not required since the comparison of the results is directly made in the CPU.

We also need a method to measure time. For this, we use the function gettimeof-
day() from sys/time.h, which captures the time in seconds and µseconds. We place
two calls to this function before and after the call that we wanted to measure, and
later we subtract the times from both calls to obtain the elapsed time between them.

3.6.3 COTS GPU Results for diverse TMR

For the results shown in this contribution, we employ a different setup with respect
to the other experiments. In particular, we use the NVIDIA GTX 1080 Ti (see
Section 3.1.3) in the CAOS17 server. The Rodinia benchmarks also require a mod-
ification; we add a new binary setup named TRIPLE which includes a third kernel
call, with everything required (e.g., CUDA stream, memory transfer, comparison),
enclosed in the #ifdef. To ensure that the executions are employing the correct
GPU, we started all callings with CUDA VISIBLE DEVICES=0, which makes only
the GPU GTX 1080 Ti visible to the execution.

3.6.4 Fault-detection capabilities evaluation using fault in-
jection

The fault-injector tool we use as the baseline is the NVBitFI [180, 181]. NVBitFI is
an automated framework to perform error injection campaigns for GPU applications
resilience evaluation. NVBitFI is built on top of another NVIDIA open-source tool,
the NVIDIA Binary Instrumentation Tool (NVBit) [182], which is a research proto-
type of a dynamic binary instrumentation library for NVIDIA GPUs. Information on
the fault models used and the target registers for injection are explained in the eval-
uation section of the proposal in Section 6.3.5. However, here we are going to explain
the methodology required by the tool in order to perform a proper fault injection
campaign. NVBitFI has a 4-step process to perform the fault injection campaign:

1. Step 1: Initially, it is required to merge the directory of both tools, the NVBitFI
and the NVBit, and prepare the setting files to target the application where we
want to perform the fault injection (backprop in our case) and perform an error-
free run to create the outputs without error, what is known as a Golden Run.

54

3.6 Methodology and Setup used in: GPU software-only diverse
redundant execution

2. Step 2: Launch the target application again using the profiler tool. This run
profiles the target application and generates the injection list. The injection
list is the list of possible injecting points and their characteristics (e.g., such as
which type of destination register is). Then, based on the configurations set,
creates a subset of the list with the injection points selected and the type of
error that will be injected.

3. Step 3: Later, the tool receives the injection list created in the previous step
and performs all the executions, injecting the corresponding error for each one.

4. Step 4: Finally, a parsing of the results is done and a classification of the
outcome for each error injection is performed in 4 different categories based on
NVBitFI classification.

� Masked: Error was masked and did not appear in the output of the appli-
cation.

� Silent Data Corruption (SDC) undetected: A mismatch in the output was
found but was not detected by the detection mechanism.

� SDC detected (or error detected)1: An error was found by the detection
mechanism and reflected in the output of the application.

� DUE: A detected error prevented finishing the execution. Note that these
errors are detected regardless of whether the specific error detection mech-
anism under consideration (i.e., redundancy) is integrated.

For our executions, we make some modifications to the original NVBitFI code.
Since our application already has a comparison of the kernel results inside, which
could identify some errors previously to the comparison system of the injection tool.
We add the category SDC detected as an outcome of the error injection, which
identifies the errors (or SDCs) that are already identified by the internal comparison
system without requiring comparison with the Golden Run output.

Others fault injection tools were considered, such as SASSIFI and GPU-Qin.
GPU-Qin [183], from 2014, used an old CUDA debugger (cuda-gdb) since it is a
debugger-based injector to inject the errors and was discarded due to potential issues
of compatibility with using more modern GPUs. SASSIFI [106] was the predecessor
of NVBitFI and is now deprecated because it uses the older SASSI interface (the
predecessor of NVBit) to perform the injection instead of the NVBit interface.

3.6.5 HW and SW-only solutions side by side on the simu-
lator

As a final part of the evaluation of this contribution, we compare all the different pro-
posals from the execution time perspective. Due to the impossibility to test the hard-
ware proposals in the real platform, GPGPUSim [114, 115] was used since software

1We created this category to classify as a different outcome whenever our mechanism is able to
detect the fault

55

3. EXPERIMENTAL SETUP

proposals could be included. GPGPUSim has already been described in Section 3.5.1
and we use the same configuration employed before, modeling the NVIDIA GTX 1050
Ti, described in Section 3.1.2. The configurations of the benchmarks selected are the
friendly ones obtained using the protocol proposed.

3.7 Methodolgy and Setup used in: Software-only

based Diverse Redundancy for ASIL-D Auto-

motive Applications on Embedded HPC Plat-

forms

Before performing the experiments on the NVIDIA Tegra Tx2 SoC, we made some
modifications to the platform setup:

Firstly, in order to avoid that one of the redundant applications being executed in
one of the DENVER cores instead of the Cortex A57, we deactivate the Denver cores.
To do it, we issue the following command in sudo-mode, see Listing 4 in Appendix.

Then, to maintain the same frequency in all cores and deactivate the frequency
scaling, that could challenge the mechanism to maintain the diversity in the execution
(i.e., by speeding up the trail core), we execute the following commands, again in
”sudo” mode, see Listing 5 in Appendix.

As explained in the contribution chapter, in order to remove the noise created by
other processes we migrate all the Linux processes to the non-used (4th) core. For
this, we listed all the processes active, and we changed their CPU affinity mask, so
they could only be executed in that particular core.

3.7.1 CPU diverse redundancy execution

To enable the diverse redundancy execution in a single cluster, we have created a
single application that uses Open MPI [184] v4.0.1 to orchestrate all the execution.

MPI is used to both communicate and synchronize the CPU monitoring process
(Monitor) and the ones that are going to execute the target application (Workers). In
order to set up the execution, the applications have been modified to include a set of
calls to MPI to synchronize and that use the MPI TAG entry to identify the different
messages. These messages are crucial to allow the Monitor to identify which Worker is
the Trail and which one is the Head. Moreover, some messages are exchanged before
the execution of the application to set up the performance monitoring counters and
to make the Workers wait for a specific message in order to start, which allows easily
the Monitor to create the initial staggering.

As in the previous contribution (See 3.6.2), we use the call to gettimeofday to
measure the different timings of the execution.

The monitoring application uses the target applications as an object file in its
compilation process to include all the code. In order to ease the compilation, the
applications to be protected must be compiled statically since otherwise, the moni-
toring application would require to know the libraries used by these applications to

56

3.7 Methodolgy and Setup used in: Software-only based Diverse
Redundancy for ASIL-D Automotive Applications on Embedded HPC

Platforms
compile. The applications used for evaluation were a matrix multiplication as a proof
of concept and, later we decided to include the EEMBC AutoBench Performance
Benchmark Suite [185] v1.1, which we present in the next Section (see Section 3.2.2).

3.7.2 Executions and versions

To create the different versions of Baseline, No Monitor, Passive and Safe we have
employed the same technique used in Section 3.2.1, where the different versions in-
clude more or less code depending on the flags used at compilation time. However,
this time we used the flags twice since, as explained above, we compile first the
application statically and then the monitoring application.

Executions are done in full isolation since no other user was allowed in the system.
The numbers shown in the plots are the results of 500 executions of each benchmark
and version.

57

3. EXPERIMENTAL SETUP

58

Chapter 4

An Analysis of the Safety-Related
Challenges and Opportunities for
GPUs in the Automotive Domain

4.1 Introduction

High-performance-embedded systems are increasingly used in critical domains such
as transportation (road vehicles, airplanes, and trains), industrial machinery, health
devices, and satellites. Engineers of Critical Real-Time Embedded Systems (CRTES)
develop products following commonly accepted best practices, and, in the case of
safety-critical systems, showing compliance with legal directives is mandatory be-
fore they are allowed to operate. This requires going through a certification process
as defined by applicable safety standards, e.g., ISO26262 [39] for road vehicles (see
section 2.2). The increasing use of “smart” software functionalities as the main com-
petitive factor in CRTES is relentless. In automotive, the main software functionality
relates to driving automation, whose potential benefits range from the reduction of
accidents and the CO2 footprint to increasing people’s quality of life by reducing
the time they spend driving. These benefits have boosted the trend toward full au-
tomation with most mid- and high-end cars already featuring some Advanced Driver
Assistance Systems (ADAS) and the first Autonomous Driving (AD) level 3 car al-
ready in mass production (the Audi A8). Note that there are five AD levels from
0, or no automation, to level 5: fully automation in which driving is automatically
handled in (all) scenarios as complex as those human drivers can encounter on the
roads (see section 2.1.1).

AD functionality can be broadly classified into the perception of the environment
surrounding the vehicle, localization to estimate the vehicle’s position, planning the
vehicle trajectory, and controlling vehicle actuators. Perception, the most compute-
intensive module, builds on object detection and tracking. In the past few years,
impressive improvements in Machine Learning (ML) techniques, e.g., Deep Neural
Networks (DNN), have dramatically changed state-of-the-art algorithms for percep-
tion by achieving significantly higher accuracy. This has made ML-based perception

59

4. AN ANALYSIS OF THE SAFETY-RELATED CHALLENGES AND
OPPORTUNITIES FOR GPUS IN THE AUTOMOTIVE DOMAIN

techniques the preferred solution in the industry. The other side of the coin is that
ML techniques carry unprecedented performance demands in automotive. The per-
formance requirements of AD alone are projected to increase by 100x from 2016 to
2024 [12].

Initial research studies [186] and performance data from chip vendors show the
effectiveness of Graphical Processing Units (GPUs) to accelerate ML-based libraries
for AD. This has attracted the attention of car manufacturers who have started an-
alyzing GPU’s potential to cover AD’s performance requirements. Since high-end
GPUs targeting AD systems build on designs for the mainstream market, they may
find some difficulties to adapt to automotive’s specific requirements. In this chapter,
we expand some of the contents pointed out in the introduction and background chap-
ters, and analyze some of the main challenges that GPUs, and the software running
on them, will face in providing safety assurance in accordance with the ISO26262
functional safety standard, given that a large fraction of the work in this thesis builds
upon GPUs. We also cover other relevant challenges such as time predictability.
Specifically, the main contributions of this work are:

1. At the hardware level, harsh operation conditions (e.g., extreme temperatures)
make GPUs more vulnerable to random hardware faults. Resorting to ISO26262
standard solutions such as diversity and redundancy has to be done cautiously
in GPUs. For instance, while GPUs naturally offer redundancy sources, they
must be carefully exploited to preserve high performance and prevent a single
fault from becoming a common cause of failure in all redundant instances, which
could lead the system to a hazardous situation.

2. At the software level, we identify these challenges:

� The AD builds on generic, i.e., nonautomotive specific, ML libraries. This
allows car makers to enjoy the improved functionality (e.g., higher ob-
ject detection accuracy) of the latest available generic ML libraries, which
see a new release every few months. However, their generality increases
the probability that the libraries implement hard-to-validate features, in-
creasing the effort to assess libraries’ adherence to ISO26262 guidelines on
software coding and development. As an illustrative example, our results
with YOLO v3, a state-of-the-art object detector system, shows that the
code coverage achieved, a basic software unit structural coverage metric is
well below the 100% needed in ISO26262.

� For performance-improving reasons, ML libraries build on low-level GPU-
optimized libraries such as cuDNN [187]. The black box, i.e., closed-source,
nature of these libraries, however, challenges assessing their adherence to
ISO26262 guidelines for software. This requires library owners to undergo
the certification process or the use of opensource libraries that provide
similar performance to their closed-source counterparts, so that end users
take care of its certification. In either case, changes to simplify valida-
tion and verification can reduce efficiency and result in the creation of
ISO26262-specific branches of the libraries.

60

4.1 Introduction

� Languages to program GPUs make use of features that hamper software
(code) verification activities that already amount to most of the total de-
velopment effort for the highest safety levels (ASIL D). As illustrative ex-
amples, we discuss two well-known features: the use of pointers (that must
be prevented) and the use of defensive programming to prevent system-
atic software faults (that must be favored). We show that ISO26262-aware
programming languages prevent (favor) some of those undesired (desired)
features while maintaining GPU’s performance benefits.

3. Time predictability [188] a fundamental requirement of CRTES, is another
relevant challenge in GPUs since it is hard to achieve on (complex) high-
performance hardware like GPUs. To address this challenge, we advocate for
hardware support to increase observability as a necessary element to obtain ev-
idence of the correctness of the derived Worst-Case Execution Time (WCET)
estimates. Furthermore, it is required to analyze those elements in DNN codes
that negatively affect predictability, which has only been superficially explored
so far.

Overall, adherence to ISO26262, already achieved for ADAS, is challenged by AD.
Under ADAS, the computing system acts as a fail-safe system, and in the case of mis-
behavior, it returns the control to the driver (see section 2.1.1). However, AD makes
some systems fail-operational preventing the control to be returned to the driver.
This has onerous consequences on the safety solutions adopted to guarantee that the
system remains operational upon a fault (also known as fault-tolerant). Recently, the
NVIDIA Xavier has been announced as an ISO26262-capable GPU-based SoC for
AD. While detailed technical specifications on how this SoC achieves fail-operational
capabilities are not yet available, achieving ISO26262 compliance requires appropriate
redundancy and diversity strategies (i.e., lockstep, see section 2.1.3). To our under-
standing, in the NVIDIA platform, this is achieved with a non-negligible amount of
replication of functionalities (e.g., using GPUs and deep learning accelerators), which
may significantly increase Verification and Validation (V&V) costs due to the use
of two different software and hardware implementations or may lead to inefficient
solutions since execution time will be dominated by the slowest implementation. In
general, it remains unclear to what extent AD systems can be efficiently deployed
and validated in a cost-effective manner on an AD-capable SoC. In this proposal, we
analyze some of the most relevant challenges related to this matter.

61

4. AN ANALYSIS OF THE SAFETY-RELATED CHALLENGES AND
OPPORTUNITIES FOR GPUS IN THE AUTOMOTIVE DOMAIN

Figure 4-1: Examples of ASIL decomposition and appropriateness for fail-safe and
fail-operational systems.

4.2 Safety Assurance: Impact on Hardware

Next, we are going to discuss, in more detail, the impact that safety has on the
hardware. Starting with the system design due to the ASIL Decomposition. Then
how redundancy and diversity can be applied to GPUs and finally how the harsh
environment may affect the technology employed to build the GPUs.

the impact on the hardware that safety requires.

4.2.1 ASIL Decomposition

Traditionally, automotive systems have been considered fail-safe, which requires sim-
pler measures to guarantee adherence to ISO26262, such as returning the control to
the driver. However, the transition to fail-operational systems driven by level-5 AD
significantly complicates achieving functional safety and hampers some forms of ASIL
decomposition that were traditionally employed to save development costs. ASIL de-
composition (see section 2.2.1) is used (i) to implement high-ASIL components with
redundant and sufficiently independent lower-ASIL components (see top example in
Figure 4-1 in which two ASIL B components can be used to reach ASIL D) and (ii) to
allow a subset of the components preserve safety, thus remaining at the corresponding
ASIL level, whereas others are regarded as QM, since, on a failure, ASIL components
will detect it and keep the system safe. Such decomposition is often used to keep mon-
itoring functionalities at the corresponding ASIL level (e.g., ASIL D in the bottom
example in Figure 4-1), whereas computation components are regarded as QM. On a
failure of the QM component, the monitoring one detects it and moves the system to
a safe state, thus impacting availability but not safety. Whether faults occur often
is, therefore, a matter of availability and so, business, but functional safety is pre-
served. In AD, since some ASIL C/D functionalities are fail-operational (e.g., those
related to braking and steering), the components implementing such functionality

62

4.2 Safety Assurance: Impact on Hardware

must achieve the corresponding ASIL, and ASIL decomposition cannot be applied to
keep those items as QM since a safe state may not exist at all. Hence, some form of
fault tolerance must be incorporated to keep the system operational despite faults.

4.2.2 Redundancy and Diversity

As we have seen redundancy and diversity are two essential attributes when it comes
to safety, now we are going to see how these two terms can be applied to GPUs.

GPUs naturally offer lots of hardware redundancy that can be exploited to imple-
ment diversity solutions. However, for IP confidentiality reasons, some GPU’s internal
behaviors (e.g., resource allocation) are managed automatically by hardware, i.e., in
a black box manner. Unfortunately, this practice clashes with guaranteeing diversity,
since low-level management of the resources from software may be needed. Yet, it
is our view that those issues are not roadblocks for the use of GPUs for AD in the
automotive domain. That is, the type of homogeneous hardware redundancy offered
by GPUs can be made compatible with automotive needs, similar to the case for ho-
mogeneous cores operating in a lockstep mode. For instance, identical cores, despite
being homogeneous in terms of front-end design, provide diversity by several means
like operating with some time shift so that activities carried out at any given time
differ across cores, and hence, upon a fault affecting both cores, the effect is neces-
sarily different, and thus, errors can be detected timely. Another diversity technique
usually employed in lockstep cores is the use of layout diversity. Similar approaches
can be enabled on the top of GPUs as long as common cause failures are avoided
by construction by, for instance, using similar concepts as for cores (e.g., allocating
separate sets of resources to each redundant thread and operating with some time
shift). Also, GPU architectures may evolve and match ISO26262 requirements in
the future since modifications will likely have a roughly negligible impact on cost
and performance, and GPU vendors like NVIDIA already acknowledge the need for
ISO26262 compliance [189].

Summary : GPUs massive parallelism allows supporting NooM (where N < M)
redundancy. However, two key open challenges remain. First, guaranteeing diversity
by avoiding common cause failures. And second, excessive use of 1oo2 (or 2oo3) may
result in unaffordable procurement and energy costs, which calls for providing efficient
NooM redundancy solutions.

4.2.3 Ability to Operate in Harsh Environment

Hardware qualified for automotive use needs to have an operating temperature that
ranges between –40◦C and 150◦C for the highest criticality (grade 0 automotive elec-
tronics) and increased reliability requirements for soft errors. While those operation
conditions are much more challenging than those for server or office electronic equip-
ment, they are affordable for GPUs by employing appropriate circuit designs such as
larger transistors and wider wires. However, those design practices may cause some
performance degradation due to the use of slower circuits, which may also consume
more power. Still, in our view, suitable tradeoffs can be found.

63

4. AN ANALYSIS OF THE SAFETY-RELATED CHALLENGES AND
OPPORTUNITIES FOR GPUS IN THE AUTOMOTIVE DOMAIN

4.3 Safety Assurance: Impact on Software

Safety also affects the Software run on the automotive platforms. We are going
to discuss some of the adjustments that are required in the current status of GPU
software.

4.3.1 Coding Standard and Architectural Design

Critical software across all sectors needs to comply with coding and development
guidelines, in order to facilitate its validation and certification against the standards
of the particular domain. In automotive, ISO26262, for instance, recommends the
limited use of certain features that complicate the certification of software applica-
tions such as pointers and dynamic memory allocation. It also encourages the use
of safe language subsets to limit the use of error-prone language features. For in-
stance, MISRA C is a subset of the C language that defines a set of rules that can
be statically checked by commercial tools and therefore enforce their use. Besides
coding standards, ISO26262 defines (i) requirements on the architecture of critical
software that must exhibit properties such as modularity, encapsulation, and mini-
mal complexity; (ii) verification methods of the safety requirements including source
code review (walk-through and inspection) and source code analysis (control flow,
data flow, static code); and testing methods—used to verify software and ascertain
its quality. For instance, at the unit testing level, ISO26262 requires structural code
coverage such as statement and branch coverage.

GPU software is based on low-end C-like APIs like CUDA [41] and OpenCL [40],
which bring some challenges to show adherence to ISO26262. These challenges include
the following.

Use of pointers : CUDA and OpenCL programs use pointers as an indispensable
feature of their programming model since the programmer has to explicitly allocate
and maintain two separate sets of pointers, one for the host memory and one for
the device memory. Moreover, the programmer also has the responsibility to perform
memory transfers between these two memory spaces. Note that recent versions of both
CUDA (6 and later) and OpenCL (2.0) provide two equivalent features called unified
virtual memory and shared virtual memory, respectively. These features simplify the
programmability and enhance productivity by taking care of the transfers implicitly,
providing the user with the abstraction of a single address space. However, they might
incur a performance penalty while introducing another black box in the timing and
functional behavior, which complicates the certification of the system as we discuss in
the following section. Moreover, even with these features, pointers are still present in
the programming model. Brook is a stream-programming language targeting GPUs.
In the same way, MISRA C [190] constraints C, Brook Auto [42] defines a subset of
Brook rules that are certification friendly, without limiting the expressiveness of the
language. For instance, Brook Auto does not expose pointers to the programmer and
takes care of those tasks automatically, reducing the possibility of human errors

64

4.3 Safety Assurance: Impact on Software

(a) Brook Auto code

(b) CUDA code

Figure 4-2: Example equivalent code programmed with Brook Auto (top) and CUDA
(bottom).

65

4. AN ANALYSIS OF THE SAFETY-RELATED CHALLENGES AND
OPPORTUNITIES FOR GPUS IN THE AUTOMOTIVE DOMAIN

Example: Figure 4-2 (top) shows an illustrative example of Brook Auto that
highlights some of its benefits. The sample program launches a GPU kernel that
operates on two input data vectors (streams in Brook terminology) and generates
its result in a third data vector. In the program that calls the kernel, there are
two versions of each vector required, one for the host (suffixed “h”) and one for
the device (suffixed “d”), shown in lines 14 and 15, respectively. The same code is
written in CUDA, see Figure 4-2 (bottom), shows that pointers are required both
in the GPU, for passing data in the kernel (line 1), as well as on the host side for
allocating memory (lines 14–16) and managing the transfers between host and GPU
buffers (lines 18–19 and 21). Note that the OpenCL version of the code has the
same characteristics as CUDA, but it is more verbose. Therefore, it is omitted for
clarity. Brook uses statically defined streams that prevent explicit memory allocations
(cudaMalloc) and low-level memory management, which could result in programming
mistakes due to wrongly supplied size parameters or memory exhaustion. Streams
cannot be directly accessed (e.g., indexed) from the host side, since this would result in
a compilation error, and they can only be accessed using certain API calls (streamRead
and streamWrite) to copy data from and to host buffers. Stream size is integrated
within these calls, preventing out-of-bounds accesses from the host side.

From the kernel side, streams can be accessed in two ways. Regular streams in
which each GPU thread accesses its corresponding element in the array, declared as
“<>” and gather streams, which are declared with “[]”. In the former case, Brook
Auto takes care of accessing the correct element, while in the latter it suppresses
potentially illegal out-of-bound accesses ensuring fault isolation.

Other dynamic features. Brook Auto also restricts dynamic language features that
can lead to deadlocks or complicate the WCET analysis of the software. For exam-
ple, notice that the kernel in the Brook Auto example contains an extra defensive-
programming condition in the loop (line 6). This condition restricts the number
of iterations of the kernel to a statically defined upper bound limit, although the
main loop condition is input dependent. The absence of such a statically computed
condition would result in a compilation failure, thus enforcing this rule. On the con-
trary, the CUDA version is unprotected from this type of programming risk, which
complicates GPU software certification with ISO26262.

4.3.2 Generic ML and Black-Box CUDA Libraries

Generic ML libraries. The dramatic increase in ML usage in a variety of domains
makes the leading artificial intelligence companies to provide several widely used
frameworks and highly optimized libraries to facilitate and make better use of avail-
able platforms and architectures [191]. Like in many other areas, state-of-the-art AD
systems strongly rely on these libraries and use them extensively. However, not only
the algorithms but also these frameworks and libraries are quite generic, designed
based on totally different objectives to those of CRTES in general and AD particular,
which challenges providing evidence that software achieves its safety requirements.
In fact, to our knowledge, no study has been carried out on the adherence of those
libraries to ISO 26262 software requirements.

66

4.3 Safety Assurance: Impact on Software

Figure 4-3: Code coverage for YOLO v3.

Example. As an illustrative example, we focus on statement coverage, a basic
structural coverage metric at the software unit level. In particular, we run the YOLO
v3, which is a state-of-the-art object detector widely used in real AD systems com-
prising more than 20 functions. We run several real scenario tests and measure sim-
ple statement and branch coverage using a RapiCover low-overhead coverage analysis
tool [176]. The former captures the fraction of static instructions (those in the binary)
executed in the tests, and the latter is the fraction of program branches or conditional
states triggered during the tests. Obtained results are shown in Figure 4-3.

Each column represents all the functions in each file. Note that, despite exclud-
ing all YOLO functions that were not called, both branch and statement coverage
are very low. Average coverage is 83% and 79% for statement and branch, respec-
tively, and as low as 19% and 37%, respectively, for individual files. While ISO26262
does not specify coverage targets, its parent standard, IEC61508 (Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-Related Systems), recom-
mends 100% coverage for all metrics. Hence, the coverage levels observed for YOLO
are not acceptable for any ASIL since either branch or code statement is highly rec-
ommended (++) for all ASIL levels. It is also worth noting that the concept of code
coverage has not even been defined for GPU code. The fact that GPU instructions
are single instruction, multiple thread and warp divergence (predicated execution)
complicates simply extending CPU code coverage to GPUs.

Low-level CUDA libraries. Libraries used for artificial intelligence and ML in
AD—as the majority of widely used operations in GPUs—rely on highly optimized
closed-source libraries (e.g., cuBLAS [192] and cuDNN [187]). From a functional
safety point of view, these are black boxes without detailed information on their

67

4. AN ANALYSIS OF THE SAFETY-RELATED CHALLENGES AND
OPPORTUNITIES FOR GPUS IN THE AUTOMOTIVE DOMAIN

implementation, code, and algorithm. This might prevent their safety analysis by
end users, e.g., source code analysis and code coverage, a mandatory requirement of
ISO26262. In our view, overcoming this limitation requires one of the following:

� The use of open-source libraries, which must provide competitive performance.
For instance, results show that CUTLASS [193], NVIDIA’s open-source collec-
tion of CUDA C++ templates and abstractions for implementing high-performance
GEMM computations provide very close performance in comparison with cuBLAS.

