
Coercion-resistant
cast-as-intended verifiability in

electronic voting systems

Tamara Finogina

Supervisor: Dr. Javier Herranz Sotoca

Departamento de Matemática Aplicada IV

July 2023

Facultat de Matemàtiques i Estad́ıstica

Universitat Politècnica de Catalunya

Contents

Acknowledgements 7

Preface 9

1 Introduction 11
1.1 State Of The Art . 12

1.1.1 Coercion-Resistance . 12
1.1.2 Receipt Freeness . 14
1.1.3 Cast-As-Intended Verification 15

1.2 Thesis Contribution . 22
1.2.1 Publications Resulting From The Thesis 23

1.3 Structure Of This Thesis . 23

2 Preliminaries 25
2.1 Relations And Languages . 25
2.2 Groups And Hard Problems . 26
2.3 Homomorphic Public Key Encryption 26

2.3.1 ElGamal Encryption . 27
2.4 Commitment Scheme . 28
2.5 Interactive Zero-Knowledge Systems 30

3 Defining Coercion-Resistant Cast-As-Intended Verifability 33
3.1 Can We Have One Standard Definition For Both Properties? 33
3.2 Our Settings . 34
3.3 Parties And Syntax Of The E-Voting Protocol 39
3.4 Formal Definitions Of Cast-As-Intended And Coercion-Resistance . . 41

3.4.1 Formal Definition Of Cast-As-Intended (CAI) Verifiability . . 41
3.4.2 Formal Definition Of Coercion-Resistance (CR) 41
3.4.3 Comparison With Previous Definitions Of CAI And CR 43

3.5 On The Necessary Number Of Rounds 44

4 Instantiations Of CR-CAI Solutions 49
4.1 Unsatisfactory Solution U1 . 49
4.2 Solution S1: Committing To Challenges 50

4.2.1 Security Analysis Of The Protocol 51
4.2.2 Detailed Protocol For ElGamal Ciphertexts 53

4.3 Unsatisfactory Solution U2 . 55

4.4 Solution S2: Adding Interactive Proof Of The Trapdoor Knowledge . 56
4.4.1 Security Analysis Of The Protocol 58
4.4.2 Detailed Protocol For ElGamal Ciphertexts 60

5 Post-Quantum Solution 63
5.1 Why We Cannot Use Our Solutions Directly In Lattice Settings? . . . 63
5.2 Basics Of Lattice-Based Cryptography 66

5.2.1 Polynomial Rings . 66
5.2.2 The Ring Learning With Errors Problem 68
5.2.3 The Ring Short Integer Solution 69
5.2.4 Error Distribution And Rejection Sampling 69
5.2.5 Lattice-Based Public Key Encryption Scheme 70
5.2.6 Lattice-Based Proof Of A Short Integer Vector Knowledge . . 71

5.3 The Transformation . 73
5.4 Security Analysis Of Our Transformation 76

5.4.1 Zero-Knowledge . 76
5.4.2 Soundness . 77

5.5 Possible Extensions Of Our Transformation 78
5.6 Use Case And Implementation . 79

6 CR-CAI For A Computationally Limited Voter 83
6.1 Parties And Syntax Of The Voting Protocol 83
6.2 Formal Definition Of CAI For A Computationally Limited Voter . . . 84
6.3 Formal Definition Of CR For A Computationally Limited Voter . . . 85
6.4 CR-CAI Solution For A Computationally Limited Voter 86

6.4.1 Security Analysis Of The Protocol 88
6.4.2 Comparison With Bingo Voting: On The Necessity Of OED . 90

7 Stronger Coercion Settings 93
7.1 Stronger Coercion Settings . 93
7.2 Why S1 Is Vulnerable To Strong Coercion? 94
7.3 Solution S3: Random Group Generator 95

7.3.1 Security Analysis Of The Protocol 96
7.4 Future Research . 99

8 Conclusion 101

A Brief Description Of Mentioned E-Voting Schemes 103
A.1 Helios Voting System . 103
A.2 Belenios Voting System . 105
A.3 Demos Voting System . 106
A.4 Demos-2 . 107
A.5 Swiss Post Voting System . 109
A.6 Estonian Internet Voting Scheme . 111
A.7 Hyperion Voting System . 112

Bibliography 113

List of Figures

2.1 DL game for the cyclic group G of the order q with a generator g. . . 26
2.2 DDH game . 27
2.3 A game against the hiding property of the commitment scheme Com. 28
2.4 A game against the binding property of the commitment scheme Com. 29
2.5 Σ-protocol for proving the statement x. 31
2.6 Σ-protocol for proving the ciphertext encrypts the intended message. 32
2.7 Σ-protocol for proving the ElGamal encryption correctness. 32

3.1 Experiment for coercion-resistance. 42

4.1 Σ-protocol for proving the ciphertext encrypts the intended message. 50
4.2 The voting protocol from solution S1. 51
4.3 The ElGamal instantiation of the solution S1. 54
4.4 OR proof for proving the ciphertext encrypts the intended message. . 56
4.5 The voting protocol from solution S2. 57
4.6 The ElGamal instantiation of the solution S2. 60

5.1 Standard discrete logarithm-based identification scheme. 64
5.2 Proof of knowledge of a ternary solution to a linear equation over Zq. 74
5.3 Application of our transformation to the protocol from Figure 5.2. . . 80
5.4 Time distribution of the 1,000 executions of the first test. 81
5.5 Percentage of executions suffering i aborts in the second test. 81

6.1 Experiment for coercion-resistance for a computationally limited voter. 86
6.2 Solution SLim. 87
6.3 ValidOption verification. 88
6.4 ValidProof verification. 88

7.1 The simplified version of the solution S1 from Chapter 4. 95
7.2 The solution S3. The hash function is defined as H : {0, 1}∗ → Zq . . 96

A.1 A ballot verification based on Benaloh’s challenge. 104
A.2 A ballot verification from Belenios protocol. 106
A.3 The vote casting protocol of Demos voting system. 107
A.4 The vote-casting and voter-verification of the Demos-2 voting system. 108
A.5 The vote-casting and voter-verification of the Swiss Post voting system.110
A.6 The vote-casting and voter-verification of Estonian voting system. . . 111
A.7 The vote-casting and voter-verification of Hyperion voting system. . . 113

List of Tables

4.1 Performance results of S1 implementation in different groups. 54
4.2 Performance results of S2 implementation in different groups. 61

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Dr. Javier
Herranz. Thank you for all the support, patience, and help, for all those emails,
meetings, and calls during all (sometimes quite late) hours, especially during the
tough weeks of finalizing the thesis. But, above all, thank you for keeping me sane
throughout the Ph.D. process.

I also want to thank Jordi for giving me a chance to do this Ph.D. and for trusting
me to be a part of the best research team. I am lucky to work with very talented
people and to learn a lot from all of them. Thank you, team! Special thanks to
Nuria for always replying to my never-ending questions (no matter how busy she
was) and Enrique for reminding me to focus on my research at least once in a while.
And, of course, thanks to the Scyphy team for their patience and flexibility, and
thank you, Dani, for making the final implementation on short notice.

I want to thank the Mathematics Department at UPC for their help and flexi-
bility with (some of) deadlines. Thanks to Xavier and Abraham for implementing
the post-quantum solution. Finally, I would like to express my sincere gratitude to
Generalitat for funding an industrial doctorate program that allowed me to complete
this thesis.

Also, I would like to thank my friends and family for their love and support
during this process. Without them, this journey would not have been possible.

Finally, I would also like to thank you, my reader: I hope you enjoy your reading.

8 List of Tables

Preface

In front of you is my Ph.D. thesis: ‘Coercion-resistant cast-as-intended verifiability
in electronic voting systems.” It was written as a result of an industrial Ph.D. done
at Scytl under the supervision of Dr. Javier Herranz Sotoca from the Department
of Mathematics at UPC. The main objective of an industrial Ph.D. is to do applied
research in the area of the company’s expertise, which in this case is electronic voting.
From the company side, my co-supervisors were my ex-colleague Dr. Enrique Larraia
de Vega for the first three years of the research and, after that, my colleague Dr.
Nuria Costa. Finally, I would like to mention master students Xavier Arnal and
Abraham Cano from the Department of Mathematics at UPC, and my colleague
Daniel Orihuela Rodŕıguez, who helped me with the implementation of some of the
solutions this thesis presents.

During the entire Ph.D., I was part of the Research and Security team at Scytl,
which supports the development team, evaluates security designs and changes, an-
alyzes software bugs and proposes fixes, etc. This work allowed me to understand
security requirements specific to electronic voting, learn about customers’ expec-
tations regarding privacy and verifiability, and get familiar with common security
threats and their prevention methods. But more importantly, I noticed how differ-
ent and (sometimes) conflicting approaches academia, industry, and legislation have
regarding electronic voting properties. My colleagues and I published two papers
on this topic: one - about some common electronic voting practices that could be
dubious from a legal point of view [51]; another - about the compliance of the block-
chain voting schemes with international standards [39]. While those publications do
not directly contribute to this thesis, they helped me to realize the balance of all
three approaches is crucial for making the result secure and practically applicable.

Another significant but indirect contribution to Ph.D. research came from the
projects I was part of. The most memorable and challenging one was re-designing
the Swiss Post voting system for a 100% certification process and writing the security
proofs of verifiability and privacy for the new scheme [76],[105]. The entire project
was an amazing experience of learning, featuring: working with an excellent team,
constantly adapting the proof to the changing legislation, brainstorming of the fake
confirmation fix (which developers managed to pull off before the release), adjust-
ments due to code constraints, research of uncommon assumptions, etc. This project
showed me how crucial trust assumptions are and how much everything is interlinked
in a system as complex as the Swiss Post voting. It also allowed me to dive deep into
the nuances of various cryptographic definitions and hardness assumptions. Another
important project was a European Union project called PROMETHEUS. It helped
me greatly expand my knowledge of lattice-based cryptography and post-quantum

10 List of Tables

security. Finally, I would like to mention a Spanish project Datamantium, which
showed how difficult it is to implement anonymous channels in practice. There were
other projects but their contribution to the thesis were more subtle.

The Ph.D. research started with an attempt to make a paperless cast-as-intended
verification for a return code scheme. The resulting idea was based on generating
multiple proofs and proving that only one (for the intended option) is real by modi-
fying it with a voter’s challenge [48]. Because it was essentially a Σ-proof, the voter
had to be honest for the protocol to achieve zero knowledge. However, it raised
several questions: Can we expect voters to behave honestly? Can we always assume
voters have some pre-delivered data? All those questions led to the research for this
thesis. Also, the same chameleon-based solution inspired the post-quantum trans-
formation from Chapter 5 [13]. Hence, even though the paperless solution is not
detailed in this thesis, it guided the research in the direction of the coercion-resistant
cast-as-intended verification.

Finally, it is worth mentioning that coercion-resistance is becoming more and
more desirable for customers of electronic voting solutions. Hence, the contributions
from this thesis may be essential building blocks for future voting systems’ designs.

Chapter 1

Introduction

When we hear about electronic voting, e-voting, we typically imagine a computer or
another device somehow transmitting our vote directly to the election authorities and
maybe helping them to speed up the result tabulation. The main benefit, of course,
is convenience - voting from any place and at any time, faster result aggregation,
and perhaps, even the possibility to change the mind or vote far away from prying
eyes. One can think of e-voting as a tool with its strengths and weaknesses.

Unlike traditional polling place voting, which requires voters’ physical presence
and supervision of auditors, e-voting offers online participation and allows a sin-
gle auditor to perform verification of 100% ballots multiple times. The security
guarantees are based on mathematical assumptions rather than on the presence of
observers. Plus, it is possible to audit operations that previously were not verified
(e.g., eligibility of votes) or could be checked only once (e.g., unsealing envelopes).
Unfortunately, e-voting has to run its code in an uncontrolled environment of a vot-
ing device, which extends possible attack scenarios as now an attacker is not limited
to a physical location.

One of the most common fears is that a voting device will disregard the voter’s
intent and cast a different vote instead. An undetectable attack like that on a large
scale will allow the adversary to control the election result completely. Therefore,
ensuring that the ballot indeed contains the intended option is crucial. This check is
known as cast-as-intended verification, a property that demands an e-voting scheme
to prove that the cast ballot contains the voter’s choice and was not altered by the
system.

Cast-as-intended verification is not the only property the e-voting system has to
comply with. For example, the e-voting system should also prove that a cast ballot
arrived on the bulletin board unmodified (recorded-as-cast); no eligible and correct
vote was modified or excluded from the tally (tally correctness); the tallying process
was done correctly (universal verifiability); no ineligible votes were inserted; that
voter’s choice remains private and more. And things only get more complicated if
we add everlasting privacy, receipt-freeness, or coercion-resistance.

Additional challenge comes from ambiguous definitions of those properties. For
example, it is still unclear what the coercer can do or whether a forced abstention
should be considered a coercion attack. Similarly, there is no standard definition for
privacy or cast-as-intended verification; all existing ones are tailored to a particular

12 Chapter 1. Introduction

e-voting system. Things get even more complicated if we consider electoral laws.
For example, e-voting is rarely the only voting channel, thus, it has to be possible
to link a voter to their vote to prevent multiple voting. It implies we cannot use
anonymous voting channels, but they are the only known way to ensure the coercer
cannot force voters to abstain.

All in all, there are many tradeoffs and contradictions an e-voting scheme has
to consider. One particularly interesting tradeoff is ensuring a voter cannot sell
the vote willingly or under duress while at the same time preventing a malicious
voting device from cheating. At first glance, the task seems easy: we need coercion
resistance to limit (in)voluntary vote-selling and cast-as-intended verification to stop
the voting device from cheating. However, those properties are contradictory.

Informally, the coercion-resistance property ensures that a voter cannot prove
to anyone the vote content, which prevents vote selling and voting under duress.
The cast-as-intended property states that a malicious voting device cannot cheat
the voter and send a different intent from what the voter intended. One property
requires outputting no information about the selection, and the other demands a
proof - an extra piece of data.

Another curious observation is that the voting device is malicious but not evil
enough to collaborate with the coercer. This goes against a common game-based
approach, where each entity is either corrupted or honest, and there are no in-
between states. Yet, now we are in a situation where the challenger has to team up
with an adversary that controls the voting device to resist another adversary - the
coercer. Such unusual cooperation, naturally, raises questions:

- Can we simultaneously achieve cast-as-intended and coercion-resistance? And
if so, in which settings and under what assumptions?

- Will the answer be different for the post-quantum world?

- Are there any limits or conditions under which we cannot have both?

This thesis aims to look at all of those questions in order to find how we can
provide coercion-resistant cast-as-intended verification.

1.1 State Of The Art

This section gives an extensive summary of the state-of-the-art for Coercion-Resistance
(and the related notion of Receipt Freeness) and Cast-as-Intended verification. We
show that both properties are tricky to define and are open to interpretation. More-
over, we illustrate the most popular coercion-resistant and cast-as-intended methods
via existing e-voting scheme designs.

1.1.1 Coercion-Resistance

The first verifiable election protocol that focuses on preventing participants from
selling their vote to a passive coercer was designed by Benaloh and Tuinstra in
1994 [108]. In the same work, they introduced the concepts of receipt-freeness and

1.1. State of the Art 13

uncoercibility. Later, in 1997, Okamoto proposed an alternative definition of receipt-
freeness [88], which allowed the coercer to interact with the voter during the voting
phase. Despite the name, it is essentially the first definition of what is now known
as coercion-resistance. However, the first formal definition of coercion-resistance,
known as the JCJ definition, appeared more than a decade later in the work of
Juels et al. [67].

The JCJ definition is the most demanding definition of coercion-resistance. It
captures the idea of anonymous credentials and accounts for intentional credentials
selling and forced-abstention attacks. Unfortunately, any scheme that realizes it in
practice [32, 12, 96, 103, 31] requires anonymous voting channels and puts trust in
the voting device, as CAI verification is not possible. Moreover, it requires secure
pre-delivery of secret keys and a system for managing real and fake credentials,
which is challenging given that voters have trouble remembering passwords they
use a few times per year [72]. Recently, in 2022, [37] found that the JCJ definition
leaks too much data in case of revoting and hence is not coercion-resistant. The
discovered attack resembles the “1009 attack” first mentioned in [102].

The simplest form of coercion-resistance technique is multiple voting [107]. How-
ever, it is not always legal as it gives an unfair advantage to e-voters [72]. Moreover,
it implicitly assumes that the coercer cannot see the ballot box content nor observe
voting channels. Otherwise, it is trivial to see whether the voter obeyed or not,
which makes multiple voting the weakest form of coercion-resistance.

Another definition of coercion-resistance [56] challenges the adversary to distin-
guish between two ballots: one generated for the coercer’s preference and another
for the true intent (our definition for the CR property, in Section 3.4.2, will fol-
low this idea). It separates the vote-casting part from the tallying, which, despite
being criticized [59], allows excluding plaintext-based leakage: e.g., Italian attacks,
specific write-ins, etc. Note that plaintext leakage is almost impossible to avoid
(unless we use a homomorphic tally) and is present in any voting channel that per-
mits free-form votes. Unfortunately, the definition in [56] prohibits any post-election
communication between the coercer and the voters.

Delaune, Kremer, and Ryan [43] propose a formalization of coercion-resistance
in the Dolev-Yao model and also formally prove that it implies receipt-freeness and
hence, in turn, implies privacy. However, as noted in [94], this definition does not
include the randomization attack and is unsuitable for weighted voting.

In [106] the coercion-resistance is defined as a non-cooperative game between the
honest election authority representing society and the coercer. Unfortunately, only
two simple coercion models are studied.

The family of UC-definition of coercion-resistance started in 1996 with a weaker
notion of (post-factum) incoercibility [27]. The definition was allowing adversary to
coerce voters only after voting phase was completed i.e. voter was not expected to
receive any instructions or input before voting. The generalization of this property
- receipt freeness given in [86] - permits coercers to corrupt voters at any time and
enforce them to follow any strategy. Achieving receipt-freeness under the definition
in [86], however, requires commitments with extremely strong hiding property that
can only be implemented by physical means. Moreover, reactive protocols (where
the input in one phase depends on the output of the other) are not modeled. The

14 Chapter 1. Introduction

work of Unruh and Müller-Quade [110] addressed the issue by defining Composable
Incoercibility framework, which allows to model reactive protocols and gives univer-
sal composition. However, later work [59] found issues in the definition, thus it does
not capture receipt-freeness nor coercion-resistance.

The only statistical approach to measuring coercion-resistance, σ-coercion re-
sistance, was proposed in [75]. The definition assumes the coercer cannot perform
at least one step of the voting protocol without the voter, requires prior knowl-
edge of the choices distribution and the exact election configuration, and covers a
multi-coercion case. Even though the definition permits the coercer to succeed with
non-negligible probability, setting the coercion-resistance level requires conducting
a complex combinatorial analysis. Also, as was pointed out in [100], the definition
does not account for plausible deniability.

Other works on coercion-resistance include definition comparisons [94, 72, 59],
analysis of coercion scenarios [77, 19], the coercion-resistance in social context [24]
and studies of relations between privacy and coercion-resistance [89]. We can also
mention an attempt to combine JCJ with the cast-as-intended mechanism from the
Selene voting system [63]. However, the cast-as-intended verification is performed
not during the voting phase but after the votes are mixed and decrypted.

1.1.2 Receipt Freeness

Nowadays, coercion is typically divided into passive and active coercions. The for-
mer is also known as receipt-freeness. There is no consensus over the boundary
between receipt-freeness and coercion-resistance [44, 52]. However, intuitively the
main distinction from the coercion definition is that the adversary cannot interact
with the voter during the voting phase [28, 32].

Usually, we say that the receipt-freeness property guarantees that a voter cannot
prove the vote content even when willingly deviates from the protocol attempting
to sell the vote. However, there is no single opinion regarding how much the voter
can misuse the protocol nor whether the coercer can receive anything from the voter
before the voting. Nevertheless, the notion of receipt-freeness is (generally) stronger
than privacy, which only guarantees secrecy to honest voters.

The very first definition of receipt-freeness [108] aimed to adopt the idea of a
private voting booth for electronic voting. While inside, the voter cannot commu-
nicate with anyone or be under observation. The definition, however, assumes the
existence of a trusted randomness source (beacon) used for challenging the system.

Typically, other definitions of receipt-freeness are similar in spirit. For example,
more recent definitions [71] and [98] allow the coercer to demand proofs (but not
voting cards or encryption randomness) from honest voters only after vote-casting
and verification. Note that both definitions assume the existence of an untappable
channel between voters and authority.

Contrary to traditional receipt-freeness, the strong receipt-freeness [28] allows
voters to use coercer-selected ballot material (e.g., encryption randomness): i.e.,
receive instructions before the voting phase. Usually, such behavior is prohibited
as no interaction is allowed. However, one may think of the coercer’s pre-defined
randomness or biased randomness generator as the forceful extraction of randomness

1.1. State of the Art 15

used by the voting devices. In other words, the strong receipt freeness allows the
voter to tamper with the voting device to sell the vote. The scheme that implements
the definition works under the assumption that the adversary cannot observe the
interaction between the voter and the re-randomization server, which is trusted to
modify the ballot before it can be published. CAI verification is incompatible with
such demands.

A quantitative approach to receipt-freeness was proposed in [20]. The σ-receipt
freeness is based on [28], but similar in spirit to [75]. It does not consider the leakage
from tally results nor accounts for coercers that demand voters to cast invalid votes.
Morover, the adversary is not allowed to observe the channel between the voter, the
posting trustee and the voting system. However, it is the only definition that allows
to measure the level of receipt-freeness.

To the best of our knowledge, the only comparison of receipt-freeness definitions
is in [52].

1.1.3 Cast-As-Intended Verification

The first proposal for cast-as-intended verification (CAI) was published by Chaum
in [30], followed by Neff’s approach [87], published the same year. Both works
expect the voter to cast an electronic vote in a polling place and require printing
commitments to ensure the voter’s choice is encrypted correctly. Chaum’s proposal
was based on visual cryptography and a particular printer, while Neff’s utilized
interactive zero-knowledge proofs that can be simulated. For coercion-resistance,
Neff’s scheme assumes that the voter selects challenges from a pre-generated set,
and the voting device can print a short secret without revealing it. The voter must
be honest since linking the challenge with the shown commitment would be fatal for
the proposal.

Currently, there are numerous methods to ensure that the ballot contains the
voter’s intent and not something else. However, we can divide all those methods
into several groups based on the origin of data used for the verification: proba-
bilistic checks, a ballot cast assurance based on pre-delivered data, and simulatable
transcripts.

1.1.3.1 Probabilistic Ballot Verification

The first CAI methods group relies on probabilistic checks and does not inspect the
cast ballot per see. While it never gives a 100% guarantee, many schemes select
probabilistic CAI verification due to its simplicity and support of any election type.

This group features the following CAI methods: the cast-or-challenge approach
(e.g., [5]), partial checks (e.g., [33]), and one based on the inspection of all but one
of the generated ballots (e.g., [70]). Notable examples of schemes proposing this
type of CAI verification are Helios [5], Demos-2 [70], and Belenios [33].

Cast-or-challenge verification: The most famous CAI verification method is
Benaloh’s challenge, also known as the cast-or-challenge technique, [18], which is
used by a voting scheme Helios [5] and its derivatives. The method works as follows:

16 Chapter 1. Introduction

a voter enters selected options into their voting device, then decides whether to cast
or audit the encrypted ballot. In case of an audit, the voting device must reveal the
encryption randomness (or any other proof of ballot correctness), which allows the
voter to verify the ballot on another device. Else, the vote is submitted without any
verification.

The verification works only if the voting device somehow commits to the encryp-
tion before the voter decides whether to audit or cast it. Otherwise, a malicious
device will always pass the verification by outputting a freshly created ciphertext
and the corresponding randomness. Also, the ballot check should be done on a sep-
arate device since asking the voting device to check itself is pointless. Finally, the
number of audits before the cast should be unpredictable. Otherwise, a malicious
voting device can guess when the voter stops the audit and still send a ballot with a
different voting option. However, according to studies [3], only 43% of users would
engage in cast-or-challenge verification; the rest would proceed without checking.
Moreover, the majority of users do not understand this verification method [84].

Verification that relies on other honest voters: A verification method similar
to the cast-or-challenge approach was proposed for the scheme called Demos-2 [70].
A voting device prepares two (supposedly) identical ballots and commits to them by
showing corresponding hashes to the voter. The voter selects one of the two ballots
for inspection; the unselected ballot will be completed with proof and cast imme-
diately. The ballot inspection consists of reconstructing the ciphertext, ensuring it
encrypts the intended voting option, and verifying that the hash matches the shown
one. Of course, the voter needs a separate device for the verification; otherwise, it
makes no sense since a malicious machine can always report a successful verification.

This technique is used by the Demos system family, which features Demos [71],
Demos-2 [70], and D-Demos [1]. However, since the voter only gets a 50% chance of
ballot correctness (a malicious voting device can guess an unchecked ballot and put
there a different voting option), the method only works if enough voters verify. It is
not clear what enough means in a general case because each election has a different
number of votes separating the winner from the losers. However, one can do a rough
estimation based on electoral pool results.

Nevertheless, strictly speaking, this verification is not a reliable cast-a-intended
method as the voter has to assume others will perform checks and only has a 50%
guarantee. Yet the expectation regarding voters’ behaviour is a major drawback.
While there are no studies regarding Demos-2, experiments for Demos show that
about 85% of voters tend to select the first ballot for vote-casting and leave the
second one for the audit [69].

Partial checks: Another way to probabilistically check the cast ballot is to do a
partial check. An example would be a verification suggested for the Belenios voting
system [33]. A voting device prepares three ciphertexts: for the selected voting
option m, for a random value m1 = t, and for the masked selection m2 = m − t.
Also, it proves in zero-knowledge that the content of the first ciphertext is equal to
the combination of the second and third ones. The voter receives both random value
and masked selection in plain text (i.e., m1,m2) and ensures that their sum results in

1.1. State of the Art 17

the intended vote: i.e., m1 +m2 = t+m− t = m. Then the voter chooses whether to
check the ciphertext corresponding to the random value m1 or the masked selection
m2. Depending on the choice, the voting device reveals the randomness of one of
the ciphertexts and posts it on the bulletin board for public verification.

While a partial check preserves privacy and allows inspection of the cast ballot,
it gives only a 50% guarantee that the ciphertext contains the intended option.
A malicious voting device can prepare a vote for an alternative voting option m∗,
return values m1 = t and m2 = m − t, but encrypt m∗1 = m∗ − m + t ̸= m1 and m2

instead. If the voter selects m2 for testing, it would not detect the problem, and a
modified ballot would be tallied.

Advantages and disadvantages of probabilistic verification: Probabilistic
CAI verification is quite popular among e-voting scheme proposals. However, strictly
speaking, it does not provide CAI since the sent ballot is never audited. True, it
gives some chance to detect VD misbehavior, but a malicious VD may still cheat
with non-negligible probability.

1.1.3.2 Transferable Proof

Another popular CAI method relies on giving the voter some feedback sufficient for
the ballot content verification. While it guarantees that the intent has not been
altered, the obtained proof can be given to anyone (transferred), thus enabling vote-
selling.

This group features a variety of methods: revealing randomness used for ballot
encryption, return codes, vote codes, and any verification based on pre-delivered
voting material. This group is vast and includes any verification method that relies
solely on data the voter has (not something the voter saw, selected, or did), and
that data cannot be hidden, simulated, or denied. By undeniable data, we mean,
for example, possession of: voting cards with return (e.g., [41]) or vote codes (e.g.,
[71]), outputting encryption randomness directly or as a QR-code (e.g., [107]), NIZK
proofs of ballot correctness, etc.

Verification based on revealing randomness: One of the simplest ways to
provide CAI verification is to give the voter the encryption randomness so the ballot
can be recreated on another device. For example, the Estonian voting system [107]
relies on this type of verification. The voter enters a selection into their voting device,
which encrypts it and outputs a QR code containing the ciphertext’s randomness.
The voter can use a verification application and QR code to ensure that their ballot
encrypts the intended option.

To protect voters’ privacy, Estonian legislation permits multiple voting. Theo-
retically, a coercer can demand the voter’s QR code, but the voter can re-write their
vote later. However, it only works when the coercer cannot see the output of the
voting device nor observe the ballot box. Otherwise, the mere existence of multiple
voters would indicate disobedience.

The main benefit of revealing the encryption randomness is its simplicity. Such
verification can be added to any e-voting scheme and support any election type.

18 Chapter 1. Introduction

However, it significantly facilitates vote-selling, especially when multiple voting is
not allowed. Moreover, it is not coercion-resistant. Even if we overlook that most
countries prohibit multiple voting as it gives an unfair advantage to voters voting
electronically, the coercer still can ask voters to vote at the very last moment. Also,
in most cases, the coercer can observe the ballot box, which would invalidate the
benefit of multiple voting.

Verification based on return code: Another example of transferable CAI proof
is verification based on return codes. The idea is quite simple and is based on
comparing short alphanumerical values. Each voter receives a pre-printed voting
card with a map between possible voting options and return codes. Then, after
vote-casting, the voter must compare the code system returned with the one printed
on their voting card. If the code does not match, the voter complains to the election
authorities and, thus, invalidates the vote.

An example of an e-voting scheme relying on return codes for CAI would be
the Swiss Post voting system [92]. Additionally, their system has a mandatory vote
confirmation that allows voters who received incorrect codes to not confirm their
ballot instead of contacting the electoral authorities.

The return-code method is one of the most user-friendly CAI verification tech-
niques [85]. However, it requires pre-established secure channels for delivering voting
cards. Also, for verification to work and privacy to hold, the printing entity should
be trusted since it knows all codes of all voters.

Code-voting schemes: Code voting is quite similar to return codes. It also
requires electoral authorities to generate, print, and securely distribute voting cards
among voters before the election. However, instead of typing the voting option to
the voting device, voters enter the vote code from the voting card corresponding to
their preferred selection. The code can be sent without encryption and published
on the bulletin board without privacy concerns. The only verification voter has to
perform is to ensure the correct code appears on the public bulletin board.

For example, an e-voting scheme called Demos [71] relies on vote codes instead
of expecting the voting device to encrypt the voter’s selection. Of course, one has
to trust (or verify) that the printing authority did not swap the codes hoping to
alter the election result. Also, the part of the system that is responsible for linking
the codes with candidates must be trusted or thoroughly audited to ensure that
each code uniquely corresponds to the candidate. Otherwise, a malicious system
can distribute voting cards where all codes result in the same selection.

Systems based on vote codes do not put any trust in voting devices. However,
there should be secure channels between all voters and the printing authority for
secure voting card distribution. Also, voters still need a second device to ensure the
public bulletin board has the selected code. Otherwise, a malicious voting device can
send nothing. Moreover, the printed voting cards and publicly available unencrypted
codes facilitate vote-selling. Finally, the printing entity should be trusted for both
privacy and CAI since it knows all the vote codes of all voters.

Finally, the CAI verification (checking the correct code is published) does not
necessarily guarantee vote correctness. A malicious system can print one correspon-

1.1. State of the Art 19

dence between candidates and codes but tally the votes based on another mapping.
Or assign multiple codes to the same candidate. Therefore, the audit is manda-
tory. However, in contrast, to the return-code-based schemes, the audit is more
complicated as it has to preserve voter privacy. Yet, the most common solution that
preserves privacy - partial audit - gives only probabilistic guarantees.

Advantages and disadvantages of transferable verification: This group in-
cludes many methods, and each has unique benefits and tradeoffs. For example,
vote-code and return-code-based schemes require pre-printed and pre-delivered pa-
per material. Delivering printed material implies the existence of trusted and reliable
delivery channels.

Usually, verifications from this group are the most user-friendly and understand-
able. However, the proof voters obtain is transferable. It implies the voter can sell
their vote (or be forced to do so).

An interesting question is whether we can expect voters to hide, destroy or alter
the printed card with the vote or return codes. On the one hand, if voters can do it,
then the verification method would no longer be transferable. However, it is quite
an advanced voter behavioral requirement we cannot take for granted.

Some people claim that printed voting material can be faked by voters, who
might print another indistinguishable card [71], but we do not believe it to be true.
Imagine if anyone could create an authentically looking homemade voting card.
How would the voter know that their card is authentic? What if someone already
switched the original card with a modified copy? If there is no way to do so, then
the voter never knows if the verification based on such a card is truthful. Otherwise,
the coercer can always ask for proof.

1.1.3.3 Interactive Proofs

One more CAI method relies on the interaction between the voter and their voting
device. However, the verification heavily relies on voters being honest.

