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Abstract 

 

This thesis addresses the development and evaluation of novel tools 

and strategies for Environmental Management Systems (EMS) 

implementation in ports for water quality. Integrating computer 

vision-based systems with meteorological and hydrodynamic 

operational models, the research aims to provide efficient and 

tailored tools for pollution monitoring and management. Three case 

studies are presented, exploring the feasibility of using meteo-

oceanographic operational services as SAMOA, in conjunction with 

Monte Carlo experiments, for environmental risk analysis; 

developing robust computer vision systems for spill and waste 

monitoring; and assessing computer vision systems reliability under 

different operating conditions. The findings demonstrate the 

potential of meteo-oceanographic operational services and computer 

vision for marine pollution monitoring tasks and highlight the 

significance of progressive implementation in port EMS, leveraging 

early data collection and adopting an adaptive approach.  

The research supports sustainable and environmentally conscious 

practices in port management to protect coastal waters and marine 

ecosystems. 
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Resum 

 

Aquesta tesi aborda el desenvolupament i avaluació de noves eines i 

estratègies per a la implementació de Sistemes de Gestió Ambiental 

(SGA) en ports per a la qualitat de l'aigua. Integrant sistemes basats 

en la Visió per Computadora (VC) amb models operatius 

meteorològics i hidrodinàmics, la recerca té com a objectiu 

proporcionar eines eficients i personalitzades per al monitoratge i la 

gestió de la contaminació. Es presenten tres estudis de cas que 

exploren la viabilitat de l'ús de serveis operatius meteo-

oceanogràfics com SAMOA, en conjunció amb experiments de 

Monte Carlo, per a l'anàlisi de riscos ambientals; desenvolupament 

de sistemes robustos de VC per al monitoratge de vessaments i 

residus; i avaluant la fiabilitat dels sistemes de VC sota diferents 

condicions operatives. Els resultats demostren el potencial dels 

serveis operatius meteo-oceanogràfics i la VC per a les tasques de 

monitoratge de la contaminació marina, posant de manifest la 

importància de la implementació progressiva en els SGA portuaris, 

aprofitant la recopilació de dades i l'adopció d'un enfocament 

adaptatiu. La recerca recolza pràctiques sostenibles i conscients del 

medi ambient en la gestió portuària per protegir les aigües 

costaneres i els ecosistemes marins. 
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Resumen 

 

Esta tesis aborda el desarrollo y la evaluación de nuevas 

herramientas y estrategias para la implementación de Sistemas de 

Gestión Ambiental (SGA) para la calidad del agua en puertos. 

Integrando sistemas basados en visión por computadora con 

modelos operativos meteorológicos e hidrodinámicos, la 

investigación tiene como objetivo proporcionar herramientas 

eficientes para la vigilancia y gestión de la contaminación. Se 

presentan tres estudios de caso que exploran: la viabilidad del uso 

de servicios operativos meteo-oceanográficos como SAMOA, en 

conjunto con experimentos de Monte Carlo, para el análisis de 

riesgos ambientales; el desarrollo de sistemas robustos de visión por 

computadora para el control de vertidos; y la evaluación de la 

fiabilidad de los sistemas de visión por computadora bajo diferentes 

condiciones operativas. Los resultados demuestran el potencial de 

estas técnicas para las tareas de control de la contaminación marina, 

destacando la importancia de la implementación progresiva en los 

SGA portuarios al aprovechar la recopilación de datos y adoptar un 

enfoque adaptativo. La investigación respalda prácticas sostenibles 

y conscientes del medio ambiente en la gestión portuaria, para 

proteger las aguas costeras y los ecosistemas marinos. 
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1. INTRODUCTION 

 

1.1 Background 

Ports and coastal areas serve as strategic hubs for economic 

activities, trade, and transportation, connecting regions and 

facilitating international commerce. On the other hand, the rapid 

growth and intensification of port activities have raised concerns 

about their environmental impact on adjacent waters. Ports are often 

located in ecologically sensitive areas, adjacent to coastal 

ecosystems that support a diverse range of marine species and 

provide essential ecosystem services. These areas face significant 

environmental challenges due to the concentration of human 

activities and the operations resulting from interaction between land 

and sea transport. The complex interplay between natural processes, 

anthropogenic influences, and limited water renewal rates in ports 

and adjacent coastal waters makes them highly susceptible to water 

pollution and the accumulation of solid waste. The discharge of 

pollutants, the generation of waste, and the degradation of water and 

sediment quality associated with port operations can have 

significant adverse effects on marine ecosystems. 

Recognizing the environmental challenges posed by port activities, 

the implementation of effective Environmental Management 

Systems (EMS) has become increasingly important [Gómez et al. 

2015, Wooldridge et al. 1999]. An EMS provides a structured 

approach to identify, assess, and manage environmental risks and 

impacts associated with port operations. It encompasses a range of 

strategies, policies, and practices aimed at minimizing negative 

environmental effects while maximizing efficiency and 

sustainability. By integrating environmental considerations into 

their daily operations, ports can reduce their ecological footprint, 

protect coastal ecosystems, thus enhancing their long-term viability. 

Coastal regions play an essential role in the achievement of the UN 

Sustainable Development Goals given their importance for human 
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habitation, resource provisioning, employment, and cultural 

practice. In this areas, on the other hand, different ecological, 

disciplinary and jurisdictional boundaries both overlap and are 

obscured. So, the land-sea interface is an area where governance 

systems are most in need of frameworks for systems analysis and 

governance to integrate complex interdependencies between human 

livelihoods, energy, transport, food production, and nutrient flows 

[Singh et al. 2021]. 

The importance of EMS in port operations extends beyond 

environmental protection. Ports are complex and multifaceted 

systems that involve numerous stakeholders, including port 

authorities, shipping companies, terminal operators and local 

communities. These stakeholders have diverse interests and 

objectives, ranging from economic growth and trade facilitation to 

social well-being and environmental conservation. An EMS 

provides a common framework for effective communication, 

collaboration, and decision-making among these stakeholders, 

helping to address environmental concerns in a balanced and 

integrated manner. By engaging stakeholders and fostering a culture 

of environmental responsibility, ports can build trust, enhance their 

reputation, and promote sustainable development. 

Additionally, ports that demonstrate a commitment to 

environmental stewardship are more likely to attract 

environmentally conscious customers and investors, thus gaining a 

competitive advantage in the global market [Puig et al. 2021]. 

In ports with high recreational activity located in tourist cities, the 

importance of implementing an effective EMS becomes even more 

critical. These ports not only serve as hubs for commercial shipping 

and trade but also attract a significant number of tourists and 

recreational visitors. The environmental quality status of the port 

and its surrounding coastal waters directly impacts the tourism 

industry, which is often a major economic driver for these cities 

[Mali et al. 2018]. Tourists are drawn to the beauty of coastal 

environments and pristine condition of port water, and any 
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degradation in water quality or pollution incidents can have 

detrimental effects on the tourism sector, leading to negative 

economic consequences for the entire region. 

By implementing an EMS, ports with high recreational activity can 

proactively manage environmental risks and minimize the potential 

impacts on tourism and recreational activities. A well-designed 

EMS takes into account the specific needs and characteristics of 

these ports, considering factors such as water quality monitoring, 

waste management, noise control, and the protection of sensitive 

marine habitats. Through effective environmental planning, 

pollution prevention measures, and regular monitoring, these ports 

can ensure the maintenance of water quality standards and the 

preservation of the natural traits that attracts tourists being also 

valued by residents [Mali et al. 2018]. Thus, safeguarding the 

quality of the port waters, port operators can enhance the overall 

visitor experience, attract repeat visitors, and contribute to the long-

term sustainability of the tourism industry. By adopting a proactive 

and systematic approach to environmental management, ports can 

minimize their ecological footprint, protect coastal ecosystems, and 

optimize their operations. Through effective stakeholder 

engagement and the integration of environmental considerations 

into decision-making processes, ports can achieve a balance 

between economic growth, social well-being, and environmental 

conservation. 

EMS standards: 

Several international standards and guidelines exist to guide ports in 

the development and implementation of EMS. In this sense, one 

notable standard for EMS is the ISO 14001 (International 

Organization for Standardization, 2015) which provides a 

framework for the establishment, maintenance, and continuous 

improvement of an. ISO 14001 [Thompson et al. 2020, Johnstone 

and Hallberg 2020] emphasizes the need for ports to identify and 

comply with applicable legal and regulatory requirements, assess 

and manage environmental risks, set objectives for improvement, 
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and engage stakeholders in environmental decision-making 

processes. Compliance with ISO 14001 not only demonstrates a 

port's commitment to environmental protection but also enhances its 

reputation and competitiveness in the global market. 

EMS and legal regulations on ports: 

In addition to voluntary standards, ports are subject to a wide range 

of legal regulations aimed at protecting the environment and 

ensuring the sustainable use of coastal and marine resources. These 

regulations may include national laws, regional directives, and 

international conventions addressing various aspects of port 

activities, such as water quality, air emissions, waste management, 

and biodiversity conservation. Compliance with these legal 

requirements is essential for maintaining the social license to 

operate, preventing environmental harm, and avoiding potential 

penalties or legal liabilities. 

A new challenge in marine pollution monitoring is based on the 

harmonization of two European Union directives: the Water 

Framework Directive (WFD) and the Marine Strategy Framework 

Directive (MSFD). These directives aim to protect marine 

environments through different approaches, with the WFD 

following a risk assessment approach and the MSFD adopting an 

ecosystem approach [Long 2015]. The MSFD establishes a 

legislative context demanding the use of effect-based tools for the 

assessment of pollution, shifting the focus towards evaluating 

ecological effects rather than relying solely on chemical analysis 

[Diamantini et al. 2018]. A crucial knowledge gap is also the 

elaboration of internationally agreed assessment criteria for both 

environmental pollutants and biological responses [Bellas et al. 

2020].  

Environmental Management Systems (EMS) play a crucial role in 

ensuring compliance with environmental regulations as well as 

promoting sustainable practices in port operations. Three main EMS 

functions can be considered: environmental hazard identification, 

environmental risk assessment and environmental risk management 
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(see Figure 1.1). An EMS provides a systematic framework for 

identifying, evaluating, and managing environmental impacts 

associated with port activities [Gomez et al. 2015] building a 

framework to support a range of policies, procedures, and practices 

aimed at minimizing negative environmental effects while 

promoting resource efficiency and environmental stewardship. 

Thus, by implementing an EMS, ports can enhance their 

environmental performance, reduce risks, and foster a culture of 

environmental responsibility among stakeholders [Puig et al. 2022]. 

 

Figure 1.1. Main EMS functions [Gómez et al. 2015]. 

Traditionally, the assessment of marine pollution relied solely on 

chemical analysis, but this approach only provides a partial 

understanding of ecological effects. The study of environmental 

pollutants and their effects has been hindered by analytical 

limitations and methodological difficulties, necessitating the 

development of new techniques. To comprehensively assess the 

impact on marine organisms and ecosystems, an integrated 

approach combining chemical and biological state analysis and 

ecological pressure monitoring tools is necessary. Integrated 

approach schemes need to improve coastal systems monitoring, 

which is frequently challenging due to both confounding factors and 

methodological variability.  
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Marine pollution monitoring is crucial for effective environmental 

legislation and the sustainable use of coastal ecosystems. This 

research explores the challenges and opportunities in this field, 

emphasizing the need for integrated approaches and the use of 

effect-based tools in line with the MSFD's ecosystem approach. The 

development of new approaches and technologies is vital for 

enhancing marine pollution monitoring efforts and better 

understanding its environmental behavior and ecotoxicity, including 

pollutants of emerging concern, such as microplastics. By 

embracing the MSFD's ecosystem-based approach, marine pollution 

monitoring can play a fundamental role in preserving and protecting 

marine ecosystems while promoting their sustainable use. 

The integration of efficient automated techniques, such as computer 

vision-based systems, into EMS can greatly enhance a port's ability 

to monitor and manage water quality in compliance with legal 

regulations. These systems can provide real-time and accurate 

information on surface spills, floating marine waste, and other 

pollutants, allowing for timely responses and mitigation measures. 

By incorporating computer vision-based systems into their EMS, 

ports can improve their environmental performance, streamline 

monitoring processes, and demonstrate proactive environmental 

management to regulatory authorities and the public. 

By considering EMS and legal regulations as important contextual 

factors, this study aims to develop and evaluate strategies for 

environmental management system development for water quality 

in ports in terms of accordance to the actual needs and requirements 

that apply to port facilities. 

Also, the integration of automated monitoring techniques along 

with meteorological and hydrodynamic operational systems, will be 

explored to enhance the effectiveness of environmental monitoring 

and decision-making processes in port environments. Compliance 

with legal requirements and alignment with international standards 

will be taken into account to ensure that the developed strategies 
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contribute to sustainable port operations and the protection of 

coastal ecosystems [Bean et al. 2017]. 

 

Water pollution in port areas: 

Conventionally, marine pollution monitoring in ports relies on the 

collection of in situ water and mud samples, which are then 

transported to laboratories for subsequent analysis. However, these 

traditional methods are time-consuming, costly, and often fail to 

provide real-time information on water quality in port waters. As a 

result, they are typically implemented at minimum levels to meet 

regulatory requirements, particularly in ports with limited resources. 

Traditional monitoring strategy also leaves aside the problem of 

waste which is a main concern for both user perception and its 

relations with the production and accumulation of microplastics in 

the sea. 

One of the primary mechanisms of water pollution in port areas is 

the discharge and accumulation of waste resulting from non-

continuous events [Mestres et al. 2010]. These events can occur 

either intentionally or accidentally, leading to the instantaneous or 

short-term release of solid or liquid pollutants into the water. Such 

discharge events pose a considerable threat to the aquatic 

environment and can have far-reaching socio-economic impacts. 

The management of water quality in ports and coastal areas, 

therefore, necessitates robust monitoring techniques capable of 

addressing the challenges posed by these pollution events. 

The problem of microplastics in the Mediterranean is a growing 

concern due to their ubiquitously distributed and recognized 

emerging risk for the environment and human health. Marine 

environments, especially coastal zones, are the most impacted and 

are subjected to population pressure, tourism, harbors, desalination 

plants, marine traffic, and fish farms. The Mediterranean Sea is 

currently considered one of the hotspots of microplastic pollution in 

the world, due to the high number of plastic marine litter generating 
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activities and its characteristic morphology as a semi-enclosed sea. 

Microplastics and nanoplastics have been detected not only in 

surface water and water columns but also in sediments, deep 

seafloor, and biota, including fish and seafood for human 

consumption. As a consequence, different European legislative 

initiatives have been launched in recent years to prevent 

microplastic and nanoplastic contamination and to address related 

problems. [Llorca et al. 2020] The menace of plastic pollution has 

led to initiatives at a global scale, including those taken by the 

European Marine Strategy Framework Directive and the G7 globe 

leaders. 

In the 21st century, the problem of plastic pollution has emerged as 

a perilous threat to human and environmental health. The global 

utilization of plastic polymers was approximately 300 million tons 

in 2018 and is expected to rise at a compound annual growth rate. 

The lower rate of recycling activity and enhanced utilization of 

single-use plastic products are worsening plastic pollution. It is 

estimated that approximately 79% of plastic waste accumulates in 

the surrounding environment [Sharma et al. 2021]. The persistent 

plastic debris undergoes degradation upon exposure to different 

environmental factors, resulting in the formation of tiny plastic 

particles known as microplastics. These microplastics act as vectors 

of various toxic additives and pollutants, posing risks to marine 

organisms and potentially transferring these toxic microplastics to 

higher trophic levels. Various scientific reports have been published 

discussing the existence and estimation of microplastics in aquatic 

habitats, particularly in the Mediterranean Sea, which has been 

recognized as a significant accumulation hotspot for marine litter. 

The significant problem of microplastic pollution in coastal regions 

is a matter of concern due to increasing population density, tourism, 

marine harboring, and coastal activities, which contribute 

significantly to the release of complex and toxic contaminants, 

including daily used plastic items. Approximately 8.8 kg per capita 

per year of macroplastics and 0.18 kg per capita per year of 

microplastics are released into marine bodies as a result of different 
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coastal activities. Different types of plastic particles are found in 

coastal areas, beaches, on the sea surface, and on the seafloor, 

contributing to nearly 30 thousand tons of plastic mass in the 

Mediterranean basin [Tsiaras et al. 2023]. To overcome the 

limitations of traditional monitoring methods and obtain real-time 

information on water quality, there is a growing need for 

measurement and monitoring techniques that offer timely and 

accurate data on the spatial distribution of pollutants in port waters. 

Real-time or near real-time measurement methods are crucial for 

understanding the dynamics of marine pollutants and their spatial 

distribution, as well as for managing their environmental impacts. 

Plastics and most of marine waste are long enduring floating 

materials. Thus, it’s feasible to track them, hind and forecasting, 

with numerical techniques [Amandine et al. 2019, Granado et al. 

2019]. 

By integrating real-time measurement techniques with 

hydrodynamic models, it becomes possible to develop improved 

EMS. 

Considering the visually perceivable nature of pollution discharge 

events in ports, there is a potential opportunity to establish 

automated monitoring systems using computer vision techniques. 

By installing cameras at strategic locations in ports, it becomes 

feasible to detect and monitor surface spills and floating marine 

waste in real-time. Computer vision techniques, combined with 

automatic image analysis systems, have demonstrated significant 

potential for detection and recognition tasks across various fields. 

The rapid evolution of computer vision techniques, particularly the 

advancements in deep learning and convolutional neural networks, 

has further bolstered the performance and efficiency of computer 

vision-based systems. 

While remote sensing technology with satellite images has proven 

effective for detecting and managing pollutants over large surface 

areas, its applicability in port waters is limited due to the image 

resolution of satellite images as compared to port basin size. 
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Consequently, there is a need to develop computer vision-based 

systems tailored to the smaller scales of port environments. Such 

systems, supported by "in situ" mounted cameras, offer a robust 

alternative for continuous and cost-effective monitoring of surface 

water pollution. Moreover, the practical application of artificial 

intelligence technology through computer vision in coastal 

infrastructures can contribute to the digitalization of ports, 

providing valuable insights for environmental management 

strategies. 

A computer vision-based EMS can go beyond immediate alarms for 

individual discharge events seeking to provide comprehensive 

knowledge about the nature and occurrence of discharges 

threatening the port waters. By leveraging computer vision 

techniques, particularly image classification based on deep 

convolutional networks, the system can classify images into 

categories such as clean water, pollution (spill), or floating waste. 

Statistical analysis of the occurrence of discharges can be used to 

assess the critical processes and operations and establish appropriate 

measures to prevent contamination. 

The development of a database of tagged images for training the 

algorithm is crucial for the successful implementation of the 

computer vision-based system. However, gathering a substantial 

database of spill images can be time-consuming, as it requires the 

installation of cameras in ports to capture images of these events. 