� Closed-source libraries owners go through the certification process and adapt
their libraries to fit ISO26262 requirements.

Code changes to achieve ISO26262 adherence can, however, cause performance
loss with respect to the original performance-improving centric code, which is not
acceptable in other non-critical domains in which these libraries are used. This can
result in the creation of branches of the code specific to the automotive domain, with
increased development and maintainability costs.

4.3.3 Domain-Specific Optimizations

Numerous schemes have been proposed to optimize deep learning models (e.g., layer
removal and fusion). From those, calibrating the neural network models for lower
precision (also known as quantization) is one of the commonly used schemes. In
general, these optimizations aim at delivering lower latency and higher throughput
for deep learning inference applications and/or reducing the energy profile. However,
some of these optimizations can come at the expense of increasing the probability of
producing a wrong result by the application. Hence, these approaches directly affect
the accuracy of the application by a considerable and wide margin depending on the
input data. For a critical domain such as automotive, these schemes decrease the
decisiveness of the application. Hence, such optimizations must be used with caution
in AD factoring their impact on overall’s application accuracy

4.3.4 Time Predictability

In CRTES, functionalities need to be completed within certain timing bounds, called
deadlines. Hardware and software architectures in CRTES require time predictable
timing behavior that allows deriving tight and reliable WCET estimates [194]. WCET
analysis of GPU software is still in a very early stage [195]. Static timing analysis has
been performed under very limited scenarios, such as assuming that the kernel is exe-
cuted on a single streaming multiprocessor, while measurement-based analysis on the
other side has been performed without providing enough evidence that the worst-case
scenarios have been exercised. Both solutions are negatively affected by the existence
of many undocumented features in GPU architecture and software, contributing to
analyzing their real-time properties analysis hard, compared to the CPU architectures
used traditionally. In our view, a way to alleviate this problem is by increasing GPU

68

4.4 Conclusions

observability. In particular, a more powerful set of WCET-aware monitors (perfor-
mance monitoring counters) helps to provide insightful information on application
worst-case behavior when run on the target hardware as an instrumental element to
build a safety argument [196]. On the timing analysis side, the use of statistical-
based approaches is on the rise as it fits the increasing execution-time variability
applications suffer when running on complex processors such as GPUs [186, 188].

4.4 Conclusions

As the software component to implement safety-related functionality continues to
increase in cars, so do its performance requirements and the guarantees required
for its correct behavior. The former is covered in a cost-effective manner by de-
ploying software- and hardware-accelerator techniques originally designed for other
high-performance, i.e., noncritical, domains. As we have discussed in this chapter,
the sustainability of this approach builds on developing well-designed adaptations
to address key challenges when satisfying safety regulatory standards. The overall
ISO26262 philosophy builds on defining a set of requirements and a set of tests, which
emanate from the requirements, that are used to assess whether a particular software
implementation is correct. Whether this approach can be directly applicable to ML-
based code is still an open question due to the difficulties in defining whether, for
instance, object detection software works properly, and defining the tests to assess
so. Overall, new interpretations and analyses of how to certify software with respect
to that in place by ISO26262 might be necessary.

69

4. AN ANALYSIS OF THE SAFETY-RELATED CHALLENGES AND
OPPORTUNITIES FOR GPUS IN THE AUTOMOTIVE DOMAIN

70

Chapter 5

GPU scheduling policies

5.1 Introduction

Autonomous Driving imposes the use of high-performance hardware, such as GPUs,
to perform object recognition and tracking in real-time. However, differently to the
consumer electronics market, critical real-time AD functionalities require a high de-
gree of resilience against faults, in line with the automotive ISO26262 functional safety
standard requirements. ISO26262 imposes the use of some source of independent re-
dundancy for the most critical functionalities so that a single fault cannot lead to
a failure, being Dual-Core Lockstep (DCLS) with diversity the preferred choice for
computing devices. Unfortunately, COTS GPUs do not support diverse DCLS by
construction, thus failing to meet ISO26262 requirements efficiently.

In this chapter, we propose lightweight modifications in the internal GPU sched-
uler to enable diverse DCLS for critical real-time applications without diminishing
their performance for non-critical applications. Our solution is applied on COTS
GPUs in general, and in NVIDIA GPUs in particular. We show how enabling specific
mechanisms for software-controlled kernel scheduling in the GPU, allows guarantee-
ing that redundant kernels can be executed in different resources so that a single fault
cannot lead to a failure, as imposed by ISO26262. Our results on a GPU simulator
and an NVIDIA GPU prove the viability of the approach and its effectiveness on
high-performance GPU designs needed for AD systems.

More in detail, we make the following contributions:

� We identify the main requirements to enable ASIL-D compliance for Commercial
Off-The-Shelf (COTS) GPUs, assessing to what extent they have the potential
to meet ASIL-D requirements.

� We provide a set of lowly-intrusive modifications that allow adhering to ASIL-
D requirements without diminishing their performance for non-safety-related
functionalities. These modifications allow GPU vendors to reuse their designs
avoiding a significant increase of their Non-Recurring Expenses (NRE).

71

5. GPU SCHEDULING POLICIES

� We perform a detailed analysis on an NVIDIA COTS GPU, implement modi-
fications on a GPU simulator [114] where we can assess both performance and
ASIL-D compliance, and evaluate what the performance impact would be on
the COTS GPU.

5.2 GPU Design and Operation

This section introduces some key concepts related to GPU design and operation, and
how those relate to the execution of kernels, and how diverse redundancy could be
achieved on top of COTS GPUs. Since different components have different names
across GPU vendors, we adhere to NVIDIA nomenclature for the sake of simplicity
(and because NVIDIA is already targeting the automotive domain [28]), but concepts
apply to virtually any COTS high-performance GPU, for an extended description,
please refer to the GPU Architecure section (2.3.1) in the Chapter 2 (Background).

Figure 5-1: GPU generic schematic.

Figure 5-1 shows a schematic of the main GPU components relevant to this dis-
cussion. First, the GPU has a number of Streaming Multiprocessor (SM), which
we indicate as SM 1 to SM n in the Figure. Each one consists of several execution
elements, including CUDA cores, or simply cores, which can execute arithmetic in-
structions, load/store units, and complex cores for special instructions. We group all
of them within the concept of cores for the sake of this discussion. SMs also include a
number of internal resources shared across cores, such as instruction and data caches,
on-chip shared memory, a register file, and an internal scheduler, warp dispatcher,
among others. The GPU also includes a number of resources shared across SMs, such
as a second level (L2) cache, DRAM and other interfaces and, a kernel scheduler.

72

5.2 GPU Design and Operation

The kernel scheduler dispatches the thread blocks (or group of threads) of the
kernels to SMs. In particular, the CPU sents kernels to the GPU, each kernel consists
of a number of thread blocks, and each thread block is bound to an SM for its entire
execution without the possibility to migrate. However, different thread blocks from
the same kernel can coexist on an SM provided that there are enough resources.

For instance, if kernels k1 and k2 are dispatched to the GPU, where k1 has 3 thread
blocks (tbk11 , tbk12 , tbk13), k2 has 4 thread blocks (tbk21 , tbk22 , tbk23 , tbk24), and our GPU has
2 SMs (SM1 and SM2), SM1 may execute tbk11 , tbk12 , tbk22 , tbk24 in a time-multiplexed
manner but not necessarily completed with this order, and SM2 may therefore execute
tbk21 , tbk13 , tbk23 also time multiplexed. Note that newer GPU architectures targeting
the high-performance domain may have fewer limitations about executing different
kernels in a single SM but, in general, how thread blocks are scheduled to SMs is an
undisclosed feature, which, as discussed later, has prominent importance in our work.

5.2.1 Redundancy and Diversity Elements

Storage and communication components can be properly protected from CCFs by
using ECC and/or CRC. In fact, some of those components are explicitly protected
with those means in NVIDIA GPUs since the Fermi generation [197] back in 2010,
including register files, SM cache memories, and shared L2 cache, which employs
Single Error Correction, Double Error Detection (SECDED) codes.

Regarding cores, no explicit protection has been reported. However, we consider
GPUs that have been shown compatible with ASIL-B ISO26262 requirements [198],
and thus, the failure rates and coverage of the cores and the corresponding safety
mechanisms are in concordance with the requirements imposed by the certification
standard. Additionally, GPUs are intrinsically redundant within an SM and across
SMs. Therefore, it is possible executing the same computation twice in different
cores at different times so that CCFs are avoided. In particular, CCFs related to
defects of a hardware component can be avoided by executing the same computation
redundantly in different cores. Transient CCFs related to faults affecting multiple
components simultaneously (e.g., a voltage droop) can be avoided by performing
redundant execution at different time instances.

Unfortunately, NVIDIA GPUs, as well as other manufacturers, do not provide
means to control how thread blocks are scheduled across SMs or a thread block is
scheduled within a SM. Even worse, scheduler policies are not even publicly described,
which further defeats any attempt to exercise direct control on the execution in the
GPU, thus challenging the ability to enforce diverse redundancy on GPUs. Finally,
to the best of our knowledge, the global kernel scheduler does not include any form
of redundancy for fault detection.

The aim of this contribution is to propose the smallest modifications possible to
COTS GPUs to enable diverse redundancy to prevent CCFs.

73

5. GPU SCHEDULING POLICIES

5.3 Scheduling Strategy for Diverse and Redun-

dant GPU Execution

Execution on the cores (computing and load/store units) needs some form of strategy
to reach diverse redundancy, and the global kernel scheduler also needs means to
avoid CCFs. In this section, we introduce first our software approach to achieve
redundancy, we analyze to what extent diversity can be achieved, and then propose
low-cost modifications on the GPU design to achieve fully diverse redundancy.

5.3.1 Kernel Redundancy

In our approach – in line with the existing AD platforms – we consider a system in
which ASIL-D capable microcontrollers (e.g., DCLS) offload intensive computations
to the GPU. Our strategy consists of executing kernels twice on the GPU and com-
paring their outcomes in the DCLS cores of the CPU. In particular, a DCLS core (1)
allocates memory on the GPU memory space for both redundant kernels, (2) trans-
fers data physically (if needed), (3) launch the two redundant kernels, (4) collects
results from both kernels back to the CPU, and (5) compares their outcomes in the
DCLS cores. In this scheme, all actions performed on the DCLS cores are naturally
protected against CCFs, as well as data communication and storage, which occur on
ECC or CRC protected components1.

We consider identical redundant kernels. In general, one could create different ker-
nel grids, so that thread blocks across redundant kernels differ, in order to introduce
some form of diversity. However, the lack of control on the global kernel scheduler
and SM internal schedulers prevents from guaranteeing specific diversity levels in the
execution in the general case. Therefore, in this contribution, we do not study diverse
kernel generation, which is part of our future work but remains beyond the scope of
this Thesis.

The process to dispatch kernels to the GPU is intrinsically serial, so redundant
kernels arrive at different time instants at the GPU, which might bring some form
of diversity. However, this does not guarantee that two redundant thread blocks
(from redundant kernels) cannot arrive at different SMs at the same time and, there-
fore, execute the same operations simultaneously, thus being subject to some CCFs.
Concerning permanent CCFs, ensuring diversity would require – as already done for
functionally identical core replicas in ASIL-D DCLS processors – implementing some
form of physical diversity at the layout and/or floorplan levels. However, even when
having this physical level diversity, redundant thread blocks across redundant kernels
may end up executing on the same SM at different time instants, thus also being
subject to some permanent CCFs. Overall, redundancy can be easily achieved, but
further means are required to enforce diversity.

1In this contribution, to keep the focus on the GPU design we consider dual modular redundancy
suffices to provide fail-operational capabilities (i.e., errors can be recovered within the FTTI by, for
instance, re-executing upon error detection. However, our approach could be seamlessly extended
to other redundancy levels (e.g., triple modular redundancy)).

74

5.3 Scheduling Strategy for Diverse and Redundant GPU Execution

Figure 5-2: Kernel categories based on their overlapping.

5.3.2 Redundant Kernel Execution Patterns

A relevant characteristic for this proposal but also to the following GPU contributions
is the ability of a given kernel is to be able to execute two redundant copies concur-
rently in a single GPU. However, this classification is not only kernel-dependent but
also hardware dependent as well. Thus, we start by categorizing kernels based on
two criteria: whether they can potentially overlap their execution and whether they
use too many resources to prevent overlapping. This leads to three categories, also
shown in Figure 5-2 for clarity:

� Short kernels. Those kernels execute too fast to overlap practically. In par-
ticular, by the time the second kernel is dispatched to the GPU, the first kernel
has already finished its execution.

� Heavy kernels. Those kernels coexist in the GPU, but a single kernel uses too
many resources to allow the other to start their execution. This makes that no
overlapping occurs at all, or it is little, just at the end of the execution of one
kernel when it starts releasing resources so that the other can effectively start
its execution.

� Friendly kernels. Those kernels coexist in the GPU and use limited resources
so that both kernels can make progress concurrently.

As shown, different kernel types may have different degrees of overlapping (little,
none or high). We propose two specific kernel scheduling policies in the GPU that
allow achieving diverse redundancy in all cases: SRRS and HALF policies.

75

5. GPU SCHEDULING POLICIES

Process 1

Process 2

Process 3...

Process n

Figure 5-3: Round Robin example. Multiple processes share the CPU and each one is
given the same quantum time to execute. In this particular instant, Process 2 is using the

CPU (marked with the red square).

5.3.3 SRRS (Start, Round-Robin, and Serial) policy

Our first scheduling policy contribution is SRRS, which stands for Start, Round-
Robin, and Serial. Before discussing it, let us describe the Round-Robin policy,
which our contribution builds upon.

Round-Robin Policy

The Round-Robin scheduling algorithm is one of the most common scheduling al-
gorithms due to its simplicity and fairness. The term dates from the 17th-century
French Rond ruban (round ribbon), where the king was not very fond of peasants’
petitions and killed the first three signatories of a petition. The peasants brilliantly
devised the plan to start signing the petition circularly instead of vertically so that
there was not a first signatory in the list [199]. Later, the Round-Robin the princi-
ple was adopted in many fields (e.g., telecommunications, storytelling), where each
person or actor takes an equal share of something in turn [200].

An example is shown in Figure 5-3, where a number of processes (n) compete to
have CPU time. Each process is given a time slot or quantum, equal to all processes.
Then, processes are scheduled circularly where each one will execute at maximum his
quantum time. Once the quantum of a process has been consumed, the scheduler will
select the following process in the line. In this way, all the processes are given the
same fair portion of the CPU time. Note that the term round-robin is also used in
contexts where access to the shared resource is given following the order as described,
but allowed time may not be pre-defined, so usage time may vary. For instance,
processes could be allowed to use an I/O interface for data transmission so that each
process is allowed to perform a transmission during its turn, but without imposing
any limit on the amount of data to be transmitted by each process, which could differ
across processes.

76

5.3 Scheduling Strategy for Diverse and Redundant GPU Execution

Notice that there are small differences between the example and our scenario.
Instead of having one resource (a single core) that needs to be shared among different
consumers (processes), in our case, we have multiple resources (SMs) that needs to be
shared among two different multiple consumers (thread blocks) of two different groups
(kernels). Also, to guarantee diversity, we need to ensure that the same thread blocks
from the redundant kernels will not execute in the same functional unit. To achieve
this, redundant threads need to be scheduled in different SMs.

SRRS Policy

Once introduced the default Round-Robin algorithm, we detail how we tailor it to our
needs. ① We do not start the kernel execution until the GPU is idle; ② we can select
the SM where the first thread block will be dispatched; ③ SMs are allocated following
a round-robin policy; ④ kernel execution is fully serialized, thus delaying the start of
the second (redundant) kernel until the first kernel has finished its execution; ⑤ no
further kernel can be executed in the GPU until the second one also finishes.

By using SRRS with different starting SMs for both kernels, diversity is achieved
naturally. The first kernel finds the GPU idle, starts in a particular SM (e.g., SMi)
and allocates SMs in round-robin order starting from SMi until the kernel completes
its execution, without any interference from any other kernel. The second kernel also
finds the GPU idle, so in the same state as the first kernel, and starts its execution
in SMj, where i ̸= j. SMs are also allocated round-robin, but since the starting SM
differs for both kernels and no interference occurs, each single thread block executes
in different SMs across redundant kernels. Therefore, any single computation occurs
in different kernels at different time instants, thus avoiding CCFs in the cores.

5.3.4 HALF policy

Different from the case of SRRS, HALF does not build on any specific scheduler
algorithm. Instead, HALF policy builds upon allocating half of the SMs to one
kernel and the other half to the other kernel. This division of the resources naturally
imposes the use of different SMs for each kernel. On the other hand, the fact that
their starting times differ due to the serial dispatch of kernels to the GPU also enforces
that any given redundant computation occurs at different time instants. Note that
kernels could interfere with the use of shared resources delaying each other. However,
their requests can never occur at the same time because (i) either shared resources
can process them in parallel, so no interference occurs and so no timing impact, or
(ii) requests are serialized (at least partially) for a given shared resource so that a
given request arrives before the first kernel than for the second, and the second can
neither start nor finish simultaneously with the first one, thus preserving some slack
across kernels. Therefore, any single computation occurs both in different SMs and
at different time instants, thus avoiding CCFs during the execution inside the SMs.

77

5. GPU SCHEDULING POLICIES

5.3.5 Diverse Redundancy in the Kernel Scheduler

Both policies, SRRS and HALF, schedule any given thread block from both kernels
at different time instants and to different SMs. Therefore, any fault causing an
improper execution of the kernels may have several consequences: (1) execution occurs
functionally correctly in different SMs to the ones intended, but still redundantly and
with diversity. In this case, no failure occurs. (2) execution occurs functionally
correctly in different SMs to the one intended but fails to achieve diversity (e.g.,
the same computation occurs redundantly on the same SM). In this case, let us
recall that ISO26262 requirements relate to the ability to avoid a single fault from
causing a failure. Hence, upon a fault in the scheduler, we must assume that the
remaining components are fault-free and hence, even if their execution is not diverse,
no further fault is expected. (3) execution does not terminate or terminates with
errors for at least one kernel (e.g., skipping a thread block). In this latter case,
the different behavior of both redundant kernels (each thread block is executed at
different times in different SMs) makes that even if there is a physical fault in the
scheduler, its behavior will differ across kernels, so evidence on diversity is enough to
meet ISO26262 requirements.

A final noteworthy remark in the context of ISO26262 is the fact that we can
assume that multiple faults cannot occur simultaneously as long as faults are timely
detected. In particular, this means that faults of type (2), so with no functional
impact but decreasing diversity, must be detected if related to a physical fault since,
otherwise, a future fault on a core in an SM could lead to an undetected error, and
thus to a failure. In order to avoid this behavior, the global kernel scheduler must
undergo periodic tests so that physical faults do not become latent.

5.3.6 Appropriateness of the Scheduling Policies

Both scheduling policies, SRRS and HALF achieve diverse redundancy for all kernel
types. However, each kernel type is particularly suitable for one of them.

� Short kernels may potentially use many GPU resources during their (short)
execution. Since their execution does not overlap at all, SRRS is expected
to cause no performance degradation at all. Instead, HALF could increase
kernel execution time, mainly due to contention on the shared resources, thus
impacting performance.

� Heavy kernels need many GPU resources and have little or no overlap at all.
Hence, SRRS may only slightly increase their execution time if they overlap a
bit. Instead, HALF could easily increase the execution time of a given kernel
noticeably while not allowing the other one to start due to a lack of resources.

� Friendly kernels can run concurrently, so using SRRS could cause a significant
execution time increase due to their serialization if a given kernel is unable to
exploit all SMs efficiently. Instead, HALF grants each kernel half of the SMs,
which is the number of resources they would use if run concurrently without
explicit control for the sake of diversity.

78

5.4 Evaluation

Overall, SRRS is the most convenient policy for short and heavy kernels, whereas
HALF fits friendly kernels. Since kernel classification is performed during the analysis
phase of the system, the particular policy to use for each one can be decided before
system deployment to execute each kernel with the most convenient policy during
operation. Note that this implies that specific means are required to select the global
kernel scheduler policy during operation, which we foresee as feasible since it is not
different from other reconfigurations applied on high-performance components such
as enabling/disabling prefetchers, changing fetch policies, and the like.

5.4 Evaluation

This section evaluates the two proposed scheduler algorithms. Firstly, we show an
evaluation of the two proposals against the GPGPUSim [114, 115] kernel scheduler
described in Section 3.5.1. Secondly, we evaluate the impact on the execution time
of SRRS against the scheduler of a COTS GPU.

We implemnt the proposed scheduling policies SRRS and HALF in the simulator
(again, described in Section 3.5.1). The GPU model with this simulator is based on
the NVIDIA Pascal GPU (GeForce GTX 1050Ti [171]) and consists of 6 SMs. The
applications selected to be used on the evaluation are applications from the Rodinia
benchmark suite [7, 173] described in Section 3.2.1.

5.4.1 Implementation in GPGPUSim

In order to test our techniques, it has been required to perform software modifications
on the applications selected. We manually insert compiler directives to produce mul-
tiple binaries from a single application. For each application, we have three different
binaries; the first, named baseline which, as the name indicates, is the initial version of
the application, without any modification. Secondly, we have create a version which
duplicates all the kernel executions and uses for each one a unique user-defined queue
stream to allow parallelization of operations and disable implicit synchronization. We
also replicate their inputs (if they are modified inside the kernel) and their outputs.
Finally, after all, kernels are executed, the results are transferred back to the CPU and
are compared. We name this version as redundant since it creates redundant kernels
for each original kernel. Finally, a third version is used, which is a variation of the
redundant version. In this case, redundant kernels have been forced to be serialized.
This version, as we discuss later, allows mimicking the execution time of SRRS on a
COTS GPU.

We use different queue streams to dispatch kernels to enable their parallel execu-
tion based on the following. If not specified in the call, kernels in CUDA are queued
in the default execution queue named NULL stream, authors in [107, 201] discovered
that the NULL stream has an implicit serialization which means:

1. If one operation is executing from the NULL stream, implicit synchronization
and blocking occur which means that no other operations can happen simulta-
neously.

79

5. GPU SCHEDULING POLICIES

Figure 5-4: Scheduler simulated cycles using GPGPUSim normalized to the default
simulator scheduler.

2. To parallelize two operations, these two operations must be executed from dif-
ferent user-defined queue streams (CUDA streams in NVIDIA nomenclature)
and nothing must be executed from the NULL stream (1).

To evaluate the proposals, we modify the scheduling policy in the simulator ac-
cording to the requirements that each proposal imposes on the way the available SMs
have to be assigned. For HALF, we use the default scheduling policy, already imple-
mented in GPGPUSim and restrict each kernel execution to 3 dedicated SMs (half of
the available). For SRRS we ensure that once a new kernel needs to be scheduled, all
SMs are empty. We compare the performance of SRRS and HALF against the one
obtained with the default GPGPUSim scheduler that can allocate all GPU SMs (6)
to the kernels without any constraint.

5.4.2 Simulation Results

We execute the redundant version of the Rodinia benchmark suite applications on
the GPGPUSim using the three kernel schedulers, our two proposals, and the default
scheduler of GPGPUSim, as explained earlier. Results comparing the simulated time
of only the kernel execution cycles for each version of the Kernel scheduler are shown
in Figure 5-4.

80

5.4 Evaluation

Figure 5-5: SRRS implementation by serializing redundant kernels

For each application, we have three bars; each one represents the simulated cycles
of the kernel’s execution (so only time spent in the GPU execution) for each scheduler,
normalized to the default GPGPU-Sim scheduler. On the left of each application, the
white bar represents the timing of the default scheduler. In the center and grey is the
execution cycles for the HALF scheduler and in the right and black for the SRRS.
We also include the last triplet of bars, which is the result of applying the geometric
mean among all the applications’ timings.

Due to the costly executions on the simulator, we evaluate a subset of the bench-
marks. In particular, we inspected them and identified that most of them include
friendly kernels for our modeled GPU. Thus, running additional experiments does
not provide further insights. In general, the performance overheads of the proposed
scheduler policies are not very high in comparison with the default scheduler (except
for myocyte). In particular, HALF policy performance overheads are negligible for 9
out of the 11 benchmarks analyzed and only 10% in the worst-case (lud). The results
for the SRRS policy are slightly worse due to the extra overheads that this policy
incurs to perform the serialization. For SRRS, performance overheads can be up to
99%. In general, kernels are friendly or short, and, if they are short, they also require
at most half of the SMs. Hence, by restricting them from using half of the SMs
with HALF, the performance penalty is, in general, very low. Instead, serialization
imposed by SRRS increases their execution time. The only exception are bfs and
backprop, which have very short kernels requiring more than half of the resources.
Hence, serialization imposed by SRRS is innocuous, whereas limiting the number of
SMs with HALF increases execution time. However, since kernel execution time is
much lower than the execution time of the CUDA commands to launch the kernels,
the relative impact of such an increase is tiny.

81

5. GPU SCHEDULING POLICIES

5.4.3 COTS GPU Results

Finally, to assess the suitability of the proposed redundant execution in a real en-
vironment and understand the impact of redundant execution w.r.t. non-redundant
execution, we mimic the implementation of SRRS on a COTS GPU and execute it
in the NVIDIA GeForce GTX 1050Ti [171] described in section 3.1.2. In this experi-
ment, we include all the timings of the execution from the start to the end: the CPU
execution timing, the data transfers between CPU and GPU, as well as the GPU
execution time. We serialize the redundant kernel’s execution using the CUDA call
cudaDeviceSynchronize() that prevents the execution of further operations until all
previous operations on the GPU have been completed. While such a solution does
not enforce diversity due to the lack of control of the particular SMs used, it causes
the same timing behavior. Note that mimicking HALF is not possible on the COTS
GPU, since CUDA doesn’t provide control over the SMs used by a kernel.

Figure 5-5 compares the execution time of end-to-end executions of the bench-
marks with the redundant serialized and no redundant kernels of the Rodinia bench-
marks. By running on a real platform, we could afford to run all benchmarks timely.

