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Abstract

In recent years, several industry sectors have adapted the Digital Twin (DT) paradigm

to improve the performance of physical systems. This paradigm consists of leveraging

computational methods to build high-fidelity virtual representations of a physical system

or entity. The virtual replica accurately simulates or models the behavior of the physical

system without altering its behavior in the real world. Since its inception, the DT has

attracted the interest of both academia and industry which can be observed by the growing

number of publications, processes, standards and concepts.

The networking community has adapted the DT paradigm with the objective of achiev-

ing efficient control and management in modern communication networks. In this context,

the Network Digital Twin (NDT) is a renovated concept of classical network modeling tools

whose goal is to build accurate data-driven network models. NDTs can be applied to many

fundamental networking applications. For example, the NDT allows network operators to

design novel network optimization solutions, to perform troubleshooting, what-if analysis,

or to plan network upgrades taking into account the network’s expected user growth. Since

the interaction between the network operator with the NDT does not require access to the

real-world network, the aforementioned processes can be carried out in real-time, without

jeopardizing the physical network.

This dissertation aims to develop new efficient real-time optimization mechanisms lever-

aging NDTs. Existing network optimization techniques can be generally divided among

optimizer-based solutions (e.g., CP, ILP), heuristics and Machine Learning-based (ML)

solutions. Optimizer-based solutions are computationally intensive and they suffer from

scalability issues where the optimization time and the problem instance size scale at dif-

ferent speeds. The methods based on heuristics are solutions designed by human experts,

making strong assumptions and simplifications on the original problem to reduce its com-

plexity and to make the problem tractable by humans. This is a lengthy process that makes

solutions be far-from-optimal, achieving poor network performance at a high cost for the

network operator. Finally, existing ML-based solutions need to re-train the ML model every

time there is a change in the optimization scenario (e.g., link failure). However, training

ML models is a costly process which impedes the application of such methods on real-time

network optimization.

The first part of this dissertation proposes an optimization architecture that integrates

Graph Neural Networks (GNN) into Deep Reinforcement Learning (DRL). This architecture

leverages the planning strategies of DRL and the generalization capabilities of GNNs to

optimize over arbitrary network topologies in real-time without the need of re-training the

DRL agent. The experimental results show that the DRL+GNN architecture is robust to



operate in real-world topologies that largely differ from the scenarios seen during training.

In our work, we evaluate the proposed architecture on two real-world network optimization

scenarios. The first scenario is in optical transport networks and the second scenario is in

IP networks.

Training DRL agents and building NDTs requires storing large datasets that include

a wide range of network states and configurations. However, the network size has been

growing both in traffic volume and number of connected devices. Boosted by the deployment

of 5G networks and the adaptation of new industry paradigms (e.g., Internet of things), the

growing trend is expected to continue for several years. Consequently, storing such large

volumes of network-related information can be challenging. The second part of this thesis

proposes a new data compression method based on GNNs capable of exploiting spatial and

temporal correlations naturally present in network traffic traces, outperforming widely used

compression methods such as GZIP.



Resum

En els últims anys, diversos sectors industrials han adaptat el paradigma del ”Digital Twin”

(DT) per millorar el rendiment dels sistemes f́ısics. Aquest paradigma consisteix en aprofitar

mètodes computacionals per construir representacions virtuals d’alta fidelitat d’un sistema

o entitat f́ısica. La rèplica virtual simula o modela amb precisió el comportament del sistema

f́ısic sense alterar el seu comportament en el món real. Des de la seva creació, el DT ha

suscitat l’interès tant de l’acadèmia com de la indústria, el que es pot observar pel creixent

nombre de publicacions, processos, estàndards i conceptes.

La comunitat de xarxes ha adaptat el paradigma del DT amb l’objectiu d’aconseguir

un control i una gestió eficients en les xarxes de comunicació modernes. En aquest context,

el ”Network Digital Twin” (NDT) és un concepte renovat de les eines de modelatge de

xarxes clàssiques que té com a objectiu construir models de xarxes precisos basats en dades.

Els NDT es poden aplicar a moltes aplicacions fonamentals de xarxes. Per exemple, els

NDT permeten als operadors de xarxes dissenyar noves solucions d’optimització de xarxes,

realitzar resolució de problemes, anàlisi de supòsits o planificar actualitzacions de xarxa

tenint en compte el creixement esperat dels usuaris de la xarxa. A més, els processos

esmentats es poden dur a terme en temps real sense posar en perill la xarxa f́ısica.

Aquesta dissertació té com a objectiu desenvolupar nous mecanismes d’optimització en

temps real eficients aprofitant els NDTs. Les tècniques d’optimització de xarxa existents

es poden dividir en solucions basades en optimitzadors, solucions basades en heuŕıstiques

i solucions basades en aprenentatge automàtic (ML). Les solucions basades en optimitza-

dors són intensives computacionalment i pateixen problemes d’escalabilitat, on el temps

d’optimització i la mida de la instància del problema escalen a diferents velocitats. Els

mètodes basats en heuŕıstiques són solucions dissenyades per experts humans, un procés

molt costós que aconsegueix baixos nivells de rendiment. Finalment, les solucions basades

en ML existents necessiten reentrenar el model ML cada vegada que hi ha un canvi en

l’escenari d’optimització. No obstant això, el procés de formació dels models ML és costós

i dificulta l’aplicació d’aquests mètodes en l’optimització de xarxes en temps real.

La primera part d’aquesta dissertació proposa una arquitectura d’optimització que inte-

gra les xarxes neuronals basades en grafs (GNN) en el reforçament profund de l’aprenentatge

(DRL). Aquesta arquitectura aprofita les estratègies de planificació del DRL i les capaci-

tats de generalització de les GNN per optimitzar topologies de xarxa arbitràries en temps

real sense necessitat de reentrenar l’agent DRL. Els resultats experimentals demostren que

l’arquitectura DRL+GNN és robusta per operar en topologies del món real que difereixen

considerablement dels escenaris vistos durant la formació. En el nostre treball, avaluem la

proposta d’arquitectura en dos escenaris d’optimització de xarxes del món real.



L’entrenament d’agents DRL i la construcció de NDTs requereixen l’emmagatzematge

de grans conjunts de dades que inclouen una àmplia gamma d’estats i configuracions de

xarxa. No obstant això, la mida de la xarxa ha anat creixent tant en volum de tràfic

com en nombre de dispositius connectats. Impulsat per la implementació de les xarxes

5G i l’adaptació de nous paradigmes industrials (per exemple, Internet de les coses), es

preveu que la tendència de creixement continüı durant diversos anys. En conseqüència,

l’emmagatzematge d’aquestes grans quantitats d’informació relacionada amb la xarxa pot

ser un repte. La segona part d’aquesta tesi proposa un nou mètode de compressió de dades

basat en les GNN capaç d’aprofitar les correlacions espacials i temporals presents de forma

natural en les traces de tràfic de la xarxa, superant els mètodes de compressió àmpliament

utilitzats com GZIP.



Resumen

En los últimos años, diversos sectores industriales han adaptado el paradigma del ”Digital

Twin” (DT) para mejorar el rendimiento de los sistemas f́ısicos. Este paradigma consiste

en aprovechar métodos computacionales para construir representaciones virtuales de alta

fidelidad de un sistema o entidad f́ısica. La réplica virtual simula o modela con precisión el

comportamiento del sistema f́ısico sin alterar su comportamiento en el mundo real. Desde

su creación, el DT ha despertado el interés tanto de la academia como de la industria,

lo que se puede observar por el creciente número de publicaciones, procesos, estándares y

conceptos.

La comunidad de redes ha adaptado el paradigma del DT con el objetivo de lograr un

control y una gestión eficientes en las redes de comunicación modernas. En este contexto, el

”Network Digital Twin” (NDT) es un concepto renovado de las herramientas de modelado de

redes clásicas que tiene como objetivo construir modelos de redes precisos basados en datos.

Los NDT se pueden aplicar a muchas aplicaciones fundamentales de redes. Por ejemplo, los

NDT permiten a los operadores de redes diseñar nuevas soluciones de optimización de redes,

realizar resolución de problemas o planificar actualizaciones de red. Además, los procesos

mencionados se pueden llevar a cabo en tiempo real sin poner en peligro la red f́ısica.

Esta disertación tiene como objetivo desarrollar nuevos mecanismos de optimización

en tiempo real eficientes aprovechando los NDTs. Las técnicas de optimización de red

existentes se pueden dividir en soluciones basadas en optimizadores, soluciones basadas en

heuŕısticas y soluciones basadas en aprendizaje automático (ML). Las soluciones basadas

en optimizadores son intensivas computacionalmente y sufren problemas de escalabilidad,

donde el tiempo de optimización y el tamaño de la instancia del problema escalan a diferentes

velocidades. Los métodos basados en heuŕısticas son soluciones diseñadas por expertos

humanos, un proceso muy costoso que logra bajos niveles de rendimiento. Finalmente, las

soluciones basadas en ML existentes necesitan reentrenar el modelo ML cada vez que hay

un cambio en el escenario de optimización. No obstante, el proceso de formación de los

modelos ML es costoso y dificulta la aplicación de estos métodos en la optimización de

redes en tiempo real.

La primera parte de esta disertación propone una arquitectura de optimización que in-

tegra las redes neuronales basadas en grafos (GNN) en el refuerzo profundo del aprendizaje

(DRL). Esta arquitectura aprovecha las estrategias de planificación del DRL y las capaci-

dades de generalización de las GNN para optimizar topoloǵıas de red arbitrarias en tiempo

real sin necesidad de reentrenar el agente DRL. Los resultados experimentales demuestran

que la arquitectura DRL+GNN es robusta para operar en topoloǵıas del mundo real que



difieren considerablemente de los escenarios vistos durante la formación. En nuestro traba-

jo evaluamos la propuesta de arquitectura en dos escenarios de optimización de redes del

mundo real.

El entrenamiento de agentes DRL y la construcción de NDTs requieren el almacena-

miento de grandes conjuntos de datos que incluyen una amplia gama de estados y confi-

guraciones de red. Sin embargo, el tamaño de la red ha ido creciendo tanto en volumen

de tráfico como en número de dispositivos conectados. Impulsado por la implementación

de las redes 5G y la adaptación de nuevos paradigmas industriales (por ejemplo, Internet

de las cosas), se prevé que la tendencia de crecimiento continúe durante varios años. En

consecuencia, el almacenamiento de estas grandes cantidades de información relacionada

con la red puede ser un desaf́ıo. La segunda parte de esta tesis propone un nuevo método

de compresión de datos basado en las GNN capaz de aprovechar las correlaciones espaciales

y temporales presentes de forma natural en las trazas de tráfico de la red, superando los

métodos de compresión ampliamente utilizados como GZIP.
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Chapter 1

Introduction

In recent years, the simultaneous digital transformation of both society and industry lead

to the emergence of a novel set of network applications. These applications have complex

requirements that cannot be easily met by traditional network management solutions (e.g.,

network over-provisioning, admission control). For example, novel forms of communication

(e.g., AR/VR or holographic telepresence) require ultra-low deterministic latency, while

recent industrial developments (e.g., vehicular networks) need to adapt to highly dynamic

networks in real-time. At the same time, the number of connected devices has been growing

rapidly, making modern networks’ behavior highly dynamic and heterogeneous [2–4]. Con-

sequently, communication networks have become a pillar of today’s society, but they are

also more complex and costly to manage. This puts pressure on Internet Service Providers

(ISP) to ensure customer’s quality of service and to fulfill service-level agreements. There-

fore, ISPs are challenged to efficiently and effectively manage their network infrastructure

to guarantee previously agreed network performance thresholds for different network users

and applications.

Boosted by new industry paradigms such as Internet of Things (IoT) or vehicular com-

munications, the expected trend for the following years is that the number of connected

devices and the traffic volume will keep increasing. As an example, 5G networks are cur-

rently being deployed in many countries, naturally increasing the number of connected

devices and the traffic volume. Simultaneously, the research community is already investi-

gating 6G networks, which are expected to go beyond connecting people and include sensors,

vehicles, robots and computing resources, among others [5,6]. New industry paradigms such

as Industry 4.0 are going to benefit from interconnecting factories and machinery [7]. In

addition, there are ongoing projects that are tailoring to extend existing communication

networks towards outside of the planet earth. One example is the Starlink project from

SpaceX that leverages satellite connectivity to increase the coverage of internet access in

remote locations (e.g., deserts, mountains). Another example is the collaboration between

NOKIA and NASA to build the first LTE network on the moon [8]. The deployment of
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heterogeneous applications come with a wide range of stringent network requirements (e.g.,

ultra low deterministic latency), increasing the complexity to manage modern communi-

cation networks. Consequently, network operators need to find new methods to operate

modern heterogeneous networks efficiently.

In the last years, the idea of programmable networks emerged to flexibilize the network

management process. Specifically, the Software Defined Network (SDN) paradigm proposed

to decouple the network control decisions (control plane) from the underlying forwarding

devices (data plane) [9, 10]. In this context, the control plane is in charge of establishing

how the packets are being forwarded to reach the destination (e.g., creates the routing

table). The role of the data plane is to actually forward the packets. The controller changes

the data plane behavior using well-established application programming interfaces such as

OpenFlow [11]. In addition, SDN offers a centralized overview of the network state, enabling

network operators to easily change network’s behavior using software and without having to

configure the forwarding devices individually. By breaking down the network management

in two planes, SDN facilitates the implementation of new abstractions and the deployment

of new methods to manage the network.

While computer networks were living the software revolution, a series of breakthroughs

in Machine Learning (ML) triggered the beginning of a new ML era. In 2012 a Convolutional

Neural Network (CNN) achieved a top-5 error of 15.3% [12] in the Imagenet challenge [13].

This was a novel architecture designed to process images and the resulting error was more

than 10.8% points lower than the second best solution that year. In 2016, DeepMind created

AlphaGo [14], a ML system based on Neural Networks (NN) that won the best human world

player in the game of Go. In 2018, researchers from Google developed BERT, a language

model with a transformer-based architecture that achieved outstanding performance in sev-

eral Natural Language Processing (NLP) tasks. More recently, in 2020 a transformer-based

model called AlphaFold achieved outstanding performance in the Critical Assessment of

protein Structure Prediction challenge (a.k.a., CASP) [15]. These are only a few examples

where ML models had a large impact, outperforming the state of the art. As a result, the

research community started to investigate the use of ML to solve real-world problems. Some

examples are estimating the arrival time in Google Maps using NNs [16], making weather

forecasts with deep generative models [17] and improving the medical imaging process chain

with deep learning [18], among others.

In this context, new networking paradigms emerged as a consequence of the ever in-

creasing network management complexity. It is the case of Knowledge Defined Network-

ing (KDN) [19] where the centralization offered by SDN combined with the latest ad-

vances in network analytics and monitoring tools enable the implementation of the Knowl-

edge Plane (KP) originally proposed in [20]. Another emerging paradigm is self-driving

or autonomous networks [21, 22], which consists on networks that automatically manage

themselves without human intervention. More recently, the Network Digital Twin (NDT)
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Figure 1.1: A virtual representation of the physical network is built in the digital world. The
network operator can interact with the virtual replica to find the best policies to manage
the real-world network.

paradigm emerged as a key enabler for efficient control and management of modern commu-

nication networks [1, 23]. This dissertation is developed in the context of leveraging NDTs

for efficient network management.

A Digital Twin (DT) can be understood as a virtual model of a physical object, system,

or phenomenon that is represented in the digital world. The main advantage of DTs is that

they can accurately model complex systems at a smaller cost than other methods (e.g.,

simulation). Nowadays, real-world DT applications include enabling smart manufacturing

in Industry 4.0, improving the performance of complex engineering products (e.g., engine

design) or modeling physical interactions (e.g., gravitational systems). In a networking

context, a NDT is a digital representation of the physical network or event built in the

digital world. Figure 1.1 shows a graphical representation of the NDT paradigm. The

network operator can interact with the NDT in real-time with the goal of optimizing some

desired network performance metrics (e.g., find the routing configuration that minimizes

the average delay).

The NDT paradigm aims to achieve accurate data-driven network models that can be

used to efficiently model and operate communication networks in real-time. In this vein,

the use of ML enables training network models directly with real network data, avoiding

the strong assumptions of analytical models (e.g., queueing theory). ML models can thus

help achieve similar accuracy to traditional computationally-expensive modeling tools (e.g.,

packet-level simulation) while keeping a limited execution cost similar to lightweight ana-

lytical models. This allows network operators to accurately control the network at much
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Figure 1.2: General overview of the network digital twin architecture [1].

shorter timescales, enabling real-time operation. There is a growing interest from several

communities in building NDTs. In particular, the research community has already proposed

several architectures and methods to implement different components of the NDT [23–25].

In addition, standards development organizations (SDO), such as the IETF or the ITU,

have already started to work on the definition of a NDT [26,27].

The central component of the NDT architecture is the DT, which implements a network

model using ML. This model is built using network state-related information (e.g., traf-

fic, topology, routing, scheduling policies) and it outputs some estimated network-related

metrics (e.g., utilization, delay, anomalies). The outputs of the NDT can be of multi-

ple types depending on the network application (e.g., time series, link-level predictions,

global network-level metrics). Figure 1.2 presents the reference architecture of the NDT

paradigm [1]. Once the NDT is built, several network applications can leverage it to reach

their predefined goals by interacting in real-time. To train these ML-based NDTs, data from

real-world networks, dedicated network testbeds, or network simulation tools can be used.

This data should be diverse enough to cover a wide representation of potential scenarios

that the network operator wants to mimic (e.g., various congestion levels, link failures).

Since the NDT is a faithful copy of the real-world network, the network operator

can test any input values, even if these values might cause service disruptions. This is

because the DT is executed in a safe environment isolated from the real-world network.

Consequently, the network operator can test multiple network configurations to understand

their impact on the actual physical network. This improves the solution space search and

it enables achieving better network configurations that meet the network operator’s goals.

In addition, the NDT offers fast inference times, enabling real-time network optimization.

Note that the example depicted in Fig. 1.2 illustrates the case of a NDT applied to a fixed
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Figure 1.3: Network optimization process with the NDT [1].

network, while analogous architectures could be applied to other kinds of networks, such as

wireless or mobile networks.

1.1 Motivation and Objectives

A NDT can be used to design novel optimization solutions for efficient network man-

agement. Specifically, the network operator can build a NDT of its physical network and

apply meaningful tests on it (e.g., remove links to simulate link failures, test different net-

work configurations). Then, the NDT would indicate what is the network’s performance

under the new network configurations obtained by the network optimizer. In other words,

the network operator can ”simulate” worst-case network scenarios and have an estimation

of network’s performance on these solutions at a very low computational cost, as opposed

to the use of network simulators (e.g., OMNet++ [28]). In addition, the NDT can also be

leveraged to improve the design of optimization solutions or to detect critical design flaws

that might cause service disruptions.

The NDT can be combined with a network optimizer to solve network optimization

problems (e.g., routing optimization). In particular, network optimizers can use the NDT

to obtain immediate network performance estimations during an optimization process. Fig-

ure 1.3 summarizes this process. In the first step, network operators use a declarative

language to define the network requirements (e.g., minimize average delay). Then, the opti-

mizer is in charge of searching for the best network configuration that fulfills the predefined

requirements (step 2). When the network optimizer sends a network configuration to the

DT, this returns the expected network performance if the configuration would be applied in

the real-world network. If the performance metrics from the DT indicate that the solution

is not good enough (step 3), then the network optimizer continues the search by trying a
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new network configuration. The search continues until a stopping condition is met (e.g.,

number of iterations, average delay below some threshold). Lastly, the best solution found

can then be applied to the real network (step 4). Notice that the optimization process can

be implemented as a closed-loop, with no human intervention required.

The objective of this dissertation is to develop new efficient real-time optimization

mechanisms leveraging NDTs using Deep Reinforcement Learning (DRL) and Graph Neu-

ral Networks (GNN). Specifically, we wanted to design a novel architecture that integrates

GNNs into DRL to implement the Network Optimizer from Figure 1.3. To test the ca-

pabilities of the DRL+GNN architecture, we evaluated it on two real-world optimization

scenarios where we work with the network traffic, network topology, routing configuration

and the per-link utilizations. In both optimization scenarios, the NDT was implemented

with Python as the network behavior for both optimization problems can be easily sim-

ulated with code by simply adding the traffic crossing each link (see Section 3.2.1 and

Section 4.2.1). Notice that in more sophisticated optimization problems (e.g., minimize the

average end-to-end delay), the NDT would be implemented with sophisticated ML models

that mimic complex behaviors such as network delay.