This group features several CAI proposals: Σ-protocol-based proofs, Neff’s pro-
posal for polling-place verification known as MarkPledge [87], an adaptation of Neff’s
protocol to a Direct Recording Electronic (DRE) voting machines [86], an adaptation
of MarkPledge [6] for incorporating a helper organization, successors of Neff’s pro-
tocol called MarkPledge 2 [7], VerifyVotell [66], and a protocol based on chameleon
hash [48].

Using Σ-protocols: One possibility is to consider an interactive Σ protocol be-
tween the voting device and the voter to let the voting device convince the voter
that the ballot contains the intended option.

Recall that Σ-protocol is a three-move interactive protocol:
1. The voting device shows some commitment a.
2. The voter enters a random challenge e.
3. The voting device responds to the challenge with an answer z.
Unfortunately, the zero-knowledge property of a Σ-protocol is honest-verifier

only. It means the voter must be honest, or the coercer must be limited in its

20 Chapter 1. Introduction

instructions. If the coercer forces the voter to choose the challenge e in a particular
way, it will be computationally infeasible to simulate a valid transcript. For example,
if the coercer demands to use e = H(a), then the voter has to obey. This problem
has been previously reported in the literature: a solution proposed in [83] to achieve
receipt-freeness was claimed to be secure because the transcript of a Σ-protocol “is
not transferable”. As noted in footnote 1 of [67], this is not true when the voter
(who plays the role of the verifier in the Σ-protocol) is dishonest/coerced.

Using interactive OR-proof: Neff’s approach also relies on an interactive pro-
tocol, yet enhanced by a printer that physically commits to values by printing them
on a tape. The printer is a standard one with the only addition of a “shield” that
temporarily hides some of the printed values from the voter. The interactive protocol
itself goes as follows:

1. After the voter makes selections, the printer computes a verifiable ballot com-
mitment and prints it.

2. The voter selects challenges for unselected options from a fixed small challenges
space.

3. The printer finalizes proofs for unselected options and commits to them.
4. The voter selects a challenge from a small fixed set.
5. The printer finishes the proof.
To check the proof, the voter compares the tape against the information pub-

lished on the bulletin board, which requires only visual inspection. The rest of the
verifications (proofs validity, commitments correctness, etc.) can be delegated to
anyone without breaking the voter’s privacy.

While the article claims the proposed CAI method resists coercion, we do not
believe the protocol would work outside the polling place. Recall that the voter must
select challenges from a fixed set. If there is no physical shield hiding the printed
commitments from the voter, the voter might select challenges from a pre-defined
set of possibilities based on the commitment values. In such a case, it would be
trivial for the coercer to identify the voter’s vote.

Using chameleon-hash: Another idea is to rely on chameleon hashes so that
the voting device can simulate non-interactive proofs and create fake transcripts
[48]. The idea is for the voting device to create multiple transcripts, among which
only one is real, and then to use the voter’s challenge to modify the real proofs.
The modification is such that only the actual transcript can remain valid after the
change.

First, the voting device generates a trapdoor for the chameleon hash. Then it
creates non-interactive simulated Σ-proofs for all unselected options and one real
proof for the selected one. After that, it shows the commitment to real transcript
to the voter. The voter responds with a challenge, with which the voting device
modifies the first move of the actual Σ-proof. Finally, the voting device finalizes the
modified transcript.

Since the modification results in valid proof only for an actual transcript, the
CAI method works as long as the voting device cannot predict the challenge. The
voter only has to remember one commitment and, in case of coercion, can lie that a

1.1. State of the Art 21

different value was displayed. However, the voter should be honest as the protocol
is honest verifier zero-knowledge only.

Advantages and disadvantages of interactive proofs: The interactive proof
is quite an elegant solution to CAI verification. The voter witnesses something that
no other party, including coercer, sees. In a way, it implies that the voter becomes a
designated verifier. Moreover, there is no way to prove what exactly someone saw.

However, currently, this approach only works for honest voters as the challenge
must be independent of the previous protocol steps. One might force voters to
behave by physically hiding the transcript, but it only works in the safety of a
polling place. In the remote settings, the coercer can always instruct the voter to
select the challenge as a function of some previous messages and, by doing so, take
away from voters the possibility to disobey.

1.1.3.4 Designated Proof

The last group of CAI methods is designated verification. The notion of desig-
nated verification appeared back in 1996 [64] and encapsulated the idea of proving
a statement only for a specific person and no one else. Typically it is achieved by
constructing an OR-proof of the form: “statement is correct” OR “I’m the desig-
nated verifier” - where the latter implies knowledge of a secret only the designated
verifier should know.

In e-voting, the designated verifier is a voter, which is assumed to have a secret
already. Usually, that secret comes from a trusted party via a reliable communication
channel.

This group consists of different flavors of OR-proof construction. We show two
CAI verification ideas, which, while relying on the same principle, lead to different
approaches to ballot correctness verification.

Standard OR proofs: The most classic approach is based on standard OR proof
of the following form: “ballot contains the intended option” OR “I know the secret”
[58]. The voter is assumed to have a secret key unknown to the voting device.
Therefore, the only way the voting device can convince the voter is to encrypt the
correct option.

This CAI verification technique is coercion-resistant only if the voter has the
secret key. If the voter does not receive the trapdoor key or gets it too late - the
coercer wins. Therefore, the existence of secure channels between voters and the
authority responsible for trapdoors distribution is mandatory.

Simulated tracking numbers: Another different idea is to verify the ballot con-
tent after it is decrypted based on the associated tracking number. An e-voting
scheme called Selene [98] (as well as its successor Hyperion [99]) implements this
type of verification.

The voter votes as usual but needs to return for the CAI verification after all
ballots are anonymized and decrypted. To obtain the tracking number, the voter
combines shares from all trustees and uses a secret key to compute it. After that,

22 Chapter 1. Introduction

the voter can fake the tracking number to deceive the coercer by simulating one of
the trustees’ shares.

All in all, this CAI verification provides strong protection against coercion. How-
ever, it requires voters to be technically sophisticated and understand the transcript
simulation procedure. Moreover, it only works when voters receive their designated
secret key. Otherwise, they have no power to simulate the proof and hide disobedi-
ence.

Advantages and disadvantages of designated proofs: The designated CAI
verification method implicitly assumes that the voter has a secret and no one else
knows it until after the verification. If the entity responsible for generation is not
trusted and collaborates with the voting device, it can cheat and convince the voter of
anything. If the coercer intercepts the secret, he might deny the voter the possibility
of faking the transcript directly or indirectly by supplying an incorrect trapdoor. An
alternative, where a voter generates a trapdoor, opens the door to active coercion
or intentional vote selling if a malicious voter willingly chooses to participate in the
protocol without any knowledge of a trapdoor.

1.2 Thesis Contribution

This thesis presents the results of exploring the two contradictory properties of
electronic voting: cast-as-intended verification and coercion-resistance. The contri-
butions can be roughly divided into three parts: (1) study in the standard settings,
(2) exploration of post-quantum cryptography, and (3) practical constructions and
search for the limitations of both properties.

In the first part, we give an extensive overview of the current state of the art
in electronic voting literature regarding those properties. Then, we put forward
two formal definitions for achieving coercion-resistant cast-as-intended verification
in settings without pre-exchanged data. After that, we present two practical con-
structions and prove their security under the proposed definitions. We also show
the efficiency of our proposals by providing proof of the concept implementations.

In the second part, we switch to post-quantum settings and identify the us-
ability issues rooted in the lattice-based math affecting both proposed solutions.
To address those issues, we present a generic transformation that departs from
an interactive zero-knowledge system (that might require multiple re-runs to com-
plete the protocol) and obtains a 3-move zero-knowledge system (without re-runs).
The transformation combines the well-known Fiat-Shamir technique with several
initially exchanged messages. The resulting 3-move system enjoys honest-verifier
zero-knowledge and can be easily turned into a fully deniable proof using standard
techniques.

In the final part, we focus on the practical aspects of the coercion-resistant cast-
as-intended verification. First, we present the case of a computationally limited
voter, which we consider the most realistic one. We show that even a computation-
ally limited voter can enjoy coercion-resistant cast-as-intended verification, but a
help of a simple aid device for nonce generation is required. Also, we demonstrate
that our generic definition easily adapts to the constraints of the limited voter. After

1.3. Structure of this Thesis 23

that, we present ongoing work that focuses on the cases of extreme coercion based on
new and unexplored mechanisms such as delay encryption and blockchain. We show
an advanced coercive attack on our first construction and describe an improvement
to the second solution that reduces the number of interactions to an optimal three
rounds.

To summarize, we start by studying coercion-resistant cast-as-intended verifi-
cation in standard settings, which results in formal definitions and two practical
solutions. Then we move into the post-quantum world, where we learn that an ex-
tra step is needed to preserve the usability of our previously proposed constructions,
which results in the generic transformation to avoid protocol re-runs. After that,
we concentrate on a computationally limited voter, which leads to another simple
solution and shows the adaptability of our original definitions. Finally, we explore
the extreme coercion threats to see the limits of coercion-resistant cast-as-intended
verification, which resulted in a new coercion attack on the first construction and
an upgrade of the second solution.

1.2.1 Publications Resulting From The Thesis

1. T. Finogina, J. Herranz and E. Larraia. How (not) to achieve both coercion
resistance and cast-as-intended verifiability in remote eVoting. Proceedings of
CANS’2021, Lecture Notes in Computer Science, Vol. 13099, pp. 483-491,
2021 [50]

2. X. Arnal, A. Cano, T. Finogina and J. Herranz. How to avoid repetitions
in lattice-based deniable zero-knowledge proofs. Proceedings of NordSec’2022,
Lecture Notes in Computer Science, Vol. 13700, pp. 253-269, 2022 [13]

3. T. Finogina and J. Herranz. Coercion-resistant cast-as-intended verifiability
for computationally limited voters. Proceedings of VOTING’2023 (workshop
of Financial Cryptography 2023), Lecture Notes in Computer Science, 2023

4. T. Finogina and J. Herranz. On Remote Electronic Voting with both Coercion-
Resistance and Cast-as-Intended Verifiability. Journal of Information Security
and Applications, Volume 76, August 2023 [49]

5. (submitted) T. Finogina, N. Costa, J.Cucurull. Selective comparison of E2E
e-voting systems. Preprint submitted to Journal of Systems and Software

6. (in preparation) P. Ronne, T. Finogina and J. Herranz. Strong Coercion Set-
tings in eVoting: Attacks and Solutions.

1.3 Structure Of This Thesis

Chapter 2 introduces the notations used throughout the thesis and gives the nec-
essary cryptography background for a better understanding of the following chapters.
The chapter includes standard cryptographic definitions relevant to the thesis.

Chapter 3 formally defines coercion-resistant cast-as-intended verification in set-
tings without secure delivery channels. Also, we prove that, for fulfilling both prop-
erties, a voting protocol requires at least three rounds of interaction.

Chapter 4 describes two satisfactory solutions for achieving coercion-resistant
cast-as-intended verification. Also, the chapter shows how those solutions can be

24 Chapter 1. Introduction

instantiated in ElGamal settings. Finally, we give all the necessary implementational
details and benchmarks.

Chapter 5 explores post-quantum settings and presents the necessary background
for understanding lattice basics. Then we highlight a usability problem - protocol
repetitions - that arises when the solutions from Chapter 4 are moved from ElGa-
mal to lattice-based encryption. We present a simple generic transformation that
removes protocol re-runs from any interactive lattice-based proof system. Finally,
we describe an implementation and relevant benchmark to justify that our solution
is not posing any performance issues.

Chapter 6 looks at the real-case applications where voters are severely limited
in computational power. We provide a solution where the only things voters have
to do are: remember and compare strings of numbers, on the one hand, and press a
button at the appropriate moment, on the other hand.

Chapter 7 presents an ongoing work focusing on extreme coercion threats. It
identifies an advanced attack on our first construction and shows an improvement
in the number of rounds for the second solution.

In Chapter 8, we end this thesis, summarize the results of our research, and
discuss some open questions.

For readers’ convenience, Appendix A provides a detailed description of all e-
voting schemes mentioned in the thesis.

Chapter 2

Preliminaries

We will use bold to denote vectors (column vectors by default) and bold capital

letters for matrices. Also we write e
$← Zn

q to mean that a vector e of n components
is chosen uniformly at random from Zq.

As usual, we say that a function ϵ is negligible in n ∈ N, and write ϵ ∈ negl(n),
if for every polynomial p(·) there exists N such that for every n ≥ N it holds
ϵ(n) ≤ 1/p(n). By x ←↩ X we denote taking an element x from a finite set X
uniformly at random.

2.1 Relations And Languages

Let R be a polynomial-time decidable binary relation defined on a pair of finite
spaces. That is, R is a subset of X ×W subject to the following conditions [57]:

� There exists a polynomial p such that if (x,w) ∈ R then |w| ≤ p(|x|)

� There exists an efficient algorithm G that on input λ ∈ N outputs (x,w) ∈ R
with |x| ≥ λ.

� There exists an efficient algorithm R that outputs a bit such that R(x,w) =
1⇔ (x,w) ∈ R.

Such relation R is an NP-relation, and gives rise to the set of “yes”-instances defined
as LR = {x ∈ X | ∃w ∈ W s.t. R(x,w) = 1} ⊂ X , known as the language of R.
Also, R is believed to be hard if there are no known efficient algorithms that can
recover w from x with non-negligible probability on λ.

The language LR = {x ∈ X | ∃ω ∈ W s.t. R(x, ω) = 1} ⊂ X associated to
a binary relation R is hard-to-distinguish inside the space X if, given a random
element in X , it is hard to distinguish in polynomial time if the element belongs to
LR or not. That is, for any polynomial time distinguisher DR, it holds

|Pr[1← DR(x) | x←↩ LR] − Pr[1← DR(x′) | x′ ←↩ X − LR]| ∈ negl(λ)

where λ is the security parameter of the system.

26 Chapter 2. Preliminaries

2.2 Groups And Hard Problems

Definition 1 (Groups). A cyclic group G is a group in which every element can be
generated by a single element g called a group generator. In other words, one can
write every element in G in the form gi, where i is some integer and gi is a self-apply
operation (e.g., scalar multiplication for elliptic curves and modular exponentiation
for Schnorr groups). The order of G is the smallest positive integer q such that
gq = 1.

Definition 2 (The Discrete Logarithm Problem). The discrete logarithm problem
(DL) in a cyclic group G of order q with a generator g, informally, requires finding
an integer x such that for the given element a ∈ G it holds that gx = a. Figure 2.1
describes the DL game formally.

DL is hard in the group G if AdvG,DL
A = Pr

[
1← DLGA(λ)

]
≈ 0.

DLA(G):

1. x
$← Zq

2. a = gx

3. x′ ← A(g, a)
4. Output 1 if x = x′. Else output 0.

Figure 2.1: DL game for the cyclic group G of the order q with a generator g.

The typical examples of groups where the discrete logarithm problem is believed
to be hard are:

� subgroups of order q of Z∗p, for q and p both being primes.
� subgroups of q points of an elliptic curve.

Definition 3 (The Decisional Diffie-Hellman Problem). The decisional Diffie-Hellman
problem (DDH) in a cyclic group G of order q with a generator g, informally, re-
quires the indistinguishability of gs1 from a random element, given (gs, g, g1) for
random s ∈ Z∗q and random g1 ∈ G. Figure 2.2 describes the DDH game formally.

The group G is DDH-hard if it holds:

AdvG,DDH
A = |Pr

[
1← DDHG

A(λ)
]
− 1

2
| ≈ 0.

The typical examples of groups where the DDH problem is believed to be hard
are:

� groups of quadratic residues Qp ⊂ Z∗p of prime order q, where modulus p =
2q + 1 a safe prime of a sufficient length λ.

� subgroups of q points of an elliptic curve.

2.3 Homomorphic Public Key Encryption

A probabilistic public key encryption scheme E consist of three protocols E =
(E.KG,E.Enc,E.Dec) defined for a message space ME, a randomness space RSE
and a ciphertext space CE as follows:

2.3. Homomorphic Public Key Encryption 27

DDHA(G):

1. b← {0, 1}
2. s← Zq

3. s0 = s1 = s
4. g1 ← G // Sampled at random
5. if b = 1 then
6.1 s0, s1 ← Zq // Sampled at random

6. b′ ← A(g, g1, gs0 , gs11)
7. Output 1 if b = b′. Else output 0.

Figure 2.2: DDH game for the cyclic group G of the order q with a generator g.

- (pk, sk) ← E.KG(λ) is a key pair generation algorithm that takes as input
a security parameter λ and outputs a public pk and secret sk keys of the
encryption scheme E.

- ctxt← E.Enc(m, r) is an encryption algorithm that takes as input a message
m ∈ME and randomness r ∈ RSE and generates a ciphertext ctxt ∈ CE. We
omit pk as a well-known input for simplicity.

- m′ ← E.Dec(ctxt, sk) is a decryption algorithm that takes as input a cipher-
text ctxt ∈ CE and a secret key sk and outputs the result of the decryption
m′ ∈ME or an error if m′ /∈ME.

Security properties: We say that E has a perfect correctness if for any given
pair (pk, sk) generated by the algorithm KG and any randomness r ∈ RSE, it holds
that E.Dec

(
E.Enc(m, r), sk

)
= m for any m ∈ME.

Another important property for a public key encryption scheme is semantic se-
curity. Roughly speaking, this property says that any adversary that sees a public
key, chooses a pair of plaintexts m0,m1 and receives an encryption of one of the
two (chosen at random) cannot distinguish which is the encrypted plaintext with
better probability than 1/2. In particular, a public key encryption scheme with
such a property must be probabilistic: there exists a randomness space RSE and
the encryption protocol E.Enc chooses some random value(s) in RSE in the process
of computing the ciphertext.

Finally, an encryption scheme is homomorphic if for a public key pk, messages
m1,m2 and randomnesses r1, r2 the encryption function E.Enc satisfies E.Enc(m1 ·
m2; r1 + r2) = E.Enc(m1; r1) · E.Enc(m2; r2).

Binary relation: For such a probabilistic encryption scheme E, we can consider
the binary relation RE defined on sets X = ME × CE and W = RSE as (x, ω) ∈
RE ⇔ ctxt = E.Enc(m, r), where x = (m, ctxt), ω = r. Note that, if E is
semantically secure, then the associated language LE is hard-to-distinguish in a
quite specific way: elements x = (m, ctxt) ∈ LE are indistinguishable from elements
x′ = (m′, ctxt) ∈ X −LE, even if the second component (the ciphertext) is the same.

2.3.1 ElGamal Encryption

We use ElGamal encryption scheme [46], which defines the triple of algorithms
(E.KG,E.Enc,E.Dec) as follows:

28 Chapter 2. Preliminaries

E.KG: Defines a cyclic group Gq of prime order q with a generator g. Then the algo-

rithm samples a secret key sk
$← Zq \ {0} uniformly at random and computes

a public key pk = gsk ∈ Gq.

E.Enc: To encrypt a message m ∈ Gq, the algorithm samples a randomness r
$← Zq

uniformly at random and computes the ciphertext ctxt = (c1, c2) = (gr,m ·
pkr).

E.Dec: To recover the message m∗ ∈ Gq, the algorithm computes the following
m∗ = c2 · (csk1)−1.

The ElGamal encryption scheme is perfectly correct, semantically secure (assum-
ing the hardness of the DDH problem in G) and homomorphic [46].

2.4 Commitment Scheme

A commitment scheme Com consist of three protocols (Com.Gen,Com.Eval,Com.Open)
defined for a message space MCom, a randomness space RSCom, and a commitment
space CCom as follows:

- pmsCom ← Com.Gen(λ) is a PPT setup algorithm that takes as input a security
parameter λ and outputs public parameters pmsCom.

- cmt ← Com.Eval(m, r) is a PPT evaluation protocol that takes as input a
plaintext m ∈ MCom and randomness r ∈ RSCom, and outputs a commitment
cmt ∈ CCom. We omit pmsCom as a well-known input for simplicity.

- b ← Com.Open(cmt,m, r) is a deterministic opening protocol that takes as
input a commitment cmt ∈ CCom, a plaintext m ∈ MCom and randomness
r ∈ RSCom, and outputs a bit b ∈ {0, 1}.

Secutity properties of commitments: Informally, we say that a commitment
scheme is hiding if a commitment cmt does not leak any information about the
committed message m.

Definition 4 (Hiding). A commitment scheme is ϵ-hiding if for all algorithms A

AdvHide,ComA = |Pr
[
1← HideComA (λ)

]
− 1

2
| < ϵ

HideComA (1λ):

1. pmsCom ← Com.Gen(λ)
2. (m0,m1)← A(pmsCom)

3. b
$← {0, 1}

4. r
$← RSCom

5. cmt← Com.Eval(mb, r)
6. b′ ← A(pmsCom, cmt)
7. Output 1 if b = b′. Else output 0.

Figure 2.3: A game against the hiding property of the commitment scheme Com.

2.4. Commitment Scheme 29

If the algorithmA is restricted to polynomial-time algorithms, then the scheme is
called computationally hiding. If there are no restrictions on the running time of such
algorithms (i.e., A is computationally unbounded), then the scheme is statistically
hiding. If A is computationally unbounded and ϵ = 0, then the commitment is
perfectly hiding.

Informally we say that a commitment scheme is binding if an adversary cannot
open a commitment in two different ways.

Definition 5 (Binding). A commitment scheme is ϵ-binding if for all algorithms A

AdvBind,ComA = Pr
[
1← HideComA (λ)

]
< ϵ

HideComA (1λ):

1. pmsCom ← Com.Gen(λ)
2. (m,m′, r, r′, cmt)← A(pmsCom)
3. If Com.Open(cmt,m, r) = Com.Open(cmt,m′, r′) = 1 and m ̸= m′, output 1.

Else output 0.

Figure 2.4: A game against the binding property of the commitment scheme Com.

If the algorithm A is restricted to polynomial-time algorithms, then the scheme
is called computationally binding. If there are no restrictions on the running time of
such algorithms (i.e., A is computationally unbounded), then the scheme is statisti-
cally binding. If A is computationally unbounded and ϵ = 0, then the commitment
is perfectly binding.

A commitment scheme cannot be perfectly hiding and perfectly binding at the
same time.

Finally, we say that commitment scheme is homomorphic, if it holds that Com.Eval(a+
b; r + s) = Com.Eval(a; r)Com.Eval(b; s) for messages a,b, a commitment key h and
random values r, s.

Pedersen Commitment Scheme: We use the Pedersen commitment scheme
[90], which defines the triple of algorithms (Com.Gen,Com.Eval,Com.Open) as fol-
lows:
Com.Gen: Creates a public commitment key h = (Gq, g, h1, . . . , hn), where g, h1, . . . , hn

are generators of the group Gq computed in a verifiable manner.

Com.Eval: To commit to m = (m1, . . . ,mn) ∈ Zn
q , we sample the randomness r

$← Zq

and compute com = gr
∏n

i=1 h
mi
i . We can also commit to a vector m with less

than n elements by padding it with 0s.
Com.Open: To verify that a commitment com conrresponds to the vector of messages

m = (m1, . . . ,mn) ∈ Zn
q and randomness r, the verifier computes com∗ =

gr
∏n

i=1 h
mi
i and checks that com∗ = com.

The Pedersen commitment scheme is perfectly hiding, computationally binding
(assuming the hardness of the Discrete Logarithm problem in G) and homomorphic
[90].

30 Chapter 2. Preliminaries

2.5 Interactive Zero-Knowledge Systems

LetR be a binary relation parameterized with a security parameter λ. An interactive
protocol ⟨P, V⟩ between a prover P and a verifier V, both being PPT algorithms, is
said to be a zero-knowledge proof system for R if the following holds [57]:

Completeness: On common input x, and Prover’s private input ω, if (x, ω) ∈ R it
holds Pr[⟨P (x, ω) , V(x)⟩ = 1] = 1.

Soundness: For every y /∈ LR it holds Pr[⟨P (y) , V(y)⟩ = 1] ∈ negl(λ).

Perfect zero-knowledge: For every verifier V∗ there exists a PPT simulator SimV∗ such
that for every (x, ω) ∈ R the output ⟨P (x, ω) , V∗(x)⟩ is identically distributed
to the output SimV∗(x). This property can be relaxed requiring that the outputs
are only statistically or computationally close.

Simulating Execution of ZK Proof Systems for Instances Out of the
Language: Let us assume that there exists a proof system for R enjoying zero-
knowledge: for every verifier V∗ there exists a PPT simulator SimV∗ such that for
every (x, ω) ∈ R the distribution ⟨P (x, ω) , V∗(x)⟩ is (perfectly / statistically / com-
putationally) indistinguishable to the distribution SimV∗(x).

We claim that such a simulator SimV∗ must also work when the input is an
element x′ ∈ X − LR out of the language LR, if LR is a hard-to-distinguish lan-
guage, and that the joint distributions (x, SimV∗(x))x←↩LR and (x′, SimV∗(x′))x′←↩X−LR
are indistinguishable.

Lemma 2.5.1. The two joint distributions (x, SimV∗(x))x←↩LR and
(x′, SimV∗(x′))x′←↩X−LR are indistinguishable.

Proof. Let us assume the existence of a distinguisher algorithm D that can distin-
guish these two distributions. We use D to build a distinguisher DR against the
hard-to-distinguish property of LR, as follows.
DR receives as input an element x̃ ∈ X , and its goal is to distinguish if x̃ ∈ LR

or if x̃ ∈ X −LR. What DR does is to run the simulator SimV∗(x̃). If this simulator
aborts, DR answers x̃ ∈ X − LR. Otherwise, DR runs the distinguisher D with the
tuple (x̃, SimV∗(x̃)) as input, and outputs the same answer as D outputs.

Definition 6 (Public coin). An interactive protocol between a prover P and a verifier
V is public-coin if all the messages sent by the verifier to the prover are randomly
and independently sampled from the messages sent by the prover (that is, random
coins from the verifier are publicly available).

Σ-protocols: Σ-protocol ⟨P (x, ω) , V(x)⟩ is a popular and powerful subset of inter-
active protocols that require three rounds of communication between the prover P in
possession of the witness ω and the verifier V for proving the validity of a statement
x as described in Figure 2.5. During the first round, the prover runs Σ1 to sample a
random opening op and commit to it (the resulting commitment denoted as com).
Then it sends com to the verifier, who replies with a random challenge e from the

2.5. Interactive zero-knowledge systems 31

challenge space Chl (with size exponential in λ). Finally, the prover runs Σ2 to
reply to the challenge with the answer z. The validity of the resulting transcript
(com, e, z) can be checked by anyone running the verification algorithm Verify, which
will output ⊤ in case of success and ⊥ otherwise.

P(pms, x, ω) V(pms, x)
(com, op)← Σ1(x, ω)

com−−−−−−−−→
e

$← Chl
e←−−−−−−−−

z← Σ2(e, ω, op)
z−−−−−−−−→

Accept if:
⊤ ← Verify(x, com, e, z)

Figure 2.5: Σ-protocol for proving the statement x.

The required properties for a Σ-protocol, other than completeness, are [40]:

Special soundness: There exists a PPT algorithm K such that

Pr[(x, ω) ∈ R | ω ← K(x, (com, e, z), (com, e′, z′))] ≥ 1− negl(t),

for any x ∈ LR and any two accepting transcripts (com, e, z), (com, e′, z′).

Special honest-verifier zero-knowledge: There exists a PPT algorithm SimR such
that, for any (x, ω) ∈ R, on input x and a random e, outputs an accepting
transcript (com, e, z) with the same probability distribution as ⟨P (x, ω) , V(x)⟩.

Proof of the correct encryption: We can define a relation for proving the
correctness of encryption using Σ-protocol ⟨VD,V⟩ between the voter and the voting
device as follows:

LE = {(m, ctxt) | ctxt is encryption of m}

If the homomorphic encryption scheme E is IND-CPA secure, then R = RE is a
hard relation, and Lemma 2.5.1 ensure that Sim also works for instances out of LE. It
means that we can use Sim(m∗, ctxt, e∗) to produce an indistinguishable transcript
(com∗, e∗, z∗) for a given e∗ ∈ Chl and for m∗ such that E.Dec(ctxt, sk) ̸= m∗. The
Σ-protocol for proving the encryption correctness is detailed in Figure 2.6.

32 Chapter 2. Preliminaries

VD(pms) V(pms,m)
m←−−−−−−−−

r
$← RSE

ctxt← E.Enc(m, r)
com, op← Σ1(m, ctxt, r)

ctxt, com−−−−−−−−→
e

$← Chl
e←−−−−−−−−

z← Σ2(e, r, op)
z−−−−−−−−→

Accept if:
⊤ ← Verify(ctxt,m, com, e, z)

Figure 2.6: Σ-protocol for proving the ciphertext encrypts the intended message.

For the case of ElGamal encryption, the detailed protocol is presented in Figure
2.7. The public parameters pms contain the group G, the group generator g, the
public key pk, etc. Both prover and verifier know the message m and the ciphertext
ctxt = (c1, c2). However, only the prover has the encryption randomness r.

VD(pms, ctxt,m, r) V(pms, ctxt,m)
m←−−−−−−−−

s
$← Zq

com = (a1, a2)← (gs, pks)
com−−−−−−−−→

e
$← Chl

e←−−−−−−−−
z← s + e · r

z−−−−−−−−→
Accept if:

gz = a1 · (c1)e
pkz = a2 · (c2m)e

Figure 2.7: Σ-protocol for proving the ElGamal encryption correctness.

P chooses s
$← Zq at random and sends the commitment com = (a1, a2) to V,

where a1 = gs and a2 = pks. After that, V selects and sends a random challenge
e ∈ Chl = Zq. Finally, P computes and sends the last element z = s+ e · r. V accepts
the proof if and only if gz = a1 · ce1 and pkz = a2 · (c2m)e.

The protocol enjoys the honest-verifier zero-knowledge property: the simulator
Sim, when given as input an element x = (g, pk, c1,

c2
m∗) for m∗ such that E.Dec(ctxt, sk) ̸=

m∗ and a random challenge e∗, can simulate the fake transcript (com∗, e∗, z∗), by tak-

ing z∗
$← Zq at random and computing a∗1 = gz

∗ · c−e∗1 and a∗2 = pkz
∗ · c2

m∗
−e∗ .

Chapter 3

Defining Coercion-Resistant
Cast-As-Intended Verifability

In this chapter, we formally define coercion-resistance and cast-as-intended verifi-
cation. Before putting forward the definitions, in Section 3.1, we discuss why we
cannot cover all possible e-voting scheme designs and have to limit ourselves to some
subset with given characteristics. Then, in Section 3.2, we discuss the settings we
selected and the reasons behind our choice. After that, in Section 3.3, we talk about
the syntax and protocols we require. Finally, we give definitions in Section 3.4 and
discuss how to fulfill them in Section 3.5, focusing on the number of interactions
between the voter and the voting device.

3.1 Can We Have One Standard Definition For

Both Properties?

As we mentioned in the introduction (see Chapter 1), there are dozens of ways to
define adversaries against the freedom of will ranging from the strongest variant of
coercion-resistance, which covers forced abstention attacks [67], to the weakest form
of receipt-freeness, which is barely different from ballot privacy [108]. Similarly,
there are dozens of mechanisms to provide cast-as-intended verification. Yet, our
goal is to give one more definition, which would combine both properties. The
natural question to ask is: Why do we need another definition?

If we look closely, we will see that each of the existing definitions varies in the
adversary strength, trust assumptions, and capabilities of voters. The JCJ definition
[67] says that the coercer can stop the voter from voting and even demand voting
credentials. The cast-or-challenge verification method [18] requires voters to have
a verification device and understand the verification process. The vote verification
proposed in Demos [71] trust that voters will make a random choice between two
ballot sides. The return-code-based verification [105] works only if there are secure
delivery channels between the entity that prints ballots and the voters. The list
goes on and on, and each definition seems to cover a specific coercer or verification
tailored to a particular voting system.

No definition is currently accepted as the standard one for coercion-resistance

34 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

or cast-as-intended verifiability. Some approaches intersect, while others do not
seem to agree on the key ideas. We observe that mainly just a few key elements
cause the differences: the existence of reliable delivery channels, the trustworthiness
of the voting device, reliance on auditors for cast-as-intended verification, and the
possibility of the coercer to stop the voter from voting or buy credentials. One may
wonder if it is possible to cover all those differences to obtain the standard definition.

Unfortunately, it is not that easy to formally define some properties without
implicitly restricting possible voting scheme designs. For example, should the voting
device be trusted for coercion-resistance? On the one hand, assuming that the
voting device is trustworthy favors the encryption-based type of voting schemes,
i.e., those which require voters to enter the selection in plaintext. On the other
hand, not trusting the voting device leaves only solutions, which either delegate
vote encryption or encoding to a third party or perform re-randomization before
publishing the ballot. Hence, either choice results in eliminating a voting system
class.