The bars in the plot show the result of averaging out 100 executions in ms. As
shown in the plot, the redundant execution of the kernels does not incur significant
performance degradation for the workloads analyzed. In fact, for all the benchmarks
but two (cfd and streamcluster) the impact of redundant execution is negligible. The
main reasons for such behavior are as follows: (1) the impact of SRRS is, in general,
low, as shown in Figure 5-4; (2) the contribution of the kernel execution to the total
execution time of the benchmark is relatively low in general; and (3) the cost of
sending input and output data twice and comparing the outputs of the kernels in
the CPU is also very low in relative terms for these applications. In the case of cfd
and streamcluster, the two only notable exceptions to this behavior, we note that
serialization imposed by SRRS has a relatively significant impact on the execution
of the kernels and execution time of the benchmarks is dominated mainly by the
kernel execution. The latter also makes the relative contribution of duplicating input
data, transferring back output data to the CPU twice, and comparing outputs is non-
negligible, thus contributing to the execution time increase w.r.t. the non-redundant
version of the benchmark.

5.5 Related Work

Some authors assess the effectiveness of FPGA, ASIC, and GPU designs for AD
applications [186]. The suitability of GPU utilization in the context of safety-critical
applications from the point of view of real-time performance has been assessed in
several works [107, 108].

Redesigning GPUs, based on the reliability required for ASIL-D certification,
is regarded as too costly. Therefore, commercial platforms such as RENESAS R-
Car H3 [22] and NVIDIA Xavier [28] targeting the automotive domain, including
a general-purpose high-integrity microcontroller together with a COTS GPU. Thus,

82

5.6 Conclusions

in order to achieve ASIL-D fail-operational capabilities, these platforms rely on di-
verse software implementations of complex algorithms or fully redundant SoCs, which
comes at the expense of drastically increasing the design and V&V costs in the former
case, and the hardware cost and reliability concerns in the latter case.

Previous works use spatial partitioning to improve multitasking performance on a
single GPU [202, 203] by exploring the scheduling per SM. Instead, Wu et al. [204]
use a method that enables program-level spatial scheduling on the GPU by using SM-
centric program transformations, which allow executing kernels in the desired SMs.
Pai et al. [205] focus on enabling better multi-application concurrency by modifying
the GPU runtime to avoid serialization of memory transfers and kernel executions.
They also develop the idea of elastic kernels by modifying the logical threads to avoid
underutilization of the GPU resources and improving the concurrency of multiple
kernels. Jain et al. [206] use a software-only technique to partition the GPU in order
to execute multiple kernels without interference. Although redundant kernels are not
evaluated, computing and also memory partitioning, by using memory coloring, could
be employed in our work if we would like to replicate the input data of the redundant
kernels. However, neither of those solutions provides redundancy per se nor any means
to guarantee diversity since those solutions do not target critical real-time systems.

Some works have been performed in the high-performance domain, targeting reli-
ability by creating RMT (Redundant Multi-Threading) in a GPU [119] or using auto-
matic compiler transformations to transform GPU kernels into redundantly threaded
versions [124]. However, none of those solutions guarantees diversity, as needed for
ASIL-D automotive systems. Overall, our work is the first attempt to deliver di-
verse redundancy on GPUs, as needed to reach ASIL-D requirements in automotive
systems.

5.6 Conclusions

The use of GPUs for highly-critical autonomous driving (AD) software poses several
functional safety requirements for the design and utilization of GPUs. While existing
AD-specific GPUs already meet some of those requirements, redundant diversity –
needed for ASIL-D software – is not reached efficiently and can only be reached
by deploying heterogeneous software implementations and/or computing platforms,
which jeopardizes cost and efficiency.

This contribution proposes minor modifications to the scheduling policies of GPUs
that allow guaranteeing by construction, diverse redundancy, thus reaching ASIL-D
compliance efficiently without the need of increasing design and/or procurement costs.
In particular, we show how the explicit control of the SMs used for a given kernel,
together with the serialization of redundant execution in some cases, allows achieving
diverse redundancy at a low cost with respect to uncontrolled redundancy.

83

5. GPU SCHEDULING POLICIES

84

Chapter 6

GPU Software-only diverse
redundant execution

6.1 Introduction

Autonomous Driving (AD) systems require integrating a number of High Performance
Computing (HPC) platforms in the car. While the performance provided by many
existing HPC platforms, often incorporating GPUs suffices to meet the computing re-
quirements of AD systems – as confirmed by existing AD systems demonstrations [207]
– it is unclear how these computing systems may meet the highest Automotive Safety
Integrity Levels (ASIL) as dictated by ISO26262 [39].

As explained in Section 1.2, safe states may not exist any longer in the context of
AD since it may be unacceptable to transfer the control to a hypothetic driver. In-
stead, the system must keep operating correctly upon a failure, which makes that com-
puting components in ASIL-C/D functionalities must also reach ASIL-C/D. Hence, it
becomes critically important to enable some form of lockstep in the GPU part of AD
platforms to reach ASIL-C/D to avoid using fully-redundant functionalities. More-
over, such lockstep operation must occur on-chip, as in the case of general-purpose
cores (e.g., Infineon AURIX processors [1]), for efficiency and cost reasons, since set-
ting up two GPUs increases hardware costs and reliability concerns.

In this contribution, we tackle this challenge by enabling diverse redundancy on
a single GPU with software-only means. In particular, the contributions of this work
are as follows:

� A thorough analysis of the features of GPUs, with a focus on an NVIDIA
representative, and how they enable or limit diverse redundancy without any
hardware modification.

� An analysis of some compute-intensive applications on the GPU identifying dif-
ferent kernel categories depending on whether software redundancy also achieves
diversity and, if not, the cause impeding to achieve diversity.

� Software strategies to achieve diversity on those kernels failing to achieve it so
that diverse redundancy is achieved for any kernel size.

85

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

� An extension of the previous item to implement TMR inside a single COTS
GPU.

� Quantitative evidence of how the staggering between redundant execution is
created in a single GPU.

� Some discussion on whether those CCFs are still present in the case of diverse
TMR on COTS GPUs.

Overall, our approach enables ASIL-C/D compliance on GPUs without needing
fully-redundant systems, thus containing design and V&V costs.

The structure of this contribution is the following: First, we introduce the target
platform of our proposed solution, the description of the offloading process together
with the required software modifications follows, in which we detail the minimal
software modifications required to enable the solution, after describing how the inter-
action of CPU-GPU usually occurs. Next, we describe characteristics that are key to
enabling a diverse redundant execution to occur safely on a COTS GPU building on
software-only means. We start discussing the kernel execution patterns we observe,
and how the initial staggering is created in our proposal. Next, we discuss how SMs
are shared when multiple kernels are executing concurrently. Following, we detail our
solution and how the previously described internals of the GPU affect it. In partic-
ular, we show that an initial diversity can be guaranteed if redundant kernels run
concurrently. We conclude the proposal by presenting a protocol that modifies any
kernel that precludes the concurrent execution of its replica (heavy kernel) to enable
such concurrency (friendly kernel), and an extension that enables TMR execution in
a single GPU.

In the evaluation section, we perform different experiments in which we show evi-
dence of the theoretical proposals exposed earlier, such as the staggering creation. We
evaluate our solution, especially from the time perspective in different experiments,
and show that using the proposed transformation protocol, we can obtain a concur-
rent kernel execution on a previous heavy kernel. Then, we show the results of a fault
injection campaign in both the baseline application and our solution, and we compare
and discuss the software-only solution with the previous hardware approaches.

Lastly, we include a related work section and the conclusions of the chapter.

6.2 Enabling ASIL-D GPU Operation

6.2.1 Target Platform

High Performance Computing (HPC) ASIL-D capable platforms typically combine a
low-performance microcontroller amenable for the automotive domain (i.e., ASIL-D
capable) and an HPC accelerator delivering high computation throughput, but whose
adherence to ISO26262 requirements is unknown, so its appropriate use for ASIL-C/D
systems needs to be investigated.

86

6.2 Enabling ASIL-D GPU Operation

Figure 6-1: Proposed Computing Platform architecture

Without loss of generality, we consider an NVIDIA GPU accelerator, thus anal-
ogous to those in NVIDIA Drive and Xavier families for the automotive domain.
However, the findings in this contribution can easily be extrapolated to other prod-
ucts.

In this platform, the sequential (control) code is executed in the microcontroller
in lockstep mode to achieve diverse redundancy, as needed for ASIL-D compliance.
Instead, complex and parallel algorithms required for the continuous rendering of the
surrounding environment (e.g., object detection and tracking) among other function-
alities are offloaded to the GPU accelerator. Figure 6-1 shows a schematic of the
proposed hardware platform.

Memory data and on-chip communication during the execution phase of the GPU
occur on the same resources (shared) as those used by the ASIL-D MCU and hence,
they are naturally protected by specific Error Correcting Codes (ECCs). Addition-
ally, communications between the memory subsystem, the microcontroller and the
GPU must be ECC/CRC (Cyclic Redundant Check) protected to guarantee diverse
redundancy also on the communication side.

6.2.2 Offloading Process and Software modifications

The following steps are taken to offload computation onto the GPU:

� Offloading preparation process (① allocate memory and ② transfer data from
host to the GPU device in Figure 6-2).

� ③ Kernel launching.

� ④ Collection of the results produced and ⑤ deallocating memory.

87

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

CPU
(HOST)

GPU
(DEVICE)Host Launches a Kernel

CPU Memory GPU Memory

cudaMemcpy
HtoD

cudaMemcpy
DtoH

1

2

3

4

5

Figure 6-2: Common CUDA Workflow

The computation offloading process from the microcontroller to the GPU has 3
steps: a) preparation of the offloading (① memory allocation and code/data transfer
② in Figure 6-2), b) kernel launching (③) and c) retrieval of the generated results (④
and ⑤ memory deallocation). The preparation step requires sending the code that
has to be executed in the GPU and transferring the data from the microcontroller
memory to the GPU memory. Although typically the microcontroller and the GPU
share the same physical memory, each device retains its own mappings and separate
address spaces. Hence, even though the data are not physically transferred, there is
still a certain amount of bookkeeping and some data transferring required, e.g., due
to cache flushing for consistency reasons, which makes this process not immediate.

The offloading process goes beyond the SOR of the microcontroller (e.g., the
DCLS) and involves the memory and/or DMA controllers (see Figure 6-1). Mem-
ory data and on-chip communication during the execution phase occur on the same
resources as those used by the ASIL-D microcontroller and hence, are protected by
specific ECCs, as indicated before. Thus, data movements during the preparation
of the offloading process, kernel launching and retrieval are already protected by
appropriate safety measures to comply with ASIL-D requirements.

However, computation inside the GPU lacks appropriate support for safety com-
pliance by default. Therefore, some sort of safety measures needs to be deployed
for the execution on the GPU, being those measures comparable to the ones of the
microcontroller’s DCLS cores. Appropriate safety levels can be achieved as follows
(see Figure 6-3).

In lines 1-6 from listing 6.2 we can observe how the input data (float pointer d A)
and the output data (float pointer d C) are allocated alongside their copies (named as
redundant). Next, in lines 8-11, we create a dedicated cudaStream per each kernel to
avoid serialization and allow them to execute in parallel if they are able. Lines 13-15
show the memory copies of both the original input and his replica. In this case, since
is not specified, the NULL stream is used, which means that the memory copies are
serialized. Using the dedicated streams will benefit in GPUs that have more than one

88

6.2 Enabling ASIL-D GPU Operation

1 // Input and Output data a l l o c a t i o n on GPU
2 f l o a t *d A , *d C ;
3 cudaMalloc (d A , N* s i z e o f (f l o a t)) ;
4
5 cudaMalloc (d C , N* s i z e o f (f l o a t)) ;
6
7
8 //Stream c r e a t i on
9 cudaStream t Streams [1] ;

10 cudaStreamCreate(&Streams [0]) ;
11
12
13 // Input data t r a n s f e r to the GPU
14 cudaMemcpy(d A , A, N* s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
15
16
17
18 //Kernel launch
19 kerne l<<<NumBlocks , ThreadsPerBlock , 0 ,

stream[0]>>>(d A , d C , N) ;
20
21
22
23 // Resu l t s t r a n s f e r to the CPU
24 cudaMemcpy(C, d C , N* s i z e o f (f l o a t) ,

cudaMemcpyDeviceToHost) ;
25
26
27 //No comparison

Listing 6.1: Original CUDA code

1// Input and Output data a l l o c a t i o n on GPU
2f l o a t *d A , *d C , *d A redundant , *d C redundant ;
3cudaMalloc (d A , N* s i z e o f (f l o a t)) ;
4cudaMalloc (d A redundant , N* s i z e o f (f l o a t)) ;
5cudaMalloc (d C , N* s i z e o f (f l o a t)) ;
6cudaMalloc (d C redundant , N* s i z e o f (f l o a t)) ;
7
8//Stream c r e a t i on
9cudaStream t Streams [2] ;
10cudaStreamCreate(&Streams [0]) ;
11cudaStreamCreate(&Streams [1]) ;
12
13// Input and Rep l i cated input data t r a n s f e r to the GPU
14cudaMemcpy(d A , A, N* s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
15cudaMemcpy(d A redundant , A, N* s i z e o f (f l o a t) ,

cudaMemcpyHostToDevice) ;
16
17//Redundant Kernel launch
18kerne l<<<NumBlocks , ThreadsPerBlock , 0 , stream[0]>>>(

d A , d C) ;
19kerne l<<<NumBlocks , ThreadsPerBlock , 0 , stream[1]>>>(

d A redundant , d C redundant) ;
20
21// Resu l t s and Redundant r e s u l t t r a n s f e r to the CPU
22cudaMemcpy(C, d C , N* s i z e o f (f l o a t) ,

cudaMemcpyDeviceToHost) ;
23cudaMemcpy(C redundant , d C redundant , N* s i z e o f (f l o a t) ,

cudaMemcpyDeviceToHost) ;
24//Comparison o f C and C redundant

Listing 6.2: Applying Redundant Kernel Execution

Figure 6-3: Original CUDA code and Redundant Kernel execution, side by side

89

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

boolean e p s i l o n d i f f (f loat a , f loat b)
{

return f abs (a − b) <= FLT EPSILON;
}

Figure 6-4: Example of floating point comparison with a tolerance of FLT EPSILON

copy engine which was not our case, although worth mentioning. With this, we arrive
at the key point of the code, lines 17-19 correspond to the replicated kernel calls. Here
we can observe that most of the parameters are the same, except for the dedicated
streams (stream[0] and stream[1]), and the different pointers for input and output
(d A and d C), respectively. Kernel calls in CUDA is non-blocking which means that
the CPU or microcontroller can execute code after calling a kernel while the GPU
is executing. On the other hand, the memory copies used are serialized since we are
using again the NULL stream. Results will be copied back to the microcontroller in
lines 21-23. Later on, the comparison of the results (not shown) will be performed to
detect any difference in the execution of the redundant kernels.

Note that, it would be possible avoiding the replication of read-only input data.
However, then such data would not be replicated and some form of protection would
be needed in the GPU (e.g., ECC) as a way to mitigate CCFs caused by errors in the
non-replicated input data. Therefore, in this work, we assume that all input data for
redundant kernels is replicated.

Note that, while we describe our approach for DMR (i.e., with two redundant
kernels), it can be applied analogously to create fault-tolerant diverse redundant
versions with TMR so that, in case of a mismatch of the results, the right result can
be delivered by means of voting.

Result Comparison

In order to guarantee that kernel execution on the GPU is correct, a comparison
must be made between the two results in the lockstep CPU. The comparison could
be parallelized and performed (redundantly) on the GPU. However, our results, as
we will see in the evaluation section, show that comparison time is below 1% for most
cases, thus not making it worth the effort of porting the comparison to the GPU for
most of them.

Differently to CPUs, which typically implement the IEEE 754 Floating Point
(FP) standard [208], GPUs may not fully adhere to specific standards or may simply
schedule work so that FP operations of the redundant kernels occur in a different
order [209]. This may lead to different rounding choices, which, ultimately, cause
fault-free results to be (slightly) different in practice. Hence, when implementing the
result comparison in the CPU, we had to provide some flexibility to tolerate minor
deviations with the code shown in Figure 6-4. Note that such code can be further
used to tolerate actual errors whose practical impact can be deemed irrelevant.

90

6.2 Enabling ASIL-D GPU Operation

(a) Short kernel, no overlapping at all (Gaussian application)

(b) Heavy kernel, small overlapping (NN application)

(c) Friendly kernel, large overlapping (Myocyte application)

Figure 6-5: Timelines of redundant executions of Rodinia benchmarks [7] extracted
using the NVIDIA Visual Profiler.

6.2.3 Redundant Kernel Execution Patterns

While our solutions work for any kernel, some kernel characteristics make a given
solution more appealing than others or even require methods to enable diverse redun-
dant execution as we will see later. For the sake of the discussion, we refresh here the
same classification shown in the previous contribution:

� Short kernels. Short kernels last too little to overlap because the offloading
process of the second kernel takes longer than the execution of the first one, so
the first kernel completes its execution before the second starts.

� Heavy kernels. While heavy kernels run long enough to overlap, any such
kernel needs so many GPU resources that preclude the other kernel from starting
its execution until the first one finishes (or is close to finishing). Therefore, the
overlap is tiny – if any – and occurs when the first kernel is about to finish and
starts releasing GPU resources.

� Friendly kernels. Friendly kernels run concurrently in the GPU since their
duration is long enough and the demanded GPU resources low enough.

However, in this case, they can be observed on COTS GPUs with the NVIDIA
Visual Profiler shown in Figure 6-5 for different Rodinia benchmarks [7]. The two
bottom bars of each graph show the execution timespan for the redundant kernels,
one in light red and the other in purple. Note that the x-axis scale changes across
graphs. In particular, it is 2.2µs for the first graph (short kernel), 0.1 ms for the
second graph (heavy kernel), and 2,200ms for the third graph (friendly kernel).

91

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

Figure 6-6: Staggered kernel execution of vector addition, obtained using NVIDIA’s
Visual Profiler

Note that the classification of kernels depends on platform-specific characteristics,
such as for instance, the amount of GPU resources, which may make a kernel heavy
or friendly depending on whether those resources suffice to execute both redundant
kernels concurrently. In the case of automotive applications, they typically have fixed
input data sizes since input data always comes from the same sensor (e.g., images
from a camera). This allows kernel classification to be performed a priori statically.

6.2.4 Staggering creation

The kernel invocation performs the offloading of the application. Data sets transfer,
explicitly initiated by the programmer, must be performed for both kernels before
starting any of them to minimize the risk of having short kernels. In other words, the
slack between the initiation of both kernels is kept as low as possible. Kernels have
small constant and implicit parameters for each kernel launch. Those are set by a
configuration call, which performs the arguments passing, followed by a CUDALaunch

operation performed by the CUDA Runtime for each kernel called. The CUDA Run-
time performs all those operations serially, since it is executed on the CPU, thus
serializing the launch of the two kernels with some delay (slack time) between the
two concurrent executions, as illustrated in Figure 6-6. The figure, generated with
the NVIDIA Visual Profiler shows the serialization of the CUDA calls (top yellow
bar) and how the kernel copies start with some slack in between (bottom purple and
light red bars). Therefore, a staggered execution start is guaranteed by construction.
Note that, although identical kernels are expected to progress almost identically –
thus preserving the staggering, this cannot be guaranteed in general due to the lack
of controllability in COTS GPUs.

6.2.5 SM sharing among Kernels

Our software-only solution assumes that SMs cannot be shared across thread blocks
from different kernels simultaneously. Instead, we assume that when a kernel starts
running, it uses a number of SMs without interruptions (i.e., SMs are only released
once they are not needed anymore), and during such a period no other kernel can use
those SMs. However, as shown in [210], the scheduling policy for some NVIDIA GPUs
may allow, in some situations, sharing SMs across kernels if intra-SM resources allow
it. Solutions avoiding this behavior rely on some hardware support (e.g., modifying
the kernel scheduler) exist in the literature [211], and the ones presented in this paper

92

6.2 Enabling ASIL-D GPU Operation

Figure 6-7: Spatial and time redundancy in a GPU execution. Three redundant kernels
that contain 5 thread blocks each are scheduled in an 8 SM GPU.

would also solve this issue. However, our target in this section is to achieve diverse
redundancy by software-only means. SM sharing across threads can be effectively
avoided by building on persistent threads [212, 213, 214], where each SM can only be
used exclusively by one kernel. Persistent threads bring some lack of flexibility since
they impose a behavior similar to that of our HALF hardware solution, plus some
overheads for the allocation and management of those threads (e.g., due to polling the
GPU on the CPU side to detect the end of the kernel execution). Since, in general,
SMs are rarely shared in practice, we avoid using persistent threads in our work and
hence, we apply the same software architecture as for the hardware solutions, which
includes: data replication, redundant kernel launching with a different stream, and
result in comparison at the CPU side. A schematic of how a diverse TMR execution
would map into the SMs of the GPU when applying our solution can be seen in
Figure 6-7.

6.2.6 Achieving Diverse Redundancy

In the context of COTS GPUs, diverse (independent) redundancy can be achieved
for two or more kernels if the following requirements are met:

Req1 : Replicated computations do not use the same functional unit block (FUB) to
execute the same code on the same data.

Req2 : Functionally identical computation units (e.g., CUDA cores) produce differ-
ent error manifestations in the presence of a single fault affecting several of those
computation units.

Req3 : Unique resources (e.g., non-replicated buses or interfaces) implement intrinsic
diverse redundancy (e.g., ECCs).

93

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

Req1 guarantees that permanent faults escaping testing or due to aging cannot cause
the same error in the replicated executions. Achieving Req1 requires having a kernel
scheduling policy controlling which FUBs (SMs in NVIDIA GPUs) each kernel will
use. This is currently done by the kernel scheduler whose policy is often unknown, as
we discussed in the previous chapter, since some GPU vendors, such as NVIDIA, do
not release this information [107]. In our evaluation, we show empirically that Req1
is naturally achieved for those kernels that can run simultaneously.

Note that kernel classification is platform and data-size dependent, so, for instance,
a heavy kernel on a particular GPU could be a friendly kernel on another GPU with
more resources. Instead, most automotive applications have a fixed data size since
the input data always comes from the same sensor (e.g., images from a camera). This
reduces the data size variability for most of the kernels. Short and heavy kernels
challenge the achievement of diversity.

Solution for Short kernels. Short kernels may be executed directly in the ASIL-
D (lockstep) microcontroller, since they do not demand huge computation power.
Executing them in the ASIL-D microcontroller guarantees Req1, although it must be
assessed whether their likely larger execution time in the microcontroller still adheres
to the corresponding FTTI. In general, this is the case since short kernels need to
take at most a few µs of execution in the GPU not to overlap, and even if they run
100x slower in the CPU, they will stay typically below 1 ms only, which is a very low
latency for functions executing typically every few tens of or hundreds of ms at most.

Solution for Heavy kernels . Redundant copies for heavy kernels are executed
sequentially due to a lack of resources to run them concurrently, potentially using the
same resources for the same computations of both copies, thus defeating diversity. A
simple solution for heavy kernels could be relegating them to execute on the ASIL-D
microcontroller, as for short kernels. However, these kernels’ execution time (heavy)
can be arbitrarily large (e.g., tens or hundreds of milliseconds). Thus, slowdowns of 1
or 2 orders of magnitude would easily violate safety requirements for those systems.

Since heavy kernels run a number of threads in parallel, by reorganizing computa-
tions, some parallel threads can be serialized (e.g., splitting the kernel into multiple
kernels or simply rearranging threads) so that the amount of resources is reduced suf-
ficiently to allow two redundant copies to run concurrently, thus becoming the heavy
kernel one or several friendly kernels. Such a solution is always feasible due to the
nature of thread execution on GPUs because coherence across parallel threads is not
controlled, so any sequential order of the operations across threads is semantically
correct. Hence, by serializing parallel threads in any way semantics are preserved. In
the next section, we introduce a new method to transform heavy kernels into friendly
ones, thus, enabling them to be executed safely and timely, with diverse redundancy,
on the GPU.

94

6.2 Enabling ASIL-D GPU Operation

Solution for Friendly kernels : In the case of friendly kernels, since they can exe-
cute concurrently, our software modifications are enough to execute them in different
functional units (SMs) by launching them using different CUDA Streams. Since SMs
can only execute threads from the same CUDA Stream, the two redundant executions
will use different SMs (FUB), thus guaranteeing Req1.

As explained before, due to the kernel launches’ serializations, an initial stagger-
ing between the redundant executions is achieved naturally (see Section 6.2.4). Thus,
obtaining a diverse redundant execution in a COTS GPU. Later, in the evaluation
section, we will show evidence of this initial staggering. Note that, while such stag-
gering is normally preserved due to the regular and highly deterministic execution
of kernels on a GPU, it cannot be guaranteed a priori, and we can only assess it a
posteriori to some extent.

Req2 guarantees that a single fault does not lead to a CCF despite redundant
computations occurring on different resources. Hence, Req2 imposes the use of some
additional form of diversity. For instance, a usual technique to achieve diversity in
functionally identical computational units is using staggered lockstep execution, so
that redundant computations, apart from being performed on physically different
resources, are also performed at different times. Interestingly, staggered execution,
which we discuss in detail before (see Section 6.2.4), can be implicitly achieved with
COTS GPUs, and this provides them with protection against some of the most rele-
vant sources of CCFs such as high-voltage pulses or voltage droops. Providing inde-
pendent redundancy beyond the aforementioned CCFs could also be achieved using
some of the techniques (e.g., layout diversity) already employed to achieve diversity
in front of the most relevant CCFs in ASIL-D lockstep processors [1, 74]. However,
this is not yet provided in COTS GPUs.