Consequently, the progressive incorporation of images into the 

database raises questions about the number and types of images 

required to achieve an adequate level of confidence in the system. 

To evaluate the performance of the computer vision-based system 

for port environmental management applications, novel 

performance metrics need to be considered. While traditional 

metrics like Accuracy, Precision, Recall, and F1-score are 

commonly used, they may not provide relevant measures for 

systems with imbalanced class distributions. In the context of water 

quality monitoring in ports, where clean water images are 
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significantly more abundant than waste and spill images, a different 

metric is necessary to assess the system's ability to generate 

accurate alarms for spill and waste instances. 

Operational Services and SAMOA project 

Operational oceanography encompasses the systematic and long-

term routine measurements of the seas, oceans, and atmosphere, 

rapidly interpreted and disseminated to provide near real-time ocean 

forecasts. The ocean forecasting systems are founded on the 

collection of ocean observations, numerical ocean circulation 

models, and data assimilation tools. This operational approach is 

essential in supporting various sectors, including marine industry, 

governments, regulatory authorities, and the public, by providing 

optimized shipping routes, coastal flood warnings, and forecasts of 

harmful algae blooms, among other data products. The 

advancement of Earth observation satellites, supercomputers, and 

ocean data assimilation has significantly contributed to the 

development and implementation of basin- and global-scale 

operational ocean forecasting models. The establishment of a global 

ocean observing system, combining in situ and remote sensing data, 

has been pivotal in improving research and forecasting applications, 

with a focus on climate research as well as marine environment 

monitoring, weather forecasting, and seasonal and climate 

predictions. The Global Ocean Data Assimilation Experiment 

(GODAE) played a significant role in demonstrating the feasibility 

and utility of global ocean monitoring and forecasting on daily-to-

weekly timescales, leading to the establishment of an effective 

infrastructure for global operational oceanography [Davidson et al. 

2019]. 

The key components of operational oceanography systems involve 

observation networks, data management and monitoring, prediction 

and assessment, service delivery and dissemination, and the uptake 

of products by end-users (see Figure 1.2). Earth observation 

satellites and the Argo profiling floats have revolutionized the 

availability of near real-time ocean measurements, providing critical 



 

 
12 

data on sea surface height anomalies, sea surface temperature, ocean 

color, and other key parameters. Supercomputing technologies have 

enabled the development of basin- and global-scale numerical ocean 

circulation models, with a particular focus on eddy-resolving 

models. These operational oceanography systems have led to 

substantial advancements in marine research and forecasting 

applications, supporting various sectors, including maritime safety 

and pollution forecasting, coastal and shelf-sea forecasting, fisheries 

management, and the oil and gas industry. Oil spill prevention 

[Valdor et al. 2015, Valdor et al. 2016a, Valdor et al. 2016b, Xie et 

al. 2017] and tracking [González et al. 2008] have led to several 

developments in the implementation of operational oceanography 

systems in EMS. The successful implementation of operational 

oceanography systems has contributed to the establishment of a 

comprehensive infrastructure encompassing observing systems, data 

assembly and processing centers, modeling and data assimilation 

centers, and data and product servers [Schiller et al. 2018].  

 

Figure 1.2. Operational oceanography components [Schiller et al. 

2018]. 

The SAMOA service (Sistema de Apoyo Meteorológico y 

Oceanográfico a las Autoridades portuarias—System of 

Meteorological and Oceanographic Support for Port Authorities) 

was initiated by the Spanish Port System to address the complex 
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challenges posed by extreme met-ocean drivers impacting ports. 

With ports playing a crucial role in global and national economies, 

it is essential to manage the physical environment effectively to 

ensure the safety and efficiency of marine activities. SAMOA 

combines met-ocean observation, ocean modeling, and end-user 

service tools to provide high-resolution ocean circulation forecast 

systems, catering to coastal and very local scales within the ports 

[Sotillo 2020]. The system resolves governing equations for ocean 

currents, sea level, temperature, salinity, and tracer concentrations, 

forming a vital component of operational oceanographic systems 

aimed at forecasting physical coastal processes. 

Since its inception in 2017, the SAMOA coastal and port ocean 

forecast service has been delivering operational ocean forecasts to 

Spanish Port Authorities, starting with nine ports and eventually 

expanding to cover practically the entire Spanish Port System, 

including 31 ports. The ongoing development of the SAMOA 

service involves updating atmospheric forcing, upgrading the 

circulation model, and testing new methodologies to nest SAMOA 

systems in the Copernicus IBI-MFC regional solution. Evaluation 

of specific model upgrades has shown that SAMOA outperforms 

IBI-MFC in sea level forecasting at meso- and macro-tidal 

environments. The continuous efforts to improve the SAMOA 

service are aimed at enhancing surface currents and sea-surface 

temperature simulations, ensuring consistency and accuracy in the 

forecasts provided to support strategic decisions, port adaptation, 

and planning [García León et al. 2022]. 

SPILLCONTROL project 

Study cases 2 and 3 presented in this thesis have been developed in 

collaboration with the SPILLCONTROL project, an innovative 

initiative focused on spill detection and management in port 

environments and ensuring effective environmental protection. 

Through real-time monitoring and CV detection algorithms, early 

intervention becomes possible, preventing spills from spreading and 

causing further harm to the environment as well as analyzing 
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evolution tendencies and specific risk areas for preventive 

planification.  

 

Afterword 

In this thesis, we aim to address the environmental challenges cited 

by developing and evaluating strategies for an environmental 

management system that integrates efficient automated techniques, 

including a computer vision-based system for monitoring surface 

spills and floating marine waste, as well as meteorological and 

hydrodynamic operational systems. By harnessing the potential of 

computer vision and integrating it with operational systems, we 

seek to enhance the monitoring and management of water quality in 

ports, enabling real-time decision-making and the development of 

sustainable environmental management strategies. 

 

1.2 Motivation  

The motivation behind this research stems from the need to develop 

tools to help port authorities and port operators address water 

quality and pollution concerns in ports and adjacent coastal waters. 

As major hubs of economic activity, both on the water and on the 

land, port operations play a crucial role in local and regional 

economy. However, the environmental impact of these ports, 

particularly in terms of water pollution and the accumulation of 

solid waste, poses significant challenges that require immediate 

attention and innovative solutions. 

The adverse effects of water pollution in port areas extend beyond 

ecological consequences, impacting both the natural environment 

and the socio-economic well-being of surrounding communities. 

Pollution discharge events, whether deliberate or accidental, can 

result in severe ecological damage, degradation of water quality, 

harm to aquatic species, and disruption of delicate ecosystems. 

Furthermore, the accumulation of solid waste, including marine 

litter and debris, not only affects the aesthetic value of coastal areas 
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but also poses threats to marine life, navigation, and the overall 

health of the coastal ecosystem. 

Port activity stakeholders, including Users, Operators, and Public 

authorities, rely on EMS for control and management of pollution 

risks and for maintaining the ecological integrity of coastal waters 

and the surrounding marine ecosystems (see Scheme 1.1). Efficient 

and reliable monitoring and modeling techniques that can accurately 

assess and predict environmental impacts must be implemented to 

achieve this. 

 

Scheme 1.1. Need for efficient EMS tools. 

Traditional methods of water quality monitoring in ports, which rely 

on laborious and time-consuming collection of in situ samples for 

subsequent laboratory analysis, are inadequate in addressing the 

dynamic and real-time nature of water pollution events. These 

conventional techniques often fail to provide timely information on 

water quality, limiting the effectiveness of environmental 

management efforts. Moreover, the financial and logistical 

challenges associated with these methods lead to minimal 

monitoring levels, compromising the ability to detect and respond to 

pollution events effectively. 

The emergence of computer vision technology and its successful 

application in various fields has opened up new possibilities for 

efficient and automated monitoring of water pollution in ports. By 

leveraging computer vision techniques, such as image classification 

based on convolutional neural networks, it is now feasible to 
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develop systems capable of real-time monitoring of surface spills 

and floating marine waste. These computer vision-based systems, 

supported by strategically placed cameras, offer the potential for 

continuous and cost-effective monitoring of water quality in port 

areas, overcoming the limitations of conventional methods. 

The integration of computer vision-based systems with 

meteorological and hydrodynamic operational systems further 

enhances the understanding of water quality dynamics in ports. By 

incorporating real-time measurements and monitoring techniques, it 

becomes possible to assess the spatial distribution of pollutants, 

predict their movement, and analyze their environmental impacts. 

This integration provides valuable insights for developing effective 

environmental management strategies, optimizing response actions, 

and mitigating the negative consequences of water pollution events. 

The potential benefits of implementing computer vision-based 

systems and meteo-hydrodynamic operational systems on EMS for 

water quality in ports are extensive as they play an important role in 

EMS’ operation (see Scheme 1.2). They include enhanced 

environmental management capabilities, timely detection of 

pollution events, improved understanding of pollution sources and 

patterns, better decision-making support, and the ability to 

implement proactive measures for sustainable port operations.  

Additionally, the integration of automated monitoring techniques 

like computer vision enables the digitalization of port 

infrastructures, aligning with the broader trend of leveraging 

artificial intelligence and advanced technologies for efficient and 

sustainable port management. 
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Scheme 1.2. Monitoring (green) and Operational oceanography 

components (brown) Integration in a sample EMS. 

Considering the significance of water quality in ports and the 

pressing need for innovative monitoring and management solutions, 

this research aims to contribute to the development and evaluation 

of strategies for environmental management system development in 

port environments. By focusing on the integration of computer 

vision-based systems for monitoring surface spills and floating 

marine waste with meteorological and hydrodynamic operational 

systems, we seek to advance the understanding and capabilities of 

monitoring water quality in ports. The outcomes of this research 

have the potential to inform decision-makers, port authorities, and 

stakeholders in developing effective policies, practices, and 

interventions to safeguard the ecological integrity and sustainable 

development of ports and coastal areas. 

 

1.3 Structure of the Thesis 

The structure of the thesis is organized as follows: 

Chapter 1: Introduction 

This chapter serves as foundation for the entire document, 

providing the reader with information about the context, reasons for 
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undertaking the research, and an overview of the thesis structure. 

The chapter is divided in three subchapters: 

1.1 Background: In this subchapter, the necessary background 

information related to the topic of the thesis is provided. It sets the 

stage by providing an overview of the topic, highlighting relevant 

facts and considerations, as well as previous research in the field. 

Thus, it gives readers a context that allows them to understand the 

importance and relevance of the research problem. 

1.2 Motivation: The motivation subchapter explains the reasons and 

driving forces behind conducting the research. It articulates the 

specific factors that have inspired the researcher to pursue this 

particular study. Inspiration includes identified gaps in existing 

knowledge, practical problems, societal concerns, emerging trends, 

or the desire to explore new ideas. This section is vital as it clarifies 

the purpose and intention of the research, demonstrating that the 

study has a clear purpose and is not merely an academic exercise. 

1.3 Structure of the Thesis: This present subchapter outlines the 

organization and contents of the thesis document.  

Chapter 2: Objectives 

The objectives chapter outlines the aims and goals of the research 

providing a clear and concise statement of what the researcher 

intends to achieve through the study. The chapter is divided in three 

subchapters: 

2.1 General Objective: This subchapter presents the overarching 

and broad aim of the research, the main purpose of the study in a 

general and synthetic manner.  

2.2 Detailed Objectives: This subchapter breaks down the general 

objective into ten more specific and measurable aims elaborating on 

the different aspects or components that contribute to achieving the 

general objective. These detailed objectives are presented in three 

categories: Scientific Objectives, Methodological Objectives and 

Technology Transfer / Impact Objectives. 
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2.3 Specific Objectives: The Specific Objectives subchapter 

specifies the concrete actions or tasks undertaken to accomplish the 

thesis conceptual objectives. These objectives are detailed and 

specific, outlining the tasks performed along the research. 

Chapter 3: Environmental Management System for the 

Analysis of Oil Spill Risk Using Probabilistic Simulations. 

Application at Tarragona Monobuoy 

This chapter presents the first study case of this research which is 

aimed to develop an EMS for risk analysis of oil spills in Tarragona 

port oil terminal using a probabilistic analysis of numerical 

simulations. This study case focuses on the implementation of 

SAMOA operational service in a planification EMS for oil spill risk 

in a port near several high environmental value areas. 

Chapter 4: Use of neural networks and computer vision for spill 

and waste detection in port waters: an application in the Port of 

Palma (Majorca, Spain) 

This chapter presents the second study case of this research which 

aims to implement Computer Vision in an EMS for spill and waste 

detection in port waters with an experimental application in the Port 

of Palma. This study case focuses on the assessing the 

implementation of CV techniques in an EMS for port spill and 

waste surveillance set in a port area that’s closely connected to the 

touristic center of a city. 

Chapter 5: Analysis of the operating conditions for a Computer 

Vision monitoring system for floating waste detection in port 

environments. Application at Es Portitxol port in the Bay of 

Palma (Majorca, Spain) 

This chapter presents the third study case of this research which 

focuses on the operating conditions for a Computer Vision 

monitoring system for floating waste detection with an experimental 

application in Es Portitxol port. This study case focuses on the 

evaluation of the operating conditions of a CV monitoring tool for 

an EMS for port waste surveillance set in a small recreational port. 
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Chapter 6: Conclusion and future work  

This is the final chapter of a thesis, and it serves as a comprehensive 

summary of the research findings, followed by recommendations 

for future research. The chapter is divided in three subchapters: 

6.1 General Discussion: Providing is an in-depth analysis of the 

research's main considerations as well as a comprehensive overview 

of the key findings and their implications in light of the research 

objectives. 

6.2 Final Conclusions: Presenting a concise summary of the main 

conclusions drawn from the study and emphasizing their importance 

in answering the research questions and achieving the objectives.  

6.3 Further Investigation: Outlining potential areas for future 

research and suggesting topics or questions that could be explored 

to build upon the current study. 

 



 

 
21 

2. OBJECTIVES 

 

2.1 General Objective 

The main objective of this thesis is to develop a set of 

methodological tools focused on port environmental management, 

enabling analysis and decision-making support. These tools aim to 

enhance the efficiency of environmental management in inland 

waters of ports and nearby coastal areas, with the ultimate goal of 

improving water quality by reducing the negative impact of 

contaminant discharges on people, living organisms, protected 

areas, and the uses of port and coastal waters. 

 

2.2 Detailed Objectives 

This primary objective can be broken down into the following ten 

objectives, categorized based on their scientific, methodological, or 

impact nature: 

 

Scientific Objectives: 

• Establish a methodology to define the conceptual framework 

for environmental risk studies related to pollution in ports or 

maritime areas. 

• Set criteria for risk visualization to facilitate the use of study 

results as decision-making tools. 

• Establish a management and regulatory framework. 

 

Methodological Objectives: 

• Apply water monitoring systems that are technically and 

economically feasible and suitable for the proposed analysis 

approach. 



 

 
22 

 

• Identify the most appropriate simulation methodologies for 

management-oriented analysis based on specific available 

information. 

• Develop mathematical instruments to validate the adequacy 

of monitoring and simulations for the supporting 

management instruments. 

• Provide results with an operational perspective, offering 

management-oriented outputs such as risk predictions and 

spill maps. 

• Exploit operational current prediction models within the port 

[e.g., SAMOA; Sotillo et al., 2019]. 

 

Technology Transfer / Impact Objectives: 

• Conceptualize the relationship between monitoring and 

simulation techniques and environmental management 

instruments in these domains. 

• Align the developed tools with the purposes and working 

methodologies of European guidelines and current state 

regulations. 

 

2.3 Specific Objectives 

As exposed, this thesis is aimed at the development and evaluation 

of novel tools and specific strategies for their EMS implementation 

in ports for water quality. Specifically, integrating efficient 

automated techniques, such as a computer vision-based system for 

monitoring surface spills and floating marine waste, with 

meteorological and hydrodynamic operational systems like 

SAMOA.  
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This thesis builds upon previous works that have developed 

management tools and monitoring methods to analyze the behavior 

of contaminant discharges in port and coastal areas (e.g., Grifoll et 

al., 2011; Gomez et al., 2015). However, it aims to incorporate new 

methodologies using innovative sources of information and 

technologies for management, specifically CNC Computer Vision 

and SAMOA operational service; providing more powerful, 

efficient, and tailored tools to meet the current and near future 

regulatory requirements of environmental managers. 

Taking into consideration the current development state of CNC 

Computer Vision and SAMOA operational service, the overarching 

objectives can be specified as follows: 

• To assess the feasibility of using Computer Vision for water 

pollution monitoring in ports. 

This objective involves conducting a comprehensive investigation 

into the applicability and potential of computer vision techniques 

for monitoring water pollution in port environments. The research 

will explore the capabilities and limitations of computer vision in 

detecting and recognizing surface spills and floating marine waste. 

By analyzing random image sets and conducting experiments at the 

Port of Palma de Mallorca, Spain, the feasibility of implementing 

computer vision-based systems for water pollution monitoring will 

be evaluated. The goal is to determine the reliability and 

development requirements of such systems, establishing their 

suitability for monitoring tasks in port environments. 

• To develop a computer vision-based system for surface spill 

and marine waste identification. 

Building upon the findings of the feasibility assessment, this 

objective focuses on the development of a robust and efficient 

computer vision-based system for detecting and classifying surface 

spills and floating marine waste. Various computer vision 

techniques based on convolutional neural networks will be 

evaluated, with particular emphasis on Image Classification as the 



 

 
24 

most promising approach for marine pollution monitoring tasks. 

The system will utilize a database of tagged images obtained from 

the Port of Palma de Mallorca, considering the challenges of limited 

image availability and the progressive implementation of training 

data. The objective is to create a system that achieves high accuracy 

rates and low training requirements, facilitating effective and 

reliable monitoring of water pollution in port environments. 

• To integrate the computer vision-based system with 

SAMOA meteorological and hydrodynamic operational 

system. 

To enhance the understanding and management of water quality in 

ports, this objective aims to integrate the developed computer 

vision-based system with meteorological and hydrodynamic 

operational systems. By incorporating real-time measurements and 

monitoring techniques, the integrated system will provide valuable 

insights into the spatial distribution of pollutants, their movement 

patterns, and the environmental factors influencing their behavior. 

This integration will enable the development of advanced 

environmental management strategies by linking computer vision 

data with hydrodynamic models. The objective is to create a 

comprehensive system that combines automated monitoring, 

meteorological data, and hydrodynamic modeling to support 

informed decision-making and effective pollution management in 

port environments. 

• To analyze the operating conditions for a Computer Vision 

monitoring system. 

This objective focuses on the evaluation of the distance, resolution 

and angle limitations of the computer vision-based system for 

detecting and classifying surface spills and floating marine waste. 

The system will be rigorously tested using experimental scenarios 

to assess how its overall performance is modified by changes in the 

operational distance, resolution and angle. The research will also 

explore strategies to overcome these limitations. The expected 

benefit of this investigation is to provide valuable insights and 
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recommendations for CV monitoring system implementation and 

improvement, ensuring its practical applicability and usefulness in 

port environments. 

