
Acceleration of Automatic Speech
Recognition for Low-power Devices

Dennis Pinto Rivero

Doctor of Philosophy

Department of Computer Architecture

Universitat Politècnica de Catalunya
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Abstract

Machine learning approaches are transforming the landscape of computing and beyond. Among
them, Automatic Speech Recognition (ASR) is specially eye-catching. Ingrained in the public imag-
ination as the cornerstone of human-machine interaction, speech recognition is set to become a
game-changing technology with potential for broad adoption among the general public. Fueled by
the remarkable accuracy obtained by current ASR systems, it will likely disrupt, sooner than later,
how we interact with all kinds of machines. Today, we are experiencing the early stages of this
disruption as can be seen in examples such as smart speakers and AI assistants, dictation engines
embedded in virtual keyboards and devices for real-time language translation.

It requires discipline to avoid getting carried away by the promises of a once science-fiction
technology. The prospects are, indeed, existing. However, before ASR can momentarily drop the
jaws of users in awe and then slowly fade into the background of amazing technologies taken for
granted, there are still many challenges ahead. ASR engines are powered by extremely expensive
algorithms in terms of computational cost. Decoding a second of speech takes in the order of
billions of arithmetic operations. In contrast, devices such as smartphones, smartwatches and
other wearables, which are likely the perfect fit for ASR, generally rely on small batteries and
operate with very low power. Hence, they often lack the computing power necessary for real-
time ASR. Consequently, the current approach to decode speech consists of performing ASR in
powerful server computers, relegating the edge device to the role of merely capturing the audio
signal. However, given the limitations of this approach, it is seen by many as a workaround until
ASR can be completely deployed on the edge.

In this thesis, we study the challenges preventing ASR deployment on edge devices and propose
innovations to tackle them, hopefully moving the technology a step forward to the future. First,
we characterize state-of-the-art hybrid DNN-HMM. In Hybrid DNN-HMM, the transcription is
obtained by searching for the most likely sequence in a large graph that contains every possible
transcription. The signal is broken down into frames and then a neural network analyzes each of
them. The neural network computes a score for each node of the graph. These scores represent
how well each node matches the audio frame. After analyzing the bottlenecks of this ASR system,
by characterizing its execution on a representative low-power platform, we propose a heterogeneous
platform that contains an accelerator to perform the DNN inference and another accelerator to
perform the graph search. This approach results in 4.5x faster execution and 4.3x less energy
consumption when compared to a baseline CPU-GPU low-power platform.

To further improve the performance of ASR, we then look into the run-time properties specific
to ASR. When ASR is executed on the edge, it is generally expected to decode audio in a streaming
way, generating and expanding a partial transcription while the user is still speaking. In this
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case, the ASR system analyzes the signal frames one at a time. During each of these decoding
steps, it generates a set of partial transcriptions or transcription hypotheses. These hypotheses
are expanded during the decoding step by appending new symbols. Additionally, some hypotheses
converge into a single hypothesis while others diverge into a multitude of different hypotheses.
This creates a difference between decoding steps. During some decoding steps, the system contains
many hypotheses whereas, in other steps, the number of hypotheses may be significantly lower.
We determine that the number of hypotheses, which can be understood as the confidence of the
ASR decoder, can be leveraged by reducing the arithmetic precision of the computations during
high confidence steps and increasing it during low confidence steps. According to our results, our
technique provides 19.5% reduction in execution time while also reducing the energy consumption
by about 16.9%, compared to the heterogeneous platform previously described, with degradation
of accuracy below 1%.

Hybrid DNN-HMM ASR systems provide outstanding transcription accuracy even in challeng-
ing benchmarks. However, Hybrid DNN-HMM ASR is not the only approach to ASR. End-to-end
ASR systems have recently reached state-of-the-art accuracy. The assumptions ingrained in end-
to-end systems are more relaxed than those of hybrid systems and the mechanism to train them is
more automatic and requires less expert knowledge. For these reasons, many believe that end-to-
end systems hold a powerful edge over hybrid systems. For us, that makes them worth studying.
These systems are based on large neural networks that are trained to generate the set of hypothe-
ses by themselves. These systems generally include a graph search, as well, but a simpler one.
Along with learning how to recognize signal frames, the neural network is trained to learn lexical
and language relationships between sounds. Neurons in state-of-the-art neural networks are often
activated with a ReLU function, which generates, during run-time, abundant zeros. We design
Mixture-of-Rookies, a prediction scheme to detect at run-time when a neuron is going to generate
a zero. This technique is embedded in a neural network accelerator that avoids computing the
neurons when they are predicted to generate a zero. We estimate that this approach can provide
a speedup of 1.21x while consuming 17.7% less energy than a baseline accelerator, for a specific
end-to-end system. Furthermore, as many neural networks used for other applications contain
ReLU, we evaluate our technique with different neural networks and determine that it can provide
significant benefits across the board.

After proposing the previous optimizations, we tackle a different challenge of ASR deployment
in low-power devices. ASR is a fast-changing technology and can be expected to continue changing
fast as more innovations are proposed. Furthermore, there are many alternative approaches to
ASR. Beyond the high-level categories of Hybrid or end-to-end, there are minor variations with
often significant impact on transcription accuracy. As more research is conducted, new techniques
will keep fine-tuning the algorithms and models for specific use-cases, resulting in a rich collection
of alternative systems and techniques for speech recognition. However, this creates an additional
challenge for computer architects. An accelerator designed to execute a very specific ASR system
will provide huge performance gains but, at the same time, restrict the platform to execute a single
ASR system. Furthermore, it risks becoming quickly obsolete, once new ASR techniques hit the
market. To tackle this challenge, we propose ASRPU, a programmable ASR accelerator that, taking
inspiration from GPUs, enables efficient execution of a wide range of ASR systems and provides a
convenient programming model that enables ASR systems to be easily implemented. Our results
show that ASRPU can execute state-of-the-art ASR in real-time while consuming less than 1.8 W.
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According to our estimations, the entire accelerator fits in about 12 mm² when built from 32 nm
cell nodes.

The proposals in this thesis represent innovative ways in which computer architecture can push
forward the adoption of ASR by the broad public. All these techniques make the execution of ASR
systems more amenable for low-power devices, enabling the deployment of state-of-the-art ASR on
the edge.
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Resumen

Las soluciones basadas en aprendizaje automático están transformando el mundo de la com-
putación. Entre estas, el reconocimiento automático de voz resalta al formar parte del imaginario
popular como la forma ideal de interacción con las máquinas. El reconocimiento de voz va de
camino a convertirse en una tecnoloǵıa revolucionaria.

Sin embargo, antes de que los sistemas de reconocimiento de voz puedan utilizarse de manera
generalizada, hay muchos desafios que resolver. Los motores de reconocimiento de voz consisten en
algoritmos extremadamente caros a nivel computacional. Decodificar un segundo de audio requiere
del orden de miles de millones de operaciones aritméticas por segundo. En contraste, los dispositivos
que encajan mejor con applicaciones de reconocimiento de voz, como smartphones y weareables,
generalmente operan a muy bajo consumo y conectados a una bateŕıa, por lo que suelen carecer de la
capacidad para ejecutar los sistemas de reconocimiento de voz a tiempo real. Consequentemente,
la mayoŕıa de las veces, los algoritmos de reconocimiento de voz se ejecutan en servidores y el
dispositivo de bajo consumo tan solo se emplea para capturar el audio y comunicarse con el servidor.
Los problemas de seguridad y privacidad, junto con otras limitaciones de este procedimiento, llevan
a que mucha gente lo vea como una solución temporal. Idealmente, el reconocimiento de voz seŕıa
realizado en el propio dispositivo.

En esta tesis, estudiamos los desaf́ıos que impiden el despliege de los sistemas de reconocimiento
de voz en dispositivos de bajo consumo y proponemos innovaciones para solucionarlos. Primero,
caracterizamos un sistema estado-del-arte basado en el modelo ”hybrid HMM-DNN ASR” ejecu-
tado en una plataforma de bajo consumo. En este tipo de sistemas, la transcripción se obtiene
buscando la secuencia con mayor probabilidad en un grafo de decodificación que contiene todas las
transcripciones posibles. La señal primero se divide en ”frames” y una red neuronal los analiza
para obtener una distribución de probabilidad sobre unidades acústicas, llamada ”score” acústico.
Después de analizar el sistema, proponemos una plataforma heterogénea que contiene una CPU
y varios chips espećıficos para acelerar la búsqueda en el grafo de decodificación y la inferencia
de la red neuronal. Al comparar la ejecución en esta plataforma con la ejecución en un sistema
base, hemos comprobado que la plataforma heterogénea resulta en una mejora de 4.5x en tiempo
de ejecución y una reducción de 4.3x en el consumo de enerǵıa.

Para seguir mejorando el rendimiento de esta plataforma, proponemos una técnica que aprovecha
una propiedad dinámica de los sistemas de reconocimiento de voz que llamamos ”decoder confi-
dence”. A medida que el sistema de reconocimiento va decodificando un audio, este va generando
transcripciones alternativas o ”hipótesis”. Para esta técnica, asumimos que cuando el sistema con-
sidera un número bajo de hipótesis su ”confianza” es alta, y cuando considera un número alto
de hipótesis, su ”confianza” es baja. Usando esta información, ajustamos la precisión numérica
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empleada durante la inferencia de la red neural, ahorrando tiempo de ejecución y enerǵıa cuando la
precisión es menor, principalmente al reducir los accessos a memoria principal. En nuestros exper-
imentos, esta técnica resulta en una reducción del 19.5% en tiempo de ejecución y una redución del
17.7% en consumo energético, con un aumento del porcentaje de errores en la transcripción inferior
al 1%.

En nuestro siguiente trabajo estudiamos un sistema de reconocimiento de voz del tipo ”end-to-
end”. Estos sistemas consisten en una red neural más grande y completa que genera directamente
las transcripciones. Debido a la simplicidad del entrenamiento de estos sistemas comparado con
los sistemas ”hybrid”, junto a otras ventajas que presentan, los sistemas ”end-to-end” han ganado
popularidad en los últimos años y muchos de ellos ya alcanzan resultados estado-del-arte. En esta
técnica, aprovechamos que la mayoŕıa de estos sistemas emplean funciones ReLU como activación
para las capas internas de la red neuronal. Esta función de activación genera un abundante número
de ceros en tiempo de ejecución. En esta técnica, proponemos un predictor, llamado ”Mixture-of-
rookies” que detecta de antemano cuando la ejecución de una neurona va a resultar en cero. Cuando
se da el caso, en vez de ejecutar la neurona, escribimos un cero a su salida, ahorrándonos los cálculos
y accesos a memoria que requiere el cálculo de la misma. Para probar que esta técnica se puede
aplicar a otros ámbitos, probamos su efectividad en otras redes neuronales de reconocimiento de
imágenes, aparte de la red neuronal para reconocimiento de voz. A través de los experimentos que
hemos realizado, estimamos que esta técnica proporciona un ”speedup” de 1.21x y una redución
del 17.7% en consumo de enerǵıa de media.

Tras proponer las optimizaciones anteriores, decidimos enfrentarnos a un desafio diferente. En
nuestro último trabajo, diseñamos un accelerador espećıfico para reconocimiento de voz que sea
capaz de ejecutar el sistema completo. Nuestro enfoque consiste en proporcionar la máxima flexi-
bilidad, que le permita ejecutar cualquier sistema de reconocimiento de voz, mientras aprovechamos
caracteŕısticas comunes a la mayoŕıa de sistemas para optimizar su ejecución mediante unidades
hardware especializadas. Este acelerador, llamado ASRPU, consiste en un conjunto de unidades de
cómputo programables y una serie de unidades espećıficas y controladores, junto a una jerarqúıa
de memoria optimizada para reconocimiento de voz. De acuerdo con nuestros modelos, una con-
figuración de 1.8W y 12mm² puede ejecutar sistemas de reconocimiento de voz estado-del-arte en
tiempo real.

Keywords

Automatic Speech recognition, Real-Time, Hardware Accelerator, Low-Power Architecture,
Edge computing.
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Mohammad, Bahareh, Mojtaba, Rodrigo, Aurora, Imad and Nitesh. I can not emphasize enough
how thankful I am for all the good times we shared, for those conversations during lunch, for sharing
the toll during the long hours at the lab before deadlines, for the beers (and Fantas) that we had
and for those that we could not have, for sharing with me your experiences and your amazing
knowledge and insight. I always feel impressed by your achievements and endurance and humbled
by how nice and generous your all are. I wish you the best of luck. I am sure that you all will do
great at anything you pursue.

To my dear friends, Borja and Germán, and the good times we shared playing online and
keeping in touch despite the distance. You always manage to put a smile on my face. Sebas, I
want to especially thank you for your support and encouragement during all these years. We have
shared so much of our lives and influenced each other so deeply that I can only regard you and
Katy as family. I also want to thank my friends Juanlu and Cris for the great moments we shared
in Barcelona. It is amazing how life keeps bringing us together again and again. I am sure we will
continue to nurture our friendship for many years to come.

To my family. My dear sisters, Sheyla and Yanira, with whom I shared many great memories.
Thank you for being there, encouraging me to pursue my dreams. Growing up together with you
and learning together how to live and how to be good persons is the best experience I could ask.
To my loving mother, Trinidad, who always stood by my side, believing in me. You taught me

9



the value of being a good person, of accepting and understanding others, no matter what. You are
always on the other side of the phone when I most need it. When life feels discouraging and lonely,
the memories I have of my childhood with you really spar a beam of light. To my grandparents,
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1
Introduction

This chapter introduces the motivations and objectives behind this thesis. The first section
provides our motivation to study automatic speech recognition, outlining the importance of low-
power speech recognition for future computing systems. The next section describes the scope
of our work and our contributions. The following section provides a discussion of related work,
particularly, describing those works aimed at accelerating DNN inference and Beam Search, the
main components of speech recognition systems. The final section describes the organization of
this document.

1.1 Motivation

Around the 1960s, the first graphic interfaces started appearing (with examples such as Sketch-
pad and Stanford’s On-Line System). During the 1980s, Apple and Microsoft, among others, pop-
ularized graphical interfaces, promoting the widespread adoption of computers among the regular
public. Before that, mostly trained professionals and researchers had access to computers, which
were operated via written commands. From that point forward, written commands remained only
as specialized interfaces for professionals and highly knowledgeable individuals. Graphic interfaces
expanded the use cases of computers and made them easier to use and understand.

Similarly, the current expansion of machine perception technologies will make it straightfor-
ward to interact with computers and machines, further expanding their range of use cases. Machine
perception refers to those technologies that allow computers to interpret sensory data in a way sim-
ilar to humans. It includes a broad range of technologies, such as robotic vision, tactile perception
and automatic speech recognition.

Among the technologies within the machine perception space, Automatic Speech Recognition
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Figure 1.1: Word Error Rate (WER) of different ASR systems on the librispeech test-clean and test-other
benchmarks [7].

(ASR) is probably the one with more potential to shape future human-machine interactions. We
can currently see the impact of these technologies. Speech-based virtual assistants are very popular
devices. Most people are already familiar with Microsoft’s Cortana [2], Amazon’s Alexa [1] or
Apple’s Siri [6]. Dictation engines, such as Google’s Text-To-Speech are built in many smartphone
keyboards, online translation tools and search engines [95]. Furthermore, from an economic per-
spective, the Global speech and voice recognition market is expected to experience very promising
growth during the next few years. In a Fortune Business Insights report [8] published in 2019,
authors forecast a 19.8% Compound Annualized Grow Rate in the period from 2019 to 2026.

This unprecedented expansion of ASR is powered by an outstanding increase, during the last
few years, in the accuracy of speech decoders. Figure 1.1 [7] shows the Word Error Rate (WER)
reported in various papers published between 2016 and 2021. DeepSpeech2 [12], published in 2016,
obtains a WER of 5.33, i.e. one decoding error per 19 words in the ground truth, whereas in Chang
et. al [126], published in 2021, the authors achieve an impressive WER of 1.4, i.e. 1 error per every
71 words, with a Conformer -based system.

That level of accuracy is partially responsible for opening ASR for many mainstream uses, as
seen by the proliferation, during the last decade, of consumer products based on ASR. In addition
to highly accurate, speech recognition must also be fast and reliable. However, given the high
compute intensity of ASR, most speech decoding is currently performed on servers [103, 64, 49],
which results in unreliable ASR-based services (network connection is not always available) and
high latency (specially word-to-word latency). Besides, speech data is personal and must be handled
cautiously. Sending speech files to servers raises privacy concerns in a society that is increasingly
worried about the handling of personal data by big technology companies.
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Many advocate for on-edge ASR as the solution to these problems. However, on-edge decoding
does not come without challenges. Edge devices, such as home computers, smartphones and even
smart appliances, generally lack the hardware resources and data volumes required to exploit the
huge parallelism found in ASR algorithms. Furthermore, streaming decoding, which is a desirable
feature for ASR, given the extremely low word-to-word latency it provides, introduces additional
challenges by further limiting the amount of parallelism in ASR algorithms. Due to these chal-
lenges, it is often unfeasible to deploy highly accurate ASR decoders in edge devices. Nowadays,
it is common to deploy smaller and less demanding decoders for on-edge ASR, despite being less
accurate.

In this thesis, we aim to improve the performance and efficiency of automatic speech recognition
algorithms when constrained to the limited resources of low-power edge devices. We focus on the
hardware architecture, generally assuming a heterogeneous architecture with several accelerators
in addition to the CPU and a memory hierarchy, and propose innovations to increase performance
and reduce energy consumption.

1.2 Problem Statement, Objectives and Contributions

ASR is usually performed in three major steps (Figure 1.2). (1) First, the signal is broken down
into overlapping fragments and transformed into a sequence of feature frames. (2) Each of these
frames is classified into acoustic tokens by an Acoustic Model (AM). For most current systems, the
AM is a Deep Neural Network (DNN). The classification of the signal into acoustic units performed
by the DNN is not rigid. Instead, the AM classifies the feature frames by generating, for each of
them, a vector of probabilities. (3) The last stage, decoding, generates a transcription from the
acoustic scores. The simplest approach to obtain the transcription takes the tokens with the highest
probability on each frame and chains them together. However, more sophisticated approaches, e.g.
integrating a lexicon and/or a language model, generally result in better accuracy. When a lexicon
or a language model is included, the best scoring transcription can not be obtained by simply
taking the single best token for each frame. Instead, a search algorithm, such as Viterbi Beam
Search, traverses the graph of possible transcriptions (lattice) to find the token sequence with the
best overall score.

Usually, to maximize efficiency, the input utterance is first captured from beginning to end and
then processed. This allows the hardware to maximize data reuse. However, this results in high
word-to-word latency because no output is generated until the entire utterance is captured and
processed. To achieve low word-to-word latency, the input utterance is processed frame-by-frame
(streaming decoding), generating partial transcriptions in real-time. Streaming decoding introduces
an additional challenge by severely limiting the amount of data reuse available for the hardware.
Furthermore, because memory access is the main bottleneck in ASR, the difference in performance
between the two options is significant [107].

As previously mentioned, accuracy has kept steadily increasing during the last few years. How-
ever, the increase in accuracy is accompanied by an increase in model size, which generally results
in higher compute intensity. Contextnet [45] is a 31.4M parameter DNN that achieves 2.4 WER on
librispeech test clean, a speech recognition benchmark, and 2.1 WER when scaled up to 112.7M pa-
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Figure 1.2: Diagram of a generic Automatic Speech Recognition system. First, a raw signal is trans-
formed into features, and then into acoustic scores. The decoder combines the acoustic scores with the
decoding graph to obtain the most likely transcription for the input signal.

rameters. Similarly, The Conformer [39] network achieves 2.3 and 2.1 WER on the same benchmark
with 30.7M and a 118.8M parameters, respectively. Synnaeve et.al [106] train 3 types of networks:
a 500M parameter ResNet that achieves 2.67 WER, a 500M Time-Depth Separable (TDS) net-
work that achieves 2.35 WER and a 296M parameter Transformer [108] network that achieves
2.25 WER. Baevski et. al [15] train a 317M parameter transformer network that reach 2.2 WER.
SpeechStew [19], a 100M parameter DNN, achieves 2 WER, xu et. al [115] achieve 1.7 WER with
a 300M parameter network and zhang et. al [126] achieve 1.5 WER with a 1B parameter network.

Another challenge for on-edge ASR comes from the ample diversity of algorithms. Hybrid
systems rely on a complex decoding graph formed by composing several independent WFST graphs,
including HMMs. On the other hand, E2E systems rely on DNNs and simplify drastically the
decoding graph, or even avoid it altogether. The main types of end-to-end systems are those based
on Connectionist Temporal Classification (CTC) [37] and those based on seq2seq [18]. The main
difference among them resides in the way they expand hypotheses and compute hypothesis scores.

One of the consequences of these three factors: the fast pace of innovation, high computational
cost and vast heterogeneity, is that performing ASR on edge devices is challenging. Consequently,
ASR is usually performed on servers, which provide more than enough compute power for the
task and where ASR systems can be updated easily. ASR is so computationally expensive that
common mobile SoCs are ill-equipped to perform highly accurate decoding within reasonable la-
tency. Hardware acceleration helps in reducing energy cost and latency [120, 107], but, besides
high energy-efficiency, the architecture must be flexible enough to accommodate the heterogeneity
of current and future systems, while being easily programmable.

In this thesis, we analyze state-of-the-art ASR systems and propose low-power architectural
solutions to reduce energy consumption and increase its performance on edge devices. The following
paragraphs summarize the different problems we studied and the solutions we proposed to tackle
them.
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Figure 1.3: Performance of all the utterances in the librispeech test and dev sets decoded by the Kaldi
TDNN ASR system on three architectures: CPU, CPU-GPU and CPU-ACCEL. The left-most plot
shows the time it took to decode each utterance, where the right-most figure shows the Real Time Factor
(RTF). The RTF is the decoding time divided by the utterance time (lower means better).

1.2.1 A Heterogeneous System for low-power ASR

Speech decoding on low-power edge devices is challenging. Figure 1.3 shows the latency for the
execution of an ASR system on a Tegra TX1, first on CPU, and then using GPU acceleration. When
the ASR is executed on the CPU, all utterances are decoded slower than in real-time, with some of
them requiring an order of magnitude longer than real time to decode. When the DNN is accelerated
in the mobile GPU, the performance increases significantly, with most utterances decoded in real-
time. However, since the GPU only accelerates the DNN, those utterances dominated by the Viterbi
Search are not benefited much by the GPU. Consequently, the distribution of latency is broadened.
Some utterances are decoded in as little as 0.2 RTF whereas others take up to 7 times real-time.