1.2 Contributions and Outline of the Thesis

The first contribution of this dissertation is a DRL+GNN architecture for network opti-

mization with generalization capabilities evaluated on two optimization scenarios. The first

scenario corresponds to optimization in Optical Transport Networks (OTN). The experi-

mental results validated the DRL+GNN architecture and showed us promising results for

real-time routing optimization, outperforming widely used heuristics and SoA DRL-based

methods. Afterwards, we wanted to improve this architecture and evaluate it in more com-

plex and realistic scenarios. Therefore, we designed a novel DRL+GNN method to solve

routing optimization in IP networks. The evaluation results show that the new method can

achieve close-to-optimal performance in less than 30 seconds for a set of arbitrary real-world

network topologies not seen during the training process.

Storing network traffic information (e.g., packet traces, link-level traffic measurements,

flow-level measurements) is important to train the DRL+GNN architecture on real-world

data. For example, the traffic evolution from a real-world network could be stored and

used to train the DRL agent. In addition, the NDT paradigm also requires the storage and

analysis of vast amounts of network traffic data [1]. This is because the ML models will

learn to mimic the physical network’s behavior from the collected data. The more data

we have, better will the the optimization performance of the DRL agent and the higher

will be the accuracy of the ML models that implement the NDT. However, storing this

kind of data requires an extremely large amount of storage capacity. For example, in the

context of mobile networks, one month of traffic traces of ≈9,600 base stations from the city
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of Shanghai takes around 2,4 petabytes of data [29]. This becomes even more challenging

when storing data from a mobile network covering an entire country.

Traditionally, network traffic traces are compressed using GZIP [30], a popular lossless

method for compressing files regardless of their format (e.g., text, csv files, PDFs). Network

operators typically collect traffic traces in PCAP format [31] and they simply compress

them with GZIP or similar tools. However, GZIP is a generic compression tool, resulting

in sub-optimal compression performance when applied to network traffic data.

The second contribution of this dissertation is a new GNN-based compression method

that compresses link-level traffic measurements. Past works showed that network traffic

traces are far from being purely random, meaning that they intrinsically have some un-

derlying structure [32–36]. In particular, traffic traces are known to present spatial and

temporal patterns that could potentially be exploited to increase current compression ra-

tios. Therefore, we wanted to understand if recent advancements in NN architectures could

effectively be used to leverage such correlations to achieve better compression ratios than

traditional tools such as GZIP. Figure 1.4 shows an overview of the contributions of this

dissertation.

In the following Background section (Section 2) we provide context about the state of

the art and some basics on the different technologies that were used in our contributions.

The rest of the thesis is structured as follows:

Section 3 : Optimization in Optical Networks

In this section we propose a novel architecture based on DRL and GNN technologies

for network control and optimization in OTN. We chose this scenario for its simplicity,

which is required to understand the benefits of the DRL+GNN architecture. In our work

we directly optimize over the network topology, which can be seen as a graph where the

nodes represent routers. Specifically, we propose to integrate DRL with GNNs to build an
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agent that correctly routes network traffic demands and maximizes the network’s resources

usage.

Section 4 : Optimization in IP Networks

In this section, we improve the architecture presented previously and we apply it to

a more complex and realistic scenario in IP networks. Specifically, the new DRL+GNN

architecture is used to reconfigure an initial routing configuration based on shortest path

routing, trying to minimize the utilization of the most congested link. To mitigate the

uncertainty naturally intrinsic in ML-based models we integrated a heuristic based on local

search to improve the solution of the DRL+GNN architecture at a small overhead.

Section 5 : Network Traffic Compression

In this chapter we present a new compression method that effectively compresses link-

level network traffic traces. The proposed method is based on GNNs that leverage spatial

and temporal correlations naturally present in network traffic to effectively compress traffic

traces.

Section 6 : Related Work

This section offers an overview of the related work. First, we describe the work related

to the network optimization scenarios. Then, we discuss the existing work related to network

traffic compression. In both cases, we discuss solutions that are based on ML and those

that are based on traditional optimization methods (e.g., CP, ILP), outlining the main

differences and limitations for each of them.

Section 7 : Conclusions and Future Work

The final section of this dissertation concludes our work and summarizes different

research lines as future work.
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Chapter 2

Background

2.1 State of the Art

There are multiple optimization techniques that could be used to implement a network

optimizer that efficiently manages the network infrastructures. The main objective of the

optimizer would be to steer the traffic to achieve a certain goal, such as minimizing the

utilization of the most congested link. Network optimization problems can be formulated

as Integer Linear Programming (ILP) problems and they can be solved using state-of-the-

art (SoA) optimizer engines such as Gurobi [37] or CPLEX [38]. Solutions based on ILP

have the benefit of achieving optimal solutions to optimization problems if executed long

enough [39–41]. However, when the problem size grows (i.e., the number of nodes and links

grows), the number of decision variables increases and the solution space becomes larger

and more complex to explore. Consequently, ILP solvers could take several hours or days

to find the exact solutions in real-world problems as they have in the order of hundreds of

links and nodes [42,43].

An alternative is the use of Constraint Programming (CP) [44] methods. CP defines

the combinatorial problem to solve with a set of decision variables (e.g., traffic demands,

OSPF weights), a set of domains (i.e., potential values of the decision variables) and a set

of constraints on the feasible solutions (e.g., maximum link utilization must be below a

threshold). They have the limitation of being computationally intensive, resulting in sub-

optimal solutions if the execution time is not long enough. Computer networks experience

external events frequently (e.g., link failures, increase in traffic demand) [45–47], altering

the normal network behavior. This forces the CP solver to start the optimization problem

from scratch every time there is a network event, impeding efficient real-time network

optimization [42,48].

Network operators can also build a network optimizer using heuristics or expert knowl-

edge [49, 50]. However, the network size and traffic have been growing by almost doubling

every year [2–4]. A new set of stringent network requirements came together with this
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Method Execution cost Performance Examples

Heuristic Low Low [49,50]
Mathematical Optimizers (e.g., CP, ILP) High High [39–42,48]
SoA Machine Learning High (training) High [55–58]

Table 2.1: Summary of the SoA to implement a Network Optimizer.

growth (e.g., ultra low deterministic latency), raising the complexity of efficient real-time

network operation. As a result, the design of high performance heuristics for network opti-

mization became more challenging for humans, and with a higher cost for network operators.

ML-based solutions showed high performance in real-world optimization problems [14,

51–54]. As a result, the networking community started investigating the use of ML for

solving network optimization problems [55–58]. However, existing ML-based solutions fail

to generalize when applied to different network scenarios. Generalization refers to the

ability of the ML model to adapt to new network scenarios not seen during training (e.g.,

new network topologies, new configurations). As a result, these methods require re-training

the ML model when there is a change in the network optimization problem, increasing the

execution cost for modern networks which are highly dynamic [2–4]. Table 2.1 shows an

overview of the existing SoA methods for network optimization.

In this dissertation we propose a DRL+GNN architecture that can generalize to other

scenarios not seen during training. With generalization, the DRL agent does not need to be

retrained every time there is a change in the optimization problem (e.g., link failure). This

means that we effectively reduce the high training cost from SoA ML solutions, enabling

real-time optimization. In addition, GNNs enable achieving high performance because

they were specifically designed to learn from graph-structured information. As computer

networks are graphs, we argue that GNNs are a key technology for network optimization.

2.2 Deep Reinforcement Learning

DRL algorithms aim at learning a long-term strategy that maximizes an objective

function in an optimization problem. Typically, DRL agents start from a tabula rasa state

and they learn the optimal strategy by an iterative process that explores the state and

action spaces. These are denoted by a set of states (S) and a set of actions (A). Given a

state s ∈ S, the agent will perform an action a ∈ A that produces a transition to a new

state s’ ∈ S, which will provide the agent with a reward r. This reward will indicate to the

DRL agent how good the action was performed. Then, the objective is to find a strategy

that maximizes the cumulative reward by the end of an episode.

The definition of the end of an episode depends on the optimization problem to address.

As an example, in the game of chess the end of an episode is when one of the two players has

won the game or when the game is in stalemate. In other scenarios, the end of an episode

10
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a0 a1 a2 . . . aN
s0 Q(s0,a0) Q(s0,a1) Q(s0,a2) Q(s0,a2)

s1 Q(s1,a1) Q(s1,a1) Q(s1,a2) Q(s1,a2)

s2 Q(s2,a1) Q(s2,a1) Q(s2,a2) Q(s2,a2)

. . . . . . . . .

sN Q(sN,a1) Q(sN,a1) Q(sN,a2) . . . Q(sN,a2)

Actions
S

ta
te

s

Figure 2.1: Q-learning table with all the possible actions and states. Initially, the table is
initialized with zeros or random values. During training, the table values are updated using
the Bellman equation.

can be defined by a maximum number of steps performed by the DRL agent. There is no

better way to define the end of an episode but it is of extreme relevance to design a reward

that will lead the agent towards the optimization end goal.

2.2.1 DQN

Q-learning [59] is a model-free reinforcement learning algorithm whose goal is to make

an agent learn a policy 𝜋 : S → A. The algorithm creates a table (a.k.a., q-table) with all

the possible combinations of states and actions. This table is exemplified in Figure 2.1 and

it indicates the maximum future expected reward of taking an action in a specific state.

At the beginning of training, the table is initialized with zeros or random values. During

training, an agent that interacts with the environment updates these values according to

the rewards obtained after selecting an action. These values, called q-values, represent the

expected cumulative reward after applying action a in state s, assuming that the agent

follows the current policy 𝜋 during the rest of the episode. During training, the table values

or q-values are updated using the Bellman equation (see Equation 2.2.1) where Q(𝑠𝑡 ,𝑎𝑡) is

the q-value function at time-step t, 𝛼 is the learning rate, r(𝑠𝑡 ,𝑎𝑡) is the reward obtained

from selecting action 𝑎𝑡 from state 𝑠𝑡 and 𝛾 ∈ [0, 1] is the discount factor.

𝑄(𝑠𝑡 , 𝑎𝑡 ) = 𝑄(𝑠𝑡 , 𝑎𝑡 ) + 𝛼
(
𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 max

𝑎′
𝑄(𝑠′𝑡 , 𝑎′) −𝑄(𝑠𝑡 , 𝑎𝑡 )

)
(2.2.1)

Deep Q-Network (DQN) [60] is a more advanced algorithm based on Q-learning that

uses a Deep Neural Network (DNN) to approximate the q-value function. As the q-table

size becomes larger, Q-learning faces difficulties to learn a policy from high dimensional

state and action spaces. To overcome this problem, they proposed to use a DNN as a

q-value function estimator, relying on the generalization capabilities of DNNs to estimate
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Algorithm 1 PPO Pseudocode

Input : actor policy parameters 𝜃1, critic value function parameters 𝜙1
1: for 𝑒 = 1,2, ... to MAX NUM EPISODES do
2: Collect trajectories 𝐷𝑒 by interacting with the environment using policy 𝜋(𝜃𝑒)
3: Compute rewards-to-go 𝑅𝑒
4: Compute advantage estimates 𝐴𝑒 using any advantage estimation method
5: Update the parameters 𝜃𝑒+1 using 𝐴𝑒, maximizing the loss with gradient ascent
6: Fit the critic value function using 𝑅𝑒, computing the mean-squared error and gra-

dient descent

the q-values of states and actions unseen in advance. For this reason, a DNN well suited to

understand and generalize over the input data of the DRL agent is crucial for the agents to

perform well when facing states (or environments) never seen before. Additionally, DQN

uses an experience replay buffer to store past sequential experiences (i.e., stores tuples

of {s,a,r,s’} ). While training the neural network, the temporal correlation is broken by

sampling randomly from the experience replay buffer.

2.2.2 PPO

Another family of RL algorithms is the policy optimization based methods. The differ-

ence with value-based methods (e.g., DQN) is that they try to optimize the policy directly.

Specifically, the agent’s policy 𝜋𝜃 (a|s) is parameterized by 𝜃 and the reward that indicates

how good the action performed by the DRL agent depends on the 𝜋𝜃 function. Policy

optimization methods use gradient ascent to find the best parameters 𝜃 that produce the

highest rewards.

There are various algorithms that can be applied to find the best parameters 𝜃. In

our work, we used the Proximal Policy Optimization (PPO) for its high performance in

complex control tasks [61]. PPO is a policy gradient learning algorithm that utilizes the

actor-critic method to train the policy network 𝜋𝜃 (a|s) [62]. This function can be seen as

a neural network. This method consists of training two networks: the actor and the critic.

The actor is in charge of mapping a state observation to an action and the critic estimates

the expected reward of the agent for the given action. Another key difference between DQN

and PPO is that the latter learns in an online fashion, without storing the past experiences

in a large replay buffer. Particularly, PPO stores a batch of experiences (e.g., an entire

episode where the agent interacts with the environment), performs the gradient update and

discards the batch. Algorithm 1 shows the pseudocode of the PPO algorithm. We refer the

reader to the original paper [61] for a more detailed description.

PPO generally works better than DQN because it converges faster to a better policy

in complex scenarios. In addition, PPO can be easily applied to problems with continuous

action space, while DQN needs to pass through an action discretization process. Conversely,

PPO suffers from having a high variance when estimating the gradients, which could neg-
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atively impact the convergence of the algorithm. There are several techniques which can

be used to minimize the variance, such as TD-lambda [63] and Generalized Advantage

Estimation [64], which were both included in our PPO implementation.

2.3 Graph Neural Networks

The key technology behind the contributions of this dissertation are the GNNs. Thes

are a novel family of neural networks designed to operate over graphs. They were introduced

in [65] and numerous variants have been developed since [66, 67]. In their basic form, they

consist of associating some initial states to the different elements of an input graph, and

combining them considering how these elements are connected in the graph. An iterative

algorithm updates the elements’ state and uses the resulting states to produce an output.

The particularities of the problem to solve will determine which GNN variant is more

suitable, depending on, for instance, the nature of the graph elements (i.e., nodes and

edges) involved.

Message Passing Neural Networks (MPNN) [68] are a well-known type of GNNs that

apply an iterative message-passing algorithm to propagate information between the nodes

of the graph. In a message-passing step, each node k receives messages from all the nodes in

its neighborhood, denoted by N(k). Messages are generated by applying a message function

m(·) to the hidden states of node pairs in the graph. Then, they are combined by an

aggregation function, for instance, a sum (Equation 2.3.1). Finally, an update function u(·)
is used to compute a new hidden state for every node (Equation 2.3.2).

𝑀 𝑡+1
𝑘 =

∑︁
𝑖∈𝑁 (𝑘 )

𝑚(ℎ𝑡𝑘 , ℎ
𝑡
𝑖 ) (2.3.1)

ℎ𝑡+1𝑘 = 𝑢(ℎ𝑡𝑘 , 𝑀
𝑡+1
𝑘 ) (2.3.2)

Functions m(·) and u(·) can be learned by neural networks. After a certain number of

iterations, the final node states are used by a readout function r(·) to produce an output for

the given task. This function can also be implemented by a neural network and is typically

tasked to predict properties of individual nodes (e.g., the node’s class) or global properties

of the graph.

GNNs have been able to achieve relevant performance results in multiple domains where

data is typically structured as a graph [68,69]. Since computer networks are fundamentally

represented as graphs, it is inherent in their design that GNNs offer unique advantages

for network modeling compared to traditional neural network architectures (e.g., fully con-

nected NN, Convolutional NN, etc.).
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Figure 2.2: The ST-GNN uses a time window to indicate how long is the sequence to
process before making the final prediction. For each time bin the MPNN learns the spatial
correlations and then the RNN updates the node-level hidden states. Once the entire
sequence is processed, a readout function is in charge of making the final predictions with
the resulting node-level hidden states. Notice that the predictions can be global (i.e.,
aggregating all hidden states) or per-node using for example a multilayer perceptron NN
architecture.

2.3.1 Spatio-Temporal GNN

There are kinds of data that in addition to spatial dependencies can also present time-

varying characteristics. As an example, consider the following scenario in transportation

systems where the nodes of a graph represent the cities of a country and the edges correspond

to the roads connecting these cities. Due to external factors, spatial relationships among

cities will change during time. For example, traffic congestion, accidents or adverse weather

could make it difficult or impede reaching some cities using some specific roads at a given

time.

Spatio-Temporal Graph Neural Networks (ST-GNN) are a different neural architecture

designed to learn spatial correlations and temporal dependencies stored as a time-varying

graph. In general, ST-GNN architectures consist on a GNN for spatial modeling (i.e.,

dependencies between graph edges/nodes) and a Recurrent Neural Network (RNN) to learn

the temporal trends [70–72]. The ST-GNN uses a time window to indicate how long is the

temporal sequence to process before making the prediction. For each time bin within the

window, the GNN and the RNN are alternated, updating the graph entities’ hidden states

sequentially.

In this dissertation we built a ST-GNN composed of a MPNN and a RNN for learning

the spatial and temporal correlations respectively. Figure 2.2 shows an overview of the ST-

GNN and how the MPNN and RNN are alternated for each time bin. Initially, all nodes’
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hidden states are initialized with the node-level features and we do not consider the edge

entity. Then, a MPNN is executed using the initialized node hidden states to learn the

spatial relations between nodes. Afterwards, the RNN takes the resulting hidden states

for the corresponding time bin and updates each node independently. This final hidden

state is used to initialize the node features in the next time bin, repeating the same process

until the end of the time window. Finally, after having iterated over all time bins within

the window, a final NN is applied for each node to make node-level predictions. In the

case of graph-level prediction, the node-level final hidden states could be aggregated (e.g.,

sum, mean) and a NN could process the resulting graph-level hidden state to make global

predictions.
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Chapter 3

Optimization in Optical Networks

3.1 Introduction

The first contribution of this dissertation is a DRL+GNN architecture for network

optimization with generalization capabilities. In this chapter we describe the architecture

and evaluate it by optimizing the routing of traffic demands in an Optical Transport Network

(OTN). We chose this scenario because we wanted to evaluate the proposed architecture

in a simple scenario to understand its advantages and limitations. We implemented the

DT of the optical network using Python (see Figure 1.3). This is because the network

behavior for the optimization problem can be easily simulated with code by simply adding

the traffic crossing each link in the topology. More sophisticated optimization problems (e.g.,

minimize the average end-to-end delay) would require for the NDT to be implemented with

sophisticated ML models that mimic complex behaviors such as network delay.

DRL has shown significant improvements in sequential decision-making and automated

control problems [14, 73]. As a result, the network community started to investigate DRL

as a key technology for network optimization [19, 21, 22, 74]. However, existing DRL-based

solutions still fail to generalize when applied to different network scenarios [55, 58, 75]. In

this context, generalization refers to the ability of the DRL agent to adapt to new network

scenarios not seen during training (e.g., new network topologies, routing configurations,

scheduling policies).

We argue that generalization is an essential property for the successful adoption of

DRL technologies in production networks. Without generalization, DRL solutions should

be trained in the same network where they are deployed, which is not possible or affordable in

general. To train a DRL agent is a costly and lengthy process that often requires significant

computing power and the instrumentation of the network to observe its performance (e.g.,

delay, jitter). Additionally, decisions made by a DRL agent during training can lead to

degraded performance or even to service disruption. Thus, training a DRL agent in the

customer’s network may be unfeasible.
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With generalization, a DRL agent can be trained with multiple, representative net-

work topologies and configurations. Afterwards, it can be applied to other topologies and

configurations, as long as they share some common properties. Such a “universal” model

can be trained in a laboratory and later on be incorporated in a product or a network

device (e.g., router, load balancer). The resulting solution would be ready to be deployed

to a production network without requiring any further training or instrumentation in the

customer network1.

Existing DRL proposals for networking were designed to operate in the same network

topology seen during training [55, 58, 75], thereby limiting their potential deployment on

production networks. The main reason behind this strong limitation is that computer

networks are fundamentally represented as graphs. For instance, the network topology and

routing policy are typically represented as such. However, SoA proposals [55,56,76,77] use

traditional NN architectures (e.g., fully connected, convolutional) that are not well suited

to model graph-structured information [78].

