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Abstract

Over the past decade, artificial intelligence (AI) has witnessed significant ad-
vancements, driven by the remarkable progress in deep learning, a subfield
of machine learning that employs deep neural networks (DNNs) to achieve
unprecedented levels of accuracy in various tasks such as image recognition,
speech recognition, and natural language processing. However, the increasing
complexity of DNN models presents challenges for efficient computation on
modern computing systems. On the one side, the number of layers in modern
DNNs has grown significantly, resulting in an exponential increase in the num-
ber of operations and parameters required for their computation, and posing
a challenge to edge and mobile computing systems, featuring tight power and
memory constraints. On the other side, the adoption of sophisticated compu-
tational layers, such as recent complex activation functions, can significantly
impact the runtime of DNNs on current high-performance computing (HPC)
and cloud computing accelerators.

This thesis proposes several techniques to reduce the arithmetic complexity of
DNN computations, as well as hardware architectures to improve the compu-
tation of DNNs considering both edge and HPC scenarios. We first propose
a novel hardware microarchitecture, called Bison-e, that accelerates important
linear algebra operations, including inner-product and convolution, used in a
broad range of applications, such as deep learning, pattern matching, and graph
processing. Bison-e exploits the use of a mathematical technique, called binary

segmentation, to reduce the arithmetic complexity of linear algebra operations
involving narrow integers on general-purpose central processing unit (CPU)
architectures, achieving high performance through single instruction multi-
ple data (SIMD) operations on off-the-shelf scalar processor functional units
(FUs), with minimal area and energy overhead. Our experimental evaluation
shows that Bison-e achieves up to 24× better performance for 2-bit data sizes
compared to a scalar RISC-V core, and 5× energy efficiency improvement
for string matching tasks compared to a RISC-V-based vector processing unit
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(VPU). We then utilize principles from Bison-e to design a novel hardware-
software co-designed architecture, called Mix-GEMM, specifically designed to
efficiently compute arbitrary quantized DNNs convolutional kernels exploit-
ing data sizes ranging from 8- to 2-bit, including mixed-precision computa-
tions. Mix-GEMM enhances a state-of-the-art (SoA) matrix-matrix multipli-
cation framework called BLAS-like library instantiation software (BLIS) with
custom instructions extending the RISC-V instruction set architecture (ISA)
to perform high-performance convolutional kernels on CPUs. We propose an
experimental evaluation performed on representative quantized convolutional
neural networks (CNNs) targeting edge and mobile CPUs, demonstrating that
Mix-GEMM achieves an energy efficiency of up to 1.3 TOPS/W and through-
put of up to 13.6 GOPS, outperforming the considered baseline by 5.3× to
15.1×, while only accounting for 1% of the overall system-on-chip (SoC) area
consumption. This thesis finally investigates the main computational bottle-
necks of modern HPC-based hardware accelerators, and proposes Flex-SFU,
a novel hardware accelerator for complex DNNs activation functions. Flex-

SFU serves as lightweight special function units to accelerate activation func-
tions computations performed on application-specific deep learning proces-
sors. It utilizes non-uniform piecewise linear (PWL) approximation and sup-
ports multiple data formats, enabled by a binary-tree based address decoding
unit. The proposed experimental evaluation, considering over 700 computer
vision and natural language processing models, demonstrates an average of
22.3× improvement in mean squared error (MSE) compared to previous PWL
approaches. Moreover, Flex-SFU improves the end-to-end performance of the
considered AI hardware accelerator by 35.7% on average, achieving up to 3.3×
speedup with negligible impact on model accuracy. The architecture introduces
a modest area and power overhead of 5.9% and 0.8%, respectively, relative to
the baseline VPU.
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Chapter 1
Introduction

Over the past decade, artificial intelligence (AI) has made tremendous strides, leading to
numerous breakthrough technologies. One of the main driving forces behind these ad-
vances is deep learning, a subfield of machine learning that involves deep neural networks
(DNNs). Indeed, DNNs have been shown to achieve never-before-seen levels of accuracy
in various tasks, such as image recognition, speech recognition, and natural language pro-
cessing [89] [45] [114]. A remarkable example of how DNNs improved the accuracy of
image recognition tasks in the last decade can be clearly perceived in Figure 1.1. Specifi-
cally, approaches based on deep learning completely overtake other computer vision solu-
tions starting from 2012 with the introduction of the AlexNet convolutional neural network
(CNN) [82], featuring a top-1 accuracy1 of 63.3%, and surpassed human-level accuracy
in 2015 with the ResNet architecture [66], attaining up to 78.6% top-1 accuracy. Recent
DNN architectures such as CoCa [160] and BASIC-L [37] show even higher accuracies,
achieving up to 91% top-1 accuracy in computer vision tasks.

While advances in DNN accuracies have led to unparalleled achievements, the compu-
tational demands associated with these models restrict their applicability to various plat-
forms and applications. These limitations include a constant increase in the overall number
of parameters and operations required for their execution, as well as higher complexities
in terms of models topologies and types of layers. As detailed in the remainder of this
section, these computational drawbacks are posing several challenges to a wide spectrum
of computing systems, ranging from small general-purpose central processing unit (CPU)
processors targeting edge and mobile applications, to large-scale hardware accelerators de-
signed for cloud and high-performance computing (HPC) environments.

1Probability that the target object corresponds to the object class predicted with the highest probability.
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Figure 1.1: Accuracy over time evolution of 800+ computer vision DNNs [7].

Models size increase: The increase in the number of layers of modern DNNs result in
an exponential growth of the number of operations and parameters required for their com-
putation. This trend is highlighted in Figure 1.2, analyzing more than 800 state-of-the-art
(SoA) DNN models [7] targeting image classification and relating each network accuracy
with the corresponding number of operations and parameters needed to perform a sin-
gle inference task. As Figure 1.2 shows, traversing the models Pareto frontier, aiming at
improving quality of results, requires relying on networks featuring more operations and
parameters, mainly coming from layers performing dense linear algebra operations, such
as the convolution and fully-connected layers. Efficiently handling such a high number
of operations and parameters is particularly demanding in the edge computing scenario,
exploiting DNNs in a wide range of latency-sensitive applications, such as autonomous
vehicles or real-time monitoring of industrial processes [163, 167]. Specifically, as edge
systems process data closer to the source, they are tightly constrained by power consump-
tion, with direct limitations in the processor area and memory requirements. As a result,
the high number of operations and the large memory footprints of DNNs make their com-
putation on general-purpose edge processors almost impracticable considering reasonable
performance and energy constraints. For this reason, exploring novel computing systems
capable of fulfilling the performance requirements of DNNs on edge-based applications,
while satisfying the energy and memory caps of these systems currently represent a bright
research area of interest in both industry [1, 2, 5, 9] and academia [39, 58, 77].

Models complexity increase: As a way to improve end-to-end accuracy, modern networks
are increasingly exploiting sophisticated computational layers and complex topologies over
time. For example, contemporary activation functions, such as the Sigmoid Linear unit
(SiLU) and the Gaussian Error Linear unit (GELU) are used more frequently in recent years
in place of simpler activation functions like Rectified Linear Unit (ReLU). While these
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Figure 1.2: Accuracy against number of operations and parameters for 800+ computer
vision DNNs from [7].

newer activation functions have been shown to improve the accuracy of DNNs, especially
in deep architectures, their computation also involves a wide set of complex operations
(e.g., exponentiations, divisions). This trend can be seen clearly in Figure 1.3, analyzing
the activation functions distribution in DNNs over the past years, considering more than
600 computer vision DNNs and 150 natural language Processing (NLP) transformers from
TIMM [154] and Hugging Face [155], respectively. As Figure 1.3 shows, while ReLU was
the dominant activation function from 2015 to 2017, it declined to 20.7% in 2021 and 5%
in 2022, while functions like SiLU and GELU emerged over the last years, jointly account-
ing for 32.1%, 44.2%, and 67.8% of the total activation functions count in 2020, 2021,
and 2022, and requiring 4× and 12× more arithmetic operations than ReLU, respectively.
While these operations generally represent a minor fraction of the total network compu-
tations, they could heavily impact the total network runtime in application-specific HPC
and cloud computing systems, well-suited for applications ranging from large-scale image
and speech recognition to image/video tagging and machine translation [100,141,142]. In-
deed, these computing systems typically leverage on large decoupled accelerators to com-
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Figure 1.3: Activation functions distribution by year of model publication, extracted from
700+ SoA AI models of the TIMM and Hugging Face collections.

pute DNNs, exhibiting high performance and energy efficiency on specific tasks such as
convolutions and matrix-matrix multiplications, but not equally efficient on the computa-
tion of the latest DNN operators, and thus less flexible than general-purpose processors in
adapting to the complexity increase of modern models.

Because of their criticalities concerning many applications and computing system do-
mains, the analyzed challenges are paving the way for many research opportunities, con-
cerning several areas. For example, many solutions exploit methods to optimize DNN
computations by leveraging on mathematical transformations to reduce the computational
complexity of DNN kernels [85, 105]. Network quantization and pruning [71, 110, 164]
represent other popular techniques to reduce the memory footprint of DNNs with mini-
mal losses in accuracy, either by representing their parameter using narrow integer data
formats (typically ranging from 8- to 1-bit), or by removing redundant parameters. Func-

tion approximation methodologies [62, 95] are used to reduce the arithmetic complexity
of non-linear DNN operators, such as activation functions. Other popular solutions pro-
pose algorithmic improvements to map convolutions to dense matrix-matrix multiplication
kernels [35], allowing to compute them through highly-optimized implementations and ex-
ploiting a wide range of hardware architectures, such as CPUs [157], vector processing
units (VPUs) [61], and graphics processing units (GPUs) [40]. Finally, many research
works propose application-specific accelerators [38, 151], and instruction set architecture
(ISA) extensions [57, 83, 147]. Exploring these challenges remains critical for the contin-
ued advancement of deep learning and its successful integration into a range of computing
systems, exploring efficient hardware architecture capable of keeping pace with the DNNs
advancements is a relevant research challenge in both academia and industry.
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1.1 Thesis Overview

In this thesis, we investigate several research opportunities aimed at optimizing the compu-
tation of DNNs on modern hardware architectures. Specifically, we explore a novel math-

ematical transformation aimed at reducing the computational complexity of DNN compu-
tational kernels, and we investigate algorithmic improvements intended for optimizing the
underlying architecture in terms of compute and memory utilization ratios. We also propose
ISA extensions and novel hardware microarchitectures designed to enhance performance,
instruction count, and energy efficiency of the computational kernels that, as analyzed in
Figure 1.2 and Figure 1.3, represent the main bottlenecks for current DNNs processors.

1.1.1 Contributions

The key contributions of this thesis are summarized as follows:

1. We explore the applicability of a mathematical technique, called binary segmenta-

tion on general-purpose CPU architectures. The main benefit of binary segmentation

relies on reducing the arithmetic complexity of linear algebra operations between nar-
row integers. We also propose a novel hardware microarchitecture, called Bison-e, to
accelerate linear algebra kernels between narrow integers exploiting binary segmen-

tation. Bison-e allows computing important linear algebra operations, such as the
inner-product and the convolution among vectors, representing the core kernels not
only of deep learning workloads, but also of other application classes, such as pattern
matching and graph processing. Bison-e allows performing single instruction multi-
ple data (SIMD) operations on off-the-shelf scalar processor functional units (FUs),
thus achieving high performance with negligible area and energy overheads. We im-
plement Bison-e exploiting the gem5 simulator and in register transfer level (RTL) to
perform a complete performance, power, and area evaluation of the proposed solu-
tion. Our experimental evaluation shows that Bison-e improves the convolution and
fully-connected layers computations of the AlexNet and VGG-16 CNNs up to 5.6×,
13.9× and 24× considering 8-, 4-, and 2-bit data sizes compared to the scalar im-
plementation of a single RISC-V core, and improves the energy efficiency of string
matching tasks by 5× when compared to a RISC-V-based VPUs. We also integrate
Bison-e into a complete system-on-chip (SoC) based on RISC-V, performing synthe-
sis and place-and-route (PnR) in 65nm and 22nm technologies, and we show that the
proposed microarchitecture only introduces a negligible 0.07% area overhead with
respect to the baseline architecture.
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2. We propose Mix-GEMM, a hardware-software co-designed architecture capable of
efficiently computing quantized DNN convolutional kernels based on arbitrary com-
binations of byte and sub-byte data sizes. Specifically, Mix-GEMM accelerates the
matrix-matrix multiplication operation, representing the core kernel of DNNs, sup-
porting all data size combinations from 8- to 2-bit, including mixed-precision com-
putations. On the one hand, Mix-GEMM exploits a software library that enhances
the current SoA framework performing high-performance matrix-matrix multiplica-
tions on CPU architectures (i.e. BLIS), exploiting custom instructions extending the
RISC-V ISA. On the other hand, Mix-GEMM enhance the Bison-e microarchitecture
performing SIMD computations among narrow integers, featuring performance that
scale with the decreasing of the computational data sizes. Our experimental evalu-
ation, performed on representative quantized CNNs and targeting edge and mobile
CPUs, shows that a RISC-V based edge SoC integrating Mix-GEMM achieves up to
1.3 TOPS/W in energy efficiency, and up to 13.6 GOPS per core in throughput, gain-
ing from 5.3× to 15.1× in performance over the OpenBLAS general matrix multipli-
cation (GEMM) framework running on a commercial RISC-V based edge processor.
By performing synthesis and PnR of the enhanced SoC in Global Foundries 22nm
FDX technology, we show that Mix-GEMM only accounts for 1% of the overall SoC
area consumption.

3. We investigate, design, and implement a novel hardware accelerator for complex
DNN activation functions. The proposed architecture, called Flex-SFU, extends the
set of FUs hosted in deep learning VPUs, which are used as general-purpose co-
processors flanking the main matrix multiplication units. Flex-SFU represents a
lightweight special function unit targeting the acceleration of activation functions,
relying on non-uniform piecewise interpolation and supporting multiple data for-
mats. Non-Uniform segments are enabled by implementing a binary-tree compari-
son within its address decoding unit. Thanks to these features, Flex-SFU achieves on
average 22.3× better mean squared error (MSE) compared to previous piecewise lin-
ear interpolation approaches. We evaluate Flex-SFU with more than 700 computer
vision and natural language processing models, showing that we can, on average,
improve the end-to-end performance of state-of-the-art AI hardware accelerators by
35.7%, achieving up to 3.3× speedup with negligible impact in the models accuracy,
and only introducing an area and power overhead of 5.9% and 0.8% relative to the
baseline VPU.
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1.1.2 Publications

The content of this thesis and the main contributions have been published in the following
conference papers:

[128] Enrico Reggiani, Cristóbal Ramı́rez Lazo, Roger Figueras Bagué, Adrián

Cristal, Mauro Olivieri, and Osman Sabri Unsal. BiSon-e: a lightweight and high-

performance accelerator for narrow integer linear algebra computing on the edge.

27th ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS 2022)

[129] Enrico Reggiani, Alessandro Pappalardo, Max Doblas, Miquel Moreto, Mauro

Olivieri, Osman Sabri Unsal, Adrián Cristal, ”Mix-GEMM: An efficient HW-SW Ar-

chitecture for Mixed-Precision Quantized Deep Neural Networks Inference on Edge

Devices,” IEEE International Symposium on High-Performance Computer Architec-

ture (HPCA 2023)

[125] Enrico Reggiani†, Renzo Andri†, Lukas Cavigelli, ”Flex-SFU: Accelerating

DNN Activation Functions by Non-Uniform Piecewise Approximation”, ACM/IEEE

Design Automation Conference (DAC 2023)

In particular, the contributions made in Bison-e [128] and Mix-GEMM [129] aim to im-
prove the challenges highlighted in Figure 1.2, considering quantized DNNs with a focus
on edge and mobile scenarios. These contributions exploit mathematical transformations

(i.e., quantization and binary segmentation), algorithmic improvements of SoA linear alge-
bra frameworks, ISA extensions, and custom hardware accelerators to improve the DNNs
computation on edge CPUs considering performance, as well as memory and energy con-
sumption. On the other hand, the contribution made with Flex-SFU [125] focuses on the
research challenge detailed in Figure 1.3, by proposing a hardware accelerator for complex
activation functions on large-scale tensor units targeting HPC and cloud scenarios.

In addition to conference papers, some of the intellectual properties of this thesis have
also been protected by filing a patent application. This patent application represents a
valuable addition to the thesis, as it demonstrates the practical implications and potential
real-world impact of our research findings:

[EP22382173.7] Enrico Reggiani, Adrián Cristal, Osman Sabri Unsal, ”Method for

the computation of a narrow bit width linear algebra operation”
†Both authors contributed equally to this research. This work was done during Enrico Reggiani’s intern-

ship at Huawei Zurich Research Center.
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The following contributions have been made in addition to the aforementioned confer-
ence publications and patent application. These contributions are not directly included in
this thesis either because they are not aligned with the topic of the thesis [32, 109, 126]
or because the contribution was limited to providing ideas and helping with the write-
up [87, 152].

[152] Nils Voss, Tobias Becker, Simon Tilbury, Georgi Gaydadjiev, Oskar Mencer,

Anna Maria Nestorov, Enrico Reggiani, and Wayne Luk, ”Performance Portable

FPGA Design”. 2020 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA 2020)

[126] Enrico Reggiani, Emanuele Del Sozzo, Davide Conficconi, Giuseppe Natale,

Carlo Moroni, and Marco D. Santambrogio. Enhancing the Scalability of Multi-

FPGA Stencil Computations via Highly Optimized HDL Components. 2021 ACM

Transactions on Reconfigurable Technology and Systems (TRETS 2021)

[87] Cristóbal Ramı́rez Lazo, Enrico Reggiani, Carlos Rojas Morales, Roger Figueras

Bagué, Luis A. Villa Vargas, Marco A. Ramı́rez Salinas, Mateo Valero Cortés, Os-

man Sabri Ünsal, Adrián Cristal, ”Adaptable Register File Organization for Vector

Processors,” 2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA 2022)

[32] Guillem Cabo, Gerard Candón, Xavier Carril, Max Doblas, Marc Domı́nguez,

Alberto González, César Hernández, Vı́ctor Jiménez, Vatistas Kostalampros, Rubén

Langarita, Neiél Leyva, Guillem López-Paradı́s, Jonnatan Mendoza, Francesco Min-

ervini, Julián Pavón, Cristóbal Ramı́rez, Narcı́s Rodas, Enrico Reggiani, et.al.

”DVINO: A RISC-V Vector Processor Implemented in 65nm Technology,” 37th Con-

ference on Design of Circuits and Integrated Circuits (DCIS 2022)

[109] Francesco Minervini, Oscar Palomar, Osman Unsal, Enrico Reggiani, et.al.

”Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for High Per-

formance Computing Applications”, ACM Transactions on Architecture and Code

Optimization (TACO 2023)
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Figure 1.4: Gantt chart describing the activities held during the Ph.D. timeline, including
Ph.D. technical activities, papers/patent preparations, engineering activities, and internship
periods.

1.2 Timeline

A Gantt chart summarizing the timeline of the Ph.D. activities is reported in Figure 1.4.
We divide the tasks into 4 main activities, reporting the technical Ph.D. activities, the en-
gineering activities, the periods spent abroad for research internships, and the effort for
preparing, submitting, and revisioning conference papers, patents and journals. We assign
different colors for each activity type, exploiting the same color among activities related
to the same task. Specifically, we colored in red, green, and orange all the tasks related
to contribution 1 (i.e., Bison-e), contribution 2 (i.e., Mix-GEMM), and contribution 3 (i.e.,
Flex-SFU), respectively. As highlighted in Figure 1.4, the first 7 months of the Ph.D. (i.e.,
from October 2019 to April 2020) has been dedicated to research activity tasks in the con-
text of the European Processor Initiative (EPI) project [6], and to an internship period of
4 months at Microsoft Research Labs in Cambridge (UK), working with the System and

Networking research group on the performance enhancement of the next-generation cloud
infrastructure. From the second quarter (i.e., Q2) of 2020 to the first quarter (i.e., Q1) of
2021 I worked on the thesis proposal, and on the development of the first contribution of
this Ph.D. thesis (i.e., Bison-e), whose results [128] have been published in the ASPLOS
2021 conference. From Q4 of 2020 to Q1 of 2021 I have also been involved in the design
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of a RISC-V VPU in the context of the EPI and DRAC [4] projects, whose research results
have been published in DCIS 2022 and TACO 2023 [32, 109]. From Q3 of 2021 to Q1 of
2022 I explored the second contribution of this Ph.D. thesis (i.e., Mix-GEMM), whose re-
sults have been published in the HPCA 2023 conference [129], and taped out in the context
of the DRAC project. During the third quarter of 2021, I also worked, in the context of the
DRAC project, on the design and implementation of a high-speed Serializer/Deserializer
(SerDes) interconnect. Finally, from Q2 of 2022 to Q1 of 2023, I investigated the third
contribution of this Ph.D. thesis (i.e., Flex-SFU), in collaboration with Huawei Research,
Zurich (CH) during a research internship period. The results of this collaboration have been
published in the DAC 2023 conference [125].

1.3 Outline

The thesis is structured as follows:
In Chapter 2, we present Bison-e, proposing an in-depth design space exploration (DSE)
of the binary segmentation technique applied to 32-bit and 64-bit computing systems (Sec-
tion 2.3), detailing the Bison-e microarchitecture (Section 2.4), and discussing the per-
formed experimental evaluation (Section 2.5). Chapter 3 details Mix-GEMM, discussing its
hardware-software co-designed architecture (Section 3.3) and comparing its performance,
area, and energy efficiency with the related work (Section 3.4 and Section 3.5). In Chap-
ter 4 we propose Flex-SFU, discussing the rationale behind the work and the comparison
with other SoA proposals (Section 4.2), detailing the specification of the proposed solution
(Section 4.3 and Section 4.4), and proposing its experimental evaluation (Section 4.5). Fi-
nally, in Chapter 5 we summarize the main contributions and results of the thesis, and we
draw the conclusions.



Chapter 2
BiSon-e: Accelerating Narrow Integer
Linear Algebra Computing on the Edge
via Binary Segmentation

In this chapter, we explore techniques for enhancing the computational efficiency of linear
algebra kernels by leveraging the binary segmentation method [119]. This method enables
a substantial reduction in both memory usage and arithmetic intensity when dealing with
linear algebra kernels that involve narrow data sizes. We conduct a comprehensive DSE
(Section 2.3), to evaluate the applicability of binary segmentation on 32-bit and 64-bit CPU
architectures, exploring its key benefits and limitations. Furthermore, we propose a design
methodology (Section 2.4) that enables the acceleration of linear algebra kernels based on
narrow integer computations exploiting binary segmentation, that employs SIMD opera-
tions on off-the-shelf scalar FUs. We implement our methodology in the form of a hardware
accelerator, called Bison-e, tightly coupled with a RISC-V processor specifically designed
for edge scenarios. Our experimental evaluation (Section 2.5) demonstrates the efficacy
of our solution in improving execution time for the convolution and fully-connected layers
of AlexNet and VGG-16 CNNs compared to a scalar implementation performed on the
baseline RISC-V core, and shows a better energy efficiency on string matching tasks when
compared to a RISC-V-based VPU, while incurring in negligible area overhead compared
to the baseline SoC.