An implicit assumption about the voting system design is quite common in defini-
tions. For example, the most famous privacy definition by Benaloh [17] requires the
voting system to have a public bulletin board and doesn’t permit running tally mul-
tiple times. In practice, however, recounts are sometimes permitted, and the ballot
box is private or distributed, which results in definition adjustments (see Swiss Post
voting system privacy definition for details [105]). Similarly, the coercion-resistance
definition by Juels et al. [67] works only if there is a way to fake credentials. Another
example is the verifiability definition in Demos system [71], which assumes enough
voters are honest, and the adversary can slightly modify the election results.

As we can see, formalizing any intuitively understandable property requires re-
stricting the voting system designs by, at least, deciding if the voting device can
be trusted. What is more, we need to agree if the coercer wants to stop the voter
from voting, change the intended vote or only cause trouble. Finally, we need to
determine whether we will be satisfied with some probability of casting the correct
ballot and getting away from the coercion or whether we want the mechanism to
work in the overwhelming number of cases.

All those decisions imply some restrictions and will unavoidably leave out some
solutions. However, without them, it is impossible to be concrete enough to for-
malize coercion-resistant cast-as-intended verification. We can hardly combine, for
example, relying and not relying on pre-delivered data for cast-as-intended verifi-
cation without creating multiple cases. Any definition with numerous ifs and else
would be too difficult to understand and use. Hence, we must carefully select our
settings to cover as many potential voting systems as possible.

3.2 Our Settings

As explained in the previous section, we cannot define any property unless we es-
tablish the setting. Those settings include assumptions about the voting system,
expectations regarding voters’ behavior, trusted parties, what the adversary can and
cannot do, the existing communication channels, etc.

Since we are looking at coercion-resistant cast-as-intended voting schemes, it

3.2. Our settings 35

makes sense first to clarify what we mean by cast-as-intended verification, what we
consider coercion, and which voting schemes we focus on. In other words, what we
implicitly assume about definitions and the e-voting system.

Assumptions regarding cast-as-intended verification: Cast-as-intended ver-
ification is a type of verification that gives voters some guarantees that their vote was
not altered. Basically, it ensures that whichever entity prepared the ballot didn’t
change the voter’s intent. In most cases, the entity responsible for ballot prepara-
tion is a voting device, yet in some cases, it is done by the election authority (e.g.,
vote-code-based schemes and QR-code-based schemes).

There are dozens of ways to provide cast-as-intended verification, each offering
different guarantees. Some rely on repetitive checks before actual ballot casting;
others allow auditing the sent ballot. Some methods require the majority of voters
to be honest, while others focus only on a particular voter. Since all those details
affect the e-voting scheme design and trust assumptions, we cannot support all
verification methods and should focus on a subset only.

First, we assume that the voter can always verify the cast ballot. Alternative
approaches rely on variations of the challenge-or-cast method [4] or partial checks
[33], which still leave a voting device a non-negligible chance of cheating. One might
argue that verifying only prior ballots and leaving the sent vote unchecked is not
cast-as-intended verification because a malicious voting device can guess the number
of verification attempts and cast an altered ballot.

Second, we assume the cast-as-intended verification proves the ballot’s correct-
ness with a negligible chance of error. This excludes all probabilistic verification
methods that only partially inspect the vote. While the requirement might seem
too strong, we believe it is a reasonable request.

Third, we assume that voter does not have to expect other voters to be honest
for the cast-as-intended verification to work. It means we exclude designs similar
to the Demos system, where enough voters should randomly select the voting card
side for the Σ-proof (showing election authority behaved as expected) to be sound.

Finally, we assume that honest voters always perform the verification as in-
structed. In other words, we do not expect them to deviate from the verification
scenario or omit some steps.

To conclude, we assume the following about cast-as-intended mechanisms:

1. Voters verify the cast ballot itself;
2. Verification guarantees that ballot contains the intended selection under given

trust assumptions except for negligible probability;
3. Voter is not expected to rely on the honesty of other voters for cast-as-intended

verification;
4. Honest voter always performs verification as instructed.

Assumptions regarding coercion-resistance: The task of defining coercion is
not as trivial as it may seem. While cast-as-intended verification is more straightfor-
ward, coercion-resistance remains a mostly intuitively understandable notion. Any-
thing that might prevent voters from expressing their will freely due to the fear of

36 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

consequences might be considered coercion. Yet, it’s impossible to protect voters
from every possible threat - thus, we need to define coercion more specifically.

We can firmly agree that the coercer cannot control a voter all the time [43]; else,
the voter has no choice but to comply [108]. Also, we can agree that a voter cannot
cast a vote on their own and requires the assistance of a voting device. We assume
that voters can be either honest but under duress or malicious and willing to sell
their vote. Finally, we can safely presume that the coercer would not use extreme
threats such as putting a gun to the voter’s head. Otherwise, coercion-resistance
makes no sense.

So far, we have established that coercion-resistance makes sense only when the
coercer has limited observational power and cannot use extreme threats. However,
what do “extreme threats” mean? Everyone is different, and it’s hard to predict
when someone will consider it safe to disobey. Intuition says: the simpler and
more secure the coercion-resistance strategy is, the more voters will opt for it. This
intuition was proven to be correct in [65].

However, we cannot measure voters’ presumptions of risks, so we focus on defin-
ing the coercer’s limitations. Mainly, we will focus on the coercer’s motivation,
passive observation powers, and moments when voters are left uncontrolled.

First, we assume that the coercer wants voters to vote in a specific way rather
than not vote at all (a type of coercion known as a forced-abstention attack). Our
assumption is reasonable since the only known way to hide participation is to use
anonymous voting channels [67], which are famously hard to implement. Moreover,
forced-abstention attacks are not unique to e-voting and can be run against any
voting channel. The common countermeasure is to offer voters multiple ways to
vote in hopes that the coercer cannot control all of them.

Second, we assume that voters can vote only once. Typically, the simplest
coercion-resistance strategy is to allow voters to change their choice at any moment.
However, this strategy is not ideal. Not all electoral laws permit multiple voting as
it gives an unfair advantage to voters voting electronically as opposed to any other
voter. Also, the strategy implicitly assumes that the coercer cannot determine which
ballots came from the same voter. Unfortunately, preventing coercer from detecting
all voter’s ballots implies he cannot see the bulletin board, which severely limits
possible designs of an e-voting system. Therefore, we exclude multiple voting and
assume the one-voter one-vote rule.

Third, we assume that voters are left unobserved during the vote-casting. Specifi-
cally, the voter is free to interact with the voting system privately. The coercer might
issue instructions of any complexity but is not allowed to observe or interact with
the voter from the moment the voter enters their intent until the ballot appears on
the bulletin board.

One might note that leaving the voter unobserved for the duration of vote-casting
is quite a strong assumption. However, recall that voters are only active during the
authentication or voting phase, which combines vote-casting and (optionally) vote-
verification 1. Moreover, we already established that the coercer doesn’t control

1Separating vote-casting and vote-verification would not help. Privacy during the vote verifica-
tion alone would not help resist coercion as it merely ensures the vote-casting phase was correct.
Therefore, we can combine voting and verification into one phase and keep calling it the voting

3.2. Our settings 37

voters all the time. Hence, we can assume that voters are left unobserved sometimes
during the authentication or vote-casting part of the voting protocol.

One option is for the coercer to let voters authenticate privately. By authentica-
tion, we mean action throught which voter proves their identity and obtains voting
credentials. Anything beyond that is not part of authentication. Therefore, if voters
only can privately authenticate but not vote, they can only invalidate their vote by
asking for fake credentials. However, it is not enough for coercion-resistance.

Another possibility is to grant privacy during both phases. It would allow voters
to ask for multiple fake credentials to fool the coercer. However, since we already
excluded multiple voting, we can strengthen our model and assume that only voting
(including vote verification) happens privately.

Finally, we assume that the coercer cannot ask the voter to record the voting
process since it is equivalent to having total control over the voter’s actions.

To recap, we assume the following about the coercer and voters:
1. Voters can disobey without facing high safety risks;
2. Coercer wants voters to vote in a specific way rather than force them to abstain;
3. Each voter can vote only once;
4. Coercer doesn’t observe or communicate with voters during vote-casting and

vote-verification.

Assumptions about voting system design: Now we can discuss assumptions
regarding e-voting system design. As we saw earlier, there are numerous ways to
design an e-voting system. Some e-voting system designs rely on vote codes, while
others perform encryption in the voting device. Some rely on pre-delivered voting
material, while others don’t.

Since we do not wish to limit our coercion-resistant cast-as-intended definition
to specific e-voting systems only, we need to set basic assumptions regarding the
voting and voter-verification processes. Otherwise, it would be impossible to come
up with any formalization at all.

First, we will focus only on vote-casting and cast-as-intended verification parts of
the e-voting scheme. Thus, we will forget other protocols and properties of the global
e-voting system, like tallying, result consolidation, etc. At first glance, it might
seem like a disadvantage. Our approach fails to capture adversaries that exploit
the final result of the election, faults of anonymization procedure, or problems with
decryption key handling. However, most information leakage during the tally phase
can be fixed with proper result anonymization and control over entities performing
the tally.

Our local approach makes perfect sense in big elections where we want to ensure
that: (i) honest voters will not be cheated by a dishonest voting device, (ii) dishonest
voters cannot prove how they voted to anybody else, and thus they cannot sell the
vote or suffer from coercion. One may point out that if multiple-choice is permitted,
a coercer (or vote-seller) might run an Italian attack2, which means the tally leakage

phase for simplicity.
2An Italian attack[108] is a coercive attack where voters are forced to vote for a unique (or very

unlikely) permutation or combination of voting options. As a result, the coercer can always verify
the published results to see if the voter obeyed. Since the choice combination or order is easily

38 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

might harm privacy. However, it can only be prevented if we use a homomorphic
tally or allow only a small number of selections that would severely limit the result
application.

Similarly, we assume that the size of the potential voting options set is polynomial
in the security parameter. While it does exclude the acceptance of completely
random strings as the voting options, we argue it is natural for an election to have
only a limited number of valid selections. Moreover, if we assume otherwise, a
coercer might force the voter to submit a random answer, which would be excluded
from the counting (effectively implying abstention) or require a non-public ballot
box to protect the voter (thus excluding public result verifiability).

Second, we expect no pre-established secure channels between voters and elec-
toral authorities running the election. It implies that voters do not have pre-delivered
voting cards, signing keys, or any other material necessary for either cast-as-intended
verification or coercion-resistance. Voters might have pre-established authentication
data such as electronic identity cards, passwords, etc., but we leave authentication
out of our scope.

As a consequence of excluding pre-delivered data, we only focus on systems
where the voting device receives choice in clear and encrypts it. This covers many
types of e-voting schemes but, unfortunately, completely excludes code-voting (e.g.,
Demos [71]), voting with QR codes (e.g., BeleniosVS [38]), or any other way of ballot
pre-encryption.

Since the voting device performs encryption (or equivalent operation for pre-
serving the voter’s privacy), we expect it will not collaborate with the coercer.
Otherwise, there is nothing the voter can do to hide disobedience. Fortunately,
trusting the voting device for ballot privacy (and consequently for receipt-freeness
and coercion-resistance) is quite common. For example, the voting device is re-
garded as trustworthy in Benaloh’s and BPRIV’s definitions of privacy and Swiss
and Estonian legislations.

Finally, we assume that voters cannot forcefully extract from the voting device
more information than the system outputs. It includes encryption randomness,
witnesses for zero-knowledge proofs, etc. Some say such an expectation is unrealistic
since the voting device is just a computer that can always be exploited. However,
we note that: first, data extraction requires technical knowledge, which an average
voter might not have; second, it implies that an honest voting device alone cannot
protect voters’ privacy and that the e-voting system should be trusted.

To summarize, we assume the following about the e-voting system design:
1. Voter has no pre-delivered material;
2. Voting device receives voting option from a polynomially large set in clear and

encrypts it;
3. Voting device does not collaborate with the coercer;
4. Voter cannot forecefully extract more information from the voting device than

it outputs.

Settings summary: We consider only e-voting schemes, where a voting device
receives a voter’s intent and prepares a ballot. The voting device might be malicious

identifiable, shuffling ballots before publishing would not protect against such coercion.

3.3. Parties and Syntax of the E-Voting Protocol 39

and willing to change a voter’s choice, but it does not collaborate with the coercer.
Multiple voting is not allowed - each voter has only one vote. At least one voter

is honest, but there is no guarantee that a majority or even a substantial number
of voters is trustworthy. Honest voters are willing to disobey and would not face
life-threatening consequences if caught.

An honest voter has no pre-delivered information and will always verify cast-as-
intended proof of the sent vote, which ensures the ballot contains the correct intent
except for a negligible probability. Voters can be malicious or trusted, but they
won’t be able to extract from the voting device more information than it’s willing
to give.

The coercer cannot prevent voters from voting or interact with them during the
voting phase. He also cannot observe voters while they vote, which includes asking
for video recordings, control over the voting device, real-time feedback, etc. The
coercion goal is a vote for a specific option or a candidate. The coercer can see the
public output of the voting device (i.e., ballot, publicly available proofs, etc.) and
knows if the given voter voted or abstained.

3.3 Parties And Syntax Of The E-Voting Protocol

As explained before (see Section 3.2), we focus on a specific voter V who casts a
vote through a voting device VD, possibly under the coercion of an adversary C.
The voting device might be under the control of an adversary A aiming to change
the voter’s selection undetectable. However, that adversary is not the coercer nor
collaborates with the one, i.e., A ≠ C.

We will forget other protocols and properties of the global voting system, like the
authentication of voters, the mixing or homomorphic tally step, the final decryption
and publication of the result, etc. We only assume that someone, possibly elec-
toral authorities EA, generated public parameters pms known to all parties. Those
parameters (might) include but are not limited to:

- election configuration, which includes election duration, questions, eligible vot-
ing options M, etc.

- security parameter λ;
- hash functions;
- the public-key encryption scheme E with at least encryption Enc and decryp-

tion Dec algorithms;
- the public key pk of the election.

We assume that the validity of the public parameters can be verified by anyone and
does not contain any secret information.

To generate pms, one would run an initial protocol:

pms← Setup(λ)

Setup may eventually output other information, which is not intended to be
published, such as secret keys, used randomness, etc. However, since we focus only
on cases where no information is pre-delivered to voters, we simplify the model by
saying that only public parameters are generated and published.

40 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

To cast a vote, the voter V interacts with their voting device VD. Apart from
the public parameters pms, the initial input of VD is empty, while the voter V also
has a voting option m ∈ M, a coercer’s voting preference mC ∈ M and an element
coerc, which is either empty (in case of no coercion) or specifies some instructions
given to V by the coercer C on how to behave during the voting process. Those
instructions may include specific rules about values the voter should enter (e.g.,
only use odd numbers), the output restrictions (e.g., if the ballot does not start
with a bit ’0’, abort and repeat voting until it does), the selection criteria (e.g.,
open the left ciphertext), etc.

Since we do not limit the coercer’s freedom, we must assume that the coercer’s
instructions coerc might affect the resulting ballot regardless of whether the voter
obeys. Therefore those instructions should be part of the voting protocol input even
if the voter chooses to vote for their preference m instead of the coercer’s choice mC.
For example, consider a simple protocol where no proof of ballot content is given
- the voter enters the voting option, receives back the ciphertext, and can either
confirm the vote or try again. If the coercer demands the voter only to accept the
ballot when the ciphertext starts with a bit ’0’, then not following this instruction
would be obvious.

To vote for an option m while following the instructions from coerc, the voter V
jointly with the voting device VD execute the voting protocol:

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, coerc)

We denote as randV the set of all values explicitly selected by V during the
execution of the voting protocol (e.g., challenges), and as Trc the list of messages
exchanged between V and VD in such an execution.

In particular, Trc includes a ciphertext ctxt, which is supposed to be (if VD is
honest) encryption of the voting option m under the public key pk of the election
and using randomness r; that is ctxt = Enc(m, r), where we intentionally omit pk
as a well-known input of the encryption protocol Enc.

Additionally, the voting protocol has two private output bits:

- a bit bV describing if the voter V accepts the interaction as valid (bV = 1) or
not (bV = 0),

- a bit bVD describing if the voting device VD accepts the interaction as valid
(bVD = 1) or not (bVD = 0),

If both bV = bVD = 1, the encrypted vote (ctxt ∈ Trc) generated by VD is
deemed valid. If bV = 0, the voter would complain to election authorities EA against
the voting device, which leads to the vote invalidation. Similarly, if bVD = 0, then
the ballot box (as well as the voting device) would not accept the vote as valid.

In practice, these two bits are outputs of some verification functions run locally
by V and VD. The voter V might keep some part of the interaction with the voting
device VD secret and use this knowledge for the cast-as-intended verification.

3.4. Formal Definitions of Cast-As-Intended and Coercion-Resistance 41

3.4 Formal Definitions Of Cast-As-Intended And

Coercion-Resistance

We will use syntax from Section 3.3 to formally define when the protocol Vote
enjoys cast-as-intended (see Definition 7) and coercion-resistance (see Definition 8)
properties.

3.4.1 Formal Definition Of Cast-As-Intended (CAI) Verifi-
ability

Informally, we want to ensure that a not coerced voter who runs the voting protocol
with a voting option m and accepts the interaction as valid can be confident that
ctxt indeed contains encryption of m. The property is thus formalized by consid-
ering a dishonest voting device that tries to cheat the voter and sends to the ballot
box a ciphertext ctxt that decrypts to m′ ̸= m. We want the probability of such a
cheating behavior to happen without being detected by the voter is negligible.

The corresponding event Cheat is defined as follows:

Cheat =



pms← Setup(λ)

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, ∅)
ctxt ∈ Trc

bV = 1 (voter accepts the proof)

m ̸= Dec(ctxt, sk) (but ctxt does not contain the intent)

where sk is the secret key of the election, matching the public key pk included
in pms, and Dec is the decryption algorithm.

Definition 7 (Cast-as-intended). The protocol Vote enjoys Cast-as-Intended (CAI)
verifiability if for any m ∈M the probability of event Cheat is a negligible function
of the security parameter λ, for any polynomial-time voting device VD.

3.4.2 Formal Definition Of Coercion-Resistance (CR)

In our setting, a coercer C (e.g., a vote buyer) may interact with the voter V before
the execution of the voting protocol and force the voter to vote for some option mC
and to follow the instructions in coerc while executing Vote. The coercer cannot
observe the interaction between the voter V and the voting device VD (otherwise, it
would be impossible to achieve any meaningful coercion-resistance property). How-
ever, the coercer has access to the public channel through which the ciphertext ctxt
is sent by VD to the ballot box.

After the protocol Vote terminates, C expects to receive a voter’s view of the in-
teraction view, which includes Trc along with the set of random values randV selected
by the voter during Vote.

The intuition is that for resisting coercion, the voter V must always have the
possibility to run the protocol Vote with its voting option m and later simulate all
values (including the challenges) to make C believe that Vote was run with mC as

42 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

input. If the coercer C cannot distinguish whether the voter followed the instructions
or not with probability more than random guessing, coercion-resistance holds. We
formalize this intuition in the experiment ExpCRC,V(pms,mC,m, coerc) in Figure 3.1.

In the experiment, the challenger, playing on behalf of the honest voter and
trustworthy voting device, flips a coin β. If β = 0, the challenger obeys the coercer,
follows all instructions, votes for mC, and gives the coercer an authentic view of
the interaction. However, if β = 1, the challenger votes for the voter’s choice m
and uses polynomial-time simulator algorithm Sim = (Sim1, Sim2) to produce a fake
view. The experiment returns 1 whenever the coercer can guess β and 0 otherwise.

We say that coercion-resistant holds for the protocol Vote if the coercer C can
distinguish whether the voter followed the instructions and voted for mC or provided
simulated values with probability 1

2
. The formalization of this property is given in

the Definition 8.

ExpCRC,V(pms,mC ,m, coerc):

1. pms← Setup(λ)

2. β
$← {0, 1}

3. If β = 0:

(b
(0)
V , b

(0)
VD,Trc

(0), rand
(0)
V)← Vote⟨V,VD⟩(pms,mC , coerc)

If b
(0)
VD = 0, abort the experiment.

Define view(0) = (b
(0)
V ,Trc(0), rand

(0)
V)

4. Else if β = 1:

coerc∗ ← Sim1(coerc,m,mC)

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, coerc∗), with ctxt ∈ Trc

If b
(0)
VD = 0, abort the experiment.

(b
(1)
V ,Trc(1), rand

(1)
V)← Sim2(bV , bVD,Trc, randV ,m,mC , coerc), with ctxt ∈ Trc(1)

Define view(1) = (b
(1)
V ,Trc(1), rand

(1)
V)

5. b← C(view(β))
6. If b = β, return 1. Else, return 0.

Figure 3.1: Experiment for coercion-resistance.

Definition 8 (Coercion-resistance). The protocol Vote enjoys coercion-resistance
(CR) if for any polynomial-time coercer C, any coercion (mC, coerc) and any voting
option m, there exists a polynomial-time simulator algorithm Sim = (Sim1, Sim2)
such that

∣∣Pr[1← ExpCRC,V(pms,mC,m, coerc)]− 1
2

∣∣ = negl(λ) is a negligible function
of the security parameter λ.

Since the experiment ExpCRC,V(pms,mC,m, coerc) aborts when the coercion chosen
by C makes the (honest) voting device reject the execution of the protocol Vote, our
definition does not cover some very strong types of coercion: (1) the coercer forces
a voter not to participate in the election, (2) the coercer forces a voter to misbehave

3.4. Formal Definitions of Cast-As-Intended and Coercion-Resistance 43

during the interaction with VD, which results in VD aborting the protocol and not
sending any ciphertext to the ballot box.

Under our assumption that the adversary can see the ciphertext ctxt that is sent
by VD to the ballot box, these stronger types of coercion could be addressed only
with solutions that allow VD to send a ciphertext (encryption of a dummy/special
plaintext) to the ballot box even in the case when a voter abstains or when a
voter misbehaves during the voting protocol. This is explicitly prohibited by some
countries that run electronic elections today. Furthermore, this would open the door
to possible attacks by a dishonest VD which, in case of abstention, does not send an
encryption of the dummy/special plaintext, but encryption of a specific valid voting
option.

3.4.3 Comparison With Previous Definitions Of CAI And
CR

Our CAI definition is game-based and similar in spirit to that in [97]. The main
difference is that we are interested in yes/no CAI verification: the goal is that a
malicious VD has a negligible probability of cheating a voter. In contrast, a more
general and quantified definition was provided in [97] to measure or bound the (non-
necessarily negligible) probability that VD cheats a voter without being detected.

The comparison between our CR definition and other existing ones is more com-
plex due to the wide variety of settings defined for CR in the literature. First, we
consider only e-voting systems without secure channels between authorities and vot-
ers, which is very relevant and constrains our CR definition. In particular, in such a
setting, it is clear that a voter V must send its voting choice m to the voting device
VD during the vote-casting phase; therefore, we must assume that VD is trusted
for privacy and coercion-resistance. Otherwise, it would be impossible for an honest
voter to deceive a coercer colluding with VD. This is in contrast to other definitions
of CR, in particular, the JCJ one [67] and variants thereof [37].

In our CR definition, the analysis is local: we assume that one single voter is
under coercion (by a real coercer or by itself, in the case of vote-selling). In other
words, we do not worry about the behavior of other voters or other authorities of
the e-voting system. This simplification allows us to concentrate only on the vote-
casting phase of the election, the only one where the voter plays an active role. This
is common to the model in [56] but differs from many other CR definitions and
models, which deal with more global adversaries [67, 37, 110, 11].

We believe a local approach makes perfect sense, in particular for typical elec-
tions where the rest of the phases (after vote casting) are done in a verifiable way:
verifiable shuffle of ciphertexts or verifiable homomorphic tally, verifiable decryption
of the final results, etc., possibly executed by a threshold of servers.

A direct consequence of our local setting for CR is that we can consider a (sim-
pler to use) game-based definition: the goal of the (real) adversary is to distinguish
between two possible (real) executions of the protocol Vote. In contrast, in the (con-
ceptually more complicated, in our opinion) UC-based setting, where two different
worlds (the real and an ideal world) are considered, the goal is to show that the
behavior of a real adversary (coercer, in this case) in a real-world can be simulated

44 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

in the ideal world, without anybody (the environment) being able to distinguish
between both. Works proposing CR models and proofs in the UC-based setting
include [37, 86, 110, 11].

3.5 On The Necessary Number Of Rounds

We have formally defined coercion-resistance and cast-as-intended verification. Now
the question is whether we can fulfill them. Do we necessarily need interaction
between the voter and the voting device? If so, how many rounds of communication
do we need? Is there a minimum number?

We expect the ciphertext (at least partially) to be created by the voting device.
Otherwise, the voter can easily demonstrate to the coercer the ballot content by
revealing the randomness used to compute it.

One round is not enough: The nature of voting implies that voters should com-
municate their choice m, which is not known to the system in advance. Otherwise,
there will be no need to conduct elections. Moreover, the voter must receive the
ciphertext ctxt after voting. Hence, at least two rounds of interaction are necessary.

Two rounds are not enough: We show that two rounds are not sufficient. Con-
sider an arbitrary protocol with two interactions. There are only two possible ways
to start the protocol - it can be done either by the voting device or the voter. Hence,
we have two possibilities to analyze.

Case 1: The voting device starts the interaction: The ultimate goal of the
voting device use is to produce ciphertext ctxt encrypting the voting option m and
the proof π that the said voting option is what the voter intended it to be. Since we
have only two rounds and the voting device starts, it can only return some data a
independent of the voter’s selection. After that, the voter replies with the selected
voting option m and (maybe) some value denoted as b.

VD(pms) V(pms,m)

a

m,b

The voting protocol must send the ciphertext ctxt to the voting system at the
end of the voting process. If the protocol has cast-as-intended verifiability, there
should be some function Verify(a,b,m, randV , ctxt)→ {0, 1} which allows the voter
to ensure that the published ctxt is valid and contains the intended option m.

The coercer can control the voter’s input b. However, we don’t know if the
protocol permits b to be selected more or less arbitrarily or if b must be chosen
only from a relatively small set of possible values. Since difficult-to-resist coercion
strategies would differ, we must consider both cases separately.

3.5. On the Necessary Number of Rounds 45

Case 1.A: Suppose, in our two-round protocol, the value b should be chosen
from a relatively small (polynomially large in the security parameter) set of possible
values. The coercer can instruct the voter to use a specific value b = bC or utilize
some heuristic for selecting bC adaptively. Since the set of possible values is relatively
small, relying on heuristic is equivalent to expecting a specific bC. Thus we focus
on coercion strategies where b = bC.

For such coercion, the coercion-resistance only holds if the simulator Sim is
capable of generating a value a(1) based on the “disobeying coercion” transcript
(a,b, ctxt) in a way that the simulated transcript (bC, a

(1), ctxt) is indistinguish-
able from the “obeying coercion” transcript (aC,bC, ctxtC)

3, where ctxtC encrypts
mC and ctxt encrypts m. The cast-as-intended verification should hold for the
case of following the coercion 1 ← Verify(bC, aC ,mC, ctxtC) and disobedience 1 ←
Verify(b, a,m, ctxt). Also, the coercer that attempts to verify a simulated tran-
script should pass it successfully too. Otherwise, the coercer can easily distinguish
transcripts. Therefore, 1← Verify(bC, a

(1),mC, ctxt) must be successful.
Unfortunately, if such Sim exists, the voting device can use Sim to break cast-as-

intended verification with a non-negligible probability. For that, the voting device
selects (aVD,bVD,mVD) and generates ctxtVD as an encryption of mVD, then runs
Sim to generate a(1) for mV and starts the protocol with an honest voter by sending
a(1) and hopes that the voter would reply with b = bVD and m = mV . Since the set of
possible b values is relatively small and the set of possible voting options m naturally
has polynomial size as well, there is a non-negligible chance that the voting device
guessed correctly, i.e.: b = bVD and m = mV . If this is the case, the voting device
sends ctxtVD to the ballot box or voting server. Because we assume that the protocol
is coercion-resistant, the voter cannot distinguish between “voting device cheats”
transcripts (a(1),b = bVD, ctxtVD) and “voting device behaves honestly” transcript
(a,b, ctxt), where ctxt encrypts the voter’s choice m and ctxtVD encryps mVD ̸= m.
Hence, the voter will accept the interaction 1 ← Verify(bVD, a

(1),m, ctxtVD) and
believe that ctxtVD encrypts m, while in reality, ctxtVD encrypts mVD.

Therefore, in Case 1.A, our two-round protocol enjoys the cast-as-intended
verification but cannot resist coercion where forces b = bC or vice versa.

Case 1.B: Suppose, in our two-round protocol, the value b can be selected from
a large set of possible values. In such a case, a coercer can force the voter to use
adaptively computed b = F(a), where F is some pseudo-random function of the
coercer’s choice.

The coercion-resistance only holds if the simulator Sim is capable of generating a
fake transcript (F(a(1)), a(1), ctxt) based on the actual transcript (a,b, ctxt) that
is indistinguishable from the “obeying the coercer” case (aC,F(aC), ctxtC), where
ctxt encrypts the voter’s option m and ctxtC encrypts the coercer’s choice mC.
The cast-as-intended verification should hold for the case of following the coercion
1 ← Verify(F(aC), aC,mC, ctxtC) and disobedience 1 ← Verify(a,b,m, ctxt). Also,
the coercer that attempts to verify a simulated transcript should pass it successfully
too. Otherwise, the coercer can easily distinguish transcripts. Therefore, 1 ←
Verify(F(a(1)), a(1),mC, ctxt) must be sucessful.

3Since b is fixed, randV is empty. Hence, we omit it from the list of simulated values.

46 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

Lemma 3.5.1. With overwelming probability Sim generates a(1) before computing
b(1) = F(a(1)).

Proof. Suppose, our assumption is wrong. In such a case, the Sim that can generate
b = F(a) first and then find corresponding a can be used to find pre-images of the
one-way function F . However, it is considered to be infeasible.

Lemma 3.5.2. If cast-as-intended verifiability holds, then for the given a(1) and
ctxt that does not encrypt mC the probability that a random b(1) results in a
sucessful veriifcation 1← Verify(b(1), a(1),mC, ctxt) must be negligible.

Proof. Suppose our assumption is wrong. In such a case, the voting device can
break cast-as-intended verification with a non-negligible chance. For that, the voting
device sends a random a(1) to the voter and computes ctxt as an encryption of mVD,
which is likely different from the voter’s intent m. When the voter replies with b,
there is a non-negligible probability that the verification 1← Verify(b, a(1),m, ctxt)
will pass, which implies a non-negligible probability of breaking cast-as-intended
verification.

However, now we can conclude that such a simulator Sim can succeed with only
a negligible probability of succeeding. By Lemma 3.5.1, Sim should simulate a(1)

before computing b(1) = F(a(1)); however the probability that the random output
b(1) of a pseudo-random function F is such that 1 ← Verify(a(1),b(1),mC, ctxt) for
a ciphertex that encrypts m ̸= mC is negligible per Lemma 3.5.2. Hence, in Case
1.B, our two-round protocol enjoys the cast-as-intended verification but cannot
resist coercion where forces b = F(a) or vice versa.

Case 2: The voter starts the interaction: The voter inputs a voting option
m and some value denoted as a. The voting device replies with the ciphertext ctxt,
the proof π and (maybe) some value b.

VD(pms) V(pms,m)

a,m

ctxt, π,b

Suppose the protocol is coercion-resistant. According to our definition, it means
the voter can vote for m, obtain the actual transcript (a, ctxt, π,b), and then run
a simulator Sim to get an indistinguishable transcript (a(1), ctxt, π(1),b(1)). The
coercer should not notice that values (a(1), π(1),b(1)) were simulated.

However, in our two-round protocol, the coercer can control the voter’s choice of
a and even force a specific a = aC. Therefore, the coercion-resistance only holds if the
simulator Sim is capable of generating a fake transcript (aC, ctxt, π

(1),b(1)) based
on the actual transcript (a, ctxt, π,b) in a way that it is indistinguishable from
the “obeying the coercion” case (aC, ctxtC, πC,bc), where ctxt encrypts the voter’s
choice m and ctxtC contains the coercer’s choice. The cast-as-intended verification

3.5. On the Necessary Number of Rounds 47

should hold for the case of following the coercion 1 ← Verify(aC,mC, ctxtC, πC,bC)
and disobedience 1 ← Verify(a,m, ctxt, π,b). Also, the coercer that attempts to
verify a simulated transcript should pass it successfully too. Otherwise, the coercer
can easily distinguish transcripts. Therefore, 1 ← Verify(a(1),mC, ctxt, π

(1),b(1)))
must be sucessful.