Req3 guarantees that diverse redundancy is achieved in unique resources. In
general, those resources include interconnects and interfaces, where data and control
signals transmitted can be properly protected with ECCs or CRCs. In the case of
storage, either it is also ECC-protected or contents are stored redundantly. Finally,
combinational logic is usually hard to protect with any form of ECC. For instance,
this is the case with the thread scheduler. However, by making redundant kernels
run simultaneously in different SMs, each kernel uses different thread schedulers.
Moreover, the Kernel scheduler, used to send thread blocks to SMs, also operates with
some degree of diversity since the same thread block in redundant copies is dispatched
to different SMs. However, diverse redundancy requires physical replication in general.
As detailed before, this is practically in place for computation resources in a GPU, but
other components, such as the kernel scheduler, may lack such support. In general,
whether unique resources adhere to specific ASIL requirements cannot be assessed
by industrial users due to the lack of detailed documentation, and observability or
controllability means. Thus, whether the failure probability of those components can
be deemed as residual risk cannot be assessed directly with software-only approaches.
Still, our work shows that most GPU resources can be leveraged by software means
to ensure diverse redundancy.

95

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

6.2.7 Heavy-to-Friendly Kernel Reshaping Protocol

Next, we present our protocol to transform heavy kernels into friendly ones systemat-
ically. Our approach has been tailored to work with kernels, not using shared memory
for inter-thread communication since this is the type of heavy kernels found in our
evaluation. If shared memory is used for inter-thread communication, this would need
to be managed manually. Extending our protocol to these scenarios is part of our
future work but outside this Thesis’s scope. We first describe the operators on which
our protocol builds, then the protocol itself, formal validation of its effectiveness, and
finally, discuss its complexity. In simple words, this protocol modifies each redun-
dant kernel to fit in half of the SMs of a given GPU by reducing its parallelism and
serializing some threads by combining them.

Thread Coarsening and Block Division Operators

Each redundant kernel uses a certain amount of resources (e.g., registers, shared
memory). Whenever the requirements of the combined kernels in terms of resources
exceed those available in the GPU (heavy kernels), the scheduler prevents them from
achieving concurrent kernel execution between the head and shadow kernels. This
proposal is based on modifying these kernels’ resource requirements, which may in-
crease their execution time, but allows them to execute concurrently. Our protocol
uses two techniques: Thread Coarsening and Block Division, which we introduce next.

Thread coarsening: Thread coarsening is the process of increasing the amount of
work performed by each thread. This technique can cause some potential performance
improvements: (1) Higher instruction-level parallelism (ILP) [215] by increasing the
number of instructions per thread; (2) More efficient DRAM memory bandwidth
utilization by reducing the total number of memory-access instructions [216], for
those data that more than one thread would otherwise fetch; and (3) Reduction in
the number of computing instructions due to redundant computations across threads
[217]. This technique, however, can also have several negative effects: (1) Reduction
of the total amount of parallelism by reducing the number of threads, which can
reduce the performance if there is not enough amount of work (threads) to keep
the rest of the GPU busy; (2) Increase of the number of registers per thread; and
(3) Worse memory access patterns since neighboring threads may end up accessing
non-contiguous memory as stated in [218], which has detrimental effects on cache
behavior.

Authors in [219] applied automatic thread Coarsening at compile time to GPU
kernels to achieve a 1.3x speedup in a subset of Rodinia benchmarks [7, 173]. However,
as mentioned before, thread coarsening may lead to increased cache pressure, thus
resulting in performance degradation. Moreover, in the extreme degenerate case,
thread coarsening would lead to sequential execution by a single thread, defeating the
purpose of using parallel hardware such as GPUs. Therefore, while thread coarsening
may produce some performance gains, it is generally not used when the only concern
is performance. However, our primary goal is not to increase performance but safety
by allowing redundant heavy threads to run concurrently (i.e., becoming friendly).

96

6.2 Enabling ASIL-D GPU Operation

Block division: Block Division consists of splitting thread blocks into smaller ones,
i.e., using fewer threads, while the total number of threads remains the same. This
technique can be used when the requirements per thread block exceed SM’s resources,
preventing the entire kernel from being executed.

This technique is particularly useful to reduce cache pressure and register require-
ments per thread block. Obviously, this is the remedy technique to use when thread
coarsening leads to over-using some resources, mainly registers over-use, since the lack
of registers is the only limitation preventing the execution of a thread block. Other
shared resources, such as cache space, can lead to lower performance if over-used but
would not prevent a thread block’s execution. Another limiting resource is the shared
memory, a scratchpad memory used to allow threads in the same block to communi-
cate and reduce the DRAM bandwidth. We choose not to include it as part of our
protocol since not using it will not impede the execution of a thread block and can
slow down execution. As said before, performance is not our primary goal.

Protocol Step by Step

Figure 6-8 details the protocol followed to transform heavy kernels into friendly ones.
It builds upon applying thread coarsening and block division iteratively until the
resulting thread block does not exceed the number of registers available in an SM,
and each kernel uses at most half of the resources available in the GPU. In particular,
starting from a kernel whose thread blocks do not exceed the total number of registers
available in an SM (so it is schedulable), but uses more than half of the registers of
the entire GPU (so it prevents its shadow kernel from running concurrently), the
protocol does the following: (1) merges threads so that repeated data fetches and
computations can be removed, thus reducing the total number of registers required,
although the number of registers per thread increases. (2) Divides thread blocks to
decrease the total number of registers per block. Note that, as we discuss later, this
process necessarily decreases the number of registers per thread block in each iteration
so that friendliness is achieved eventually.

The protocol first initializes the platform and kernel-dependent variables and
checks if the redundant kernels can already be executed concurrently or not (lines
1-5). If not, we compute the Thread Coarsening Factor (TCF) by dividing the cur-
rent number of SMs used (= the number of thread blocks) by the target number of
SMs we want to use (up to half of those available in the GPU), as shown in line
6. Next, we apply thread Coarsening to reduce the number of threads by the factor
computed (TCF), see line 7. We update the number of SMs used (line 8), which now
will be less or equal to half of the SMs, and the number of registers required per
thread block (line 9). At this point (line 10), if the number of registers per thread
block is lower or equal to half of the SM’s registers, kernels can execute concurrently
(lines 14-15).

If the concurrent execution is not possible yet, then we require more registers per
SM than allowed. Thus, Block Division must be used. First, we compute the Block
Division Factor (BDF) based on the current register requirements and the registers
available (line 11), and then we apply Block Division accordingly (line 12). This

97

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

1: #SMavailable ← ⌊TotalSM/2⌋
2: #Registeravailable ← ⌊RegisterSM/2⌋
3: #SMUsed ←#ThreadBlocks
4: #RegisterUsedpBlock ← Y
5: while Kernels not concurrent do
6: TCF ← ⌈#SMused

#SMavail
⌉

7: ApplyThreadCoarsening(TCF)
8: Recompute(#SMUsed), 1 ≤ #SMUsed ≤ #SMavail

9: Recompute(#RegisterUsedpBlock)
10: if (#RegisterUsedpBlock >#Registeravailable) then

11: BDF ← ⌈#RegisterUsedpBlock

#Registeravailable
⌉

12: ApplyBlockDivision(BDF)
13: Recompute(#SMUsed)
14: else
15: Done (Kernels concurrent)
16: end if
17: end while

Figure 6-8: Proposed protocol, where TCF = Thread Coarsening Factor and BDF =
Block Division Factor

second step can increase the number of SMs used (line 13), which will require per-
forming the thread coarsening technique again. However, as shown next, the registers
of the thread block are reduced with respect to the previous iteration, guaranteeing
the convergence of the process.

Formal validation

We validate our protocol showing that a kernel can be made to fit in a single SM, so
that if the number of SMs per kernel is higher, the protocol can converge faster. Let
us consider a kernel containing B blocks, where each block has T threads and each
thread uses R registers. An SM of the GPU contains S registers being S ≥ R. Then,
the number of registers used is the total number of threads (B · T) multiplied by the
registers per thread (R), so B · T ·R

If B · T ·R < S, all thread blocks can be allocated in a single SM. Otherwise, we
would use thread Coarsening with a TCF (α), where α ∈ N and α ≥ 2, to reduce
the total number of registers. Now the total registers used are: B·T ·Y

α
where Y is the

registers used per thread after applying Thread Coarsening.
Due to register reuse, Y can be at most α ·R (worst case), but it will be typically

lower. In fact, appropriate compilation constraints may make merged threads run
purely sequentially, thus reusing the same output registers for each instruction, thus
ensuring that Y < α ·R. Therefore:

B·T ·Y
α

< B·T ·(α·R)
α

= B · T ·R

Since Y < α ·R, in the first step, we reduce the total number of threads, but also
the total number of registers used. Now let us apply block division by a factor β,
where β > 1 and β ∈ Z. Now, the total number of registers is:

98

6.2 Enabling ASIL-D GPU Operation

β·B·T ·Y
β·α = B·T ·Y

α

As seen, Block division does not affect the total number of registers used, only the
registers per block (T

β
· Y). Therefore, at each iteration of our loop, which includes

both Thread Coarsening and Block division, we reduce the total register requirements.
Considering that the kernel could be executed in the CPU, where the register file is
smaller than the one of the SM, the extreme case of just using one thread would be
valid. Thus, our protocol will always allow two kernels to be executed concurrently
in a GPU with at least two SMs (one for each redundant kernel).

Complexity

The protocol is guaranteed to terminate, as explained above, since, in every iteration,
we reduce the total number of threads of the kernels and, eventually, we will reach
the case with one thread per kernel, which is always a functionally valid option.
However, such a degenerate case may be far from being the optimal solution in terms
of performance.

The number of iterations required to reach a solution where both threads can be
executed concurrently depends on the particular kernel being considered. The factors
affecting the number of iterations relate to (1) the requirements of the initial kernels
(number of SMs used, the total number of threads, number of thread blocks, ...), and
(2) the resources available (number of SMs, the maximum number of registers per
block ...).

Generally, kernels with higher requirements per block will need more iterations
since thread coarsening will easily make kernels exceed the resources per block limits
and will take more iterations to find a valid pair of values for TCF and BDF. To
reduce the number of iterations, one could be more aggressive when calculating the
two factors by selecting higher values for both factors. Once a valid solution is found,
it would be a matter of checking intermediate values not evaluated to search for a
potentially better solution with a higher number of threads. Instead, kernels with
small requirements will take fewer iterations to find a valid solution. In fact, as we
see in the evaluation section, in most cases, one iteration of the loop is enough to
achieve a valid solution.

Formally, after adjusting the number of SMs used to be at most half of those
available in the GPU, the number of registers required per SM is:

#RegisterUsedpBlock = R ·
⌈
#SMused

#SMavail

⌉
The worst case occurs when R matches the total number of registers per SM, thus
leading to the largest register per SM exceedance after thread coarsening. As ex-
plained before, in each iteration, the total number of registers per thread decreases
at least by 1 given that Y < α · R. Thus, the worst case would be to move from
#registerUsedpBlock to R in #RegisterUsedpBlock−R iterations assuming that the num-
ber of SMs used is fixed. In practice, since the number of SMs that can be used to have

99

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

a friendly kernel is between #SMavail/2 and #SMavail/4 SMs1, the number of steps
could almost double if the worst case occurs (i.e., if we end up using #SMavail/4 + 1
SMs), thus leading to up to 2 · (#RegisterUsedpBlock −R) steps.

6.2.8 Diversity Limitations: from DMR to TMR

Both the software and hardware contributions enable a diverse redundant execution
can still be vulnerable to two sources of CCF; The first type relates to physical layout
effects that may make some specific mask patterns prone to faults. Since all SMs
are, in general, identical, errors induced by layout effects may produce the same error
in all redundant copies despite occurring in different SMs at different times. Note,
however, that having these effects manifesting for the first time almost simultaneously
and causing exactly the same effects in two different physical locations in the chip is
unlikely. This relates to effects like process variation, both random and systematic,
that may affect different locations differently. In the case of TMR, having three such
almost simultaneous first manifestations is even more unlikely to occur. Hence, while
this CCF is not avoided completely, TMR is expected to be much less exposed to it
than DMR.

The second source of CCFs relates to the use of non-redundant components such
as the kernel scheduler, which is unique in GPUs. The serial offloading of the kernels
brings some diversity, as well as the fact that the second kernel may find a different
scheduler state to that of the first kernel, thus reducing the chances of a fault causing
identical errors in both kernels for DMR. In the case of TMR, as for the case of layout
effects, the use of 3 redundant copies instead of 2, further decreasing the chances of
this type of CCF. However, it is not completely avoided and, as in the case of layout
effects, hardware support is convenient to guarantee that CCFs are avoided.

6.3 Experimental Validation

In this section, we evaluate different aspects of the software-only solution discussed
in the previous section. We start by showing real slack measurements observed in
a real COTS GPU. Next, we show results of executing Rodinia [7, 173] benchmarks
with our approach for DMR and TMR. We follow with two examples of the usage
of the transforming protocol, in two Rodinia heavy benchmarks transforming them
to friendly. Later, we discuss the results of a fault injection campaign showing the
fault-detection capabilities of our solution. Finally, we perform a comparison side
by side of the software-only solution and the hardware one described in the previous
chapter 5.

100

6.3 Experimental Validation

Figure 6-9: Slack observed and subprocedures of the kernel launching for the
consecutive executions of the Myocyte kernel.

6.3.1 Slack Measurements Results on a COTS GPU

The kernel offloading process executes the following routines: Configure Call, Kernel
Setup Arguments, and CUDALaunch. In this experiment, we modify the myocyte
benchmark (part of the Rodinia Benchmark Suite) to make its kernels redundant and
execute it 100 times using the setup explained in 3.6.1. We use the NVIDIA profiler
and obtain the results shown in Figure 6-9. The thick dark line corresponds to the
time elapsed between the start time of both kernels, the original and redundant ones.
Stacked bars show the individual contribution of each one of the kernel offloading
routines for the second kernel, which are executed serially on the CPU. There is
some code between those routines (CUDA calls), whose execution time covers the
gap between the stacked bars and the total execution time (thick line). However, the
NVIDIA profiler does not provide information about this non-CUDA code.

Kernels are launched on the GPU only after these CUDA calls and surrounding
code are executed on the CPU. The dominant routine (CUDALaunch) takes around
6µs (if not more), and its execution time is independent of the characteristics of the
kernel to be launched. This guarantees that there always be such staggering across
kernels, although it will be typically higher due to the remaining code executed for
offloading purposes. Hence, the staggering across redundant kernels is guaranteed
to exist. Since this behavior is not specific to this GPU but, instead, is intrinsic to
the CPU-GPU relation, we can expect similar behavior for different GPUs and even
other runtimes (e.g., OpenCL).

6.3.2 COTS GPU Results for diverse DMR

Since the software-only solution does not require any hardware modification, we can
directly evaluate it on the COTS platform. We have characterized the different parts
of the redundant execution process in the Rodinia benchmarks as can be seen in

1Our mechanism decreases #SMused by an integer factor to not exceed #SMavail/2. If the value
obtained was not exceeding #SMavail/4, then the factor used could be doubled without exceeding
#SMavail/2.

101

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

Figure 6-10: Redundant execution times characterization for the Rodinia benchmark
suite. Backprop and gaussian are short kernels; nn and bfs are heavy kernels; and the rest

are friendly kernels.

Figure 6-102. Execution times are normalized per each benchmark where “1” corre-
sponds to the original benchmark’s normalized execution time without redundancy.
More precisely, we have characterized the execution into kernel execution, the redun-
dant transfers, and the comparison phase, thus, showing all the overheads created by
our strategy. The backprop benchmark also includes a CPU-only version, which we
also include (2nd leftmost bar), and discussed next.

Short Kernels (backprop and gaussian): The backprop benchmark (the left-
most one) is a short kernel. As shown, the redundant version of this benchmark leads
to an execution time above 2x the execution time without redundancy since redun-
dant threads do not overlap. Due to the short duration of the kernel, the relative
impact of needing redundant data transfers and having to compare results is huge
w.r.t. GPU execution without redundancy. The CPU version of this benchmark,
which is included in the benchmark suite, has an execution time 75.8x higher than
the one for the GPU baseline version in our setup. Despite being huge in relative
terms, such a slowdown is low in absolute terms and, hence, affordable. In the case of
gaussian, the overhead due to running it redundantly is below 2x since the execution
time includes both kernels launching in the CPU and kernel execution in the GPU.
Hence, while the kernel execution of both redundant copies does not overlap, the
kernel launching of the second kernel overlaps with the kernel execution of the first

2In this experiment, we changed the inputs of the bfs benchmark to obtain another heavy kernel
for the later evaluation of the heavy-to-friendly kernel transformation protocol.

102

6.3 Experimental Validation

Figure 6-11: Execution time of diverse DMR and TMR normalized w.r.t.
non-redundant execution.

one and the kernel launching is implicitly included in “Kernel” time in the Figure.
Therefore, we categorize it as a short kernel despite having an execution time below 2x
because there is no kernel (understood as GPU computation) execution overlapping.

Friendly Kernels: The overlap of these kernels is large, and thus, the overall
execution time to run both redundant kernels is below 2x the execution time of
the non-redundant kernel. Redundant execution for friendly kernels causes small
overheads in the GPU computation part. Instead, overheads due to comparison
and data transfers are benchmark-dependent. Those overheads could be reduced by
performing comparisons redundantly in the GPU to reduce the amount of data to be
transferred back to the CPU and to parallelize the comparison. However, while this
would be possible, it has not been explored explicitly in this work.

Heavy Kernels (nn and bfs): Since the redundant kernels for these benchmarks
barely overlap, the impact of running them redundantly is above 2x in terms of
execution time. However, the protocol introduced before allows converting these
heavy kernels into friendly ones. Their friendly versions are evaluated in section ??.

6.3.3 COTS GPU Results for diverse TMR

We implement TMR by manually tripling memory allocations, data transfers and ker-
nel offloading and performing the output comparison back in the CPU side, similarly
to the DMR. The objective of our evaluation is to assess the execution time impact
of implementing software-only diverse TMR in GPUs.

For this experiment, we use the other GPU of our setup, the NVIDIA 1080Ti [172]
detailed in chapter 3.6.3. We took this decision since we were afraid that the amount
of available memory of the NVIDIA 1050Ti (4GB) could limit the concurrency of
three kernel instances executing at the same time. Instead, the NVIDIA 1080Ti has
a total of 11GB available, more than enough based on the results obtained.

Results are shown in Figure 6-11. In this Figure, we show the timings of end-to-
end execution including both CPU and GPU execution as well as data transfers. As
we can observe, TMR increases execution time w.r.t. DMR, as expected. However,

103

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

Default (heavy) configuration

Benchmark
Thread Threads Total Registers
Blocks x Block Threads Block

bfs [1954 , 1] [512 , 1] 1,000,448 K1:8,192 K2:7,680
nn [2560 , 1] [256 , 1] 655,360 3,840

Final (friendly) configuration
bfs [3 , 1] [512 , 1] 1,536 K1:8,192 K2:7,680
nn [2 , 1] [256 , 1] 768 3,840

Table 6.1: Default configuration of the applications that produces heavy kernels on the
NVIDIA GTX 1050 Ti, and final friendly configuration obtained using the

Heavy-to-friendly protocol

while DMR causes a nearly-linear slowdown w.r.t. the baseline execution time, TMR
generally leads to execution times clearly below 3X w.r.t. the non-redundant case.
Further investigation reveals that some relatively low contention causes a large impact,
and additional contention has a lower impact mostly due to further serialization of
the execution.

6.3.4 Evaluation of the Heavy-to-friendly Protocol

As seen, some of the benchmarks turn out to be either friendly or short, and we only
observe one heavy benchmark (nn) with the 1050 Ti setup. Thus, in order to test the
protocol with more workloads, we have modified the input variables of the benchmark
bfs, which changes the number of resources used by the benchmark to make it also
heavy.

The default grid configurations of the two applications are shown in the Table 6.1
(top rows) (information obtained through NVIDIA’s profiler nvprof).

To have a complete evaluation, we have created a small script for the bfs bench-
mark. This script (written in bash) tries different argument configurations and
launches the bfs application with the NVIDIA profiler (nvprof). Logs of the re-
sults are stored and later parsed to identify the configurations that serialized the
kernel execution, which is a characteristic expected for heavy kernels (necessary but
not sufficient). These configurations are later inspected with the visual profiler to (1)
check that kernels are serialized and (2) the serialization is because they are heavy
kernels, and not short.

The benchmark bfs contains two kernels with the same grid and block configu-
ration, one using 16 registers per thread and the other 15. Instead, nn contains only
one kernel that uses 15 registers per thread. Both applications use a high number of
thread blocks, which results in a big TCF, 653 for bfs and 854 for nn. We obtain
these factors by dividing the number of thread blocks by half of the GPU’s SMs (thus,
three SMs for each redundant kernel), line 6 in Figure 6-8.

To ease the application of the protocol, we adapt the code to enable Thread
Coarsening and Block Division as follows:

1. Add a new parameter to the kernel function, the TCF.

104

6.3 Experimental Validation

Figure 6-12: Normalized execution times of the total redundant execution (grey), the
execution time of the first kernel launched (white) and the initial staggering (black)
between the redundant kernels w.r.t. total kernel redundant execution on the default

configuration (heavy) of each benchmark.

2. Apply Thread Coarsening to the kernel code. In order to facilitate program-
ming, we add an outer loop that iterates TCF times. However, while this
automates the application for Thread Coarsening, this solution may not bene-
fit from some optimizations. For example, memory instructions from originally
different threads, accessing the same data, will not be performed closely because
of the loop’s body, which may lose potential cache hits. In order to improve
performance, we recommend using the compiler technique in [219] whenever
possible, although it makes it less straightforward to apply Thread Coarsening.

3. Modify the kernel launching, in the CPU code, to launch the kernel with the
grid according to the Thread Coarsening and Block Division factors.

Using the calculated TCF, the benchmarks are launched. As expected, the ex-
ecution of the kernels finishes correctly, and the execution of the redundant kernels
overlaps. In particular, we measure the execution time of the first launched kernel
(white bar), the total kernel execution time (from the start of the first until the
completion of the second, grey bar), and the staggering time between them at the
launching (black bar). Results for the two benchmarks are shown in Figure 6-12
normalized w.r.t. the execution time of the redundant kernels on the baseline con-
figuration (heavy). The results shown for each benchmark are the average of 500
executions in the same COTS GPU used before, an NVIDIA GTX 1050 Ti.

As shown, in all heavy configurations of both benchmarks, the first kernel takes
half of the total execution time, matching with the staggering time, meaning that
both redundant kernels take a very similar amount of time to execute and are fully
serialized. In the case of the friendly versions of the benchmarks, we observe that
the first and total execution times nearly match, thus meaning that both redundant

105

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

kernels finish virtually at the same time. Also, the fact that the staggering time is
tiny indicates that both of them start almost simultaneously, thus overlapping their
execution completely, with just some little staggering.

Note, however, that making kernels friendly impacts total execution time, which
grows by a factor of 1.9x for nn and 1.7x and 1.6x for bfs kernels. While this effect is
undesirable, it is the price to pay to guarantee diverse redundancy on a COTS GPU
without explicit lockstep support and only by software means. Such performance
loss relates to (1) worse cache access patterns that lead to an increased miss rate
and, thus, less efficient DRAM bandwidth utilization, whose access latency cannot
be effectively hidden. And (2) the loss of parallelism since we reduce the number of
parallel threads per kernel. For the sake of completeness, Table 6.1 (bottom rows)
shows the final kernel configurations for both benchmarks after applying the protocol
to make them friendly.

6.3.5 Fault-detection capabilities evaluation using fault in-
jection

To test the fault tolerance capabilities of our solutions, we use the NVBitFi [180, 181] a
framework that is built on top of NVidia Binary Instrumentation Tool (NVBit) [182]
that performs error injection campaigns for GPU application resilience evaluation.
NVBitFI injects errors into the destination register values of a dynamic thread in-
struction by instrumenting instructions after they are executed. Only one injection is
done per run. A dynamic instruction is selected randomly from all dynamic kernels
of a program for error injection. This tool allows four different instructions to inject
errors:

� Instructions that write to general-purpose registers

� Single-precision floating-point instructions

� Double-precision floating-point instructions

� Load instructions.

Additionally, the tool supports four different fault models (errors that can be
injected):

� Single bit-flip: one bit-flip in one register in one thread

� Double bit-flip: bit-flips in two adjacent bits in one register in one thread

� Random value: random value in one register in one thread

� Zero value: zero out the value of one register in one thread

We have selected one of the Rodinia benchmarks (backprop) to perform the in-
jections. In particular, this application contains two kernels. For each fault model
available and instruction type, we perform 10k injections on the baseline application

106

6.3 Experimental Validation

Figure 6-13: Fault injection results for each fault model. Masked: The output of the
execution was correct. SDC detected: An error was found by the detection mechanism
and reflected in the output of the application. SDC undetected: A mismatch in the

output was found which was not detected. DUE: A detected error prevented finishing the
execution.

and 10k for the application with our redundant kernel software approach. Since this
application only uses single-precision floats, double precision injections have been dis-
carded. For each execution, the output is analyzed and compared against a golden
output (an output from an error-free execution).

Results from the fault injection can be observed in Figure 6-13. We can see three
pairs of columns for each fault model, each corresponding to a different instruction
type targeted by the fault injection tool. From left to right, single-precision (32-bits)
floating-point instructions (fp32), load instructions (ld), and instructions that write
into general-purpose registers(gp)3. For each pair, we have results on the baseline
application on the left (BAS) and the application with our software-only redundant
strategy on the right (RED).

Results follow similar behavior for all fault models. Baseline applications reported
no Silent Data Corruption (SDC) for floating-point injections or load instructions.
Instead, injections on general-purpose registers experienced a slight percentage of
SDCs undetected from 10.7% to 24% on the baseline approach, which are translated
into SDC detected by our fault detection mechanism (comparison of kernel results).
Detected Uncorrectable Errors (DUE) only have significant importance for general-
purpose registers and have similar values for the baseline and redundant approaches.
The tool detects them by using the dmesg command, but the application could also
detect them if the appropriate CUDA error handling procedures are called (e.g., cud-
aGetLastError()) after the kernel calls. In summary, we observe that our redundant
diversity scheme provides protection against the single-point faults evaluated.