The decoder is a Hybrid HMM-DNN system implemented in Kaldi [85]. The Acoustic Model
DNN in this system is a TDNN network [84]. Decoding is performed over a large graph that
combines HMMs, to model tri-phones; a lexicon, to map phonemes to words and a grammar
(Language Model) composed of around 200k words. This graph is referred to as HCLG graph.
In order to alleviate the bottlenecks, we enhance the previous platform with accelerators for the
DNN inference and the Beam Search. This heterogeneous SoC contains an ARM CPU, 4 GB of
DRAM memory, an accelerator for DNN inference and an accelerator for the Beam Search. The
DNN accelerator is based on DianNao [20], a popular systolic-array accelerator for DNN inference.
The Beam Search accelerator is a scaled-down version of the accelerator proposed on [120].

By offloading the most compute-demanding components of the ASR system to specifically
designed accelerators, we overcome the inefficiencies of general-purpose hardware, such as CPUs
and GPGPUs. In this case, the CPU is kept idle during the computation of the DNN inference and
the Beam Search, saving large amounts of energy and accelerating the decoding process. Similarly,
the accelerators are much smaller than the mobile GPU included in the Jetson TX1 board, which
results in significant energy savings. Compared to the CPU-GPU platform, the utterances are
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Figure 1.4: ASR pipeline on the proposed hardware platform.

decoded 4.5x faster on the proposed platform, keeping the latency below 0.5 RTF for all the
utterances in the test set. Additionally, the energy consumption per second of decoded audio is
reduced by 4.3x compared to the CPU-GPU system.

1.2.2 Leverage Run-time Decoding Confidence

Figure 1.4 shows the ASR pipeline executed in our platform. Feature extraction computes
the MFCC vectors from raw audio. The acoustic model TDNN performs inference over those
MFCC vectors to obtain the acoustic scores, which are combined with the scores obtained from
the Language Model (The HCLG graph) to obtain a word lattice. This word lattice can then be
re-scored with an additional language model. However, the improvement in accuracy provided by
the language model re-scoring step is modest when compared to the significant overhead incurred.
For that reason, instead of performing LM re-scoring, we obtain the transcription directly from the
lattice.

At this point, the AM DNN inference is the main bottleneck of the system, accounting for,
on average, 82% of the execution time and 68.3% of the energy consumption. A popular solution
to improve the performance of DNN inference is to decrease the arithmetic precision of the MAC
operations. The arithmetic precision used during training is normally 32 bit Floating Point, but
it can be reduced down to 8 bit integer. However, reducing it further has a significant effect on
accuracy.

In streaming ASR, instead of decoding the entire utterance all at once, or in big batches, the
utterance is decoded in small batches of input frames. This leads to higher energy consumption
due to lower data reuse, but significantly improves word-to-word latency. During streaming ASR,
a small batch of inputs is processed with the AM. Then, the decoder expands the hypotheses,
consuming the available acoustic scores. At this point, the best scoring partial hypotheses can
be shown in the screen to provide the user with real-time decoding feedback. Additionally, other
software components that consume the speech input can start processing the partial transcription
in order to decrease response latency.
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We make a few observations regarding Streaming ASR: First, the number of hypotheses varies
drastically during decoding (Figure 1.5), and second, low accuracy affects different frames dif-
ferently. Specifically, frames with few hypotheses to expand are less sensitive to low arithmetic
precision than frames with higher number of hypotheses to expand. We call the relative number
of hypotheses on each frame run-time decoding confidence. Frames with many hypotheses have low
confidence whereas frames with few hypotheses have high confidence.

We propose a technique that leverages the previous observation to improve performance and
reduce energy consumption. The main idea is to reduce the arithmetic precision for the AM
inference when the confidence of the decoder is high. For that purpose, we keep two AM DNNs in
memory: The first one is quantized to 8 bits and is used during low-confidence frames. The second
DNN is quantized to 4 bits and is reserved for high-confidence frames. To efficiently implement
this technique in the hardware, we design dual-precision multiplication and add-tree units, which
can operate in both 8-bit and 4-bit precision. They are included in the DNN inference accelerator
instead of the regular arithmetic units.

To decide which acoustic model to use for each audio frame, we measure the number of hypothe-
ses generated during the previous decoding step and compare it with a threshold. This threshold
is set by measuring the number of hypotheses generated during the decoding of a sub-set of the
librispeech train set. We first manually set a threshold that would result in 50% of the frames
being scored with the low-precision AM, while the other 50% would be decoded with the high-
precision AM. However, we observe that the percentage of frames evaluated at low-precision does
not match the expected 50%. This is mainly because changing the precision during acoustic scoring
has an impact on decoding, as well. Those frames when the DNN inference for acoustic scoring is
performed in low precision, tend to generate less confident scores, which in turn results in more
hypotheses being generated (less overall decoding confidence). Because of this, a fixed threshold is
not a convenient solution. Instead, we introduce a mechanism to update the threshold in run-time.
This mechanism increases or decreases the threshold depending on the average number of frames
evaluated in low (and high) precision to keep a fixed ration.

We implemented this technique in the heterogeneous system from the previous section, obtain-
ing further savings in energy and increased performance. Supporting the proposed scheme requires
changes in the DNN accelerator, which has to support 8 bit and 4 bit DNN inference and the
Viterbi accelerator, which has to register the number of hypotheses expanded during each decoding
step and update the threshold.

According to our experimental results, this technique results in 16.9% less energy consumption
and a 18.5% reduction in execution time, compared to the baseline platform without run-time
adaptation. By restricting low-precision arithmetic operations to high-confidence frames, we can
keep the accuracy loss below 1% for test clean and 1.35% for test other.

1.2.3 Detect and Remove Ineffectual Computations

Modern DNNs often contain layers activated with Rectified Linear Unit (ReLU) functions [12,
48, 39, 66]. The ReLu activation function [62] is like a high-pass filter. When a neuron generates
a positive value, it is passed to the next layer unmodified. When it generates a negative value, it
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Figure 1.5: Number of hypotheses expanded at each frame during the decoding of 10 seconds of speech.

is clipped to 0. This results in many zeroes being generated.

For example, when decoding with the TDS DNN [84], a DNN for end-to-end ASR, we observed
than more than 80% of the outputs of the neurons are clipped to zero. Given that the DNN accounts
for the majority of the dissipated energy and execution time, this creates a huge opportunity for
optimization.

Several works in the literature propose prediction schemes to detect these zeroes and avoid
ineffectual computations. These predictors detect before whether the input of the ReLU will be
positive or negative. If the output is predicted to be negative, the neuron is not computed. Instead,
a zero is written to memory. There are three main approaches to predict ReLU outputs: Those
based on self correlation [71, 102, 17], i.e. correlation between a neuron and the same neuron
computed in lower arithmetic precision, those based on spatial correlation [98, 97], i.e. correlation
among neurons in the same layer and those based on sub-sampling [10].

In this work, we propose a novel prediction scheme for ReLU activated neurons. Our predictor
is composed of two components and the output of a neuron is only predicted to be negative when
both components agree on that. The two components are: (1) A spatial-correlation predictor that
groups neurons that tend to generate negative values for the same inputs. For every input, it
first computes the output of a representative neuron for each group and predicts that the rest of
the neurons in the group will have the same outcome. (2) A self-correlation predictor looks at
neurons that correlate well with the 1-bit quantized version of themselves. For those neurons, it
first computes the output with 1-bit precision. The sign in the resulting value, adjusted to account
for shifts in the correlation line, is taken as a prediction for the sign of the value computed with
high prediction.

Figure 1.6 shows the results obtained in our experiments with this technique.
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Figure 1.6: Speedup obtained by the mixture-of-rookies technique on a set of DNN tasks.

1.2.4 A Programmable Architecture for ASR

One important challenge for hardware-accelerated ASR comes from the fact that the ASR
system space is heterogeneous and it is evolving fast. Consequently, Hardware support for speech
recognition must be flexible enough to support many different implementations. Otherwise, it risks
becoming obsolete very soon.

However, most proposals in the literature are specific for certain implementations. In this work,
we propose ASRPU, a parallel programmable architecture for ASR. This architecture divides the
ASR process into two phases: (1) Acoustic Scoring, to transform the raw signal into acoustic score
vectors and (2) Hypothesis expansion, to generate new hypotheses from the hypotheses generated
during the previous step.

Acoustic Scoring is implemented by the programmer. The programmer writes a set of programs
that are launched in sequence by an ASR controller. The programmer can specify how many parallel
threads should be launched for each program or it can be determined during run-time via a special
setup program that is launched right before each program from the sequence. Hypothesis Expansion
is implemented by a single program, which is executed several time to expand all the hypotheses
generated by the previous decoding step.

Figure 1.7 shows the architecture of the proposed accelerator. It is divided in three major
components. The execution units contains the programming elements that execute the kernel
threads, the hypotheses unit sorts and prunes the hypotheses generated by the hypothesis expansion
threads and the decoding unit decodes commands and configures the accelerator. The ASRPU
accelerator contains a d-cache shared among all the PEs. During the execution of the acoustic
scoring phase, this memory serves the purpose of a model memory. The programmer can configure
the accelerator to prefetch the model data into this memory.

We implemented a state-of-the-art end-to-end ASR system and estimated how long it will take
ASRPU to execute it. When configured in a 1.8W setup, the accelerator can execute the ASR
system in 2x real-time. This level of performance and the low power consumption makes ASRPU
an excellent candidate to include in edge devices.
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Figure 1.7: Architecture of ASRPU

1.3 Related Work

The literature on hardware acceleration for ASR includes a wide variety of proposals. Some
works propose chips that handle the entire ASR process whereas others assume that the ASR
process is executed by the CPU and propose accelerators to offload the most compute-demanding
components. In this section, we provide a review of related works, focusing on chips for ASR,
accelerators for beam search and DNN inference and techniques to improve the performance of
those accelerators.

1.3.1 Early Proposals

Early proposals related to hardware acceleration for ASR were mostly focused on HMM-GMM
decoders [77, 70, 24]. These systems, generally implemented in CMU’s Sphinx, contain vocabularies
with less than 100k words (e.g. 5k/20k-word Wall Street Journal, 64K-word Broadcast News,...).
More recently, Tabani et. al. [107] proposed an accelerator for the PocketSphinx system, configured
with a 130k word vocabulary and trained with the librispeech benchmark. PocketSphinx is a version
of CMU Sphinx aimed at portability. The accelerator is a 0.94mm2, 110mW chip and provides a
reduction of 5.89x in decoding time and 241x in energy consumption compared to a mobile GPU
baseline. Early HMM-GMM ASR system used to be very popular. However, ASR has gone a
long way since then and now most of the ASR systems are either Hybrid HMM-DNN or end-to-
end. These systems are primarily limited by the performance requirements of large DNNs and
decoding graphs, instead of GMM calculations. In our work, we focus on the challenges of modern
ASR architectures. Large DNNs require billions of MAC operations per second and exhibit huge
opportunities for parallelization, shifting the performance and energy bottlenecks to the memory
access. Also, increasingly large decoding graphs require efficient and adaptable accelerators to
handle them. The proposals in this work are aimed at accelerating modern Hybrid and end-to-end
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systems. Hence, we propose techniques that do not assume a specific system, but instead leverage
untapped properties of ASR systems in general, such as run-time confidence, to alleviate their
bottlenecks.

More modern proposals to accelerate HMM-DNN systems include the work by Price et al. [90].
That work proposes a chip that performs from Voice Activity Detection (VAD) and audio capture, to
Viterbi-based decoding. The area of the chip is 13.18mm2, and consumes 11.27mW (not including
power from off-chip components, such as main memory, which is the main bottleneck according to
our models) while running a 145k word vocabulary benchmark. That work focuses on a single ASR
system, which is thoroughly accelerated. However, the current landscape contains plenty of different
ASR systems. Furthermore, breakthroughs in the ASR field are not uncommon. Consequently, the
main limitation of that work is the rigid design of the chip, that severely restricts its applicability,
as it assumes that the DNN fits in the internal memory and only requires a rather limited set of
operations. During our work, we abstract away many specific details of the ASR system, designing
architectures that support a wide range of systems. For example, in chapters 5 and 6, we propose
techniques to leverage run-time decoder confidence and activation sparsity, which can be observed
in many ASR systems, and implemented in most accelerator architectures. Finally, in chapter 7,
we propose a programmable accelerator that makes very few assumptions about the design of the
ASR system.

1.3.2 Beam Search Acceleration

In Yazdani et.al [120], the authors propose an accelerator to offload the Viterbi Beam search
performed by Hybrid HMM-DNN systems. Viterbi Beam search can account for more than 80% of
the execution time, depending on the ASR system and its configuration. Even when it is executed
on a GPU, its contribution on execution time and energy consumption is significant. UNFOLD [117]
is another accelerator for Viterbi Beam Search. This accelerator, instead of executing the baseline
Viterbi Beam search algorithm, it performs on-the-fly WFST composition to keep the LM separated
from the rest of the decoding graph. This provides substantial saving in memory storage and
memory accesses. Our work expands from these proposals by exploring the challenges of modern
ASR systems. In chapter 4, we include a reduced version of the Viterbi accelerator proposed
in [120] in our heterogeneous architecture, along with an accelerator to offload the DNN inference
and characterize a modern Hybrid ASR system. Our next work (chapter 5) uses the previous
heterogeneous platform and propose changes in both accelerators to leverage run-time decoder
confidence.

LAWS [118] is a technique that also leverages run-time decoder confidence. This technique
modifies the beam search algorithm to include two beam thresholds and chooses one or the other
depending on the decoder confidence. Our approach to leverage decoder confidence is different.
Modern ASR systems are not commonly limited by the performance of the Viterbi search, but by
the performance of the DNN inference. Consequently, we propose a scheme that uses the decoder
confidence to adapt, in run-time, the arithmetic precision used during DNN inference, which results
in significant gains in execution time and energy consumption. Our dual arithmetic units provide
2x the throughput when operating at 4 bits, reducing the execution time, whereas accessing the
4-bit DNN weights reduces DRAM bandwidth by half.
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1.3.3 DNN Acceleration

Modern ASR systems rely on DNN inference for acoustic scoring. The trend of DNNs is
to become increasingly large and complex. Therefore, the contribution of DNN inference in the
execution time and energy consumption of ASR systems is also increasing. Consequently, the
acoustic model DNN is the major bottleneck in most ASR systems. Commonly, highly parallel
computations, such as DNN inferences, are performed in GPGPUs. CUDA [3] and OpenCL [5] are
the go-to frameworks for massively parallel execution on GPU and are leveraged by all the major
frameworks to develop DNNs, such as pyTorch and TensorFlow. However, GPUs, given their
general-programming focus, tend to waste a significant amount of energy and chip area and fail
to leverage properties specific to DNN inference. Therefore, given the current prevalence of DNN
inferences, hardware accelerators specifically designed for DNN inference have become increasingly
popular.

The most common type of accelerators for DNN inference can be classified as either Spatial
architectures or Temporal architectures. The first category includes systolic arrays [31, 55], which
are 1D or 2D arrangements of interconnected compute units. At every time step, every compute
unit receives data from adjacent units (or the input buffer) and generate results that are passed
to other adjacent units or to the output buffer. The compute units for systolic arrays are usually
Multiply-and-Accumulate (MAC) units, which multiply two operands and add the result to a third
operand. The advantage of these accelerators lie in their efficient use of chip area. Compute units
are connected to adjacent units, providing large collective bandwidths and potential for parallel
execution. However, they are limited in that the design is rather rigid. If the size of the DNN does
not match closely the architecture of the systolic array, it incurs in low utilization.

On the other hand, accelerators that implement temporal architectures [20, 73, 21, 4] are more
flexible and thus, we think that they provide a better alternative to accelerate ASR systems. This
thesis further enhances the performance and energy-efficiency of DNN accelerators by leveraging
run-time properties of ASR systems. For example, the scheme in chapter 5 modifies an accelerator
based on diannao, a temporal accelerator, exchanging the arithmetic units for dual-precision units
that can perform either 4 bits or 8 bits operations. By measuring the confidence of the decoder,
we can choose whether to compute the DNN inference in either of the two options.

Other approaches to optimize DNN accelerators leverage either weight sparsity or input/output
sparsity widely observed in DNNs [34, 111]. Sparsity in weights means that many weights have a
value of ’0’. Sparsity in inputs or outputs means that internal results (outputs from internal layers)
are commonly ’0’. Sparsity allows for more efficient representation in memory which in turn results
in more efficient usage of memory bandwidth.

Exploiting weight sparsity is a popular approach to reduce computations and external memory
accesses in modern DNNs. Many works propose techniques based on generating weight sparsity by
zeroing-out less relevant weights [125, 51, 122, 29, 26, 111, 74, 72, 28], which is known as pruning.
This sparsity is leveraged by using a compact DNN representation that does not include zeros, and
including the necessary hardware in temporal accelerators to reconstruct the output.

Related to weight pruning is the idea of exploiting input sparsity [11, 56, 28, 91, 22]. In this
approach, the output of the individual layers is generated in a compact sparse format, similar to
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the format used for pruned DNNs, which seamlessly allows a sparse DNN accelerator [91, 112, 124,
41, 82, 43] to skip more computations.

Other works propose schemes to exploit output sparsity, which is extremely common in ReLU-
activated layers [10, 71, 102, 17, 30]. These works generally perform first an approximated compu-
tation of the dot-product and, depending on the result, decide whether the output will be negative
(and thus, zero after ReLU) or have to be computed in full precision.

Another approach consists on exploiting Spatial correlation [98, 97, 60, 32, 75, 61]. However,
it has been mainly applied for convolutional neural networks (CNNs), where the neurons within
the same layers are correlated since they use the same weights. These works design sophisticated
approaches to exploit spatial correlation in CNNs to save computations. However, those techniques
rely directly on the kind of spatial correlation observed in CNNs and thus cannot be applied to
FC layers, which dominate the computations for many modern DNNs, specially DNNs included
within ASR systems. In chapter 6, we propose a technique to leverage output sparsity. We observe
that there is also spatial correlation among neurons in FC layers, so we leverage spatial correlation,
along with self-correlation, correlation between a neuron and its binary form, to predict when each
specific neuron will generate a ’0’. The main difference with other approaches is that we combine
these two predictor components to build a predictor that works for both CONV and FC layers.

1.4 Document Organization

The remainder of the document is organized as follows

Chapter 2 provides a brief background on Automatic Speech Recognition, introducing all the
technical terms and concepts employed through the document.

Chapter 3 describes the experimental methodology employed throughout this work, including
the models developed and the tools employed to obtain all the measurements and estimations.

Chapter 4 describes a low-power heterogeneous platform for ASR. This platform is composed
of a low-power CPU and 2 accelerators. The first accelerator is for DNN inference and accelerates
the DNN inference for acoustic scoring and the RNN for language model re-scoring, as well as some
computations from feature extraction.

Chapter 5 describes a technique to modify the bit-precision of the acoustic scoring DNN infer-
ence in run-time. In this study, the ASR system decodes utterances in streaming mode, meaning
that the input is evaluated in small batches. For every input batch, the hypotheses are slightly
expanded. The number of hypotheses at any time step is regarded in this work as the decoding con-
fidence. A dynamically set threshold decides whether input frames are scored using high precision
or low precision.

Chapter 6 describes a technique to avoid ineffectual computations from ReLu activated neurons.
Our technique consists of a predictor that combines self-correlation and spatial correlation among
neurons to determine whether neuron outputs will be ’0’ or not. Those predicted to be ’0’ are not
computed, saving energy and boosting performance.
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Chapter 7 describes the architecture of a programmable low-power unit for ASR. This unit
supports a vast variety of ASR systems and provides enough performance for modern ASR systems
to be implemented in low-power devices, such as smartphones. We believe that low-power edge
devices are the perfect framework for ASR use cases. The proposed architecture is a step forward
in the direction of on-edge ASR.

Chapter 8 is a summary of the conclusions extracted during the realization of this thesis. It also
includes a discussion on the limitations of this work and promising directions for future research in
the area of on-edge ASR and, from a wider perspective, cognitive computing.
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2
Background on Automatic Speech Recognition

This chapter provides some background on automatic speech recognition (ASR), including the
relevant algorithms and software tools. The first part introduces the overall speech recognition
process. The following sections describe the two most prominent approaches for ASR: The hybrid
HMM-DNN system and the End-to-End system. Finally, the last few sections provide a brief
description of the software frameworks that are common for building speech decoders and some
benchmarks frequently used for training and evaluating them.

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) [92, 121, 109] is the process of decoding an audio speech
signal (utterance) to obtain a written transcription. Generally, ASR is performed in three steps:
feature extraction, acoustic scoring and decoding. The audio signal is received as a sequence of
amplitude values. During feature extraction, this input signal is divided into frames, which are
then transformed into feature vectors. These feature vectors expose the information from the
signal frames that is more useful for decoding while getting rid of the rest, making them a better
representation of the speech signal than the amplitude sequence. The feature vectors are processed
by the acoustic model (AM) during the acoustic scoring step. The result of processing the feature
frames is a sequence of probability distributions over acoustic tokens. The acoustic tokens can
be designed as either phonemes, characters or others. The decoding step consists of evaluating
different transcription hypotheses to determine which one is more likely to be correct.

The decoding step is performed by traversing a decoding graph from the single start node to
one of the many end nodes. The nodes from this graph represent acoustic tokens and the edges,
potential transitions between tokens. The edges are weighted in proportion to the probability

37



CHAPTER 2. BACKGROUND ON AUTOMATIC SPEECH RECOGNITION

of transition. In other words, if the phoneme /’k/ is usually followed by the phoneme /æ/, the
edge from the /’k/ node to the /æ/ node will have a high relative score compared to the edges
connecting /’k/ to other nodes. The decoding algorithm tries to find the best-scoring path from the
start node to one of the end nodes. Several paths are evaluated at the same time. These paths are
all expanded one node further for every probability distribution vector (generated by the acoustic
scoring step). The score of each path is computed by combining the acoustic score that corresponds
to the newly appended node, the weight of the traversed edge and the accumulated score from the
previous partial path. Once the entire sequence of acoustic vectors is consumed, all the complete
paths (those that reached an end node) from the pool of paths are sorted by their score and the
best-scoring path is chosen as the transcription.

Currently, there are two main approaches to speech recognition [67, 113]: Hybrid ASR and
end-to-end ASR. Hybrid ASR used to be the predominant approach up until recently. However,
due to the increasing availability of training data and the increasing sophistication of the DNN
models used for AM, end-to-end systems soon reached competitive levels of accuracy. Nowadays,
both approaches are present among state-of-the-art systems [7]. However, end-to-end systems are
predominant, probably due to their simplicity, particularly during training.