Unfortunately, if such Sim exists, the voting device can use Sim to break cast-as-
intended verification. For that, the voting device selects aVD, encrypts mVD, honestly
generates (πVD, ctxtVD,bVD) for (mVD, aVD), then runs Sim to generate π(1) and
b(1) corresponding to the voter’s input m and a. Because the protocol is coercion-
resistant, the voter cannot distinguish between (aVD, πVD,bVD) and (a, π(1),b(1)),
and cast-as-intended verifiability is broken.

Number of rounds in our constructions: As we proved, achieving a CR-CAI
solution with two rounds of interaction between the voter and the voting device is
impossible. Therefore, the minimum number of rounds is three. In Chapter 4, we
describe and analyze two solutions with four rounds of communication; these are
(modifications of) the first solutions that we found in the thesis (paper in CANS’21
[50]). Two years later, when dealing with more powerful coercions, we found another
solution with three rounds of communication (and so, optimal in terms of round
complexity). The three-round solution is described and analyzed in Chapter 7. The
first solution in Chapter 4 works in the plain model, whereas the second solution
and its enhancement (the three-rounds solution in Chapter 7) are proven secure in
the Random Oracle Model. It is an open problem to find a three-round solution in
the plain model or to prove that such a solution is impossible.

48 Chapter 3. Defining Coercion-Resistant Cast-As-Intended Verifability

Chapter 4

Instantiations Of Coercion
Resistant Cast-As-Intended
Verifiable Voting Protocols

In this chapter, we present two protocols for achieving coercion-resistant cast-as-
intended verification. Before giving the solutions, explained in Sections 4.2 and
4.4, we recall why a standard interactive Σ-protocol and interactive OR-proof are
not sufficient in Sections 4.1 and 4.3. As we explain, the problem lies in a gap
between honest-verifier zero knowledge and full zero-knowledge. Then, we focus
on solving this gap and outlining two coercion-resistant cast-as-intended protocols.
Both solutions are generic and can be described for general binary relations, zero-
knowledge systems, etc. Also, we provide a security analysis of both solutions to
show they achieve coercion-resistant cast-as-intended verification in Sections 4.2.1
and 4.4.1. Finally, we give specific instantiations for the ElGamal encryption case
and comment on the implementations’ performance in Sections 4.2.2 and 4.4.2.

4.1 Unsatisfactory Solution U1

Before describing the first solution S1, we recall the original Σ-protocol idea from
Section 1.1.3.3 as it will be the basis for our first coercion-resistant cast-as-intended
protocol. We also argue that the gap between unsatisfactory and satisfactory pro-
tocols is closely related to the gap between the honest verifier and the full zero-
knowledge property of cryptographic zero-knowledge systems.

Given a public-key homomorphic encryption scheme E = (E.KG,E.Enc,E.Dec)
from Section 2.3 and a Σ-protocol for proving the ciphertext encrypts the intended
message from Section 2.5, we can construct a protocol described in Figure 4.1. The
resulting proof achieves receipt-freeness as an honest voter (who selects the challenge
at random) can generate a fake transcript indistinguishable from the actual one. For
details, please, refer to the simulator description for instances out of the language
described in Section 2.5.

However, since the proof is based on a Σ-protocol, it is not coercion-resistant.
A coercer can force the voter to select a specific challenge e = F(com) for some
function F . Such choice of e would allow the coercer to ensure that the voter

50 Chapter 4. Instantiations Of CR-CAI Solutions

obeyed as the probability of a random e∗ from a simulated proof to satisfy such
constraint is negligible.

VD(pms) V(pms,m)
m←−−−−−−−−

r
$← RSE

ctxt← E.Enc(m, r)
com, op← Σ1(m, ctxt, r)

ctxt, com−−−−−−−−→
e

$← Chl
e←−−−−−−−−

z← Σ2(e, r, op)
z−−−−−−−−→

Accept if:
⊤ ← Verify(ctxt,m, com, e, z)

Figure 4.1: Σ-protocol for proving the ciphertext encrypts the intended message.

Therefore, to achieve CR-CAI verification, one has to assume that the voter is
potentially dishonest. This, in turn, implies that the resulting protocol must have
full zero knowledge.

4.2 Solution S1: Committing To Challenges

The departing point for the first solution S1 is the unsatisfactory generic solution
U1 based on a Σ-protocol described in the previous section (see Section 4.1). The
problem with that solution was that a Σ-protocol is only an honest-verifier zero-
knowledge but not full zero-knowledge. This allows the coercer to force a specific
distribution of the challenges so that the actual proof transcripts cannot be simulated
for instances out of the language.

Luckily, we can easily solve this problem by using a full zero-knowledge inter-
active protocol for the language LE = {(ctxt,m) | ctxt encryption of m}. To do
so, we can use a well-known technique [60]: make the voter V commit to the chal-
lenge e before receiving anything from the voting device by using a perfectly hiding
commitment scheme Com = (Com.Gen,Com.Eval,Com.Open) (see Section 2.4). In
turn, the voting device VD will accept the challenge e only if it corresponds to the
commitment previously received from V .

The setup algorithm pms← Setup(λ) runs Com.Gen(λ) resulting in public com-
mitment scheme parameters (pmsCom,MCom,RSCom, CCom) and generates public-key
encryption scheme parameters E.KG(λ) resulting in key pair (pk, sk) for the encryp-
tion scheme E, along with spaces ME, CE,RSE. Note that the secret key sk is kept
private. Then it defines challenge space for the Σ-protocol Chl ⊆ME ⊆MCom and
sets public parameters as follows:

pms = (pmsCom,MCom,RSCom, CCom, pk,ME, CE,RSE,Chl)

4.2. Solution S1: committing to challenges 51

The voting protocol (bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, ∅) with coerc = ∅
works as described in Figure 4.2.

VD(pms) V(pms,m)

e
$← Chl

r̂
$← RSCom

cmt← Com.Eval(e; r̂)
m, cmt←−−−−−−−−

If m /∈ME, set bVD = 0 and abort.

r
$← RSE

ctxt← E.Enc(m, r)
(com, op)← Σ1(m, ctxt, r)

ctxt, com−−−−−−−−→
e, r̂←−−−−−−−−

If


e /∈ Chl or
r̂ /∈ RSCom or
1 ̸= Com.Open(cmt, e, r̂)

set bVD = 0 and abort.
z← Σ2(e, r, op)
bVD = 1

z−−−−−−−−→
Set bV = 1 if and only if:

⊤ ← Verify(ctxt,m, com, e, z)

Figure 4.2: The voting protocol from solution S1.

If bVD = 1, then the voting device VD accepts the interaction as correct. Sim-
ilarly, if bV = 1, the voter V trusts that the ballot contains the intended option.
The vote is only deemed valid when bV = bVD = 1. Otherwise, whenever bVD = 0 -
the voting device VD aborts the vote-casting procedure, and if bV = 0 - the voter
complains to authorities which invalidates the vote.

Following the notation introduced in Section 3.3, we have randV = (e, r̂) and
Trc = (m, ctxt, com, e, z, cmt, r̂, bVD, bV).

4.2.1 Security Analysis Of The Protocol

Theorem 4.2.1 (Solution S1 achieves CAI). Assuming the special soundness of the
Σ-protocol for RE and the perfect hiding property of Com, the protocol described
in Figure 4.2 achieves the Cast-as-Intended (CAI) property (Definition 7).

Proof. Remember that the CAI property is satisfied if the probability of Cheat is

52 Chapter 4. Instantiations Of CR-CAI Solutions

negligible in the security parameter λ, where Cheat is defined as follows:

Cheat =



pms← Setup(λ)

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, ∅)
ctxt ∈ Trc

bV = 1 (voter accepts the proof)

m ̸= Dec(ctxt, sk) (but ctxt does not contain the intent)

Since the commitment scheme Com is perfectly hiding, the voting device VD
does not gain any information on the challenge e before choosing the first message
com of the Σ-protocol. In such a case, the protocol is a zero-knowledge proof with
soundess error 1

|Chl| ∈ negl(λ) (see for instance Theorem 6.5.2 in [60]). Therefore, we
directly get that the probability of Cheat happening is negligible in λ, which implies
that a transcript for an out-of-the-language instance (e.g., ctxt encrypts m′ instead
of m) will not be accepted: i.e., bV ̸= 1.

Theorem 4.2.2 (Solution S1 achieves CR). Assuming the special honest-verifier
zero-knowledge property of the Σ-protocol for RE, the IND-CPA security of E and
the binding property of Com, the protocol described in Figure 4.2 achieves the
Coercion-Resistance (CR) property (Definition 8).

Proof. Other than choosing its preferred voting option mC, the coercer C may even-
tually force the voter to deviate from the prescribed execution of (some of) the
steps in the voting protocol. This part of the coercion may affect the distribution
of the elements e, r̂, cmt, which are the only values generated/sent by the voter. We
will model this fact with three functions Fe, Fr̂, Fcmt that describe how these three
elements are to be computed by the coerced voter. These functions may depend
on the voting option mC and values previously exchanged during the protocol. For
instance, Fe might be a function of (mC, ctxt, com, cmt).

Let us consider first coercions where the voter is forced to choose e or r̂ (in round
3 of the protocol Vote) as a function of the values com, ctxt sent by VD in round 2.
This means the value cmt sent by V in round 1 has been computed before the values
e, r̂ unless the value com has been guessed in advance, which happens with negligible
probability. In such a situation, it must be 1 ̸= Com.Open(cmt, e, r̂); otherwise, such
a coercer could be used to break the binding property of the commitment scheme
Com. Therefore, the CR experiment for these coercions will lead to VD rejecting
the Vote protocol without answering the final z and setting bVD = 0. Thus, the CR
experiment will abort.

For the rest of coercions, the first execution of the Vote protocol results in ctxt(0)

being an encryption of mC, where both mC and ctxt(0) are part of Trc(0).
The not-coerced execution of Vote run by Sim1 with input message m, results in

ctxt(1) being an encryption of m, where both m and ctxt(1) are part of Trc. Finally,
what Sim2 does the following:

1. since now the values of e, r̂ do not depend on the values com, ctxt, val-
ues e(1), r̂(1), cmt(1) can be chosen first by Sim2, following the instructions in
Fcmt,Fe,Fr̂. Since we are assuming that the CR experiment does not abort,
these values satisfy 1 = Com.Open(cmt(1), e(1), r̂(1)).

4.2. Solution S1: committing to challenges 53

2. Sim2 runs the simulator SimRE associated to the zero-knowledge property of
the Σ-protocol for RE with input (mC, ctxt

(1)), which is an element out of
the language LE, for the challenge e(1). Let (com(1), e(1), z(1)) be the output of
SimRE .

3. Sim2 ends by defining Trc(1) = (mC, ctxt
(1), com(1), e(1), z(1), cmt(1), r̂(1)).

The computational indistinguishability between the distributions of view(0) and
view(1) is directly implied by the zero-knowledge property of the Σ-protocol for RE
and the IND-CPA security of E, as stated in Lemma 2.5.1.

4.2.2 Detailed Protocol For ElGamal Ciphertexts

Now we describe an instantiation of the generic construction from Figure 4.2 with
the ElGamal public key encryption [54] and the Pedersen commitment [90] schemes.
Also, we show how one can fake the transcript after the voting.

Recall that the ElGamal encryption scheme is a public-key encryption scheme
(see Section 2.3.1) instantiated over a cyclic group Gq of order q with generator
g, where the decisional Diffie-Hellman (DDH) problem is believed to be hard (see
Section 3). The default spaces for the messages, ciphertext, and randomness are G,
G, and Zq respectively: i.e., ME = G, CE = G,RSE = Zq.

We will use the Pedersen commitment scheme with a commitment key h = (G, h),
where the element h is a generator of the group G created in a verifiable manner.
By default, the parameters include the commitment key, the group and the group
generator (i.e., pmsCom = (G, h, g)), and both the message and randomness spaces
are equal to Zq: i.e., MCom = Zq,RSCom = Zq.

Thus, the public parameters are pms = (G, h, pk, g,Zq).
The resulting protocol, with four rounds of communication, works as described

in Figure 4.3.

To fake a transcript for the coercer after voting, the voter must select z∗
$← Zq at

random, then compute com∗ = (a∗1, a
∗
2) ← (gz

∗
c−e1 , pkz

∗
(c2
mC

)−e). The resulting tran-
script (cmt, ctxt, com∗, e, r̂, z∗) would be indistinguishable from the real transcript,
even though ctxt encrypts the voter’s intent m instead of the coercer’s wish mC.

We implemented the solution S1 in Rust for four different cyclic groups: two
groups of integers (based on safe primes of 2048 and 3072 bits, respectively) and two
Twisted Edwards elliptic curves (Curve25519 and Ed448-Goldilock, respectively).
According to NIST1 recommendations, the estimated security strength for factoring
discrete logarithms in the group of 2048 bits is 112 and 128 for groups of 3072 bits.
The selected elliptic curves Curve25519 and Ed448-Goldilock are estimated to have
security strengths of approximately 126 and 223, respectively.

The tests were performed on an Intel Core i7-1165G7 CPU. Typical performance
results are presented in Table 4.1. As expected, elliptic curves demonstrate better
performance results due to the smaller element size. Nevertheless, the protocol is
lightweight and would not pose usability issues if used in practice for any of the
presented groups.

1The abbreviation NIST stands for the National Institute of Standards and Technology. It is
an agency of the United States Department of Commerce founded in 1901 that aims to promote
security standards and guidelines.

54 Chapter 4. Instantiations Of CR-CAI Solutions

VD(pms) V(pms,m)

e, r̂
$← Zq

cmt← ge · hr̂
m, cmt←−−−−−−−−

If m /∈ G, set bVD = 0 and abort.

r, t
$← Zq

ctxt = (c1, c2)← (gr,m · pkr)
com = (a1, a2)← (gt, pkt)

ctxt, com−−−−−−−−→
e, r̂←−−−−−−−−

If


e /∈ Zq or
r̂ /∈ Zq or
cmt ̸= ge · hr̂

set bVD = 0 and abort.
z← t + e · rmod q
bVD = 1

z−−−−−−−−→
Set bV = 1 if and only if:

gz = a1 · ce1 and pkz = a2 ·
(
c2
m

)e
Figure 4.3: The ElGamal instantiation of the solution S1.

Steps \ Group
p = 2q + 1

p is 2048 bits
q is 2047 bits

p = 2q + 1
p is 3072 bits
q is 3071 bits

Elliptic curve
Curve25519

Elliptic curve
Ed448

(Goldilocks)
Step 1:

V computes cmt
(commits to e)

3.039102ms 8.510232ms 82.335µs 419.701µs

Step 2:
VD starts the proof
(gets ctxt and com)

12.503429ms 34.602619ms 481.415µs 2.347005ms

Step 4:
VD finishes the proof

(computes z)
2.919297ms 9.618284ms 49.082µs 316.121µs

Step 5:
V runs Verify

(verifies the proof)
11.72786ms 33.579814ms 183.512µs 1.406092ms

V ’s total time 14.766962ms 42.090046ms 265.847µs 1.825793ms
VD’s total time 15.422726ms 44.220903ms 530.497µs 2.663126ms

Table 4.1: Performance results of S1 implementation in different groups.

4.3. Unsatisfactory solution U2 55

4.3 Unsatisfactory Solution U2

Before describing the second solution S2, we recall the original OR-proof idea from
Section 1.1.3.4 as it will be the basis for our second coercion-resistant cast-as-
intended protocol, see Figure 4.4 for details.

Recall a public-key encryption scheme E from Section 2.3 that consists of three
algorithms (E.KG,E.Enc,E.Dec). Then define an OR-relation that we wish to prove
using Σ-protocol ⟨VD,V⟩ between the voter and the voting device for some one-way
function OWF:

ROR = {(ctxt,m, y) | ctxt encrypts m OR I know x s.t. y = OWF(x)}

The voting device VD uses the simulator Sim of the Σ-protocol to create a tran-
script for the statement with an unknown witness (i.e., I know x s.t, y = OWF(x))
for a randomly sampled challenge e1. Then it runs the first step of the Σ-protocol
for the other statement (i.e., ctxt encrypts m) for which it knows the witness x (i.e.,
randomness r used to compute ctxt). Thus after the first step, the voting device
VD obtains (com1, z1)← Sim(y, e1) and (com0, op0)← Σ1(ctxt,m, r).

In the interactive case, the voting device sends com0, com1 to the voter V , which
replies with a challenge e ∈ Chl. However, in the non-interactive proof, the voting
device computes the challenge e by applying a Fiat-Shamir transformation to values
y, com0, com1 using a collision-resistant hash HOR : {0, 1}∗ → Chl. After obtaining
the value e, the voting device computes a challenge to the non-simulated transcript
as e0 ← e ⊕ e1 and finishes the Σ-protocol z0 ← Σ2(e0, op0, r), where ⊕ is an XOR
operation. The resulting proof π is (com0, e0, z0, com1, e1, z1).

To verify the proof, the voter V will need to validate both Σ-proofs (com0, e0, z0)
and (com1, e1, z1) from the proof π and then ensure that e0 ⊕ e1 = e.

Hence, the resulting protocol is simple and described in Figure 4.4. During the
first round, the voter samples a trapdoor x and applies one-way function OWF to
obtain y. Then it sends y and the selected option m to the voting device, which
replies with a non-interactive OR-proof of the form: “ctxt encrypts m OR I know
x s.t. y = OWF(x)”.

We denote as pms all public parameters required for the public-key encryption
scheme E and a Σ-protocol. Those parameters might include the mathematical
group, group generator, hash functions, etc.

The OR-proof proposed in Figure 4.4 achieves receipt-freeness since a voter (who
knows the trapdoor x) can simulate proof. However, it is not coercion-resistant as
two-round protocols cannot simultaneously satisfy coercion-resistance and cast-as-
intended definitions, which was proven in Section 3.5 Recall that a coercer can
generate an instance (x, y) and force the voter to use y without knowing the corre-
sponding trapdoor x. Since OWF is a one-way function, the chance that the voter
would guess x and simulate the transcript is negligible.

56 Chapter 4. Instantiations Of CR-CAI Solutions

VD(pms) V(pms,m)

x
$← X

y = OWF(x)
m, y←−−−−−−−−

r
$← RSE

ctxt← E.Enc(m, r)
(com0, op0)← Σ1(m, ctxt, r)

e1
$← Chl

(com1, z1)← Sim(y, e1)
e← HOR(y, com0, com1)
e0 ← e⊕ e1
z0 ← Σ2(e0, r, op0)
π ← (com0, com1, e0, e1, z0, z1)

ctxt, π−−−−−−−−→
Accept if all checks hold:

⊤ ← Verify(ctxt,m, com0, e0, z0)
⊤ ← Verify(y, com1, e1, z1)

e0 ⊕ e1 = HOR(y, com0, com1)

Figure 4.4: OR proof for proving the ciphertext encrypts the intended message.

4.4 Solution S2: Adding Interactive Proof Of The

Trapdoor Knowledge

The departing point for the solution S2 described in Figure 4.5 is the unsatisfactory
OR-proof-based solution U2 described in Section 4.3. The problem with U2 was that
the coercer could give the voter only y (and optionally a non-interactive proof of x
knowledge) without revealing x, which would prevent the voter from simulating the
transcript.

However, we can easily fix U2 with the idea proposed in [50]. The solution
is to add a proof of knowledge of x ∈ X but ensure that such proof cannot be
pre-computed by the coercer in advance. We require interaction between VD and
V . However, a standard Σ protocol has only an honest verifier zero-knowledge,
which is not enough because the verifier, VD in this case, can be malicious. Hence,
we cannot assume that the resulting proof is zero-knowledge and leaks nothing
about the trapdoor x, which is bad for cast-as-intended verifiability. Our solution
is a modified interactive protocol, which combines Fiat-Shamir for a standard Σ-
protocol with a random challenge aux; it enjoys the soundness and the full zero-
knowledge in the Random Oracle Model. As a result, we need a Σ-protocol ⟨P, V⟩
for the relation ROWF = {(x, y) ∈ X × Y | y = OWF(x)} with the challenge space
ChlOWF ⊆ X (with size exponential in λ) and a collision-resistant hash function
defined as HOWF : {0, 1}∗ → ChlOWF. Additionally, we require a collision resistant
hash function H : {0, 1}∗ → CCom, where CCom is an appropriate commitment space.

Since now both the voter V and the voting device VD run Σ-protocols, we will

4.4. Solution S2: adding interactive proof of the trapdoor knowledge 57

use the superscript of a player to differentiate between them. Thus, the voter V
would run ΣV = (ΣV1 ,Σ

V
2) to prove the trapdoor x knowledge, while the voting

device VD would use ΣVDOR = (ΣVD1,r ,Σ
VD
2,r ,Σ

VD
1,x ,Σ

VD
2,x) and a collision-resistant hash

HOR : {0, 1}∗ → Chl to non-interactively prove that it either knows the randomness
r or the trapdoor x. To simulate proof of the trapdoor x knowledge, the VD would run
SimVDx . Similarly, it would run SimVDr to simulate the knowledge of the randomness
r.

VD(pms) V(pms,m)

x
$← X

y = OWF(x)
(com, op)← ΣV1 (y, x)

cmt = H(com)
m, y, cmt←−−−−−−−−

If m /∈ME,
set bVD = 0 and abort.

r
$← RSE

ctxt← E.Enc(m, r)

aux
$← {0, 1}∗

ctxt, aux−−−−−−−−→
c← HOWF(y, com, aux)

z← ΣV2 (c, x, op)
z, com←−−−−−−−−

If cmt ̸= H(com),
set bVD = 0 and abort.

c← HOWF(y, com, aux)
If ⊥ ← Verify(y, com, c, z),

set bVD = 0 and abort.

e1
$← ChlOR

(com0, op0)← ΣVD1,r (m, ctxt, r)
(com1, z1)← SimVDx (y, e1)
e← HOR(y, ctxt, com0, com1)
e0 ← e⊕ e1
z0 ← ΣVD2,r (e0, r, op0)
π ← (com0, com1, e0, e1, z0, z1)
bVD = 1

π−−−−−−−−→
Set bV = 1 if and only if:

⊤ ← Verify(ctxt,m, com0, e0, z0)
⊤ ← Verify(y, com1, e1, z1)

e0 ⊕ e1 = HOR(y, ctxt, com0, com1)

Figure 4.5: The voting protocol from solution S2.

The setup algorithm pms← Setup(λ) runs E.KG(λ) resulting in key pair (pk, sk)

58 Chapter 4. Instantiations Of CR-CAI Solutions

for the encryption scheme E, along with spaces ME, CE,RSE. Note that the secret
key sk is kept private. Then it defines challenge space for the Σ-protocol ChlOR ⊆ME
and sets public parameters as follows:

pms = (pk,ME, CE,RSE,ChlOWF,ChlOR,HOWF,HOR,H)

The voting protocol (bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, ∅) with coerc = ∅
works as described in Figure 4.5.

If bVD = 1, then the voting device VD accepts the interaction as correct. Sim-
ilarly, if bV = 1, the voter V trusts that the ballot contains the intended option.
The vote is only deemed valid when bV = bVD = 1. Otherwise, whenever bVD = 0 -
the voting device VD aborts the vote-casting procedure, and if bV = 0 - the voter
complains to authorities which invalidates the vote.

Following the notation introduced in Section 3.3, we have randV = (x, y, com, op)
and Trc = (y,m, ctxt, e, z, π, bVD, bV).

4.4.1 Security Analysis Of The Protocol

Theorem 4.4.1 (Solution S2 achieves CAI). Assuming the honest verifier zero-
knowledge of the ΣV-protocol for ROWF, the special soundness of the ΣVDOR-protocol
for ROR, and that OWF is a one-way function and the output com of the 1st round
of ΣV-protocol is a uniform element in a set with exponential size in the security
parameter λ, the protocol described in Figure 4.5 achieves the Cast-as-Intended
(CAI) property in the Random Oracle Model as per Definition 7.

Proof. Remember that the CAI property is satisfied if the probability of Cheat is
negligible in the security parameter λ, where Cheat is defined as follows:

Cheat =



pms← Setup(λ)

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, ∅)
ctxt ∈ Trc

bV = 1 (voter accepts the proof)

m ̸= Dec(ctxt, sk) (but ctxt does not contain the intent)

Since com is a uniform element in a set with exponential size and H behaves as
a random oracle, the polynomial-time VD obtains no information on com from the
hash cmt. Thus, the auxiliary string aux is selected independently of com.

The three-moves protocol in Steps 1, 2, and 3 where V proves to VD the knowl-
edge of x is full zero-knowledge (even for malicious verifiers VD) in the Random
Oracle Model. In a nutshell, for any verifier (in this case VD′) and any choice of
aux (possibly depending on y and cmt), a transcript of this sub-protocol can be
simulated for any y, without knowing x as following: choose z, c at random, simulate
appropriate com (using the HVZK property of the underlying ΣV protocol), then
compute cmt = H(com) and, for any aux picked by VD′, program random oracle of
HOWF s.t. HOWF(y, cmt, aux) = c.

Zero-knowledge of the proof generated by V and the fact that OWF is a one-way
function imply that the voting device does not learn the trapdoor x. In turn, it

4.4. Solution S2: adding interactive proof of the trapdoor knowledge 59

means that, for passing voter’s verification, the voting device must generate a valid
OR proof without knowing x and so, without knowing the witness for one of the two
statements of the OR language. The special soundness property of the ΣVDOR-proof
for ROR guarantees soundness of the resulting OR proof with the soundness error

1
|ChalOR|

∈ negl(λ) (see for instance Proposition 6.2.3 in [60]).
Therefore, the probability of Cheat happening is negligible in λ, which implies

that a transcript for an out-of-the-language instance (e.g., ctxt encrypts m′ instead
of m) will not be accepted: i.e., bV ̸= 1.

Theorem 4.4.2 (Solution S2 achieves CR). Assuming the zero-knowledge of ΣVDOR-
protocol for ROR, special soundness property of the ΣV-protocol for ROWF, collision-
resistance of the hash functions H, HOR and HOWF and the IND-CPA security of E
the protocol described in Figure 4.5 achieves the Coercion-Resistance (CR) property
as per Definition 8.

Proof. Other than choosing its preferred voting option mC, the coercer C may even-
tually force the voter to deviate from the correct execution of (some of) the steps
in the voting protocol.

Recall that the voter only generates/sends the following values: (cmt, y, com, z).
Because (y, cmt) are sent in the first round, the coercer cannot make them depen-
dent on what is sent later. To pass the voting device’s check, com must be such
that H(com) = cmt, which means it cannot depend on anything sent in the second
round. Hence, the coercer cannot enforce dependency between the voter V values
(cmt, y, com) and the voting device choice of auxiliary string aux in Step 2.

Moreover, in Step 3, the voter must successfully reply to any aux sent by the
voting device. Otherwise, a voting device would abort the execution of the voting
protocol. Therefore, the voter must know the witness x, or else the special soundness
property of the underlying proof of x knowledge would be broken.

Now we show how to simulate the transcript for the coercer. The coerced exe-
cution of the Vote protocol results in ctxt(0) being an encryption of mC, where both
mC and ctxt(0) are part of Trc(0). The not-coerced execution of Vote with new in-
structions provided by Sim1 for the voter’s voting option m, results in ctxt(1) being
an encryption of m, where both m and ctxt(1) are part of Trc. Then, Sim2 does the
following:

1. sets values (cmt, y, com, aux, z) to be identical in both views;

2. runs ΣVD1,x (y, x) to obtain (com
(1)
1 , op

(1)
1).

3. runs the simulator SimVDr associated to the zero-knowledge property of the

ΣVDOR-protocol for a randomly selected challenge e
(1)
0 to obtain (com

(1)
0 , z

(1)
0).

4. computes e(1) = HOR(y, ctxt(1), com
(1)
0 , com

(1)
1).

5. sets e
(1)
1 ← e(1) ⊕ e

(1)
0

6. runs ΣV2,x(e
(1)
1 , x, op

(1)
1) to get z

(1)
1 .

7. defines π(1) as (com
(1)
0 , e

(1)
0 , z

(1)
0 , com

(1)
1 , e

(1)
1 , z

(1)
1).

60 Chapter 4. Instantiations Of CR-CAI Solutions

Sim2 ends by defining Trc(1) = (cmt, y, com, ctxt(1), aux, z, π(1), bVD, bV). The
computational indistinguishability between the distributions of view(0) and view(1) is
directly implied by the zero-knowledge property of the non-interactive Σ-protocol
for ROR and the IND-CPA security of E.

4.4.2 Detailed Protocol For ElGamal Ciphertexts

VD(pms) V(pms,m)

x, t
$← Zq

y← gx

com← gt

cmt = H(com)
m, y, cmt←−−−−−−−−

If m /∈ G, set bVD = 0 and abort.

aux
$← {0, 1}∗

r
$← Zq

ctxt = (c1, c2)← (gr,m · pkr)
ctxt, aux−−−−−−−−→

c = H(y, com, aux)
z← t + c · x mod q

z, com←−−−−−−−−
If cmt ̸= H(com)

set bVD = 0 and abort.
c = H(y, com, aux)
If gz ̸= com · yc

set bVD = 0 and abort.

t0, z1, e1
$← Zq

a0 = (a01, a02)← (gt0 , pkt0)
a1 ← gz1 · y−e1
e = H(y, ctxt, a0, a1)
e0 = e− e1 mod q
z0 = t0 + e0 · r
π = (z0, z1, e0, e1)
bVD = 1

π−−−−−−−−→
a0 = (gz0 · c−e01 , pkz0 ·

(
c2
m

)−e0)
a1 = gz1 · y−e1

Set bV = 1 if and only if:
e0 + e1 mod q = H(y, ctxt, a0, a1)

Figure 4.6: The ElGamal instantiation of the solution S2.

Now we describe an instantiation of the generic construction from Figure 4.5 with
the ElGamal public key encryption [54]. Recall that the ElGamal encryption scheme

4.4. Solution S2: adding interactive proof of the trapdoor knowledge 61

is a public-key encryption scheme (see Section 2.3.1) instantiated over a cyclic group
Gq of order q with generator g, where the decisional Diffie-Hellman (DDH) prob-
lem is believed to be hard (see Section 3). The default spaces for the messages,
ciphertext, and randomness are G, G, and Zq respectively: i.e., ME = G, CE =
G,RSE = Zq. For the simplicity of notations, both hash functions HOR and HOWF

are defined as H : {0, 1}∗ → Zq. Also, we will define OWF function as follows
OWF(x) : y = gx, therefore X = Zq and Y = G. Thus, the public parameters are
pms = (G, pk,Zq, g,OWF,H).

The resulting protocol, with four rounds of communication, works as described
in Figure 4.6.

To fake a transcript for the coercer after voting, the voter must use the same

(aux, cmt, com, z), then select z0, e0, t1
$← Zq at random, and compute a0 = (gz0 ·

c−e01 , pkz0 ·
(

c2
mC

)−e0
) and a1 = gt1 . Then define e = H(y, ctxt, a0, a1), set the challenge

e1 ← e − e0 mod q and compute z1 = t1 + e1 · x mod q. Finally, the voter sets
π = (z0, z1, e0, e1). The resulting transcript (mC , cmt, y, com, ctxt, aux, z, π) would
be indistinguishable from the real transcript, even though ctxt encrypts the voter’s
intent m instead of the coercer’s wish mC.

Steps \ Group
p = 2q + 1

p is 2048 bits
q is 2047 bits

p = 2q + 1
p is 3072 bits
q is 3071 bits

Elliptic curve
Curve25519

Elliptic curve
Ed448

(Goldilocks)
Step 1:

V computes com and y
(start the proof)

7.384294ms 19.041588ms 1.079912ms 4.503275ms

Step 2:
VD computes ctxt and aux

(challenges V)
7.275616ms 19.799465ms 2.010838ms 11.971917ms

Step 3:
V computes z

(finishes the proof)
449.281µs 776.145µs 181.422µs 277.99µs

Step 4:
VD computes π

(finishes the OR-proof)
19.23375ms 54.285146ms 2.117673ms 13.602927ms

Step 5:
V runs Verify

(verifies the proof)
20.337231ms 55.966615ms 2.214394ms 14.064987ms

V ’s total time 28.170806ms 75.784348ms 3.475728ms 18.846252ms
VD’s total time 26.509366ms 74.084611ms 4.128511ms 25.574844ms

Table 4.2: Performance results of S2 implementation in different groups.

We implemented the solution S2 in Rust for four different cyclic groups: two
groups of integers (based on safe primes of 2048 and 3072 bits, respectively) and two
Twisted Edwards elliptic curves (Curve25519 and Ed448-Goldilock, respectively).
According to NIST recommendations, the estimated security strength for factoring
discrete logarithms in the group of 2048 bits is 112 and 128 for groups of 3072 bits.