GNNs [65] were proposed to model and operate over graphs with the aim of achieving

relational reasoning and combinatorial generalization. In other words, GNNs facilitate

learning the relations between graph elements and the rules for composing them. GNNs

have shown unprecedented generalization capabilities in the field of network modeling and

optimization [79].

In our work, we integrate GNNs into DRL agents to solve network optimization prob-

lems. Particularly, we propose an architecture that is intended to solve routing optimiza-

tion in optical networks and to generalize over never-seen arbitrary topologies. The GNN

integrated in our DRL agent is inspired by Message-Passing Neural Networks (MPNN),

which were successfully applied to solve a relevant chemistry-related problem [68]. In our

work, the GNN was specifically designed to capture meaningful information about the re-

lations between the links and the traffic flowing through the network topologies. Then,

our DRL+GNN agent is tasked to allocate traffic demands as they arrive, maximizing the

traffic volume routed through the network.

The evaluation results show that the proposed DRL+GNN architecture achieves strong

generalization capabilities compared to SoA DRL (SoA DRL) algorithms. This is important

as it indicates that our solution does not need to be retrained when there are changes in the

network topology (e.g., link failures). Notice that existing methods based on CP or ILP are

computationally intensive and they need to restart the optimization process from scratch

when there is a change in the optimization problem (e.g., link failure). In addition, SoA

DRL-based solutions need to re-train the DRL agent every time there is a change in the

optimization problem (e.g., traffic changes, link failure). This is a computationally intensive

process that impedes real-time network optimization.

1Note that solutions based on transfer learning do not offer this property as DRL agents need to be
re-trained on the network where they finally operate.
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Overall, our DRL+GNN architecture for network optimization has the following fea-

tures:

• Generality: It can work effectively in network topologies and scenarios never seen

during training.

• Deployability: It can be deployed to production networks without requiring training

nor instrumentation in the customer network.

• Low overhead: Once trained, the DRL agent can make routing decisions in only one

step (≈ ms), while its cost scales linearly with the network size.

• Commercialization: Network vendors can easily embed it in network devices or prod-

ucts, and successfully operate ”arbitrary” networks.

We believe the combination of these features can enable the development of a new

generation of networking solutions based on DRL that are more cost-effective than cur-

rent approaches based on heuristics or linear optimization. All the topologies and scripts

used in the experiments, as well as the source code of our DRL+GNN agent are publicly

available [80].

3.2 Background

The solution proposed in our work combines two machine learning mechanisms. First,

we use a GNN to model computer network scenarios. GNNs are neural architectures specif-

ically designed to generalize over graph-structured data [78], and thus, are well suited to

operate successfully in other network scenarios including topologies and routing configura-

tions unseen during training. In addition, they offer near real-time operation in the scale

of milliseconds (see Section 3.5.2). Second, we use DRL to build an agent that learns how

to efficiently operate networks following a particular optimization goal. DRL applies the

knowledge obtained in past optimizations to later decisions, without the necessity to run

computationally intensive algorithms. The combination with GNNs enables the DRL agent

to generalize and operate efficiently on scenarios never seen before.

3.2.1 Problem Statement

In this section, we explore the potential of a GNN-based DRL agent to address the

routing problem in Optical Transport Networks (OTN). Particularly, we consider a network

scenario based on Software-Defined Networking (SDN), where the DRL agent (located in

the control plane) has a global view of the current network state, and has to make routing

decisions on every traffic demand as it arrives. We consider a traffic demand as the volume

of traffic sent from a source to a destination node. This is a relevant optimization scenario
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Figure 3.1: Schematic representation of the DRL agent in the OTN routing scenario.

that has been studied in the last decades in the optical networking community, where many

solutions have been proposed [55,56,81].

In our OTN scenario, the DRL agent makes routing decisions at the electrical domain,

over a logical topology where nodes represent Reconfigurable Optical Add-Drop Multiplex-

ers (ROADM) and edges are predefined lightpaths connecting them (see Figure 3.1). The

DRL agent receives traffic demands with different bandwidth requirements defined by the

tuple {𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ}, and it has to select an end-to-end path for every demand. Par-

ticularly, end-to-end paths are defined as sequences of lightpaths connecting the source and

destination of a demand. Since the agent operates at the electrical domain, traffic demands

are defined as requests of Optical Data Units (ODUk), whose bandwidth requirements are

defined in the ITU-T Recommendation G.709 [82]. The ODUk signals are then multiplexed

into Optical Transport Units (OTUk), which are data frames including Forward Error Cor-

rection. Eventually, OTUk frames are mapped to different optical channels within the

lightpaths of the topology.

In this scenario, the routing problem is defined as finding the optimal routing policy

for each incoming source-destination traffic demand. The learning process is guided by

an objective function that aims to maximize the traffic volume allocated in the network

in the long-term. We consider that a demand is properly allocated if there is enough

available capacity in all the lightpaths forming the end-to-end path selected. Note that

lightpaths are the edges in the logical topology where the agent operates. The demands

do not expire, occupying the lightpaths until the end of a DRL episode. This implies a

challenging task for the agent since it has not only to identify critical resources on networks

(e.g., potential bottlenecks), but also to deal with the uncertainty in the generation of future

traffic demands. The following constraints summarize the traffic demand routing problem

in the OTN scenario:
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• The agent must make sequential routing decisions for every incoming traffic demand

• Traffic demands can not be split over multiple paths

• Previous traffic demands can not be rerouted and they occupy the links’ capacities

until the end of the episode

The optimal solution to the OTN optimization problem can be found by solving its

Markov Decision Process (MDP) [83]. To do this, we can use techniques such as dynamic

programming, which consist of an iterative process over all MDP’s states until convergence.

The MDP for the traffic demand allocation problem consists of all the possible network

topology states and the transition probabilities between states. Notice that in our scenario

we have uniform transition probabilities from one state to the next. One limitation of solving

MDPs optimally is that it becomes infeasible for large and complex optimization problems.

As the problem size grows, so does the MDP’s state space, where the space complexity (in

number of states) is 𝑆 ≈ 𝑂 (𝑁E), having 𝑁 as the number of different capacities a link can

have and 𝐸 as the number of links. Therefore, to solve the MDP the algorithm will spend

more time on iterating over all MDP’s states.

3.3 Proposed Solution

In this section, we describe the proposed DRL+GNN architecture. On the one hand,

there is the GNN-based DRL agent which defines the actions to apply on the network state.

These actions consist of allocating the demands on one of the candidate paths. The DRL

agent implements the DQN algorithm [60], where the q-value function is modeled by a GNN.

On the other hand, there is an environment defining the optimization problem to solve. This

environment stores the network topology, together with the link features. In addition, the

environment is responsible for generating the reward once an action is performed, indicating

to the agent if the action was good or not. The environment contains the digital twin of

the optical network (see Figure 1.3). The DRL agent interacts with the NDT in order to

optimize some network metric. We implemented the NDT using Python code because the

network behaviour can be easily simulated by simply adding the traffic crossing each link

in the topology.

The learning process is based on an iterative process where at each time step, the agent

receives a graph-structured network state observation from the environment. Particularly,

the network state includes the topology with some link-level features (e.g., utilization).

Then, the GNN constructs a graph representation where the links of the topology are

the graph entities. In this representation, the link hidden states are initialized consider-

ing the input link-level features and the routing action to evaluate (see more details in

Sections 3.3.1, 3.3.2 and 3.3.3). With this representation, an iterative message passing algo-

rithm runs between the links’ hidden states according to the graph structure. The output
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of this algorithm (i.e., new links hidden states) is aggregated into a global hidden state that

encodes topology information, and then is processed by a deep neural network. This process

makes the GNN topology invariant because the global hidden state length is pre-defined

and it will always have the same length for different topology sizes. At the end of the

message passing phase, the GNN outputs a q-value estimate. This q-value is evaluated over

a limited set of actions, and finally the DRL agent selects the action with highest q-value.

The selected action is then applied to the environment, producing a transition in the

NDT to a new network state. If the action performed was successful (i.e., all the links

selected had enough available capacity to support the new demand), a positive reward is

returned to the agent, otherwise the episode ends and the DRL agent receives a reward

equal to zero. During the training phase, an 𝜖-greedy exploration strategy [60] is used to

select the next action applied by the agent. This means that a random action is executed

with probability 𝜖 , while the action with higher q-value is selected with probability (1 − 𝜖).

3.3.1 Environment

The environment implements the NDT of the optical network and it has a network state

defined by the typology’s link features, including the link capacities and link betweenness.

The former indicates the amount of traffic capacity available on the link. The latter is

a measure of centrality inherited from graph theory that indicates how many paths may

potentially traverse the link. From the experimental results we observed that this feature

helps reduce the grid search of the hyperparameter tuning for the DRL agent. This is

because the betweenness helps the agent converge faster to a good policy. In particular, we

compute the link betweenness in the following way: for each pair of nodes in the topology,

we compute 𝑘 candidate paths (e.g., the 𝑘 shortest paths), and we maintain a per-link

counter that indicates how many paths pass through the link. Then, the betweenness on

each link is the number of end-to-end paths crossing the link divided by the total number

of paths.

3.3.2 Action Space

In this section we describe how the routing actions are represented in the DRL+GNN

agent. Note that the number of possible routing combinations for each source-destination

node pair typically results in a high dimensional action space in large-scale real-world net-

works. This makes the routing problem complex for the DRL agent, since it should estimate

the q-values for all the possible actions to apply (i.e., routing configurations). To overcome

this problem, the action space must be carefully designed to reduce the problem dimension-

ality. In addition, to enable generalization to other topologies, the action space should be

equivalent across topologies. In other words, if the actions in the training topology are rep-

resented by shortest paths, in the evaluation topology they should also be shortest paths. If

the action space would be different (e.g., multiple paths between a source-destination node
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Figure 3.2: Action representation in the link hidden states.

pair), the agent would have problems learning and it would not generalize well. To leverage

the generalization capabilities of GNNs, we introduced the action into the agent in the form

of a graph. This makes the action representation invariant to node and edge permutation,

which means that, once the GNN is successfully trained, it is able to understand actions

over arbitrary graph structures (i.e., over different network states and topologies).

Considering the above, we limit the action set to k candidate paths for each source-

destination node pair. To maintain a good trade-off between flexibility to route traffic and

the cost to evaluate all the possible actions, we selected a set with the k=4 shortest paths

(by number of hops) for each source-destination node pair. This follows a criteria originally

proposed by [56]. Note that the action set differs depending on the source and destination

nodes of the traffic demand to be routed.

To represent the action, we introduce it within the network state. Particularly, we

consider an additional link-level feature, which is the bandwidth allocated over the link

after applying the routing action. This value corresponds to the bandwidth demand of the

current traffic request to be allocated. Likewise, the links that are not included in the path

selected by the action will have this feature set to zero. Since our OTN environment has a

limited number of traffic requests with various discrete bandwidth demands, we represent

Notation Description

𝑥1 Link available capacity
𝑥2 Link Betweenness
𝑥3 Action vector (bandwidth allocated)
𝑥4 − 𝑥𝑁 Zero padding

Table 3.1: Input features of the link hidden states. N corresponds to the size of the hidden
state vector.
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the bandwidth allocated with a N -element one-hot encoding vector, where N is the vector

length.

Figure 3.2 illustrates the representation of the action in the hidden state of the links in

a simple network scenario. A traffic request from node 1 to node 5, with a traffic demand of

8 bandwidth units, is allocated over the path formed by the nodes {1,2,3,5}. To summarize,

Table 3.1 provides a description of the features included in the links’ hidden states. These

values represent both the network state and the action, which is the input needed to model

the q-value function 𝑄(𝑠, 𝑎).

The size of the hidden states is typically larger than the number of features in the

hidden states. This is to enable each link to store information of himself (i.e., his own

initial features) plus the aggregated information coming from all the links’ neighbors (see

Section 3.3.3). If the hidden state size is equal to the number of link features, the links won’t

have space to store information about the neighboring links without losing information. This

results in a poor graph embedding after the readout function. On the contrary, if the state

size is very large, it can lead to a large GNN model, which can overfit to the data. A

common approach is to set the state size larger than the number of features and to fill the

vector with zeros.

3.3.3 GNN Architecture

The GNN model is based on the message passing neural network architecture [68]. In

our case, we only consider the link entity and we perform the message passing between

all links. We choose link entities instead of node entities because the link features are

what define the OTN routing optimization problem. Node entities could be added when

addressing an optimization problem that needs to incorporate node-level features (e.g., I/O

buffer size, scheduling algorithm). Algorithm 2 shows a formal description of the message

passing process where the algorithm receives as input the links’ features (𝑥𝑙) and outputs a

q-value (q).

Algorithm 2 Message Passing

Input : x𝑙
Output : h𝑇

𝑙
, 𝑞

1: for each 𝑙 ∈ L do
2: ℎ0

𝑙
← [x𝑙, 0 . . . , 0]

3: for 𝑡 = 1 to 𝑇 do
4: for each 𝑙 ∈ L do
5: 𝑀 𝑡+1

𝑙
=
∑
𝑖∈𝑁 (𝑙) 𝑚

(
ℎ𝑡
𝑙
, ℎ𝑡
𝑖

)
6: ℎ𝑡+1

𝑙
= 𝑢

(
ℎ𝑡
𝑙
, 𝑀 𝑡+1

𝑙

)
7: 𝑟𝑑𝑡 ← ∑

𝑙∈L ℎ𝑙
8: 𝑞 ← 𝑅(rdt)
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Figure 3.3: Message passing architecture.

The algorithm performs T message passing steps. A graphical representation can be

seen in Figure 3.3, where the algorithm iterates over all links of the network topology.

For each link, its features are combined with those of the neighboring links using a fully-

connected, corresponding to M in Figure 3.3. The outputs of these operations are called

messages according to the GNN notation. Then, the messages computed for each link with

their neighbors are aggregated using an element-wise sum (line 5 in Algorithm 2). After-

wards, a Recurrent NN (RNN) is used to update the link hidden states ℎ𝐿𝐾 with the new

aggregated information (line 6 in Algorithm 2). At the end of the message passing phase,

the resulting link states are aggregated using an element-wise sum (line 7 in Algorithm 2).

The result is passed through a fully-connected neural network which models the readout

function of the GNN. The output of this latter function is the estimated q-value of the input

state and action.

The role of the RNN is to learn how the link states change along the message passing

phase. As the link information is being spread through the graph, each hidden state will

store information from links that are farther and farther apart. Therefore, the concept

of time appears. RNNs are a neural architecture that are tailored to capture sequential

behavior (e.g., text, video, time-series). In addition, some RNN architectures (e.g., GRU)

are designed to process large sequences (e.g., long text sentences in NLP). Specifically, they

internally contain gates that are designed to mitigate the vanishing gradients, a common

problem with large sequences [84]. This makes RNNs suitable to learn how the links’ state

evolve during the message passing phase, even for large T.

3.3.4 DRL Agent Operation

The DRL agent operates by interacting with the environment. In Algorithm 3 we can

observe a pseudocode describing the DRL agent operation. At the beginning, the environ-
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ment env initializes all the link features. At the same time, the environment generates a

traffic demand to be allocated by the tuple {𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑏𝑤} and an environment state s. The

environment also initializes the cumulative reward to zero, defines the action set size and

creates the experience replay buffer (agt.mem). Afterwards, a while loop is executed (lines

3-16) that finishes when there is some demand that cannot be allocated in the network

topology. For each of the k=4 shortest paths, the demand is allocated along all the links

forming the path and the q-value is computed (lines 7-9). Once we have the q-value for

each state-action pair, the next action a to apply is selected using an 𝜖-greedy exploration

strategy (line 10) [60]. The action is then applied to the environment, leading to a new

state s’, a reward r and a flag Done indicating if there is some link without enough capacity

to support the demand. Additionally, the environment returns a new traffic demand tu-

ple {𝑠𝑟𝑐′, 𝑑𝑠𝑡′, 𝑏𝑤′}. The information about the state transition is stored in the experience

replay buffer (line 13). This information will be used later on to train the GNN in the

agt.replay() call (line 15), which is executed every 𝑀 training iterations.

3.4 Experimental Evaluation

In this section we evaluate our GNN-based DRL agent to optimize the routing config-

uration in the OTN scenario described previously. In particular, the experiments in this

section are focused on evaluating the performance and generalization capabilities of the pro-

posed DRL+GNN agent. Afterwards, in Section 3.5, we analyze the scalability properties

of our solution and discuss other relevant aspects related to the deployment on production

networks.

Algorithm 3 DRL Agent operation

1: 𝑠, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑏𝑤 ← env.init env()
2: 𝑟𝑒𝑤𝑎𝑟𝑑 ← 0, 𝑘 ← 4, 𝑎𝑔𝑡.𝑚𝑒𝑚 ← { }, 𝐷𝑜𝑛𝑒 ← False
3: while not Done do
4: 𝑘 𝑞 𝑣𝑎𝑙𝑢𝑒𝑠← { }
5: 𝑘 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠← compute k paths(k, src, dst)
6: for i in 0, ..., 𝑘 do
7: 𝑝′ ← get path(i, k shortest paths)
8: 𝑠′ ← env.alloc demand(s, p’, src, dst, dem)
9: 𝑘 𝑞 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖] ← compute q value(s’, p’)

10: 𝑞 𝑣𝑎𝑙𝑢𝑒 ← epsilon greedy(k q values, 𝜖)
11: 𝑎 ← get action(q value, k shortest paths, s)
12: 𝑟, 𝐷𝑜𝑛𝑒, 𝑠′, 𝑠𝑟𝑐′, 𝑑𝑠𝑡′, 𝑏𝑤′ ← env.step(s, a)
13: 𝑎𝑔𝑡.𝑟𝑚𝑏(𝑠, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑏𝑤, 𝑎, 𝑟, 𝑠′, 𝑠𝑟𝑐′, 𝑑𝑠𝑡′, 𝑏𝑤′)
14: 𝑟𝑒𝑤𝑎𝑟𝑑 ← 𝑟𝑒𝑤𝑎𝑟𝑑 + 𝑟
15: If training steps % M == 0: agt.replay()
16: 𝑠𝑟𝑐 ← src’; 𝑑𝑠𝑡 ← dst’; 𝑏𝑤 ← bw’, 𝑠← s’
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3.4.1 Evaluation Setup

We implemented the DRL+GNN solution described in Section 3.3 with Tensorflow [85]

and evaluated it on an OTN network simulator implemented using the OpenAI Gym frame-

work [86]. The source code, together with all the training and evaluation results are publicly

available [80].

In the OTN simulator, we consider three traffic demand types (ODU2, ODU3, and

ODU4), whose bandwidth requirements are expressed in terms of multiples of ODU0 signals

(i.e., 8, 32, and 64 ODU0 bandwidth units respectively) [82]. When the DRL agent correctly

allocates a demand, it receives an immediate reward being the bandwidth of the current

traffic demand if it was properly allocated, otherwise the reward is 0. We consider that

a demand is successfully allocated if all the links in the path selected by the DRL agent

have enough available capacity to carry such demand. Likewise, episodes end when a traffic

demand was not correctly allocated. Traffic demands are generated by uniformly selecting

a source-destination node pair and a traffic demand type (ODUk). This makes the problem

even more difficult for the DRL agent, since the uniform traffic distribution hinders the

exploitation of prediction systems to anticipate possible demands difficult to allocate. In

other words, all traffic demands are equally probable to appear in the future, making it

more difficult for the DRL agent to estimate the expected future rewards.

Initial experiments were carried out to choose an appropriate gradient-based optimiza-

tion algorithm and to find the hyperparameter values for the DRL+GNN agent. For the

GNN model, we defined the links’ hidden states ℎ𝑙 as 27-element vectors (filled with the

features described in Table 3.1). Note that the size of the hidden states is related to the

amount of information they may potentially encode. Larger network topologies and com-

plex network optimization scenarios might need larger sizes for the hidden state vectors. In

every forward propagation of the GNN we execute T=7 message passing steps using batches

of 32 samples. The optimizer used is the Stochastic Gradient Descent [87] with a learning

rate of 10−4 and a momentum of 0.9. We start the 𝜖-greedy exploration strategy with 𝜖=1.0

and maintain this value during 70 training iterations. Afterwards, 𝜖 decays exponentially

every episode. The experience buffer stores 4,000 samples and is implemented as a FIFO

queue (first in, first out). We applied l2 regularization and dropout to the readout function

with a coefficient of 0.1 in both cases. The discount factor 𝛾 was set to 0.95.