11
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2.1 Introduction

Contemporary internet-of-things (IoT), edge and mobile computing applications require
high performance. This demand is fueling a large research effort in low-power, high-
performance embedded processors [78, 137]. Such devices, mainly constrained by power
and cost, have to fulfill the performance and memory requirements of a vast collection of
important application domains, including deep learning but also spanning to other areas,
such as robotics, graph processing, and cryptography. Most of these application classes
represent data as matrices and vectors, and express their computation through a set of lin-
ear algebra kernels.

When targeting edge platforms, a popular approach to reduce energy demands and
memory footprint requirements is to compact the data layout using a smaller data for-
mat while preserving the application accuracy. On the one hand, expressing and com-
puting data exploiting low-precision floating-point formats [13] is gaining traction in the
high-performance edge computing (HPEC) community, as they represent a good trade-off
between data size and accuracy. On the other hand, narrow fixed-point and integer data
representations (i.e., byte and sub-byte) offer a better alternative in terms of Performance
per Watt ratio, although they feature smaller number representations. One of the domi-
nant applications of edge computing that leverages these compressed data formats is the
quantized neural network (QNN) inference, which exploits quantization to represent data
and weights with data sizes typically ranging from eight to one bit with tolerable accu-
racy penalties [99, 111]. Other kernels belonging to important application classes for edge
computing, such as graph computing and cryptography, widely rely on boolean matrix and
vector computations to traverse a graph or to encrypt/decrypt a message. These applications
would greatly benefit from hardware and software solutions that efficiently compute narrow
integer linear algebra kernels. However, despite their low memory and energy demands,
their intrinsically high computational intensity makes the execution of these workloads
challenging on highly resource-constrained devices.

Accordingly, we present Bison-e 1, a high-performance and lightweight architecture
aimed at increasing the efficiency of linear algebra narrow integer computations on edge
processors. The proposed solution relies on a mathematical technique called binary seg-

mentation [119], which reduces the memory footprint of matrices and vectors consisting
of narrow integers, and considerably decreases the arithmetic complexity of linear algebra
computations. To the best of our knowledge, this is the first work developing a binary

segmentation based architecture. Bison-e is motivated by the lack of sufficient support for

1Binary Segmentation on-edge
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efficient narrow computations in current edge processors and ISAs, as most of them do
not implement memory and arithmetic instructions for data formats smaller than 8-bit. For
example, compressing sub-byte data in memory needs a conversion to standard bitwidths
before and after each computation, leading to performance and energy consumption ineffi-
ciencies. Moreover, processor FUs are overprovisioned for computations involving narrow
data sizes, and exhibit an energy-per-instruction that does not scale with the input data
size. Our key contribution is to increase the efficiency of narrow data formats in terms
of data storage and linear algebra kernel computations, scaling their performance with the
decrease of the data size. Instead of extending standard RISC-V ISA for new sub-byte data
sizes, and designing custom hardware supporting them, we rely on data segmentation to
fuse multiple arithmetic operations in a single instruction, performing SIMD computations
on off-the-shelf scalar FUs.

The main contributions of this work are summarized as follows:

• We perform a DSE of binary segmentation on 64-bit architectures. Guided by DSE,
we design the Bison-e architecture which features a binary segmentation enhanced
CPU pipeline. We analyze a set of linear algebra computational kernels that can
leverage binary segmentation to increase the performance of edge-based narrow in-
teger applications;

• We benchmark Bison-e with three algorithms belonging to two demanding edge com-
puting application classes, namely deep learning, and string matching, considering
both performance and energy efficiency. Our solution improves the back-to-back
runtime performance of the AlexNet and the VGG-16 CNNs by a factor that ranges
from 5.6× to 24× on 8-bit and 2-bit data sizes with respect to the single-core scalar
implementation, and outperforms the string matching use-case vectorized implemen-
tation by a factor of 5× in terms of energy efficiency;

• We integrate, design, and fully implement the proposed architecture, including PnR,
on a RISC-V based SoC, in both 65nm and 22nm technologies. We show that Bison-e

can be integrated into modern edge processors with a negligible 0.07% area overhead,
and without any performance loss;

The remainder of this chapter is organized as follows. Section 2.2 presents the binary

segmentation technique. Section 2.3 performs a DSE of binary segmentation on 64-bit
CPUs. Section 2.4 details the Bison-e architecture, discussing its design choices and fea-
tures. Section 2.5 evaluates the experimental results obtained with the proposed solution.
Section 2.6 reviews the main related work. Finally, Section 2.8 summarizes Bison-e.
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2.2 Binary Segmentation

In the class of applications requiring narrow integer computations, the data size needed
by the algorithm is typically lower than the one allowed by the underlying architecture.
Modern processors datapaths are often based on 32-bit or 64-bit, and thus byte and sub-
byte computations underutilize both their arithmetic capabilities and data movement effi-
ciency. Moreover, the current ISAs and programming languages typically lack adequate
support to handle narrow data bitwidths. Consequently, the performance of workloads fea-
turing narrow integer computations does not scale in concert with the data size. This thesis
chapter explores the binary segmentation technique to reduce these limitations. Binary

segmentation [118] is a mathematical technique that allows reducing the arithmetic com-
plexity of basic linear algebra subprogram (BLAS) computations based on narrow integers
data [26, 34, 133]. This technique abstracts the computation of BLAS kernels based on
narrow integers as simpler arithmetic operations, by properly representing sets of narrow
integer elements as single wider data, called input-clusters. Specifically, this technique al-
lows performing SIMD computations of kernels featuring narrow integers, exploiting the
unmodified processor FUs, such as scalar multipliers and adders.

According to this technique, an n-dimensional vector v = [v0, . . . , vn-1] populated with
integers in the [0, 2b) range, with b denoting the element bitwidth can be represented by
the single integer Vb (i.e., a input-cluster):

Vb =
n−1

∑
i=0

vi2bi (2.1)

This interpolation allows creating a compact storage scheme for matrices and vectors
populated with bounded integers, as a single computer word can be composed of several el-
ements belonging to v. Enhanced support for lower data sizes would dramatically decrease
the applications memory footprint. For example, by following Equation (2.1), applications
requiring storing large boolean matrices and vectors on a 64-bit architecture would de-
crease their memory footprint by 8×, by packing sixty-four elements in a single memory
location. However, in modern processors, the lower bound of data sizes that inherently
support Equation (2.1) is often in the byte range. As a result, the advantages offered by the
compact storage scheme described in Equation (2.1) for sub-byte data sizes can be miti-
gated by the overhead needed to pack and extract data from non-standard data sizes before
and after their computation. Moreover, adding support for narrow data sizes could be a de-
manding task, as it would imply changes at the hardware, ISA, compiler, and software level.
With Bison-e, we propose a novel approach to efficiently represent sub-byte data sizes via
binary segmentation, and to compute linear algebra arithmetics with minimal changes in
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hardware and ISA, without the need to define new data formats at the software level. In-
deed, the binary segmentation technique has been successfully explored, from a theoretical
perspective, to decrease the arithmetic complexity of several arithmetic expressions: poly-
nomial multiplication [52], multiplication of two complex numbers [118], discrete Fourier
transform (DFT) [133], inner and outer product of two vectors [119], polynomial divi-
sion [26], and polynomial greatest common divisor (GCD) [34], and supports both signed
and unsigned computations [133]. As a simple example of how this technique can be used
to compute arithmetic operations on matrices and vectors, we can consider the sum of two
vectors u and v, both composed of elements in the [0, 2b) range. Following Equation (2.1),
and defining the clustering width (cw) as cw = b+1, we can create two integers Ucw and
Vcw via binary segmentation, sum them as a single sum of integers, and recover the output
vector, obtaining the element-wise sum of the two vectors. The cw is defined to be greater
than the actual bitwidth of the input elements b, as it includes extra guard-band bits to
avoid overflows in the segmented data due to carry propagation. This allows performing
the summation of n narrow integers with only one summation of two large integers, instead
of n summations of short integers (i.e., 8-bit and below). It is worth noticing that binary

segmentation is not an approximate computing technique, since it guarantees exact com-
putations, as the cw dimension already accounts for the number of bits needed to represent
the computation output without introducing precision losses.

Below, we describe how binary segmentation can improve the efficiency of representa-
tive linear algebra kernels, namely inner product (IP) and linear convolution (LC).

2.2.1 Inner Product of Two Vectors via Binary Segmentation

The IP of two vectors composed of n elements u = [u0, . . . , un-1] and v = [v0, . . . , vn-1],
having bitwidths bu and bv, can be obtained by the following expression:

IP =
n−1

∑
i=0

uivi (2.2)

To compute the IP via binary segmentation, it is first necessary to reverse the vector v

such that:
v′i = vn−1−i , i = 0,1, . . . ,n−1 (2.3)

According to Equation (2.1), we create the integers Ucw and Vcw from u and v’, with
the following cw:

cw ≥ bu +bv + ⌈log2(n)⌉ (2.4)
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(a) IP computations via binary segmentation

3 1 2 1 2

00011 00001 00010 00001 00010

00011001110010000100

00011 00111 00100 00100

3 7 4 4

000100010000110000100010
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Figure 2.1: Examples of IP (a) and LC (b) kernel computations via binary segmentation,
with clustering widths of 7-bit and 5-bit, respectively. The input vectors are represented
with clustering widths bits (blue), merged into single variables (green), and multiplied
(yellow). The final result is then extracted from the multiplication output (red).

Then, the IP computed via binary segmentation is the multiplication between Ucw and
Vcw, resulting in the integer Wcw. The IP result is derived from Wcw by extracting the bits
expressed as follows:

IP =W{(n−1)cw+cw, (n−1)cw} (2.5)

Considering the reference example depicted in Figure 2.1a, we can evaluate the IP
between u = [7, 5] and v = [4, 2] via binary segmentation employing a single integer
multiplication. Specifically, we represent each element of the input vector with a bitwidth
equal to the cw defined in Equation (2.4) (i.e., 7-bit), and we revert the order of the elements
belonging to v (blue). Then, we express the resulting vectors as single integers (green), and
we perform their multiplication (yellow). Finally, we extract the IP result from the seven
bits resulting from Equation (2.5) (red). For this example, we employed a single integer
multiplication in place of two multiplications and one sum to obtain the final result. As
detailed in Section 2.3, the same approach can be used to compute the IP between three
to ten elements concurrently on a 64-bit architecture, for input sizes ranging from 8-bit to
1-bit.
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2.2.2 Convolution of Two Vectors via Binary Segmentation

Given u = [u0, . . . , um-1] and v = [v0, . . . , vn-1], we compute the vector w = [w0, . . . ,

wK], having length K = m+n-1, as the LC between u and v:

wk =
K

∑
i=0

uivk−i , k = 0,1, . . . ,K −1 (2.6)

The same expression can be computed via binary segmentation by representing Ucw

and Vcw as in Equation (2.1), with a cw of:

cw ≥ bu +bv +
⌈
log2(min{m,n})

⌉
(2.7)

Then, we recover w from the output of the integer multiplication between Ucw and Vcw.
An example of LC between two vectors u = [3, 1, 2] and v = [1, 2] is shown in Figure 2.1b.
First, the bitwidth of each element belonging to u and v is represented as a 5-bit number,
according to Equation (2.7) (blue). Then, the two input vectors are converted to single
integers (green) and multiplied (yellow). By segmenting the multiplication result into four
5-bit binary numbers, it is possible to recover the LC result2 (red). This example only uses
one multiplication to compute the LC between u and v, which would have required six
multiplications and two additions to be computed with Equation (2.6).

The IP and LC examples reported in Figure 2.1 reduce their arithmetic complexity by a
factor of 3× and 7×, respectively. Certainly, the ratio between the processor word size and
the data size highly impacts the achievable arithmetic complexity reduction. Moreover,
if the vector length does not fit the processor word size, the arithmetic problem must be
partitioned into smaller-size subproblems. It is also worth considering the effort required
to convert a set of vector elements into a single integer, and to extract the output elements
from the integer multiplication result. These requirements increase the overall arithmetic
complexity of binary segmentation if the underlying architecture is not efficient in cluster-
ing, extracting, and masking data, leading to a decrease in the overall performance gain.
We deeply explore and quantify these considerations in Section 2.3, while in Section 2.4
we show how our architecture overcomes these limitations, allowing narrow integer linear
algebra kernels to fully benefit from the advantages that binary segmentation offers.

2LCout = [3×1, 1×1+3×2, 2×1+1×2, 2×2]
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2.3 Design Space Exploration

The proposed DSE aims to explore the benefits and the pitfalls of implementing binary

segmentation on edge processors, exploiting standard CPU architectures. The efficiency of
binary segmentation strictly depends on the ratio between the CPU registers size and the
application data bitwidths, as described in Equation (2.8).

input-clustersize =
CPUbitwidth

cw
(2.8)

On the one hand, the greater this ratio is, the larger the number of elements embedded in a
single operation. On the other hand, increasing the number of elements clustered in a single
register implies a higher overhead required to pack data into single integers, and to extract
the results from the multiplication output. Following Section 2.2, our evaluation mainly
focuses on the IP and LC, as they represent the core kernels of our benchmarks. However,
the proposed methodology can be extended and applied to other arithmetic operators that
would benefit from this approach, such as the one listed in Section 2.2.

To characterize the binary segmentation technique on CPU architectures, it is important
to define the number of elements that can be computed concurrently. We denote this set
of elements as input-cluster, and we evaluate the input-clustersize on both 32-bit and 64-bit
CPU architectures. As a reference, Figure 2.1a has input-clusters composed of two ele-
ments, while Figure 2.1b features asymmetric input-clusters of three and two elements. In
this work, we consider the same input-clustersize for each operand of the FU. This choice is
optimal for CPUs architectures, as they are equipped with symmetric FUs. Moreover, the
cw of the IP and LC input-clusters, defined in Equation (2.4) and Equation (2.7), is reduced
to the same expression if the input-clustersize of the two input vectors is the same. How-
ever, architectures featuring asymmetric multipliers, like field programmable gate arrays
(FPGAs) [91], could benefit from having asymmetric input-clustersize.

The maximum number of elements composing an input-cluster can be derived as the
ratio between the CPU register bitwidth and the clustering width:

Figure 2.2 reports the maximum input-clustersize on 32-bit and 64-bit registers, for input
bitwidths ranging from 1-bit to 16-bit. As Figure 2.2 shows, the input-clustersize dimension
is inversely proportional to the input data size. Specifically, a 32-bit architecture handles
from two 7-bit to six 1-bit input data concurrently for the selected kernels, while a 64-
bit architecture can compute from two 15-bit to ten 1-bit elements concurrently. Thus,
when the ratio between the underlying hardware architecture and the target data size is
wide enough, using binary segmentation allows computational concurrency. Specifically,
data concurrency is exploited when the input-clustersize is equal or greater than two, as
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Figure 2.2: Maximum input-clustersize achievable on 32-bit and 64-bit architectures, for
data sizes ranging from 1-bit to 16-bit. The input-clustersize is defined as the number of
elements that can be packed in a single register, following the binary segmentation con-
straints.

multiple data are processed in parallel using a single operation. According to Figure 2.2,
this concurrency starts to be effective for 15-bit data sizes on 64-bit architectures, and it is
supported on 32-bit architectures for data ranging from 1-bit to 7-bit.

Figure 2.2 also shows that the number of elements composing the input-cluster is rarely
improving the kernels memory footprint. Indeed, only 1-bit input-clusters can hold more
elements than a conventional byte-based allocation. For this reason, creating the input-

clusters before each computation while keeping data compressed in memory would be
beneficial from a memory consumption perspective. However, such data manipulation
would increase the computational cost of performing binary segmentation, reducing its
overall arithmetic complexity improvement. These considerations are analyzed in detail in
Section 2.3.1 and Section 2.3.2. We focus our study on 64-bit architectures, as they are
capable of supporting more data sizes than the 32-bit ones.

2.3.1 Inner Product Kernel Analysis

From Equation (2.2), we can notice that computing the IP of two vectors having length n re-
quires n multiplications and n-1 additions. As discussed in Section 2.2, we can perform the
same computation by means of a single multiplication, as long as the input-cluster can hold
n elements. We use the maximum input-clustersize for every considered data size reported
in Figure 2.2 to derive the arithmetic complexity decrease, defined as the ratio between the
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Figure 2.3: Arithmetic complexity reduction when computing IP (a) and LC (b) kernels on
64-bit architectures, accounting for multiplications and additions.

arithmetic operations (i.e., multiplications and additions) needed to compute the IP kernel
by using either Equation (2.2) or binary segmentation. As shown in Figure 2.3a, the an-
alyzed technique can save a considerable number of arithmetic operations to compute the
IP kernel. Specifically, the number of multiplications and additions required by the binary

segmentation technique is reduced from a 3× for 15-bit computations, to a 19× for 1-bit
computations.

Although this reduction can have a huge impact on linear algebra kernels computing
IPs, the implementation of this technique exploiting standard ISAs leads to sub-optimal re-
sults, mostly due to their inability to efficiently support non-standard bitwidth data manip-
ulations. Indeed, each element of the input-cluster needs to be converted to non-standard
bitwidths (i.e., the cw) to respect Equation (2.4). As a result, the input-cluster creation
becomes the bottleneck of the IP kernel using binary segmentation. Figure 2.4a reports
the profiling of the IP kernel execution, computed via binary segmentation on 64-bit archi-
tectures, for the input-clusterwidth defined in Figure 2.2. We split the arithmetic operations
into three main categories: data are firstly pre-processed through Pack instructions to create
the input-clusters, then a Multiply operation performs their IP computation, whose result is
filtered by the Extract operation. In particular, we accounted for one left-shift and one bit-
wise OR to process each element of the input-clusters, and for one right-shift and one bit-
wise AND to extract the result from the multiplication output. Ideally, the Multiply phase
of Figure 2.4a should cover the whole execution time percentage, enabling the performance
improvements of Figure 2.3a. However, Figure 2.4a shows that the number of instructions
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Figure 2.4: Amount of time spent in Pre-Processing, Processing and Post-Processing
phases of the IP (a) and LC (b) kernels computed via binary segmentation on 64-bit archi-
tectures.

required for the actual IP computation using binary segmentation is minimal, while the
greatest contribution is attained by the pre-processing phase, whose purpose is to create
the input-clusters. Aiming to alleviate the data pre-processing overhead introduced in the
Pack phase, we also implemented custom bit-manipulation instructions, namely PACK and
MASK, to quickly create the input-cluster and extract a specific data slice from the output
result. These instructions are common in ISAs bit-manipulation extensions [60]. As an ex-
ample, Algorithm 1 reports the IP between two 8-bit vectors, v0 and v1, composed of v dim

elements. Each input-cluster (i.e., ic0 and ic1) is composed of three elements, each one hav-
ing a width equal to the cw. The implementation represented in Algorithm 1 requires three
PACK instructions per input-cluster, instead of three left-shift and three bit-wise OR per
input element. The created input-clusters are then multiplied, and the extracted result (i.e.,
ipi) is accumulated to produce the final IP result. Since a single loop iteration computes the
partial IP among three elements, the total number of iterations amount to the ratio between
the vector length and the input-clustersize (i.e., icdim). However, as further discussed in Sec-
tion 2.5, our evaluation reports that these bit-manipulation instructions can slightly increase
the time spent in the Multiply phase of Figure 2.4a, by a factor ranging from 4.5% to 15%
for 1-bit and 15-bit data, respectively. We tackle this challenge by proposing an enhanced
architecture to compute the IP kernel via binary segmentation. As detailed in Section 2.4.1,
we implemented Bison-e to fuse both the input-cluster creation, the multiplication, and the
output extraction into a single operation. We also exploit the data compression scheme
offered by binary segmentation in Equation (2.1) to reduce the memory movements of this
kernel.
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Algorithm 1 IP exploiting binary segmentation and bit-manipulation instructions.
1: procedure INNER PRODUCT

2: iplsb = (icsize −1)∗ cw
3: ipmsb = extractlsb + cw
4: ip = 0
5: for i = 0; i < vdim; i+= icsize do
6: Pack(ic0,v0[i],0) ▷ create input-clusters: Pack(Rd, Rs1, shiftamount)
7: Pack(ic0,v0[i+1],cw)
8: Pack(ic0,v0[i+2],2∗ cw)
9: Pack(ic1,v1[i],2∗ cw)

10: Pack(ic1,v1[i+1],cw)
11: Pack(ic1,v1[i+2],0)
12: mout = ic0 ∗ ic1 ▷ actual IP computation
13: Extract(ipi,mout , ipmsb, iplsb) ▷ extract partial IP: Extract(Rd, Rs1, msb, lsb)
14: ip+= ipi ▷ Accumulate

2.3.2 Linear Convolution Kernel Analysis

We can similarly analyze the LC kernel expressed in Equation (2.6), by counting the num-
ber of multiplications

LCmul = m(n−m+1)+2
m−1

∑
i=1

i , m ≤ n (2.9)

Similarly, the number of additions needed to sum the partial multiplication results is
given by:

LCadd = (m−1)(n−m+1)+2
m−2

∑
i=0

i , m ≤ n (2.10)

Both Equation (2.9) and Equation (2.10) are composed of two main parts: the first con-
tribution is given by the central body of the convolution, while the summation represents
the computations needed to execute the convolutions head and tail. Figure 2.3b shows
the LC arithmetic reduction on 64-bit architectures, for the input-clustersize defined in Fig-
ure 2.2, with data sizes ranging from 1-bit to 15-bit. The complexity reduction is defined
as the ratio of arithmetic operations required to solve the LC exploiting either the reference
or the binary segmentation-based implementations. From Figure 2.3b, it can be noted that
computing a 2× 2 LC among 15-bit integers induces a 2.5× arithmetic saving, while a
10× 10 LC of boolean data obtains a 90.5× arithmetic reduction with respect to a stan-
dard implementation. As Figure 2.3b shows, the arithmetic complexity reduction of LC is
greater than the IP one. This is because, as reported in Section 2.2, the LC implementation
via binary segmentation produces a complete sub-vector on every iteration, while the IP
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Algorithm 2 LC exploiting binary segmentation.
1: procedure LINEAR CONVOLUTION

2: for (i = 0; i < m/icsize; i++) do
3: CREAT EIC(ic0,&Vin0[i∗ icsize])
4: for ( j = 0; j < n/icsize; j++) do
5: if i == 0 then
6: CREAT EIC(ic1v[ j],&Vin1[ j ∗ icsize]) ▷ buffer input-cluster
7: m outl = ic0 ∗ ic1v[ j] ▷ actual C1D low computation
8: m outh = MULH(ic0, ic1v[ j]) ▷ actual C1D high computation
9: CREAT EOC(ocv,m outl,m outh) ▷ extract the output-cluster

10: OV ERLAP−ADD(LCv,ocv) ▷ accumulate using overlap-add

only produces one output element per iteration (i.e., the inner product). As a result, the
number of arithmetic operations performed with a single integer multiplication in LC is
greater than the IP one.

As the number of output elements of each LC computation, called output-cluster, is
greater than the input-cluster (i.e., n+m-1), to recover each output-cluster, for the input-

clustersize reported in Figure 2.2, it is necessary to perform two separate multiplications,
computing the low and high slices of the multiplication, respectively.

Algorithm 2 reports the pseudo-code of the binary segmentation-based LC between two
input vectors Vin0 and Vin1, whose lengths are m and n.