62 Chapter 4. Instantiations Of CR-CAI Solutions

The selected elliptic curves Curve25519 and Ed448-Goldilock are estimated to have
security strengths of approximately 126 and 223, respectively.

The tests were performed on an Intel Core i7-1165G7 CPU. Typical performance
results are presented in Table 4.2. As expected, the S2 protocol is a bit slower than
S1 due to the computation of a heavier OR-proof. Nevertheless, it would not pose
usability issues if used in practice for any of the presented groups.

Chapter 5

Post-Quantum Solution

In this chapter, we explain how to translate the solutions presented in the previous
chapter to the post-quantum settings. We start by highlighting a usability problem
- the possibility of multiple protocol repetitions - that arises if we simply switch to
lattice-based primitives without any adjustments in Section 5.1. Then, in Section
5.2, we give the lattice-based cryptography basics. After that, in Section 5.3, we
propose a generic transformation, which would solve the need for protocol re-runs.
We prove that transformation is secure in Section 5.4 and discuss the possible im-
provements and extensions in Section 5.5. Finally, in Section 5.6, we present an
implementation to confirm that our proposal is efficient.

5.1 Why We Cannot Use Our Solutions Directly

In Lattice Settings?

Standard cryptography relies on mathematical problems (like discrete logarithm,
DDH, factoring, etc.) requiring so much computing force to solve them that (with
the correct parameters) they are computationally unbreakable. However, the pend-
ing arrival of quantum algorithms will change that and drastically reduce the solving
time for these problems. Therefore, the cryptographic world is looking for quantum-
resistant replacements.

One of the most promising settings for achieving security in front of quantum
computers is lattice-based cryptography. There are many algorithmic problems re-
lated to lattices, some of which are hard to solve even for quantum computers.
Among many, there is the Shortest Vector Problem (SVP), the Shortest Indepen-
dent Vector Problem (SIVP), the Bounded Distance Decoding Problem (BDD), etc.
What is more, for most cryptographic schemes, we have no proof that a random
instance of a problem is as hard to solve as the hardest one. Hence, if we derive a
random problem instance, some may be easier to solve than others. However, for
lattices, it was proven that the average case is just as hard to solve as the worst
case. It means that for an adversary to succeed, it must be capable of solving the
problem for all instances with non-negligible probability. This gives lattice-based
cryptography strong security guarantees.

The rise of lattice-based cryptography started with the work of Ajtai, who showed

64 Chapter 5. Post-Quantum Solution

that it is possible to construct one-way functions based on the worst-case hardness
of some lattice problems [8]. However, the early primitives were highly inefficient.
For example, evaluating a collision-resistant hash function required O(n2) time and
space [8] (where the lattice dimension n is typically selected as 29 or 210), and in
public-keys cryptosystems, the keys were the order of megabytes [9]. It was not until
2005, when the new hardness assumption - Learning With Errors - appeared [93],
that lattice-based cryptography became efficient and became wide-spread research
topic. It is believed that those problems are hard to solve even for a sizable quantum
computer.

When trying to instantiate the solutions S1 and S2 in lattice-based settings, we
need to use a lattice-based Σ protocol to prove that ctxt contains the option m
and to prove knowledge of a pre-image x of y = OWF(x). However, in the lattice-
based setting, Σ-protocols are not trivial to construct: the security of the Learning
With Errors (LWE) and the Short Integer Solution (SIS) problems require that
the solution not only has a specific structure but also is small. It is a significant
difference from the cyclic groups we have dealt with till now.

To understand how the “must be small” requirement affects the proof, consider
a typical discrete logarithm-based identification scheme, which works fine in the
standard settings (rings and cyclic groups) from Figure 5.1. Now we try to convert
this scheme into a similar one in the lattice-based settings following the example
used by Lyubashevsky in [79].

First of all, the goal of the protocol is to prove to the verifier V that the prover P
knows the secret key sk ∈ Zq that corresponds to the public key pk = gsk ∈ G. The
public parameters contain a public key pk, the cyclic group G defined over finite
field Fq, the cyclic group generator g, and the cyclic group order q.

P(sk, pms) V(pms)

x
$← Zq

y← gx mod q
y−−−−−−−−→

c
$← Zq

c←−−−−−−−−
z← sk · c + x mod q

z−−−−−−−−→
Accept iff:
gz = y · pkc

Figure 5.1: Standard discrete logarithm-based identification scheme.

As you can see, the prover P replies with a re-randomized discrete logarithm
problem instance z ← sk · c + x mod q, which does not expose sk. If one would
send only sk · c, it would immediately reveal the secret; hence a masking term x
is necessary. Another important observation is that we can safely pick x uniformly
from Zq and expect that the result z, as well as operation sk · c to belong to the
same group Zq.

5.1. Why we cannot use our solutions directly in lattice settings? 65

Suppose we have mapped the cyclic group G, the finite field Fq, and all the group
operations to the corresponding analogs from lattice-based cryptography based on
the hardness of the SIS problem. Can we essentially run the same identification
protocol? Unfortunately, no.

It turns out that in the lattice settings, we cannot hide the secret sk using the
same approach. Recall that standard cryptography works with a field Zq closed
under addition and multiplication. Yet, the lattice-based one deals with a subset of
a ring (it includes only elements with a small Euclidian norm), which is not closed
under addition or multiplication.

So, for a lattice-based case, one can end up with z that does not have a small
norm: i.e., outside of the ring subset. However, we can prove the protocol security
only if z is small because, only in this case, breaking the scheme would lead to solving
an instance of the SIS problem, which is believed to be hard in lattices. Making z
small requires both c and x being small. Therefore, x might not completely hide the
secret, which unavoidably leaks parts of it after several protocol repetitions.

A solution to this problem was found by Lyubashevsky in [79]. He proposed the
smart idea of a (possibly) aborting prover, using rejection sampling to ensure that
the answer’s distribution is independent of the secret. So, whenever the z might leak
the secret sk, the prover does not return it.

The rejection sampling allowed to ensure correctness and security and led to
many fundamental cryptographic constructions: canonical identification scheme
and signatures (e.g. [79]), zero-knowledge proofs (e.g. [80]), blind signatures (e.g.
BLAZE+ [10]), and others.

The main downside of the idea is the possibility of multiple protocol repetitions
that may be very undesirable in practical applications. Real people expect to interact
with a system only once and always receive the (correct) result at the end. Hence, an
unpredictable number of repeats due to rejection sampling makes deniable protocols
unpractical, at least for e-voting.

In our settings, the voting device is malicious and needs to prove to the voter that
the ciphertext contains the intended voting option. However, in the lattice-based
protocol, the voting device might intend to always abort the protocol in hopes that
the voter would lose patience and leave without verifying the CAI property.

Unfortunately, eliminating aborts in lattice-based zero-knowledge proofs is quite
challenging. Behnia et al. [16] studied rejection conditions in Lyubashevsky’s canon-
ical identification scheme and found a way to remove one of the two conditions.
However, they concluded that full elimination of rejection sampling is problematic.

An alternative is to reduce the occurrence of protocol re-runs. One of the simplest
methods to ensure the protocol terminates after a fixed number of repetitions M ≥ 2
(with a high probability) is to use a large enough distribution over Z. However, this
comes at the cost of increased execution time and proof size.

Another method to decrease the occurrence of aborts is to run several protocols
in parallel. Usually, parallel repetition aims to reduce the knowledge error rather
than the completeness error. However, we can use it for decreasing rejects as well.
Prover starts N independent instances of the protocol and sends N commitments to
the verifier, replying only with the first proof that did not cause an abort. While this
increases the probability of successful protocol termination, it significantly increases

66 Chapter 5. Post-Quantum Solution

communication and computational complexity (by a factor of N) and does not
eliminate aborts completely.

Another work by Attema et al. [14] proposes a s-out-of-t threshold parallel rep-
etition, where the verifier accepts if s out of t of the parallel instances are accepting.
Unfortunately, the completeness error is still ≥ ρt, where ρ is the completeness er-
ror of a single protocol run. Therefore, achieving a negligible probability of aborts
would require a substantial t and would result in an increased proof size and proving
time.

An improvement over parallel repetition — a generic construction for reducing
aborts in 3-move protocols — was proposed in [10]. This construction builds on
top of the idea of ℓ parallel repetitions and uses (unbalanced) binary hash trees to
reduce the size of the first answer, from ℓ-commitments to a tree root.

An alternative to the aborts approach is probabilistically checkable proofs (PCPs)
and interactive oracle proofs (IOPs) cleverly combined with lattice-based algebraic
techniques. For example, [22] presents a zero-knowledge system for proving knowl-
edge of Learning With Errors (LWE) pre-images, which does not involve aborts.
Unfortunately, this solution is more efficient than a general lattice-based system
(with aborts) only for some specific settings, for instance, when proving at the same
time knowledge of a lot of LWE pre-images with the same matrix A. In other cases,
the initial commitment and Merkle paths result in bigger proofs than possible alter-
natives, especially considering that we need several iterations to achieve negligible
soundness.

All in all, the currently most efficient and compact interactive zero-knowledge
systems in the lattice-based setting are those with aborts, and (so far) there is no
efficient way to eliminate repetitions therein.

5.2 Basics Of Lattice-Based Cryptography

We will use bold to denote vectors (column vectors by default) and bold capital

letters for matrices. Also, we write e
$← Zm

q to mean that the m components of
a vector e are chosen uniformly at random from Zq and independently from each
other.

As usual, we say that an infinity norm or ℓ∞-norm of a vector is the largest mag-
nitude among each element of the vector. For example, for a vector e = {−6, 0, 1},
the infinity norm is 6. We will denote it as ||e||∞ = 6.

For any positive integer β, we define the set [β] as {−β, . . . ,−1, 0, 1, . . . , β}. We

write e
$← [β]m or ||e||∞ ≤ β to indicate that a vector e of m elements is chosen in

such a way that each component is selected from [β] uniformly at random.

5.2.1 Polynomial Rings

The cryptography we used before is based on cyclic groups over Zq. Unfortunately,
lattice-based primitives are inefficient over Zq. For example, if we construct a public
key encryption scheme based on the LWE problem over Zq, we would need quite a
large ciphertext of the form (u, v) ∈ Zm

q × Zq for encrypting just one bit [78]. For

5.2. Basics of Lattice-based Cryptography 67

the concrete security parameters, say q ≈ 213 and m ≈ 700, we will get that only
u requires m log q ≈ 9100 bits. We can slightly reduce the ciphertext size at the
expense of the public key size, but ultimately we cannot make efficient primitives
over the group Zq. To build a better cryptographic primitive, we need to switch to
a different group - higher-degree polynomial rings.

The polynomial ring (Z[X],+,×) consists of the elements of the form a(X) =∑∞
i=0 aiX

i for ai ∈ Z and indeterminate X with the usual polynomial addition and
multiplication.

We denote the degree of the polynomial a(X) as deg(a), which is equal to the
largest i for which ai ̸= 0. We say that a(X) is monic if the biggest coefficient
adeg(a) = 1 and is irreducible if it cannot be written as a(X) = b(X)c(X), where
b(X), c(X) ∈ Z[X] are both polynomials of a smaller degree than a(X).

For cryptography, we focus only on (Rf ,+,×), where f ∈ Z[X] is a monic poly-
nomial of the degree n. Sometimes, we will refer to that ring as Rf = Z[X]/⟨f(X)⟩,
where Rf is a generalization of the q-ary integer lattices. Also, one can think of the
usual ring (Z,+,×) as a special instantiation of the ring (Rf ,+,×) where f = X
or f = X − α for α ∈ Z.

The elements of Rf are the polynomials a =
∑n−1

i=0 aiX
i, where ai ∈ Z. The

sum of two polynomials means simply summing the corresponding coefficients in Z
as a + b =

∑n−1
i=0 (ai + bi)X

i. Multiplication by scalar k is equivalent to multiplying
the vector by k: ka =

∑n−1
i=0 kaiX

i. The multiplication of two polynomials in Rf

means doing a normal polynomial multiplication followed by a reduction modulo
f . Reduction modulo f means a mod f = (bf + r) mod f = r, where b, r ∈ Rf

and deg(r) < n. We can use a simple algorithm for computing a reduction modulo
f - multiply f by an appropriate monomial αX i, subtract it from a to create a
polynomial of a smaller degree and continue until getting a polynomial with a degree
less than n.

To better understand the polynomial multiplication modulo f , consider the fol-
lowing example (2X2−1)(X2−X+2) mod (X3−X+1). First, we multiply polyno-
mials to obtain 2X4−2X3+3X2+X−2 mod (X3−X+1). Then we mulptiply f =
X3−X+1 by 2X to get 2X4−2X2+2X and subtract it from 2X4−2X3+3X2+X−2,
which gives us polynomial of a smaller degree −2X3+5X2−X−2 mod (X3−X+1).
However, −2X3 + 5X2 −X − 2 has the same degree as f , which means we should
repeat the process. This time we multiply f = X3 − X + 1 by −2, then subtract
the result from −2X3 + 5X2 − X − 2 to get 5X2 − 3X, which finally is of degree
smaller than f . Therefore, (2X2− 1)(X2−X + 2) mod (X3−X + 1) = 5X2− 3X.

One can simplify the process by observing that polynomial multiplication modulo
f can be written as a multiplication of a matrix Zn×n with a vector in Zn:

ab mod f = a(
n−1∑
i=0

biX
i) mod f =

n−1∑
i=0

(aX i mod f)bi

Since each aX i mod f is a polynomial of degree less than n, it can be interpreted
as a vector in Zn. Therefore, multiplication ab can be seen as a matrix-vector
multiplication.

Therefore, we can re-write our example (2X2−1)(X2−X+2) mod (X3−X+1) =
5X2 − 3X as:

68 Chapter 5. Post-Quantum Solution

−1 −2 0
0 1 −2
2 0 1

 ·
 2
−1
1

 =

 0
−3
5


From now on, we will use the following notation when referring to a vector of

polynomials:

a =

a1. . .
am

 ∈ Rm
f

Similarly for a matrix A of polynomials we will write:

A =

a1,1 . . . a1,m
.
an,1 . . . an,m

 ∈ Rn×m
f

One can compute different norms of a ring element f ∈ Rf , where f =
∑

i fiX
i

as follows:
ℓ1 : ||f ||1 =

∑
i

|fi|

ℓ2 : ||f ||2 = (
∑
i

|fi|2)1/2

ℓ∞ : ||f ||∞ = max
i
|fi|

5.2.2 The Ring Learning With Errors Problem

Most of the lattice-based cryptography is based on the Learning With Errors (LWE)
problem [93] presented in Definition 9 for a polynomial ring Rq,f , which is like the
ring Rf , but with coefficients in Zq instead of Z. On the high level, the problem
asks to distinguish between a randomly sampled vector b and the result of a vector
a multiplication with a short secret s blinded by random noise vector e.

In the original definition of the LWE problem, the error distribution was chosen
as rounded Gaussian to show that the average case of LWE is at least as hard as some
of the worst-case lattice problems. However, later it was shown to be unnecessary
[78]. One can use a uniform or binomial distribution to generate the errors since it
is much more efficient than the Gaussian distribution.

Definition 9 (The Ring Learning With Errors (RLWE) Problem). In the Ring
Learning with Errors problem RLWEm with parameter m ≥ 1, an adversary A tries
to distinguish between the two following distributions:

1. (a, as + e), where a
$← Rm

q,f , s
$← [β], and e

$← [β]m.

2. (a,b), where a
$← Rm

q,f and b
$← Rm

q,f

We say that an algorithm A has advantage ϵ in solving RLWEm problem if∣∣∣ Pr[b = 1|a $← Rm
q,f ; s

$← [β]; e
$← [β]m; b← A(a, as + e)]

− Pr[b = 1|a $← Rm
q,f ;b

$← Rm
q,f ; b← A(a,b)]

∣∣∣≥ ϵ

5.2. Basics of Lattice-based Cryptography 69

5.2.3 The Ring Short Integer Solution

One of the most fundamental computational tasks in lattices is finding a short non-
zero vector in a random lattice, known as the Short Integer Solution (SIS) problem,
which is stated in Definition 10 for a polynomial ring Rq,f . Informally, the problem
asks to find an integer linear dependence between a given set of vectors where the
integer scalars are all small.

It appeared in 1996, long before the LWE problem, but was not actively used
until it became possible to perform operations with lattices of high dimensions.
Similarly to the LWE, it has a reduction showing that a random instance of the SIS
problem is as hard as some of the worst-case lattice problems.

Definition 10 (The Ring Short Integer Solution (RSIS)). The Ring Short Integer
Solution problem RSISk,B with parameters k ≥ 1 and B > 0 is solved by finding a
short, non-zero vector s ∈ Rk+1

f such that (1, a⊺) · s ≡ 0 over Rq,f . We say that an
algorithm A has advantage ϵ in solving RSISk,B problem if

Pr[||s||2 ≤ B ∧ (1, a⊺) · s ≡ 0 ∧ s ̸= 0k+1|a $← Rk
q,f ; s← A(a)] ≥ ϵ

where 1, 0 ∈ Rf and 0k+1 ∈ Rk+1
f .

5.2.4 Error Distribution And Rejection Sampling

Error Distribution: Recall that, for sampling an RLWE tuple, we need to define
an error distribution [β]. The main challenge is to control the noise term size during
addition, multiplication, and other operations with RLWE samples. For example,
for correct decryption, the q must be large enough so that the accumulated error
does not wrap around modulo q. On the other hand, the bigger q is, the larger are
keys and ciphertexts.

For general cyclotomic rings Rq,f = Zq[X]/(f(X)) with f(X) being the monic
irreducible polynomial with degree n = ϕ(m), sampling error polynomials sometimes
can be challenging as the cyclotomic polynomial f(X) can have quite “irregular”
structure. Therefore, in practice power-of-two cyclotomics, where m = 2k for k ≥ 1
are preferable. Especially efficient arithmetics over the ring is achieved for f(X) =
Xn+1 because it allows us to use the classical n-dimensional Fast Fourier transform
(FFT) [82].

It turns out that for the power-of-two cyclotomics, the sampling of polynomial
coefficients directly is more efficient and secure. Since we also need to bound the
norm of error polynomials, we will use a uniform or binomial distribution instead of
a small one-dimensional discrete Gaussian as they give slightly better bounds.

For the implementation in Section 5.6 we use the same distribution [β] = {−1, 0, 1}
as in [23], where both ±1 have probability 5/16 and 0 has probability 6/16. Hence,

if v
$← [β]2, then for 0 < σ ≤ 1 we have:

Pr
[
||v||2 <

√
(1 + σ)

10

16
n
]
≥ 1− exp(−σ2

3

10

16
d)

70 Chapter 5. Post-Quantum Solution

Rejection Sampling: Sometimes we need to compute z = y + fr and do not
reveal r when outputting z. To remove any dependency of z and r, we use the
rejection sampling technique [79]. The rejection sampling technique can be realized
in one of two ways: (1) the masking vector is sampled uniformly from a bounded
region, or (2) the masking vector is sampled using a discrete Gaussian distribution.
In the lattices of high dimensions, the Gaussian sampling is far superior and gives
a more acceptable rejection probability.

Definition 11 (The discrete Gaussian distribution). The discrete Gaussian distri-
bution on Rk

f centered around v ∈ Rk
f with standard deviation σ > 0 is given

by

Dkn
v,σ(z) =

e−||z−v||
2
2/2σ

2∑
z′∈Rk

f
e−||z

′||22/2σ2

When v = 0 we refer to the distribution as Dkn
σ .

Lemma 5.2.1 (Bootle et al. [23], Lemma 2.3). Let z
$← Dkn

σ , where Dkn
σ is the

discrete Gaussian distribution on Rk
f centered around 0 ∈ Rk

f , then

Pr
[
||z||2 ≤ σ

√
2kn

]
≥ 1− 2− log(e/2)kn/4

Algorithm 1 RejSampl(z,v, σ)

u
$← [0, 1)

if u < 1
12

exp
(−2⟨z,v⟩+||v||2

2σ2

)
then

return 0
else

return 1
end if

Lemma 5.2.2 (Bootle et al. [23], Lemma 2.4). Let ρ : Rk
f → [0, 1] be a probabilistic

distribution such that, for some T > 0, ρ({v ∈ Rk
f | ||v||2 ≤ T}) ≥ 1− 2−101 and let

σ ≥ 5T . Sample v
$← ρ and y

$← Dkn
σ , set z = y+v, and run b← RejSampl(z,v, σ).

Then the probability that b = 0 is at least 1/12 − 2−104 and the distribution of
(v, z), conditioned on b = 0, is within statistical distance of 2−100 of the product
distribution ρ×Dkn

σ .

5.2.5 Lattice-Based Public Key Encryption Scheme

LetRq,f be the ring of integer polynomials modulo both f(x) = (xn+1) and q, where
n is the power of 2 and q is a sufficiently large public prime modulus such that q =
1 mod 2n. The additive homomorphic lattice-based encryption scheme proposed by
Lyubashevsky et al. in [81] is defined by a triple of algorithms (E.KG,E.Enc,E.Dec)
as follows:

5.2. Basics of Lattice-based Cryptography 71

E.KG: On input of the security parameter κ, the algorithm samples uniformly random

aE
$← Rq,f and draws two small elements s, e from the error distribution χ.

Then it sets pk = (aE, bE) = (aE, aE · s + e) ∈ Rq,f ×Rq,f and the secret key
as sk = s.

E.Enc: To encrypt an n-bit message z ∈ {0, 1}n (identified as a polynomial of degree
n − 1 with coefficients 0 or 1), the algorithm samples three random small
elements rE, eE,u, eE,v ∈ Rq,f from the error distribution χ. Then it computes
the encryption (u, v) = (aE · rE + eE,u mod q, bE · rE + eE,v + ⌊q

2
⌉z mod q) ∈

Rq,f ×Rq,f .
E.Dec: To recover the message z, the algorithm computes the following:

v − u · s = rE · bE + eE,v − s(aE · rE + eE,u) + ⌊q
2
⌉z mod q

= rE · (aE · s + e) + eE,v − s(aE · rE + eE,u) + ⌊q
2
⌉z mod q

= rE · e− s · eE,u + eE,v + ⌊q
2
⌉z mod q

≈ ⌊q
2
⌉z

A decryption error happens only if the coefficients of (rE · e− s · eE,u + eE,v) have
a magnitude greater than q/4.

We can generalize the cryptosystem to encrypt messages z ∈ {0, 1, . . . , k − 1}n.
For that will need to map the n-symbol message z to a polynomial of Rq,f by
scaling it with a factor of ⌊ q

k
⌉, instead of ⌊q

2
⌉. In the decryption step, the message

z can be recovered by rounding each coefficient of v − u · s back to i⌊ q
k
⌉ for i =

{0, . . . , k−1} whichever is closest modulo q. The resulting decryption will be correct
if the coefficients of (rE · e− s · eE,u + eE,v) ∈ Rq,f have magnitude less than q/2k.

5.2.6 Lattice-Based Proof Of A Short Integer Vector Knowl-
edge

The voting device VD needs to prove to the voter V that the ciphertext (u, v) is an
encryption of the plaintext z. If we write the RLWE encryption in matrix form, we
notice that proving knowledge of the plaintext is equivalent to proving knowledge
of rE = (rE,1, . . . , rE,n), eE,u = (eE,u,1, . . . , eE,u,1) and eE,v = (eE,v,1, . . . , eE,v,n).
However, that is equivalent to proving the knowledge of a small vector s with ∥s∥ ≤
β.



u1
...
un

v1
...
vn


= ⌊q

2
⌉



0
...
0
z1
...
zn


+



a1 −an · −a2
. . .

...
. . .

...
an an−1 · −a1
b1 −bn · −b2
. . .

...
. . .

...
bn bn−1 · b1





rE,1
...

rE,n

rE,1
...

rE,n


+



eE,u,1
...

eE,u,n

eE,v,1
...

eE,v,n


We can re-write it in the form u = Ãs as follows:

72 Chapter 5. Post-Quantum Solution



u1
...
un

v1 − ⌊q2⌉z1
...

vn − ⌊q2⌉zn


=

(
A In 0n

B 0n In

)



rE,1
...

rE,n

eE,u,1
...

aeE,u,n

eE,v,1
...

eE,v,n


Hence, to show the plaintext correctness, we want to prove knowledge of a short

integer vector s that is a solution to the linear equation As = u over Zq with public
metrix A ∈ Zn×m

q and vector u ∈ Zm
q , where s = (s1, . . . , sn) has coefficients in

{−S, . . . , S}.
The main difficulty with proving As = u is the “vector s is small” part. It

implies a sort of range proof, which is harder and computationally more challenging
to construct than simply proving a knowledge of an element in the group (or ring)
satisfying some relation.

There are several ways to do such a proof. The most direct approach proves the
exact knowledge of s via the proof of knowledge of nearby codewords, which is an
adaptation of Stern’s protocol [104]. Unfortunately, it has the soundness error 2/3;
thus, it has to be repeated 219 times to achieve the soundness error 2−128. For a
typical modulus q ≈ 230, the resulting proof would have the size of several megabytes
[104].

Another approach is to give a “relaxed” proof, for example: As′ = cu for a bigger
vector ||s′|| > ||s|| and some extra factor c, which is also useful in some situation
[79]. Those proofs are usually efficient and have a negligible soundness error after
just one run. However, those proofs always prove the knowledge of a bigger vector
than s, which forces modulus q to be larger for security reasons.

Recently, a new efficient exact proof technique appeared. It relies on the con-
nection between the coefficient and the Number Theoretic Transform (NTT) rep-
resentation in the polynomial ring [23]. The idea is to provide the knowledge of s
such that As = u for s with coefficients from {0, 1, 2} first, and then extend it to a
bigger range.

First, we rewrite s = Gs′, where s′ has coefficients in {0, 1, 2}. Then we prove
the knowledge of s′ such that A′s′ = u for A′ = AG.

The easiest way to rewrite s is to write its coefficients as

si = s′i,0 + 3s′i,1 + · · ·+ 3r−1s′i,r−1 − 3rs′i,r = g⊺s′i

where r = ⌊log3 S + 1⌋ and g⊺ = (1, 3, . . . , 3r−1,−3r)⊺. The resulting coefficients s′i,j
will be in {0, 1, 2} and the new matrix A′ is constructed as A′ = A(In⊗g⊺) ∈ Zm×rn

q

Showing that coefficients of s′ are in {0, 1, 2} is equivalent to proving

s′ ◦ (s′ − 1) ◦ (s′ − 1) = 0 mod q (5.1)

5.3. The Transformation 73

where ◦ denotes component-wise multiplication.
However if s′ ∈ Rq,f satisfies 5.1 is means ŝ′ ◦ (ŝ′ − 1̂) ◦ (ŝ′ − 1̂) = 0̂ mod q also

holds, where ŝ′ is NTT (or FTT) representation of s′.
Now we can prove that we know s ∈ Rq,f such that

s′ ◦ (s′ − 1) ◦ (s′ − 1) = 0 mod q and Aŝ = u

which is equivalent to demonstrating the knowledge of s such that As = u for s
with coefficients from {0, 1, 2}. The proof is presented in Figure 5.2.

To commit to messages, we need the public parameters B ∈ R5×6
q,f , which is a

matrix with five row vectors b⊺
1, . . . ,b

⊺
5 defined as follows:

B =


bc
1

b⊺
2

b⊺
3

b⊺
4

b⊺
5

 =


1 b1,2 b1,3 b1,4 b1,5 b1,6
0 1 0 0 0 b2,6
0 0 1 0 0 b3,6
0 0 0 1 0 b4,6
0 0 0 0 1 b5,6


where the polynomials bi,j ∈ Rq,f are chosen uniformly at random.

The protocol also uses two challenges c ∈ Zq to show Aŝ = u and f ∈ C to
embed the commitment randomness into a masked value. We define C ⊂ Rf as
C = {0, X i|0 ≤ i < ℓ}. The crucial property of this set is that the difference
between any two members is invertible in Rf , and the multiplication of any element
in Rf by any member of the set does not increase the norm of the element.

For the implementation we use the same power-of-two cyclotomic ring Rq,f =
Zq[X]/(X2048 + 1) with q ≈ 232 as in the article [23].

Theorem 5.2.3 (Bootle et al. [23], Theorem 3.1). The protocol in Figure 5.2
is complete, computational honest verifier zero-knowledge if RLWE5 is hard and
generated special sound if RSIS5,8B is hard.

More precisely, the honest prover P convinces the honest verifier V with proba-
bility ϵ ≈ 1/12.

For zero-knowledge, there exists a simulator Sim, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol be-
tween P and V. Then for every algorithm A that has advantage ϵ in distinguishing
the simulated transcript from an actual transcript, there is an algorithm A′ with
the same running time that has advantage ϵ− 2−100 in distinguishing RLWE5.

For knowledge-soundness, there is an extractor K with the following properties.
When given rewindable black-box access to a deterministic prover P∗ that convinces
V with probability ϵ > 2/q + 2/ℓ, K either outputs a solution s∗ ∈ {0, 1, 2}n to
As∗ = u, or a RSIS5,8B solution for b⊺

1 in expected time at most 144/(ϵ− 2/q− 2/ℓ)
when running P∗ once is assumed to take unit time.

5.3 The Transformation

One may notice that aborts are only an issue when interactions with the voter are
involved. Otherwise, surely it slows the proof generation down but does not pose

74 Chapter 5. Post-Quantum Solution

P(A, ŝ,u,B) V(A,u,B)

y
$← Rq,f

r
$← [β]6

t =


b⊺
1

b⊺
2

b⊺
3

b⊺
4

b⊺
5

 · r +


0
y
s

y(2s− 3)
y2(s− 3)


w = Aŷ

t,w−−−−−−−−→
c

$← Zq
c←−−−−−−−−

z = y + cs

y′
$← D6n

σ

w′ = b⊺
1y
′

x1 = (b⊺
2 + cb⊺

3)y
′

x2 =
(

(z− c)(z− 2c)b⊺
3 − zb⊺

4 + b⊺
5

)
y′

z,w′, x1, x2−−−−−−−−→
f

$← C
f←−−−−−−−−

z′ = y′ + fr

If ⊤ ← RejSampl(z′, fr, σ), abort.
z′−−−−−−−−→

||z′|| ≤ B = σ
√

12n

Aẑ
?
= w + cu

b⊺
1z
′ ?
= w′ + ft1

(b⊺
2 + cb⊺

3)z
′ + fz

?
= x1 + f(t2 + ct3)(

(z− c)(z− 2c)b⊺
3 − zb⊺

4 + b⊺
5

)
z′

?
= x2 + f(z− c)(z− 2c)t3 − zt4 + t5)

Figure 5.2: Proof of knowledge of a ternary solution to a linear equation over Zq.

5.3. The Transformation 75

any problem. Therefore, what we want is to avoid protocol re-runs rather than
aborts per see.

The most obvious solution is to use non-interactive proof, which can be repeated
multiple times until it does not abort. However, as we mentioned earlier, the non-
interactive proof is transferable and cannot be simulated by someone who does not
control the random oracle.

The idea of our construction is to generate the proof non-interactively (via the
Fiat-Shamir transformation) but then turn it back into an interactive one with the
help of a simple trapdoor commitment. Note that aborts are not eliminated: they
will still happen during the NIZK (Fiat-Shamir) generation. However, the interac-
tion with the verifier (voter, in our use case) will not involve aborts or repetitions.
Hence, from the voter’s point of view, the protocol has a single run, as desired.

Let us define two hash functions H : {0, 1}∗ → {0, 1}ℓ and H1 : {0, 1}ℓ → C and
denote component-wise XOR operation between two strings of ℓ bits as ⊕. Then
the new protocol goes as follows:

1. To prove a statement st, P samples a value r ∈ {0, 1}ℓ at random and sends it
to the verifier V.

2. V sends to P a random challenge γ ∈ {0, 1}ℓ.

3. P runs a non-interactive version of the proof of a short integer vector knowl-
edge scheme (if necessary, re-running it until abort does not happen) to get a
typical proof π; but the non-interactive challenge e is defined as e = H1

(
r ⊕

H(st, com, γ)
)

instead of the usual H(st, com) in the Fiat-Shamir transforma-
tion, where st = (A,u,B) and com = (t,w, c, z,w′,x1,x2) in the protocol
from Figure 5.2.

Intuitively, we see that security is inherited from the non-interactive version of
the protocol. On the one hand, P commits to r prior to receiving the verifier’s
challenge γ, thus it cannot manipulate the non-interactive challenge f. Therefore
the resulting proof behaves as a standard non-interactive version of the initial (in-
teractive) protocol. On the other hand, thanks to the use of the simple trapdoor
commitment, anyone can generate a simulated transcript that is indistinguishable
from the real one.