3.4.2 Methodology

We divided the evaluation of our DRL+GNN agent in two sets of experiments. In

the first set, we focused on reasoning about the performance and generalization capabilities

of our solution. For illustration purposes, we chose two particular network scenarios and

analyzed them extensively. As a baseline, we implemented the DRL-based system proposed

in [56], a SoA solution for routing optimization in OTNs. Later on, in Section 3.5, we
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evaluated our solution on real-world network topologies and analyzed its scalability in terms

of computation time and generalization capabilities.

To find the optimal MDP solution to the OTN optimization problem is infeasible due

to its complexity. Take as an example a small network topology with 6 nodes and 8 edges,

where the links have capacities of 3 ODU0 units, there is only one bandwidth type available

(1 ODU0) and there are 4 possible actions. The resulting number of states of the MDP

is 58*6*5*1 ≈ 1.17𝑒7 . To find a solution to the MDP we can use dynamic programming

algorithms such as value iteration. However, this algorithm has a time complexity to solve

the MDP of 𝑂 (𝑆2𝐴), where 𝑆 and 𝐴 are the number of states and actions respectively and

𝑆 ≈ 𝑂 (𝑁E), having N as the number of different capacities a link can have and E as the

number of links.

As an alternative, we compare the DRL+GNN agent performance with a theoretical

fluid model (labeled as Theoretical Fluid). This model is a theoretical approach which

considers that traffic demands may be split into the k=4 candidate paths proportionally

to the available capacity they have. This routing policy is aimed at avoiding congestion

on links. For instance, paths with low available capacity will carry a small proportion of

the traffic volume from new demands. Note that this model is non-realizable because ODU

demands cannot be split in real OTN scenarios. However, this model is fast to compute and

serves us as a reference to compare the performance of the DRL+GNN agent. In addition,

we also use a Load Balancing (LB) routing policy, which selects uniformly random one path

among the k=4 candidate shortest paths to allocate the traffic demand.

We trained the DRL+GNN agent in an OTN routing scenario on the 14-node Nsfnet

topology [88], where we considered that the links represent lightpaths with capacity for 200

ODU0 signals. Note that the capacity is shared on both directions of the links and that

the bandwidth of different traffic demands is expressed in multiples of ODU0 signals (i.e.,

8, 32 or 64 ODU0 bandwidth units). We ran 1,000 training iterations where the agent

received traffic demands and allocated them on one of the k=4 shortest paths available

in the action set. The model with highest performance was selected to be benchmarked

against traditional routing optimization strategies and SoA DRL-based solutions.

3.4.3 Performance evaluation against state-of-the-art DRL-based solu-

tions

In this evaluation experiment, we compare our DRL+GNN agent against SoA DRL-

based solutions. Particularly, we adapted the solution proposed in [56] to operate in scenar-

ios where links share their capacity in both directions. We trained two different instances of

the SoA DRL agent in two network scenarios: the 14-node Nsfnet and the 24-node Geant2

topology [89]. We made 1,000 experiments with uniform traffic generation to provide rep-

resentative results. Note that both, the proposed DRL+GNN agent and the SoA DRL

solution, were evaluated over the same list of generated demands.
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Figure 3.4: Performance evaluation against SoA DRL. Notice that the vertical lines in 3.4c
and 3.4d indicate the same performance as the theoretical fluid model.
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Figure 3.5: Evaluation on Geant2 of DRL-based solutions trained on Nsfnet.

We run two experiments to compare the performance of our DRL+GNN with the

results obtained by the SoA DRL (SoA DRL). In the first experiment, we evaluated the

DRL+GNN agent against the SoA DRL agent trained on Nsfnet, the LB routing policy,

and the theoretical fluid model. We evaluated the four routing strategies on the Nsfnet

topology and compared their performance. In Figure 3.4a, we can observe a boxplot with

the evaluation results of 1,000 evaluation experiments. The y-axis indicates the agent

score, which corresponds to the bandwidth allocated by the agent. Figure 3.4c shows the
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Figure 3.6: DRL+GNN evaluation on a use case with link failures.

Cumulative Distribution Function (CDF) of the relative score obtained with respect to the

fluid model. In this experiment we could also observe that the proposed DRL+GNN agent

slightly outperforms the SoA DRL-based by allocating 6.6% more bandwidth. In the second

experiment, we evaluated the same models (DRL+GNN, SoA DRL, LB, and Theoretical

Fluid) on the Geant2 topology, but in this case the SoA DRL agent was trained on Geant2.

The resulting boxplot can be seen in Figure 3.4b and the CDF of the evaluation samples in

Figure 3.4d. Similarly, in this case our agent performs slightly better than the SoA DRL

approach (3% more bandwidth).

We run another experiment to compare the generalization capabilities of our DRL+GNN

agent. In this experiment, we evaluated the DRL+GNN agent (trained on Nsfnet) against

the SoA DRL agent trained on Nsfnet, and evaluated both agents on the Geant2 topology.

The resulting boxplot can be seen in Figure 3.5a and the corresponding CDF in Figure 3.5b.

The results indicate that in this scenario the DRL+GNN agent also outperforms the SoA

DRL agent. In this case, in 80% of the experiments our DRL+GNN agent achieved more

than 45% of performance improvement with respect to the SoA DRL proposal. These

results show that while the proposed DRL+GNN agent is able to generalize and achieve

outstanding performance in the unseen Geant2 topology (Figure 3.5a and Figure 3.5b), the

SoA DRL agent performs poorly when applied to topologies not seen during training. This

reveals the lack of generalization capability of the latter DRL-based solution compared to

our DRL+GNN agent.

3.4.4 Use case: Link failure resilience

This subsection presents a use case where we evaluate if our DRL+GNN agent can

adapt successfully to changes in the network topology. For this, we consider the case of a

network with link failures. Previous work showed that real-world network topologies change

during time (e.g., due to link failures) [42, 90, 91]. These changes in network connectivity

are unpredictable and they have a significant impact in protocol convergence [90] or on

fulfilling network optimization goals [42].
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Figure 3.7: DRL+GNN deployment process overview by incorporating it into a product.

In this evaluation, we considered a range of scenarios that can experience up to 10

link failures. Thus, the DRL+GNN agent is tasked to find new routing configurations that

avoid the affected links while still maximizing the total bandwidth allocated. We executed

experiments where 𝑛 ∈ [1, 10] links are randomly removed from the Geant2 topology. We

compare the score (i.e., bandwidth allocated) achieved by the DRL+GNN agent with respect

to the theoretical fluid model. Figure 3.6a shows the average score over 1,000 experiments

(y-axis) as a function of the number of link failures (x-axis). There, we can observe that the

DRL+GNN agent can maintain better performance than the theoretical baseline even in the

extreme case of 10 concurrent link failures. Likewise, Figure 3.6b shows the relative score of

our DRL+GNN agent against the theoretical fluid model. In line with the previous results,

the relative score is maintained as links are removed from the topology. This suggests that

the proposed DRL+GNN architecture is able to adapt to topology changes.

3.5 Analysis on deployment

In this section we analyze and discuss relevant aspects of the proposed DRL+GNN

architecture towards deployment in production networks. In the context of efficient network

management, DRL cannot succeed without generalization capabilities. Training a DRL

agent requires instrumenting the network with configurations that may disrupt the service.

As a result, training in the customer’s network may be unfeasible. With generalization

capabilities, the DRL agent can be trained in a controlled lab (for instance at the vendor’s

facilities) and shipped to the customer. Once deployed, it can operate efficiently in an

unseen network or scenario. Figure 3.7 illustrates this training and deployment process of

a product based on our DRL+GNN architecture.

To better understand the technical feasibility and scalability properties of such a prod-

uct in terms of cost and generalization, we designed two experiments. First, we analyze how
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Figure 3.8: DRL+GNN relative performance with respect to the fluid model over 180
synthetic topologies (a) and 232 real-world topologies (b).

the effectiveness of our agent scales with the network size, by training it in a single (small)

network and evaluating its performance in synthetic and real-world network topologies. Sec-

ond, we analyze the scalability of our agent in terms of computation time after deployment

(i.e., the time it takes for the agent to make routing decisions). This is particularly relevant

in real-time networking scenarios. In both scenarios we used the DRL+GNN agent trained

in a single topology (14 nodes Nsfnet) and we analyzed its performance in larger topologies

(up to 100 nodes) not seen during training.

3.5.1 Generalization over network topologies

Synthetic topologies

In this experiment we generated a total of 180 synthetic topologies with an increasing

number of nodes. For each topology size –in number of nodes– we generated 20 topologies

and we evaluated the agent on 1,000 episodes. To do this, we used the NetworkX python

library [92] to generate random network topologies between 20 and 100 nodes with similar

average node degree to Nsfnet. This allows us to analyze how the network size affects the

performance.

Figure 3.8a shows how the performance scales inversely with the topology size. For

benchmark purposes, we computed the relative score with respect to the theoretical fluid

model. The agent shows a remarkable performance in unseen topologies. As an example,

the agent has a similar performance to the theoretical fluid model in the 30-node topologies,

which double the size of the single 14-node topology seen during training. In addition, in the

100-node topologies, we observe only a ≈15% drop in performance. This result shows that

the generalization properties of our solution degrade gracefully with the size of the network.

It is well-known that deep learning models lose generalization capability as the distribution

of the data seen during training differs from the evaluation samples (see Section3.5.3). From

a deployment standpoint, vendors can always include a wider range of network topologies

in the training set to minimize this decrease in performance.
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Real-world network topologies

In this section we evaluate the generalization capabilities of our DRL+GNN agent,

trained in Nsfnet, on 232 real-world topologies obtained from the Topology Zoo [43] dataset.

Specifically, we take all the topologies that have up to 100 nodes. In Table 3.2 we can see

the features extracted from the resulting topologies. The diameter feature corresponds to

the maximum eccentricity (i.e., maximum distance from one node to another node). The

ranges of the different topology features indicate that our topology dataset contains different

topology distributions. For example, the minimum and maximum values for the variance of

the node degree indicate that we can have topologies where all nodes have the same number

of neighbors, or topologies where there are few nodes with a very high number of neighbors.

We executed 1,000 evaluation episodes and computed the average reward achieved by

the DRL+GNN agents, the LB, and the theoretical fluid routing strategies for each topology.

Then, we computed the relative performance (in %) of our agent and the LB policy with

respect to the theoretical fluid model. Figure 3.8b shows the results where, for readability,

we sort the topologies according to the difference of score between the DRL+GNN agent

and the LB policy. In the left side of the figure we observe some topology samples where the

scores of all three routing strategies coincide. This kind of behavior is normal in topologies

where for each input traffic demand, there are not many paths to route the traffic demand

(e.g., in ring or star topologies). As the number of paths increases, routing optimization

becomes necessary to maximize the number of traffic demands allocated.

We also trained a DRL+GNN agent only in the Geant2 topology. The mean relative

score (with respect to the theoretical fluid) of evaluating the model on all real-world topolo-

gies was +4.78%. These results indicate that our DRL+GNN architecture generalizes well

to topologies never seen during training.

These experiments show the robustness of our architecture to operate in real-world

topologies that largely differ from the scenarios seen during training. Even when trained in

a single 14-node topology, the agent achieves good performance in topologies of up to 100

nodes.

Feature Minimum Maximum

Num. Nodes 6 92
Num. Edges 5 101
Avg. node degree 1.667 8
Var. node degree 0.001 41.415
Diameter 1 31

Table 3.2: Real-world topology features (minimum and maximum values).
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Figure 3.9: DRL+GNN average computation time (in milliseconds) over different topology
sizes.

3.5.2 Computation Time

In this section we analyze the computation time of an already trained DRL+GNN agent

when deployed in a realistic scenario. For this purpose, we used the synthetic topologies

generated before in Section 3.5.1, and we executed 1,000 episodes for each one and we

measured the computation time. This is the time the agent takes to select the best path to

allocate all the incoming traffic requests. For this experiment we used off-the-shelf hardware

without any specific hardware accelerator (64-bit Ubuntu 16.04 LTS with processor Intel

Core i5-8400 with 2.80GHz × 6 cores and 8GB of RAM memory). Results should be

understood only as a reference to analyze the scalability properties of our solution. Real

implementations in a network device would be highly optimized.

Figure 3.9 shows the computation time for all episodes. The dots correspond to the

average agent operation time over all the episodes and the confidence interval corresponds

to the 5/95 percentiles. The execution time is in the order of few ms and grows linearly

with the size of the topology. This is expected due to the way the message-passing in the

GNN has been designed. The results indicate that, in terms of deployment, the proposed

DRL+GNN agent has interesting features. It is capable of optimizing unseen networks

achieving good performance, as optimization algorithms, but in one single step and in tens

of milliseconds, as heuristics.

Typically, network optimization techniques are either based on optimization algo-

rithms [39, 42] or traditional heuristics. While optimization algorithms can achieve good

performance, this usually comes at the cost of high computation time, since they have ex-

ponential worst-case performance. On the other side, heuristics are fast but often result in

limited performance. In terms of deployment, the proposed DRL+GNN agent has interest-

ing features. It is capable of optimizing unseen networks achieving good performance, as

optimization algorithms, but in one single step and in tens of milliseconds, as heuristics.
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Topology
Size

Mean
Node
Degree

Var.
Node
Degree

Node
Betwee.

Edge
Betwee.

DRL+GNN
Perf. w.r.t.
Fluid (%)

Nsfnet
(training)

3 0.2857 0.0952 0.1020 -

20 Nodes 2.90 0.1050 0.1036 0.0988 4.305
30 Nodes 2.93 0.0956 0.0844 0.0764 -0.649
40 Nodes 2.95 0.1025 0.0704 0.0623 -3.945
50 Nodes 2.96 0.1104 0.0620 0.0538 -6.422
60 Nodes 2.97 0.1056 0.0559 0.0476 -8.103
70 Nodes 2.97 0.0920 0.0522 0.0437 -10.064
80 Nodes 2.98 0.0956 0.0474 0.0395 -11.380
90 Nodes 2.98 0.1062 0.0436 0.0361 -13.610

Table 3.3: Features for the Synthetic network topologies. The values correspond to the
mean of all topologies from each topology size. As a reference, the first row corresponds to
the Nsfnet topology used during training.

3.5.3 Discussion

In this chapter we proposed a data-driven solution to solve a routing problem in OTN.

This means that our DRL agent learns from data that is obtained from past interactions

with the environment. This method has the main limitation that when evaluated on out-of-

distribution data, its performance is expected to drop. In our scenario, out-of-distribution

is any data related to network topology, link features and traffic matrix that is radically

different from the data seen during the training process.

The experimental results on synthetic and real-world topologies (Section 3.5.1 and

Section 3.5.1 respectively) show that the DRL+GNN architecture has performance issues on

some topologies. This performance drop is related to the diverging network characteristics

from the topology used during training. The link features are normalized and the traffic

demands always have the same bandwidth values, which excludes them as the source of the

performance drop. However, the network topology changes, which has a direct impact on

the DRL agent performance.

Table 3.3 shows different topology metrics for each topology size (in number of nodes).

The edge betweenness is computed in the following way: for each edge compute the sum

of the fraction of all-pairs of shortest paths that pass through the edge, and then make the

mean of all edges. This applies in a similar way to the node betweenness. In addition, the

DRL+GNN’s performance with respect to the Theoretical Fluid model is also shown. The

values correspond to the means from evaluating on all network topologies for each topology

size (i.e., the means from the results in Figure 3.8a).
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Topology
Id

Avg
Node
Degree

Var
Node
Degree

Node
Betwee.

Edge
Betwee.

DRL+GNN
Perf. w.r.t.
Fluid (%)

Nsfnet
(training)

3 0.29 0.0952 0.1020 -

0 2.42 9.59 0.0410 0.0484 -27.357
1 3.51 15.17 0.0447 0.0394 -23.944
2 2.00 41.41 0.0180 0.0298 -25.965
229 2.31 0.98 0.1294 0.1615 19.066
230 2.06 1.75 0.1140 0.1340 18.570
231 2.07 2.22 0.0994 0.1244 27.430

Table 3.4: Features for the real-world network topologies. The relative performance is the
mean of 1,000 evaluation episodes. As a reference, the first row corresponds to the Nsfnet
topology used during training.

Even though the synthetic topologies were generated in a way to have a similar node

degree like Nsfnet, we can see that other metrics diverge as the topologies become larger.

Specifically, the node and edge betweenness become smaller, which indicates that the pairs

of shortest paths are more distributed. In other words, for small topologies the nodes and

edges have proportionally more shortest paths crossing them than for larger ones. The

network metrics clearly indicate that the more different the topologies are than Nsfnet, the

worse is the DRL’s performance.

Table 3.4 shows a similar table but for the real-world topologies. In this case, the

performance results correspond to the means from the results in Figure 3.8b. Following

a similar reasoning, we can see that the real-world topologies where the DRL+GNN ar-

chitecture achieves the worst performance are radically different from Nsfnet (i.e., top left

topologies from Figure 3.8b). In addition, we visualized the topologies with ids 0, 1 and

2 and observed that they correspond to topologies that have some nodes with a very high

connectivity (see the variance of the node degree in Table 3.4). Similarly to the synthetic

topologies, we again observe that the more different the topologies are than Nsfnet, the

worse is the DRL+GNN’s performance.

There are several things that could be done to improve the generalization capabilities

for such topologies. A straightforward approach would be to incorporate topologies with

different characteristics to the training set. In addition, the DRL+GNN architecture could

be improved using fine-tuned traditional Deep Learning techniques (e.g., regularization,

dropout). Finally, the work from [93] suggests that aggregating the information of the

neighboring links using a combination of mean, min, max, and sum of the links’ states

improves generalization. We consider that improving the generalization is outside the scope

of our work and we left it as future work.
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3.6 Chapter Contributions

In this chapter we presented a DRL+GNN architecture for network optimization that

is able to generalize to unseen network topologies. The use of GNNs to model the network

topology allows the DRL agent to operate in different networks than those used for training.

We believe that the lack of generalization was the main obstacle preventing the use and

deployment of DRL in production networks. The proposed architecture represents a first

step towards the development of a new generation of DRL-based products for real-time

network optimization.

In order to show the generalization capabilities of our DRL+GNN solution, we selected

a classic problem in the field of optical networks. This served as a baseline benchmark

to validate the generalization performance of our architecture. The experimental results

showed that the proposed DRL+GNN agent was able to generalize to the unseen Geant2

topology (see Section 3.4.3). However, SoA DRL-based solutions that use traditional neural

network architectures were not able to generalize to other topologies. In addition, the

DRL+GNN architecture is robust to operate in real-world topologies that largely differ

from the scenarios seen during training (see Section 3.5.1). The source code, together with

all the training and evaluation results are publicly available [80].
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Chapter 4

Optimization in IP Networks

4.1 Introduction

In this chapter we improve the previous network optimizer architecture based on DRL

and GNN and we evaluate it in a more challenging and realistic scenario. To do this, we

investigated the related work and we moved to a relevant routing optimization scenario in

IP networks. Then, we improved the DRL+GNN architecture and we added a second opti-

mization stage to find better routing configurations at a small overhead. The experimental

results indicate that our solution can achieve close-to-optimal performance in less than 30

seconds for a set of arbitrary real-world network topologies.

This chapter focuses on routing optimization in Wide Area Networks (WAN), a key

infrastructure in today’s society. During the last years, WANs have seen a considerable

increase in network’s traffic and network applications, imposing new requirements on ex-

isting network technologies (e.g., low latency and high throughput). To efficiently manage

WAN infrastructures, operators take advantage of optimization techniques. Network op-

timization aims to efficiently manage the network resources by steering traffic to achieve

a certain goal, for instance minimizing the utilization of the most congested link. In our

work, the optimization problem is defined by the network infrastructure, the traffic matrix,

the routing and the link capacity (Section 4.2.1). Similarly to the OTN scenario, the NDT

of the WAN is implemented using Python as we work with per-link utilizations. These can

be easily obtained by adding the traffic crossing on each link from the network topology.