• To evaluate the performance and effectiveness of the novel 

tools integrated in the EMS. 

This objective focuses on the evaluation of the tool developed for 

the environmental management system in terms of its performance 

and effectiveness in monitoring pollution episodes as a pressure on 

water quality in ports. The tools will be rigorously tested using real-

world data and scenarios to assess its reliability in terms of accuracy 

and overall performance. The research will also explore the impact 

of different operating conditions on the system's performance and 

reliability and the possibility to adapt the tool for different operating 

conditions. By comparing the results against performance of similar 

tools and considering the unique requirements of port 

environmental management, a comprehensive evaluation of the 

system's capabilities will be conducted. The expected benefit of this 

investigation is to provide valuable insights and recommendations 

for system optimization and improvement, ensuring its practical 

applicability and usefulness in real-world port environments. 

 

By accomplishing these objectives, this research aims to contribute 

to the advancement of environmental management systems for 

water quality in ports. The outcomes will not only provide valuable 

knowledge and insights into the feasibility and effectiveness of 

computer vision-based systems but also offer practical 

recommendations for their implementation and integration with 

meteorological and hydrodynamic operational systems. Ultimately, 

the research aims to support the development of sustainable and 

environmentally conscious practices in port management, ensuring 

the protection and preservation of coastal waters and ecosystems. 
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3. ENVIRONMENTAL MANAGEMENT SYSTEM 

FOR THE ANALYSIS OF OIL SPILL RISK USING 

PROBABILISTIC SIMULATIONS. APPLICATION 

AT TARRAGONA MONOBUOY 

 

3.1 Foreword  

Abstract: 

Oil spill accidents during port operations are one of the main 

hydrocarbon pollution threats for coastal waters. Appropriate 

environmental risk assessment and pollution events management 

tools are needed to achieve sustainability and environmental 

protection in port activity. Recent developments in monitoring 

techniques and accurate meteo-oceanographic prediction systems 

have been implemented in many ports, providing tools for 

environmental management. A novel method based on meteo-

oceanographic operational services, in conjunction with Monte 

Carlo experiments using an oil spill model, is implemented to 

perform probabilistic maps of potential pollution events. Tarragona 

port area was chosen as the study case for three reasons: it 

accommodates a hub of petrochemical industry, the availability of 

high-resolution wind and water current data, and previous studies at 

the area offer the possibility to check the results’ accuracy. The 

interpretation of the impact probability maps reveals a specific 

pattern explained by the mean hydrodynamic conditions and the 

energetic north-westerly wind conditions. The impact probability 

maps may enhance efficiency in the environmental management of 

port waters and nearby coastal areas, reducing the negative impact 

of pollutant discharges. 

 

Keywords:  

oil spill; environmental risk assessment; pollution events 

management; Tarragona port; SAMOA project; MEDSLIK model; 

Monte Carlo method 
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3.2 Introduction 

The environmental pollution caused by port operational accidents 

has received increasing attention in the last decades, due to an 

increased environmental sensibility and shift towards blue growth 

economy concepts. In particular, pollution by hydrocarbons is 

relevant because of its frequency (they are present in approximately 

57% of accidents involving chemical substances [Lecue and Darbra 

2019]) and their toxicity. The oil pollution of marine habitats is an 

issue, not only for researchers and environmentalists, but is also a 

main social and political concern, due to the serious impact of oil 

spills on marine life and on human activity, tourism, and the 

exploitation of the sea’s resources. 

The Marine Strategy Framework Directive, adopted at the European 

Union in 2008, requires member states to establish measures to 

achieve and maintain a good environmental status of marine waters. 

The Directive works on an ecosystem-based approach in the 

regulation and management of the marine environment, marine 

natural resources, and marine ecological services [Long 2011]. This 

approach requires the public administration and the private port 

operators to consider the potential effects of port activities on the 

marine environment in order to plan and manage port activity. This 

Directive adds to the Water Framework Directive, which also takes 

into consideration coastal waters, setting a general scope on marine 

waters. 

Port management policies need models in which the interactions of 

logistic and environmental factors can be considered, thus 

integrating the social, economic, legal, technical, and environmental 

demands together. In this context, environmental risk assessment 

instruments are meant to become the generalized tool for 

environmental management and decision-making for port 

authorities [Gómez et al. 2015]. Several contributions faced risk 

port management using physical characterization of the oil spill and 

surrounding meteo-oceanographic conditions [Valdor et al. 2015, 
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Valdor et al. 2016a, Valdor et al. 2016b, Xie et al. 2017, Horrillo et 

al. 2013]. 

This management relies on a three-step process of: hazard 

identification, risk assessment, and risk management. In this sense, 

environmental risk assessment requires a description of hazards, the 

determination of the probability of impact, and the vulnerability of 

the environment, and thus derives the consequences from a hazard. 

This contribution focuses on the determination of the probability of 

impact using recent developments in monitoring techniques and 

accurate meteo-oceanographic information systems. A novel 

method, based on meteo-oceanographic operational services in 

conjunction with a Monte Carlo experiment of an oil spill model, is 

implemented to perform probabilistic studies of potential pollution 

events. The outcome focuses on the spatial distribution of impact 

probability of an oil spill in the dock or the monobuoy of the port of 

Tarragona, using a Monte Carlo method. We took advantage of the 

operational information available to use modelled wind and current 

conditions for the simulations. Additionally, the interpretation of the 

probability maps is carried out, linking with the meteo-

oceanographic patterns of the region. 

The paper is organized as follows. Section 3.3 introduces the study 

area, the risk management tool layout, the operational data source, 

and the oil spill model used. Section 3.4 shows the results of the 

simulations and a comparison with previous work on the same area. 

Section 3.5 presents a discussion on the design criteria for the risk 

management tool. Finally, in Section 3.6, the conclusions of the 

study are summarized. 

 

3.3 Materials and Methods 

a) Study Area 

The port of Tarragona is located on the Mediterranean coast of 

Spain (Figure 3.1); approximate coordinates are: 1°14′ E, 41°05′ N. 

It is the main petrochemical port in the region, connected to one of 
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the largest Spanish oil refineries, and also an important industrial 

and commercial port. Repsol Petróleo, SA, owner of the refinery, 

operates an oil terminal in the port, including a 1489 m long dock 

with mooring capacity for five vessels and a floating dock 

(monobuoy) for mooring and unloading larger vessels. This port is 

optimal for this study due to its activity, the availability of detailed 

meteo-oceanographic data from operational services, and the 

availability of previous oil spill environmental risk studies to 

compare against our results [Valdor et al. 2015, Valdor et al. 2016a, 

Valdor et al. 2016b, Novelli 2011, Cuesta et al. 1990]. 

 

Figure 3.1. (up-left) Study location in the western Mediterranean; 

(up-right) situation of the spill points: dock (green dot) and 

monobuoy (red dot); (low-left) coastal and (low-right) port 

numerical domains of SAMOA data in Tarragona with bathymetry 

(in meters). Green box in the low-left figure represents the 

numerical boundary of the port domain nested in the coastal 

domain. 
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b) Meteo-Oceanographic Services 

Wind and water current data for the model is obtained from the 

SAMOA system (in Spanish: Sistema de Apoyo Meteorológico y 

Oceanográfico de la Autoridad Portuaria). SAMOA is an initiative 

of the Spanish Public State Port Agency (Puertos del Estado) to 

provide port authorities with user-customized operational met-ocean 

information for harbor safety, environmental management, and 

operational decisions [Sotillo et al. 2019]. The SAMOA project 

provides hourly and daily values of meteo-hydrodynamic variables 

in the Tarragona Port area using two nested domains (see 

boundaries in Figure 3.1): Coastal domain (with a spatial resolution 

for currents of 350 m) and Port domain (70 m resolution). Wind 

data is derived from the Spanish Meteorological Agency (AEMET) 

forecast services, which use two operational applications of the high 

resolution limited area model (HIRLAM) model: one is the HNR, 

covering the Spanish territory, which has a 0.05° resolution and a 

forecast horizon of + 36 h, while the more extended regional euro-

Atlantic ONR application has a 0.16° resolution and a forecast 

horizon of + 72 h [Sotillo et al. 2019]. 

The SAMOA project was inspired by the application of the regional 

ocean modelling system (ROMS) [Shchepetkin and McWilliams 

2005] over port and coastal domains in high-resolution meshes 

[Grifoll et al. 2011, Grifoll et al. 2013]. Water current data stored in 

the SAMOA is modelled using ROMS and initialized each day. The 

forecasts are systematically verified using three monitoring 

systems: (a) the buoy of Tarragona (REDEXT code 2720, location 

1.47 E-40.68 N); (b) the mareograph of Tarragona (REDMAR code 

3756, location. 1.21 E-41.08 N); and (c) the high frequency radar 

system of Delta de l’Ebre (with three stations at Vinaroz, Alfacada, 

and Salou) [Lorente et al. 2015]. SAMOA provides hourly averaged 

results, so this frequency was high enough for our probabilistic 

method when spatial scope was hundreds of meters (or higher 

resolution) and dispersion effect was considered. 
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c) Probabilistic Risk Management 

Oil spill hazard can be described under source-pathway-receptor-

consequence (S-P-R-C) methodology [Horrillo-Caraballo et al. 

2013], in which the analysis of the potential pathway between 

source and receptor is a critical point. In this sense, environmental 

risk management tools require the hydrodynamic information of the 

receptor domain [Grifoll et al. 2010]. Several types of 

environmental risk management instruments have been postulated 

in recent years in order to mitigate the environmental impact of port 

activities. These instruments can be classified into nine groups, 

according to Reference [Moreno Parra et al. 2018], based on their 

analytical approach: even tree analysis, failure mode and effects 

analysis, fault tree analysis, risk maps, scenario analysis, Bayesian 

belief networks, decision tree, bow-tie analysis, and cause-

consequence analysis. The support method used may be classified 

into four groups: analytical hierarchy process, fuzzy theory, 

evidential reasoning, and simulation methods. This work was 

directed by the risk map approach, supported by simulation 

methods. Several examples of such instruments can be found in 

References [Valdor et al. 2015, Valdor et al. 2016a, Valdor et al. 

2016b, Shchepetkin and McWilliams 2005, Grifoll et al. 2013, 

Grifoll et al. 2010, Abascal et al. 2007]. They vary depending 

mainly on the perspective adopted, the information available, and 

the purpose pursued. In any case, all these tools will be articulated 

by combining a set of constituent elements within an operational 

layout and the corresponding decision-making criteria. 

In general, the common layout of any of the mentioned tools have 

the same flow chart: information or input variables, one or several 

numerical simulation models, and one or several outputs that can be 

used to support the decision making. This modular structure allows 

improvements in any of its integrating elements to be incorporated 

into the system. Our contribution focuses on a tool schematized in 

Scheme 3.1, whose purpose is the elaboration of probability maps 

associated with oil spills in the oil transfer facilities of the port of 
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Tarragona. The investigation focuses on the application of an oil 

spill modelling, the statistical application of meteo-oceanographic 

operational products, and the physical interpretation of the model 

output. 

 

Scheme 3.1. Layout of the environmental management tool for 

accidental spills in the oil transfer facilities of the port of Tarragona. 

The environmental management tool is based on a set of Monte 

Carlo iterations using oil spill simulations obtained from an 

upgraded version of the MEDSLIK-II model. MEDSLIK-II is an 

open source Lagrangian model, developed in 2013, to simulate the 

transport and aging of the slick produced by a spill of oil or a 

derivate in the sea [Dominicis and Pinardi 2013, Dominicis et al. 

2013]. Oil transport is governed by the water currents and the wind 

and dispersed by turbulent fluctuation components that are 

parameterized with a random walk scheme. In addition, the model 

takes in consideration the oil spill evolution due to various physical 

and chemical processes that transform the oil (i.e., evaporation, 

emulsification, dispersion in water column, adhesion to coast). 

MEDSLIK-II is the pathway model chosen for the oil spill module 

in the SAMOA II project (currently in development). It is also the 

reference oil spill model adopted by the MONGOOS network, the 

EMODNET Mediterranean Sea Check Point, and MEDESS-4MS 

European projects. MEDSLIK-II has also been used in several 

scientific contributions, e.g., in References [ Goldman et al. 2015, 

Liubartseva et al. 2015, Al Shami et al. 2017, Neves et al. 2015]. 
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The upgraded version used in this article was elaborated in the 

framework of the CEASELESS H2020 EU research project 

[Mestres 2020]. The modifications were focused in adapting both 

forward simulation, to determine the evolution of the spot from a 

given spill point, and the backtracking procedure, to determine its 

origin from the point where the spot had been detected. 

For the initial oil spill modeling, the premises postulated in the 

Maritime Interior Plan of the Repsol Terminal of the port of 

Tarragona (written in 2009) were used. According to this document, 

a characteristic spill of 5.4 Tn of crude oil (the amount of crude 

spilled had no incidence on the maps obtained as the impact of 

pollution was considered without any concentration threshold) 

during a 5 min period was considered. In this sense, initial 

conditions were implemented considering the 5 min after the 

accident, simplifying the initial speed of the spill and the possible 

movement of the discharge point, etc. In consequence, an initial 10 

000 m2 square spilled area was considered at the beginning of the 

simulation. 

The model was forced by the wind and water current fields that 

were introduced in the upgraded model in either 2 or 3 dimensions; 

in this case 2-dimensional water currents were used. The wind and 

water current data used were the historical numerical results 

obtained from the SAMOA Project [Sotillo et al. 2019]. The output 

of the oil spill model was the position of the tracer particles used to 

simulate the oil-spill at different time steps. Thus, the results of 

different simulations were added in order to obtain the probability 

maps on the superposition of tracer particles of all the simulations 

considered at the chosen time steps. 

The statistical method adopted to determine the spatial distribution 

of the probability of impact was the Monte Carlo algorithm. The 

Monte Carlo algorithm was carried out by simulating a set of spills 

characterized by a random initial spill time within the simulation 

period that spanned between October 2017 and September 2018. 

That is, multiple random combinations of days and hours, 
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representing initial spills that were generated within this period. 

Then, the evolution of hypothetic spills of the exposed 

characteristics occurring at these random times were simulated in 

MEDSLIK-II. To establish this simulation period, the temporal 

continuity of meteo-oceanographic operational data was analyzed to 

provide one continuous year of data that allowed us to have an even 

distribution of the simulations along all seasons. Oil spill 

simulations were carried out in the two available domains, 

considering alternatively the dispersion effect. Thus, four types of 

numerical experiments were designed, as shown in Table 3.1.  

Domain With Dispersion (D) Without Dispersion (N) 

Port (P) PD PN 

Coast (C) CD CN 

Table 3.1. Numerical experiment classes. 

Numerical experiments for the four experiment classes were carried 

out considering two spill point options: the monobuoy and the dock 

(see locations at Figure 3.1). The dock oil-spill location 

corresponded to its final section of the dock. The model parameters 

used for each of these four types of experiments and for both spill 

points are summarized in the Table 3.2. 

Parameter PD CD PN CN 

Steps/hour 1 82 10 82 10 

Interval 2 0.05 0.1 0.05 0.1 

Parcels 3 10 10 1 1 

Hz diffusivity 4 10 10 0 0 

Duration 5 4 8 4 8 

Table 3.2. Model parameters for numerical experiments. 
1 Number of time steps per hour used for slick computation. 
2 Interval for output (h). 3 Number of parcels used to model 

diffusion and dispersion. 4 Horizontal diffusivity (m2/s). 5 Duration of 

computation from spill start (h). 

The number of time steps per hour was determined by computation 

requirements. The output interval was established according to the 

scale of the probability map grid. The number of parcels was 1 
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when dispersion was neglected and 10 when the dispersion was 

considered. The value adopted for horizontal diffusivity was 

obtained from the literature [Matsuzaki and Fujita 2017, Dominicis 

et al. 2012] and a sensitivity analysis was carried out. Finally, the 

oil spill duration was established according to the size of each 

domain. 

Added to Monte Carlo simulations, numerical experiments were 

carried out for specific hours and months within the simulation 

period in order to analyze variations in the distribution of the 

probability of impact of specific temporal scales (e.g., hourly or 

seasonal). The results from these non-Monte Carlo numerical 

experiments were not used for the impact probability maps, but as 

an interpretation tool. 

The results obtained in the port with dispersion (PD) and coast with 

dispersion (CD) experiments have been used for the generation of 

impact probability maps using a two-step process. In the first step, 

particle-count maps were generated by defining a mesh on the 

domain and obtaining for each cell in the mesh the total count of 

tracer particles that were in that cell at any step of any simulation. 

In the second step, impact probability maps (IPMs) were obtained 

by normalizing the corresponding particle count map, that is, by 

dividing the value in each cell by the maximum value that 

corresponds to the cell that contains the initial spill zone. This way, 

IPMs showed the probability of presence of tracer particles in each 

cell at any time for simulation lasting 8 h. The cell size used was 

100 × 100 m. Probability was defined only in the area where 

numerical convergence of the Monte Carlo simulations was 

achieved. For visualization purposes, a logarithmic probability scale 

was chosen. 
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3.4 Results 

Figure 3.2 and Figure 3.3 show the IPMs for spills in the dock and 

monobuoy, respectively, evaluated on the coastal numerical domain 

(see Figure 3.1). Comparison of these maps shows that potential 

spills occurred in the monobuoy can affect significantly larger areas 

than spills occurred in the dock. This difference is particularly 

relevant in the east direction, in which the port constitutes a 

significant barrier for spills released from the dock. In the south 

direction, the spill can reach approximately 20% further from the 

monobuoy than from the dock, apart from the fact that the 

monobuoy is about 1.5 km south from the dock. In the southwest 

direction, a spill from the monobuoy can reach approximately 50% 

further than the spill from the dock.  

  

Figure 3.2. Impact probability map (IPM) for spills in the dock (green 

dot), evaluated on the coastal domain.  
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Figure 3.3. IPM for spills in the monobuoy (brown dot), evaluated 

on the coastal domain.  

Figure 3.4 and Figure 3.5 show the IPMs for spills in the dock and 

monobuoy, respectively, computed on the port numerical domain. 

In order to avoid the effect of the numerical domain boundary, these 

maps were defined for a probability of impact higher or equal than 

1.5625%, although convergence has already been achieved at lower 

probabilities (see considerations about convergence in the 

Discussion section).  
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Figure 3.4. IPM for spills in the dock (yellow dot), evaluated on the 

port domain. 
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Figure 3.5. IPM for spills in the monobuoy (brown dot), evaluated 

on the port domain.  

Comparison of these maps show again that spills occurred in the 

monobuoy can potentially affect a significantly larger area than 

spills occurred in the dock. The relative difference is higher in this 

case: 55% in the south direction and 85% in the southwest direction, 

and, again, in the east direction, the port constitutes a significant 

barrier for spills in the dock.  