The generic transformation: Now we define our transformation for a generic
case without limiting the number of rounds or protocol purposes.

Let Π = ⟨P(x, ω), V(x)⟩Π be a public coin (2µ+1)-rounds interactive proof system
for language LR. We denote as ai the message sent by P to V in round 2i − 1, for
i = 1, . . . , µ, and as z the last message sent by P in round 2µ + 1. The message
sent by V in round 2i is a random challenge ci ∈ Ci, for some challenge space Ci, for
i = 1, . . . , µ.

Let us consider 1 + µ hash functions: on the one hand H : {0, 1}∗ → {0, 1}ℓ and
on the other hand Hi : {0, 1}ℓ → Ci, for i = 1, . . . , µ. One of the hash functions,
H1, is necessary for applying Fiat-Shamir transform: the resulting non-interactive
challenge should belong to the challenge space Ci. The other one, H, allows us to
perform an XOR operation between r and the previous transcript.

76 Chapter 5. Post-Quantum Solution

We construct a 3-rounds interactive proof system Σ = ⟨P(x, ω), V(x)⟩Σ for the
same language LR, as follows.

1. For i = 1, . . . , µ, P chooses ri ∈ {0, 1}ℓ uniformly at random. These values
r1, . . . , rµ are sent to V.

2. V chooses a challenge γ ∈ {0, 1}ℓ uniformly at random and sends it to P.

3. P runs an execution of the system Π by using inputs (x, ω), and playing also
the role of the verifier, by defining the challenges as ci = Hi(ri ⊕ hi), where
hi = H(x, a1, . . . , ai, c1, . . . , ci−1, γ), for i = 1, . . . , µ. The resulting transcript
(a1, a2, . . . , aµ, z) is sent by P to V.

V accepts the interaction as valid if (a1, c1, a2, c2, . . . , aµ, cµ, z) is an accepting
transcript for Π with input x, where ci = Hi(ri⊕hi) and hi = H(x, a1, . . . , ai, c1, . . . , ci−1, γ),
for i = 1, . . . , µ.

5.4 Security Analysis Of Our Transformation

The completeness property of Σ is trivially satisfied, assuming the public coin (2µ+
1)-rounds interactive proof system Π enjoys completeness. Now we prove that zero-
knowledge and soundness properties of Π are also inherited from Σ.

5.4.1 Zero-Knowledge

Theorem 5.4.1. Assume the public coin (2µ+1)-rounds interactive proof system Π
enjoys the honest-verifier zero-knowledge (HVZK) property, then the new interactive
system Σ also enjoys the HVZK property.

Proof. The goal is to show that, for any (x, ω) ∈ LR, a simulator SimΣ can, on input x
and any (honest) random challenge γ ∈ {0, 1}ℓ, produce transcripts (r1, . . . , rµ, γ, a1, . . . ,
aµ, z) indistinguishable from those produced by an execution of ⟨P(x, ω), V(x)⟩Σ with
a honest verifier V which takes that γ uniformly at random in {0, 1}ℓ.

By hypothesis, there is a simulator SimΠ for Π. What the simulator SimΣ does

first is to choose uniformly at random µ values v1, . . . , vµ
$← {0, 1}ℓ and to compute

ci = Hi(vi) for i = 1, . . . , µ. Then SimΣ runs simulator SimΠ with input x and chal-
lenges c1, . . . , cµ, which results in an accepting transcript (a1, c1, a2, c2, . . . , aµ, cµ, z),
indistinguishable from those produced by ⟨P(x, ω), V(x)⟩Π. After that SimΣ computes
the values hi = Hi(x, a1, . . . , ai, c1, . . . , ci−1, γ) and ri = vi ⊕ hi, for i = 1, . . . , µ.

It is easy to check that the transcript has the same distribution as those produced
in a real execution of ⟨P(x, ω), V(x)⟩Σ where γ is the challenge chosen by the honest
verifier.

Assuming hash functions Hi are pseudo-random functions, the values ci = Hi(vi)
generated by SimΣ and given as inputs to SimΠ are random and uniform elements
in Ci.

5.4. Security Analysis of Our Transformation 77

5.4.2 Soundness

Theorem 5.4.2. Assume the public coin (2µ + 1)-rounds interactive proof system
Π has ϵ-soundness and if ℓ is big enough, then the new interactive system Σ has the
ϵ′-soundness, in the (classical) Random Oracle Model, where ϵ′ ≤ ϵ ·Qµ and Q is an
upper bound on the number of hash queries that a prover of Σ can make.

Proof. The proof of this result works in a similar way as the well-known (in its
naive, non-optimized version) proof that the Fiat-Shamir transformation of a public-
coin interactive system with soundness results in a secure non-interactive system:
the idea is to rewind the adversary several (in our case, µ times), by fixing the
randomness and the answers to the hash queries up to a specific point, and then to
use the Forking Lemma [91] to ensure that, with non-negligible probability, all the
instances of the adversary will lead to forgeries with the desired outputs (that have
been fixed in the rewinds).

First of all, if ℓ is big enough, then the probability 2−ℓ of breaking soundness by
guessing the challenge γ ∈ {0, 1}ℓ is negligible. In that setting, let us assume that Σ
still does not have ϵ′-soundness. Thus, there exists a prover PΣ that is accepted with
probability > ϵ′, when run with some instance x′ /∈ LR. We are going to construct
a prover PΠ against the soundness of Π, running thus with the same x′ /∈ LR.

As its first instruction, PΠ starts running PΣ, which sends its first message
(r1, . . . , rµ). Now PΠ chooses at random γ ∈ {0, 1}ℓ and sends it to PΣ. We re-
mark that (r1, . . . , rµ) and γ are going to be fixed for all the calls that PΠ makes to

PΣ. In this first call, PΣ gives its final answer (a
(1)
1 , . . . , a

(1)
µ , z(1)), which is valid with

probability ≥ ϵ′.
During this and the other executions of PΣ, our new prover PΠ has to answer the

hash queries made by PΣ. This is done in the usual way, by keeping track of all pre-
vious queries, selecting a random output for new queries, storing the (input,output)
relations in a table, etc. With overwhelming probability, a successful prover PΣ will
have made all the key queries hi ← H(x′, a

(1)
1 , . . . , a

(1)
i , c

(1)
1 , . . . , c

(1)
i−1, γ) and Hi(ri⊕hi),

for i = 1, . . . , µ.
After the first execution, PΠ sends the value a

(1)
1 to its verifier VΠ, which then

sends a challenge c1. With overwhelming probability, it will be the case that c1 ̸=
H1(r1⊕ h1). What PΠ does now is to rewind: it starts a new running of PΣ, with the
same random tape and the same answers to the hash queries, up to the point where
the query H1(r1⊕h1) is made; this time, the answer to this query is defined as c1. The
Forking Lemma ensures that, with non-negligible probability, this second execution
of PΣ will produce a valid transcript (a

(1)
1 , a

(2)
2 , . . . , a

(2)
µ , z(2)) with the same value a

(1)
1

as in the first execution (because, with overwhelming probability, the value a
(1)
1 had

been queried to hash oracle H to produce h1, before the key query H1(r1 ⊕ h1) was

made). At this point, PΠ sends the value a
(2)
2 to its verifier VΠ, which then sends a

challenge c2.
The same rewind argument is done again, with the same random tape and hash

answers as in the second execution, but now defining H2(r2 ⊕ h2) to be c2. Again
with overwhelming probability this query, which depends on h2 which depends on
c1, must have been made after the query H1(r1 ⊕ h1), which is again answered as
c1. With non-negligible probability, this third execution of PΣ produces a valid

78 Chapter 5. Post-Quantum Solution

transcript (a
(1)
1 , a

(2)
2 , a

(3)
3 , . . . , a

(3)
µ , z(3)).

Repeating this argument µ times, letting PΠ send a
(i)
i to its verifier VΠ in round

i, getting ci as answer and rewinding PΣ accordingly, at the end we eventually finish,
after µ + 1 executions of PΣ, with a valid transcript (a

(1)
1 , a

(2)
2 , a

(3)
3 , . . . , a

(µ)
µ , z(µ+1))

satisfying ci = Hi(ri ⊕ hi), where hi = Hi(x
′, a

(1)
1 , . . . , a

(i)
i , c1, . . . , ci−1, γ). Thus, our

PΠ has convinced its verifier VΠ with non-negligible probability ϵ. By the iterated
use of the Forking Lemma, the relation between ϵ and ϵ′ is essentially ϵ ≈ ϵ′

Qµ .

5.5 Possible Extensions Of Our Transformation

We see several potential ways to improve our transformation in terms of security and
usability. Without going into many details, we present these improvements below
so one can get inspiration for future research.

Knowledge soundness: The same idea as in the proof for soundness can be
applied to prove that knowledge soundness of Π implies knowledge soundness of Σ.

Full Zero-Knowledge: We can obtain full zero-knowledge in the plain model if
we combine this 3-round and HVZK protocol Σ with a trapdoor and perfectly hiding
commitment scheme (as described in Section 4.2) or interactive authentication (as
described in Section 4.4). The resulting protocol would enjoy coercion-resistance
and cast-as-intended verification and be safe against the quantum computer threat.

Switch to Quantum Random Oracle Model: The soundness property of Σ
is obtained in the classical Random Oracle Model. Achieving soundness in the
Quantum Random Oracle Model, where the adversary has quantum access to an
oracle that computes a random function, is more complicated and is left as an open
problem. The first thing one can try is to use quantum-oriented versions of Fiat-
Shamir, either generic [109, 45] or specific for lattice-based systems [68], that have
been proposed in the last years.

Improve the soundness loss factor: The naive reduction in our proof for the
soundness property implies a loss factor Qµ which is exponential in the number of
rounds of Π. This problem can be solved by using the results in [15], whenever the
starting protocol Π enjoys (k1, . . . , kµ)-special soundness. We stress that most (if
not all) popular interactive systems Π enjoy this property, including lattice-based
ones.

Remove an extra hash for closed challenge spaces: If the challenge spaces
Ci of the interactive protocol Π are closed spaces for some mathematical operation
(that we denote for simplicity as +), then a small modification to our construction
is possible, basically choosing ri ←R Ci and then defining ci = ri + hi, where hi =
Hi(x, a1, . . . , ai, h1, . . . , hi−1, γ), being now Hi : {0, 1}∗ → Ci. With this modification,
the random oracle model assumption is not needed in the proof of the honest-verifier

5.6. Use Case and Implementation 79

zero-knowledge property. This situation happens for instance when Π is the protocol
in [111]: the challenge space contains integers modulo a prime p.

5.6 Use Case And Implementation

Recall that the protocol described in Figure 5.3 can be used for proving knowledge
of the small vectors rE = (rE,1, . . . , rE,n), eE,u = (eE,u,1, . . . , eE,u,1) and eE,v =
(eE,v,1, . . . , eE,v,n) such that the ciphertext (u, v) ∈ Rq,f ×Rq,f produced by RLWE
public-key encryption scheme contains the plaintext z.



u1
...
un

v1 − ⌊q2⌉z1
...

vn − ⌊q2⌉zn


=

(
A In 0n

B 0n In

)



rE,1
...

rE,n

eE,u,1
...

aeE,u,n

eE,v,1
...

eE,v,n


This is equivalent to showing the knowledge of the randomness r s.t. ctxt =

E.Enc(m, r) we used in the ElGamal settings for S1. Hence, it is straightforward to
obtain the lattice-based construction for our solution S1.

We did not implement the entire S1 solution. Instead, we focused on demon-
strating that our transformation is usable and its application does not slow down the
proof generation process. We applied our transformation to the 5-round protocol of
Bootle et al. [23] (see Figure 5.2 for the protocol details). The resulting interactive
proof of a short integer vector knowledge scheme that always terminates after a sin-
gle run is described in Figure 5.3. In case of aborting, fresh y, r,y′ are sampled and
the process is repeated until RejSampl(z′, fr, σ) accepts, ensuring z′ does not leak r.

The implementation was done using a custom-built library for polynomial oper-
ations over Zq[X]/⟨Xn+1⟩, along with the RustCrypto library for computing SHA2
hashes in Rust.

The tests were performed on an Intel Core i7-10750H CPU. We have performed
1,000 tests over the protocol with and without the transformation. We have found
that, when using the parameters proposed by Bootle et al. [23], the mean execution
time increases from 20.6 to 21.5 seconds (σ < 0.3), amounting to an increase of
about 5% in execution time. In Figure 5.4 we can see the time distribution of the
protocol over the executions with (orange) and without (blue) the transformation.

80 Chapter 5. Post-Quantum Solution

P(A, ŝ,u,B) V(A,u,B)

r
$← {0, 1}ℓ

r−−−−−−−−→
γ

$←− {0, 1}ℓ
γ←−−−−−−−−

y
$← Rq,f

r
$← [β]6

t =


b⊺
1

b⊺
2

b⊺
3

b⊺
4

b⊺
5

 · r +


0
y
s

y(2s− 3)
y2(s− 3)


w = Aŷ
c = Hq(A,u,B, t,w, aux)
z = y + cs

y′
$← D6n

σ

w′ = b⊺
1y
′

x1 = (b⊺
2 + cb⊺

3)y
′

x2 =
(

(z− c)(z− 2c)b⊺
3 − zb⊺

4 + b⊺
5

)
y′

com = (t,w, c, z,w′, x1, x2)
f = H1

(
r ⊕ H

(
A,u,B, com, aux, γ

))
z′ = y′ + fr
If RejSampl(z′, fr, σ) does not accept, repeat.

t, z, z′−−−−−−−−→
w = Aẑ− cu
w′ = b⊺

1z
′ − ft1

x1 = (b⊺
2 + cb⊺

3)z
′ + fz− f(t2 + ct3)

x2 =
(

(z− c)(z− 2c)b⊺
3 − zb⊺

4 + b⊺
5

)
z′−

−f(z− c)(z− 2c)t3 − zt4 + t5)
c = Hq(A,u,B, t,w, aux)
com = (t,w, c, z,w′, x1, x2)
Accept if:

||z′|| ≤ B = σ
√

12n

f
?
= H1

(
r ⊕ H

(
A,u,B, com, aux, γ

))
Figure 5.3: Application of our transformation to the protocol from Figure 5.2.

5.6. Use Case and Implementation 81

Figure 5.4: Time distribution of the 1,000 executions of the first test.

While we have obtained an expected decrease in the performance of a single run
of the protocol, we have been able to avoid the need for re-runs and thus achieve an
improvement over the whole testing.

For completeness, we performed a second series of tests to see how often aborts
happen in a standard (non-transformed) 5-round protocol of Bootle et al. [23].
Figure 5.5 gives the distribution of the number of aborts produced in 10,000 tests
of the non-transformed protocol with faster parameters (n = 16). As you can see,
more than 6% of the executions required 10 or more repetitions of the protocol;
this may be very undesirable in some real-life interactive protocols. In 1.5% of the
executions, we had 20 repetitions with aborts.

Figure 5.5: Percentage of executions suffering i aborts in the second test.

82 Chapter 5. Post-Quantum Solution

Chapter 6

Coercion-Resistant
Cast-As-Intended Verifiability For
A Computationally Limited Voter

In this chapter, we would like to focus on voters who are computationally limited
and cannot do cryptographic operations, one-way function computations, and such
without requiring the assistance of an aid device. The only capability voters have
is remembering and comparing strings they see - an assumption similar in spirit to
[87, 108]. For simplicity, we do not restrict the length of memorized data; however,
we realize the amount of information the voter can safely remember is limited.

Therefore, we consider the following scenario: a realistic but potentially malicious
voter is coerced to vote for a specific option but left without supervision for (some
part) of the vote-casting process. We start by presenting an updated syntax in
Section 6.1. Then, we show how to simplify our cast-as-intended and coercion-
resistance definitions from Chapter 3 for computationally limited voters in Sections
6.2 and 6.3. After that, in Section 6.4, we present a simple solution for achieving
both: cast-as-intended and coercion-resistance. Finally, in Section 6.4.1, we prove
that our solution is secure.

6.1 Parties And Syntax Of The Voting Protocol

As before, in Section 3.3, we focus on a specific voter V who wishes to cast a vote
for the intent m through a voting device VD, possibly under the coercion of a
coercer C that prefers another option mC ̸= m. Similarly, we use pms to denote the
public election parameters, which can be generated by running an initial protocol
pms← Setup(λ).

In the restricted setting we consider in this paper, we assume that the voter can
only generate, memorize, and compare strings of numbers. Let Cpb denote the class
of operations the voter V is supposed to be capable of doing.

Since people are bad at generating random values, it makes perfect sense to
consider the possibility that V gets the help of another entity or device, which we
will refer to as an official election device (OED for short). It may participate in the
protocol but can only generate strings and nothing else. The OED is trusted to run

84 Chapter 6. CR-CAI For A Computationally Limited Voter

the prescribed steps of the protocol correctly, and its actions are free from coercion.

Previously, we defined an execution of the voting protocol as:

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, coerc)

However, now that we know the voter is computationally limited, we can simplify
the protocol.

Even though the voter V can only generate random strings but not do any
cryptography, the voting device VD still might do some checks of the voter’s input.
Therefore we keep the bit bVD.

Second, a computationally limited voter cannot validate the complete proof as it
requires, at the very least, to check that ciphertext belongs to the correct mathemat-
ical group, which is a mathematical operation humans cannot do in their minds. It
is also true that we cannot delegate verification of the voting option’s correctness to
anyone without breaking the voter’s privacy. Therefore, we split the bit bV into two
bits bV,priv, bV,pub, where the voter has to only check bV,priv and bV,pub is determined
by a public verification later.

Finally, we know that the voter V can interact with the secure device OED.

Thus, the updated execution of the voting protocol looks as follows:

(bVD, bV,priv,Trc, randV)← Vote
⟨VOED,VD⟩
Lim (pms,m, coerc)

Note that all instructions the coercer gives should be within the voter’s capabil-
ities; in other words, the actions of coerc are restricted to the class Cpb.

If both bV,priv = bV,pub = 1, the ciphertext (ctxt ∈ Trc) generated by VD is
deemed valid. If bV,priv = 0, the voter would complain to election authorities EA
against the voting device, which leads to the vote invalidation. Similarly, if bV,pub =
0, then the ballot box would not accept the vote as valid.

In our setting, the bit bV,priv (and similarly bV,pub) is set to 1 if the corresponding
verification function ValidOption (and similarly ValidProof) returns ⊤.

The first (public) verification is done by anyone (with enough computational
capabilities) by running a protocol

{⊥,⊤} ← ValidProof(pms,Trc)

The second (private) verification is done by V by running the protocol below,
whose operations must belong to class Cpb:

{⊥,⊤} ← ValidOption(pms,Trc, randV)

6.2 Formal Definition Of CAI For A Computa-

tionally Limited Voter

Recall that in Section 3.4.1 we formally defined cheating event Cheat for cast-as-
intended verification as follows:

6.3. Formal Definition of CR for a Computationally Limited Voter 85

Cheat =



pms← Setup(λ)

(bV , bVD,Trc, randV)← Vote⟨V
OED,VD⟩(pms,m, ∅)

ctxt ∈ Trc

bV = 1 (voter accepts the proof)

m ̸= Dec(ctxt, sk) (but ctxt does not contain the intent)

Now that we know the voter is computationally limited, we can define event
CheatLim as follows:

CheatLim =



pms← Setup(λ)

(bVD, bV,priv,Trc, randV)← Vote
⟨VOED,VD⟩
Lim (pms,m, ∅)

ctxt ∈ Trc

bV,pub = 1 i.e. ⊤ ← ValidProof(pms,Trc)

bV,priv = 1 i.e. ⊤ ← ValidOption(pms,Trc, randV)

m ̸= Dec(ctxt, sk)// but ctxt does not contain the intent

Definition 12 (Cast-as-intended for a computationally limited voter). The pro-
tocol VoteLim enjoys Cast-as-Intended (CAI) verifiability if the probability of event
CheatLim is a negligible function of the security parameter λ, for any polynomial-time
voting device VD assuming an official election device OED is reliable.

6.3 Formal Definition Of CR For A Computation-

ally Limited Voter

Recall that in Section 3.4.1 we defined the experiment ExpCRC,V(pms,mC,m, coerc) in
Figure 3.1. Now that we know the voter is computationally limited, we can define
experiment ExpCRC,VOED(pms,mC,m, coerc) as defined in Figure 6.1.

Note that since coerc ∈ Cpb, we do not require to run Sim1 to account for the
coercion when voting for the voter’s option m. Therefore, it suffices to have only
one simulator, which we denote as Sim.

86 Chapter 6. CR-CAI For A Computationally Limited Voter

ExpCRC,VOED(pms,mC ,m, coerc):

1. pms← Setup(λ)

2. β
$← {0, 1}

3. If β = 0:

(b
(0)
VD, b

(0)
V,priv,Trc

(0), rand
(0)
V)← Vote

⟨VOED,VD⟩
Lim (pms,mC , coerc)

If b
(0)
VD = 0, abort the experiment.

Define view(0) = (b
(0)
VD, b

(0)
V,priv,Trc

(0), rand
(0)
V)

4. Else if β = 1:

(bVD, bV,priv,Trc, randV)← Vote
⟨VOED,VD⟩
Lim (pms,m, ∅), with ctxt ∈ Trc

If bVD = 0, abort the experiment.

(b
(1)
VD, b

(1)
V,priv,Trc

(1), rand
(1)
V)← Sim(bV,priv,Trc, randV ,m,mC , coerc), with ctxt ∈ Trc(1)

Define view(1) = (b
(1)
VD, b

(1)
V,priv,Trc

(1), rand
(1)
V)

5. b← C(view(β))
6. If b = β, return 1. Else, return 0.

Figure 6.1: Experiment for coercion-resistance for a computationally limited voter.

Definition 13 (Coercion-resistance for a computationally limited voter). The pro-
tocol VoteLim enjoys coercion-resistance (CR) if for any polynomial-time coercer C,
any coercion (mC, coerc) such that he actions of coerc are restricted to the class
Cpb and any voting option m, there exists a polynomial-time simulator algorithm
Sim ∈ Cpb such that

∣∣Pr[1← ExpCRC,VOED(pms,mC,m, coerc)]− 1
2

∣∣ = negl(λ) is a negli-
gible function of the security parameter λ.

6.4 CR-CAI Solution For A Computationally Lim-

ited Voter

Consider a simple case when the voter V chooses one of the ℓ possible voting options
{m1,m2, . . . ,mℓ}. The idea of the solution SLim, presented in Figure 6.2, is to use
OR-proofs to ensure that the ballot contains the intended selection.

In our protocol, we need a public bulletin board BB- an append-only, immutable
database that offers everyone a consistent view of the received information. In other
words, a new record can only be added at the end but never deleted, plus it is
impossible to hide the published information from the viewers. It is a well-known
cryptographic construct that simplifies the protocol construction [61].

We will use X : (y) 7→ BB notation to say that an entity X published data y on
the public bulletin board BB. Similarly, if data y was taken from the public bulletin
board BB, we will use (y) ←[BB notation. To show that an official election device
OED generated and published a nonce ncV on the public bulletin board BB, we will
use OED : ncV 7→ BB notation.

6.4. CR-CAI Solution for a Computationally Limited Voter 87

Also, we require two collision-resistant hash functions H : {0, 1}∗ → Zq and

Ĥ : {0, 1}∗ → X , where X is the space of strings the voter can type and memorize
yet it has enough entropy to avoid brute force attacks.

The solution SLim is given for ElGamal public encryption scheme. Recall it is
instantiated over a cyclic group Gq of order q with generator g, where the decisional
Diffie-Hellman (DDH) problem is believed to be hard (see Section 3). The default
spaces for the messages, ciphertext, and randomness are G, G, and Zq respectively:
i.e., ME = G, CE = G,RSE = Zq.

Thus, the public paramaters are pms = (G, pk, g,Zq).

VD(pms) V(pms,m)
j←−−−−−−−−

If j /∈ {1, . . . , ℓ}, abort.

r, tj
$← Zq

ctxt = (c1, c2)← (gr,mj · pkr)
(a1,j, a2,j)← (gtj , pktj)
For i ∈ {1, . . . ℓ}, i ̸= j:

zi, ei
$← Zq

(a1,i, a2,i)← (gzi · (c1)−ei , pkzi · (c2
mi

)−ei)

xi = Ĥ(ctxt, {a1,s, a2,s}1≤s≤ℓ, ei)
{xi,mi}i ̸=j

i∈{1,...,ℓ}−−−−−−−−→
Remember {xi,mi}i ̸=j

i∈{1,...,ℓ}
Press the “Nonce” button.
OED : ncV 7→ BB

ncV ←[BB
e← H(ctxt, {a1,s, a2,s}ℓs=1, ncV)

ej ← e−
∑i ̸=j

1≤i≤ℓ ei mod q
zj ← tj + ej · rmod q
π = (ncV , ctxt, {a1,k, a2,k, ek, zk}1≤k≤ℓ)
xj = Ĥ(ctxt, {a1,j, a2,j}1≤s≤ℓ, ej)
VD : (π, ctxt, {xi,mi}i∈{1,...,ℓ}) 7→ BB {x̂i,mi}i∈{1,...,ℓ} ←[BB

Set bV,priv = 1 if and only if:
∀i ̸= j x̂i = xi

Figure 6.2: Solution SLim.

Following the notation of Section 6.1, we have: Trc = (π, ctxt, {x̂i,mi}i∈{1,...,ℓ})
and randV = (j, {xi,mi}i ̸=j

i∈{1,...,ℓ}).

Voter can verify the vote contains the intended selection j by running {⊥,⊤} ←
ValidOption(pms,Trc, randV), which works as shown in Figure 6.3.

For the public verification, anybody with enough computational resources can
run {⊥,⊤} ← ValidProof(pms,Trc) as described in Figure 6.4 to ensure that the
ballot is valid.

88 Chapter 6. CR-CAI For A Computationally Limited Voter

ValidOption(pms,Trc, randV):

1. (π, ctxt, {x̂i,mi}i∈{1,...,ℓ})← Trc

2. (j, {xi,mi}i ̸=j
i∈{1,...,ℓ})← randV

3. For i ∈ {1, . . . , ℓ} s.t. i ̸= j:
If x̂i ̸= xi, abort and return ⊥.

4. If all verifications were successful, return ⊤

Figure 6.3: ValidOption verification.

ValidProof(pms,Trc, randV):

1. (π, ctxt, {x̂i,mi}i∈{1,...,ℓ})← Trc
2. e← H(ctxt, {a1,s, a2,s}ℓs=1, ncV)

3. e′ ←
∑ℓ

i=1 ei mod q
4. If e′ ̸= e, abort and return ⊥.
5. For k ∈ {1, . . . , ℓ}:

If gzk ̸= a1,k · (c1)ek , abort and return ⊥.
If pkzk ̸= a2,k ·

(
c2
mk

)ek
, abort and return ⊥.

If x̂k ̸= Ĥ(ctxt, {(a1,s, a2,s)}1≤s≤ℓ, ek), abort and return ⊥.
6. If all verifications were successful, return ⊤

Figure 6.4: ValidProof verification.

6.4.1 Security Analysis Of The Protocol

Consider the following OR-proof relation that we wish to prove:

ROR = {(ctxt, {m1, . . . ,mℓ}) | ctxt encrypts m1 OR . . .OR ctxt encrypts mℓ}

Theorem 6.4.1 (Solution SLim achieves CAI). Assuming the special soundness of
the Σ-protocol for ROR, the protocol described in Figure 6.2 achieves the Cast-as-
Intended (CAI) property for a computationally limited voter (Definition 12).

Proof. Suppose a (dishonest) voting device VD can break cast-as-intended verifiabil-
ity for a computationally limited voter. In other words, it makes the event CheatLim
happen with a non-negligible probability, where CheatLim is defined as follows:

CheatLim =



pms← Setup(λ)

(bV,priv,Trc, randV)← Vote
⟨VOED,VD⟩
Lim (pms,m, ∅)

ctxt ∈ Trc

bV,pub = 1 i.e. ⊤ ← ValidProof(pms,Trc)

bV,priv = 1 i.e. ⊤ ← ValidOption(pms,Trc, randV)

m ̸= Dec(ctxt, sk)// but ctxt does not contain the intent

Then, we run VoteLim protocol without changes until OED generated and pub-
lished a nonce ncV , where we make a fork and publish two different nonces ncV ̸= nc′V
on BB. Since we assumed that event CheatLim happens with a non-negligible prob-
ability, VD should be able to finish the two executions successfully and produce

6.4. CR-CAI Solution for a Computationally Limited Voter 89

accepting proofs π and π′:

π = (ncV , ctxt, {a1,k, a2,k, ek, zk}1≤k≤ℓ)

π′ = (nc′V , ctxt
′, {a′1,k, a′2,k, e′k, z′k}1≤k≤ℓ)

Since, up to publishing the nonce, all steps of both executions are identical, and
the hash function ĥ is collision-resistant, we conclude that some values in π and π′

are equal:
ctxt = ctxt′

{(a1,s, a2,s)}1≤s≤ℓ = {(a′1,s, a′2,s)}1≤s≤ℓ
{ei}i∈{1,2,...,ℓ},i ̸=j = {e′i}i∈{1,2,...,ℓ},i ̸=j

However, since ncV ̸= nc′V , with overwhelming probability ej ̸= e′j as:

e = H(ctxt, {(a1,k, a2,k)}1≤k≤ℓ, ncV) ̸= H(ctxt, {(a1,s, a2,s)}1≤k≤ℓ, nc′V) = e′

Now dividing the two satisfied equations gzj = a1,j · (c1)ej and gz
′
j = a1,j · (c1)e

′
j

we get c1 = g

zj−z′j
ej−e′

j on the one hand.

On the other hand, dividing the two satisfied equations pkzj = a2,j ·
(

c2
mj

)ej
and

pkz
′
j = a1,j ·

(
c2
mj

)e′j
we get c2 = mj · pk

zj−z′j
ej−e′

j .

Therefore, we have ctxt = (c1, c2) = (grj ,mj · pkrj) for rj =
zj−z′j
ej−e′j

mod q, which

means ctxt is an encryption of the voting option mj. This contradicts the fact that
event CheatLim was happening.

Theorem 6.4.2 (Solution SLim achieves CR). Assuming the zero-knowledge of the
Σ-protocol for ROR, the protocol described in Figure 6.2 achieves the Coercion-
Resistance (CR) property for a computationally limited voter (Definition 13).

Proof. Recall that the voter’s role in the protocol is limited - only choosing the
intended voting option and pressing the “Nonce” button. Hence, the coercer C
cannot enforce an elaborate voting strategy. The only possible instruction C can
force voters to follow would be to vote for some option mC.

Since the nonce is published directly on the public bulletin board, pressing the
button multiple times or restarting the voting process (perhaps in hopes of obtaining
a more suitable nonce) would be obvious. Hence, we exclude those coercion attacks
as preventable - the system may simply prohibit multiple nonces or demand valid
proof for the first nonce published.

Theoretically, a coercer can force the voter to press the button at the wrong
moment or not press the button at all, but this would lead to a non-successful
execution of the protocol, which our coercion-resistance definition does not take
into account. Similarly, our notion of coercion-resistance does not cover coercion
strategies that require the voter to repeat vote-casting multiple times until some
arbitrary condition regarding the output is satisfied (e.g., the ciphertext starts with
42). However, our definition only considers coercers that favor a specific voting
option, leaving all other coercion strategies open for future research.

90 Chapter 6. CR-CAI For A Computationally Limited Voter

Assume the coercer’s goal is to make the voter vote for some option mC = mw,
for some w ∈ {1, . . . , ℓ}, likely different than the voting option m = mj that the
voter wants to choose. But in this case, all that the voter (or strictly speaking, the
simulator Sim) has to do to deceive the coercer C is to say it received values (mi, xi),
for i ̸= w (instead of i ̸= j) from VD.

In terminology of Definition 13, the simulated the voter’s set of random values
rand

(1)
V can be obtained from the real trace randV by replacing m = mj with mC = mw

and by replacing {(mi, xi)}1≤i≤ℓ,i ̸=j with {(mi, xi)}1≤i≤ℓ,i ̸=w. Note that all required
information is available to Sim, which has the whole trace Trc and m = mw as
inputs. Moreover, replacing operations performed by Sim clearly belong to the
considered class Cpb, as required. The two views in the CR game from Definition
13 would be indistinguishable due to the zero-knowledge (or rather the witness
indistinguishability) property of the Σ-protocol for ROR.