WANs have recently been softwarized, this is referred to as SD-WAN [94]. SD-WANs

offer programmability and the SDN controller has a full view over the network resources, en-

abling a new breed of centralized optimization algorithms. A notable example is DEFO [42],

which uses a centralized constraint programming algorithm to produce solutions in a few

minutes. The centralization and softwarization of the network has allowed it to achieve

unprecedented performance [95].
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In our work we explore the feasibility of designing a DRL-based method for solving

complex optimization problems in WANs. We propose Enero1, a real-time high perfor-

mance optimization engine that implements the DRL+GNN architecture (Section 4.3). In

addition to DRL, we use a Local Search (LS) algorithm to improve DRL’s solution at a

small overhead(Section 4.3.1). Intuitively, LS explores the solution space by applying small

changes to the DRL’s solution. In contrast to other existing solutions, our method does not

require the network operators to design hand-crafted heuristics nor to use expert knowledge.

Several works analyzed WAN’s traffic behavior to study and model it [45–47]. These

studies found that the significant changes in traffic patterns happen frequently, on the scale

of several minutes. Thus, to be able to solve an optimization problem before the traffic

changes significantly, we considered real-time to be in a sub-minute time scale.

One of the problems of using DRL in real-world scenarios is that it does not offer

performance bounds. This means that once a DRL agent is trained, there is no way to give

a minimum certainty over the DRL agent’s performance. This performance bound would let

network operators know when the DRL agent’s performance is poor before deployment and

avoid compromising the real network’s behavior. Consequently, network operators typically

do not feel confident to deploy such technology in a real-world network. In our work, we

designed a method to offer a minimum performance certainty or bound in the DRL agent’s

performance (Section 4.3.2).

Another important characteristic is that the proposed solution is able to adapt to

changes. WANs suffer from changes constantly, physical links can be broken due to external

factors and network users have different pattern behaviors that cause difficult-to-predict

spikes in network’s resources utilization. When such an event occurs, SoA optimization

solutions based on heuristics or classical optimization techniques need to start the training

and optimization processes from scratch.

In our work, Enero is designed with a DRL agent that incorporates a GNN [65]. By

using a GNN in the DRL agent, we enable Enero to operate efficiently over different network

scenarios when the traffic matrix or the network topology changes during time.

In summary, our work in this chapter makes the following contributions:

• We propose Enero, a two-staged method that implements a more advanced DRL+GNN

architecture and a LS algorithm to reach high quality optimization solutions in real-

time (Section 4.3.1).

• We propose a method to offer a performance certainty or lower bound in the DRL

agent’s operation (Section 4.3.2).

• We design a DRL agent that is able to operate efficiently while link failures occur and

is able to adapt to dynamic traffic matrices (Section 4.3.3).

1EfficieNt rEal-time Routing Optimization
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Figure 4.1: The routing configuration is applied to the traffic matrix and is combined with
the network topology, resulting in a network state with link utilization values. Our goal is
to minimize the utilization of the most loaded link.

4.2 Background

4.2.1 Problem Statement

The problem we want to solve corresponds to the classic Traffic Engineering (TE)

problem of minimizing the maximum link utilization [41,42,96,97]. This is because we are

interested in avoiding sending packets over congested links. A congested link is where the

amount of traffic crossing the link is larger than the link capacity. When this happens, the

excess packets are dropped, causing packet losses. Thus, we want to minimize the most

congested link and to efficiently use the network’s resources.

The TE problem is defined by a directed graph, a Traffic Matrix (TM) and an initial

routing configuration. We abstract the real-world network topology as a directed graph,

where the physical routers are represented by nodes with no features associated. Between

two nodes there are always two links which correspond to the upstream and downstream

links. In reality there can be multiple links between two nodes. However, we abstract from

such technicality and we aggregate all the capacities into a single link for each direction.

The traffic matrix indicates the volume of traffic that is being sent through the network.

Specifically, the TM has size NxN where N is the number of nodes. Each pair of nodes (s,

d) with s∈N and d∈N corresponds to a traffic demand which is an aggregate of flows. In

our optimization scenario, we do not take into account the traffic demands with s==d (i.e.,

the nodes do not send traffic to themselves). Figure 4.1 illustrates how the routing and the

TM are combined to obtain a network state with the link utilization values.

Initially, each traffic demand is allocated using the OSPF protocol with unitary link

weights. These weights are initially assigned by the network operator using different meth-
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Figure 4.2: Single step optimization process that illustrates how changing the routing of the
traffic demand (A, E) minimizes the maximum link utilization. Specifically, traffic demand
(A, E) is assigned with the intermediate SR node C to program a detour and avoid link
B-E.

ods (e.g., unitary weight or inverse of the link capacity). Then, the goal is to change the

routing policy such that the maximum link utilization is minimized. Ideally, the final solu-

tion should decrease the link utilization in a way that the amount of traffic volume crossing

the most loaded link is below the link’s capacity.

We leverage Segment Routing (SR) [98] to enable fast and efficient centralized network

management. SR is a protocol that includes routing related-information in the IP packet

headers. This means that each packet will have an SR path to reach a destination node.

Then, SR Ingress routers encapsulate incoming packets to create a tunnel that traverses an

SR path before reaching their respective destination. This SR path is composed of different

segments, and in each of them, the endpoint node removes the outermost encapsulation

label. This process is repeated until the packet reaches the SR Egress node. The packets

within a segment are routed using the traditional OSPF routing protocol. In TE terms, SR

can program detours in forwarding paths so that network packets avoid crossing congested

links. Previous work showed that SR using 2-segment paths offers enough flexibility to

achieve high network performance [97]. In our work, we adapt a similar approach and we

consider only one intermediate node between SR Ingress and Egress nodes.

Figure 4.2 shows an illustrative example of the TE problem we want to solve. In the

figure, the overlay routing for a single traffic demand is changed. Specifically, the traffic

demand that goes from node A to node E has a bandwidth of 9 and it initially uses OSPF

to reach the destination. This corresponds to the left-hand side network state from the

same figure. Then, a good action to minimize the maximum link utilization would be to

re-route the traffic demand through the intermediate node C. This means that the SR path

would be A - C - E, where C is the intermediate node. This process is repeated for all the
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traffic demands (i.e., all pairs of source-destination nodes), where their routing policies are

changed such that the maximum link utilization is minimized.

4.2.2 Shortcomings of Existing Solutions

The TE problem can be formulated as an Integer Linear Programming (ILP) problem

and can be solved using SoA optimizer engines such as Gurobi [37] or CPLEX [38]. In our TE

problem, the decision variables correspond to the traffic demands and the link capacities

constrain the optimisation problem and define the solution space. There is at most one

traffic demand for each pair of nodes. When the problem size grows (i.e., the number

of nodes and links grows), the number of decision variables increases and the solution

space becomes larger and more complex. In this context, TE in WANs results in a large

combinatorial space where the number of possible routing configurations for each traffic

demand explodes. Consequently, ILP solvers would take several weeks to find the exact

solutions in WANs as they have in the order of hundreds of links and nodes [42,43].

An alternative to ILP is the use of Constraint Programming (CP) [44]. This method

defines the combinatorial problem to solve with a set of decision variables (e.g., traffic

demands, OSPF weights), a set of domains (i.e., potential values of the decision variables)

and a set of constraints on the feasible solutions (e.g., maximum link utilization must be

below a threshold). To define the constraints that limit the solution space and makes it

tractable is non-trivial in WANs due to their size and complexity. In addition, the user

indicates some time limit and the solver will return the best solution found within the

specified time (e.g., DEFO [42]). Therefore, when solving a TE problem using CP, network

operators should estimate the solver’s execution time needed to obtain a solution with

the desired performance. However, WANs experience external events frequently (e.g., link

failures, increase in traffic demand), altering the normal network behavior [45–47]. This

method has the limitation of finding sub-optimal solutions if the specified time is not long

enough.

Finally, network operators can use heuristics or expert knowledge to design an algo-

rithm to solve TE problems. In addition, they can leverage heuristics to reduce the problem

dimensionality by pruning the solution space, and then use a traditional method to solve the

smaller problem (e.g., CP, ILP). In the last years, WANs’ size and traffic have been growing

by almost doubling every year [2–4], raising the complexity of efficient network operation.

As a result, the design of high performance heuristics for TE became more challenging for

humans, and with a higher cost for network operators. In addition, human experts typically

use trial-and-error processes that can take several months, which does not scale with recent

trends in WANs.
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4.2.3 Deep Reinforcement Learning for Traffic Engineering

TE is a multi-step decision making process where the decisions have long term effects

(i.e., the assignment of a routing policy to a traffic demand is known to be good or bad

once iterated over all traffic demands). Similarly, DRL is a technology capable of modeling

future rewards. This means that DRL can optimize the routing configuration taking into

account the future. That is to say, DRL can learn a long-term routing policy by taking into

account the future expected rewards. For example, to change a routing policy of a traffic

demand might not lead to an immediate minimization of the maximum link utilization but

to a delayed one that the DRL agent will observe later in the future. This is contrary to

heuristics where they can not establish a relationship between local decisions (e.g., change a

routing configuration for a traffic demand) and long-term strategies to solve an optimization

problem (e.g., minimize the most loaded link), leading heuristics to achieve sub-optimal

performance. The long-term planning capabilities make DRL a key technology for solving

the TE problem.

The TE problem can be seen as a combinatorial problem where traffic demands are

assigned to routing policies such that the utilization of the most loaded link is minimized.

The difficulty of combinatorial problems can make the DRL reach sub-optimal solutions.

The reason behind this is that when the DRL agent makes a bad decision, it has no way to

undo it and explore other actions. To solve this issue, we incorporated a low computational

overhead optimization step that is executed after the DRL’s agent optimization process.

4.3 Proposed Solution

Enero is a two-stage method for real-time routing optimization that combines DRL

and LS. In the first stage, Enero leverages DRL to find a good initial solution to the TE

problem by taking into account future traffic demands. Recall that we consider a traffic

demand as a source-destination node pair with a bandwidth that represents an aggregate

of flows between the node pair. In the second stage, Enero tries to improve DRL’s solution

using a LS technique. In our work, the LS step implements the hill climbing heuristic that

behaves in a greedy way by making incremental changes to the DRL solution.

Intuitively, LS explores the solution space by applying small changes to the initial

configuration or solution. The motivation behind the combination of DRL with LS is

to leverage DRL’s long-term planning capabilities and to improve DRL’s solution using

LS. Combining DRL with traditional optimization techniques has shown to achieve high

performance in complex scenarios [99,100]. We believe that DRL and LS complement each

other, increasing the performance of the returned solutions.

The number of traffic demands grows quadratically with the number of nodes in a

network. For instance, in a topology with 30 nodes there are 30 ∗ 29 = 870 traffic demands

whose routing needs to be reconfigured to solve the TE problem. Ideally, we would like
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to take into account all traffic demands in our TE optimization problem to ensure that

our solver can find the best routing configuration. However, the solution space becomes

intractable for large TE problem instances and computationally expensive even when using

heuristics. Inspired by [100], we decided to take a subset of these traffic demands. These are

called critical demands and they are selected from the set of traffic demands crossing the 5

most loaded links. We initially performed some experiments where we optimized selecting

different percentages of the traffic demands (i.e., 10, 15, 20 and 50). The results showed

that taking 15% of the critical demands offered the best trade-off between computation

time and performance.

4.3.1 Two-stage Optimization

The complexity of the combinatorial problem can make the DRL agent achieve sub-

optimal routing configurations. This is because, on the contrary to some existing solutions

that use backtracking (e.g., DEFO [42]), the DRL agent has only one shot to converge to

the optimal solution (i.e., a single iteration over all traffic matrices). To solve this issue,

we improve DRL’s solution using a LS technique without adding a large computational

overhead.

The LS step implements a hill climbing heuristic. This method makes small incremental

changes to the DRL’s solution, trying to find new TE solutions that are fundamentally

close to DRL’s resulting configuration. Specifically, LS iterates over all traffic demands

and all possible SR paths, trying to find which is the best configuration that minimizes

the maximum link utilization. Similarly to the DRL case, LS iterates only over 15% of the

critical traffic demands. We decided to adapt LS in the second stage for being an anytime

optimization technique. This means that the LS search process can be stopped at any

moment and the result returned will always be a valid one.

4.3.2 Performance Lower Bound

Even though DRL is a key technology to learn long-term strategies, it can still make

mistakes. DRL is a data-driven method and when evaluated in out-of-distribution data

(i.e., data totally different than the one used in the learning process), it is to be expected

that the performance will degrade. In our TE problem this can happen due to different

bandwidth scale values in the traffic matrices, due to different extreme topologies that can

radically change the action space or because of the high complexity of exploring the solution

space.

To solve this problem and to enable the deployment of the DRL technology in real-

world scenarios, we had to give some minimum performance certainty for the DRL agent.

With this lower bound, the network operator can know for certain the DRL agent’s per-

formance before deploying it on the real network. To do this, the DRL agent starts the

optimization process from a predefined routing policy. In our work we consider OSPF as
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the starting routing policy. Then, it starts the optimization process and changes the routing

configuration of the critical traffic demands. If the DRL agent is not capable of minimizing

the maximum link utilization, it returns the initial routing configuration to the LS stage.

Enero is designed to allow the starting routing policy to be initialized using any routing

policy (e.g., expert-knowledge, heuristic-based routing policy).

4.3.3 Deep Reinforcement Learning Agent

The DRL setup can be described by defining the environment state, the action rep-

resentation and the reward. The environment state includes the NDT of the WAN of our

optimization problem. The NDT is defined by a network topology with the links’ features

(i.e., link capacity and utilization). Similarly to the OTN scenario, the NDT is imple-

mented in Python because we work with per-link utilizations. This can be easily simulated

by adding the traffic crossing on each link. Notice that some optimization problems requires

the NDT to be implemented with sophisticated ML models that mimic complex behaviours

such as delay or jitter.

When the DRL agent performs an action (i.e., applies a new routing policy to a given

traffic demand), the link’s utilization is updated. The action is represented directly on

the network topology by marking the links that are part of the action. In other words,

the links of the path going from a source node to a SR intermediate node and from this

to the destination node are marked with a flag. All the nodes from the topology can be

SR intermediate nodes. This process is repeated for each possible action of the current

traffic demand whose routing needs to be changed. The DRL’s GNN is then in charge of

A B C D E
A 0 2 3 2 9
B 1 0 2 1 6
C 2 4 0 1 1
D 1 6 2 0 5
E 9 2 3 1 0

Traffic Matrix (TM)

Path 0: A - B - E
Path 1: A - C
Path 2: A - C - D
…
Path 20: E - B - A

Routing

Network Topology

GNN

Softmax to 
limit values 

to (0, 1) 

Policy πӨ
(s,a)

Sample action for input 
traffic demand

DRL Agent

17

1921

13

16

17

17

1912

22

25
8

26

1012

13

25

8

.  .  .

SR NodeNode DRL Action 

NDT             
(Network State)

26

1012

13

8

1.73Select set of traffic demands 
(only at the beginning)

C D E

A B

GNN 1.05

GNN 0.28

 L0 A-B 25 Kbps
 L1 A-C 25 Kbps
       …
 L12 E-D 25 Kbps

Link Capacities

Environment

Environment 
state, traffic 
demand and 

reward

Apply action to 
environment

Figure 4.3: The critical demands are computed in the GYM Environment at the beginning
of an episode. Then, the DRL agent iterates over them and for each demand, the agent
explores the action space by marking the links for each SR path. Afterwards, a GNN takes
the graphs with the actions marked and outputs a probability distribution. The action to
perform is sampled from the distribution and applied to the environment.
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Figure 4.4: Enero’s workflow.

processing these graphs (i.e., one graph per action where the action is marked directly on

the links) and will output a probability distribution over the actions. Finally, the reward

is the difference between the maximum link utilization between two steps. This difference

is relative to the link capacities. Figure 4.3 shows an overview of the DRL setup and the

operation process.

4.3.4 Workflow

Enero is an optimization engine that is placed in the SDN controller. It takes as

input the network topology, the TM and the initial routing configuration. When the SDN

controller detects a change in the network (e.g., traffic matrix changed, link failure), it

executes Enero to start the optimization process for the new scenario. This process finishes

in under a minute, enabling real-time operation.

Figure 4.4 shows Enero’s step-by-step workflow. At the beginning (Step 0), the network

operator defines the initial OSPF weights. These weights are used to initially route the

traffic demands and to route the demands within SR segments [97]. Their values can be

assigned either by the network operator using heuristics and expert knowledge or by using

some well-established OSPF weights initialization (e.g., unitary weight values, inverse of

the link capacity).

Once the initial routing policy is defined, a monitoring platform is in charge of retriev-

ing the relevant information for the TE optimization problem (Step 1). This information

consists of the network topology, the TM and the OSPF weights. Then, Enero takes this

information (Step 2) and starts the optimization process. When the process finishes, the

routing configuration (i.e., per-demand SR intermediate node assignment) is pushed down

to the data plane (Step 3). This means that each traffic demand is going to be assigned
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a SR intermediate node. When there is some change in the data plane (e.g., the topology

or the TM changed), the monitoring platform will detect these changes and will launch

Enero again to optimize the new scenario. There are many efforts put on the design of

fast and efficient monitoring platforms and we consider it to be outside the scope of this

work [101–103].

4.3.5 Training Algorithm

The DRL agent training is an iterative process that takes as input a network topology,

a set of traffic matrices, the links’ features and the initial OSPF weights defined by the

network operator. Then, the DRL agent will learn how to optimize over the given routing

configuration and for different TMs. To do this, the DRL agent iterates over the traffic

demands following a decreasing bandwidth order, changing the routing policy for each

demand. This means that for each traffic demand, the DRL agent will assign the best

SR intermediate node before reaching the destination node. This process can be seen as

changing the direct path from the source node to the destination node by creating a detour.

This is a trial-and-error process where at the beginning the agent will explore different

routing configurations, and as the training advances, the agent will tend to exploit more of

the action space.

Algorithm 4 shows the pseudo-code of the actor-critic training process. For the sake of

simplicity, the pseudo-code describes the training process using a single network topology.

The same process can be applied to multiple topologies by repeating the lines 3 to 9 for each

topology. The training process starts in line 2 and finishes when the number of training

episodes E has been reached. At the beginning of the training episode, the DRL environment

Algorithm 4 DRL Agent Training Process

1: Input: Network topology (G), link capacities, TMs, Initial OSPF Weights (OSPFw)
2: for i in 0, ..., 𝐸 do
3: 𝑒𝑛𝑣, 𝑑 ← 𝑖𝑛𝑖𝑡 𝑒𝑛𝑣(𝐺,𝑇𝑀,𝑂𝑆𝑃𝐹𝑤)
4: while not Done do
5: 𝑎𝑐𝑡 𝑑𝑖𝑠𝑡 ← 𝑝𝑟𝑒𝑑 𝑎𝑐𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏(𝑒𝑛𝑣, 𝑑)
6: 𝑐 𝑣𝑎𝑙 ← 𝑝𝑟𝑒𝑑 𝑐𝑟𝑖𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒(𝑒𝑛𝑣)
7: 𝑎 ← 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎𝑐𝑡𝑖𝑜𝑛(𝑎𝑐𝑡 𝑑𝑖𝑠𝑡)
8: 𝑑, 𝐷𝑜𝑛𝑒, 𝑟 ← 𝑠𝑡𝑒𝑝(𝑎, 𝑑, 𝑒𝑛𝑣)
9: 𝑠𝑡𝑜𝑟𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠(𝑎𝑐𝑡 𝑑𝑖𝑠𝑡, 𝑐 𝑣𝑎𝑙, 𝑎, 𝑑, 𝐷𝑜𝑛𝑒, 𝑟)

10: 𝑐 𝑣𝑎𝑙 ← 𝑝𝑟𝑒𝑑 𝑐𝑟𝑖𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒(𝑒𝑛𝑣)
11: 𝑟𝑒𝑡, 𝑎𝑑𝑣 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐺𝐴𝐸 (𝑐 𝑣𝑎𝑙′, 𝑟 ′)
12: 𝑎 𝑙𝑜𝑠𝑠← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑐𝑡𝑜𝑟 𝑙𝑜𝑠𝑠(𝑎𝑑𝑣)
13: 𝑐 𝑙𝑜𝑠𝑠← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑐𝑟𝑖𝑡𝑖𝑐 𝑙𝑜𝑠𝑠(𝑟𝑒𝑡)
14: 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠← 𝑎 𝑙𝑜𝑠𝑠 + 𝑐 𝑙𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
15: 𝑔𝑟𝑎𝑑𝑠← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠)
16: 𝑐𝑙𝑖𝑝 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑔𝑟𝑎𝑑𝑠)
17: 𝑎𝑝𝑝𝑙𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑔𝑟𝑎𝑑𝑠)
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is initialized (line 3). This means that the NDT is built and the per-link utilization is

updated according to the initial OSPF routing policy.