364-bit (double) floating point instructions are not used by the application targeted, so we did
not perform a fault injection campaign aiming at them.

107

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

Figure 6-14: Simulator Cycles of all the solutions

6.3.6 HW and SW-only solutions side by side

Last but not least, we show the execution times of all the solutions side by side. The
hardware solutions could not be integrated into a COTS platform since we cannot
modify the kernel scheduler (at least to mimic HALF timing behavior). Instead,
we perform the evaluation side by side on the simulator GPGPUSim, where we can
compare them fairly. In this experiment, we show our solutions’ execution time,
the baseline non-redundant version, and the simple redundant version, which only
guarantees diversity for the friendly kernels. Results are shown in Figure 6-14.

Note that there is not an SW-based bar for backprop. Backprop is a short kernel,
so this software-only solution is to be executed only on the CPU, but the simulator
only models the GPU cycles. For this reason, we do not consider the backprop results
when calculating the geometric mean, which are the rightmost bars labeled as GEO.

Generally, the HALF approach is the one that suits best since most of these
kernels are friendly and serializing them (SRRS) ends up in a longer execution time.
The software-only solution also fits well when dealing with friendly kernels since the
simple redundant version is applied. For heavy kernels (nn and bfs), nn execution
time increases up to 2.6x, whereas bfs obtains 1.8x, similar results to those tested on
the real platform. Bfs takes advantage of the coalesced memory accesses, and fewer
threads compete to access memory. With this, the software solution obtains the best
performance in this particular workload.

6.4 Related Work

ASIL-D capable processors like the Infineon AURIX [1] and the ST Microelectronics
SPC56XL70 [74] deployed in current cars implement DCLS. DCLS may not suffice for
some fail-operational ASIL-D systems with tight FTTI [80]. To improve the reaction
time in case of error detection, several works have proposed mechanisms to achieve

108

6.5 Conclusions

timely error detection [220] and recovery by means of low-latency checkpointing and
roll-back recovery [221]. However, computational power requirements of AD systems
greatly exceed the ones of current ASIL-D applications and thus, more powerful – yet
safe – computing platforms are needed to realize AD systems [12].

NVIDIA has recently announced the first functionally safe autonomous driving
platform [28], which includes support to achieve fail-operational capabilities by allow-
ing complex software algorithms run on the CPU, the CUDA GPU, a deep-learning
accelerator and a programmable vision accelerator to enhance redundancy and di-
versity. According to the announcement, ASIL-D rating is achieved by an NVIDIA
DRIVE Xavier GPU and an ASIL-D rated safety microcontroller with appropriate
safety logic. However, to the best of our knowledge, ASIL-D compliance for func-
tionalities requiring high performance can only be achieved with diverse software
implementations, which ultimately increase drastically design and V&V costs.

Some authors evaluate the use of GPU, FPGA and ASIC designs for AD applica-
tions, showing that each design provides a different performance and power tradeoff,
so the best hardware platform may change across different AD applications [186].
However, GPUs have already been suited to automotive systems, which provides
GPUs with an advantage w.r.t. other hardware platforms [22, 207].

While redundancy is a well-known reliability measure to combat random (indepen-
dent) faults, such as radiation, either employing time-redundancy [222, 223], space-
redundancy [224, 119] or both indistinctly [124], none of those works considers the
case of CCFs, which may lead the system to failure despite redundancy. Differently
to those works, in this contribution, we consider specifically CCFs, which are the
faults of relevance for the highest ASIL in automotive, and show how CCFs can be
avoided – and to what extent – by enforcing diverse redundancy.

6.5 Conclusions

The use of GPUs for highly-critical Autonomous Driving (AD) software poses a num-
ber of functional safety requirements for GPUs’ design and utilization. In this contri-
bution, we propose to exploit the intrinsic redundancy inside GPUs to achieve diverse
redundancy, as needed for ASIL-D software components. With this idea, we present
multiple solutions to achieve it by software-only means.

We have identified the different kernel patterns when trying to execute them re-
dundantly and classified them accordingly in three different categories, friendly, heavy
and short. The software-only solution requires an early inspection of the kernel and
its behavior on the desired platform since only friendly kernels are guaranteed to be
executed in a diverse redundant manner. To solve this, we also presented a protocol
to transform any heavy kernel into a friendly one based on the specification of the
COTS GPU targeted. Smaller kernels (short) can be executed directly on the safe
CPU side. Thus, this work delivers a full software-only solution for any given kernel.
Later, we proved that this solution also works for a TMR strategy. Staggering is nat-
urally created at the beginning of the execution during kernels offloading, as discussed
and observed in a real COTS GPU. We also performed a fault injection campaign

109

6. GPU SOFTWARE-ONLY DIVERSE REDUNDANT EXECUTION

with a single-fault fault model, in which we observed that SDC that were undetected
using the baseline application, were detected by our redundant mechanism. Finally,
we have compared the software-only solution together with the hardware solutions
of the previous proposal side by side on a GPU simulator. As expected, hardware
solutions generally offer lower execution times, but software solutions can instead be
used right away in COTS GPUs.

110

Chapter 7

Software-only based Diverse
Redundancy for ASIL-D
Automotive Applications on
Embedded HPC Platforms

7.1 Introduction

As explained in previous chapters, Autonomous Driving (AD) frameworks require
high-performance platforms with some form of support for diverse redundancy since
some AD tasks need to run on those platforms have ASIL-D requirements.

Several chip vendors have already commercialized several processors and platforms
for AD systems, such as the RENESAS R-Car H3 [22] and the NVIDIA Xavier [18]
platforms, to name a few. In general, those platforms include some general-purpose
computing cores (e.g., ARM-based) and/or additional accelerators for some specific
applications. However, eHPC platforms usually lack explicit hardware support for
enforcing some form of diverse redundancy, and software strategies are needed. Anal-
ogously, the European Processor Initiative (EPI) [225], which includes an ARM-based
multicore, is intended for HPC and automotive applications. Hence, it inherits the
same requirements of the other eHPC platforms for the automotive domain: imple-
menting diverse redundancy.

This contribution tackles this challenge by proposing a software-only flexible and
efficient approach to achieve diverse redundancy by design for eHPC multicores in
general, and for ARM-based multicores (i.e., like the EPI one) in particular. Our
solution is based on a monitor process able to orchestrate the execution of redundant
applications guaranteeing the computing resources used are physically diverse and
ensuring that the same dynamic instruction in both redundant applications never
executes simultaneously, thus providing time diversity. Hence, by providing both time
and space diversity, CCFs for very relevant fault models are avoided. In particular,
the contributions presented in this chapter are as follows:

111

7. SOFTWARE-ONLY BASED DIVERSE REDUNDANCY FOR
ASIL-D AUTOMOTIVE APPLICATIONS ON EMBEDDED HPC
PLATFORMS

1. A flexible and efficient software-based approach to enforce diverse redundancy
on high-performance multicores, with requirements met by the most popular
processor families.

2. A tailoring of the approach for a COTS ARM-based multicore, as an illustrative
example, proving the feasibility of the approach.

3. Quantitative evidence of the approach to achieve diverse redundancy with tiny
execution time cost. In particular, our results show performance degradation
of around 4% on average and up to 10% in one case for a variety of automotive
benchmarks.

7.2 Software-based Diverse Redundancy Approach

We present our technique for an abstract multicore first, and then we specify the
realization on a specific multicore (ARM Cortex-A57 based) for illustration purposes.

7.2.1 Diverse Redundancy across the entire multicore

The overall strategy targets only creating redundant computations and ensuring that
they are performed diversely in time (i.e., at different time points) and in space (i.e.,
in different cores). This prevents CCFs for very relevant fault models since faults
affecting multiple components simultaneously (e.g., voltage droops) do not affect re-
dundant computations identically by performing redundant computations at differ-
ent time instants. Analogously, by using different cores for redundant computations,
faults affecting specific hardware components (e.g., a faulty core) do not affect both
computations identically.

Data transmission and storage are regarded as intrinsically diverse and redundant
in the space domain since data sent/received from/to the cores is, in general, ECC-
protected, thus meaning that any fault corrupting data would be detected whenever
read by checking the ECC. In particular, data stored in local cache memories in
the cores is normally ECC protected, and such codes are propagated all the way to
memory, where they are checked upon read operations, thus providing fault detection
capabilities at least for single-bit upsets. In any case, how to manage CCFs in the
memory system without duplication is an already solved problem, since this is the
default solution for current safety-critical systems in domains such as automotive,
avionics, and space, among others.

7.2.2 Specification of the Execution Strategy

The approach we propose to achieve diverse redundancy consists of the following main
steps, illustrated in Figure 7-1:

1. The MCU replicates input and output data and buffers for the task to be
executed on the Embedded High-Performance Computing Multicore (eHPCM).
We refer to redundant processes as head and trail processes.

112

7.2 Software-based Diverse Redundancy Approach

Figure 7-1: Schematic of the diverse redundancy execution strategy.

2. The MCU offloads both processes onto different cores in the eHPCM.

3. The MCU accesses the instruction count (IC) for the head and trail processes
(IChead and ICtrail) at a given time frequency, Tcheck.

4. The trailing process is not allowed to make any progress unless the head process
is a given number of instructions Istagger ahead in execution.

4.1. If (IChead − ICtrail) < Istagger, then the trail process progressed too fast
during the last time interval, and there is some risk of catching the head
process during the next interval. Hence, the trail process is stalled during
the following time interval (Tcheck time).

4.2. Instead, if (IChead − ICtrail) ≥ Istagger, then both processes are allowed to
progress during Tcheck.

Overall, the approach monitors the execution of the redundant processes on the
eHPCM, ensuring that the staggering is large enough so that the trail process cannot
catch up with the head one. Particular care must be taken to setting Istagger and
Tcheck to ensure that Istagger is large enough so that a process cannot execute more
than Istagger instructions in a single time interval, Tcheck, plus the time needed to
check the instruction counts and send a stall signal to the trail process.

Also, Tcheck must be high enough so that monitoring overheads are kept low in
relative terms but low enough so that redundant processes are not overly staggered,
which would lead to increased performance penalization to complete redundant exe-
cution. A specific analysis of those parameters will occur during the implementation
phase.

As shown in Figure 7-1, the strategy relies on several properties that must be
provided by the hardware/software platform, which we list as follows:

113

7. SOFTWARE-ONLY BASED DIVERSE REDUNDANCY FOR
ASIL-D AUTOMOTIVE APPLICATIONS ON EMBEDDED HPC
PLATFORMS

� The MCU must be entitled to specify the eHPCM core where a process is of-
floaded. This is a feature already provided by common Linux implementations.
Therefore, it is expected that the specific OS or hypervisor deployed onto the
eHPCM for the automotive segment delivers this support.

� The MCU must be entitled to program the Performance Monitoring Counters
(PMCs) of the eHPCM cores to count instructions. If this is not possible,
then such actions must be embedded into the processes themselves so that they
program their PMCs appropriately on their own.

� The MCU must be entitled to access the PMCs (to retrieve the IC) of the
eHPCM cores remotely. If this is not possible, then the processes must be
deployed with capabilities to post such information in specific memory locations
periodically so that the MCU can retrieve such information.

� The MCU must be entitled to send inter-process communication signals to the
eHPCM cores. In particular, the MCU needs to stop and resume cores’ execu-
tion to control the execution progress of the trail process. This can be achieved
with the SIGSTOP signal to stall execution if the trail process progresses too
fast, and the SIGCONT to resume its execution whenever the head process has
progressed enough not to be caught by the trail process.

In our implementation, we use POSIX signals to carry out this task.

� The response time of the remote PMC readouts, as well as of the signal trans-
missions, must be low enough so that Tcheck is also kept low enough. Values
in the order of microseconds are at an affordable scale for automotive systems
where tasks’ execution times are in the order of tens to hundreds of milliseconds.

� All the memory hierarchy needs protection (e.g., ECC or parity). In fact, mod-
ern COTS products already provide these protection mechanisms for memories.

The pseudocode executes periodically in the MCU for monitoring purposes is
shown in Listing 7.1 for completeness.

vo i d On t imer () {
IC {head} = remoteRead (Core {head } , IC)
IC { t r a i l } = remoteRead (Core { t r a i l } , IC) ;
i f ((IC head = I C t r a i l) < I s t a g g e r) {

k i l l (SIGSTOP , C o r e t r a i l) ;
}
e l s e {

k i l l (SIGCONT , C o r e t r a i l) ;
}

}

Listing 7.1: Monitor routine to preserve staggering across redundant processes

114

7.2 Software-based Diverse Redundancy Approach

Figure 7-2: Strategy used in the 4-core Jetson TX2

Note that our approach is intended to be used in code regions without I/O activity.
I/O latencies are normally large, and hence, code regions with I/O operations do not
require high CPU performance. Instead, they can be executed in the MCU with
native DCLS. Thus, only compute-intensive kernels are intended to be replicated and
offloaded onto the eHPC for their diverse and redundant execution.

7.2.3 Realization on an ARM-based Multicore

We integrate our strategy on a 4-core ARM Cortex-A57, part of the NVIDIA Jet-
son TX2 platform [127], see Section 3.1.4 for detailed information on the platform.
The reason for this choice is using commercially available cores with low-power op-
eration, as it is the target of automotive platforms. While many multicores with
different Instruction Set Architectures (ISAs) could fit in this description, we chose
the aforementioned ARM multicore due to its availability in our lab, although we do
not foresee any limitation to realizing our strategy on different multicores.

The current platform used for implementing our strategy lacks some features, such
as an MCU processor mastering the eHPCM and AUTOSAR support1. Therefore,
we run the monitoring process in a core in the eHPCM, and integrate our approach
on top of Linux, using Message Passing Interface (MPI) for process communication
across the monitor and the two redundant task processes.

Note that, since we integrate our strategy on Linux, performance variability is
expected to be higher than in AUTOSAR-based platforms. In order to mitigate
variability to some extent, we concentrate as many Linux services as possible in
a specific core not used neither by the monitor nor by the redundant application
processes (core D in Figure 7-2).

Our monitor is scheduled in one core, thus having to access application cores re-
motely. Remote PMCs are accessed using the perf API version 4.4.38 and are set to
capture only user-space instructions. In particular, we access those PMCs mapping
the instruction count, which have been configured properly prior to the offloading of
the redundant application processes. As indicated before, redundant application pro-

1AUTomotive Open System ARchitecture (AUTOSAR) is the standard software architecture for
automotive systems.

115

7. SOFTWARE-ONLY BASED DIVERSE REDUNDANCY FOR
ASIL-D AUTOMOTIVE APPLICATIONS ON EMBEDDED HPC
PLATFORMS

cesses are spawned employing MPI, which is also used to detect when their execution
is completed and to retrieve output data back to the monitor core, where output data
is compared, and the faults leading to an erroneous result can be detected. Interest-
ingly, we notice that the signal processing, when receiving a SIGSTOP, executes one
instruction at the user space, which is captured by the counter. Thus, we count the
number of signals sent to the Trail and subtract it from the PMC value.

Given a specific Tcheck monitor interval, we must make sure that between two
monitor checks, the trail process cannot catch up with the head process. For that
purpose, we first compute the maximum number of instructions that can be executed
in one interval as follows (Equation 7.1):

maxIperiod = maxIPC · Tcheck

minTcycle

(7.1)

where maxIPC stands for the maximum number of instructions per cycle, and
minTcycle for the cycle time at the maximum operating frequency (so minimum cycle
time). Thus, maxIperiod stands for the maximum number of instructions that could
execute in a single monitoring period, maxIPC is set to 3 according to the proces-
sor specification since the ARM A57 core can fetch up to 3 instructions per cycle.
minTcycle is calculated based on the maximum frequency of the processor (1.2GHz).

Additionally, we measure the time needed to retrieve PMCs remotely, perform
monitor calculations, and send a signal to another core. Such time has always been
below 20µs in total. Thus, for the sake of simplicity and to account for potential mea-
surement inaccuracies, we set Istagger to be twice maxIperiod, so that, in practice, if for
instance Tcheck is 1 ms, we enforce a staggering of no less than 2 ms. Of course, this
value could be tightened to reduce performance cost but, as shown in the evaluation,
the performance overhead of such monitoring frequency is mostly related to the order
of magnitude of Tcheck, being a fraction of Tcheck ≤ 1ms. Still we left below (equa-
tion 7.2) the general equation including these two latencies, where LatencySendSignal
is the latency in cycles to send a SIGSTOP signal and the LatencyReadRemotePMC is
the latency to retrieve both PMC values.

maxIperiod = maxIPC ·
(

Tcheck

minTcycle

+
LatencySendSignal

minTcycle

+
LatencyReadRemotePMC

minTcycle

)
(7.2)

7.2.4 Scope of the proposal and Fault Model

Safety-critical systems need both (1) a fault detection mechanism and (2) a recovery
mechanism. This work proposes a fault detection mechanism, and we rely on the
MCU (see Figure 7-1) for the recovery actions (e.g., reset and restart the eHPCM or
part of it) whenever a fault is detected. Thus, we rely on current recovery mechanism
techniques to perform the recovery of the execution once a fault is detected.

116

7.3 Evaluation

The proposed solution provides fault detection through software-only diverse re-
dundancy for any type of transient fault (e.g., voltage droops or radiation effects) and
permanent faults randomly affecting core components. Other sources of CCFs, such
as those caused by systematic fabrication effects (e.g., untested layout defects), can
only be mitigated with physical diversity in the design (e.g., with different fabrication
masks). Hence, if those fault types are regarded as relevant, additional support is
needed to complement our solution. The fault detection will occur at the end of the
execution when comparing the results of both processes in the MCU. Additionally,
our monitor acts also as a watchdog by monitoring the progress of both processes.
Eventually, a fault is detected if one of them does not make any progress during a
predefined time (i.e., its instruction count does not vary). Such behavior can occur if
one process gets stalled due to a fault or executes a different number of instructions
due to a fault. In the latter case, one of the processes will reach the end of the exe-
cution with fewer instructions than the other one, and the monitor will detect such
behavior.

7.3 Evaluation

This section evaluates our strategy to achieve diverse redundancy on COTS multi-
cores. First, we introduce the evaluation framework. Second, we assess the sensitivity
of overheads to Tcheck duration for a representative benchmark. Finally, we evaluate
our approach on a number of benchmarks for an appropriate Tcheck (1 ms).

7.3.1 Framework

As a representative platform, we build upon the CPU complex of an NVIDIA Jetson
TX2 board, which includes two multicores: a 4-core ARM Cortex-A57 and a 2-
core NVIDIA Denver, both of them implementing ARM 64-bit (A64) instruction set
architecture. In particular, we use the Cortex-A57 multicore for our experiments and
power off the NVIDIA Denver multicore, see Section 3.1.4 for deeper insides on the
SoC used and Section 3.7 for a detailed description of the setup used and the required
modifications we implemented.

As representative real-time automotive benchmarks, we use the EEMBC Auto-
bench suite [185], (see Section 3.2.2) which reflects some functionalities relevant to
automotive critical real-time embedded systems. Additionally, we include a matrix
multiplication benchmark (referred to as matmul in the rest of the section), since AD
frameworks such as, for instance, Apollo [226], build upon neural networks whose
execution time is mostly devoted to executing such types of operations (e.g., object
detection, fusion, tracking, trajectory prediction, etc.). To capture potential perfor-
mance variations, each benchmark is run 500 times for each setup considered. In some
plots, we depict all measurements with boxplots, whereas, in others, we summarize
results by averaging execution times across measurements.

117

7. SOFTWARE-ONLY BASED DIVERSE REDUNDANCY FOR
ASIL-D AUTOMOTIVE APPLICATIONS ON EMBEDDED HPC
PLATFORMS

7.3.2 Overheads Assessment

Our first set of experiments focuses on the cost of our approach and the sensitivity
to the monitoring frequency (i.e., Tcheck interval). For that purpose, we consider four
setups, which we name as follows:

� BASELINE: This one corresponds to the original non-redundant version of the
benchmark.

� No monitor (NM): This one corresponds to the redundant version of the bench-
mark without any monitoring in place, thus reflecting the impact on execution
time due to sharing multicore hardware resources (e.g., bus and memory con-
troller).

� Passive (P): This one includes the monitor, which performs all actions needed,
such as retrieving PMCs from the head and trail processes, but taking no action
on the trail process so that it never gets stalled to preserve diversity.

� Safe (S): This setup is the complete implementation of the approach where the
trail process is delayed whenever it could catch up with the head process, thus
preserving diversity.

For each setup but the baseline one, we consider different Tcheck values, ranging
between 0.0001 and 0.01 seconds, so between 100µs and 10ms. Note that the higher
Tcheck, the lower the overhead of monitoring, but the higher the potential impact in
execution time due to stalling the trail process.

Results of the different setups and Tcheck values for EEMBCs and matmul are
shown in Figure 7-3. The figure summarizes the normalized results for the 8,500 runs
(500 runs for each of the 17 benchmarks). As shown, introducing redundancy (NM
setup) creates a slight execution time increase for some runs due to the contention
experienced in shared resources by running processes redundantly. These overheads
are not intrinsic to our approach but to the need to run processes redundantly. The
Passive monitor (P in the figure) causes no meaningful differences in execution time
since reading PMCs remotely and performing some local calculations causes negligi-
ble interference in the computing processes. Finally, the safe implementation (S in
the plot) incurs some overhead due to stalling the trail process to preserve timing
diversity. As shown, such overhead increases quite proportionally to the duration
of Tcheck, thus revealing that the impact on the execution time of delaying the trail
process is far higher than the impact of frequent monitoring. On the other hand,
very frequent monitoring is unwanted since this activity needs to be scheduled in the
MCU, where computation resources are scarce and shared across a number of safety-
critical activities. Thus, we regard Tcheck = 0.001 (1 ms) as an appropriate tradeoff,
and thus, this is the configuration we use in the rest of this section. Note, however,
that other platforms with different latencies may require a different Tcheck value.

While our approach guarantees diversity by construction, we further assess it by
comparing the passive (P) and active (Safe, S) monitors across all benchmarks. In
particular, we check whether the head process has always been ahead of the trail
process in terms of executed instructions.

118

7.3 Evaluation

B
A

S
E

L
IN

E

N
O

M
O

N
IT

O
R

P
,
10

0µ
s

P
,
50

0µ
s

P
,
1m

s

P
,
5m

s

P
,
10

m
s

S
,
10

0µ
s

S
,
50

0µ
s

S
,
1m

s

S
,
5m

s

S
,
10

m
s

Versions + T check

1.0

1.2

1.4

1.6

1.8

Figure 7-3: Execution times, in the form of a boxplot, for the different setups
(Baseline, No-Monitor, P = Passive, S = Safe) and Tcheck values (including EEMBCs

and matrix multiplication).

If in a given run, this is not the case at least once, we regard such execution
as unsafe due to the potential lack of diversity. Our results confirm, as expected,
that our mechanism preserves diversity for all monitoring actions in all runs of all
benchmarks.

However, if the execution is allowed to proceed without any control, despite the
initial staggering, it is quite common having the trail process executed ahead of the
head one at least during part of the execution, so that only around 23% of the runs
turned out to be safe, at least at the time of monitoring.

7.3.3 Performance Assessment

In Figure 7-4 we show boxplots for all benchmarks with Tcheck = 0.001s (1 ms) setup,
normalized w.r.t. their respective (non-redundant) baseline cases. Average execution
times increase only by a few percent, 5.4% on average across benchmarks and up to
12.4% (bitmnp01). Overall, this indicates that performance degradation due to our
mechanism is low and, moreover, as shown before, part of the overheads corresponds
to the contention experienced due to running processes redundantly. Note that there
are typically 2 or 3 outliers per benchmark, which in practice occur in the order of
once every 20 seconds (2-3 occurrences in 500 runs of around 100ms each). This
behavior relates to some periodic system activities due to the use of a regular Linux
version. Those effects will be avoided when an appropriate AUTOSAR-compliant
operating system is deployed on the eHPCM.

119

7. SOFTWARE-ONLY BASED DIVERSE REDUNDANCY FOR
ASIL-D AUTOMOTIVE APPLICATIONS ON EMBEDDED HPC
PLATFORMS

a2
tim

e0
1

aiff
tr
01

aifi
rf0

1

aii
fft

01

ba
se
fp
01

bi
tm

np
01

ca
ch

eb
01

ca
nr

dr
01

id
ct
rn

01

iir
flt

01

m
at
m
ul

m
at
rix

01

pn
tr
ch

01

pu
wm

od
01

rs
pe

ed
01

tb
lo
ok

01

tt
sp

rk
01

EEMBCs + Matrix Multiplication (matmul)

1.0

1.2

1.4

1.6

1.8
E

xe
c

T
im

e
N

or
m

al
iz

ed
to

B
as

el
in

e

Figure 7-4: Boxplot of the relative execution times of our approach for Tcheck = 0.001s
(1 ms) in the EEMBCs benchmarks.

Absolute average execution times range from 100ms to 120ms for EEMBCs bench-
marks, while for matmul it is 282ms, so absolute overheads are typically below 10ms.
If such overhead is still regarded as too high, it can be reduced at the expense of
increasing the frequency of execution of the monitoring process, as shown in Fig-
ure 7-3. For completeness, we further illustrate this effect in Figure 7-5 with average
results for the basefp01 EEMBC benchmark, whose overheads are close to the average
behavior across all benchmarks. In the Figure, we show the execution time of the
application as Binary Time, plus the data transfer and the comparison times, where
the latter two are negligible in practice (largely below 1% across setups and Tcheck

values evaluated). As shown, in the five rightmost columns, decreasing Tcheck down
to 0.1ms decreases overheads from 5% to 2% only (with increased monitoring costs
in the MCU), whereas increasing Tcheck up to 10ms increases overheads to 46%.

Overly high execution times in Figure 7-4 are some tens of milliseconds above
their median, and such large variation can only be attributed to uncontrolled resource
sharing. This indicates the convenience of setting appropriate setups in the eHPCM
to limit the impact of worst-case contention in shared resources.