2.1.1 Feature Extraction

As previously discussed, the first step of any speech recognition system is to transform the input
signal into a sequence of feature frames. Feature extraction is applied in most speech recognition
systems, both hybrid and end-to-end. Different types of features can be employed for speech
recognition [59, 99, 27, 40], for example, Linear Predictive Coding (LPC) or Perceptual Based
Linear Predictive Analysis (PLP). Most of them are supported in the popular frameworks for speech
recognition, such as Kaldi [86] and Wav2Letter++ [87]. However, the most prevalent features are
the Mel-Frequency Cepstral Coefficients (MFCC).

Figure 2.1 shows the algorithm to compute MFCC features [44, 54]. The speech signal is
first broken down into signal frames. These frames usually consist on 25 ms of audio with an
overlap of 15 ms with the previous frame (i.e. a 25 ms sliding frame window with 10 ms shift). In
order to improve the spectral quality of the signal, these frames are generally pre-processed. The
pre-processing usually consists of applying dithering and pre-emphasis on the signal, among other
optional techniques. The next step is to transform the signal frames to the frequency domain via
a Fourier transform. However, since the frames start and end abruptly, the power spectrum will
contain additional high-frequency components that are not part of the original signal. To remove
this effect, the frames are filtered with a Hamming window before the application of the Fourier
Transform. After the signal is transformed into the frequency domain, the frequencies outside the
auditory range are discarded and the rest are squared to obtain the power spectrum.

The power spectrum is filtered with a set of triangular filters centred on equally spaced fre-
quencies in the Mel domain to obtain the mel-frequency filterbanks. Equally spaced frequencies in
the Mel domain correspond to logarithmically spaced frequencies in the linear frequency domain,
as shown in Figure 2.2. The rationale behind using the Mel scale is that it matches the sensitivity
of the human ear closely than the linear frequency scale. The inner ear receptors differentiate more
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Figure 2.1: Algorithm to compute Mel-Frequency Cepstral Coefficient (MFCC).

levels of frequencies in the lower parts of the audible range than in the higher frequencies [104].

Each Mel filterbank corresponds to one of the triangular filters. Normally, 80 of them are
obtained in this step. For each filterbank, the corresponding triangular filter is applied to the
frame and the resulting frequency values are summed together. The result is a vector of 80 values,
one per filter.

The next step is to transform the filterbanks into cepstrals by applying the Inverse Fourier
Transform, or more commonly, the Cosine Transform. Additionally, liftering may be applied to
the MFCC vector.

2.2 Hybrid HMM-DNN

A Hidden Markov Model (HMM) is a statistical model of a system with non-observable states
but observable outputs. The model aims to determine the most likely sequence of states followed by
the system given an observed sequence of outputs. The HMM is represented as a graph composed
of nodes and edges. The nodes represent the different states of the system, and the edges model the
possible transitions between states. The model is defined by its graph topology, which is designed
at the beginning and remains unchanged, and the sets of observation probabilities and transition
probabilities, which are trained from corpus data.

An HMM can be employed as a generative model of speech [92]. In this case, the HMM models
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Figure 2.2: Relation between linear frequency domain and Mel frequency domain.

a system capable of generating speech and moving between different states (i.e. configurations).
When the system is in each specific state, it is producing the particular sound corresponding to
that state, similar to how the larynx and the mouth produce specific sounds depending on their
configuration. For example, assuming a system that emits phonemes, for the system to produce the
signal for the word ”cat” (/’kæt/ ), it has to follow the sequence of states that emit these specific
phonemes. Particularly, it has to start in /’k/, then transition to /æ/ and finally, transition to /t/.
However, the system does not always produce the same signal for the same phonemes. There are
many variations that will be recognizable as the same phoneme. The signal variations are modelled
by the acoustic model (AM). The AM assigns to each state a probability distribution over signal
variations –the probability of observations–.

Given a sequence of observations (sequence of feature frames) and a trained HMM (i.e. the
model contains valid probabilities of observations and transitions), the most likely transcription is
obtained from the most likely sequence of HMM states. If O = (o0,o1,o2, ...) is a sequence of
observations and π = (q0, q1, q2, ...) is a sequence of HMM states (i.e. a path through the HMM
graph), the likelihood of a path, π, given an observation, O, is the probability, p(O|π), of making
the given observation if the system follows that path. The likelihood of each path is obtained by
multiplying the transition and observation probabilities across the complete path.

Prior to the introduction of the hybrid HMM-DNN system, the most prevalent acoustic model
was the Gaussian mixture model (GMM), which consists of a mixture of Gaussian distributions
for each state. In hybrid HMM-DNN models, [121, 16], instead of GMMs, the acoustic model is
implemented through a DNN. By performing inferences over the feature frames with the DNN AM,
we can produce a sequence of vectors, each of which represents a probability distribution over all
the HMM states (posterior probabilities). This DNN has an output neuron for each HMM state.
The value at the output of each of these neurons is the posterior probability of the corresponding
HMM state given the observation (feature vector).

To train the DNN, the utterances must be labelled with HMM-state-level labels. However, that
labelling is specific for each individual HMM system, meaning that no single labelling is universally
useful. The usual process to train a DNN-HMM system starts by training a GMM-HMM system.
After training, the observation and transition probabilities will contain valid values. By decoding a
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Figure 2.3: A Time-Delay Neural Network (TDNN) is a chain of Fully connected (FC) layers whose
input is a concatenation of several outputs from the previous layer. In this example, each layer depends
on the output from the previous layer at t-2, t and t+2. The output of this TDNN at t is computed from
the input window (t-8, t+8), which can be seen by extending the dependencies in this diagram.

set of utterances with this trained system, we obtain the sequence of HMM states that correspond
to the correct transcription for each utterance. These HMM-state-level labels are called alignments.
The objective now is to train the DNN to classify the feature frames into HMM states according
to the alignments obtained from the GMM-HMM system.

Note that by following the previous procedure, the DNN AM learns to generate a probability
distribution over the HMM states. However, as previously mentioned, to calculate the likelihood of
paths, we need probabilities of observation, which are distributed over signal variations. To interface
the DNN and the HMM, the posterior probabilities obtained from the DNN are transformed into
likelihoods (in this case, probability distribution over signals) by application of the Bayes rule

p(ot|qt = s) =
p(qt = s|ot)p(ot)

p(s)
(2.1)

where p(ot|qt = s) is the probability of observing ot while in the HMM state s. p(qt = s|ot) is
the posterior probability given by the DNN. In other words, it is the probability of being in the
state s while observing ot. p(s) is the prior probability of the state s, which is obtained during
training, and p(ot) is the prior probability of observing ot. The last term is usually ignored in the
computation. That is because it does not depend of the path, and thus, for the same observation,
the exact same values of p(ot) are applied to all the paths. Since the likelihood of a path is obtained
by multiplying the observation and transition probabilities across the path, all the paths can be
divided by the priors of observations without changing the relative likelihood between paths.

2.2.1 Time-Delay Neural Network (TDNN)

Many types of DNNs can be used as the acoustic model for hybrid systems [16, 50, 38, 65].
The straightforward option is to use a fully-connected DNN and leverage its massive potential
parallelism for efficient computation. However, fully-connected DNNs usually perform inference
over a single input frame but speech frames are not independent, meaning that information from
neighbouring frames is useful for decoding. Multiple input frames can be concatenated to provide
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Figure 2.4: Example WFST composition between two graphs from Mohri. et al [79]. The button graph
is the result of composing the two graphs at the top. Each node in the composed graph is obtained by
merging a node from each of the input graphs. For example, the node (1,2) is obtained by merging node
1 from the first graph and node 2 from the second graph.

a fixed-sized window. However, the number of weights grows very fast with the size of the input
in that configuration. Recurrent Neural Networks (RNN) provide context information, but their
recurrent nature makes them less efficient during inference due to the self-dependencies of the
recurrent layers, which severely limits their potential parallelism.

Time-Delay Neural Networks (TDNN) stand out as an effective way to provide long context
information to the acoustic model of a hybrid system without the overheads of RNN. The principal
advantage of TDNNs over RNNs is that there are no dependencies between timesteps within the
same layer of a TDNN network. In other words, layers do not depend on their previous executions.
Thanks to that, the amount of parallelism in TDNNs is much higher than in RNNs, making training
and inference significantly faster [84], while providing long context information.

Figure 2.3 provides an example of the dependencies between layers on a simple TDNN network.
In the example, every layer depends on the output from the previous layer in the time-steps t− 2,
t− 1, t, t+ 1 and t+ 2. Additionally, dependencies can be sub-sampled, for example, making some
layers dependent on only t−2, t and t+2. This way, the dependency tree is much sparser, meaning
that significantly fewer executions of the sub-sampled layers are required in order to perform an
inference or training step while keeping the context window equally wide.

The layers in this network are Fully-Connected and there are residual connections [48] between
some of them.

2.2.2 Decoding Graph

The decoder in Hybrid HMM-DNN systems is implemented as a Weighted Finite-State Trans-
ducer (WFST) [78]. A WFST is a graph that transforms a sequence from a set of labels, the source
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language to another, the destination language. For example, a phoneme-to-word transducer will
receive a sequence of phonemes and generate a sequence of words. Each edge in the WFST contains
an input label from the source language, and also an output label from the destination language
and a weight. The algorithm to transform a sequence from the source language to the destination
language is depicted in Figure 2.4. The algorithm traverses the WFST graph starting from a special
node, the start node. Then it reads the first symbol from the input sequence, traverses the edge
with the correspondent input label and generates the symbol from the output label. This process
is repeated for the entirety of the input sequence, traversing edges from the graph and generating
output symbols until the input sequence is exhausted.

In order to generate sequences of different sizes, both input and output edge labels can be
assigned a special symbol, ε. An edge with an ε input label is traversed without consuming a
symbol from the input sequence whereas an edge with an ε output label is traversed without
generating a symbol for the output sequence. WFSTs commonly contain sub-graphs composed
of non-generating edges that either converge or start from an edge that generates the symbol for
the entire sub-graph. For example, a phoneme-to-word graph may contain different pronunciations
for the same word. Each word is a sub-graph. The first edge of the sub-graph (or the last one,
depending on the configuration) produces the word, whereas the other edges consume the different
phonemes but they do not generate any output.

The convenience of WFST graphs comes from the functions defined within the WFST frame-
work to operate with them. Particularly interesting for ASR are: composition, determinization,
weight-pushing and minimization. Composition allows for two graphs to be merged into a sin-
gle graph. For that, the destination language of the first graph must be the same as the source
language from the second graph. Determinization, weight-pushing and minimization are used for
compressing the graph.

Generally, on a hybrid system, the HMMs are represented as a WFST graph, which is then
composed with other graphs to obtain an HCLG decoding graph. This decoding graph is obtained
by composition of four graphs: HMM, context-dependency, lexicon and grammar. The HMM
graph contains the HMM for the acoustic tokens. The acoustic tokens are usually tri-phones,
phonemes with left and right context. The context-dependency graph maps every tri-phone to
the corresponding phoneme. The lexicon graph, or pronunciation graph, contains the different
pronunciations for each word in the dictionary, mapping from phonemes to words. The grammar,
or language model, contains n-grams probabilities, that is, the probabilities of different sequences
of words. The sequence sizes range from one (1-gram) to n (n-gram). For example, a 3-gram
grammar will contain every 1-gram, 2-gram and 3-gram that can be formed from the vocabulary.
The n-gram probabilities are obtained from a text corpus. In order to compress the LM, the less
frequent n-grams are generally not included in the language model.

2.2.3 Viterbi Decoding

Once the sequence of acoustic score vectors is computed (by performing an inference pass with
the Acoustic Model DNN on the feature frames), the target is to obtain the path through the de-
coding HCLG graph that most likely transcribes the input signal, given the transition probabilities
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(embedded in the decoding graph) and the acoustic probabilities. As previously discussed, the like-
lihood of a path is obtained by multiplying together the weights of all the traversed links and the
acoustic scores corresponding to the traversed nodes from the specific input frame. Additionally,
end nodes and word-producing links have additional weights.

The naive algorithm for exploring all the possible paths is extremely expensive. However, the
best scoring path can be efficiently found by using the Viterbi search algorithm. Viterbi search [16]
is a dynamic programming algorithm used to obtain the best path through an HMM graph in a
single pass. The algorithm has a set of active nodes, a set of next active nodes and a list of back-
pointers. Each iteration, the algorithm consumes the next input from the sequence of acoustic
vectors and tries to expand every active node. To expand a node, the algorithm checks all its
reachable nodes and puts them in the next active nodes list. Additionally, it creates an entry in the
list of back-pointers for each reachable node. These entries refer to the partial paths from the start
node to the last explored node. The weight of these paths is computed by multiplying the previous
weight in the path by the weight of the traversed link and the corresponding acoustic score from the
consumed acoustic vector. The key in the Viterbi algorithm is to merge those paths that converge
in the same node at the same time frame. The resulting path will be one of the original paths.
Specifically, the path with the lowest overall score (assuming lower score means higher probability).

This process will generally result in a large number of active nodes expanded at many time
steps and, consequently, long processing times. A modification of the Viterbi algorithm, the Viterbi
beam search algorithm, tackles this problem by defining a threshold. At every time step, those
paths with a score outside the threshold distance from the score of the best path in the active set
are discarded. Additionally, an absolute maximum number of active paths can be fixed. If the
maximum is exceeded, the lowest scoring paths are discarded.

2.3 End-to-End ASR

One of the issues of the Hybrid HMM-DNN system is that in order to train the DNN AM, the
corpus utterances must be aligned, that is, every frame must be labelled with the corresponding
HMM state. Obtaining an HMM-level alignment is not trivial and depends on the HMM itself.
As previously discussed, the process to train DNN AMs consists of training first an HMM-GMM
model, which does not require alignments. This system is then used to produce alignments for all
the utterances in the training set, which are later used to train the DNN.

End-to-End Systems train the DNN from unaligned utterances. That is, the DNN learns the
alignments from scratch. These DNNs will learn alignments that minimize a specific cost function
and not the alignment that an arbitrary HMM model may expect. These End-to-End systems
do not rely on HMMs to decode the system. Instead, the acoustic probabilities are used alone or
combined directly with probabilities obtained from pronunciation and language models.

The DNNs for end-to-end ASR are usually recurrent neural networks (RNN) implemented with
long short-term memory (LSTM) or gated recurrent unit (GRU) layers. More recent proposals
include attention networks and convolutional networks.
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Figure 2.5: Time-Depth Separable Neural Network (TDS).

2.3.1 Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification (CTC) [37] is an objective function used for training
DNNs to label unsegmented data sequences. Prior to CTC, unsegmented utterances were labelled
by an HMM-GMM system. Labelled utterances (alignments) could then be used to train DNNs for
acoustic scoring. CTC DNNs are trained from scratch, with no need for the HMM-GMM system.
Note that end-to-end systems do not use HMM, and thus the alignment labels are not HMM states.
Instead, the labels are the acoustic tokens directly, which can be phonemes, characters or any other
option. For example, word-pieces (WPM) [96] have gained popularity during the last few years
[87, 23, 45, 106, 46].

In a CTC DNN, the output layer is activated with a softmax function, which guarantees that
the output values will comply with the stochastic property (i.e. they all sum to 1), and thus can
be used as a probability distribution. The output of the DNN contains a probability value for each
label and an additional value to represent the probability of observing ’blank’ or no label. During
decoding, the DNN processes the input and produces an output for each input feature vector. Since
the number of output vectors is equal to the number of input vectors and one of the possible outputs
represents the probability of ’no label’, the number of labels in the output sequence is equal to or
lower than the sequence of input feature vectors. Note that, in addition, by applying sub-sampling
in the DNN [84, 46], the number of output vectors can be lower than the number of input feature
vectors.

The output sequence is obtained by removing the repeated consecutive labels and blanks. Note
that many different output sequences will result in the same label sequence. The likelihood of each
label sequence is given by the sum of the likelihoods of all the output sequences that are equal to
it. Section 2.3.3 provides more details about CTC paths.

2.3.2 Time-Depth Separable Neural Network (TDS)

Time-Depth Separable (TDS) neural networks are convolutional networks that are used as en-
coders in encoder-decoder architectures (also called sequence-to-sequence) [105, 46], or as standalone
acoustic models for CTC-based end-to-end systems [89, 106].

The TDS model architecture blocks (Figure 2.5) consist on two sub-blocks, the first one is a
2D convolution over time followed by a layer normalization and the second one is fully connected
block, composed of two fully-connected layers with a Rectified Linear Unit (ReLU) [9] non-linearity
in between, and a layer normalization [14] at the end. Both blocks contain a residual connection [48]
between the input of the block and the input of the normalization.
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Figure 2.6: CTC paths for the word cat within a sequence of 9 time-steps. The arrows represent example
paths. After removing repetitions and blanks (represented by ε, all the paths produce the same word)

2.3.3 Decoding

Decoding in an End-to-End system consists of searching for the most likely sequence of labels.
Figure 2.6 shows the different sequences that can generate the word cat. On CTC, due to removing
repeated symbols and blanks in the output sequence, many output sequences generate the same
transcription. Because of this, the score of a particular transcription is given by the addition of
the score of all the paths that result in that transcription after removing repetitions and blanks.
The score of a path is the product of the acoustic and LM probabilities across the entire path.
During decoding, paths are compared, and if several paths generate the same transcription, they
are merged under the common transcription, summing their scores.

The naive approach for decoding takes the highest-scoring label at each time step and chains
them together, removing repetitions and blanks, to obtain the transcription. This approach, how-
ever, often results in underwhelming accuracy. In order to improve the accuracy of recognition,
additional models, such as pronunciation and language models are usually included in the decoding
process. In this case, the sequence of the best individual labels as given by the DNN will not gen-
erally be the best scoring sequence. In order to obtain the most likely transcription, many different
hypotheses are evaluated in parallel, combining acoustic probabilities with language model proba-
bilities. To avoid the evaluation of an unbearable large number of hypotheses, they are pruned by
means of a Beam Search algorithm.

2.4 LM Re-scoring

An n-gram language model gets large pretty quickly when n is increased. In a vocabulary
with v words, there are

∑n
i v

i potential n-grams. Of course, many of them are extremely rare or
non-existing within a specific language, meaning that even a conservative pruning pass will yield
noticeable results. Additionally, pruning away rare n-grams may result in a significant reduction
of its size. However, it comes at the expense of a non-negligible accuracy loss [106].

In any case, composing a large n-gram LM into the decoding graph always results in a significant
increases in the size of the graph. To get around that issue, ASR systems usually perform two
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decoding passes [93]. The first one is the regular decoding with the decoding graph, but instead
of including a large 4-gram LM, for example, they include a heavily pruned 3-gram LM. This first
pass produces a set of transcriptions, usually in the form of a graph, called lattice. During the
second pass the lattice is rescored by removing the scores from the first-pass LM and adding the
scores from the second-pass LM. This LM can be either a non-pruned 4-gram [106] or a DNN
LM [114, 68].
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3
Experimental Methodology

This chapter describes the experimental methodology followed throughout this thesis. The
first section describes the physical CPUs and GPUs that we use for our experiments and how
we obtain measurements of power, performance and energy consumption. The second section
describes the models we use to estimate chip area, power, performance and energy consumption
of the different accelerators included in our proposals. The third and forth sections describe the
software frameworks and the datasets used to build, train and test the ASR systems studied within
this work.

3.1 CPU and GPU

Our experiments generally evaluate an ASR system executed on a low-power hardware platform.
This platform includes a global DRAM memory, a mobile CPU and one or more accelerators for
ASR. The baseline platforms used for comparison include the global DRAM memory, the same
CPU and, additionally, a mobile GPU to provide acceleration.

To evaluate a baseline execution, we assume that every component of the ASR system is
executed in either the CPU or the GPU. The power, performance and energy consumption are
physically measured from the real hardware executing the ASR system. Our experimental plat-
form is a Jetson TX1 board, which contains 4 GB of LPDDR4 DRAM memory, a CPU with 4
ARM Cortex-A57 MPCores and a mobile NVIDIA Maxwell GPU with 256 cores. The board runs
on Ubuntu 16.04 LTS with no graphical interface. The CPU contains performance and energy
counters to measure different performance metrics and energy consumption. The GPU also con-
tains performance and energy counters. Linux drivers, such as Nvidia-smi, provide access to these
registers via linux commands or direct integration in the source code of the ASR system via library
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function calls.

Apart from the CPU and the GPU included in our experimental platforms, we performed
executions and measurements in several other computers available, usually in a server with 64GB
of DDR4 RAM memory, an Intel Core i7-7700K CPU and an Nvidia GeForce GTX1080 GPU with
2560 cores and 8GB of GDDR5X memory.

3.2 Hardware models

In addition to the base platform, all of our proposals include one or more hardware accelerators.
The DNN accelerators and the Viterbi accelerators are modelled through cycle accurate simulators.
These models simulate the execution of the ASR algorithms from the beginning to the end and
provide a cycle count, as well as the activity of the different components, such as the number of
reads and writ

In addition to the base platform, all of our proposals include one or more hardware accelerators.
The DNN accelerators and the Viterbi accelerators are modelled through cycle accurate simulators.
These models simulate the execution of the ASR algorithms from the beginning to the end and
provide a cycle count, as well as the activity of the different components, such as the number of
reads and writes of a memory component and the number of each arithmetic operation performed on
a processing element. Depending on the level of abstraction applied for the implementation of the
accelerator, it may also provide functional verification. This is the case of the Viterbi accelerator.
For the other accelerators, functional verification is performed separately. For some high level
estimations, we use ScaleSIM [94] and analytical models.

Performance is estimated by taking the cycle count reported by each simulator and multiplying
it by the clock frequency of the simulated accelerator. Some components can be executed in
parallel, whereas others follow a serial execution. Data dependencies and synchronizations among
different components of the system (accelerators, CPU...) are taken into account to estimate overall
execution time.

To estimate chip area and power of the accelerators we rely on several tools. The PEs of the
ASRPU are modelled with McPat [69] and all the SRAM memories are modelled with the modified
version of CACTI [80] included in McPat. These tools reports chip area, access latency, minimum
access cycle time, leakage power and the energy cost of both read and write operations. The global
DRAM memory is modelled with the Micron TN5301 LPDDR4 System Power Calculator [76],
using the parameters to model the Z91M package. The model requires the configuration of certain
parameters, such as the ratio of write, read and idle cycles and provides static and dynamic power.
To model the rest of the components, we implement each of them separately in Verilog and then
synthesize them using Synopsys Design Compiler with the Saed32hvt cell library. Design Compiler
provides estimations for chip area and minimum clock period. It also provides power estimations.
However, the default assumptions of the tool are generally not very accurate, as stated in the
documentation of the tools. Instead of relying on that estimation, we simulate the post-placement
circuit with valid random input data and capture the activation factors. Then we use Power
compiler to estimate average static and dynamic power during the simulations. Additionally, this
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simulation provides a functional verification for the components.