6.4.2 Comparison With Bingo Voting: On The Necessity Of
OED

Our protocol is similar in spirit to Bingo voting [21]: both schemes consider compu-
tationally limited voters, and both solutions use a trusted external entity to generate
a (pseudo-)random nonce. However, Bingo voting relies on adding dummy votes -
votes that will not be counted - for each possible candidate each voter might choose.
During the vote-casting, receipts for all dummy (unselected) and actual (selected)
options are printed on the corresponding candidates. In the tally, all dummy votes
will be discarded. To ensure it, the election authority commits to all dummy votes
before the election begins. Then, during the voting, the voter uses a trusted random
number generator to generate a random number for their intent. The voting device
will randomly assign dummy votes to unselected options and print all numbers next
to the corresponding candidates as a receipt. All printed numbers are indistinguish-
able for anyone but the voter; hence, no one can identify the voter’s vote. After the
voting, the election authority publishes all issued receipts so every voter can verify
theirs is present. Finally, the election authority creates a non-interactive proof of
correctness, which shows that all unopened commitments are assigned to receipts.

Our solution improves Bingo voting in two aspects. First, the pre-voting phase in
the Bingo scheme is quite expensive as it requires choosing and committing to many
dummy values. In our protocol, there is no pre-voting phase, only the publication of
the public parameters of the election. Second, in the Bingo voting, a pseudo-random
nonce must be sent to the voter and the voting device VD through a secure channel
because the privacy of the voting phase would be lost if this value was leaked during
that execution. In our solution, the random nonce ncV ∈ X can be (and is) made
public by the official election device OED right at the moment of its generation.
Therefore, our solution does not need a secure channel between the external trusted
entity and the voters.

At this point, one may wonder if the help of an external trusted entity (the
official election device OED in our protocol) is necessary. All in all, its only task is
to generate and publish a random nonce ncV ∈ X , something that even our limited
voter V could do on its own: if we assume V can memorize and compare some strings

6.4. CR-CAI Solution for a Computationally Limited Voter 91

of numbers, then for sure it would be able to generate a random string of numbers, as
well. But if we modify our protocol in such a way that the voter V samples the nonce
instead of OED, the result is a protocol that is not coercion-resistant: a coercer who
wants V to vote for an option m⋆ = mj can ask the voter V to use as the nonce n̂cV a
value which is computed deterministically from the value comj = H({xi,mi}1≤s≤ℓ).
For instance, to use as n̂cV the first digits of comj. The voter V cannot vote for
another option i ̸= j because, in such a case, V would get to know the value of xj
(needed to compute n̂cV), which is only known after the nonce is sent.

92 Chapter 6. CR-CAI For A Computationally Limited Voter

Chapter 7

Stronger Coercion Settings: New
Attacks And A New Construction

In this chapter, we present ongoing work done in collaboration with Peter Rønne.
We discuss how new technologies, such as time-lock puzzles and delayed encryption,
could help to coerce voters into voting in a specific way. We describe the strong
coercion settings in Section 7.1 and show why the previous solution S1 is vulnerable
to new coercion attacks in Section 7.2. Then, in Section 7.3, we present a protocol
S3, which improves S2 in the number of rounds, and show its security.

7.1 Stronger Coercion Settings

When we introduced coercion settings in Section 3.2, we mentioned that the coercer
couldn’t physically control the voter all the time. Otherwise, for all practical pur-
poses, it is a voter impersonation, and nothing can be done to protect the freedom
of the voter’s will.

Yet, the coercer can instruct the voter to behave in a specific way or use some
precomputed values. Those instructions vary from supplying only a voting option
to sophisticated strategies the voter has to follow during vote-casting. But more
importantly, the coercer might demand voters use pre-computed values without
knowing how those values are generated or computed. Usually, the voter is not
vulnerable to such attacks because blindly giving the coercer’s data to the voting
device would result in aborted execution. However, what if the coercer uses new
technologies to ensure the voter can do certain computations without knowing the
coercer’s values?

For example, the coercer can use a Time-Lock Puzzle [95], delayed encryption
[26], or similar technologies to ensure that the voter cannot obtain the value before
time T. If the algorithm for faking the proof requires knowing the hidden value,
then the voter cannot execute it before time T pass.

For simplicity, we would not go into internal details of the time-lock puzzle.
Instead, we focus on high-level properties those technologies provide and how a
coerced might use them. We say that time-delay encryption Timed-Enc is a tool
that generates Delay(x) for any x, with the following properties:

� The voter nor the voting device can open Delay(x) and obtain x before time T.

94 Chapter 7. Stronger Coercion Settings

� The opening of delayed encryption Delay(x) cannot be parallelized, facilitated
by utilizing more powerful hardware, or distributed among several entities.

� Once the secret is opened, it is possible to prove that x is hidden inside Delay(x).
However, no one can easily verify whether some value x′ is the solution to the
puzzle Delay(x) or not.

Another possibility is for the coercer to use a blockchain or a hardware de-
vice, which maintains an append-only chain of immutable commitments. Suppose
the voter is instructed to commit to all values returned by the voting devices and
(maybe) use the (pseudo-)random output of the blockchain or device instead of a
random value. To fake obedience in such conditions would be extremely hard for the
voter. We say that time-stamped commitment-chain Timed-CC is a tool that allows
anyone to add a commitment for proving the events order and has the following
properties:

� The voter nor the voting device can erase or modify commitments after they
appear on Timed-CC.

� Each commit is time-stamped based on the internal clock of Timed-CC.

� The voter nor the voting device can modify the internal clock of Timed-CC.

� After each commit, Timed-CC outputs a pseudo-random value.

� The voter nor the voting device can predict the pseudo-random value Timed-CC
will output.

The natural question is whether our two solutions for coercion-resistant cast-as-
intended verification (see Chapter 4) still work in strong settings where the coercer
can use Timed-Enc and Timed-CC tools. Unfortunately, as we see in the next section,
our first protocol S1 does not withstand the new coercion attacks. As for the second
construction S2, we are still working on identifying whether it can resist new threats.

7.2 Why S1 Is Vulnerable To Strong Coercion?

Recall the solution S1 from Chapter 4, the simplified version of which is given in
Figure 7.1. Essentially the idea is to commit to the challenge before starting the
Σ-proof of the ciphertext correctness. This way (potentially coerced) voters cannot
sabotage the simulatability of the transcript by selecting the challenge based on the
values the voting device shows.

The coercion-resistant cast-as-intended verification works because any voter can
simulate the protocol using a different or the same e. The critical observation is
that, in the actual interaction, the first move of the encryption correctness proof
com is computed before e is known. On the contrary, fake proof requires knowing e
before generating the first move com.

However, using the new tool Timed-Enc, the coercer can ensure that the voter
cannot simulate the proof. For that, it gives the voter a pre-computed commitment

7.3. Solution S3: random group generator 95

cmt, a voting option m and a value Delay(e) ← Timed-Enc, which ensures that the
voter cannot learn e until time T pass. Then the coercer instructs the voter to use
cmt in the first round and enter displayed ciphertext ctxt and the first move of the
proof com return by the voting device in the second round into Timed-CC before
time T.

VD(pms) V(pms,m)
Sample random e

Commit to e to get cmt and op
m, cmt←−−−−−−−−

If m is not a valid – abort.
Encrypt m to get ctxt
Start Σ-proof to get com

com, ctxt−−−−−−−−→
e, op←−−−−−−−−

If cmt does not hide e – abort.
Finish Σ-proof to get z

z−−−−−−−−→
Accept if the proof (cmt, e, z)
is valid for values (ctxt,m, e)

Figure 7.1: The simplified version of the solution S1 from Chapter 4.

Recall that the voter can fake a proof for a different voting option m∗ from the
one encrypted in ctxt by running Sim for Σ-protocol for (ctxt,m∗) using the same
e. This will result in cmt∗ and z∗, which are different from the actual cmt and z.
Yet now e is unknown until after time T, which means the voter cannot run the
simulator and obtain cmt∗. Hence, assuming the delay function Delay cannot be
broken before T , the voter cannot disobey without being caught.

7.3 Solution S3: Random Group Generator

At some point during our research, we doubted that S2 could be secure in front of
extreme coercion attacks1 based on blockchains and homomorphic delay functions.
This motivated us to search for new solutions, resistant to those strong coercion
attacks. As a result, we obtained a three-round solution S3 that we present and
analyze now. Since (in Section 3.5) we eliminated all two-round protocols, a three-
round solution S3 is optimal in the round complexity.

Contrary to solutions S1 and S2 in Chapter 4, the new solution S3 is not generic:
it works for the specific setting of cyclic groups G of prime order q where the Discrete
Logarithm problem is considered to be hard. The voter generates a non-interactive
proof of the trapdoor x knowledge for the group generator g1 randomly selected
by the voting device. This way, the coercer cannot give the voter pre-computed
non-interactive proof without disclosing the witness x. Once the voter successfully

1In the end, we concluded that such attacks were not possible.

96 Chapter 7. Stronger Coercion Settings

proves x knowledge, the voting device replies with a non-interactive OR proof to
show that the ciphertext encrypts the correct voting option or knows x.

VD(pms) V(pms,m)

g1
$← G

g1−−−−−−−−→
If g1 /∈ G, set bV = 0 and abort.

x, s
$← Zq

y← gx1
com← gs1

c = H1(g1, y, com)
z← s + c · x

m, y, c, z←−−−−−−−−
If m /∈ G, set bVD = 0 and abort.
c′ = H1(g1, y, g

z
1y
−c)

If c′ ̸= c, set bVD = 0 and abort.

r, t0, z1, e1
$← Zq

ctxt = (c1, c2)← (gr,m · pkr)
a0 = (a01, a02)← (gt0 , pkt0)
a1 ← gz1 · y−e1
e = H2(ctxt, a0, a1)
e0 = e⊕ e1 mod q
z0 = t0 + e0 · r
bVD = 1

z0, z1, e0, e1−−−−−−−−→
a0 = (gz0 · c−e01 , pkz0 ·

(
c2
m

)−e0)
a1 = gz1 · y−e1

Set bV = 1 if and only if:
e1 ⊕ e2 = H2(ctxt, a0, a1)

Figure 7.2: The solution S3. The hash function is defined as H : {0, 1}∗ → Zq

7.3.1 Security Analysis Of The Protocol

Theorem 7.3.1 (Solution S3 achieves CAI). Assuming the Discrete Logarithm
problem in group G is hard, the protocol described in Figure 7.2 achieves the Cast-
as-Intended (CAI) property as per Definition 7 in the Random Oracle Model.

Proof. Remember that the CAI property is satisfied if the probability of Cheat is
negligible in the security parameter λ, where Cheat is defined as follows:

Cheat =



pms← Setup(λ)

(bV , bVD,Trc, randV)← Vote⟨V,VD⟩(pms,m, ∅)
ctxt ∈ Trc

bV = 1 (voter accepts the proof)

m ̸= Dec(ctxt, sk) (but ctxt does not contain the intent)

7.3. Solution S3: random group generator 97

Suppose a malicious VD with non-negligible probability can output a valid proof,
meaning that for H2 output e it can return values (z0, z1, e0, e1) that pass verification
run by V . We rewind VD and program H2 to output e′ ̸= e. Given that VD
succeeds with non-negligible probability, we get two valid executions for the same
query H2(ctxt, a0, a1) but two different answers e ̸= e′.

Suppose it is e1 ̸= e′1, then we could use such a VD to break the discrete logarithm
problem w.r.t. basis g1 selected at random by VD as follows: given g1 and a random
element y, we can program the Random Oracle H1 to choose c, z ∈ Zq, compute
com = (g1)

z · y−c and define H1(g1, y, com) = c. The VD would successfully verify
the proof from V and output an OR-proof. Then, given that we assumed VD
computes the OR proof without knowing r, from the two executions e1 ̸= e′1, we
could extract discrete logarithm of y w.r.t. basis g1.

Thus, it is impossible, and our assumption that a malicious VD can output a valid
proof without knowing the randomness r in Step 3 with non-negligible probability
is wrong.

This leads to a contradiction, so it must be e0 ̸= e′0, but in this case, we can
extract from the two valid transcripts the randomness r s.t. ctxt = E.Enc(m; r) can
be extracted, which means CAI is satisfied.

Theorem 7.3.2 (Solution S3 achieves CR in the weak settings (without tools
Timed-CC and Timed-Enc)). Assuming DDH assumption in group G holds, and
the instructions instr that C give to the voter consist of algebraic algorithms in G
only, the protocol described in Figure 7.2 achieves the Coercion-Resistance (CR)
property as per Definition 8.

Proof. In the algebraic group model [53], the coercer C gives the Voter V instructions
instr consisting of an algebraic algorithm B and group elements (G1, G2, . . . , Gℓ),
where Gi ∈ G ∀i ∈ (1, ℓ), where B outputs a group element accompanied by
a representation of that group element in terms of all the group elements that B
has seen so far [55]. In other words, if (y1, . . . , yk) are elements output or seen
previously, the next output y is accompanied by its representation (x1, . . . , xk) such
that y =

∏k
i=1 y

xi
i . The algebraic group model captures the majority of strategies

and algorithms that can take place in the setting of a cyclic group G, especially the
most natural ones.

Suppose the coercer C gives the voter V as instructions a list of group G elements
(G1, G2, . . . , Gℓ) and an algebraic algorithm B. According to our model, the voter
must compute a valid answer in Step 2, meaning a valid proof (y, com, z) after
receiving element g1 in Step 1. Without loss of generality, we assume that, in the
instructions, the element y is computed before com. It means that, other than y,
the voter obtains representations a0, a1, . . . , aℓ, δ, b0, b1, . . . , bℓ ∈ Zq such that:

y = (g1)
a0 ·

∏
1≤i≤ℓ

Gai
i ,

com = yδ · (g1)b0 ·
∏

1≤i≤ℓ

Gbi
i

98 Chapter 7. Stronger Coercion Settings

If
∏

1≤i≤ℓ
Gai

i = 1, then the voter knows the discrete logarithm of y w.r.t. g1 and

can avoid coercion by simulating the OR proof in Step 3, for a ciphertext that does
not encrypt the option mC imposed by C.

Thus, we can assume
∏

1≤i≤ℓ
Gai

i ̸= 1, which means that at least one ai ̸= 0. Since

y, com and z are accepted by the VD, then it holds that gz1 = com · yc, where
c = H1(g1, y, com) is considered to be random the Random Oracle Model. In turn,
it implies the following:

(g1)
z =

(
(g1)

a0 ·
∏

1≤i≤ℓ

Gai
i

)δ

· (g1)b0 ·
∏

1≤i≤ℓ

Gbi
i ·

(
(g1)

a0 ·
∏

1≤i≤ℓ

Gai
i

)c

If we denote α0 = (δ+c)a0+b0 mod q and αi = (δ+c)ai+bi mod q for i = 1, . . . , ℓ,
we can write the previous equality as follows:

(g1)
z−α0 =

∏
1≤i≤ℓ

Gαi
i

Since the value c is random and at least one ai ̸= 0, we have that: (i) z − α0 is
random, and thus it is different from 0 with overwhelming probability, (ii) at least
one of the exponents αi is random.

Now we prove that the existence of such a coercion instruction given by C would
imply that the discrete logarithm problem in G can be solved. Let (g, Y) be a given
instance of this problem for a generator g and random Y ∈ ⟨g⟩ = G. Then we can

run the protocol with such a coercion ℓ + 1 times using g
(j)
1 = guj · Y vj as inputs,

where uj, vj ∈ Zq are random and independent for j = (1, . . . , ℓ + 1). For each of
these executions, we would end with the following equality:(

g
(j)
1

)z(j)−α(j)
0

=
∏

1≤i≤ℓ

G
α
(j)
i

i (7.1)

Now the ℓ + 1 vectors α⃗(j) = (α
(j)
1 , . . . , α

(j)
ℓ) must be linearly dependent in

(Zq)
ℓ, which means that there exist ℓ + 1 coefficients (µ1, . . . , µℓ, µℓ+1) such that∑

1≤j≤ℓ+1

µjα⃗
(j) = 0⃗ mod q. Raising each Equation 7.1 to µj and multiplying the re-

sulting ℓ + 1 equations would result in:

∏
1≤j≤ℓ+1

(
g
(j)
1

)(z(j)−α(j)
0

)
µj

= 1

Given that g
(j)
1 = guj · Y vj , the last equality can be re-written as gE · Y F = 1,

where E =
∑

1≤j≤ℓ+1

ujµj

(
z(j) − α

(j)
0

)
mod q and F =

∑
1≤j≤ℓ+1

vjµj

(
z(j) − α

(j)
0

)
mod q.

Also, since values vj and z(j) − α
(j)
0 are random, with overwhelming probability

F ̸= 0 mod q. Therefore, with overwhelming probability, we can output the value
−E · F−1 mod q as the discrete logarithm of y for the generator g.

7.4. Future research 99

Hence, the only possible instructions that C can impose on the voter V imply
that the voter knows the value x such that y = (g1)

x. However, then the voter can
use the knowledge of x to simulate a valid and indistinguishable OR proof for any
ciphertext ctxt and plaintext m in Step 3, which includes plaintext mC chosen by
C and a ciphertext that encrypts a different voting option m.

7.4 Future Research

This chapter contains ongoing research that has not been finalized yet. In particular,
some lines of research remain open:

1. Formally prove security of S2 and S3 in front of strong coercions. While,
intuitively, both S2 and S3 solutions seem to withstand strong coercion, we must
formally prove it before making any claims. However, such proof is not trivial to
construct in the generic case, where we cannot make assumptions regarding the
underlying mathematical group.

2. Generalize S3. In contrast to S2, the solution S3 was proven to provide
coercion-resistance and cast-as-intended verification for the specific settings: cyclic
groups G of prime order q where the DDH problem is hard. It would be good to
generalize it to remove the dependency on the DDH assumption.

3. Find a post-quantum secure version of S3. It remains an open problem to
instantiate S3 with lattice-based primitives or, alternatively, find a three-rounds
protocol with CAI-CR with post-quantum security.

4. Explore strong coercion settings more. We believe that with more research,
more coercion attacks based on newly appeared primitives can be identified. Also,
it seems there are settings where it is impossible to achieve both coercion-resistance
and cast-as-intended properties simultaneously. Finally, through this research, we
focused only on guaranteed verification, while one might also consider probabilistic
verification.

100 Chapter 7. Stronger Coercion Settings

Chapter 8

Conclusion

This thesis has focused on the two contradictory properties of electronic voting:
cast-as-intended verification and coercion-resistance. We can distinguish three main
parts of the research done in this work.

In the first part, after analyzing the current state of the art, we put forward
two formal definitions for achieving coercion-resistant cast-as-intended verification
in settings without pre-exchanged data. After that, we presented two practical
constructions, which are provably secure under the proposed definitions. Also, we
implemented those constructions and gave the benchmarks to prove the practicality.

In the second part, we considered post-quantum settings and noticed the us-
ability issues rooted in the lattice-based math affecting both proposed solutions.
As a solution, we proposed a generic transformation, which turns a multi-round
interactive zero-knowledge system (with a possibility of re-runs) into a 3-move zero-
knowledge system (always without re-runs). To demonstrate practicality, we applied
the construction to a 5-round protocol of Bootle et al. [23] for proving the knowledge
of a ternary solution to a linear equation over Zq.

In the final part, we focused on the practical aspects of the coercion-resistant
cast-as-intended verification. First, we studied the case of a computationally limited
voter, which we consider the most realistic. We proved that even such a voter enjoys
coercion-resistant cast-as-intended verification if given the help of a simple aid device
for a nonce generation. After that, we focused on cases of extreme coercion relying
on delay encryption and blockchain and discovered that one of the previous solutions
is vulnerable. Finally, during our ongoing research on advanced coercion threats,
we found a protocol with three rounds of interactions (which is optimal) and gave
the intuition of its security.

To summarize, we looked at the problem of combining coercion-resistance with
cast-as-intended verification from different angles: formal definition, practical con-
structions, post-quantum security and usability, limited voter, and extreme coercion.
As a result of our research, we obtained two formal definitions and four different
constructions for addressing coercion threats in different situations.

This Ph.D. thesis ends here, but we leave several doors open for future research.
It remains an open problem to generalize and instantiate in post-quantum settings
solution S3. Also, we believe diving deeper into the extreme coercion based on
newly appeared primitives will allow identify new potential attack vectors and pre-

102 Chapter 8. Conclusion

pare for them beforehand. Additionally, it would be interesting to find settings
where the contradiction between coercion-resistance and cast-as-intended properties
would lead to the impossibility of having both properties simultaneously. Finally,
through this research, we focused only on guaranteed verification, while one might
also consider probabilistic verification.

The last conclusion we want to share, which we learned from our practical ex-
perience working in a company specializing in secure electronic voting solutions, is
that security is not enough. Not only must any protocol (such as voting, verification,
anonymization, etc.) be safe, but it must also be usable and compliant with legisla-
tion. Otherwise, voters would be unable to use even the best (from a cryptographic
point of view) solutions.

Appendix A

Brief Description Of Mentioned
E-Voting Schemes

In this Appendix, we briefly describe some of the e-voting schemes discussed in the
Introduction of this thesis. We do not aim to give a detailed specification for every
single existing solution, rather we want to help readers to understand our references
and conclusions.

A.1 Helios Voting System

Helios is probably one of the most famous electronic voting schemes. Its derivatives
were used to run the election of the president of the University of Louvain-La-Neuve
and the election of 2010, 2011, and 2012 new board directors of the International
Association for Cryptographic Research (IACR) [36]. It has inspired numerous
usability studies, resulted in countless scheme variations, and become one of the
central comparison points. The derivatives of Helios vary from enabling voting by
proxy [73] to extending the scheme to account for new properties[74].

Therefore, the Helios voting system is more of a family combining different ver-
sions under the same umbrella rather than one particular design. There were numer-
ous adaptations, upgrades, and slight changes, which resulted in multiple construc-
tions that could be called Helios. However, since the core idea - Benaloh’s challenge
- remains roughly the same for all Helios variations, we would focus on the voting
part of the protocol.

Helios protocol: The setup phase mainly consists of establishing the election key,
plus voters’ signing and authentication keys. Some articles specify that a group of
Trustees generates the election key. However, there are no details on how all voters
receive their keys securely. Therefore we assume all voters’ keys are created and
distributed by the election authority.

After a voter enters the choice, the voting device creates a ballot and correctness
proof. Then it displays a hash of the ballot and gives the voter a chance to either
audit or cast it. The voter must record or remember the hash value since it will
serve as a commitment for verification or receipt of a sent vote. If the voter chooses
to audit, the voting device outputs the encryption randomness so the voter can

104 Appendix A. Brief Description Of Mentioned E-Voting Schemes

reconstruct the ciphertext on a verification device and check that it contains an
intended vote. The voter can perform audits multiple times before deciding to cast
the ballot, which will be sent directly without verification. The entire vote-casting
and vote-verification process is detailed in Figure A.1.

Depending on the Helios version, ballot correctness proofs vary. Helios 1.0 pro-
vides no details, even though it is essential for preventing vote copying (replay
attack). A custom version of Helios [25] adds ballot validity proof but switches from
ElGamal to a modification of the TDH2[101] encryption scheme that preserves ho-
momorphic properties. Helios 2.0[42], patched Helios 3.0[47] and latest Helios 4.0[4]
with fixed Fiat-Shamir transformation and Helios-C[36] use disjunctive-or NIZKs to
guarantee that selection is appropriate.

V(pms,m) VD(pms)

m

r
$← RSE

ctxt = E.Enc(m, r)

π = “Prove ctxt contains m”

h = H(ctxt, π)

h

audit or cast

if audit then

r

On another VD verify that:

ctxt = E.Enc(m, r) and

H(ctxt, π) = h

if cast then

VD 7→ BB : (ctxt, π)

On another VD verify that:

(ctxt, π) appears on BB and

H(ctxt, π) = h

Figure A.1: A ballot verification based on Benaloh’s challenge.

The tally is typically done homomorphically, yet some versions offer compatibil-
ity with a verifiable shuffle [5, 25]. We focus on Helios 4.0, which only supports ho-
momorphic counting and ensures result correctness by publishing decryption NIZK
proofs.

A.2. Belenios voting system 105

Overall, the cast-or-challenge mechanism is an easy verification technique. How-
ever, since the cast ballot is never verified, technically, it does not guarantee that
the vote contains the intended option. A malicious voting device can guess when
the voter would stop the audit and encrypt another voting option. An additional
challenge comes from the fact that voters must remember the hash of the shown
ballot before deciding whether to cast or verify it. Otherwise, an adversary can
commit to one vote but cast or give another for verification. Finally, the audit must
always happen on another voting device; otherwise, the voting device can always
claim everything was correct.

A.2 Belenios Voting System

The Belenios system is another family of voting schemes. It started with Helios-C[36]
offering partial verification, later referred to as Belenios[34]. Then the solution was
enhanced with a re-encrypting server to provide receipt-freeness at the cost of castes-
intended verification resulting in BeleniosRF [29]. The latest version - BeleniosVS
[35] - is based on pre-delivered QR codes containing encrypted ballots.

Belenios protocol: The setup phase is similar to Helios and consists of establish-
ing the election key and voters’ signing keys.

During the voting phase, the voter enters the preferred vote m - an integer
between 0 and k − 1, where k is the total number of voting choices. The voting
device encrypts the selection m, then samples a random value s0, computes s1 =
(m − s0) mod k and encrypts s0 and s1 under the election public key pk. After
that, the voting device creates a zero-knowledge proof showing that encryption for
m contains the same plaintext as the product of ciphertexts encrypting s0 and s1.
Finally, the voting device signs the ballot and publishes ciphertexts, the proof, and
the signature on the bulletin board.

For the cast-as-intended verification, the voting device shows the ballot (or a hash
of the ballot) and s0 and s1 to the voter. The voter checks that s0 + s1 mod k = m
and the ballot is published, then selects a bit α = {0, 1} at random and sends it to
the voting device. If α = 0, then the voting device publicly reveals s0, r0 and s1, r1
otherwise. To complete the verification, the voter must access the bulletin board and
ensure that the published sα is correct. The entire vote-casting and vote-verification
process is detailed in Figure A.2.

During the tally, the votes are anonymized and decrypted. Only the encrypted
voting option m enters the decryption stage - other ciphertexts are removed during
the anonymization.

Belenios allows partial audit of the ballot - only one of two additional ciphertexts
ctxt0 or ctxt1 are opened. Therefore, a malicious voting device still has a 50%
probability of undetectably modifying the voter’s choice. Moreover, the voter would
need an additional device to verify that the published on the bulletin board ballot
is identical to the one voter saw during the protocol. Otherwise, a malicious voting
device can assign the same vote to multiple voters and successfully pass all checks.

106 Appendix A. Brief Description Of Mentioned E-Voting Schemes

V VD

choose m

m

r, s0, r0, r1,
R← R

s1 = (m− s0) mod k

ctxt = Enc(m, r)

ctxt0 = Enc(s0, r0)

ctxt1 = Enc(s1, r1)

π ← {Dec(ctxt) = Dec(ctxt0 · ctxt1)}
σ ← Sign(ctxt, ctxt0, ctxt1; sk)

b = (ctxt, ctxt0, ctxt1, π, σ)

VD 7→ BB : b

(b, s0, s1)

Verify m = s0 + s1 mod k

Verify b ∈ BB
choose α ∈ {0, 1}

α

VD 7→ BB : (sα, rα)

Verify sα

Figure A.2: A ballot verification from Belenios protocol.

A.3 Demos Voting System

Demos [71] is a code-based voting system that does not put any trust in the election
authority for verifiability.

During the setup, the election authority prints a two-sided voting card with
options (in random order) and corresponding vote codes for each voter. For example,
for a simple yes/no choice, the card might look as follows:

Side A Side B
yes 1234 no 7764
no 5611 yes 9877
voter ID: 421111 voter ID: 421111

The election authority encodes each j-th voting option as N j−1, where N is
the total number of voters plus one, and commits to all encodings and vote codes.
Finally, it starts a Σ-protocol to show that commitments correspond to an unknown

A.4. Demos-2 107

permutation of the encoded candidates. The first move of the Σ-proof is publicly
available on a bulletin board before an election, but the proof will be finalized after
the voting phase is over.

The vote-casting is simple and does not require any encryption, see Figure A.3
for details. A voter randomly selects one of the ballot sides, authenticates using
voter ID, and sends the preferred vote code, e.g. (id: 421111, code: 1234, side: ‘A’).
After voting, the voter should cut off and destroy the used side of the voting card.
The unused side and the selected code will serve as a receipt.

V(pms,m, two-sided voting card) VD(pms)

Select ballot side at random

Find code that corresponds to m

code, voter ID

VD 7→ BB : (code, voter ID)

On another VD verify that:

The right code appears on BB

Figure A.3: The vote casting protocol of Demos voting system.

During the tally, the election authority opens all commitments to vote codes from
both ballots’ sides and encoded options from unused sides to prove consistency with
the printed ballots. Then, it uses randomness extracted from the voter’s ballot-sides
selections as a challenge to finalize the Σ-protocol. Finally, the election authority
homomorphically tallies selected voting options and decrypts the result. All proofs
and openings are available on a bulletin board.

A major practical drawback of the Demos verification is expectations regarding
voters’ behavior. Voters must select a ballot side at random, destroy the used side
of the ballot and perform receipt verification after the voting phase is over. While
there are no studies regarding ballot destruction, experiments show that about 85%
of voters tend to select side A [69]. Finally, while coercion is not covered, the
soundness of the Σ-proof might be affected when the coercer forces enough voters
to use a specific ballot side.

A.4 Demos-2

Demos-2 [70] is a scalable encryption-based variation of the Demos scheme that
achieves similar performance to Helios.

During the setup, the election authority generates and publishes a master com-
mon reference string1 (crs). The crs can be either perfectly sound or perfectly simu-

1Common reference string is a model where a public string is generated in a trusted manner,
and each party has access to it.

108 Appendix A. Brief Description Of Mentioned E-Voting Schemes

latable. The former results in perfectly sound NIZK proofs; the latter makes every
NIZK proof simulatable due to the use of a trapdoor. Therefore, the election au-
thority starts a Σ-protocol to show that this crs is of a perfectly sound type. The
first move of the Σ-proof is publicly available on a bulletin board before an election,
but the proof will be finalized after the voting phase is over.

V(pms,m) VD(pms)

m

rA, rB
$← RSE

ctxtA = E.Enc(m, rA)

ctxtB = E.Enc(m, rB)

hA = H(ctxtA, ‘A’, voterID)

hB = H(ctxtB, ‘B’, voterID)

hA, hB

Select α ∈ {‘A’, ‘B’} randomly

α

rα

On another VD verify that:

ctxtα = E.Enc(m, rα) and

H(ctxtα, α, voterID) = hα

π = “Prove ctxt contains m”

VD 7→ BB : (ctxt1−α, π)

On another VD verify that:

the ballot on BB has hash h1−α

Figure A.4: The vote-casting and voter-verification of the Demos-2 voting system.

To cast a vote, the voter types the choice, which will be encoded as a binary
vector. The voting device encrypts each bit independently twice and obtains two
ballots; the hash of each is shown to the voter. The voter chooses which ballot to
verify on a separate device; the remaining one will be cast. For the cast ballot, the
voting device computes a ballot correctness proof: i.e. encrypts a binary vector.
The proof soundness heavily relies on the fact that the master crs is perfectly sound.
The entire vote-casting and vote-verification process is detailed in Figure A.4.

During the tally, the electoral authority uses voters’ ballot side selections as a
challenge to finalize the Σ-protocol to prove crs is of perfectly sound type. Then, it

A.5. Swiss Post voting system 109

homomorphically tallies selected voting options and decrypts the result. All proofs
and openings are available on a bulletin board.

Like its precursor demos, Demos-2 still expects voters randomly choose between
two ballots. Also, the scheme requires two separate devices for vote-casting and
vote-verification. It is not very convenient, as it might prevent people with only one
device from verification. Additionally, such a verification mechanism requires public
education to ensure that no one mistakenly uses the same machine for voting and
verification.

A.5 Swiss Post Voting System

Swiss Post voting system is a code-based voting scheme that uses return codes to
provide individual verifiability and requires a mandatory vote confirmation. The
first version with distributed server functionalities appeared in 2018 [41]. Later, in
2020, the scheme was slightly upgraded to remove reliance on auditors for individual
verifiability. The rest of the section is based on the latest system specification, i.e.
version 1.2.0, available online [92].