7.4 Related Work

ASIL D compliant ST Microelectronics SPC56XL70 [74] and Infineon AURIX pro-
cessor family [1] implement DCLS, whereas some Arm Cortex-R5 designs imple-
ment Triple-Core Lockstep [80], but fails to provide enough performance for AD
systems [245].

Some improvements shorten time-to-detection for errors [220] or enhance recovery
processes [221] but do not improve performance. Another family of solutions for high-
performance CPUs builds upon thread redundancy inside a single core [228, 65], or

120

7.4 Related Work

B
A

S
E

L
IN

E

N
M

P
,

0.
00

01

P
,

0.
00

05

P
,

0.
00

1

P
,

0.
00

5

P
,

0.
01

S
,

0.
00

01

S
,

0.
00

05

S
,

0.
00

1

S
,

0.
00

5

S
,

0.
01

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 BinaryTime

ComparisonTime

TransferTime

Figure 7-5: Execution times of the different setups for basefp01 baseline normalized.

Strategy Target
Diversity

(CCF considered)
Approaches

HW
CPU

Yes [74, 80, 227]
No [65, 228, 229, 230, 231, 232]

GPU
Partially [47]

No [222, 233, 223, 234]

SW-Only
CPU

Yes This proposal

No
[235, 236, 237, 238],
[239, 240, 241, 242]

GPU
Partially [48]

No [243, 124, 206, 244]

Table 7.1: Classification of HW and SW-only fault-tolerant techniques

across cores [229, 230, 231], even with only partial redundancy [227, 232]. However,
those solutions require hardware support for thread synchronization and, differently
from DCLS, do not guarantee diversity.

SW-only solutions also exist for CPUs, introducing redundancy at compiler lev-
els [238, 239], building on transactional memory [235] or creating a monitoring process
to check for errors [236, 241], among other solutions [242]. However, none of them
guarantees staggering execution for redundant threads/processes, so CCFs may cause
the same error in both threads/processes, leading to a failure. For example, authors
in [241] consider process granularity when applying for redundancy, but they do not
impose control on the pace of the redundant execution, which made them vulnerable
to CCFs since their cores may have exactly the same state when the fault affecting
both cores identically occur.

121

7. SOFTWARE-ONLY BASED DIVERSE REDUNDANCY FOR
ASIL-D AUTOMOTIVE APPLICATIONS ON EMBEDDED HPC
PLATFORMS

Analogous solutions for accelerators (e.g., GPUs or the Kalray MPPA family) have
been proposed, either with hardware support [124, 233, 223, 234] or with software-
only support [243, 124, 206], but none of them guarantees diversity to protect against
CCFs. Some preliminary solutions guarantee diversity to some extent for GPUs either
with [47] or without hardware support [48].

However, to the best of our knowledge, no software-only solution guarantees di-
versity for CPUs, which is the challenge we address in this work, as summarized in
Table 7.1.

7.5 Conclusions

This proposal provides a flexible and efficient strategy to achieve diverse redundancy
on COTS multicores and accelerators. Our solution imposes low requirements on the
platform, such as having instruction counters per core and the ability to read them
remotely – subject to having appropriate permissions. Those requirements are met
by most existing HPC COTS platforms, thus facilitating the integration of our strat-
egy. Our evaluation confirms that, as expected, diversity is achieved by construction
when our mechanism is in place, execution time overheads are low, and execution
overheads in the eHPCM and MCU can be traded off easily by increasing/decreasing
the monitoring frequency.

122

Chapter 8

Conclusions

8.1 Contributions

The work done in this thesis advances the state of the art of the safety-critical domain
in several aspects. The main challenges tackled focus on devising diverse redundant
executions to enable the usage of HPC hardware components for the highest criticality
levels in safety-critical applications. Two different approaches are presented for HPC
GPUs, each one with different trade-offs and one for the Multicores. These challenges
are tackled in the different contributions of the thesis, which are the following:

� Our first contribution focuses on an early analysis of the GPUs usage in the
automotive domain. In particular, we analyze the fundamental properties for
a correct operation under automotive’s safety regulations. This initial contri-
bution builds as a starting point for the rest of the contribution towards the
contribution focused on enabling GPUs in the Automotive domain.

� Our second contribution proposes minor modifications of the internal schedul-
ing policies of the GPUs that guarantee diverse redundancy by construction.
Thus, reaching ASIL-D compliance efficiently without the need to increase de-
sign and/or procurement costs. In particular, we show how the explicit control
of the SMs used for a given kernel, together with the serialization of redundant
execution, in some cases, allows achieving diverse redundancy with low-cost
w.r.t uncontrolled redundancy for all types of kernels.

� Our third contribution presents an alternative way to achieve diverse redun-
dancy executions in COTS GPUs by software-only means. In this contribution,
a different approach is required based on the type of kernel identified. A dif-
ferent solution is offered for each, from where we highlight the reshape protocol
employed for the heavy kernels to transform them into friendly. We analyze
the slack observed when two consecutive kernels are launched to the GPU, and
we extend the initial approach to achieve Triple Modular Redundancy (TMR)
as well. To finish with the GPU contributions, we perform a fault injection
campaign to analyze the improvements in reliability terms, and we compare the
two GPU contributions’ execution times side by side in the simulator.

123

8. CONCLUSIONS

� The last contribution of this Thesis is the proposal focusing on Multicore sys-
tems. In this contribution, we develop a strategy to achieve a diverse redundant
execution in these systems based on the PMC. One of the system’s cores is in
charge of orchestrating and monitoring the execution on two other cores (or
accelerators), which will execute the task similarly to lockstep. By reading the
PMC to monitor their progress and pausing/resuming them in case of poten-
tial loss of diversity. We evaluate and verify the proposal in a COTS ARM
multicore system.

8.2 Impact

As we have seen, the automotive industry intends to shift towards the usage of GPUs
due to Autonomous Driving (AD) performance requirements. As we analyze in the
first contribution, multiple gaps exist from the HPC domain and the safety-critical
domain. In particular, those related to the functional safety and timing guarantees
are still open challenges and threats to certification, as well as the lack of internal
controllability and observability. GPUs will need to address these challenges before
they can be integrated into automotive SoC and be commercialized. The work done
in this thesis has an impact on the following aspects:

� The GPU contributions introduce one of the challenges mentioned above, to
enable a diverse redundant execution, which enables them to provide functional
safety, although the certification of GPUs for the automotive domain is a long
journey. With the contributions of this thesis, we made an initial step and
devise two different strategies to achieve a diverse redundant execution in a
single GPU, hence with lower costs than default solutions using two GPUs.

� The GPU hardware proposal may have an impact on the GPU architecture
community since it is a relatively easy implementation that enables a diverse
redundant execution in a single GPU.

� The realization of this thesis has been the seed of another scientific article. A
paper that studies the reliability properties of one of the contributions under
the effect of proton radiation. The paper was presented in the poster session
of the RADECS 2022 conference and has been selected to be published in a
special issue of the IEEE Transactions on Nuclear Science:

Assessment of redundant kernel execution on embedded GPU under proton ir-
radiation

S. Alcaide, A. Serrano-Cases, A. Romero Maestre, Y. Morilla, S. Cuenca-Asensi

� The software-only GPU contribution of this thesis has been used as a basis for
some successful projects proposals and tasks within projects such as the project
ASIL2ECSS or the European Space Agency (ESA) co-funding Ph.D. thesis of
Ivan Rodriguez has used the contribution as a starting point.

124

8.3 Future Work

� We have recently started a bilateral collaboration with Intel Corporation for the
integration of our software-only solution for GPUs on Intel GPUs due to the
relevance of the topic and the effectiveness and efficiency of our solution. So far
a solution with some constraints has been developed, and the work continues
towards removing those constraints and maturing the solution so that it can be
transferred to product units within Intel in the short or mid-term.

On the other side, we also analyze multicore systems that can also be employed
to improve the performance demanded by some tasks in safety-critical systems. The
work done in this thesis also impacts the following aspects:

� The Multicore contribution has been later improved in the context of the FRAC-
TAL project in a task, in the form of a software library to enable a diverse
redundant execution on multicores. The library has been ported successfully
to RISC-V and x86 ISAs. The library is open-source and can be found here:
https://gitlab.bsc.es/caos_hw/software-diverse-redundancy-library

� The Multicore contribution has also been used as the basis for a small hardware
module named SafeDE developed in the SELENE project. Similarly to our
contribution, this tiny module reads the instruction counters of two cores in
order to guarantee a diverse redundant execution. In a few words, this mod-
ule is the hardware counterpart of our software-only solution, hence providing
much higher efficiency, yet at the cost of requiring hardware modifications. The
module is open-source and can be found here: https://gitlab.bsc.es/caos_
hw/hdl_ip/bsc_lightlock

Overall, the global contribution of this thesis consists of enabling the use of HPC
parts even for applications with the highest integrity levels by providing solutions to
realize diverse redundancy – a key safety requirement for those applications.

8.3 Future Work

The results and contributions of this thesis can be further extended in several direc-
tions. We list some of these directions and present them in order of feasibility, from
short-term to long-term:

� The GPU software-only contribution lacks automation, as it requires different
solutions based on the type of kernel being dealt with. However, the kernel
type depends on the hardware and the software. On one side, the software ran
and, in particular, the resources required on the kernel launch will affect the
characterization of the kernel since bigger resource requirements will generally
point towards a heavy kernel. On the other side, the larger the number of
resources available in the GPU, the less likely a kernel will be heavy. Thus,
a foreseen line of research is automatizing kernel-type detection. Once this
is achieved, a second phase is to automate the modifications into the diverse-
redundant approach based on the outcome of the first part since it will differ
based on the kernel type (e.g., requires a transformation for heavy kernels).

125

https://gitlab.bsc.es/caos_hw/software-diverse-redundancy-library
https://gitlab.bsc.es/caos_hw/hdl_ip/bsc_lightlock
https://gitlab.bsc.es/caos_hw/hdl_ip/bsc_lightlock

8. CONCLUSIONS

� Related to the previous point, another interesting line of research is to extend
the proof of concept to GPUs from other vendors such as Intel or AMD. Al-
though we already commented on the feasibility of this approach to other GPU
vendors, we believe is still interesting to achieve it. This line has already pro-
duced a publication that is currently pending to appear (Publication number
10 in 1.6) which explores this approach on Intel GPUs.

� Another aspect that we just barely touch in this Thesis is radiation testing. This
topic is particularly interesting for the space domain. It is a common practice
in the space domain to reuse automotive components due to the similarities of
both domains, with the particularity of radiation, which is more relevant in the
space domain. With this, we think that radiation testing of the GPU software-
only approach can be very convenient to extend this approach into the space
domain. Publication number 14 in Section 1.6 goes in this direction and could
be easily extended to other radiation types (e.g., electrons).

� Related to the last contribution, one interesting line of research is to extend
to approach to multi-threaded applications. The current approach is limited
to applications with only one thread. However, due to the number of cores
available in multicore systems, it could be very interesting to use all of them
and use all that computing power. A more ambitious research line could be
extending this approach to be used in other specific accelerators apart from
GPUs.

126

Bibliography

[1] Infineon. AURIX Multicore 32-bit Microcontroller Family to Meet
Safety and Powertrain Requirements of Upcoming Vehicle Genera-
tions. http://www.infineon.com/cms/en/about-infineon/press/

press-releases/2012/INFATV201205-040.html. viii, 1, 37, 85, 95, 108,
120

[2] Xabier Iturbe, Balaji Venu, Emre Ozer, Jean-Luc Poupat, Gregoire Gimenez,
and Hans-Ulrich Zurek. The Arm Triple Core Lock-Step (TCLS) Processor.
ACM Trans. Comput. Syst., 36(3), 2019. viii, 22

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Depend-
able and Secure Computing, 1(1):11–33, 2004. xv, 16, 17, 18

[4] G.A. Klutke, P.C. Kiessler, and M.A. Wortman. A critical look at the bathtub
curve. IEEE Transactions on Reliability, 52(1):125–129, 2003. xv, 42, 43

[5] ARM. ARM Cortex A57 specifications. https://developer.arm.com/

Processors/Cortex-A57. xv, 48, 49

[6] Dustin Franklin - NVIDIA. NVIDIA Jetson TX2 Delivers Twice the
Intelligence to the Edge, 2017. https://developer.nvidia.com/blog/

jetson-tx2-delivers-twice-intelligence-edge. xv, 49

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In IISWC, 2009. xvi, 48, 53, 79, 91, 96, 100

[8] The Economist. Nvidia plays the diversification
game. https://www.economist.com/business/2019/02/23/

nvidia-plays-the-diversification-game. 1

[9] NVIDIA. Crypto mining gpu for professional miners. https://www.nvidia.

com/en-us/cmp/, 2021. 1

[10] Edoardo Calia and Davide D’Aprile. Industry4.0, pages 309–333. Springer
International Publishing, 2020. 1

127

http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
https://developer.arm.com/Processors/Cortex-A57
https://developer.arm.com/Processors/Cortex-A57
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge
https://www.economist.com/business/2019/02/23/nvidia-plays-the-diversification-game
https://www.economist.com/business/2019/02/23/nvidia-plays-the-diversification-game
https://www.nvidia.com/en-us/cmp/
https://www.nvidia.com/en-us/cmp/

BIBLIOGRAPHY

[11] Xi Chen, Chen Wang, Shanjiang Tang, Ce Yu, and Quan Zou. Cmsa: a het-
erogeneous cpu/gpu computing system for multiple similar rna/dna sequence
alignment. BMC Bioinformatics, 18, 06 2017. 1

[12] ARM. ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade, 2015. https://www.arm.com/about/newsroom/

arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.

php. 1, 60, 109

[13] Cobham Gaisler. Section Processors - Category LEON CPU Family. https://
www.gaisler.com/index.php/products/processors/leon-examples, 2021.
1

[14] Cobham Gaisler. Section Processors - Category NOEL CPU Family. https:

//www.gaisler.com/index.php/products/processors/noel-v-examples,
2021. 1

[15] G. Durrieu and M. Faugère and Sylvain Girbal and D. G. Pérez and C. Pagetti
and W. Puffitsch. Predictable flight management system implementation on a
multicore processor. In Proceeding of the 7th European Congress on Embedded
Real Time Software and Systems, 2014. 1, 5

[16] Xilinx. Xilinx Zynq UltraScale+ MPSoC Data Sheet.
https://www.xilinx.com/support/documentation/data_sheets/

ds891-zynq-ultrascale-plus-overview.pdf. 1, 41

[17] Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and
Francisco J. Cazorla. Leveraging Hardware QoS to Control Contention in
the Xilinx Zynq UltraScale+ MPSoC. In Björn B. Brandenburg, editor, 33rd
Euromicro Conference on Real-Time Systems, ECRTS 2021, July 5-9, 2021,
Virtual Conference, volume 196 of LIPIcs, pages 3:1–3:26. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. 1

[18] Danny Shapiro. Introducing Xavier, the NVIDIA AI Supercomputer for the
Future of Autonomous Transportation. NVIDIA blog, 2016. 2, 3, 33, 111

[19] CoreAVI. GPUs/SoCs for Safety Critical. https://coreavi.com/product_

category/gpus-socs-for-safety-critical, 2021. 2

[20] M. Benito et al,. Comparison of GPU computing methodologies for safety-
critical systems: An avionics case study. In Design, Automation & Test in
Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5,
2021, pages 717–718. IEEE, 2021. 2

[21] Gary Hicok. NVIDIA Xavier Achieves Industry First with Ex-
pert Safety Assessment. https://blogs.nvidia.com/blog/2020/05/20/

xavier-achieves-industry-first-safety-assessment/, 2020. 2, 3

128

https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.gaisler.com/index.php/products/processors/leon-examples
https://www.gaisler.com/index.php/products/processors/leon-examples
https://www.gaisler.com/index.php/products/processors/noel-v-examples
https://www.gaisler.com/index.php/products/processors/noel-v-examples
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://coreavi.com/product_category/gpus-socs-for-safety-critical
https://coreavi.com/product_category/gpus-socs-for-safety-critical
https://blogs.nvidia.com/blog/2020/05/20/xavier-achieves-industry-first-safety-assessment/
https://blogs.nvidia.com/blog/2020/05/20/xavier-achieves-industry-first-safety-assessment/

BIBLIOGRAPHY

[22] RENESAS R-Car H3. https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html. 2, 4, 82, 109, 111

[23] Guardian News & Media Limited. Florida Tesla crash
which killed two will be investigated by federal board.
https://www.theguardian.com/technology/2021/sep/18/

florida-tesla-crash-autopilot-fire-national-federal-transportation-board,
2021. 2

[24] Euronews. Tokyo 2020 driverless buses lose self-driving functions after
hitting Paralympic athlete. https://www.euronews.com/next/2021/08/30/

toyota-halts-autonomous-e-palette-buses-after-one-hits-paralympic-athlete-in-tokyo-olympic,
2021. 2

[25] NHTSA. Nhtsa report on toyota unintended acceleration investigation.
https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%

93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print.
2

[26] Intel Corporation. Intel® Core� i9-11900KF Processor. https:

//ark.intel.com/content/www/es/es/ark/products/212321/

intel-core-i9-11900kf-processor-16m-cache-up-to-5-30-ghz.html.
3

[27] NVIDIA Corporation. Nvidia geforce rtx 3080. https://www.nvidia.com/

es-es/geforce/graphics-cards/30-series/rtx-3080-3080ti/. 3

[28] NVIDIA. NVIDIA Announces World’s First Functionally Safe AI
Self-Driving Platform. https://nvidianews.nvidia.com/news/

nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform.
3, 72, 82, 109

[29] Imagination Technologies Limited. Graphics processors. https://www.

imaginationtech.com/graphics-processors/, Mar 2021. 4

[30] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López, and
Vladlen Koltun. CARLA: an open urban driving simulator. In Proceedings of
the 1st Annual Conference on Robot Learning, pages 1–16, 2017. 4

[31] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv,
2018. 4, 34, 51

[32] Gordon E. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE
Solid-State Circuits Society Newsletter, 11(3):33–35, 2006. 5, 37

[33] V.P. Nelson. Fault-tolerant computing: fundamental concepts. Computer,
23(7):19–25, 1990. 5, 22

129

https://www.theguardian.com/technology/2021/sep/18/florida-tesla-crash-autopilot-fire-national-federal-transportation-board
https://www.theguardian.com/technology/2021/sep/18/florida-tesla-crash-autopilot-fire-national-federal-transportation-board
https://www.euronews.com/next/2021/08/30/toyota-halts-autonomous-e-palette-buses-after-one-hits-paralympic-athlete-in-tokyo-olympic
https://www.euronews.com/next/2021/08/30/toyota-halts-autonomous-e-palette-buses-after-one-hits-paralympic-athlete-in-tokyo-olympic
https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print
https://one.nhtsa.gov/About-NHTSA/Press-Releases/ci.NHTSA%E2%80%93NASA-Study-of-Unintended-Acceleration-in-Toyota-Vehicles.print
https://ark.intel.com/content/www/es/es/ark/products/212321/intel-core-i9-11900kf-processor-16m-cache-up-to-5-30-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/212321/intel-core-i9-11900kf-processor-16m-cache-up-to-5-30-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/212321/intel-core-i9-11900kf-processor-16m-cache-up-to-5-30-ghz.html
https://www.nvidia.com/es-es/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.nvidia.com/es-es/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://nvidianews.nvidia.com/news/nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform
https://nvidianews.nvidia.com/news/nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform
https://www.imaginationtech.com/graphics-processors/
https://www.imaginationtech.com/graphics-processors/

BIBLIOGRAPHY

[34] Infineon. AURIX-TC27xB-Step, 32-bit Single Chip Micro-controller, User’s
Manual, vl4.1, feb 2014. 5, 6

[35] PROXIMA. Probabilistic real-time control of mixed-criticality multicore and
manycore systems. http://www.proxima-project.eu/, oct 2014. 5

[36] T. Moseley, J. L. Kihm, D. A. Connors, and D. Grunwald. Methods for modeling
resource contention on simultaneous multithreading processors. In IEEE ICCD,
2005. 5

[37] H. Kim, Dionisio de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar.
Bounding memory interference delay in COTS-based multi-core systems. In
RTAS, 2014. 5

[38] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates
for multi-core processors with shared instruction caches. In RTSS, 2009. 5

[39] International Standards Organization. ISO/DIS 26262. Road Vehicles — Func-
tional Safety, 2009. 6, 16, 22, 25, 26, 28, 34, 41, 59, 85

[40] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. Computing in Science
Engineering, 12(3):66–73, 2010. 6, 49, 52, 64

[41] NVIDIA. NVIDIA CUDA Toolkit 10.0.130. https://docs.nvidia.com/pdf/
CUDA_Toolkit_Release_Notes.pdf, 2018. 6, 49, 52, 64

[42] Matina Maria Trompouki and Leonidas Kosmidis. Brook auto: High-level
certification-friendly programming for gpu-powered automotive systems. In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages
1–6, 2018. 6, 33, 64

[43] Leonidas Kosmidis, Iván Rodriguez, Álvaro Jover, Sergi Alcaide, Jérôme
Lachaize, Jaume Abella, Olivier Notebaert, Francisco J. Cazorla, and David
Steenari. Gpu4s: Embedded gpus in space. In 2019 22nd Euromicro Confer-
ence on Digital System Design (DSD), pages 399–405, 2019. 7, 34

[44] Leonidas Kosmidis, Jérôme Lachaize, Jaume Abella, Olivier Notebaert, Fran-
cisco J. Cazorla, and David Steenari. Gpu4s: Embedded gpus in space. In 2019
22nd Euromicro Conference on Digital System Design (DSD), pages 399–405,
2019. 7, 34

[45] Leonidas Kosmidis, Iván Rodriguez, Álvaro Jover, Sergi Alcaide, Jérôme
Lachaize, Jaume Abella, Olivier Notebaert, Francisco J. Cazorla, and David
Steenari. Gpu4s: Embedded gpus in space - latest project updates. Micropro-
cessors and Microsystems, 77:103143, 2020. 7, 12

130

http://www.proxima-project.eu/
https://docs.nvidia.com/pdf/CUDA_Toolkit_Release_Notes.pdf
https://docs.nvidia.com/pdf/CUDA_Toolkit_Release_Notes.pdf

BIBLIOGRAPHY

[46] Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez, Jaume
Abella, and Francisco J. Cazorla. Safety-related challenges and opportunities
for gpus in the automotive domain. IEEE Micro, 38(6):46–55, 2018. 10

[47] Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella. High-
integrity gpu designs for critical real-time automotive systems. In 2019 De-
sign, Automation Test in Europe Conference Exhibition (DATE), pages 824–
829, 2019. 10, 121, 122

[48] Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella.
Software-only diverse redundancy on gpus for autonomous driving platforms.
In 2019 IEEE 25th International Symposium on On-Line Testing and Robust
System Design (IOLTS), pages 90–96, 2019. 11, 121, 122

[49] Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella.
Software-only triple diverse redundancy on gpus for autonomous driving plat-
forms. In 2020 50th Annual IEEE-IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S), pages 82–88, 2020. 11

[50] Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella.
Achieving diverse redundancy for gpu kernels. IEEE TETC (2022) Transac-
tions on Emerging Topics in Computing - Special Section on Defect and Fault
Tolerance in Nanoscale Systems for Emerging Computing Paradigms and Ap-
plications, pages 1–1, 2022. 11

[51] Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella.
Software-only based diverse redundancy for asil-d automotive applications on
embedded hpc platforms. In 2020 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–4,
2020. 11

[52] Leonidas Kosmidis, Iván Rodriguez, Alvaro Jover-Alvarez, Sergi Alcaide,
Jérôme Lachaize, Olivier Notebaert, Antoine Certain, and David Steenari.
GPU4S: major project outcomes, lessons learnt and way forward. In Design,
Automation & Test in Europe Conference & Exhibition, (DATE), pages 1314–
1319. IEEE, 2021. 11

[53] Francisco Bas, Sergi Alcaide, Ruben Lorenzo, Guillem Cabo, Guillermo Gil,
Oriol Sala, Fabio Mazzocchetti, David Trilla, and Jaume Abella. Safede: a
flexible diversity enforcement hardware module for light-lockstepping. In 2021
IEEE 27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), pages 1–7, 2021. 12

[54] Jaume Abella, Sergi Alcaide, Jens Anders, Francisco Bas, Steffen Becker, Elke
De Mulder, Nourhan Elhamawy, Frank K. Gürkaynak, Helena Handschuh, Car-
les Hernandez, Mike Hutter, Leonidas Kosmidis, Ilia Polian, Matthias Sauer,

131

BIBLIOGRAPHY

Stefan Wagner, and Francesco Regazzoni. Security, reliability and test aspects
of the risc-v ecosystem. In 2021 IEEE European Test Symposium (ETS), pages
1–10, 2021. 12

[55] Francisco Bas, Sergi Alcaide, Guillem Cabo, Pedro Benedicte, and Jaume
Abella. Safede: A low-cost hardware solution to enforce diverse redundancy in
multicores. IEEE Transactions on Device and Materials Reliability, 22(2):111–
119, 2022. 12

[56] Sergi Alcaide, Guillem Cabo, Francisco Bas, Pedro Benedicte, Francisco
Fuentes, Feng Chang, Ilham Lasfar, Ramon Canal, and Jaume Abella. Safex:
Open source hardware and software components for safety-critical systems. In
2022 Forum on Specification & Design Languages (FDL), pages 1–4, 2022. 13

[57] Ramon Canal, Francisco Bas, Sergi Alcaide, Guillem Cabo, Pedro Benedicte,
Francisco Fuentes, Feng Chang, Ilham Lasfar, and Jaume Abella. Safedx: Stan-
dalone modules providing diverse redundancy for safety-critical applications. In
Embedded Computer Systems: Architectures, Modeling, and Simulation: 22nd
International Conference, SAMOS 2022, Samos, Greece, July 3–7, 2022, Pro-
ceedings, page 383–393, Berlin, Heidelberg, 2022. Springer-Verlag. 13