In our experiments, we add together the static power of every hardware component in the
platform unless specifically noted. To estimate dynamic energy, we multiply the average dynamic
power reported by Power compiler by the cycle time to obtain the average energy consumption
when the unit is performing operations. Ultimately, we obtain power and energy estimations by
combining the static power of each component, the energy of each operation (memory accesses and
arithmetic units), the activations obtained from the cycle-accurate simulators and the execution
time.

3.3 Programming frameworks

Kaldi [86] and wav2letter++ [87] are among the most popular software frameworks for building
automatic speech recognition systems.

Kaldi is the reference framework to build HMM-GMM and hybrid HMM-DNN systems. It is
written in C++ and released under Apache v2.0, a free source licence, which makes extending the
code possible for anyone with expert knowledge on ASR and programming. However, extending the
code is not necessary for many use cases. Most of the functionality is provided by binaries that are
chained together using bash statements. ASR systems in Kaldi are built, trained and deployed by
writing bash scripts. WFSTs are supported via an external library, OpenFST. DNNs are supported
via native code built from BLAS/LAPACK functions for efficiency and performance. Kaldi is
flexible enough to allow for arbitrary HMM and DNN topologies. It also includes several feature
extraction implementations, including MFCC, and some techniques for speech pre-processing and
speaker adaptation. It can be used to build both streaming and non-streaming ASR systems.

Wav2letter++ [88] is a framework focused on end-to-end ASR systems. It is written entirely
in C++ and released under the MIT license. Wav2letter is a component of Flashlight, a library for
DNN training and inference. Flashlight is built on top of ArrayFire, a library for tensor operations.
Wav2letter supports arbitrary DNN topologies and both CTC and seq2seq end-to-end systems.
The Beam search decoding supports the possibility of including a lexicon and an LM. Graph-based
and DNN-based LM are supported. All the Wav2letter systems rely on MFCC features, but the
framework provides a wide degree of freedom to modify the parameters of the algorithm.

On this work, we do not propose any new ASR algorithm. Instead, we studied several ASR
systems that are proposed in the scientific literature and that are available in any programming
framework and performed modifications when needed. For example, on each work we decided
whether to perform n-gram LM rescoring, RNN LM rescoring or no rescoring at all. In this thesis
we focus on two main ASR systems. The first two works are focused on a Hybrid DNN-HMM system
implemented in Kaldi. The scripts to build, train and test this system were already available in
kaldi, and most of the techniques included in that system were described in the scientific literature.
We used the scripts included in Kaldi to train the model and built our own binaries to test it.
We performed other minor modifications to the Kaldi code to perform measurements and quantize
the DNN models, among other things. The last two works are focused on an end-to-end model
provided in the Wav2letter++ framework. In this case, the trained models were already available
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in the website of the wav2letter++ project and we did not have to train them. As in the previous
case, we built several binaries and scripts to test the system and perform experiments and slightly
modified the wav2letter++ source code to perform measurements and quantize the models.

3.4 ASR Benchmarks

ASR accuracy is frequently measured in Word Error Rate (WER) or Label Error Rate (LER).
WER measures the word-level edit distance between the transcription given by the decoder and
the ground truth, divided by the number of words in the ground truth, and thus giving a relative
error ratio. LER is the same idea, but at the label level, instead of the word level. The labels are
phonetic units recognized by the acoustic model. In a hybrid system, the labels are HMM states,
whereas in a end-to-end system they can be triphones or characters, among others. It is often
useful when evaluating end-to-end systems.

There are many speech corpus and benchmarks commonly referenced in the literature. Among
the most common ones we have: Librispeech [81], TIMIT [35], Switchboard [36] and WSJ [83].
The ASR systems characterized in this thesis are trained and evaluated in Librispeech. Librispeech
is a compilation of 1000 hours of speech, obtained from publicly available audiobooks (from Lib-
rivox [58]). The corpus is segmented into 7 sets. Train-clean-100, train-clean-360 and train-other-
500 are training sets, dev-clean and dev-other are the evaluation sets used during training, whereas
test-clean and test-other are the test set used to measure and report the performance of trained
systems.

The different sets are labelled as either “clean” or “other”. To obtain that classification,
the authors of librispeech divided the corpus in two, according to the WER obtained during a
preliminary decode performed by a system trained on the WSJ corpus. Those utterances with
higher WER were labelled as “other” and the rest, as “clean”. The different sets are labelled
according to the type of utterances they contain.

Nowadays is common to augment existing train sets by modifying the utterances or by includ-
ing utterances from other train sets. For example, to train many of the systems in wav2letter++,
librispeech is extended with unlabeled utterances from LibriVox, which are included via an unsu-
pervised learning procedure. Language models in wav2letter are trained via Librilight [57], which
also contains utterances from both librispeech and Librivox.
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A Low-power Heterogeneous Platform for ASR

This chapter presents our first work on hardware acceleration for ASR. In this work, we study
an HMM-DNN hybrid ASR system and propose a heterogeneous architecture to provide real-time
performance on a limited power budget. The platform is based on a market-available SoC, which we
enhance with two accelerators. These accelerators undertake the execution of the most compute-
demanding components of the ASR system. Our estimations show that the accelerators enable
real-time decoding by reducing latency by 4.5x while reducing energy consumption by 4.3x in
exchange for a negligible overhead of 3.6 mm² in chip area. We start the chapter with an in-deep
description of the ASR system. Next, we describe the hardware platform, including the architecture
of the accelerators. Finally, the last section consists of a discussion of the proposed platform.

4.1 TDNN system

The objective of this work is to study the challenges in automatic speech recognition when
restricted to a very tight power budget, and then propose an heterogeneous platform equipped with
the necessary hardware to achieve real-time decoding.

The first step is to choose an ASR system that represents the state-of-the-art in speech recogni-
tion. To that aim, we chose one of the hybrid DNN-HMM systems available in the Kaldi framework.
This system contains a TDNN network as acoustic model and performs continuous speech recogni-
tion with a large vocabulary of over 200k words. It provides very competitive recognition accuracy
in Librispeech, both in test clean and in test other and is not as demanding, from a computation
stand-point, as other comparable systems. Throughout this work, we refer to this system a the
TDNN ASR system or TDNN system.

As already mentioned, the ASR system that we chose is a hybrid HMM-DNN system. Ac-
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Table 4.1: WER obtained by different state-of-the-art systems on the Librispeech Corpus

system E2E LM test clean test other

Human - - 5.83 12.69

DeepSpeech2 [12] Yes 5-gram 5.15 12.73

wav2letter++ [123] Yes Conv 3.44 11.24

Jasper DR 10x5 [66] Yes Transformer-XL 2.95 8.79

pFSMN-Chain [116] No TDNN-LSTM 2.97 7.5

TDNN No TDNN-LSTM 3.67 9.76

cordingly, the transcription hypotheses are obtained by traversing an HMM graph and the acoustic
scores are obtained by performing a DNN inference. As described in chapter 2, the decoding process
with a hybrid ASR system starts by computing a sequence of feature frames from the utterance.
In this case, each feature frame consists of 40 MFCCs obtained from a 25 ms window of the signal
shifted by 10 ms for each frame. MFCC frames are complemented with 100-dim i-vectors to provide
speaker adaptation. The acoustic model receives the feature frames and computes acoustic score
frames. This acoustic scores represent likelihoods over the HMM states. The acoustic model in this
system is a TDNN network composed of 24 fully-connected layers, 12 of which are activated by a
ReLU activation function followed by a batch normalization layer, whereas the rest do not use any
activation function. The TDNN AM contains a total of 18M parameters and requires 773M MACs
to decode a second of audio. The input of the TDNN AM consists of 3 feature frames (40 MFCCs
each) appended to a 100-dim i-vector and it generates a 6056-dim acoustic score vector.

Decoding is performed by running a Viterbi beam search over an HCLG graph that combines:
3-state HMMs, a 200k word lexicon and a pruned 3-gram language model. The HMMs in this
system model triphones. During decoding, the Viterbi search produces a hypotheses lattice, which
is re-scored by using a DNN language model before extracting the final transcription. The DNN
language model is composed of 3 TDNN and 2 LSTM interleaved layers and a FC output layer.
The input and output of the TDNN-LSTM LM are 1024-dim word embeddings. Lattice rescoring
is performed as explained in section 2.4. Both the AM and the LM DNNs are quantized to 8 bits.

4.1.1 Recognition Accuracy

The TDNN system is trained and tested in Librispeech. Table 4.1 shows its WER compared
to other hybrid and e2e ASR systems. It also includes the accuracy of human transcribers [12] as
an additional reference point. The pFSMN-Chain system included in the table is also implemented
in Kaldi. The main difference between pFSM-Chain and TDNN is that pFSMN-Chain employs a
special CNN network, called Piramidal CNN as Acoustic Model, while the TDNN system relies
on the TDNN network previously described. We decided to use the TDNN system because TDNN
networks are better known and simpler than the pyramidal CNN used in pFSM-Chain. Further-
more, the transcription accuracy of both is very similar, so we think that the TDNN system is a
good representation of state-of-the-art hybrid systems.
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Table 4.2: Memory requirements for the models of the ASR system.

Component Memory (MB) Percentage (%)

Mfcc 0.68 0.07

I–vector 17.95 1.77

Decoding 180.8 17.85

Acoustic Model 16.17 1.6

Language Model 16.12 1.59

Word Embeddings 781.28 77.13

TOTAL 1013 100

4.1.2 Memory

The TDNN system includes two DNNs, a decoding graph, a few matrices for the MFCC
and i-vector computations and a word embedding table that maps each word to its embedding
representation.

Table 4.2 shows the size of each component. The size of the two DNNs, along with the matrices
for MFCC and i-vector is only 50.9 MB of memory. The decoding graph, after applying aggressive
LM pruning and WFST minimization, occupies 180.8 MB, which is very reasonable for a low-
power system. The structure that accounts for the majority of the memory footprint is the Word
Embedding Table, which is the data structure that maps each word to its embedding representation.
This table accounts for 77% of the memory footprint is only used during the language model
rescoring phase, which is an optional component of the ASR system, and thus can be avoided.
However, language model rescoring seems to provide considerable gains in accuracy, so we decided
to keep it for this work. Even thought the embeddings table is by far the biggest contributor to
memory footprint, it is only accessed sparsely, resulting in a minimum impact in memory traffic.

4.2 Hardware Platform

This section describes the baseline hardware platform that we chose in order to model a low-
power system and the accelerators included to achieve real-time ASR. The baseline system consists
of a mobile CPU, a DRAM memory, and a mobile GPU. On top of this platform, we include two
accelerators. The first accelerator performs DNN inference and the second accelerator performs
Viterbi beam search. These accelerators match the ASR algorithms closely, avoiding the overheads
of more generic circuits.

Figure 4.1 shows a diagram of the ASR system executed on the platform. Before decoding, all
the models are loaded to the DRAM memory, where they are kept throughout the entire process.
The DNN accelerator performs the TDNN and LSTM-TDNN inferences, as well as all the vector-
matrix and matrix-matrix operation from the feature extraction step, such as the Discrete Fourier
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Figure 4.1: High level diagram of the complete system.

Transform and the Cosine transform. The Viterbi accelerator receives the acoustic scores and
performs the beam search, traversing the decoding graph, to obtain the transcription lattice. By
using these accelerators, the CPU is freed from the most compute-intensive operations, relegating
its role to the orchestration of the accelerators and the computation of the operations that are not
well suited for them, e.g. some operations from the i–vector computation.

4.2.1 DNN accelerator

The DNN accelerator included in our patform is based on DianNao [20], which is a very
simplistic and efficient design, very well suited for the kind of DNNs included in the TDNN system.
Figure 4.2 is a diagram of the DNN accelerator. It consists of a Neural Functional Unit (NFU ) and
several on-chip buffers. The NFU contains all the units required to perform the DNN computations,
including an array of adders and multipliers, in addition to special function units to compute the
activation functions. The NFU is a pipeline of 3 stages: NFU-1 contains an array of multipliers
to multiply each DNN weight with its corresponding input, NFU-2 consists of an add-reduce tree
that sums together the resulting values from NFU-1, and NFU-3 contains the special function units
to compute the activation functions. Additionally, each NFU stage can be segmented to enable
higher clock frequencies. To scale up the design, each NFU pipeline is duplicated Tn times. During
run-time, each NFU computes the output of a neuron, allowing for the computations of Tn neurons
at the same time.

Regarding the internal memory, it is composed of three SRAM memory buffers: SB, to store
the DNN weights; NBin, to store the inputs, and NBout, to store the outputs. These buffers feed
data into the NFU. Each SRAM buffer has a DMA that can be used to fetch data in advance,
thus hiding the latency of accessing DRAM. Each cycle, the NFU requires Tn inputs and Tn ∗ Tn
weights and generates Tn outputs. Consequently, the width for both NBin and NBout is Tn values,
whereas the width of SB is Tn ∗ Tn values.

The working principle of the accelerator is as follows: First, inputs are loaded into NBin and
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Figure 4.2: Architecture of the DNN accelerator based on DianNao [20]. In addition to the Neural
Function Unit (NFU), it includes three on-chip buffers to store inputs (NBin), weights (SB) and outputs
(NBout). The main configuration parameter is Tn, which sets the number of parallel neurons and parallel
synapsis per neuron in the NFU. Tn also determines the port width of the memories.

DNN weights are loaded into SB. Each cycle, Tn values from the same input vector are broadcasted
to all the NFUs. At the same time, Each NFU receives Tn weights from the same neuron. Each
NFU computes a different neuron, meaning that SB provides Tn ∗ Tn DNN weights, Tn weights
for each of the Tn neurons.

A neuron may have thousands of inputs, whereas in the hardware we have in the order of tens
of multipliers. Because of that, NFU-3 is idle while NFU-1 and NFU-2 iterate many times through
the input and weight blocks, accumulating the partial result of the neuron. Only when the entire
neuron has been computed, NFU-3 computes the activation function for the neuron.

The accelerator contains a Control Processor with an additional buffer to store instructions.
The control processor fetches instructions from the instruction buffer, decodes them, and generates
the control signals for the NFU and the DMAs of the different SRAM buffers. These instructions are
the interface between the accelerator and the rest of the SoC. The instruction format contains fields
to specify all the parameters required by the matrix-matrix operations available in the accelerator,
such as the location of the DNN weights and inputs, their sizes and the activation functions.
Moreover, the accelerator can be commanded to reuse the DNN weights or inputs that are already
in the accelerator from the previous execution. Thus, reducing memory traffic by maximizing data
reuse.

4.2.2 Viterbi Accelerator

The Viterbi search is a graph-processing algorithm that generates sparse and unpredictable
memory accesses. On every iteration, it expands the active nodes of the highly irregular decoding
graph by traversing their output links. During this operation, only a small fraction of the graph

57



CHAPTER 4. A LOW-POWER HETEROGENEOUS PLATFORM FOR ASR

Figure 4.3: Architecture of the viterbi accelerator. It consists of: several Issuer components to load/store
data from/to the main memory, each with an associated cache memory; an additional module to compute
the likelihood of the paths and two hash memories to keep the active tokens for the current and the next
frame.

is accessed. Therefore, the Viterbi Beam Search is not well suited for execution on highly-parallel
hardware, such as GPUs or the previous DNN accelerator. Furthermore, it is not a good fit for
the CPU either, as caches exhibit poor hit ratios due to the irregular memory accesses. To achieve
high-performance and low-power Viterbi search, we included the accelerator described in [120],
which is very well suited to execute the Viterbi beam search, and thus provides high performance
and energy efficiency.

Figure 4.3 illustrates the architecture of the Viterbi accelerator. It consists of several mod-
ules: The State Issuer reads an active token and fetches the corresponding node in the decoding
graph from DRAM. The Arc Issuer receives the node fetched by the State Issuer and obtains its
output links. Nodes and links are independently cached to exploit temporal locality. The Acoustic
Likelihood Issuer reads the acoustic score associated with the links from the Acoustic Likelihood
Buffer, which contains all the acoustic scores for the current frame. The next component is the
Likelihood Evaluation. It computes the cost of traversing each of the output links and generates the
new potential hypotheses. The Token Issuer receives the new hypotheses and either discards them
or stores them in the hash memory to continue expanding the paths in the next frame, depending
on whether the costs are within the beam or not.

The accelerator contains two hash memories to store the hypotheses for the current and the
next frame. These hash memories are swapped, with no memory transfers at the beginning of each
frame. If the hypotheses do not fit in the hash memory, they are sent to a reserved space in DRAM,
labelled as Overflow buffer. Besides that, all the hypotheses generated during each frame are stored
in another region of DRAM where they can be accessed to extract the final hypothesis or lattice.
The original design from [120] stores independent hypotheses. In order to obtain the lattice, we
had to slightly modify the accelerator to store additional data.
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Table 4.3: Characteristics of the CPU

Frequency 1.7 GHz

CPU ARM Cortex-A57

Number of Cores 4

Cache 32+48 KB L1, 2 MB shared L2

Table 4.4: Characteristics of the GPU

Frequency 1 GHz

Architecture Maxwell

Number of Cores 256

Cache 48 KB L1, 256 KB L2

Table 4.5: Parameters for the DNN accelerator

Technology 28 nm

Frequency 55 MHz

Bitwidth 1 Byte

Weight Buffer (SB) 64 entries, 16 KB

Input Buffer (NBin) 64 entries, 1 KB

Output Buffer (NBout) 64 entries, 1 KB

Tn 16 values

To deal with the sparse and irregular memory accesses, the Viterbi accelerator includes an
area-effective solution based on the Decoupled Access-Execute paradigm [101]. After the pruning
step, the addresses of all the arcs that will be accessed during the next iteration are computed in
advance and the memory requests are issued early to hide the memory latency.

4.3 Experimental Results

Tables 4.3 and 4.4 show the characteristics of the CPU and the GPU included in the baseline
system. The CPU contains on 4 ARM Cortex-A57 cores operating at 1.7GHz. The GPU is a 256-
core NVIDIA Maxwell mobile GPU. The board also contains 4 GB of LPDDR4 DRAM memory.
However, instead of the 4 GB included in the board, we model a baseline with 8 GB of LPDDR4
DRAM memory.

Our heterogeneous platform contains the same CPU and DRAM memory. However, instead
of the GPU, we include the accelerators described in the previous sections. Table 4.5 contains the
configuration of the DNN accelerator. After testing different configurations, we finally configured
Tn, the parameter that scales the buffers and the NFU, to 16. This configuration provides enough
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Table 4.6: Parameters for the Viterbi accelerator

Technology 28 nm

Frequency 600 MHz

State Cache 128 KB, 4-way, 64 bytes/line

Arc Cache 256 KB, 4-way, 64 bytes/line

Token Cache 128 KB, 2-way, 64 bytes/line

Acoustic Likelihood Buffer 64 KB

Hash Table 768 KB, 32K entries

Memory Controller 32 in-flight requests

State Issuer 8 in-flight request

Arc Issuer 8 in-flight request

Token Controller 32 in-flight request

Acoustic Likelihood Issuer 1 in-flight arc

Likelihood Evaluation Unit 4 FP adders, 2 FP comparators

performance to execute the TDNN system in real time with very low area and power overhead over
the complete system. In order to reduce the size of the accelerator, we shrank the arithmetic units
from 16-bit to 8-bit. Additionally, we reduced the clock frequency from the 0.98GHz specified
in the DianNao paper to 55MHz, which removes the need to segment the NFU pipeline stages.
This clock frequency is enough for real-time execution of the TDNN system while largely reducing
the power and memory bandwidth requirements, making the solution more amenable for low-power
mobile systems. We estimate the area of the DNN accelerator to be 0.3mm2 using 28 nm technology
nodes.

The Viterbi accelerator is configured as shown in Table 4.6. Compared to [120], we shrank
the size of the caches and hash tables, reducing the area from 24mm2 to 3.34mm2. This large
reduction in on-chip memory has a small impact on performance since the decoding graph included
in the ASR system is significantly smaller than the one used in [120]. Note that the accelerator
in [120] was designed for a single-pass ASR system that includes a more complex decoding graph
for Viterbi search. However, our ASR system includes a rescoring pass with an TDNN-LSTM
language model after the Viterbi search. Due to this rescoring pass, the decoding graph in the
TDNN system can be largely reduced while maintaining accuracy, even though it includes a larger
vocabulary. Specifically, the graph in [120] contains a vocabulary of 125k words and has a size of
618MB whereas the decoding graph of the TDNN system contains 200k words and only occupy
181MB.

To evaluate the performance of the different components of the ASR system, we retrieve in-
formation from several sources. Measurements of energy and execution time during the execution
in CPU were obtained from hardware performance counters. The DNN and Viterbi accelerators
are modelled with cycle-accurate simulators in order to obtain the execution time of the ASR
components executed in them and the activity factors of the different hardware components. To
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Figure 4.4: Cumulative distribution of the RTF for all utterances in the test set. The plots correspond to
the execution of the kaldi system on the 3 hardware architectures: CPU, CPU-GPU and CPU-ACCEL.

estimate power and maximum clock cycle of the DNN and Viterbi accelerators, we relied on sev-
eral tools. First, we used CACTI to estimate area, energy consumption and access time for the
on-chip memories of the accelerators. Second, we implemented the different pipeline components
in Verilog and synthesized them using Synopsys Design Compiler. The maximum frequency was
set according to the minimum time required to propagate the signal through the logic components
and memories, as reported by Synopsys Design Compiler and CACTI, respectively. To estimate
total energy consumption, we obtained the activity factors from the cycle-level simulators and the
energy cost of each operation and memory access from Synopsys Design Compiler and CACTI. The
8GB DRAM memory was modelled using Micron TN5301 LPDDR4 System Power Calculator [76]
with the parameters from Micron’s Z91M package.

4.3.1 Execution Time

We estimate execution time and Real Time Factor (RTF) by computing the time required to
execute each component of the ASR system on the hardware it is mapped to. All the parts mapped
to the CPU were measured directly by internal counters. Parts of the ASR system mapped to the
accelerators were simulated to obtain cycle count, and then the number of cycles was multiplied by
the cycle time of the specific accelerator to obtain execution time.