The loop from line 4 indicates the iteration of the DRL agent over the critical traffic

demands. In each loop iteration, the DRL agent tries to change the routing policy of a single

traffic demand (i.e., assign an SR intermediate node). In line 5 the DRL agent uses the

GNN to output a probability distribution over the action space. Then, the critic network

predicts the value of the current state.

The DRL agent uses a random sampling of the action distribution to pick the action

to perform (line 7). During evaluation, the sampling is changed by taking the action with

higher probability. Then, the selected action is sent to the environment to be applied over

the current network state and to update the link’s utilization. In line 9, the agent stores all

the intermediate results that will later be used to compute the losses.

The next step is to compute the Generalized Advantage Estimates (GAE), which is

a method to reduce variance in policy gradient algorithms [64]. Then, the actor and the

critic losses are computed [61]. These are then combined in a sum and subtracted with the

entropy term, used to guide the exploration during training [104]. Finally, the gradients are

computed and clipped to avoid the policy to change too much for a given training step, and

they are applied to the actor and critic networks.

4.4 Experimental Evaluation

In this section, we first describe the implementation details and the methodology used

to obtain the datasets and to train the DRL agent. Then, we made an experimental study

to see the performance gap between DRL, LS and Enero. Finally, we perform a series of

experiments on different real-world network scenarios. Specifically, we want to answer the

following questions:

• What is the performance gap between DRL, LS and Enero for solving TE problems?

(Section 4.4.3)

• How does Enero perform when the traffic matrix changes during time? (Section 4.4.4)

• What is Enero’s performance when the topology changes as a result of link failures?

(Section 4.4.5)

• What is Enero’s performance and execution cost compared with SoA TE solutions?

(Section 4.4.6)

All the experiments were executed on off-the-shelf hardware without any specific hard-

ware accelerator or high performance software optimization engine. Specifically, we used a

machine with Ubuntu 20.04.1 LTS with processor AMD Ryzen 9 3950X 16-Core Processor.
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Hyperparameter Value

GNN Hidden State 20
Message Passing Steps 5
Evaluation Episodes per Topology 20
Training Epochs 8
% critical demands 15%
Mini-batch size 55
Learning Rate 0.0002
Decay Rate (Decay Steps) 0.96 (60)
Entropy Beta (After 60 Episodes) 0.01 (0.001)
GAE Gamma, Lambda 0.99, 0.95
Gradient Clipping Value 0.5
Actor L2 Regularization 0.0001
Readout Units 20
Activation Function Selu

Table 4.1: Enero hyperparameter configuration.

4.4.1 Implementation

Enero’s DRL stage (training and evaluation) was implemented using Tensorflow [85]

and the DRL environment was implemented using the OpenAI Gym framework [86] and

Python. Recall that the NDT of the network infrustructure is implement using Python

and is contained within the DRL environment. The DRL agent is trained using the PPO

algorithm [61]. The LS stage is implemented totally in Python except for some operations

where it uses the Numpy library [105]. The LS execution cost could be improved by using

more efficient libraries (e.g., Cython [106]), which were left as future work. For some graph-

related operations the NetworkX library [92] is used. Table 4.1 shows the hyperparameters

used during Enero’s DRL agent training stage. Enero’s code is publicly available [107].

4.4.2 Methodology

Traffic Matrices

The traffic matrices were generated using a uniform distribution. This means that the

bandwidth values from the traffic demands were uniformly distributed from 0.5 to 1. Then,

we scaled this value to obtain the TM’s bandwidths in Kbps and to have the same unit for

both bandwidth and link capacities. Each network topology had a total of 150 TMs.

Network Topologies

We obtained the network topologies from the TopologyZoo dataset [43], which contains

real-world topologies from network operators. Specifically, we took all topologies up to 100

links and 30 nodes, resulting in a total of 74 topologies. From these topologies, only 3 of

them were used in the DRL agent’s training process. In our TE problem we only consider

the link capacities, which means that nodes do not have any features associated.
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DRL Agent Training

In all the experiments we are always evaluating the same DRL agent. This means that

we have only trained a single DRL agent and incorporated it into Enero. To train the

DRL agent, we arbitrarily picked 3 network topologies (i.e., BtAsiaPac, Garr199905 and

Goodnet topologies) from the 74 topologies extracted from the Topology Zoo dataset. We

split the original 150 TMs from each topology into 100 TMs for training and 50 TMs for

evaluation. During training, the DRL’s agent performance evolution is evaluated on the

BtAsiaPac, Garr199905 and Goodnet topologies after every training step. Specifically, the

agent is evaluated on 20 TMs uniformly sampled from the evaluation split for each topology.

Comparison Baselines

We compare Enero with three baselines which together represent widely used heuris-

tics and close-to-optimal solutions. The first baseline is the Shortest Available Path (SAP)

heuristic. SAP starts with the empty network and iterates over all traffic demands in de-

creasing order of bandwidth. This is done to allocate the bigger and critical traffic demands

first. Then, each traffic demand is routed using the path with the highest available band-

width. The second baseline corresponds to a LS algorithm. Specifically, we implemented

the hill climbing search to improve an initial routing configuration in a greedy fashion.

Similarly to Enero, this method starts in the same routing configuration using the OSPF

protocol and tries to minimize the maximum link utilization. This is an iterative process

where in each step applies the routing policy of the traffic demand that minimizes the max-

imum link utilization. This process finishes when the maximum link utilization does not

improve anymore.

To compute the optimal solution for our TE problem it would require weeks of compu-

tation using ILP. As it is not feasible to do that, we chose DEFO [42] as our close-to-optimal

baseline. In particular, we took the implementation from [108] and adapted it to have at

most one intermediate SR node per traffic demand. DEFO is a CP-based solution and if left

enough time executing it provides a close-to-optimal solution. This is the reason why we left

DEFO executing for 180 seconds in all of our experiments. Following the recommendations

from the experiments in the original paper [42] on very large topologies (i.e., a few hundreds

of links and more than 6.000 traffic demands to optimize), we expect that 180 seconds is

enough to find close-to-optimal solutions in our topologies (i.e., we have topologies of up to

100 nodes and 900 traffic demands).

DEFO uses Equal-Cost Multi-Path routing (ECMP) to route the traffic demands. This

enables DEFO to divide the traffic demands among multiple paths, achieving a better traffic

distribution and a lower link utilization. In our problem setup the traffic demands are routed

using solely a single path, creating a natural gap between DEFO and Enero’s performance.

We left the task of enabling Enero to optimize using ECMP for future work.
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Figure 4.5: Performance of LS, DRL and Enero for the EliBackbone, Janetbackbone and
HurricaneElectric topologies.
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Figure 4.6: Execution cost of LS, DRL and Enero for the EliBackbone, Janetbackbone and
HurricaneElectric topologies. Best viewed in color.

4.4.3 DRL and LS Hybrid Method

In this section we want to demonstrate the capabilities of combining DRL with LS.

To do this we studied the performance and execution cost of DRL and LS individually

and compared them with Enero. In the experiments, we evaluated the DRL agent, the LS

algorithm and Enero on three network topologies using 50 TMs per topology. Figures 4.5

and 4.6 show the resulting performance and the CDF of the execution cost respectively.

Notice that the topologies from these figures were not seen by the DRL agent during the

training process.

The experimental results indicate that DRL has a reasonably good performance in all

three topologies. This is because it can minimize the maximum link utilization from ≈1.1 to

below 1 for EliBackbone and HurricaneElectric topologies and to ≈1 for the Janetbackbone

topology. LS can minimize the maximum link utilization in all three topologies, obtaining
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Figure 4.7: Dynamic traffic matrix scenario. Enero evaluation on different real-world net-
work topologies. For each topology, we evaluated over 50 different TMs. Notice that the
topologies from this figure were not seen by the DRL agent during the training process.

better performance than DRL. However, the CDF from Figure 4.6 indicates that the DRL

is extremely fast while LS takes a considerable amount of time (up to minutes).

To demonstrate the capabilities of combining DRL with LS we also plot in Figures 4.5

and 4.6 Enero’s performance and execution cost respectively. The results indicate that Enero

reaches better TE solutions than DRL and LS in all three topologies while the execution

time is below 40 seconds for the Janetbackbone topology. Notice that the Janetbackbone

topology is a large topology with 812 traffic demands whose routing policy needs to be

optimized, which explains the larger execution times.

4.4.4 Dynamic Traffic Matrix

In this scenario we evaluated Enero’s performance when the traffic matrix changes

during time. In our experiments we took the extreme case where every 60 seconds the

entire TM changes. The reason behind this is to simulate the worst-case scenario where

Enero must re-compute the solution to the TE problem from scratch. We repeated this

process until the TM has changed 50 times.

Figure 4.7 shows the evaluation results on three network topologies with 50 TMs per

topology. Each line indicates the progress of the maximum link utilization while Enero is

solving the TE problem for a given TM. In reality, the lines should be concatenated one

after another but for visualization purposes we aggregated all the events where the TM

changed into a single figure per-topology. From the same Figures we can observe Enero’s

two-stage optimization process. When the monitoring platform detects a change in the

TM (see Section 4.3.4), Enero uses the pre-defined OSPF routing policy and then starts

the optimization process. We can appreciate that in all topologies the DRL agent quickly

finds a good TE solution and then LS improves it. Notice that the topologies are different

from those used during the DRL agent training process. This showcases Enero’s capabilities

to perform TE on different network topologies (than those seen during training) and with

dynamic changes in the TM.
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Figure 4.8: For each number of link failures there are 20 different topologies and we evaluated
using 50 TMs for each topology.

4.4.5 Link Failures

In this experiment we evaluated Enero’s capabilities to react to changes in the network

topology resulting from link failures. We simulated link failures by randomly removing links

from the topology in each of the evaluation topologies. We made sure that there are no

two topologies that are the same after removing some links. For each logical link in the

topology, there are the upstream and downstream links. To ensure network connectivity,

when we drop a link we drop both upstream and downstream links. We simulated up to

8 link failures in total where for each failure there are 20 different topologies and for each

topology there are 50 TMs.

To make the experiments more challenging, we used the original TMs from the topolo-

gies. In other words, the bandwidths from the TMs remained the same while link failures

were happening. This means that while the traffic demands did not change, link failures

forced the network to have less and less resources to accommodate the original TMs.

Figure 4.8 shows Enero’s results after optimization for each link failure together with

the results from DEFO and SAP baselines. Because the TMs did not change and the

topology had less resources to accommodate the bandwidths, the maximum link utilization

should be increasing when links from the topology fail. The results indicate that Enero’s

performance has a similar behavior to DEFO regardless of the number of link failures. Recall

that DEFO is our close-to-optimal baseline which has been executed during 180 seconds

and uses ECMP to split the traffic demands among multiple paths.

4.4.6 Operation Performance and Cost

In this experiment we wanted to evaluate Enero’s performance while operating on a set

of real-world topologies. To do this, we took all topologies from the TopologyZoo dataset

that had up to 100 links and 30 nodes. This made a total of 74 topologies, from which only

3 of them were used in the DRL agent’s training process. Figure 4.9 shows the evaluation

results over all 74 topologies. Specifically, in Figure 4.9a we plot the relative performance

with respect to the LS baseline. The topologies from 20 to 37 are ring, star or line topologies

where there is no room for optimization. This explains why all the baselines have exactly
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Figure 4.9: Relative performance (a) and CDF of the execution cost (b) on the TopologyZoo
dataset. In sub-figure (a), the topologies from 20 to 37 are ring or star topologies where
there is no room for optimization.

the same performance. Figure 4.9b shows the execution cost of all the baselines. As a

reminder, DEFO was set to execute for 180 seconds to ensure a close-to-optimal solution.

The results indicate that Enero is capable of obtaining better performance than the SAP

and LS baselines and in most of the topologies has a similar performance to DEFO. In

addition, Enero’s execution cost is small, with only 5 topologies with an operation cost of

more than 20s.

Enero is a data-driven solution that can use synthetic or real-world data to train a

DRL agent to solve TE problems. This means that if we deploy our agent over topologies

or TMs that are very different from those from the dataset used in the training process, we

can expect our agent’s performance to drop. This explains Enero’s poor performance for the

top left topologies from Figure 4.9a. Specifically, the traffic demand values are all limited

by the uniform distribution between 0.5 and 1, meaning that the TMs can be discarded
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Topology/Id Node Degree Edge Betweenness

BtAsiaPac (2, 24, 6.2) (0.010, 0.067, 0.04)
Goodnet (2, 18, 7.3) (0.014, 0.059, 0.03)
Garr199905 (2, 18, 4.35) (0.0435, 0.083, 0.05)
0 (4, 8, 4.3) (0.043, 0.167, 0.11)
1 (2, 14, 5.23) (0.026, 0.117, 0.07)
2 (2, 8, 4.2) (0.044, 0.164, 0.10)
3 (2, 6, 4.0) (0.067, 0.162, 0.12)

Table 4.2: TopologyZoo metrics. For each topology and each metric the tuple values cor-
respond to the (min, max, mean) values respectively. The top 3 topologies are those used
during DRL’s agent training process.

as the source of performance instability. Thus, we focused our attention on the network

topologies and we wanted to study what is different (in connectivity terms) in the top left

topologies in Figure 4.9a.

We identified two metrics that showcase the differences between the topologies used

during training and those where Enero’s performance is worse. The first one is the node

degree, which indicates the number of adjacent links to a node. The second metric is

the edge betweenness, which computes the portion of all pairs of shortest paths that pass

through each link l of a graph [109]. The following equation describes the edge betweenness

metric:

𝑐(𝑙) =
∑︁
𝑠,𝑑∈𝑁

𝜎(𝑠, 𝑑 |𝑙)
𝜎(𝑠, 𝑑) (4.4.1)

where N is the set of all nodes, 𝜎(𝑠, 𝑑) is the total number of shortest paths and

𝜎(𝑠, 𝑑 |𝑙) is the number of shortest paths that pass through link l.

Table 4.2 shows the minimum, maximum and mean node degree and edge betweenness

for each topology used during training and for the 4 topologies where Enero had worse

performance. These metrics indicate that the topologies seen during training and the ones

where our method performs worse are totally different. For example, the minimum and the

average edge betweenness is much higher in the topologies 0, 1, 2 and 3. This indicates

that the shortest paths are not well distributed and they cross the same links, making them

become critical links for the TE problem. In addition, the topologies used in the training

process have a higher average and a wider range of the node degree. This indicates that

the nodes are more interconnected between them than in the topologies 0, 1, 2 and 3.

There are several ways to solve the out-of-distribution problem. For example, we could

work with specific Deep Learning techniques such as regularization or dropout. However,

the most effective way would be to add more data to the training process. This is translated
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to our problem by adding more topologies to the DRL’s training that are different between

them.

The experimental results showed that the hybrid method of combining DRL with LS

enables efficient real-time routing optimization. However, there is still room to push even

further the combination of DRL with traditional optimization methods. The straight-

forward approach would be to improve the LS implementation using high performance

software (e.g., Cython [106]). In addition, in our work we used a greedy approach in

Enero’s second stage but it could be substituted by more advanced search algorithms (e.g.,

CP, Genetic Algorithms). For example, the DRL’s solution could be converted to constraints

and then some CP solver (e.g., Gurobi [37]) could find a better solution. This would ensure

that the solution of the CP phase should be better than the one from the DRL agent and

it would enable the second optimization stage to explore better solutions.

4.5 Chapter Contributions

In this chapter, we extended the DRL+GNN architecture from the OTN scenario and

we presented Enero, a method that combines the DRL+GNN architecture with LS to solve

optimization problems in real-time. We evaluated Enero in a more realistic and complex

optimization scenario of IP networks. The experimental results showed that Enero is able

to operate efficiently in real-world scenarios (e.g., with dynamic traffic matrix, link failures).

In addition, the results indicated that Enero can achieve close-to-optimal performance in

less than 30 seconds for a set of arbitrary real-world network topologies. Enero’s code is

publicly available [107].
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Chapter 5

Network Traffic Compression

5.1 Introduction

To train the previously presented DRL agents we need to store large volumes of network

data. For example, we could store the traffic evolution in a real-world network and then

train the DRL agent to optimize the network configuration using realistic traffic matrices.

The more data we use to train the DRL agents, the higher will be their performance when

optimizing the limited network resources. This is because the training set will contain

a wider range of different network scenarios, helping the DRL agent find better routing

policies.

The NDT paradigm also requires the storage and analysis of vast amounts of network

data [1]. This is because the ML models will learn to mimic the physical network’s behavior

from the collected data. Having large datasets improves the accuracy of the ML models

used to mimic the network’s behavior. In addition, to accurately model complex network

behaviors such as end-to-end delay it is necessary to have large training datasets.

However, the efficient storage of network traffic traces is becoming more challenging

than ever. Traffic traces from ISPs, backbone or data center networks can easily occupy

hundreds of terabytes per day [110] or petabytes in the case of mobile networks [29]. For

example, only a 24-hour trace from a single 10 Gbps link can result in 108 terabytes of

data in the worst case. Storing traces from real-world networks can be difficult as they

have in the order of hundreds of links [43]. In addition, such traces can contain thousands

of concurrent flows per second [110]. Even storing aggregated flow-level information (e.g.,

NetFlow) can require hundreds of terabytes of disk storage per day [111,112].

Traffic traces are being collected and compressed using generic methods such as GZIP [30].

However, such methods are generic, meaning that they were designed to compress multiple

kinds of information (e.g., csv file, text). This results in low compression performances,

resulting in traffic traces that have similar size than before being compressed. Past works

showed that network traffic traces are far from being purely random, meaning that they
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intrinsically have some underlying structure [32–36]. In particular, traffic traces are known

to present spatial and temporal patterns that could potentially be exploited to increase

current compression ratios.

In this chapter, we seek to understand if recent advancements in NNs architectures

could be used to leverage spatial and temporal correlations to achieve better compres-

sion ratios than traditional tools. In particular, we present our second contribution of

this dissertation which is a GNN-based traffic compression method. This method exploits

spatio-temporal correlations naturally present in network traffic traces, achieving better

compression ratios than traditional methods like GZIP.

The proposed compression method contains two main modules: a predictor that is

implemented using neural networks and an encoder. The main role of the predictor is to

exploit the spatial and temporal correlations between the network links to accurately esti-

mate, from past observations, the distribution of the data to be compressed. The encoder is

implemented using Arithmetic Coding (AC) [113], a popular lossless compression method.

Based on the predicted distributions, AC decides how to better encode the traffic informa-

tion. The proposed solution also implements a decoder for decompression, which inverts

the process to recover the original traffic data.

To showcase the compression capabilities of our method, we first evaluate it on synthetically-

generated traffic with different degrees of temporal and spatial correlation. The results with

synthetic data show that our proposed solution can improve GZIP’s compression ratios by

≥35%, even in scenarios with weak correlation. Next, we evaluate our compression method

with real-world datasets that cover several months of traffic from three real-world networks.

Experimental results show that our method can reduce the size of compressed files by 50%-

65% compared to GZIP and by a factor between 2.6x and 4.2x with respect to the original

file.

5.2 Background

In our work, we consider the compression scenario defined by a network topology with

link-level traffic measurements. These measurements indicate the traffic volume over time

going through each link. They can be obtained from the real-world network using network

monitoring tools such as SNMP or NetFlow. Link-level measurements are performed period-

ically and stored in time bins (e.g., bins of 5 minutes), resulting in sequences of accumulated

traffic values that we want to store efficiently in disk1. Figure 5.1 shows an overview of the

compression scenario.

When compressing network traffic measurements, network administrators typically fol-

low a simplistic approach based on well-known compression software such as GZIP [30].

1We chose this scenario for its relevance and simplicity, but note that the same principles apply for
example to flow-level measurements (e.g., NetFlow), where flows (instead of link-level measurements) can
be seen as multiple time series exhibiting spatio-temporal patterns.
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Figure 5.1: Overview of the network traffic compression scenario. Link-level traffic mea-
surements are extracted from the real-world network and stored in the disk.