During the setup phase, the setup component generates voters’ credentials, re-
turn codes, start voting keys and ballot casting keys. Then, jointly with four online
control components, it prepares a mapping table, which stores the encrypted cor-
respondence between the voting options (and confirmation messages) and a set of
return codes. The setup component sends the return codes and keys to the printing
component, which prints the voting cards and securely distributes them among vot-
ers. For example, for a simple yes/no choice, the voting card might look as follows
(abstention option is always present):

Voter ID
Start voting key: ti6v-kvtc-yiju-hh5h-pjsk
Question 1:
No 1225
Yes 7096
Empty 8790
Ballot casting key: 8147-1584-8
Vote cast return code: 0742-5185

Finally, the setup component, control components, and the electoral board to-
gether generate the election key pair. The fifth control component - the tally control
component- does not participate in the setup phase.

To vote, the voter enters their private Start Voting Key (SVK) (printed on their
voting card) and the selected voting options. The voting client creates an encrypted
ballot with two parts: one contains the encrypted product of selections, and the
other the encrypted pre-return codes. Each pre-return code is the exponentiation of
each voter’s choice to the voter’s private key. The zero-knowledge proofs link both
ballot parts and ensure they contain the same options.

A voting server forwards the ballot to the control components that verify its
correctness and eligibility. The control components jointly decrypt the pre-return

110 Appendix A. Brief Description Of Mentioned E-Voting Schemes

code, then check it is inside the valid list of pre-return codes and, if so, exponentiate
the hash of it to a control component’s secret key associated with the voter. The
voting server uses those exponentiated values to extract the Choice Return Codes
from the mapping table and sends them back to the voting client.

V(pms,m) VD(pms)

Get SVK from voting card

m, SVK

Generate ballot

Send ballot

Receive a Choice Return Code

Choice Return Code

if wrong Choice Return Code

then complain

Get BCK from voting card

BCK

Generate confirmation

Send confirmation

Receive a Vote Cast Code

Vote Cast Return Code

if wrong Vote Cast Return Code

then complain

Figure A.5: The vote-casting and voter-verification of the Swiss Post voting system.

The voting client shows the received codes to the voter, who cross-checks them
with the codes printed on their voting card. If all codes match, the voter confirms
the vote by entering their private Ballot Casting Key (BCK) printed on their voting
card.

The vote-confirmation part is similar to the vote-casting procedure. The voting
client derives the confirmation message from that key and sends it to the voting
server, which forwards it further. Each control component performs exponentiation
of the confirmation message and outputs the hash of the result. However, the control
component does not reveal the result until it receives hash values from other control
components and ensures all hash values are in the allowed list. Any vote that has
hashes in the allowed list is marked as confirmed and outputs the exponentiation

A.6. Estonian Internet voting scheme 111

result. As before, the voting server uses those exponentiated values to extract the
Vote Cast Return Codes from the mapping table. If the voter does not receive the
code or it is incorrect, they complain to the authorities.

The exact procedure required for extracting the return codes from the mapping
table is a bit complicated due to the involvement of four control components. How-
ever, from the voter’s point of view, the verification and confirmation processes are
extremely simple - see Figure A.5 for details.

During the tally phase, control components select the confirmed votes and con-
duct their verification, perform verification, verifiably shuffle, and partially decrypt
confirmed votes. Finally, the electoral board reveals its passwords to the tally con-
trol component, which does the final audit, shuffle, decryption, and decoding of the
result.

From a practical view, the Swiss Post Voting scheme inherits all limitations of
return-code-based solutions: the need for a secure printing facility, mandatory secure
channels for voting card delivery, and a limited number of candidates. However, it
enforces mandatory vote-verification as there is a vote-confirmation stage.

A.6 Estonian Internet Voting Scheme

V(pms,m) VD(pms)

m

r
$← RSE

ctxt = E.Enc(m, r)

σ ← Sign(ctxt, skV)

VD 7→ BB : (ctxt, σ)

Receive reference vr

Put r and rv in a QR

QR

Get r and rv from the QR

On another VD verify that:

(vr, ctxt, σ) ∈ BB and

ctxt = E.Enc(m, r)

Figure A.6: The vote-casting and voter-verification of Estonian voting system.

The first version of the Estonian Internet voting scheme [62] was developed in the
early 2000s and used between 2005-2016 for several elections in Estonia. It was based
on RSA encryption, and no mixing was performed during the counting. Lately, in

112 Appendix A. Brief Description Of Mentioned E-Voting Schemes

2017, appeared a new IVXV version ES2017 [2], which is based on ElGamal and
verifiable mixing.

During the setup, trustees jointly generate an election key pair and store their
private shares on smart cards.

To vote, voters authenticate in a voting application installed on their devices
using their national ID card, digital identity document (Digi-ID), or Mobile-ID.
After authentication, the system verifies the eligibility of the voter. Then, the voter
selects the desired voting options, and the voting device generates a random seed
r and uses it to encrypt selections. The resulting vote is signed with the national
ID card (we refer to it as skV secret key) and sent to the voting server. The voting
server verifies the signature, stores the ballot, and returns a reference vr to the vote.
Finally, the voter obtains a QR code with vr and r for verification purposes.

The system provides cast-as-intended verifiability based on the cast-and-decrypt
approach via the QR code given to the voter, see Figure A.6 for details. The check
is done by scanning the QR code with the verification device, which is a smartphone
in this case. The verification device uses the vote reference vr to request the vote
from the voting server and the list of candidates. Once received, the verification
device decrypts the ballot using the randomness r and shows the result to the voter,
who checks if it matches their intention.

When the election finishes, the ballots are validated and anonymized.

A.7 Hyperion Voting System

Hyperion [99] is an enhanced version of a Selene system [98] that aims to provide
intuitively understandable verification for voters by assigning each voter a private
tracking number. While the original Selene posts tracking numbers with each ballot,
Hyperion reveals tracking numbers privately. Yet, both schemes allow voters to
identify and check their votes after all votes are decrypted.

As a precondition, the scheme assumes that each voter already generated trap-
door keys (xi, hi = gxi) via the voter’s app and registered the public part hi. Also,
voters are expected to have a signing key pair. It is not specified which entity gen-
erates those keys. For simplicity, we assume that an election authority is in charge
of this task.

During the setup phase, the tellers jointly generate a tellers’ public key, which is
posted on a bulletin board. It is not specified who generates the election key pair.
For simplicity, we assume a group of Trustees distributedly generates election keys.

To cast a vote, the voter chooses the intended selections. Then the voting device
encrypts them, proving the plaintext knowledge and signs. The resulting ballot
is published on the bulletin board by the voting server. After that, each teller j
exponentiates the voter’s public key h

rij
i to a random rij, publishes the result, and

keeps the corresponding rij secret. The product of results from all tellers is called
the beta term and denoted as β = hrii .

After the voting phase, votes are stripped of signatures and the correspond-
ing zero-knowledge proofs. Then Trustees pair the stripped ciphertexts with beta
terms and perform verifiable shuffle and decryption. The decrypted votes and cor-
responding re-randomized beta terms hri·sii are posted on the bulletin board. It is

A.7. Hyperion voting system 113

not specified how, but all tellers obtain the value si.

V(pms,m) VD(pms)

voting phase

m

r
$← RSE

ctxt = E.Enc(m, r)

σ ← Sign(ctxt, skV)

VD 7→ BB : (ctxt, σ)

verification phase

Receive βj from all j tellers

Compute β =
∏
j

βxi
j

Identify ballot with β

Check that plaintext is correct

Figure A.7: The vote-casting and voter-verification of Hyperion voting system.

The voter can engage in cast-as-intended verification only after the results are
published. For that, each teller j sends βj = grij ·si over a private channel in a deniable
fashion. Voters use their trapdoor key xi to compute their beta term (

∏
j g

rij ·si)xi

and identify their vote. To avoid coercion, the voter can fake some value grij ·s and
make it open to any beta term it wishes.

To further strengthen coercion-resistance and prevent the coercer from claiming
that some beta term belongs to him, Hyperion offers individual views of Bulletin
Board BB for each voter. For that, mixed and decrypted ballots are grouped by the
candidate, then for each voter, votes are again permuted and re-randomized within
candidate groups. Therefore, each voter will receive their unique view, which makes
it difficult for the coercer to recognize their beta term.

Overall, the cast-as-intended and recorded-as-cast verifiability rely on beta terms
published along with decrypted votes. Therefore, the voter must be able to recon-
struct their beta term. For that, all tellers should send their parts grij to the voter;
in other words, no teller is malicious and withholds the share. Moreover, the veri-
fication device should be honest. Otherwise, it can use knowledge of the trapdoor
key to show a fake beta term for another selection.

Also, the adversary should not know the voter’s trapdoor key. Otherwise, he can
disguise himself as a teller and send a fake gr

∗
ij term. Since the terms arrive through

anonymous channels, the voter would not know the difference and will use a bogus
value that will lead to a different beta term. Therefore, the voter’s app should be
trustworthy. The voter’s app trustworthiness also ensures that all beta terms would
be unique as public keys hi would be random.

114 Appendix A. Brief Description Of Mentioned E-Voting Schemes

Bibliography

[1] D-demos: A distributed, end-to-end verifiable, internet voting system. In Pro-
ceedings - 2016 IEEE 36th International Conference on Distributed Computing
Systems, ICDCS 2016, Proceedings - International Conference on Distributed
Computing Systems, pages 711–720. Institute of Electrical and Electronics En-
gineers Inc., August 2016. Publisher Copyright: © 2016 IEEE.; 36th IEEE
International Conference on Distributed Computing Systems, ICDCS 2016 ;
Conference date: 27-06-2016 Through 30-06-2016.

[2] General framework of electronic voting and implementation thereof at national
elections in estonia. Technical report, State Electoral Office of Estonia, 2017.

[3] Claudia Z. Acemyan, Philip Kortum, Michael D. Byrne, and Dan S. Wallach.
Usability of voter verifiable, end-to-end voting systems: Baseline data for
helios, prêt à voter, and scantegrity II. In 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE 14), 2014.

[4] Ben Adida. Helios v4 verification specs. In Helios documentation. Accessed:
2022-09-5.

[5] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th
USENIX Security Symposium, pages 335–348, 2008.

[6] Ben Adida and C. Andrew Neff. Ballot casting assurance. In 2006
USENIX/ACCURATE Electronic Voting Technology Workshop (EVT 06),
Vancouver, B.C., August 2006. USENIX Association.

[7] Ben Adida and C. Andrew Neff. Efficient receipt-free ballot casting resistant
to covert channels. Cryptology ePrint Archive, Paper 2008/207, 2008. https:
//eprint.iacr.org/2008/207.

[8] M. Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pages 99–108, New York, NY, USA, 1996. Association for Com-
puting Machinery.

[9] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, STOC ’97, page 284–293, New
York, NY, USA, 1997. Association for Computing Machinery.

https://eprint.iacr.org/2008/207
https://eprint.iacr.org/2008/207

116 Bibliography

[10] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann.
On lattice-based interactive protocols: An approach with less or no aborts. In
Information Security and Privacy, pages 41–61, Cham, 2020. Springer Inter-
national Publishing.

[11] Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Inco-
ercible multi-party computation and universally composable receipt-free vot-
ing. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, volume 9216 of Lecture Notes in Computer Science, pages 763–780.
Springer, 2015.

[12] Roberto Araujo, Narjes Ben Rajeb, Riadh Robbana, Jacques Traoré, and
Souheib Yousfi. Towards practical and secure coercion-resistant electronic
elections. pages 278–297, 12 2010.

[13] Xavier Arnal, Abraham Cano, Tamara Finogina, and Javier Herranz. How to
avoid repetitions in lattice-based deniable zero-knowledge proofs. Cryptology
ePrint Archive, Paper 2022/803, 2022. https://eprint.iacr.org/2022/803.

[14] Thomas Attema and Serge Fehr. Parallel repetition of (k1, . . . , kµ)-special-
sound multi-round interactive proofs. Cryptology ePrint Archive, Paper
2021/1259, 2021. https://eprint.iacr.org/2021/1259.

[15] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation
of multi-round interactive proofs. IACR Cryptol. ePrint Arch., page 1377,
2021.

[16] Rouzbeh Behnia, Yilei Chen, and Daniel Masny. On removing rejection con-
ditions in practical lattice-based signatures. In Post-Quantum Cryptography,
pages 380–398, Cham, 2021. Springer International Publishing.

[17] Josh Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale University,
1987ß.

[18] Josh Benaloh. Ballot casting assurance via voter-initiated poll station au-
diting. In USENIX/ACCURATE Electronic Voting Technology Workshop,
EVT’07, 2007.

[19] Josh Benaloh. Rethinking voter coercion: The realities imposed by technol-
ogy. In Presented as part of the 2013 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections, Washington, D.C., 2013. USENIX.

[20] David Bernhard, Oksana Kulyk, and Melanie Volkamer. Security proofs for
participation privacy, receipt-freeness and ballot privacy for the helios voting
scheme. In Proceedings of the 12th International Conference on Availability,
Reliability and Security, page 1–10, 2017.

[21] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo voting:
Secure and coercion-free voting using a trusted random number generator. In

https://eprint.iacr.org/2022/803
https://eprint.iacr.org/2021/1259

Bibliography 117

Ammar Alkassar and Melanie Volkamer, editors, E-Voting and Identity, First
International Conference, VOTE-ID 2007, Bochum, Germany, October 4-5,
2007, Revised Selected Papers, volume 4896 of Lecture Notes in Computer
Science, pages 111–124. Springer, 2007.

[22] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. More efficient amortization of exact zero-knowledge proofs for LWE.
In ESORICS 202, volume 12973 of Lecture Notes in Computer Science, pages
608–627. Springer, 2021.

[23] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In Advances
in Cryptology - CRYPTO 2019, volume 11692 of Lecture Notes in Computer
Science, pages 176–202. Springer, 2019.

[24] Ahto Buldas and Triinu Mägi. Practical security analysis of e-voting systems.
In Atsuko Miyaji, Hiroaki Kikuchi, and Kai Rannenberg, editors, Advances in
Information and Computer Security, pages 320–335, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[25] Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based
elections with helios. In Proceedings of the 2011 Conference on Electronic Vot-
ing Technology/Workshop on Trustworthy Elections, EVT/WOTE’11, page 6,
USA, 2011. USENIX Association.

[26] Jeffrey Burdges and Luca De Feo. Delay encryption. In Advances in
Cryptology–EUROCRYPT 2021: 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17–21, 2021, Proceedings, Part I, pages 302–326. Springer, 2021.

[27] R Canetti and R Gennaro. Incoercible multiparty computation. pages 504 –
513, Novermber 1996.

[28] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo.
Beleniosrf: A non-interactive receipt-free electronic voting scheme. Cryptology
ePrint Archive, Report 2015/629, 2015. https://eprint.iacr.org/2015/

629.

[29] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo.
BeleniosRF: A non-interactive receipt-free electronic voting scheme. In Pro-
ceedings of ACM SIGSAC Conference, pages 1614–1625, 2016.

[30] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE
Security & Privacy Magazine, 2:38–47, 2004.

[31] Jeremy Clark and Urs Hengartner. Selections: Internet voting with over-the-
shoulder coercion-resistance. In Proceedings of the 15th International Confer-
ence on Financial Cryptography and Data Security, pages 47–61, 2011.

https://eprint.iacr.org/2015/629
https://eprint.iacr.org/2015/629

118 Bibliography

[32] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward
a secure voting system. In 2008 IEEE Symposium on Security and Privacy
(S&P 2008), pages 354–368, 2008.

[33] Véronique Cortier, Jannik Dreier, Pierrick Gaudry, and Mathieu Turuani. A
simple alternative to Benaloh challenge for the cast-as-intended property in
Helios/Belenios. working paper or preprint, 2019.

[34] Véronique Cortier, Jannik Dreier, Pierrick Gaudry, and Mathieu Turuani. A
simple alternative to Benaloh challenge for the cast-as-intended property in
Helios/Belenios. working paper or preprint, 2019.

[35] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. BeleniosVS: Secrecy
and verifiability against a corrupted voting device. In 32nd IEEE Computer
Security Foundations Symposium, Hoboken, NJ, USA, June 25-28, 2019.

[36] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène.
Election verifiability for helios under weaker trust assumptions. In Miros law
Kuty lowski and Jaideep Vaidya, editors, Computer Security - ESORICS 2014,
pages 327–344, Cham, 2014. Springer International Publishing.

[37] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. Is the JCJ voting
system really coercion-resistant? working paper or preprint, April 2022.

[38] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. Beleniosvs: Se-
crecy and verifiability against a corrupted voting device. In 2019 IEEE 32nd
Computer Security Foundations Symposium (CSF), pages 367–36714, 2019.

[39] Jordi Cucurull, Adrià Rodŕıguez-Pérez, Tamara Finogina, and Jordi Puig-
gaĺı. Blockchain-based internet voting: Systems’ compliance with interna-
tional standards. In Witold Abramowicz and Adrian Paschke, editors, Busi-
ness Information Systems Workshops, pages 300–312, Cham, 2019. Springer
International Publishing.

[40] Ivan Damg̊ard. On σ-protocols. https://www.cs.au.dk/~ivan/Sigma.pdf/,
2002.

[41] Scytl R&S David Galindo. sVote with Control Components Voting Protocol
- Computational Proof of Complete Veriability. 2018.

[42] Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater. Electing
a university president using open-audit voting: Analysis of real-world use of
helios. In Proceedings of EVT/WOTE Workshop, 2009.

[43] S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness
in electronic voting. In 19th IEEE Computer Security Foundations Workshop
(CSFW’06), pages 12–42, 2006.

[44] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying Privacy-Type
Properties of Electronic Voting Protocols: A Taster, pages 289–309. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

https://www.cs.au.dk/~ivan/Sigma.pdf/

Bibliography 119

[45] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the fiat-shamir transformation in the quantum random-oracle model. In
Advances in Cryptology - CRYPTO 2019, volume 11693 of Lecture Notes in
Computer Science, pages 356–383. Springer, 2019.

[46] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In George Robert Blakley and David Chaum, editors,
Advances in Cryptology, pages 10–18, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg.

[47] Saghar Estehghari and Yvo Desmedt. Exploiting the client vulnerabilities in
internet e-voting systems: Hacking helios 2.0 as an example. In EVT/WOTE
Workshop, pages 1–9, 2010.

[48] Tamara Finogina. Designated cast-as-intended verification and universal proof
of vote correctness from chameleon hashes. In XVI RECSI, volume 28, pages
101–106, 2021.

[49] Tamara Finogina and Javier Herranz. On remote electronic voting with both
coercion resistance and cast-as-intended verifiability. Journal of Information
Security and Applications, 76:103554, 2023.

[50] Tamara Finogina, Javier Herranz, and Enrique” Larraia. How (not) to achieve
both coercion resistance and cast as intended verifiability in remote evoting.
In Cryptology and Network Security, pages 483–491, 2021.

[51] Tamara Finogina, Adrià Rodŕıguez-Pérez, and Jordi Puiggaĺı. Dubious se-
curity practices in e-voting schemes. between tech and legal standards. 10
2022.

[52] Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth. A critique of game-based
definitions of receipt-freeness for voting. In Provable Security, page 189–205,
Berlin, Heidelberg. Springer-Verlag.

[53] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 33–62, Cham, 2018. Springer
International Publishing.

[54] Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[55] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and
Daniel Tschudi. Fiat–shamir bulletproofs are non-malleable (in the algebraic
group model). In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology – EUROCRYPT 2022, pages 397–426, Cham, 2022. Springer
International Publishing.

[56] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Coercion resistant
end-to-end voting. In Roger Dingledine and Philippe Golle, editors, Financial

120 Bibliography

Cryptography and Data Security, pages 344–361, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[57] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge Univer-
sity Press, 2001.

[58] Sandra Guasch and Paz Morillo. How to challenge and cast your e-vote. In
Jens Grossklags and Bart Preneel, editors, Financial Cryptography and Data
Security, pages 130–145, 2017.

[59] Thomas Haines and Ben Smyth. Surveying definitions of coercion resistance.
Cryptology ePrint Archive, Report 2019/822, 2019. https://ia.cr/2019/

822.

[60] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols:
Techniques and Constructions. Springer-Verlag, Berlin, Heidelberg, 1st edi-
tion, 2010.

[61] James Heather and David Lundin. The append-only web bulletin board. In
Pierpaolo Degano, Joshua Guttman, and Fabio Martinelli, editors, Formal As-
pects in Security and Trust, pages 242–256, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[62] Sven Heiberg, Peeter Laud, and Jan Willemson. The application of i-voting
for estonian parliamentary elections of 2011. In Aggelos Kiayias and Helger
Lipmaa, editors, E-Voting and Identity, pages 208–223. Springer Berlin Hei-
delberg, 2012.

[63] Vincenzo Iovino, Alfredo Rial, Peter B. Rønne, and Peter Y. A. Ryan. Us-
ing selene to verify your vote in jcj. In Michael Brenner, Kurt Rohloff, Joseph
Bonneau, Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali,
Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors, Finan-
cial Cryptography and Data Security, pages 385–403, Cham, 2017. Springer
International Publishing.

[64] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. In Advances in Cryptology - EUROCRYPT ’96,
pages 143–154. Springer, 1996.

[65] Wojciech Jamroga, Damian Kurpiewski, Vadim Malvone, Thomas Groß, and
Luca Viganò. How to measure usable security: Natural strategies in voting
protocols1. J. Comput. Secur., 30(3):381–409, jan 2022.

[66] Rui Joaquim, Carlos Ribeiro, and Paulo Ferreira. Veryvote: A voter verifiable
code voting system. In Peter Y. A. Ryan and Berry Schoenmakers, editors, E-
Voting and Identity, pages 106–121, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[67] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant elec-
tronic elections. In Towards Trustworthy Elections, New Directions in Elec-
tronic Voting, pages 37–63, 2010.

https://ia.cr/2019/822
https://ia.cr/2019/822

Bibliography 121

[68] Shuichi Katsumata. A new simple technique to bootstrap various lattice
zero-knowledge proofs to QROM secure nizks. In Advances in Cryptology
- CRYPTO 2021, volume 12826 of Lecture Notes in Computer Science, pages
580–610. Springer, 2021.

[69] A. Kiayias, T. Zacharias, and B. Zhang. An efficient e2e verifiable e-voting
system without setup assumptions. IEEE Security Privacy, 15(3):14–23, 2017.

[70] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Demos-2: Scalable
e2e verifiable elections without random oracles. CCS ’15, page 352–363, New
York, NY, USA, 2015. Association for Computing Machinery.

[71] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end ver-
ifiable elections in the standard model. IACR Cryptology ePrint Archive,
2015:346, 2015.

[72] Kristjan Krips and Jan Willemson. On practical aspects of coercion-resistant
remote voting systems. 2019.

[73] Oksana Kulyk, Karola Marky, Stephan Neumann, and Melanie Volkamer. In-
troducing proxy voting to helios. In 2016 11th International Conference on
Availability, Reliability and Security (ARES), pages 98–106, 2016.

[74] Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. Extending helios
towards private eligibility verifiability. In Rolf Haenni, Reto E. Koenig, and
Douglas Wikström, editors, E-Voting and Identity, pages 57–73, Cham, 2015.
Springer International Publishing.

[75] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A game-based defini-
tion of coercion-resistance and its applications. In 2010 23rd IEEE Computer
Security Foundations Symposium, pages 122–136, 2010.

[76] Enrique Larraia, Tamara Finogina, and Nuria Costa. svote with control
components voting protocol. computational proof of complete verifiability
and privacy. Cryptology ePrint Archive, Paper 2022/1509, 2022. https:

//eprint.iacr.org/2022/1509.

[77] Peter Hyun-Jeen Lee and Siamak F. Shahandashti. Theoretical attacks on e2e
voting systems. Cryptology ePrint Archive, Report 2016/447, 2016. https:

//ia.cr/2016/447.

[78] Vadim Lyubashevsky. Basic lattice cryptography: Encryption
and fiat-shamir signatures. https://drive.google.com/file/d/

1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view. Accessed: 2023-03-20.

[79] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology – ASIACRYPT 2009,
pages 598–616, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

https://eprint.iacr.org/2022/1509
https://eprint.iacr.org/2022/1509
https://ia.cr/2016/447
https://ia.cr/2016/447
https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view
https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view

122 Bibliography

[80] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. Cryptology ePrint Archive, Report 2022/284, 2022. https://ia.cr/
2022/284.

[81] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

[82] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
lwe cryptography. Cryptology ePrint Archive, Paper 2013/293, 2013. https:
//eprint.iacr.org/2013/293.

[83] Emmanouil Magkos, Mike Burmester, and Vassilios Chrissikopoulos. Receipt-
freeness in large-scale elections without untappable channels. In Towards
The E-Society: E-Commerce, E-Business, and E-Government, The First IFIP
Conference on E-Commerce, E-Business, E-Government (I3E 2001), October
3-5, Zürich, Switzerland, volume 202 of IFIP Conference Proceedings, pages
683–693. Kluwer, 2001.

[84] Karola Marky, Oksana Kulyk, Karen Renaud, and Melanie Volkamer. What
did i really vote for? on the usability of verifiable e-voting schemes. In Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems,
pages 1–13, 2018.

[85] Karola Marky, Marie Laure Zollinger, Peter Roenne, Peter Y.A. Ryan, Tim
Grube, and Kai Kunze. Investigating usability and user experience of indi-
vidually verifiable internet voting schemes. ACM Transactions on Computer-
Human Interaction, 28(5), October 2021.

[86] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with ever-
lasting privacy. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO
2006, pages 373–392, 2006.

[87] C. Andrew Neff. Practical high certainty intent verification for encrypted
votes, 2004.

[88] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elec-
tions. In Security Protocols Workshop, 1997.

[89] Alisa Pankova and Jan Willemson. Relations between privacy, verifiability,
accountability and coercion-resistance in voting protocols. Cryptology ePrint
Archive, Report 2021/1501, 2021. https://ia.cr/2021/1501.

[90] Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Advances in Cryptology - CRYPTO ’91, pages 129–140,
1991.

[91] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. J. Cryptol., 13(3):361–396, 2000.

https://ia.cr/2022/284
https://ia.cr/2022/284
https://eprint.iacr.org/2013/293
https://eprint.iacr.org/2013/293
https://ia.cr/2021/1501

Bibliography 123

[92] Swiss Post. Swiss post voting system.

[93] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), sep 2009.

[94] Stanislas Riou, Oksana Kulyk, and David Marcos del Blanco. A formal ap-
proach to coercion resistance and its application to e-voting. Mathematics, 10,
02 2022.

[95] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. 1996.

[96] Peter B. Rønne, Arash Atashpendar, Kristian Gjøsteen, and Peter Y. A. Ryan.
Coercion-resistant voting in linear time via fully homomorphic encryption:
Towards a quantum-safe scheme. CoRR, abs/1901.02560, 2019.

[97] Peter B. Rønne, Peter Y. A. Ryan, and Ben Smyth. Cast-as-intended: A
formal definition and case studies. In Financial Cryptography and Data Se-
curity. FC 2021 International Workshops - CoDecFin, DeFi, VOTING, and
WTSC, Virtual Event, March 5, 2021, Revised Selected Papers, volume 12676
of Lecture Notes in Computer Science, pages 251–262. Springer, 2021.

[98] Peter Ryan, Peter Rønne, and Vincenzo Iovino. Selene: Voting with trans-
parent verifiability and coercion-mitigation. volume 9604, pages 176–192, 02
2016.

[99] Peter Y. A. Ryan, Simon Rastikian, and Peter B. Rønne. Hyperion: An en-
hanced version of the selene end-to-end verifiable voting scheme. In Proceedings
of E-Vote-ID, pages 285–287. University of Tartu, 2021.

[100] Peter Y. A. Ryan, Peter B. Roenne, Dimiter Ostrev, Fatima-Ezzahra El Orche,
Najmeh Soroush, and Philip B. Stark. Who was that masked voter? the tally
won’t tell! In Robert Krimmer, Melanie Volkamer, David Duenas-Cid, Oksana
Kulyk, Peter Rønne, Mihkel Solvak, and Micha Germann, editors, Electronic
Voting, pages 106–123, Cham, 2021. Springer International Publishing.

[101] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. In Kaisa Nyberg, editor, Advances in Cryptology
— EUROCRYPT’98, pages 1–16, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[102] Warren D. Smith. New cryptographic election protocol with best-
known theoretical properties. Workshop on Frontiers in Electronic Elec-
tion, 2005. https://users.encs.concordia.ca/~clark/biblio/coercion/
Smith%202005-1.pdf.

[103] Ben Smyth. Athena: A verifiable, coercion-resistant voting system with linear
complexity. Cryptology ePrint Archive, Report 2019/761, 2019. https://

eprint.iacr.org/2019/761.

https://users.encs.concordia.ca/~clark/biblio/coercion/Smith%202005-1.pdf
https://users.encs.concordia.ca/~clark/biblio/coercion/Smith%202005-1.pdf
https://eprint.iacr.org/2019/761
https://eprint.iacr.org/2019/761

124 Bibliography

[104] Jacques Stern. A new identification scheme based on syndrome decoding. In
Douglas R. Stinson, editor, Advances in Cryptology — CRYPTO’ 93, pages
13–21, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[105] Swiss Post. Protocol of the Swiss Post Voting System. Computational
Proof of Complete Verifiability and Privacy. Version 1.1.0. https:

//gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/

-/tree/master/Protocol, 2022.

[106] Masoud Tabatabaei, Wojciech Jamroga, and Peter Ryan. Preventing coercion
in e-voting: Be open and commit. 01 2013.

[107] Alexander H. Trechsel and Kristjan Vassil. Internet voting in estonia : a
comparative analysis of four elections since 2005 : report for the council of
europe. 2010.

[108] Dwight Tuinstra and Josh Benaloh. Receipt-free secret-ballot elections. In
STOC ’94 Proceedings of the Twenty-sixth Annual ACM Symposium on The-
ory of Computing, pages 544–553. Association for Computing Machinery, Inc.,
May 1994.

[109] Dominique Unruh. Post-quantum security of fiat-shamir. In Advances in
Cryptology - ASIACRYPT 2017, volume 10624 of Lecture Notes in Computer
Science, pages 65–95. Springer, 2017.

[110] Dominique Unruh and Jörn Müller-Quade. Universally composable incoercibil-
ity. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages
411–428, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[111] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with stan-
dard soundness: Construction and applications. In Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, pages 147–175,
2019.

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Protocol
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Protocol
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/tree/master/Protocol

	Acknowledgements
	Preface
	Introduction
	State of the Art
	Coercion-Resistance
	Receipt Freeness
	Cast-as-Intended Verification

	Thesis contribution
	Publications Resulting from the Thesis

	Structure of this Thesis

	Preliminaries
	Relations and Languages
	Groups and Hard Problems
	Homomorphic Public Key Encryption
	ElGamal encryption

	Commitment Scheme
	Interactive zero-knowledge systems

	Defining Coercion-Resistant Cast-As-Intended Verifability
	Can we have one standard definition for both properties?
	Our settings
	Parties and Syntax of the E-Voting Protocol
	Formal Definitions of Cast-As-Intended and Coercion-Resistance
	Formal Definition of Cast-As-Intended (CAI) Verifiability
	Formal Definition of Coercion-Resistance (CR)
	Comparison with Previous Definitions of CAI and CR

	On the Necessary Number of Rounds

	Instantiations Of CR-CAI Solutions
	Unsatisfactory solution U1
	Solution S1: committing to challenges
	Security Analysis of the Protocol
	Detailed Protocol for ElGamal Ciphertexts

	Unsatisfactory solution U2
	Solution S2: adding interactive proof of the trapdoor knowledge
	Security Analysis of the Protocol
	Detailed Protocol for ElGamal Ciphertexts

	Post-Quantum Solution
	Why we cannot use our solutions directly in lattice settings?
	Basics of Lattice-based Cryptography
	Polynomial Rings
	The Ring Learning With Errors Problem
	The Ring Short Integer Solution
	Error Distribution and Rejection Sampling
	Lattice-based public key encryption scheme
	Lattice-based proof of a short integer vector knowledge

	The Transformation
	Security Analysis of Our Transformation
	Zero-Knowledge
	Soundness

	Possible extensions of our transformation
	Use Case and Implementation

	CR-CAI For A Computationally Limited Voter
	Parties and Syntax of the Voting Protocol
	Formal Definition of CAI for a Computationally Limited Voter
	Formal Definition of CR for a Computationally Limited Voter
	CR-CAI Solution for a Computationally Limited Voter
	Security Analysis of the Protocol
	Comparison with Bingo Voting: on the Necessity of OED

	Stronger Coercion Settings
	Stronger Coercion Settings
	Why S1 is vulnerable to strong coercion?
	Solution S3: random group generator
	Security Analysis of the Protocol

	Future research

	Conclusion
	Brief Description Of Mentioned E-Voting Schemes
	Helios voting system
	Belenios voting system
	Demos voting system
	Demos-2
	Swiss Post voting system
	Estonian Internet voting scheme
	Hyperion voting system

	Bibliography