The inner-most loop of Algorithm 2 computes the LC among the i-th input-cluster be-
longing to Vin0 (i.e., ic0) and the whole Vin1 vector. The createIC function creates both
the input-clusters, exploiting either bitwise instructions (i.e., left-shift and OR) or a set of
PACK instructions. Since the resulting output-cluster is divided among the two multiplica-
tions output, the createOC function extracts the result of each ic dim× ic dim convolution,
composed of ic dim+ic dim-1 elements, from the two multiplications output, creating the
ocv vector. Finally, the OVERLAP-ADD method [63] composes the LC output vector, called
LCv. Since each output-cluster represents a segment of LCv, the OVERLAP-ADD method
accumulates each segment into a given position of LCv.

From Algorithm 2, we can notice that the LC offers more data-reuse possibilities at
the input-cluster level than the IP kernel, as the first inner-most loop iteration creates the
LCv, that is reused till the program ends. Instead, the advantages offered by binary seg-

mentation for LC are mitigated by the extra computation required to extract LCv and to
perform overlap-add. Indeed, for every inner-most loop iteration, it is required to extract
ic dim+ic dim-1 elements from the multiplication results, storing them into the LCv vec-
tor, and compute the element-by-element addition between LCv and a segment of ocv. This
overhead is reported in Figure 2.4b, showing the percentage of time spent on each phase
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of the computation. Specifically, we can note that extracting the output-cluster from LCv

takes roughly the 50% of the total execution time, and that the overlap-add kernel takes
on average 26% of the overall time to be computed. As detailed in Section 2.4.2, we pro-
pose an enhanced implementation of the LC algorithm, that improves the analyzed limits
by properly creating the output-cluster, allowing to skip the LCv extraction and to compute
the overlap-add kernel exploiting binary segmentation.

2.4 BiSon-e Architecture

The architecture proposed within this research work has been built on top of the binary

segmentation technique, presented in Section 2.2. Although this technique has proved its
strength to optimize memory compactness and arithmetic complexity of integer linear al-
gebra kernels, to the best of our knowledge, this is the first work that investigates it from a
computer architecture perspective. As Section 2.3 shows, exploiting binary segmentation

naı̈vely leads to practical inefficiencies, mainly due to the standard ISAs and architectures
lack of support for non-standard data sizes bit-manipulation operations. In this section, we
tackle this problem by presenting Bison-e, a lightweight architecture that enables exploit-
ing binary segmentation on resource-constrained devices. Specifically, we firstly detail the
microarchitecture of Bison-e, and we describe the defined RISC-V ISA extension. Then,
Section 2.4.1 and Section 2.4.2 highlight the benefits of the proposed solution on the en-
hancement of IP and LC kernels, respectively.

Bison-e extends general-purpose ISAs with instructions facilitating narrow integer com-
putations by leveraging the extremely area-efficient binary segmentation idea. The insight
behind Bison-e is to fill the gap between application-specific accelerators and SIMD/Vector
units for die-area sensitive edge computing use cases. On the one hand, as detailed in Sec-
tion 2.5, Bison-e is comparably more efficient than a high-performance VPU for narrow
integer computations, while featuring 600× less area overhead. On the other hand, Bison-e

features more flexibility than an application-specific accelerator, as it can be used for any
kernel exploiting SIMD-style narrow computations. Bison-e is efficient for modern edge
computing systems for the following reasons. It leverages existing FUs on scalar archi-
tectures to provide a more flexible integer compute fabric than SIMD architectures. Its
flexibility implies a better fine-tuning of the data sizes involved in the computation than
standard narrow-SIMD units, which rarely support arithmetic and memory instructions for
data formats below 8-bits, and typically neither cover all the possible data size granulari-
ties nor support mixed-precision computations. As an example, the current RISC-V vector
extension [131] has deprecated its support for narrow-SIMD computations (i.e., Zvediv),
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Figure 2.5: Bison-e block diagram.

whose initial specifications only accounted for 8-bit, 4-bit, 2-bit, and 1-bit data types. As
opposed to standard SIMD units, Bison-e allows every data size discussed in Section 2.3 to
be kept compressed in memory, and computed in a SIMD fashion, without incurring data
manipulation related area overheads. Bison-e also features mixed-precision computation
support by design, as the clustering widths of Equation (2.4) and Equation (2.7) already
account for different data sizes between the data sources. Thus, Bison-e is capable of com-
puting compressed data and performing flexible SIMD-style computations, whose width
is proportional to the data size of every operation operand, without associated overheads.
Moreover, its execution embeds the usage of complex instructions (e.g., multiply-add), with
performance gains and high data compressions that can be fine-tuned up to the bit granular-
ity. Moreover, implementing Bison-e, whose key novelty relies on hardware reutilization,
does not require any additional datapath, or a separate register file (RF) or FU, leading to a
negligible area and power overheads.

As detailed in Section 2.3.1 and Section 2.3.2, the main bottleneck of implementing
binary segmentation on standard architectures is either represented by the pre-processing
phase, responsible for the input-clusters creation, or by the post-processing phase, whose
main purpose is to extract the output from the segmented data and perform accumulations
using the overlap-add method. On the contrary, binary segmentation does not affect the
computation complexity, as it can rely on standard arithmetic units (e.g., integer multi-
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Table 2.1: Bison-e Control parameters list
Input Data Input Cluster Iterations

Bitwidth N.Elements Bitwidth N.Elements Pre-Proc Post-Proc
E

xt
en

d
8 8 21 3 3 -
7 9 16 4 3 -
6 10 16 4 3 -
5 12 16 4 3 -
4 16 12 5 4 -
3 21 9 7 3 -
2 32 8 8 4 -
1 64 6 10 7 -

Pa
ck

8 8 1 64 - 8
8 8 2 32 - 4
8 8 4 16 - 2

pliers), whose datapaths and implementations are already implemented in processors sup-
porting integer computations. Thus, the principal aim of the proposed architecture is to
efficiently cluster data before the multiplication, and to optimize the data extraction on the
multiplier output side. Bison-e, whose main functional blocks are depicted in Figure 2.5,
tackles these problems by means of two stages, called pre-processing and post-processing.
The pre-processing stage functionality is twofold. Its extend-unit converts icdim elements
belonging to src1 and src2 into the input-clusters, and forwards them to the processor mul-
tiplier to perform the actual computation. The number of elements to be clustered, as well
as the src1 and src2 bitwidths, are specified in the control register, whose configurations
are defined in the Extend part of Table 2.1, and programmed through the bs.set() custom
instruction reported in Table 2.2.

As an example, when configuring the control register with the parameters listed in the
first row of Table 2.1, the extend-unit expects eight 8-bit elements in both src1 and src2,
and creates the input-clusters composed of three 21-bit elements. The Pre-Proc parameter,
defined in Table 2.1, is used to cyclically offset the src1 and src2 registers content, depend-
ing on the cnt i value, spanning from 0 to Pre-Proc - 1. Indeed, as expressed in the first row
of Table 2.1, a single 64-bit register containing eight elements requires three iterations (i.e.,
clock cycles) to be completely computed, each one processing three elements of the input
registers. The input-clusters are forwarded to the multiplier through the ic 1 and ic 2 out-
put busses. Then, the multiplication result is processed by the mask-unit, which composes
the final result depending on the instruction opcode. Specifically, the mask-unit extracts
data in the range expressed in Equation (2.5) if a bs.ip() instruction is decoded, while it
outputs either the lower or the higher part of the convolution in case of a bs.lc.l() or a
bs.lc.h() instruction.
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Table 2.2: Overview of the Bison-e custom instructions
Instruction Description

bs.set() control registers configuration
bs.pack() pack n elements from Rs1 and Rs2
bs.ip() returns the Inner Product
bs.lc.l() returns the lower slice of the Linear Convolution
bs.lc.h() returns the higher slice of the Linear Convolution

To speed up the data compression phase, Bison-e implements the pack-unit, which com-
presses its input data into their actual data sizes. The pack-unit functionality is inferred by
the bs.pack instruction, listed in Table 2.2. The source operands of this instruction contain
the input register to be compressed (i.e., src1) and the final compressed register (i.e., src2).

Each instruction call converts the src1 elements into the target output bitwidth, and
forwards both the results and src2 to the mask-unit to merge them. As an example, the first
row of the Table 2.1 Pack block could convert eight 8-bit input elements to a single register,
composed of sixty-four 1-bit elements. To do that, Bison-e only requires eight iterations,
more precisely, eight bs.pack instructions. On every iteration, the pack-unit converts the
eight elements of src1 into 1-bit format, while the mask-unit concatenates the created data
slice into src2. The concatenation offset used by the mask-unit on every iteration depends
on the cnt o value, ranging from 0 to Post-Proc - 1. Therefore, the post-processing stage
either acts as a filter to extract the meaningful slice of data from the multiplier output, or
it is used to compress data in case of bs.pack instructions. Its behavior depends on the
decoded instruction, as well as on the values set in the control register.

As detailed in Section 2.5, the proposed solution introduces a minimal impact on power
and area consumption, as the actual computation is performed by the existing processor
multiplier. Moreover, we designed the proposed architecture to avoid a latency overhead
increase. Indeed, as in the case of standard multiplication operations on the considered tar-
get processor, both bs.ip() and bs.lc() instructions feature a latency of three clock cycles.
In the first clock cycle, data are read from the RF, processed by the pre-processing stage,
and forwarded to the multiplier input registers. The second clock cycle performs the multi-
plication, while the third one stores the result into the RF, after being properly extracted by
the post-processing stage. As Table 2.1 reports, the number of Pre-Proc iterations required
by all the Extend configurations is greater than one. As detailed in Section 2.4.1, this im-
plies that consecutive bs.ip() or bs.lc() instructions share the source operands, allowing
to pipeline the execution of multiple iterations.
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Algorithm 3 Pseudo-code of the IP kernel using Bison-e.
1: procedure INNER PRODUCT

2: bs.set(con f ig.params) ▷ Configure Control Register
3: for do(i = 0; i < vdim/el in reg; i++)
4: for do( j = 0; j < Pre−Proc; j++)
5: bs.ip(iptmp,vin0[i],vin1[i]) ▷ Compute Partial Inner Products
6: ip+= iptmp ▷ Accumulate Final Inner Product

From Table 2.2, we can also note that Bison-e requires a minimal set of simple in-
structions. As today’s compilers can optimize, through vectorization, computations such
as IP and LC, the proposed methodology can be exploited by a compiler, as soon as the
target language supports sub-byte data types. Alternatively, as performed in this work and
as a current trend in many fields like deep learning, users can define high-level libraries,
optimized with the low-level instructions of Table 2.2.

2.4.1 Enhanced Inner Product Computation

The pseudo-code of the IP computation exploiting Bison-e is reported in Algorithm 3.
Firstly, the control register is configured according to Table 2.1. Once the parameters have
been loaded into the control register, the main loop computes the IP between two vectors
having length vdim. Note that the number of iterations required to perform the computation
is given by the ratio between vdim and the number of elements packed in the register (i.e.,
el in reg). Indeed, every loop iteration computes the IP of el in reg elements belonging to
Vin0 and Vin1, and each bs.ip() instruction processes input-cluster elements. For example,
considering the Bison-e configuration for 1-bit input data in Table 2.1, a single iteration of
the loop contains seven bs.ip() instructions, each tackling ten elements of Vin0 and Vin1.
The partial IP is then further accumulated into the final result.

As Algorithm 3 shows, the IP computation exploiting Bison-e has several advantages
with respect to both the naı̈ve algorithm and the one exploiting binary segmentation on
standard CPUs. Firstly, it allows to fully take advantage of the binary segmentation bene-
fits of reducing the memory footprint and the computation arithmetic complexity. Indeed,
Bison-e supports compressed data as inputs, that do not require extra manipulation to be
extracted into a standard bitwidth before performing the computation. Moreover, as every
bs.ip() instruction belonging to the same loop iteration deals with the same input reg-
isters, its execution can be pipelined at the hardware level, allowing reducing the overall
computation latency. As Figure 2.5 shows, we used the input and output registers of the
two-stage multiplier to pipeline the execution of the instructions, allowing to execute up to
two instructions concurrently.
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Figure 2.6: Improved overlap-add using Bison-e. Different colors represent different outer
loop iterations.

2.4.2 Fused Overlap-Add

As detailed in Section 2.3.2, the main bottleneck of performing the LC kernel with binary

segmentation relates with the post-processing phase, since the result of every convolution
has to be extracted and accumulated into the output vector. To solve this issue, Bison-e ex-
ploits binary segmentation to perform fused overlap-add accumulations. The bs.lc.l()

and bs.lc.h() custom instructions compute and extract the whole ic dim+ic dim-1 result
of the convolution. As in the bs.ip() case, the two instructions share their inputs. How-
ever, bs.lc.l() returns the lower icdim elements of the result, while bs.lc.h() returns
the higher ic dim-1 elements. Thus, differently from the LC reference implementation of
Algorithm 2, the LC result does not require to be further manipulated before the overlap-
add phase, as it is possible to perform overlap-add via binary segmentation without ex-
tracting the data. Indeed, the configurations of Table 2.1 allow for extra computation in
the segmented data format. As an example, considering the first row of Table 2.1, we can
notice that the input-cluster bitwidth (i.e., 21 bits) is greater than the cw resulting from
Equation (2.7), which is equal to 18 bits for input-clusters of three elements and 8-bit data
sizes. We accounted for the remaining three bits to compute overlap-add via binary seg-

mentation. As an example, Figure 2.6 illustrates the fused overlap-add of a LC performed
on two 16×12 input vectors having 4-bit data size, and with Bison-e configured to produce
input-clusters with four 4-bit elements. With that configuration, after every bs.lc.l()

and bs.lc.h() instructions sequence, the post-processing stage outputs seven elements
divided into two registers. Specifically, the first register includes four 16-bit elements cor-
responding to the outcome of the bs.lc.l() instruction, while the second register con-
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tains three 16-bit elements created by the bs.lc.h() instruction. As can be seen from
Figure 2.6, the overlap-add can be reduced to two additions per iteration, the first adding
the bs.lc.l() result into the current ova register (i.e., the current output register), and
the second adding the bs.lc.h() result into the next ova register. The twenty-seven ele-
ments are accumulated via binary segmentation, and stored in seven ova registers. Thus,
the overlap-add phase can be computed without pre-extracting the result of every multipli-
cation, and computing only twenty-four additions, instead of the eighty-four needed by the
standard overlap-add implementation to create the twenty-seven elements final result.

2.5 Experimental evaluation

This section evaluates Bison-e in terms of performance, energy efficiency, and area con-
sumption. We also perform a comparison with an embedded VPU, integrated into the
target SoC, to show the efficiency of Bison-e when compared to a more conventional high-
performance embedded architecture.

2.5.1 Experimental Setup

Performance numbers have been measured using the gem5 simulator [27], configured with
a 5-stage, single-issue in-order pipeline, supporting the 64-bit RV64IM RISC-V ISA. The
cache hierarchy comprises 4-way 16 KB L1D and L1I caches, having 2-cycle access la-
tency, and a unified 8-way 64 KB L2 cache with 20-cycle access latency. Moreover, the
processor is equipped with a VPU processor, exploiting 2 lanes and a maximum vector
length of 4096 bits. We use the gem5 VPU proposed in [124], implementing the RISC-
V-V v0.7.1 vector extension [131] to run the vectorized implementation of the workloads
implemented with vector intrinsics instructions. We extended the RISC-V GNU Compiler
Toolchain [130] with the custom instructions of Table 2.2 to support binary segmentation

and Bison-e, integrated into C/C++ implementations of the benchmarks through intrinsic
instructions. We used the MacPat simulator [94] to extract energy efficiency metrics.

2.5.2 Workload Description

Convolutional Neural Networks We leverage on Bison-e to improve the efficiency of the
AlexNet [82] and VGG-16 [138] QNNs, leveraging on dense matrix-matrix multiplications
to perform their convolutional and fully-connect layers, representing the most compute-
intensive kernels of DNNs, and typically requiring most of the overall execution time.
Further details regarding how these layers are mapped into matrix multiplications, which
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Figure 2.7: Execution time of IP (a) and LC (b) kernels relying on a naı̈ve implementa-
tion or binary segmentation. The three binary segmentation implementations either rely
on software exploiting the standard RISC-V ISA (RV64IM), leverage on bit-manipulation
instructions (bit-manip), or exploit Bison-e.

other techniques can be used for their computations, as well as an introduction to DNNs
quantization techniques are provided in Section 3.2.

For these benchmarks, we exploit the IP kernel computed on Bison-e, improving its
execution by reducing the overall number of required multiplications and additions. To test
the performance scalability of Bison-e, we explored different data sizes of both data and
weights of the selected networks.

Approximate String Matching Research in pattern matching applies to many impor-
tant use cases, ranging from biological sequence alignments and genome pre-alignment
filters [15, 16, 25], to web search engines and data compression. One of the principal fields
of pattern matching, called string matching, verifies if a sequence of characters belonging
to a given alphabet (i.e., the pattern) matches into a reference string (i.e., the text). The
string matching problem can be solved by following many different methods [14]. One
widespread algorithm breaks up both the text and the pattern into boolean vectors, one for
every letter of the alphabet, and computes boolean LCs among each vector pair. Each LC
result is then accumulated into the output vector, whose elements identify the number of
mismatches among the pattern and the text, starting from each text position. This solution,
firstly proposed in [52], is an extension of the knuth-morris-pratt (KMP) algorithm [103],
and represents a valid candidate to solve the problem of approximate string matching with
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Figure 2.8: Speed-ups (a, c), and energy efficiency (b, d) of the AlexNet and the VGG-16
CNNs with respect to the scalar implementation, exploiting either Bison-e or the VPU.

don’t care conditions. Although this solution has proved its efficiency in several works
in the literature [17, 54], its performance can be further improved by applying data com-
pression, as well as by decreasing the arithmetic complexity of boolean LCs. Both of
these optimizations can be efficiently achieved by the enhanced LC computation enabled
by Bison-e.

2.5.3 Performance

As a first performance analysis, we study the IP and the LC kernels exploiting binary

segmentation, and we compare their run-time with their naı̈ve implementations of Equa-
tion (2.2) and Equation (2.6). In Figure 2.7, we benchmark three implementations using bi-

nary segmentation: one exploiting the standard 64-bit integer RISC-V ISA (i.e., RV64IM),
one featuring bit-manipulation instructions, and one computing with Bison-e.

For the IP, the speed-ups obtained with respect to the naı̈ve kernel are reported in Fig-
ure 2.7a, and range from 1.3× to 1.5×, and from 2.5× to 3.4×, for the binary segmentation
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implementation featuring standard and bit-manipulation instructions, respectively. These
results are in line with our analysis in Figure 2.3a, as the instructions needed to pack and
extract data typically exploit a smaller latency than the multiplication one, and because
of the smaller number of loop iterations required by the binary segmentation implementa-
tions. Figure 2.7a also shows that, in contrast to Figure 2.3a, the achieved speed-up does
not scale with the number of elements composing the input-cluster. As analyzed in Fig-
ure 2.4a, this behavior is due to the input-cluster creation complexity, which grows with the
number of elements composing the cluster. While the speed-ups obtained in Figure 2.7a
highly differ from the theoretical performance gain that binary segmentation could exploit,
the implementation exploiting Bison-e leads to a 4.4×, 7.1×, 14.1× and 22.6× speed-up
with respect to the reference implementation of Figure 2.7a, for data sizes of 8-bit, 4-bit,
2-bit, and 1-bit, accordingly. Note that the performance of Bison-e are comparable with
the maximum theoretical improvement allowed by binary segmentation for the IP kernel,
reported in Figure 2.3a.

The experimental evaluation of the LC kernel is reported in Figure 2.7b. The RV64IM-
based implementation improves the reference by a factor ranging from 1.1× to 3.5×, while
the implementation exploiting bit-manipulation instructions reaches from 1.6× to 3.8×
with respect to the reference. When compared to Figure 2.7b, our implementation leverag-
ing Bison-e features a speed-up of 3.5×, 17.4×, 42× and 61× for input bitwidth of 8-, 4-,
2- and 1-bit, respectively, proving that the proposed architecture can significantly improve
the naı̈ve binary segmentation computation reported in Figure 2.7b.

We implement three workloads belonging to two different application classes, namely
deep learning and approximate string matching. For the deep learning benchmark analy-
sis, we focus our evaluation on the Convolutional and Fully-Connected layers of both the
AlexNet and the VGG-16 CNNs, for input and weights data sizes ranging from 8-bit to
2-bit. All the kernels (i.e., scalar, vector, and featuring Bison-e) have been implemented
using img2col [35], reshaping the convolutional layers as blocked matrix-matrix multi-
plications, and the fully-connected layers as matrix-vector multiplications. The obtained
results, in terms of performance and energy efficiency, are summarized in Figure 2.8. On
the performance side, Figure 2.8a reports the speed-ups of the vectorized and the Bison-e

implementations of the AlexNet CNN, with respect to the scalar reference. As Figure 2.8a
shows, the Bison-e implementation performance scales with the decrease of the input data
size. Specifically, the proposed solution runs up to 5.4×, 10.1×, and 20.5× faster than
the scalar implementation for Convolutional layers, and up to 3.7×, 7.2×, and 14.2× for
the Fully-Conected layers, for 8-, 4- and 2-bit data sizes, respectively. Averagely, when
compared with the VPU implementation, Bison-e exhibits comparable performance on the
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Figure 2.9: Approximate string matching kernel speed-up exploiting either Bison-e (dark-
green bars) or the VPU (light-green bars) with respect to the scalar implementation, featur-
ing a 4 (a) and a 256 (b) letters alphabet.

4-bit test, and outperforms it on the 2-bit test by a factor of 1.9×. Bison-e shows a 1.8×
higher run-time than the VPU only for the 8-bit test. However, as Figure 2.8b illustrates,
the 8-bit AlexNet performed with Bison-e shows comparable energy efficiency with respect
to the vectorized counterparts, and exhibits better efficiency in the 4-bit and 2-bit layers, by
a factor that ranges from 1.5× to 3.1×.

Similarly, Figure 2.8c shows the performance improvement of Bison-e and the VPU of
the VGG-16 network, with respect to the scalar baseline. Specifically, a back-to-back exe-
cution of the network performed with Bison-e peaks a 4.7×, 9.1×, and 18.5× with respect
to the scalar implementation, for 8-, 4-, and 2-bit computations, also showing compara-
ble and better performance than the VPU, by a factor up to 1.9× for 2-bit data sizes. In
terms of energy efficiency, as detailed in Figure 2.8d, the VGG-16 network is computed
with Bison-e gains averagely 1.1×, 1.8×, and 3.6× with respect to the VPU implementa-
tion, for 8-, 4-, and 2-bit computations. For both the AlexNet and the VGG-16 networks,
the performance scalability of Bison-e is guaranteed by the increasing number of opera-
tions performed concurrently, as well as by the compressed input format on both data and
weights, which allows decreasing the overall memory transfers.

Concerning the approximate string matching workload, we consider a pattern of 256
characters, a text whose length ranges from 4K to 128K characters, and an alphabet of
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Figure 2.10: Layout of the DRAC SoC including Bison-e, highlighted in green and circled
in black, for the 65nm technology. This design, also including the VPU, a PLL, an ADC
and several peripherals controllers, is ready for fabrication.