However, such methods are generic, meaning that they were designed to compress multiple

kinds of information (e.g., images, text). This results in low compression ratios when used

with network traffic traces. Equation 5.2.1 shows how to compute the compression ratio

(CR) of a file.

𝐶𝑅 =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
(5.2.1)

5.2.1 Exploiting temporal and spatial correlations

In our work, we leverage ML to exploit the network traffic characteristics and achieve

high compression ratios. Specifically, link-level traffic measurements are time series data,

meaning that the traffic values can be seen as a set indexed by time. A time series can be

typically described by its seasonality and trend. Seasonality refers to a pattern repeated

in time at a certain frequency (e.g., day/night). The trend indicates long-term tendency of

the time series to increase, decrease or remain stable. Figure 5.2 shows the daily seasonality

present in link-level traffic measurements during ≈1 month on two real-world datasets used

in our experiments (see Section 5.4.1). In addition, the network topology and routing

introduce spatial correlations in the link-level traffic measurements. This means that the

links sharing paths are going to have a similar traffic behavior, which we believe that it can

be exploited for improving the compression ratios.

To showcase the presence of spatial correlations, we compute the Pearson correlation

coefficient between each pair of links in two real-world topologies. This coefficient indicates

how strongly correlated are two sets of data or vectors. The following equation shows how

to compute the Pearson correlation:
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Figure 5.2: Two link-level network traffic measurements during ≈1 month from two real-
world datasets. Notice the y-axis is in logarithmic scale. The figures indicate that the
resulting time series from the measurements have temporal patterns.

Figure 5.3: Pearson correlation between links for the Abilene (left) and Geant (right)
datasets. The darker colors indicate high spatial correlation between links. This means
that the traffic values between links have a positive correlation (red) or a negative one
(blue).

𝑟 =

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︁∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2(𝑦𝑖 − 𝑦)2

(5.2.2)

where 𝑥 and 𝑦 are the means of the vectors x and y respectively. The resulting value

is contained between the range [-1, +1], where -1 indicates negative correlation. This can

happen when the traffic increases in one link but decreases in the other link. A value of 0

indicates no correlation and values close to +1 indicate positive correlation (i.e., the traffic

increases in both links in similar proportions). Figure 5.3 shows the Pearson correlation for

the real-world Abilene (left) and Geant (right) datasets [114]. The darker the color in the

figure, the higher is the correlation between links. The figures indicate that indeed there is

spatial correlation between links. We believe that both temporal and spatial correlations

can be exploited to achieve higher compression ratios than generic methods like GZIP.
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Figure 5.4: Given a finite set with all possible symbols and a probability distribution, the
sequence ”AABC” is encoded into a single decimal value. The process starts by dividing the
range [0, 1) proportionally to the input distribution. Then, the process picks the segment
that corresponds to the first symbol from the original sequence for further division. This
process is repeated recursively until all symbols have been encoded.

5.2.2 Arithmetic Coding

Our method leverages AC [113] to compress the sequences of traffic values. This is

a lossless method that compresses a stream of symbols (e.g., text characters) into a single

number between [0, 1). To do this, AC assigns less bits to frequent symbols and more bits to

less frequent symbols. In contrast to other popular compression methods such as Huffman

coding [115], AC achieves better compression ratios and it can work in an online fashion.

In addition, the AC compression algorithm works with probability distributions, making it

a good fit with ML technologies.

Figure 5.4 shows the procedure to code a short text sequence using AC. Initially, the

AC takes as input the set of possible symbols and a probability distribution. For simplicity,

in this example the distribution remains static but a predictive model can be used to update

the distribution after coding each symbol. Initially, the range [0, 1) is divided into segments

proportionally to the symbol probability distribution. Then, the AC selects the segment

[0, 0.2) corresponding to the first input symbol ’A’ from the text sequence. Afterwards,

this segment is divided into segments following the same proportions of the probability

distribution. This process is repeated recursively for each symbol until the End-of-Data

symbol is met. Finally, a decimal value from within the End-of-Data segment is picked as

the tag for the entire text sequence.

The decoding part follows a symmetric procedure to the coding part. To recover the

original text sequence, the algorithm takes as input the tag, the set of possible symbols and

the probability distribution. Similarly, the range [0, 1) is divided into segments proportion-

ally to the probability distribution and the segment that includes the codeword is selected.

The symbol that corresponds to the segment represents the first symbol from the original
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Figure 5.5: Given a tag, a set of symbols and a probability distribution, the decoding
process starts by dividing the range [0, 1) proportionally to the distribution. The segment
that contains the tag is selected and its corresponding symbol is decoded as the first symbol
from the original text sequence. Then, the segment is divided proportionally, starting a
recursive process that finishes with the End-of-Data symbol.

text sequence. Then, the process starts again, decoding the original sequence one symbol

at a time. This is a recursive process that finishes when the End-of-Data symbol is met.

Figure 5.5 shows an example of decoding the tag and recovering the original text message.

The compression performance of the AC is defined by the quality of the probability

distribution. Consider a scenario where there is a predictive model to dynamically compute

the probability distribution for each symbol in a sequence. As an example, consider the AC

at time bin t and we want to compress the value at t+1. Then, the AC can use a predictive

model that takes as input the past k symbols and predicts the probability distribution

for the next symbol at t+1. If the model is accurate, AC will assign less bits to encode

the symbol, resulting in close-to-optimal compression performance. On the other hand, if

the model is not accurate, the probabilities will not correspond to the real symbol, which

results in poor compression or it can even increase the final file size. In this work we want

to leverage ML to build an accurate predictor to compress the sequences of network traffic

measurements.

5.2.3 Notation and problem statement

Formally, link-level traffic measurements are represented as a matrix 𝑿 ∈ N𝑤×𝑙, where

𝑤 represents the sliding window for 𝑙 links. Each traffic measurement is a random vector

𝒙𝑡 ∈ N𝑙. For the arithmetic encoder we need a one step forecast distribution 𝑝(𝒙𝑡 |𝒙<𝑡 ) to

capture temporal dependence. As the arithmetic encoder operates on streams of symbols,

we further partition the distribution with a chain rule to capture spatial dependence:

𝑝(𝒙𝑡 |𝒙<𝑡 ) =
∏
𝑙

𝑝(𝑥𝑙 |𝒙𝑡 ,<𝑙, 𝒙<𝑡 ). (5.2.3)
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Here we assume the stationary model 𝑝(𝑥𝑙 |𝒙𝑡 ,<𝑙, 𝒙<𝑡 ) and mask-out the unknown traffic

values. Note that there is no natural order for the auto-regressive model, however, the only

requirement is that the order must be the same during compression and decompression.

5.3 Proposed Compression Method

In this section we present a method for network traffic compression based on NNs.

This method compresses link-level traffic measurements that evolve during time. These

measurements are performed periodically and aggregated in time bins. For example, the

bins can be of 5 minutes, indicating the traffic that passed through a link during this period

of time.

We consider two link-level compression scenarios. In the first one, we want to compress

link-level traffic measurements from a single link (e.g., access link). This is a common

practice in small or medium size networks where internal traffic is smaller and not considered

to be of interest in many cases (e.g., enterprise, campus networks). With a single link, we

can only exploit temporal correlations as no other links are considered. The second scenario

represents a more general use-case, where we want to simultaneously compress the traffic

from multiple links of a network topology (i.e., network-wide compression [116]). This

situation will be more common in large networks, such as those of ISPs, which can have a

global view of the network topology. In this case, apart from the temporal correlations of

the first scenario, the routing and the topology will also introduce spatial correlations that

we can exploit for compression purposes.

Our compression method takes as input the link-level traffic values and outputs a

floating point number for each link. This value corresponds to the tag of the AC and it
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Figure 5.6: Our method takes as input the traffic values within the sliding window and
outputs a tag per link. Suppose the window finishes at time bin t, the predictor computes
the probability distribution of the traffic values at t+1. These are used to encode the real
values from t+1. Afterwards, the sliding window is shifted by one time bin and the process
starts again until the end of the sequence.
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represents the entire sequence compressed (see Section 5.2.2). In the network-wide scenario

(e.g., ISP), our proposed method takes as input the network topology in addition to the

traffic values. The proposed compression method uses a sliding window to iterate over

all traffic measurements. In other words, it processes the traffic values within the sliding

window to output a probability distribution. This distribution is used to actually encode

the traffic measurements immediately after the sliding window. The process is repeated

until the window iterates over all values.

The proposed compression method is composed of two main blocks: the predictor

and the encoder/decoder. The predictor leverages a NN model to predict the probabil-

ity distribution in the next time bin after the sliding window (see Section 5.3.1). The

encoder/decoder is in charge of actually compressing the sequences of traffic values (see

Section 5.3.2). The better are the predictions of the NN model, the better is the compres-

sion ratio of our method. Figure 5.6 shows an overview of the compressor module, with its

inputs and outputs.

5.3.1 Predictor

The predictor is implemented using a Recurrent Neural Network (RNN) in its simplest

form. This implementation is used when compressing link-level traffic measurements of a

single link. Specifically, the RNN processes the link-level sequence of traffic values and

afterwards a Multi-Layer Perceptron (MLP) takes the resulting hidden states and outputs

the parameters of a probability distribution (e.g., Normal, Laplace). The probability dis-

tribution is then used by the AC to code the real link measurements. Notice that the RNN

architecture only exploits temporal correlations.

In the network-wide scenario, we implement the predictor using a Spatio-Temporal

Graph Neural Network (ST-GNN) [117]. Inspired by the message passing neural net-

work [68], the proposed ST-GNN uses a message passing step for each time bin to exploit

the spatial and temporal correlations. This step consists of exchanging information between

neighboring links and it is necessary to propagate the link-level information across the topol-
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Figure 5.7: The initial feature vectors are processed by a MLP. Then, for each link the hidden
states of its neighbours are aggregated and concatenated with the actual link utilization.
The resulting hidden state is processed by a RNN, which outputs a new state used to
initialize the same link feature vector in the next time bin. Finally, a different MLP outputs
the mean and standard deviation of a probability distribution.
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ogy. The ST-GNN takes as input the traffic measurements and the network topology and

outputs a per-link probability distribution. The ST-GNN enables to exploit both spatial

and temporal correlations naturally present in network traffic traces (see Section 5.2.1).

Figure 5.7 shows an overview of the internals of the ST-GNN architecture. For sim-

plicity, we only show the steps of predicting the probability distribution in a single link

L1 using a time window of size 2. Initially, at time bin t=0 the links’ feature vectors are

initialized with the traffic values and padded with 0. Then, the feature vector is processed

by a MLP and the output vector is sent to all the neighboring links. At the same time,

the current link L1 receives the hidden states from the neighboring links, aggregates them

using a sum and concatenates the actual link traffic value. The resulting hidden state is

then processed by the RNN, which outputs a final hidden state for the present time bin.

This hidden state is used the next time bin t=1 to initialize the feature vector. The process

is repeated for all time bins within the sliding window. In the last bin, a different MLP

(denoted R in the figure) is used to process the final hidden states and to output the mean

and standard deviation of the traffic value probability distribution (e.g., Normal, Laplace).

This probability distribution is used by the AC to compress the traffic value of link L1 at

time bin t=2.

5.3.2 Encoder/Decoder

The encoder/decoder is responsible for effectively compressing/decompressing the ac-

tual sequences of traffic values. Specifically, it takes the link-level probability distributions

from the predictor and compresses/decompresses the sequences of traffic values. We imple-

ment the encoder/decoder using AC [113], which compresses each link-level traffic sequence

into a single floating point number (i.e., one decimal number per link). When decoding, the

method works symmetrically to the encoder (see Section 5.2.2). The more accurate the NN-

based predictor, the higher the compression ratios as less bits will be used for compressing

the traffic sequences.

5.3.3 Mask

The ST-GNN model uses a mask to exploit the spatial correlations between links,

enabling the model to learn the conditional distribution 𝑝(𝑥𝑙 |𝒙𝑡 ,<𝑙, 𝒙<𝑡 ) from Equation 5.2.3.

Specifically, the mask is used to gradually incorporate the already compressed/decompressed

link traffic values of a time bin into the prediction. By masking the known link traffic values,

our model learns to predict the conditional probability distribution. As an example, consider

a topology with 2 links and a time window of size 2. This means we know all the link traffic

values for time bins t=0 and t=1. Then, the ST-GNN uses the known traffic values to

predict the probability distributions for both links at t=2. From all the distributions, a

single one is picked and the corresponding link traffic value is compressed using AC. The

link is then marked as known for bin t=2 using the mask and the ST-GNN uses the updated
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Figure 5.8: Consider a time window of size 2 that finishes at time bin t. From time bin
t+1, we already compressed 2 traffic values from link L1 and L2 and we want to compress
the value in L3. The feature vectors assigned to each link for each time bin are initialized
with the known values and the mask. This information is processed by the predictor, which
outputs a quantized probability distribution for the missing link value at t+1. The loss is
computed for the same link and back propagated all the way to the link input features.

link features to predict the probability distribution for the missing link. This prediction is

conditional to the known traffic value, and thus exploiting the spatial correlation between

links.

During training, the mask of unknown links is created randomly. This means that for

each sliding window we associate a random mask over the links to indicate whose link traffic

values are known. In the compression/decompression phase, the mask starts by marking

all the traffic values as unknown. Then, the predictor compresses/decompresses the traffic

values in order, incorporating them into the prediction by changing the mask. Figure 5.8

illustrates how the link-level features are initialized and how the loss is computed for a

single link. In particular, for each link and time bin, the input link features are the traffic

measurements and the mask.

5.3.4 Compression

Our proposal uses the link-level traffic values from the sliding window to predict the

probability distributions, including the masked links from the next time bin. In particular,
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Figure 5.9: The predictor processes the information from the sliding window. In the
network-wide scenario, the predictor incorporates information from the links whose traf-
fic is known at t+1 to predict the conditional probability distribution 𝑝(𝑥𝑙 |𝒙𝑡 ,<𝑙, 𝒙<𝑡 ). The
output is a single decimal value that encodes the link’s traffic sequence.
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Algorithm 5 Compression algorithm

1: Inputs: 𝑠𝑒𝑞 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ⊲ Sequence of ordered windows
2: 𝑓 𝑖𝑟𝑠𝑡 𝑤 ← 𝑇𝑟𝑢𝑒

3: for each 𝑤 ∈ 𝑠𝑒𝑞 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 do
4: if 𝑓 𝑖𝑟𝑠𝑡 𝑤 then
5: 𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡 ← 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 𝑑𝑖𝑠𝑡

6: for each 𝑏𝑖𝑛 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑤) − 1) do
7: for each 𝑙𝑖𝑛𝑘 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑛𝑢𝑚 𝑙𝑖𝑛𝑘𝑠) do
8: 𝑒𝑛𝑐𝑜𝑑𝑒(𝑤 [𝑙𝑖𝑛𝑘, 𝑏𝑖𝑛], 𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡)
9: 𝑓 𝑖𝑟𝑠𝑡 𝑤, 𝑏𝑖𝑛← 𝐹𝑎𝑙𝑠𝑒, 𝑙𝑒𝑛(𝑤)

10: for each 𝑙 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑛𝑢𝑚 𝑙𝑖𝑛𝑘𝑠) do
11: 𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡 ← 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑤)
12: 𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡 ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡)
13: if 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 == 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 − 𝑤𝑖𝑑𝑒 then
14: 𝑙𝑖𝑛𝑘 ← 𝑠𝑒𝑙𝑒𝑐𝑡 𝑙𝑖𝑛𝑘 (𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡)
15: 𝑒𝑛𝑐𝑜𝑑𝑒(𝑤 [𝑙𝑖𝑛𝑘, 𝑏𝑖𝑛], 𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡)
16: 𝑤 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑙𝑖𝑛𝑘 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑤, 𝑙𝑖𝑛𝑘)
17: else
18: 𝑙𝑖𝑛𝑘 ← 𝑙

19: 𝑒𝑛𝑐𝑜𝑑𝑒(𝑤 [𝑙𝑖𝑛𝑘, 𝑏𝑖𝑛], 𝑝𝑟𝑜𝑏 𝑑𝑖𝑠𝑡)

if the time window finishes at time bin t, it uses the previous k traffic values until t to

predict the probability distributions for time bin t+1. These distributions are then used by

the AC to code the actual values from time bin t+1. Figure 5.9 shows an overview of the

compression process for a single link. In the network-wide compression scenario, the predic-

tor is implemented with a ST-GNN that takes as additional input features the neighboring

link’s hidden states. When compressing a single link, the predictor is implemented with a

RNN that has only information from the past traffic values independently for each link.

Algorithm 5 shows in detail how the compression procedure works. To simplify the

pseudocode, we compress the traffic values in the last time bin from a sliding window. The

algorithm takes as input the ordered sequence of time windows and starts iterating over

them (line 3). The first traffic values from the first time window are compressed using

uniform probabilities (line 5 to line 8). Then, the algorithm encodes the traffic values

from the last position of the time window (line 9). To do this, a loop iterates over each

link, compressing one value at a time (line 10). For each link, the algorithm leverages the

NN-based model to compute the quantized probability distributions (lines 11 and 12).

The quantization step is necessary because the AC takes as input a probability dis-

tribution with a finite set of values (see Section 5.2.2). When working with high traffic

granularities (e.g., store the traffic values until the last byte), the total number of different

traffic values can become very large and sometimes the probability distribution might not

fit in memory. In these cases, a solution would be to quantize the traffic values to the

Kilobytes or Megabytes, instead of quantizing at the byte-level. This process can be seen
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Figure 5.10: The decompression process is similar to the compression, but now the arith-
metic coding uses the decoder to recover the original sequence of symbols. Notice that
for each time bin the predictor receives the same input information as in the compression
phase.

as grouping the range of traffic values in larger bins of Kilobytes or Megabytes and the

probability distribution is produced over these larger bins. The binning step produces some

loss of information as we loose precision at the byte granularity, but in some cases it is

necessary due to hardware limitations.

The model that outputs the probability distribution is implemented with a RNN or

a ST-GNN, depending on the compression scenario. In the network-wide scenario, the

algorithm uses a heuristic to determine the link order (line 14), incorporating them into

the prediction. After encoding the selected link, the link-level features and the mask are

updated in line 16. The process starts again and is repeated until all links have been

encoded.

The heuristic to select the link in the network-wide scenario is based on an increasing

order of standard deviation (line 14). We experimentally observed this heuristic helps the

ST-GNN decrease the uncertainty in the predictions. In other words, leaving the links where

the GNN model is more uncertain to the end helps the GNN make better predictions. This

is because the ST-GNN will have more links with known traffic values, reducing the model’s

uncertainty over the links with higher standard deviation.

The compression process results in a tag for each link, encoding the link’s traffic se-

quence. This tag is stored in a single file on disk. When decompressing, the tag is used

by the decoder to recover the original traffic sequence without losing information. Notice

that the compression process is performed in a streaming fashion, differing from traditional

methods like GZIP that are static. In other words, our method can compress the traf-

fic values as they come, without the need of storing the measurements in a buffer before

compressing.
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5.3.5 Decompression

For decompression, the model reads the tag from the compressed files and uses the

same NN-based model to recover the original link sequences bin by bin. The first elements

within the first sliding window are decompressed using uniform probability distributions.

Then, when the entire sliding window is decompressed, the predictor uses the recovered

values to compute the probability distributions for the links. Similarly, in the network-wide

compression scenario the algorithm leverages the same heuristic to select the order in which

to decode the traffic values for each time bin. Figure 5.10 shows a general overview of the

decompression phase. Notice that for each time bin, the predictor receives the same input

information as in the compression phase. The decoder also receives the same information

but in this case its operations are inverted to decode (see Section 5.2.2). The algorithm to

decompress is the same as Algorithm 5 but replacing the coding operations from encode(·)
by their inverse decoding operations.

5.4 Experimental Evaluation

5.4.1 Methodology

We evaluated the compression performance of our method with respect to GZIP, the de

facto compression method of network traffic traces. In the first experiment, we generated

synthetic datasets with different intensities of spatial and temporal correlations on the

NSFNet topology [88] with 42 directional links. We synthetically created signals with

different correlations (see Section 5.4.3) and extracted 1,000 samples using a window size

of 5 time bins, including the labels. In other words, the NN-based models leverage the

link-level traffic values of 4 time bins to compress the values within the 5th bin. During

training, we created 50 different random masks for each time window. We experimentally

observed that the higher the number of different masks, the better is the accuracy of the

ST-GNN model, but paying the cost of increasing training time. This is because increasing

the number of different masks enriches the training process as there is more data to train

the NN on.