[58] Fabio Mazzocchetti, Sergi Alcaide, Francisco Bas, Pedro Benedicte, Guillem
Cabo, Feng Chang, Francisco Fuentes, and Jaume Abella. Safesoftdr: A library
to enable software-based diverse redundancy for safety-critical tasks, 2022. 13

[59] Alvin Reyes. Mercedes-benz wins world’s first approval for level 3 autonomous
cars: What’s that mean?, Feb 2022. 15

[60] J3016c: Taxonomy and definitions for terms related to driving automation sys-
tems for on-road motor vehicles. Standard, SAE International. 15

[61] Nico DeMattia. Level 4 autonomous driving could come by 2030 per audi
lawyer, Feb 2022. 15

[62] International Electrotechnical Commission. IEC61508Functional safety of elec-
trical/electronic/programmable electronic safety-related systems, 2010. 16, 25,
43, 44

[63] Wafa Gabsi and Bechir Zalila. Fault tolerance for distributed real time dy-
namically reconfigurable systems from modeling to implementation. In 2013
Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, 2013. 16

[64] Mukherjee, S.S. and Kontz, M. and Reinhardt, S.K. Detailed design and eval-
uation of redundant multi-threading alternatives. In Proceedings 29th Annual
International Symposium on Computer Architecture, pages 99–110, 2002. 20

132

BIBLIOGRAPHY

[65] Rotenberg, E. Ar-smt: a microarchitectural approach to fault tolerance in mi-
croprocessors. In Digest of Papers. Twenty-Ninth Annual International Sympo-
sium on Fault-Tolerant Computing (Cat. No.99CB36352), pages 84–91, 1999.
20, 120, 121

[66] M. Agostinelli, J. Hicks, J. Xu, B. Woolery, K. Mistry, K. Zhang, S. Jacobs,
J. Jopling, W. Yang, B. Lee, T. Raz, M. Mehalel, P. Kolar, Y. Wang, J. Sand-
ford, D. Pivin, C. Peterson, M. DiBattista, S. Pae, M. Jones, S. Johnson, and
G. Subramanian. Erratic fluctuations of sram cache vmin at the 90nm process
technology node. In IEEE InternationalElectron Devices Meeting, 2005. IEDM
Technical Digest., pages 655–658, 2005. 20

[67] Carles Hernandez and Jaume Abella. Timely error detection for effective re-
covery in light-lockstep automotive systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(11):1718–1729, 2015. 21

[68] Sergi Alcaide, Carles Hernandez, Antoni Roca, and Jaume Abella. Dimp:
A low-cost diversity metric based on circuit path analysis. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2017.
21

[69] S. Mitra, N.R. Saxena, and E.J. McCluskey. Efficient design diversity estimation
for combinational circuits. IEEE Transactions on Computers, 53(11):1483–
1492, 2004. 21

[70] S. Mitra, N.R. Saxena, and E.J. McCluskey. A design diversity metric and
analysis of redundant systems. IEEE Transactions on Computers, 51(5):498–
510, 2002. 21

[71] S. Mitra, N.R. Saxena, and E.J. McCluskey. Techniques for estimation of design
diversity for combinational logic circuits. In 2001 International Conference on
Dependable Systems and Networks, pages 25–34, 2001. 21

[72] S. Mitra and E.J. McCluskey. Design diversity for concurrent error detection
in sequential logic circuits. In Proceedings 19th IEEE VLSI Test Symposium.
VTS 2001, pages 178–183, 2001. 21

[73] Peter Tummeltshammer and Andreas Steininger. Power supply induced com-
mon cause faults-experimental assessment of potential countermeasures. In 2009
IEEE/IFIP International Conference on Dependable Systems Networks, pages
449–457, 2009. 21

[74] STMicroelectronics. 32-bit Power Architecture microcontroller for automo-
tive SIL3/ASILD chassis and safety applications. https://www.st.com/en/

automotive-microcontrollers/spc570s40e3.html, 2014. 22, 95, 108, 120,
121

133

https://www.st.com/en/automotive-microcontrollers/spc570s40e3.html
https://www.st.com/en/automotive-microcontrollers/spc570s40e3.html

BIBLIOGRAPHY

[75] Synopsys, Inc. Synopsys Announces Industry’s First ASIL
D Ready Dual-Core Lockstep Processor IP with Integrated
Safety Monitor. https://www.eejournal.com/industry_news/

synopsys-simplifies-automotive-soc-development-with-new-arc-functional-safety-processor-ip,
2017. 22

[76] Radio Technical Commission for Aeronautics (RTCA). DO-178C - Software
Considerations in Airborne Systems and Equipment Certification, 2011. 22, 25

[77] Bernick, D. and Bruckert, B. and Vigna, P.D. and Garcia, D. and Jardine,
R. and Klecka, J. and Smullen, J. Nonstop/spl reg/ advanced architecture. In
2005 International Conference on Dependable Systems and Networks (DSN’05),
pages 12–21, 2005. 22

[78] IBM. PowerPC 750GX Lockstep Facility. Application note, 2008. 22

[79] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, Maurizio
Peri, and Saverio Pezzini. Fault-Tolerant Platforms for Automotive Safety-
Critical Applications. In Proceedings of the 2003 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, page 170–177.
Association for Computing Machinery, 2003. 22

[80] X. Iturbe et al. Addressing Functional Safety Challenges in Autonomous Vehi-
cles with the Arm Triple Core Lock-Step (TCLS) Architecture. IEEE Design
and Test, PP(99):1–1, 2018. 22, 108, 120, 121

[81] Wikipedia contributors. Ram parity — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=RAM_parity&oldid=

1042196119, 2021. [Online; accessed 23-November-2021]. 23

[82] R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, 1950. 23

[83] Marco Ottavi, Dimitris Gizopoulos, and Salvatore Pontarelli. Dependable Mul-
ticore Architectures at Nanoscale. Springer, Cham, 1 edition, 2018. 24, 37

[84] European Committee for Electrotechnical Standardization (CENELEC). Rail-
way Applications - The Specification and Demonstration of Reliability, Avail-
ability, Maintainability and Safety (RAMS) Part 2: Systems Approach to
Safety, 2019. 25

[85] IEC - International Electrotechnical Commission. IEC 62304:2006/AMD
1:2015 Medical device software — Software life cycle processes — Amendment
1, 2015. 25

[86] IEC - International Electrotechnical Commission. IEC 62061:2021 Safety of
machinery - Functional safety of safety-related control systems, 2021. 25

134

https://www.eejournal.com/industry_news/synopsys-simplifies-automotive-soc-development-with-new-arc-functional-safety-processor-ip
https://www.eejournal.com/industry_news/synopsys-simplifies-automotive-soc-development-with-new-arc-functional-safety-processor-ip
https://en.wikipedia.org/w/index.php?title=RAM_parity&oldid=1042196119
https://en.wikipedia.org/w/index.php?title=RAM_parity&oldid=1042196119

BIBLIOGRAPHY

[87] IEC - International Electrotechnical Commission. IEC 61513:2011 Nuclear
power plants - Instrumentation and control important to safety - General re-
quirements for systems, 2006. 25

[88] International Standards Organization. ISO/PAS 21448:2019 Road vehicles —
Safety of the intended functionality, 2019. 25, 29, 34

[89] SAE International. J3016: Taxonomy and Definitions for Terms Related to
On-Road Motor Vehicle Automated Driving Systems, 2014. 27

[90] Rory Cellan Jones. Uber’s self-driving operator charged over fatal crash, Sep
2020. https://www.bbc.com/news/technology-54175359. 30

[91] E. Wyrwas. Body of knowledge for graphics processing units (gpus). Technical
report, National Aeronautics and Space Administration (NASA), 2018. 31, 34

[92] Daniel Alfonso Gonçalves Gonçalves de Oliveira, Laercio Lima Pilla, Thiago
Santini, and Paolo Rech. Evaluation and mitigation of radiation-induced soft er-
rors in graphics processing units. IEEE Transactions on Computers, 65(3):791–
804, 2016. 31, 34

[93] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and
David Glasco. Gpus and the future of parallel computing. IEEE Micro, 31(5):7–
17, 2011. 31

[94] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: Stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777–786, 2004. 33

[95] Marc Benito, Matina Maria Trompouki, Leonidas Kosmidis, Juan David Garcia,
Sergio Carretero, and Ken Wenger. Comparison of gpu computing methodolo-
gies for safety-critical systems: An avionics case study. In 2021 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 717–718, 2021.
33, 34

[96] Olmedo, Ignacio Sañudo and Capodieci, Nicola and Cavicchioli, Roberto. A
perspective on safety and real-time issues for gpu accelerated adas. In IECON
2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pages
4071–4077, 2018. 34

[97] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon, Bill
McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil Arora,
Atchyuth Gorti, and Gagandeep S. Sachdev. Compute solution for tesla’s full
self-driving computer. IEEE Micro, 40(2):25–35, 2020. 34

[98] Junko Yoshida. Unveiled: BMW’s Scalable AV Architecture. EE—Times, 2020.
https://www.eetimes.com/unveiled-bmws-scalable-av-architecture/.
34

135

https://www.bbc.com/news/technology-54175359
https://www.eetimes.com/unveiled-bmws-scalable-av-architecture/

BIBLIOGRAPHY

[99] Jyotika Athavale, Andrea Baldovin, and Michael Paulitsch. Trends and func-
tional safety certification strategies for advanced railway automation systems.
In 2020 IEEE International Reliability Physics Symposium (IRPS), pages 1–7,
2020. 34

[100] Jyotika Athavale, Andrea Baldovin, Ralf Graefe, Michael Paulitsch, and Rafael
Rosales. Ai and reliability trends in safety-critical autonomous systems on
ground and air. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 74–77, 2020. 34

[101] Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J. Cazorla.
On the tailoring of cast-32a certification guidance to real cots multicore archi-
tectures. In 2017 12th IEEE International Symposium on Industrial Embedded
Systems (SIES), pages 1–8, 2017. 34

[102] Hamidreza Ahmadian, Roman Obermaisser, and Jon Perez. Distributed Real-
Time Architecture for Mixed-Criticality Systems. CRC Press, 2018. 34, 44

[103] Jon Perez Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J. Cazorla,
Kim Grüttner, Irune Agirre, Hamidreza Ahmadian, and Imanol Allende. Multi-
core devices for safety-critical systems: A survey. ACM Comput. Surv., 53(4),
2021. 34

[104] Guoqi Xie, Yanwen Li, Yunbo Han, Yong Xie, Gang Zeng, and Renfa Li. Recent
advances and future trends for automotive functional safety design methodolo-
gies. IEEE Transactions on Industrial Informatics, 16(9):5629–5642, 2020. 34

[105] Fernando dos Santos, Luigi Carro, and P. Rech. Kernel and layer vulnerability
factor to evaluate object detection reliability in gpus. IET Computers & Digital
Techniques, 13, 09 2018. 34

[106] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keck-
ler, and Joel Emer. Sassifi: An architecture-level fault injection tool for gpu
application resilience evaluation. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 249–258, 2017.
34, 55

[107] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H. Ander-
son, and F. Donelson Smith. Avoiding Pitfalls when Using NVIDIA GPUs for
Real-Time Tasks in Autonomous Systems. In ECRTS, 2018. 34, 79, 82, 94

[108] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donel-
son Smith. Gpu scheduling on the nvidia tx2: Hidden details revealed. In 2017
IEEE Real-Time Systems Symposium (RTSS), pages 104–115, 2017. 34, 82

136

BIBLIOGRAPHY

[109] Daniel A. G. Oliveira, Paolo Rech, Heather M. Quinn, Thomas D. Fairbanks,
Laura Monroe, Sarah E. Michalak, Christine Anderson-Cook, Philippe O. A.
Navaux, and Luigi Carro. Modern gpus radiation sensitivity evaluation and
mitigation through duplication with comparison. IEEE Transactions on Nuclear
Science, 61(6):3115–3122, 2014. 34

[110] Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory interfer-
ence characterization between cpu cores and integrated gpus in mixed-criticality
platforms. In 2017 22nd IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), pages 1–10, 2017. 34

[111] Alessandro Vallero, Dimitris Gizopoulos, and Stefano Di Carlo. Sifi: Amd
southern islands gpu microarchitectural level fault injector. In 2017 IEEE
23rd International Symposium on On-Line Testing and Robust System Design
(IOLTS), pages 138–144, 2017. 34

[112] Alessandro Vallero, Sotiris Tselonis, Dimitris Gizopoulos, and Stefano Di Carlo.
Multi-faceted microarchitecture level reliability characterization for nvidia and
amd gpus. In 2018 IEEE 36th VLSI Test Symposium (VTS), pages 1–6, 2018.
34

[113] Sotiris Tselonis and Dimitris Gizopoulos. Gufi: A framework for gpus reliability
assessment. In 2016 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 90–100, 2016. 34

[114] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing CUDA workloads using a detailed GPU simulator. In
ISPASS, 2009. 34, 52, 55, 72, 79

[115] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
Accel-sim: An extensible simulation framework for validated gpu modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 473–486, 2020. 34, 52, 55, 79

[116] Atieh Lotfi, Saurabh Hukerikar, Keshav Balasubramanian, Paul Racunas, Nir-
mal Saxena, Richard Bramley, and Yanxiang Huang. Resiliency of automotive
object detection networks on gpu architectures. In 2019 IEEE International
Test Conference (ITC), pages 1–9, 2019. 35

[117] Mohammad Abdel-Majeed, Waleed Dweik, Hyeran Jeon, and Murali An-
navaram. Warped-re: Low-cost error detection and correction in gpus. In 2015
45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 331–342, 2015. 35

[118] Josie E. Rodriguez Condia, Pierpaolo Narducci, M. Sonza Reorda, and L. Ster-
pone. A dynamic hardware redundancy mechanism for the in-field fault detec-
tion in cores of gpgpus. In 2020 23rd International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), pages 1–6, 2020. 35

137

BIBLIOGRAPHY

[119] Martin Dimitrov, Mike Mantor, and Huiyang Zhou. Understanding software
approaches for gpgpu reliability. In Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, page 94–104. Association for
Computing Machinery, 2009. 35, 83, 109

[120] Abhyankar, Ameya V. . Performance-cost analysis of software implemented
hardware fault tolerance techniques. Technical report, University of Wisconsin
Madison, 2010. 35

[121] Jingweijia Tan and Xin Fu. Rise: Improving the streaming processors reliabil-
ity against soft errors in gpgpus. In Proceedings of the 21st International Con-
ference on Parallel Architectures and Compilation Techniques, page 191–200.
Association for Computing Machinery, 2012. 35

[122] Marcio M. Goncalves, Ivan Peter Lamb, Paolo Rech, Raphael M. Brum, and
Jose Rodrigo Azambuja. Improving selective fault tolerance in gpu register
files by relaxing application accuracy. IEEE Transactions on Nuclear Science,
67(7):1573–1580, 2020. 35

[123] L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza Reorda,
and L. Carro. Software-based hardening strategies for neutron sensitive fft
algorithms on gpus. IEEE Transactions on Nuclear Science, 61(4):1874–1880,
2014. 35

[124] Jack Wadden, Alexander Lyashevsky, Sudhanva Gurumurthi, Vilas Sridharan,
and Kevin Skadron. Real-world design and evaluation of compiler-managed gpu
redundant multithreading. In 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), pages 73–84, 2014. 35, 83, 109, 121, 122

[125] Josie E. Rodriguez Condia, Marcio M. Goncalves, Jose Rodrigo Azambuja,
Matteo Sonza Reorda, and Luca Sterpone. Analyzing the sensitivity of gpu
pipeline registers to single events upsets. In 2020 IEEE Computer Society An-
nual Symposium on VLSI (ISVLSI), pages 380–385, 2020. 35

[126] Jon Perez-Cerrolaza, Jaume Abella, Leonidas Kosmidis, Alejandro J. Calderon,
Francisco Cazorla, and Jose Luis Flores. Gpu devices for safety-critical systems:
A survey. ACM Comput. Surv., 55(7), dec 2022. 35

[127] Nvidia jetson tx2: High performance ai at the edge. https://www.nvidia.

com/en-us/autonomous-machines/embedded-systems/jetson-tx2/. 36, 48,
115

[128] Jongtaek Han, Michael Deubzer, Jin Park, Jens Harnisch, and Patrick Letein-
turier. Efficient Multi-Core Software Design Space Exploration for Hybrid Con-
trol Unit Integration. In SAE Technical Paper 2014-01-0260, 2014, 04 2014.
37

138

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

BIBLIOGRAPHY

[129] Samarjit Chakraborty and S. Ramesh. Guest Editorial Special Section on Au-
tomotive Embedded Systems and Software. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(11):1701–1703, 2015. 37

[130] Jon Perez, David González, Salvador Trujillo, Ton Trapman, and Jose Garate.
A safety concept for a wind power mixed-criticality embedded system based on
multicore partitioning. 05 2014. 37, 44

[131] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benôıt Dupont
de Dinechin. The shift to multicores in real-time and safety-critical systems. In
Gabriela Nicolescu and Andreas Gerstlauer, editors, 2015 International Con-
ference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
2015, Amsterdam, Netherlands, October 4-9, 2015, pages 220–229. IEEE, 2015.
37

[132] Jyotika Athavale, Riccardo Mariani, and Michael Paulitsch. Flight Safety Cer-
tification Implications for Complex Multi-Core Processor based Avionics Sys-
tems. In Dimitris Gizopoulos, Dan Alexandrescu, Panagiota Papavramidou,
and Michail Maniatakos, editors, 25th IEEE International Symposium on On-
Line Testing and Robust System Design, IOLTS 2019, Rhodes, Greece, July
1-3, 2019, pages 38–39. IEEE, 2019. 37, 39

[133] Geoffrey Blake, Ronald G. Dreslinski, and Trevor N. Mudge. A survey of mul-
ticore processors. IEEE Signal Process. Mag., 26(6):26–37, 2009. 37

[134] Giulio Corradi. Tools, architectures and trends on industrial all programmable
heterogeneous MPSoC (KeyNote). In Proceedings of the 29th Euromicro Con-
ference on Real-Time Systems (ECRTS’17), 2017. 37, 42

[135] Ali Hayek and Josef Börcsök. Safety chips in light of the standard IEC 61508:
Survey and analysis. In 2014 International Symposium on Fundamentals of
Electrical Engineering (ISFEE), pages 1–6, 2014. 37

[136] Georg Macher, Andrea Höller, Eric Armengaud, and Christian Kreiner. Au-
tomotive embedded software: Migration challenges to multi-core computing
platforms. In 13th IEEE International Conference on Industrial Informatics,
INDIN 2015, Cambridge, United Kingdom, July 22-24, 2015, pages 1386–1393.
IEEE, 2015. 37

[137] Xilinx. Xilinx Zynq UltraScale+ MPSoC Data Sheet.
https://www.xilinx.com/support/documentation/data_sheets/

ds891-zynq-ultrascale-plus-overview.pdf. 37

[138] Irune Agirre, Mikel Azkarate-askasua, Asier Larrucea, Jon Pérez, Tullio Var-
danega, and Francisco J. Cazorla. Automotive Safety Concept Definition for
Mixed-Criticality Integration on a COTS Multicore. In Amund Skavhaug,
Jérémie Guiochet, Erwin Schoitsch, and Friedemann Bitsch, editors, Computer
Safety, Reliability, and Security - SAFECOMP 2016 Workshops, ASSURE,

139

https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf

BIBLIOGRAPHY

DECSoS, SASSUR, and TIPS, Trondheim, Norway, September 20, 2016, Pro-
ceedings, volume 9923 of Lecture Notes in Computer Science, pages 273–285.
Springer, 2016. 37

[139] Viacheslav Izosimov, Antonis M. Paschalis, Pedro Reviriego, and Hans A. R.
Manhaeve. Application-Specific Solutions. 2018. 37

[140] Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Alt-
meyer, and Robert I. Davis. A Survey of Timing Verification Techniques for
Multi-Core Real-Time Systems. ACM Comput. Surv., 52(3):56:1–56:38, 2019.
37

[141] Xavier Jean, Marc Gatti, Guy Berthon, and Marc Fumey. The Use of Multicore
Processors in Airborne Systems (EASA 2011.C31). Technical Report. Technical
report, EASA, Thales Avionics, 2011. 37

[142] Irune Agirre, Mikel Azkarate-askasua, Asier Larrucea, Jon Pérez, Tullio Var-
danega, and Francisco J. Cazorla. A safety concept for a railway mixed-
criticality embedded system based on multicore partitioning. In CIT/IUC-
C/DASC/PICom, pages 1780–1787. IEEE, 2015. 37

[143] Ainara Bilbao, Irune Yarza, Jose Luis Montero, Mikel Azkarate-askasua, and
Nera González Romero. A railway safety and security concept for low-power
mixed-criticality systems. In INDIN, pages 59–64. IEEE, 2017. 37

[144] Jaume Abella and F.J Cazorla. Harsh computing in the space domain, pages
267–293. 12 2017. 37

[145] Jon Pérez, David González, Salvador Trujillo, and Ton Trapman. A Safety
Concept for an IEC-61508 Compliant Fail-Safe Wind Power Mixed-Criticality
System Based on Multicore and Partitioning. In Juan Antonio de la Puente and
Tullio Vardanega, editors, Reliable Software Technologies - Ada-Europe 2015 -
20th Ada-Europe International Conference on Reliable Software Technologies,
Madrid Spain, June 22-26, 2015, Proceedings, volume 9111 of Lecture Notes in
Computer Science, pages 3–17. Springer, 2015. 37, 44

[146] Wikipedia contributors. Apple m1 — wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Apple_M1&oldid=

1064052900, 2022. [Online; accessed 26-January-2022]. 39

[147] Jim Salter. Intel’s Alder Lake big.little CPU design, tested: It’s
a barn burner. https://arstechnica.com/gadgets/2021/11/

intels-alder-lake-big-little-cpu-design-tested-its-a-barn-burner/,
2021. [Online; accessed 26-January-2022]. 39

[148] Wikipedia contributors. ARM big.LITTLE — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=ARM_big.LITTLE&

oldid=1061988292, 2021. [Online; accessed 26-January-2022]. 39

140

https://en.wikipedia.org/w/index.php?title=Apple_M1&oldid=1064052900
https://en.wikipedia.org/w/index.php?title=Apple_M1&oldid=1064052900
https://arstechnica.com/gadgets/2021/11/intels-alder-lake-big-little-cpu-design-tested-its-a-barn-burner/
https://arstechnica.com/gadgets/2021/11/intels-alder-lake-big-little-cpu-design-tested-its-a-barn-burner/
https://en.wikipedia.org/w/index.php?title=ARM_big.LITTLE&oldid=1061988292
https://en.wikipedia.org/w/index.php?title=ARM_big.LITTLE&oldid=1061988292

BIBLIOGRAPHY

[149] XILINX. Rockwell Collins Uses Zynq UltraScale+ RFSoC Devices in Revolu-
tionizing How Arrays are Produced and Fielded: Powered by Xilinx. 2018. 39,
41

[150] Jingyi Bin, Sylvain Girbal, Daniel Gracia Pérez, Arnaud Grasset, and Alain
Merigot. Studying co-running avionic real-time applications on multi-core cots
architectures. 02 2014. 39

[151] Imanol Allende, Nicholas Mc Guire, Jon Pérez, Lisandro Gabriel Monsalve,
Nerea Uriarte, and Roman Obermaisser. Towards linux for the development
of mixed-criticality embedded systems based on multi-core devices. In EDCC,
pages 47–54. IEEE, 2019. 39

[152] Sylvain Girbal, Xavier Jean, Jimmy Le Rhun, Daniel Gracia Pérez, and Marc
GATTI. Deterministic platform software for hard real-time systems using multi-
core cots. pages 8D4–1, 09 2015. 39

[153] Patrick Huyck. Arinc 653 and multi-core microprocessors — considerations
and potential impacts. In 2012 IEEE/AIAA 31st Digital Avionics Systems
Conference (DASC), pages 6B4–1–6B4–7, 2012. 39

[154] Santosh Kumar Jena and M. B. Srinivas. On the suitability of multi-core pro-
cessing for embedded automotive systems. In CyberC, pages 315–322. IEEE
Computer Society, 2012. 39

[155] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar. Scheduling
parallel real-time tasks on multi-core processors. In RTSS, pages 259–268. IEEE
Computer Society, 2010. 39

[156] Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones, and
Xavier Martorell. A functional safety OpenMP for critical real-time embedded
systems. In Proceedings of the International Workshop on OpenMP (IWOMP),
September 2017. 39

[157] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele
Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Rein-
hold Heckmann, Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia
Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter
Puschner, André Rocha, Cláudio Silva, Jens Sparsø, and Alessandro Tocchi. T-
crest: Time-predictable multi-core architecture for embedded systems. Journal
of Systems Architecture, 61(9):449–471, 2015. 40

[158] ITRS. International roadmap for devices and systems—executive summary.
technical report. Technical report, ITRS, 2018. 41

141

BIBLIOGRAPHY

[159] Sylvain Girbal, Miquel Moretó, Arnaud Grasset, Jaume Abella, Eduardo
Quiñones, Francisco J. Cazorla, and Sami Yehia. On the convergence of main-
stream and mission-critical markets. In Proceedings of the 50th Annual Design
Automation Conference, DAC ’13, New York, NY, USA, 2013. Association for
Computing Machinery. 41

[160] Riccardo Mariani, Gabriele Boschi, and Federico Colucci. Using an innovative
soc-level fmea methodology to design in compliance with iec61508. In 2007
Design, Automation Test in Europe Conference Exhibition, pages 1–6, 2007. 43

[161] Cobham Advanced Electronic Solutions. Leon3ft fault-tolerant processor.
https://www.gaisler.com/index.php/products/processors/leon3ft. 44

[162] Dimitris Gizopoulos, Mihalis Psarakis, Sarita V. Adve, Pradeep Ramachan-
dran, Siva Kumar Sastry Hari, Daniel Sorin, Albert Meixner, Arijit Biswas,
and Xavier Vera. Architectures for online error detection and recovery in mul-
ticore processors. In 2011 Design, Automation Test in Europe, pages 1–6, 2011.
44