4 (e.g., A, T, G, C) and 256 letters. Figure 2.9 reports the speed-ups of Bison-e and the
VPU with respect to the scalar reference. Bison-e outperforms both the scalar and the
VPU implementations for all the considered datasets. Concerning the 4-letters alphabet
benchmark, Bison-e gains from 21.8× to 51.6×, and from 1.3× to 3.2× execution time
with respect to the scalar and the VPU implementations. We obtain similar results for the
256-letters alphabet benchmark, where Bison-e outperforms both the scalar and the VPU
execution time by a factor ranging from 25.9× to 60.6×, and from 1.4× to 3×, respectively.
Furthermore, for the approximate string matching benchmarks of Figure 2.9, Bison-e gains
an average energy improvement of 40× and 5× when compared to the scalar and the VPU
implementations.

2.5.4 Area and Power Analysis

We integrated Bison-e into the DRAC SoC design [12], using the Cadence tool flow (Genus/In-
novus), to obtain the layout and main performance metrics of the overall microarchitec-
ture. We implemented the design in two different technologies, namely TSMC 65nm bulk
CMOS and GlobalFoundries 22 nm FDSOI. The 65nm layout, reported in Figure 2.10, is
ready for production, and includes the SoC along with the VPU, peripheral controllers,
a PLL, an ADC, and the IO pad-ring. The design employs standard- and low-threshold
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Table 2.3: Bison-e Area and Power Consumption

Component
Area [mm2] Total Power [mW]

65nm 22nm 65nm 22nm

Scalar Core 4.167 0.383 1419 283.4
VPU 2.277 0.236 1757 309.3

Bison-e 0.003704 0.000419 1.089 0.236

cells, and the synthesis and PnR target frequency is set to 600 MHz. The 22nm layout
includes the SoC along with the VPU and peripheral controllers, as an IP block ready to
be connected to a PLL and an IO pad-ring. The design employs 8-track standard cells
without using body-biasing, with a target frequency of 1GHz. For both implementations,
we analyzed the physical impact of Bison-e incorporation on area, timing and power fig-
ures, referring to the above-defined timing constraints. Regarding the timing performance,
target constraints are met in the typical corner, and it has been demonstrated that Bison-e

does not introduce new critical paths in the processor datapath. Regarding area and power
consumption, results are summarized in Table 2.3. In both technologies, the area overhead
of Bison-e in the whole layout is below 0.07%, and the contribution to the total power con-
sumption is lower than 0.04%. The cell count of Bison-e is 1210 in the 65 nm library, while
it is 1081 in the 22 nm library. For comparison with Bison-e, we implemented and syn-
thesized a narrow-SIMD unit in 22nm, capable of computing 8-,4-,2-,1-bit data on a 64-bit
datapath, and our evaluation reported a 10× area increase with respect to Bison-e, whose
key novelty relies on reutilizing hardware, featuring low area-overhead and high flexibility.

2.6 Related work

Although, to the best of our knowledge, this is the first work investigating the application
of binary segmentation on processor cores, several works have analyzed the reduction of
arithmetic complexity by packing multiple computations in a single arithmetic operation.
The authors in [55] exploit the Xilinx FPGA DSP48E2 slices to pack two 8-bit multipli-
cations, both sharing one of the multiplicands, into a single DSP slice, achieving a 1.75×
speed-up compared to a naı̈ve multiplication on the same device. The same approach has
been improved in [29], where the authors propose an enhanced DSP slice architecture able
to compute four 9-bit concurrent multiplication with 0.6% area overhead.

Among the works investigating the optimization of narrow integer computing on edge
processors targeting CNNs, [41] proposes a ternary weight quantized DNN GEMM li-
brary, that replaces multiply-add operations with SIMD bitwise operations to compute the
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GEMM kernel, showing a performance improvement over GEMMLowp of up to 2.9×
when computing the MobileNet-V2 CNN. Compared to Bison-e, [41] shows less flexibility
in terms of data size combinations, as they are limited to 3-bit for the weights, and from
6- to 3-bit for the activations. Moreover, our solution does not include instructions and
FUs exploiting SIMD to further increase its performance, and still reaches better speed-
ups than [41] over GEMMLowp. Other approaches deploying quantized DNNs on edge
processors [147, 148] make use of bit-serial implementations of GEMMs computations to
exploit standard bitwise operations like the and and the popcount instructions. Specifically,
the authors in [148] propose an algorithm to express the matrix-multiplication kernel as a
set of a weighted sum of binary matrix multiplications, thus allowing supporting compu-
tations based on variable precisions. Although [148] demonstrates promising performance
for 1-bit based computations, it shows no performance improvement with respect their
baseline for matrices featuring depths (i.e., the k-dimension) smaller than 256 elements, or
having more than a few hundred of elements per dimension. For example, [147] presents
a GEMM implementation based on bit-serial matrix multiplications, built on top of the
BLAS-like library instantiation software (BLIS) library and targeting DNNs inference on
edge devices. Although [147] achieves good speed-ups with respect to their baseline on
both the Arm Cortex-A53 and the Arm Cortex-A7 devices, they only support computations
based on data sizes lower than 4-bit for both activations and weights.

Other works, such as the one proposed in [57,58,117], explore custom SIMD multiply-
accumulates (MACs) units and bit manipulation instructions to improve the computation
of QNNs on embedded processors. We propose a direct comparison between these works
and Bison-e in Table 3.3.

2.7 Discussion

Bison-e extends a general-purpose ISA leveraging on instructions that accelerate narrow
integer computations exploiting binary segmentation. The insight behind Bison-e is to fill
the sweet spot between application-specific accelerators and SIMD units for die-area sen-
sitive edge computing use-cases. On the one hand, Bison-e has proven to be comparably
more efficient than a high-performance VPU for narrow integer computations, while fea-
turing 600× less area overhead. On the other hand, the methodology proposed in this
work through Bison-e features more flexibility than high-performance application-specific
accelerators like [39, 151], as it can be extended to any linear algebra kernel exploiting
SIMD-style narrow computations. For example, [39], represents a state-of-the-art DNN
accelerator for mobile devices, featuring 192 processing elements and line buffers for a
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total area of 36mm2 on the TSMC 65nm technology node. However, the architecture pro-
posed in [39] only supports computations based on 8-bit data and weights. Certainly, [39]
provides better performance than a single Bison-e instance featuring a single multiplier
and integrated on an off-the-shelf processor, mainly because of its tailored design and its
demanding area, roughly 2227× larger than Bison-e in 65nm. Indeed, [39] outperforms
Bison-e by a factor of 39.9×, 21.4×, and 10.9× in terms of Performance-Per-Unit-Area,
for the computation of AlexNet on 8-, 4-, and 2-bit data types. Considering the perceived
100× efficiency gap between CNN accelerators based on ASICs and CPUs [162], this work
goes toward closing this gap. Moreover, the same area budget of [39], would enable the
integration of up to 8 scalar cores, each featuring one Bison-e unit, or up to 4 scalar cores,
featuring one VPU and one Bison-e unit. As a result, a specific solution can be chosen
depending on the latency, throughput, area, and power constraints of the target processor,
as well as on the variety of workloads it has to execute. Moreover, it is worth noticing
that Bison-e is not tight to or optimized for a specific application class. As discussed in
Chapter 3, the proposed methodology can be exploited to design application-specific ac-
celerators based on the binary segmentation, integrated into existing processors to scale
their performance on narrow-precision computations, exploiting the same benefits in terms
of area, reduced memory footprint, and flexibility on the employed data types, with a min-
imal ISA extension, and without designing application-specific and area-consuming FUs.

2.8 Summary

This work proposes a novel methodology to accelerate linear algebra kernels based on
narrow integers. The proposed solution, built upon the binary segmentation mathematical
technique, reduces both the memory footprint and the arithmetic complexity of integer lin-
ear algebra computations, exploiting an efficiency that is proportional to the ratio between
the architecture bitwidth and the application data sizes. We perform a detailed DSE of bi-

nary segmentation on 64-bit architecture, highlighting its strengths and pitfalls. We then
propose Bison-e, a lightweight and high-performance accelerator targeting narrow integer
linear algebra computing on resource-constrained processors, to overcome the main lim-
itations of the analyzed technique on standard CPU architectures and ISAs, Bison-e runs
important linear algebra kernels such as IP and LC from 3.5× to 61× faster than a scalar
RISC-V edge processor. We integrate the proposed architecture into a complete SoC, based
on RISC-V, past the PnR step. Our analysis shows that Bison-e considerably enhances the
performance of narrow integer computations, introducing a negligible 0.07% impact on the
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overall processor area. Specifically, our experimental evaluation shows that Bison-e out-
performs the scalar processor from 4.7× to 19.3× on the AlexNet and the VGG-16 CNN
benchmarks in terms of execution time, and shows comparable or higher energy efficiency
than a VPU on the same tasks. Moreover, Bison-e on approximate string matching tasks
reaches execution speed-up from 1.4× to 3× when compared to the VPU implementation,
showing an average 5× improvement in terms of energy efficiency.



Chapter 3
Mix-GEMM: An efficient HW-SW
Architecture for Mixed-Precision
Quantized Deep Neural Networks
Inference on Edge Devices

DNN inference based on quantized narrow-precision integer data represents a promising
research direction toward efficient deep learning computations on edge and mobile devices.
On one side, recent progress of quantization-aware training (QAT) frameworks aimed at
improving the accuracy of quantized DNNs allows achieving results close to floating-point
32 (FP32), providing high flexibility on the data sizes selection. However, as previously
discussed in Chapter 1 and Chapter 2, current CPU architectures and ISAs targeting edge
devices present limitations in the range of data sizes supported to compute DNN kernels.

This chapter presents Mix-GEMM, a hardware-software co-designed architecture (de-
tailed in Section 3.3) capable of efficiently computing quantized DNN convolutional ker-
nels. The Mix-GEMM microarchitecture is built upon Bison-e, presented in Chapter 2, and
optimized as an application-specific accelerator performing GEMM, representing the core
kernel of DNNs, supporting all data size combinations from 8- to 2-bit, including mixed-
precision computations, and featuring performance that scale with the decreasing of the
computational data sizes. Our experimental evaluation (Section 3.4), performed on repre-
sentative quantized CNNs, shows that a RISC-V based edge SoC integrating Mix-GEMM

achieves higher performance than SoA frameworks running on commercial Arm and RISC-
V based edge processors, while only accounting for 1% of the SoC area consumption. The
microarchitecture of Mix-GEMM has been taped out in the context of the DRAC project.

40
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3.1 Introduction

DNNs are currently the preferred choice for artificial intelligence and computer vision tasks
in both research and industrial applications. DNNs are composed of a stack of layers,
whose execution time is typically dominated by the computation of large linear algebra
operations like GEMMs. Optimizing DNNs represents a major challenge in many fields, in
particular when targeting the deployment to hardware architectures designed for edge and
mobile segments, requiring high performance but presenting tight constraints in terms of
area, memory, and energy consumption.

A widespread solution aimed at decreasing this burden is quantization, a family of tech-
niques designed to reduce the numerical precision required to represent the parameters of
a DNN and the data computed by its layers. In particular, integer quantization focuses on
deploying trained DNNs with narrow integer formats, typically ranging from 8- down to 2-
bit [42, 96, 153], rather than with the standard FP32 data size. Quantizing DNNs exposes a
large design space, as each layer can be quantized to its own precision. Moreover, input data
and parameters can also be quantized differently within a layer, resulting in mixed-precision
operations. Exploring this design space allows to trade-off computational requirements
against quality of results, which is a key enabler of deployment in resource-constrained
devices. Indeed, reducing the precision of highlighted parameters and data decreases the
memory and the bandwidth required to store and load them, allowing resource-constrained
devices to support larger models, or to relax constraints around the sizing of their mem-
ory hierarchy and power envelope. Quantization also enables computing operations like
GEMM at low precision, with a consequent improvement in terms of performance and
energy efficiency. However, in practice, most of the current general-purpose CPU architec-
tures lack adequate support for efficiently handling narrow-precision formats, as most of
the ISAs neither support data sizes smaller than 8-bit, nor support mixed-precision com-
putations. Although modern SIMD extensions [131] and hardware accelerators [59, 117]
are increasing their support for narrow-precision data sizes and mixed-precision computa-
tions on CPU architectures, they only consider a small subset of data sizes granularities.
As a result, exploiting fine-grained quantization of DNNs on modern processors does not
always provide a real benefit to the actual computation performance, as quantized data
have to be either saved in memory in a sub-optimal format (i.e., with data sizes supported
by the processor ISA), or decompressed before the actual computation exploiting costly
bit-manipulation operations. Therefore, investigating hardware and software architectures
capable of leveraging quantization not only to save memory space, but also to efficiently
compute quantized data in terms of performance and energy efficiency, while respecting
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the tight area and power caps of resource-constrained devices, represents a critical research
challenge for the computer architecture field.

We propose Mix-GEMM, a hardware-software architecture capable of efficiently per-
forming GEMM-based computations targeting narrow integers. The hardware microar-
chitecture of Mix-GEMM, hosted in the processor execution stage, is built upon the binary

segmentation technique, detailed in Section 2.2, which allows computing high-performance
SIMD operations on narrow integers, reusing the processor FUs with a negligible impact on
area overhead. The key novelty of Mix-GEMM lies in supporting computations based on all
the data size combinations between 8- and 2-bit, including mixed-precision, while exploit-
ing high performance, that scales with the decrease of the data sizes involved in the com-
putation. This feature allows tuning the performance of quantized DNNs inference on edge
devices with high flexibility, accounting for latency, energy consumption, model accuracy,
and memory footprint. Moreover, through a state-of-the-art framework for quantization-
aware training [120], we perform an exhaustive design space exploration on the accuracy
of relevant DNN networks, exploiting quantization with a fine-grained selection of the data
sizes, with the granularity of 1-bit including mixed-precision computations.

The main contributions of this work are listed as follows:

• We design an area- and energy-efficient hardware accelerator, integrated into an edge
processor pipeline and capable of computing mixed-precision GEMM kernels based
on narrow integers. The proposed architecture, called µ-engine, leverages the binary

segmentation technique to perform from 3 to 7 MAC per cycle while reusing the
processor multiplier;

• We extend the RISC-V ISA with custom instructions used to design a high-performance
GEMM software library handling the µ-engine, allowing a fine-grained selection of
the data sizes and a balance of the overall DNNs performance in terms of throughput,
energy efficiency, and memory footprint;

• We integrate our µ-engine into a RISC-V based edge SoC, and we benchmark the
performance of Mix-GEMM on six CNNs, namely AlexNet, VGG-16, ResNet-18,
MobileNet-V1, RegNet-x-400mf, and EfficientNet-B0. For these networks, Mix-

GEMM reaches performance ranging from 4.8 GOPS to 13.6 GOPS, and from 477.5
GOPS/W to 1.3 TOPS/W energy efficiency;

• We investigate the considered quantized CNNs in terms of top-1 accuracy, exploring
an exhaustive set of data size combinations exploiting QAT. Our evaluation shows
that narrow and mixed-precision quantized CNNs can be Pareto optimal in terms of
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computational requirements, and show minimal accuracy losses (i.e., up to 1.5%) for
data sizes larger than 4-bit;

• We implement the RISC-V SoC integrating our hardware accelerator, in the Global
Foundries 22nm FDX technology node, past the PnR phase, showing that the pro-
posed µ-engine only accounts for 1% of the total SoC area, and for an overall 2.3%
on its total power consumption;

The remainder of the chapter is laid out as follows. Section 3.2 introduces DNNs and
the main techniques at the base of this work. Section 3.3 details Mix-GEMM. Section 3.4
presents the experimental evaluation. Section 3.5 compares the main features and perfor-
mance of Mix-GEMM with the most relevant related work. Finally, Section 3.6 discusses
the conclusions.

3.2 Background

3.2.1 Deep Neural Networks Computation

DNNs can be defined as a computational graph, where each node represents a layer. The
various types of functions computed by each layer can be typically organized in two classes:
linear layers, such as convolution or fully-connected, and non-linear operations, such as
activation functions like ReLU, softmax, GELU, or Tanh, with DNNs typically alternating
between the two from one layer to the next one. DNNs inference becomes a bottleneck
when moving to edge computing platforms [64], which are typically provided with a small
amount of memory and require low energy consumption.

Convolutions, representing the most computationally and memory intensive kernel of
DNNs, can be accelerated in a variety of ways depending on the layer dimensions [8], such
as the size of the convolution kernel or the stride. While the direct approach implements
it as a series of nested loops, fast algorithms like FFTs [105] or Winograd [85] exploit
a numerical transformation of the input and the weights to reduce the overall number of
operations. On the other hand, GEMM-based algorithms, such as the im2row or the im2col

approaches [35], maps a convolution to a highly-optimized GEMM implementation.
Direct approaches typically require tuning each kernel with respect to the layer di-

mensions, either by providing optimized kernels for common choices of dimensions, as in
libraries like cuDNN [40], or by generating code just-in-time, as in libraries such as MKL-
DNN [61]. Fast algorithms are efficient only for certain dimensions of the layer, and have
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additional limitations when applied to quantized values [108]. On the other hand, GEMM-
based approaches retain better generality, since they all call into the same pre-compiled
backend for any dimensions of the layer, and thus they represent the focus of this work.

In the im2col GEMM-based approach, input activations and weights are reshaped and
duplicated to fit into the GEMM input matrices, namely A and B. Each row of A is com-
posed of the flattened input values that contribute to that pixel, potentially taken from a
batch of multiple input images, while each column of B corresponds to flattened parame-
ters computing a single output pixel. A direct implementation of im2col incurs a non-trivial
overhead in terms of memory and bandwidth, because activations and weights are dupli-
cated across A and B. However, as modern im2col approaches [49, 107, 146, 165] remove
this overhead by implicitly composing A and B in memory, this work only focuses on the
compute aspect of GEMM.

3.2.2 Deep Neural Networks Quantization

To further cope with the runtime requirements of CNNs inference, one of the most attractive
solutions is quantization [70, 99, 111], a technique that converts CNN data and parameters
from floating-point to integer formats, whose size typically ranges from 8-bit down to 1-
bit [123] featuring negligible accuracy losses when compared to the floating-point baseline
[23, 42, 96, 112, 153].

The acceleration strategy presented in this work applies to uniform affine integer quan-
tization at inference time, which is defined as:

y = q(x) = clamp
(

round
(x

s
+ z

)
,ymin,ymax

)
(3.1)

where x is the tensor to quantize, s is the scale, z is the zero-point, while ymin and ymax

are defined as:

[ymin,ymax] =

{
[0,2nb −1] if unsigned
[−2nb−1,2nb−1 −1] if signed

(3.2)

where nb is the bitwidth to quantize to. Depending on how s, z, and b are defined,
different variants emerge. The case where z = 0 is referred to as symmetric quantization,
while z ̸= 0 is asymmetric quantization. Quantization is named channel-wise if s is a 1-
dimensional tensor, while it is layer-wise or tensor-wise in case s is a scalar value.

Quantization is typically adopted in a DNN through either post-training quantization
(PTQ) or QAT. PTQ starts from a pre-trained model in floating-point, and relies on a small
amount of calibration to determine appropriate values for scales and zero-points. QAT
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instead models quantization at training time, allowing to compensate for quantization errors
during training. While PTQ requires limited extra computation and data, and is effective at
higher precisions like 7- and 8-bit, QAT carries the cost of full training, but can scale down
to narrower data sizes. For this reason, QAT represents an excellent candidate to optimize
DNN computations on resource-constrained devices, and it is the technique adopted in this
work (see Section 3.4.1 for more details).

3.2.3 Efficient Matrix-Matrix Multiplication

The GEMM software library proposed in this work is built upon the double-precision gen-
eral matrix multiplication (DGEMM) kernel of BLIS [150], a state-of-the-art framework for
high-performance BLAS computations [86]. BLIS exploits different compile-time strate-
gies to improve data re-usage (e.g., blocking) and to optimize data movements across the
memory hierarchy during the GEMM computation, guaranteeing optimal performance by
minimizing the number of cache misses. Specifically, DGEMM computes a block-based
multiplication between two 64-bit dense matrices A and B, with sizes m× k, and k × n,
respectively. The multiplication result is stored in the output matrix C, having dimensions
m× n. To improve cache efficiency, BLIS partitions the matrices into blocks of smaller
dimensions, called panels, stored in contiguous memory arrays. Specifically, a panel of the
input matrix A is composed of mc×kc elements, arranged as µ-panels having size mr×kc.
Similarly, each panel of B holds nc× kc elements, divided into µ-panels holding nr× kc

elements. This specific panels reorganization assures that their elements are accessed with
unit stride during the µ-panels computation. Each C µ-panel, having dimension nr×mr,
is evaluated in the so-called µ-kernel, computing the matrix-matrix multiplication between
single A and B µ-panels. BLIS performance are optimal if its parameters (mc, nc, kc, mr,
and nr) are correctly set. Their optimal values can be found analytically [101], and mainly
depend on the target processor characteristics, such as the number of cache levels, sizes,
and associativities. According to the methodology presented in [101], the C µ-panel is kept
in the processor RF, by assigning to mr and nr values whose product does not exceed the
number of RF registers. Indeed, each µ-kernel execution updates a different C µ-panel el-
ement multiple times, and therefore its partial results must be kept in memories featuring
low latencies. Similarly, the kc dimension is set to allow storing the whole B µ-panel in the
L1 cache, as its elements are reused for different µ-kernel iterations. Finally, mc is set to
ensure that the A panel fits in the L2 cache.
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3.3 MIX-GEMM HW-SW Architecture

This section details Mix-GEMM, a hardware-software architecture that allows fast GEMM
computations based on narrow integers. On the one hand, as detailed in Section 3.3.1, the
proposed software library modifies the BLIS framework to support narrow-precision inte-
gers, including all granularities of mixed-precision computations from 8- to 2-bit data sizes,
supporting the complete range of bitwidths typically exploited in quantized DNNs. On the
other hand, Section 3.3.2 describes the Mix-GEMM hardware microarchitecture, called µ-

engine. The µ-engine exploits the binary segmentation technique, introduced in Section 2.2
and investigated in Section 2.3, to perform SIMD MAC operations through the unmodified
64-bit processor scalar multiplier, and to efficiently handle narrow mixed-precision GEMM
computations, at a negligible cost in terms of area and power consumption. Specifically,
the µ-engine computes the inner-product of two vectors a and b (henceforward called µ-

vectors), having bitwidths bwa and bwb via binary segmentation, as a set of multiplications
among input-clusters. As detailed in Section 2.2, a and b are cleverly packed to compose
the input-clusters, whose multiplication results in the µ-vectors inner-product. This pack-
ing strategy follows the rule defined in Equation (3.3), which specifies the bitwidth of the
elements packed into each input-cluster, called clustering-width (cw). Specifically, given
input-clustersize number of elements of each input-cluster, we determine the cw as:

cw ≥ 1+bwa +bwb + ⌈log2(input-clustersize +1)⌉ (3.3)

Note that in Equation (3.3) we exploit a slightly different expression than Equation (2.4)
on the cw computation, as Mix-GEMM supports both signed and unsigned computations.
However, the conclusions of the DSE proposed in Section 2.3 still apply to this work, as
an IP computations of elements ranging from 8- to 2-bit via binary segmentation can still
provide SIMD computations ranging from 3 to 7 MAC per cycle.