To analyze the gains achieved by using custom hardware, three alternative architectures were
studied and compared. Figure 4.4 shows the RTF distribution among the utterances, plotted as
cumulative frequency. CPU and CPU-GPU are the baseline platforms. CPU refers to executing
all the processes on the CPU, whereas CPU-GPU executes all the highly parallel computations on
the GPU (TDNN and RNN). CPU-ACCEL refers to our platform. It consists of the same CPU
as the baseline platform, but, instead of the GPU, we include the aforementioned accelerators and
execute the ASR system as described in section 7.1. The x axis is the RTF, whereas the y axis is the
percentage of utterances decoded on at the specific RTF or lower. In RTF, lower is better. An RTF
value lower than 1 means that the process is executed faster than real-time. We can draw two main
conclusions from Figure 4.4. First, using custom hardware provides an important performance
improvement (around 4.5x improvement compared to the GPU based system), and it is key to
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Figure 4.5: Execution time breakdown for the different ASR components obtained on the 3 hardware
architectures. For each architecture, the three bars represent the utterances at percentiles 0, 50 and 100
in the RTF plot (Figure 4.4).

efficiently guarantee real-time for all utterances. Second, most of the utterances lay in a narrow
region of RTF, especially for the CPU-ACCEL system, with some important outliers (around 10%
of the test utterances in our experiments) laying very far from that region. A direct consequence
of this high variability is that a system dimensioned to guarantee a specific performance for the
worst case would be highly oversized for most of the utterances. However, these outliers represent
real scenarios that cannot be ignored.

Our heterogeneous platform meets the real-time constraints for all the utterances in the Lib-
rispeech test set (more than 2k utterances and more than 5 hours of speech), achieving real-time
factors of about 0.05x RT on average and 0.09x RT in the worst case.

In order to study the bottlenecks in execution time, we chose several utterances that represent
different percentiles of RTF. More specifically, we sorted the utterances in ascending order of RTF
and chose those located at the percentile 0, 50 and 100. Figure 4.5 shows the breakdown of
execution time by ASR component for the three representative utterances. Additionally, the figure
shows those three utterances executed on the baseline hardware. For each hardware platform, the
bars represent the three selected utterances at percentile 0, 50 and 100. This figure clearly explains
the large variability of execution time. The execution time of the utterances close to the 100%
percentile is by far dominated by the TDNN-LSTM LM rescoring phase, which is also computed on
the DNN accelerator. By looking at the lattice generated after decoding those utterances, we see
that the lattice obtained after decoding the utterance at the percentile 100% occupies 281KB and
requires 1507 RNN evaluations, whereas the lattice for the utterance at 0% occupies only 326 B and
requires just 1 RNN evaluation. Utterances like those near the percentile 100% are very challenging
to decode. Because of that, the Viterbi search has to explore a larger number of alternative paths,
generating a larger lattice. The difficulty at decoding an utterance has an important impact on
LM rescoring, which makes this component the main source of the RTF variability as shown in
Figure 4.4.
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0.0001 0.001 0.01 0.1 1
0

20

40

60

80

100

4.3x

Energy per Frame (J)

C
u

m
u

la
ti

ve
p

er
ce

n
ta

ge

CPU-ACCEL CPU-GPU CPU

Figure 4.7: Cumulative distribution of the energy per frame for decoding for all utterances in the test
set. The plot shows the energy for the execution on the 3 hardware platforms: CPU, CPU-GPU and
CPU-ACCEL.

4.3.2 Power Consumption

Figure 4.6 shows the average power dissipated by the ASR system broken down into the different
components of the TDNN ASR system. As we can see, the peak power is very close to 2.5W , reached
during the computation of the i–vector. Note that computing the i–vector requires the use of the
CPU, the most power demanding hardware component in our system, whereas for the rest of the
time the CPU is mostly idle. During the Viterbi computation, the DNN accelerator is power gated,
so the power shown in the bar includes the power dissipated by the Viterbi accelerator, the CPU
in idle mode and the main memory, resulting in 519mW . The rest of the components, i.e. MFCC,
TDNN and RNNLM, are computed almost exclusively on the DNN accelerator, while the Viterbi
accelerator is power-gated and the CPU is idle, so the corresponding bars show the power dissipated
by the DNN accelerator, the CPU in idle mode and the memory. The average power is slightly
above 1W , where most of it (about 95%) is due to the main memory, which is intensively accessed
(4.1.2).
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Regarding the energy consumption per utterance, our estimations show that decoding in our
platform requires 4.3x less energy per frame than using the CPU-GPU system (Figure 4.7). As
shown in Figure 5.1, most of the energy (71.3%) consumed by our platform is due to main memory.
A 26.5% is consumed by the CPU, and the rest (less than 3%) is consumed by the accelerators.

All those results show that the proposed ASR system can be integrated into low-power devices
due to its low area and power budget.
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Leverage Run-time Beam Search Confidence

In the previous chapter, we describe a low-power heterogeneous platform designed to perform
highly accurate ASR in real-time. In this chapter, we explore a mechanism to perform DNN infer-
ence using 4-bit arithmetic precision to further increase performance and energy efficiency during
ASR decoding. We observe that some frames are more resilient than others, and consequently, we
can decode those resilient frames with a 4-bit AM DNN without causing a severe impact on WER
and then use the baseline 8-bit AM DNN to decode the rest of them.

5.1 Analysis of Bottlenecks

In this section, we analyze the main performance and energy bottlenecks of the Kaldi ASR
system when it is executed in the hardware platform described in the previous chapter.

As described in the previous chapter, the ASR system is a Hybrid DNN-HMM system. It uses
MFCC features enhanced with i-vectors for speaker adaptation. The AM is a TDNN network and
the decoder is an HCLG graph built from a 200k word vocabulary and a pruned 3-gram language
model, along with an HMM. The AM TDNN is quantized to 8 bits. The hardware platform consists
of a low-power ARM CPU and 8GB of LPDDR4 DRAM complemented with two accelerators: one
to perform DNN inference and another to perform Viterbi Beam Search.

5.1.1 Energy Bottleneck

Figure 5.1 shows the breakdown of energy consumed by each of the components of the hard-
ware platform. Most of the energy (85%) is consumed by the DRAM memory. The rest of the
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Figure 5.1: Breakdown for energy consumption during ASR evaluation on the mobile SoC presented in
Section 4. Chart (a) shows the energy breakdown among hardware components during the AM evaluation.
Here, it can be seen how reads and writes from the DRAM are responsible for most of the consumed
energy, whereas chart (b) shows the energy breakdown by ASR component, where the clear bottleneck is
the Acoustic Model TDNN evaluation, whereas

energy (about 15% of the total energy consumption) is consumed by the CPU and the accelerators.
Chart 5.1(b) shows the breakdown of the energy consumed during the execution of each of the ASR
components. The most expensive parts are the acoustic model and the i-vector computation, which
account for 68% and 29% of the total energy consumed, respectively. The acoustic model is entirely
executed in the DNN accelerator whereas the i-vector is mostly executed in the CPU with some
parts offloaded to the DNN accelerator. We determined that the reason the AM consumes so much
energy is that it is responsible for the majority of the DRAM traffic. Even though the DNN models
are much smaller than other data structures, such as the embedding table and the decoding graph,
the DNN models have to be read entirely many times per second whereas the other structures are
only sparsely accessed. DRAM accesses during AM DNN inference account for 58.1% of the total
energy consumed. Furthermore, we have identified that 99% of the memory accesses during TDNN
evaluation are for reading DNN weights.

5.1.2 Performance Bottleneck

Regarding the execution time, AM DNN inference is also the main bottleneck as it takes 82%
of the execution time. The Feature Extraction and the Beam Search account each for 14.8% and
3.2% of the execution time, respectively.

5.1.3 Optimize DNN inference

It is clear from the previous results that accessing the AM DNN is the main performance and
energy bottleneck. The issue is that the DNN is too large to be kept inside the SRAM memory of
the DNN accelerator, and thus has to be read many times per second from DRAM memory.

A well-known optimization to alleviate this bottleneck consist of pruning the network by an
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Figure 5.2: Comparison of the WER loss respect to the non-quantized model for various levels of quan-
tization. While quantizing to 8 bits has a small impact on WER, more aggressive quantization sensibly
degrades accuracy

iterative process of removing some weights and retraining. This approach results in a sparse net-
work, which can be significantly smaller than the dense network. However, the pruning algorithm
is expensive, and the inference with a sparse network requires important changes in the DNN
accelerator.

Another well-known technique to alleviate this bottleneck is aggressive DNN quantization.
However, quantizing to less than 8 bits results in an important degradation in recognition accuracy,
making it a bad solution. Figure 5.2 shows the WER for test clean and test other evaluated with
the TDNN acoustic model at different levels of quantization. While 8 bits results in minor accuracy
loss compared to full precision, going to 4 bits increases the WER by 49% in test clean and 61% in
test other, and if the weights are quantized to 2 bits, the system does not work, generating invalid
transcriptions.

In this work, we explore decoding with a 4 bit quantized AM DNN. However, in order to
minimize the negative effect on transcription accuracy, we follow a dynamic approach where we
employ the 4-bit DNN only for selected frames, whereas the rest are decoded using the 8 bit
quantized AM DNN.

5.2 Dynamic DNN Precision

As discussed in Section 5.1, fetching the DNN weights from main memory takes a large per-
centage of the total energy consumption. Quantizing the DNN is an effective technique to reduce
the energy consumption derived from DRAM accesses. However, reducing DNN precision below 8
bits results in a significant accuracy loss. Therefore, we take a different approach and propose to
quantize the AM DNN at two different levels of quantization: 8 bits and 4 bits.

However, determining in advance which frames require more or less precision is a challenging
problem. In this work, we propose to look at the number of hypotheses expanded during the Beam

67



CHAPTER 5. LEVERAGE RUN-TIME BEAM SEARCH CONFIDENCE

40 60 80 100
6

7

8

9

Percentage of Frames

W
E

R

random
low tok

(a)

40 60 80 100
16

18

20

22

24

Percentage of Frames

random
low tok

(b)

Figure 5.3: WER for a varying percentage of frames evaluated at low precision for a) test clean and b)
test other. The curves represent the cases when the frames for low-precision evaluation are those with
less number of tokens (high confidence), and when they are chosen randomly.

Search. Figure 5.3 shows the relation between the WER and the percentage of frames decoded
using the 4 bit AM DNN. The x axis shows the percentage of frames decoded with the 4 bit AM
DNN (the rest are decoded with the 8 bit AM DNN), whereas the y axis shows the resulting WER
after decoding the benchmark with the related percentage of frames decoded with the 4 bit AM
DNN. The blue line (random) shows the WER obtained when the 4 bit AM DNN is used at random
times, whereas for the red line (low tok), we chose the 4 bit AM DNN when there are not many
expanded hypotheses. For that purpose, the number of hypotheses expanded during each decoding
step is tracked and compared to a pre-set threshold.

According to our results, using the 4 bit AM DNN when there are not many hypotheses in the
system seems to have a smaller effect on WER. Consequently, we can leverage the advantages of
using an extremely quantized AM DNN while minimizing the effect on WER if we use the 4 bit
AM DNN exclusively when there are few expanded hypotheses. When there are few hypotheses,
we say that the decoder has high confidence. When there are many hypotheses, we say that the
decoder has low confidence and call the following input frames low confidence frames.

We detect low confidence frames by keeping track of the number of hypotheses expanded
during each decoding step and comparing it with a threshold. Setting this threshold, however, is
not trivial. A simple option would be to track the number of hypotheses expanded during the
decoding of the train set used to train the ASR model and set the threshold according to the
desired ratio. However, we have observed that the threshold obtained with this method does not
result in the desired ratio of low confidence frames when decoding a benchmark set. Figure 5.4
shows the ratio of frames classified as low confidence frames when using different static thresholds.
To obtain the threshold values, the train set was entirely decoded using the 8-bit AM DNN, then
we sorted the frames according to the number of hypotheses expanded by Beam Search and chose
the number of hypotheses at the 30, 50 and 70 percentiles. The number of hypotheses expanded
at those percentiles was set as threshold and then we decoded the test clean and test other sets
with the different thresholds. The ratio of frames classified as low confidence by the thresholds in
the test sets does not match the expectation by a wide margin, implying that this approach to set
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Figure 5.4: This plot shows the ratio of frames classified for low precision computation in our technique
when using a fixed threshold. To obtain this threshold, the train set is evaluated at high precision. Then,
all the frames are sorted according to the number of hypotheses expanded during Beam Search. The
threshold value is chosen from the number of hypotheses expanded at different percentiles. As we can
see, the desired ratio is not achieved in the test sets.

0 2,000 4,000 6,000 8,000

0.1

0.3

0.5

0.7

0.9

1961883

Num. Tokens

P
er

ce
n
ta

ge
o
f

F
ra

m
es

8-bit
4-bit

Figure 5.5: When low precision is used, the number of tokens expanded during Beam Search generally
increases.

the threshold is not very reliable. This may be because a frame decoded with the 4 bit AM DNN
will likely result in different hypothesis scores and even different hypotheses being expanded, which
affects the behaviour of the beam search during the decoding of the subsequent frames.

We observed that, generally, using an aggressively quantized AM DNN result in more hypothe-
ses being expanded. In other words, it reduces the overall confidence of the decoder, which is
consistent with the observation made by Yazdani et. al [119]. Figure 5.5 shows the cumulative
frequency of frames from test clear and test other according to the number of expanded hypotheses
when the DNN is computed always at 8-bits and when it is always computed at 4-bits. In this case,
the percentile 50 for the test set evaluated at 8-bits is at 883 tokens, whereas when the test set is
evaluated at 4-bits, it is at 1961 tokens. It is clear from the figure that when the acoustic model is
evaluated at lower precision, the overall number of hypotheses expanded per frame increases.
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Figure 5.6: Threshold value computed by the proposed heuristic compared with the number of tokens
expanded by Beam Search. The plot shows a span of 1.2 million frames at 1

1000 sampling rate.

5.2.1 Dynamic Threshold Computation

We propose an algorithm to perform small run-time adjustments to the threshold. This algo-
rithm aims at 50% of the frames classified as low confidence frames. For that, we keep a variable,
h, that contains the difference between the number of frames classified as low confidence and those
classified as high confidence. The heuristic tries to keep h at 0 by increasing or decreasing the
threshold when h is higher or lower than 0, respectively.

To avoid the threshold from oscillating wildly, we define an additional variable, hl, which also
contains the difference between frames classified as high and low confidence, but it is constrained
to a window of the latest frames. This tells us if h is increasing or decreasing, as well as the
approximated speed at which it is changing. If hl > 0, we assume that the number of frames at low
precision is increasing. If the opposite is true, i.e. hl < 0, we assume that the number of frames
evaluated at low precision is decreasing. With these values, we update the threshold (Th) using
the following formula:

Th =

{
Th−∆ h > 0&hl > 0

Th+ ∆ h < 0&hl < 0
(5.1)

When the system has classified more frames as high confidence than low confidence and the
tendency goes towards increasing high confidence frames, the heuristic decreases the threshold by
∆, so it is more difficult for frames to be classified as high confidence frames. On the other hand, if
it has classified fewer frames as high confidence frames, both globally and in the local window, the
threshold is increased, so more frames are classified as high confidence. Both ∆ and the starting
value of Th are parameters of the system. To avoid using floating-point arithmetic, ∆ is an integer
value, and we introduce another parameter to regulate the number of frames between consequent
threshold updates.

This heuristic means that the threshold is going to fluctuate. To put the amplitude of the
threshold oscillations into perspective, we can compare it with the number of hypotheses expanded
per frame (Figure 5.6). Since the oscillations in both values are orders of magnitude apart, we can
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Figure 5.7: Schematic of the multiplier unit included in our design. Light grey arrows represent half-
precision values. This unit receives two full-precision values, which are interpreted as one full-precision
and two half-precision values when operating in half-precision mode.

conclude that the proposed heuristic leads to a well stable threshold.

5.2.2 Changes to the DNN Accelerator

To implement the described technique, we quantize the weights from the full-precision Acoustic
Model into two levels (8-bit and 4-bit), which we keep stored in memory. On each frame, depending
on the number of hypotheses expanded by the Beam Search during the previous decoding step, we
command the DNN accelerator to use either the 8 bit or the 4 bit AM DNN.

The 4-bit model is half the size of the 8-bit model, which results in half the time required to read
the model from the main memory while using the same bandwidth between the accelerator and the
DRAM memory. To take advantage of that in the most efficient way, we modified the accelerator
so it can perform computations in base precision or half-precision with the same hardware, so we
can double the number of operations per cycle when operating in 4-bit mode, with small area and
power overheads over the baseline design.

The DNN accelerator now has to support two different modes of operation: base-precision and
half-precision, which in this case means operating at 8 bits or 4 bits.

One of the main parameters of the accelerator is Tn, which configures the number of NFUs and
the NFU vector size. In the baseline design, each NFU carries out the computation of a different
neuron, whereas the NFU vector size enables to compute in parallel several inputs for that neuron.

Without loss of generality, we assume a configuration of the DNN accelerator with Tn = 16,
using 8-bit weights for base-precision mode and 4-bit weights for half-precision mode. Hence, during
the full-precision mode, the DNN accelerator computes 16 neurons in parallel, and for each of those,
16 parallel inputs. To do so, it receives 16× 16 weights and 16 inputs each cycle.

For half-precision mode, however, the accelerator receives 32 × 16 weights and 16 inputs per
cycle (i.e., 32 neurons are computed in parallel), that is, the size of the input buffer is the same as
in the baseline design. We decided not to quantize the inputs to half-precision because we found
it has an important impact on WER for a small benefit on performance. During half-precision
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Figure 5.8: Schematic of a basic add-tree (5.8(a)) and our duplex add-tree when operating in half-
precision mode (5.8(b)). In the latter, each arrow represents a half-precision value.

mode, we partition each CU so it computes 16 inputs for 2 × 16 neurons. In this case, each CU
receives 2× 16 half-precision weights and 16 base-precision inputs. In this solution, we still have to
modify the multiplication units to support both base-precision (one 8-bit×8-bit multiplication) or
half-precision (two 8× 4 multiplications). However, since in half-precision mode we are computing
two neurons at the same time at each compute unit, every two multiplications share the same 8-bit
input operand. We design our multiplication units to support both the multiplication of two base-
precision operands or two half-precision operands multiplied by the same base-precision operand.
Figure 5.7 shows a diagram of our multiplication unit.

Since in half-precision mode each CU accumulates two different neurons, the add-tree must be
able to perform one base-precision accumulation of 16 values or two half-precision accumulations
of 16 values each. For that purpose, we modify the adders in the tree so the transmission of
the carry from one half to the other is conditioned on the mode of operation. By doing this
simple modification, when the add-tree operates in half-precision mode, each adder operates as two
independent adders, and thus the complete tree is unfolded in two separated trees, as shown in
Figure 5.8.

Additionally, since we are merging different levels of precision, the bit-width of the adder units
has to be carefully set to avoid arithmetic overflow.

The activation unit performs the neuron activation function after all the neuron inputs have
been accumulated. Since this unit is only used at the end of the neuron evaluation, and the
accelerator is alternating the computation of several neurons (to leverage temporal locality of
inputs), there is plenty of time from one activation to the next, and thus the activation unit only
requires support to serialize the output from the compute unit when operating in half-precision
mode. A similar argument applies to the output buffer.

72



5.3. EXPERIMENTAL RESULTS

5.2.3 Changes to the Beam Search Accelerator

To compute the threshold updates following the proposed heuristic, we introduce some modifi-
cations in the Beam Search accelerator. First, it has to count the generated tokens on each search
step and keep track of the threshold, Th, and the variables h and hl used by the heuristic. To this
end, we modify the Token Issuer to include a few adders, a very small buffer for the hl window,
and a register for each variable, resulting in a negligible area overhead.

With these modifications, the Token Issuer keeps track of the threshold and the number of
tokens expanded during each Beam Search step. After each step, the number of expanded tokens is
compared with the threshold, and the required precision is exposed to the DNN accelerator. When
a new frame is captured and transformed into a Feature Vector, the DNN accelerator computes the
inference for that frame in the required precision.

5.3 Experimental Results

In this section, we evaluate the speedups and energy savings achieved by our dynamic DNN
precision scheme based on Beam Search confidence. The baseline system is the mobile SoC platform
described in Chapter 4. It includes a multicore ARM CPU, a DNN accelerator and a Beam Search
accelerator. We have implemented our scheme on top of this SoC as described in Section 5.2.

In order to implement our technique, the baseline accelerators require some modifications.
More specifically, the DNN accelerator must support two operation modes: base-precision and
half-precision, whereas the Beam Search accelerator has to compute the heuristic and keep track
of the threshold. These modifications, made as described in Section 5.2, result in a negligible area
overhead of 3.1% over the baseline accelerators. In the final setup, the DNN accelerator occupies
an area of 0.42mm2, split between buffers (25.5%), MULT arrays (62.6%) and AddTrees (11.9%),
whereas the Beam Search accelerator occupies 3.34mm2.

Since we keep an additional DNN model (AM quantized to 4 bits) in DRAM memory, our
solution incurs a small memory footprint overhead. However, the additional model is fairly small,
increasing the memory footprint by just 3.8%.

In the current setup, the average power of the complete system, including CPU, DRAM and
the accelerators is 1.17W (3.3% increase over the baseline).

5.3.1 Performance Gains of Dynamic Precision AM

Since our heuristic modifies the threshold slowly, during a single utterance evaluation it does
not change by a large extent, and thus, although for a long run the number of frames decoded
with the 4 bit AM DNN converges to 50%, individual utterances are decoded with different ratios.
Figure 5.9 shows the distribution of utterances according to the percentage of frames evaluated
with the 4 bit AM DNN. Most of the utterances fall between 40− 60%, but a few of them decode
more than 80% of their frames using the 4 bit AM DNN, resulting in huge local performance gains
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Figure 5.9: Frequency of utterances (vertical axis) grouped by the percentage of their frames computed
at low precision (horizontal axis).

and energy savings.

Figure 5.10 shows the savings obtained from the proposed technique compared to the evaluation
on the baseline platform. Both for energy and time, three cases are plotted: the Worst Utterance,
the Best Utterance and the Test Set Average. The Worst and Best utterances are chosen regarding
the percentage of frames evaluated at half-precision. We can see how even in the worst case,
significant savings are achieved.

By applying our technique, we can save up to 47.2% of energy and reduce the execution time
up to 47.4% for the Acoustic Model evaluation on utterances where the decoder confidence is high
for most of its frames. On average, our scheme reduces energy consumption by 25.6% and execution
time by 25.8% when evaluating the complete test set.

Since the 4 bit Acoustic Model DNN is half the size of the full-precision (8-bit weights) network,
whenever a frame is evaluated at low-precision, we save half the reads from the main memory. Op-
erating at half-precision results in significant speedups for two reasons. First, the Neural Function
Units (NFUs) are modified so they can operate at double throughput in half-precision mode with
negligible hardware overheads. Second, the DNN accelerator is memory bound since data reuse is
largely limited in TDNN networks and, hence, reducing half of the reads from main memory results
in large performance improvements. Therefore, the execution time for Acoustic Model evaluation
is reduced by approximately one half during low-precision frames.