 

3.5 Discussion 

a) Numerical Resolution Comparison 

Previous IPM results have allowed us to evaluate the impact of the 

numerical resolution of the oil-spill in coastal areas. In these 

computational experiments, the Port model used a larger resolution 

to describe the water current in comparison to the Coastal model 

and expected a more accurate solution in the first case. However, 
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Port domain boundary is a significant limitation to be taken into 

account. IPM comparison suggests similar maps in both domains 

for the case of the monobuoy, although this may not be obvious 

when comparing Figure 3.3 and Figure 3.5 because of the difference 

in ambit extension and probability representation scale. On the other 

hand, divergences between IPMs computed using Port and Coastal 

domains suggest differences of oil spill numerical solutions in the 

function of the hydrodynamic numerical resolution. The reason is 

that it seems associated with the hydrodynamics described in the 

port entrance (i.e., near the oil handling dock), which is quite 

complex, and there is a significant loss of information in its 

representation on the coarser mesh (see Figure 3.6). 

 

Figure 3.6. Surface water velocity obtained from SAMOA products 

(left: Port model, right: Coastal model). 

b) Temporal Variability and Hydrodynamic 

Considerations 

The temporal variability of the IPM was investigated in order to 

determine the prevalent hydrodynamic pattern. In this sense, 

monthly IPMs were analyzed and compared with the mean water 

circulation. Variation on IPMs for different seasons could not be 

clearly established, as the difference between different seasons was 

apparently no greater than differences observed between 

consecutive months. The differences detected were not considered 

significant given that only 1 year of data was analyzed, although, 
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for the same reason, the existence of seasonal variations cannot be 

ruled out. 

The daily variability was also analyzed, obtaining IPMs for oil 

spills released at different hours. The oil-spill hours considered 

were 04:00, 10:00, 16:00, and 22:00 GMT. In this analysis, a 

significant variation was found. 

• For spills released at 04:00, the high probability area was 

slightly displaced away from the coast and the average distance 

reached was slightly lower. 

• For spills released at 10:00, the high probability area was near 

the coast with a high proportion of particles trapped on the 

shoreline and the average distance reached was quite a lot 

lower. 

• For spills released at 16:00, there was a wider and more uniform 

distribution with an average proportion of particles trapped on 

the coast and the average distance reached was higher. 

• For spills released at 22:00, a wider and more uniform 

distribution (though not as much as at 16:00 spills) was 

observed and the average proportion of particles trapped on the 

shore and the average distance reached was higher. 

The analysis of water current data from the SAMOA project shows 

an averaged water circulation southwestward, consistent with the 

shape of the IPM. Figure 3.7 shows the surface water current 

averaged for the year 2019, for which the maximum velocities were 

obtained in the vicinity of the monobuoy. This hydrodynamic 

pattern is common in the regional water circulation in the inner 

shelf, where hydrodynamics is modulated by remote sea level 

gradients and regional winds [Grifoll et al. 2012, Grifoll et al. 

2013]. Overlapped to mean water circulation, measured wind data 

from a meteorological station at Tarragona Port shows how the 

most energetic wind conditions correspond to the NW component 

(Figure 3.8). In this sense, a dominant northwesterly component 

during winter and fall occurs, according to previous studies based 
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on long-term measurements [Grifoll et al. 2015, Ràfols et al. 2017a, 

Ràfols et al. 2017b]. This would explain the offshore principal 

direction of the IPM that was consistent with the offshore winds. 

The additional sea-breeze cycle during summer may provide 

offshore water flow. However, opposite to onshore flow, offshore 

flow was neglectable in comparison to long-shelf circulation (see 

Figure 3.7). Therefore, the spatial variability to IPMs shown 

previously presumably corresponds to the NW wind component and 

southwestward averaged water circulation in the surface. 

 

Figure 3.7. (upper) Averaged water current from the Port model 

during 2019. Water current fields during sea-breeze event: 2019-

08-29 14:00 GMT (lower left) and 2019-08-29 23:00 (lower right). 

Water current fields were obtained from the SAMOA project. 
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Figure 3.8. Wind direction probability distribution for strong winds 

(≥ 7.5 m/s). Data obtained from the Spanish Port Agency (Puertos 

del Estado) during the February 2002–January 2007 period. 

c) Convergence Considerations 

A key topic when using the Monte Carlo method is the convergence 

assessment criteria. As any inference based on the Monte Carlo 

method, the output relies critically upon the assumption that the 

Markov chain has achieved a steady state (i.e., converged) [Brooks 

and Roberts 1998]. 

The first step to consider is whether convergence can be achieved at 

the same time for all the cells in the IPM. With this method, each 

cell after a given number of simulations will have a different degree 

of steadiness. The map does not converge as a whole, but each cell 

does converge after a certain number of simulations. For a given 

number of simulations, the map will show an irregular area of 
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converged cells and non-converged cells. Therefore, we established 

a cell convergence criterium to fulfill the following conditions: 

The criteria should be based on relative error in probability, instead 

of absolute, as it will have to work consistently for different 

probability values. 

If the criterium takes into consideration the probability value, it 

must be evaluated on the estimate probability obtained at any given 

number of simulations. 

A criterium evaluation with low evaluation cost will be preferred so 

it can be evaluated after each simulation without a high increase in 

the time needed for calculation. 

To propose a criterium, we compared the number of simulations 

with the probability obtained for each cell: the number of spill hits 

in the cell divided by the total number of simulations. This 

comparison showed a spiked profile (see Figure 3.9) with a spike at 

each simulation, in which the spill hit the cell. Spike heights 

decreased as the number of simulations increased. 

 

Figure 3.9. Comparison example between number of simulations 

and the estimated impact probability for a cell. 
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One reasonable cell convergence criterium that fulfilled the 

previous conditions was as follows: Convergence was achieved 

when the expected spike height for a hit was less than a chosen 

fraction of the probability obtained. This criterium could be 

considered in terms of the number of hits needed for convergence. 

This number depended on hit probability as the quotient between 

expected spike height, and probability obtained increased as 

probability decreased (see Table 3.3). This value decreased to a 

threshold of the inverse of the number of hits. These values were 

obtained by taking into account the properties of the binomial 

probability distribution. The binomial is a discrete distribution that 

applies to the number of successes in a sequence of independent 

experiments. That is the case of Monte Carlo experiments when 

data from one experiment is not taken into account for other 

experiments. 

Probability 2 Hits 5 Hits 8 Hits 9 Hits 10 Hits 11 Hits 

50% 0.333 0.111 0.067 0.059 0.053 0.048 

25% 0.429 0.158 0.097 0.086 0.077 0.070 

10% 3 0.474 0.184 0.114 0.101 0.091 0.083 

1.0% 0.498 0.198 0.124 0.110 0.099 0.090 

<0.10% 0.500 0.200 0.125 0.111 0.010 0.091 

Table 3.3. Quotient between expected spike height and probability 

obtained for different combinations of probability and number of 

hits. 

In this work, a criterium based on an absolute number of hits, equal 

to 10, was chosen. This criterium set the quotient between expected 

spike height and probability obtained to the ratios shown in Table 3. 

This criterium is as demanding as considering one tenth of the 

probability obtained when the probability was 11.11% or lower, and 

more demanding with higher probabilities (e.g., with 50% 

probability, 6 hits would be enough to reach one tenth of the ratio). 

The actual computational cost of this simplification is quite low as 

the expected number of simulations to get a hit is the inverse of the 

probability. 
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d) Comparison with Previous Works 

Potential oil spills from the Tarragona monobuoy have been 

analyzed previously in several contributions [Valdor et al. 2015, 

Valdor et al. 2016a, Valdor et al. 2016b]. These works also show an 

aggregate pattern, and the main directions were E, ESE, and WSW. 

The IPMs for the monobuoy spill point on both domains (Figure 3.3 

and Figure 3.5) were consistent with these contributions showing 

the probability shape that was elongated on these three directions 

(Figure 3.10). Reference [Valdor et al. 2015] uses input meteo-

oceanographic conditions based on numerical modelling of 

characteristic scenarios. The TESEO oil spill model [Abascal et al. 

2007] shows these prevalent directions in potential oil spills from 

the modelling of characteristic scenarios. The IPMs for both spill 

points on the coastal domain (Figure 3.2 and Figure 3.3) were also 

consistent with the mentioned contributions [Novelli 2011, Cuesta l. 

1990], which point out the protection provided by cape Salou to the 

city of Salou and the nearby beaches. 

 

Figure 3.10. Oil transport pattern for spills at the monobuoy. Main 

directions are represented with yellow arrows. The blue arrow 

represents the main water current. White arrows represent the 

main wind directions. 
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e) Port Management Applications 

The statistical methodology based on the Monte Carlo method 

offers port managers a powerful tool for oil spill risk management, 

which will result in better compliance with the objectives set by the 

Marine Strategy Framework Directive. The implementation of this 

system is facilitated by the implementation of meteo-oceanographic 

operational models in port areas (e.g., SAMOA). Therefore, the 

possibility of implementing tools to define the IPMs on the 

operating models is an added value with low computational effort in 

comparison to the operational meteo-oceanographic model itself. 

Additionally, this methodology has the advantage of automatically 

improving the output when more historical wind and current data 

are stored. In consequence, its reliability will grow dynamically 

without the need to periodically redesign. This advantage also 

makes it suitable for port environments, where the knowledge of 

local meteo-oceanographic conditions is limited but operational 

models are being implemented. 

 

3.6 Conclusions 

In this paper, a probabilistic method to obtain IPMs using Monte 

Carlo simulations is presented. The implementation of the method 

at oil facilities in Tarragona Port suggests that the IPM is a valid 

tool for the environmental management in ports. In this case, the 

IPMs are consistent with the meteo-oceanographic characteristics of 

the region: south-westward averaged water circulation and NW 

energetic wind events. The potential of this method will grow in 

concordance with the development of meteo-oceanographic 

operational systems models in ports and coastal areas. During the 

tool design, a compromise has to be reached for the scope and scale 

of the study, taking into account the available meteo-oceanographic 

information and the model requirements. Expert judgment will be 

necessary for analysis of low probability levels in areas with limited 

data. The analysis of these situations will determine adequate 
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strategies to overcome the limitations being an interesting line for 

future research. 
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4. USE OF NEURAL NETWORKS AND 

COMPUTER VISION FOR SPILL AND WASTE 

DETECTION IN PORT WATERS: AN 

APPLICATION IN THE PORT OF PALMA 

(MAJORCA, SPAIN) 

 

4.1 Foreword  

Featured Application: 

Port Environmental Management systems; automated spill and 

waste detection in port waters. 

Abstract: 

Water quality and pollution is the main environmental concern for 

ports and adjacent coastal waters. Therefore, the development of 

Port Environmental Management systems often relies on water 

pollution monitoring. Computer vision is a powerful and versatile 

tool for an exhaustive and systematic monitoring task. An 

investigation has been conducted at the Port of Palma de Mallorca 

(Spain) to assess the feasibility and evaluate the main opportunities 

and difficulties of the implementation of water pollution monitoring 

based on computer vision. Experiments on surface slicks and 

marine litter identification based on random image sets have been 

conducted. The reliability and development requirements of the 

method have been evaluated, concluding that computer vision is 

suitable for these monitoring tasks. Several computer vision 

techniques based on convolutional neural networks were assessed, 

finding that Image Classification is the most adequate for marine 

pollution monitoring tasks due to its high accuracy rates and low 

training requirements. Image set size for initial training and the 

possibility to improve accuracy through retraining with increased 

image sets were considered due to the difficulty in obtaining port 

spill images. Thus, we have found that progressive implementation 

can not only offer functional monitoring systems in a shorter time 
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frame but also reduce the total development cost for a system with 

the same accuracy level. 

Keywords:  

computer vision; marine litter; marine pollution; monitoring 

technologies; port water quality 

 

4.2 Introduction 

Ports and surrounding areas of the coast are zones in which a 

multitude of human activities are concentrated in a limited space 

with usually low water renewal rates. In consequence, ports and 

adjacent waters are very sensitive to pollution and accumulation of 

solid waste and their impact on the aquatic environment and, in 

turn, socioeconomic impact [Ng and Song 2010]. A relevant 

mechanism of water pollution in port areas is waste discharge and 

accumulation caused by non-continuous discharge events either 

intentionally or accidentally. This means solid or liquid pollutant 

waste is discharged into the water instantaneously or during a short 

period of time. These events constitute one of the most significant 

aspects to be considered in port and coastal environmental 

management; thus, economic and robust monitoring techniques are 

paramount to achieve adequate port water quality [Puig et al. 2021, 

Hossain et al. 2020]. This issue is especially sensitive in city ports 

where there is a close relation between port operation and city 

activity, and where city waste and pollution can easily get into port 

water [Li et al. 2019]. Currently, the most common approach for 

marine pollution monitoring in ports relies on conventional methods 

of collecting in situ water and waste samples for subsequent 

analysis in a laboratory. Such methods are time-consuming, 

expensive and do not provide a real-time picture of water quality in 

port waters. Thus, in practice they tend to be implemented at 

minimum levels in order to comply with regulations, especially in 

ports with scarce resources. The consequences of this limited 

monitoring at environmental management level are in many cases 
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significant [Wooldridge et al. 1999, Puig et al. 2015]. Additionally, 

real-time or near real-time measurement and monitoring methods 

for marine pollutants and waste are necessary for managing their 

environmental impacts and understanding the processes governing 

their spatial distribution [Hafeez et al. 2019]. These techniques offer 

a complementary perspective on marine pollution to 

hydrodynamics-based environmental management techniques 

[Grifoll et al. 2011, Mali et al. 2018, Morell et al. 2020]. Thus, real-

time pollution monitoring techniques can be linked with 

hydrodynamic models to obtain improved environmental 

management systems [La Loggia et al. 2011]. 

Given the nature and frequency of these discharges, management 

systems will usually consider the statistical parameters of the spatial 

and temporal distribution of the frequency of discharges instead of 

individual events. Therefore, these systems do not require very high 

levels of accuracy in monitoring as opposed to critical systems like 

biomedical applications, but rather enough to offer statistically 

significant distributions. Monitoring systems that offer 80% or 

higher accuracy are considered admissible based on the usual values 

required in these types of applications [Arribas et al. 2011]. 

In this context, it is important to note that pollution discharge events 

in ports are, in most cases, visually perceivable. Consequently, it 

seems feasible to investigate the possibility of establishing 

automated monitoring systems for these discharges using cameras 

installed at strategic points in the port. Associated with automatic 

image analysis systems, computer vision techniques seem an 

excellent complement according to previous experiences in other 

fields for detecting and recognition [Arribas et al. 2011, Eskandari 

et al. 2020, Storbeck and Daan 2001]. Computer vision techniques 

have recently experienced a quick evolution, being implemented in 

a wide range of different applications with high efficiency and 

performance [Chen and Li 2021, Dong and Na 2021, Ngeljaratan 

and Moustafa 2021]. Deep learning on convolutional neural 

networks is proven to achieve very high performance on computer 
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vision tasks [Leonard 2019]. In fact, remote sensing technology is 

proven to provide spatially synoptic and near real-time 

measurements that can be effectively used to detect and manage 

pollutants such as suspended sediments, oil and chemical spills, 

algal blooms and high suspended solids [Hafeez et al. 2019, Ciappa 

2022]. Additionally, recent contributions in waste and pollutant 

detection used Image Classification based on deep convolutional 

networks [Panwar et al. 2020, Jiao et al. 2018]. Such approaches 

have been successful at addressing pollution detection in large 

surface areas. In the case of port waters, satellite images cannot be 

used due to poor image resolution, and a monitoring system tailored 

to smaller scales has to be generated. Specifically, a computer 

vision system, supported by “in situ” mounted camera images 

would be a robust alternative for water pollution monitoring at 

ports. This system would allow continuous and low-cost monitoring 

of surface water pollution, addressing the limitations of traditional 

observational techniques. In addition, it would constitute a leap 

forward in the digitalization of ports through the practical 

application of artificial intelligence technology in coastal 

infrastructures at limited cost. It is important to note that the aim of 

this novel monitoring system is not only to give warnings for each 

discharge so that immediate action can be taken, especially in 

particularly relevant episodes that generate a significant risk for 

health or navigation, but also to obtain knowledge about the 

discharges that threaten the port waters where and when they 

happen or if they are related to specific operations. In consequence, 

computer vision, combined with traditional or Artificial Intelligence 

based analysis, may provide operational knowledge in specific port 

areas and facilities, thus allowing development of adequate 

environmental management strategies. 

Computer vision techniques can be classified according to the 

problem considered [ Khan and Al-Habsi 2020]. There are several 

classifications and the set of problems considered has grown in 

recent times, but Image Classification is one of the most common 
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applications and, in consequence, is very promising in port 

environmental management [Lu and Weng 2007]. Image 

Classification involves assigning a label to an entire image; the 

labels (i.e., the categories in which images were classified) that 

should be considered in the context of port environmental 

management systems are three: clean water, pollution (spill) or 

floating waste (waste). One of the most important requirements for 

the implementation of computer vision systems is the generation of 

a database of tagged images that can be used to train the algorithm. 

In this respect, it is important to take into account that gathering a 

significant database of images of spills can be time consuming, as 

they can only be achieved by installing cameras in the port to record 

images of eventual spills. Thus, images will be incorporated to the 

database progressively, and the question arises in terms of how 

many images—and image types—are required to train the algorithm 

to achieve an adequate level of confidence on the system. 

Specifically, it is important to determine whether it is preferable to 

train the algorithm with all images available even when the number 

of images in each category is different, or whether optimal results 

will be obtained only when there is an equal number of images in 

each category. In the first scenario, the least common class will be 

underrepresented, potentially affecting proper system performance, 

and in the second, the number of images to be gathered increases, 

and consequently so does the time required to achieve a working 

system. 

In addition to image requirements, computer vision systems are 

evaluated according to specific performance metrics. Four of the 

most common metrics are Accuracy, Precision, Recall and F1-score 

[Goutte and Gaussier 2005, Powers 2020]. However, the Accuracy 

metric does not provide a relevant metric for a port environmental 

management system because clean water images will be 

significantly more abundant than waste and spill ones; here 

Accuracy will provide mostly a measure of how many times clean 

water is correctly predicted. However, preliminary designs of 
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computer vision systems for port environmental management 

suggest the need to generate correct alarms on spill and waste 

instances. Thus, an alternative metric needs to be put forward in 

order to compare trained algorithms with a set of images that are not 

evenly distributed between categories, as will be the case in the 

current application. 

The present paper evaluates the results of a set of experiments on 

surface spills and floating marine waste identification based on 

random images as an initial stage of the development of a system 

for port water quality monitoring. After the methodological process 

(i.e., post-process) has been implemented, image sets have been 

obtained and analyzed to determine the amount and proportion of 

each image class that is required. In this sense, several computer 

vision techniques have been assessed, including Image 

Classification as the most promising one identified preliminarily. In 

order to evaluate the performance of the algorithm specifically for 

port environmental management applications, a novel performance 

index (the error index) has been proposed. The set of images has 

been conducted in the port of Palma de Majorca, which suffers 

important events of water quality degradation. 