3.3.1 µ-engine GEMM Software Library

We build our narrow-precision GEMM software library on top of the DGEMM algorithm
implemented in the BLIS framework, described in Section 3.2.3. The proposed library
leverages BLIS to efficiently move vectors of narrow-precision data through the processor
cache hierarchy. Our GEMM library keeps the input matrices A and B compressed over
their common k dimension, in chunks ranging from 8 to 32 elements, for 8- and 2-bit data
sizes, respectively. Each chunk of compressed elements composes a µ-vector.

As a result, the proposed software library leverages cache-friendly data movements of
the BLIS-based DGEMM algorithm, abstracting each µ-vector as a single 64-bit element.
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Figure 3.1: Data flow and allocation of the proposed MACRO-KERNEL and µ-KERNEL

procedures, built upon the BLIS implementation of DGEMM. Note that both kca and kua
are twice as kcb and kub, indicating that the data size of A is two times larger than the one
of B.

This data organization allows handling non-standard data sizes without extending the pro-
cessor ISA, increasing the efficiency of quantized DNN computations from different per-
spectives. First, it enables keeping the DNN activations and weights compressed in main
memory (even if their data sizes are not supported by the processor ISA), thus allowing
to deploy bigger DNNs on resource-constrained devices. Second, it significantly reduces
the number of memory instructions required to perform the GEMM computation, directly
impacting performance and energy consumption. As described in Section 3.3.2, each µ-

vector pair is forwarded to the µ-engine through a single instruction, which computes the
inner-product among them by exploiting the binary segmentation technique.

Figure 3.1 details the dimensions and the memory locations of the matrices used in the
µ-engine GEMM software library. In Figure 3.1, we follow the approach proposed in [101]
and detailed in Section 3.2.3 to partition panels and µ-panels into a specific level of the
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Algorithm 4 Mix-GEMM pseudo-algorithm
1: procedure µ -KERNEL(Aµ p,Bµ p,C)
2: for kca/kua iterations do ▷ same as kcb/kub
3: for i = 0 → nr−1 do
4: for j = 0 → mr−1 do
5: for k = 0 → kua−1 do
6: Aµvector = Aµ p[k+mr ∗ j]
7: Bµvector = k < kub ? Bµ p[i+nr ∗ k] : 0
8: bs.ip(Aµvector,Bµvector)

9: LoadNextAddress(Aµ p) ▷ next kua×mr elements
10: LoadNextAddress(Bµ p) ▷ next kub×nr elements

11: for i = 0 → nr−1 do ▷ Get output from AccMem
12: for j = 0 → mr−1 do
13: Cµ p[i, j] = bs.get( j+ i∗mr)

14: U pdateC(Cµ p,C)

15: procedure MACRO-KERNEL(Ap,Bp,C)
16: for nc/nr iterations do
17: Bµ p =CreateµPanel(Bp)
18: for mc/mr iterations do
19: Aµ p =CreateµPanel(Ap)
20: µ -KERNEL(Aµ p,Bµ p,C)

21: procedure M-GEMM

22: bs.set(aX −wY ) ▷ Load X-bit Y-bit configuration
23: for n/nc iterations do
24: for ka/kca iterations do ▷ same as kb/kcb
25: Bp =CreateBPanel()
26: for m/mc iterations do
27: Ap = createAPanel()
28: MACRO-KERNEL(Ap,Bp,C)

processor memory hierarchy. Blocks of elements featuring fewer data reuse are kept in
main memory or in the L2 cache, while the ones reused more often are sized to fit either
the L1 cache or the processor RF. To further improve data locality, Mix-GEMM defines
a further level in the memory hierarchy, called accumulator memory (AccMem) and held
inside the µ-engine. The AccMem locally stores an entire C µ-panel having dimension
mr × nr elements, allowing to further increase data locality, and to free the RF registers
formerly reserved to the C µ-panel, which are instead allocated to slices of the A and B

µ-vectors, avoiding thus to load the same data from cache multiple times. The AccMem is
sized to store the whole C µ-panel, holding the result of the matrix-matrix multiplication
between the A and B µ-panels.

Algorithm 4 shows the pseudo-code of the proposed BLIS-based library implementa-
tion, whose top-function is represented by the M-GEMM procedure. The M-GEMM proce-
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dure loads the current µ-engine configuration through a custom RISC-V instruction called
bs.set() (line 22), and then splits the A and B input matrices in panels, holding mc× kca

and nc× kcb µ-vectors, respectively (line 25 and 27). Note that we introduce two separate
k-dimensions for the A and B panels, (i.e., kca and kcb), to account for mixed-precision
computations, where the input matrices show different k values. Specifically, in Figure 3.1,
kca is two times kcb, implying that the compressed elements stored in A have twice the data
size as the compressed elements of B. While the M-GEMM procedure is used to partition
the A and B matrices into panels, the MACRO-KERNEL procedure of Algorithm 4 splits each
panel into µ-panels (lines 17 and 19), which are then forwarded to the µ-KERNEL proce-
dure (line 20). The µ-KERNEL computes the actual matrix-matrix multiplication between
an A µ-panel, composed of mr × kca µ-vectors, and a B µ-panel, composed of kcb× nr

µ-vectors, thus creating a C µ-panel of mr× nr elements. Each innermost iteration of the
µ-KERNEL loads a µ-vector pair from the µ-panels (lines 6 and 7), and forwards it to the
µ-engine through a bs.ip() instruction (line 8), that computes its inner-product. Each
inner-product is stored in the AccMem and, once the entire µ-panels have been issued to
the µ-engine through bs.ip() instructions (lines 2 to 10), the result is collected from the
AccMem using mr × nr bs.get() instructions (lines 11 to 13), and accumulated in the
output matrix C (line 14). The bs.set(), bs.ip(), and bs.get() instructions are im-
plemented as single-cycle instructions, and exploited in the µ-engine GEMM library as
intrinsics extending the RISC-V ISA.

Note that in the case of mixed-precision computations, each µ-vector pair holds a dif-
ferent number of narrow elements. For example, for a mixed-precision configuration where
the A and B input matrices are composed of 8- and 2-bit data (i.e., 8 and 32 elements per
µ-vector, respectively), a single B µ-vector requires four A µ-vectors to issue the same
number of narrow-elements to the µ-engine. As a result, to balance the number of elements
effectively computed by each inner-product, the number of A and B µ-vectors sequentially
issued to the µ-engine could differ for some data size configurations. Therefore, we extend
BLIS with two parameters, namely kua and kub, aimed at selecting the actual number of
subsequent µ-vectors on each innermost µ-kernel iteration.

Examples of mixed-precision computations requiring different combinations of kua and
kub are reported in Figure 3.2. Each example considers a different combination of A and
B data sizes (e.g., the data sizes of DNN activations aX and weights wY). As the a8-w8

configuration is composed of µ-vectors holding 8-bit for both input matrices, kua and kub

are equal (e.g., set to 4). As a result, each µ-KERNEL innermost execution (lines 5 to 8
in Algorithm 4) issues 4 µ-vector pairs (i.e., 32 narrow-elements) to the Mix-GEMM µ-

engine, which computes their inner-product. On the other hand, in both the a8-w6 and
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Figure 3.2: Representation of three activation-weight configurations. Each µ-vector holds
a different number of elements, depending on the element data size. Different colors rep-
resent different µ-engine execution cycles (i.e., different selected sub-µvectors).

a6-w4 configurations of Figure 3.2, the number of narrow-elements held in a single A µ-

vector is not equal to the one stored in a single B µ-vector. Consequently, kua and kub are
set to guarantee a match in the overall number of narrow elements issued to the µ-engine.
Specifically, the a8-w6 configuration features kua and kub equal to 4 and 3, while the a6-

w4 example sets kua and kub equal to 3 and 2. When the overall number of µ-vectors

elements does not match, the µ-vector having left-over elements is zero-padded (identified
in Figure 3.2 with the ”-” symbol and colored in white).

3.3.2 µ-engine Hardware Architecture

The µ-engine architecture, depicted in Figure 3.3, is composed of a computational pipeline,
whose stages perform a specific binary segmentation step.

The µ-engine is fully integrated into the scalar processor execution stage as an addi-
tional FU, and its functionalities are completely integrated with the processor pipeline.
Note that, to graphically describe the functionality of each µ-engine component, we adopt
the same color scheme for Figure 3.3 and the binary segmentation example of Figure 3.4.

As discussed in Section 3.3.1, we extend the RISC-V ISA with three R-type instruc-
tions, named bs.set(), bs.ip(), and bs.get(). The bs.set() instruction is issued to
the µ-engine once for the entire GEMM computation, and it is used to configure its Control

Unit. The parameters used to configure the Control Unit either provide details about the
incoming µ-vectors, such as their data sizes and computation type (i.e., signed or unsigned),
or specify binary segmentation related constraints, such as the input-clustersize, the cw, the
inner-product length, and the slice of data to extract from the multiplication output.
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The Control Unit requires a single clock cycle to be reconfigured, and thus introduces a
negligible overhead in the computation with respect to the complete GEMM execution. As
a result, the data sizes of weights and activations can be easily tuned for each layer of the
model, providing a further degree of freedom when exploring the data size configurations,
and allowing selecting the best trade-off between performance and accuracy.

Once the Control Unit is properly configured, the µ-engine GEMM library starts is-
suing multiple bs.ip() instructions to perform the computation. The source operands of
each bs.ip() instruction (i.e., a µ-vector pair) are buffered in two separate Source Buffers,
and then handled by the data selection unit (DSU), whose main purpose is to select the
appropriate number of narrow-elements (i.e., the sub-µvectors) on every clock cycle. Fig-
ure 3.2 reports three examples of DSU activity. For each configuration, different colors
represent different execution cycles. On each cycle, sub-µvectors starting from the element
with ID 0 are selected by the DSU. The maximum number of elements selected per cycle
is equal to the input-clustersize of the corresponding configuration. For example, according
to Equation (2.8), the a8-w8 and the a8-w6 configurations in Figure 3.2 can perform up
to 3 MAC/cycle, while the a6-w4 configuration, featuring a input-clustersize of 4 elements,
can perform up to 4 MAC/cycle. When the number of elements left in one of the µ-vectors

is less than the input-clustersize, the DSU selects a smaller chunk of elements, and reads a
new µ-vector from the corresponding Source Buffer. For example, considering the a6-w4

configuration, while in most of the execution cycles the DSU selects 4 elements from the
µ-vectors, there are 3 iterations where it selects 2 elements (i.e., 8-9, 14-15, and 28-29),
because in at least one of the current µ-vectors only 2 elements are left to be read.

Data selected by the DSU are then forwarded to the data conversion unit (DCU), which
converts them to the appropriate cw, according to Equation (3.3). The main DCU pur-
pose is to create the input-clusters, and to forward them to the 64-bit processor multiplier.
The DCU also performs operand sign extensions before the actual multiplication in case
of signed computations, or zero-extends each data in case the Control Unit flags an un-
signed computation. Note that the DSU and the DCU modules apply the first two binary

segmentation steps (respectively colored in green and pink in Figure 3.3 and Figure 3.4).
The processor multiplier computes the input-cluster pair inner-product on each execu-

tion cycle, thus performing SIMD computations whose throughput ranges from 3 MAC/cycle
to 7 MAC/cycle depending on the selected configuration.

The multiplication output is then filtered by the data filtering unit (DFU) which, accord-
ing to Equation (2.5), extracts the input-clusters inner-product, which is then accumulated
into the AccMem through the internal adder. The Control Unit selects the suitable Ac-
cMem address among its mr × nr available slots, depending on the number of execution
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Figure 3.3: µ-engine architecture, integrated in the processor FU. Different colors represent
compute or memory unit details, according to Figure 3.4 (green, pink, blue, orange, and
grey), or Figure 3.1 (red and yellow).

cycles required by the loaded configuration. For example, in the a8-w8, a8-w6, and a6-w4

configurations in Figure 3.2, the Control Unit increments the AccMem address after 12,
12, and 9 accumulations, respectively, as these represent the number of execution cycles
required to compute their inner-products.

The AccMem facilitates data reuse by updating the C µ-panel elements multiple times
during the µ-kernel execution, thus avoiding increased latency, instruction count, and mem-
ory traffic. Once the whole matrix-matrix multiplication between the mr× kca A µ-panel

and the kcb×nr B µ-panel has been computed by the µ-engine, a series of mr×nr bs.get()

instructions collect the AccMem elements holding the C µ-panel, which are then accumu-
lated into the output matrix C.

The processor treats the bs.set(), bs.ip(), and bs.get() as single-cycle latency
instructions. Therefore, the processor does not wait for the bs.ip() instructions comple-
tion before moving forward with the pipeline execution. As a result, while the µ-engine

processes the µ-vectors, independent memory and branch instructions can make forward
progress by utilizing the address generation and branch resolution FUs. The extra cycles
the µ-engine needs to compute the entire µ-vectors are partially compensated by the in-
structions latencies interleaving bs.ip() instructions, and in part alleviated by the Source

Buffers. This paradigm allows overlapping computational and memory operations, saving



3.3. MIX-GEMM HW-SW ARCHITECTURE 53

100 111 1110
4 7 2 3

00000111
1031 515

00000100 0000001100000010 011 110 0001
3 6 1 0

00000110
774 256

00000011 000000000000000110000001101000010101

00110000011000000000
198144

530965

10000001101000010101

00110000011000000000
6

26

011010

26

100 111 011 110
4 7 3 6

 a = 11 10 00 01
3 2 0 1

b =

 a’=  b’r = 

 b’’r =  a’’= 

100000

32

Ti
ck

 0
Ti

ck
 1

Ti
ck

 2
Ti

ck
 3

Ti
ck

 4
Ti

ck
 5

In
pu

t

Read μ-vectors Create input-cluster
Multiply input-clusters

Filter multiplication result
Accumulate partial resultPrepare sub-μvectors

Figure 3.4: Example of inner-product computation (i.e., 4×3+7×2+3×0+6×1 = 32)
evaluated via binary segmentation through a pipelined approach. Each color represents a
step required by binary segmentation to compute the inner-product. Each tick depicts the
pipeline status over time.

a high number of execution cycles from the baseline GEMM algorithm and abstracting
the inner-product computation of each µ-vector pair as a single-cycle latency instruction.
Considering µ-vectors based on 2-bit data, this implies that the 63 operations needed to
compute their inner-product (i.e., 32 multiplications and 31 additions) are replaced by a
single bs.ip() instruction. As a reference, as described in Algorithm 3, Bison-e would
have required 4 bs.ip() instructions and 4 add() instructions to perform the same com-
putation.

µ-engine Execution Example: Figure 3.4 details the steps required by the Mix-GEMM

µ-engine to compute via binary segmentation the inner-product of two µ-vectors a = [4,

7, 3, 6] and b = [3, 2, 0, 1] composed of n = 4 elements, and having bitwidths bwa

and bwb equal to 3- and 2-bit, respectively. Supposing, in favor of simplicity, that the
example in Figure 3.4 exploits a multiplier having mulwidth equal to 16-bit (i.e. instead of
64-bit), Equation (3.3) and Equation (2.8) allow evaluating a cw equal to 8-bit, and a input-

clustersize of 2 elements per input-cluster. As the number of elements of each µ-vector (i.e.,
n) is twice as input-clustersize, the complete inner-product computation requires applying
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binary segmentation on two separate a and b slices. To ensure continuity with the Mix-

GEMM hardware architecture depicted in Figure 3.3, the example in Figure 3.4 express the
inner-product of a and b via binary segmentation as a computational pipeline, whose stages
follow the same color scheme of Figure 3.3 over time (i.e., Ticks). In the first computational
step of Figure 3.4 (highlighted in green), a and b are partitioned into sub-µvectors, having
a number of elements equal to the input-clustersize, and the elements order of each b sub-

µvector (i.e., br
’, and br

”) is reverted, according to Equation (2.3). A second step (pink)
converts each sub-µvector element to a cw-bit element, and packs it in the respective input-

cluster. As Figure 3.4 shows, each input-cluster can be seen as a single wide integer (i.e.,
1031, 515, 774, and 256) having bitwidth equal to the mulwidth (i.e., 16 bit). The third step
(blue) performs the input-clusters multiplication. A fourth step (orange) filters a slice of the
multiplication output, holding the input-clusters inner-product, according to Equation (2.5),
thus extracting the partial inner-products (i.e., 26 and 6). Finally (grey), the partial results
are accumulated to obtain the inner-product (i.e., 32).

As Figure 3.4 shows, an inner-product of 4 elements is performed via binary segmen-

tation with only 2 16-bit multiplications and a single addition, with a consequent 2.33×
arithmetic complexity reduction compared to a standard implementation. As detailed in
Section 2.3.1, applying binary segmentation to a 64-bit architecture implies an arithmetic
decrease of 5× and 13× for 8- and 2-bit data sizes, allowing thus computing inner-products
with performance ranging from 3 MAC/cycle to 7 MAC/cycle exploiting a single 64-bit
multiplier. Therefore, binary segmentation allows computing the inner-product of narrow
elements exploiting single 64-bit multiplications, with performance ranging from 3 to 7
MAC per cycle. Using the Bison-e microarchitecture as a base pillar of the µ-engine allows
to dynamically select the number of elements computed per cycle (i.e., the input-clustersize)
depending on the computation data sizes. This feature allows higher flexibility than tradi-
tional SIMD FUs on the supported data sizes combinations, as with the proposed method-
ology mixed-precision data are anyhow converted to a common data size (i.e., the cw) and
computed in clusters (i.e., from 3 to 7 elements per cycle). Moreover, the proposed solution
does not require specialized FUs, as it reuses the processor multiplier with a consequent
area saving.

3.3.3 Design Space Exploration

As detailed in Section 3.3.1 and Section 3.3.2, Mix-GEMM defines several parameters,
that need to be fine-tuned to guarantee minimal overheads during the GEMM computation.
Therefore, we conduct a DSE to select the Mix-GEMM parameters allowing the best trade-
off between area and performance. The optimal value of the parameters obtained during
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Table 3.1: Mix-GEMM optimal parameters obtained in the DSE.
MACRO-KERNEL µ-KERNEL µ-engine

mc nc kc mr nr kua kub AccMem SourceBuffers
Number of Elements 256 256 256 4 4 4 4 16 16

the proposed DSE, considering both the Mix-GEMM software library and the µ-engine, are
reported in Table 3.1.

We performed an experimental evaluation to find the best panels and µ-panels dimen-
sions, according to the main SoC characteristics, sweeping through all their combinations
for different matrices sizes, finding the optimal mc, nc, and kc values equal to 256, while
the optimal mr and nr equal to 4. Accordingly, we set the µ-engine AccMem dimension to
16 elements, as it holds the entire C µ-panel composed of mr×nr elements.

We then analyze the memory overhead introduced by the µ-vectors zero-padded ele-
ments with respect to the maximum theoretical memory compression improvements (i.e.,
from 1× to 4× for 8- and 2-bit data). Our analysis shows that the memory overhead intro-
duced by the padded elements with kua and kub equal to 4 is 2.4% on average, considering
all the supported configurations. As 4 is the maximum ratio among the data sizes supported
by Mix-GEMM (i.e.8- and 2-bit), it represents the lower bound for kua and kub. Further
increasing kua and kub would benefit the memory footprint, as it would increase the num-
ber of solutions requiring fewer zero-padded elements on each µ-vectors set. However,
increasing kua and kub would be sub-optimal from a performance perspective. Indeed, ac-
cording to Figure 3.1, the GEMM kernel needs to store kua×mr A µ-vectors and kub×nr

B µ-vectors in the processor RF to minimize the number of load operations during the µ-

kernel execution. As the RF leveraged by the target processor holds 32 registers, and since
the optimal value for both mr and nr is equal to 4, setting kua and kub equal to 4 elements
leads to an optimal RF utilization.

Another key parameter we explore is the Source Buffers depth, as small Source Buffers

can fill too quickly, stalling the processor pipeline and preventing it from moving forward
with the execution of subsequent instructions, while too deep Source Buffers could increase
the µ-engine latency, forcing the processor to stall the bs.get() completion until the whole
C µ-panel has been completely computed. We equip the µ-engine with a performance mon-
itoring unit (PMU) to collect its metrics during execution, and we benchmark GEMM tasks
considering all the supported data sizes configurations, exploring Source Buffers depths of
8, 16, and 32 µ-vectors. Our analysis shows that the number of cycles where the processor
is stalled because of full Source Buffers accounts for the 17.8%, 14.3%, and 11.2% for
Source Buffers having depths of 8, 16, and 32 µ-vectors. The PMU also registered stalls
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due to bs.get() instructions only for Source Buffers of 32 µ-vectors, accounting for 2.3%
of the total execution time, closing the overhead gap between Source Buffers holding 16
and 32 µ-vectors. Moreover, post-synthesis results show an area increase of the µ-engine of
67.6% when passing from 16 and 32 elements. For these reasons, we set the Source Buffers

depth equal to 16 µ-vectors.

3.4 Experimental Evaluation

This section presents the experimental evaluation of Mix-GEMM in terms of throughput,
energy efficiency, and area. We also perform an in-depth evaluation of representative quan-
tized image classification CNNs, namely AlexNet, VGG-16, ResNet-18 [66], Mobilenet-
V1 [68], RegNet-x-400mf [159], and EfficientNet-B0 [144]. Our analysis focuses on CNNs
since computer vision is a major driving task for artificial intelligence at the edge, which
is the focus of this work. However, Mix-GEMM can be applied to all the DNNs quantized
with any uniform affine quantization technique, and as such, any advancement in that area
can be potentially leveraged by Mix-GEMM. For example, recent works [51,136,143] have
demonstrated competitive quality of results for low mixed-precision quantization of BERT
for NLP, whose compute expensive kernels based on matrix-matrix multiplications could
be accelerated exploiting Mix-GEMM.

The proposed experimental evaluation aims to find the best trade-offs in terms of accu-
racy and throughput, showing the potential of combining quantization and efficient narrow-
precision inference acceleration. Indeed, the main novelty of Mix-GEMM is its ability
to support all combinations of precisions between 8- and 2- bit, while guaranteeing per-
formance increasing with the decrease of activations and weights bitwidths. This feature
enables a new degree of freedom in deploying DNNs on edge devices. Indeed, the large
number of configurations supported by Mix-GEMM widen the design space used to trade-
off performance, memory, energy, and accuracy, which is of fundamental importance when
targeting resource-constrained devices.

3.4.1 Experimental Setup

To benchmark Mix-GEMM in terms of performance and energy efficiency, we integrate
its hardware µ-engine on an edge RISC-V SoC [140]. The target edge processor, imple-
menting the RV64G instruction set, features a single-core, 7-stage, in-order, single-issue
pipeline, while the memory hierarchy features L1 and L2 data caches having sizes of 32KB,
and 512KB, respectively. The Mix-GEMM performance results have been compiled with
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Figure 3.5: Speed-up of Mix-GEMM over the baseline BLIS-based DGEMM algorithm on
square input matrices. Configurations sharing the activations data size (a) are represented
with the same color, with different line patterns differentiating the weights data size (w).

the RISC-V GNU compiler toolchain [130] extended with the proposed custom instruc-
tions, and emulated on a FPGA integrating the whole SoC. All the throughput results report
the average performance over 10 subsequent runs. We extract area and energy consump-
tion through the Cadence toolset, using Genus 19.11 for the synthesis and Innovus 20.1.2
for the PnR. Energy estimations have been evaluated post-PnR to have an accurate activity
factor for each gate.