On the other hand, the reduction in energy consumption is also mostly explained by the
reduction in reads from off-chip memory. As detailed in Section 5.1, off-chip reads of the acoustic
model weights are the main bottleneck of the system, contributing to 85% of the energy consumed
during Acoustic Model evaluation. Another source of energy savings comes from the reduction in
static energy consumed by the rest of the components during the time that the Acoustic Model is
being evaluated. Since around 50% of the total number of frames are evaluated at low precision,
the observed savings of around 25% in time and energy during Acoustic Model evaluation are
consistent.
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Figure 5.10: Energy consumption (a) and execution time (b) normalized to the baseline. The bars in
each plot represent: Worst Utterance, Best Utterance and Test Set Average for the baseline and proposed
scheme respectively.

When we take into account the complete ASR system, the savings obtained in the acoustic
model evaluation translate to an average reduction in energy consumption of 16.9% and a reduc-
tion of 19.5% in execution time (Figure 5.10). As discussed in Section 5.1, when the low precision
acoustic model is employed, the average confidence of the Beam Search is decreased, which trans-
lates to a decrease in the performance of the Beam Search when our technique is used. Consequently,
the energy and time consumed by the Beam Search are generally increased with respect to the base-
line. However, even for the worst cases observed in the test sets, the benefits exceed the overheads,
resulting in a net improvement in performance for all the utterances.

5.3.2 Effect on Accuracy

As discussed in Section 5.1, quantizing the AM DNN to 4 bits results in major degradation of
transcription accuracy. However, by restricting the use of the 4 bit AM DNN to high confidence
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Figure 5.11: Sensitivity analysis of the percentage of frames set as target for low precision evaluation.
The curves represent the WER obtained when some percentage of frames is evaluated in low precision
for test clean (a), and test other (b).

frames, we managed to minimize the WER loss. Our experiments show that by using the heuristic
proposed in section 5.2.1, we can use the 4 bit AM DNN to decode 50% of the frames incurring in
less than 1% absolute WER loss for test clean, and 1.35% for test other.

In order to select a target for the percentage of frames computed at low precision, we performed
a sensitivity analysis, modifying the target percentage from 0% (every frame in high precision) to
100% (every frame in low precision). Figure 5.11 shows the relation between WER and savings.
Note that the time and energy savings are proportional to the percentage of frames evaluated at
low precision. If some percentage of frames, x%, is evaluated in low precision, we save around x/2%
of time and energy during the DNN evaluation. The figure shows a curve with an elbow around
x = 50% for both cases: test clean, and test other. Choosing this target grants a significant gain
with negligible WER loss.
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6
Predicting ReLU outputs to Skip DNN Computations

Hybrid HMM-DNN ASR systems such as the TDNN system studied in previous chapters obtain
high-quality transcriptions by overcoming some of the limitations of HMM-GMM systems. However,
their training process is complex and rely heavily on expert knowledge. End-to-end systems aspire
to overcome those limitations by removing the HMM models and focusing on the DNN. These
DNNs often contain ReLU activation functions. ReLUs generate abundant sparsity during run-
time, creating huge opportunities for optimization. This chapter describes a technique to predict
which ReLU-activated neurons will output a value of 0 before computing the dot product. Skipping
these neurons during inference results in fewer data movements and computations, and thus reduces
latency and energy consumption. This technique, which we call Mixture-of-Rookies combines two
prediction components to leverage self-correlation and spatial correlation among neurons, resulting
in a very efficient, highly accurate predictor.

6.1 TDS System

For this work, we focus on one of the end-to-end ASR systems that obtain state-of-the-art
accuracy in the librispeech benchmark. Specifically, we focus on a variation of the system proposed
by Pratap. et al [89]. Throughout this thesis, we call that system the TDS system. It contains a
156M parameter acoustic model DNN composed of TDS blocks. This acoustic model DNN requires
2 B MACS to decode each second of audio. Each input frame is an 80-dim MFCC vector computed
from a 25 ms window of audio shifted by 10 ms for each consecutive frame. It is trained as a CTC
DNN. The output of the DNN is a score distribution among 9997 labels. These labels contain
word-pieces generated from the SentencePiece toolkit [63] and the CTC blank label.

Decoding is performed by traversing a lexicon tree, or trie, that contains all the combinations
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(a) Building block for TDS neural network.
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(c) Building block for Resnet.

Figure 6.1: Building blocks for different DNNs.

of word-pieces to form the 200k words in the vocabulary. Every time the acoustic model DNN
generates an output, the decoder expands the hypotheses, traversing the trie one step further for
each of them. Each hypothesis also traverses an n-gram language model. Every time the decoder
reaches a trie node that represents a word, it traverses the language model graph one step further
and includes the LM score in the score of the hypothesis. To account for out-of-vocabulary words,
every time the decoder reaches a non-word node in the trie, it generates a hypothesis that considers
the partial word at the head of the hypothesis a potential out-of-vocabulary word and includes a
score in the hypothesis that represents that posibility. Furthermore, in order to generate all the
hypotheses in the CTC path, the decoder tries to append the blank label to each of the hypotheses,
as well as the previous label, to account for repetitions, in addition to all the reachable labels in
the trie.

6.2 ReLU Activations in DNNs

Earlier proposals [77, 70, 24] focused on GMM based recognizers, with CMU’s Sphinx as an
usual software baseline, and vocabularies with less than 100k words (e.g. 5k/20k-word Wall Street
Journal, 64K-word Broadcast News,...). More recently, Tabani et. al. [107] proposed an accelerator
for the PocketSphinx system, configured to ed by an FC layer.

Diagrams 6.1(b) and 6.1(c) show very common building blocks for CNNs. Particularly, di-
agram 6.1(c) describes the structure or ResNet, a popular CNN for image recognition tasks. In
these cases, the ReLu layers are often preceded by a batch normalization function [53], which is
computed as follows:

o =
dotprod(

−−−−−→
weights,

−−−−→
inputs)− µ

σ
∗ γ + β

where µ and σ are the mean and standard deviation of each dot product in the training dataset,
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whereas γ and β are learnable parameters.

Additionally, the second ReLU in the ResNet block is preceded by a residual connection which
adds together the output of a Batch normalization layer and the input of the block. In essence, we
identify four major layer types: FC+ReLU, CONV+ReLU, CONV+BatchNorm+Residual+ReLU
and CONV+BatchNorm+ReLU.

Figure 6.2 shows how the Multiply and Accumulate (MAC) operations are distributed accord-
ing to the type of layer (FC+ReLU, CONV+ReLU, CONV+BatchNorm+Residual+ReLU and
CONV+BatchNorm+ReLU) in different popular DNNs. In the TDS model for speech recognition,
CONV and FC layers with ReLU represent 6% and 40% of the operations respectively, whereas,
in DarkNet19 and CNN10, two CNN for image recognition, more than 98% of the MACs are in
CONV layers with batch normalization and ReLU. Finally, in Resnet18, CONV layers with batch
normalization and ReLU represent 48% of the computations, whereas 52% of MACs are performed
in CONV layers that also include residual connections. Therefore, to be widely applicable, a ReLU
output predictor must support CONV and FC layers and provide accurate predictions in the pres-
ence of batch normalization and residual connections.

6.3 ReLU Output Predictor

In this work, we propose Mixture-of-Rookies, a technique to predict whether the input of ReLu
is negative or positive. useful for neurons with a ReLU activation function, that is based on a
combination of predictors with negligible overhead. This scheme exploits the synergies between
different sources of information, improving prediction accuracy.

More specifically, we first leverage self-correlation by binarizing the DNN and using the bina-
rized network to predict the outcome of the neurons, and then we exploit spatial correlation with
a novel approach that generates clusters of neurons according to the angle between their weight
vectors. An advantage of this approach is that the predictor is not based on any property specific
to a class of DNNs, instead, it is a general technique applicable to a wide range of them.

Mixture-of-Rookies consists of 2 stages. First, an offline stage performs two tasks: a) profiles
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the self-correlation of neurons, and b) generates clusters by grouping together neurons that share
the same inputs and have the property that for any given input vector, either all the neurons in a
cluster will produce a zero output or all of them will produce a non-zero output. Second, an online
stage performs value prediction for the neurons during inference to avoid computing neurons whose
ReLU activation function is predicted to produce a zero value.

Regarding the offline tasks, our technique employs a subset of training samples to perform
a linear regression between binarized and base precision dot products in CONV and FC layers,
obtaining a fitted line for each neuron. Besides, it groups the neurons of the same layer based on
the similarity property described above and selects one neuron from each cluster to represent the
whole group.

During DNN inference, Mixture-of-Rookies evaluates first the representative neuron for each
group at base precision. If it generates a zero ReLU output, all the other neurons in the group are
evaluated using 1-bit inputs and weights and the fitted line for each neuron is used to estimate the
base precision ReLU output. If the estimated output of a neuron using this approach is also zero,
then all the computations and memory accesses for this neuron are skipped and its output is set
to zero. Otherwise, the neuron is computed using base precision. In other words, a neuron ReLU
output will be predicted to be zero if and only if both prediction schemes agree on that. The next
subsections provide further details on our predictor.

Leverage Self-correlation

The Mixture-of-Rookies predictor exploits the linear correlation between the ReLU input of a
neuron computed in full precision and the ReLU input of a binarized version of the same neuron.
We binarize neurons by simply taking the sign bit of its weights [25]. Exploiting this correlation,
we build a predictor of each neuron’s output by computing the dot-product of its binary weight and
input vectors and predicting the dot-product of these vectors in full precision (i.e., the ReLU input)
using this correlation. This approach has several advantages. First, the dot-product between 1-bit
valued vectors does not require multipliers, simplifying the hardware to a large extent. Second,
since the 1-bit weights are obtained from the sign bits of the full precision weights [100], they do
not incur any memory footprint overhead since they do not have to be stored separately, but can
be obtained directly from the full precision weights.

Figure 6.3 shows the ReLU inputs for a sample neuron from the TDS DNN in base (8-bit)
precision (y-axis), versus the ReLU inputs for the binarized version of the neuron (x-axis). As it
can be seen, there is a high linear correlation (correlation factor of 0.78). However, the sign of
the ReLU input for 1-bit cannot be used as an estimation of the sign for the ReLU input in base
precision, as a high linear correlation does not imply that the signs match. For example, points in
the bottom-right quarter of Figure 6.3 are positive in the binarized version but negative in base
precision. To mitigate this problem, we perform a linear regression and use the fitted line to obtain
an estimated ReLU input from the binarized value. That is, we compute the coefficients of this
fitted line and use it to transform the output of the binarized dot-product into the expected output
of the base-precision dot-product.

Figure 6.4 shows the distribution of different levels of correlation among neurons for our bench-
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Figure 6.3: ReLU inputs for binarized neuron (x-axis) versus ReLU inputs for base precision neuron
(y-axis).

marks. Even though most neurons exhibit a high correlation, a significant number of neurons have
moderate or even low correlations. This observation is consistent with the observations made by
Anderson et al. [13] and more recently, Silfa et al. [100]. A predictor based on 1-bit weights for
a neuron with a low self-correlation coefficient is expected to make frequent mistakes, and conse-
quently, reduce the overall accuracy of the DNN. Therefore, our predictor scheme is only enabled
for neurons that show a high linear correlation with their binarized versions.

Mixture-of-Rookies performs a pre-processing stage on the trained model to extend each neu-
ron’s parameters with three additional ones: correlation coefficient (c), slope (m) and y-intercept
(b) of the fitted line. These parameters are computed by using a randomly selected subset of the
training dataset. Using this training subset, for each neuron, we obtain two series of data: ReLU
inputs at 8-bit and 1-bit precision. We then compute the Pearson correlation factor (c) between
the two series and perform a linear regression to obtain a fitted line y = mx+ b. Parameters c, m
and b are saved in the DNN together with the weights.

During DNN inference, each neuron is processed as follows. The correlation factor c is first
fetched from memory. If c is lower than a threshold T , then the neuron is evaluated in base
precision. Otherwise, the binarized dot product result, pbin, is computed, and the fitted line is used
to obtain the estimated base precision result p̂base = m∗pbin+b. If batch normalization and residual
connections are used, then p̂base is transformed by using the batch normalization parameters of the
base precision neuron, and the residual input is added. If the resulting estimated ReLU input is
negative, a zero ReLU output is predicted, skipping the evaluation of this neuron. Otherwise, the
neuron is evaluated in base precision.

Since some neurons have low self-correlation with their 1-bit counterparts, using 1-bit predic-
tors for the entire network will incur significant accuracy loss. Note that incorrectly predicting a
ReLU output as zero will result in accuracy loss, as incorrect neuron outputs will be used, whereas
incorrectly predicting an output as non-zero results represent a lost opportunity for saving compu-
tations but it has no impact on accuracy since in this case, the neuron is evaluated in base precision.
To avoid accuracy loss, we leverage the aforementioned T threshold and only apply our prediction
scheme for neurons whose correlation is higher than T . We use the training data to set appropriate
values for T for each DNN, and verify its correctness using the unseen test data set. Note that
T can be used to control the trade-off between computation savings and accuracy: the higher the
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Figure 6.4: Distribution of neurons according to the Pearson correlation coefficient of the binary and
base-precision ReLU inputs.

threshold the lower the accuracy loss but the smaller the savings.

Figure 6.5 shows the effect that different thresholds have on the accuracy loss and percentage
of operations saved for our set of DNNs. Each line corresponds to a different DNN, and each point
is obtained by using a different threshold T for linear correlation. The threshold is reduced from 1
(the first point on the left for each line) to 0.6 (the last point on the right). As it can be seen, the
correlation threshold has a high impact on accuracy and percentage of savings. Furthermore, despite
all the efforts to avoid incorrect predictions, the binarized predictor provides modest savings, 12% of
computations for CNN10 and much less for the other networks, if accuracy loss is maintained. Lower
thresholds result in larger savings, but at the cost of introducing a significant amount of errors, as
the correlation between binarized and base precision neurons is lower. This study concludes that
the binary predictor alone can provide very low benefits, and this motivates our proposal for a
hybrid predictor.

Previous work proposed to use several bits [17], i.e. 4-bits, to improve self-correlation. How-
ever, we argue that 4-bits results in a significant overhead, and we propose in the next subsection
an alternative solution that exploits spatial correlation to avoid mistakes done by the binarized
predictor while incurring negligible overhead.
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Figure 6.5: Effect of the correlation-based threshold on accuracy loss and percentage of operations saved
for different DNNs.

Leverage Spatial Correlation

Our Mixture-of-Rookies predictor includes another scheme that exploits correlation among
neurons with the same input vectors. This scheme aims to identify groups of neurons that share
the same input vector and whose outputs are either all zero or all non-zero. In this manner, only one
representative neuron of each group is evaluated during inference and, if it produces a zero output,
the rest of the neurons of the group are assumed to produce a zero output without evaluating them.
If the representative neuron produces a non-zero output, all neurons in the group are evaluated
normally.

The key challenge is to identify a minimum set of groups with high zero/non-zero correlation
among them. To this end, we analyze the relation between the angle of any two vectors to model
the probability that the dot product between both of these vectors and a given third vector will
result in values with the same sign. Since the sign of the dot product depends only on the angle
between the operand vectors, we can assume a distribution for the third vector and model the
probability of having same-sign results as a relation between said angle.

Given two vectors A and B, the dot-product between them is expressed as:

A ·B = |A| × |B| cos θ (6.1)

Where θ is the angle between A and B.

Since |A| and |B| are positive quantities, the sign of the result is given by the sign of cos θ, so it
is entirely determined by θ. For convenience, we can limit the study to angles in the range [0, 180]
(θ is the small angle between the vectors) and conclude that the output will be negative only when
θ is below 90◦.

sign(cos θ) =

{
+ if θ < 90◦

− if θ > 90◦
(6.2)

Note that the dot-product between 2 perpendicular vectors (θ = 90◦) is 0, so its sign can be
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Figure 6.6: The line perpendicular to A partitions the circle into 2 sectors. Given a random C, the sign
of C ·A is determined by the partition in which C falls. If another vector B is added (right figure), the
circle is partitioned into 4 sectors, which determine the signs of C ·A and C ·B.

defined however is most convenient.

Figure 6.6 represents a circle and a vector A. If we draw a line perpendicular to A, the circle
is divided into two halves. The dot-product between A and any vector from the half in which A is
contained will result in a positive number. Correspondingly, the dot-product between A and any
vector from the other half of the circle will result in a negative number. If we add a second vector
B and its corresponding perpendicular line, the 4 regions (namely R++, R−−, R+−, R−+) obtained
by the overlapping of the 2 halves given by each vector characterize the range of vectors whose
dot-products with A and B will result in each possible combination of signs (++,−−,+−,−+),
and thus, it defines the probability of each possible outcome from sign(C ·A) and sign(C ·B) for
a random vector C as the probability of C belonging to each of the previously defined regions.

Assuming that C follows a uniform distribution in the space (modeled as a hyper-sphere), these
probabilities are given by the following expressions:

p(C ∈ R+−|θ) =
θ

360
(6.3)

p(C ∈ R−+|θ) =
θ

360
(6.4)

p(C ∈ R++|θ) =
1

2
− θ

360
(6.5)

p(C ∈ R−−|θ) =
1

2
− θ

360
(6.6)

Where θ is the angle between the vectors A and B expressed as a degree magnitude between 0◦

and 180◦.

When this circle is expanded to a sphere, the area relationship between the regions (and hence
the probabilities defined above) are preserved as a volume relation. We verified that this analysis
holds for higher dimensions through a Montecarlo simulation.

If we use the dot-product between A (corresponding to the input weights of a neuron) and a
random vector C (corresponding to an input vector) to predict the sign of the dot-product between
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Figure 6.7: Distribution of angles between each neuron and its closest neuron.

B (corresponding to the weights of another neuron that uses the same input vector) and C, the
worst case is when C is from the −+ region, because A ·C will be negative, and thus B ·C will be
assumed to be negative, when in reality, B · C is positive. Since negative dot products result in a
zero output when the ReLU activation function is applied, the output of the neuron with weights
B will be wrongly assumed to be zero, without evaluating it (we call this scenario a false positive).
The probability of a random C vector to be in the −+ region is given by expression 6.4.

As we can see, the probability of causing a false positive is 0 if the weights of the neurons are
parallel, and increase up to 50% for perpendicular neurons.

Since neurons’ weights are represented as very high dimensional vectors, if they were random
vectors, we would expect them all to be almost perpendicular, meaning that if there are two neurons
within a layer with a θ lower than 90◦, there is a certain degree of correlation among them. To
measure the amount of spatial correlation in the TDS layers, we computed, for each layer, all the
neuron-neuron angles and then, for each neuron, obtained the angle with its closest neuron (the
neuron with which it has the smaller angle). Figure 6.7 shows the distribution of such angles. If
there was no correlation between neurons, we would expect most of them to fall between 80◦ and
90◦. However, as we can see, the majority of angles fall between 70◦ and 80◦, and a significant
number of them are even lower.

Based on the previous observations, we propose a negative ReLU input predictor that leverages
the correlation existing between pairs of neurons separated by an angle lower than 90◦.

To leverage this property, we could cluster each neuron with its closest neuron. However, an
algorithm that directly applies this clustering strategy will likely create problematic arrangements
such as chains of associated neurons that will end up in the same cluster, but with neurons that
are very far apart. Instead, we propose an algorithm that generates clusters of neurons around
a principal neuron, which we call proxy, that will act as a predictor for the rest of the cluster
members. This algorithm first generates a directed graph with the neurons as nodes and edges
linking each neuron with its closest neuron. Then, the nodes are sorted by descending order of
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Figure 6.8: Accuracy loss versus percentage of computations avoided for the hybrid Mixture-of-Rookies
predictor.

indegree (number of incident edges) and, starting from the node with higher indegree, the node
is removed from the graph and included in the set of proxies, whereas all the nodes linked to it
are removed, too, and included as members of the previous node’s cluster. This process is iterated
until there are no more nodes in the graph.

By looking at the distribution of closest angles among neurons (figure 6.7), it is clear that this
technique alone will not result in good prediction accuracy. However, it provides useful information
that can be leveraged to improve the performance of the self-correlation predictor. We combine
this predictor with the self-correlation predictor described in Section 6.3. This predictor incurs
negligible overhead since it only requires the neurons to be arranged in a specific way in memory
(including an index value to re-arrange the outputs) and minor additional control logic.

Figure 6.8 shows how adding spatial correlation information improves the results of the ReLU
output predictor. Compared to the binarized predictor in isolation, whose results are shown in
Figure 6.5, the predictor that employs both self-correlation and spatial correlation achieves larger
computation savings with small accuracy loss.

6.4 DNN Accelerator with ReLU Output Predictor

In this section we present a DNN accelerator that leverages our Mixture-of-Rookies predictor,
described in Section 6.3, for energy-efficient DNN inference. Our accelerator is designed target-
ing use cases for inference in low-power devices, to support applications such as image or speech
recognition on-edge. Hence, it is key to use very low area and power. Another constraining as-
sumption for these use cases is that the input will be processed frame-by-frame (or image-by-image
in the case of image recognition applications). For example, in [89], the authors explore very
small dependency windows for the outputs of the TDS network presented in [46] in order to mini-
mize word-to-transcription latency, which is desirable for many applications of speech recognition
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Figure 6.9: Accelerator with support for Mixture-of-Rookies ReLU output predictor.

on-edge.

Figure 6.9 illustrates the architecture of the accelerator. It contains three main control units:
a Layer Controller, a Row Controller and a Neurons Controller, an SRAM memory to store the
inputs, a set of Compute Units (CUs) to compute neurons and a binary predictor composed of
an SRAM memory to store the binary weights and a set of binary CUs to compute the binarized
neurons.

Each CU is responsible for the computations of the neurons assigned to it. The design has
a configurable number of CUs, each with an interface to external memory. When a neuron is
assigned to a CU, it generates requests to external memory and performs the required computation,
accumulating the partial results on an internal register. To boost computations, the CUs perform
in parallel several multiplications belonging to the same output. The number of parallel multipliers
per CU is another parameter of the design.

6.4.1 Control Unit

The DNN processing is triggered by issuing an external request to the Layer Controller, which
generates Row Controller requests to evaluate each layer of the DNN consecutively. The Row
Controller divides the output of the layer in rows, and issues memory requests to load the required
inputs to compute them. Since an output row will generally require many inputs, and consequently,
a large input SRAM, the inputs for the row are divided in blocks, which are loaded sequentially.
This allows us to keep the input SRAM small. To leverage inputs reuse in CNN shift-windows,
the inputs are loaded taking CNN stride into account. Once an input window is loaded, the row
controller issues a request to the Neuron Controller, which generates issues to the CUs and binCUs
to compute the neurons for that input window.
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Since our predictor creates dependencies between proxy neurons and their cluster members, we
have to compute first the proxies to unlock the corresponding non-proxy neurons (see Section 6.3).
Conceptually, the idea is to evaluate first all the proxies and generate a mask of neurons that are
predicted to have a ReLU output of zero. Next, we evaluate the second predictor, binary predictor,
for these neurons with predicted zero output and update the mask to include only those that are
also predicted to produce a zero with the binary predictor. At this point, all the neurons not
predicted to have zero ReLU output are assigned to CUs and their results are written back into
memory.