In the second experiment, we evaluated the compression capabilities of the NN-based

models on three real-world datasets. The first two datasets are the Abilene and Geant

datasets from [114]. The Abilene dataset corresponds to a topology with 30 directional

links and a total of 41,741 samples after data cleaning and using a time window of size

5. This dataset contains the link-level traffic measurements (in bytes) during 6 months

in intervals of 5 minutes. The Geant dataset corresponds to a topology of 72 directional

links and a total of 6,063 samples after data cleaning for the same window size. The third

dataset is more recent and it was obtained from in-house link-level traffic measurements in a

campus network. The dataset contains 12 months of per-link network traffic measurements
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in intervals of 5 minutes (from December 2020 until December of 2021). The topology

contains 16 directional links and a total of 102,799 samples with window size of 5.

All the experiments were performed on off-the-shelf hardware. In particular, we used

a single machine with an AMD Ryzen 9 5950X 16-Core Processor with one GeForce GTX

1080 Ti GPU for training the models. We trained all NN-based models using 70% of the

samples for training and 30% for evaluation. For each time bin, we created 40, 40 and

20 unique random masks for the Abilene, Geant and Campus network datasets. The loss

function used was the negative log likelihood of a Laplace distribution. To work with a

finite set of probabilities, we quantized the Laplace distribution. After training, we chose

the model with lowest evaluation error and we compressed the entire datasets.

5.4.2 Implementation

We implemented the ST-GNN and the RNN using Tensorflow 2.8 [85]. The RNN was

implemented using the Gated Recurrent Unit architecture [118]. The scripts to pre-process

the datasets were written in Python 3.8 and we used the NetworkX [92] and NumPy [105]

libraries for graph-related operations. We leveraged an open-source implementation of the

arithmetic coding for Python [119] to implement the encoder. In the synthetic experiment,

we used the Statsmodels Python library [120] to implement the auto-regressive model.

5.4.3 Synthetic data generation

In our compression scenario, we assumed the network topology is an input to the model

(only in a network-wide scenario). The only remaining variables that have an impact on the

link-level traffic measurements are the source-destination flows. There is one flow for each

pair of source-destination nodes within a network topology. All flows follow the shortest

path routing policy to reach the destination node. Consequently, each link will be traversed

by a subset of all flows.

Figure 5.11: Boxplots of the Pearson correlation in the synthetic datasets (left). The higher
is the spatial correlation, the higher are the pearson correlation coefficients between links.
On the right, we show the higher is the temporal correlation, the higher is the percentage
of link-level stationary time series in the synthetic datasets.
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Figure 5.12: Compression ratio improvement for the ST-GNN model with respect to GZIP
(left) and RNN (right). Notice that in the scenario with higher spatial and temporal corre-
lations there are a few traffic values that are highly repeated in the dataset, which GZIP’s
underlying algorithm exploits effectively.

We assigned for each flow a periodic signal that originated from a sine wave. This

wave is scaled by 40 to obtain values in the order of hundreds when aggregated on each

link and is shifted to contain only positive values. In addition, we add random noise to the

signal, we randomly shift its phase to start at different values and we randomly change the

periodicity. If all flows originate from the same signal, the links are highly correlated in space

as their values will increase/decrease proportionally for each time bin. In our experiment, we

consider 4 degrees of spatial correlation: 0%, 30%, 60% and 100%, indicating the percentage

of flows that have the same signal characteristics.

Temporal correlations are present in stationary time series with periodical patterns.

The sinusoidal signal naturally meets these requirements, resulting in a time series with

high temporal correlation. To decrease the temporal correlation, we added additional noise

to the flow signal from auto-regressive (AR) models. To control the intensity of the temporal

correlation in the experiment we controlled the percentage of flows that are added with

noise. Specifically, we consider 4 degrees of temporal correlations: 0%, 30%, 60% and

100%, indicating the percentage of flows that conserve the original signal.

In Figure 5.11 (left) we show how the spatial correlation increases in our synthetic

datasets. Specifically, we grouped all the datasets by the intensity of spatial correlation.

Then, we computed the Pearson correlation for each pair of links following Equation 5.2.1.

The results indicate that the higher the intensity of the spatial correlation (x-axis), the

higher the Pearson correlation (y-axis). Figure 5.11 (right) shows how the temporal cor-

relation present in the synthetic data increases with the temporal correlation coefficient

(x-axis). Similarly, we grouped all datasets by temporal intensity. Then, we performed the

Augmented Dickey-Fuller (ADF) test [121] for each link-level traffic sequence, counting the

number of paths that are stationary (i.e., the mean and variance of the time series do not

change in time). In particular, if the ADF test was returning a p-value smaller or equal

than 0.05, we rejected the null hypothesis (H0), considering the time series to be stationary.
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5.4.4 Evaluation on synthetic data

In total, there are 16 experiments that correspond to all possible combinations of

spatial and temporal correlation intensities. For each of these experiments, we consider

both network-wide and independent link-level compression scenarios (see Section 4.3). In

total, we trained 32 models from which 16 of them were based on the ST-GNN model and

the other 16 on RNNs.

Figure 5.12 (left) shows the percentages of compression ratio improvement for the ST-

GNN with respect to the GZIP baseline in the network-wide scenario. The results indicate

that the ST-GNN outperforms GZIP by a large margin in all experiments. Notice that

the scenario with maximum spatial and temporal correlation contains a small number of

link-level traffic values that are repeated frequently. GZIP uses Huffman coding [115] as

the underlying algorithm, which can effectively exploit the repeated traffic values. This

explains why the compression ratio improvement is the lowest for this particular scenario.

In addition, the figure indicates the expected performance of the ST-GNN when evaluated

in real-world scenarios. In particular, the intensity of the temporal and spatial correlations

of a real-world dataset could point to the expected performance with respect to GZIP.

To showcase the capabilities of our method to exploit spatial and temporal correlations

simultaneously, we compare it with the RNN-based model. Recall that the RNN compresses

one link only. Therefore, we apply the RNN model for each link in the topology, exploiting

temporal correlations solely. For the sake of fairness, we maintained the same hidden state

sizes in both ST-GNN and RNN models.

Figure 5.12 (right) shows the performance improvement of the ST-GNN models with

respect to the RNN-based models. The ST-GNN model outperforms the RNN in all correla-

tion scenarios, but it has outstanding performance in scenarios with high spatial correlation.

The results indicate that our model has the flexibility to exploit both spatial and temporal

correlations. Notice that in the case of 0% of spatial correlation and maximum temporal

correlation, the improvement of the GNN model is ≈1%, indicating that they perform sim-

ilarly when there is high temporal correlation. This is expected as the ST-GNN model also

incorporates a RNN (see Figure 5.7).

5.4.5 Compressing real-world data

In this experiment we evaluated the compression performance of our method on real-

world link-level traffic measurements. To do this, we compressed three real-world datasets

(see Section 5.4.1). We compared the compression performance against three baselines:

Static AC, Adaptive AC and GZIP. The Static AC and Adaptive AC baselines are similar to

our method but the probability distribution is computed without using ML. In particular,

Static AC iterates over the entire dataset and computes the probability distribution for

the link-level traffic measurements. Then, it compresses/decompresses the entire dataset

using the same static distribution for each AC coding step. The Adaptive AC baseline
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computes the new distribution using the values within the sliding window. These baselines

are intended to show the benefit of using ML to implement the predictor model. Finally,

we apply GZIP to compress the entire dataset.

Figure 5.13 shows the compression ratios for the three real-world datasets in the link-

level scenario. In particular, each baseline was applied to compress each link individually

and we compared the resulting compressed links with their original file size (i.e., one file

per link). The results indicate a remarkable performance of our compression method for all

datasets, outperforming GZIP by a large margin. In addition, the figure indicates a clear

advantage of using an adaptive ML-based predictor to exploit temporal correlations present

within the sliding window.

Figure 5.14 shows the experimental results of compressing the same datasets in the

network-wide scenario. Recall that our compression method is implemented using the ST-

GNN, which leverages the traffic values from all links to dynamically compute the proba-

bility distributions. In this scenario, Static AC computes the probability distribution using

the entire dataset (i.e., including all links) and Adaptive AC updates the distribution by

including the values from all links within the sliding window.
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Figure 5.13: Compression ratios for the single-link scenario.
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Figure 5.14: Compression ratios for the network-wide scenarios. Notice that in this experi-
ment we are compressing the entire dataset.
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Dataset Mean Cost (s) Model size (Kbytes)

ST-GNN RNN ST-GNN RNN

Geant 3.20 0.47 575 489

Campus network 0.22 0.07 236 202

Abilene 1.22 0.29 332 285

Table 5.1: Model size and mean cost (in seconds) to compress one time bin.

The experimental results indicate that our proposed method achieves the highest com-

pression ratios in all three datasets. Particularly, it outperforms Static AC by ≈47%, ≈41%

and ≈29% for the Geant, Campus network and Abilene datasets respectively. In addition,

the performance improvement with respect to GZIP is of ≈62%, ≈53% and ≈50% for the

same datasets respectively. These results showcase the benefit of leveraging ML to exploit

spatial and temporal correlations for traffic compression.

5.4.6 Cost

In this section we discuss the cost of using our method for online compression. Specif-

ically, our method compresses the traffic measurements in a streaming fashion (see Sec-

tion 4.3). This means that it can compress the link traffic measurements as they come

from the network monitoring platform. Conversely, GZIP needs to wait to have the entire

dataset to apply the compression algorithm. Alternatively, GZIP could compress all links

at once on each time bin independently. We did this and the experimental results indicate

that GZIP achieves a compression ratio of ≈0.94, ≈0.4 and ≈0.54 for the Geant, Campus

network and Abilene datasets. In other words, the compressed data occupies more space

than the original data, contrasting with the results from Figure 5.14.

We computed the average cost of compressing one time bin using the ST-GNN and RNN

models to evaluate the deployment to real-world online traffic compression. In addition, we

computed the size of storing the model’s weights into a file. Table 5.1 shows the average

cost of compressing one time bin for all real-world datasets, indicating that our method is

capable of online compression. In other words, when it receives the aggregated traffic of, for

example, the last 5 minutes, our method can effectively compress the values in the order of

seconds. Finally, Table 5.1 also shows how much memory it is required to store the trained

weights of the neural network. The results indicate that the model is lightweight and it

achieves high compression ratios with an expendable model size.

5.5 Chapter Contributions

In this chapter we proposed the use of GNNs and arithmetic coding to compress link-

level traffic measurements. Specifically, we presented a method that exploits the spatial

and temporal correlations intrinsic in the traffic measurements. The experimental results
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show that the proposed solution can effectively compress real-world traffic traces, with an

improvement of ≥50% in compression ratio for real-world datasets with respect to GZIP.
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Related Work

6.1 Network Optimization

Network optimization is a well-known and established topic whose fundamental goal

is to operate networks efficiently. This problem has been largely studied in the past and

we outline some of the most relevant works. The early work from [41] uses LS to find the

best OSPF link weights to minimize congestion in the most congested link. The authors

from [39] propose a solution based on ILP for multicast routing in OTN. In addition,

they propose to use a heuristic based on genetic algorithms to improve the locally optimal

solution and to reduce the computational complexity. Similar work using genetic algorithms

are [122, 123]. In DEFO [42] they propose a solution that converts high-level optimization

goals, indicated by the network operator, into specific routing configurations using CP.

Their problem formulation leverages SR to find the best routing configuration for each

traffic demand. Within a SR path, they spread the traffic among several flows using ECMP.

In [124], the authors propose to use LS where they sacrifice space exploration to achieve

lower execution times. In their design they also leverage heuristics to narrow down the LS

neighborhood and to make the algorithm converge faster to good solutions. A more recent

work [40] leverages the ILP and the column generation algorithm to solve TE problems.

Their solution also provides a mathematical bound to indicate how far the solution is from

the optimal one.

6.1.1 Machine Learning for Network Optimization

To find the optimal routing configuration from a given traffic matrix is a fundamental

problem, which has been demonstrated to be NP-hard [42,125,126]. In this context, several

DRL-based solutions have been proposed to address routing optimization. In [55] they use a

DRL solution for spectrum assignment using Q-learning and convolutional neural networks.

Similarly, in [56] they design a more elaborated representation of the network state to help

the DRL agent capture easily the singularities of the network topology. In [127] the authors
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design a scalable method to solve TE problems with DRL in large networks. The work

from [100] combines DRL with Linear Programming to minimize the utilization of the most

congested link. In [128] they propose and compare different DRL-based algorithms to solve

a TE problem in SD-WAN.

However, most of the proposed DRL-based solutions fail to generalize to unseen sce-

narios. This is because they pre-process the data from the network state and present it

in the form of fixed-size matrices (e.g., adjacency matrix of a network topology). Then,

these representations are processed by traditional neural network architectures (e.g., fully

connected, convolutional neural networks). These neural architectures are not suited to

learn and generalize over data that is inherently structured as a graph. Consequently, SoA

DRL agents perform poorly when they are evaluated in different topologies that were not

seen during the training.

There have been several attempts to use GNNs in the communication networks field.

In [129] they use GNNs to learn shortest-path routing and max-min routing in a supervised

learning approach. In [130] they combine GNNs with DRL to solve a network planning

problem. Another relevant work is the one from [131] where they use a distributed setup of

DRL agents to solve a TE problem in a decentralized way. The work from [79] proposes to

use GNNs to predict network metrics and a traditional optimizer to find the routing that

minimizes some network metrics (e.g., average delay). Finally, GNNs have been proposed

to learn job scheduling policies in a data-center scenario without human intervention [132].

6.2 Machine Learning for Network Traffic Compression

The most widely used method for network traffic compression is GZIP. However, the

networking community has investigated different approaches for compressing network traffic.

The work of [133] proposes a lossy method to approximate the real network traffic by

capturing the most relevant traffic features. In [134] they propose to exploit the traffic

redundancies at the packet level to reduce the transmitted traffic. In [135] they propose

an architecture to implement the LZ77 compression algorithm [136] on a FPGA. The work

of [137] describes a solution for on-the-fly storage, indexing and querying of network flow

data. A more recent work leverages the P4 language [138] and generalized deduplication to

implement a solution that operates at line-speed.

The compression method presented in this dissertation has similarities with the problem

of traffic prediction. The works of [139,140] propose the use of RNNs to predict the network

traffic. A more recent work proposes to use simulated annealing and an Autoregressive

Integrated Moving Average model [141] to predict the network traffic. In [142] they use

a graph-based ML algorithm to predict the link-level traffic loads in backbone networks.

The work from [35] they leverage inter-flow correlations and intra-flow dependencies to

predict the traffic matrix using RNNs. Finally, the work from [143] proposes to use a
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spatio-temporal convolutional neural network with attention mechanisms to predict wireless

traffic.

Despite the similarities with traffic prediction, it is important to remark that the traffic

compression problem addressed in our work has some particularities. First, our compression

method only considers the probability distribution for each link, instead of the exact traffic

values. This is due to the requirements of the arithmetic coding part. Second, we only

work with the values from the next time bin, whereas in traffic prediction the work horizon

is typically larger (e.g., predict the traffic for the next couple of hours). Finally, when

decompressing information we do not have access to the first elements of the time-window,

forcing the use of simple methods that do not depend on the compressed information (e.g.,

uniform probability).
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In the last years, the NDT paradigm emerged as a key enabler for efficient control and

management of modern communication networks. A digital twin of a network can be seen

as a virtual representation of a network that accurately mimics the real-world network be-

havior. One of its most important benefits is that it can model complex systems at a smaller

cost. This contrasts with network simulators (e.g., OMNet++) that are computationally

intensive, making them unsuitable for real-time network optimization. There are other an-

alytical models that are less resource demanding such as queueing theory. However, these

techniques make strong assumptions about the network scenario and their performance can

be far from being accurate.

This dissertation visited the NDT paradigm to design new optimization methods suit-

able for real-time network operation. The first contribution of this thesis is a DRL archi-

tecture based on GNNs that is able to maximize the network resources utilization. The

experimental results showed that the proposed DRL+GNN architecture enables efficient

network operation on different networks than those used for training. This is key for real-

time network management where changes happen frequently.

To show the generalization capabilities of our DRL+GNN solution, we selected a classic

problem in the field of optical networks. This allowed us to have a baseline benchmark to

validate the performance and generalization capabilities of the proposed architecture with

respect to SoA methods. The experimental results showed that the DRL+GNN architecture

is able to effectively operate in networks never seen during training. The source code and

the experimental results are publicly available and can be found in [80].

To further explore the capabilities of the DRL+GNN architecture, we applied it to a

more complex and realistic optimization scenario in IP networks. Specifically, the second

scenario starts with a default routing configuration and the DRL agent needs to minimize

the utilization of the most loaded link by changing the routing. The DRl+GNN architecture

was improved by implementing a new learning algorithm, designing a new action space and

changing the training methodology to incorporate data from multiple network scenarios. In
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addition, we combined the ML model with a local search heuristic to improve the DRL’s

solution. The experimental results showed that the proposed method is able to operate

efficiently in real-world scenarios in real-time. In addition, the results indicated that the

proposed solution achieves close-to-optimal performance in less than 30 seconds for a set of

arbitrary real-world network topologies. The source code and the experimental results can

be found in [107].

The optimization results from both scenarios validated the DRL+GNN architecture for

network optimization. Network operators can use the proposed architecture to improve their

real-time network performance without the need of retraining the DRL agent when there

is a link failure or the traffic matrix changes. This architecture can be easily extended by

integrating advanced NDTs to optimize more complex metrics, ensuring SLAs for modern

network applications. In addition, the generalization capabilities enable a new breed of

networking products. For example, network operators can train a DRL agent in a controlled

lab (for instance at the vendor’s facilities) and ship it to the customer. Once deployed, the

DRL agent can efficiently operate the unseen network or scenario of the customer.

Storing network related data is becoming more challenging as the network size grows in

traffic volume and network users. This data is of the utmost importance to train accurate

ML models that are used to build NDTs or to train DRL agents for network optimization.

In this dissertation we proposed a new compression method that uses ML-based models

and arithmetic coding to compress link-level traffic measurements. The ML models were

designed to exploit the spatial and temporal correlations intrinsic in the network traffic

traces. The experimental results showed an improvement of ≥50% in compression ratio for

real-world datasets with respect to GZIP.

Our compression method can benefit network operators to store network-related time-

series data more efficiently. Generic out-of-the-box NN-based models can be commercialized

as plug and play compression methods that are easily installed using widely known package-

management systems. Specifically, the generalization capabilities of GNNs enable these

models to efficiently compress data from other graphs without the need of retraining.

7.1 Future Work

A fundamental challenge that remains to be addressed towards the deployment of

DRL techniques to enable NDT-based optimization is their black-box nature. In particular,

DRL does not provide guaranteed performance for all network scenarios and its operation

cannot be understood easily by humans. As a result, DRL-based solutions are inherently

complex to troubleshoot and debug by network operators. In contrast, computer networks

have been built around well-understood analytical and heuristic techniques, based on well-

known assumptions that perform reasonably well across different scenarios. However, such
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issues are not unique to ML-based network optimization, but they are rather common to

the application of machine learning to many critical use-cases, such as self-driving cars.

In our work we combined DRL with a local search heuristic to mitigate the poor

performance of the DRL agent in out of distribution data. This was done to improve DRL’s

performance in case it got stuck in a local minima solution when the network optimization

scenario is very different from those seen during training. As future work, the DRL agent

performance could be further improved by adding a wider range of network scenarios in the

training set. In addition, the combination of DRL with more sophisticated solvers (e.g.,

CP, ILP) or heuristics could be explored. We believe that it would help achieve better

performance at a small execution overhead.

Finally, our work could be extended to enable optimization with flow-based NDTs

for fine-grained control and management. Having small granularity control is relevant for

network operators to achieve more flexible policies. However, this challenging because there

are in the order of hundreds of thousands of network flows that have a very short periods

of times before they finish. Consequently, optimization algorithms should be fast enough

to optimize before the flows finish.
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