For QAT, we adopt PyTorch 1.8 [121], a popular deep learning framework, and Brevitas
0.7.1 [120], a neural networks quantization library. All experiments are retrained with QAT
from post-training quantization of FP32 models [3,104], which we also consider as the ac-
curacy baseline of the target CNNs. We train on the ImageNet training dataset [43] with
four NVIDIA V100 GPUs, reporting the best top-1 validation accuracy obtained for each
configuration. We experiment with multiple separate precisions for activations and weights,
except for the first and last layers, which are kept at 8-bit to preserve accuracy. Weights
are quantized per-channel with scale computed from the absmax of the weight tensor [11],
while activations are quantized per-tensor with scale learned in log domain [73]. Quan-
tization scales and biases are left in floating-point. To simplify training, both activation
and weights are trained with zero-point equal to zero. ResNet-18, AlexNet, MobileNet-V1,
VGG-16, RegNet-x-400mf, and EfficientNet-B0 retrain with Stochastic Gradient Descent
(SGD) featuring momentum of 0.9, weight decay 1e−4, and initial learning rate of 1e−3,
1e−4, 1e−2, 1e−3 4e−2, and 3.2e−3. We respectively employ 90, 90, 120, 45, 150, and
90 epochs, lowering the learning rate by 0.1 every 30, 30, 30, 15, 30, and 30 epochs, with a
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batch size of 256, 128, 128, 32, 128, and 64 per GPU. An exception is made for combina-
tions of 8- and 7-bit, where models are fine-tuned for 5 epochs at the lowest learning rate
they would reach in the normal training schedule, and for the EfficientNet-B0 configura-
tions showing data sizes lower than 4-bits, that are trained employing 270 epochs. The ini-
tial activation post-training quantization is performed by averaging the 99.999 percentile of
the activation absolute values for 8 batches [156], and then performing bias correction [113]
for 8 more batches (except for VGG-16, where bias correction would lead to overflow). To
improve convergence at low precision without overhauling the whole approach to quanti-
zation, AlexNet, ResNet-18, MobileNet-V1, RegNet-x-400mf, and EfficientNet-B0 a4-w3

and a3-w3 are retrained from a4-w4 instead of FP32, with the same training settings as
above except for weight decay at 5e− 5. Similarly, a3-w2 and a2-w2 are retrained from
a3-w3 results. For VGG-16, only a3-w2 and a2-w2 are handled separately, by first replac-
ing relu with relu6 in the pretrained FP32 network, and then retraining with the settings
above.

3.4.2 Performance

We first highlight the Mix-GEMM scalability by analyzing its performance on general
GEMM tasks, exploiting a dataset composed of square input matrices with 64 to 2048
elements per dimension. Figure 3.5 shows the performance increase of Mix-GEMM with
respect to the BLIS-based DGEMM baseline, running on the same RISC-V SoC integrat-
ing the proposed µ-engine, for a subset of 12 activations and weights combinations. This
first evaluation allows quantifying the performance benefits of the proposed hardware mi-
croarchitecture with respect to the BLIS-based DGEMM baseline. As Mix-GEMM keeps
narrow-precision elements compressed in 64-bit data (i.e., from 8 to 32 narrow-elements),
it allows reducing the problem size from 8× to 32× with respect to the DGEMM imple-
mentation of BLIS. However, reducing the computation data sizes is not sufficient to guar-
antee high benefits in terms of performance. Indeed, BLIS running with 8-bit data only
reaches an average 2.5× performance improvement with respect to the DGEMM base-
line. On the other hand, as Figure 3.5 shows, the experimental steady-state performance of
Mix-GEMM over the DGEMM baseline ranges from 10.2× to 27.2×, for the a8-w8 and
a2-w2 data size configurations. Different motivations allow Mix-GEMM running at 8-bit
to perform 10.2× and 4.1× averagely faster than the baseline running at 64- and 8-bit.
First, Mix-GEMM keeps data compressed until the operands are issued to the µ-engine,
thus reducing the overall number of operations, while increasing the throughput in terms of
elements fetched from memory on each cycle. The µ-engine, computationally sustains this
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EfficientNet-B0

Figure 3.6: Performance vs. accuracy Pareto frontier for the selected CNNs. Labels repre-
sent activations and weights data sizes (a and w), respectively. We measure the performance
of the quantized network exploiting Mix-GEMM, while the FP32 performance is measured
exploiting OpenBLAS running on the SiFive U740 processor.

throughput by performing multiple MAC operations per cycle through the processor mul-
tiplier. The AccMem allows then to locally accumulate data, avoiding execution overhead
due to additional store and add operations. Finally, the pipelined structure of the µ-engine

provides a further increase in the overall throughput, as it allows to hide the bs.ip() op-
erations latency without waiting for their completion. As Figure 3.5 also highlights, these
Mix-GEMM benefits remain valid for any data type configuration, allowing it to actually
scale its performance with the decrease of the computation data types. Specifically, the a8-

w8 performance shows a 21.6% performance improvement with respect to the theoretical
lower bound of 8×, as Mix-GEMM exploits its AccMem to reduce the number of opera-
tions needed to update the output matrix. On the other hand, a2-w2 shows a performance
penalty of 15% with respect to the theoretical upper bound, mainly due to the high ratio
between µ-vector size and input-clustersize (i.e., 32 elements per µ-vector and 7 MAC/cycle
of input-clustersize), which implies a higher number of cycles to process the complete µ-

vector (i.e., 5 cycles). However, this overhead is only noticeable in a few configurations,
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and does not prevent the performance scaling of Mix-GEMM. Indeed, the a4-w4 configura-
tion in Figure 3.5 shows a 16× speed-up with respect to the baseline, which is in line with
the theoretical one.

Aiming at evaluating Mix-GEMM also on SoCs tight by higher area and power con-
straints, we explore its performance exploiting smaller L1 and L2 caches. Our exploration,
performed on all the supported data sizes and considering the same benchmark proposed in
Figure 3.5, shows a small performance decrease when reducing the L1 cache from 64KB
to 16KB or the L2 cache from 512KB to 64KB, accounting for 5.2% and 7% on average,
respectively. Decreasing both the L1 and L2 sizes (i.e., 16KB and 64KB) allows reducing
the SoC area by 53%, and still allows Mix-GEMM to achieve high performance, with an
average penalty of 11.8%.

Figure 3.6 reports the most performant combinations of each network top-1 accuracy
and the corresponding Mix-GEMM throughput, accounting for the execution time spent on
each convolutional layer. We also highlight the Pareto-optimal curve representing the best
trade-offs between performance and network accuracy for each network. Configurations
that are not on the Pareto frontier are not reported in Figure 3.6, with the exception of the
a8-w8 configuration. The FP32 performance baseline has been measured with the well-
known OpenBLAS library [157], exploiting single-threading and running on the SiFive
U740 RISC-V processor, featuring a 64-bit dual-issue in-order pipeline running at 1.2 GHz.
As Figure 3.6 shows, Mix-GEMM outperforms the FP32 baseline on all the benchmarked
CNNs by a factor ranging from 5.8× to 15.1× for AlexNet, from 5.8× to 14.6× for VGG-
16, from 5.7× to 13.8× for ResNet-18, from 5.3× to 10.6× for MobileNet-V1, from 5.7×
to 11× for RegNet-x-400mf, and from 5.7× to 14.5× for EfficientNet-B0.

Accuracy-wise, Figure 3.6 shows that all the considered networks maintain a top-1
accuracy close to or better than the FP32 baseline for data sizes larger than 4-bit on both
activations and weights, showing accuracy losses below 1.5%. This result demonstrates the
benefits of the proposed solution in supporting non-standard data sizes. For example, Mix-

GEMM can exploit the a5-w5 configuration and reach a 60% performance improvement
with respect to the a8-w8 configuration on the selected networks, while guaranteeing sim-
ilar accuracy and saving 60% in memory usage. Figure 3.6 also shows minimal accuracy
drops, with respect to the FP32 baseline, on configurations exploiting 4-bit as minimum
data size, with losses ranging from 0.01% for AlexNet, up to 4.2% on EfficientNet-B0.

For more aggressive quantizations, exploiting 3- and 2-bit data sizes, the considered
networks show accuracy losses ranging from 0.5% to 5.1% for AlexNet, from 1.2% to
6.5% for VGG-16, from 2.2% to 8.6% for ResNet-18, from 7.6% to 34.5% for MobileNet-
V1, from 2.6% to 13% for RegNet-x-400mf, and from 10.3% to 32.8% for EfficientNet-
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L2 CACHE

L1d L1i 

Figure 3.7: Post-PnR layout, targeting the Global Foundries 22nm FDSOI technology node,
of the SoC integrating the proposed µ-engine (highlighted in green).

B0. Note that, to minimize complexity and support reproducibility, all results have been
obtained by applying the same quantization techniques across all networks and data sizes,
with limited hyperparameter tuning. We expect lower losses at 3- and 2-bit data sizes
applying more tailored low mixed-precision techniques, such as [21,24,135]. Nonetheless,
our results show that Mix-GEMM can extend the Pareto frontier to additional data sizes,
capable of providing speed-up for a given accuracy target. This feature is particularly
useful for edge deployment scenarios, where a trade-off between performance and quality
of results typically has to be reached.

3.4.3 Physical Design and Energy Efficiency

To present the physical layout and extract the main physical design metrics regarding area,
timing, and power, we implement the RISC-V SoC including the proposed hardware µ-

engine in the Global Foundries 22FDX 22nm FDSOI technology. We set the target fre-
quency to 1.2 GHz for both synthesis and PnR, using 8-track standard cells without ex-
ploiting body-biasing. The SoC layout, depicted in Figure 3.7, features a total area of 1.96
mm2, and includes the RISC-V in-order core, the µ-engine (highlighted in green and cir-
cled in black), the IO pad-ring, and the uncore composed of L2, L1d, and L1i caches of
size 512KB, 32KB, and 16KB, respectively. The µ-engine occupies a total area of 0.014
mm2, and adds an overhead of 1% on the total chip area. Table 3.2 highlights the area
breakdown of the proposed hardware µ-engine, and reports the area overhead of every µ-
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Table 3.2: µ-engine Area Breakdown

Component Area [µm2] SoC Overhead [%]

Src Buffers 4934.63 0.36
DSU 1094.45 0.08
DCU 2832.46 0.21
DFU 1842.25 0.13
Adder 741.58 0.05

AccMem 1214.35 0.09
Control Unit 981.43 0.08

Total: µ-engine 13641.14 1.00

engine component on the SoC. The main area contribution is given by the Source Buffers,
implemented as 64-bit wide registers holding 16 entries. The other µ-engine components
introduce an area overhead in the SoC smaller than 0.3%. Our synthesis and PnR evaluation
evidence that the µ-engine does not add critical paths in the design, and introduces a post-
layout estimated power consumption overhead of 2.3%. We compute the energy efficiency
of Mix-GEMM by performing a post-PnR gate-level simulation of the SoC executing the
selected CNNs, and considering the total power consumption of the µ-engine and the pro-
cessor multiplier. Our evaluation shows that Mix-GEMM achieves from 522.1 GOPS/W
to 1.3 TOPS/W for the computation of AlexNet, from 524.3 GOPS/W to 1.3 TOPS/W
on VGG-16, from 509 GOPS/W to 1.2 TOPS/W on ResNet-18, from 477.5 GOPS/W to
944.1 GOPS/W on MobileNet-V1, from 503.3 GOPS/W to 982 GOPS/W on RegNet-x-
400mf, and from 509.7 GOPS/W to 1.3 TOPS/W for EfficientNet-B0.

3.5 Comparison with State-of-the-Art Solutions

Accelerating quantized DNNs represents a widespread research topic [36,44,65]. Although
several representative works targeting GPUs [92] and FPGAs [28,127] are present in the lit-
erature, this section mainly considers related research works targeting CPU architectures in
the edge domain. We divide the related work into three main categories proposing different
approaches to optimize quantized DNNs computations on edge devices, and we compare
Mix-GEMM with the most relevant works of each category. We first consider DNN soft-
ware libraries exploiting existing edge processors to efficiently compute GEMM kernels
based on quantized data. We then analyze hardware-software co-designed architectures
computing DNNs on edge processors adopting ISA extensions and custom FUs. We finally
list the most relevant works proposing decoupled DNN accelerators for edge devices. A
detailed comparison with the most relevant related works is then presented in Table 3.3.
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3.5.1 Optimized Software Libraries

Application-specific libraries targeting commercial edge processors, such as Facebook QN-
NPack [50], Arm CMSIS-NN [83], and Google GEMMLowp [72] are often used to boost
the performance of quantized DNNs on edge processors. To compare the performance
of Mix-GEMM with respect to these SoA software libraries, we execute the considered
CNNs exploiting GEMMLowp, adopted in TensorFlow Lite [10], and highly optimized
for computations based on 8-bit quantized data. The GEMMLowp benchmarks have been
performed on an Arm Cortex-A53 processor, one of the most widely used architectures tar-
geting the edge, in single-threaded mode. The Arm Cortex-A53 features a 64-bit, 8-stages,
dual-issue in-order pipeline running at 1.2GHz and exploiting the NEON SIMD exten-
sion. As Table 3.3 shows, the GEMMLowp performance [72] are comparable with Mix-

GEMM when computing the same networks considering its a8-w8 configuration. How-
ever, as GEMMLowp does not currently support less than 8-bit based computations as
a consequence of the underlying ISAs limitations, Mix-GEMM allows for better perfor-
mance, while guaranteeing comparable accuracy. For example, from Figure 3.6 it can be
noted that the a5-w5 configuration of Mix-GEMM is capable of providing up to 70% better
performance than GEMMLowp, while losing only 0.22% of accuracy on average among
the selected networks. A remarkable solution targeting the RISC-V ISA is Dory [31], a
framework to deploy DNNs on the GAP-8 processor [53], reaching up to 4.2 GOPS per-
formance to compute the convolutional layers of MobileNet-V1 at 8-bit on eight cores run-
ning in parallel. Compared to Dory, our solution achieves up to 2.6× better performance
on MobileNet-V1, even running on a single core.

Although these libraries feature high performance on 8-bit computations, they do not
support computations targeting sub-byte operands, as compressed data in memory need
to be converted to 8-bit to exploit the SIMD operations offered by current commercial
ISAs. These limitations are highlighted in CMix-NN [33], proposing an inference library
for DNNs optimized for Arm processors and targeting 8-, 4-, and 2-bit mixed-precision
computations. CMix-NN [33] demonstrates the benefits of supporting mixed-precision
computations based on narrow integers to compute DNNs inference, as they are able to
scale their performance up to 2× in energy efficiency and 1.7× in throughput with respect
to their 8-bit implementation. However, their MobileNet-V1 implementation latency is
dominated by the lack of mixed-precision and sub-byte SIMD instructions at the ISA level.
As a result, Mix-GEMM offers roughly one order of magnitude speedup on MobileNet-V1
when compared to CMix-NN.
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3.5.2 Specialized Arithmetic Units

As off-the-shelf architectures and ISAs are inefficient in deploying quantized DNNs tar-
geting data sizes lower than 8-bit, several works propose specialized FUs and custom ISA
extensions to enable efficient narrow mixed-precision GEMM computations on edge de-
vices. In this context, PULP-NN [58] exploits 8-bit SIMD MAC units and inner-product
RISC-V based custom instructions to compute up to 16 8-bit MAC operations concur-
rently. PULP-NN proposes casting instructions to pack and extract vectors composed of
lower data sizes (i.e., 4- and 2-bit) while reusing the same SIMD MAC units. Although
their experimental evaluation shows performance improvements against their 8-bit base-
line, their casting instructions introduce overheads on 4- and 2-bit based computations,
hence decreasing their performance improvement for lower bitwidths. Indeed, their perfor-
mance reaches 0.6 GOPS for 8-bit computations, while it is limited to 0.2 GOPS for 2-bit
data. Bruschi et al. [30] extend PULP-NN to support mixed-precision combinations for 8-,
4-, and 2-bit data sizes on an eight-cores RISC-V processor. As in PULP-NN, however,
their work suffers from the same overheads on sub-byte data sizes, responsible for a 2.5×
performance degradation when comparing 8- against 2-bit computations, as they also re-
quire additional pack and extract instructions. These limitations do not affect Mix-GEMM,
which is capable of scaling its performance by 1.9× when targeting the same Convolu-
tion benchmark. Ottavi et al. [117] extend a RISC-V core with 4- and 2-bit based MAC
units and custom controllers to enable narrow mixed-precision computations based on 8-,
4-, and 2-bit data. Performance-wise, Mix-GEMM is from 2.4× to 3.8× faster than [117],
while supporting a greater number of data size combinations. A set of custom RISC-V
ISA instructions and custom FUs to boost the performance of GEMM computations on
edge devices are also proposed in XpulpNN [57]. Their hardware microarchitecture com-
prises SIMD units supporting from 4 8-bit to 16 2-bit MAC/cycle, but it is not supporting
mixed-precision computations.

Note that the works in [30,57,58,117] only consider a small convolutional kernel fitting
the L1 cache as their experimental evaluation, which is not representative of real DNNs.
Also, they neither provide performance results considering entire networks, nor explore
how their ISA extensions can be integrated into high-performance software libraries such
as BLAS, or how larger convolutional kernels introducing misses in the cache hierarchy
would affect the performance of their proposal. Moreover, their baseline processor lever-
ages on custom ISA extensions capable of introducing up to 3.1× performance improve-
ment in the GEMM computation with respect to the standard RISC-V ISA [134]. These
optimizations (e.g., zero overhead hardware-loops) are orthogonal to Mix-GEMM, and can
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be implemented in the processor integrating Mix-GEMM to allow for a further performance
improvement on DNN computations.

Other works [46, 76, 116] explore novel SIMD MAC units supporting sub-byte and
mixed-precision computations, providing promising results in terms of area and through-
put, and representing a valid alternative to be integrated into the Mix-GEMM pipeline in
place of the proposed binary segmentation based approach. However, their implementa-
tions lack flexibility when compared to Mix-GEMM. For example, [46] can only handle
power-of-two data, including mixed-precision. Moreover, Mix-GEMM can provide perfor-
mance scalability depending on the exploited data size, while reusing the processor multi-
plier (i.e., without implementing custom MAC units).

Table 3.3 also shows that most related works do not support computations based on
mixed-precision data sizes that, as demonstrated in Section 3.4.2, are essential to enable
efficient computations on the edge, as they have the potential to extend the Pareto frontier
of modern deep learning models.

3.5.3 Decoupled DNN Accelerators

DNN decoupled accelerators represent a well-studied topic [18,38,90,145,166]. The high
performance characterizing these accelerators is, however, counterbalanced by their lack
of flexibility, as a large portion of the SoC has to be dedicated to the computation of a
single kernel. Moreover, the software stack required by decoupled accelerators is typically
more complex than the one proposed in Mix-GEMM, as they require specific offloading
mechanisms and coherence management handled at the hardware or software level. In
Eyeriss [38], the authors exploit a bi-dimensional array of 16-bit processing elements and
a custom multi-level hierarchical memory, optimized for both dense and sparse computa-
tions, exploiting a total area of 12.25 mm2 in 65 nm CMOS technology. Aiming to address
more aggressive quantization, UNPU [90] explores bit-serial MAC units supporting a fixed
activations data size and from 16-bit to 1-bit weights data sizes.

Mix-GEMM achieves 0.2× and 0.6× in performance compared to Eyeriss on the AlexNet
and VGG-16 computations, and exploits an energy efficiency comparable to UNPU when
exploiting 8-bit data sizes. Moreover, leveraging on DeepScaleTool [132] to scale their
area from 65 nm to 22 nm, we observe that Mix-GEMM requires 96.8× and 126.5× less
area than Eyeriss and UNPU, respectively. Consequently, Mix-GEMM computing at 8-bit
reaches a core area efficiency improvements (i.e., GOPS/mm2) ranging from 6.7× to 24×
with respect to Eyeriss, and from 1.2× to 1.4× when compared to UNPU, on the compu-
tation of AlexNet and VGG-16. As such, we believe that Mix-GEMM represents a valid
alternative to decoupled DNN accelerators targeting resource-constrained devices.
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3.6 Discussion

3.6.1 Comparison with Bison-e

The Mix-GEMM µ-engine leverages on the binary segmentation technique exploration pro-
posed in Section 2.3.1, for inner-product acceleration of narrow integers, as well as on the
Bison-e microarchitecture detailed in Section 2.4 to achieve high-performance and area-
efficient computations. As Bison-e represents a more general microarchitecture for accel-
erating linear algebra operations between narrow integers, when designing Mix-GEMM, we
identify different sources of improvements to specialize it for the computation of matrix-
matrix multiplications for DNNs. Firstly, compared to Bison-e, Mix-GEMM reduces the
number of instructions required for computing the same µ-vectors. This reduction is achieved
by incorporating input Source Buffers and the DSU into the µ-engine. Consequently, fewer
bs.ip() instructions are needed, resulting in improved performance and energy efficiency.
Secondly, Mix-GEMM leverages data locality through the AccMem, which enhances data-
reuse opportunities in BLIS. Although the AccMem occupies only 0.09% of the total SoC
area (as shown in Table 3.2), it significantly reduces the number of store operations re-
quired. Thirdly, unlike Bison-e, Mix-GEMM incorporates a specialized software library
for dense matrix-matrix multiplications, in addition to the custom instructions extending
the RISC-V ISA. Combining these enhancements, Mix-GEMM outperforms Bison-e by
factors ranging from 10.5× to 13× on AlexNet and from 5.4× to 8.8× on VGG-16.

3.6.2 Performance scalability

A key strength of Mix-GEMM relies on its scalability. For processors hosting SIMD units,
the µ-engine can be properly sized to sustain a higher throughput. Indeed, the Source

Buffers can store wider µ-vectors, whose data size matches the SIMD datapath width, thus
allowing the bs.ip() operations to offload more data to the µ-engine for each instruction.
Consequently, the DSU and DCU units can process a broader cluster of elements by dis-
tributing them across the arithmetic FUs within the processor. For instance, the µ-engine

computation can be divided between the scalar integer multiplier, which performs inner-
products exploiting the binary segmentation, and the 8-bit SIMD MAC units.

Likewise, the performance advantages of Mix-GEMM extend to processors with mul-
tiple cores. Our BLIS-based library facilitates straightforward implementation of multi-
threading support [149], while maintaining performance-per-core close to that of the single-
threaded implementation [139]. Each processor core can instantiate a µ-engine with mini-
mal impact on area and power consumption.
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Figure 3.8: Mix-GEMM workflow diagram considering training and inference.

3.6.3 Mix-GEMM workflow

The workflow diagram of Mix-GEMM is shown in Figure 3.8. The target Pytorch model
is trained using a QAT framework such as Brevitas. The sizes of activations and weights
data are gradually increased, either on a per-network or per-layer basis, until the desired
accuracy is achieved. This training workflow provides a trade-off between model size and
accuracy at a high level of granularity. In a per-network strategy, all the model layers share
the same data sizes for activations and weights. On the other hand, a per-layer strategy
allows selecting a different set of activations and weights data sizes for each layer of the
network. A per-layer strategy increases thus the design space to explore, but allows for
a more fine-grained tuning of accuracy and model size. Applying a per-layer strategy
to the analyzed CNNs in Figure 3.6, which originally used a per-network quantization
strategy, would further enhance the performance of Mix-GEMM. Indeed, the flexibility of
Mix-GEMM enables easy reconfiguration of different combinations of data sizes for each
layer using the bs.set() instruction, which incurs a single clock cycle of latency.