The evaluation of the binary predictor can be overlapped with the evaluation of the proxies. As
soon as a neuron is predicted to have zero ReLU output by the corresponding proxy, the neurons
controller issues requests to the binary CUs to compute the prediction based on the binarized
neuron. If binary predictor also indicates a zero output, the output of that neuron is predicted to
be zero, and a 0 is written to external memory. Otherwise, the neuron is assigned to a free CU for
full precision computation.

The computation of the proxy neurons does not generates any overhead in execution time since
they would have to be computed anyway, and neither does the evaluation of the self-correlation
binarized predictor, which is performed in parallel with the rest of the neurons.

In our hardware implementation, we do not store the entire mask in memory as we interleave
the evaluation of proxies and non-proxy neurons. As soon a proxy is evaluated, the corresponding
non-proxy neurons are assigned higher priority than proxies, meaning that as long as there are
available non-proxy neurons, they will be assigned to any free CU. Only when there is none, the
proxies are assigned to CUs. Note that we still require a small buffer to keep track of the available
cluster members. However, this implementation provides two advantages: a) the buffer is smaller
than the memory required to store the mask and b) it does not impose a maximum output size.

6.4.2 DNN Format

In order to support the execution flow previously described, we provide format to store the
DNN in main memory, illustrated in Figure 6.10. The DNN layers are divided in two tables. The
first table contains the proxy neurons. Each row contains an index (idx) field to indicate the original
position of the neuron, a cluster size field to indicate the number of neurons in its cluster and finally,
the weights of the neuron. The second table contains the non-proxy neurons sorted by the cluster
they belong to. This means that the neurons associated with the first proxy in the proxy table
occupy the first positions, the next positions are filled with the neurons associated with the second
proxy and so on. Each row in this table contains the weights, the binary weights and an index to
their original position. Since the binary weights are the sign bits from the weights, the sign bit is
removed from every weight to offset the memory footprint overhead of storing the binary weights,
and to avoid any increase in memory reads, which would otherwise affect the performance benefits.
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Figure 6.10: Format to store the DNN in external memory.

6.4.3 Compute Units

The accelerator contains a group of CUs to evaluate neurons. Each CU operates independently
and is connected to main memory through its own ports. They are assigned neurons by the neurons
controller and are responsible for the computation of that neuron. As soon as a CU receives a request
to process a new neuron, it starts fetching its weights from external memory to the internal buffer.
Next, it reads inputs sequentially from the input SRAM and performs the dot product between
inputs and weights, whose result is temporarily stored in its partial sum (psum) register until the
dot product is completed. The CUs have a design parameter to adjust the MAC unit width, which
allows for computing several MACs in parallel. Note that the port width of the weight buffer is
adjusted correspondingly.

6.4.4 Binary Prediction Unit

To support our prediction scheme, we include a Binary Prediction Unit. It is composed of an
SRAM memory to store the binary weights for the non-proxy neurons and a set of binCUs. The
binCUs are similar to the CUs, they process neurons and operate independently. However, they do
not contain a weight buffer because they do not have to access external memory. Instead, they read
binary inputs and binary weights from input memory and the binary weight SRAM, respectively,
to perform the binary dot-product. Since these units perform binary multiplications and counting
instead of a full MAC, their circuit is much simpler than the CUs [100].

6.5 Results

In this section, we present the speedups and energy savings achieved by the Mixture-of-Rookies
predictor, when implemented on top of a DNN accelerator as described in Section 6.4. We compare
our proposal with a baseline accelerator that does not include the binWeights SRAM and the binCU
units, so the energy consumed by them is considered and reported as overhead for our predictor.

We first evaluate the accuracy of the proposed Mixture-of-Rookies predictor. Figure 6.11 shows
the percentage of correct and incorrect predictions. “Correctly predicted zero” means that the
predictor indicates that the ReLU output will be zero and it is correct. In this case, neuron
evaluation is skipped, avoiding all the related computations and memory accesses for base precision
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Figure 6.12: Performance and energy savings achieved by our Mixture-of-Rookies ReLU output predictor
compared to the baseline.

neuron, without affecting DNN classification accuracy. This is the case for 7%-11% of the outputs
in our DNNs. “Incorrectly predicted zero” means that our scheme predicts a zero output, but
the base precision output is non-zero. Neuron evaluation is also avoided, but these mispredictions
may impact classification accuracy as they introduce errors in the DNN, since the output of these
neurons is incorrectly set to zero. As it can be seen in Figure 6.11, this type of mispredictions
are fairly infrequent: 0.65%, 0.8%, 0.4% and 3.6% for TDS, Resnet18, Darkent19 and CNN10
respectively. We verified that the impact on DNN accuracy due to these mispredictions is lower
than 1% in our DNNs.

On the other hand, “incorrectly predicted nonzero” shows neurons where a non-zero output
is predicted but the ReLU output is zero. These mispredictions have no impact on accuracy, as
the neuron is evaluated when Mixture-of-Rookies predicts non-zero, but they represent a missed
opportunity for saving computations. Finally, “correctly predicted nonzero” category shows that
between 10% and 13% of the outputs are non-zero values correctly identified by our predictor.
Note that the four categories shown in Figure 6.11 do not add 100% as there are neurons where
the predictor is not applied for several reasons. First, our scheme is not applied in DNN layers that
do not use ReLU activation function, this is common in TDS network. Second, proxy neurons, i.e.
centroids, are always evaluated in our scheme. Third, our predictor is disabled for neurons that
show poor linear correlation with their binarized versions.

Figure 6.12(a) shows the speedups achieved by our Mixture-of-Rookies predictor. Our pre-
diction scheme provides consistent and significant performance improvements, providing 19.8%
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speedup on average. These speedups are due to skipping neuron evaluation when the predictor
indicates that its ReLU output will be zero. Note that this avoids both computation and memory
accesses, since weights for those neurons do not have to be fetched from main memory. Compu-
tations related to the predictor itself are largely overlapped with useful computations and, hence,
they do not introduce any performance penalty.

Regarding energy consumption, Figure 6.12(b) shows the energy savings achieved by our ReLU
output predictor. As it can be seen, our technique obtains significant energy savings across all the
applications, reducing energy by 16.5% on average. Our system improves energy consumption be-
cause the number of computations and memory accesses is reduced proportionally with the number
of neurons skipped. Furthermore, the hardware for our Mixture-of-Rookies predictor represents a
small overhead: 5.3% in area and less than 1% in energy consumption (included in the results).
These overheads are more than offset by the benefits so the net result is an important reduction in
energy consumption.
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7
Programmable Low-Power Architecture for ASR

In the previous chapters, we proposed different techniques to improve performance and reduce
energy consumption of ASR. Those proposals leverage specific properties of the ASR systems to
increase performance and energy efficiency of the ASR systems. The different components of the
ASR system are executed on very specific accelerators. However, ASR is a rich and fast-changing
field and very specific accelerators risk becoming obsolete fast. In this chapter, we propose a
programmable architecture for low-power ASR and demonstrate that it can run state-of-the-art
ASR in real-time. The first section is a detailed description of the architecture, the second section
is a case study where we show how the TDS system can be implemented in this platform and in
the last section, we present our estimation on chip area, power and performance.

7.1 Architecture of ASRPU

Despite the differences among ASR systems, most of them follow a similar overall algorithm.
We leverage that to design an accelerator that provides enough flexibility to support the differences
between them while automating wherever possible to speed up the ASR process and simplify the
software implementation.

This section provides a detailed description of the architecture of ASRPU. The accelerator
(Figure 7.1) is divided into 3 major blocks: Command decoder, Execution unit and Hypotheses
unit. The command decoder provides the interface to the accelerator via a set of commands.
This includes commands to start an ASR decoding step, to finish decoding an utterance and to
configure different parameters of the accelerator. The execution unit executes the program that
implements the ASR system. This program is composed of small sub-programs, kernels, written
by the ASR designer to implement each part of the ASR system. The execution unit contains a
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Figure 7.2: ASR process executed on ASRPU

pool of Processing Elements (PE) to execute the code of the kernels. The hypothesis unit sorts
and prunes transcription hypotheses. It also keeps them in memory from one decoding step to the
following.

7.1.1 Decoding on ASRPU

Figure 7.2 illustrates the overall process of decoding an utterance in ASRPU with an example
ASR system. The decoding process in the accelerator is divided in Decoding Steps. Each step
decodes a portion of the signal, extracting feature frames, computing acoustic scores and finally
expanding the hypotheses left from the preceding decoding step. We divide each decoding steps in
two phases: (1) The Acoustic Scoring phase and (2) the Hypothesis Expansion phase.

As previously mentioned, a set of kernels implement every component of the ASR system. The
acoustic scoring phase consist of the sequential execution of most of these kernels (except for the
last one). These kernels implement the feature extraction algorithm and the acoustic model. The
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example of the figure shows a sequence of N+1 kernels executed within the acoustic scoring phase.
These kernels are executed sequentially on the accelerator. However, they consist of parallel code.
The execution of each kernel is carried on by the execution unit, which launches as many threads
of the kernel code as required on the PEs. The number inside the parenthesis shows the number of
threads required by each kernel. The first kernel implements feature extraction (which may include
code for signal pre-processing) and requires 100 threads. Subsequent kernels implement each a layer
of a DNN AM, each requiring a different number of threads. The last kernel requires 9000 threads,
which is entirely dependant on the implementation. In this example, the last kernel implements
a DNN layer with 9000 neurons. Each neuron computing the score for one of the 9000 phonetic
units modelled by the acoustic model. because of how the kernel is written, each thread computes
a single neuron.

After the acoustic scoring phase concludes, ASRPU switches to the hypothesis expansion phase.
During the hypothesis expansion phase, the accelerator executes only one kernel, Hypothesis ex-
pansion. Each thread of this kernel is responsible of expanding a single hypothesis. The expansion
of an hypothesis generally results in many output hypotheses, which are generated according to
the specific decoding algorithm. Depending on the implementation, the acoustic scoring phase can
generate one or more acoustic vectors. During hypothesis expansion, the accelerator executes the
hypothesis expansion kernel once per acoustic vector. In the example system of the figure, the
accelerator launches nHyps threads (determined in run-time) of the hypothesis expansion kernel.
The self-referencing arrow indicates that the kernel is executed three times. This number will
also depend on the implementation. For example, the feature extraction kernel may extract three
frames on each decoding step, resulting in three repetitions of the hypothesis expansion kernel.
Some DNNs, particularly convolutional DNNs, apply sub-sampling during acoustic scoring, mean-
ing that they generate less acoustic vectors than feature frames. In this case, six feature frames
will result in three acoustic vectors if the DNN AM apply a sub-sampling of two frames.

If ASRPU is integrated in an SoC that also contains a CPU, there may be an external pro-
cess responsible of capturing the signal as it is produced. This process communicates with the
accelerator, starting decoding steps after capturing enough values from the microphone.

7.1.2 Setup Thread

The ASR designer can include a special setup program along each of the acoustic scoring and
hypothesis expansion kernels. That is, each kernel is complemented with a setup program. This
setup program is executed to completion in a single thread before the associated kernel can start
executing.

These setup programs provide the accelerator with greater flexibility. For example, the setup
program for a specific kernel that implements a convolutional layer of a DNN can determine how
many outputs can be computed from the available inputs and notify the hardware to launch the
appropriate number of kernel threads so as to maximize data reuse. The setup program associated
to the hypothesis expansion kernel can access the number of outputs generated by the acoustic
scoring phase and notify it to the hardware so it executes the hypothesis expansion kernels as many
times as necessary. In both cases, if the available inputs are not enough to compute even a single
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output, the setup thread can notify to the accelerator to stop the decoding step. The following
section provides mores details about this process.

These setup program can also be used to manage the input and output buffers of the kernels
in shared memory. Each kernel will generally read inputs from an input buffer and store outputs
in an output buffer (in shared memory). Before executing each kernel, the associated setup thread
will first determine the number of outputs that can be generated from the inputs available in the
input buffer. Then, it will remove from the input buffer those inputs that can not be further reused
and reserve space in the output buffer for the new outputs. Finally, before finishing, it notifies the
hardware the required number of kernel threads. After the setup thread finishes, the accelerator
launches the required number of kernel threads.

Another advantage of the setup threads is that they allow to reuse code among different kernels.
Generally, DNNs contain many convolutional and fully-connected layers. The ASR designer can
write a single convolutional and a single fully-connected parametric routines. All the convolutional
and fully-connected layers can be configured to execute the same kernels and the associated setup
threads will set the appropriate parameters in shared memory before executing the kernel.

7.1.3 Execution Unit

The execution unit consists of a pool of PEs and an ASR controller. The ASR controller
handles the overall decoding procedure. It first waits until the command decoder receives a new
commit signal. At that moment, it starts a decoding step. First, the controller reads from the
Configuration memory the address of the first setup program and configures a PE to execute it
by setting its program counter. Once the setup thread finishes executing, it notifies to the ASR
controller the required number of kernel threads. The ASR controller then starts dispatching kernel
threads to idle PEs. Every time a PE becomes idle, it notifies the ASR controller, which reacts by
dispatching a new thread to the PE, until there are no more threads to dispatch. When the last
thread finishes, the ASR controller repeats the same procedure for the subsequent kernel.

As mentioned in section 7.1.2, if a setup thread returns a value of zero, the ASR controller stops
the decoding step. This is meant to be used when a program is not ready to be launched, usually
when there are not enough inputs to compute even a single output. For example, a convolutional
layer with a window of ten frames will check during setup time (during the execution of the setup
thread) how many inputs there are available, computing and returning an appropriate number of
threads. If there are less than ten inputs, it will return zero notifying the ASR controller to stop
the decoding step.

After all the programs in the Acoustic Scoring sequence have been executed, the decoder starts
the hypothesis expansion phase. It first accesses the number of active hypotheses, provided by the
hypothesis unit, and launches a thread for each active hypothesis. These threads will execute the
code from the hypothesis expansion kernel. The setup thread of the hypothesis expansion kernel
will determine how many outputs were generated by the acoustic scoring phase and notify the ASR
controller to execute the hypothesis expansion kernel that number of times.

Figure 7.3 shows how the different threads are scheduled in the PE pool during acoustic scoring.
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Figure 7.3: Threads in the PE pool

Each square represents a PE executing a setup thread (yellow) or a kernel thread (blue). 1 First,
the setup thread of kernel 0 is dispatched. It configures the DMA to load the model data for kernel
0 in model memory and waits for it to finish. 2 The execution of the following kernels (asi in
the figure) starts by dispatching the setup thread for the next kernel (asi+1) alongside the kernel
threads of asi. 3 The ASR controller keeps dispatching asi threads until the kernel is completely
executed. If a setup thread determines that the corresponding thread cannot be launched 4 , it
will notify the controller. Additionally, it can pre-fetch the model data for kernel 0 to skip step
1 during the next decoding step. After the current kernel finishes 5 , the controller will interrupt
the decoding step and wait for the next decoding command, which will start a new decoding step
from 1 or 2 , depending on whether the model data for kernel 0 is pre-loaded or not. 6 The setup
for the hypothesis expansion phase is launched alongside the threads for the last acoustic scoring
kernel. Finally, when all the threads for the last acoustic scoring kernel finish 7 , the accelerator
ends the acoustic scoring phase.

7.1.4 Processing Elements

The Processing Element (PE) pool contains a number of programmable and independent PEs
(i.e. cores). Each PE, shown in figure 7.4, implements a general-purpose RISC-V ISA.

The ISA includes extensions for additional operations, such as a vector Multiply and Accumulate
(MAC). This operation receives three operands, the first operand is a 32-bit value that carries
the accumulation between MAC operations. The other two operands are vectors of 8-bit values.
These operands are multiplied element-wise and accumulated. The result is added to the first
operand. It also includes vector multiplication and additions, along with especial function units to
compute logarithms, exponential and cosine functions, usually required during feature extraction,
the activation function in neural network layers and for the computation of the hypothesis score
during hypothesis expansion. Each PE contains data and instruction caches. These are regular
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caches managed by the hardware. Each PE also contains a register bank with 2 sets of registers:
32-bit floating-point registers, which are used as operands for the FP ALU and the special function
units, and vectors of 8-bit values used as operands for the vector operations. PEs are connected
to the Hypothesis unit, the shared memory and the shared caches through a bus. Another bus
connects all the PEs to the ASR controller. This bus is used by the ASR controller to configure
the PEs and by the PEs to notify values to the ASR controller.

7.1.5 Hypothesis unit

The hypothesis unit contains a hypothesis memory and a controller. During any decoding step,
the active hypothesis and the newly generated hypothesis reside inside the hypothesis memory.
This unit is connected to the internal bus and accessed via a special memory address from the
PEs. Hypothesis Expansion threads send hypotheses to the hypothesis controller. Each hypothesis
is a data structure with some fields. These fields include a hash to identify the hypothesis, the
hypothesis score, and others defined by the programmer. These can include a backlink, pointers to
data structures (e.g. to a node in the decoding graph) or a token id, for example.

Hypothesis expansion threads access hypotheses from this unit and send back the newly gen-
erated hypotheses. The hypothesis unit sorts and prunes them according to their score field and
the beam score. The score beam is configured beforehand via configuration commands.

7.1.6 Memory Hierarchy

Each PE contains data and an instruction cache. Outside the PE pool, there are shared
instruction and data caches too. The global data performs two different functions. During acoustic
scoring, this memory stores model weights that were pre-fetched beforehand. This maximizes data
reuse and hides the latency to access external memory. During hypothesis expansion this scheme
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would not be of much use. The graph structures used by the hypothesis expansion algorithms are
generally in the order of hundreds of MB or even GB, much larger than what is reasonable to
store in a low power accelerator. Additionally, the threads access the graph structures following a
random pattern. Consecuently, during the hypothesis expansion phase, the data cache acts as a
regular LRU cache to leverage locality in the access to the graph structures.

ASRPU also includes a scratchpad memory (the Shared Memory) that is be accessed from
the threads executing in the PEs. This is were the kernel buffers and the kernel configuration
parameters are stored, along with any other variables defined by the programmer.

7.1.7 Command Decoder

The command decoder is the interface between ASRPU and the rest of the units in the SoC. It
provides a set of commands (table 7.1). These commands include some to configure the kernels and
setup programs for the ASR phases: ConfigureASR AcousticScoring, ConfigureASR HypExpansion
and commands to configure other parameters (ConfigureBeamWidth). These configuration com-
mands must be used to configure the decoder before any decoding begins. In addition to those,
the API contains commands for run-time operations. DecodingStep is to indicate the accelerator to
decode a given signal. This signal is not decoded in isolation. Instead, it is appended to previously
decoded signals, extending the current transcription hypotheses. Once the utterance is finished,
CleanDecoding can be called. This command notifies the accelerator that the utterance is finished.
In response, the accelerator prepares itself to decode a new utterance, cleaning the hypotheses
memory and resetting the internal state.

7.2 Case Study

To illustrate the versatility and simplicity of our programming model for ASR, we present the
implementation of one of the end-to-end systems from wav2letter. Features are 80-dim MFCCs
computed from the pre-processed audio signal. The acoustic model is a TDS network, built from
TDS blocks (figure 2.5). It is mostly composed of fully-connected and convolutional layers. The
activation function for most layers is a ReLU, followed by a layer normalization. Hypotheses
are extracted by traversing a lexicon tree that includes all the words in the vocabulary and a
mechanism to handle out-of-vocabulary words. Additionally, an n-gram language model provides
language model scores for the hypothesis.

In our implementation, the kernels that implement the acoustic scoring phase will first pre-
process the signal and generate the MFCC frames. Then, they perform inference with the TDS
network to obtain the acoustic scores from each of the computed frames. On each hypothesis
expansion execution, all the hypotheses are expanded one node forward in the lexicon tree, covering
each reachable node. Every reached node in the tree is a new hypothesis for the following hypothesis
expansion execution. Every time a hypothesis reaches a node in the lexicon tree that represents a
word, a link in the n-gram language model graph is traversed. The n-gram graph contains language
model scores that are included, along with the acoustic scores, the word penalty and others, in the
computation of the hypothesis score. Hypotheses are compared based on this score and those with
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Table 7.1: Commands provided by the command decoder

Command Parameters Description

ConfigureASR AcousticScoring n kernel
setup addr
kernel addr

Configure kernel n from the Acoustic Scoring
phase. setup addr and kernel addr refer to the
address in external memory pointing to the
setup program and the kernel program, respec-
tively. Should be called several times with in-
cremental values of n to configure all the kernels
that implement the acoustic scoring phase.

ConfigureASR HypExpansion kernel addr Configure the Hypothesis Expansion phase. ker-
nel addr is the address in external memory
pointing to the hypothesis expansion kernel.

ConfigureBeamWidth beam Configure the beam width used by the hypothe-
sis unit to prune hypotheses during hypothesis
expansion.

CleanDecoding Perform the neccesarry operations to start de-
coding a new utterance, such as removing the
hypotheses from the hypothesis memory.

DecodingStep signal addr Command the accelerator to start a decoding
step. The accelerator will access the data lo-
cated in signal addr in the external memory and
perform a decoding step.

a lower score are pruned away by the hypothesis unit. In addition to the reachable nodes in the
lexicon tree, hypothesis expansion generates two more hypotheses as part of the CTC algorithm:
the blank symbol and the repetition.

7.2.1 The Main Process

The main process residing in the CPU orchestrates the overall decoding of utterances. It does
so by calling commands from the API of the accelerator. Before the decoding starts, the main
process configures the accelerator, setting all the necessary parameters, including the addresses in
external memory of the kernels that implement the ASR system.

During decoding, the main process collects reading from the microphone. This example ASR
system performs streaming decoding, meaning that every few milliseconds, the main process calls
the submittSignal command to perform a decoding step on a partial signal. If this was not the
case, the main process would capture the signal until the end of the utterance is reached and then
call a submittSignal on the entire signal.
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7.2.2 Acoustic Scoring

The acoustic scoring phase executes the code that implements the feature extraction and the
acoustic model. The acoustic scoring phase consists of a set of programs executed in sequence. In
this case study, the first kernel performs signal pre-processing and extracts MFCC features frames
from the input signal, whereas the rest implement each a layer of the TDS DNN.