[163] Daniel J. Sorin. Fault Tolerant Computer Architecture. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2009. 44

[164] Albert Meixner, Michael E. Bauer, and Daniel J. Sorin. Argus: Low-cost,
comprehensive error detection in simple cores. IEEE Micro, 28(1):52–59, 2008.
44

[165] Shidhartha Das. Razor: A variability-tolerant design methodology for low-
power and robust computing. 01 2009. 44

[166] Alfons Crespo, Patricia Balbastre, José Simó, Javier Coronel, Daniel Gra-
cia Pérez, and Philippe Bonnot. Hypervisor-based multicore feedback control
of mixed-criticality systems. IEEE Access, 6:50627–50640, 2018. 44

[167] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing archi-
tectures in avionics. In 2012 Ninth European Dependable Computing Confer-
ence, pages 132–143, 2012. 44

[168] Asier Larrucea, Imanol Martinez, Jon Perez, Vicent Brocal, Salva Peiró,
Hamidreza Ahmadian, and Roman Obermaisser. Dreams: Cross-domain mixed-
criticality patterns. 2016. 44

[169] C. Hilton and B. Nelson. A flexible circuit switched noc for fpga based systems.
In International Conference on Field Programmable Logic and Applications,
2005., pages 191–196, 2005. 44

[170] H. Ahmadian, R. Obermaisser, and J. Perez. Distributed real-time architecture
for mixed-criticality systems. 2018. 44

142

https://www.gaisler.com/index.php/products/processors/leon3ft

BIBLIOGRAPHY

[171] NVIDIA Corporation. Nvidia geforce gtx 1050 ti specifications. https://www.
nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/

specifications/ and https://www.techpowerup.com/gpu-specs/

geforce-gtx-1050-ti.c2885. [Online; accessed 11-April-2022]. 46, 52,
79, 82

[172] NVIDIA Corporation. Nvidia geforce gtx 1080 ti specifications. https://www.
nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/

specifications/ and https://www.techpowerup.com/gpu-specs/

geforce-gtx-1080-ti.c2877. [Online; accessed 05-May-2022]. 48, 103

[173] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang
Wang, and Kevin Skadron. A characterization of the Rodinia benchmark suite
with comparison to contemporary CMP workloads. pages 1–11, 2010. 48, 53,
79, 96, 100

[174] J. Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina
State University, 2007. 50

[175] EEMBC. EEMBC AutoBench Data Book. https://www.eembc.org/techlit/
datasheets/autobench_db.pdf. 50

[176] Rapita Sytems Ltd. RapiCover [Online]. https://www.rapitasystems.com/

products/rapicover. 51, 67

[177] NVIDIA. CUDA Toolkit 8.0. https://developer.nvidia.com/

cuda-80-ga2-download-archive, Feb 2017. 52

[178] NVIDIA. Nvidia Pascal Architecture whitepaper. https://www.nvidia.com/
en-us/data-center/resources/pascal-architecture-whitepaper/. 52

[179] GNU. GCC Documentation:3.10 Options for Debugging Your Program. https:
//gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html. 53

[180] NVLabs. Nvbitfi: An architecture-level fault injection tool for gpu application
resilience evaluations. https://github.com/NVlabs/nvbitfi, 2020. 54, 106

[181] Timothy Tsai, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa, and
Stephen W. Keckler. Nvbitfi: Dynamic fault injection for gpus. In 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pages 284–291, 2021. 54, 106

[182] Oreste Villa, M. Stephenson, David W. Nellans, and S. Keckler. Nvbit: A
dynamic binary instrumentation framework for nvidia gpus. Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019.
54, 106

143

https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/specifications/
https://www.techpowerup.com/gpu-specs/geforce-gtx-1050-ti.c2885
https://www.techpowerup.com/gpu-specs/geforce-gtx-1050-ti.c2885
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080-ti.c2877
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080-ti.c2877
https://www.eembc.org/techlit/datasheets/autobench_db.pdf
https://www.eembc.org/techlit/datasheets/autobench_db.pdf
https://www.rapitasystems.com/products/rapicover
https://www.rapitasystems.com/products/rapicover
https://developer.nvidia.com/cuda-80-ga2-download-archive
https://developer.nvidia.com/cuda-80-ga2-download-archive
https://www.nvidia.com/en-us/data-center/resources/pascal-architecture-whitepaper/
https://www.nvidia.com/en-us/data-center/resources/pascal-architecture-whitepaper/
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://github.com/NVlabs/nvbitfi

BIBLIOGRAPHY

[183] Fang, Bo and Pattabiraman, Karthik and Ripeanu, Matei and Gurumurthi,
Sudhanva. GPU-Qin: A methodology for evaluating the error resilience of
GPGPU applications. In 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 221–230, 2014. 55

[184] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary, September 2004. 56

[185] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A bench-
mark characterization of the eembc benchmark suite. IEEE Micro, 29(5):18–29,
2009. 57, 117

[186] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md Haque,
Lingjia Tang, and Jason Mars. The architectural implications of autonomous
driving: Constraints and acceleration. pages 751–766, 03 2018. 60, 69, 82, 109

[187] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for
Deep Learning. CoRR, abs/1410.0759, 2014. 60, 67

[188] Francisco J. Cazorla, Jaume Abella, Enrico Mezzetti, Carles Hernandez, Tullio
Vardanega, and Guillem Bernat. Reconciling time predictability and perfor-
mance in future computing systems. IEEE Design & Test, 35(2):48–56, 2018.
61, 69

[189] Justyna Zander. Functional safety for autonomous driving. In Proc. Auton.
Veh. Mach. Conf, 2017. 63

[190] MIRA Ltd. MISRA-C:2004 Guidelines for the use of the C language in critical
systems. www.misra.org.uk, 2004. 64

[191] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016. 66

[192] NVIDIA. CUTLASS. https://docs.nvidia.com/cuda/cublas/index.html.
67

[193] NVIDIA. CUTLASS. https://devblogs.nvidia.com/

cutlass-linear-algebra-cuda. 68

[194] R. Wilhelm et al. The worst-case execution-time problem overview of meth-
ods and survey of tools. ACM Transactions on Embedded Computing Systems
(TECS), 7(3):36:1–36:53, May 2008. 68

144

www.misra.org.uk
https://docs.nvidia.com/cuda/cublas/index.html
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda

BIBLIOGRAPHY

[195] Adam Betts and Alastair Donaldson. Estimating the wcet of gpu-accelerated
applications using hybrid analysis. In 2013 25th Euromicro Conference on Real-
Time Systems, pages 193–202, 2013. 68

[196] E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla. High-Integrity Perfor-
mance Monitoring Units in Automotive Chips for Reliable Timing V&V. IEEE
Micro, 38(1):56–65, January/February 2018. 69

[197] NVIDIA. Fermi. NVIDIA’s Next Generation CUDA Compute Architecture.
White paper., 2009. 73

[198] Imagination and Ambarella partner on Autonomous Vehicle human-machine
interface visualisations with ASIL functional safety. 73

[199] Wikipedia contributors. Round-robin (document) — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Round-robin_

(document)&oldid=1045906114, 2021. [Online; accessed 1-April-2022]. 76

[200] Wikipedia contributors. Round-robin scheduling — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Round-robin_

scheduling&oldid=1034376468, 2021. [Online; accessed 1-April-2022]. 76

[201] Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donel-
son Smith. GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. In
2017 IEEE Real-Time Systems Symposium (RTSS), pages 104–115, 2017. 79

[202] Jacob T. Adriaens, Katherine Compton, Nam Sung Kim, and Michael J.
Schulte. The case for gpgpu spatial multitasking. In IEEE International Sym-
posium on High-Performance Comp Architecture, pages 1–12, 2012. 83

[203] D. Black-Schaffer J. Janzen and A. Hugo. Partitioning GPUs for Improved
Scalability. In Proceedings - Symposium on Computer Architecture and High
Performance Computing, 2016. 83

[204] B. Wu et al. Enabling and exploiting flexible task assignment on GPU through
SM-centric program transformations. In Proceedings of the International Con-
ference on Supercomputing, 2015. 83

[205] M. Thazhuthaveetil S. Pai and R. Govindarajan. Improving GPGPU Concur-
rency with Elastic Kernels. 2013. 83

[206] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar. Fractional
gpus: Software-based compute and memory bandwidth reservation for gpus. In
2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 29–41, 2019. 83, 121, 122

[207] TESLA. Full Self-Driving Hardware on All Cars. https://www.tesla.com/

autopilot. 85, 109

145

https://en.wikipedia.org/w/index.php?title=Round-robin_(document)&oldid=1045906114
https://en.wikipedia.org/w/index.php?title=Round-robin_(document)&oldid=1045906114
https://en.wikipedia.org/w/index.php?title=Round-robin_scheduling&oldid=1034376468
https://en.wikipedia.org/w/index.php?title=Round-robin_scheduling&oldid=1034376468
https://www.tesla.com/autopilot
https://www.tesla.com/autopilot

BIBLIOGRAPHY

[208] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), pages 1–84, 2019. 90

[209] Nathan Whitehead and Alex Fit-Florea. Precision & performance: floating
point and ieee 754 compliance for nvidia gpus. rn (A+ B), 21, 01 2011. 90

[210] H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh. Constructing
and characterizing covert channels on gpgpus. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2017. 92

[211] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero.
Enabling preemptive multiprogramming on gpus. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), 2014. 92

[212] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent threads style
gpu programming for gpgpu workloads. In 2012 Innovative Parallel Computing
(InPar), 2012. 93

[213] T. Allen. Improving Real-Time Performance with CUDA Persistent Threads
(CuPer) on the Jetson TX2. Technical report, Concurrent Real-Time, March
2018. https://www.concurrent-rt.com/wp-content/uploads/2016/09/

Improving-Real-Time-Performance-With-CUDA-Persistent-Threads.pdf.
93

[214] N. Capodieci and P. Burgio. Efficient Implementation of Genetic Algorithms
on GP-GPU with Scheduled Persistent CUDA Threads. In Proceedings - Inter-
national Symposium on Parallel Architectures, Algorithms and Programming,
PAAP, 2016. 93

[215] V. Vlkov and J. W. Demmel. Benchmarking gpus to tune dense linear algebra.
In SC, 2008. 96

[216] Y. Yang et al. A unified optimizing compiler framework for different gpgpu
architectures. ACM Transactions on Architecture and Code Optimization
(TACO), 9(2), 2012. 96

[217] A. Magni et al. A large-scale cross-architecture evaluation of thread-coarsening.
In SC, 2013. 96

[218] Bruce Merry. Faster gpu-based convolutional gridding via thread coarsening.
Astronomy and Computing, 16, 05 2016. 96

[219] Nicolai Stawinoga and Tony Field. Predictable thread coarsening. ACM Trans.
Arhcit. Code Optim., June 2018. 96, 105

[220] Carles Hernandez and Jaume Abella. Timely Error Detection for Effective
Recovery in Light-Lockstep Automotive Systems. IEEE TCAD, 34(11), 2015.
109, 120

146

https://www.concurrent-rt.com/wp-content/uploads/2016/09/Improving-Real-Time-Performance-With-CUDA-Persistent-Threads.pdf
https://www.concurrent-rt.com/wp-content/uploads/2016/09/Improving-Real-Time-Performance-With-CUDA-Persistent-Threads.pdf

BIBLIOGRAPHY

[221] Carles Hernandez and Jaume Abella. Low-cost checkpointing in automotive
safety-relevant systems. In DATE, 2015. 109, 120

[222] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Michael B. Sullivan, Tim-
othy Tsai, and Stephen W. Keckler. Optimizing software-directed instruction
replication for gpu error detection. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 842–854,
2018. 109, 121

[223] Michael B. Sullivan, Siva Kumar Sastry Hari, Brian Zimmer, Timothy Tsai, and
Stephen W. Keckler. Swapcodes: Error codes for hardware-software cooperative
gpu pipeline error detection. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 762–774, 2018. 109, 121, 122

[224] Daniel A. G. Oliveira, Paolo Rech, Heather M. Quinn, Thomas D. Fairbanks,
Laura Monroe, Sarah E. Michalak, Christine Anderson-Cook, Philippe O. A.
Navaux, and Luigi Carro. Modern gpus radiation sensitivity evaluation and
mitigation through duplication with comparison. IEEE Transactions on Nuclear
Science, 61(6):3115–3122, 2014. 109

[225] European Processor Initiative. European Processor Initiative. https://www.

european-processor-initiative.eu/, 2019. 111

[226] Apollo, an open autonomous driving platform. http://apollo.auto/, 2018.
117

[227] Brett H. Meyer, Benton H. Calhoun, John Lach, and Kevin Skadron. Cost-
effective safety and fault localization using distributed temporal redundancy.
In 2011 Proceedings of the 14th International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems (CASES), pages 125–134, 2011.
121

[228] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via
simultaneous multithreading. SIGARCH Comput. Archit. News, 28(2):25–36,
may 2000. 120, 121

[229] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. Detailed design and evalu-
ation of redundant multi-threading alternatives. In Proceedings 29th Annual
International Symposium on Computer Architecture, pages 99–110, 2002. 121

[230] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomeranz.
Transient-fault recovery for chip multiprocessors. SIGARCH Comput. Archit.
News, 31(2):98–109, may 2003. 121

[231] Christopher LaFrieda, Engin Ipek, Jose F. Martinez, and Rajit Manohar. Uti-
lizing dynamically coupled cores to form a resilient chip multiprocessor. In
37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), pages 317–326, 2007. 121

147

https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/
http://apollo.auto/

BIBLIOGRAPHY

[232] Jian Fu, Qiang Yang, Raphael Poss, Chris R. Jesshope, and Chunyuan Zhang.
On-demand thread-level fault detection in a concurrent programming environ-
ment. In 2013 International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS), pages 255–262, 2013. 121

[233] Hyeran Jeon and Murali Annavaram. Warped-dmr: Light-weight error detec-
tion for gpgpu. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 37–47, 2012. 121, 122

[234] Ralph Nathan and Daniel J. Sorin. Argus-g: Comprehensive, low-cost error
detection for gpgpu cores. IEEE Computer Architecture Letters, 14(1):13–16,
2015. 121, 122

[235] Florian Haas, Sebastian Weis, Theo Ungerer, Gilles Pokam, and Youfeng Wu.
Poster: Fault-tolerant execution on cots multi-core processors with hardware
transactional memory support. In 2016 International Conference on Parallel
Architecture and Compilation Techniques (PACT), pages 421–422, 2016. 121

[236] Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and Daniel A.
Connors. Using process-level redundancy to exploit multiple cores for transient
fault tolerance. In 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’07), pages 297–306, 2007. 121

[237] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. The design of a
practical system for fault-tolerant virtual machines. SIGOPS Oper. Syst. Rev.,
44(4):30–39, dec 2010. 121

[238] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. Swift:
software implemented fault tolerance. In International Symposium on Code
Generation and Optimization, pages 243–254, 2005. 121

[239] Hwisoo So, Moslem Didehban, Yohan Ko, Aviral Shrivastava, and Kyoung-
woo Lee. Expert: Effective and flexible error protection by redundant multi-
threading. In 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 533–538, 2018. 121

[240] Mohammad Shadi Alhakeem, Peter Munk, Raphael Lisicki, Helge Parzyjegla,
Helge Parzyjegla, and Gero Muehl. A framework for adaptive software-based
reliability in cots many-core processors. In ARCS 2015 - The 28th Interna-
tional Conference on Architecture of Computing Systems. Proceedings, pages
1–4, 2015. 121

[241] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay Janapa Reddi, and Daniel A.
Connors. Plr: A software approach to transient fault tolerance for multi-
core architectures. IEEE Transactions on Dependable and Secure Computing,
6(2):135–148, 2009. 121

148

BIBLIOGRAPHY

[242] Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. Efficient software-based fault
tolerance approach on multicore platforms. In 2013 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 921–926, 2013. 121

[243] Martin Dimitrov, Mike Mantor, and Huiyang Zhou. Understanding software
approaches for gpgpu reliability. In Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, page 94–104. Association for
Computing Machinery, 2009. 121, 122

[244] Vanessa Vargas, Pablo Ramos, Jean-Francois Méhaut, and Raoul Velazco. Nmr-
mpar: A fault-tolerance approach for multi-core and many-core processors. Ap-
plied Sciences, 8(3), 2018. 121

[245] Xabier Iturbe, Balaji Venu, Juergen Jagst, Emre Ozer, Peter Harrod, Chris
Turner, and John Penton. Addressing functional safety challenges in au-
tonomous vehicles with the arm tcl s architecture. IEEE Design Test, 35(3):7–
14, 2018. 120

149

Appendices

150

Example of Rodinia modifications

1 // . . . Redundant i n pu t (i f needed) and output r e p l i c a t i o n done above
2

3 // Crea te CudaStreams
4 #i f d e f REDUNDANT
5 cudaSt ream t s t r eams [NUM STREAMS] ;
6 f o r (i n t i = 0 ; i < NUM STREAMS; i++)
7 cudaStreamCreate (&s t r eams [i]) ;
8 #end i f
9

10 //CUDA Ke rn e l s c a l l
11 #i f d e f REDUNDANT
12 s o l v e r 2<<<b lock s , th r eads , 0 , s t r eams [0] >>>(work load , xmax , d x , d y ,

d params , d com , d e r r , d s c a l e , d yy , d i n i t v a l u t emp ,
d f i n a v a l u t emp) ;

13 #i f d e f SERIALIZE
14 cudaDev i c eSynch ron i z e () ;
15 #end i f
16 s o l v e r 2<<<b lock s , th r eads , 0 , s t r eams [1] >>>(work load , xmax ,

d x redundant , d y r edundant , d params redundant , d com redundant ,
d e r r r e dundan t , d s c a l e r e dundan t , d yy r edundant ,
d i n i t v a l u t emp r e dund an t , d f i n a v a l u t emp r e dundan t) ;

17 #e l s e
18 s o l v e r 2<<<b lock s , th r eads>>>(work load , xmax , d x , d y , d params , d com ,

d e r r , d s c a l e , d yy , d i n i t v a l u t emp , d f i n a v a l u t emp) ;
19 #end i f
20

21 //Wait ing u n t i l both k e r n e l s f i n i s h e d
22 #i f d e f REDUNDANT
23 f o r (i n t i = 0 ; i < NUM STREAMS; i++)
24 cudaSt reamSynchron i ze (s t r eams [i]) ;
25 #end i f
26

27 //Get r e s u l t s back from GPU Memory to CPU memory
28 cudaMemcpy (x , d x , x mem , cudaMemcpyDeviceToHost) ;
29 cudaMemcpy (y , d y , y mem , cudaMemcpyDeviceToHost) ;
30 #i f d e f REDUNDANT
31 cudaMemcpy (x redundant , d x r edundant , x mem , cudaMemcpyDeviceToHost) ;
32 cudaMemcpy (y redundant , d y r edundant , y mem , cudaMemcpyDeviceToHost) ;
33 #end i f
34

35

36 // Check ing the r e s u l t s o f both e x e c u t i o n s

151

37 #i f d e f REDUNDANT
38 i n t j , k ;
39 boo l c o r r e c t = t r u e ;
40 f o r (i =0; i<work load and c o r r e c t ; i++){
41 f o r (j =0; j<(xmax+1) and c o r r e c t ; j++){
42 f o r (k=0; k<EQUATIONS and c o r r e c t ; k++){
43 c o r r e c t = f l o a t e q u a l s (y [i * ((xmax+1)*EQUATIONS) + j *(

EQUATIONS)+k] , y r edundan t [i * ((xmax+1)*EQUATIONS) + j *(EQUATIONS)+k
]) ;

44 }
45 }
46 }
47 #end i f

Listing 1: Myocyte code with the modifications required

152

Nvprof example

First, we list the options of the nvprof used together with a small description:

� CUDA VISIBLE DEVICES=1: To use the GPU 1 from the server, the GTX
1050 Ti.

� –print-gpu-trace: Print individual kernel invocations (including CUDA
memcpy’s/memset’s) and sort them in chronological order. In event/metric
profiling mode, show events/metrics for each kernel invocation.

� –cpu-profiling on: Turn on CPU profiling (Used to identify the function exe-
cuted by the NVIDIA Runtime API)

� –concurrent-kernels on Allow concurrent kernel execution

� –print-api-trace: Print CUDA runtime/driver API trace.

� –csv: Format it in csv (easier to parse)

� -o profiler.nvvp Export the result file, which can be imported later or opened
by the NVIDIA Visual Profiler

Next, we can see a template of the calling of the nvprof tool in Listing 2

nvprof nvprof_options binary binary_arguments

Listing 2: Template call of nvprof tool

Last, we can see an example of binary call together with the nvprof, its options
and the binary arguments in Listing 3

CUDA_VISIBLE_DEVICES =1 usr/local/cuda -9.2/ bin/nvprof --print

-gpu -trace --cpu -profiling on --concurrent -kernels on

--print -api -trace --csv -o profiler.nvvp bin/myocyte.out 100

1 1

Listing 3: Nvprof call used for the myocyte application

153

154

Modifications on the Tegra TX2

We start by showing the command to turn off the Denver cores, Listing 4.

echo 0 > /sys/devices/system/cpu/cpu1/online

echo 0 > /sys/devices/system/cpu/cpu2/online

Listing 4: Commands that turn off the two Denver cores

Next, we detail the commands to fix the frequency, at 2.04GHz, for the rest of the
cores in Listing 5.

sudo cpufreq -set --cpu 0 -g Performance -u 2.04 Ghz -d 2.04

Ghz

sudo cpufreq -set --cpu 3 -g Performance -u 2.04 Ghz -d 2.04

Ghz

sudo cpufreq -set --cpu 4 -g Performance -u 2.04 Ghz -d 2.04

Ghz

sudo cpufreq -set --cpu 5 -g Performance -u 2.04 Ghz -d 2.04

Ghz

Listing 5: Commands to deactivate the frequency scaling by setting the maximum
and minimum frequency equal

155

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Trends on Safety-Critical Systems
	Challenges in the Automotive Safety-Critical Systems
	COTS GPUs
	COTS Multicores

	Motivation
	Contributions
	Thesis Organization
	List of Publications

	Background
	Basic concepts of Safety-Critical Systems
	Safety-Critical Systems and their Taxonomy
	Redundancy and Diversity
	Lockstep
	Memory and data transmission safety mechanisms
	Nanoscale Level relevance for reliability

	Certification and Automotive Safety Standards
	ISO26262 - Automotive Safety standard

	GPU
	GPU Architecture
	GPU Software
	GPU in Safety-Critical Systems
	Path Towards Certification
	Power and Reliability Considerations

	Multicores
	Introduction to Multicores
	Multicore Architecture
	Multicores in Safety-related systems

	Experimental Setup
	Hardware Setup
	Server CAOS17
	NVIDIA GTX1050 Ti
	NVIDIA GTX1080 Ti
	NVIDIA Jetson Tegra TX2 SoC

	Software Setup
	Rodinia
	EEMBC AutoBench v1.1

	Methodology
	Methodolgy and Setup used in: An Analysis of the Safety-Related Challenges and Opportunities for GPUs in the Automotive Domain
	Methodolgy and Setup used in: GPU scheduling policies
	GPGPUSim
	CUDA Version and Compiler

	Methodology and Setup used in: GPU software-only diverse redundant execution
	Slack Measurements
	COTS GPU Results for diverse DMR
	COTS GPU Results for diverse TMR
	Fault-detection capabilities evaluation using fault injection
	HW and SW-only solutions side by side on the simulator

	Methodolgy and Setup used in: Software-only based Diverse Redundancy for ASIL-D Automotive Applications on Embedded HPC Platforms
	CPU diverse redundancy execution
	Executions and versions

	An Analysis of the Safety-Related Challenges and Opportunities for GPUs in the Automotive Domain
	Introduction
	Safety Assurance: Impact on Hardware
	ASIL Decomposition
	Redundancy and Diversity
	Ability to Operate in Harsh Environment

	Safety Assurance: Impact on Software
	Coding Standard and Architectural Design
	Generic ML and Black-Box CUDA Libraries
	Domain-Specific Optimizations
	Time Predictability

	Conclusions

	GPU scheduling policies
	Introduction
	GPU Design and Operation
	Redundancy and Diversity Elements

	Scheduling Strategy for Diverse and Redundant GPU Execution
	Kernel Redundancy
	Redundant Kernel Execution Patterns
	SRRS (Start, Round-Robin, and Serial) policy
	HALF policy
	Diverse Redundancy in the Kernel Scheduler
	Appropriateness of the Scheduling Policies

	Evaluation
	Implementation in GPGPUSim
	Simulation Results
	COTS GPU Results

	Related Work
	Conclusions

	GPU Software-only diverse redundant execution
	Introduction
	Enabling ASIL-D GPU Operation
	Target Platform
	Offloading Process and Software modifications
	Redundant Kernel Execution Patterns
	Staggering creation
	SM sharing among Kernels
	Achieving Diverse Redundancy
	Heavy-to-Friendly Kernel Reshaping Protocol
	Diversity Limitations: from DMR to TMR

	Experimental Validation
	Slack Measurements Results on a COTS GPU
	COTS GPU Results for diverse DMR
	COTS GPU Results for diverse TMR
	Evaluation of the Heavy-to-friendly Protocol
	Fault-detection capabilities evaluation using fault injection
	HW and SW-only solutions side by side

	Related Work
	Conclusions

	Software-only based Diverse Redundancy for ASIL-D Automotive Applications on Embedded HPC Platforms
	Introduction
	Software-based Diverse Redundancy Approach
	Diverse Redundancy across the entire multicore
	Specification of the Execution Strategy
	Realization on an ARM-based Multicore
	Scope of the proposal and Fault Model

	Evaluation
	Framework
	Overheads Assessment
	Performance Assessment

	Related Work
	Conclusions

	Conclusions
	Contributions
	Impact
	Future Work

	Bibliography
	Appendices