The paper is organized as follows. Section 4.3 introduces the study 

area, the computer vision technique used, the spill and waste 

classification, the system layout, the images used, the algorithm 

training and the statistical reliability of the algorithms. Section 4.4 

shows the results of the training processes and a comparison for 

different amounts of data available in terms of image set sizes and 

distribution. Section 4.5 presents a discussion on the design criteria 

for the system set-up and its further development. Finally, in 

Section 4.6, the conclusions of the study are summarized. 
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4.3 Materials and Methods 

a) Study Area 

 

The port of Palma de Mallorca is located in the city of Palma, on 

the island of Majorca (Balearic Islands, Spain; see location in 

Figure 4.1) in the Western Mediterranean Sea, with approximate 

coordinates of: 2°38.4′ E, 39°33.7′ N. The management resides at 

the Port Authority of the Balearic Islands in a landlord governance 

model. From the impact on water quality degradation and 

environmental management, the port has the following 

characteristics: (i) Strong Port–City relation. (ii) Development of 

several different port activities (i.e., recreational boating, transport 

of passengers and goods, fishing, repair and maintenance of boats 

and restoration and services on land). (iii) Sporadic discharges of 

rainwater through four gullies and several collectors of stormwater 

drainage networks, in some cases with risk of discharge of mixed 

rainwater and wastewater. 

 

Figure 4.1. Study area location. Zones where images were obtained 

are highlighted in yellow in the lower panel. 
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b) Computer Vision Technique and Application to 

Pollution in Port Waters 

Computer vision is a field where applications are developed using 

convolutional neural networks that are trained using deep learning 

techniques. Specifically, it can be defined as a set of techniques to 

automatically obtain descriptions or significant parameters from the 

images of physical objects; these descriptions can be useful for 

decision making. This is the case of the current investigation 

included in the field of marine waste and litter detection. Due to the 

numerous potential applications of Computer vision, it has 

experienced an important development in the recent years. 

An artificial neural network is a collection of connected nodes 

which loosely model the neurons in a biological brain [Video]. Each 

connection, like the synapses in a biological brain, can transmit a 

signal to other neurons. When an artificial neuron receives a signal, 

it processes it and, as a result, sends outputs (real numbers) to 

neurons connected to it. In turn, the output signals of each neuron 

are computed by some non-linear function of the sum of its inputs. 

Typically, neurons are aggregated into layers; different layers may 

perform different transformations on their inputs coming from the 

one before. Signals travel from the first layer (or input layer) to the 

last one (or output layer). Figure 4.2 depicts schematically how 

neurons in different layers interact to provide meaningful results. 

 

Figure 4.2. Neurons, layers and signal transmissions. 
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A Convolutional Neural Network (CNN) is a type of artificial 

neural network most commonly applied to analyze visual imagery 

because they are shift invariant (or space invariant), meaning that 

the position of a feature in an image is not important. This is due to 

the CNN having a shared-weight architecture of the convolution 

kernels or filters that slide along input features and provide 

translation equivariant responses known as feature maps. Figure 4.3 

shows how the CNN architecture works towards generating relevant 

information from an input image. 

 

Figure 4.3. Basic CNN architecture (modified from [Video]) 

 

The most important computer vision techniques are Image 

Classification, Object detection, Object tracking, Semantic 

segmentation and Semantic instance segmentation. Although all 

these techniques have a potential application in port water quality 

monitoring, the most appropriate technique according to the input–

output information desired is Image Classification. This is due to 

the fact that the amount of information needed to train the system is 

lower compared to other techniques, and it allows the classification 

of images into simple classes that can be used to build temporal and 

spatial distributions of pollution events [Abiodun et al. 2018]. 

Thus, the aim of this investigation is to evaluate the efficiency of 

training Image Classification algorithms that, when taking as input 

the images of port water provided by a camera monitoring system 

and operating in real-time, provide as output the class to which each 
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image belongs with the highest probability, according to a 

classification that is relevant for proper environmental management 

of port water. 

 

c) Computer Vision Classes Considered 

The selection of the clean, spill and waste classes has been carried 

out after careful consideration of the nature of pollution in ports as 

well as the level of detail that is useful in port environmental 

management activities. Specifically, spills in ports have four main 

origins (although in specific ports or terminals there may be others): 

users on land, users on boats, discharges of mixed drainage 

networks and port operations. Considering their physical and 

chemical nature, there is an enormous variety in waste and 

contaminants that can reach port waters, including suspended 

matter, hydrocarbons or eutrophication (not a spill in itself, but a 

consequence of a nutrient spill) (see Figure 4.4). Identification of 

both the origins and chemical nature of spills could be pursued, but 

the applicability of such information is very limited; all these 

contamination events are managed in a similar fashion and thus 

their identification would not provide any relevant input in port 

environmental management. In contrast, a type of pollution that 

follows a different type of action from a port environmental 

management perspective is floating waste (see Figure 4.4). 

Consequently, for the computer vision system designed, two 

categories of pollution have been considered, namely spill and 

waste. The spill class (class 1 in this study) refers to liquids mixing 

and/or diluting in the water, or to clouds of suspended solids. The 

waste class refers to large individual solids floating on the water or 

near the surface (class 2 in this study). Finally, clean water has been 

labelled as class 0. These three classes provide sufficient 

information for a port environmental management system to take 

relevant decisions on time and cost. 
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Figure 4.4. Right image: Spill class example. Center image: Waste 

class example. Left image: Mixed Spill and Waste example. 

 

The Image Classification technique does not consider the possibility 

of one image belonging to two or more classes; it simply returns the 

most likely class. This may constitute a limitation of the method 

since spill and waste could theoretically appear simultaneously in 

an image. To overcome this limitation, an additional class should be 

defined including images with the presence of both (see Figure 4.4). 

However, this situation is very infrequent in ports, and, in fact, it 

did not occur in any of the images obtained in this investigation. 

The most common cases in which we could theoretically find spill 

and waste together are: (i) pollution originating from two or more 

independent incidents ending up in an accumulation zone due to the 

hydrodynamic characteristics of the port; or (ii) mixed pollution 

released by rivers or collector systems that discharge into the port. 

In the context of the system proposed in this work, the first case is 

irrelevant because the main objective is to monitor discharge 

episodes rather than the persistence of discharges within the port. 

The second case is limited to specific areas and its processing 

constitutes a particularity that is to be faced in future research. 

Therefore, although this limitation exists, it does not seem to be an 

import limitation at this stage due to the infrequency of the 

combined (i.e., spill and waste) event. The segregated monitoring 

system proposed represents the reality of most existing ports and 

thus is easily scalable to other infrastructures. 
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d) Dataset Used 

The dataset used in the current study consists of images obtained 

through manual sampling in several different locations in the Port of 

Palma. About 3400 images were obtained, of which only 1379 were 

actually used; 660 were selected as instances of clean water class, 

389 of spill class and 330 of waste class. Discarded images were too 

similar to other images that were used or constituted excess clean 

water class and spill class images. The number of images obtained 

in spill and waste classes was the main limitation as actual pollution 

events are required to happen in the port during the fieldwork visit 

in order to obtain them. 

In this study, different amounts of spill/waste and water images 

have been used, as detailed in Section e, in order to investigate the 

practical applicability of the developed system. The images were 

gathered using different digital cameras, in 4:3 format and different 

image resolutions (1 Megapixel and higher). Nevertheless, when 

using the images for the training and validation of algorithms, they 

were transformed into square pictures and their resolution was 

reduced (see Section e). Figure 4.5 shows three images from each 

class with square shape and reduced resolution. 
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Figure 4.5. Example images for each class. 

 

e) Experiments Description: Algorithm Training and 

Validation 

In order to evaluate the feasibility of implementing a computer 

vision water quality monitoring system in ports, three experiments 

have been carried out in the present study using a CNN type system. 

The experiments intend to evaluate the feasibility of a computer 

vision system in port environmental management and the 

performance impact of the results on image set size and distribution. 

The main characteristics of each experiment are shown in Table 4.1, 

including the research objectives. 
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Experiment 

Number 

Research Objective Number of Images 

(Spill/Waste/Clean 

Water) 

Image 

Resolution 

(Pixels) 

Experiment 1 Screening of computer vision 

system overall performance and 

feasibility for port environmental 

management 

389/330/660 300 x 300 

Experiment 2 Investigating the performance 

impact of image set distribution 

1320 images in 

different proportions 

256 x 256 

Experiment 3 Investigating the performance 

impact of image set size 

Different numbers in 

equal proportions 

256 x 256 

Table 4.1. Summary of computer vision experiments in the current 

study. 

Keras open-source software library for Python (version: 2.4.3) on 

Tensorflow Google developed open-source software library 

(version: 2.3.0) backend framework based on the Anaconda3 

platform was used in these experiments. Python 3.8.10 

programming language was used for training and validation process 

programming. The computer used was equipped with an Intel Core 

i7-6700HQ CPU with 16 GB RAM and a NVIDIA GeForce GTX 

960M graphics card. The computer operating system was the 64-bit 

Windows 10 home edition. In the three experiments, a neural 

network InceptionV3, with “imagenet” weights and a 3-channel 

resolution was deployed. InceptionV3 was chosen between Keras 

available models, after discarding models designed for mobile 

devices considering the compromise between accuracy and speed 

according to Keras documentation [WWW Document 2022] and 

CNN research [He et al. 2019, Hussain et al. 2019]. An additional 

GlobalAveragePooling2D layer was added with 1024 additional 

neurons with ReLU activation (0.2 dropout), as well as another 

layer with 3 neurons with softmax activation. The latter layer is the 

one bearing the spill/waste/clean water class information. In order 

to feed the neural network, two image generators were used. For the 

training images, a series of transformations were applied (rotation, 

horizontal and vertical shifts, crop, zoom and horizontal reflex) 

including a standard normalization. In addition, data augmentation 
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techniques were used on the image set [Shorten and Khoshgoftaar 

2019]. For image validation purposes, only normalization was 

applied. Data ingestion was carried out in batches of 8 images. The 

training set images consisted of 80% of the set and the remaining 

20% were used for validation purposes. Firstly, a training of 

additional layers was conducted and subsequently a fine-tuning was 

simultaneously carried out of both final inception blocks and 

additional layers. The cost function used was 

CategoricalCrossentropy (logit) and Adam was deployed as the 

optimization algorithm (learning rate of 0.001 and 0.00001 was 

each of the training phases described previously). 

For Experiment 2, 14 algorithms were trained, two for each image 

set distribution tested. The distributions of images considered in 

these experiments are the ones shown in Table 4.2. 

 

Image Ratio Number of Images of 

Class 0 

Number of Images of 

Class 1 

Number of Images of 

Class 2 

1/1 330 330 330 

1/2 660 330 330 

2/5 660 264 264 

1/3 660 196 196 

1/4 660 165 165 

1/8 660 82 82 

1/16 660 41 41 

Table 4.2. Distribution of images considered in Experiment 2. 

For Experiment 3, 82 trainings based on image sets formed 

randomly of different sizes (ranging between 18 and 990 total 

images). Here, one third of the total number of images corresponds 

to each class. 

In experiments 2 and 3, each algorithm training was started from the 

initial model and not from the previously trained algorithm in order 

to prevent the propagation of errors or beneficial traits from one 

algorithm to the next. 
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2.6. Algorithm Performance Evaluation 

Some of the metrics used in this study are the ones commonly 

reported in the literature and applied investigations when evaluating 

the performance of computer vision systems [Goutte and Gaussier 

2005]. These are the following: 

Accuracy: Commonly defined as the ratio of true positives and true 

negatives to all positive and negative observations. That is, how 

often we can expect the computer vision system to correctly predict 

an outcome out of the total number of times it made predictions. 

Mathematically, it is formulated as the ratio of the sum of true 

positives and true negatives out of all the predictions, namely: 

 

(1) 

where TP = true positives; TN = true negatives; FN = false negatives; 

and FP = false positives. 

Precision: It represents the proportion of labels that were correctly 

predicted to be positive. That is, it is a performance metric that is 

most useful when trying to control false positives. As well as for 

Accuracy, Precision is also affected by class distribution; if there 

are more images for a class that does not happen frequently, 

precision becomes lower. 

Mathematically, it is formulated as the ratio of true positive to the 

sum of true positives and false positives, namely: 

 

(2) 

Recall: It represents the system’s capacity to correctly predict the 

positives from the set of actual positives. Recall is most useful when 

identifying positives as critical. Mathematically, it represents the 

ratio of true positive to the sum of true positives and false negatives. 
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(3) 

F1 score: It is obtained as a harmonic mean of the Precision and 

Recall scores, giving each of them an equal weight. It is often used 

as a single value that provides high-level information about the 

model’s output quality and Precision/Recall balance. 

Mathematically, it is formulated as a harmonic mean of the 

Precision and Recall scores. 

 

(4) 

In the case of experiment 1, where the objective is to validate the 

algorithm generated for its application in port environmental 

management, the prior metrics are relevant and sufficient. However, 

in experiment 2, as well as in realistic system application, we would 

need an additional index that evaluates the performance of the 

system as an alternative to the common Accuracy metric. This is 

due to the fact that the Accuracy metric is not the most reliable in 

computer vision models trained on datasets where one event (in this 

case clean water) is much more frequent than the rest of the events 

(in this case spill or waste). In this case, Accuracy will mostly 

determine that clean water is detected correctly most of the time but 

will not provide decisive information on the spill and waste 

detection performance. As the latter are the actual events (alarms) to 

be detected by a computer vision system applied in a port 

setting, Accuracy is not a parameter that becomes useful in the 

present study or in real-life applications of the 

system. Precision, Recall and F1-Score indexes are also not suitable 

for experiment 2 because they are class specific and for comparison 

purposes an all-class synthetic index is needed. Consequently, a 

novel index has been defined for the purpose of this application (as 

well as others that might face similar issues as the one presented): 
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the Error index. This index is defined as the ratio of the sum of 

errors made in providing warnings (either false alarms or alarms 

that are incorrectly not provided) to the sum of total alarms 

provided by the system. Adapting for the current application with 

three classes (i.e., 1, 2 and 3), the Error index is defined as: 

 

(5) 

Where TPi= true positives for class, i; TNi = true negatives for class, 

i; FNi = false negatives for class I and FPi = false positives. 

The definition corresponds to a parameter that is more meaningful 

than Accuracy for port water quality monitoring applications, as it 

eliminates the issue of the unequal distribution of images during the 

application of the system. However, two limitations have been 

detected: (i) Error index is not a normalized parameter and (ii) it 

overestimates the errors made overall by the system because it 

eliminates a set of prediction successes. Nevertheless, it is a 

conservative and meaningful index useful for port managers 

because of its comprehensiveness. 

 

4.4 Results 

a) Experiment 1 

The Image Classification algorithm has been trained and validated 

and an Accuracy of 0.91 has been obtained with an image 

evaluation time of about one second. Table 4.3 presents the 

performance metrics for the identification of each of the classes. In 

general, adequate performance metrics with the Image 

Classification technique have been achieved, proving that the 

system is promising. As a shortcoming to be addressed with the 

validation dataset, a proportion (>10%) of the cases classified as 

clean water are really contaminated water. This aspect will be 

improved in the upcoming experiments, where image set 
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distribution and image set size are investigated in order to generate 

a more applied monitoring technique. 

Class Precision Recall F1-Score 

0—clean water 0.89 0.94 0.91 

1—spill 0.95 0.86 0.90 

2—waste 0.93 0.93 0.93 

Table 4.3. Performance results for Experiment 1. 

 

b) Experiment 2: Impact of Image Set Distribution 

Figure 4.6a shows the Accuracy (y-axis) versus the image class 

ratio (x-axis) in the different simulations carried out. In this figure, 

Accuracy remains relatively stable with changing proportions of 

images in the training and validation dataset. On the other hand, the 

Error index, formulated in the present study to be able to capture 

how adequate the system is in correctly detecting contamination 

alarms, shows that the performance of the system decreases 

significantly with an increasing disproportion of image classes (see 

Figure 4.6b). 

 

Figure 4.6. (a) Accuracy vs. Image class ratio. (b) Error ratio vs. 

Image class ratio. 

c) Experiment 3: Impact of Image Set Size 

Figure 4.7a shows Accuracy in different simulations where image 

set sizes vary. Accuracy has been used in this experiment since it is 

a normalized parameter and thus easier to interpret graphically, but 
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similar conclusions have been reached with the Error index in this 

case. Figure 4.7b shows how simulations with image set sizes lower 

than 297 images (99 images per class) generate a significant 

dispersion in performance. Dispersion shows a decreasing trend up 

to 99 images per class and from that point on there is no clear trend, 

remaining at moderate values. The number of 99 images per class is 

also the closest among those used to the benchmark of 100 images 

per class usually recommended for training Image Classification 

algorithms [Abiodun 2018]. With datasets that have a number of 

images over this amount, Accuracy becomes stable and increases in 

a linear manner with increasing images provided to train and 

validate the algorithm. When carrying out a regression in datasets 

with over 99 images per class (297 total images), both linear and 

quadratics fits have been considered. Finally, a linear regression, 

shown in Figure 7a, was selected because the quadratic fit is only 

marginally better than the linear one and because the linear fit 

showed significantly more robustness. Robustness was here 

evaluated as the change in fit parameters when random datapoints 

are removed from the set of results. Thus, in the range of image set 

sizes considered in the study, also the relevant range for the 

application at hand, the Accuracy presents a linear tendency with 

increasing image set size after a certain number of images have 

been achieved. 
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Figure 4.7. (a) Dots: Accuracy vs. Number of Images per class. Line: 

Regression. (b) Standard deviation of accuracy measures vs. 

Number of Images per class (when two numbers are displayed it 

means a number range). 

 

4.4 Discussion 

a) Results Discussion System Set-Up 

Results showed in Section 4.3 demonstrate that Image 

Classification is adequate for marine pollution monitoring tasks due 

to its high Accuracy rates and low training requirements (Table 

4.2). The system obtained a 91% accuracy rating, which can be 

considered a sufficient value for the requirements of a discharge 

management system in which the use of pollution event data is 

statistical and, if action is required, it will entail necessary direct 

validation. The time required by the trained algorithm to classify an 

image is approximately one second, which is compatible with the 



 

 
76 

needs of real-time monitoring. The best performance was proven to 

be achieved when image set sizes for all classes are similar (Figure 

4.5), providing the first insight into the requirements for adequate 

system implementation. In practice, spill images are difficult to 

obtain in great numbers and commonly clean water images will be 

the most dominant class. Thus, in order to achieve an algorithm that 

holds optimal performance, spill and waste images have to be 

obtained to achieve a total number between the three classes which 

is higher than 297 (Figure 4.6). In this sense, the results of 

experiments 2 and 3 are consistent with other documented 

application cases based on computer vision (e.g., [Abiodun 2018]). 