Before executing the feature extraction kernel, its setup thread is launched to check the size
of the input signal and determine how many output frames can be computed from the available
input. Then, it reserves memory for the output, marks the inputs as consumed and notifies the
controller about how many main threads must be launched. The kernel threads then process the
inputs to generate feature frames. Each thread computes a single feature frame, which means that
for each output frame to compute, a feature extraction thread will be launched.

The subsequent kernels in the acoustic scoring phase implement the TDS DNN. It is imple-
mented in a sequence of 79 kernels: 18 CONV, 29 FC and 32 LayerNorms, each preceded by its
corresponding setup thread. To avoid repeating very similar code, the programs for CONV, FC
and LayerNorm are parameterized. The setup thread sets the parameters in shared memory to the
values corresponding to the current layer, which are accessed by the layer threads.

Each setup thread checks the number of inputs available (those generated by the previous
layer), reserves memory for the outputs and notifies the ASR controller to launch the required
number of threads for the layer program. Each CONV and FC thread compute a single neuron of
the layer.

7.2.3 Hypothesis Expansion

The hypothesis expansion kernel implements the CTC decoding algorithm with lexicon and
language model. Each thread processes a single hypothesis. The algorithm first accesses the node
in the lexicon graph associated with the hypothesis, then, it traverses all the output links to access
reachable nodes, generating a new hypothesis for each of them. Each hypothesis also contain a link
to the language model graph, pointing to the last n-gram in the hypothesis. If a newly reached
node in the lexicon graph represents a word, the hypothesis expansion thread will acess the node in
the language model graph associated with the hypothesis and expand it one node further following
the link that represents the newly added word. The node contains a language model score that is
added to the score of the hypothesis. In addition to the hypotheses generated by traversing the
lexicon graph, the CTC algorithm implemented in the hypothesis expansion threads require the
generation of two more hypotheses: the first one obtained by appending to the hypothesis the last
phonetic unit in the hypothesis to account for repetitions, which produce valid CTC paths. The
other hypothesis is obtained by appending the blank unit, which represents a frame that does not
contain a phonetic unit.
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7.3 Evaluation

This section provides estimations on the performance of ASRPU when running the ASR system
described throughout the previous sections. The goal of this section is to provide proof of the
capacity of the proposed design to enable real-time ASR on very low-power devices. To that
purpose, we studied a possible implementation for the TDS-based system described in the previous
section and estimated its performance on the accelerator, configured to enable real-time ASR with
that system. Furthermore, we estimate the power consumption and area footprint of that specific
configuration.

7.3.1 Methodology and Scope

To estimate performance, we count the number of instructions for each kernel. For example, a
loop will usually consist of two instructions for the comparison and conditional jump, one instruction
for the variable update and the instructions for the loop body, all multiplied by the average number
of iterations. Additionally, one instruction is added for the variable initialization. We assume that
every PE executes one instruction per cycle, so we divide the number of instructions by the clock
frequency of the PEs to obtain execution time.

To estimate chip area, we rely on several tools. Cacti for the memories, McPat for the PEs
and the PE bus and Design compiler (using the Saed32hvt cell library, which provides cell models
at 32nm technology node) for the special function units.

Peak power is estimated by adding together the leakage power and peak dynamic power for
the logic units as obtained from the Power Compiler. The case of memories is slightly different.
Cacti reports leakage power and access energy. In this case, we assume as peak power the scenario
where all the ports are accessed once per cycle. Adding the energy consumed for those accesses,
divided by the clock period gives the dynamic power, which we add, along with the leakage power
given by Cacti, to the power consumed by the logic.

This estimation, albeit not exhaustive, should provide a good approximation of the potential
of the accelerator proposed in this work.

7.3.2 Accelerator Configuration

Table 7.2 contains the details of the accelerator. This configuration was chosen to allow real-
time ASR with the ASR system described in previous sections. Particularly, the number of PEs
and the size of the memories was chosen to match the performance requirements. We include 8
PEs, each loaded with an 8-dim MAC unit, which allows us to exploit plenty of parallelism. The
implemented algorithm stores about 275KB of intermediate data in between decoding steps. It
stores inputs for the convolutional layers. Due to the shifting input window used in convolutions,
inputs are reused in several consecutive executions. We include 512KB of shared memory to store
these inputs and other temporal outputs that may be necessary to store if the decoding step is
interrupted due to insufficient inputs for one of the kernels.
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Table 7.2: Configuration parameters of the accelerator

ASR Unit
Frequency 500 MHz

Hypothesis Memory 24 KB
I-Cache 64 KB

Shared Memory 512 KB
Model Memory / D-Cache 1 MB

Num. PEs 8

PE
PE i-Cache 4 KB
PE d-Cache 24 KB

MAC. vector size 8
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Figure 7.5: Size (KB) of each layer of the TDS DNN included in the ASR system. The left plot shows
the convolutional layers whereas the right plot shows the fully-connected layers

We include 1MB of model memory. During acoustic scoring, this memory is used for caching
the DNN parameters and other model data. The size of the TDS network layers vary significantly
(figure 7.5). Convolutional layers fit in a few KB whereas most fully connected layers range in the
MB. We solve this by trivially partitioning FC layers into several kernels, each less than 1MB.
Given that each thread in our implementation of the FC kernels computes a neuron, we partition
the layers in various kernels, each computing some of the neurons. For example, each of the first
FC layers consists of 1200 neurons with 1200 inputs each, which results in 1.4MB of model data.
We divide each of these layers into 2 kernels, each computing 600 neurons (700MB).

7.3.3 Area and Power

Figure 7.6 shows an estimation of the area and peak power of ASRPU, broken down by com-
ponent. At a 32 nm technology node, the total area is 11.68mm2, 65% of which is dedicated to
the execution unit (PEs, PE d-cache, PE i-cache and PE bus), 32% is dedicated to the shared and
model memories. The hypothesis unit accounts for less than 1 %. Regarding power, the accelerator
consumes slightly more than 1.8 W assuming peak power. That is, if every PE is in execution and
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Figure 7.6: The left bar plots show the component-level breakdown of area and peak power of ASRPU.
The right plots show the distribution of static and dynamic power

0.00 0

1

2

3

4

5

6

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
xe

c.
 ti

m
e 

(m
s)

E
xe

c.
 ti

m
e 

(m
s)

TDS Convolutional Layers TDS Fully-Connected Layers

Feature Extraction

Hypothesis Expansion

Figure 7.7: Execution time for the TDS ASR system running in ASRPU

every memory is accessed. Around 800 mW come from static power, mostly from the PE cores and
the shared and model memories, whereas the rest comes from dynamic power, mainly from the PE
cores.

7.3.4 Performance

Each decoding step in our implementation decodes 80ms of audio. According to our esti-
mations, ASRPU takes about 40ms to perform a decoding step. In other words, the accelerator
executes the ASR system in 2x real-time. Figure 7.7 shows the execution time of the ASR system
kernels, including the feature extraction and the hypothesis expansion kernels. The left plot shows
the execution time for the kernels that implement the convolutional layers and the hypothesis ex-
pansion, whereas the right plot shows the execution time taken by fully-connected layers and the

104



7.3. EVALUATION

feature expansion during the execution of a decoding step. These estimations assume no network
contention. We also assume that the model data is pre-fetched in model memory.
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8
Conclusions and Future Work

This chapter presents a summary of our contributions and the results presented in this thesis.
Furthermore, we include a discussion on the relevance of the computer architecture discipline to
enable widespread adoption of applications based on artificial intelligence and machine learning and
suggest some future directions for research in accelerated ASR. The first section is the summary of
the results presented in this thesis, the second section is a summary of our contributions and the
last section contains the discussion of future work.

8.1 Conclusions

ASR is a technology with broad implications that will be vital in the transition towards ambi-
ence computing. Now that decoding accuracy is so high that mainstream applications are possible,
innovations that improve ASR energy efficiency and performance in low-power hardware are key
to accelerating the adoption of the technology.

The objective of this work is to propose hardware innovations that improve the performance
and energy efficiency of the ASR system. This work is framed within the more ambitious objective
of enabling efficient real-time ASR on very low-power edge devices. To that aim, we first studied
the range of available ASR systems and the literature on optimizations for ASR, including hard-
ware accelerators, techniques to optimize the ASR models, such as quantization and pruning, and
techniques to leverage run-time properties, such as those to predict ineffectual computations, and
then proposed and evaluated different optimization techniques based on hardware acceleration and
the specific properties of ASR systems to further improve performance and energy consumption.

In our first work (chapter 4), we study a Hybrid DNN-HMM ASR system included in the Kaldi
framework. This system implements a Hybrid DNN-HMM ASR architecture composed of a TDNN
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acoustic model, an HCLG decoding graph and a 4-gram LM for lattice rescoring. This system
provides highly-accurate transcriptions with a vocabulary of around 200k words. We evaluate the
execution of this ASR system on a platform that contains 8 GB of LPDDR4 memory and a quad-
core ARM CPU and determine that less than 1% of the utterances in the Librispeech benchmark
run faster than real-time. Including a mobile Nvidia Maxwell GPU with 256 cores enables real-time
speech recognition for many of the utterances. However, not only that is at the expense of high
power consumption, but also, this solution results in higher performance variability, with some
utterances taking up to almost 10 times real-time to decode. We propose a heterogeneous platform
that, instead of the GPU, includes an accelerator for DNN inference and a Viterbi accelerator. The
heterogeneous platform performs, on average, 4.5x faster than the solution that includes the mobile
GPU, while consuming 4.3x less energy per decoded frame. We estimate that the average power
dissipation is slightly under 1 W. Additionally, our estimations show that the accelerations incur a
chip area overhead of just 3.64 mm² using 28 nm technology nodes.

During our second work (chapter 5), we determined that the major bottleneck of the previous
heterogeneous platform is the execution of the TDNN acoustic model and propose to leverage an
interesting run-time property of ASR systems. The ASR system is less prone to make transcription
mistakes derived from very-low arithmetic precision when the system is considering a low relative
number of hypotheses, as opposed to when it considers a high number of them. We propose to
measure the run-time variation of the number of active hypotheses and switch the TDNN acoustic
model to an aggressively quantized version. We tested this proposal with the TDNN system,
quantized to 8 bits and 4 bits, running on the heterogeneous platform that we modified to measure
the number of active hypotheses and to efficiently accommodate support for arithmetic operations
in 8 bits and 4 bits. Using this technique reduces the execution time of the TDNN inference in
25.8% and the energy consumption in 25.6%, which is translated to 16.9% less energy and 19.5%
less execution time for the whole ASR system. This comes at the cost of less than 1% absolute
WER loss and overhead of 0.12 mm² in chip area and about 0.17 W in average power.

For our third work (chapter 6), we shifted the focus towards end-to-end ASR systems, which
have been gaining a lot of traction during the last few years and recently reached state-of-the-
art accuracy in common benchmarks, such as Librispeech. The ASR system we studied for this
work consists of a TDS network trained to perform CTC decoding. The outputs of the network
are composed into a set of alternative hypotheses, that have scored based on the acoustic scores
computed by the TDS network and LM scores obtained from a 4-gram language model. These
DNNs make extensive use of ReLu activation layers, which, according to our observations, result in
about 80 % of the outputs of the neurons being zero. We propose a very low-cost prediction scheme
(Mixture-of-Rookies) to detect which neurons will produce a zero, and thus skip the computation of
the neuron altogether. The key characteristic of our predictor is the combination of two prediction
components, integrated into a DNN accelerator, to leverage both neuron self-correlation and neuron
spatial correlation. Applying this scheme provides a 1.2x speedup during the TDS inferences while
saving about 17 % of the energy consumption compared to a baseline consisting of the same
accelerator without the prediction scheme. The additional hardware represents an overhead of
5.3 % in the chip area. Furthermore, we tested this technique on other DNN applications and
obtained similar benefits while keeping the degradation of accuracy below 1% absolute loss of the
relevant metric.
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Our fourth work (chapter 7) proposes a programmable low-power accelerator for ASR (ASRPU)
to tackle all the challenges of deploying state-of-the-art ASR on edge devices. This accelerator con-
tains a pool of programmable cores, a memory hierarchy especially suited for ASR and several
controllers to automate common characteristics of ASR systems and simplify their programming.
We implement the TDS end-to-end system in ASRPU to demonstrate the flexibility of the pro-
gramming model and estimate that it can run the TDS system at 2x real-time in streaming mode
(batch-1) when configured in a very low power setup. According to our estimations, that setup
requires 11.7 mm² of chip area and consumes about 1.8 W of power assuming peak performance.

8.2 Contributions

In this thesis, several techniques to improve the energy efficiency and performance of ASR are
proposed. This work aims to enable highly accurate ASR in very low-power, battery-dependant
edge devices. As a result of this thesis, we propose some hardware accelerators for ASR and
optimizations techniques based on run-time characteristics of the ASR algorithms. The following
paragraphs summarize the main contributions of this thesis.

Our first contribution is to characterize a state-of-the-art hybrid DNN-HMM ASR system
running in a low-power platform. According to our experiments, the vast majority of utterances
were not running in real-time, and even when the neural network inferences are offloaded to a
mobile GPU, many utterances still run slower than in real-time. This characterization led to
the design of a heterogeneous hardware platform that includes, along with a mobile CPU and a
DRAM central memory, two hardware accelerators. In this proposal, we offload the most compute-
demanding components of the ASR to the accelerators, which results in a 4.5x speedup and 4.3x less
energy consumption. These results were compiled into a paper that was presented at the HiPEAC
conference and published in the ACM Transactions on Architecture and Code Optimization (TACO)
journal.

PINTO, Dennis; ARNAU, Jose-Maŕıa; GONZÁLEZ, Antonio. Design and Evaluation of an
Ultra Low-power Human-quality Speech Recognition System. ACM Transactions on Architecture
and Code Optimization (TACO), 2020, vol. 17, no 4, p. 1-19.

Our next contribution was to change the arithmetic precision used during the execution of the
DNN inference by following a novel mechanism that allows us to know whether the ASR system is
operating with high or low confidence. When it operates with high confidence, it can handle more
arithmetic noise, and thus, reducing the arithmetic precision has a lower impact on transcription
accuracy. This approach results in 16.9% less energy and 19.5% less execution time during the
execution of the whole ASR system. This work is has been submitted for publication and is
currently under review.

PINTO, Dennis; ARNAU, Jose-Maŕıa; GONZÁLEZ, Antonio. Exploiting Beam Search Confi-
dence for Energy-Efficient Speech Recognition. Under Review.

Following that work, we observed that many DNN models, including those used for ASR,
contain many ReLu activation functions, which generate plenty of zeros in run-time. This property
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creates a huge opportunity to save computations that can be leveraged by predicting, in run-time,
which neurons will output zero. We propose Mixture-of-Rookies, a prediction approach that can
leverage self-correlation and spatial correlation among neurons at the same time with a very low
overhead. This technique results in 1.2x faster decoding and 17 % less energy consumption. This
work has been submitted for publication and is currently under review.

PINTO, Dennis; ARNAU, Jose-Maŕıa; GONZÁLEZ, Antonio. Mixture-of-Rookies: Saving
DNN Computations by Predicting ReLU Outputs. Under Review.

Finally, our last contribution is a hardware accelerator for ASR called ASRPU. This accelerator
is programmable and contains a memory hierarchy and some modules specific to ASR. This allows
for the efficient implementation of a wide range of ASR systems. Our estimations show that a
state-of-the-art ASR system can be easily implemented for ASRPU and executed in real-time with
power consumption below 1.8 W. This work has been submitted for publication and is currently
under review.

PINTO, Dennis; ARNAU, Jose-Maŕıa; GONZÁLEZ, Antonio. ASRPU: A Programmable Ac-
celerator for Low-Power Automatic Speech Recognition. Under Review.

8.3 Future Work

The work proposed in this thesis can be extended by proposing optimizations for sequence-to-
sequence models. We focus our study on a hybrid DNN-HMM model with a feed-forward acoustic
model DNN (Section 4.1) and a CTC-based end-to-end system with a convolutional acoustic model
DNN (Section 6.1). However, Sequence-to-sequence end-to-end models can also reach state-of-the-
art accuracy and have become very popular recently. In these systems, the acoustic model DNN
is divided into two blocks: the encoder and the decoder. The encoder processes the signal frames,
transforming them into internal representations. In each decoding step, the decoder receives these
encoded frames along with the symbol produced by the previous decoding step and generates a new
symbol. These symbols, which may be characters, words or any other symbol, are concatenated to
form a transcription. This process is repeated until the decoder produces a special end-of-sentence
symbol. Novel optimizations can leverage properties specific to these systems to obtain gains.

Another class of ASR systems that has gained a lot of traction during the last few years are
those based on Transformer networks [108, 33, 52]. These DNNs extend the idea of the Attention
Mechanism introduced in Listen, Attend and Spell (LAS) [18] network to design a building block
that can be used to build a DNNs, similar to the ResNet of TDS networks. This building block
is called Self-attention block and the neural networks built from them are called Transformer
networks. These networks have been proved very useful for ASR and their specific structure is very
different from other DNNs. We think that there is still a lot of potentials to optimize ASR systems
based on transformer networks. The attention scores are generally very sparse, exposing the huge
potential for optimizations [110, 42]. Furthermore, studying the patterns of attention that arise
during decoding may lead to deeper intuitions that can be leveraged to obtain further gains [47].
Therefore, we think that a deeper understanding of these patterns may help in determining when
and how to optimize.
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We believe that heterogeneous platforms that contain several hardware accelerators represent
the future of computing. Offloading compute-intensive or memory-intensive workloads into special-
ized accelerators is probably going to be key in the deployment of AI-based applications in the edge.
However, as discussed in chapter 7, relying on very specialized accelerators is a limited approach.
Further research in programmable architectures for restricted workloads may prove extremely ben-
eficial. In this sense, our ASRPU accelerator can be extended to support attention-based and
sequence-to-sequence networks. Furthermore, ASR optimizations and more specialized hardware
structures can be introduced in the accelerator. The ISA of the PEs can be specialized, removing
unnecessary instructions and including specific instructions that make sense in the context of ASR.
For example, an instruction that broadcast data to all the data caches of the PEs may save memory
access and free bandwidth consumption.

A key property of ASR is that it is a dynamic process. Every audio frame is different. Some are
more difficult to decode than others. Furthermore, not every word in the transcription is equally
important for the meaning of the sentence. All these characteristics make ASR systems prone to
run-time optimizations. Throughout this work, we studied run-time properties of ASR algorithms
to save energy and reduce latency (Chapters 5 and 6). We think that there is still a lot of potential
for optimizations based on this kind of property. Similar to our solution in chapter 5, aggressive
optimizations strategically applied at moments when the accuracy is unlikely to be affected may
provide huge gains in future accelerated ASR. Therefore, we think that studying these properties
is one of the most interesting research directions to improve ASR on the edge.

Recent innovations in 3D memories, near-data computing and in-memory computing will likely
be very beneficial for ASR. ASR is trending towards bigger and more complex DNN acoustic models.
Streaming or batch-1 ASR is generally memory intensive. The resulting bottlenecks in memory
access prevent the usage of the extensive sources of parallelism present in these algorithms. Further
research in these innovative memory architectures and their application to ASR may unlock further
gains.
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Glossary

AM Acoustic Model, one of the component of speech recognition systems. The acoustic model
processes the audio frames to compute a probability distribution over acoustic units, such as
phonemes or characters..

ASR Automatic Speech Recognition, the conversion of a speech signal to a symbolic representation
by computational means.

CONV A type of neural network layer. It performs a convolution over the input.

CTC Connectionist Temporal Classification, a type of end-to-end speech recognition system.

CU Cumputation Unit, common name for the hardware components that perform arithmetic
operations in an accelerator.

DNN Deep Neural Network, computational system consisting of a sequence of interconnected
layers that perform a non-linear transformation to their inputs.

end-to-end Speech recognition system whose acoustic model is just a neural network.

FC Fully-connected, a type of neural network layer. It consists of a set of neurons that are all
connected to all the outputs from the previous layer.

HCLG Common decoding graph used by hybrid ASR systems. Is the result of combining 4 graphs:
HMM, Context-dependency, Lexicon and Grammar.

HMM Hidden Markov Model, mathematical tool to model markov processes. In the context of
speech recognition, HMMs can be used to model acoustic units, such as phonemes or tri-
phones.

HMM-GMM Speech recognition system that contains Hidden Markov models and gaussian Mix-
ture Models to model acoustic units.

hybrid DMM-DNN Speech recognition system whose acoustic model is a combination of Hidden
Markov Models and a neural network.

hypothesis a sequence of words or acoustic units generated by a speech recognition system as the
result of decoding an input signal.
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Glossary

label another name for ”acoustic unit”. It is common in the literature related to hybrid and CTC
speech recognition.

lattice Graph that contains a set of possible transcriptions.

LM Language Model, one of the components of speech recognition systems. The Language model
assigns a probability to each sequence of words.

MAC Multiply-and-accumulate, mathematical operation that multiplies two of its operands to-
gether and accumulates the result with a third operand.

MFCC Mel-Frequency Cepstrum Coeficients, a feature vector to represent audio frames. It is
computed essentially by transforming the signal into the frequency domain, restricted by the
range of audible frequencies and then weighting each frequencies according to the Mel-scale,
which closely mimics the frequency sensitivity of the human ear.

PE Processing Elements, common name for the hardware components that perform arithmetic
operations in an accelerator.

ReLU Rectified Linear Unit. Activation function used in neural network. It clips negative numbers
to zero while leaving positive inputs unchanged.

seq2seq A type of end-to-end speech recognition system.

Streaming ASR performing automatic speech recognition in batches of inputs, instead to cap-
turing the entire signal and decoding it at once.

TDNN In the context of this thesis, a hybrid speech recognition system whose acoustic model is
a Time-Delay Neural Network.

TDS In the context of this thesis, an end-to-end speech recognition system whose acoustic model
is a neural network built composed of Time-Depth Separable convolution blocks.

Viterbi Beam Search Algorithm to find the most likely path through a Hidden Markov Model
given a sequence of observations.

WER Word Error Rate, common metric to measure accuracy of speech recognition systems. It is
the ratio of word errors divided by the number of words in the ground truth.

WFST Weighted Finite-State Transducer, a type of graph that represents an algorithms to trans-
form a sequence from an input vocabulary to an output vocabulary. For example, a lexicon
WFST will transform a sequence of phonemes into a sequence of words.

word embeddings a vector representation of words. These vectors are considered to be part of a
high dimensional space where the distance among them is a measure of the how related the
words are. Each word is assigned a word embedding by an optimization algorithm.

word-pieces acoustic unit for speech recognition systems. Each word-piece is a arbitrary sequence
of letters obtained by breaking down the words from a vocabulary following an optimization
algorithm.
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