After selecting the optimal combination of activations and weights data sizes, the quan-
tized model can be converted to an ONNX model and deployed using ONNX Runtime, an
engine developed by Microsoft that provides high-performance inference for ONNX mod-
els. As ONNX Runtime is designed to optimize and execute models efficiently on various
hardware platforms, including CPUs, GPUs, and specialized accelerators, and provides a
unified runtime environment that abstracts the underlying hardware and delivers optimized
performance across different devices, Mix-GEMM can be seamlessly integrated as an addi-
tional backend, facilitating accelerated DNN inference.



3.7. SUMMARY 69

3.7 Summary

While quantization has been proposed as a solution to reduce the memory and computation
requirements of DNNs, current CPU architectures lack adequate support for efficiently han-
dling narrow-precision formats. To address this issue, this chapter presented Mix-GEMM,
a hardware-software co-designed architecture capable of accelerating quantized DNNs in-
ference on resource-constrained devices, such as mobile, IoT, and embedded systems.

Mix-GEMM combines the benefits offered by the BLIS framework and binary seg-

mentation to perform high-performance GEMMs, supporting all granularities of mixed-
precision computations between narrow integers, at the cost of a small area and power
overhead. Moreover, Mix-GEMM is capable of scaling the performance and the memory
requirements of narrow-precision GEMM computations depending on the target data sizes,
showing comparable or better performance than state-of-the-art GEMM libraries running
on commercial processors. Our experimental evaluation shows that Mix-GEMM reaches
from 4.8 GOPS to 13.6 GOPS on the computation of relevant CNN workloads, and up to
1.3 TOPS/W energy efficiency, while accounting for a negligible 1% of the total processor
area. We believe our solution represents a step forward to fill the gap between the needs of
quantized DNNs, requiring high performance and flexibility in the data sizes involved in the
computation, and edge-based architectures, demanding tight area and energy constraints.



Chapter 4
Flex-SFU: Accelerating Deep Neural
Networks Activation Functions by
Non-Uniform Piecewise Approximation

In recent years, there has been a surge of interest from both industry and academia in de-
veloping novel techniques to enhance the computational efficiency of DNNs. Specifically,
as detailed in Chapter 2 and Chapter 3, the main effort has been made to tackle the com-
putational demands of convolutions, which are the most computationally intensive layers
in DNNs. While hardware accelerators designed for edge environments, such as the one
proposed in Chapter 3, are constrained by limited area and power consumption, DNN com-
puting systems targeting HPC and cloud environments are allocating an increasing chip
area to this kernel. For instance, the Google tensor processing unit (TPU) [75] doubles
its matrix-multiply unit (MXU) size with each new generation [74], and the latest Huawei
DaVinci architecture [98] incorporates a specialized matrix multiplication unit capable of
computing up to 4096 FLOPS/cycle. However, while current HPC and cloud accelerators
are optimized for convolutions and matrix-matrix multiplication tasks, they start facing
inherent limitations when dealing with modern DNN architectures, as they feature increas-
ingly heterogeneous topologies and heavily rely on activation functions involving complex
operations.

This chapter presents Flex-SFU, a lightweight hardware accelerator for activation func-
tions implementing non-uniform piecewise interpolation supporting multiple data formats.
Non-Uniform segments and floating-point numbers are enabled by implementing a binary-
tree comparison within the address decoding unit. An optimization algorithm based on
stochastic gradient descent (SGD) with heuristics is proposed to find the interpolation func-
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tion reducing the MSE, and capable of achieving better MSE compared to previous piece-
wise linear interpolation approaches. Flex-SFU Our experimental evaluation (Section 4.5),
considering more than 700 computer vision and NLP models, shows that Flex-SFU can
averagely improve the end-to-end performance of SoA AI hardware accelerators, while
guaranteeing negligible accuracy losses and introducing low area and power overheads.

4.1 Introduction

To keep pace with the evolution of AI models, industry and academia are exploring novel
hardware architectures, featuring heterogeneous processing units capable of achieving or-
ders of magnitude improvements in terms of performance and energy efficiency with re-
spect to general-purpose processors. As the execution time of SoA DNNs has been dom-
inated by operations like convolutions and matrix-multiplications [66, 138], DNN hard-
ware accelerators currently allocate most of their computational resources to specialized
linear algebra cores, while leaving the execution of the other layers to general-purpose
VPUs [75, 98].

However, aiming at reducing training and inference time and enabling deployment on
IoT and edge devices, recent deep learning research efforts are pushing towards decreas-
ing the models dimensions while providing comparable or better accuracy. To this aim,
recent networks increase their heterogeneity by introducing new layers featuring reduced
operational intensity and new parameter-free layers. Specifically, parameter-free layers
like ReLU are increasingly replaced with activation functions requiring a higher compute
effort, such as GELU, SiLU, and Softmax, which are composed of several expensive op-
erations like divisions and exponentiations [20]. Consequently, while modern networks
succeed in reducing the execution time allocated to their convolutional layers, they also
increase the proportion of execution time consumed by activation function computations
within the DNN hardware accelerators. This shift in computational demands underscores
the significant impact of activation function computations on the overall execution time
of HPC hardware accelerators. Therefore, exploring novel hardware architectures capable
of efficiently accelerating the computation of complex activation functions is becoming an
increasingly important research topic.

In this chapter, we propose Flex-SFU, a flexible hardware accelerator for deep learning
activation functions, integrated into general-purpose VPUs and relying on a novel piece-
wise linear (PWL) approximation approach, capable of averagely improving the precision
of previous PWL approximation approaches. The main novelty of Flex-SFU relies on its
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flexibility. Indeed, its functionality can be reprogrammed to approximate all common acti-
vation functions. It supports 8-, 16-, and 32-bit fixed-point and floating-point data formats,
and it allows selecting arbitrary locations for the PWL interpolation points.

The main contributions of this work are listed as follows:

• We propose a reprogrammable hardware architecture, called Flex-SFU, accelerating
the computation of complex DNNs activation functions. Flex-SFU extends the set
of functional units hosted in VPUs, and supports both fixed-point and floating-point
operations;

• We evaluate the proposed solution in terms of performance, energy, area, and preci-
sion over a wide range of functions, analyzing the benefits, in terms of approximation
precision, of a solution supporting non-uniform PWL approximations. Our evalua-
tion shows that our apporach can improve uniform PWL related works by a factor
ranging from 2.3× to 88.4×, with an average of 22.3×.

• We perform an end-to-end performance and accuracy evaluation targeting a com-
mercial DNN accelerator, considering more than 700 SoA deep learning models. We
show that Flex-SFU can improve the execution time of DNNs running on large-scale
hardware accelerator by up to 3.3×, while requiring area and power overheads of
5.9% and 0.8% relative to the baseline VPU;

4.2 Background and Related Work

Activation functions represent one of the most common and important layers of DNNs,
as they apply non-linear transformations to the network feature maps. While ReLU has
been widely used for many deep learning tasks, modern networks are using more complex
activation functions [48] to achieve higher accuracies and avoid the well-known “dying

ReLU effect” [102]. As these kernels require many complex operations (e.g. logarithm,
division, exponentiation), they are typically accelerated via function approximation strate-
gies, whose methods can be grouped into three main categories: polynomial, lookup table

(LUT)-based, and hybrid.
Polynomial approximation methods [115,161] compute the activation functions through

series expansions, such as Taylor and Chebyshev approximations. Although these methods
feature high-precision computations, and reduce the latency compared to naı̈ve computa-
tions, their hardware implementations are typically tailored to a specific activation function
and are costly in terms of area, as their computation requires several multiply-add (MADD)
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operations. For example, the exponential function approximation in [115], based on a 6th-
order Taylor expansion and targeting 16-bit fixed-point data, requires 6 multipliers and 5
adders to be computed.

LUT-based architectures [19,88,106,158] are a popular approach to accelerate the com-
putation of activation functions in deep learning. In this approach, a pre-computed table
of activation function values (i.e., the LUT) is used to approximate the activation function.
Specifically, LUT-based architectures subdivide the function input range into intervals and
associate each interval to a specific function output, whose value is pre-computed and
stored in memories used as LUTs. An addressing scheme is then used to map a given
input [106] or an interval of input values [88] to a specific LUT address, holding the corre-
sponding function output. This allows for a significant reduction in computation time with
respect to polynomial approximation methods, as the activation function does not need to
be evaluated for each input. Moreover, LUT-based solutions can be more flexible than
polynomial methods, as programmable LUTs can store different sets of output data de-
pending on the target activation function. However, they require a high area footprint to
provide good accuracy. Indeed, as the function output is directly provided by the LUT, the
approximation precision strictly depends on the number of intervals (i.e. the LUT depth)
in a selected input range and on the output data size (i.e. the LUT width). Therefore, as the
LUT depth grows with the number of input intervals, LUT-based solutions need to trade
area consumption with supported input range, bounding the approximation to a specific
region of the function, thus limiting its range.

To overcome these limitations, several works [62, 79, 84, 93, 95] explore hybrid solu-
tions, which combine the polynomial and LUT-based approaches. As in LUT-based solu-
tions, hybrid methods rely on PWL approximations exploiting LUTs. However, instead of
directly providing the approximated function output, LUTs store the interpolation segment

coefficients that are sent, together with the function input, to a MADD unit that computes
the function output. For example, a PWL hybrid approach approximates a given activation
function as N straight lines (i.e. segments), each satisfying the equation f (x) = mix+ qi,
for i ∈ {0,1, ...,N − 1}. A MADD operation is then used to evaluate the function output
(i.e. f(x)) starting from a specific set of segment coefficients stored in the LUTs (i.e. mi, qi)
and from the incoming input data (i.e. x).

The authors in [93] propose a hardware architecture to accelerate different activation
functions on deep learning accelerators, supporting the 16-bit fixed-point format through a
PWL approximation relying on a hybrid approach. They store the i segments coefficients

(i.e. mi and qi) in a LUT having depth D, and propose an addressing scheme based on a
subset of the input most significant bits (MSBs) to load the proper coefficients set from the
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LUT. The input and the coefficients are thus forwarded to a MADD unit computing the
function output (i.e. f (x)). Aiming at improving accuracy, in [62, 95], the authors pro-
pose hybrid architectures exploiting a second-order approximation. They exploit Horner’s
rule [67] to split the second-order polynomial as a 2-steps MADD operation, and propose
optimizations to improve area-efficiency [95] and accuracy [62].

Hybrid solutions outperform LUT-based approaches in terms of area and accuracy, as
they are able to correctly approximate the whole segment starting from the coefficients

stored in the LUTs instead of selecting a reference output value for a given interval. More-
over, hybrid approaches relax the constraint on the maximum function input range, as they
allow approximating any function featuring boundaries that converge to a fixed slope.

However, current hybrid solutions present several limitations. ❶ They are tailored to a
single input data type, either converted into a fixed-width fixed-point notation [47,84,93,95]
or only considering a single floating-point format [62, 79]. Moreover, their LUT address-
ing schemes simply rely on a fixed subset of bits, such as the input data MSBs. However,
these approaches lack flexibility, firstly because current accelerators support several data
formats and SIMD computations [74], (e.g. from four 8-bit to one 32-bit elements/cy-
cle), and secondly because their addressing schemes need to be tailored for each target
function and input data type. ❷ Their approximation methods mainly rely on uniform in-
terpolations (i.e. segments share the same length). Although this choice simplifies both
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the HW (LUT addr = in data[range]) and the methodology to find the optimal segment
length, it is suboptimal when there is a constraint on the number of total segments (i.e.,
LUT depth). Indeed, activation function approximations would benefit from non-uniform
interpolation granularity among different function intervals, as it would allow increasing
the density of segments on more sensitive intervals while relaxing their density on straight
intervals. The advantages of supporting a non-uniform interpolation scheme are clearly
depicted in Figure 4.1, which shows the PWL approximation of GELU exploiting both
uniform and non-uniform interpolations. As Figure 4.1 shows, a uniform interpolation lim-
its the approximation granularity, and suffers from high errors on intervals featuring higher
non-linearities. On the opposite, non-uniform interpolations, such as the one proposed in
this work, can select the best interval length by cleverly selecting each breakpoint location,
with a consequent improvement in terms of MSE by 7× with respect to the uniform in-
terpolation in the [−2;+2] range, while using the same number of breakpoints. Moreover,
as depicted in the [−∞;−2], approximations based on uniform interpolations can diverge
on the boundaries when the reference function has not converged to a fixed slope on the
selected input range.

Although non-uniform strategies exist in the literature, they either rely on simply re-
moving breakpoints from a uniform interpolation while maintaining similar precisions
[69, 81], or only optimize the interpolation error for narrow input ranges, leaving it diverg-
ing outside the selected input range with unknown impact on the end-to-end accuracy [47].
❸ Although many related works [62, 79, 93, 95] perform end-to-end accuracy evaluations
on selected deep learning models, none of them quantify the accuracy impact of their solu-
tions on a large set of networks. However, such analyses are crucial to verify the robustness
of a given approximation method, as different models can suffer from different sensitivities
to activation function errors, or can execute non-linear functions exploiting input ranges
exceeding the approximation boundaries.

Overcoming these limitations is critical to enable efficient approximation functions ac-
celeration in terms of both performance, area efficiency, precision, and end-to-end accu-
racy. Accordingly, we propose Flex-SFU, whose hardware architecture (detailed in Sec-
tion 4.3) supports all the data sizes typically used by DNNs, and features linear throughput
scaling with constant on-chip memory usage. Our reprogrammable hardware architec-
ture implements an addressing scheme supporting non-uniform segments, whose optimal
lengths minimizing the approximation MSE are determined by a novel PWL algorithm,
described in Section 4.4.
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Figure 4.2: Flex-SFU hardware architecture, considering a PWL approximation, integrated
into the main VPU as an additional functional unit, considering Look-up table clusters
(LTCs) capable of storing 8 segment coefficients. Memory cell superscripts represent break-
points and coefficients IDs, while memory cell subscripts represent data slices.

4.3 Flex-SFU Hardware Architecture

The proposed hardware architecture implements a hybrid PWL approach to approximate
activation functions. It supports both fixed-point and floating-point data formats composed
of 8-, 16-, and 32-bit, representing the most used data types targeting deep learning appli-
cations.

Depending on the input data value, Flex-SFU provides the proper coefficients to the
VPU MADD units, computing the activation function output. Differently from the re-
lated work analyzed in Section 4.2, performing the address decoding exploiting a subset
of incoming input data bits, Flex-SFU enables support for non-uniform interpolations, as
it allows storing the value of each breakpoint on small on-chip memories, and to compare
them with the incoming data to find the respective LUT address. As discussed in Sec-
tion 4.2, this feature allows for higher flexibility than solutions only supporting uniform
segments, as it permits the selection of the best length for each segment, thus minimizing
the approximation error.

Flex-SFU extends the set of functional units available on current VPUs targeting deep
learning, acting as a special function unit (SFU) capable of accelerating activation functions
via PWL approximation. Its execution is handled by three custom instructions extending
the target VPU ISA, namely ld.bp(), ld.cf(), and exe.af(). Each instruction includes
a source vector operand, and a vector elements width field, and the exe.af() also features
a destination vector operand. The proposed instructions are decoded by the VPU, and then
handled by Flex-SFU, whose main architectural components are depicted in Figure 4.2. A
Data Control Unit (DCU) dispatches input data among the other Flex-SFU units. Specifi-
cally, ld.bp() and ld.cf() source data, holding either breakpoints or PWL coefficients,



4.3. FLEX-SFU HARDWARE ARCHITECTURE 77

are sent by the DCU to the address decoding unit (ADU) or the lookup table cluster (LTC)
unit, and stored in SIMD single-port memories. These instructions must be executed only
once, when a different activation function has to be computed, and can be pre-executed
while other accelerators compute units (e.g. the main tensor-unit) are still computing the
activation function inputs. Therefore, as discussed in Section 4.5.1, they do not introduce
a large overhead in the overall computation. Once breakpoints and LUT coefficients have
been loaded in the ADU and LTC units, multiple exe.af() can be executed to compute the
activation function outputs. These operations are handled by the DCU, which streams the
input data through the pipeline composed of the ADU and the LTC. As Figure 4.2 shows,
the ADU functionality resembles a binary search tree (BST). Each ADU stage defines
a BST level, and exploits SIMD single-port memories to implement BST nodes holding
breakpoints, which are ordered to allow traversing one BST level per stage to search for the
proper LTC address depending on the input data. Each cycle, a SIMD comparator support-
ing both fixed-point and floating-point number formats determines if the current input data
is greater or smaller than the breakpoint loaded from memory exploiting the cmpo signal,
whose value can be either 1 or 0, respectively. The comparison output and the input ad-
dress are then used by the Next Address Generator unit to find the subsequent ADU stage
address, namely ao, according to the following expression:

ao = (ai << 1)+ cmpo (4.1)

Specifically, as each ADU stage stores a BST level, the ao value of each stage is com-
puted by identifying the correct BST level siblings through ai << 1, and by identifying the
correct BST node among siblings through the cmpo signal.

The last ADU stage performs the comparison among the BST leaves, thus finding the
proper LUT address which is forwarded to the LTC unit. Finally, the LTC loads the appro-
priate segment coefficients, and sends them and the delayed input data to the VPU MADD
functional units, computing the activation function output.

The memory-mapping strategy exploited by the ADU and LTC units consists of four
SIMD single-port memories. The bit-width of each memory is equal to the product be-
tween the minimum bit-width supported by the accelerator (e.g. 8-bit) and the number of
coefficients, whose value is set to 1 for the ADU and to 2 for the LTC.

Each memory is accessed separately in case of computations based on 8-bit data (e.g.

bi
0, bi

1, bi
2, bi

3 are accessed as four separate 8-bit elements), while for 16-bit computations
each data is segmented among two subsequent memories (e.g. bi

0 - bi
1 and bi

2 - bi
3 are

accessed as two 16-bit elements), in such a way to support an input throughput of two
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16-bit elements/cycle. Similarly, the same data is partitioned among the four 8-bit mem-
ories in case of 32-bit computations (e.g. bi

0 - bi
1 - bi

2 - bi
3 are accessed as a single 32-bit

data), allowing to support a throughput of one 32-bit element/cycle, while reusing the same
memories.

As shown in Figure 4.2, to allow for further scalability, the Flex-SFU parallelism can be
tuned by increasing the number of instantiated clusters, namely Nc, to match the underlying
VPU throughput. We design both the ADU and LTC memories featuring multiple read
ports. A multi-ported memory design allows sharing breakpoints and coefficients among
clusters, reducing the amount of replication and thus saving area. Note that, as VPUs
are typically optimized for throughput, we design Flex-SFU exploiting pipelining, thus
enabling a steady-state performance of Nc × 32-bit/cycle, while avoiding dead-locks by
design.

4.4 Flex-SFU Approximation Methodology1

We rely on a PWL approximation, defining the interpolated and steady function f̂ (x) as:

f (x)≈ f̂ (x) =


ml(x− p0)+ v0 x ≤ p0
vi+1−vi
pi+1−pi

(x− pi)+ vi pi < x < pi+1,

0 < i < n−1
mr(x− pn−1)+ vn−1 x ≥ pn−1

with n breakpoints pi, (n+1) linear segments, and n function values at the breakpoints

vi = f̂ (pi). The most left and right segments are calculated with values v0 and vn+1, using
slopes ml and mr, while the inner segments of each breakpoint pi are linearly interpolated
through its value vi and the following breakpoint-value pair [pi+1;vi+1].

To find the breakpoint-value pairs, we start with uniformly distributed breakpoints

and exact function values. We use the Adam optimizer [80] (with lr=0.1, momenta=(0.9,
0.999)) and the Plateau LR scheduler. We choose the MSE between the interpolated func-
tion f̂ and the target function f on the interval [a,b] as the loss function:

L[a,b]( f̂ , f ) =
1

b−a

∫ b

a
( f̂ (x)− f (x))2dx

1The inclusion of the following section within this thesis is made for the purpose of thoroughness and
completeness, but it contains content that has been mainly investigated by Dr. Renzo Andri from the Zurich
Huawei Research Center.
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Aiming to avoid stalls in sub-optimal local minima during the optimization process, we
extend our optimization algorithm by removing breakpoints and reinserting them at a better
location.

Removal loss: We define the removal loss ℓrm
i as the loss of the interpolated function

if the breakpoint pi is removed. We then remove the breakpoint with the minimal removal
loss, premove:

premove = arg min
pi

ℓrm
i , ℓrm

i = L[a,b]( f̂{p j,v j} j ̸=i
, f ).

Insertion loss: On the other hand, we define the insertion loss ℓins
i as the loss over the

i-th segment, and insert a new breakpoint in the center of the segment with the highest
insertion loss:

(
pinsert
vinsert

)
= arg max(

(pi + pi+1)/2
(vi + vi+1)/2

)ℓins
i , ℓins

i = (pi+1 − pi)L[pi,pi+1]( f̂ , f ).

Boundary condition: All relevant activation functions converge outside the interpola-
tion interval to a constant value or an asymptote. To avoid large errors outside of the
interpolation interval, unless noted otherwise, we define boundary conditions for value and
slope for the most left and the most right segments, such that they lie on the asymptote of
the function:

ml = lim
x→−∞

f (x)/x, v0 = ml p0 + lim
x→−∞

( f (x)−mlx),

mr = lim
x→+∞

f (x)/x, vn−1 = mr pn−1 + lim
x→+∞

( f (x)−mrx)

For example, considering GELU, this resolves to ml = 0,v0 = 0,mr = 1,vn−1 = pn−1. No-
tably, p0 and pn−1 themselves are still learned. In this way, the interpolated function con-
verges to the original function for values far from the boundary breakpoints. This comes at
a small cost in error close to the boundary breakpoints.

Optimization strategy: We initialize the Flex-SFU function interpolation with uni-
formly distributed breakpoints. Then we optimize with SGD until convergence. After
this, we remove and insert one breakpoint as described above, and retrain with a lower
learning rate. We reiterate until the removal and insertion points converge. Note that we
perform this optimization for each function, and we substitute the layers within the DNN
models without any retraining for ease of use.
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Figure 4.3: Throughput of Flex-SFU, in terms of number of computed activations (i.e.
GAct) per second, as a function of the input tensor size, accounting for different bit-widths
(b) and lookup table cluster (LTC) depths (d)

4.5 Experimental Evaluation

We evaluate Flex-SFU exploring both stand-alone and end-to-end analyses. Specifically,
Section 4.5.1 provides a performance, area, and power evaluation of Flex-SFU, while
Section 4.5.2 analyzes the precision of the approximation methodology proposed in Sec-
tion 4.4, comparing it with the SoA. Finally, Section 4.5.3 evaluates Flex-SFU on a com-
mercial hardware accelerator, analyzing both end-to-end performance and accuracy on
more than 700 DNN models, considering the most relevant activation functions over dif-
ferent LTC sizes.