The most appropriate performance metric to evaluate these systems 

in operation is the proposed Error index, since in operating 

conditions it is foreseeable to find a much higher number of class 0 

images than those of classes 1 and 2. 

Our work suggests that the most appropriate way for the monitoring 

system to be implemented is through progressive implementation. 

In this sense, datasets would be ever increasing when additional 

spill and waste images were attained. At these points, the algorithm 

would be retrained with new datasets in order to generate higher 

Accuracy and lower Error Index rates, improving the information 

provided by the system in a gradual manner. After a total image 

data set of 297 (between the three classes considered) has been 

reached, retraining would be less frequent due to the fact that 

performance only increases gradually after that point. In this type of 

progressive implementation, functional monitoring systems would 

be provided to port decision makers in a shorter time frame while 

also reducing the total development cost for a system with the same 

accuracy level. 

Considering that the training time of the algorithm is in the order of 

minutes and that retraining of the algorithm will be carried out very 

infrequently (due to the difficulty of obtaining pollution images), it 

is preferable that each training is carried out from the initial model 
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and not from the previously used algorithm in order to prevent error 

propagation. 

Figure 4.8 depicts how the proposed implementation would be 

carried out in practice. In addition to the image acquisition and 

identification of the three classes (with alarms generated when spill 

or waste were detected), with increasing waste and spill images a 

verification and dataset enhancement step would be prompted in the 

system. With the enhanced dataset, the algorithm would be revised 

in order to achieve gradually better Accuracy and Error index 

performance. 

 

Figure 4.8. Progressive implementation of port water monitoring 

systems. The operational action refers to eventual anti-pollution 

measures planned by the port authority. 

b) Future Applications 

The most critical part of an applied computer vision system for the 

detection of pollution in ports is the availability of images with 

spills or floating waste. Therefore, future implementations would 

include tools and developments that improve upon the speed and 

cost of image obtention. Specifically, when a spill or floating waste 

image is detected, considering information on the duration of the 

pollution event would be critical to accumulate as much images as 

possible from the same event. This could be achieved either 

manually when a spill or waste event system was detected by the 
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computer vision system, or a hybrid hydrodynamic computer vision 

system could be generated. In this sense, a hydrodynamic model in 

the framework of operational oceanography systems [Sotillo et al. 

2019] would automatically provide information on the duration of 

the pollution event, and the dataset would be increased also in an 

automatic manner. However, hybrid systems can be complex; thus, 

proper investigation of the actual practicality of developing such a 

system should be further investigated. Future implementation in 

operational mode (with a large amount of images acquired) may 

entail an increase in the number of classes considered either by 

subdivision of some of the current classes or even by incorporation 

of a new class to codify the simultaneous presence of spill and 

waste as explained in Section 4.3.c. Additionally, pre-filtering and 

preparation of images could provide better image sets that would 

increase the performance without relying on algorithm retraining. 

This would include—for instance—filtering to avoid classification 

interference by passing boats and port infrastructures and detecting 

of waste and discharge events located far from the camera location 

with less loss of image resolution. In addition, pre-filtering may 

avoid or reduce the effect of sunlight reflections, and other 

transformation of the images may yield better detail of the 

contamination event and reduce interference of other less relevant 

details also contained in the images. 

 

4.5 Conclusions 

Experiments on port water quality identification based on random 

image sets have been conducted. The reliability and development 

requirements of the method have been evaluated showing that 

computer vision tools are suitable for these monitoring tasks. 

Several computer vision techniques were considered for use in real-

time marine pollution monitoring, with the decision that Image 

Classification was the most adequate for such tasks due to its high 

accuracy rates and low training requirements. These requirements 

and the possibility to improve accuracy through retraining with 
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increased image sets were considered due to the difficulty in 

obtaining port spill images, finding that progressive implementation 

can not only offer functional monitoring systems in a shorter time 

frame, but also reduce the total development cost for a system with 

the same accuracy level. A novel performance metric for the case of 

computer vision systems in the port environmental management 

application was put forward and tested, providing meaningful 

conclusions. 

Future lines of research include the development of additional 

methods that improve the time taken to obtain spill and waste 

images, ultimately increasing the applicability and speed in which it 

provides meaningful information to port decision makers. In 

addition, future works include the consideration of a new class for 

combined spill and waste for those ports that receive mixed (i.e., 

waste and spills) discharges from waterways or water collection 

infrastructure. In addition, image preparation and pre-filtering could 

also yield algorithms with higher performance metrics and help 

overcome limitations for monitoring systems where camera location 

is not optimal or where reflected sunlight makes images hard to 

classify.  
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5. ANALYSIS OF THE OPERATING CONDITIONS 

FOR A COMPUTER VISION MONITORING 

SYSTEM FOR FLOATING WASTE DETECTION IN 

PORT ENVIRONMENTS. APPLICATION AT ES 

PORTITXOL PORT IN THE BAY OF PALMA 

(MAJORCA, SPAIN) 

 

5.1 Foreword  

Featured Application: 

Port Environmental Management systems; automated waste 

detection in port waters. 

Abstract: 

Water pollution is a main concern for ports and coastal waters and 

so Port Environmental Management systems often require pollution 

monitoring. Computer vision offers an efficient tool for automated 

monitoring of waste discharges in Port waters. An investigation has 

been conducted at the Port of Es Portitxol in Palma de Mallorca 

(Spain) to assess the effect of operating conditions of such 

monitoring systems and evaluate the main limitations and analyze 

strategies to overcome them. Pretrained algorithms were employed 

to detect a synthetic waste set released in the surveilled area and 

system reliability was evaluated. Experiment 1 analyzed the impact 

of image resolution on waste detection, revealing that appropriate 

resolutions significantly improved precision. Experiment 2 

highlighted the importance of considering the range limitations 

(distance between waste and the camera) showing a negative 

correlation with detection accuracy. Experiment 3 involved training 

new algorithms with different image sets and resolutions, resulting 

in reliable performance across a range of resolutions. Based on the 
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results, several strategies for improving the system reliability have 

been pointed out; including optimizing image resolution, 

implementing distance-specific algorithms, and combining image 

sets to enhance reliability. Future research opportunities include 

exploring burst images for improved detection and extending the 

system's capabilities to multi-view analysis and other pollution 

monitoring tasks.  

 

Keywords:  

computer vision; marine litter; monitoring technologies; port water 

quality 

 

5.2 Introduction 

Ports and their adjacent coastal areas are hubs that concentrate a 

multitude of human activities within limited space both on land and 

water, often characterized by low water renewal rates. As a result, 

ports and their surrounding waters are highly vulnerable to pollution 

and the accumulation of solid waste, which can have significant 

impacts on the aquatic environment and socioeconomic factors 

[Saliba 2022, Ng and Song 2010]. A critical mechanism 

contributing to water pollution in port areas is the discharge and 

accumulation of waste caused by non-continuous events, both 

intentional and accidental. These events involve the instantaneous 

or short-term release of solid or liquid pollutants into the water, 

representing a major concern for port and coastal environmental 

management. To achieve adequate water quality in ports, it is 

crucial to surveil such events with efficient and robust monitoring 

techniques [Puig et al. 2021, Hossain et al. 2020]. This issue 

becomes particularly sensitive in city ports where the close 

relationship between port operations and urban activities makes it 

easier for city waste and pollution to enter the port waters [Li et al. 

2019] and increases the sensitivity to water pollution. 
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The prevalence of plastics in modern society has made them 

indispensable in various economic sectors due to their versatility, 

low cost, and durability. However, the excessive production and 

accumulation of plastics over the past century, often referred to as 

the "Plastic Age," have resulted in significant negative impacts on 

the environment and society. Large quantities of plastic waste, 

estimated to be between 4.8 to 12.7 million tons, enter the oceans 

annually from land-based sources. Presently, approximately 75% of 

all marine litter consists of plastics, causing concern for marine 

ecosystems, human health, and maritime industries [Napper and 

Thompson 2020]. 

Marine plastic pollution originates from various sources, including 

rivers, canals, sewage discharge, litter from ships, and shipping 

spills. This rise in plastic waste spills has far-reaching 

consequences, potentially impacting critical marine ecosystem 

services, such as fisheries and recreation. Addressing marine litter 

requires a comprehensive approach involving collaboration between 

industries, policymakers, and global initiatives to curb plastic 

pollution and safeguard the health of marine environments for 

future generations. 

Currently, the most common approach to marine pollution 

monitoring in ports relies on periodically collecting water and 

sediment samples for subsequent analysis in a laboratory and 

doesn’t specifically consider waste. Also, these methods are time-

consuming, expensive, and do not provide a real-time understanding 

of water quality in port waters. Consequently, they are often 

implemented at minimal levels to comply with regulations, 

especially in ports with limited resources. The consequences of such 

limited monitoring at the environmental management level can be 

significant [Wooldridge et al. 1999, Puig et al. 2015]. 

Real-time or near real-time measurement and monitoring methods 

for marine waste are essential for managing their environmental 

impacts and comprehending the processes that govern their spatial 
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distribution [Di Vaio et al. 2019, Butt 2007]. These techniques offer 

a complementary perspective on marine pollution to 

hydrodynamics-based environmental management techniques, 

enabling the integration of real-time pollution monitoring with 

hydrodynamic models to achieve improved environmental 

management systems [Grifoll et al. 2011, La Loggia et al. 2011]. 

In this context, it is important to highlight that waste discharge 

events in ports are usually visually perceptible. Which raises the 

possibility of establishing automated monitoring systems for these 

discharges using strategically placed cameras within the port area. 

Computer vision techniques, associated with automatic image 

analysis systems, have proven to be excellent tools in other fields 

for detecting and recognizing objects [Arribas et al. 2011, Eskandari 

et al. 2020, Storbeck and Daan 2001]. Computer vision techniques 

have undergone rapid evolution in recent years, demonstrating high 

efficiency and performance across a wide range of applications 

[Chen and Li 2021, Dong and Na 2021, Ngeljaratan and Moustafa 

2021]. Deep learning on convolutional neural networks has 

particularly shown exceptional performance in computer vision 

tasks [Leonard 2019]. In the domain of environmental monitoring, 

remote sensing technology has proven effective in providing 

spatially synoptic and near real-time measurements for the detection 

and management of pollutants, including suspended solid waste and 

suspended sediments [Ciappa 2022, Hafeez et al. 2019]. Moreover, 

recent contributions in waste and pollutant detection have utilized 

Image Classification techniques based on deep convolutional 

networks [Panwar et al. 2020, Jiao et al. 2018, Morell 2023]. Such 

approaches have achieved success in addressing waste detection in 

large surface areas. 

However, in the context of port waters, the use of satellite images is 

limited due to poor image resolution, necessitating the development 

of monitoring systems tailored to smaller scales. Specifically, a 

computer vision system supported by "in situ" mounted cameras can 

provide a robust alternative for monitoring floating waste in ports. 
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Such a system would enable continuous and cost-effective 

monitoring, overcoming the limitations of traditional observational 

techniques. Additionally, the practical application of artificial 

intelligence technology in port infrastructures at a reasonable cost 

would represent a significant step toward the digitalization of ports 

[Heilig 2017, Paulauskas 2021]. 

The main aim of this novel monitoring system is to obtain 

knowledge about the discharges threatening the port waters, 

including when and where they occur, and whether they are related 

to specific operations, rather than to provide warnings for each 

discharge for immediate action. Consequently, computer vision, 

combined with traditional or Artificial Intelligence-based analysis, 

can offer operational knowledge in specific port areas and facilities, 

supporting the development of appropriate environmental 

management strategies. 

Computer vision techniques can be classified based on the specific 

problem they address [Khan and Al-Habsi 2020]. Image 

Classification is one of the most common applications and holds 

great promise in the context of port environmental management [Lu 

and Weng 2007]. Image Classification involves assigning an entire 

image into an image class, and in the context of port waste 

management systems, the relevant classes are clean water (clean) or 

carrying floating waste (waste). 

Implementing computer vision monitoring systems in port areas 

requires careful consideration of the operating conditions to ensure 

their effectiveness. The successful deployment of such systems 

relies on strategically choosing camera locations, taking into 

account the distance and angle of the line of sight to the monitored 

area. This study case focuses on analyzing the critical operating 

conditions for a computer vision-based monitoring system, 

specifically for detecting floating waste in port environments. By 

understanding these operating conditions, EMS managers can 
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optimize the system's performance and achieve more accurate and 

reliable results. 

The selection of camera locations is a vital aspect of designing a 

robust and efficient computer vision monitoring system. The 

positioning of cameras determines the system's field of view and the 

area covered by the surveillance. It is crucial to identify key areas 

prone to pollution and waste accumulation within the port and its 

adjacent waters. Ports are dynamic environments with various 

human activities concentrated in limited spaces. Consequently, 

areas with low water renewal rates are susceptible to pollution and 

waste accumulation, necessitating targeted monitoring [Ng and 

Song 2010]. By strategically placing cameras, port authorities can 

ensure comprehensive coverage of critical zones and promptly 

detect any pollution discharge events. 

The line of sight from the cameras to the monitored area plays a 

pivotal role in the system's performance. The angle and distance of 

the line of sight influence the clarity and accuracy of the captured 

images. Obstructions, such as buildings, structures, or other vessels, 

may obstruct the line of sight and hinder the system's ability to 

detect floating waste effectively. Additionally, factors like 

atmospheric conditions and lighting can impact image quality and 

subsequent classification accuracy. 

To optimize the performance of the computer vision monitoring 

system, careful attention must be paid to camera placement and line 

of sight considerations. The positioning of cameras should be based 

on a thorough understanding of the port's layout and the patterns of 

waste accumulation. High-risk areas and potential pollution 

hotspots should be prioritized when choosing camera locations. 

Furthermore, the installation of cameras at elevated positions or 

utilizing pan-tilt-zoom (PTZ) cameras can enhance the system's 

flexibility and adaptability to changing environmental conditions. 
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A well-designed computer vision monitoring system, integrated 

with environmental management strategies, can significantly 

contribute to maintaining water quality in ports. Real-time data 

from the system can enable prompt responses to pollution events, 

reducing the potential impacts on marine ecosystems and coastal 

areas. By linking the system with hydrodynamic models, port 

authorities can gain valuable insights into the spatial distribution 

and movement of pollutants, facilitating better decision-making and 

resource allocation. 

This chapter evaluates the results of a series of experiments 

conducted to identify floating marine waste in images taken from a 

fixed location in the port, with the waste at a variable distance from 

the camera position; the classifications accuracy for different 

distance ranges has been compared. Also, the effect of the original 

resolution of the image on the classification accuracy has been 

analyzed. To evaluate the algorithm's performance specifically for 

port environmental management applications, a novel performance 

index proposed on a former work [Morell 2023] reproduced in 

chapter 4, the error index, has been considered. The image sets were 

collected from Es Portitxol Port, located in Palma de Majorca, a 

recreational port where users and citizen are highly sensitive to 

water quality degradation events. 

The remainder of this chapter is organized as follows. Section 5.3 

introduces the study area, the computer vision technique and 

algorithm employed, the spill and waste classes considered, the 

field work carried out and the image set obtained, the pretreatment 

of the images and a description of the three experiments. Section 

5.4 presents the results of the experiments (reliability against 

resolution, reliability against distance and new algorithm training 

low reliability of the system with pretrained algorithms and. Section 

5.5 discusses the reliability of the system with pretrained 

algorithms, its potential improvement based on experiment 3 and 

the system’s further development. Finally, Section 5.6 summarizes 

the conclusions drawn from the study. 



 

 
88 

5.3 Materials and Methods 

a) Study Area 

 

The port of Es Portitxol is located in the city of Palma, adjacent to 

the Port of Palma, on the island of Majorca (Balearic Islands, Spain; 

see location in Figure 5.1) in the Western Mediterranean Sea, with 

approximate coordinates of: 39°33'38"N 2°40'7"E. The 

management resides at the Port Authority of the Balearic Islands in 

a landlord governance model. Main aspects to consider about the 

impact on water quality degradation and environmental 

management are: (i) Strong Port–City relation. (ii) Focus on sports 

and recreational boating port activities and related port services 

(i.e., repair and maintenance of boats and restoration and services 

on land). (iii) Sporadic discharges of rainwater through one torrent 

and several collectors of stormwater drainage networks. 

 

Figure 5.1. Study area location. 

b) Computer Vision Technique used 

Various computer vision techniques are available, including Image 

Classification, Object Detection, Object Tracking, Semantic 

Segmentation, and Semantic Instance Segmentation. While all these 

techniques have potential applications in port water quality 

monitoring, Image Classification is deemed the most appropriate 

technique based on the desired input-output information and the fact 

that it requires less training data preparation compared to other 

techniques, allowing for the classification of images into simple 

classes that can be used to establish temporal and spatial 

distributions of pollution events. 
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In the field of computer vision, convolutional neural networks 

(CNNs) trained using deep learning techniques are often used to 

develop Image Classification applications. CNNs are a type of 

artificial neural network commonly used to analyze visual imagery 

because they are shift invariant, meaning they can analyze images 

regardless of the position of features within the image. 

These algorithms take input images of port water captured by a real-

time camera monitoring system and provide output classifications 

with the highest probability for proper environmental management 

of port water. The aim is to assess the effectiveness of previously 

developed Image Classification algorithms in waste monitoring 

when distance from camera to waste increases from training images 

and assess the possibility of distance correction using managing 

port water quality, utilizing the capabilities of computer vision 

techniques. 

c) Computer Vision Algorithm and Classes Considered 

Keras open-source software library for Python (version: 2.4.3) on 

Tensorflow Google developed open-source software library 

(version: 2.3.0) backend framework based on the Anaconda3 

platform was used for training the algoriths used in these 

experiments. Python 3.8.10 programming language was used for 

training and validation process programming. The computer used 

was equipped with an Intel Core i7-6700HQ CPU with 16 GB 

RAM and a NVIDIA GeForce GTX 960M graphics card. The 

computer operating system was the 64-bit Windows 10 home 

edition. A neural network InceptionV3, with “imagenet” weights 

and a 3-channel resolution was deployed. InceptionV3 was chosen, 

after discarding models designed for mobile devices, considering 

the compromise between accuracy and speed according to Keras 

documentation [WWW Document 2022] and CNN research [He et 

al. 2019, Hussain et al. 2019]. An additional 

GlobalAveragePooling2D layer was added with 1024 additional 

neurons with ReLU activation (0.2 dropout), as well as another 

layer with 3 neurons with softmax activation. The latter layer is the 
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one bearing the spill/waste/clean water classes information. For the 

training images, a series of transformations were applied (rotation, 

horizontal and vertical shifts, crop, zoom and horizontal reflex) 

including a standard normalization; and data augmentation 

techniques were used on the image set [Shorten and Khoshgoftaar 

2019]. For image validation purposes, only normalization was 

applied. Data ingestion was carried out in batches of 8 images. The 

training set images consisted of 80% of the set and the remaining 

20% were used for validation purposes. Firstly, a training of 

additional layers was conducted and subsequently a fine-tuning was 

simultaneously carried out of both final inception blocks and 

additional layers. The cost function used was 

CategoricalCrossentropy (logit) and Adam was deployed as the 

optimization algorithm (learning rate of 0.001 and 0.00001 was 

each of the training phases described previously). 

For experiments 1 and 2, two computer vision algorithms were 

used. These algorithms were developed and refined in 

SPILLCONTROL project, in previous stages of research. The first 

algorithm (V1) is the compensated image algorithm previously 

designed and utilized in study case presented in Chapter 4 [Morell, 

2023]. This algorithm forms the foundation of the algorithm 

development process, providing valuable insights and serving as a 

benchmark for comparison. It leverages a compensated image set 

obtained from photographs taken by an operator and has shown 

promising capabilities in detecting and classifying pollution 

instances in port environments. 

In contrast, the second algorithm (V8) represents the most cutting-

edge version available within the scope of the SPILLCONTROL 

project. This advanced version incorporates knowledge obtained 

from analysis of images from fixed cameras at Es Portitxol port in 

the Bay of Palma. Through continuous refinement and adaptation to 

the specific context of Es Portitxol port, V8 aims to surpass the 

performance of its predecessors, showcasing improved accuracy 

and reliability in detecting surface spills and floating marine waste. 
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By employing both V1 and V8, we aim to draw insightful 

comparisons between the algorithms' performances and assess the 

possible advantage of using algorithms trained in different operating 

conditions and different port areas. Furthermore, this approach 

allows us to evaluate the effectiveness of the novel improvements 

implemented in V8 and their practical implications for 

environmental monitoring systems. The comparative analysis will 

shed light on the strengths and limitations of each algorithm, 

providing valuable insights to guide future developments and 

enhance the overall efficiency of computer vision-based 

environmental management systems. Through a thorough 

examination of their performance under different conditions and 

scenarios, we seek to pave the way for the practical implementation 

of these technologies in port EMSs. 

Algorithm development process: 

In the initial stages, the compensated image model developed using 

photographs taken by an operator was adopted (V1). As the number 

of images obtained from three fixed cameras in the Es Portitxol port 

increased, new versions of the algorithm (from V2 to V5) were 

trained, incorporating images from these cameras without 

maintaining the proportion of compensated images. While this did 

not improve the statistical reliability parameters of the system, it did 

enhance the reliability specifically for images from these cameras. 

However, upon reaching version V5, a significant loss of reliability 

was observed (see Figure 5.2), attributed to an excess of class 0 

images (clean water) that caused a strong imbalance in the training 

image set. 

To address this issue, the class 0 image set was reduced by 

analyzing the similarity between different images and eliminating 

redundant ones with a similarity greater than 70% compared to 

other images. This improved the balance of the training image set, 

resulting in 2000 class 0 images, 1400 class 1 images, and 1200 

class 2 images. Furthermore, to further enhance balance, each image 

was assigned a weight per class, ensuring equal cumulative weights 
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across the three classes. This technique led to the development of 

version V6. The addition of new images maintaining compensation 

brought V7, and finally, the most recent version, V8, which 

demonstrates good reliability parameters over a set of images with a 

high proportion obtained from the fixed cameras within Es Portitxol 

(88.39%).    

 

Figure 5.2. Accuracy (blue) and Error Index (orange) evolution 

during algorithm development. Data for V7 could not be retrieved. 

Classes considered: 

Although both algorithms were initially trained for a three-class 

classification, including Class 0 (clean water), Class 1 (spill), and 

Class 2 (waste), the actual dataset used in this study case presented 

a variation in the classes available for analysis. As depicted in 

Figure 5.3, the algorithm training dataset consisted of images 

representing Class 0 (clean water) and Class 2 (waste), while the 

Class 1 (spill) instances were notably absent in the experimental 

dataset for this case. 

Despite the absence of Class 1 (spill) images in the dataset, it is 

important to acknowledge that the algorithms were designed to 

predict this class. Therefore, there is potential for incorrectly 
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predicting spill instances as this class was considered in the 

algorithm's design. 

 

  

Figure 5.3. Example algorithm training images for each class. 

 

Figure 5.4. Classes present in current experiments. 

It must be noted that the lack of Class 1 instances in the dataset 

could pose certain challenges for the algorithms’ reliability 

measure. However, in real-world scenarios there may be locations 
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where spill occurrences are not expected due to lack of possible 

sources at some port areas. 

 

d) Fieldwork and Image Set Used 

For the fieldwork, a synthetic waste set was employed (see Figure 

5.5), comprising eight containers with distinct characteristics 

securely fastened to a floatation device equipped with a Lagrangian 

buoy (see Figure 5.6). The buoy served to determine the specific 

location of the drifting waste during the experiments and evaluate 

the distance to the camera for each image. 

 

 

Figure 5.5. Left: Synthetic waste set on the boat. Right: Synthetic 

waste set on sea near the boat. 
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Figure 5.6. Lagrangian buoy device. 

This assemblage of synthetic waste was released on five separate 

occasions, each time launched from a semi-rigid boat and left adrift. 

Consequently, these five launches resulted in five distinct 

trajectories, as illustrated in Figure 5.7. 

From a fixed vantage point located on the southwest outer 

breakwater of the Es Portitxol port (see Figure 5.8), a total of 367 

photographs were captured, each showing the presence of the 

synthetic waste as it traversed along the drift trajectories. These 

photographs were taken at regular intervals, enabling the systematic 

monitoring and analysis of the synthetic waste's movement. 
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Figure 5.7. Camera location (green dot) and synthetic waste 

trajectories (orange lines). 

 

Figure 5.8. Classes present in current experiments. 

The use of synthetic waste allowed us to create controlled scenarios 

that mimic real-world waste discharge events and dispersion in a 

port or coastal setting. This approach enables the assessment of the 

algorithms' performance and accuracy in detecting and classifying 

waste instances for environmental monitoring in ports. 
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The camera employed for this experiment is the rear camera of a 

TCL 40 SE smartphone, boasting a resolution of 50 MP and 

possessing the specifications outlined in Table 5.1. 

50MP main/macro camera: 

 

PDAF, sensor size 1/2.55”, pixel size 0.7μm, 

aperture F1.8, field of view 79.4°, 5P lens 

2MP depth camera: 

 

FF, sensor size 1/5”, pixel size 1.75μm, aperture 

F2.4, field of view 88.8°, 3P lens 

2MP macro camera: 

 

FF, sensor size 1/5’’, pixel size 1.75μm, aperture 

F2.4, field of view 88.8°, 3P lens 

Video capture: 1080P @30FPS 

Video playback: 1080P @30FPS 

Features: Bokeh, HDR, Panorama, AI scene detection, Face 

detection 

Table 5.1. TCL 40 SE smartphone camera specifications. 

 

e) Image Pretreatment 

Images were obtained with an original resolution of 12.5 MP (4096 

pixels wide and 3072 pixels high). The resolution of these images is 

much higher than the working resolution of the classification 

algorithms (0.3 MP with 300 pixels in width and 300 pixels in 

height). This high resolution allows us to obtain image crops at 

various resolutions, producing two crops from each image: one 

containing the synthetic waste (which should be classified in Class 

2) and another without the synthetic waste (which should be 

classified in Class 0). Table 5.2 displays the sizes of the image 

crops conducted for the experiments described below. 
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Width (pixels) Height (pixels) Resolution (megapixels) 

72 54 0.0039 

120 90 0.011 

144 108 0.016 

216 162 0.035 

240 180 0.043 

288 216 0.062 

360 270 0.097 

400 300 0.120 

480 360 0.173 

800 600 0.480 

1200 900 1.080 

1600 1200 1.920 

Table 5.2. Sizes of the image crops conducted. 

 

f) Experiments Description and metrics considered 

Three experiments were conducted with the image sets described in 

previous section: 

 

• Experiment 1: Reliability of the classification algorithm 

concerning the initial resolution of the classified images. 

Since the classification algorithm adjusts the scale of the images to 

be classified to a resolution of 300x300 pixels (0.09 MP) before 

performing the classification, the resolution of the image crops does 

not alter the resolution of the images that will be classified. Instead, 

it affects the size of the waste in those images based on the scaling 

factor indicated in Table 5.3. 
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Resolution (megapixels) Scale Factor 

0.0039 481.1 % 

0.011 288.7 % 

0.016 240.6 % 

0.035 160.4 % 

0.043 144.3 % 

0.062 120.3 % 

0.097 96.2 % 

0.120 86.6 % 

0.173 72.2 % 

0.480 43.3 % 

1.080 28.9 % 

1.920 21.7 % 

Table 5.3. Scale factor of the image crops conducted. 

For this experiment, two representative indices of algorithm 

reliability were used: Precision for the Waste class, and the False 

Positive Rate for this same class. The reason for using these two 

indices is that they allow us, given the proportion of images with 

spills in a sample, to determine the Error Index. 

 

• Experiment 2: Reliability of the classification algorithm 

concerning the distance between the waste and the camera. 

In this experiment, the images were classified based on the distance 

between the synthetic waste and the camera. Three distance 

categories were considered, as shown in Table 5.4. “Near” category 

was established to represent maximum operating distance of 

existing SPILLCONTROL cameras used for V8 algorithm training.    

 

Distance category Distance range (m) Number of images 

Near < 30 54 

Medium 30 - 60 141 

Far > 60 172 

Table 5.4. Distance categories for experiment 2. 
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The images within these categories were cropped to a size of 

288x216 pixels (0.062 MP) and were classified using the V1 

algorithm, as this combination of resolution and algorithm yielded 

the best results in Experiment 1. 

For this experiment, as in Experiment 1, Precision for the Waste 

class, and the False Positive Rate for this same class were used as 

these two indices allow us to determine the Error Index for a given 

proportion of images with spills in a sample. 

 

• Experiment 3: Training a new algorithm with images from the 

present case study. 

For this experiment, algorithms were trained with different sets of 

images, and the training cost was evaluated in terms of the number 

of training epochs required and the reliability of the resulting 

algorithm using the error index proposed in the previous case 

[Morell 2023]. The algorithms were trained with image sets of the 

following resolutions: 0.043 MP, 0.120 MP, 0.480 MP, and 1.080 

MP. Additionally, algorithms were trained with combinations of 

images at 0.043 MP and 0.120 MP, 0.480 MP and 1.080 MP, and 

all four resolutions together. In all cases, balanced samples of 367 

images of clean water and 367 images with the presence of waste 

were used for training. 

For this experiment, the Error Index was used to measure the 

reliability of the algorithms obtained for the reasons explained in 

Chapter 4. 

 

5.4 Results 

 

A) Experiment 1: Reliability Versus Resolution 

Different sets of images, cropped to the resolutions indicated in  

Table 5.2 were classified using SPILLCONTROL algorithms V1 
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and V8 (see section 5.3.c for an explanation on these algorithms) 

and two reliability indexes were obtained for each case: Precision 

for the Waste class, and the False Positive Rate for this same class. 

Those indexes are presented in Figure 5.9 and 5.10 showing the 

following features: 

• Precision values are low (<20%) for high resolution images 

(above 360 pixels of height for V1 and 200 pixels of height for 

V8). 

• There is a maximum in Precision for both algorithms (about 210 

pixels of height for V1 and 90 pixels of height for V8); bellow 

that resolutions precision goes down quickly. Maximum 

precision achieved is around 50 %. 

• False Positive Rates are low (<5%) for high resolution images 

(above 360 pixels of height for V1 and 216 pixels of height for 

V8) but they increase severely for lower image resolutions. 

• For V1 algorithm there is a maximum in 162 pixels of height. 

 

Figure 5.9. Precision for the Waste class against resolution 

(measured in image height in pixels). 
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Figure 5.10. False Positive Rate for the Waste class against 

resolution (measured in image height in pixels). 

 

B) Experiment 2: Reliability Versus Distance 

Images have been divided into three Distance categories, cropped to 

a size of 288x216 pixels (0.062 MP) and classified using the V1 

algorithm, as this combination of resolution and algorithm yielded 

the best results in Experiment 1. 

The same two reliability indexes as in Experiment 1 were obtained 

for each category: Precision for the Waste class, and the False 

Positive Rate for this same class. Figure 5.11 shows the values of 

these indexes for each category. The Precision index shows an 

strong negative correlation with Distance category with Precision 

decreasing with Distance. The False Positive Rate shows high 

values for each category and a Not Significant correlation with 

Distance. 
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Figure 5.11. Precision and False Positive Rate for the Waste class 

against Distance category. 

 

C) Experiment 3: New Algorithms Training 

New algorithms were trained with seven different sets of images, 

four wiz fixed resolution of 0.043 MP, 0.120 MP, 0.480 MP, and 

1.080 MP; two with combined images of the two lower ant the two 

higher resolitions considered (0.043 and 0.120 MP and 0.480 and 

1.080 MP); and one with combined images of all four resolutions. 

For each algorithm, training cost was evaluated in terms of the 

number of training epochs required; and reliability was evaluated 

using the Error Index. 

Figure 5.12 presents the Error Index and number of training Epochs 

needed for those algorithms showing the following features: 

• Error Index values are low (<30%) for all resolution values and 

combinations except 1.08 MP and show a positive correlation 

with image resolution; higher image resolution produce higher 

Error Index values. 
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• Image sets combining different image resolutions produce Error 

Index values that are in the range between those for the 

resolutions involved. 

• Number of Epochs needed for training tend to increase with 

Image resolution though not severely. 

 

Figure 5.12. Error Index (values on the left) and number of training 

Epochs needed (values on the right) against resolution (measured in 

megapixels) of the image sets considered. 

 

5.5 Discussion 

a) Reliability of the system with pretrained algorithms 

The results from the experiments 1 and 2 in waste detection for the 

computer vision algorithms pretrained in project SPILLCONTROL 

show a reduction in the reliability from the values obtained in 

previous work (see Chapter 4). The obtained Accuracy curves in 

Experiment 1 align with previous research findings in the field of 

computer vision applications, highlighting two key features that 

significantly impact the performance of the algorithms: 
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• Image cropping plays a crucial role in enhancing Classification 

Accuracy [Mishra et al., 2020; Thambawita et al., 2021]. When 

a higher proportion of pixels corresponds to the target feature 

(waste in this case), the algorithm demonstrates improved 

accuracy in detecting and classifying the objects of interest. In 

Experiment 1, this phenomenon is clearly observed in Figure 

5.9, where the V1 algorithm achieves its highest Accuracy value 

when the images are cropped to approximately 0.059 MP (210 

pixels in height), and the V8 algorithm reaches its peak at a 

clipping resolution of about 0.011 MP (90 pixels in height). 

• Enlarging lower-resolution images through interpolation does 

not lead to improved Classification Accuracy [Hashemi, 2019]. 

In other words, simply increasing the size of images that have a 

resolution lower than the working resolution of the algorithm 

does not positively impact the algorithm's ability to accurately 

detect and classify waste objects. This characteristic is also 

evident in Experiment 1, where the algorithms' Accuracy values 

do not improve beyond their respective optimal clipping 

resolutions. 

Furthermore, the optimal cropping sizes identified in Experiment 1 

coincide with the image sizes that result in the waste part of the 

images having a size equal to the average size of the waste in the 

training images of each algorithm. This is consistent with the fact 

that the evolution from V1 to V8 involved the incorporation of a 

high proportion of waste images taken at greater distances, in which 

waste will on average have a smaller pixel size. 

These features are crucial in understanding the behavior of the 

computer vision algorithms for waste detection in different 

resolutions and distances and provide valuable insights for practical 

implementation of the CV monitoring tool: 

• Camera resolution should be set at a high enough value to 

ensure that average waste pixel size for the operational distance 

is similar to average waste pixel size for the images in the 

algorithm’s training set after normalization to the algorithms 
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resolution. No improvement can be obtained from a camera 

resolution higher than that. 

• To classify the images, they must be divided in tiles the size of 

the algorithms resolution rather than resampled. Positive waste 

classification of any tile leading to waste classification of the 

image. 

Although the False Positive Rate remained low for high-resolution 

images, which may be indicating the system's ability to correctly 

identify clean water areas, the significant loss in Accuracy for waste 

detection invalidates this strategy. 

On the other hand, the False Positive Rate increased for lower 

image resolutions (see Figure 5.10) emphasizes the need to acquire 

images with enough resolution to ensure that average waste pixel 

size for the operational distance is similar to average waste pixel 

size for the images in the algorithm’s training set. 

A comparison of the reliability parameters obtained using the V1 

algorithm in Experiments 1 and 2 of the current case study with 

those obtained in Experiments 1 and 2 of the previous case study 

(Chapter 4), where the same algorithm was also employed, reveals 

noteworthy differences. Specifically, when analyzing the Precision 

metrics for both Clean water and Waste classes, the present case 

images produce lower Precision scores compared to the Control 

image set used in the previous case study. In the earlier study, the 

algorithm achieved high Precision scores, with 0.89 Precision for 

clean water images and 0.93 Precision for Waste images (as 

indicated in Table 4.3). In contrast, the results obtained in the 

present case study, even with the optimal clipping size set at 

288x216 pixels (0.062 MP), show Precision scores that fall below 

these (see Table 5.5). The difference in Precision between the two 

studies suggests variations in the algorithm's performance when 

applied to images obtained in different conditions, being the 

distance from Waste to camera the most plausible reason, as 

Experiment 2 results suggest. 
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Experiment / distance Clean water Precision Waste Precision 

1 0.48 0.53 

2 / Near 0.33 0.87 

2 / Medium 0.63 0.61 

2 / Far 0.35 0.30 

Table 5.5. Maximum Precision for Clean water and Waste classes 

reached in experiments 1 and 2. 

Experiment 2 emphasized the significance of considering the 

distance between the waste and the camera in system reliability. 

The Precision showed a strong negative correlation with Distance, 

indicating that the system's accuracy decreased as the distance 

between the waste and the camera increased. So, to improve the 

system's performance, efforts should be directed towards enhancing 

object detection capabilities at varying distances from the camera. 

This could involve training distance-specific algorithms to account 

for spatial variations and adjusting accordingly the resolution of the 

images taken according to the results observed in Experiment 3. 

What might be considered a limitation of the experiments presented 

is that, while both V1 and V8 algorithms were trained for a three-

class classification (Class 0 - clean water, Class 1 - spill, and Class 

2 - waste), the study case in this chapter involved only two classes 

(Class 0 - clean water and Class 2 - waste). Certainly this limitation 

might interfere with the measured Precision values; as part of the 

images inadequately classified as Spill by the algorithm would have 

been classified properly if that class didn’t exist. However, this 

limitation does not seem to significantly compromise the 

conclusions drawn from the experimental results. Also, in the 

practical application of the system in port environments, it is worth 

noting that the majority of real-world situations involve both types 

of pollution, so algorithms shall have to take both classes into 

consideration. 
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b) System reliability potential improvement 

In Experiment 3, new algorithms were trained using different sets of 

images at varying resolutions. The Error Index results indicated that 

the system achieved reliable performance across a range of 

resolutions, with Error Index values consistently below 30%. 