4.5.1 Performance, Power and Area Analyses

We implement the proposed hardware accelerator in RTL, and perform synthesis and PnR
for a 28nm CMOS technology node. We evaluate several Flex-SFU configurations in terms
of performance, area, and power, varying the number of segments from 4 to 64 while con-
sidering Nc = 1 and a target frequency of 600 MHz. We then extend our analysis to multiple
clusters to evaluate the proposed solution scalability.

Single Cluster Evaluation: Figure 4.3 shows the throughput of Flex-SFU, accounting for
the time spent on both ld.bp(), ld.cf(), and exe.af(), across input tensors ranging
from 8 KB to 32 KB. All the analyzed Flex-SFU combinations reach the steady-state per-
formance for input tensors larger than 256 32-bit data, gaining 0.6 GAct/s, 1.2 GAct/s, and
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Table 4.1: Flex-SFU Characterization for Nc = 1 at f = 600 MHz in 28nm CMOS
LTC Depth (i.e. # Segments) 4 8 16 32 64

Latency [cycles] 7 8 9 10 11
Power [mW] 1.4 1.7 2.2 2.8 3.7

ADU Area [%] 34.2% 41.2% 43.7% 46.0% 41.6%
LTC Area [%] 31.3% 34.9% 44.1% 46.6% 53.4%
Total Area [µm2] 2572.4 3593.0 5846.0 9791.3 14857.2

2.4 GAct/s in terms of throughput, considering 32-, 16-, and 8-bit data sizes, corresponding
to an energy efficiency ranging from 158 GAct/s/W to 1722 GAct/s/W. The performance
overhead introduced on small input tensors, due to the time spent on storing breakpoints

and coefficients into the ADU and the LTC units, can be completely neglected by pre-
executing the ld.bp(), ld.cf() instructions. Note that the throughput reported in Figure 4.3
saturates to 1 Act/cycle, 2 Act/cycle, and 4 Act/cycle for 32-, 16-, and 8-bit data sizes at 600
MHz, proving that Flex-SFU can reach the theoretical peak performance discussed in Sec-
tion 4.3, accelerating complex DNN activation functions exploiting the same computation
time typically required by simple operations like ReLU.

Table 4.1 details the characterization of Flex-SFU, obtained after the PnR step and
considering from 4 to 64 segments, reporting a total power consumption ranging from
1.4 mW to 3.7 mW, and a total area requiring from 2572 µm2 to 14857 µm2. Flex-SFU

latency increases by 1 clock cycle per doubling of the number of segments (i.e. for each
additional ADU stage).
Scalability Analysis: Aiming to explore the actual scalability of the proposed solution in
terms of area and performance, we evaluate Flex-SFU exploiting higher Nc values.

Figure 4.4 proposes an area-based design space exploration of Flex-SFU, considering
from 4 to 64 segments and Nc ranging from 1 to 64. Specifically, Figure 4.4 explores
the Flex-SFU area considering ADU and LTC memories either replicated on each cluster
(i.e. featuring a single read port) or leveraging on multiple read ports, thus sharing the
same memory on multiple adjacent clusters. As Figure 4.4 shows, exploiting multiple
ports allows reducing the total area up to 63% with respect to the single port Flex-SFU

implementation, still respecting the target timing constraints.
Performance-wise, our scalability analysis reports a linear performance increase with

the Nc increasing. For example our evaluation reports a steady-state throughput of 38.3
GAct/s, 76.7 GAct/s, and 153.4 GAct/s considering Nc equal to 64, corresponding to
63.9 Act/cycle, 127.8 Act/cycle, and 255.7 Act/cycle for 32-, 16-, and 8-bit data sizes at
600 MHz. These results clearly show that Flex-SFU can scale its performance linearly by



4.5. EXPERIMENTAL EVALUATION 82

4 8 16 32 64

Number of Segments

0

0.2

0.4

0.6

0.8

1.0

1.2

A
re

a
[m

m
2]

-0
%

-0
%

-0
%

-0
%

-0
%

-2
0%

-1
9%

-2
3%

-3
1%

-2
8%

-2
7%

-2
3%

-3
8%

-4
3% -4
7%

-3
5%

-3
9%

-4
5% -5
1% -5

5%

-3
9%

-4
1% -4
9% -5

4%

-5
9%

-4
0% -4

5% -5
1%

-5
6%

-6
1%

-4
2% -4

9%

-5
6%

-5
8%

-6
3%

Nc:1

Nc:1-SP

Nc:2

Nc:2-SP

Nc:4

Nc:4-SP

Nc:8

Nc:8-SP

Nc:16

Nc:16-SP

Nc:32

Nc:32-SP

Nc:64

Nc:64-SP

Figure 4.4: Area scalability analysis, accounting for several numbers of segments, explor-
ing the area improvements of memories exploiting either a single read port (SP) or multiple
read ports (i.e. equal to the number of clusters Nc.

increasing the number of clusters, as using 64 clusters allows gaining 63.9× more perfor-
mance than the single cluster configuration analyzed in Figure 4.3.

To investigate the area and power impact of Flex-SFU on high-performance VPUs, we
perform a back-of-the-envelope integration of Flex-SFU into the RISC-V VPU proposed
by Perotti et al. in [122], composed of 4 lanes and supporting a maximum data size of
64-bit. Our evaluation, considering four Flex-SFU instances (i.e. one instance per lane)
featuring Nc = 2 (i.e. supporting from 1×64-bit to 8×8-bit elements/cycle), shows that
Flex-SFU only accounts for 2.2%, 3.5% and 5.9% of the total area for a LTC depth of 8,
16 and 32 elements, respectively, while consuming from 0.5% to 0.8% of the total power.

4.5.2 Function Approximation Precision Analysis

In Figure 4.5, we investigate MSE and maximum absolute error (MAE) of the most rep-
resentative activation functions. We select the interpolation interval within [-10,0.1] for
Exp, and within [-8,8] for the other functions. The boundary breakpoints lie on the func-
tions asymptote to reduce the error outside the interpolation interval. We interpolate Exp
for negative values to be used in Softmax, typically requiring exponentiation implemented
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Figure 4.5: Error analysis for a set of activation functions, considering from 4 to 64 break-
points. Interpolation intervals are in the range [-10, 0.1] for the exponential function (Exp),
and in the range [-8, 8] for the other functions.

with (vector-wide) maximum subtraction (i.e. exp(xi − max j x j)). As detailed in Fig-
ure 4.5, the approximation precision of the analyzed functions averagely improves MSE
and MAE by 15.9× and 3.8× per doubling of the number of breakpoints. Moreover, all
the interpolations featuring more than 16 breakpoints reach a MSE lower than 1 Float16
unit of least precision (ULP), defined as the single-bit error at a base of 1.

In Table 4.2, we compare Flex-SFU with other PWL interpolation methods, considering
the same interpolation range and number of breakpoints. Following most of the previous
works, [62, 79, 84, 93, 95], we evaluate Flex-SFU exploiting the average absolute error
(AAE) metric, squaring it (i.e. sq-AAE) to match the same MSE order of magnitude.
Furthermore, we compare with the equivalent number of breakpoints of previous works
exploiting symmetry [19, 84]. As Table 4.2 shows, our method outperforms all the other
PWL approaches, by a factor ranging from 2.3× to 88.4×, with an average of 22.3×.

The method proposed by Gonzalez et al. [62] exploits a second-order piecewise but
not-steady interpolation, averagely achieving 4.3× better MSEs than Flex-SFU on Tanh,
Sigmoid, and SiLU. Although Flex-SFU can be easily extended to support a second-order
interpolation, second-order approximations feature high area overheads, requiring to dou-
ble the number of VPU MADD units to guarantee the same throughput of the proposed
solution, as well as larger LUTs able to store an additional interpolation coefficient. We
extend the function approximation order discussion in Section 4.6.1.
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Table 4.2: Comparison of our MSE-optimized method with other PWL Interpolation Meth-
ods with the same number of breakpoints and range

Parameters Error sq-AAE*

Function Approximation Range # Breakpoints Reference This work Improvements

[84]

Tanh

[-8, 8] 16† 5.76 ·10−6 4.27 ·10−7 13.5×
[93] [-3.5, 3.5] 16 3.58 ·10−5 1.52 ·10−6 23.5×
[93] [-3.5, 3.5] 64 1.12 ·10−7 7.88 ·10−9 14.2×
[95] [-8, 8] 16 1.00 ·10−6 4.26 ·10−7 2.3×
[79] [1/64, 4] 32 5.94 ·10−7 6.72 ·10−9 88.4×
[19] [-4, 4] 32† 9.81 ·10−7‡ 1.13 ·10−8‡ 86.8×

[84]

Sigmoid

[-8, 8] 16† 8.10 ·10−7 1.21 ·10−7 6.7×
[93] [-7, 7] 16 8.95 ·10−6 4.97 ·10−7 18.0×
[93] [-7, 7] 64 2.82 ·10−8 2.38 ·10−9 11.9×
[95] [-8, 8] 16 6.25 ·10−6 2.88 ·10−7 21.7×
[79] [1/64, 4] 32 1.41 ·10−7 3.80 ·10−8 3.7×
[19] [-4, 4] 64† 3.92 ·10−8‡ 2.38 ·10−9‡ 9.3×

[95] GeLU [-8, 8] 16 6.76 ·10−6 1.89 ·10−7 9.0×
* SoA reports the average absolute error (AAE).
‡ Numbers in MSE.
† Uses symmetry to halve the number of segments.

4.5.3 End-to-End Evaluation

We evaluate Flex-SFU on a commercial Huawei Ascend 310P AI processor [97], exploiting
a benchmark suite targeting 628 computer vision and 150 NLP networks from PyTorch Im-

age Models (TIMM) and Hugging Face, respectively. This accelerator represents an ideal
candidate to demonstrate the benefits that Flex-SFU can provide to SoA DNNs accelera-
tors, as it hosts a specialized matrix multiplication unit computing up to 4096 MAC/cycle,
and processes the DNN activation functions on a general-purpose high-performance VPU.
To perform our performance evaluation, we convert each benchmark suite model from Py-
torch 1.11 [121] to ONNX 1.12 [22] with opset version 13, and we replace each activation
function of the resulting model graph with a custom ONNX operator, implementing a set
of instructions supported by the Huawei Ascend ISA, and whose latency and throughput
match the Flex-SFU metrics presented in Section 4.5.1. Then, we compile both the base-
line and the Flex-SFU-enhanced ONNX models for the Ascend AI processor with Ascend
Tensor Compiler (ATC) v5.1 and run them on the target accelerator to extract and compare
their end-to-end inference run time. In our evaluation, we compute each model using all 8
cores of the Ascend 310P AI processor in parallel with batch size equal to 1, considering
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Figure 4.6: End-to-end model zoo performance evaluation, performed on eight Huawei
Ascend 710 AI processor running in parallel. Different colors highlight the most frequently
used activation function of each network.

the average execution time between 10 subsequent inference runs.
Figure 4.6 summarizes the execution time improvements of the proposed benchmark

suite when exploiting Flex-SFU, highlighting the reference family and most frequent ac-
tivation function of each model. We obtained comparable performance results for batch
sizes equal to 16, 32, and 128. As Figure 4.6 shows, Flex-SFU matches the performance of
models primarily relying on lightweight activation functions (i.e. ReLU, Leaky ReLU), not
introducing any overhead in their computation, and greatly improves the execution time of
networks relying on more complex activation functions. Specifically, including the models
based on ReLU, whose baseline execution time matches the Flex-SFU performance, Flex-

SFU allows gaining 17.3%, 17.9%, 29.0%, and 45.1% performance on ResNets, Vision

Transformers, NLP Transformers, and EfficientNets models, while reaching 2.1× more
performance on DarkNets models. Overall, Flex-SFU reaches 22.8% better performance
on the considered model zoo computation, improving the execution time of models relying
on complex activation functions by 35.7% on average, and reaching a performance peak of
3.3× on the computation of resnext26ts.

We evaluate the accuracy impact of Flex-SFU for DNNs in the TIMM database on the
ImageNet dataset [43] by comparing the top-1 accuracy on the validation set between the
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Figure 4.7: Cumulative distribution of End-to-End accuracy drop over 600+ DNNs of
TIMM [154], considering both uniform and non-uniform PWL interpolations.

reference model and one where the activations are replaced with Flex-SFU. We also eval-
uate the top-1 accuracy exploiting uniform PWL to further compare Flex-SFU with the
SoA approaches, exploiting uniform distance between breakpoints. Figure 4.7 shows the
cumulative distribution of TIMM models as a function of the accuracy drop with respect
to the baseline FP32 accuracy, considering either Flex-SFU or a uniform interpolation. As
Figure 4.7 shows, Flex-SFU outperforms the approximation based on uniform interpola-
tion for all the considered breakpoints configurations, ranging from 4 to 64. Specifically,
for all the considered configurations, the uniform interpolation roughly requires double of
the breakpoints to perform as Flex-SFU. Indeed 80.8%, 96.6%, and 99.7% of the TIMM
models show less than 0.3% accuracy drop when computed with Flex-SFU featuring 8,
16, and 32 breakpoints. On the other hand, the uniform interpolation only allows 57.8%,
78.4%, and 92.7% of the models to feature less than 0.3% accuracy drop, considering
the same number of breakpoints. Flex-SFU performs almost losslessly on the 64 break-

points configuration, showing a maximum accuracy drop of 0.04% on the computation of
swinv2 large window12 192 22k, while uniform interpolation exploiting the same config-
uration shows higher drops on 6% of the models, with a maximum accuracy drop of 1.9%
on the computation of mobilenetv3 small 075.

We note that networks using SiLU are the most sensitive to approximation. For ex-
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ample, to feature an accuracy drop smaller than 0.17%, mobilevit and halonet50ts re-
quire 32 breakpoints, while lambda resnet50ts and mixer b16 224 miil require 16 break-

points. Hardswish is the second most sensitive activation function, with lcnet and mo-

bilenetv3 small requiring 32 breakpoints, and hardcorenas, fbnet, and mobilenetv3 large

requiring 16 breakpoints to show losses smaller than 0.15%. Finally, GELU-based sebot-

net33ts 256, mixer and crossvit achieve lossless accuracy drops with 16 breakpoints..

4.6 Discussion

4.6.1 Function Approximation Order Trade-Offs

While this chapter primarily focuses on Flex-SFU performing PWL approximations, its
hardware microarchitecture can be configured to exploit higher approximation orders. For
instance, each LTC cell can be set to accommodate three segment coefficients instead of
two, enabling a second-order approximation for the analyzed activation functions. When
transitioning from a first-order to a second-order interpolation with 4 to 64 segments, the
Flex-SFU area increases from 25.8% to 42.9%, respectively. Correspondingly, power con-
sumption rises from 12.5% to 25%. However, it should be noted that achieving the same
throughput with a second-order approximation necessitates doubling the number of MADD
units compared to a first-order approximation, resulting in a larger overall area footprint.
Therefore, the optimal design decision depends on the number of arithmetic functional
units in each VPU lane. In cases where the target VPU features only one arithmetic func-
tional unit per lane, Flex-SFU can be operated in either a high-throughput mode using a
first-order approximation, where new data is generated on every clock cycle, or a high-

precision mode employing a second-order approximation with enhanced precision but op-
erating at half the throughput. The desired execution mode can be dynamically selected
at runtime based on the target network accuracy and performance requirements. We are
currently extending the approximation methodology described in Section 4.4 to support
second-order approximations of the considered activation functions. This effort aims to es-
tablish a better understanding of the area overhead and precision improvements associated
with higher-order approximations.

4.7 Summary

Modern DNN workloads increasingly rely on activation functions consisting of computa-
tionally complex operations. This poses a challenge to current accelerators optimized for
convolutions and matrix-matrix multiplications.
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We proposed Flex-SFU, a scalable hardware accelerator for DNN activation functions
on VPUs based on a novel design supporting non-uniform breakpoints locations, and per-
forming 8-, 16-, and 32-bit computations based on both fixed-point and floating-point data
formats. Flex-SFU exploit a novel LUT address decoder exploiting binary-tree structure,
supporting multiple data formats and non-uniform segment lengths. Our evaluation shows
that Flex-SFU achieves on average 22.3× better MSE compared to previous PWL interpo-
lation approaches. The evaluation with more than 700 computer vision and NLP models
shows that Flex-SFU can, on average, improve the end-to-end performance of SoA AI
hardware accelerators by 35.7%, achieving up to 3.3× speedup with negligible impact in
the models accuracy, and only introducing an area and power overhead of 5.9% and 0.8%
relative to the baseline VPU.



Chapter 5
Summary and Conclusion

In the past decade, the advancement of DNNs has achieved unprecedented progress, en-
abling numerous application domains to leverage deep learning for enhanced outcome
quality. However, this remarkable progress comes with inherent challenges due to the
large parameter sets and extensive computational requirements of DNNs. These challenges
pose significant obstacles for modern computing systems across various domains, spanning
from energy- and latency-constrained edge and mobile devices to HPC and cloud acceler-
ators optimized for high throughput.

In this thesis, we address the aforementioned challenges by exploring several research
paths. Firstly, we investigate a novel mathematical technique, called binary segmenta-

tion, capable of reducing the arithmetic complexity of linear algebra computations based
on narrow integers, and we propose a hardware architecture, called Bison-e to efficiently
exploit binary segmentation on edge CPU architectures. We show that Bison-e signifi-
cantly enhances the performance of linear algebra kernels operating on narrow integers,
and requires low area and energy costs. Building upon this, we introduce a novel HW-
SW co-designed architecture, called Mix-GEMM, that leverages binary segmentation to
accelerate quantized DNNs on edge CPUs by performing SIMD operations exploiting the
off-the-shelf processor FUs, enabling computations with arbitrary precision among narrow
integers. Mix-GEMM extends SoA matrix-matrix multiplication approaches to narrow inte-
gers, exhibiting scalable performance with decreasing computation data sizes. Finally, we
examine potential computational bottlenecks of large-scale DNN accelerators, and we pro-
pose Flex-SFU as a solution to accelerate complex activation functions. Flex-SFU exploits
a PWL approximation approach, and features non-uniform segmentation and multiple data
types to achieve high accuracies in approximating DNNs activation functions.

89
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5.1 Overview of the Main Results

The main results and contributions can be summarized as follows.

• Bison-e: We show that binary segmentation can reduce the arithmetic complexity
of the inner-product kernel computation from 3× to 19× and the linear convolution
kernel computation from 2.5× to 90.5× on 64-bit CPUs, considering computations
from 8-bit to 1-bit, respectively. Our experimental evaluation reveals that the pro-
posed microarchitecture achieves performance improvements ranging from 4.7× to
19.3× compared to the baseline scalar processor, when computing the AlexNet and
VGG-16 DNNs, as well as comparable or higher energy efficiency than an edge VPU
for the same tasks. Remarkably, Bison-e achieves these advancements while utilizing
less than 0.07% of the total SoC area and 0.04% of the total power consumption;

• Mix-GEMM: We accelerate the computation of DNNs by proposing an HW-SW co-
designed architecture performing matrix multiplications, and achieving from 4.1× to
10.2× better performance than the baseline processor performing the same kernel at
8-bit precision. Notably, Mix-GEMM achieves computation rates ranging from 4.8
GOPS to 13.6 GOPS for representative CNNs such as AlexNet, VGG-16, ResNet-18,
MobileNet-V1, RegNet-x-400mf, and EfficientNet-B0, while exhibiting energy effi-
ciency ranging from 524.3 GOPS/W to 1.3 TOPS/W. In comparison to a commercial
RISC-V processor running OpenBLAS with FP32 precision, Mix-GEMM achieves
performance gains ranging from 5.7× to 15.1×. It also outperforms a commer-
cial Arm core utilizing SIMD computations and a SoA matrix-matrix multiplication
library for 8-bit computations by up to 2.6×, all while occupying just 1% of the
underlying RISC-V SoC;

• Flex-SFU: We propose a hardware accelerator for complex activation functions, that
outperforms previous works exploiting PWL approximations by an average factor of
22.3×. We show that the integration of the Flex-SFU microarchitecture in VPUs
incurs modest area and power overheads of 5.9% and 0.8%, respectively. By em-
ploying Flex-SFU, the execution time of significant DNNs can be improved by up to
3.3×, with an average improvement of 35.7% across more than 600 computer vision
and NLP models. Notably, this is achieved while maintaining a maximum end-to-end
accuracy drop of merely 0.04% when considering 64 breakpoints in comparison to
the FP32 baseline.
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5.2 Outlook

In the following, we provide an overview of the research directions we consider promising
within the context of the contributions discussed in this thesis.

Exploring Binary Segmentation in Heterogeneous Architectures
Although the DSE methodology proposed in Section 2.3 can be easily extended to any
hardware architecture, this thesis explores the usage of the binary segmentation technique
on CPUs. However, we believe its features can also be applied to heterogeneous architec-
tures, such as GPUs and FPGAs. In particular, FPGAs-based accelerators represent a good
candidate for binary segmentation, as they are particularly effective for computations based
on narrow-integers and fixed-point data, and exploit DSP units whose bitwidth has a fixed
size. For example, the latest Xilinx Ultrascale and Versal architecture [56,91] feature MAC
units of 27× 18 and 27× 24 respectively, which is clearly oversized for quantized DNNs
computations exploiting bitwidths equal or lower than 8 bits. As a result, novel dataflow
accelerators exploiting binary segmentation as a main computational pillar can be explored
to enhance DNN computations on FPGAs.

Expand Mix-GEMM Data Level Paralelism
Modern edge and mobile CPU architectures feature SIMD units to improve their effi-
ciency in compute-intensive applications. Although we show that the proposed solution
can achieve comparable or higher performance than general-purpose SIMD units (see Sec-
tion 3.5), Mix-GEMM can leverage on the off-the-shelf MAC units of the underlying pro-
cessor to further improve the application throughput, while requiring minimal modifica-
tions and area overhead with respect to the implementation described in Section 3.3.2.
Vectorizing the memory operations performed by the proposed µ-engine GEMM software
library, as well as the custom operations discussed in Section 3.3.1 represent a promising
research direction, as it would enable significant performance improvements with respect
to the current Mix-GEMM implementation.

Explore Higher Activation Function Approximation Orders
As detailed in Section 4.6.1, Flex-SFU can be configured to support higher interpolation
orders. Therefore, exploring the impact of such approximation orders in the context of
DNNs inference would allow increasing the design space of Flex-SFU in terms of preci-
sion, performance, and area. Our preliminary results in this direction show that exploiting
a second-order approximation for the activation functions considered in Flex-SFU would
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allow improving the MSE and MAE errors by roughly 10× when compared to a first-order
approximation considering the same number of breakpoints, and would allow achieving
precisions closed to the baseline FP32 data format for activation functions featuring second-
order degree such as Hardswish.

DNNs Training with PWL-based Activation Functions
The analysis conducted in Section 4.5.3 primarily focuses on the accuracy evaluation of
DNNs inference. However, it is important to note that the target systems considered in
Chapter 4 could potentially derive benefits from the application of Flex-SFU not only dur-
ing inference but also in the training phase. Therefore, it is worthwhile to explore the
impact of utilizing PWL-based activation functions for DNNs training, which represents
an intriguing avenue for future investigation. This analysis should encompass an examina-
tion of how the approximation of activation functions can affect the final model accuracy, as
well as an exploration of whether the adoption of Flex-SFU influences the learning curve,
specifically the number of epochs required to achieve the target accuracy.
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