Nevertheless, the system's performance tended to decrease slightly 

with higher image resolutions, suggesting that the analysis of higher 

resolution images should be performed separately over different 

sections of each image. 

Reliability levels achieved in this Experiment should be taken 

carefully as all images used for the training and for the reliability 

evaluation showed the same synthetic waste set and were taken in 

similar sea and light conditions. So, these reliability levels should 

be considered as an upper limit rather than an expected value.   

Additionally, training the algorithms with combined image sets 

showed potential for achieving performance levels within the range 

of the individual resolutions involved, presenting a possible strategy 

to avoid the need of several analysis of the same images at different 

resolution and resulting in a more cost-effective system deployment 

without compromising reliability. 

 

c) Further investigation 

While the results of this study provide some insights into the 

reliability and potential improvements of the SPILLCONTROL 

computer vision system, there are several areas that warrant further 

investigation to enhance its performance and broaden its scope of 

application. The following aspects represent promising directions 

for future research: 

• Expansion to Diverse Port Environments: This study focused on 

the port of Es Portitxol as a specific case study. To validate the 

system's robustness and adaptability, further investigations 

should be conducted in diverse port environments with varying 
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waste characteristics and water conditions. Evaluating the 

system's performance in different geographical locations and 

under different environmental conditions will contribute to 

understanding its generalization capabilities and ensuring 

reliable waste detection across multiple ports. 

• Burst images: Exploring the use of a sequence of images instead 

of one image at a time and develop algorithms to leverage burst 

photography for waste detection, aiming to improve the system's 

reliability and accuracy in identifying pollution incidents. 

• Multi-View Analysis: Expanding the system's capabilities to 

incorporate multi-view analysis can significantly enhance its 

performance in waste detection. Combining data from multiple 

cameras with different perspectives can improve object 

recognition accuracy and provide a more comprehensive 

understanding of waste distribution in port waters. Investigating 

multi-view analysis techniques, such as 3D reconstruction or 

fusion algorithms, will be valuable in capturing a more complete 

picture of waste occurrences and their spatial distribution. 

• Fusion with Other Environmental Data: Integrating the 

computer vision system with other environmental data sources 

can provide a holistic approach to marine pollution monitoring. 

For instance, combining image data with real-time weather, tide, 

or current information can aid in understanding the dynamics of 

waste transport and dispersion within port areas. Investigating 

methods for data fusion and developing hybrid monitoring 

systems will enable more comprehensive and context-aware 

waste detection and management. 

• Extended Pollution Monitoring: While this study focused on 

waste detection, the SPILLCONTROL system can be expanded 

to monitor other types of marine pollution, such as oil spills, 

dissolved or suspended contaminants, eutrophication and 

microplastics. Investigating the adaptability of the pretrained 

algorithms to different pollution types and optimizing their 
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performance for specific pollution scenarios will contribute to a 

versatile and comprehensive pollution monitoring platform. 

• Environmental Impact Assessment: Assessing the 

environmental impact of waste occurrences detected by the 

SPILLCONTROL system is another crucial aspect for further 

investigation. Understanding the ecological consequences of 

waste pollution and its effects on marine ecosystems will help in 

developing targeted mitigation strategies and fostering 

sustainable environmental management practices. 

 

d) Future Applications 

The findings from this study open up exciting possibilities for future 

applications of the SPILLCONTROL computer vision system. The 

system's pretrained algorithms exhibit promising reliability in 

detecting waste in port waters, indicating its potential for practical 

deployment in real-world scenarios. Future applications could 

include integrating the system into existing port monitoring 

infrastructures for efficient and continuous waste detection. By 

leveraging the pretrained algorithms and incorporating new data 

from specific port environments, the system can be fine-tuned to 

adapt to various port configurations and waste characteristics, 

further enhancing its performance and reliability. 

Moreover, the SPILLCONTROL system can serve as a valuable 

tool in supporting environmental management efforts in port areas. 

The accurate and timely detection of waste can help authorities take 

proactive measures to mitigate pollution and preserve marine 

ecosystems' health. The system's ability to identify waste areas and 

clean water regions with low False Positive Rates can aid in 

allocating resources effectively and prioritizing clean-up operations. 

Furthermore, the SPILLCONTROL system's potential extends 

beyond waste detection in port environments. The pretrained 

algorithms can be applied and adapted for other marine pollution 
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monitoring tasks, such as identifying spills or tracking the spread of 

hazardous substances from a vessel or drone. 

 To ensure the reliability and practical applicability of the system, 

field validation and collaboration with port authorities and 

environmental agencies are essential. Conducting field trials in real-

world port environments will validate the system's performance and 

provide valuable feedback for further improvements. Collaborating 

with stakeholders will also aid in tailoring the system to meet 

specific regulatory and operational requirements. 

 

5.6 Conclusions  

The study case presented in this chapter focuses on the operation 

conditions for a computer vision-based system for waste detection 

in port waters using pretrained algorithms from the 

SPILLCONTROL project. The research aimed to assess the 

limitations of the system and explore potential improvements to 

correct those limitations. 

The results from the experiments demonstrated that the computer 

vision system achieved under certain conditions promising results in 

waste detection with Precision values that are lower than those 

obtained in previous chapter but may be corrected with an 

appropriate consideration of the resolution of the images according 

to the distance from the camera to the surveilled area as the 

reliability of the system showed a clear dependence on image 

resolution and distance between the waste and the camera. High-

resolution images cropped to parts and shorter distances lead to 

better performance. Additionally, the training of new algorithms 

with combined resolution image sets presented a viable strategy to 

achieve reliable performance across different resolutions without 

compromising accuracy. 

The study case demonstrated the feasibility and effectiveness of 

using computer vision for waste detection in port waters with 

operating ranges above 30 m. The pretrained algorithms exhibited 
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limited reliability, but potential improvements were identified to 

enhance the system's performance. Collaborative efforts with port 

authorities and environmental agencies for field validation and 

tailoring the system to meet specific regulatory and operational 

requirements are essential steps for practical implementation. The 

SPILLCONTROL computer vision system offers a valuable tool for 

proactive pollution management in port environments, contributing 

to the preservation of marine ecosystems' health and sustainable 

port operations. 

 

5.7 Afterword  

Data Availability Statement 

Project datasets are not publicly available as images used are 

property of SPILLCONTROL project. 
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6. Conclusion and future work 

 

6.1 General discussion 

This thesis aimed to develop and evaluate novel tools and specific 

strategies for implementing Environmental Management Systems 

(EMS) in ports to monitor water quality. The primary objectives 

were to assess the feasibility of using computer vision for water 

pollution monitoring, develop a computer vision-based system for 

spill and waste identification, integrate this system with SAMOA 

meteorological and hydrodynamic operational service, analyze the 

operating conditions for the computer vision monitoring system, 

and evaluate the performance and effectiveness of the tools 

integrated into the EMS. 

The research focused on three case studies, each providing valuable 

insights into the system's capabilities and potential improvements. 

In Case 1, numerical simulation implementation on operational 

meteorologic and hydrodynamic service information were 

investigated. The results demonstrated that the integration of 

SAMOA operational service supported numerical simulations can 

provide valuable information on oil spill patterns and their 

interactions with hydrodynamic conditions. However, the resolution 

of the numerical model proved to be crucial in achieving accurate 

results, especially in complex port entrance areas. Understanding 

the temporal variability of oil spills also offered insights into the 

impact of time of release on the spreading patterns. 

In Case 2, the discussion focused on the system set-up and future 

applications of the computer vision-based system for pollution 

monitoring. The study revealed that image classification was 

suitable for marine pollution monitoring tasks, with high accuracy 

rates and low training requirements. Progressive implementation of 

the system with increasing image datasets was proposed as an 

effective strategy to achieve reliable performance in a shorter time 

frame. Future applications were discussed, emphasizing the 
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importance of enhancing object detection capabilities and 

expanding the system to diverse port environments. 

Case 3 investigated the effect of operational conditions on the 

reliability of the SPILLCONTROL computer vision system for 

waste detection and analyzed potential improvement techniques. 

The experiments highlighted the importance of image resolution 

and distance from the camera in achieving reliable waste detection 

results. Further investigation was suggested to expand the system's 

capabilities to diverse port environments, explore burst images, 

incorporate multi-view analysis, and fuse computer vision data with 

other environmental data sources for comprehensive pollution 

monitoring. 

In general, the research findings showed promising potential for 

using SAMOA operational service and computer vision-based 

systems in water quality environmental management systems in 

ports. The development of robust CV algorithms and the integration 

with meteorological and hydrodynamic models may provide 

valuable insights into pollution patterns and dynamics. However, 

certain challenges and limitations were identified, such as the need 

for sufficient and diverse image datasets, the importance of 

optimizing image resolution, and the consideration of distance-

dependent algorithms for object detection. 

To further enhance the practical applicability and effectiveness of 

the proposed tools, several future directions were suggested. These 

include combining SAMOA with CV monitoring, expanding the 

system to different port environments, implementing burst 

photography for waste detection, exploring multi-view analysis, 

integrating computer vision data with other environmental data, and 

extending pollution monitoring to various types of marine pollution. 

Additionally, conducting field trials and collaborating with port 

authorities and environmental agencies were emphasized as 

essential steps for validation and real-world deployment. 

It is essential to underscore the significance of progressive 

implementation of Environmental Monitoring Systems and the 
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collection of information at early stages for system development. 

Adopting a progressive approach allows port authorities to initiate 

environmental monitoring initiatives with the data and technologies 

available at the time, without delaying the implementation for a 

perfect, all-encompassing solution. Early data collection provides a 

valuable baseline and insights into the environmental conditions and 

pollution patterns specific to the port, enabling tailored system 

development. As technology rapidly advances, incorporating new or 

improved technologies into the existing EMS becomes feasible. 

This adaptability ensures that the environmental monitoring system 

remains up-to-date and effective, continuously enhancing its 

capabilities and accuracy over time. Moreover, embracing a 

progressive implementation strategy can significantly reduce the 

initial implementation cost, making it more accessible to a broader 

range of ports, including those with limited resources. By 

combining early data collection, agile development, and technology 

evolution, port authorities can embrace an iterative and innovative 

approach, reinforcing their commitment to sustainable port 

operations and environmental preservation. 

 

6.2 Final conclusions 

This thesis aimed to explore and evaluate the application of 

computer vision-based systems for environmental management in 

ports, specifically focusing on spill and waste detection. Three case 

studies were conducted, each addressing different aspects of the 

overall objective. The conclusions from each case study, along with 

the discussions, have contributed valuable insights to the field of 

port environmental management and computer vision application. 

The key findings and implications derived from the individual case 

studies have to be addressed from an integrated perspective as the 

tools considered have to merge in the EMS development. 
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Case 1 Conclusion: 

The first case study introduced a probabilistic method for obtaining 

Integrated Pollution Maps (IPMs) using Monte Carlo simulations. 

The results demonstrated the validity and potential of IPMs as tools 

for environmental management in ports. The IPMs showed good 

consistency with the meteo-oceanographic characteristics of the 

region under consideration, providing valuable information on 

potential pollution dispersion patterns. The study highlighted the 

importance of expert judgment in areas with limited data, 

emphasizing the need for adequate strategies to overcome these 

limitations. Future research in this area should focus on the 

integration of meteo-oceanographic operational system models to 

further enhance the accuracy and applicability of IPMs in port 

environmental management. 

Case 2 Conclusion: 

The second case study investigated the use of computer vision 

techniques for port water quality identification based on random 

image sets. The study evaluated the reliability of the method and 

identified Image Classification as the most suitable approach for 

real-time marine pollution monitoring, given its high accuracy rates 

and low training requirements. The study emphasized the potential 

of progressive implementation, which allows for the development 

of functional monitoring systems in a shorter time frame while 

maintaining high accuracy levels. Moreover, the proposed 

performance metric proved to be effective in assessing computer 

vision system performance for port environmental management. 

Future research in this area should focus on developing methods to 

improve the efficiency of obtaining spill and waste images, 

considering the challenges associated with camera locations and 

image quality. Additionally, the consideration of mixed discharge 

classes and image pre-filtering techniques could lead to algorithms 

with higher performance metrics. 
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Case 3 Conclusion: 

The third case study concentrated on the operation conditions of a 

computer vision-based system for waste detection in port waters 

using pretrained algorithms from the SPILLCONTROL project. The 

study revealed promising results under certain conditions, 

particularly for waste detection at operating ranges above 30 meters. 

However, the system's reliability showed a dependency on image 

resolution and distance between the camera and the surveilled area. 

High-resolution images and shorter distances led to improved 

performance. The study also identified the training of new 

algorithms with combined resolution image sets as a viable strategy 

to achieve reliable performance across different resolutions without 

compromising accuracy. This case study highlighted the feasibility 

and effectiveness of using computer vision for waste detection in 

ports, offering a valuable tool for proactive pollution management. 

Collaborative efforts with port authorities and environmental 

agencies will be crucial for field validation and system tailoring to 

meet specific regulatory and operational requirements. 

Integrated Perspectives and Future Directions: 

The three case studies collectively contribute to the advancement of 

operational services and computer vision applications in port 

environmental management. They highlight the potential of such 

systems to support decision-making processes, enhance monitoring 

capabilities, and foster proactive pollution management. By 

integrating the findings from all case studies, several overarching 

themes and future directions emerge: 

Multi-modal Integration: The combination of computer vision 

data with other environmental data sources, such as meteo-

oceanographic data, can provide a more comprehensive 

understanding of pollution dynamics in ports. Integrating data from 

various sources will facilitate more accurate predictions and early 

detection of potential pollution events. 
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Adaptability and Generalization: CV tools development should 

focus on obtaining computer vision algorithms that are adaptable to 

diverse port environments and can generalize well across different 

waste and spill characteristics. This adaptability is crucial for 

practical implementation in various port configurations. 

Collaboration and Validation: Collaboration between researchers, 

port authorities, and environmental agencies is vital for the 

successful validation and deployment of computer vision-based 

systems. Practical implementation will require a strong partnership 

to ensure the system's reliability and compliance with regulatory 

standards. 

Sustainability and Cost-Effectiveness: Taking profit from the 

cost-effectiveness of computer vision systems and at the same time 

identifying ways to reduce the total development cost while 

maintaining high accuracy levels will be crucial for their 

widespread adoption. 

 

6.3 Further investigation 

The completion of this thesis has shed light on various aspects of 

operational systems and computer vision applications in 

environmental management within port settings. The case studies 

presented have provided valuable insights and recommendations for 

practical implementation. However, several areas still warrant 

further investigation to advance the field and address existing 

limitations.  

Advanced Computer Vision Techniques: While the case studies 

have explored various computer vision techniques, further 

investigation into advanced methods is essential. Deep learning 

algorithms, such as Convolutional Neural Networks (CNNs), have 

shown promising results in image recognition tasks. Investigating 

the application of CNNs and other deep learning architectures 

specifically tailored for environmental monitoring in ports can 

potentially improve accuracy and generalization capabilities. 
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Fusion of Multimodal Data: To enhance the overall monitoring 

process, future research should focus on integrating data from 

multiple sources. Combining computer vision data with meteo-

oceanographic data, remote sensing data, and other environmental 

variables can provide a more comprehensive understanding of 

pollution dynamics and assist in the early detection of potential 

incidents. The development of fusion techniques that effectively 

integrate these disparate data sources is a promising area of 

investigation.  

Citizen Contribution: A promising approach for collecting, 

integrating, and analyzing environmental data, particularly in the 

context of long-term data series related to environmental sciences is 

Citizen Contribution, allowing citizens to actively participate in 

monitoring water quality. The analysis of optical properties of water 

such as color and transparency, obtainable from regular camera 

images, of port and coastal water enable efficient measurements of 

key environmental descriptors of its environmental condition 

encouraging further exploration of citizen contribution as a means 

to enhance environmental data collection and analysis for improved 

environmental management and decision-making. [Ceccaroni et al. 

2020, Soto et al. 2019] 

Real-time Data Processing: Efficient real-time data processing is 

crucial for proactive pollution management in ports. Investigating 

the use of edge computing and distributed processing techniques 

can significantly reduce the time delay between pollution 

occurrence and detection. Additionally, optimizing data 

transmission and storage strategies will ensure that large volumes of 

visual data can be processed and analyzed in real-time. 

Robustness and Generalization: The robustness and 

generalization of computer vision algorithms constitute a 

fundamental development line. Further investigation is needed to 

test the algorithms in different port environments and under varying 

pollution scenarios and develop algorithms that can handle diverse 
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environmental conditions, lighting variations, and weather 

disturbances. 

Human-in-the-Loop Systems: Integrating human expertise into 

computer vision systems can improve the accuracy and reliability of 

pollution detection. Investigating the development of human-in-the-

loop systems, where numerical simulation and computer vision 

algorithms work in tandem with human operators, can lead to more 

effective and adaptive EMS solutions. 

Validation and Standardization: Validation of the tools presented 

in real-world port environments is crucial. Collaborative efforts 

between researchers, port authorities, and environmental agencies 

are necessary to conduct field trials and assess the systems' 

performance under practical conditions. Additionally, standardizing 

evaluation metrics for environmental monitoring with computer 

vision will facilitate meaningful comparisons across different 

studies. 

Cost-Effectiveness and Scalability: Further investigation into cost-

effective and scalable EMS tools will encourage broader adoption 

in port facilities of varying sizes and resources. Exploring 

techniques to reduce hardware costs, optimize computational 

resources, and enhance system scalability will make these solutions 

more accessible to a wide range of ports. 

Decision Support Systems: Integrating operational services and 

computer vision-based environmental monitoring systems with 

decision support tools can enhance the overall effectiveness of port 

pollution management. Investigating the development of intelligent 

decision support systems that leverage real-time data and predictive 

analytics will aid port authorities in making timely and informed 

decisions. 

Environmental Impact Assessment: Extending the application of 

the tools presented to conduct comprehensive environmental impact 

assessments can provide valuable insights into the long-term effects 

of port activities on marine ecosystems. Assessing the 
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environmental impact of port operations using these tools can help 

identify areas that require targeted interventions for environmental 

preservation. 

Interdisciplinary Collaboration: Promoting interdisciplinary 

collaboration between meteorologists, experts in hydrodynamics, 

computer vision, environmental science, maritime operations, and 

policy-making will facilitate a holistic approach to address 

environmental challenges in ports. Collaborative efforts will help 

bridge the gap between technology development and real-world 

applications, leading to more effective and sustainable solutions. 
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